Hirayama, Denise; Saron, Clodoaldo
2015-06-01
Polymeric materials constitute a considerable fraction of waste computer equipment and polymers acrylonitrile-butadiene-styrene and high-impact polystyrene are the main thermoplastic polymeric components found in waste computer equipment. Identification, separation and characterisation of additives present in acrylonitrile-butadiene-styrene and high-impact polystyrene are fundamental procedures to mechanical recycling of these polymers. The aim of this study was to evaluate the methods for identification of acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment in Brazil, as well as their potential for mechanical recycling. The imprecise utilisation of symbols for identification of the polymers and the presence of additives containing toxic elements in determinate computer devices are some of the difficulties found for recycling of acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment. However, the considerable performance of mechanical properties of the recycled acrylonitrile-butadiene-styrene and high-impact polystyrene when compared with the virgin materials confirms the potential for mechanical recycling of these polymers. © The Author(s) 2015.
Triantou, Marianna I; Tarantili, Petroula A; Andreopoulos, Andreas G
2015-05-01
In the present research, blending of polymers used in electrical and electronic equipment, i.e. acrylonitrile-butadiene-styrene terpolymer, polycarbonate and polypropylene, was performed in a twin-screw extruder, in order to explore the effect process parameters on the mixture properties, in an attempt to determine some characteristics of a fast and economical procedure for waste management. The addition of polycarbonate in acrylonitrile-butadiene-styrene terpolymer seemed to increase its thermal stability. Also, the addition of polypropylene in acrylonitrile-butadiene-styrene terpolymer facilitates its melt processing, whereas the addition of acrylonitrile-butadiene-styrene terpolymer in polypropylene improves its mechanical performance. Moreover, the upgrading of the above blends by incorporating 2 phr organically modified montmorillonite was investigated. The prepared nanocomposites exhibit greater tensile strength, elastic modulus and storage modulus, as well as higher melt viscosity, compared with the unreinforced blends. The incorporation of montmorillonite nanoplatelets in polycarbonate-rich acrylonitrile-butadiene-styrene terpolymer/polycarbonate blends turns the thermal degradation mechanism into a two-stage process. Alternatively to mechanical recycling, the energy recovery from the combustion of acrylonitrile-butadiene-styrene terpolymer/polycarbonate and acrylonitrile-butadiene-styrene terpolymer/polypropylene blends was recorded by measuring the gross calorific value. Comparing the investigated polymers, polypropylene presents the higher gross calorific value, followed by acrylonitrile-butadiene-styrene terpolymer and then polycarbonate. The above study allows a rough comparative evaluation of various methodologies for treating plastics from waste from electrical and electronic equipment. © The Author(s) 2015.
Ramesh, V; Biswal, Manoranjan; Mohanty, Smita; Nayak, Sanjay K
2014-05-01
This study is focused on the recovery and recycling of plastics waste, primarily polycarbonate, poly(acrylonitrile-butadiene-styrene) and high impact polystyrene, from end-of-life waste electrical and electronic equipments. Recycling of used polycarbonate, acrylonitrile-butadiene-styrene, polycarbonate/acrylonitrile-butadiene-styrene and acrylonitrile-butadiene-styrene/high impact polystrene material was carried out using material recycling through a melt blending process. An optimized blend composition was formulated to achieve desired properties from different plastics present in the waste electrical and electronic equipments. The toughness of blended plastics was improved with the addition of 10 wt% of virgin polycarbonate and impact modifier (ethylene-acrylic ester-glycidyl methacrylate). The mechanical, thermal, dynamic-mechanical and morphological properties of recycled blend were investigated. Improved properties of blended plastics indicate better miscibility in the presence of a compatibilizer suitable for high-end application.
21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylonitrile/butadiene/sty-rene co-polymer. 177... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances.../butadiene/sty-rene co-polymer. Acrylonitrile/butadiene/styrene copolymer identified in this section may be...
21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylonitrile/butadiene/sty-rene co-polymer. 177... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances.../butadiene/sty-rene co-polymer. Acrylonitrile/butadiene/styrene copolymer identified in this section may be...
21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylonitrile/butadiene/sty-rene co-polymer. 177... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances.../butadiene/sty-rene co-polymer. Acrylonitrile/butadiene/styrene copolymer identified in this section may be...
21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acrylonitrile/butadiene/sty-rene co-polymer. 177... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances.../butadiene/sty-rene co-polymer. Acrylonitrile/butadiene/styrene copolymer identified in this section may be...
Ultrasonic degradation of butadiene, styrene and their copolymers.
Sathiskumar, P S; Madras, Giridhar
2012-05-01
Ultrasonic degradation of commercially important polymers, styrene-butadiene (SBR) rubber, acrylonitrile-butadiene (NBR) rubber, styrene-acrylonitrile (SAN), polybutadiene rubber and polystyrene were investigated. The molecular weight distributions were measured using gel permeation chromatography (GPC). A model based on continuous distribution kinetics approach was used to study the time evolution of molecular weight distribution for these polymers during degradation. The effect of solvent properties and ultrasound intensity on the degradation of SBR rubber was investigated using different pure solvents and mixed solvents of varying volatility and different ultrasonic intensities. Copyright © 2011 Elsevier B.V. All rights reserved.
21 CFR 177.1050 - Acrylonitrile/styrene copoly-mer modified with butadiene/styrene elastomer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... parts by weight of a grafted rubber consisting of (i) 8-12 parts of butadiene/styrene elastomer... limitations are determined by an infrared spectro-photo-metric method titled “Infrared Spectro-photo-metric...
NASA Astrophysics Data System (ADS)
Hermawan, B.; Nikmatin, S.; Alatas, H.; Sudaryanto; Sukaryo, S. G.
2017-05-01
Oil palm empty fruit bunches (OPEFB) was one of the solid waste produced by the palm oil factory and were totally plentiful in biomass. OPEFB fiber used as reinforcement of polymer matrix acrylonitrile butadiene styrene (ABS). The use of FTIR is to see that there is no changes in the molecules of the constituent biocomposite ABS and OPEFB. The reactivity of butadiene and styrene through the double bond- π conjugated system, contributed to the bond reaction with the maleic acid as compatibilizer witch is grafted to the system. It is concluded that the posible grafting reaction occurs by the addition of the MAH to the double bond of the butadiene and styrene. The hydroxyl group of cellulose can interact with this maleic acid to form a bond through the carboxyl group.
21 CFR 177.1030 - Acrylonitrile/butadiene/styrene/methyl methacrylate copolymer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... monomer content of the finished copolymer articles is not more than 11 parts per million as determined by a gas chromatographic method titled “Determination of Residual Acrylonitrile and Styrene Monomers... article shall yield not more than 0.0025 milligram per square inch of acrylonitrile monomer when exposed...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakurada, I.; Okada, T.; Hutakeyama, S.
Experiments on radioinduced graft copolymerization of binary mixtures such as butadiene -- styrene, butadiene-acrylonitrile, styrene-- acrylonitrile and some other systems onto cellulose and PVA (polyvinyl alcohol) fibers were carried out with the use of methanol as a solvent. A very marked maximum of graft was observed in every case at a certain composition of the comonomer mixture. It seemed that such a marked maximum was closely connected with popcorn polymerization for the case of butadiene-- styrene, but popcorn polymerization was not a necessary condition for the appearance of the maximum. Only a combined effect of swelling of the gel, formationmore » of radicals in the gel, homocopolymerization, and some other unknown factors is considered likely to lead to a very high degree of grafting. (auth)« less
DEVELOPMENT OF FLEXIBLE INSULATION FOR SOLID PROPELLANT ROCKET MOTOR CASES
acrylonitrile-phenol furfural -asbestos composition. Other promising materials which are reported are based on two types of liquid butadiene/styrene cbers. The...This material was based on a butadiene/acrylonitrile-phenol furfural -asbestos composition. Other promising materials which are reported are based on two
21 CFR 181.32 - Acrylonitrile copolymers and resins.
Code of Federal Regulations, 2010 CFR
2010-04-01
... paragraph (b) of this section, may be safely used as follows: (1) Films. (i) Acrylonitrile/butadiene/styrene... acrylonitrile monomer extraction for finished food-contact articles, determined by using the method of analysis...
Ohno, Hiroyuki; Kawamura, Yoko
2010-01-01
A headspace gas chromatography/mass spectrometry method was developed for the simultaneous determination of the residual levels of acrylonitrile (AN), 1,3-butadiene (1,3-BD), and their related compounds containing propionitrile (PN) and 4-vinyl-1-cyclohexene (4-VC) in acrylonitrile-butadiene-styrene (ABS) copolymers for kitchen utensils and children's toys. A sample was cut into small pieces, then N,N-dimethylacetamide and an internal standard were added in a sealed headspace vial. The vial was incubated for 1 h at 90 degrees C and the headspace gas was analyzed by gas chromatography/mass spectrometry. The recovery rates of the analytes were 93.3-101.8% and the coefficients of variation were 0.3-6.5%. In ABS copolymers, the levels were 0.3-50.4 microg/g for AN, ND-4.5 microg/g for PN, 0.06-1.58 microg/g for 1,3-BD, and 1.1-295 microg/g for 4-VC. The highest level was found for 4-VC, which is a dimer of 1,3-BD, and the next highest was for AN, which is one of the monomers of the ABS copolymer. Furthermore, the method was also applied to acrylonitrile-styrene (AS) copolymers and polystyrenes (PS) for kitchen utensils, and nitrile-butadiene rubber (NBR) gloves. In AS copolymers, AN and PN were detected at 16.8-54.5 and 0.8-6.9 microg/g, respectively. On the other hand, the levels in PS and NBR samples were all low.
21 CFR 177.1050 - Acrylonitrile/styrene copoly-mer modified with butadiene/styrene elastomer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... for use E, F, or G described in table 2 of § 176.170(c) of this chapter. (a) Identity. For the purpose... with 250 milliliters spectral grade n-heptane at reflux temperature for 2 hours. (e) Accelerated extraction end test. The modified copolymer shall yield acrylonitrile monomer not in excess of 0.4 ppm when...
21 CFR 177.1050 - Acrylonitrile/styrene copoly-mer modified with butadiene/styrene elastomer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... chapter as Type VI-B under conditions for use E, F, or G described in table 2 of § 176.170(c) of this... copol-ymer is extracted with 250 milliliters spectral grade n-heptane at reflux temperature for 2 hours. (e) Accelerated extraction end test. The modified copolymer shall yield acrylonitrile monomer not in...
21 CFR 177.1050 - Acrylonitrile/styrene copoly-mer modified with butadiene/styrene elastomer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... chapter as Type VI-B under conditions for use E, F, or G described in table 2 of § 176.170(c) of this... copol-ymer is extracted with 250 milliliters spectral grade n-heptane at reflux temperature for 2 hours. (e) Accelerated extraction end test. The modified copolymer shall yield acrylonitrile monomer not in...
21 CFR 177.1050 - Acrylonitrile/styrene copoly-mer modified with butadiene/styrene elastomer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... chapter as Type VI-B under conditions for use E, F, or G described in table 2 of § 176.170(c) of this... copol-ymer is extracted with 250 milliliters spectral grade n-heptane at reflux temperature for 2 hours. (e) Accelerated extraction end test. The modified copolymer shall yield acrylonitrile monomer not in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ngoc A.; Bowland, Christopher C.; Naskar, Amit K.
Here, the article presents different mechanical, thermal and rheological data corresponding to the morphological formation within various renewable lignin-based composites containing acrylonitrile butadiene styrene (ABS), acrylonitrile butadiene rubber (NBR41, 41 mol% nitrile content), and carbon fibers (CFs). The data of 3D-printing properties and morphology of 3D-printed layers of selected lignin-based composites are revealed.
Nguyen, Ngoc A.; Bowland, Christopher C.; Naskar, Amit K.
2018-05-29
Here, the article presents different mechanical, thermal and rheological data corresponding to the morphological formation within various renewable lignin-based composites containing acrylonitrile butadiene styrene (ABS), acrylonitrile butadiene rubber (NBR41, 41 mol% nitrile content), and carbon fibers (CFs). The data of 3D-printing properties and morphology of 3D-printed layers of selected lignin-based composites are revealed.
[3D printing in neurosurgery: a specific model for patients with craniosynostosis].
Jiménez Ormabera, Borja; Díez Valle, Ricardo; Zaratiegui Fernández, Javier; Llorente Ortega, Marcos; Unamuno Iñurritegui, Xabier; Tejada Solís, Sonia
Craniosynostosis is a rare condition and requires a personalised surgical approach, which is why we consider the use of 3D printed models beneficial in the surgical planning of this procedure. Acrylonitrile butadiene styrene plastic skull models were designed and printed from CT images of patients between 3 and 6 months of age with craniosynostosis of different sutures. The models were used to simulate surgical procedures. Four models of four patients with craniosynostosis were produced: two with closure of the metopic suture and two with sagittal suture closure. The mean age of the patients was 5 months (3-6m) and the mean duration of the surgery was 286min (127-380min). The acrylonitrile butadiene styrene plastic models printed for the project proved to be optimal for the simulation of craniosynostosis surgeries, both anatomically and in terms of mechanical properties and reaction to surgical instruments. 3D printers have a wide range of medical applications and they offer an easy and affordable way to produce skull models. The acrylonitrile butadiene styrene material is suitable for the production of operable bone models as it faithfully reproduces the mechanical characteristics of bone tissue. Copyright © 2017 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.
Wang, Mingfang; Wang, Yuerong; Luo, Pei; Zhang, Hongyang; Zhang, Min; Hu, Ping
2017-10-01
The content of styrene units in nonhydrogenated and hydrogenated styrene-butadiene-styrene and styrene-isoprene-styrene triblock copolymers significantly influences product performance. A size exclusion chromatography method was developed to determine the average styrene content of triblock copolymers blended with tackifier in adhesives. A complete separation of the triblock copolymer from the other additives was realized with size exclusion chromatography. The peak area ratio of the UV and refraction index signals of the copolymers at the same effective elution volume was correlated to the average styrene unit content using nuclear magnetic resonance spectroscopy with commercial copolymers as standards. The obtained calibration curves showed good linearity for both the hydrogenated and nonhydrogenated styrene-butadiene-styrene and styrene-isoprene-styrene triblock copolymers (r = 0.974 for styrene contents of 19.3-46.3% for nonhydrogenated ones and r = 0.970 for the styrene contents of 23-58.2% for hydrogenated ones). For copolymer blends, the developed method provided more accurate average styrene unit contents than nuclear magnetic resonance spectroscopy provided. These results were validated using two known copolymer blends consisting of either styrene-isoprene-styrene or hydrogenated styrene-butadiene-styrene and a hydrocarbon tackifying resin as well as an unknown adhesive with styrene-butadiene-styrene and an aromatic tackifying resin. The methodology can be readily applied to styrene-containing polymers in blends such as poly(acrylonitrile-butadiene styrene). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2014-12-01
Riddick, J. C.; Hall, A. J.; Haile, M. A.; Von Wahlde, R.; Cole, D. P.; Biggs S. J. Effect of Manufacturing Parameters on Failure in Acrylonitrile...for Tensile Properties of Plastics Annu. Book ASTM Stand. 2004, 1–15. 17. Zukas, J. High Velocity Impact Dynamics; John Wiley & Sons, Inc.: New York
Desrousseaux, Camille; Cueff, Régis; Aumeran, Claire; Garrait, Ghislain; Mailhot-Jensen, Bénédicte; Traoré, Ousmane; Sautou, Valérie
2015-01-01
Medical devices can be contaminated by microbial biofilm which causes nosocomial infections. One of the strategies for the prevention of such microbial adhesion is to modify the biomaterials by creating micro or nanofeatures on their surface. This study aimed (1) to nanostructure acrylonitrile-butadiene-styrene (ABS), a polymer composing connectors in perfusion devices, using Anodic Alumina Oxide templates, and to control the reproducibility of this process; (2) to characterize the physico-chemical properties of the nanostructured surfaces such as wettability using captive-bubble contact angle measurement technique; (3) to test the impact of nanostructures on Staphylococcus epidermidis biofilm development. Fabrication of Anodic Alumina Oxide molds was realized by double anodization in oxalic acid. This process was reproducible. The obtained molds present hexagonally arranged 50 nm diameter pores, with a 100 nm interpore distance and a length of 100 nm. Acrylonitrile-butadiene-styrene nanostructures were successfully prepared using a polymer solution and two melt wetting methods. For all methods, the nanopicots were obtained but inside each sample their length was different. One method was selected essentially for industrial purposes and for better reproducibility results. The flat ABS surface presents a slightly hydrophilic character, which remains roughly unchanged after nanostructuration, the increasing apparent wettability observed in that case being explained by roughness effects. Also, the nanostructuration of the polymer surface does not induce any significant effect on Staphylococcus epidermidis adhesion. PMID:26284922
Nguyen, Ngoc A; Bowland, Christopher C; Naskar, Amit K
2018-08-01
The article presents different mechanical, thermal and rheological data corresponding to the morphological formation within various renewable lignin-based composites containing acrylonitrile butadiene styrene (ABS), acrylonitrile butadiene rubber (NBR41, 41 mol% nitrile content), and carbon fibers (CFs). The data of 3D-printing properties and morphology of 3D-printed layers of selected lignin-based composites are revealed. This data is related to our recent research article entitled "A general method to improve 3D-printability and inter-layer adhesion in lignin-based composites" (Nguyen et al., 2018 [1]).
NASA Astrophysics Data System (ADS)
Xue, Xiaodong; Yin, Qing; Jia, Hongbing; Zhang, Xuming; Wen, Yanwei; Ji, Qingmin; Xu, Zhaodong
2017-11-01
Graphene oxide (GO) with various oxidation degrees were prepared through a modified Hummer's method by varying the dosage of oxidizing agent. Styrene-butadiene rubber (SBR)/carboxylated acrylonitrile butadiene rubber (XNBR)/GO nanocomposites were fabricated by aqueous-phase mixing of GO colloidal dispersion with SBR latex and a small loading of XNBR latex, followed by co-coagulation. Effects of GO oxidation degree on the morphology, structure, mechanical and thermal properties of nanocomposites were thoroughly investigated. The results showed that the mechanical strength of nanocomposites were enhanced with the increase of oxidation degree of GO. Especially, when the weight ratio of KMnO4 to graphite was 15/5, the tensile strength, tear strength and thermal conductivity of SBR/XNBR/GO filled with 3 phr (parts per hundred rubber) GO increased by 255.3%, 141.5% and 22.8%, respectively, compared to those of neat SBR/XNBR blend. In addition, the thermal stability and the solvent resistance of the nanocomposites were also improved significantly. This work suggested that GO with higher oxidation degree could effectively improve the properties of SBR/XNBR blend.
40 CFR 721.8965 - 1H-Pyrole-2, 5-dione, 1-(2,4,6-tribromophenyl)-.
Code of Federal Regulations, 2011 CFR
2011-07-01
... dewatering step during polymerization of acrylonitrile/butadiene/styrene), and (g)(5). (iii) Industrial... apply to releases of the PMN substance during the dewatering step of the polymerization reactions from...
Brebu, Mihai; Bhaskar, Thallada; Murai, Kazuya; Muto, Akinori; Sakata, Yusaku; Uddin, Md Azhar
2004-08-01
Acrylonitrile-butadiene-styrene (ABS) copolymers without and with a polybrominated epoxy type flame retardant were thermally degraded at 450 degrees C alone (10 g) and mixed with polyvinylchloride (PVC) (8 g/2 g). Gaseous and liquid products of degradation were analysed by various gas chromatographic methods (GC with TCD, FID, AED, MSD) in order to determine the individual and cumulative effect of bromine and chlorine on the quality and quantity of degradation compounds. It was found that nitrogen, chlorine, bromine and oxygen are present as organic compounds in liquid products, their quantity depends on the pyrolysed polymer or polymer mixture. Bromophenol and dibromophenols were the main brominated compounds that come from the flame retardant. 1-Chloroethylbenzene was the main chlorine compound observed in liquid products. It was also determined that interactions appear at high temperatures during decomposition between the flame retardant, PVC and the ABS copolymer.
Wu, Wenzheng; Geng, Peng; Li, Guiwei; Zhao, Di; Zhang, Haibo; Zhao, Ji
2015-09-01
Fused deposition modeling (FDM) is a rapidly growing 3D printing technology. However, printing materials are restricted to acrylonitrile butadiene styrene (ABS) or poly (lactic acid) (PLA) in most Fused deposition modeling (FDM) equipment. Here, we report on a new high-performance printing material, polyether-ether-ketone (PEEK), which could surmount these shortcomings. This paper is devoted to studying the influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK. Samples with three different layer thicknesses (200, 300 and 400 μm) and raster angles (0°, 30° and 45°) were built using a polyether-ether-ketone (PEEK) 3D printing system and their tensile, compressive and bending strengths were tested. The optimal mechanical properties of polyether-ether-ketone (PEEK) samples were found at a layer thickness of 300 μm and a raster angle of 0°. To evaluate the printing performance of polyether-ether-ketone (PEEK) samples, a comparison was made between the mechanical properties of 3D-printed polyether-ether-ketone (PEEK) and acrylonitrile butadiene styrene (ABS) parts. The results suggest that the average tensile strengths of polyether-ether-ketone (PEEK) parts were 108% higher than those for acrylonitrile butadiene styrene (ABS), and compressive strengths were 114% and bending strengths were 115%. However, the modulus of elasticity for both materials was similar. These results indicate that the mechanical properties of 3D-printed polyether-ether-ketone (PEEK) are superior to 3D-printed ABS.
Wu, Wenzheng; Geng, Peng; Li, Guiwei; Zhao, Di; Zhang, Haibo; Zhao, Ji
2015-01-01
Fused deposition modeling (FDM) is a rapidly growing 3D printing technology. However, printing materials are restricted to acrylonitrile butadiene styrene (ABS) or poly (lactic acid) (PLA) in most Fused deposition modeling (FDM) equipment. Here, we report on a new high-performance printing material, polyether-ether-ketone (PEEK), which could surmount these shortcomings. This paper is devoted to studying the influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK. Samples with three different layer thicknesses (200, 300 and 400 μm) and raster angles (0°, 30° and 45°) were built using a polyether-ether-ketone (PEEK) 3D printing system and their tensile, compressive and bending strengths were tested. The optimal mechanical properties of polyether-ether-ketone (PEEK) samples were found at a layer thickness of 300 μm and a raster angle of 0°. To evaluate the printing performance of polyether-ether-ketone (PEEK) samples, a comparison was made between the mechanical properties of 3D-printed polyether-ether-ketone (PEEK) and acrylonitrile butadiene styrene (ABS) parts. The results suggest that the average tensile strengths of polyether-ether-ketone (PEEK) parts were 108% higher than those for acrylonitrile butadiene styrene (ABS), and compressive strengths were 114% and bending strengths were 115%. However, the modulus of elasticity for both materials was similar. These results indicate that the mechanical properties of 3D-printed polyether-ether-ketone (PEEK) are superior to 3D-printed ABS. PMID:28793537
Wang, C C; Lee, C M; Cheng, P W
2001-01-01
A gram-negative rod-shaped bacteria (strain AAS6), capable of utilizing acrylonitrile as the sole source of both carbon and nitrogen, was utilized to investigate the removal of acrylonitrile in ABS resin manufacturing wastewater. Both synthetic wastewater, containing a high concentration of acrylonitrile, and actual wastewater obtained from an ABS manufacturing factory were used. The result indicated that strain AAS6 was capable of completely removing acrylonitrile from synthetic wastewater containing less than 889 mg/l acrylonitrile and from actual industrial wastewater containing less than 400 mg/l acrylonitrile. Whether in synthetic wastewater or actual industrial wastewater, strain AAS6 showed approximately the same ability for acrylonitrile removal and used acrylic acid, a metabolic by-product of acrylonitrile, as the carbon source and ammonium as the nitrogen source. The bacteria could not directly metabolize other chemicals found in the actual industrial wastewater. However, its metabolic activities were not inhibited by the presence of compounds such as butadiene, styrene or acrylonitrile-styrene polymer. Thus, this strain is expected to play an important role in aeration tanks for treating ABS resin manufacturing wastewater.
Costa, Vinicius Câmara; Aquino, Francisco Wendel Batista; Paranhos, Caio Marcio; Pereira-Filho, Edenir Rodrigues
2017-12-01
Due to the continual increase in waste generated from electronic devices, the management of plastics, which represents between 10 and 30% by weight of waste electrical and electronic equipment (WEEE or e-waste), becomes indispensable in terms of environmental and economic impacts. Considering the importance of acrylonitrile-butadiene-styrene (ABS), polycarbonate (PC), and their blends in the electronics and other industries, this study presents a new application of laser-induced breakdown spectroscopy (LIBS) for the fast and direct determination of PC and ABS concentrations in blends of these plastics obtained from samples of e-waste. From the LIBS spectra acquired for the PC/ABS blend, multivariate calibration models were built using partial least squares (PLS) regression. In general, it was possible to infer that the relative errors between the theoretical or reference and predicted values for the spiked samples were lower than 10%. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mashiko, Toshihiro; Otani, Keisuke; Kawano, Ryutaro; Konno, Takehiko; Kaneko, Naoki; Ito, Yumiko; Watanabe, Eiju
2015-03-01
We developed a method for fabricating a three-dimensional hollow and elastic aneurysm model useful for surgical simulation and surgical training. In this article, we explain the hollow elastic model prototyping method and report on the effects of applying it to presurgical simulation and surgical training. A three-dimensional printer using acrylonitrile-butadiene-styrene as a modeling material was used to produce a vessel model. The prototype was then coated with liquid silicone. After the silicone had hardened, the acrylonitrile-butadiene-styrene was melted with xylene and removed, leaving an outer layer as a hollow elastic model. Simulations using the hollow elastic model were performed in 12 patients. In all patients, the clipping proceeded as scheduled. The surgeon's postoperative assessment was favorable in all cases. This method enables easy fabrication at low cost. Simulation using the hollow elastic model is thought to be useful for understanding of three-dimensional aneurysm structure. Copyright © 2015 Elsevier Inc. All rights reserved.
Saviello, Daniela; Pouyet, Emeline; Toniolo, Lucia; Cotte, Marine; Nevin, Austin
2014-09-16
Synchrotron-based Fourier transform infrared micro-spectroscopy (SR-μFTIR) was used to map photo-oxidative degradation of acrylonitrile-butadiene-styrene (ABS) and to investigate the presence and the migration of additives in historical samples from important Italian design objects. High resolution (3×3 μm(2)) molecular maps were obtained by FTIR microspectroscopy in transmission mode, using a new method for the preparation of polymer thin sections. The depth of photo-oxidation in samples was evaluated and accompanied by the formation of ketones, aldehydes, esters, and unsaturated carbonyl compounds. This study demonstrates selective surface oxidation and a probable passivation of material against further degradation. In polymer fragments from design objects made of ABS from the 1960s, UV-stabilizers were detected and mapped, and microscopic inclusions of proteinaceous material were identified and mapped for the first time. Copyright © 2014 Elsevier B.V. All rights reserved.
Marć, Mariusz; Formela, Krzysztof; Klein, Marek; Namieśnik, Jacek; Zabiegała, Bożena
2015-10-15
The article presents findings on the emissions of selected monoaromatic hydrocarbons from children's toys placed in chocolate food products. The emission test system involved the application of a new type of microscale stationary emission chamber, μ-CTE™ 250. In order to determine the type of the applied polymer in the manufacture of the tested toys, Fourier transform infrared spectroscopy and thermogravimetric analysis coupled with differential scanning calorimetry were used. It was found that the tested toy components or the whole toys (figurines) are made of two main types of polymers: polyamide and acrylonitrile-butadiene-styrene copolymer. Total number of studied small polymeric toys was 52. The average emissions of selected monoaromatic hydrocarbons from studied toys made of polyamide were as follows: benzene: 0.45 ± 0.33 ng/g; toluene: 3.3 ± 2.6 ng/g; ethylbenzene: 1.4 ± 1.4 ng/g; p,m-xylene: 2.5 ± 4.5 ng/g; and styrene: 8.2 ± 9.9 ng/g. In the case of studied toys made of acrylonitrile-butadiene-styrene copolymer the average emissions of benzene, toluene, ethylbeznene, p,m-xylene and styrene were: 0.31 ± 0.29 ng/g; 2.5 ± 1.4 ng/g; 4.6 ± 8.9 ng/g; 1.4 ± 1.1 ng/g; and 36 ± 44 ng/g, respectively. Copyright © 2015. Published by Elsevier B.V.
3D Printing in Makerspaces: Health and Safety Concerns
ERIC Educational Resources Information Center
Bharti, Neelam
2017-01-01
3D (three-dimensional) printing is included in makerspaces around the world and has become increasingly affordable and useful. Most makerspaces use Fused Deposition Modeling (FDM)-based 3D printers, using polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) as printing materials. However, heating PLA and ABS to high temperatures emits…
Remote Collaborative 3D Printing - Process Investigation
2016-04-01
transferring, receiving, manipulating, and printing a digital 3D model into an additively manufactured component. Several digital models were...into an additively manufactured component. Several digital models were exchanged, and the steps, barriers, workarounds, and results have been...ABBREVIATIONS ABS Acrylonitrile Butadiene Styrene AM Additive Manufacturing AMRDEC SAFE Aviation and Missile Research Development and Engineering
Jody, Bassam J.; Arman, Bayram; Karvelas, Dimitrios E.; Pomykala, Jr., Joseph A.; Daniels, Edward J.
1997-01-01
An improved method is provided for separating acrylonitrile butadiene styrene (ABS) and high impact polystyrene (HIPS) plastics from each other. The ABS and HIPS plastics are shredded to provide a selected particle size. The shredded particles of the ABS and HIPS plastics are applied to a solution having a solution density in a predefined range between 1.055 gm/cm.sup.3 and 1.07 gm/cm.sup.3, a predefined surface tension in a range between 22 dynes/cm to 40 dynes/cm and a pH in the range of 1.77 and 2.05. In accordance with a feature of the invention, the novel method is provided for separating ABS and HIPS, two solid thermoplastics which have similar densities by selectively modifying the effective density of the HIPS using a binary solution with the appropriate properties, such as pH, density and surface tension, such as a solution of acetic acid and water or a quaternary solution having the appropriate density, surface tension, and pH.
NASA Astrophysics Data System (ADS)
McCulley, Jonathan M.
This research investigates the application of additive manufacturing techniques for fabricating hybrid rocket fuel grains composed of porous Acrylonitrile-butadiene-styrene impregnated with paraffin wax. The digitally manufactured ABS substrate provides mechanical support for the paraffin fuel material and serves as an additional fuel component. The embedded paraffin provides an enhanced fuel regression rate while having no detrimental effect on the thermodynamic burn properties of the fuel grain. Multiple fuel grains with various ABS-to-Paraffin mass ratios were fabricated and burned with nitrous oxide. Analytical predictions for end-to-end motor performance and fuel regression are compared against static test results. Baseline fuel grain regression calculations use an enthalpy balance energy analysis with the material and thermodynamic properties based on the mean paraffin/ABS mass fractions within the fuel grain. In support of these analytical comparisons, a novel method for propagating the fuel port burn surface was developed. In this modeling approach the fuel cross section grid is modeled as an image with white pixels representing the fuel and black pixels representing empty or burned grid cells.
Sun, Zhixing; Shen, Zhigang; Zhang, Xiaojing; Ma, Shulin
2015-01-01
This study investigated the feasibility of using acrylonitrile-butadiene-styrene (ABS) waste plastic and nonmetal particles from waste printed circuit boards (WPCB) to manufacture reproduction composites (RC), with the aim of co-recycling these two waste resources. The composites were prepared in a twin-crew extruder and investigated by means of mechanical testing, in situ flexural observation, thermogravimatric analysis, and dimensional stability evaluation. The results showed that the presence of nonmetal particles significantly improved the mechanical properties and the physical performance of the RC. A loading of 30 wt% nonmetal particles could achieve a flexural strength of 72.6 MPa, a flexural modulus of 3.57 GPa, and an impact strength of 15.5 kJ/m2. Moreover, it was found that the application of maleic anhydride-grafted ABS as compatilizer could effectively promote the interfacial adhesion between the ABS plastic and the nonmetal particles. This research provides a novel method to reuse waste ABS and WPCB nonmetals for manufacturing high value-added product, which represents a promising way for waste recycling and resolving the environmental problem.
Effect of heating rate on toxicity of pyrolysis gases from some elastomers
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Kosola, K. L.; Solis, A. N.
1977-01-01
The effect of heating rate on the toxicity of the pyrolysis gases from six elastomers was investigated, using a screening test method. The elastomers were polyisoprene (natural rubber), styrene-butadiene rubber (SBR), ethylene propylene diene terpolymer (EPDM), acrylonitrile rubber, chlorosulfonated polyethylene rubber, and polychloroprene. The rising temperature and fixed temperature programs produced exactly the same rank order of materials based on time to death. Acrylonitrile rubber exhibited the greatest toxicity under these test conditions, and carbon monoxide was not found in sufficient concentrations to be the primary cause of death.
Code of Federal Regulations, 2014 CFR
2014-01-01
... materials other than those materials (such as ABS (acrylonitrile butadiene styrene), nylon, and high-impact polystyrene) that are injection-molded and possess high-impact characteristics. (B) The cord: Is of high tensile strength, synthetic fibers that are braided or woven, having a breaking strength in excess of 445...
Code of Federal Regulations, 2012 CFR
2012-01-01
... materials other than those materials (such as ABS (acrylonitrile butadiene styrene), nylon, and high-impact polystyrene) that are injection-molded and possess high-impact characteristics. (B) The cord: Is of high tensile strength, synthetic fibers that are braided or woven, having a breaking strength in excess of 445...
Code of Federal Regulations, 2011 CFR
2011-01-01
... materials other than those materials (such as ABS (acrylonitrile butadiene styrene), nylon, and high-impact polystyrene) that are injection-molded and possess high-impact characteristics. (B) The cord: Is of high tensile strength, synthetic fibers that are braided or woven, having a breaking strength in excess of 445...
21 CFR 177.1030 - Acrylonitrile/butadiene/styrene/methyl methacrylate copolymer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... conditions of use C, D, E, F, and G described in table 2 of § 176.170(c) of this chapter with a high... inspection at the National Archives and Records Administration (NARA). For information on the availability of... and Records Administration (NARA). For information on the availability of this material at NARA, call...
Code of Federal Regulations, 2013 CFR
2013-01-01
... (acrylonitrile butadiene styrene), nylon, and high-impact polystyrene) that are injection-molded and possess high-impact characteristics. (B) The cord: Is of high tensile strength, synthetic fibers that are braided or woven, having a breaking strength in excess of 445 Newtons (100 pounds); is free of fraying or any other...
Bin Hamzah, Hairul Hisham; Keattch, Oliver; Covill, Derek; Patel, Bhavik Anil
2018-06-14
Additive manufacturing also known as 3D printing is being utilised in electrochemistry to reproducibly develop complex geometries with conductive properties. In this study, we explored if the electrochemical behavior of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes was influenced by printing direction. The electrodes were printed in both horizontal and vertical directions. The horizsontal direction resulted in a smooth surface (HPSS electrode) and a comparatively rougher surface (HPRS electrode) surface. Electrodes were characterized using cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. For various redox couples, the vertical printed (VP) electrode showed enhanced current response when compared the two electrode surfaces generated by horizontal print direction. No differences in the capacitive response was observed, indicating that the conductive surface area of all types of electrodes were identical. The VP electrode had reduced charge transfer resistance and uncompensated solution resistance when compared to the HPSS and HPRS electrodes. Overall, electrodes printed in a vertical direction provide enhanced electrochemical performance and our study indicates that print orientation is a key factor that can be used to enhance sensor performance.
Wang, Chong-Qing; Wang, Hui; Liu, Qun; Fu, Jian-Gang; Liu, You-Nian
2014-12-01
The objective of this research is flotation separation of polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) waste plastics combined with ammonia pretreatment. The PC and ABS plastics show similar hydrophobicity, and ammonia treatment changes selectively floatability of PC plastic while ABS is insensitive to ammonia treatment. The contact angle measurement indicates the dropping of flotation recovery of PC is ascribed to a decline of contact angle. X-ray photoelectron spectroscopy demonstrates reactions occur on PC surface, which makes PC surface more hydrophilic. Separation of PC and ABS waste plastics was conducted based on the flotation behavior of single plastic. At different temperatures, PC and ABS mixtures were separated efficiently through froth flotation with ammonia pretreatment for different time (13 min at 23 °C, 18 min at 18 °C and 30 min at 23 °C). For both PC and ABS, the purity and recovery is more than 95.31% and 95.35%, respectively; the purity of PC and ABS is up to 99.72% and 99.23%, respectively. PC and ABS mixtures with different particle sizes were separated effectively, implying that ammonia treatment possesses superior applicability. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hughes, Shawn M.; Alamir, Mohammed; Neas, Brian; Alzahrani, Naif; Asmatulu, Ramazan
2017-04-01
Over the last few years, tremendous amount of research efforts has been conducted on 3D printing materials, methods and systems. Various 3D printer materials in different size, shape and geometry can be used for advanced designs, modeling, and manufacturing for different industrial applications. In the present study, dog bone shape specimen was designed via a CATIA CAD model, and then printed by a 3D printer using a polymeric filament (acrylonitrile butadiene styrene - ABS). Some of the prepared samples were heat treated at 40 °C, 60 °C, and 80 °C for 30 minutes, while the others were exposed to the UV light in a chamber for 0, 5, 10, 15 and 20 days. The surface and mechanical properties of the conditioned samples were determined using water contact angle and tensile test units, respectively. The test results indicated that the heat treatment process increased the mechanical properties; however, the UV exposure tests significantly reduced the water contact angle and properties of the samples. During these studies, undergraduate engineering students were involved in the tests, and gained a lot of hands-on research experiences.
NASA Astrophysics Data System (ADS)
Chen, Tingting; Zhang, Jun
2018-04-01
The compatibilization of acrylonitrile-butadiene-styrene terpolymer (ABS) and poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) (PETG) blends was first investigated. Styrene-acrylonitrile-glycidyl methacrylate terpolymer (SAG) and ABS grafted with maleic anhydride (ABS-g-MAH) were selected as reactive compatibilizers for the ABS/PETG blends. The compatibilization effect was assessed by scanning electron microscope (SEM), differential scanning calorimetry (DSC) and mechanical properties. And the effect of compatibilizers on the hydrophilicity of the blends was evaluated as well. SEM observation and DSC analysis confirmed that both SAG and ABS-g-MAH compatibilizers could improve the compatibility between ABS and PETG, leading to an improvement in toughness of the blend. The possible cause for the improvement of compatibility was the reaction between compatibilizers and PETG, which could in situ turn out compatibilizers that acted as interfacial agents to enhance the interfacial interaction in the blend. Especially, the addition of SAG significantly decreased the dispersion phase size and the interface voids almost disappeared. Since the in situ reactions between the epoxy groups of SAG and the end groups (sbnd COOH or sbnd OH) of PETG generated PETG-co-SAG copolymer at the blend interface, and the cross-linking reactions proposed to take place between SAG and the PETG-co-SAG copolymer, acting as compatibilizer, could significantly increase the interfacial interaction. The addition of SAG also enhanced the stiffness of the blends. Moreover, the addition of SAG made the blend more hydrophilic, whereas the addition of ABS-g-MAH made the blend more hydrophobic. Therefore, SAG was a good compatibilizer for the ABS/PETG blends and could simultaneously provide the blends with toughening, stiffening and hydrophilic effects.
Sefa, Makfir; Ahmed, Zeeshan; Fedchak, James A.; Scherschligt, Julia; Klimov, Nikolai
2017-01-01
We describe a vacuum apparatus for determining the outgassing rate into vacuum, the diffusion coefficient, and the amount of gas absorbed for various materials. The diffusion coefficient is determined from a model applied to time-dependent desorption data taken using a throughput method. We used this method to determine the diffusion coefficient, D, for H2O in 3-D printed acrylonitrile butadiene styrene (ABS). We found DH2O = 8.3 × 10−8 cm2/s ± 1.3 × 10−8 cm2/s (k = 1; 67% confidence interval) at 23.2 °C. This result was compared to the diffusion coefficient determined another by a gravimetric method, in which the sample weight was monitored as it absorbed gas from the atmosphere. The two methods agreed to within 3%, which is well within the uncertainty of the measurement. We also found that at least 80% of the atmospheric gas (air) absorbed by the ABS is water. The total amount of all atmospheric gas absorbed by ABS was about 0.35% by weight when exposed to ambient air in the laboratory, which was at a pressure of 101 kPa with a relative humidity of 57% at 22.2 °C. PMID:28736481
Deng, Wanshun; Long, Mengying; Zhou, Qiannan; Wen, Ni; Deng, Wenli
2018-02-01
Superhydrophobic membranes with opposite wettability toward water and oil are able to separate water-in-oil emulsions. By constructing porous and hierarchal-structured superhydrophobic coating on filter paper, we hope a quick separation process could be achieved due to the acceleration of both demulsification and penetration process. Here, superhydrophobic coatings were prepared by simply spraying environmental and cost-effective acrylonitrile-butadiene-styrene copolymer (ABS) colloid in dichloromethane onto filter paper. The morphologies and wettability of the obtained coatings were carefully studied. Moreover, the separation performances in dealing with various surfactant-stabilized water-in-oil emulsions (SSWOE) were also investigated to verify our hypothesis. The morphologies of the ABS coatings varied with its weight concentration in dichloromethane and they changed from porous and plain surface into porous and hierarchal-structured surface. Besides, the hydrophobicity of the above coatings varied form hydrophobic to superhydrophobic. Moreover, the resulted superhydrophobic membranes show great separation capability in separating various span 80-stabilized water-in-oil emulsions with oil filtrate purities larger than 99.90% and huge penetration fluxes whose maximum is over 13,000L/(m 2 h). Thus, we envision that such membrane can be a practical candidate in dealing with water-in-oil emulsions to obtain pure oils. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jyoti, Jeevan; Pratap Singh, Bhanu; Chockalingam, Sreekumar; Joshi, Amish G.; Gupta, Tejendra K.; Dhakate, S. R.
2018-04-01
Herein, multiwall carbon nanotubes (MWCNTs), reduced graphene oxide (rGO), graphene oxide-carbon nanotubes (GCNTs) hybrid reinforced acrylonitrile butadiene styrene (ABS) nanocomposites have been prepared by micro twin screw extruder with back flow channel and the effect of different type of fillers on the nanomechanical properties are studied. The combination of both graphene oxide and CNT has enhanced the dispersion in polymer matrix and lower the probability of CNTs aggregation. GCNTs hybrid have been synthesized via novel chemical route and well characterized using Raman spectroscopic technique. The nanoindentation hardness and elastic modulus of GCNTs-ABS hybrid nanocomposites were improved from 211.3 MPa and 4.12 GPa of neat ABS to 298.9 MPa and 6.02 GPa, respectively at 5wt% GCNTs loading. In addition to hardness and elastic modulus, other mechanical properties i.e. plastic index parameter, elastic recovery, ratio of residual displacement after load removal and displacement at the maximum load and plastic deformation energy have also been investigated. These results were correlated with Raman and X-ray photoelectron spectroscopic (XPS) techniques and microstructural characterizations (scanning electron microscopy). Our demonstration would provide guidelines for the fabrication of hard and scratches nanocomposite materials for potential use in, automotive trim components and bumper bars, carrying cases and electronic industries and electromagnetic interference shielding.
Wang, Zongyuan; Wang, Jiajun; Li, Minyue; Sun, Kaihang; Liu, Chang-jun
2014-08-04
Three-dimensional (3D) printing was applied for the fabrication of acrylonitrile butadiene styrene (ABS) framework. Functionalization of the ABS framework was then performed by coating of porous Cu-BTC (BTC = benzene tricarboxylic acid) metal-organic frameworks on it using a step-by-step in-situ growth. The size of the Cu-BTC particles on ABS was ranged from 200 nm to 900 nm. The Cu-BTC/ABS framework can take up most of the space of the tubular reactor that makes the adsorption effective with no need of stirring. Methylene blue (MB) can be readily removed from aqueous solution by this Cu-BTC/ABS framework. The MB removal efficiency for solutions with concentrations of 10 and 5 mg/L was 93.3% and 98.3%, respectively, within 10 min. After MB adsorption, the Cu-BTC/ABS composite can easily be recovered without the need for centrifugation or filtration and the composite is reusable. In addition the ABS framework can be recovered for subsequent reuse. A significant advantage of 3D-printed frameworks is that different frameworks can be easily fabricated to meet the needs of different applications. This is a promising strategy to synthesize new frameworks using MOFs and polymers to develop materials for applications beyond adsorption.
Tostar, Sandra; Stenvall, Erik; Boldizar, Antal; Foreman, Mark R St J
2013-06-01
There has been a recent interest in antimony since the availability in readily mined areas is decreasing compared to the amounts used. It is important in many applications such as flame retardants and in the production of polyester, which can trigger an investigation of the leachability of antimony from plastics using different acids. In this paper, different types of acids are tested for their ability to leach antimony from a discarded computer housing, made of poly(acrylonitrile butadiene styrene), which is a common plastic type used in electrical and electronic equipment. The acid solutions included sodium hydrogen tartrate (0.5M) dissolved in either dimethyl sulfoxide or water (at ca. 23°C and heated to ca. 105°C). The metal content after leaching was determined by inductively coupled plasma optical emission spectroscopy. The most efficient leaching medium was the heated solution of sodium hydrogen tartrate in dimethyl sulfoxide, which leached almost half of the antimony from the poly(acrylonitrile butadiene styrene). Gamma irradiation, which is proposed to improve the mechanical properties in plastics, was used here to investigate the influence of antimony leaching ability. No significant change in the amount of leached antimony could be observed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tensile, Creep, and Fatigue Behaviors of 3D-Printed Acrylonitrile Butadiene Styrene
NASA Astrophysics Data System (ADS)
Zhang, Hanyin; Cai, Linlin; Golub, Michael; Zhang, Yi; Yang, Xuehui; Schlarman, Kate; Zhang, Jing
2018-01-01
Acrylonitrile butadiene styrene (ABS) is a widely used thermoplastics in 3D printing. However, there is a lack of thorough investigation of the mechanical properties of 3D-printed ABS components, including orientation-dependent tensile strength and creep fatigue properties. In this work, a systematic characterization is conducted on the mechanical properties of 3D-printed ABS components. Specifically, the effect of printing orientation on the tensile and creep properties is investigated. The results show that, in tensile tests, the 0° printing orientation has the highest Young's modulus of 1.81 GPa, and ultimate strength of 224 MPa. In the creep test, the 90° printing orientation has the lowest k value of 0.2 in the plastics creep model, suggesting 90° is the most creep resistant direction. In the fatigue test, the average cycle number under load of 30 N is 3796 cycles. The average cycle number decreases to 128 cycles when the load is 60 N. Using the Paris law, with an estimated crack size of 0.75 mm, and stress intensity factor is varied from 352 to 700 N√ m, the derived fatigue crack growth rate is 0.0341 mm/cycle. This study provides important mechanical property data that is useful for applying 3D-printed ABS in engineering applications.
Dynamic Response of Acrylonitrile Butadiene Styrene Under Impact Loading (Open Access)
2016-03-16
of contraction and expansion was observed as the impact load was applied. Thismultistage deformation behavior may be attributable to the ring formed ...ABS fabricated by FDM. Results of the experimental characterization show that rasters formed parallel to the loading direction fabricated in the... formed using a solid ABS block to determine the mechanical property at various strain rates (Fig. 1). Through the analysis of the solid ABS, a linear
21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylonitrile/butadiene/sty-rene co-polymer. 177... SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1020 Acrylonitrile/butadiene/sty-rene co-polymer. Acrylonitrile...
Suresh, Sunil S; Mohanty, Smita; Nayak, Sanjay K
2018-06-01
The current investigation deals with the recycling possibilities of poly(vinyl chloride) and poly(methyl methacrylate) in the presence of acrylonitrile butadiene rubber. Recycled blends of poly(vinyl chloride)/poly(methyl methacrylate) are successfully formed from the plastic constituents, those are recovered from waste computer products. However, lower impact performance of the blend and lower stability of the poly(vinyl chloride) phase in the recycled blend restricts its further usage in industrial purposes. Therefore, effective utilisation acrylonitrile butadiene rubber in a recycled blend was considered for improving mechanical and thermal performance. Incorporation of acrylonitrile butadiene rubber resulted in the improvement in impact performance as well as elongation-at-break of the recycled blend. The optimum impact performance was found in the blend with 9 wt% acrylonitrile butadiene rubber, which shows 363% of enhancement as compared with its parent blend. Moreover, incorporated acrylonitrile butadiene rubber also stabilises the poly(vinyl chloride) phase present in the recycled blend, similarly Fourier transform infrared spectroscopy studies indicate the interactions of various functionalities present in the recycled blend and acrylonitrile butadiene rubber. In addition to this, thermogravimetric analysis indicates the improvement in the thermal stability of the recycled blend after the addition of acrylonitrile butadiene rubber into it. The existence of partial miscibility in the recycled blend was identified using differential scanning calorimetry and scanning electron microscopy.
Ohno, Hiroyuki; Suzuki, Masako; Kawamura, Yoko
2011-01-01
The amount of evaporation residue was investigated as an index of total amount of non-volatile substances that migrated from plastic kitchen utensils into four food-simulating solvents (water, 4% acetic acid, 20% ethanol and heptane). The samples were 71 products made of 12 types of plastics for food contact use. The amount was determined in accordance with the Japanese testing method. The quantitation limit was 5 µg/mL. In the cases of polyethylene, polypropylene, polystyrene, acrylonitrile styrene resin, acrylonitrile butadiene styrene resin, polyvinyl chloride, polyvinylidene chloride, polymethylpentene, polymethylmethacrylate and polyethylene terephthalate samples, the amount was highest for heptane and very low for the other solvents. On the other hand, in the cases of melamine resin and polyamide samples, the amount was highest for 4% acetic acid or 20% ethanol and lowest for heptane. These results enabled the selection of the most suitable solvent, and the rapid and efficient determination of evaporation residue.
Toxicity of Pyrolysis Gases from Elastomers
NASA Technical Reports Server (NTRS)
Hilado, Carlos J.; Kosola, Kay L.; Solis, Alida N.; Kourtides, Demetrius A.; Parker, John A.
1977-01-01
The toxicity of the pyrolysis gases from six elastomers was investigated. The elastomers were polyisoprene (natural rubber), styrene-butadiene rubber (SBR), ethylene propylene diene terpolymer (EPDM), acrylonitrile rubber, chlorosulfonated polyethylene rubber, and polychloroprene. The rising temperature and fixed temperature programs produced exactly the same rank order of materials based on time to death. Acryltonitrile rubber exhibited the greatest toxicity under these test conditions; carbon monoxide was not found in sufficient concentrations to be the primary cause of death.
The relative fire resistance of select thermoplastic materials. [for aircraft interiors
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.
1978-01-01
The relative thermal stability, flammability, and related thermochemical properties of some thermoplastic materials currently used in aircraft interiors as well as of some candidate thermoplastics were investigated. Currently used materials that were evaluated include acrylonitrile butadiene styrene, bisphenol A polycarbonate, polyphenylene oxide, and polyvinyl fluoride. Candidate thermoplastic materials evaluated include: 9,9-bis(4-hydroxyphenyl)fluorene polycarbonate-poly(dimethylsiloxane) block polymer, chlorinated polyvinylchloride homopolymer, phenolphthalein polycarbonate, polyethersulfone, polyphenylene sulfide, polyarylsulfone, and polyvinylidene fluoride.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tostar, Sandra, E-mail: sandra.tostar@chalmers.se; Stenvall, Erik; Boldizar, Antal
Highlights: • We have proposed a method to recover antimony from electronic plastics. • The most efficient acid solution was sodium hydrogen tartrate in dimethyl sulfoxide. • Gamma irradiation did not influence the antimony leaching ability. - Abstract: There has been a recent interest in antimony since the availability in readily mined areas is decreasing compared to the amounts used. It is important in many applications such as flame retardants and in the production of polyester, which can trigger an investigation of the leachability of antimony from plastics using different acids. In this paper, different types of acids are testedmore » for their ability to leach antimony from a discarded computer housing, made of poly(acrylonitrile butadiene styrene), which is a common plastic type used in electrical and electronic equipment. The acid solutions included sodium hydrogen tartrate (0.5 M) dissolved in either dimethyl sulfoxide or water (at ca. 23 °C and heated to ca. 105 °C). The metal content after leaching was determined by inductively coupled plasma optical emission spectroscopy. The most efficient leaching medium was the heated solution of sodium hydrogen tartrate in dimethyl sulfoxide, which leached almost half of the antimony from the poly(acrylonitrile butadiene styrene). Gamma irradiation, which is proposed to improve the mechanical properties in plastics, was used here to investigate the influence of antimony leaching ability. No significant change in the amount of leached antimony could be observed.« less
Wang, Zongyuan; Wang, Jiajun; Li, Minyue; Sun, Kaihang; Liu, Chang-jun
2014-01-01
Three-dimensional (3D) printing was applied for the fabrication of acrylonitrile butadiene styrene (ABS) framework. Functionalization of the ABS framework was then performed by coating of porous Cu-BTC (BTC = benzene tricarboxylic acid) metal-organic frameworks on it using a step-by-step in-situ growth. The size of the Cu-BTC particles on ABS was ranged from 200 nm to 900 nm. The Cu-BTC/ABS framework can take up most of the space of the tubular reactor that makes the adsorption effective with no need of stirring. Methylene blue (MB) can be readily removed from aqueous solution by this Cu-BTC/ABS framework. The MB removal efficiency for solutions with concentrations of 10 and 5 mg/L was 93.3% and 98.3%, respectively, within 10 min. After MB adsorption, the Cu-BTC/ABS composite can easily be recovered without the need for centrifugation or filtration and the composite is reusable. In addition the ABS framework can be recovered for subsequent reuse. A significant advantage of 3D-printed frameworks is that different frameworks can be easily fabricated to meet the needs of different applications. This is a promising strategy to synthesize new frameworks using MOFs and polymers to develop materials for applications beyond adsorption. PMID:25089616
NASA Astrophysics Data System (ADS)
Zicans, Janis; Meri, Remo Merijs; Ivanova, Tatjana; Berzina, Rita; Saldabola, Ruuta; Maksimov, Robert
2016-05-01
Suitability of recycled acrylonitrile-butadiene-styrene (R-ABS) and recycled polycarbonate (R-PC) for the development of polymer matrix nanocomposites with organically modified nanoclay (OMMT) is evaluated in comparison to virgin polymers (V-ABS and V-PC) based systems. The influence of OMMT content on the structure as well as calorimetric, mechanical and thermal properties of virgin and recycled polymers containing systems is revealed. Increase in stiffness and strength of virgin and recycled polymers based systems is observed along with rising nanoclay content. However, it is observed that reinforcing efficiency of clays on the R-ABS containing systems is reduced to certain extent in comparison to those, based on virgin polymers. It is shown, that in the presence of OMMT approximation of glass transition temperatures of both polymeric components is observed, which can testify about certain improvement of compatibility between PC and ABS. Increment of the modulus of elasticity and yield strength of the nanocomposites is associated with anisodiametric shape of OMMT, as well as with intercalation of polymer within the interlaminar space of the clay nanoparticles. It is also demonstrated that addition of nanoclay improves thermogravimetric behavior of the investigated compositions. Consequently, it is suggested that nanoclays can be used as promising functional additives and replace halogenated flame-retardants, without reducing mechanical properties of the composites.
Vazquez, Yamila V; Barbosa, Silvia E
2017-01-01
The aim of this paper is to assess recycling process window of ABS (Acrylonitrile-Butadiene-Styrene) and HIPS (High impact Polystyrene) from WEEE (waste from electrical and electronic equipment) through a final properties/structure screening study on their blends. Main motivation is to evaluate which amount of one plastic WEEE can be included into the other at least keeping their properties. In this sense, a wider margin of error during sorting could be admitted to obtain recycling materials with similar technological application of recycled ABS and HIPS by themselves. Results are discussed in terms of final blend structure, focusing in the interaction, within blends, of copolymers phases and fillers presents in WEEE. The comparative analysis of mechanical performance and morphology of HIPS/ABS blends indicates that the addition of 50wt% HIPS to ABS even improves 50% the elongation at break maintaining the strength. On the opposite, HIPS maintains its properties with 20wt% of ABS added. This study allows enlarging composition process window of recycling plastic WEEE for similar applications. This could be a sustainable way to improve benefit of e-scrap with low costs and easy processability. In consequence, social interest in the recycling of this kind of plastic scrap could be encourage from either ecological or economical points of view. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fatigue Characteristics of 3D Printed Acrylonitrile Butadiene Styrene (ABS)
NASA Astrophysics Data System (ADS)
Padzi, M. M.; Bazin, M. M.; Muhamad, W. M. W.
2017-11-01
Recently, the use of 3D printer technology has become significant to industries, especially when involving the new product development. 3D printing is a technology, which produces the 3D product or prototype using a layer-by-layer technique. However, there becomes less research on the mechanical performance of the 3D printed component. In the present work, fatigue characteristics of 3D printed specimen have been studied. Acrylonitrile butadiene styrene (ABS) has been chosen as a material research due to its wide applications. Two types of specimen used, which is the 3D printing and moulding specimens. Fused deposition modelling (FDM) technique was used to produce the specimens. The dog bone shape part was produced based on ASTM D638 standard and the tensile test has been carried out to get the mechanical properties. Fatigue test was carried out at 40%, 60% and 80% of the tensile strength. The moulded part shows higher fatigue cycles compared to 3D printed part for all loading percentages. Fatigue lives for 40%, 60% and 80%, were 911, 2645 and 26948 cycles, respectively. The results indicated that 3D printed part has a lower fatigue life, which may not suitable for industrial applications. However, the 3D printed part could be improved by using various parameters and may be introduced in low strength application.
Effect of kenaf short fiber loading on mechanical properties of biocomposites
NASA Astrophysics Data System (ADS)
Andilolo, J.; Nikmatin, S.; Nugroho, N.; Alatas, H.; Wismogroho, A. S.
2017-05-01
The research of biocomposite product with kenaf (Hibiscus cannabinus) short fiber as a filler and Acrylonitrile Butadiene Styrene (ABS) as the matrix had been done to understand the mechanical properties of this material. Kenaf short fiber was obtained from mechanical sieving after doing the mechanical milling. TAPPI method has been done to determine the chemical properties. In order to form a granular biocomposite a single screw extruder was performed with a variation of particle loading 10 and 15%. The original of acrylonitrile butadiene styrene (ABS) has been used as matrix. The fabrication of speciment had been done by molding injection process. Mechanical properties test was done by ASTM standarization. The results showed the density of the fibers of 1.008 g/cm3 with a fiber length of 897.07 µm and a diameter of 66.38 µm. Tensile strength of kenaf short fiber loading 10 and 15% was 23.522 ± 8.36 MPa and 20.739 ± 6.79 MPa, respectively. The tensile properties showed a decreasing trend as the fiber loading was increased. The values of impact strength were 68.657 ± 4.89 kJ m-2 and 82.090 ± 5.56 kJ m-2, respectively and the hardness values were 96.60 ± 6.03 HR and 105.20 ± 13.17 HR, respectively. Kenaf fiber can be a good reinforcement candidate for high performance polymer bio-composites.
Warpage analysis on thin shell part using glowworm swarm optimisation (GSO)
NASA Astrophysics Data System (ADS)
Zulhasif, Z.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.
2017-09-01
The Autodesk Moldflow Insight (AMI) software was used in this study to focuses on the analysis in plastic injection moulding process associate the input parameter and output parameter. The material used in this study is Acrylonitrile Butadiene Styrene (ABS) as the moulded material to produced the plastic part. The MATLAB sortware is a method was used to find the best setting parameter. The variables was selected in this study were melt temperature, packing pressure, coolant temperature and cooling time.
Compatibilization of HIPS/ABS blends from WEEE by using Styrene-Butadiene Rubber (SBR).
Vazquez, Yamila V; Barbosa, Silvia E
2018-07-01
The aim of this work is to develop compatibilization strategies for High Impact Polystyrene (HIPS)/ Acrylonitrile-Butadiene-Styrene (ABS) blends from WEEE in order to add value to these recycled plastics by improving their mechanical performance. Results from a screening study of HIPS/ABS blends compatibilization by the addition of Styrene-Butadiene Rubber (SBR) are presented. Two different weight proportion of HIPS/ABS physical blends were analyzed, 80/20 and 20/80, with three different concentration of SBR: 2, 10 and 20 wt%. Compatibilization efficiency was analyzed from an accurate thermal and mechanical analysis, by comparing each physical blend and corresponding compatibilized blends with SBR. Results were discussed relating glass transition changes with mechanical performance, both aspects were interpreted in terms of blend morphology. Phase and fillers dispersion and distribution as well as SBR amount and its interaction with each phase were accurate analyzed. Compatibilization of HIPS/ABS blends from WEEE with the addition of SBR is effective in blends with HIPS as main component. With the addition of 2 wt% of SBR, strength and toughness have notably increased respect to the corresponding physical blend, 244% and 186% respectively. From this screening study is possible to infer that SBR is a sustainable and efficient compatibilizer of HIPS rich blends allowing to obtain a final blend that can be used as a replacement material of separated resins from WEEE. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Thanh Truc, Nguyen Thi; Lee, Byeong-Kyu
2017-10-01
This study reports a simple froth flotation method to separate plastic wastes of acrylonitrile-butadiene-styrene (ABS) and high impact polystyrene (HIPS) after initial hydrophilization by coating the plastics with ZnO and microwave treatment. ABS and HIPS are typical styrene-based WEEE plastics having similar density and hydrophobicity, which hinders their separation for recycling. After coating with ZnO, 2-min microwave treatment rearranged the ABS surface and thus changed its molecular mobility and increased its hydrophilicity. The combined ZnO coating/microwave treatment facilitated the selective separation of ABS and HIPS with 100% and 95.2% recovery and 95.4% and 100% purity in froth flotation, respectively. The combination of ZnO coating-microwave treatment and froth flotation can be utilized as a selective ABS/HIPS separation technique for improved recycling of WEEE plastics.
Warpage analysis on thin shell part using response surface methodology (RSM)
NASA Astrophysics Data System (ADS)
Zulhasif, Z.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.
2017-09-01
The optimisation of moulding parameters appropriate to reduce warpage defects produce using Autodesk Moldflow Insight (AMI) 2012 software The product is injected by using Acrylonitrile-Butadiene-Styrene (ABS) materials. This analysis has processing parameter that varies in melting temperature, mould temperature, packing pressure and packing time. Design of Experiments (DOE) has been integrated to obtain a polynomial model using Response Surface Methodology (RSM). The Glowworm Swarm Optimisation (GSO) method is used to predict a best combination parameters to minimise warpage defect in order to produce high quality parts.
Synthesis and Characterization of High Energy Polymers.
1981-03-31
have been poly(cis-l ,4-butadiene), CTBN , and HTPB I=1s of nitrated and DD I JA 7 1473 EDITION OF I NOV 45 1& OBSOLETE SE1CURITY CLAIISIFI1 TIN Of...cis- butadiene), PB, carboxy-tenninated poly(butadiene-co-acrylonitrile), CTBN and hydroxy-terminated poly(butadiene), HTPB. For the nitration of...evaluation. Progress Report I. Nitration of Diene Polymers and Cgolymers A. Nitromercuration of Carboxy-terminated Butadiene Acrylonitrile Copolymer ( CTBN
FTIR analysis on aging characteristics of ABS/PC blend under UV-irradiation in air
NASA Astrophysics Data System (ADS)
Li, Jiarong; Chen, Fu; Yang, Long; Jiang, Long; Dan, Yi
2017-09-01
Fourier Transform Infrared Spectroscopy (FTIR) is adopted to study the aging characteristics of poly(acrylonitrile-butadiene-styrene)/polycarbonate (ABS/PC) blend under UV-irradiation in air by analyzing the variation of the three main absorbance at about 967 cm- 1, 1720 cm- 1 and 3420 cm- 1 associated with carbon-hydrogen bonds belonging to 1,4 butadiene, carbonyl and hydroxyl groups, respectively. Results indicate that, under UV-irradiation in air, the photo-oxidation of the blend is not a simple combination of the photo-oxidation of corresponding ABS and PC themselves and takes place predominantly at the ABS component. Due to the interaction between the two components and the Fries rearrangement taken place in the PC component during the UV-irradiation in air, the ABS/PC blends behave higher photo-stability than ABS has.
Wang, C C; Lee, C M
2006-01-01
The aim of this study is to isolate the acrylic acid utilizing bacteria from the ABS resin manufactured wastewater treatment system. The bacteria should have the ability to remove acrylic acid and tolerate the acrylonitrile and acrylamide toxicity. The aim is also to understand the performance of isolated pure strain for treating different initial acrylic acid concentrations from synthetic wastewater. The results are: twenty strains were isolated from the ABS resin manufactured wastewater treatment system and twelve of them could utilize 600 mg/l acrylic acid for growth. Seven of twelve strains could tolerate the acrylonitrile and acrylamide toxicity, when the concentration was below 300 mg/l. Bacillus thuringiensis was one of the seven strains and the optimum growth temperature was 32 degrees C. Bacillus thuringiensis could utilize acrylic acid for growth, when the initial acrylic acid concentration was below 1,690.4 mg/l. Besides this, when the initial acrylic acid concentration was below 606.8 mg/l, the acrylic acid removal efficiency exceeded 96.3%. Bacillus thuringiensis could tolerate 295.7 mg/l acrylamide and 198.4 mg/l acrylonitrile toxicity but could not tolerate 297.3 mg/l epsilon-caprolactam.
Production of super-smooth articles
Duchane, David V.
1983-01-01
Super-smooth rounded or formed articles made of thermoplastic materials including various poly(methyl methacrylate) or acrylonitrile-butadiene-styrene copolymers are produced by immersing the articles into a bath, the composition of which is slowly changed with time. The starting composition of the bath is made up of at least one solvent for the polymer and a diluent made up of at least one nonsolvent for the polymer and optional materials which are soluble in the bath. The resulting extremely smooth articles are useful as mandrels for laser fusion and should be useful for a wide variety of other purposes, for example lenses.
Development of emission factors for polycarbonate processing.
Rhodes, Verne L; Kriek, George; Lazear, Nelson; Kasakevich, Jean; Martinko, Marie; Heggs, R P; Holdren, M W; Wisbith, A S; Keigley, G W; Williams, J D; Chuang, J C; Satola, J R
2002-07-01
Emission factors for selected volatile organic compounds (VOCs) and particulate emissions were developed while processing eight commercial grades of polycarbonate (PC) and one grade of a PC/acrylonitrile-butadiene-styrene (ABS) blend. A small commercial-type extruder was used, and the extrusion temperature was held constant at 304 degrees C. An emission factor was calculated for each substance measured and is reported as pounds released to the atmosphere/million pounds of polymer resin processed [ppm (wt/wt)]. Scaled to production volumes, these emission factors can be used by processors to estimate emission quantities from similar PC processing operations.
Wang, Cuicui; Ge, Heyi; Ma, Xiaolong; Liu, Zhifang; Wang, Ting; Zhang, Jingyi
2018-04-01
In this study, the watersoluble epoxy resin was prepared via the ring-opening reaction between diethanolamine and epoxy resin. The modified resin mixed with graphene oxide (GO) as a sizing agent was coated onto carbon fiber (CF) and then the GO-CF reinforced acrylonitrile-butadienestyrene (ABS) composites were prepared. The influences of the different contents of GO on CF and CF/ABS composite were explored. The combination among epoxy, GO sheets and maleic anhydride grafted ABS (ABSMA) showed a synergistic effect on improving the properties of GO-CF and GO-CF/ABS composite. The GO-CF had higher single tensile strength than the commercial CF. The maximum ILSS of GO-CF/ABS composite obtained 19.2% improvement as compared with that of the commercial CF/ABS composite. Such multiscale enhancement method and the synergistic reinforced GO-CF/ABS composite show good prospective applications in many industry areas.
NASA Astrophysics Data System (ADS)
Husnan, M. A.; Ismail, H.; Shuib, R. K.
2018-02-01
Recently, the interest of polymer industry researchers have grown rapidly on the use of specific techniques which can reduce cost and utilize rubber waste into the processing form. The increasing of cognizance in environmental matters and the desire to sustain the resources had fortified the practice of recycling waste materials. In this work, the effect of carbon black loading on curing characteristics and mechanical properties of virgin acrylonitrile butadiene rubber/recycled acrylonitrile butadiene rubber (NBRv/NBRr) blends were studied. Cure time (t90), scorch time (tS2) and swelling percentage decreased but minimum torque (ML) and maximum torque (MH) increased with increasing carbon black (CB) loading in the blends. Increasing CB loading also increased tensile strength, tensile modulus (M100), hardness and compression set but decreased elongation at break (Eb) of NBRv/NBRr blends.
Lithner, Delilah; Nordensvan, Ildikó; Dave, Göran
2012-06-01
The large global production of plastics and their presence everywhere in the society and the environment create a need for assessing chemical hazards and risks associated with plastic products. The aims of this study were to determine and compare the toxicity of leachates from plastic products made of five plastics types and to identify the class of compounds that is causing the toxicity. Selected plastic types were those with the largest global annual production, that is, polypropylene, polyethylene, and polyvinyl chloride (PVC), or those composed of hazardous monomers (e.g., PVC, acrylonitrile-butadiene-styrene [ABS], and epoxy). Altogether 26 plastic products were leached in deionized water (3 days at 50°C), and the water phases were tested for acute toxicity to Daphnia magna. Initial Toxicity Identification Evaluations (C18 filtration and EDTA addition) were performed on six leachates. For eleven leachates (42%) 48-h EC50s (i.e the concentration that causes effect in 50 percent of the test organisms) were below the highest test concentration, 250 g plastic/L. All leachates from plasticized PVC (5/5) and epoxy (5/5) products were toxic (48-h EC50s ranging from 2 to 235 g plastic/L). None of the leachates from polypropylene (5/5), ABS (5/5), and rigid PVC (1/1) products showed toxicity, but one of the five tested HDPE leachates was toxic (48-h EC50 17-24 g plastic/L). Toxicity Identification Evaluations indicated that mainly hydrophobic organics were causing the toxicity and that metals were the main cause for one leachate (metal release was also confirmed by chemical analysis). Toxic chemicals leached even during the short-term leaching in water, mainly from plasticized PVC and epoxy products.
Latex improvement of recycled asphalt pavement
NASA Astrophysics Data System (ADS)
Drennon, C.
1982-08-01
The performance of a single unmodified milled recycled asphalt concrete was compared to milled asphalt concrete modified by addition of three types of rubber latex. Latex was added at 2, 3, 5, and 8 percent latex by weight of asphalt in the asphalt concrete. Lattices used were a styrene butadiene (SBR), a natural rubber (NR), an acrylonitrile butadiene (NBR), and four varieties of out of specification SBR lattices. Marshall tests, while indecisive, showed a modest improvement in properties of SBR and NR added material at 3 and 5 percent latex. Addition of NBR latex caused deterioration in Marshall stability and flow over that of control. Repeated load tests were run using the indirect tensile test, analyzed by the VESYS program, which computes life of pavements. Repeated load tests showed improvement in asphalt concrete life when 3 and 5 percent SBR was added. Improvement was also shown by the out of specification SBR.
A general method to improve 3D-printability and inter-layer adhesion in lignin-based composites
Nguyen, Ngoc A.; Bowland, Christopher C.; Naskar, Amit K.
2018-05-02
Here, we report the utilization of a melt-stable lignin waste-stream from biorefineries as a renewable feedstock, with acrylonitrile-butadiene rubber and acrylonitrile-butadiene-styrene (ABS) polymer to synthesize a renewable matrix having excellent 3D-printability. While the initial low melt viscosity of the dispersed lignin phase induces local thermo-rheological relaxation facilitating the composite's melt flow, thermal crosslinking in both lignin and rubber phases as well as at the lignin-rubber interface decreases the molecular mobility. Consequently, interfacial diffusion and the resulting adhesion between deposited layers is decreased. However, addition of 10 wt.% of discontinuous carbon fibers (CFs) within the green composites not only significantly enhancesmore » the material performance but also lowers the degree of chemical crosslinking formed in the matrix during melt-phase synthesis. Furthermore, abundant functional groups including hydroxyl (from lignin) and nitrile (from rubber and ABS) allow combinations of hydrogen bonded structures where CFs play a critical bridging role between the deposited layers. As a result, a highly interfused printed structure with 100% improved inter-layer adhesion strength was obtained. This research offers a route toward utilizing lignin for replacement of petroleum-based thermoplastics used in additive manufacturing and methods to enhance printability of the materials with exceptional mechanical performance.« less
A general method to improve 3D-printability and inter-layer adhesion in lignin-based composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ngoc A.; Bowland, Christopher C.; Naskar, Amit K.
Here, we report the utilization of a melt-stable lignin waste-stream from biorefineries as a renewable feedstock, with acrylonitrile-butadiene rubber and acrylonitrile-butadiene-styrene (ABS) polymer to synthesize a renewable matrix having excellent 3D-printability. While the initial low melt viscosity of the dispersed lignin phase induces local thermo-rheological relaxation facilitating the composite's melt flow, thermal crosslinking in both lignin and rubber phases as well as at the lignin-rubber interface decreases the molecular mobility. Consequently, interfacial diffusion and the resulting adhesion between deposited layers is decreased. However, addition of 10 wt.% of discontinuous carbon fibers (CFs) within the green composites not only significantly enhancesmore » the material performance but also lowers the degree of chemical crosslinking formed in the matrix during melt-phase synthesis. Furthermore, abundant functional groups including hydroxyl (from lignin) and nitrile (from rubber and ABS) allow combinations of hydrogen bonded structures where CFs play a critical bridging role between the deposited layers. As a result, a highly interfused printed structure with 100% improved inter-layer adhesion strength was obtained. This research offers a route toward utilizing lignin for replacement of petroleum-based thermoplastics used in additive manufacturing and methods to enhance printability of the materials with exceptional mechanical performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyoungjin Kim
1993-03-03
In mid-February an eight-member Chinese delegation from the Ministry of Chemicals visited South Korea in search of petrochemicals joint venture partners. The delegation opened negotiations with Seoul-based Lucky (polyacetal resins, polymethacrylates, and polyvinyl chloride [PVC]); Hanyang Chemical (PVC); Samsung Petrochemical (aromatics); Korea Steel Chemical (carbon black); Il Shin Chemical (film for agricultural use); Shinsung Chemical (acrylonitrile butadiene styrene); Shin-A Chemical (expanded polystyrene). Meanwhile, Daelim (Seoul) is negotiating on a project to build 70,000-m.t./year octanol and butanol plants at Zhenjiang, China, plus shore tanks for its ethylene and propylene exports at Zhangbei and Liu Jiang. Daelim officials will visit China againmore » in May.« less
Chrome-tanned leather shavings as a filler of butadiene-acrylonitrile rubber.
Przepiórkowska, A; Chrońska, K; Zaborski, M
2007-03-06
The noxious wastes from the tanning industry such as chrome-tanned leather shavings were used as the only filler of rubber mixes containing carboxylated butadiene-acrylonitrile rubber (XNBR) or butadiene-acrylonitrile rubber (NBR), and a dispersing agent Limanol PEV (Schill & Seilacher). The best form addition of leather powder to the rubber mixes is mixed the waste protein with zinc oxide. The leather powder added to the rubber mixes improves the mechanical properties: tensile strength (T(s)), elongation at break (epsilon(b)) and increase the cross-linking density of carboxylated XNBR and NBR rubber mixes. Satisfactory results of these studies are presented in this work.
CASE-COHORT STUDY OF STYRENE EXPOSURE AND ISCHEMIC HEART DISEASE INVESTIGATORS
Investigators examined workers exposed to styrene while working in styrene-butadiene polymer manufacturing plants between 1943 and 1982. Workers who had died from ischemic heart disease were compared to a subgroup of all men employed in two styrene-butadiene polymer manufac...
NASA Astrophysics Data System (ADS)
Ramesan, M. T.; Nihmath, A.; Francis, Joseph
2013-06-01
Rubber composite based on acrylonitrile butadiene rubber (NBR) reinforced with nano zinc sulphide (ZnS) have been prepared via vulcanization process and characterized by several techniques. Processing characteristics such as scorch time, optimum cure time decreases with increase in concentration of nano filler in acrylonitrile butadiene rubber. Mechanical properties such as tensile and tear strength increases with increase in concentration of nano filler up to 7 phr of loading thereafter the value decreases, whereas hardness, and flame resistance increases with the dosage of fillers. These enhanced properties are due to the homogenous dispersion of nano fillers in NBR matrix, which is evidenced from the structure that evaluated using X-ray diffraction (XRD) and scanning electron microscopy (SEM).
NASA Astrophysics Data System (ADS)
Cândido, L. H. A.; Ferreira, D. B.; Júnior, W. Kindlein; Demori, R.; Mauler, R. S.
2014-05-01
The scope of this research is the recycling of polymers from mobile phones hulls discarded and the performance evaluation when they are submitted to the Recycling Cycle of Materials (RCM). The studied material was the ABS/PC blend in a 70/30 proportion. Different compositions were evaluated adding virgin material, recycled material and using the copolymer SBS as impact modifier. In order to evaluate the properties of material's composition, the samples were characterized by TGA, FTIR, SEM, IZOD impact strength and tensile strength tests. At the first stage, the presented results suggest the composition containing 25% of recycled material and 5% of SBS combines good mechanical performance to the higher content of recycled material and lower content of impact modifier providing major benefits to recycling plans. Five cycles (RCM) were applied in the second stage; they evidenced a decrease trend considering the impact strength. At first and second cycle the impact strength was higher than reference material (ABS/PC blend) and from the fourth cycle it was lower. The superiority impact strength in the first and second cycles can be attributed to impact modifier effect. The thermal tests and the spectrometry didn't show the presence of degradation process in the material and the TGA curves demonstrated the process stability. The impact surface of each sample was observed at SEM. The microstructures are not homogeneous presenting voids and lamellar appearance, although the outer surface presents no defects, demonstrating good moldability. The present work aims to assess the life cycle of the material from the successive recycling processes.
Experimental toxicology of pyrolysis and combustion hazards.
Cornish, H H; Hahn, K J; Barth, M L
1975-01-01
Data are presented on the acute toxicity (mortality only) of the thermal degradation products of polymers obtained by two methods of degradation. One system utilized a slowly increasing temperature (5 degrees C/min) and gradual degradation of the polymer with the rats being exposed to degradation products as they were evolved. In this system the more toxic polymers included wool, polypropylene, poly(vinyl chloride), and urethane foam. The second system utilized conditions of rapid combustion and exposure of rats to the total products of combustion for a period of 4 hr. In this system the more toxic materials included red oak, cotton, acrylonitrile-butadiene-styrene (ABS), and styrene-acrylonitrile. It is of interest to note that the natural product wool is among the least toxic under these rapid combustion conditions and among the most toxic under slow pyrolysis conditions. Other materials also vary in the comparative toxicity of their thermal degradation products, depending upon the conditions of degradation and animal exposure. The two experimental techniques presented here may well represent the two extreme conditions of rapid combustion versus slow pyrolysis. Intermediate types of fire situations might be expected to result in relative acute toxicities somewhere between these two extremes. This report deals with acute toxicity on the basis of mortality data only and does not include other parameters of toxicity such as organ weights and histopathology. PMID:1175552
Vance, Marina E; Pegues, Valerie; Van Montfrans, Schuyler; Leng, Weinan; Marr, Linsey C
2017-09-05
Three-dimensional (3D) printers are known to emit aerosols, but questions remain about their composition and the fundamental processes driving emissions. The objective of this work was to characterize the aerosol emissions from the operation of a fuse-deposition modeling 3D printer. We modeled the time- and size-resolved emissions of submicrometer aerosols from the printer in a chamber study, gained insight into the chemical composition of emitted aerosols using Raman spectroscopy, and measured the potential for exposure to the aerosols generated by 3D printers under real-use conditions in a variety of indoor environments. The average aerosol emission rates ranged from ∼10 8 to ∼10 11 particles min -1 , and the rates varied over the course of a print job. Acrylonitrile butadiene styrene (ABS) filaments generated the largest number of aerosols, and wood-infused polylactic acid (PLA) filaments generated the smallest amount. The emission factors ranged from 6 × 10 8 to 6 × 10 11 per gram of printed part, depending on the type of filament used. For ABS, the Raman spectra of the filament and the printed part were indistinguishable, while the aerosol spectra lacked important peaks corresponding to styrene and acrylonitrile, which are both present in ABS. This observation suggests that aerosols are not a result of volatilization and subsequent nucleation of ABS or direct release of ABS aerosols.
Zhao, Yi-Bo; Lv, Xu-Dong; Yang, Wan-Dong; Ni, Hong-Gang
2017-11-01
The recovery of four dominant plastics from electronic waste (e-waste) using mixed solvent extraction was studied. The target plastics included polycarbonate (PC), polystyrene (PS), acrylonitrile butadiene styrene (ABS), and styrene acrylonitrile (SAN). The extraction procedure for multi-polymers at room temperature yielded PC, PS, ABS, and SAN in acceptable recovery rates (64%, 86%, 127%, and 143%, respectively, where recovery rate is defined as the mass ratio of the recovered plastic to the added standard polymer). Fourier transform infrared spectroscopy (FTIR) was used to verify the recovered plastics' purity using a similarity analysis. The similarities ranged from 0.98 to 0.99. Another similar process, which was denoted as an alternative method for plastic recovery, was examined as well. Nonetheless, the FTIR results showed degradation may occur over time. Additionally, the recovery cost estimation model of our method was established. The recovery cost estimation indicated that a certain range of proportion of plastics in e-waste, especially with a higher proportion of PC and PS, can achieve a lower cost than virgin polymer product. It also reduced 99.6%, 30.7% and 75.8% of energy consumptions and CO 2 emissions during the recovery of PC, PS and ABS, and reduced the amount of plastic waste disposal via landfill or incineration and associated environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Roth, Thomas; Urpi Bertran, Raquel; Latza, Andreas; Andörfer-Lang, Katrin; Hügelschäffer, Claudia; Pöhlein, Manfred; Puchta, Ralph; Placht, Christian; Maid, Harald; Bauer, Walter; van Eldik, Rudi
2015-04-01
Candidate reference materials (RM) for the analysis of phosphorus-based flame retardants in styrene-based polymers were prepared using a self-made mini-extruder. Due to legal requirements of the current restriction for the use of certain hazardous substances in electrical and electronic equipment, focus now is placed on phosphorus-based flame retardants instead of the brominated kind. Newly developed analytical methods for the first-mentioned substances also require RMs similar to industrial samples for validation and verification purposes. Hence, the prepared candidate RMs contained resorcinol-bis-(diphenyl phosphate), bisphenol A bis(diphenyl phosphate), triphenyl phosphate and triphenyl phosphine oxide as phosphorus-based flame retardants. Blends of polycarbonate and acrylonitrile-co-butadiene-co-styrene as well as blends of high-impact polystyrene and polyphenylene oxide were chosen as carrier polymers. Homogeneity and thermal stability of the candidate RMs were investigated. Results showed that the candidate RMs were comparable to the available industrial materials. Measurements by ICP/OES, FTIR and NMR confirmed the expected concentrations of the flame retardants and proved that analyte loss and degradation, respectively, was below the uncertainty of measurement during the extrusion process. Thus, the candidate RMs were found to be suitable for laboratory use.
NASA Astrophysics Data System (ADS)
Vieira, Sheila Lopes; de Arruda, Antonio Celso Fonseca
In the majority of published articles on the topic, ER fluids have been studied as if they were viscous liquids. In this work, electrorheological fluids were characterized as solids and their mechanical properties were determined. The results infer that ER materials are controllably resistant to compression, tensile and shear stress, in this order of magnitude. More precisely, fluids made of starch have elasticity modulus similar to that of rubber, they have tensile strength 103 to 5×104 times lower than that of low density polyethylene (LDPE), static yield stress 4×104 to 8×105 times lower than that of acrylonitrile-butadiene-styrene terpolymer (ABS) and fatigue life similar to some polymers like polyethylene(PE) and polypropylene (PP).
A Novel Approach For Ankle Foot Orthosis Developed By Three Dimensional Technologies
NASA Astrophysics Data System (ADS)
Belokar, R. M.; Banga, H. K.; Kumar, R.
2017-12-01
This study presents a novel approach for testing mechanical properties of medical orthosis developed by three dimensional (3D) technologies. A hand-held type 3D laser scanner is used for generating 3D mesh geometry directly from patient’s limb. Subsequently 3D printable orthotic design is produced from crude input model by means of Computer Aided Design (CAD) software. Fused Deposition Modelling (FDM) method in Additive Manufacturing (AM) technologies is used to fabricate the 3D printable Ankle Foot Orthosis (AFO) prototype in order to test the mechanical properties on printout. According to test results, printed Acrylonitrile Butadiene Styrene (ABS) AFO prototype has sufficient elasticity modulus and durability for patient-specific medical device manufactured by the 3D technologies.
A low volume 3D-printed temperature-controllable cuvette for UV visible spectroscopy.
Pisaruka, Jelena; Dymond, Marcus K
2016-10-01
We report the fabrication of a 3D-printed water-heated cuvette that fits into a standard UV visible spectrophotometer. Full 3D-printable designs are provided and 3D-printing conditions have been optimised to provide options to print the cuvette in either acrylonitrile butadiene styrene or polylactic acid polymers, extending the range of solvents that are compatible with the design. We demonstrate the efficacy of the cuvette by determining the critical micelle concentration of sodium dodecyl sulphate at 40 °C, the molar extinction coefficients of cobalt nitrate and dsDNA and by reproducing the thermochromic UV visible spectrum of a mixture of cobalt chloride, water and propan-2-ol. Copyright © 2016 Elsevier Inc. All rights reserved.
Atomistic simulations of bulk, surface and interfacial polymer properties
NASA Astrophysics Data System (ADS)
Natarajan, Upendra
In chapter I, quasi-static molecular mechanics based simulations are used to estimate the activation energy of phenoxy rings flips in the amorphous region of a semicrystalline polyimide. Intra and intermolecular contributions to the flip activation energy, the torsional cooperativity accompanying the flip, and the effect of the flip on the motion in the glassy bulk state, are looked at. Also, comparison of the weighted mean activation energy is made with experimental data from solid state NMR measurements; the simulated value being 17.5 kcal/mol., while the experimental value was observed to be 10.5 kcal/mol. Chapter II deals with construction of random copolymer thin films of styrene-butadiene (SB) and styrene-butadiene-acrylonitrile (SBA). The structure and properties of the free surfaces presented by these thin films are analysed by, the atom mass density profiles, backbone bond orientation function, and the spatial distribution of acrylonitrile groups and styrene rings. The surface energies of SB and SBA are calculated using an atomistic equation and are compared with experimental data in the literature. In chapter III, simulations of polymer-polymer interfaces between like and unlike polymers, specifically cis-polybutadiene (PBD) and atatic polypropylene (PP), are presented. The structure of an incompatible polymer-polymer interface, and the estimation of the thermodynamic work of adhesion and interfacial energy between different incompatible polymers, form the focus here. The work of adhesion is calculated using an atomistic equation and is further used in a macroscopic equation to estimate the interfacial energy. The interfacial energy is compared with typical values for other immiscible systems in the literature. The interfacial energy compared very well with interfacial energy values for a few other immiscible hydrocarbon pairs. In chapter IV, the study proceeds to look at the interactions between nonpolar and polar small molecules with SB and SBA thin film surfaces. Toluene, hexadecane and water molecules are separately simulated to interact with SB and SBA surfaces in vacuum. The energetics of interaction are calculated atomistically and used in the atomistic equation to calculate the interfacial energy or the interaction energy. Comparisons with experimental data are not made due to the small concentrations of the molecules on the polymer surface. However, fundamental understanding of the structure of the system and the breakup of the energetics are provided by such a study.
Halász, István Zoltán; Bárány, Tamás
2016-08-24
In this work, the effect of mixing temperature (T mix ) on the mechanical, rheological, and morphological properties of rubber/cyclic butylene terephthalate (CBT) oligomer compounds was studied. Apolar (styrene butadiene rubber, SBR) and polar (acrylonitrile butadiene rubber, NBR) rubbers were modified by CBT (20 phr) for reinforcement and viscosity reduction. The mechanical properties were determined in tensile, tear, and dynamical mechanical analysis (DMTA) tests. The CBT-caused viscosity changes were assessed by parallel-plate rheometry. The morphology was studied by scanning electron microscopy (SEM). CBT became better dispersed in the rubber matrices with elevated mixing temperatures (at which CBT was in partially molten state), which resulted in improved tensile properties. With increasing mixing temperature the size of the CBT particles in the compounds decreased significantly, from few hundred microns to 5-10 microns. Compounding at temperatures above 120 °C and 140 °C for NBR and SBR, respectively, yielded reduced tensile mechanical properties most likely due to the degradation of the base rubber. The viscosity reduction by CBT was more pronounced in mixes with coarser CBT dispersions prepared at lower mixing temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baglioni, P.; Rivara-Minten, E.; Kevan, L.
1989-02-23
Electron spin resonance (ESR) and electron spin echo modulation (ESEM) of photoionized N,N,N{prime},N{prime}-tetramethylbenzidine (TMB) cation adsorbed at the interface of butadiene-acrylonitrile-methacrylic acid and butadiene-styrene-acrylic acid polymeric latices have been studied as a function of sodium dodecyl sulfate (SDS) concentration adsorbed at the latex interface. The photoionization yield of TMB in frozen latices mainly depends on the strength of TMB{sup +}-water interactions, which are enhanced by added SDS as measured by ESEM. An increase in the negative surface potential of the latex particles, due to the adsorption of SDS at the latex surface, does not affect the photoionization yield, showing thatmore » the particle surface potential has, for negatively charged systems, a secondary role in promoting the photoionization yield. Differences in the TMB{sup +} yield are found for the two polymeric latices and are attributed to the different latex compositions and/or different interfacial structures.« less
Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.
Bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 degrees C, and properties in the wetted and dried states were measured. Exposure to bio-oilmore » produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.« less
21 CFR 177.1040 - Acrylonitrile/styrene copoly-mer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylonitrile/styrene copoly-mer. 177.1040 Section 177.1040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Internal Standard Method”; “Infrared Spectrophotometric Determination of Polymer Extracted from Barex 210...
NASA Technical Reports Server (NTRS)
Hong, S. D.; Chung, S. Y.; Fedors, R. F.; Moacanin, J.; Gupta, A.
1984-01-01
The fracture toughness of an incorporation of a carboxyl-terminated butadiene acrylonitrile (CTBN) elastomer in diglycidyl ether bisphenol A (DGEBA) resin was investigated. Measurements of dynamic mechanical properties, scanning electron microscopy and small-angle X-ray scattering were carried out to characterize the state of cure, morphology and particle size and size distribution of the neat resins and their graphite fiber reinforced composites.
Effect of oil palm empty fruit bunches fibers reinforced polymer recycled
NASA Astrophysics Data System (ADS)
Hermawan, B.; Nikmatin, S.; Sudaryanto; Alatas, H.; Sukaryo, S. G.
2017-07-01
The aim of this research is to process the OPEFB to become fiber with various sizes which will be used as a filler of polymer matrix recycled acrylonitrile butadiene styrene (ABS). Molecular analysis and mechanical test have been done to understand the influence of fiber size toward material capability to receive outer deformation. Single screw extruder formed a biocomposites granular continued with injection moulding to shaped test pieces. Maleic anhydride was added as coupling agent between filler and matrix. Filler concentration were 10 and 20% in fiber size respectively with constant additif. Two kind of fiber glass (10%) were used as comparator. In order to analyze the results of the mechanical test Fisher least significant difference (LSD) in ANOVA method was performed (-with α=0,05-).
Effect of Reprocessing and Accelerated Weathering on Impact-Modified Recycled Blend
NASA Astrophysics Data System (ADS)
Ramesh, V.; Mohanty, Smita; Biswal, Manoranjan; Nayak, Sanjay K.
2015-12-01
Recovery of recycled polycarbonate, acrylonitrile butadiene styrene, high-impact polystyrene, and its blends from waste electrical and electronic equipment plastics products properties were enhanced by the addition of virgin polycarbonate and impact modifier. The optimized blend formulation was processed through five cycles, at processing temperature, 220-240 °C and accelerated weathering up to 700 h. Moreover, the effect of reprocessing and accelerated weathering in the physical properties of the modified blends was investigated by mechanical, thermal, rheological, and morphological studies. The results show that in each reprocessing cycle, the tensile strength and impact strength decreased significantly and the similar behavior has been observed from accelerated weathering. Subsequently, the viscosity decreases and this decrease becomes the effect of thermal and photo-oxidative degradation. This can be correlated with FTIR analysis.
Samsonek, J; Puype, F
2013-01-01
In order to screen for the presence of a recycled polymer waste stream from waste electric and electronic equipment (WEEE), a market survey was conducted on black plastic food-contact articles (FCA). An analytical method was applied combining X-ray fluorescence spectrometry (XRF) with thermal desorption gas chromatography coupled with mass spectrometry (thermal desorption GC-MS). Firstly, XRF spectrometry was applied to distinguish bromine-positive samples. Secondly, bromine-positive samples were submitted for identification by thermal desorption GC-MS. Generally, the bromine-positive samples contained mainly technical decabromodiphenyl ether (decaBDE). Newer types of BFRs such as tetrabromobisphenol A (TBBPA), tetrabromobisphenol A bis(2,3-dibromopropyl), ether (TBBPA-BDBPE) and decabromodiphenylethane (DBDPE), replacing the polybrominated diphenyleters (PBDEs) and polybrominated diphenyls (PBBs), were also identified. In none of the tested samples were PBBs or hexabromocyclododecane (HBCD) found. Polymer identification was carried out using Fourier-transformed infrared spectroscopy measurement (FTIR) on all samples. The results indicate that polypropylene-polyethylene copolymers (PP-PE) and mainly styrene-based food-contact materials, such as acrylonitrile-butadiene-styrene (ABS) have the highest risk of containing BFRs.
Arends, Dagmar; Schlummer, Martin; Mäurer, Andreas; Markowski, Jens; Wagenknecht, Udo
2015-09-01
Waste electrical and electronic equipment is a complex waste stream and treatment options that work for one waste category or product may not be appropriate for others. A comprehensive case study has been performed for plastic-rich fractions that are treated in German dismantling centres. Plastics from TVs, monitors and printers and small household appliances have been characterised extensively. Based on the characterisation results, state-of-the-art treatment technologies have been combined to design an optimised recycling and upgrade process for each input fraction. High-impact polystyrene from TV casings that complies with the European directive on the restriction of hazardous substances (RoHS) was produced by applying continuous density separation with yields of about 60%. Valuable acrylonitrile butadiene styrene/polycarbonate can be extracted from monitor and printer casings by near-infrared-based sorting. Polyolefins and/or a halogen-free fraction of mixed styrenics can be sorted out by density separation from monitors and printers and small household appliances. Emerging separation technologies are discussed to improve recycling results. © The Author(s) 2015.
Styrene-butadiene latex modifiers for bridge deck overlay concrete.
DOT National Transportation Integrated Search
1978-04-01
Styrene-butadiene (S/B) latex modified concrete overlays are being used to protect : new bridge decks from rapid deicer-borne chloride intrusion and also in bridge : deck rehabilitation efforts. The purposes of this research were to evaluate several ...
Development of bio-based polymers for use in asphalt.
DOT National Transportation Integrated Search
2014-02-01
Asphalt binder is typically modified with poly type (styrene-butadiene-styrene or SBS) polymers to improve its rheological properties and performance grade. The elastic and principal component of SBS polymers is butadiene. For the last decade, butadi...
Polybenzoxazole-filled nitrile butadiene rubber compositions
NASA Technical Reports Server (NTRS)
Gajiwala, Himansu M. (Inventor); Guillot, David G. (Inventor)
2008-01-01
An insulation composition that comprises at least one nitrile butadiene rubber (NBR) having an acrylonitrile content that ranges from approximately 26% by weight to approximately 35% by weight and polybenzoxazole (PBO) fibers. The NBR may be a copolymer of acrylonitrile and butadiene and may be present in the insulation composition in a range of from approximately 45% by weight to approximately 56% by weight of a total weight of the insulation composition. The PBO fibers may be present in a range of from approximately 3% by weight to approximately 10% by weight of a total weight of the insulation composition. A rocket motor including the insulation composition and a method of insulating a rocket motor are also disclosed.
Understanding cracking failures of coatings: A fracture mechanics approach
NASA Astrophysics Data System (ADS)
Kim, Sung-Ryong
A fracture mechanics analysis of coating (paint) cracking was developed. A strain energy release rate (G(sub c)) expression due to the formation of a new crack in a coating was derived for bending and tension loadings in terms of the moduli, thicknesses, Poisson's ratios, load, residual strain, etc. Four-point bending and instrumented impact tests were used to determine the in-situ fracture toughness of coatings as functions of increasing baking (drying) time. The system used was a thin coating layer on a thick substrate layer. The substrates included steel, aluminum, polycarbonate, acrylonitrile-butadiene-styrene (ABS), and Noryl. The coatings included newly developed automotive paints. The four-point bending configuration promoted nice transversed multiple coating cracks on both steel and polymeric substrates. The crosslinked type automotive coatings on steel substrates showed big cracks without microcracks. When theoretical predictions for energy release rate were compared to experimental data for coating/steel substrate samples with multiple cracking, the agreement was good. Crosslinked type coatings on polymeric substrates showed more cracks than theory predicted and the G(sub c)'s were high. Solvent evaporation type coatings on polymeric substrates showed clean multiple cracking and the G(sub c)'s were higher than those obtained by tension analysis of tension experiments with the same substrates. All the polymeric samples showed surface embrittlement after long baking times using four-point bending tests. The most apparent surface embrittlement was observed in the acrylonitrile-butadiene-styrene (ABS) substrate system. The impact properties of coatings as a function of baking time were also investigated. These experiments were performed using an instrumented impact tester. There was a rapid decrease in G(sub c) at short baking times and convergence to a constant value at long baking times. The surface embrittlement conditions and an embrittlement toughness were found upon impact loading. This analysis provides a basis for a quantitative approach to measuring coating toughness.
NASA Astrophysics Data System (ADS)
Rodríguez-Vidal, E.; Quintana, I.; Etxarri, J.; Otaduy, D.; González, F.; Moreno, F.
2012-06-01
Laser transmission welding (LTW) of polymers is a direct bonding technique which is already used in different industrial applications sectors such as automobile, microfluidic, electronic and biomedicine. This technique offers several advantages over conventional methods, especially when a local deposition of energy and minimum thermal distortions are required. In LTW one of the polymeric materials needs to be transparent to the laser wavelength and the second part needs to be designed to be absorbed in IR spectrum. This report presents a study of laser weldability of ABS (acrylonitrile/butadiene/styrene) filled with two different concentrations of carbon nanotubes (0.01% and 0.05% CNTs). These additives are used as infrared absorbing components in the laser welding process, affecting the thermal and optical properties of the material and, hence, the final quality of the weld seam. A tailored laser system has been designed to obtain high quality weld seams with widths between 0.4 and 1.0mm. It consists of two diode laser bars (50W per bar) coupled into an optical fiber using a non-imaging solution: equalization of the beam quality factor (M2) in the slow and fast axes by a pair of micro step-mirrors. The beam quality factor has been analyzed at different laser powers with the aim to guarantee a coupling efficiency to the multimode optical fiber. The power scaling is carried out by means of multiplexing polarization technique. The analysis of energy balance and beam quality is performed in two linked steps: first by means ray tracing simulations (ZEMAX®) and second, by validation. Quality of the weld seams is analyzed in terms of the process parameters (welding speed, laser power and clamping pressure) by visual and optical microscope inspections. The optimum laser power range for three different welding speeds is determinate meanwhile the clamping pressure is held constant. Additionally, the corresponding mechanical shear tests were carried out to analyze the mechanical properties of the weld seams. This work provides a detailed study concerning the effect of the material microstructure and laser beam quality on the final weld formation and surface integrity.
Fire detection system using random forest classification for image sequences of complex background
NASA Astrophysics Data System (ADS)
Kim, Onecue; Kang, Dong-Joong
2013-06-01
We present a fire alarm system based on image processing that detects fire accidents in various environments. To reduce false alarms that frequently appeared in earlier systems, we combined image features including color, motion, and blinking information. We specifically define the color conditions of fires in hue, saturation and value, and RGB color space. Fire features are represented as intensity variation, color mean and variance, motion, and image differences. Moreover, blinking fire features are modeled by using crossing patches. We propose an algorithm that classifies patches into fire or nonfire areas by using random forest supervised learning. We design an embedded surveillance device made with acrylonitrile butadiene styrene housing for stable fire detection in outdoor environments. The experimental results show that our algorithm works robustly in complex environments and is able to detect fires in real time.
NASA Astrophysics Data System (ADS)
Ishikawa, Atsushi; Kato, Taiki; Takeyasu, Nobuyuki; Fujimori, Kazuhiro; Tsuruta, Kenji
2017-10-01
A technique of selective electroless plating onto PLA-ABS (Polylactic Acid-Acrylonitrile Butadiene Styrene) composite structures fabricated by three-dimensional (3D) printing is demonstrated to construct 3D microwave metamaterials. The reducing activity of the PLA surface is selectively enhanced by the chemical modification involving Sn2+ in a simple wet process, thereby forming a highly conductive Ag-plated membrane only onto the PLA surface. The fabricated metamaterial composed of Ag-plated PLA and non-plated ABS parts is characterized experimentally and numerically to demonstrate the important bi-anisotropic microwave responses arising from the 3D nature of metallodielectric structures. Our approach based on a simple wet chemical process allows for the creation of highly complex 3D metal-insulator structures, thus paving the way toward the sophisticated microwave applications of the 3D printing technology.
NASA Astrophysics Data System (ADS)
Singh, Rupinder; Kumar, Ranvijay; Ranjan, Nishant
2018-01-01
In the present study efforts have been made to prepare functional prototypes with improved thermal, mechanical and morphological properties from polymeric waste for sustainability. The primary recycled acrylonitrile butadiene styrene (ABS) and polyamide 6 (PA6) has been selected as matrix material with bio-degradable and bio-compatible banana fibers (BF) as reinforcement. The blend (in form of feed stock filament wire) of ABS/PA6 and BF was prepared in house by conventional twin screw extrusion (TSE) process. Finally feed stock filament of ABS/PA6 reinforced with BF was put to run on open source fused deposition modelling based three dimensional printer (without any change in hardware/software of the system) for printing of functional prototypes with improved thermal/mechanical/morphological properties. The results are supported by photomicrographs, thermographs and mechanical testing.
NASA Astrophysics Data System (ADS)
Kawazoe, Masayuki
A novel mechanism of selective adsorption of rubber molecules onto carbon black surface in a binary immiscible rubber blend solution has been proposed in this dissertation. The phenomenon leads to uneven distribution of carbon black to the specific polymer in the blend and the obtained electrically conductive composite showed drastic reduction of percolation threshold concentration (PTC). The mechanism and the feature of conductive network formation have much potential concerning both fundamental understanding and industrial application to improve conductive polymer composites. In chapter I, carbon black filled conductive polymer composites are briefly reviewed. Then, in chapter II, a mechanism of rubber molecular confinement into carbon black aggregate structure is introduced to explain the selective adsorption of a specific rubber onto carbon black surface in an immiscible rubber solution blend (styrene butadiene rubber (SBR) and acrylonitrile butadiene rubber (NBR) with toluene or chloroform). Next, in chapters III and IV, polymers with various radius of gyration (Rg) and carbon blacks with various aggregate structure are examined to verify the selective adsorption mechanism. Finally, in chapter V, the novel mechanism was applied to create unique meso-/micro-unit conductive network in carbon black dispersed SBR/NBR composites.
Halász, István Zoltán; Bárány, Tamás
2016-01-01
In this work, the effect of mixing temperature (Tmix) on the mechanical, rheological, and morphological properties of rubber/cyclic butylene terephthalate (CBT) oligomer compounds was studied. Apolar (styrene butadiene rubber, SBR) and polar (acrylonitrile butadiene rubber, NBR) rubbers were modified by CBT (20 phr) for reinforcement and viscosity reduction. The mechanical properties were determined in tensile, tear, and dynamical mechanical analysis (DMTA) tests. The CBT-caused viscosity changes were assessed by parallel-plate rheometry. The morphology was studied by scanning electron microscopy (SEM). CBT became better dispersed in the rubber matrices with elevated mixing temperatures (at which CBT was in partially molten state), which resulted in improved tensile properties. With increasing mixing temperature the size of the CBT particles in the compounds decreased significantly, from few hundred microns to 5–10 microns. Compounding at temperatures above 120 °C and 140 °C for NBR and SBR, respectively, yielded reduced tensile mechanical properties most likely due to the degradation of the base rubber. The viscosity reduction by CBT was more pronounced in mixes with coarser CBT dispersions prepared at lower mixing temperatures. PMID:28773841
[Biological monitoring in the molding of plastics and rubbers].
Fustinoni, S; Campo, L; Cirla, A M; Cirla, P E; Cutugno, V; Lionetti, C; Martinotti, I; Mossini, E; Foà, V
2007-01-01
This survey was carried out in the molding of plastics and rubbers, in the "Professional Cancer Prevention Project" sponsored by the Lombardy region with the objective of developing and implementing protocols for evaluating exposure to carcinogens through the biological monitoring. The realities of molding the thermoplastic polymer ABS, rubber, and thermosetting plastics containing formaldehyde were examined. The carcinogenic substances identified in these processes were: 1,3-butadiene, acrylonitrile and styrene in molding ABS, polycyclic aromatic hydrocarbons (PAH) in molding rubber, and formaldehyde in molding the thermosetting plastics. Only for some of these substances biological indicators are available. The limited exposure to airborne chemicals in molding ABS and the intrinsic characteristics of biological indicators available for 1-3 butadiene have determined the non applicability of biological monitoring to this situation. The absence of a biological indicator of exposure to formaldehyde has made this situation not investigable. Exposure in the rubber molding was studied in 19 subjects applying the determination not metabolized PAH in urine. The levels of these indicators were similar to those measured in other groups of subjects without occupational exposure to PAH, confirming a low airborne contamination in this workplace.
Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.
Here we report that bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 °C, and properties in the wetted and dried states were measured.more » Exposure to bio-oil produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.« less
Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel
Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.; ...
2016-07-12
Here we report that bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 °C, and properties in the wetted and dried states were measured.more » Exposure to bio-oil produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.« less
USDA-ARS?s Scientific Manuscript database
Blends of styrene-butadiene rubber and natural rubber that provide balanced properties were modified with acrylamide and reinforced with soy protein particles. The rubber composites show improved mechanical properties. Both modified rubber and composites showed a faster curing rate. The crosslinking...
Effect of shearing on the reinforcement properties of vital wheat gluten
USDA-ARS?s Scientific Manuscript database
The reinforcement properties of vital wheat gluten as a biomaterial filler for a carboxylated styrene-butadiene rubber were examined to assess its effectiveness as a filler for carboxylated styrene-butadiene rubber composites. Composites were formulated using 10-40% vital wheat gluten by mixing aqu...
40 CFR 63.494 - Back-end process provisions-residual organic HAP and emission limitations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... produced by the emulsion process, polybutadiene rubber and styrene butadiene rubber produced by the... styrene butadiene rubber produced by the emulsion process: (i) A monthly weighted average of 0.40 kg... than a solution or emulsion process, polybutadiene rubber produced by any process other than a solution...
USDA-ARS?s Scientific Manuscript database
Polymer composites were prepared by melt-mixing polymer and soy flour composite fillers in an internal mixer. Soy flour composite fillers were prepared by blending aqueous dispersion of soy flour with styrene-butadiene rubber latex, dried, and cryogenically ground into powders. Upon crosslinking, th...
USDA-ARS?s Scientific Manuscript database
Corn starch, corn flour, and corn stover biochar were evaluated as potential renewable substitutes for carbon black as filler in rubber composites using carboxylated styrene-butadiene as the rubber matrix. Previous work has shown that starch-based fillers have very good reinforcement properties at t...
Birchwood biochar as partial carbon black replacement in styrene-butadiene rubber composites
USDA-ARS?s Scientific Manuscript database
Birchwood feedstock was used to make slow pyrolysis biochar that contained 89% carbon and < 2% ash. This biochar was blended with carbon black as filler for styrene-butadiene rubber. Composites made from blended fillers of 25/75 biochar/carbon black were equivalent to or superior to their 100% carbo...
Health Assessment of 1,3-Butadiene
This assessment was conducted to review the new information that has become available since EPA's 1985 health assessment of 1,3-butadiene.
1,3-Butadiene is a gas used commercially in the production of styrene-butadiene rubber, plastics, and thermoplastic resins. The major...
Water requirements of the styrene, butadiene and synthetic-rubber industries
Durfor, Charles N.
1963-01-01
About 710 million gallons of makeup water is withdrawn daily by the styrene, butadiene, styrene-butadiene rubber (SBR), and specialty-rubber industries; 88 percent of this water is used only for once-through cooling. About 429 million gallons of water daily (mgd) is withdrawn by the butadiene industry; 158 ragd is withdrawn by the styrene industry; 94 mgd is used to make special-purpose synthetic rubber; and 29 mgd is used in the direct manufacture of SBR. The amount of makeup water withdrawn to produce SBR ranges from 11,400 to 418,000 gallons per long ton of finished rubber. The amount of makeup water withdrawn depends upon the type of rubber, the processes used to make SBR and its intermediates (styrene and butadiene), and the availability of water at the styrene, butadiene, and SBR plants. The amount of makeup water used to make styrene ranged from 2.19 to 123 gallons per pound; to make butadiene, ranged from 5.38 to 22.0 gallons per pound; and in the direct manufacture of SBR, ranged from 0.883 to 10.2 gallons per pound of finished rubber. The amount of makeup water withdrawn for use in the manufacture of special-purpose synthetic rubber ranged from 8.45 to 104 gallons per pound. About 64 percent of the makeup water was obtained from salty water sources. These waters, which were used only in once-through cooling, contained as much as 35,000 ppm of dissolved solids. About 26 percent of the makeup water was obtained from fresh-water streams and lakes, and most of the other makeup waters were obtained from ground water. Less than 1 percent of the makeup water was obtained from reprocessed municipal sewage. Most makeup water from fresh-water streams, lakes, and wells contained less than 1,000 ppm of dissolved solids, and most makeup water used in the manufacture of SBR contained less than 500 ppm of dissolved solids. The maximum hardness of the untreated fresh makeup waters; used in the manufacture of SBR was less than 500 ppm. About 97 percent of the makeup water withdrawn was discharged to surface waters; the warmed salty waters were returned to their source. The remaining 3 percent, or about 23.6 mgd, of makeup water was used consumptively. The styrene industry consumptively used about 2.0 percent of its intake; the butadiene industry, about 4.5 percent; the specialty-rubber industry, about 9.1 percent; and the SBR industry, about 11 percent. The water shipped in the synthetic-rubber products increased the consumptive use of water by these industries.
Three-Dimensional Printing with Biomass-Derived PEF for Carbon-Neutral Manufacturing.
Kucherov, Fedor A; Gordeev, Evgeny G; Kashin, Alexey S; Ananikov, Valentine P
2017-12-11
Biomass-derived poly(ethylene-2,5-furandicarboxylate) (PEF) has been used for fused deposition modeling (FDM) 3D printing. A complete cycle from cellulose to the printed object has been performed. The printed PEF objects created in the present study show higher chemical resistance than objects printed with commonly available materials (acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), glycol-modified poly(ethylene terephthalate) (PETG)). The studied PEF polymer has shown key advantages for 3D printing: optimal adhesion, thermoplasticity, lack of delamination and low heat shrinkage. The high thermal stability of PEF and relatively low temperature that is necessary for extrusion are optimal for recycling printed objects and minimizing waste. Several successive cycles of 3D printing and recycling were successfully shown. The suggested approach for extending additive manufacturing to carbon-neutral materials opens a new direction in the field of sustainable development. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gedvilas, Mindaugas; Ratautas, Karolis; Kacar, Elif; Stankevičienė, Ina; Jagminienė, Aldona; Norkus, Eugenijus; Li Pira, Nello; Račiukaitis, Gediminas
2016-01-01
In this work a novel colour-difference measurement method for the quality evaluation of copper deposited on a polymer is proposed. Laser-induced selective activation (LISA) was performed onto the surface of the polycarbonate/acrylonitrile butadiene styrene (PC/ABS) polymer by using nanosecond laser irradiation. The laser activated PC/ABS polymer was copper plated by using the electroless copper plating (ECP) procedure. The sheet resistance measured by using a four-point probe technique was found to decrease by the power law with the colour-difference of the sample images after LISA and ECP procedures. The percolation theory of the electrical conductivity of the insulator conductor mixture has been adopted in order to explain the experimental results. The new proposed method was used to determine an optimal set of the laser processing parameters for best plating conditions. PMID:26960432
NASA Astrophysics Data System (ADS)
Bose, Suryasarathi; Bhattacharyya, Arup R.; Khare, Rupesh A.; Kulkarni, Ajit R.; Umasankar Patro, T.; Sivaraman, P.
2008-08-01
Melt-mixed blends of polyamide 6 and acrylonitrile-butadiene-styrene (PA6/ABS) with multiwall carbon nanotubes (MWNTs) were prepared with the intention to develop conducting composites. A generic strategy, namely specific interactions combined with reactive coupling, was adopted to facilitate and to retain the 'network-like' structure of MWNTs during melt-mixing. This was facilitated by the sodium salt of 6-amino hexanoic acid (Na-AHA) and certain phosphonium based modifiers, where it was envisaged that these modifiers would establish specific interactions (either 'cation-π' or 'π-π' ) with the 'π-electron' clouds of MWNTs, as well as restricting them in the PA6 phase of the blends via reactive coupling. This route eventually led to a remarkable increase in the electrical conductivity and dielectric constant in the blends with MWNTs. Raman, FTIR and TEM investigations further supported these observations.
Nano-Composite Material Development for 3-D Printers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satches, Michael Randolph
Graphene possesses excellent mechanical properties with a tensile strength that may exceed 130 GPa, excellent electrical conductivity, and good thermal properties. Future nano-composites can leverage many of these material properties in an attempt to build designer materials for a broad range of applications. 3-D printing has also seen vast improvements in recent years that have allowed many companies and individuals to realize rapid prototyping for relatively low capital investment. This research sought to create a graphene reinforced, polymer matrix nano-composite that is viable in commercial 3D printer technology, study the effects of ultra-high loading percentages of graphene in polymer matricesmore » and determine the functional upper limit for loading. Loadings varied from 5 wt. % to 50 wt. % graphene nanopowder loaded in Acrylonitrile Butadiene Styrene (ABS) matrices. Loaded sample were characterized for their mechanical properties using three point bending, tensile tests, as well as dynamic mechanical analysis.« less
THE DURABILITY OF LARGE-SCALE ADDITIVE MANUFACTURING COMPOSITE MOLDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, Brian K; Love, Lonnie J; Duty, Chad
2016-01-01
Oak Ridge National Laboratory s Big Area Additive Manufacturing (BAAM) technology permits the rapid production of thermoplastic composite molds using a carbon fiber filled Acrylonitrile-Butadiene-Styrene (ABS) thermoplastic. Demonstration tools (i.e. 0.965 m X 0.559 m X 0.152 m) for composite part fabrication have been printed, coated, and finished with a traditional tooling gel. We present validation results demonstrating the stability of thermoplastic printed molds for room temperature Vacuum Assisted Resin Transfer Molding (VARTM) processes. Arkema s Elium thermoplastic resin was investigated with a variety of reinforcement materials. Experimental results include dimensional characterization of the tool surface using laser scanning techniquemore » following demolding of 10 parts. Thermoplastic composite molds offer rapid production compared to traditionally built thermoset molds in that near-net deposition allows direct digital production of the net geometry at production rate of 45 kg/hr.« less
NASA Astrophysics Data System (ADS)
Pignon, Baptiste; Sobotka, Vincent; Boyard, Nicolas; Delaunay, Didier
2017-10-01
Two different analytical models were presented to determine cycle parameters of thermoplastics injection process. The aim of these models was to provide quickly a first set of data for mold temperature and cooling time. The first model is specific to amorphous polymers and the second one is dedicated to semi-crystalline polymers taking the crystallization into account. In both cases, the nature of the contact between the polymer and the mold could be considered as perfect or not (thermal contact resistance was considered). Results from models are compared with experimental data obtained with an instrumented mold for an acrylonitrile butadiene styrene (ABS) and a polypropylene (PP). Good agreements were obtained for mold temperature variation and for heat flux. In the case of the PP, the analytical crystallization times were compared with those given by a coupled model between heat transfer and crystallization kinetics.
Assessment of relative flammability and thermochemical properties of some thermoplastic materials
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.
1978-01-01
The thermochemical and flammability characteristics of some typical thermoplastic materials currently in use and others being considered for use in aircraft interiors are described. The properties studied included (1) thermal mechanical properties such as glass transition and melt temperature, (2) changes in polymer enthalpy by differential scanning calorimetry, (3) thermogravimetric analysis in an anaerobic and oxidative environment, (4) oxygen index, (5) smoke evolution, (6) relative toxicity of the volatile products of pyrolysis, and (7) selected physical properties. The generic polymers which were evaluated included: acrylonitrile-butadiene-styrene, bisphenol A polycarbonate, bisphenol fluorenone carbonatedimethylsiloxane block polymer, phenolphthalein-bisphenol A polycarbonate, phenolphthalein polycarbonate, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyaryl sulfone, chlorinated polyvinyl chloride homopolymer, polyvinyl fluoride, and polyvinylidene fluoride. Processing parameters including molding characteristics of some of the advanced polymers are described. Test results and relative rankings of some of the flammability, smoke and toxicity properties are presented.
Impact property enhancement of poly (lactic acid) with different flexible copolymers
NASA Astrophysics Data System (ADS)
Likittanaprasong, N.; Seadan, M.; Suttiruengwong, S.
2015-07-01
The objective of this work was to improve the impact property of Poly (lactic acid) (PLA) by blending with different copolymers. Six flexible copolymers, namely, acrylonitrile butadiene styrene (ABS) powder, Biomax, polybutyrate adipate co-terephthalate (PBAT), polyether block amide (PEBAX), ethylene-vinyl acetate (EVA) and ethylene acrylic elastomer (EAE), with loading less than 20wt% were used and compared. The rheological, mechanical and morphological properties of samples were investigated by melt flow index, tensile testing, impact testing and scanning electron microscope (SEM), respectively. It was found that PLA added 20wt% EAE showed the highest impact strength (59.5 kJ/m2), which was 22 times higher than neat PLA. The elongation at break was also increased by 12 folds compared to neat PLA. The SEM images showed good interface and distribution for PLA containing 20wt% EAE, 15 phr Biomax and 20 wt% PEBAX.
Thermoplastic polymers for improved fire safety
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.; Hilado, C. J.
1976-01-01
The thermochemical and flammability characteristics of some typical thermoplastic materials currently in use and others being considered for use in aircraft interiors are described. The properties studied included (1) thermomechanical properties such as glass transition and melt temperature, (2) changes in polymer enthalpy by differential scanning calorimetry, (3) thermogravimetric analysis in anaerobic and oxidative environments, (4) oxygen index, (5) smoke evolution, (6) relative toxicity of the volatile products of pyrolysis, and (7) selected physical properties. The generic polymers that were evaluated included: acrylonitrile butadiene styrene, bisphenol A polycarbonate, 9,9 bis (4-hydroxyphenyl) fluorene polycarbonatepoly (dimethyl siloxane) block polymer, phenolphthalein bisphenol A polycarbonate, phenolphthalein polycarbonate, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyaryl sulfone, chlorinated polyvinyl chloride homopolymer, polyvinyl fluoride, and polyvinylidene fluoride. Processing parameters, including molding characteristics of some of the advanced polymers, are described. Test results and relative ranking of some of the flammability, smoke, and toxicity properties are presented.
Investigations for Thermal and Electrical Conductivity of ABS-Graphene Blended Prototypes
Singh, Rupinder; Sandhu, Gurleen S.; Penna, Rosa; Farina, Ilenia
2017-01-01
The thermoplastic materials such as acrylonitrile-butadiene-styrene (ABS) and Nylon have large applications in three-dimensional printing of functional/non-functional prototypes. Usually these polymer-based prototypes are lacking in thermal and electrical conductivity. Graphene (Gr) has attracted impressive enthusiasm in the recent past due to its natural mechanical, thermal, and electrical properties. This paper presents the step by step procedure (as a case study) for development of an in-house ABS-Gr blended composite feedstock filament for fused deposition modelling (FDM) applications. The feedstock filament has been prepared by two different methods (mechanical and chemical mixing). For mechanical mixing, a twin screw extrusion (TSE) process has been used, and for chemical mixing, the composite of Gr in an ABS matrix has been set by chemical dissolution, followed by mechanical blending through TSE. Finally, the electrical and thermal conductivity of functional prototypes prepared from composite feedstock filaments have been optimized. PMID:28773244
Vazquez, Yamila V; Barbosa, Silvia E
2016-07-01
Plastic waste from electrical and electronic equipment (WEEE) grows up exponentially fast in the last two decades. Either consumption increase of technological products, like cellphones or computers, or the short lifetime of this products contributes to this rise generating an accumulation of specific plastic materials such ABS (Acrylonitrile-Butadiene-Styrene), HIPS (High impact Polystyrene), PC (Polycarbonate), among others. All of they can be recycled by themselves. However, to separate them by type is neither easy nor economically viable, then an alternative is recycling them together as a blend. Taking into account that could be a deterioration in final properties, to enhance phase adhesion and add value to a new plastic WEEE blend a compatibilization is needed. In this work, a systematical study of different compatibilizers for blends of HIPS and ABS from WEEE was performed. A screening analysis was carried out by adding two different compatibilizer concentration (2wt% and 20wt%) on a HIPS/ABS physical blend 80/20 proportion from plastic e-waste. Three copolymers were selected as possible compatibilizers by their possible affinity with initial plastic WEEE. A complete characterization of each WEEE was performed and compatibilization efficiency was evaluated by comparing either mechanical or morphological blends aspects. Considering blends analyzed in this work, the best performance was achieved by using 2% of styrene-acrylonitrile rubber, obtaining a compatibilized blend with double ultimate strength and modulus respect to the physical blend, and also improve mechanical properties of initial WEEE plastics. The proposed way is a promise route to improve benefit of e-scrap with sustainable, low costs and easy handling process. Consequently, social recycling interest will be encouraged by both ecological and economical points of view. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Jian-Chao; Wang, Hui; Huang, Luo-Luo; Wang, Chong-Qing
2017-09-01
Surface treatment with Fenton was applied to flotation separation of acrylonitrile-butadienestyrene (ABS) and polyvinylchloride (PVC). After treatment, the floatability of ABS has a dramatic decrease, while the floatability of PVC is not affected. Fourier transform infrared spectroscopy (FT-IR) spectra and X-ray photoelectron spectroscopy (XPS) spectra were recorded to ascertain the mechanism of Fenton treatment. FT-IR and XPS analysis confirms that the introduction of oxygen-containing group occurs on the surface of ABS. The optimum conditions are molar ration (H 2 O 2 :Fe 2+ ) 10000, H 2 O 2 concentration 0.4M/L, pH 5.8, treatment time 2min and temperature 25°C, frother concentration 15mg/L and flotation time 3min. Particle sizes and mixing ratios were also investigated. Plastic mixtures of ABS and PVC with different particle sizes and mixing ratios can be effectively separated. The purity of ABS and PVC are up to 100% and 99.78%, respectively; the recovery of ABS and PVC are up to 99.89% and 100%, respectively. A practical, environmentally friendly and effective reagent, namely Fenton, was originally applied to surface treatment of ABS and PVC waste plastics for flotation separation of their mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.
The industrial production and use of 1,3-butadiene.
Morrow, N L
1990-01-01
This presentation provides a brief overview of the production and use of 1,3-butadiene in the United States. Starting as a coproduct of ethylene, the 1,3-butadiene monomer is extracted and purified, then transferred to consumers. Major uses of 1,3-butadiene include the manufacture of styrene-butadiene rubber, polybutadiene rubber, and adiponitrile. PMID:2205493
Study on Impact Acoustic—Visual Sensor-Based Sorting of ELV Plastic Materials
Huang, Jiu; Tian, Chuyuan; Ren, Jingwei; Bian, Zhengfu
2017-01-01
This paper concentrates on a study of a novel multi-sensor aided method by using acoustic and visual sensors for detection, recognition and separation of End-of Life vehicles’ (ELVs) plastic materials, in order to optimize the recycling rate of automotive shredder residues (ASRs). Sensor-based sorting technologies have been utilized for material recycling for the last two decades. One of the problems still remaining results from black and dark dyed plastics which are very difficult to recognize using visual sensors. In this paper a new multi-sensor technology for black plastic recognition and sorting by using impact resonant acoustic emissions (AEs) and laser triangulation scanning was introduced. A pilot sorting system which consists of a 3-dimensional visual sensor and an acoustic sensor was also established; two kinds commonly used vehicle plastics, polypropylene (PP) and acrylonitrile-butadiene-styrene (ABS) and two kinds of modified vehicle plastics, polypropylene/ethylene-propylene-diene-monomer (PP-EPDM) and acrylonitrile-butadiene-styrene/polycarbonate (ABS-PC) were tested. In this study the geometrical features of tested plastic scraps were measured by the visual sensor, and their corresponding impact acoustic emission (AE) signals were acquired by the acoustic sensor. The signal processing and feature extraction of visual data as well as acoustic signals were realized by virtual instruments. Impact acoustic features were recognized by using FFT based power spectral density analysis. The results shows that the characteristics of the tested PP and ABS plastics were totally different, but similar to their respective modified materials. The probability of scrap material recognition rate, i.e., the theoretical sorting efficiency between PP and PP-EPDM, could reach about 50%, and between ABS and ABS-PC it could reach about 75% with diameters ranging from 14 mm to 23 mm, and with exclusion of abnormal impacts, the actual separation rates were 39.2% for PP, 41.4% for PP/EPDM scraps as well as 62.4% for ABS, and 70.8% for ABS/PC scraps. Within the diameter range of 8-13 mm, only 25% of PP and 27% of PP/EPDM scraps, as well as 43% of ABS, and 47% of ABS/PC scraps were finally separated. This research proposes a new approach for sensor-aided automatic recognition and sorting of black plastic materials, it is an effective method for ASR reduction and recycling. PMID:28594341
Study on Impact Acoustic-Visual Sensor-Based Sorting of ELV Plastic Materials.
Huang, Jiu; Tian, Chuyuan; Ren, Jingwei; Bian, Zhengfu
2017-06-08
This paper concentrates on a study of a novel multi-sensor aided method by using acoustic and visual sensors for detection, recognition and separation of End-of Life vehicles' (ELVs) plastic materials, in order to optimize the recycling rate of automotive shredder residues (ASRs). Sensor-based sorting technologies have been utilized for material recycling for the last two decades. One of the problems still remaining results from black and dark dyed plastics which are very difficult to recognize using visual sensors. In this paper a new multi-sensor technology for black plastic recognition and sorting by using impact resonant acoustic emissions (AEs) and laser triangulation scanning was introduced. A pilot sorting system which consists of a 3-dimensional visual sensor and an acoustic sensor was also established; two kinds commonly used vehicle plastics, polypropylene (PP) and acrylonitrile-butadiene-styrene (ABS) and two kinds of modified vehicle plastics, polypropylene/ethylene-propylene-diene-monomer (PP-EPDM) and acrylonitrile-butadiene-styrene/polycarbonate (ABS-PC) were tested. In this study the geometrical features of tested plastic scraps were measured by the visual sensor, and their corresponding impact acoustic emission (AE) signals were acquired by the acoustic sensor. The signal processing and feature extraction of visual data as well as acoustic signals were realized by virtual instruments. Impact acoustic features were recognized by using FFT based power spectral density analysis. The results shows that the characteristics of the tested PP and ABS plastics were totally different, but similar to their respective modified materials. The probability of scrap material recognition rate, i.e., the theoretical sorting efficiency between PP and PP-EPDM, could reach about 50%, and between ABS and ABS-PC it could reach about 75% with diameters ranging from 14 mm to 23 mm, and with exclusion of abnormal impacts, the actual separation rates were 39.2% for PP, 41.4% for PP/EPDM scraps as well as 62.4% for ABS, and 70.8% for ABS/PC scraps. Within the diameter range of 8-13 mm, only 25% of PP and 27% of PP/EPDM scraps, as well as 43% of ABS, and 47% of ABS/PC scraps were finally separated. This research proposes a new approach for sensor-aided automatic recognition and sorting of black plastic materials, it is an effective method for ASR reduction and recycling.
Detection of hydrogen dissolved in acrylonitrile butadiene rubber by 1H nuclear magnetic resonance
NASA Astrophysics Data System (ADS)
Nishimura, Shin; Fujiwara, Hirotada
2012-01-01
Rubber materials, which are used for hydrogen gas seal, can dissolve hydrogen during exposure in high-pressure hydrogen gas. Dissolved hydrogen molecules were detected by solid state 1H NMR of the unfilled vulcanized acrylonitrile butadiene rubber. Two signals were observed at 4.5 ppm and 4.8 ppm, which were assignable to dissolved hydrogen, in the 1H NMR spectrum of NBR after being exposed 100 MPa hydrogen gas for 24 h at room temperature. These signals were shifted from that of gaseous hydrogen molecules. Assignment of the signals was confirmed by quantitative estimation of dissolved hydrogen and peak area of the signals.
Chronska, K; Przepiorkowska, A
2008-03-01
Buffing dust from chrome tanned leather is one of the difficult tannery wastes to manage. It is also hazardous to both human health and the environment. The scientific literature rarely reports studies on dust management, especially on its utilization as a filler for elastomers. In this connection we have made an attempt to use this leather waste as a filler for rubbers such as XNBR and NBR. The addition of the buffing dust to rubber mixes brought improvement in mechanical properties, and increase in resistance to thermal ageing as well as in electric conductivity and crosslink density of vulcalizates.
NASA Astrophysics Data System (ADS)
Mohammed Reffai, Syed Ismail Syed; Chatterjee, Tuhin; Naskar, Kinsuk
2018-07-01
This paper reports the heat and oil resistant hydrogenated acrylonitrile butadiene rubber (HNBR)/Polyamide 12 (PA12) blends prepared by electron beam irradiation. Electron beam irradiated blends are characterized by processing behaviour like thermoplastic at elevated temperature and performance properties of vulcanized rubber at ambient temperature. In the present work, a new class of blends based on Hydrogenated acrylonitrile butadiene rubber (HNBR) and polyamide (PA12) has been developed. The blends are cured with different radiation dosage at a fixed blend ratio (70:30) of (HNBR/PA12). The blend having the 75 kGy shows the highest level of mechanical properties as well as superior thermal stability. Dynamic mechanical analysis (DMA) also demonstrates the tanδ values of all the blends are lower and the storage modules are higher for HE-75 kGy blend system compared to other blend system. Heat aging, oil aging, oil swelling and cross-link density study have also been carried out in details to understand the performance behaviour of these blends at service condition (150 °C). These blends are considered to find potential application in automotive sector especially for automotive under-the-hood-applications.
Macroscopic Modeling of A3B15A3 Triblock Copolymers in B Solvent
2010-11-01
matrix composed of the midblock (2). Some examples of TPEs are poly[styrene-butadiene-styrene] (SBS), poly[styrene- isoprene -styrene] (SIS), poly[styrene...92. 19. Hadziioannou, G.; Skoulios, A. Molecular Weight Dependence of Lamellar Structure in Styrene Isoprene Two- and Three-block Copolymers...Microphase Seperation in Styrene- Isoprene Block Copolymers. Macromolecules 1994, 27. 42. Mckay, K. W.; Gros, W. A.; Diehl, C. F. The Influence of
Prevalence of microplastics in the marine waters of Qatar.
Castillo, Azenith B; Al-Maslamani, Ibrahim; Obbard, Jeffrey Philip
2016-10-15
Microplastics are firmly recognized as a ubiquitous and growing threat to marine biota and their associated marine habitats worldwide. The evidence of the prevalence of microplastics was documented for the first time in the marine waters of Qatar's Exclusive Economic Zone (EEZ). An optimized and validated protocol was developed for the extraction of microplastics from plankton-rich seawater samples without loss of microplastic debris present and characterized using Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy. In total 30 microplastic polymers have been identified with an average concentration of 0.71particlesm(-3) (range 0-3particlesm(-3)). Polypropylene, low density polyethylene, polyethylene, polystyrene, polyamide, polymethyl methacrylate, cellophane, and acrylonitrile butadiene styrene polymers were characterized with majority of the microplastics either granular shape, sizes ranging from 125μm to 1.82mm or fibrous with sizes from 150μm to 15.98mm. The microplastics are evident in areas where nearby anthropogenic activities, including oil-rig installations and shipping operations are present. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan
2018-05-01
Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.
Creep Behavior of ABS Polymer in Temperature-Humidity Conditions
NASA Astrophysics Data System (ADS)
An, Teagen; Selvaraj, Ramya; Hong, Seokmoo; Kim, Naksoo
2017-04-01
Acrylonitrile-Butadiene-Styrene (ABS), also known as a thermoplastic polymer, is extensively utilized for manufacturing home appliances products as it possess impressive mechanical properties, such as, resistance and toughness. However, the aforementioned properties are affected by operating temperature and atmosphere humidity due to the viscoelasticity property of an ABS polymer material. Moreover, the prediction of optimum working conditions are the little challenging task as it influences the final properties of product. This present study aims to develop the finite element (FE) models for predicting the creep behavior of an ABS polymeric material. In addition, the material constants, which represent the creep properties of an ABS polymer material, were predicted with the help of an interpolation function. Furthermore, a comparative study has been made with experiment and simulation results to verify the accuracy of developed FE model. The results showed that the predicted value from FE model could agree well with experimental data as well it can replicate the actual creep behavior flawlessly.
NASA Astrophysics Data System (ADS)
Dakshinamurthy, Devika; Gupta, Srinivasa
2018-04-01
Fused Deposition Modelling (FDM) is a fast growing Rapid Prototyping (RP) technology due to its ability to build parts having complex geometrical shape in reasonable time period. The quality of built parts depends on many process variables. In this study, the influence of three FDM process parameters namely, slice height, raster angle and raster width on viscoelastic properties of Acrylonitrile Butadiene Styrene (ABS) RP-specimen is studied. Statistically designed experiments have been conducted for finding the optimum process parameter setting for enhancing the storage modulus. Dynamic Mechanical Analysis has been used to understand the viscoelastic properties at various parameter settings. At the optimal parameter setting the storage modulus and loss modulus of the ABS-RP specimen was 1008 and 259.9 MPa respectively. The relative percentage contribution of slice height and raster width on the viscoelastic properties of the FDM-RP components was found to be 55 and 31 % respectively.
A discrimination model in waste plastics sorting using NIR hyperspectral imaging system.
Zheng, Yan; Bai, Jiarui; Xu, Jingna; Li, Xiayang; Zhang, Yimin
2018-02-01
Classification of plastics is important in the recycling industry. A plastic identification model in the near infrared spectroscopy wavelength range 1000-2500 nm is proposed for the characterization and sorting of waste plastics using acrylonitrile butadiene styrene (ABS), polystyrene (PS), polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), and polyvinyl chloride (PVC). The model is built by the feature wavelengths of standard samples applying the principle component analysis (PCA), and the accuracy, property and cross-validation of the model were analyzed. The model just contains a simple equation, center of mass coordinates, and radial distance, with which it is easy to develop classification and sorting software. A hyperspectral imaging system (HIS) with the identification model verified its practical application by using the unknown plastics. Results showed that the identification accuracy of unknown samples is 100%. All results suggested that the discrimination model was potential to an on-line characterization and sorting platform of waste plastics based on HIS. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Thuyet-Nguyen, Minh; Hai-Nguyen, Hong; Kim, Won Joo; Kim, Ho Yoon; Kim, Jin-Chun
2017-03-01
Nanomaterials have attracted great attention from chemists, physicists and materials scientists because of their application benefits and special properties. Thermoplastics have been used in many applications such as molding of non-electrical components, conducting, magnetic field and 3D printing. Nanocomposites are known as a material which blends the best properties of components, a high performance material exhibits unusual property combinations and unique design possibilities. In this research, we focused to investigate and report primary results in the synthesis of magnetic nanocomposites based on acrylonitrile butadiene styrene (ABS), which are useful and important thermoplastics. Nickel nanopowder was prepared by electrical explosion of wire in a liquid were used as magnetic component. The composites were prepared by following steps, first the obtained Ni nanopowders were incorporated into the ABS matrix via a solution blending method (drop-casting), and then the solvent was evaporated. The characterizations of obtaining composites were analyzed by field emission scanning electron microscopy, X-Ray Diffraction analysis and vibrating sample magnetometer.
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.; Hilado, C. J.
1977-01-01
The thermochemical and flammability characteristics of some typical thermoplastic materials currently in use or being considered for use in aircraft interiors are described. The properties studied included thermomechanical properties such as glass-transition and melt temperature, changes in polymer enthalpy, thermogravimetric analysis in anerobic and oxidative environments, oxygen index, smoke evolution, relative toxicity of the volatile products of pyrolysis, and selected physical properties. The generic polymers evaluated included acrylonitrile butadiene styrene, bisphenol A polycarbonate, 9,9 bis (4-hydroxyphenyl) fluorene polycarbonate-poly (dimethylsiloxane) block polymer, phenolphthalein-bisphenol A polycarbonate, phenolphthalein polycarbonate, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyaryl sulfone, chlorinated polyvinyl chloride homopolymer, polyvinyl fluoride, and polyvinylidene fluoride. Processing parameters, including molding characteristics of some of the advanced polymers, are described. Test results and relative rankings of some of the flammability, smoke, and toxicity properties are presented. Under these test conditions, some of the advanced polymers evaluated were significantly less flammable and toxic than or equivalent to polymers in current use.
Li, Guiwei; Zhao, Ji; Wu, Wenzheng; Jiang, Jili; Wang, Bofan; Jiang, Hao; Fuh, Jerry Ying Hsi
2018-05-17
Fused deposition modeling 3D printing has become the most widely used additive manufacturing technology because of its low manufacturing cost and simple manufacturing process. However, the mechanical properties of the 3D printing parts are not satisfactory. Certain pressure and ultrasonic vibration were applied to 3D printed samples to study the effect on the mechanical properties of 3D printed non-crystalline and semi-crystalline polymers. The tensile strength of the semi-crystalline polymer polylactic acid was increased by 22.83% and the bending strength was increased by 49.05%, which were almost twice the percentage increase in the tensile strength and five times the percentage increase in the bending strength of the non-crystalline polymer acrylonitrile butadiene styrene with ultrasonic strengthening. The dynamic mechanical properties of the non-crystalline and semi-crystalline polymers were both improved after ultrasonic enhancement. Employing ultrasonic energy can significantly improve the mechanical properties of samples without modifying the 3D printed material or adjusting the forming process parameters.
Vlachova, Jana; Tmejova, Katerina; Kopel, Pavel; Korabik, Maria; Zitka, Jan; Hynek, David; Kynicky, Jindrich; Adam, Vojtech; Kizek, Rene
2015-01-01
Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE) modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion) for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH). It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE. PMID:25621613
Customized design and 3D printing of face seal for an N95 filtering facepiece respirator.
Cai, Mang; Li, Hui; Shen, Shengnan; Wang, Yu; Yang, Quan
2018-03-01
Filtering Facepiece Respirator (FFR) is the most common respirator users in the health care environment utilize for personal protection from outside particles. Comfort and fit are important while wearing an FFR. This paper proposes a novel technology to produce customized face seal design for improving the wearing comfort and fit of FFR wearers. In order to customize the design of face seals, we scanned the faces of three subjects using three-dimensional (3D) laser scanning method. A customized face seal for a 3M 8210 N95 FFR for each headform was designed using reverse engineering technique. Next, the face seal prototypes were fabricated with Acrylonitrile Butadiene Styrene (ABS) plastic using the 3D printing method. A force sensing system based on Arduino Uno R3 was developed, and the force sensor of this system was inserted between the FFR and headform to measure contact pressure. Experimental results showed that the newly designed FFR face seal provided the subjects with an improved contact pressure.
NASA Astrophysics Data System (ADS)
Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan
2018-04-01
Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.
NASA Astrophysics Data System (ADS)
Amza, Catalin Gheorghe; Niţoi, Dan Florin
2018-02-01
3D printers are of recent history, but with an extremely rapid evolution both in technology and hardware involved. At present excellent performances are reached in applications such as 3D printing of various Acrylonitrile butadiene styrene (ABS) plastic parts for house building using Fused Deposition Modelling technology. Nevertheless, the thermic and mechanic processes that appear when manufacturing such plastic components are quite complex. This aspect is very important, especially when one wants to optimize the manufacturing of parts with certain geometrical complexity. The Finite Element Analysis/Modelling (FEA/FEM) is among the few methods that can study the thermic transfer processes and shape modifications that can appear due to non-seamar behavior that takes place when the ABS plastic material is cooling down. The current papers present such an analysis when simulating the deposition of several strings of materials. A thermic analysis is made followed by a study of deformations that appear when the structure cools down.
Vlachova, Jana; Tmejova, Katerina; Kopel, Pavel; Korabik, Maria; Zitka, Jan; Hynek, David; Kynicky, Jindrich; Adam, Vojtech; Kizek, Rene
2015-01-22
Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE) modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion) for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH). It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE.
NITRILE ELASTOMER-NYLON LAMINATES INCLUDING BARRIER FILMS.
ADHESIVES, *NYLON, *NITRILE RUBBER , LAMINATES, LAMINATES, FILMS, TEXTILES, RUBBER COATINGS, BUTADIENES, ACRYLONITRILE POLYMERS, BONDING, ADHESION... DEGRADATION , MOISTUREPROOFING, PHENOLIC PLASTICS, HALOGENATED HYDROCARBONS, ISOCYANATES, CURING AGENTS, ELASTOMERS.
Acrylonitrile-Butadiene Rubber (NBR) Prepared via Living/Controlled Radical Polymerization (RAFT).
Kaiser, Andreas; Brandau, Sven; Klimpel, Michael; Barner-Kowollik, Christopher
2010-09-15
In the current work we present results on the controlled/living radical copolymerization of acrylonitrile (AN) and 1,3-butadiene (BD) via reversible addition fragmentation chain transfer (RAFT) polymerization techniques. For the first time, a solution polymerization process for the synthesis of nitrile butadiene rubber (NBR) via the use of dithioacetate and trithiocarbonate RAFT agents is described. It is demonstrated that the number average molar mass, $\\overline M _{\\rm n} $, of the NBR can be varied between a few thousand and 60 000 g · mol(-1) with polydispersities between 1.2 and 2.0 (depending on the monomer to polymer conversion). Excellent agreement between the experimentally observed and the theoretically expected molar masses is found. Detailed information on the structure of the synthesized polymers is obtained by variable analytical techniques such as infrared spectroscopy (IR), nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry, and electrospray ionization-mass spectrometry (ESI-MS). Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Marković, G.; Marinović-Cincović, M.; Tanasić, Lj.; Jovanović, V.; Samaržija-Jovanović, S.; Vukić, N.; Budinski-Simendić, J.
2011-12-01
The goal of this work was to study gamma irradiation ageing of rubber blends based on acrylonitrile butadiene rubber (NBR) and chlorosulphonated polyethylene rubber (CSM) reinforced by silica nano particles. The NBR/CSM compounds (50: 50, w/w) filled with different content of filler (0-100 phr) were crosslinked by sulfur. The vulcanization characteristics were assessed using the rheometer with an oscillating disk. The vulcanizates were prepared in a hydraulic press. The obtained materials were exposed to the different irradiation doses (100, 200, 300 and 400 kGy). The mechanical properties (hardness, modulus at 100% elongation, tensile strength and elongation at break) and swelling numbers were assessed before and after gamma irradiation ageing.
Vilmin, Franck; Dussap, Claude; Coste, Nathalie
2006-06-01
In the tire industry, synthetic styrene-butadiene rubber (SBR), butadiene rubber (BR), and isoprene rubber (IR) elastomers are essential for conferring to the product its properties of grip and rolling resistance. Their physical properties depend on their chemical composition, i. e., their microstructure and styrene content, which must be accurately controlled. This paper describes a fast, robust, and highly reproducible near-infrared analytical method for the quantitative determination of the microstructure and styrene content. The quantitative models are calculated with the help of pure spectral profiles estimated from a partial least squares (PLS) regression, using (13)C nuclear magnetic resonance (NMR) as the reference method. This versatile approach allows the models to be applied over a large range of compositions, from a single BR to an SBR-IR blend. The resulting quantitative predictions are independent of the sample path length. As a consequence, the sample preparation is solvent free and simplified with a very fast (five minutes) hot filming step of a bulk polymer piece. No precise thickness control is required. Thus, the operator effect becomes negligible and the method is easily transferable. The root mean square error of prediction, depending on the rubber composition, is between 0.7% and 1.3%. The reproducibility standard error is less than 0.2% in every case.
Polybutadiene and Styrene-Butadiene rubbers for high-dose dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, Lucas N.; Instituto de Pesquisas Energeticas e Nucleares -IPEN, Sao Paulo-SP; Vieira, Silvio L.
2015-07-01
Polybutadiene and Styrene-Butadiene are synthetical rubbers used widely for pneumatic tires manufacturing. In this research, the dosimeter characteristics of those rubbers were studied for application in high-dose dosimetry. The rubber samples were irradiated with doses of 10 Gy up to 10 kGy, using a {sup 60}Co Gamma Cell-220 system (dose rate of 1.089 kGy/h) and their readings were taken on a Fourier Transform Infrared Spectroscopy-FTIR system (model Frontier/Perkin Elmer). The ratios of two absorbance peaks were taken for each kind of rubber spectrum, Polybutadiene (1306/1130 cm{sup -1}) and Styrene-Butadiene (1449/1306 cm{sup -1}). The ratio calculated was used as the responsemore » to the irradiation, and is not uniform across the sample. From the results, it can be concluded for both rubbers: a) the dose-response curves may be useful for high-dose dosimetry (greater than 250 Gy); b) their response for reproducibility presented standard deviations lower than 2.5%; c) the relative sensitivity was higher for Styrene-Butadiene (1.86 kGy{sup -1}) than for Polybutadiene (1.81 kGy{sup -1}), d) for doses of 10 kGy to 200 kGy, there was no variation in the dosimetric response. Both types of rubber samples showed usefulness as high-dose dosimeters. (authors)« less
Rubber-Modified Epoxies: Interfacial Tension and Morphology.
1988-02-02
discussed in detail in previous communications. 71 [,1 The carboxy-terminated butadiene-acrylonitrile copolymers ( CTBNs ) used in these stu- vdies...prepared by a process that yields polymers with lower polydispersity compared to the commercially available CTBNs , were provided by B.F. Goodrich...graphic data, calibrated from polystyrene standards, and are given in Table 2. 9e .4. TABLE 1. Properties of CTBNs and Epoxy Material %Acrylonitrile
Experimental study on behaviors of dielectric elastomer based on acrylonitrile butadiene rubber
NASA Astrophysics Data System (ADS)
An, Kuangjun; Chuc, Nguyen Huu; Kwon, Hyeok Yong; Phuc, Vuong Hong; Koo, Jachoon; Lee, Youngkwan; Nam, Jaedo; Choi, Hyouk Ryeol
2010-04-01
Previously, the dielectric elastomer based on Acrylonitrile Butadiene Rubber (NBR), called synthetic elastomer has been reported by our group. It has the advantages that its characteristics can be modified according to the requirements of performances, and thus, it is applicable to a wide variety of applications. In this paper, we address the effects of additives and vulcanization conditions on the overall performance of synthetic elastomer. In the present work, factors to have effects on the performances are extracted, e.g additives such as dioctyl phthalate (DOP), barium titanium dioxide (BaTiO3) and vulcanization conditions such as dicumyl peroxide (DCP), cross-linking times. Also, it is described how the performances can be optimized by using DOE (Design of Experiments) technique and experimental results are analyzed by ANOVA (Analysis of variance).
Azimi, Parham; Zhao, Dan; Pouzet, Claire; Crain, Neil E; Stephens, Brent
2016-02-02
Previous research has shown that desktop 3D printers can emit large numbers of ultrafine particles (UFPs, particles less than 100 nm) and some hazardous volatile organic compounds (VOCs) during printing, although very few filament and 3D printer combinations have been tested to date. Here we quantify emissions of UFPs and speciated VOCs from five commercially available filament extrusion desktop 3D printers utilizing up to nine different filaments by controlled experiments in a test chamber. Median estimates of time-varying UFP emission rates ranged from ∼10(8) to ∼10(11) min(-1) across all tested combinations, varying primarily by filament material and, to a lesser extent, bed temperature. The individual VOCs emitted in the largest quantities included caprolactam from nylon-based and imitation wood and brick filaments (ranging from ∼2 to ∼180 μg/min), styrene from acrylonitrile butadiene styrene (ABS) and high-impact polystyrene (HIPS) filaments (ranging from ∼10 to ∼110 μg/min), and lactide from polylactic acid (PLA) filaments (ranging from ∼4 to ∼5 μg/min). Results from a screening analysis of potential exposure to these products in a typical small office environment suggest caution should be used when operating many of the printer and filament combinations in poorly ventilated spaces or without the aid of combined gas and particle filtration systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, D.R.; Krishnan, E.R.
1986-06-01
A walk through survey was conducted at the Copolymer Rubber and Chemical Corporation, Baton Rouge, Louisiana. The facility produces 465 million pounds of styrene butadiene rubber (SBR) and 15 million pounds of nitrile butadiene rubber (NBR) annually, requiring 120 million pounds of 1,3-butadiene. Of 470 employees, 143 were directly involved in reaction, recovery, and finishing operations, and were potentially exposed to 1,3-butadiene 8 hours per day.
He, Zhigui; Li, Guiying; Chen, Jiangyao; Huang, Yong; An, Taicheng; Zhang, Chaosheng
2015-04-01
The pollution profiles of volatile organic compounds (VOCs) emitted from different recycling workshops processing different types of plastic solid waste (PSW) and their health risks were investigated. A total of 64 VOCs including alkanes, alkenes, monoaromatics, oxygenated VOCs (OVOCs), chlorinated VOCs (ClVOCs) and acrylonitrile during the melting extrusion procedure were identified and quantified. The highest concentration of total VOCs (TVOC) occurred in the poly(acrylonitrile-butadiene styrene) (ABS) recycling workshop, followed by the polystyrene (PS), polypropylene (PP), polyamide (PA), polyvinyl chloride (PVC), polyethylene (PE) and polycarbonate (PC) workshops. Monoaromatics were found as the major component emitted from the ABS and PS recycling workshops, while alkanes were mainly emitted from the PE and PP recycling processes, and OVOCs from the PVC and PA recycling workshops. According to the occupational exposure limits' (OEL) assessment, the workers suffered acute and chronic health risks in the ABS and PS recycling workshops. Meanwhile, it was found that most VOCs in the indoor microenvironments were originated from the melting extrusion process, while the highest TVOC concentration was observed in the PS rather than in the ABS recycling workshop. Non-cancer hazard indices (HIs) of all individual VOCs were <1.0, whereas the total HI in the PS recycling workshop was 1.9, posing an adverse chronic health threat. Lifetime cancer risk assessment suggested that the residents also suffered from definite cancer risk in the PS, PA, ABS and PVC recycling workshops. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hsieh, Hui-Ching; Chen, Jung-Yao; Lee, Wen-Ya; Bera, Debaditya; Chen, Wen-Chang
2018-03-01
Stretchable light-emitting polymers are important for wearable electronics; however, the development of intrinsic stretchable light-emitting materials with great performance under large applied strain is the most critical challenge. Herein, this study demonstrates the fabrication of stretchable fluorescent poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl-fluorene)]/acrylonitrile butadiene rubber (PFN/NBR) blend nanofibers using the uniaxial electrospinning technique. The physical interaction of PFN with NBR and the geometrical confinement of nanofibers are employed to reduce PFN aggregation, leading to the high photoluminescence quantum yield of 35.7%. Such fiber mat film shows stable blue emission at the 50% strain for 200 stretching/release cycles, which has potential applications in smart textiles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Choi, Woong-Ki; Park, Gil-Young; Kim, Byoung-Shuk; Seo, Min-Kang
2018-09-01
In this study, we investigated the effect of the silane coupling agent on the relationship between the surface free energy of carbon fibers (CFs) and the mechanical strength of CFs/acrylonitrile butadiene rubber (NBR) composites. Moreover, the creep behavior of the CF/NBR composites at surface energetic point of view were studied. The specific component of the surface free energy of the carbon fibers was found to increase upon grafting of the silane coupling agent, resulting in an increase in the tensile strength of the CF/NBR composites. On the other hand, the compressive creep strength was found to follow a slightly different trend. These results indicate the possible formation of a complex interpenetrating polymer network depending on the molecular size of the organic functional groups of the silane coupling agent.
NASA Astrophysics Data System (ADS)
Ahmad, Hazwani Syaza; Ismail, Hanafi; Rashid, Azura A.
2017-07-01
This recent work is to investigate the hardness and swelling behaviour of epoxidized natural rubber/recycled acrylonitrile-butadiene rubber (ENR 50/NBRr) blends. ENR 50/NBRr blends were prepared by two-roll mills with five different loading of NBRr from 5 to 35 phr. Results indicated that the hardness of ENR 50/NBRr blends increased as recycled NBR increased due to the improvement in crosslink density of the blends. Increasing NBRr content gives ENR 50/NBRr blends better resistance towards swelling. Higher degree of crosslinking will increase the swelling resistance and reduce the penetration of toluene into the blends. The presence of polar group in ENR 50 and NBRr give better hardness properties and swelling behaviour of the ENR 50/NBRr blends compared to the NR/NBRr blends.
The use of DMA to characterize the aging of asphalt binders.
DOT National Transportation Integrated Search
2010-06-01
This report presents issues associated with long-term aging of polymer modified asphalt cements (PMACs) as : reflected by dynamic mechanical analysis (DMA) data. In this study a standard SBS (styrene-butadiene-styrene block : copolymer) polymer modif...
Chawla, Raj; Sharma, Sumit
2018-03-18
Styrene-butadiene rubber is a copolymer widely used in making car tires and has excellent abrasion resistance. The Young's modulus and tribology of pure styrene butadiene rubber (SBR) polymer and carbon nanotube reinforced polymer composites have been investigated using molecular dynamics simulations. The mechanism of enhanced tribology properties using carbon nanotube has been studied and discussed. The obtained Young's modulus shows the enhancement in mechanical properties of SBR polymer when carbon nanotubes are used as reinforcement. The concentration, temperature and velocity profiles, radial distribution function, frictional stresses, and cohesive energy density are calculated and analyzed in detail. The Young's modulus of SBR matrix increases about 29.16% in the presence of the 5% CNT. The atom movement velocity and average cohesive energy density in the friction area of pure SBR matrix was found to be more than that of the CNT/SBR composite. Graphical abstract Initial and final conditions of (a) pure SBR matrix and (b) CNT/SBR matrix subjected toshear loading and frictional stresses of top Fe layers of both pure SBR and CNT/SBR composite.
Investigation of the use of recycled polymer-modified asphalt in asphaltic concrete pavements.
DOT National Transportation Integrated Search
2004-06-30
This report presents issues associated with recycling polymer modified asphalt cements (PMACs), particularly blending aged PMAC with new PMAC. A styrene-butadiene-styrene (SBS) PMAC was selected and graded using the Superpave Performance Grading (PG)...
[Wastewater from the condensation and drying section of ABS was pretreated by microelectrolysis].
Lai, Bo; Qin, Hong-Ke; Zhou, Yue-Xi; Song, Yu-Dong; Cheng, Jia-Yun; Sun, Li-Dong
2011-04-01
Wastewater from the condensation and drying section of acrylonitrile-butadiene-styrene (ABS) resin plant was pretreated by the microelectrolysis, and the effect of the influent pH value on the pollution removal efficiency of the microelectrolysis was mainly studied. In order to study the electrochemical action of the microelectrolysis for the degradation of toxic refractory organic pollutants, two control experiments of activated carbon and iron were set up. The results showed that the TOC removal efficiencies were all fluctuated between 40% and 60% under the condition of different influent pH values. The microelectrolysis can decompose and transform the toxic refractory organic pollutants and increase the BOD5/COD ratio from 0.32 to 0.60, which increased the biodegradability of ABS resin wastewater significantly. When the pH value of influent was 4.0, the BOD5/COD ratio of effluent reached 0.71. The result of UV-vis spectra indicates that the removal efficiency of the organic nitrile was the highest with influent pH was 4.0. Therefore, the best influent pH value of microelectrolysis was 4.0.
Kishore, Vidya; Ajinjeru, Christine; Nycz, Andrzej; ...
2017-03-01
The Big Area Additive Manufacturing (BAAM) system can print structures on the order of several meters at high extrusion rates, thereby having the potential to significantly impact automotive, aerospace and energy sectors. The functional use of such parts, however, may be limited by mechanical anisotropy in which the strength of printed parts across successive layers in the build direction (z-direction) is significantly lower than the corresponding in-plane strength (x-y directions). This has been primarily attributed to poor bonding between printed layers as the lower layers cool below the glass transition temperature (Tg) before the next layer is deposited. Therefore, themore » potential of using infrared heating is considered for increasing the surface temperature of the printed layer just prior to deposition of new material to improve the interlayer strength of the components. This study found significant improvements in bond strength for the deposition of acrylonitrile butadiene styrene (ABS) reinforced with 20% chopped carbon fiber when the surface temperature of the substrate material was increased from below Tg to close to or above Tg using infrared heating.« less
Wetting of polymer melts on coated and uncoated steel surfaces
NASA Astrophysics Data System (ADS)
Vera, Julie; Contraires, Elise; Brulez, Anne-Catherine; Larochette, Mathieu; Valette, Stéphane; Benayoun, Stéphane
2017-07-01
A comparative study of the wetting of three different commercial polymer melts on various coated and uncoated steel surfaces is described in this report. The wettability of steel and coatings (three different titanium nitride coatings, TiN, TiNOx, TiNOy, a chromium coating, CrN, and a diamond-like carbon coating, DLC) used for mold in polymer processing is determined at different temperatures between 25 °C and 120 °C. Contact angle measurements of melted polypropylene (PP), Acrylonitrile Butadiene Styrene (ABS) and Polycarbonate (PC) on steel and on the different coatings were performed to investigate the wetting behavior under closer-to-processing conditions. Recommendations for good measurement conditions were proposed. Moreover, the surface free energy of each melt polymer was determined. The works of adhesion between all polymers and all substrates were established. Among all tested polymers, the lowest value of the works of adhesion is calculated for ABS and for PC thereafter, and the highest value is calculated for PP. These results will be particularly important for such applications as determining the extent to which these polymers can contribute to the replication quality in injection molding.
Tribology of Polymer Matrix Composites (PMCs) Fabricated by Additive Manufacturing (AM)
NASA Technical Reports Server (NTRS)
Gupta, S.; Dunnigan, R.; Salem, A.; Kuentz, L.; Halbig, M. C.; Singh, M.
2016-01-01
The integral process of depositing thin layers of material, one after another, until the designed component is created is collectively referred to as Additive Manufacturing (AM). Fused deposition process (FDP) is a type of AM where feedstock is extruded into filaments which then are deposited by 3D printing, and the solidification occurs during cooling of the melt. Currently, complex structures are being fabricated by commercial and open source desktop 3D printers. Recently, metal powder containing composite filaments based on polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) have emerged, which could be utilized for multifunctional applications. For further deployment in the field, especially for aerospace and ground-based applications, it is critical to understand the tribological behavior of 3D printed materials. In this presentation, we will report the tribological behavior of different polymer matrix composites fabricated by fused deposition process. These results will be compared with the base polymer systems. During this study, the tribological behavior of all the samples will be evaluated with tab-on-disc method and compared for different metallic powder reinforcements.
Enhanced protein adsorption and patterning on nanostructured latex-coated paper.
Juvonen, Helka; Määttänen, Anni; Ihalainen, Petri; Viitala, Tapani; Sarfraz, Jawad; Peltonen, Jouko
2014-06-01
Specific interactions of extracellular matrix proteins with cells and their adhesion to the substrate are important for cell growth. A nanopatterned latex-coated paper substrate previously shown to be an excellent substrate for cell adhesion and 2D growth was studied for directed immobilization of proteins. The nanostructured latex surface was formed by short-wavelength IR irradiation of a two-component latex coating consisting of a hydrophilic film-forming styrene butadiene acrylonitrile copolymer and hydrophobic polystyrene particles. The hydrophobic regions of the IR-treated latex coating showed strong adhesion of bovine serum albumin (cell repelling protein), fibronectin (cell adhesive protein) and streptavidin. Opposite to the IR-treated surface, fibronectin and streptavidin had a poor affinity toward the untreated pristine latex coating. Detailed characterization of the physicochemical surface properties of the latex-coated substrates revealed that the observed differences in protein affinity were mainly due to the presence or absence of the protein repelling polar and charged surface groups. The protein adsorption was assisted by hydrophobic (dehydration) interactions. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishore, Vidya; Ajinjeru, Christine; Nycz, Andrzej
The Big Area Additive Manufacturing (BAAM) system can print structures on the order of several meters at high extrusion rates, thereby having the potential to significantly impact automotive, aerospace and energy sectors. The functional use of such parts, however, may be limited by mechanical anisotropy in which the strength of printed parts across successive layers in the build direction (z-direction) is significantly lower than the corresponding in-plane strength (x-y directions). This has been primarily attributed to poor bonding between printed layers as the lower layers cool below the glass transition temperature (Tg) before the next layer is deposited. Therefore, themore » potential of using infrared heating is considered for increasing the surface temperature of the printed layer just prior to deposition of new material to improve the interlayer strength of the components. This study found significant improvements in bond strength for the deposition of acrylonitrile butadiene styrene (ABS) reinforced with 20% chopped carbon fiber when the surface temperature of the substrate material was increased from below Tg to close to or above Tg using infrared heating.« less
Study of the thermal properties of filaments for 3D printing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trhlíková, Lucie, E-mail: xctrhlikova@fch.vutbr.cz; Zmeskal, Oldrich, E-mail: zmeskal@fch.vutbr.cz; Florian, Pavel, E-mail: xcflorianp@fch.vutbr.cz
Various materials are used for 3D printing, most commonly Acrylonitrile butadiene styrene (ABS), Polylactic acid (PLA), Polyethylene (PET) and Polypropylene (PP). These materials differ mainly in their melting point, which significantly influences the properties of the final products. Filaments are melted in the print head during the printing process. The temperature range is from 150 °C to 250 °C depending on the technology used. The optimum temperature for the cooling substrate on which printing is carried out is chosen so as to ensure uniform cooling and deformation. It generally varies between (40 – 100) °C. From the above it ismore » clear that both temperatures can significantly affect the properties of the printed 3D object. It is therefore important to determine the thermal parameters (thermal conductivity, specific heat and thermal diffusivity) of the materials used across the entire range of temperatures. For evaluating the properties of different types of PLA materials, the step transient method was used, which allows determination of all required parameters using a fractal heat transfer model.« less
Lederle, Felix; Kaldun, Christian; Namyslo, Jan C; Hübner, Eike G
2016-04-01
3D-Printing with the well-established 'Fused Deposition Modeling' technology was used to print totally gas-tight reaction vessels, combined with printed cuvettes, inside the inert-gas atmosphere of a glovebox. During pauses of the print, the reaction flasks out of acrylonitrile butadiene styrene were filled with various reactants. After the basic test reactions to proof the oxygen tightness and investigations of the influence of printing within an inert-gas atmosphere, scope and limitations of the method are presented by syntheses of new compounds with highly reactive reagents, such as trimethylaluminium, and reaction monitoring via UV/VIS, IR, and NMR spectroscopy. The applicable temperature range, the choice of solvents, the reaction times, and the analytical methods have been investigated in detail. A set of reaction flasks is presented, which allow routine inert-gas syntheses and combined spectroscopy without modifications of the glovebox, the 3D-printer, or the spectrometers. Overall, this demonstrates the potential of 3D-printed reaction cuvettes to become a complementary standard method in inert-gas chemistry.
NASA Astrophysics Data System (ADS)
Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal
2017-03-01
The resistance of polymeric materials to time-dependent plastic deformation is an important requirement of the fused deposition modeling (FDM) design process, its processed products, and their application for long-term loading, durability, and reliability. The creep performance of the material and part processed by FDM is the fundamental criterion for many applications with strict dimensional stability requirements, including medical implants, electrical and electronic products, and various automotive applications. Herein, the effect of FDM fabrication conditions on the flexural creep stiffness behavior of polycarbonate-acrylonitrile-butadiene-styrene processed parts was investigated. A relatively new class of experimental design called "definitive screening design" was adopted for this investigation. The effects of process variables on flexural creep stiffness behavior were monitored, and the best suited quadratic polynomial model with high coefficient of determination ( R 2) value was developed. This study highlights the value of response surface definitive screening design in optimizing properties for the products and materials, and it demonstrates its role and potential application in material processing and additive manufacturing.
Deposition of Antimicrobial Copper-Rich Coatings on Polymers by Atmospheric Pressure Jet Plasmas
Kredl, Jana; Kolb, Juergen F.; Schnabel, Uta; Polak, Martin; Weltmann, Klaus-Dieter; Fricke, Katja
2016-01-01
Inanimate surfaces serve as a permanent reservoir for infectious microorganisms, which is a growing problem in areas in everyday life. Coating of surfaces with inorganic antimicrobials, such as copper, can contribute to reduce the adherence and growth of microorganisms. The use of a DC operated air plasma jet for the deposition of copper thin films on acrylonitrile butadiene styrene (ABS) substrates is reported. ABS is a widespread material used in consumer applications, including hospitals. The influence of gas flow rate and input current on thin film characteristics and its bactericidal effect have been studied. Results from X-ray photoelectron spectroscopy (XPS) and atomic force microscopy confirmed the presence of thin copper layers on plasma-exposed ABS and the formation of copper particles with a size in the range from 20 to 100 nm, respectively. The bactericidal properties of the copper-coated surfaces were tested against Staphylococcus aureus. A reduction in growth by 93% compared with the attachment of bacteria on untreated samples was observed for coverage of the surface with 7 at. % copper. PMID:28773396
Modeling the pyrolysis study of non-charring polymers under reduced pressure environments
NASA Astrophysics Data System (ADS)
Zong, Ruowen; Kang, Ruxue; Hu, Yanghui; Zhi, Youran
2018-04-01
In order to study the pyrolysis of non-charring polymers under reduced pressure environments, a series of experiments based on black acrylonitrile butadiene styrene (ABS) was conducted in a reduced pressure chamber under different external heat fluxes. The temperatures of the top surface and the bottom of the sample and the mass loss during the whole process were measured in real time. A one-dimensional numerical model was developed to predict the top surface and the bottom surface temperatures of ABS during the pyrolysis at different reduced pressures and external heat fluxes, and the model was validated by the experimental data. The results of the study indicate that the profiles of the top surface and the bottom surface temperatures are different at different pressures and heat fluxes. The temperature and the mass loss rate of the sample under a lower heat flux decreased significantly as the pressure was increased. However, under a higher heat flux, the temperature and the mass loss rate showed little sensitivity to the pressure. The simulated results fitted the experimental results better at the higher heat flux than at the lower heat flux.
Three new renal simulators for use in nuclear medicine
NASA Astrophysics Data System (ADS)
Dullius, Marcos; Fonseca, Mateus; Botelho, Marcelo; Cunha, Clêdison; Souza, Divanízia
2014-03-01
Renal scintigraphy is useful to provide both functional and anatomic information of renal flow of cortical functions and evaluation of pathological collecting system. The objective of this study was develop and evaluate the performance of three renal phantoms: Two anthropomorphic static and another dynamic. The static images of the anthropomorphic phantoms were used for comparison with static renal scintigraphy with 99mTc-DMSA in different concentrations. These static phantoms were manufactured in two ways: one was made of acrylic using as mold a human kidney preserved in formaldehyde and the second was built with ABS (acrylonitrile butadiene styrene) in a 3D printer. The dynamic renal phantom was constructed of acrylic to simulate renal dynamics in scintigraphy with 99mTc-DTPA. These phantoms were scanned with static and dynamic protocols and compared with clinical data. Using these phantoms it is possible to acquire similar renal images as in the clinical scintigraphy. Therefore, these new renal phantoms can be very effective for use in the quality control of renal scintigraphy, and image processing systems.
Composition of plastics from waste electrical and electronic equipment (WEEE) by direct sampling.
Martinho, Graça; Pires, Ana; Saraiva, Luanha; Ribeiro, Rita
2012-06-01
This paper describes a direct analysis study carried out in a recycling unit for waste electrical and electronic equipment (WEEE) in Portugal to characterize the plastic constituents of WEEE. Approximately 3400 items, including cooling appliances, small WEEE, printers, copying equipment, central processing units, cathode ray tube (CRT) monitors and CRT televisions were characterized, with the analysis finding around 6000 kg of plastics with several polymer types. The most common polymers are polystyrene, acrylonitrile-butadiene-styrene, polycarbonate blends, high-impact polystyrene and polypropylene. Additives to darken color are common contaminants in these plastics when used in CRT televisions and small WEEE. These additives can make plastic identification difficult, along with missing polymer identification and flame retardant identification marks. These drawbacks contribute to the inefficiency of manual dismantling of WEEE, which is the typical recycling process in Portugal. The information found here can be used to set a baseline for the plastics recycling industry and provide information for ecodesign in electrical and electronic equipment production. Copyright © 2012 Elsevier Ltd. All rights reserved.
A 3D-Printable Polymer-Metal Soft-Magnetic Functional Composite-Development and Characterization.
Khatri, Bilal; Lappe, Karl; Noetzel, Dorit; Pursche, Kilian; Hanemann, Thomas
2018-01-25
In this work, a 3D printed polymer-metal soft-magnetic composite was developed and characterized for its material, structural, and functional properties. The material comprises acrylonitrile butadiene styrene (ABS) as the polymer matrix, with up to 40 vol. % stainless steel micropowder as the filler. The composites were rheologically analyzed and 3D printed into tensile and flexural test specimens using a commercial desktop 3D printer. Mechanical characterization revealed a linearly decreasing trend of the ultimate tensile strength (UTS) and a sharp decrease in Young's modulus with increasing filler content. Four-point bending analysis showed a decrease of up to 70% in the flexural strength of the composite and up to a two-factor increase in the secant modulus of elasticity. Magnetic hysteresis characterization revealed retentivities of up to 15.6 mT and coercive forces of up to 4.31 kA/m at an applied magnetic field of 485 kA/m. The composite shows promise as a material for the additive manufacturing of passive magnetic sensors and/or actuators.
A 3D-Printable Polymer-Metal Soft-Magnetic Functional Composite—Development and Characterization
Lappe, Karl; Noetzel, Dorit; Pursche, Kilian; Hanemann, Thomas
2018-01-01
In this work, a 3D printed polymer–metal soft-magnetic composite was developed and characterized for its material, structural, and functional properties. The material comprises acrylonitrile butadiene styrene (ABS) as the polymer matrix, with up to 40 vol. % stainless steel micropowder as the filler. The composites were rheologically analyzed and 3D printed into tensile and flexural test specimens using a commercial desktop 3D printer. Mechanical characterization revealed a linearly decreasing trend of the ultimate tensile strength (UTS) and a sharp decrease in Young’s modulus with increasing filler content. Four-point bending analysis showed a decrease of up to 70% in the flexural strength of the composite and up to a two-factor increase in the secant modulus of elasticity. Magnetic hysteresis characterization revealed retentivities of up to 15.6 mT and coercive forces of up to 4.31 kA/m at an applied magnetic field of 485 kA/m. The composite shows promise as a material for the additive manufacturing of passive magnetic sensors and/or actuators. PMID:29370112
Filaments Production and Fused Deposition Modelling of ABS/Carbon Nanotubes Composites.
Dul, Sithiprumnea; Fambri, Luca; Pegoretti, Alessandro
2018-01-18
Composite acrylonitrile-butadiene-styrene (ABS)/carbon nanotubes (CNT) filaments at 1, 2, 4, 6 and 8 wt %, suitable for fused deposition modelling (FDM) were obtained by using a completely solvent-free process based on direct melt compounding and extrusion. The optimal CNT content in the filaments for FDM was found to be 6 wt %; for this composite, a detailed investigation of the thermal, mechanical and electrical properties was performed. Presence of CNT in ABS filaments and 3D-printed parts resulted in a significant enhancement of the tensile modulus and strength, accompanied by a reduction of the elongation at break. As documented by dynamic mechanical thermal analysis, the stiffening effect of CNTs in ABS is particularly pronounced at high temperatures. Besides, the presence of CNT in 3D-printed parts accounts for better creep and thermal dimensional stabilities of 3D-printed parts, accompanied by a reduction of the coefficient of thermal expansion). 3D-printed nanocomposite samples with 6 wt % of CNT exhibited a good electrical conductivity, even if lower than pristine composite filaments.
Metallization of Various Polymers by Cold Spray
NASA Astrophysics Data System (ADS)
Che, Hanqing; Chu, Xin; Vo, Phuong; Yue, Stephen
2018-01-01
Previous results have shown that metallic coatings can be successfully cold sprayed onto polymeric substrates. This paper studies the cold sprayability of various metal powders on different polymeric substrates. Five different substrates were used, including carbon fiber reinforced polymer (CFRP), acrylonitrile butadiene styrene (ABS), polyether ether ketone (PEEK), polyethylenimine (PEI); mild steel was also used as a benchmark substrate. The CFRP used in this work has a thermosetting matrix, and the ABS, PEEK and PEI are all thermoplastic polymers, with different glass transition temperatures as well as a number of distinct mechanical properties. Three metal powders, tin, copper and iron, were cold sprayed with both a low-pressure system and a high-pressure system at various conditions. In general, cold spray on the thermoplastic polymers rendered more positive results than the thermosetting polymers, due to the local thermal softening mechanism in the thermoplastics. Thick copper coatings were successfully deposited on PEEK and PEI. Based on the results, a method is proposed to determine the feasibility and deposition window of cold spraying specific metal powder/polymeric substrate combinations.
Adrados, A; de Marco, I; Caballero, B M; López, A; Laresgoiti, M F; Torres, A
2012-05-01
Pyrolysis may be an alternative for the reclamation of rejected streams of waste from sorting plants where packing and packaging plastic waste is separated and classified. These rejected streams consist of many different materials (e.g., polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), aluminum, tetra-brik, and film) for which an attempt at complete separation is not technically possible or economically viable, and they are typically sent to landfills or incinerators. For this study, a simulated plastic mixture and a real waste sample from a sorting plant were pyrolyzed using a non-stirred semi-batch reactor. Red mud, a byproduct of the aluminum industry, was used as a catalyst. Despite the fact that the samples had a similar volume of material, there were noteworthy differences in the pyrolysis yields. The real waste sample resulted, after pyrolysis, in higher gas and solid yields and consequently produced less liquid. There were also significant differences noted in the compositions of the compared pyrolysis products. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wang, Jianchao; Wang, Hui; Wang, Chongqing; Zhang, Lingling; Wang, Tao; Zheng, Long
2017-11-01
A novel method, calcium hypochlorite (CHC) treatment, was proposed for separation of hazardous poly(vinyl chloride) (PVC) plastic from mixed plastic wastes (MPWs) by froth flotation. Flotation behavior of single plastic indicates that PVC can be separated from poly(ethylene terephthalate) (PET), poly(acrylonitrile-co-butadiene-co-styrene) (ABS), polystyrene (PS), polycarbonate (PC) and poly(methyl methacrylate) (PMMA) by froth flotation combined with CHC treatment. Mechanism of CHC treatment was examined by contact angle measurement, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Under the optimum conditions, separation of PVC from binary plastics with different particle sizes is achieved efficiently. The purity of PC, ABS, PMMA, PS and PET is greater than 96.8%, 98.5%, 98.8%, 97.4% and 96.3%, respectively. Separation of PVC from multi-plastics was further conducted by two-stage flotation. PVC can be separated efficiently from MPWs with residue content of 0.37%. Additionally, reusing CHC solution is practical. This work indicates that separation of hazardous PVC from MPWs is effective by froth flotation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Chong-Qing; Wang, Hui; Liu, You-Nian
2015-01-01
Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkaline pretreatment was investigated for recycling industry. The effect of process variables was estimated by L9 (3(4)) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70°C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile-butadiene-styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics. Copyright © 2014 Elsevier Ltd. All rights reserved.
Aerogel Poly(butylene succinate) Biomaterial Substrate for RF and Microwave Applications.
Habib Ullah, M; Mahadi, W N L; Latef, T A
2015-08-04
Polybutylene succinate (PBS) has become a potential candidate, similar to polypropylene (PP) and acrylonitrile butadiene styrene (ABS), for use as an organic plastic material due to its outstanding mechanical properties as well as high thermal deformation characteristics. A new composition of silica aerogel nanoparticles extracted from rice waste with PBS is proposed for use as a dielectric (εr = 4.5) substrate for microwave applications. A microstrip patch antenna was fabricated on the proposed dielectric substrate for multi-resonant ultra-wideband (UWB) applications. The performance characteristics of the proposed biomaterial-based antenna were investigated in a far-field measurement environment. The results indicate that the proposed biocompatible material-based antenna covered a bandwidth of 9.4 (2.3-11.7) GHz with stop bands from 5.5 GHz to 5.8 GHz and 7.0 GHz to 8.3 GHz. Peak gains of 9.82 dBi, 7.59 dBi, 8.0 dBi and 7.68 dBi were measured at resonant frequencies of 2.7 GHz, 4.6 GHz, 6.3 GHz and 9.5 GHz, respectively.
NASA Astrophysics Data System (ADS)
Remanan, Sanjay; Sharma, Maya; Jayashree, Priyadarshini; Parameswaranpillai, Jyotishkumar; Fabian, Thomas; Shih, Julie; Shankarappa, Prasad; Nuggehalli, Bharath; Bose, Suryasarathi
2017-06-01
This study demonstrates flame retardant materials designed using bi-phasic polymer blends of acrylonitrile butadiene styrene (ABS) and polyvinylidene fluoride (PVDF) containing halloysite nanotubes (HNTs) and Cloisite 30B nanoclay. The prepared blends with and without nanoparticles were extensively characterized. The nanoparticles were added in different weight concentrations to improve the flame retardancy. It was observed that prepared ABS/PVDF blends showed better flame retardancy than ABS based composites. The flame resistance was further improved by the addition of nanoparticles in the blends. The microscale combustion calorimetry (MCC) test showed better flame resistance in ABS/PVDF blends filled with 5 wt% HNTs than other composites. The total heat release of ABS/PVDF blend filled with 5 wt% HNTs decreased by 31% and also the heat of combustion decreased by 26% as compared to neat ABS. When compared with nanoparticles, the addition of PVDF reduced the peak heat release rate (PHRR) and increased the char residue more effectively. A synergistic improvement was observed from both PVDF and HNTs on the flame resistance properties.
Air-soil exchange of organochlorine pesticides in a sealed chamber.
Yang, Bing; Han, Baolu; Xue, Nandong; Zhou, Lingli; Li, Fasheng
2015-01-01
So far little is known about air-soil exchange under any sealed circumstances (e.g., in plastic and glass sheds), which however has huge implications for the soil-air-plant pathways of persistent organic pollutants including organochlorine pesticides (OCPs). A newly designed passive air sampler was tested in a sealed chamber for measuring the vertical concentration profiles of gaseous phase OCPs (hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs)). Air was sampled at 5, 15, and 30 cm above ground level every 10th day during a 60-day period by deploying polyurethane foam cylinders housed in acrylonitrile butadiene styrene-covered cartridges. Concentrations and compositions of OCPs along the vertical sections indicated a clear relationship with proximity to the mixture of HCHs and DDTs which escapes from the soils. In addition, significant positive correlations were found between air temperatures and concentrations of HCHs and DDTs. These results indicated revolatilization and re-deposition being at or close to dynamic pseudo-equilibrium with the overlying air. The sampler used for addressing air-soil exchange of persistent organic pollutants in any sealed conditions is discussed. Copyright © 2014. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Ferro, Carlo Giovanni; Brischetto, Salvatore; Torre, Roberto; Maggiore, Paolo
2016-07-01
The Fused Deposition Modelling (FDM) technology is widely used in rapid prototyping. 3D printers for home desktop applications are usually employed to make non-structural objects. When the mechanical stresses are not excessive, this technology can also be successfully employed to produce structural objects, not only in prototyping stage but also in the realization of series pieces. The innovative idea of the present work is the application of this technology, implemented in a desktop 3D printer, to the realization of components for aeronautical use, especially for unmanned aerial systems. For this purpose, the paper is devoted to the statistical study of the performance of a desktop 3D printer to understand how the process performs and which are the boundary limits of acceptance. Mechanical and geometrical properties of ABS (Acrylonitrile Butadiene Styrene) specimens, such as tensile strength and stiffness, have been evaluated. ASTM638 type specimens have been used. A capability analysis has been applied for both mechanical and dimensional performances. Statistically stable limits have been determined using experimentally collected data.
Li, Guiwei; Zhao, Ji; Wu, Wenzheng; Jiang, Jili; Wang, Bofan; Jiang, Hao
2018-01-01
Fused deposition modeling 3D printing has become the most widely used additive manufacturing technology because of its low manufacturing cost and simple manufacturing process. However, the mechanical properties of the 3D printing parts are not satisfactory. Certain pressure and ultrasonic vibration were applied to 3D printed samples to study the effect on the mechanical properties of 3D printed non-crystalline and semi-crystalline polymers. The tensile strength of the semi-crystalline polymer polylactic acid was increased by 22.83% and the bending strength was increased by 49.05%, which were almost twice the percentage increase in the tensile strength and five times the percentage increase in the bending strength of the non-crystalline polymer acrylonitrile butadiene styrene with ultrasonic strengthening. The dynamic mechanical properties of the non-crystalline and semi-crystalline polymers were both improved after ultrasonic enhancement. Employing ultrasonic energy can significantly improve the mechanical properties of samples without modifying the 3D printed material or adjusting the forming process parameters. PMID:29772802
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharypov, V.I.; Kiselev, V.P.; Beregovtsova, N.G.
2008-07-15
The properties of asphalt binder modifiers prepared by dissolving butadiene-acrylonitrile rubbers and their production waste in liquid products of heat treatment of various brands of coal were studied.
NASA Astrophysics Data System (ADS)
Yasin, Tariq; Ahmed, Shamshad; Ahmed, Munir; Yoshii, Fumio
2005-06-01
An investigation has been undertaken to find out the effect of concentration of different polyfunctional monomers (PFMs) on the physical properties of the acrylonitrile-butadiene rubber (NBR) crosslinked by electron beam (EB). The PFMs used were diethylene glycol dimethacrylate, trimethylol propane trimethacrylate and trimethylol propane triacrylate. The physical properties of EB-irradiated NBR sheets were evaluated by measuring the tensile strength, elongation percent at break, hardness and gel fraction. The results showed a remarkable increase in tensile strength, hardness and gel fraction as the concentration of PFMs was increased from 1 part per hundred (phr) to 5 phr in the NBR samples whereas elongation percent decreased in a steady manner. The improvement in physical properties of radiation crosslinked NBR in the presence of PFMs may be attributed to its increased crosslinking density as observed by the corresponding increase in gel content.
NASA Astrophysics Data System (ADS)
Lotfi, Muhamad Nadhli Amin; Ismail, Hanafi; Othman, Nadras
2017-10-01
Tensile, swelling and morphological properties of bentonite filled acrylonitrile butadiene rubber (NBR/Bt) composites were studied. The experiments were conducted at room temperature by using two rolled mill, universal testing machine (INSTRON), and American Standard Testing Method (ASTM) D471 for compounding, tensile testing, and swelling test, respectively. Results obtained indicated that a better tensile strength, elongation at break and tensile modulus were recorded as compared to the pure NBR particularly up to 90 phr of Bt loading. However, swelling (%) exhibited the opposite trend where the liquid uptake by the composites was indirectly proportional with the increasing of Bt loading. Scanning electron microscopy (SEM) used on the tensile fractured surface of the NBR/Bt composites have shown that the fillers were well embedded in the NBR matrix, for Bt loading up to 90 phr. The agglomeration of fillers occurred for Bt loading exceeding 90 phr.
3D-Printed Millimeter Wave Structures
2016-03-14
demonstrates the resolution of the printer with a 10 micron nozzle. Figure 2: Measured loss tangent of SEBS and SBS samples. 3D - Printed Millimeter... 3D printing of styrene-butadiene-styrene (SBS) and styrene ethylene/butylene-styrene (SEBS) is used to demonstrate the feasibility of 3D - printed ...Additionally, a dielectric lens is printed which improves the antenna gain of an open-ended WR-28 waveguide from 7 to 8.5 dBi. Keywords: 3D printing
Polymer composites prepared from heat-treated starch and styrene-butadiene latex
USDA-ARS?s Scientific Manuscript database
Thermoplastic starch/latex polymer composites were prepared using styrene–butadiene (SB) latex and heat-treated cornstarch. The composites were prepared in a compression mold at 130 °C, with starch content 20%. An amylose-free cornstarch, waxy maize, was used for this research and the heat treatment...
Field test method to determine presence and quantity of modifiers in liquid asphalt : [summary].
DOT National Transportation Integrated Search
2015-05-01
Approximately five million tons of asphalt mix are produced each year for the Florida : Department of Transportation (FDOT), of which 60% is modified with styrene butadiene : styrene (SBS) polymer and/or ground tire rubber (GTR). Asphalt binders are ...
NASA Astrophysics Data System (ADS)
Lucía Johanning-Solís, Ana; Stradi-Granados, Benito A.
2014-09-01
This study compares two ethylene-tetrafluoroethylene (ETFE) surface activation treatments, namely chemical attack with a solution of sodium naphthenate and plasma erosion via air-ionization corona discharge in order to improve the adhesive properties of the ETFE. An experimental design was prepared for both treatments in order to assess the effect of the treatment characteristics on the tensile load needed to break the bond between the ETFE and the acrylonitrile-butadiene-styrene polymer (ABS) formed with a cyanoacrylate adhesive (CAA) applied between them. The reason for the selection of this problem is that both polymers are frequently used in the biomedical industry for their properties, and they need to be joined firmly in biomedical devices, and the cyanoacrylate adhesive is the adhesive traditionally used for fluoropolymers, in this case the ETFE, and the same CAA has also shown good adhesion with ABS. However, the strength of the bond for the triplet ETFE-CAA-ABS has not been reported and the improvement of the strength of the bond with surface treatments is not found in scholarly journals for modern medical devices such as stents and snares. Both treatments were compared based on the aforementioned design of experiments. The case where ETFE receives no surface treatment serves as the reference. The results indicated that the three factors evaluated (initial drying of the material, temperature of the chemical bath, and immersion time), and their interactions have no significant effect over the tensile load at failure (tensile strength) of the adhesive bond being evaluated. For the air-ionization corona discharge treatment, two factors were evaluated: discharge exposition time and air pressure. The results obtained from this experimental design indicate that there is no significant difference between the levels of the factors evaluated. These results were unexpected as the ranges used were representative of the maximum ranges permissible in manufacturing operations. As for the comparison of the treatments, it was determined that the treatments have statistically significant differences. It was also determined that there is a significant statistical difference between the processes where a surface treatment is performed and the process where no surface treatment is applied to the ETFE. The chemical treatment results in a higher tensile load at failure (tensile strength) of 276.6 N on average, the air ionization treatment has an average of 248.4 N, and the process with no treatment has the lower ultimate tensile strength average of 53 N. This comparison has demonstrated that the best treatment is the chemical treatment with sodium naphthenate under the conditions tested.
Evaluation of hybrid binder for use in surface mixtures in Florida : final report, June 2009.
DOT National Transportation Integrated Search
2009-06-01
Binder and mixture tests were performed to evaluate the relative performance of a PG 67-22 base binder and six other commercially available binders produced by modifying the same base binder with the following modifiers: one Styrene Butadiene Styrene...
Field test method to determine presence and quantity of modifiers in liquid asphalt.
DOT National Transportation Integrated Search
2015-05-01
Asphalt modified with styrene butadiene styrene (SBS) polymer and/or ground tire rubber (GTR) is widely used in the U.S. : to enhance its performance. However, there are very few field tests developed to verify the content of modifier(s) in asphalt :...
Göldel, Andreas; Kasaliwal, Gaurav; Pötschke, Petra
2009-03-19
Multiwalled carbon nanotubes (MWNTs) have been introduced into blends of polycarbonate (PC) and poly(styrene-acrylonitrile) (SAN) by melt mixing in a microcompounder. Co-continuous blends are prepared by either pre-compounding low amounts of nanotubes into PC or SAN or by mixing all three components together. Interestingly, in all blends, regardless of the way of introducing the nanotubes, the MWNTs were exclusively located within the PC phase, which resulted in much lower electrical resistivities as compared to PC or SAN composites with the same MWNT content. The migration of MWNTs from the SAN phase into the PC phase during common mixing is explained by interfacial effects. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ningaraju, S.; Hegde, Vinayakaprasanna N.; Prakash, A. P. Gnana; Ravikumar, H. B.
2018-04-01
Polymer nanocomposites of Poly (styrene co-acrylonitrile)/Nickel Oxide (PSAN/NiO) have been prepared. The increased free volume sizes up to 0.4 wt% of NiO loading indicates overall reduction in packing density of polymer network. The decreased o-Ps lifetime (τ3) at higher concentration of NiO indicates improved interfacial interaction between the surface of NiO nanoparticles and side chain of PSAN polymer matrix. The increased AC/DC conductivity at lower wt% of NiO loading demonstrates increased number of electric charge carriers/mobile ions and their mobility. The increased dielectric constant and dielectric loss up to 0.4 wt% of NiO loading suggests the increased dipoles polarization.
NASA Astrophysics Data System (ADS)
Anilkumar, T.; Naik, Adarsh Ajith; Ramesan, M. T.
2017-06-01
Here we report the preparation of nitromercurated styrene butadiene rubber (NMSBR)/silver doped zinc oxide nanocomposite by inexpensive and ecofriendly two roll mill mixing. The composites were characterized by UV, FTIR, XRD, SEM, TGA and conductivity measurements. UV and FTIR spectrum indicated the interfacial interaction between the polymer and nanoparticles.XRD and SEM images showed the uniform arrangement of nanoparticles within the macromolecular chain. TGA study indicated the better thermal resistance of the composite. The dielectric properties and AC conductivity ofnanocomposites were much greater than nitromercurated SBR and they may be used as multifunctional materials for nanoelectronic devices.
DOT National Transportation Integrated Search
2015-09-01
Asphalt modified with styrene butadiene styrene (SBS) polymer and/or ground tire rubber : (GTR) is widely used in the U.S. to improve asphalt concrete performance. The high cost and : proven performance benefits of modified binders make it important ...
Phosphonic acid based exchange resins
Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato
1995-01-01
An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.
Intake of toxic and carcinogenic volatile organic compounds from secondhand smoke in motor vehicles
St.Helen, Gideon; Jacob, Peyton; Peng, Margaret; Dempsey, Delia A.; Hammond, S. Katharine; Benowitz, Neal L.
2014-01-01
Background Volatile organic compounds (VOCs) from tobacco smoke are associated with cancer, cardiovascular, and respiratory diseases. The objective of this study was to characterize the exposure of nonsmokers to VOCs from secondhand smoke (SHS) in vehicles using mercapturic acid metabolites. Methods Fourteen nonsmokers were individually exposed in the backseat to one hour of SHS from a smoker seating in the driver’s seat who smoked 3 cigarettes at 20 minute intervals in a stationary car with windows opened by 10 cm. Baseline and 0-8 h post-exposure mercapturic acid metabolites of 9 VOCs were measured in urine. Air-to-urine VOC ratios were estimated based on respirable particulates (PM2.5) or air nicotine concentration, and lifetime excess risk (LER) of cancer death from exposure to acrylonitrile, benzene, and 1,3-butadiene was estimated for adults. Results The greatest increase in 0-8 h post-exposure concentrations of mercapturic acids from baseline was MHBMA-3 (parent, 1,3-butadiene) (2.1-fold), then CNEMA (acrylonitrile) (1.7-fold), PMA (benzene) (1.6-fold), MMA (methylating agents) (1.6-fold), and HEMA (ethylene oxide) (1.3-fold). The LER of cancer death from exposure to acrylonitrile, benzene, and 1,3-butadiene in SHS for 5 hour a week ranged from 15.5×10−6 to 28.1×10−6 for adults, using air nicotine and PM2.5 to predict air VOC exposure, respectively. Conclusion Nonsmokers have significant intake of multiple VOCs from breathing SHS in cars, corresponding to health risks that exceed the acceptable level. Impact Smoking in cars may be associated with increased risks of cancer, respiratory, and cardiovascular diseases among nonsmokers. PMID:25398951
Phosphonic acid based ion exchange resins
Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato
1994-01-01
An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.
Phosphonic acid based ion exchange resins
Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato
1996-01-01
An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.
Cui, Peiqiang; Wu, Shaopeng; Li, Fuzhou; Xiao, Yue; Zhang, Honghua
2014-08-26
Bituminous materials are playing a vital role in pavement design and the roofing industry because of outstanding properties. Unfortunately, bituminous materials will release volatile organic compounds (VOC), making them non-environmentally friendly. Therefore, technologies that can be used to decrease the VOC emission are urgently required. In this research, the VOC emission and material behaviors were analyzed and compared to investigate the possibility of adding styrene butadiene styrene (SBS) and active carbon filler into bituminous materials to develop environmentally-friendly materials. Thermal gravimetric analysis-mass spectrometry (TG-MS) and ultraviolet-visible spectroscopy testing (UV-Vis) were employed to characterize the VOC emission process. Temperature sweep testing and frequency sweep testing were conducted to evaluate the rheological properties of bituminous materials. Research results indicated that the combined introduction of 4 wt% styrene butadiene styrene (SBS) and 4 wt% active carbon filler cannot only significantly lower the VOC emission speed and amount, but also improve the deformation resistance behavior at a higher temperature. SBS and active carbon filler can be used to reduce the VOC emission form bituminous materials.
Cui, Peiqiang; Wu, Shaopeng; Li, Fuzhou; Xiao, Yue; Zhang, Honghua
2014-01-01
Bituminous materials are playing a vital role in pavement design and the roofing industry because of outstanding properties. Unfortunately, bituminous materials will release volatile organic compounds (VOC), making them non-environmentally friendly. Therefore, technologies that can be used to decrease the VOC emission are urgently required. In this research, the VOC emission and material behaviors were analyzed and compared to investigate the possibility of adding styrene butadiene styrene (SBS) and active carbon filler into bituminous materials to develop environmentally-friendly materials. Thermal gravimetric analysis-mass spectrometry (TG-MS) and ultraviolet-visible spectroscopy testing (UV-Vis) were employed to characterize the VOC emission process. Temperature sweep testing and frequency sweep testing were conducted to evaluate the rheological properties of bituminous materials. Research results indicated that the combined introduction of 4 wt% styrene butadiene styrene (SBS) and 4 wt% active carbon filler cannot only significantly lower the VOC emission speed and amount, but also improve the deformation resistance behavior at a higher temperature. SBS and active carbon filler can be used to reduce the VOC emission form bituminous materials. PMID:28788181
Ahmed, Khalil
2015-11-01
Blends of acrylonitrile butadiene rubber/high density polyethylene (NBR/HDPE) compatibilized by Chloroprene rubber (CR) were prepared. A fixed quantity of industrial waste such as marble waste (MW, 40 phr) was also included. The effect of the blend ratio and CR on cure characteristics, mechanical and swelling properties of MW-filled NBR/HDPE blends was investigated. The results showed that the MW-filled NBR/HDPE blends revealed an increase in tensile strength, tear, modulus, hardness and cross-link density for increasing weight ratio of HDPE. The minimum torque (M L) and maximum torque (M H) of blends increased with increasing weight ratio of HDPE while scorch time (ts2) cure time (tc90), compression set and abrasion loss of blends decreased with increasing weight ratio of HDPE. The blends also showed a continuous reduction in elongation at break as well as swelling coefficient with increasing HDPE amount in blends. MW filled blends based on CR provided the most encouraging balance values of overall properties.
Development of Polythiophene/Acrylonitrile-Butadiene Rubbers for Artificial Muscle
NASA Astrophysics Data System (ADS)
Thipdech, Pacharavalee; Sirivat, Anuvat
2007-03-01
Electroactive polymers (EAPs) can respond to the applied electrical field by an extension or a retraction. In this work, we are interested in using an elastomeric blend for electroactive applications, acrylonitirle-butadiene rubber (NBR) containing a conductive polymer (Poly(3-thiopheneacetic acid, PTAA); the latter can be synthesized via oxidative polymerization. FT-IR, Thermogravimetric analysis (TGA), ^1H-NMR, UV-visible spectroscopy, and SEM are used to characterize the conductive polymer. Electrorheological properties are measured and investigated in terms of acrylonitrile content, blending ratio, doping level, and temperature. Experiments are carried out under oscillatory shear mode and with applied electric field strength varying from 0 to 2 kV/mm. Dielectric properties, conductivities are measured and correlated with the storage modulus responses. The storage modulus sensitivity, δG'G'0of the pure rubbers increases with increasing electric field strength. They attain the maximum values of about 30% and become constant at electric strength at and above 1000 V/mm.
Recycling of Chrome Tanned Leather Dust in Acrylonitrile Butadiene Rubber
NASA Astrophysics Data System (ADS)
El-Sabbagh, Salwa H.; Mohamed, Ola A.
2010-06-01
Concerns on environmental waste problem caused by chrome tanned leather wastes in huge amount have caused an increasing interest in developing this wastes in many composite formation. This leather dust was used as filler in acrylonitrile butadiene rubber (NBR) before treatment and after treatment with ammonia solution and sod. formate. Different formulations of NBR/ leather dust (untreated-treated with ammonia solution—treated with sod. formate) composites are prepared. The formed composite exhibit a considerable improvement in some of their properties such as rheometric characteristics especially with composites loaded with treated leather dust. Tensile strength, modulus at 100% elongation, hardness and youngs modulus were improved then by further loading start to be steady or decrease. Cross linking density in toluene were increased by incorporation of leather dust treated or untreated resulting in decreases in equilibrium swelling. Distinct increase in the ageing coefficient of both treated and untreated leather with drop in NBR vulcanizates without leather dust. Addition of leather dust treated or untreated exhibit better thermal stability.
Ahmed, Khalil
2014-01-01
Blends of acrylonitrile butadiene rubber/high density polyethylene (NBR/HDPE) compatibilized by Chloroprene rubber (CR) were prepared. A fixed quantity of industrial waste such as marble waste (MW, 40 phr) was also included. The effect of the blend ratio and CR on cure characteristics, mechanical and swelling properties of MW-filled NBR/HDPE blends was investigated. The results showed that the MW-filled NBR/HDPE blends revealed an increase in tensile strength, tear, modulus, hardness and cross-link density for increasing weight ratio of HDPE. The minimum torque (ML) and maximum torque (MH) of blends increased with increasing weight ratio of HDPE while scorch time (ts2) cure time (tc90), compression set and abrasion loss of blends decreased with increasing weight ratio of HDPE. The blends also showed a continuous reduction in elongation at break as well as swelling coefficient with increasing HDPE amount in blends. MW filled blends based on CR provided the most encouraging balance values of overall properties. PMID:26644917
USDA-ARS?s Scientific Manuscript database
Heat-treated starch is a renewable material that can be used to modify the surface chemistry of small particles. In this work, heat-treated starch was used to coat hydrophilic biochar particles in order to make them more hydrophobic. Then when added as filler to hydrophobic styrene-butadiene rubber,...
Phosphonic acid based exchange resins
Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.
1995-09-12
An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.
MR-guided focused ultrasound robot for performing experiments on large animals
NASA Astrophysics Data System (ADS)
Mylonas, N.; Damianou, C.
2011-09-01
Introduction: In this paper an experimental MRI-guided focused ultrasound robot for large animals is presented. Materials and methods: A single element spherically focused transducer of 4 cm diameter, focusing at 10 cm and operating at 1 MHz was used. A positioning device was developed in order to scan the ultrasound transducer for performing MR-guided focused ultrasound experiments in large animals such as pig, sheep and dog. The positioning device incorporates only MRI compatible materials such as piezoelectric motors, Acrylonitrile Butadiene Styrene (ABS) plastic, brass screws, and brass pulleys. The system is manufactured automatically using a rapid prototyping system. Results: The system was tested successfully in a number of animals for various tasks (creation of single lesions, creation of overlapping lesions, and MR compatibility). Conclusions: A simple, cost effective, portable positioning device has been developed which can be used in virtually any clinical MRI scanner since it can be sited on the scanner's table. The propagation of HIFU can be via a lateral or superior-inferior approach. This system has the potential to be marketed as a cost effective solution for performing experiments in small and large animals.
Ohata, Masaki; Kidokoro, Toshihiro; Hioki, Akiharu
2012-01-01
The stability of Hg in an acrylonitrile-butadiene-styrene disk certified reference material (ABS disk CRM, NMIJ CRM 8116-a) during measurements by wavelength dispersion X-ray fluorescence (WD-XRF) analysis was evaluated in this study. The XRF intensities of Hg (L(α)) and Pb (L(α)) as well as the XRF intensity ratios of Hg (L(α))/Pb (L(α)) observed under different X-ray tube current conditions as well as their irradiation time were examined to evaluate the stability of Hg in the ABS disk CRM. The observed XRF intensities and the XRF intensity ratios for up to 32 h of measurements under 80 mA of X-ray tube current condition were constant, even though the surface of the ABS disk CRM was charred by the X-ray irradiation with high current for a long time. Moreover, the measurements on Hg and Pb in the charred disks by an energy dispersive XRF (ED-XRF) spectrometer showed constant XRF intensity ratios of Hg (L(α))/Pb (L(α)). From these results, Hg in the ABS disk CRM was evaluated to be sufficiently stable for XRF analysis.
Aerogel Poly(butylene succinate) Biomaterial Substrate for RF and Microwave Applications
Habib Ullah, M.; Mahadi, W. N. L.; Latef, T. A.
2015-01-01
Polybutylene succinate (PBS) has become a potential candidate, similar to polypropylene (PP) and acrylonitrile butadiene styrene (ABS), for use as an organic plastic material due to its outstanding mechanical properties as well as high thermal deformation characteristics. A new composition of silica aerogel nanoparticles extracted from rice waste with PBS is proposed for use as a dielectric (εr = 4.5) substrate for microwave applications. A microstrip patch antenna was fabricated on the proposed dielectric substrate for multi-resonant ultra-wideband (UWB) applications. The performance characteristics of the proposed biomaterial-based antenna were investigated in a far-field measurement environment. The results indicate that the proposed biocompatible material-based antenna covered a bandwidth of 9.4 (2.3–11.7) GHz with stop bands from 5.5 GHz to 5.8 GHz and 7.0 GHz to 8.3 GHz. Peak gains of 9.82 dBi, 7.59 dBi, 8.0 dBi and 7.68 dBi were measured at resonant frequencies of 2.7 GHz, 4.6 GHz, 6.3 GHz and 9.5 GHz, respectively. PMID:26238975
Additive Manufacturing of Catalyst Substrates for Steam-Methane Reforming
NASA Astrophysics Data System (ADS)
Kramer, Michelle; McKelvie, Millie; Watson, Matthew
2018-01-01
Steam-methane reforming is a highly endothermic reaction, which is carried out at temperatures up to 1100 °C and pressures up to 3000 kPa, typically with a Ni-based catalyst distributed over a substrate of discrete alumina pellets or beads. Standard pellet geometries (spheres, hollow cylinders) limit the degree of mass transfer between gaseous reactants and catalyst. Further, heat is supplied to the exterior of the reactor wall, and heat transfer is limited due to the nature of point contacts between the reactor wall and the substrate pellets. This limits the degree to which the process can be intensified, as well as limiting the diameter of the reactor wall. Additive manufacturing now gives us the capability to design structures with tailored heat and mass transfer properties, not only within the packed bed of the reactor, but also at the interface between the reactor wall and the packed bed. In this work, the use of additive manufacturing to produce monolithic-structured catalyst substrate models, made from acrylonitrile-butadiene-styrene, with enhanced conductive heat transfer is described. By integrating the reactor wall into the catalyst substrate structure, the effective thermal conductivity increased by 34% from 0.122 to 0.164 W/(m K).
Carbon Nanotube Chopped Fiber for Enhanced Properties in Additive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menchhofer, Paul A.; Johnson, Joseph E.; Lindahl, John M.
2016-06-06
Nanocomp Technologies, Inc. is working with Oak Ridge National Laboratory to develop carbon nanotube (CNT) composite materials and evaluate their use in additive manufacturing (3D printing). The first phase demonstrated feasibility and improvements for carbon nanotube (CNT)- acrylonitrile butadiene styrene (ABS) composite filaments use in additive manufacturing, with potential future work centering on further improvements. By focusing the initial phase on standard processing methods (developed mainly for the incorporation of carbon fibers in ABS) and characterization techniques, a basis of knowledge for the incorporation of CNTs in ABS was learned. The ability to understand the various processing variables is criticalmore » to the successful development of these composites. From the degradation effects on ABS (caused by excessive temperatures), to the length of time the ABS is in the melt state, to the order of addition of constituents, and also to the many possible mixing approaches, a workable flow sequence that addresses each processing step is critical to the final material properties. Although this initial phase could not deal with each of these variables in-depth, a future study is recommended that will build on the lessons learned for this effort.« less
Ultrathin lightweight plate-type acoustic metamaterials with positive lumped coupling resonant
NASA Astrophysics Data System (ADS)
Ma, Fuyin; Huang, Meng; Wu, Jiu Hui
2017-01-01
The experimental realization and theoretical understanding of a two-dimensional multiple cells lumped ultrathin lightweight plate-type acoustic metamaterials structures have been presented, wherein broadband excellent sound attenuation ability at low frequencies is realized by employing a lumped element coupling resonant effect. The basic unit cell of the metamaterials consists of an ultrathin stiff nylon plate clamped by two elastic ethylene-vinyl acetate copolymer or acrylonitrile butadiene styrene frames. The strong sound attenuation (up to nearly 99%) at low frequencies is experimentally revealed by the precisely designed metamaterials, for which the physical mechanism of the sound attenuation could be explicitly understood using the finite element simulations. As to the designed samples, the lumped effect from the frame compliance leads to a coupling flexural resonance at designable low frequencies. As a result, the whole composite structure become strongly anti-resonant with the incident sound waves, followed by a higher sound attenuation, i.e., the lumped resonant effect has been effectively reversed to be positive from negative for sound attenuation, and the acoustic metamaterial design could be extended to the lumped element containing multiple cells, rather than confined to a single cell.
Throttleable GOX/ABS launch assist hybrid rocket motor for small scale air launch platform
NASA Astrophysics Data System (ADS)
Spurrier, Zachary S.
Aircraft-based space-launch platforms allow operational flexibility and offer the potential for significant propellant savings for small-to-medium orbital payloads. The NASA Armstrong Flight Research Center's Towed Glider Air-Launch System (TGALS) is a small-scale flight research project investigating the feasibility for a remotely-piloted, towed, glider system to act as a versatile air launch platform for nano-scale satellites. Removing the crew from the launch vehicle means that the system does not have to be human rated, and offers a potential for considerable cost savings. Utah State University is developing a small throttled launch-assist system for the TGALS platform. This "stage zero" design allows the TGALS platform to achieve the required flight path angle for the launch point, a condition that the TGALS cannot achieve without external propulsion. Throttling is required in order to achieve and sustain the proper launch attitude without structurally overloading the airframe. The hybrid rocket system employs gaseous-oxygen and acrylonitrile butadiene styrene (ABS) as propellants. This thesis summarizes the development and testing campaign, and presents results from the clean-sheet design through ground-based static fire testing. Development of the closed-loop throttle control system is presented.
Separation of mixed waste plastics via magnetic levitation.
Zhao, Peng; Xie, Jun; Gu, Fu; Sharmin, Nusrat; Hall, Philip; Fu, Jianzhong
2018-06-01
Separation becomes a bottleneck of dealing with the enormous stream of waste plastics, as most of the extant methods can only handle binary mixtures. In this paper, a novel method that based on magnetic levitation was proposed for separating multiple mixed plastics. Six types of plastics, i.e., polypropylene (PP), acrylonitrile butadiene styrene (ABS), polyamide 6 (PA6), polycarbonate (PC), polyethylene terephthalate (PET), and polytetrafluoroethylene (PTFE), were used to simulate the mixed waste plastics. The samples were mixed and immersed into paramagnetic medium that placed into a magnetic levitation configuration with two identical NdFeB magnets with like-poles facing each other, and Fourier transform infrared (FTIR) spectroscopy was employed to verify the separation outputs. Unlike any conventional separation methods such as froth flotation and hydrocyclone, this method is not limited by particle sizes, as mixtures of different size fractions reached their respective equilibrium positions in the initial tests. The two-stage separation tests demonstrated that the plastics can be completely separated with purities reached 100%. The method has the potential to be industrialised into an economically-viable and environmentally-friendly mass production procedure, since quantitative correlations are determined, and the paramagnetic medium can be reused indefinitely. Copyright © 2018 Elsevier Ltd. All rights reserved.
Aw, Yah Yun; Yeoh, Cheow Keat; Idris, Muhammad Asri; Teh, Pei Leng; Hamzah, Khairul Amali; Sazali, Shulizawati Aqzna
2018-03-22
Fused deposition modelling (FDM) has been widely used in medical appliances, automobile, aircraft and aerospace, household appliances, toys, and many other fields. The ease of processing, low cost and high flexibility of FDM technique are strong advantages compared to other techniques for thermoelectric polymer composite fabrication. This research work focuses on the effect of two crucial printing parameters (infill density and printing pattern) on the tensile, dynamic mechanical, and thermoelectric properties of conductive acrylonitrile butadiene styrene/zinc oxide (CABS/ZnO composites fabricated by FDM technique. Results revealed significant improvement in tensile strength and Young's modulus, with a decrease in elongation at break with infill density. Improvement in dynamic storage modulus was observed when infill density changed from 50% to 100%. However, the loss modulus and damping factor reduced gradually. The increase of thermal conductivity was relatively smaller compared to the improvement of electrical conductivity and Seebeck coefficient, therefore, the calculated figure of merit (ZT) value increased with infill density. Line pattern performed better than rectilinear, especially in tensile properties and electrical conductivity. From the results obtained, FDM-fabricated CABS/ZnO showed much potential as a promising candidate for thermoelectric application .
Thanh Truc, Nguyen Thi; Lee, Byeong-Kyu
2016-10-04
This study reports simple, selective, and sustainable separation of chlorinated plastic (polyvinyl chloride, PVC) and acrylonitrile butadiene styrene (ABS) containing brominated flame retardants (BFRs) from mixed waste electrical and electronic equipment (WEEE) plastics using microwave and/or mild-heat treatment. Microwave treatment after plastic coating with powdered activated carbon (PAC) selectively increased the hydrophilicity of the PVC surface, which facilitated PVC separation (100% recovery and purity) from the WEEE plastic mixture under the optimum flotation conditions. A further mild-heat treatment for 100 s facilitated selective separation with the highest recovery and purity (100%) of PAC-coated ABS containing BFRs from the remaining plastic mixture due to selective formation of a twisted structure with a lower density than water and the untreated ABS. Mild-heat treatment only of PAC-coated WEEE plastic mixture resulted in successful recovery of (100%) the ABS and PVC. However, the recovered PVC had slightly reduced purity (96.8%) as compared to that obtained using the combined heat and microwave treatments. The combination of both treatments with flotation facilitated selective and sustainable separation of PVC and ABS from WEEE plastics to improve their recycling quality.
Raman Spectroscopy of 3-D Printed Polymers
NASA Astrophysics Data System (ADS)
Espinoza, Vanessa; Wood, Erin; Hight Walker, Angela; Seppala, Jonathan; Kotula, Anthony
Additive manufacturing (AM) techniques, such as 3-D printing are becoming an innovative and efficient way to produce highly customized parts for applications ranging from automotive to biomedical. Polymer-based AM parts can be produced from a myriad of materials and processing conditions to enable application-specific products. However, bringing 3-D printing from prototype to production relies on understanding the effect of processing conditions on the final product. Raman spectroscopy is a powerful and non-destructive characterization technique that can assist in determining the chemical homogeneity and physical alignment of polymer chains in 3-D printed materials. Two polymers commonly used in 3-D printing, acrylonitrile butadiene styrene (ABS) and polycarbonate (PC), were investigated using 1- and 2-D hyperspectral Raman imaging. In the case of ABS, a complex thermoplastic, the homogeneity of the material through the weld zone was investigated by comparing Raman peaks from each of the three components. In order to investigate the effect of processing conditions on polymer chain alignment, polarized Raman spectroscopy was used. In particular, the print speed or shear rate and effect of strain on PC filaments was investigated with perpendicular and parallel polarizations. National Institute of Standards and Technology Gaithersburg, MD ; Society of Physics Students.
Phosphonic acid based ion exchange resins
Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.
1996-07-23
An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.
Phosphonic acid based ion exchange resins
Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.
1994-01-25
An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.
NASA Astrophysics Data System (ADS)
Sreejith, M. P.; Balan, Aparna K.; Shaniba, V.; Jinitha, T. V.; Subair, N.; Purushothaman, E.
2017-06-01
Biodegradation behavior of styrene butadiene rubber composites reinforced with natural filler, coconut shell powder (CSP), with different filler loadings were carried out under soil burial conditions for three to six months. The extent of biodegradation of the composites was evaluated through weight loss, tensile strength and hardness measurements. It was observed that the permanence of the composites was remarkably dependent on filler modification, size of the filler particle and filler content. Composites containing silane modified filler were found to be more resistant to attack by the microbes present in the soil. Mechanical properties such as tensile strength, Young's modulus and hardness were decreased after soil burial testing due to the microbial attack onto the samples.
Stefaniak, Aleksandr B.; LeBouf, Ryan F.; Yi, Jinghai; Ham, Jason; Nurkewicz, Timothy; Schwegler-Berry, Diane E.; Chen, Bean T.; Wells, J. Raymond; Duling, Matthew G.; Lawrence, Robert B.; Martin, Stephen B.; Johnson, Alyson R.; Virji, M. Abbas
2018-01-01
Printing devices are known to emit chemicals into the indoor atmosphere. Understanding factors that influence release of chemical contaminants from printers is necessary to develop effective exposure assessment and control strategies. In this study, a desktop fused deposition modeling (FDM) 3-dimensional (3-D) printer using acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA) filaments and two monochrome laser printers were evaluated in a 0.5 m3 chamber. During printing, chamber air was monitored for vapors using a real-time photoionization detector (results expressed as isobutylene equivalents) to measure total volatile organic compound (TVOC) concentrations, evacuated canisters to identify specific VOCs by off-line gas chromatography-mass spectrometry (GC-MS) analysis, and liquid bubblers to identify carbonyl compounds by GC-MS. Airborne particles were collected on filters for off-line analysis using scanning electron microscopy with an energy dispersive x-ray detector to identify elemental constituents. For 3-D printing, TVOC emission rates were influenced by a printer malfunction, filament type, and to a lesser extent, by filament color; however, rates were not influenced by the number of printer nozzles used or the manufacturer’s provided cover. TVOC emission rates were significantly lower for the 3-D printer (49–3552 μg h−1) compared to the laser printers (5782–7735 μg h−1). A total of 14 VOCs were identified during 3-D printing that were not present during laser printing. 3-D printed objects continued to off-gas styrene, indicating potential for continued exposure after the print job is completed. Carbonyl reaction products were likely formed from emissions of the 3-D printer, including 4-oxopentanal. Ultrafine particles generated by the 3-D printer using ABS and a laser printer contained chromium. Consideration of the factors that influenced the release of chemical contaminants (including known and suspected asthmagens such as styrene and 4-oxopentanal) from a FDM 3-D printer should be made when designing exposure assessment and control strategies. PMID:28440728
Comparison of Extruder Systems for 3D Printer Filament Fabrication
NASA Astrophysics Data System (ADS)
Ramirez, Adriana
Additive Manufacturing (AM) has grown in popularity over the past thirty years, due to its versatility, short design to product cycle, and capability to fabricate complex geometries, which cannot otherwise be produced. There exist several platforms that are able to print objects composed of different materials, making this technology significant in different fields such as: automotive, aerospace, medical, electronics, amongst others. Though several types of AM technologies are available, the expiration of the patents on fused deposition modeling (FDM) in 2009 has led to a widespread use of this platform in academia and home use settings. Widespread use of FDM-type AM platforms has led to a demand to fabricate feedstock materials for this AM platform. Particularly, in the home do it yourself (DIY) community there has been a widespread interest for users to manufacture their own feedstock filament leading to a large growth in home-use extrusion systems. The low cost of these desktop-grade systems has also made them attractive to academics, but there has not been a widespread effort into determining the efficacy of these small scale extrusion systems as compared to industrial quality extruders which are typically used to manufacture feedstock for FDM platforms. The aim of this study was to compare two extrusion processes: 1) a desktop grade single-screw extruder; and 2) an industrial scale twin-screw extruder. In order to understand differences between their performance and quality of mixing, a rubberized blend of acrylonitrile butadiene styrene (ABS) mixed with styrene ethylene butylene styrene with a maleic anhydride graft (SEBS-g-MA) at different ratios was compounded on each extrusion system. Melt flow index, and mechanical properties were compared. In addition, a raster pattern sensitivity study was performed to evaluate the effect of the extruder system on 3D printed objects. Finally, scanning electron microscopy (SEM) was used to examine the fracture surfaces of spent tensile specimens.
Werley, Michael S; Lee, K Monika; Lemus-Olalde, Ranulfo
2009-12-01
Modern cigarette manufacturing is highly automated and produces millions of cigarettes per day. The potential for small inclusions of non-cigarette materials such as wood, cardboard packaging, plastic, and other materials exists as a result of bulk handling and high-speed processing of tobacco. Many non-tobacco inclusions such as wood, paper, and cardboard would be expected to yield similar pyrolysis products as a burning cigarette. The aircraft industry has developed an extensive literature on the pyrolysis products of plastics, however, that have been reported to yield toxic by-products upon burning, by-products that have been lethal in animals and humans upon acute exposure under some exposure conditions. Some of these smoke constituents have also been reported in cigarette smoke. Five synthetic polymers, nylon 6, acrylonitrile-butadiene-styrene (ABS), nylon 12, nylon 6,6, and acrylonitrile-butadiene (AB), and the natural polymer wool were evaluated by adding them to tobacco at a 3, 10, and 30% inclusion level and then pyrolyzing the mixture. The validated smoke generation and exposure system have been described previously. We used the DIN 53-436 tube furnace and nose-only exposure chamber in combination to conduct exposures in Swiss-Webster mice. Potentially useful biological endpoints for predicting hazards in humans included sensory irritation and pulmonary irritation, respiratory function, clinical signs, body weights, bronchoalveolar lavage (BAL) fluid analysis, carboxyhemoglogin, blood cyanide concentrations, and histopathology of the respiratory tract. Chemical analysis of selected smoke constituents in the test atmosphere was also performed in order to compare the toxicological responses with exposure to the test atmospheres. Under the conditions of these studies, biological responses considered relevant and useful for prediction of effects in humans were found for sensory irritation, body weights, BAL fluid analysis, and histopathology of the nose. There was a marked sensory irritation response that recovered slowly for some polymers. Sustained body weight depression, lesions of the respiratory epithelium of the nose, and morphological changes in pulmonary alveolar macrophages (PAM) were observed after exposure to some polymer/tobacco pyrolysates. These responses were increased compared to exposure to tobacco pyrolysate alone. No moribundity or mortality occurred during the study. The data suggest that polymeric inclusions pose a minimal additional toxicologic hazard in humans.
Chemical compatibility screening test results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigrey, P.J.; Dickens, T.G.
1997-12-01
A program for evaluating packaging components that may be used in transporting mixed-waste forms has been developed and the first phase has been completed. This effort involved the screening of ten plastic materials in four simulant mixed-waste types. These plastics were butadiene-acrylonitrile copolymer rubber, cross-linked polyethylene (XLPE), epichlorohydrin rubber, ethylene-propylene rubber (EPDM), fluorocarbon (Viton or Kel-F), polytetrafluoroethylene, high-density polyethylene (HDPE), isobutylene-isoprene copolymer rubber (butyl), polypropylene, and styrene-butadiene rubber (SBR). The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) amore » mixture of ketones. The testing protocol involved exposing the respective materials to 286,000 rads of gamma radiation followed by 14-day exposures to the waste types at 60{degrees}C. The seal materials were tested using vapor transport rate (VTR) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criterion of 0.9 g/hr/m{sup 2} for VTR and a specific gravity change of 10% was used. Based on this work, it was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. For specific gravity testing of liner materials, the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE offered the greatest resistance to the combination of radiation and chemicals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigrey, P.J.; Dickens, T.G.; Dickman, P.T.
1997-08-01
Based on regulatory requirements for Type A and B radioactive material packaging, a Testing Program was developed to evaluate the effects of mixed wastes on plastic materials which could be used as liners and seals in transportation containers. The plastics evaluated in this program were butadiene-acrylonitrile copolymer (Nitrile rubber), cross-linked polyethylene, epichlorohydrin, ethylene-propylene rubber (EPDM), fluorocarbons, high-density polyethylene (HDPE), butyl rubber, polypropylene, polytetrafluoroethylene, and styrene-butadiene rubber (SBR). These plastics were first screened in four simulant mixed wastes. The liner materials were screened using specific gravity measurements and seal materials by vapor transport rate (VTR) measurements. For the screening of linermore » materials, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals. The tests also indicated that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture waste, none of the seal materials met the screening criteria. Those materials which passed the screening tests were subjected to further comprehensive testing in each of the simulant wastes. The materials were exposed to four different radiation doses followed by exposure to a simulant mixed waste at three temperatures and four different exposure times (7, 14, 28, 180 days). Materials were tested by measuring specific gravity, dimensional, hardness, stress cracking, VTR, compression set, and tensile properties. The second phase of this Testing Program involving the comprehensive testing of plastic liner has been completed and for seal materials is currently in progress.« less
Effects of simulant mixed waste on EPDM and butyl rubber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigrey, P.J.; Dickens, T.G.
1997-11-01
The authors have developed a Chemical Compatibility Testing Program for the evaluation of plastic packaging components which may be used in transporting mixed waste forms. In this program, they have screened 10 plastic materials in four liquid mixed waste simulants. These plastics were butadiene-acrylonitrile copolymer (Nitrile) rubber, cross-linked polyethylene, epichlorohydrin rubber, ethylene-propylene (EPDM) rubber, fluorocarbons (Viton and Kel-F{trademark}), polytetrafluoro-ethylene (Teflon), high-density polyethylene, isobutylene-isoprene copolymer (Butyl) rubber, polypropylene, and styrene-butadiene (SBR) rubber. The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; andmore » (4) a mixture of ketones. The screening testing protocol involved exposing the respective materials to approximately 3 kGy of gamma radiation followed by 14-day exposures to the waste simulants at 60 C. The rubber materials or elastomers were tested using Vapor Transport Rate measurements while the liner materials were tested using specific gravity as a metric. The authors have developed a chemical compatibility program for the evaluation of plastic packaging components which may be incorporated in packaging for transporting mixed waste forms. From the data analyses performed to date, they have identified the thermoplastic, polychlorotrifluoroethylene, as having the greatest chemical compatibility after having been exposed to gamma radiation followed by exposure to the Hanford Tank simulant mixed waste. The most striking observation from this study was the poor performance of polytetrafluoroethylene under these conditions. In the evaluation of the two elastomeric materials they have concluded that while both materials exhibit remarkable resistance to these environmental conditions, EPDM has a greater resistance to this corrosive simulant mixed waste.« less
NASA Astrophysics Data System (ADS)
Singh, Rajender; Sharma, Ramesh; Barman, P. B.; Sharma, Dheeraj
2017-11-01
UV shielding based super hydrophilic material is developed in the present formulation by in situ emulsion polymerization of poly (styrene-acrylonitrile) with ZnO nanoparticles. The ESI-MS technique confirms the structure of polymer nanocomposite by their mass fragments. The XRD study confirms the presence of ZnO phase in polymer matrix. PSAN/ZnO nanocomposite leads to give effective UV shielding (upto 375 nm) and visible luminescence with ZnO content in polymer matrix. The FESEM and TEM studies confirm the symmetrical, controlled growth of PNs. The incorporation of ZnO nanofillers into PSAN matrix lead to restructuring the PNs surfaces into superhydrophilic surfaces in water contact angle (WCA) from 70° to 10°. We believe our synthesized PSAN/ZnO nanocomposite could be potential as UV shielding, luminescent and super hydrophilic nature based materials in related commercial applications.
Renal cancer risk and occupational exposure to polycyclic aromatic hydrocarbons and plastics
Karami, Sara; Boffetta, Paolo; Brennan, Paul; Stewart, Patricia A.; Zaridze, David; Matveev, Vsevolod; Janout, Vladimir; Kollarova, Helena; Bencko, Vladimir; Navratilova, Marie; Szeszenia-Dabrowska, Neonila; Mates, Dana; Gromiec, Jan P.; Sobotka, Roman; Chow, Wong-Ho; Rothman, Nathaniel; Moore, Lee E.
2011-01-01
Objective To investigate whether occupational exposure to polycyclic aromatic hydrocarbons and certain plastic monomers increased renal cell carcinomas (RCC) risk. Methods Unconditional logistic regression was used to calculate RCC risk in relation to exposure. Results No association between RCC risk and having ever been occupationally exposed to any polycyclic aromatic hydrocarbons or plastics was observed. Duration of exposure and average exposure also showed no association with risk. Suggestive positive associations between RCC risk and cumulative exposure to styrene (P-trend = 0.02) and acrylonitrile (P-trend = 0.06) were found. Cumulative exposure to petroleum/gasoline engine emissions was inversely associated with risk (P-trend = 0.02). Conclusions Results indicate a possible association between occupational styrene and acrylonitrile exposure and RCC risk. Additional studies are needed to replicate findings, as this is the first time these associations have been reported and they may be due to chance. PMID:21270648
Polymeric Additives For Graphite/Epoxy Composites
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Nir, Z.
1990-01-01
Report describes experimental studies of properties of several graphite/epoxy composites containing polymeric additives as flexibilizing or toughening agents. Emphasizes effects of brominated polymeric additives (BPA's) with or without carboxy-terminated butadiene acrylonitrile rubber. Reviews effects of individual and combined additives on fracture toughnesses, environmental stabilities, hot/wet strengths, thermomechanical behaviors, and other mechanical properties of composites.
1989-03-01
PVA, CTBN , PBAA, PMMA, etc. As a test of this predictability, we dissolved a vinyl acetate polymer in THF, and then added PMVT, and did succeed in...Polyvinyl acetate CTBN Carboxy terminated butadiene acrylonitrile PBAA Polybutadiene acrylic acid PMMA Polymethyl. methacrylate THF Tetrahydrofuran NMR
NASA Astrophysics Data System (ADS)
Han, Mijeong; Kim, Hoonjung; Kim, Eunkyoung
2006-01-01
Nanocomposites were prepared from acrylonitrile-butadiene rubber (NBR), vinyl groups containing organically modified montmorillonite and additives, such as zinc oxide, stearic acid, and sulfur. The organically modified montmorillonites used in these nanocomposites were prepared by ion exchange reactions of N,N'-dimethylalkyl-(p-vinylbenzyl)-ammonium chlorides (DAVBAs, alkyl = octyl, dodecyl, and octadecyl) with sodium montmorillonite (Na+-MMT). NBR nanocomposites were obtained by controlling both the mixing and vulcanization conditions, by using a Brabender mixer and hot-press process. X-ray diffraction (XRD) analysis shows that, depending on the amount of montmorillonite that is added, both exfoliated and intercalated nanocomposite structures are formed. The NBR/DAVBA-MMT nanocomposites exhibit much higher mechanical properties (e.g., tensile strength, Young's modulus, 300% modulus, and hardness) as well as gas barrier properties as compared to NBR Na+-MMT or NBR composites generated from modified montmorillonites without vinyl groups. Consistent with the results of XRD, transmission electron microscopy (TEM) reveals that the intercalation and exfoliation structures of the nanocomposites coexist and that the DAVBA-MMT layers are well dispersed in NBR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, E.R.; Fajen, J.M.
1987-05-08
An in depth industrial hygiene survey was conducted at the Copolymer Rubber and Chemical Corporation located in Baton Rouge, Louisiana. The facility produced styrene-butadiene rubber and nitrile-butadiene rubber by continuous emulsion polymerization. The ultimate use of this product was for the manufacture of tire and rubber products. The authors recommend that leaking pumps which can present a potential for 1,3-butadiene exposure in the tank farm and recovery areas should be controlled through the use of dual mechanical seals. Employees assigned to maintenance tasks should use respirators with organic vapor cartridges.
NASA Astrophysics Data System (ADS)
Huang, Tianhua; Zheng, Anna; Zhan, Pengfei; Shi, Han; Li, Xiang; Guan, Yong; Wei, Dafu
2018-05-01
In this work, styrene/isoprene/butadiene integrated rubber (SIBR) was synthesized with n-butyllithium as the initiator and tetrahydrofuran as structure modifier in a co-rotating intermeshing twin-screw extruder. The content of diene in these terpolymers reached a surprising 70 wt% by feeding the monomers in two different sites of the twin-screw extruder. 1H-NMR, GPC and TEM results showed that the molecular structures of terpolymers changed with the variation of feeding site. Dynamic mechanical analysis of the vulcanized SIBR showed that the terpolymer had a wide glass transition region, which assured an excellent combination of high antiskid properties and low rolling resistance. Different from traditional solution polymerization, the present work provides a green approach to prepare the SIBR via bulk polymerization without solvent.
Gargas, Michael L; Collins, Brad; Fennell, Timothy R; Gaudette, Norman F; Sweeney, Lisa M
2008-04-21
Styrene-acrylonitrile trimer (SAN Trimer), a mixture of six isomers (four isomers of 4-cyano-1,2,3,4-tetrahydro-alpha-methyl-1-naphthaleneacetonitrile [THAN] and two isomers of 4-cyano-1,2,3,4-tetrahydro-1-naphthaleneproprionitrile [THNP]), is a by-product of a specific production process of styrene-acrylonitrile polymer. Disposition studies in female rats were conducted to evaluate the pharmacokinetic behavior of [3H]SAN Trimer following a single intravenous administration (26 mg/kg) to nonpregnant rats; a single gavage administration (nominal doses of 25 mg/kg, 75 mg/kg, or 200 mg/kg in corn oil) to nonpregnant rats; and a single gavage administration (nominal dose of 200 mg/kg in corn oil) to pregnant and lactating rats. SAN Trimer was rapidly eliminated from blood (T1/2 approximately 1h) following a single intravenous dose and following single oral doses (T1/2 approximately 3-4h). SAN Trimer was also rapidly excreted in the urine and feces following single oral doses, while total radioactivity was cleared more slowly. In pregnant rats, the concentrations of both radioactivity and SAN Trimer 2h after dosing were highest in the blood, followed by the placenta, with the lowest levels in the fetus. In lactating rats, the concentrations of both radioactivity and SAN Trimer were higher in milk than in maternal blood. Total radioactivity and SAN Trimer blood concentrations in nonpregnant, pregnant, and lactating rats were both higher in lactating rats compared to nonpregnant and pregnant rats.
[A survey of occupational health among polyether-exposed workers].
Fu, Xu-ying; Yu, Bin; Zhang, Chun-ping; Zheng, Guan-hua; Bai, Lan; Zhang, Pan-pan
2013-06-01
To investigate the occupational health of the workers simultaneously exposed to acrylonitrile, epoxyethane, epoxypropane, and styrene. A questionnaire survey was conducted in 70 front-line workers simultaneously exposed to acrylonitrile, epoxyethane, epoxypropane, and styrene (exposure group) and 50 managers (control group) in a polyether manufacturer; in addition, air monitoring at workplace and occupational health examination were also performed. The obtained data were analyzed. The female workers in exposure group and the spouses of male workers in exposure group had significantly higher spontaneous abortion rates than their counterparts in control group (P < 0.01). The exposure group had a significantly higher abnormal rate of blood urea nitrogen than the control group (P < 0.01). The workers with different polyether-exposed working years had significantly higher mean levels of DNA damage than the control group (P < 0.01); the workers with not less than 5 and less than 20 polyether-exposed working years and those with not less than 20 polyether-exposed working years had significantly higher mean micronucleus rates than the control group (P < 0.01); there were no significant differences in overall chromosome aberration rate and mean level of DNA damage between each two groups of workers with different polyether-exposed working years (P > 0.05); the workers with not less than 5 and less than 20 polyether-exposed working years and workers with not less than 20 polyether-exposed working years had significantly higher mean micronucleus rates than those with less than 5 polyether-exposed working years (P < 0.01). Simultaneous exposure to acrylonitrile, epoxyethane, epoxypropane, and styrene causes occupational hazards among the workers in polyether manufacturer.
Steinle, Patrick
2016-01-01
Emissions from a desktop 3D printer based on fused deposition modeling (FDM) technology were measured in a test chamber and indoor air was monitored in office settings. Ultrafine aerosol (UFA) emissions were higher while printing a standard object with polylactic acid (PLA) than with acrylonitrile butadiene styrene (ABS) polymer (2.1 × 10(9) vs. 2.4 × 10(8) particles/min). Prolonged use of the printer led to higher emission rates (factor 2 with PLA and 4 with ABS, measured after seven months of occasional use). UFA consisted mainly of volatile droplets, and some small (100-300 nm diameter) iron containing and soot-like particles were found. Emissions of inhalable and respirable dust were below the limit of detection (LOD) when measured gravimetrically, and only slightly higher than background when measured with an aerosol spectrometer. Emissions of volatile organic compounds (VOC) were in the range of 10 µg/min. Styrene accounted for more than 50% of total VOC emitted when printing with ABS; for PLA, methyl methacrylate (MMA, 37% of TVOC) was detected as the predominant compound. Two polycyclic aromatic hydrocarbons (PAH), fluoranthene and pyrene, were observed in very low amounts. All other analyzed PAH, as well as inorganic gases and metal emissions except iron (Fe) and zinc (Zn), were below the LOD or did not differ from background without printing. A single 3D print (165 min) in a large, well-ventilated office did not significantly increase the UFA and VOC concentrations, whereas these were readily detectable in a small, unventilated room, with UFA concentrations increasing by 2,000 particles/cm(3) and MMA reaching a peak of 21 µg/m(3) and still being detectable in the room even 20 hr after printing.
21 CFR 177.1040 - Acrylonitrile/styrene copoly-mer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... a size that will pass through a U.S. Standard Sieve No. 6 and that will be held on a U.S. Standard Sieve No. 10 is extracted with 250 mil of deionized water or reagent grade n-heptane at reflux...
21 CFR 177.1040 - Acrylonitrile/styrene copoly-mer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... a size that will pass through a U.S. Standard Sieve No. 6 and that will be held on a U.S. Standard Sieve No. 10 is extracted with 250 mil of deionized water or reagent grade n-heptane at reflux...
21 CFR 177.1040 - Acrylonitrile/styrene copoly-mer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... a size that will pass through a U.S. Standard Sieve No. 6 and that will be held on a U.S. Standard Sieve No. 10 is extracted with 250 mil of deionized water or reagent grade n-heptane at reflux...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, C H
The chemistry of the various types of reactions possible between a carboxyl-terminated butadiene/acrylonitrile (CBTN) liquid copolymer and a diglycidyl ether of bisphenol A (DGEBA) type epoxy resin to prepare a CTBN/DGEBA adduct is discussed. Both a dilution and a non-dilution synthesis techniqu are described. Several properties of the CTBN precursor and the modified epoxy resin were determined and are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, A.; Lesuer, D.R.; Patt, J.
Experimental results, together with an analytical model, related to the loss in tensile strength of styrene-butadiene rubber (SBR) loaded with carbon black (CB) that had been subjected to low-cycle, high-stress fatigue tests were presented in a prior paper. The drop in tensile strength relative to that of a virgin sample was considered to be a measure of damage induced during the fatigue test. The present paper is a continuation of this study dealing with the morphological interpretations of the fractured surfaces, whereby the cyclic-tearing behavior, resulting in the damage, is related to the test and material parameters. It was foundmore » that failure is almost always initiated in the bulk of a sample at a material flaw. The size and definition of a flaw increase with an increase in carbon-black loading. Initiation flaw sites are enveloped by fan-shaped or penny-shaped regions which develop during cycling. The size and morphology of a fatigue-tear region appears to be independent of the fatigue load or the extent of the damage (strength loss). By contrast, either an increase in cycling load or an increase in damage at constant load increases the definition of the fatigue-region morphology for all formulations of carbon-black. On the finest scale, the morphology can be described in terms of tearing of individual groups of rubber strands, collapsing to form a cell-like structure. 18 refs., 13 figs.« less
McClements, Jake; Buffone, Cosimo; Shaver, Michael P; Sefiane, Khellil; Koutsos, Vasileios
2017-09-20
The self-assembly of poly(styrene-co-butadiene) random copolymers on mica surfaces was studied by varying solution concentrations and polymer molecular weights. Toluene solutions of the poly(styrene-co-butadiene) samples were spin coated onto a mica surface and the resulting polymer morphology was investigated by atomic force microscopy. At higher concentrations, thin films formed with varying thicknesses; some dewetting was observed which depended on the molecular weight. Total dewetting did not occur despite the polymer's low glass transition temperature. Instead, partial dewetting was observed suggesting that the polymer was in a metastable equilibrium state. At lower concentrations, spherical cap shaped nanodroplets formed with varying sizes from single polymer chains to aggregates containing millions of chains. As the molecular weight was increased, fewer aggregates were observed on the surface, albeit with larger sizes resulting from increased solution viscosities and more chain entanglements at higher molecular weights. The contact angles of the nanodroplets were shown to be size dependent. A minimum contact angle occurs for droplets with radii of 100-250 nm at each molecular weight. Droplets smaller than 100 nm showed a sharp increase in contact angle; attributed to an increase in the elastic modulus of the droplets, in addition, to a positive line tension value. Droplets larger than 250 nm also showed an increased contact angle due to surface heterogeneities which cannot be avoided for larger droplets. This increase in contact angle plateaus as the droplet size reaches the macroscopic scale.
NASA Astrophysics Data System (ADS)
Öktem, H.
2012-01-01
Plastic injection molding plays a key role in the production of high-quality plastic parts. Shrinkage is one of the most significant problems of a plastic part in terms of quality in the plastic injection molding. This article focuses on the study of the modeling and analysis of the effects of process parameters on the shrinkage by evaluating the quality of the plastic part of a DVD-ROM cover made with Acrylonitrile Butadiene Styrene (ABS) polymer material. An effective regression model was developed to determine the mathematical relationship between the process parameters (mold temperature, melt temperature, injection pressure, injection time, and cooling time) and the volumetric shrinkage by utilizing the analysis data. Finite element (FE) analyses designed by Taguchi (L27) orthogonal arrays were run in the Moldflow simulation program. Analysis of variance (ANOVA) was then performed to check the adequacy of the regression model and to determine the effect of the process parameters on the shrinkage. Experiments were conducted to control the accuracy of the regression model with the FE analyses obtained from Moldflow. The results show that the regression model agrees very well with the FE analyses and the experiments. From this, it can be concluded that this study succeeded in modeling the shrinkage problem in our application.
Shen, Shuwei; Wang, Haili; Xue, Yue; Yuan, Li; Zhou, Ximing; Zhao, Zuhua; Dong, Erbao; Liu, Bin; Liu, Wendong; Cromeens, Barrett; Adler, Brent; Besner, Gail; Xu, Ronald X
2017-09-08
Preoperative assessment of tissue anatomy and accurate surgical planning is crucial in conjoined twin separation surgery. We developed a new method that combines three-dimensional (3D) printing, assembling, and casting to produce anatomic models of high fidelity for surgical planning. The related anatomic features of the conjoined twins were captured by computed tomography (CT), classified as five organ groups, and reconstructed as five computer models. Among these organ groups, the skeleton was produced by fused deposition modeling (FDM) using acrylonitrile-butadiene-styrene. For the other four organ groups, shell molds were prepared by FDM and cast with silica gel to simulate soft tissues, with contrast enhancement pigments added to simulate different CT and visual contrasts. The produced models were assembled, positioned firmly within a 3D printed shell mold simulating the skin boundary, and cast with transparent silica gel. The produced phantom was subject to further CT scan in comparison with that of the patient data for fidelity evaluation. Further data analysis showed that the produced model reassembled the geometric features of the original CT data with an overall mean deviation of less than 2 mm, indicating the clinical potential to use this method for surgical planning in conjoined twin separation surgery.
Additive and Photochemical Manufacturing of Copper
Yung, Winco K. C.; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung
2016-01-01
In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics. PMID:28000733
Nadgorny, Milena; Xiao, Zeyun; Chen, Chao; Connal, Luke A
2016-10-26
In this work we describe the synthesis, thermal and rheological characterization, hot-melt extrusion, and three-dimensional printing (3DP) of poly(2-vinylpyridine) (P2VP). We investigate the effect of thermal processing conditions on physical properties of produced filaments in order to achieve high quality, 3D-printable filaments for material extrusion 3DP (ME3DP). Mechanical properties and processing performances of P2VP were enhanced by addition of 12 wt % acrylonitrile-butadiene-styrene (ABS), which reinforced P2VP fibers. We 3D-print P2VP filaments using an affordable 3D printer. The pyridine moieties are cross-linked and quaternized postprinting to form 3D-printed pH-responsive hydrogels. The printed objects exhibited dynamic and reversible pH-dependent swelling. These hydrogels act as flow-regulating valves, controlling the flow rate with pH. Additionally, a macroporous P2VP membrane was 3D-printed and the coordinating ability of the pyridyl groups was employed to immobilize silver precursors on its surface. After the reduction of silver ions, the structure was used to catalyze the reduction of 4-nitrophenol to 4-aminophenol with a high efficiency. This is a facile technique to print recyclable catalytic objects.
NASA Astrophysics Data System (ADS)
Gholami, Mehrdad; Behkami, Shima; Zain, Sharifuddin Md.; Bakirdere, Sezgin
2016-11-01
The objective of this work is to prepare a cost-effective, low reagent consumption and high performance polytetrafluoroethylene (PTFE) vessel that is capable to work in domestic microwave for digesting food and environmental samples. The designed vessel has a relatively thicker wall compared to that of commercial vessels. In this design, eight vessels are placed in an acrylonitrile butadiene styrene (ABS) holder to keep them safe and stable. This vessel needs only 2.0 mL of HNO3 and 1.0 mL H2O2 to digest 100 mg of biological sample. The performance of this design is then evaluated with an ICP-MS instrument in the analysis of the several NIST standard reference material of milk 1849a, rice flour 1568b, spinach leave 1570a and Peach Leaves 1547 in a domestic microwave oven with inverter technology. Outstanding agreement to (SRM) values are observed by using the suggested power to time microwave program, which simulates the reflux action occurring in this closed vessel. Taking into account the high cost of commercial microwave vessels and the volume of chemicals needed for various experiments (8-10 mL), this simple vessel is cost effective and suitable for digesting food and environmental samples.
Impact of range shifter material on proton pencil beam spot characteristics.
Shen, Jiajian; Liu, Wei; Anand, Aman; Stoker, Joshua B; Ding, Xiaoning; Fatyga, Mirek; Herman, Michael G; Bues, Martin
2015-03-01
To quantitatively investigate the effect of range shifter materials on single-spot characteristics of a proton pencil beam. An analytic approximation for multiple Coulomb scattering ("differential Moliere" formula) was adopted to calculate spot sizes of proton spot scanning beams impinging on a range shifter. The calculations cover a range of delivery parameters: six range shifter materials (acrylonitrile butadiene styrene, Lexan, Lucite, polyethylene, polystyrene, and wax) and water as reference material, proton beam energies ranging from 75 to 200 MeV, range shifter thicknesses of 4.5 and 7.0 g/cm(2), and range shifter positions from 5 to 50 cm. The analytic method was validated by comparing calculation results with the measurements reported in the literature. Relative to a water-equivalent reference, the spot size distal to a wax or polyethylene range shifter is 15% smaller, while the spot size distal to a range shifter made of Lexan or Lucite is about 6% smaller. The relative spot size variations are nearly independent of beam energy and range shifter thickness and decrease with smaller air gaps. Among the six material investigated, wax and polyethylene are desirable range shifter materials when the spot size is kept small. Lexan and Lucite are the desirable range shifter materials when the scattering power is kept similar to water.
Analyzing the environmental impacts of laptop enclosures ...
The market growth of consumer electronics makes it essential for industries and policy-makers to work together to develop sustainable products. The objective of this study is to better understand how to promote environmentally sustainable consumer electronics by examining the use of various materials in laptop enclosures (excluding mounting hardware, internal components, and insulation) using screening-level life cycle assessment. The baseline material, is a fossil plastic blend of polycarbonate-acrylonitrile butadiene styrene. Alternative materials include polylactic acid, bamboo, aluminum, and various combinations of these materials known to be currently used or being considered for use in laptops. The flame retardants considered in this study are bisphenol A bis(diphenyl phosphate), triphenyl phosphate, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, and borax-boric acid-phosphorous acid. The Tool for the Reduction and Assessment of Chemical and other environmental Impacts v2.1 was used for the assessment of impacts related to climate change, human and ecological health, and resource use. The assessment demonstrates that plastics, relative to the other materials, are currently some of the better performing materials in terms of having the lowest potential environmental impact for a greater number of impact categories based on product life cycle models developed in this study. For fossil plastics, the material performance increases with increasing post-con
NASA Astrophysics Data System (ADS)
Kaneko, Naoki; Mashiko, Toshihiro; Ohnishi, Taihei; Ohta, Makoto; Namba, Katsunari; Watanabe, Eiju; Kawai, Kensuke
2016-12-01
Patient-specific vascular replicas are essential to the simulation of endovascular treatment or for vascular research. The inside of silicone replica is required to be smooth for manipulating interventional devices without resistance. In this report, we demonstrate the fabrication of patient-specific silicone vessels with a low-cost desktop 3D printer. We show that the surface of an acrylonitrile butadiene styrene (ABS) model printed by the 3D printer can be smoothed by a single dipping in ABS solvent in a time-dependent manner, where a short dip has less effect on the shape of the model. The vascular mold is coated with transparent silicone and then the ABS mold is dissolved after the silicone is cured. Interventional devices can pass through the inside of the smoothed silicone vessel with lower pushing force compared to the vessel without smoothing. The material cost and time required to fabricate the silicone vessel is about USD $2 and 24 h, which is much lower than the current fabrication methods. This fast and low-cost method offers the possibility of testing strategies before attempting particularly difficult cases, while improving the training of endovascular therapy, enabling the trialing of new devices, and broadening the scope of vascular research.
Hott, Morgan E; Megerian, Cliff A; Beane, Rich; Bonassar, Lawrence J
2004-07-01
The goal of the current study was to use computer-aided design and injection molding technologies to tissue engineer precisely shaped cartilage in the shape of butterfly tympanic membrane patches out of chondrocyte-seeded calcium alginate gels. Molds were designed on SolidWorks 2000 and built out of acrylonitrile butadiene styrene (ABS) using fused deposition modeling (FDM). Tympanic membrane patches were fabricated using bovine articular chondrocytes seeded at 50 x 10 cells/mL in 2% calcium alginate gels. Molded patches were cultured in vitro for up to 10 weeks and assessed biochemically, morphologically, and histologically. Unmolded patches demonstrated outstanding dimensional fidelity, with a volumetric precision of at least 3 microL, and maintained their shape well for up to 10 weeks of in vitro culture. Glycosaminoglycan and collagen content increased steadily over 10 weeks in culture, demonstrating continual deposition of new extracellular matrix consistent with new tissue development. The use of computer-aided design and injection molding technologies allows for the fabrication of very small, precisely shaped chondrocyte-seeded calcium alginate structures that faithfully maintain their shape during in vitro culture. In vitro fabrication of tympanic membrane patches with a precisely controlled geometry may have the potential to provide a minimally invasive alternative to traditional methods for the repair of chronic tympanic membrane perforations.
Additive and Photochemical Manufacturing of Copper
NASA Astrophysics Data System (ADS)
Yung, Winco K. C.; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung
2016-12-01
In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics.
Impact-induced fracture mechanisms of immiscible PC/ABS (50/50) blends
NASA Astrophysics Data System (ADS)
Machmud, M. N.; Omiya, M.; Inoue, H.; Kishimoto, K.
2018-03-01
This paper presents a study on fracture mechanisms of polycarbonate (PC)/acrylonitrile-butadiene-styrene (ABS) (50/50) blends with different ABS types under a drop weight impact test (DWIT) using a circular sheet specimen. Formation of secondary crack indicated by a stress-whitening layer on the mid-plane of scattered specimens and secondary surface of fracture perpendicular to primary fracture surface were captured under scanning electron microscope (SEM). Although the both blends finally failed in brittle modes, SEM observation showed that their secondary fracture mechanisms were completely different. Observation through the thickness of the etched PC/ABS specimen samples using SEM also clearly showed that PC and ABS were immiscible. The immiscibility between PC and ABS was indicated by presence of their layer structures through the thickness of the blends. It was revealed that layer of ABS structure was influenced by size of rubber particle and this latter parameter then affected microstructure and fracture mechanisms of the blends. Impact-induced fracture mechanisms of the blends due to such microstructures are discussed in this paper. It was also pointed out that the secondary cracking was likely caused by interface delamination between PC and ABS layers in the core due to transverse shear stress generated during the impact test.
Thermal stabilities of drops of burning thermoplastics under the UL 94 vertical test conditions.
Wang, Yong; Zhang, Jun
2013-02-15
The properties of polymer melts will strongly affect the fire hazard of the pool induced by polymer melt flow. In this study the thermal stabilities of eight thermoplastic polymers as well as their melting drops generated under the UL 94 vertical burning test conditions were investigated by thermogravimetric experiments. It was found that the kinetic compensation effect existed for the decomposition reactions of the polymers and their drops. For polymethylmethacrylate (PMMA), high impact polystyrene (HIPS), poly(acrylonitrile-butadiene-styrene) (ABS), polyamide 6 (PA6), polypropylene (PP) and low density polyethylene (LDPE), the onset decomposition temperature and the two decomposition kinetic parameters (the pre-exponential factor and the activation energy) of the drop were less than those of the polymer. However, the onset decomposition temperature and the two kinetic parameters of PC's drop were greater than those of polycarbonate (PC). Interestingly, for polyethylenevinylacetate (EVA18) the drop hardly contained the vinyl acetate chain segments. Similarly, for the PMMA/LDPE blends and the PMMA/PP blends, when the volume fraction of PMMA was less than 50% the drop hardly contained PMMA, implying that the blend would not drip until PMMA burned away and its surface temperature approached the decomposition temperature of the continuous phase composed of LDPE or PP. Copyright © 2012 Elsevier B.V. All rights reserved.
Surface functionalization of 3D-printed plastics via initiated chemical vapor deposition
Cheng, Christine
2017-01-01
3D printing is a useful fabrication technique because it offers design flexibility and rapid prototyping. The ability to functionalize the surfaces of 3D-printed objects allows the bulk properties, such as material strength or printability, to be chosen separately from surface properties, which is critical to expanding the breadth of 3D printing applications. In this work, we studied the ability of the initiated chemical vapor deposition (iCVD) process to coat 3D-printed shapes composed of poly(lactic acid) and acrylonitrile butadiene styrene. The thermally insulating properties of 3D-printed plastics pose a challenge to the iCVD process due to large thermal gradients along the structures during processing. In this study, processing parameters such as the substrate temperature and the filament temperature were systematically varied to understand how these parameters affect the uniformity of the coatings along the 3D-printed objects. The 3D-printed objects were coated with both hydrophobic and hydrophilic polymers. Contact angle goniometry and X-ray photoelectron spectroscopy were used to characterize the functionalized surfaces. Our results can enable the use of iCVD to functionalize 3D-printed materials for a range of applications such as tissue scaffolds and microfluidics. PMID:28875099
3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration.
Rosenzweig, Derek H; Carelli, Eric; Steffen, Thomas; Jarzem, Peter; Haglund, Lisbet
2015-07-03
Painful degeneration of soft tissues accounts for high socioeconomic costs. Tissue engineering aims to provide biomimetics recapitulating native tissues. Biocompatible thermoplastics for 3D printing can generate high-resolution structures resembling tissue extracellular matrix. Large-pore 3D-printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) scaffolds were compared for cell ingrowth, viability, and tissue generation. Primary articular chondrocytes and nucleus pulposus (NP) cells were cultured on ABS and PLA scaffolds for three weeks. Both cell types proliferated well, showed high viability, and produced ample amounts of proteoglycan and collagen type II on both scaffolds. NP generated more matrix than chondrocytes; however, no difference was observed between scaffold types. Mechanical testing revealed sustained scaffold stability. This study demonstrates that chondrocytes and NP cells can proliferate on both ABS and PLA scaffolds printed with a simplistic, inexpensive desktop 3D printer. Moreover, NP cells produced more proteoglycan than chondrocytes, irrespective of thermoplastic type, indicating that cells maintain individual phenotype over the three-week culture period. Future scaffold designs covering larger pore sizes and better mimicking native tissue structure combined with more flexible or resorbable materials may provide implantable constructs with the proper structure, function, and cellularity necessary for potential cartilage and disc tissue repair in vivo.
Surface free energy analysis of oil palm empty fruit bunches fiber reinforced biocomposites
NASA Astrophysics Data System (ADS)
Suryadi, G. S.; Nikmatin, S.; Sudaryanto; Irmansyah; Sukaryo, S. G.
2017-05-01
Study of the size effect of natural fiber from oil palm empty fruit bunches (OPEFB) as filler, onto the contact angle and surface free energy of fiber reinforced biocomposites has been done. The OPEFB fibers were prepared by mechanical milling and sieving to obtain various sizes of fiber (long-fiber, medium-fiber, short-fiber, and microparticle). The biocomposites has been produced by extrusion using single-screw extruder with EFB fiber as filler, recycled Acrylonitrile Butadiene Styrene (ABS) polymer as matrix, and primary antioxidant, acid scavanger, and coupling agent as additives. The obtained biocomposites in form of granular, were made into test piece by injection molding method. Contact angles of water, methanol, and hexane on the surface of biocomposites at room temperature were measured using Phoenix 300 Contact Angle Analyzer. The surface free energy (SFE) and their components were calculated using three previous known methods (Girifalco-Good-Fowkes-Young (GGFY), Owens-Wendt, and van Oss-Chaudhury-Good (vOCG)). The results showed that total SFE of Recycled ABS as control was about 24.38 mJ/m2, and SFE of biocomposites was lower than control, decreased with decreasing of EFB fiber size as biocomposites filler. The statistical analysis proved that there are no statistically significant differences in the value of the SFE calculated with the three different methods.
NASA Astrophysics Data System (ADS)
Wang, Haitao; Zhang, Yun; Huang, Zhigao; Tang, Zhongbin; Wang, Yanpei; Zhou, Huamin
2017-10-01
The objective of this paper is to accurately predict the rate/temperature-dependent deformation of a polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) blend at low, moderate, and high strain rates for various temperatures. Four constitutive models have been employed to predict stress-strain responses of PC/ABS under these conditions, including the DSGZ model, the original Mulliken-Boyce (M-B) model, the modified M-B model, and an adiabatic model named the Wang model. To more accurately capture the large deformation of PC/ABS under the high strain rate loading, the original M-B model is modified by allowing for the evolution of the internal shear strength. All of the four constitutive models above have been implemented in the finite element software ABAQUS/Explicit. A comparison of prediction accuracies of the four constitutive models over a wide range of strain rates and temperatures has been presented. The modified M-B model is observed to be more accurate in predicting the deformation of PC/ABS at high strain rates for various temperatures than the original M-B model, and the Wang model is demonstrated to be the most accurate in simulating the deformation of PC/ABS at low, moderate, and high strain rates for various temperatures.
Behl, Mamta; Elmore, Susan A.; Malarkey, David E.; Hejtmancik, Milton R.; Gerken, Diane K.; Chhabra, Rajendra S.
2015-01-01
Styrene Acrylonitrile (SAN) Trimer is a by-product in the production of acrylonitrile styrene plastics. Following a report of a childhood cancer cluster in the Toms River section of Dover Township, New Jersey, SAN Trimer was identified as one of the groundwater contaminants at Reich Farm Superfund site in the township. The contaminants from the Reich Farm site’s ground water plume impacted two wells at the Parkway well field. The National Toxicology Program (NTP) studied the toxicity and carcinogenicity of SAN Trimer in rats exposed during their perinatal developmental period and adulthood. The chronic toxicity and carcinogenicity studies in F344/N rats were preceded by 7- and 18-week perinatal toxicity studies to determine the exposure concentrations for the 2-year studies. Subsequently, Fisher 344 pregnant dams were exposed to SAN Trimer containing diet at 400, 800, or 1600 ppm concentrations during gestation, nursing and weaning periods of offspring followed by two year of adult exposures to both male and female pups. There was no statistically significant evidence of carcinogenic activity following SAN-Trimer exposure; however, rare neoplasms in the brain and spinal cord were observed in males and to lesser extent in female rats. These incidences were considered within the range of historical background in the animal model used in the current studies. Therefore, the presence of a few rarely occurring CNS tumors in the treated groups were not judged to be associated with the SAN Trimer exposure. The major finding was a dose-related peripheral neuropathy associated with the sciatic nerves in females and spinal nerve roots in males and females thereby suggesting that SAN trimer is potentially a nervous system toxicant. PMID:24060431
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, D.A.; Smith, C.H.
A carboxyl-terminated butadiene/acrylonitrile (CTBN)/epoxy resin adduct, used to encapsulate electronic devices, was studied to improve its quality and reliability. The average physical and mechanical properties of the amine-cured product were obtained by testing 16 batches of adduct prepared from 13 separate lots of CTBN. It was found that by using a CTBN with a higher acrylonitrile content (or one in which the chemical structure includes carboxyl groups in the chain backbone, in addition to end termination), a clear, soluble liquid adduct that does not separate in storage or transit could be prepared. These materials also produced clear epoxy castings andmore » filled potting compounds with improved impact, flexural, compressive, and tensile strengths.« less
40 CFR 63.494 - Back-end process provisions-residual organic HAP limitations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology or control or recovery devices. (1) For styrene butadiene rubber produced by the emulsion process... rubber produced by any process other than a solution or emulsion process, polybutadiene rubber produced...
NASA Astrophysics Data System (ADS)
Singh, Rajender; Verma, Karan; Singh, Tejbir; Barman, P. B.; Sharma, Dheeraj
2018-02-01
Development of ultraviolet (UV) shielding with visible transparency based thermoplastic polymer nanocomposite (PNs) presents an important requisite in terms of their efficiency and cost. Present study contributed for the same approach by dispersion of Ag doped ZnO nanoparticles upto 10 wt% in poly (styrene-co-acrylonitrile) matrix by insitu emulsion polymerization method. The crystal and chemical structure of PNs has been analyzed by x-ray diffraction (XRD) and fourier infrared spectrometer (FTIR) techniques. The morphological and elemental information of synthesized nanomaterial has been studied by field emission scanning electron microscope (FESEM) and energy dispersive spectroscopy (EDS) technique. The optical properties of PNs has been studied by UV-visible spectroscopy technique. The incorporation of nanoparticles in polymer matrix absorb the complete UV light with visible transparency. The present reported polymer nanocomposite (PNs) have tuned refractive index with UV blocking and visible transparency based properties which can serve as a viable alternative as compared to related conventional materials.
NASA Astrophysics Data System (ADS)
Shen, Ming-xue; Zhang, Zhao-xiang; Peng, Xu-dong; Lin, Xiu-zhou
2017-09-01
For the purpose of prolonging the service life for rubber sealing elements, the frictional behavior of acrylonitrile-butadiene rubber (NBR) surface by dielectric barrier discharge plasma treatments was investigated in this paper. Surface microstructure and chemical composition were measured by atomic force microscopy, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy, respectively. Water contact angles of the modified rubber surface were also measured to evaluate the correlation between surface wettability and tribological properties. The results show that plasma treatments can improve the properties of the NBR against friction and wear effectively, the surface microstructure and roughness of plasma-modified NBR surface had an important influence on the surface tribological behavior, and the wear depth first decreased and then increased along with the change of plasma treatment time. It was found that the wettability of the modified surface was gradually improved, which was mainly due to the change of the chemical composition after the treatment. This study suggests that the plasma treatment could effectively improve the tribological properties of the NBR surface, and also provides information for developing wear-resistant NBR for industrial applications.
NASA Astrophysics Data System (ADS)
Sang, Jing; Sato, Riku; Aisawa, Sumio; Hirahara, Hidetoshi; Mori, Kunio
2017-08-01
A simple, direct adhesion method was developed to join polyamide (PA6) to hydrogenated acrylonitrile butadiene rubber (HNBR) by grafting a functional layer of a silane coupling agent on plasma functionalized PA6 surfaces. The functional layer of the silane coupling agent was prepared using a self-assembly method, which greatly improved the heat resistance of PA6 from 153 °C up to 325 °C and the resulting PA6/HNBR joints showed excellent adhesion properties with cohesive failure between PA6 and HNBR. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and nanoscale infrared microscopy and chemical imaging (Nano-IR, AFM-IR) were employed to characterize the surfaces and interfaces. The Nano-IR analysis method was employed for the first time to analyze the chemical structures of the adhesion interfaces between different materials and to establish the interface formation mechanism. This study is of significant value for interface research and the study of adhesion between resins and rubbers. There is a promising future for heat-resistant functional layers on resin surfaces, with potential application in fuel hose composite materials for the automotive and aeronautical industries.
Misman, M A; Azura, A R; Hamid, Z A A
2015-09-05
Starch-graft-acrylonitrile (ANS) is compounded with carboxylated nitrile butadiene rubber (XNBR) latex. The control XNBR and the ANS/XNBR latex films were prepared through a coagulant dipping process. The films were subjected to ageing and soil burial procedures. For the biodegradation experiment, the surface of the film was assessed after the 2nd, 4th and 8th week of soil burial. The ANS, XNBR, and ANS/XNBR colloidal stability were determined with a Malvern Zetasizer. For the dipped latex films, the mechanical, morphological and thermal properties were analyzed. The addition of ANS into the XNBR latex increased the stability of the colloidal dispersions, decreased the latex film tensile strength, but increased the elongation at break due to the bipolar interaction of the ANS and XNBR particles. The ANS/XNBR latex films aged faster than the control films while the morphological analysis showed the existence of a starch crystal region and the formation of microbial colonies on the surfaces of the films. Based on the TGA-DTA curves, a higher ΔT was observed for the ANS/XNBR latex films signifying high thermal energy needed for the film to thermally degrade. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ruckebusch, C; Vilmin, F; Coste, N; Huvenne, J P
2008-07-01
We evaluate the contribution made by multivariate curve resolution-alternating least squares (MCR-ALS) for resolving gel permeation chromatography-Fourier transform infrared (GPC-FT-IR) data collected on butadiene rubber (BR) and styrene butadiene rubber (SBR) blends in order to access in-depth knowledge of polymers along the molecular weight distribution (MWD). In the BR-SBR case, individual polymers differ in chemical composition but share almost the same MWD. Principal component analysis (PCA) gives a general overview of the data structure and attests to the feasibility of modeling blends as a binary system. MCR-ALS is then performed. It allows resolving the chromatographic coelution and validates the chosen methodology. For SBR-SBR blends, the problem is more challenging since the individual elastomers present the same chemical composition. Rank deficiency is detected from the PCA data structure analysis. MCR-ALS is thus performed on column-wise augmented matrices. It brings very useful insight into the composition of the analyzed blends. In particular, a weak change in the composition of individual SBR in the MWD's lowest mass region is revealed.
HEALTH ASSESSMENT OF 1,3-BUTADIENE | Science ...
This assessment was conducted to review the new information that has become available since EPA's 1985 health assessment of 1,3-butadiene.1,3-Butadiene is a gas used commercially in the production of styrene-butadiene rubber, plastics, and thermoplastic resins. The major environmental source of 1,3-butadiene is the incomplete combustion of fuels from mobile sources (e.g., automobile exhaust). Tobacco smoke can be a significant source of 1,3-butadiene in indoor air.This assessment concludes that 1,3-butadiene is carcinogenic to humans by inhalation, based on the total weight of evidence. The specific mechanisms of 1,3-butadiene-induced carcinogenesis are unknown; however, it is virtually certain that the carcinogenic effects are mediated by genotoxic metabolites of 1,3-butadiene.Animal data suggest that females may be more sensitive than males for cancer effects; nevertheless, there are insufficient data from which to draw any conclusions on potentially sensitive subpopulations.The human incremental lifetime unit cancer (incidence) risk estimate is based on extrapolation from leukemias observed in an occupational epidemiologic study. A twofold adjustment to the epidemiologic-based unit cancer risk is then applied to reflect evidence from the rodent bioassays suggesting that the epidemiologic-based estimate may underestimate total cancer risk from 1,3-butadiene exposure in the general population. 1,3-Butadiene also causes a variety of reproductive and develop
NASA Astrophysics Data System (ADS)
Yasin, Tariq; Khan, Sara; Shafiq, Muhammad; Gill, Rohama
2015-01-01
The objective of this study was to investigate the influence of polyfunctional monomers (PFMs) and absorbed dose on the final characteristics of styrene-butadiene rubber (SBR) mixed with waste tire rubber (WTR). A series of SBR/WTR blends were prepared by varying the ratios of WTR in the presence of PFMs, namely trimethylolpropane trimethacrylate (TMPTMA) and trimethylolpropane triacrylate (TMPTA) and crosslinked using gamma rays. The physicochemical characteristics of the prepared blends were investigated. It was observed that tensile strength, hardness and gel content of the blends increased with absorbed dose while the blends containing TMPTA showed higher tensile strength, gel content and thermal stability as compared to the blends containing TMPTMA. Higher thermal stability was observed in the blends which were crosslinked by radiation as compared to the blends crosslinked by sulfur. These blends exhibited higher rate of swelling in organic solvents, whereas negligible swelling was observed in acidic and basic environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, A.; Lesuer, D.R.; Patt, J.
In order to effectively utilize fractography as an aid in identifying the influence of material and service (or test) parameters on material properties, one must first understand the origin of the morphological features developed during the tearing and fracturing of these elastomers. At our laboratory, we have made extensive fractographic studies while evaluating the effects of material formulations, temperature, and loading rates on the loading response, tearing energy, induced damage, and tearing phenomena in SBR (Styrene Butadiene Rubber) containing different amounts of CB (Carbon Black) filler. We have also examined failures in tank track pads, as well as laboratory-tested samplesmore » cut from new track pads. In this paper we report on observations made during the actual stretching, tearing and failure of elastomeric samples pulled in tension at a constraint stroke-diplacement rate. 15 refs., 12 figs.« less
NASA Astrophysics Data System (ADS)
Mohamed, R.; Nurazzi, N. Mohd; Huzaifah, M.
2017-07-01
This study was conducted to investigate the possibility of utilizing sludge palm oil (SPO) as processing oil, with various amount of carbon black as its reinforcing filler, and its effects on the curing characteristics and mechanical properties of natural rubber/styrene butadiene rubber (NR/SBR) compound. Rubber compound with fixed 15 pphr of SPO loading, and different carbon black loading from 20 to 50 pphr, was prepared using two roll mills. The cure characteristics and mechanical tests that have been conducted are the scorch and cure time analysis, tensile strength and tear strength. Scorch time (ts5) and cure time (t90) of the compound increases with the increasing carbon black loading. The mechanical properties of NR/SBR compound viz. the tensile strength, modulus at 300% strain and tear strength were also improved by the increasing carbon black loading.
NASA Astrophysics Data System (ADS)
Salah, Faisal Mohammed; Jaya, Ramadhansyah Putra; Mohamed, Azman; Hassan, Norhidayah Abdul; Rosni, Nurul Najihah Mad; Mohamed, Abdullahi Ali; Agussabti
2017-12-01
The influence of styrene butadiene rubber (SBR) on asphaltic concrete properties at different aging conditions was presented in this study. These aging conditions were named as un-aged, short-term, and long-term aging. The conventional asphalt binder of penetration grade 60/70 was used in this work. Four different levels of SBR addition were employed (i.e., 0 %, 1 %, 3 %, and 5 % by binder weight). Asphalt concrete mixes were prepared at selected optimum asphalt content (5 %). The performance was evaluated based on Marshall Stability, resilient modulus, and dynamic creep tests. Results indicated the improving stability and permanent deformation characteristics that the mixes modified with SBR polymer have under aging conditions. The result also showed that the stability, resilient modulus, and dynamic creep tests have the highest rates compared to the short-term aging and un-aged samples. Thus, the use of 5 % SBR can produce more durable asphalt concrete mixtures with better serviceability.
Durability of styrene-butadiene latex modified concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaker, F.A.; El-Dieb, A.S.; Reda, M.M.
1997-05-01
The durability of reinforced concrete structures represents a major concern to many investigators. The use of latex modified concrete (LMC) in construction has urged researchers to review and investigate its different properties. This study is part of a comprehensive investigation carried on the use of polymers in concrete. The main objective of this study to investigate and evaluate the main durability aspects of Styrene-Butadiene latex modified concrete (LMC) compared to those of conventional concrete. Also, the main microstructural characteristics of LMC were studied using a Scanning Electron Microscope (SEM). The SEM investigation of the LMC showed major differences in itsmore » microstructure compared to that of the conventional concrete. The LMC proved to be superior in its durability compared to the durability of conventional concrete especially its water tightness (measured by water penetration, absorption, and sorptivity tests), abrasion, corrosion, and sulphate resistance.« less
Morphological and mechanical properties of styrene butadiene rubber/nano copper nanocomposites
NASA Astrophysics Data System (ADS)
Harandi, Maryam Hadizadeh; Alimoradi, Fakhrodin; Rowshan, Gholamhussein; Faghihi, Morteza; Keivani, Maryam; Abadyan, Mohamadreza
In this research, rubber based nanocomposites with presence of nanoparticle has been studied. Styrene butadiene rubber (SBR)/nanocopper (NC) composites were prepared using two-roll mill method. Transmission electron microscope (TEM) and scanning electron microscope (SEM) images showed proper dispersion of NC in the SBR matrix without substantial agglomeration of nanoparticles. To evaluate the curing properties of nanocomposite samples, swelling and cure rheometric tests were conducted. Moreover, the rheological studies were carried out over a range of shear rates. The effect of NC particles was examined on the thermal behavior of the SBR using thermal gravimetric analysis (TGA). Furthermore, tensile tests were employed to investigate the capability of nanoparticles to enhance mechanical behavior of the compounds. The results showed enhancement in tensile properties with incorporation of NC to SBR matrix. Moreover, addition of NC increased shear viscosity and curing time of SBR composites.
Highly aging-resistant elastomers doped with antioxidant-loaded clay nanotubes.
Fu, Ye; Zhao, Detao; Yao, Pengjun; Wang, Wencai; Zhang, Liqun; Lvov, Yuri
2015-04-22
A novel aging-resistant styrene-butadiene rubber (SBR) composite is prepared using the antioxidant N-isopropyl-N'-phenyl-p-phenylenediamine (4010NA) loaded inside of halloysite clay nanotubes and used as filler. Loading the antioxidant inside of halloysite allows for its sustained release for nine months in the rubber matrix. By utilizing modified halloysite, the antioxidant concentration in this rubber nanoformulation is tripled without causing "blooming" defects. Furthermore, the halloysite is silanized to enhance its miscibility with rubber. The aging resistance of SBR-halloysite composites is studied by comparing the mechanical properties before and after thermal-oxidative aging. A seven-day test at 90 °C shows preservation of mechanical properties, and no 4010NA blooming is observed, even after one month. Styrene-butadiene rubber with 27 wt % halloysite loaded with 4010NA shows marked increase in aging resistance and promising future of halloysite as a functional rubber filler.
Provisional Peer-Reviewed Toxicity Values for Styrene-Acrylonitrile (San) Trimer
Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...
[Identification of migrants from nitrile-butadiene rubber gloves].
Mutsuga, Motoh; Kawamura, Yoko; Wakui, Chiseko; Maitani, Tamio
2003-04-01
Polyvinyl chloride gloves containing di(2-ethylhexyl) phthalate are restricted for food contact use. In their place, disposable gloves made from nitrile-butadiene rubber (NBR) are used in contact with foodstuffs. Some unknown substances were found to migrate into n-heptane from NBR gloves. By GC/MS, HR-MS and NMR, their chemical structures were confirmed to be 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (used as a plasticizer), 4,4'-butylidenedi(6-tert-butyl-m-cresol), a mixture of styrenated phenols consisting of 2-(alpha-methylbenzyl)phenol, 4-(alpha-methylbenzyl)phenol, 2,6-di(alpha-methylbenzyl)phenol, 2,4-di(alpha-methylbenzyl)phenol and 2,4,6-tri(alpha-methylbenzyl)phenol (used as antioxidants), and 2,4-di-tert-butylphenol, which seems to a degradation product of antioxidant. Migration levels of these compounds were 1.68 micrograms/cm2 of 2,4-di-tert-butylphenol, 2.80 micrograms/cm2 of 2,2,4-trimethyl-1,3-pentanediol diisobutyrate, 46.08 micrograms/cm2 of styrenated phenols and 4.22 micrograms/cm2 of 4,4'-butylidenedi(6-tert-butyl-m-cresol) into n-heptane, respectively. The content of total styrenated phenols was 6,900 micrograms/g in NBR gloves.
New Polytetrahydrofuran Graft Copolymers.
1979-03-15
chioroprene) , chiorobutyl - ~~~~~ rubber , bromobutyl rubber , chlorinated EPDM , chlorinated poly(buta— diene) and chlorinated butadiene styrene copolymer...bromobutyl rubber , which after dehalogenation is unstable with respect to conjugated dienes, the yields of graft copolymer are low. With poly(chloroprerte
[Migrants from disposable gloves and residual acrylonitrile].
Wakui, C; Kawamura, Y; Maitani, T
2001-10-01
Disposable gloves made from polyvinyl chloride with and without di(2-ethylhexyl) phthalate (PVC-DEHP, PVC-NP), polyethylene (PE), natural rubber (NR) and nitrile-butadiene rubber (NBR) were investigated with respect to evaporation residue, migrated metals, migrants and residual acrylonitrile. The evaporation residue found in n-heptane was 870-1,300 ppm from PVC-DEHP and PVC-NP, which was due to the plasticizers. Most of the PE gloves had low evaporation residue levels and migrants, except for the glove designated as antibacterial, which released copper and zinc into 4% acetic acid. For the NR and NBR gloves, the evaporation residue found in 4% acetic acid was 29-180 ppm. They also released over 10 ppm of calcium and 6 ppm of zinc into 4% acetic acid, and 1.68-8.37 ppm of zinc di-ethyldithiocarbamate and zinc di-n-butyldithiocarbamate used as vulcanization accelerators into n-heptane. The acrylonitrile content was 0.40-0.94 ppm in NBR gloves.
Butadiene-Isoprene Block Copolymers and Their Hydrogenated Derivatives.
1981-04-01
polyethylene, LDPE. The crystallinity, density and AHf for all of the block copolymers were found to be linearly de - pendent on HB content indicating...etc. It is known for example, that carbanions can exist in "tight", "loose", or even "free" structures as a function of counterion and solvent. (5,6...is then observed for the styrene segment. Thus in these systems , there is an apparent "reversal of reactivity" of styrene and the diene, since for the
Roberfroid, M; Poncelet, F; Lambotte-Vandepaer, M; Duverger-Van Bogaert, M; de Meester, C; Mercier, M
1978-01-01
Styrene is commonly used in western Europe for the manufacture of plastics suitable for packaging foodstuffs. This report demonstrates that, injected intraperitoneally at a dose as low as 10 mg/kg, styrene modifies the catalytic properties of aryl hydrocarbon hydroxylase by reducing its KM value. A similar effect is reported for two potent chemical carcinogens, 3-methylcholanthrene and benzo(a)pyrene. Ethylbenzene and benzo(e)pyrene and phenobarbital do not produce the same effect. Pretreatments of the rats with chemicals which modify aryl hydrocarbon hydroxylase also increase the capacity of the liver enzymes to activate benzopyrene to a mutagenic intermediate in vitro, as measured by the Ames test for mutagenicity. Exposure to both styrene and the other modifiers of the xenobiotic-metabolizing enzymes could thus influence the carcinogenic and toxic effects of chemicals which are activated by these enzymes. This hypothesis needs further investigation.
Song, Yihu; Xu, Chunfeng; Zheng, Qiang
2014-04-21
We report a facile kinetic strategy in combination with styrene-butadiene-styrene (SBS) copolymer compatibilizers for preparing carbon black (CB) filled immiscible polypropylene (PP)/polystyrene (PS) (1/1) blends with finely tuned morphologies and show the important role of location and migration of CB nanoparticles in determining the electrical conductivity and rheological behaviour of the composites. A novel method of mixing a SBS/CB (5/3) masterbatch with the polymers allowed producing composites with CB aggregates dispersed partially in the unfavorable PP phase and partially in the PP side of the interface to exhibit diverse phase connectivity and electrical conductivity depending on the compounding sequences. A cocontinuous morphology with CB enrichment along the interface was formed in the composite prepared by mixing the SBS/CB masterbatch with the premixed PP/PS blend, giving rise to a highest electrical conductivity and dynamic moduli at low frequencies. On the other hand, mixing the masterbatch with one and then with another polymer yielded droplet (PS)-in-matrix (filled PP) composites. The composites underwent phase coalescence and CB redistribution accompanied by marked dynamic electrical conduction and modulus percolations as a function of time during thermal annealing at 180 °C. The composites with the initial droplet-in-matrix morphology progressed anomalously into the cocontinuous morphology, reflecting a common mechanism being fairly nonspecific for understanding the processing of filled multicomponent composites with tailored performances of general concern.
21 CFR 177.1040 - Acrylonitrile/styrene copoly-mer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... article Nitrogen content of copolymer Maximum extractable fractions at specified temperatures and times... Total nonvolatile extractives not to exceed 0.01 mg/in 2 surface area of the food contact article when... not exceed 0.001 mg/in 2 surface area of the food contact article when exposed to distilled water and...
Otvagina, Ksenia V.; Mochalova, Alla E.; Sazanova, Tatyana S.; Petukhov, Anton N.; Moskvichev, Alexandr A.; Vorotyntsev, Andrey V.; Afonso, Carlos A. M.; Vorotyntsev, Ilya V.
2016-01-01
CO2 separation was found to be facilitated by transport membranes based on novel chitosan (CS)–poly(styrene) (PS) and chitosan (CS)–poly(acrylonitrile) (PAN) copolymer matrices doped with methylimidazolium based ionic liquids: [bmim][BF4], [bmim][PF6], and [bmim][Tf2N] (IL). CS plays the role of biodegradable film former and selectivity promoter. Copolymers were prepared implementing the latest achievements in radical copolymerization with chosen monomers, which enabled the achievement of outstanding mechanical strength values for the CS-based membranes (75–104 MPa for CS-PAN and 69–75 MPa for CS-PS). Ionic liquid (IL) doping affected the surface and mechanical properties of the membranes as well as the gas separation properties. The highest CO2 permeability 400 Barrers belongs to CS-b-PS/[bmim][BF4]. The highest selectivity α (CO2/N2) = 15.5 was achieved for CS-b-PAN/[bmim][BF4]. The operational temperature of the membranes is under 220 °C. PMID:27294964
Toughening reinforced epoxy composites with brominated polymeric additives
NASA Technical Reports Server (NTRS)
Nir, Z. (Inventor); Gilwee, W. J., Jr. (Inventor)
1985-01-01
Cured polyfunctional epoxy resins including tris(hydroxyphenyl)methane triglycidyl ether are toughened by addition of polybrominated polymeric additives having an EE below 1500 to the pre-cure composition. Carboxy-terminated butadiene-acrylonitrile rubber is optionally present in the pre-cure mixture as such or as a pre-formed copolymer with other reactants. Reinforced composites, particularly carbon-reinforced composites, of these resins are disclosed and shown to have improved toughness.
Rubber-Modified Epoxy and Glass Laminates for Application to Naval Ship Structures.
1983-09-01
more information. Two generic carboxy terminated butadiene acrylonitrile ( CTBN )-modified epoxy/glass cloth material systems have been characterized...versus Normal Impact Energy of 7781-Z6040/Fl55 .......... .................... 8 4 - Front Surface of CTBN -Modified Epoxy GRP Panel After 60 Impacts at...15 6 - Back Surface of CTBN -Modified Epoxy GRP Panel After 60 Impacts at 206 Foot-Pounds ..... .................. ... 16 7 - Back Surface of
Toughening reinforced epoxy composites with brominated polymeric additives
NASA Technical Reports Server (NTRS)
Nir, Z.; Gilwee, W. J., Jr. (Inventor)
1985-01-01
Cured polyfunctional epoxy resins including tris (hydroxyphenyl) methane triglycidyl ether are toughened by addition of polybrominated polymeric additives having an EE below 1500 to the pre-cure composition. Carboxy terminated butadiene acrylonitrile rubber is optionally present in the precure mixture as such or as a pre-formed copolymer with other reactants. Reinforced composites, particularly carbon reinforced composites, of these resins are disclosed and shown to have improved toughness.
Flight Deck Refuelling Hose Failure HMCS Preserver
2000-01-01
hose and these were used as a basis for the investigation. Chemical analysis indicated that the inner tube and outer cover of the hose were as...Principal Results Chemical analysis indicated that the inner tube (poly(butadiene-acrylonitrile) rubber) and outer cover of the hose (poly( chloroprene... Analysis Py-GC/MS Instrumentation and Experimental Conditions Failed Titan Hose New Titan Hose German Hose Proof Tests Failed Titan Hose New
Fused filament 3D printing of ionic polymer-metal composites for soft robotics
NASA Astrophysics Data System (ADS)
Carrico, James D.; Leang, Kam K.
2017-04-01
Additive manufacturing techniques are used to create three-dimensional structures with complex shapes and features from polymer and/or metal materials. For example, fused filament three-dimensional (3D) printing utilizes non-electroactive polymers, such as acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA), to build structures and components in a layer-by-layer fashion for a wide variety of applications. Presented here is a summary of recent work on a fused filament 3D-printing technique to create 3D ionic polymer-metal composite (IPMC) structures for applications in soft robotics. The 3D printing technique overcomes some of the limitations of existing manufacturing processes for creating IPMCs, such as limited shapes and sizes and time-consuming manufacturing steps. In the process described, first a precursor material (non-acid Nafion precursor resin) is extruded into a thermoplastic filament for 3D printing. Then, a custom-designed 3D printer is described that utilizes the precursor filament to manufacture custom-shaped structures. Finally, the 3D-printed samples are functionalized by hydrolyzing them in an aqueous solution of potassium hydroxide and dimethyl sulfoxide, followed by application of platinum electrodes. Presented are example 3D-printed single and multi-degree-of-freedom IPMC actuators and characterization results, as well as example soft-robotic devices to demonstrate the potential of this process.
Thermal and mechanical properties of 3D printed boron nitride - ABS composites
NASA Astrophysics Data System (ADS)
Quill, Tyler J.; Smith, Matthew K.; Zhou, Tony; Baioumy, Mohamed Gamal Shafik; Berenguer, Joao Paulo; Cola, Baratunde A.; Kalaitzidou, Kyriaki; Bougher, Thomas L.
2017-11-01
The current work investigates the thermal conductivity and mechanical properties of Boron Nitride (BN)-Acrylonitrile Butadiene Styrene (ABS) composites prepared using both 3D printing and injection molding. The thermally conductive, yet electrically insulating composite material provides a unique combination of properties that make it desirable for heat dissipation and packaging applications in electronics. Materials were fabricated via melt mixing on a twin-screw compounder, then injection molded or extruded into filament for fused deposition modeling (FDM) 3D printing. Compositions of up to 35 wt.% BN in ABS were prepared, and the infill orientation of the 3D printed composites was varied to investigate the effect on properties. Injection molding produced a maximum in-plane conductivity of 1.45 W/m-K at 35 wt.% BN, whereas 3D printed samples of 35 wt.% BN showed a value of 0.93 W/m-K, over 5 times the conductivity of pure ABS. The resulting thermal conductivity is anisotropic; with the through-plane thermal conductivity lower by a factor of 3 for injection molding and 4 for 3D printing. Adding BN flakes caused a modest increase in the flexural modulus, but resulted in a large decrease in the flexural strength and impact toughness. It is shown that although injection molding produces parts with superior thermal and mechanical properties, BN shows much potential as a filler material for rapid prototyping of thermally conductive composites.
Analysis of the shrinkage at the thick plate part using response surface methodology
NASA Astrophysics Data System (ADS)
Hatta, N. M.; Azlan, M. Z.; Shayfull, Z.; Roselina, S.; Nasir, S. M.
2017-09-01
Injection moulding is well known for its manufacturing process especially in producing plastic products. To measure the final product quality, there are lots of precautions to be taken into such as parameters setting at the initial stage of the process. Sometimes, if these parameters were set up wrongly, defects may be occurred and one of the well-known defects in the injection moulding process is a shrinkage. To overcome this problem, a maximisation at the precaution stage by making an optimal adjustment on the parameter setting need to be done and this paper focuses on analysing the shrinkage by optimising the parameter at thick plate part with the help of Response Surface Methodology (RSM) and ANOVA analysis. From the previous study, the outstanding parameter gained from the optimisation method in minimising the shrinkage at the moulded part was packing pressure. Therefore, with the reference from the previous literature, packing pressure was selected as the parameter setting for this study with other three parameters which are melt temperature, cooling time and mould temperature. The analysis of the process was obtained from the simulation by Autodesk Moldflow Insight (AMI) software and the material used for moulded part was Acrylonitrile Butadiene Styrene (ABS). The analysis and result were obtained and it found that the shrinkage can be minimised and the significant parameters were found as packing pressure, mould temperature and melt temperature.
Akato, Kokouvi M.; Tran, Chau D.; Chen, Jihua; ...
2015-11-05
Here we report the compatibilization of biomass-derived lignin polymer in acrylonitrile butadiene styrene (ABS) thermoplastic matrix without loss of mechanical properties via poly(ethylene oxide) (PEO)-mediated macromolecular self-assembly. ABS was blended with lignin in different concentrations, and blends with 10 wt % PEO (relative to lignin) were prepared. The relative tensile strength improved slightly at low lignin content but diminished rapidly as the lignin content was increased. However, the inclusion of PEO as an interfacial adhesion promoter helped avoid deleterious effects. Dynamic mechanical analysis showed that PEO plasticized the hard phase and thus lowered the activation energy (E a) for itsmore » relaxation but caused stiffening of the soft phase and increased its E a. Microscopy revealed that incorporating lignin in ABS led to the statistical dispersion of discrete lignin domains (300–1000 nm) which, after PEO addition, were reduced to smaller interconnected particles (200–500 nm). The lignin-extended partially renewable ABS resins showed shear-thinning behavior and reduced viscosity compared to neat ABS. The preferred lignin-loaded compositions reinforced with 20 vol % chopped carbon fibers exhibited mechanical performances (77–80 MPa) equivalent to those of reinforced ABS materials reportedly used in 3D printing applications. In conclusion, this approach could lower the cost of ABS while reducing its carbon footprint.« less
Toward 3D Printed Hydrogen Storage Materials Made with ABS-MOF Composites.
Channell, Megan N; Sefa, Makfir; Fedchak, James A; Scherschligt, Julia; Bible, Michael; Natarajan, Bharath; Klimov, Nikolai N; Miller, Abigail E; Ahmed, Zeeshan; Hartings, Matthew R
2018-02-01
The push to advance efficient, renewable, and clean energy sources has brought with it an effort to generate materials that are capable of storing hydrogen. Metal-organic framework materials (MOFs) have been the focus of many such studies as they are categorized for their large internal surface areas. We have addressed one of the major shortcomings of MOFs (their processibility) by creating and 3D printing a composite of acrylonitrile butadiene styrene (ABS) and MOF-5, a prototypical MOF, which is often used to benchmark H 2 uptake capacity of other MOFs. The ABS-MOF-5 composites can be printed at MOF-5 compositions of 10% and below. Other physical and mechanical properties of the polymer (glass transition temperature, stress and strain at the breaking point, and Young's modulus) either remain unchanged or show some degree of hardening due to the interaction between the polymer and the MOF. We do observe some MOF-5 degradation through the blending process, likely due to the ambient humidity through the purification and solvent casting steps. Even with this degradation, the MOF still retains some of its ability to uptake H 2 , seen in the ability of the composite to uptake more H 2 than the pure polymer. The experiments and results described here represent a significant first step toward 3D printing MOF-5-based materials for H 2 storage.
Stenvall, Erik; Tostar, Sandra; Boldizar, Antal; Foreman, Mark R StJ; Möller, Kenneth
2013-04-01
The compositions of three WEEE plastic batches of different origin were investigated using infrared spectroscopy, and the metal content was determined with inductively coupled plasma. The composition analysis of the plastics was based mainly on 14 samples collected from a real waste stream, and showed that the major constituents were high impact polystyrene (42 wt%), acrylonitrile-butadiene-styrene copolymer (38 wt%) and polypropylene (10 wt%). Their respective standard deviations were 21.4%, 16.5% and 60.7%, indicating a considerable variation even within a single batch. The level of metal particle contamination was found to be low in all samples, whereas wood contamination and rubber contamination were found to be about 1 wt% each in most samples. In the metal content analysis, iron was detected at levels up to 700 ppm in the recyclable waste plastics fraction, which is of concern due to its potential to catalyse redox reactions during melt processing and thus accelerate the degradation of plastics during recycling. Toxic metals were found only at very low concentrations, with the exception of lead and cadmium which could be detected at 200 ppm and 70 ppm levels, respectively, but these values are below the current threshold limits of 1000 ppm and 100 ppm set by the Restriction of Hazardous Substances directive. Copyright © 2013 Elsevier Ltd. All rights reserved.
Highly oriented carbon fiber–polymer composites via additive manufacturing
Tekinalp, Halil L.; Kunc, Vlastimil; Velez-Garcia, Gregorio M.; ...
2014-10-16
Additive manufacturing, diverging from traditional manufacturing techniques, such as casting and machining materials, can handle complex shapes with great design flexibility without the typical waste. Although this technique has been mainly used for rapid prototyping, interest is growing in using this method to directly manufacture actual parts of complex shape. To use 3D-printing additive manufacturing in wide spread applications, the technique and the feedstock materials require improvements to meet the mechanical requirements of load-bearing components. Thus, we investigated the short fiber (0.2 mm to 0.4 mm) reinforced acrylonitrile-butadiene-styrene composites as a feedstock for 3D-printing in terms of their processibility, microstructuremore » and mechanical performance; and also provided comparison with traditional compression molded composites. The tensile strength and modulus of 3D-printed samples increased ~115% and ~700%, respectively. 3D-printer yielded samples with very high fiber orientation in printing direction (up to 91.5 %), whereas, compression molding process yielded samples with significantly less fiber orientation. Microstructure-mechanical property relationships revealed that although the relatively high porosity is observed in the 3D-printed composites as compared to those produced by the conventional compression molding technique, they both exhibited comparable tensile strength and modulus. Furthermore, this phenomena is explained based on the changes in fiber orientation, dispersion and void formation.« less
NASA Astrophysics Data System (ADS)
Lehtimäki, Esa; Väisänen, Ari
2017-01-01
The digestion methods for the determination of As, Cd, Cr, Pb, Sb, Sn and Zn concentrations in plastic samples using microwave-assisted digestion (MW-AD) and small-size autoclave digestion was developed. The certified polyethylene, polypropylene, polyvinyl chloride and acrylonitrile butadiene styrene certified reference materials were used in order to find digestion method working properly for several sample matrices. Efficiency of the digestion methods was evaluated by analyzing the residual carbon in digests by TOC analyzer. MW-AD using a mixture of 7 mL of HNO3 and 3 mL of H2O2 as a digestion solution resulted in excellent recoveries for As, Cd, Pb, Sb and Zn, and were in the range of 92-107% for all the analytes except Pb in polyethylene material. Autoclave digestion using 5 mL of concentrated HNO3 as a digestion solution resulted in similar recoveries with the exception of a higher As recovery (98%). Tin recovery resulted in low level after both MW-AD and autoclave digestion. Autoclave digestion was further developed resulting in a partially open two-step digestion process especially for the determination of Sn and Cr. The method resulted in higher recoveries of Sn and Cr (87 and 76%) but with the lower concentration of easily volatile As, Cd and Sb.
Skorski, Matthew R.; Esenther, Jake M.; Ahmed, Zeeshan; Miller, Abigail E.; Hartings, Matthew R.
2016-01-01
Abstract To expand the chemical capabilities of 3D printed structures generated from commercial thermoplastic printers, we have produced and printed polymer filaments that contain inorganic nanoparticles. TiO2 was dispersed into acrylonitrile butadiene styrene (ABS) and extruded into filaments with 1.75 mm diameters. We produced filaments with TiO2 compositions of 1, 5, and 10% (kg/kg) and printed structures using a commercial 3D printer. Our experiments suggest that ABS undergoes minor degradation in the presence of TiO2 during the different processing steps. The measured mechanical properties (strain and Young’s modulus) for all of the composites are similar to those of structures printed from the pure polymer. TiO2 incorporation at 1% negatively affects the stress at breaking point and the flexural stress. Structures produced from the 5 and 10% nanocomposites display a higher breaking point stress than those printed from the pure polymer. TiO2 within the printed matrix was able to quench the intrinsic fluorescence of the polymer. TiO2 was also able to photocatalyze the degradation of a rhodamine 6G in solution. These experiments display chemical reactivity in nanocomposites that are printed using commercial 3D printers, and we expect that our methodology will help to inform others who seek to incorporate catalytic nanoparticles in 3D printed structures. PMID:27375367
Bishop, Gregory W.; Satterwhite, Jennifer E.; Bhakta, Snehasis; Kadimisetty, Karteek; Gillette, Kelsey M.; Chen, Eric; Rusling, James F.
2015-01-01
A consumer-grade fused filament fabrication (FFF) 3D printer was used to construct fluidic devices for nanoparticle preparation and electrochemical sensing. Devices were printed using poly(ethylene terephthalate) and featured threaded ports to connect polyetheretherketone (PEEK) tubing via printed fittings prepared from acrylonitrile butadiene styrene (ABS). These devices included channels designed to have 800 × 800 µm2 square cross sections and were semitransparent to allow visualization of the solution-filled channels. A 3D-printed device with a Y-shaped mixing channel was used to prepare Prussian blue nanoparticles (PBNPs) under flow rates of 100 to 2000 µL min−1. PBNPs were then attached to gold electrodes for hydrogen peroxide sensing. 3D-printed devices used for electrochemical measurements featured threaded access ports into which a fitting equipped with reference, counter, and PBNP-modified working electrodes could be inserted. PBNP-modified electrodes enabled amperometric detection of H2O2 in the 3D-printed channel by flow-injection analysis, exhibiting a detection limit of 100 nM and linear response up to 20 µM. These experiments show that a consumer-grade FFF printer can be used to fabricate low-cost fluidic devices for applications similar to those that have been reported with more expensive 3D-printing methods. PMID:25901660
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishore, Vidya; Ajinjeru, Christine; Duty, Chad E
The Big Area Additive Manufacturing (BAAM) system has the capacity to print structures on the order of several meters at a rate exceeding 50 kg/h, thereby having the potential to significantly impact the production of components in automotive, aerospace and energy sectors. However, a primary issue that limits the functional use of such parts is mechanical anisotropy. The strength of printed parts across successive layers in the build direction (z-direction) is significantly lower than the corresponding in-plane strength (x-y directions). This is largely due to poor bonding between the printed layers as the lower layers cool below the glass transitionmore » temperature (Tg) before the next layer is deposited. This work explores the use of infrared heating to increase the surface temperature of the printed layer just prior to deposition of new material to improve the interlayer strength of the components. The material used in this study was acrylonitrile butadiene styrene (ABS) reinforced with 20% chopped carbon fiber by weight. Significant improvements in z-strength were observed for the parts whose surface temperature was increased from below Tg to close to or above Tg using infrared heating. Parameters such as print speed, nozzle diameter and extrusion temperature were also found to impact the heat input required to enhance interlayer adhesion without significantly degrading the polymer and compromising on surface finish.« less
Improving the engineering properties of PLA for 3D printing and beyond
NASA Astrophysics Data System (ADS)
Rocha Gutierrez, Carmen Raquel
Additive manufacturing (AM), now more commonly known as 3D printing, has been classified as efficient, fast, and practical in the prototyping sector of product development. In the work presented here, we will use one of the AM techniques known as Material extrusion 3D printing (ME3DP), which has all the advantages of AM. However, one of the biggest challenges facing ME3DP technologies is the limitation of the range of materials used by this technique. Acrylonitrile butadiene styrene (ABS) and poly-lactic acid (PLA) are currently the most common thermoplastics materials used in ME3DP because of their ability to melt and be reprocessed. PLA is a biodegradable polymer derived from renewable sources such as corn, and sugarcane. The expanded use of this polymer over traditional petroleum-based plastics (ABS) will decrease the demand on petrochemicals, and also lead to less non-biodegradable polymeric waste. While PLA offers an eco-friendly solution for polymeric 3D printing, the mechanical performance is limited by PLA's inherent characteristics (such as moisture absorbance) that may degrade the plastic during processing. PLA novel systems were used through this research maintaining the compatibility with material extrusion 3D printers. The purpose of this investigation is to alter the physical properties of PLA with sustainable additives in order to improve the end use products from this material.
Optimization of 3D Print Material for the Recreation of Patient-Specific Temporal Bone Models.
Haffner, Max; Quinn, Austin; Hsieh, Tsung-Yen; Strong, E Bradley; Steele, Toby
2018-05-01
Identify the 3D printed material that most accurately recreates the visual, tactile, and kinesthetic properties of human temporal bone Subjects and Methods: Fifteen study participants with an average of 3.6 years of postgraduate training and 56.5 temporal bone (TB) procedures participated. Each participant performed a mastoidectomy on human cadaveric TB and five 3D printed TBs of different materials. After drilling each unique material, participants completed surveys to assess each model's appearance and physical likeness on a Likert scale from 0 to 10 (0 = poorly representative, 10 = completely life-like). The 3D models were acquired by computed tomography (CT) imaging and segmented using 3D Slicer software. Polyethylene terephthalate (PETG) had the highest average survey response for haptic feedback (HF) and appearance, scoring 8.3 (SD = 1.7) and 7.6 (SD = 1.5), respectively. The remaining plastics scored as follows for HF and appearance: polylactic acid (PLA) averaged 7.4 and 7.6, acrylonitrile butadiene styrene (ABS) 7.1 and 7.2, polycarbonate (PC) 7.4 and 3.9, and nylon 5.6 and 6.7. A PETG 3D printed temporal bone models performed the best for realistic appearance and HF as compared with PLA, ABS, PC, and nylon. The PLA and ABS were reliable alternatives that also performed well with both measures.
Skorski, Matthew; Esenther, Jake; Ahmed, Zeeshan; Miller, Abigail E; Hartings, Matthew R
To expand the chemical capabilities of 3D printed structures generated from commercial thermoplastic printers, we have produced and printed polymer filaments that contain inorganic nanoparticles. TiO 2 was dispersed into acrylonitrile butadiene styrene (ABS) and extruded into filaments with 1.75 mm diameters. We produced filaments with TiO 2 compositions of 1%, 5%, and 10% (kg/kg) and printed structures using a commercial 3D printer. Our experiments suggest that ABS undergoes minor degradation in the presence of TiO 2 during the different processing steps. The measured mechanical properties (strain and Young's modulus) for all of the composites are similar to those of structures printed from the pure polymer. TiO 2 incorporation at 1% negatively affects the stress at breaking point and the flexural stress. Structures produced from the 5 and 10% nanocomposites display a higher breaking point stress than those printed from the pure polymer. TiO 2 within the printed matrix was able to quench the intrinsic fluorescence of the polymer. TiO 2 was also able to photocatalyze the degradation of a rhodamine 6G in solution. These experiments display chemical reactivity in nanocomposites that are printed using commercial 3D printers, and we expect that our methodology will help to inform others who seek to incorporate catalytic nanoparticles in 3D printed structures.
NASA Astrophysics Data System (ADS)
Skorski, Matthew R.; Esenther, Jake M.; Ahmed, Zeeshan; Miller, Abigail E.; Hartings, Matthew R.
2016-01-01
To expand the chemical capabilities of 3D printed structures generated from commercial thermoplastic printers, we have produced and printed polymer filaments that contain inorganic nanoparticles. TiO2 was dispersed into acrylonitrile butadiene styrene (ABS) and extruded into filaments with 1.75 mm diameters. We produced filaments with TiO2 compositions of 1, 5, and 10% (kg/kg) and printed structures using a commercial 3D printer. Our experiments suggest that ABS undergoes minor degradation in the presence of TiO2 during the different processing steps. The measured mechanical properties (strain and Young's modulus) for all of the composites are similar to those of structures printed from the pure polymer. TiO2 incorporation at 1% negatively affects the stress at breaking point and the flexural stress. Structures produced from the 5 and 10% nanocomposites display a higher breaking point stress than those printed from the pure polymer. TiO2 within the printed matrix was able to quench the intrinsic fluorescence of the polymer. TiO2 was also able to photocatalyze the degradation of a rhodamine 6G in solution. These experiments display chemical reactivity in nanocomposites that are printed using commercial 3D printers, and we expect that our methodology will help to inform others who seek to incorporate catalytic nanoparticles in 3D printed structures.
Radiolytic Synthesis of Pt-Particle/ABS Catalysts for H₂O₂ Decomposition in Contact Lens Cleaning.
Ohkubo, Yuji; Aoki, Tomonori; Seino, Satoshi; Mori, Osamu; Ito, Issaku; Endo, Katsuyoshi; Yamamura, Kazuya
2017-08-23
A container used in contact lens cleaning requires a Pt plating weight of 1.5 mg for H₂O₂ decomposition although Pt is an expensive material. Techniques that decrease the amount of Pt are therefore needed. In this study, Pt nanoparticles instead of Pt plating film were supported on a substrate of acrylonitrile-butadiene-styrene copolymer (ABS). This was achieved by the reduction of Pt ions in an aqueous solution containing the ABS substrate using high-energy electron-beam irradiation. Pt nanoparticles supported on the ABS substrate (Pt-particle/ABS) had a size of 4-10 nm. The amount of Pt required for Pt-particle/ABS was 250 times less than that required for an ABS substrate covered with Pt plating film (Pt-film/ABS). The catalytic activity for H₂O₂ decomposition was estimated by measuring the residual H₂O₂ concentration after immersing the catalyst for 360 min. The Pt-particle/ABS catalyst had a considerably higher specific catalytic activity for H₂O₂ decomposition than the Pt-film/ABS catalyst. In addition, sterilization performance was estimated from the initial rate of H₂O₂ decomposition over 60 min. The Pt-particle/ABS catalyst demonstrated a better sterilization performance than the Pt-film/ABS catalyst. The difference between Pt-particle/ABS and Pt-film/ABS was shown to reflect the size of the O₂ bubbles formed during H₂O₂ decomposition.
Charcoal byproducts as potential styrene-butadiene rubber composte filler
USDA-ARS?s Scientific Manuscript database
Carbon black, a byproduct of the petroleum industry, is the world's most predominant filler for rubber composites. In this study, various renewable charcoals in the form of pyrolyzed agricultural byproducts were evaluted as potential carbon-based filler for rubber composites made with carboxylated s...
Evaluating Waste Charcoal as Potential Rubber Composite Filler
USDA-ARS?s Scientific Manuscript database
Carbon black, a byproduct of the petroleum industry, is the world's most predominant filler for rubber composites. In this study, charcoal in the form of pyrolyzed agricultural products was evaluated as potential carbon-based filler for rubber composites made with carboxylated styrene-butadiene lat...
Thermal Stability and Flammability of Styrene-Butadiene Rubber-Based (SBR) Ceramifiable Composites
Anyszka, Rafał; Bieliński, Dariusz M.; Pędzich, Zbigniew; Rybiński, Przemysław; Imiela, Mateusz; Siciński, Mariusz; Zarzecka-Napierała, Magdalena; Gozdek, Tomasz; Rutkowski, Paweł
2016-01-01
Ceramifiable styrene-butadiene (SBR)-based composites containing low-softening-point-temperature glassy frit promoting ceramification, precipitated silica, one of four thermally stable refractory fillers (halloysite, calcined kaolin, mica or wollastonite) and a sulfur-based curing system were prepared. Kinetics of vulcanization and basic mechanical properties were analyzed and added as Supplementary Materials. Combustibility of the composites was measured by means of cone calorimetry. Their thermal properties were analyzed by means of thermogravimetry and specific heat capacity determination. Activation energy of thermal decomposition was calculated using the Flynn-Wall-Ozawa method. Finally, compression strength of the composites after ceramification was measured and their micromorphology was studied by scanning electron microscopy. The addition of a ceramification-facilitating system resulted in the lowering of combustibility and significant improvement of the thermal stability of the composites. Moreover, the compression strength of the mineral structure formed after ceramification is considerably high. The most promising refractory fillers for SBR-based ceramifiable composites are mica and halloysite. PMID:28773726
High Performance Graphene Oxide Based Rubber Composites
Mao, Yingyan; Wen, Shipeng; Chen, Yulong; Zhang, Fazhong; Panine, Pierre; Chan, Tung W.; Zhang, Liqun; Liang, Yongri; Liu, Li
2013-01-01
In this paper, graphene oxide/styrene-butadiene rubber (GO/SBR) composites with complete exfoliation of GO sheets were prepared by aqueous-phase mixing of GO colloid with SBR latex and a small loading of butadiene-styrene-vinyl-pyridine rubber (VPR) latex, followed by their co-coagulation. During co-coagulation, VPR not only plays a key role in the prevention of aggregation of GO sheets but also acts as an interface-bridge between GO and SBR. The results demonstrated that the mechanical properties of the GO/SBR composite with 2.0 vol.% GO is comparable with those of the SBR composite reinforced with 13.1 vol.% of carbon black (CB), with a low mass density and a good gas barrier ability to boot. The present work also showed that GO-silica/SBR composite exhibited outstanding wear resistance and low-rolling resistance which make GO-silica/SBR very competitive for the green tire application, opening up enormous opportunities to prepare high performance rubber composites for future engineering applications. PMID:23974435
High performance graphene oxide based rubber composites.
Mao, Yingyan; Wen, Shipeng; Chen, Yulong; Zhang, Fazhong; Panine, Pierre; Chan, Tung W; Zhang, Liqun; Liang, Yongri; Liu, Li
2013-01-01
In this paper, graphene oxide/styrene-butadiene rubber (GO/SBR) composites with complete exfoliation of GO sheets were prepared by aqueous-phase mixing of GO colloid with SBR latex and a small loading of butadiene-styrene-vinyl-pyridine rubber (VPR) latex, followed by their co-coagulation. During co-coagulation, VPR not only plays a key role in the prevention of aggregation of GO sheets but also acts as an interface-bridge between GO and SBR. The results demonstrated that the mechanical properties of the GO/SBR composite with 2.0 vol.% GO is comparable with those of the SBR composite reinforced with 13.1 vol.% of carbon black (CB), with a low mass density and a good gas barrier ability to boot. The present work also showed that GO-silica/SBR composite exhibited outstanding wear resistance and low-rolling resistance which make GO-silica/SBR very competitive for the green tire application, opening up enormous opportunities to prepare high performance rubber composites for future engineering applications.
USDA-ARS?s Scientific Manuscript database
Biobased rubber composites are renewable and sustainable. Significant improvement in modulus of rubber composite reinforced with hydrophilic filler was achieved with the inclusion of ionomers. Soy particles aided with ionomer, carboxylated styrene-butadiene (CSB), formed a strong complex filler netw...
Reinforcement effect of soy protein/carbohydrate ratio in styrene-butadiene polymer
USDA-ARS?s Scientific Manuscript database
Soy protein and carbohydrate at different ratios were blended with latex to form composites. The variation of protein to carbohydrate ratio has a sifnificant effect on the composite properties and the results from dynamic mechanical method showed a substantial reinforcement effect. The composites ...
Automotive and Construction Equipment for Arctic Use, Materials Problems
1991-11-01
followed. Nitrile rubber ( NBR ) is one of the most common materials used in seal manufacture. It is a copolymer of butadiene and acrylonitrile and is... rubber and other elastomers, and many plastics. This problem is exacerbated, especially in equipment with diesel engines, because the engines run...their original condition in a short time on removal of the stress. The group includes natural rubbers as well as synthetic polymers. Many of these
The Effect of Switch-Loading Fuels on Fuel-Wetted Elastomers
2007-01-10
material and age of the material”. In summing up past experience, the bulletin stated that “the common denominator is expected to be nitrile rubber ...The expert also noted that “most, if not all manufacturers, responded by eliminating nitrile rubber seals and replacing them with fluorocarbon...materials identified as from the Acrylonitrile- 4 Viton is a name trademarked by DuPont Performance Elastomers L.L.C. Butadiene family (nitrile, NBR
Rubber-Modified Epoxies: Transitions and Morphology.
1980-09-01
Hill. New Jersey 07974 i .i -2- INTRODUCTION Low levels of carboxyl-terminated reactive liquid rubber copolymers of butadiene and acrylonitrile ( CTBN ...parts per hundred parts resin (phr) of CTBN , and 5 phr piperidine is homo- geneous at the start of cure if the cure temperature is above some critical...solubility temperature (which is designated Tso). In the presence of piperidine there is a rapid reaction of the carboxyl end groups of the CTBN with
Acetic acid and aromatics units planned in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alperowicz, N.
1993-01-27
The Shanghai Wujing Chemical Complex (SWCC; Shanghai) is proceeding with construction of an acetic acid plant. The 100,000-m.t./year until will use BP Chemicals carbonylation technology, originally developed by Monsanto. John Brown has been selected by China National Technical Import Corp. (CNTIC) to supply the plant, Chinese sources say. The UK contractor, which competed against Mitsui Engineering Shipbuilding (Tokyo) and Lurgi (Frankfurt), has built a similar plant for BP in the UK, although using different technology. The new plant will require 54,000 m.t./year of methanol, which is available onsite. Carbon monoxide will be delivered from a new plant. The acetic acidmore » unit will joint two other acetic plants in China supplied some time ago by Uhde (Dortmund). SWCC is due to be integrated with two adjacent complexes to form Shanghai Pacific Chemical. Meanwhile, four groups are competing to supply a UOP-process aromatics complex for Jilin Chemical Industrial Corp. They are Toyo Engineering, Lurgi, Lucky/Foster Wheeler, and Eurotechnica. The complex will include plants with annual capacities for 115,000 m.t. of benzene, 90,000 m.t. of ortho-xylene, 93,000 m.t. of mixed xylenes, and 20,000 m.t. of toluene. The plants will form part of a $2-billion petrochemical complex based on a 300,000-m.t./year ethylene plant awarded last year to a consortium of Samsung Engineering and Linde. Downstream plants will have annual capacities for 120,000 m.t. of linear low-density polyethylene, 80,000 m.t. of ethylene oxide, 100,000 m.t. of ethylene glycol, 80,000 m.t. of phenol, 100,000 m.t. of acrylonitrile, 20,000 m.t. of sodium cyanide, 40,000 m.t. of phthalic anhydride, 40,000 m.t. of ethylene propylene rubber, 20,000 m.t. of styrene butadiene styrene, and 30,000 m.t. of acrylic fiber.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sar, B.
1992-12-31
Polymer colloids stabilized by polymeric surfactants are of great interest both commercially and academically. It has been found that these materials enhance latex stabilization in a number of applications. The polymeric surfactants are amphipathic block and graft copolymers containing both hydrophilic and hydrophobic moieties. The current study involved the synthesis of a series of amphipathic triblock copolymers, polyisobutylene-block-polyoxyethylene-block-polyisobutylene (PIB-b-POE-b-PIB), for use in the emulsion polymerization of styrene (STY), methyl methacrylate (MMA), and vinyl acetate (VAc). The stabilizing effectiveness of these triblock copolymers was studied as a function of their blocklength. When the molecular weight of the POE center block wasmore » changed from M{sub n} = 2,000 to 20,000 g/mole, stable lattices were obtained in emulsion polymerization with MMA, STY, and VAc as the monomers. In all cases, the polymerization rates remained constant, while the number of particles/volume decreased with increasing POE chain length. When the molecular weight of the PIB end blocks was changed from M{sub n} = 400 to 2,600 g/mole keeping the molecular weight of the POE center block constant at M{sub n} = 20,000 g/mole, the poly(methyl methacrylate) and poly(vinyl acetate) lattices exhibited similar behavior, i.e., the number of particles and particle sizes remained the same, but the rate of polymerization reached a maximum at 87 wt% POE content. In the case of poly(styrene) both the rate of polymerization and the number of particles remained constant. The emulsion polymerization of other monomers such as butadiene, acrylonitrile, methyl acrylate, ethyl acrylate, and butyl acrylate was carried out by using one triblock copolymer, i.e., PIB(400)-b-POE (8,000)-b-PIB-(400). Stable lattices were also formed in all cases.« less
NASA Astrophysics Data System (ADS)
Russell, Bobby Glenn
Epoxy resins are thermosets with extraordinary adhesion; high strength; good resistance to creep, heat, and chemicals; and they have low shrinkage. Conversely, these polymers are brittle, they are sensitive to moisture, and they exhibit poor toughness. To improve their toughness, they are often modified by introducing dispersed rubber particles in the primary phase. In this study, the epoxy resin was modified with carboxyl-terminated butadiene acrylonitrile (CTBN), liquid-reactive rubbers. The initiator concentration, percent acrylonitrile in the CTBN rubber, and cure temperatures were altered to give varying materials properties. Statistical analysis of the morphology data showed that the percentage of rubber acrylonitrile had an effect on both the rubber particle size and volume fraction. The cure temperature had an effect on the rubber particle volume and modulus. Plots of the rubber particle size, volume fraction, and modulus versus bulk elastic storage modulus and fracture toughness revealed that rubber particle size had no effect on bulk properties, volume fraction and rubber particle modulus had an effect on both the bulk storage elastic modulus and fracture toughness.
Composite membranes of a block copolymer of styrene and butadiene (S-B-S) were cast on highly porous, hydrophobic thin films of PTFE, and used for the separation and recovery of volatile organic compounds (VOCs) from aqueous solutions by pervaporation. Trichloroethane, trichloroe...
Effect of shearing on the reinforcement properties of vital wheat gluten
USDA-ARS?s Scientific Manuscript database
An aqueous dispersion of vital wheat gluten and styrene-butadiene rubber was subjected to high-shear mixing in an attempt to reduce the aggregate size and enhance filler-matrix interactions with the goal of improving the reinforcement properties of the overall composite. Composites were formulated u...
21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.
Code of Federal Regulations, 2011 CFR
2011-04-01
... chemical reactions, other than addition reactions, occur when they are mixed. (2) Polymers identified in...; provided that no chemical reactions, other than addition reactions, occur when they are combined. Such... weight-percent of polymer units derived from butadiene-styrene copolymers. (c) No chemical reactions...
21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.
Code of Federal Regulations, 2010 CFR
2010-04-01
... chemical reactions, other than addition reactions, occur when they are mixed. (2) Polymers identified in...; provided that no chemical reactions, other than addition reactions, occur when they are combined. Such... weight-percent of polymer units derived from butadiene-styrene copolymers. (c) No chemical reactions...
Effect of Phthalic Anhydride Modified Soy Protein on Viscoelastic Properties of Polymer Composites
USDA-ARS?s Scientific Manuscript database
Phthalic anhydride (PA) modified soy protein isolates (SPI), both hydrolyzed and un-hydrolyzed, are investigated as reinforcement fillers in styrene-butadiene (SB) composites. The modification of SPI by PA increases the number of carboxylic acid functional groups on the protein surface and therefor...
A composite membrane was constructed on a porous ceramic support from a block copolymer of styrene and butadiene (SBS). It was tested in a laboratory pervaporation apparatus for recovering volatile organic compounds (VOCs) such a 1,1,1-trichloroethane (TCA) and trichloroethylene ...
21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.
Code of Federal Regulations, 2014 CFR
2014-04-01
...), (ii), and (iii) of this section; provided that no chemical reactions, other than addition reactions... their polymerization with butadiene-styrene copolymers; provided that no chemical reactions, other than addition reactions, occur when they are combined. Such combined polymers may contain 50 weight-percent or...
Composite membranes of a block copolymer of styrene and butadiene (S-B-S) were cast on highly porous, hydrophobic thin films of PTFE and used for the separation and recovery of volatile organic compounds (VOCs) from aqueous solutions by pervaporation. Trichloroethane, trichloroe...
NASA Astrophysics Data System (ADS)
Norizan, Nabila Najwa; Santiagoo, Ragunathan; Ismail, Hanafi
2017-07-01
The fabrication of High Density Polyethylene (HDPE)/ Acrylonitrile-butadiene rubber (NBR)/ Palm Pressed Fibre (PPF) composite were investigated. The effect of γ-Aminopropyltriethoxy Silane (APS) as coupling agent on the properties of HDPE/ NBR/ PPF composite were studied. The composites were melt mixed using heated two roll mill at 180°C and speed of 15rpm with six different loading (100/0/10, 80/20/10, 70/30/10, 60/40/10, 50/50/10, and 40/60/10). The effects of γ-APS silane on mechanical, and morphological properties were examined using universal tensile machine (UTM) and scanning electron microscopy (SEM), respectively. Tensile strength and Young's modulus of HDPE/ NBR/ PPF composites decrease with increasing of NBR loading, whilst increasing the elongation at break. However, treated composites have resulted 3% to 29%, and 9% to 19%, higher in tensile strength and young's modulus compared to untreated composites. This was due to the better adhesion between HDPE/ NBR matrices and PPF filler with the presence of silanol moieties. From the morphological study, the micrograph of treated composites has proved the well bonded and good attachment of PPF filler with HDPE/ NBR matrices which resulted to better tensile strength to the HDPE/ NBR/ PPF composites.
NASA Astrophysics Data System (ADS)
Reinholds, Ingars; Kalkis, Valdis; Merijs-Meri, Remo; Zicans, Janis; Grigalovica, Agnese
2016-03-01
In this study, heat-shrinkable composites of electron beam irradiated high-density polyethylene (HDPE) composites with acrylonitrile-butadiene rubber (NBR) were investigated. HDPE/NBR blends at a ratio of components 100/0, 90/10, 80/20, 50/50 and 20/80 wt% were prepared using a two-roll mill. The compression molded films were irradiated high-energy (5 MeV) accelerated electrons up to irradiation absorbed doses of 100-300 kGy. The effect of electron beam induced cross-linking was evaluated by the changes of mechanical properties, gel content and by the differences of thermal properties, detected by differential scanning calorimetry. The thermo-shrinkage forces were determined as the kinetics of thermorelaxation and the residual shrinkage stresses of previously oriented (stretched up to 100% at above melting temperature of HDPE and followed by cooling to room temperature) specimens of irradiated HDPE/NBR blends under isometric heating-cooling mode. The compatibility between the both components was enhanced due to the formation of cross-linked sites at amorphous interphase. The results showed increase of mechanical stiffness of composites with increase of irradiation dose. The values of gel fraction compared to thermorelaxation stresses increased with the growth of irradiation dose level, as a result of formation cross-linked sites in amorphous PP/NBR interphase.
Resistance of gloves and protective clothing materials to permeation of cytostatic solutions.
Krzemińska, Sylwia; Pośniak, Małgorzata; Szewczyńska, Małgorzata
2018-01-15
The objective of the work was to determine the resistance of selected protective clothing and glove materials to permeation of cytostatics such as docetaxel, fluorouracil, and doxorubicin. The following glove materials were used: natural rubber latex (code A), acrylonitrile-butadiene rubber (code B) and chloroprene rubber (code C). In addition, we tested a layered material composed of a non-woven polyester (PES), a polypropylene (PP) film, and a non-woven PP used for protective coats (code D). The cytostatics were analyzed by liquid chromatography with diode array detection. The tested samples were placed in a purpose-built permeation cell modified to be different from that specified in the standard EN 6529:2001. The tested materials were characterized by good resistance to solutions containing 2 out of the 3 selected cytostatics: doxorubicin and 5-fluorouracil, as indicated by a breakthrough time of over 480 min. Equally high resistance to permeation of the third cytostatic (docetaxel) was exhibited by natural rubber latex, acrylonitrile-butadiene rubber, and chloroprene rubber. However, docetaxel permeated much more readily through the clothing layered material, compromising its barrier properties. It was found that the presence of additional components in cytostatic preparations accelerated permeation through material samples, thus deteriorating their barrier properties. Int J Occup Med Environ Health 2018;31(3):341-350. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
NASA Astrophysics Data System (ADS)
Othman, Nurul Syazwani; Santiagoo, Ragunathan; Abdillahi, Khalid Mohamed; Ismail, Hanafi
2017-07-01
The fabrication of polypropylene (PP)/ recycled acrylonitrile butadiene rubber (NBRr)/ empty fruit bunch (EFB) composites were investigated. The effects of polypropylene maleic anhydride (PPMAH) as a compatibilizer on the mechanical and morphological properties of PP/NBRr/EFB composites were studied. Composites were prepared through melt mixing using heated two roll mill at 180 °C for 9 minutes and rotor speed of 15 rpm. NBRr loading were varied from 0 to 60 phr and PPMAH was fixed for 5 phr. The composites were moulded into a 1 mm thin sheet using hot press machine and then cut into dumbbell shape. The mechanical and morphological properties of composites were examined using universal tensile machine (UTM) and scanning electron microscope (SEM), respectively. Tensile strength and Young's modulus of PP/NBRr/EFB composites decreased with increasing NBRr loading, whilst increasing the elongation at break. However, PPMAH compatibilized composites have resulted 27% to 40% and 25% to 42% higher tensile strength and Young's modulus, respectively, higher compared to uncompatibilized composites. This was due to the better adhesion between PP/NBRr matrices and EFB filler with the presence of maleic anhydride moieties. From the morphological study, the micrograph of PPMAH compatibilized composites has proved the well bonded and good attachments of EFB filler with PP/NBRr matrices which results better tensile strength to the PP/NBRr/EFB composites.
21 CFR 176.170 - Components of paper and paperboard in contact with aqueous and fatty foods.
Code of Federal Regulations, 2013 CFR
2013-04-01
... acrylamide monomer and having an average nitrogen content of 14.9 percent such that a 1 percent by weight... ethylenediamine sulfate having a nitrogen content of 22.5-25.0 percent (Kjeldahl dry basis) and containing no more.... Acrylonitrile polymer with styrene, reaction product with ethylenediamine acetate, having a nitrogen content of...
21 CFR 176.170 - Components of paper and paperboard in contact with aqueous and fatty foods.
Code of Federal Regulations, 2012 CFR
2012-04-01
... acrylamide monomer and having an average nitrogen content of 14.9 percent such that a 1 percent by weight... ethylenediamine sulfate having a nitrogen content of 22.5-25.0 percent (Kjeldahl dry basis) and containing no more.... Acrylonitrile polymer with styrene, reaction product with ethylenediamine acetate, having a nitrogen content of...
NASA Astrophysics Data System (ADS)
Qi, Yanli; Xiang, Bo; Tan, Wubin; Zhang, Jun
2017-10-01
Hydrophobic surface modification of TiO2 was conducted for production of acrylonitrile-styrene-acrylate (ASA) terpolymer/titanium dioxide (TiO2) composited cool materials. Different amount of 3-methacryloxypropyl-trimethoxysilane (MPS) was employed to change hydrophilic surface of TiO2 into hydrophobic surface. The hydrophobic organosilane chains were successfully grafted onto TiO2 through Sisbnd Osbnd Ti bonds, which were verified by Fourier transformed infrared spectra and X-ray photoelectron spectroscopy. The water contact angle of the sample added with TiO2 modified by 5 wt% MPS increased from 86° to 113°. Besides, all the ASA/TiO2 composites showed significant improvement in both solar reflectance and cooling property. The reflectance of the composites throughout the near infrared (NIR) region and the whole solar wavelength is increased by 113.92% and 43.35% compared with pristine ASA resin. Simultaneously, significant drop in temperature demonstrates excellent cooling property. A maximum decrease approach to 27 °C was observed in indoor temperature test, while a decrease around 9 °C tested outdoors is achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, R.E.
This report describes the analysis of carbonxyl-terminated butadiene (CTB), carboxyl-terminated butadiene/acrylonitrile (CTBN), and a CTBN adduct prepared by reaction with Epon 828. Data from gel permeation chromatography, nuclear magnetic resonance spectroscopy, high performance liquid chromatography, and ion chromatography are presented and discussed. Quantitative methods based on carbon-13 and proton NMR for analyzing CTBN are described. Proton NMR was found to be useful in identifying lots that have an abnormal amount of CTBN protons. One such lot exhibited a phase separation of a polybutadiene impurity. Carbon-13 NMR was found to be capable of determining nitrile content directly. Carbon-13 NMR had amore » relative standard deviation of 8.3% and a proton NMR of 3.9%. Proton NMR was found to be useful in identifying lots that have 5% more CTBN protons than other lots. 3 refs., 11 figs., 4 tabs.« less
21 CFR 175.300 - Resinous and polymeric coatings.
Code of Federal Regulations, 2014 CFR
2014-04-01
... triglycerides or fatty acids derived from the oils listed in paragraph (b)(3)(i) of this section to form esters.... Maleic anhydride adduct of butadiene styrene. Polybutadiene. (iv) Natural fossil resins, as the basic... with: Maleic anhydride. o-, m-, and p-substituted phenol-form-alde-hydes listed in paragraph (b)(3)(vi...
USDA-ARS?s Scientific Manuscript database
Reinforcement effect of cryogenically fractured soy Flour composite filler in soft polymer was investigated in this study. Polymer composites were prepared by melt-mixing polymer and soy flour composite fillers in an internal mixer. Soy flour composite fillers were prepared by blending aqueous dis...
Code of Federal Regulations, 2010 CFR
2010-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... engineering assessment, as described in paragraph (c)(2) of this section. (1) The owner or operator may choose... run. (2) The owner or operator may use engineering assessment to demonstrate compliance with the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... engineering assessment, as described in paragraph (c)(2) of this section. (1) The owner or operator may choose... run. (2) The owner or operator may use engineering assessment to demonstrate compliance with the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... engineering assessment, as described in paragraph (c)(2) of this section. (1) The owner or operator may choose... run. (2) The owner or operator may use engineering assessment to demonstrate compliance with the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... engineering assessment, as described in paragraph (c)(2) of this section. (1) The owner or operator may choose... run. (2) The owner or operator may use engineering assessment to demonstrate compliance with the...
Utilization of low-ash biochar to partially replace carbon black in SBR composites
USDA-ARS?s Scientific Manuscript database
A biochar made from woody waste feedstock with low ash content was blended with carbon black as filler for styrene-butadiene rubber. At 10% total filler concentration (w/w), composites made from 25 or 50% biochar showed improved tensile strength, elongation, and toughness compared to similar composi...
USDA-ARS?s Scientific Manuscript database
The corn flour composite fillers were prepared by blending corn flour with rubber latex, dried, and cryogenically ground into powders, which were then melt-blended with rubber polymers in an internal mixer to form composites with enhanced mechanical properties. The composites prepared with melt-blen...
USDA-ARS?s Scientific Manuscript database
The aggregate structure of phthalic anhydride (PA) modified soy protein isolate (SPI) was investigated by estimating its fractal dimension from the equilibrated dynamic strain sweep experiments. The estimated fractal dimensions of the filler aggregates were less than 2, indicating that these partic...
USDA-ARS?s Scientific Manuscript database
Wheat gluten (WG) and wheat starch (WS) are the protein and carbohydrate obtained from wheat flours. Wheat gluten is not water soluble or dispersible due to its hydrophobic nature. To prepare wheat gluten dispersions, an alkali hydrolysis reaction was carried out to produce a stable aqueous disper...
NASA Astrophysics Data System (ADS)
Shanmugharaj, A. M.; Bhowmick, Anil K.
2004-01-01
The rheological properties of styrene-butadiene rubber (SBR) loaded with dual phase filler were measured using Monsanto Processability Tester (MPT) at three different temperatures (100°C, 110°C and 130°C) and four different shear rates (61.3, 306.3, 613, and 1004.5 s -1). The effect of electron beam modification of dual phase filler in absence and presence of trimethylol propane triacrylate (TMPTA) or triethoxysilylpropyltetrasulphide (Si-69) on melt flow properties of SBR was also studied. The viscosity of all the systems decreases with shear rate indicating their pseudoplastic or shear thinning nature. The higher shear viscosity for the SBR loaded with the electron beam modified filler is explained in terms of variation in structure of the filler upon electron beam irradiation. Die swell of the modified filler loaded SBR is slightly higher than that of the unmodified filler loaded rubber, which is explained by calculating normal stress difference for the systems. Activation energy of the modified filler loaded SBR systems is also slightly higher than that of the control filler loaded SBR system.
Cao, Xiaodong; Xu, Chuanhui; Liu, Yuhong; Chen, Yukun
2013-01-30
A series of carboxylated styrene-butadiene rubber (XSBR)/cellulose nanocrystals (CNs) latex composites were successfully prepared. The vulcanization process, morphology, dynamic viscoelastic behavior, dynamic mechanical property, thermal and mechanical performance of the XSBR/CNs composites were investigated in detail. The results revealed that CNs were dispersed uniformly in the XSBR matrix and formed a strong filler-filler network. The dynamic mechanical analysis (DMA) showed that the glass transition temperature (T(g)) of XSBR matrix was shifted from 48.45 to 50.64 °C with 3 phr CNs, but decreased from 50.64 to 46.28 °C when further increasing CNs content up to 15 phr. The composites exhibited a significant enhancement in tensile strength (from 16.9 to 24.1 MPa) and tear strength (from 43.5 to 65.2 MPa) with loading CNs from 0 to 15 phr. In addition, the thermo-gravimetric analysis (TGA) showed that the temperature at 5% weight loss of the XSBR/CNs composites decreased slightly with an increase of the CNs content. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Stults, Cheryl L M; Ansell, Jennifer M; Shaw, Arthur J; Nagao, Lee M
2015-02-01
Polymeric materials are often used in pharmaceutical packaging, delivery systems, and manufacturing components. There is continued concern that chemical entities from polymeric components may leach into various dosage forms, particularly those that are comprised of liquids such as parenterals, injectables, ophthalmics, and inhalation products. In some cases, polymeric components are subjected to routine extractables testing as a control measure. To reduce the risk of discovering leachables during stability studies late in the development process, or components that may fail extractables release criteria, it is proposed that extractables testing on polymer resins may be useful as a screening tool. Two studies have been performed to evaluate whether the extractables profile generated from a polymer resin is representative of the extractables profile of components made from that same resin. The ELSIE Consortium pilot program examined polyvinyl chloride and polyethylene, and another study evaluated polypropylene and a copolymer of polycarbonate and acrylonitrile butadiene styrene. The test materials were comprised of polymer resin and processed resin or molded components. Volatile, semi-volatile, and nonvolatile chemical profiles were evaluated after headspace sampling and extraction with solvents of varying polarity and pH. The findings from these studies indicate that there may or may not be differences between extractables profiles obtained from resins and processed forms of the resin depending on the type of material, the compounds of interest, and extraction conditions used. Extractables testing of polymer resins is useful for material screening and in certain situations may replace routine component testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinho, Graca; Pires, Ana, E-mail: ana.lourenco.pires@gmail.com; Saraiva, Luanha
Highlights: Black-Right-Pointing-Pointer The article shows WEEE plastics characterization from a recycling unit in Portugal. Black-Right-Pointing-Pointer The recycling unit has low machinery, with hand sorting of plastics elements. Black-Right-Pointing-Pointer Most common polymers are PS, ABS, PC/ABS, HIPS and PP. Black-Right-Pointing-Pointer Most plastics found have no identification of plastic type or flame retardants. Black-Right-Pointing-Pointer Ecodesign is still not practiced for EEE, with repercussions in end of life stage. - Abstract: This paper describes a direct analysis study carried out in a recycling unit for waste electrical and electronic equipment (WEEE) in Portugal to characterize the plastic constituents of WEEE. Approximately 3400 items,more » including cooling appliances, small WEEE, printers, copying equipment, central processing units, cathode ray tube (CRT) monitors and CRT televisions were characterized, with the analysis finding around 6000 kg of plastics with several polymer types. The most common polymers are polystyrene, acrylonitrile-butadiene-styrene, polycarbonate blends, high-impact polystyrene and polypropylene. Additives to darken color are common contaminants in these plastics when used in CRT televisions and small WEEE. These additives can make plastic identification difficult, along with missing polymer identification and flame retardant identification marks. These drawbacks contribute to the inefficiency of manual dismantling of WEEE, which is the typical recycling process in Portugal. The information found here can be used to set a baseline for the plastics recycling industry and provide information for ecodesign in electrical and electronic equipment production.« less
High regression rate hybrid rocket fuel grains with helical port structures
NASA Astrophysics Data System (ADS)
Walker, Sean D.
Hybrid rockets are popular in the aerospace industry due to their storage safety, simplicity, and controllability during rocket motor burn. However, they produce fuel regression rates typically 25% lower than solid fuel motors of the same thrust level. These lowered regression rates produce unacceptably high oxidizer-to-fuel (O/F) ratios that produce a potential for motor instability, nozzle erosion, and reduced motor duty cycles. To achieve O/F ratios that produce acceptable combustion characteristics, traditional cylindrical fuel ports are fabricated with very long length-to-diameter ratios to increase the total burning area. These high aspect ratios produce further reduced fuel regression rate and thrust levels, poor volumetric efficiency, and a potential for lateral structural loading issues during high thrust burns. In place of traditional cylindrical fuel ports, it is proposed that by researching the effects of centrifugal flow patterns introduced by embedded helical fuel port structures, a significant increase in fuel regression rates can be observed. The benefits of increasing volumetric efficiencies by lengthening the internal flow path will also be observed. The mechanisms of this increased fuel regression rate are driven by enhancing surface skin friction and reducing the effect of boundary layer "blowing" to enhance convective heat transfer to the fuel surface. Preliminary results using additive manufacturing to fabricate hybrid rocket fuel grains from acrylonitrile-butadiene-styrene (ABS) with embedded helical fuel port structures have been obtained, with burn-rate amplifications up to 3.0x than that of cylindrical fuel ports.
Airborne emissions of carcinogens and respiratory sensitizers during thermal processing of plastics.
Unwin, John; Coldwell, Matthew R; Keen, Chris; McAlinden, John J
2013-04-01
Thermoplastics may contain a wide range of additives and free monomers, which themselves may be hazardous substances. Laboratory studies have shown that the thermal decomposition products of common plastics can include a number of carcinogens and respiratory sensitizers, but very little information exists on the airborne contaminants generated during actual industrial processing. The aim of this work was to identify airborne emissions during thermal processing of plastics in real-life, practical applications. Static air sampling was conducted at 10 industrial premises carrying out compounding or a range of processes such as extrusion, blown film manufacture, vacuum thermoforming, injection moulding, blow moulding, and hot wire cutting. Plastics being processed included polyvinyl chloride, polythene, polypropylene, polyethylene terephthalate, and acrylonitrile-butadiene-styrene. At each site, static sampling for a wide range of contaminants was carried out at locations immediately adjacent to the prominent fume-generating processes. The monitoring data indicated the presence of few carcinogens at extremely low concentrations, all less than 1% of their respective WEL (Workplace Exposure Limit). No respiratory sensitizers were detected at any sites. The low levels of process-related fume detected show that the control strategies, which employed mainly forced mechanical general ventilation and good process temperature control, were adequate to control the risks associated with exposure to process-related fume. This substantiates the advice given in the Health and Safety Executive's information sheet No 13, 'Controlling Fume During Plastics Processing', and its broad applicability in plastics processing in general.
[Rapid 3-Dimensional Models of Cerebral Aneurysm for Emergency Surgical Clipping].
Konno, Takehiko; Mashiko, Toshihiro; Oguma, Hirofumi; Kaneko, Naoki; Otani, Keisuke; Watanabe, Eiju
2016-08-01
We developed a method for manufacturing solid models of cerebral aneurysms, with a shorter printing time than that involved in conventional methods, using a compact 3D printer with acrylonitrile-butadiene-styrene(ABS)resin. We further investigated the application and utility of this printing system in emergency clipping surgery. A total of 16 patients diagnosed with acute subarachnoid hemorrhage resulting from cerebral aneurysm rupture were enrolled in the present study. Emergency clipping was performed on the day of hospitalization. Digital Imaging and Communication in Medicine(DICOM)data obtained from computed tomography angiography(CTA)scans were edited and converted to stereolithography(STL)file formats, followed by the production of 3D models of the cerebral aneurysm by using the 3D printer. The mean time from hospitalization to the commencement of surgery was 242 min, whereas the mean time required for manufacturing the 3D model was 67 min. The average cost of each 3D model was 194 Japanese Yen. The time required for manufacturing the 3D models shortened to approximately 1 hour with increasing experience of producing 3D models. Favorable impressions for the use of the 3D models in clipping were reported by almost all neurosurgeons included in this study. Although 3D printing is often considered to involve huge costs and long manufacturing time, the method used in the present study requires shorter time and lower costs than conventional methods for manufacturing 3D cerebral aneurysm models, thus making it suitable for use in emergency clipping.
NASA Technical Reports Server (NTRS)
Kuentz, Lily; Salem, Anton; Singh, M.; Halbig, M. C.; Salem, J. A.
2016-01-01
Additive manufacturing of polymeric systems using 3D printing has become quite popular recently due to rapid growth and availability of low cost and open source 3D printers. Two widely used 3D printing filaments are based on polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) systems. PLA is much more environmentally friendly in comparison to ABS since it is made from renewable resources such as corn, sugarcane, and other starches as precursors. Recently, polylactic acid-based metal powder containing composite filaments have emerged which could be utilized for multifunctional applications. The composite filaments have higher density than pure PLA, and the majority of the materials volume is made up of polylactic acid. In order to utilize functionalities of composite filaments, printing behavior and properties of 3-D printed composites need to be characterized and compared with the pure PLA materials. In this study, pure PLA and composite specimens with different metallic reinforcements (Copper, Bronze, Tungsten, Iron, etc) were 3D printed at various layer heights and resulting microstructures and properties were characterized. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) behavior of filaments with different reinforcements were studied. The microscopy results show an increase in porosity between 3-D printed regular PLA and the metal composite PLA samples, which could produce weaker mechanical properties in the metal composite materials. Tensile strength and fracture toughness behavior of specimens as a function of print layer height will be presented.
3D printed soft parallel actuator
NASA Astrophysics Data System (ADS)
Zolfagharian, Ali; Kouzani, Abbas Z.; Khoo, Sui Yang; Noshadi, Amin; Kaynak, Akif
2018-04-01
This paper presents a 3-dimensional (3D) printed soft parallel contactless actuator for the first time. The actuator involves an electro-responsive parallel mechanism made of two segments namely active chain and passive chain both 3D printed. The active chain is attached to the ground from one end and constitutes two actuator links made of responsive hydrogel. The passive chain, on the other hand, is attached to the active chain from one end and consists of two rigid links made of polymer. The actuator links are printed using an extrusion-based 3D-Bioplotter with polyelectrolyte hydrogel as printer ink. The rigid links are also printed by a 3D fused deposition modelling (FDM) printer with acrylonitrile butadiene styrene (ABS) as print material. The kinematics model of the soft parallel actuator is derived via transformation matrices notations to simulate and determine the workspace of the actuator. The printed soft parallel actuator is then immersed into NaOH solution with specific voltage applied to it via two contactless electrodes. The experimental data is then collected and used to develop a parametric model to estimate the end-effector position and regulate kinematics model in response to specific input voltage over time. It is observed that the electroactive actuator demonstrates expected behaviour according to the simulation of its kinematics model. The use of 3D printing for the fabrication of parallel soft actuators opens a new chapter in manufacturing sophisticated soft actuators with high dexterity and mechanical robustness for biomedical applications such as cell manipulation and drug release.
Electrical Conductivity in Polymer Blends/ Multiwall Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Kulkarni, Ajit R.; Bose, Suryasarathi; Bhattacharyya, Arup R.
2008-10-01
Carbon nanotubes (CNT) based polymer composites have emerged as the future multifunctional materials in view of its exceptional mechanical, thermal and electrical properties. One of the major interests is to develop conductive polymer composites preferably at low concentration of CNT utilizing their high aspect ratio (L/D) for numerous applications, which include antistatic devices, capacitors and materials for EMI shielding. In this context, polymer blends have emerged as a potential candidate in lowering the percolation thresholds further by the utilization of `double-percolation' which arises from the synergistic improvements in blend properties associated with the co-continuous morphology. Due to strong inter-tube van der Waals' forces, they often tend to aggregate and uniform dispersion remains a challenge. To overcome this challenge, we exploited sodium salt of 6-aminohexanoic acid (Na-AHA) which was able to assist in debundlling the multiwall carbon nanotubes (MWNT) through `cation-π' interactions during melt-mixing leading to percolative `network-like' structure of MWNT within polyamide6 (PA6) phase in co-continuous PA6/acrylonitrile butadiene styrene (ABS) blends. The composite exhibited low electrical percolation thresholds of 0.25 wt% of MWNT, the lowest reported value in this system so far. Retention of `network-like structure' in the solid state with significant refinement was observed even at lower MWNT concentration in presence Na-AHA, which was assessed through AC electrical conductivity measurements. Reactive coupling was found to be a dominant factor besides `cation-π' interactions in achieving low electrical percolation in PA6/ABS+MWNT composites.
NASA Astrophysics Data System (ADS)
Shen, Shuwei; Zhao, Zuhua; Wang, Haili; Han, Yilin; Dong, Erbao; Liu, Bin; Liu, Wendong; Cromeens, Barrett; Adler, Brent; Besner, Gail; Ray, William; Hoehne, Brad; Xu, Ronald
2016-03-01
Appropriate surgical planning is important for improved clinical outcome and minimal complications in many surgical operations, such as a conjoined twin separation surgery. We combine 3D printing with casting and assembling to produce a solid phantom of high fidelity to help surgeons for better preparation of the conjoined twin separation surgery. 3D computer models of individual organs were reconstructed based on CT scanned data of the conjoined twins. The models were sliced, processed, and converted to an appropriate format for Fused Deposition Modeling (FDM). The skeletons of the phantom were printed directly by FDM using Acrylonitrile-Butadiene-Styrene (ABS) material, while internal soft organs were fabricated by casting silicon materials of different compositions in FDM printed molds. The skeleton and the internal organs were then assembled with appropriate fixtures to maintain their relative positional accuracies. The assembly was placed in a FMD printed shell mold of the patient body for further casting. For clear differentiation of different internal organs, CT contrast agents of different compositions were added in the silicon cast materials. The produced phantom was scanned by CT again and compared with that of the original computer models of the conjoined twins in order to verify the structural and positional fidelity. Our preliminary experiments showed that combining 3D printing with casting is an effective way to produce solid phantoms of high fidelity for the improved surgical planning in many clinical applications.
Flammability of self-extinguishing kenaf/ABS nanoclays composite for aircraft secondary structure
NASA Astrophysics Data System (ADS)
Karunakaran, S.; Majid, D. L.; Mohd Tawil, M. L.
2016-10-01
This study investigates the flammability properties of kenaf fiber reinforced acrylonitrile butadiene styrene (ABS) with nanoclays composites. Natural fiber is one of the potential materials to be used with thermoplastic as a composite due to its attractive properties such as lightweight and strong. In this paper, flammability properties of this material are evaluated through Underwriters Laboratory 94 Horizontal Burning (UL94 HB), which has been conducted for both controlled and uncontrolled conditions, smoke density and limiting oxygen index tests (LOI). These flammability tests are in compliance with the Federal Aviation Regulation (FAR) requirement. The results from UL94 HB and smoke density tests show that the presence of nanoclays with effective composition of kenaf fiber reinforced ABS has enhanced the burning characteristics of the material by hindering propagation of flame spread over the surface of the material through char formation. Consequently, this decreases the burning rate and produces low amount of smoke during burning. On contrary, through LOI test, this material requires less oxygen to burn when exposed to fire, which hinders the enhancement of burning characteristics. This is due to burning mechanism exhibited by nanoclays that catalyzes barrier formation and flame propagation rate over the surface of the biocomposite material. Overall, these experimental results suggest that this biocomposite material is capable of self-extinguishing and possesses effective fire extinction. The observed novel synergism from the result obtained is promising to be implemented in secondary structures of aircraft with significant benefits such as cost-effective, lightweight and biodegradable self-extinguishing biocomposite.
Li, Zhi; Tevis, Ian D; Oyola-Reynoso, Stephanie; Newcomb, Lucas B; Halbertsma-Black, Julian; Bloch, Jean-Francis; Thuo, Martin
2015-12-01
Interest in low-cost analytical devices (especially for diagnostics) has recently increased; however, concomitant translation to the field has been slow, in part due to personnel and supply-chain challenges in resource-limited settings. Overcoming some of these challenges require the development of a method that takes advantage of locally available resources and/or skills. We report a Melt-and-mold fabrication (MnM Fab) approach to low-cost and simple devices that has the potential to be adapted locally since it requires a single material that is recyclable and simple skills to access multiple devices. We demonstrated this potential by fabricating entry level bio-analytical devices using an affordable low-melting metal alloy, Field's metal, with molds produced from known materials such as plastic (acrylonitrile-butadiene-styrene (ABS)), glass, and paper. We fabricated optical gratings then 4×4 well plates using the same recycled piece of metal. We then reconfigured the well plates into rapid prototype microfluidic devices with which we demonstrated laminar flow, droplet generation, and bubble formation from T-shaped channels. We conclude that this MnM-Fab method is capable of addressing some challenges typically encountered with device translation, such as technical know-how or material supply, and that it can be applied to other devices, as needed in the field, using a single moldable material. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Le; Han, Enlin; Wu, Yulun; Wang, Xiaodong; Wu, Dezhen
2018-06-01
The surface decoration of short-cut polyimide (PI) fibers with multi-walled carbon nanotubes (MWCNTs) was performed by fabricating a polydopamine (PDA) coating layer on the fiber surface and then immobilizing MWCNTs onto the coating layer via covalent bonding. This successful surface decoration was confirmed by scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared microscopy and static water contact angle. The application of the surface-decorated PI fibers as reinforcing fibers for reinforcement of polycarbonate (PC)/acrylonitrile-butadiene-styrene copolymer (ABS) alloy was investigated, which indicated that the MWCNTs-decorated PI fibers not only could effectively reinforce the PC/ABS alloy but also generated a significant lightweighting effect on the resulting composites. The maximum mechanical properties were achieved for the composites at a fiber content of 20 wt.% and a fiber length of 3 mm. This significant reinforcement effect is attributed to the enhancement of interaction bonding strength between the fibers and matrix as a result of the surface decoration of PI fibers with MWCNTs. The morphological investigation suggested that fiber rupture was the major energy dissipation mechanism in the tensile and impact failures, whereas fiber debonding and pullout were partly involved in the fracture energy dissipation. In addition, the presence of surface-decorated PI fibers slightly enhanced the thermal stability and load bearing capability of composites. This work can provide a type of high-performance lightweight composite material for automobile and aviation industries.
A Novel Temporal Bone Simulation Model Using 3D Printing Techniques.
Mowry, Sarah E; Jammal, Hachem; Myer, Charles; Solares, Clementino Arturo; Weinberger, Paul
2015-09-01
An inexpensive temporal bone model for use in a temporal bone dissection laboratory setting can be made using a commercially available, consumer-grade 3D printer. Several models for a simulated temporal bone have been described but use commercial-grade printers and materials to produce these models. The goal of this project was to produce a plastic simulated temporal bone on an inexpensive 3D printer that recreates the visual and haptic experience associated with drilling a human temporal bone. Images from a high-resolution CT of a normal temporal bone were converted into stereolithography files via commercially available software, with image conversion and print settings adjusted to achieve optimal print quality. The temporal bone model was printed using acrylonitrile butadiene styrene (ABS) plastic filament on a MakerBot 2x 3D printer. Simulated temporal bones were drilled by seven expert temporal bone surgeons, assessing the fidelity of the model as compared with a human cadaveric temporal bone. Using a four-point scale, the simulated bones were assessed for haptic experience and recreation of the temporal bone anatomy. The created model was felt to be an accurate representation of a human temporal bone. All raters felt strongly this would be a good training model for junior residents or to simulate difficult surgical anatomy. Material cost for each model was $1.92. A realistic, inexpensive, and easily reproducible temporal bone model can be created on a consumer-grade desktop 3D printer.
3D Printed Surgical Simulation Models as educational tool by maxillofacial surgeons.
Werz, S M; Zeichner, S J; Berg, B-I; Zeilhofer, H-F; Thieringer, F
2018-02-26
The aim of this study was to evaluate whether inexpensive 3D models can be suitable to train surgical skills to dental students or oral and maxillofacial surgery residents. Furthermore, we wanted to know which of the most common filament materials, acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA), can better simulate human bone according to surgeons' subjective perceptions. Upper and lower jaw models were produced with common 3D desktop printers, ABS and PLA filament and silicon rubber for soft tissue simulation. Those models were given to 10 blinded, experienced maxillofacial surgeons to perform sinus lift and wisdom teeth extraction. Evaluation was made using a questionnaire. Because of slightly different density and filament prices, each silicon-covered model costs between 1.40-1.60 USD (ABS) and 1.80-2.00 USD (PLA) based on 2017 material costs. Ten experienced raters took part in the study. All raters deemed the models suitable for surgical education. No significant differences between ABS and PLA were found, with both having distinct advantages. The study demonstrated that 3D printing with inexpensive printing filaments is a promising method for training oral and maxillofacial surgery residents or dental students in selected surgical procedures. With a simple and cost-efficient manufacturing process, models of actual patient cases can be produced on a small scale, simulating many kinds of surgical procedures. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Sukumar, Chand; Ramachandran, K. I.
2016-09-01
Leg amputation is a major consequence of aggregated foot ulceration in diabetic patients. A common sense based treatment approach for diabetic foot ulceration is foot offloading where the patient is required to wear a foot offloading orthosis during the entire treatment course. Removable walker is an excellent foot offloading modality compared to the golden standard solution - total contact cast and felt padding. Commercially available foot offloaders are generally customized with huge cost and less patient compliance. This work suggests an optimized 3D model of a new type light weight removable foot offloading orthosis for diabetic patients. The device has simple adjustable features which make this suitable for wide range of patients with weight of 35 to 74 kg and height of 137 to 180 cm. Foot plate of this orthosis is unisexual, with a size adjustability of (US size) 6 to 10. Materials like Aluminum alloy 6061-T6, Acrylonitrile Butadiene Styrene (ABS) and Polyurethane acted as the key player in reducing weight of the device to 0.804 kg. Static analysis of this device indicated that maximum stress developed in this device under a load of 1000 N is only 37.8 MPa, with a small deflection of 0.150 cm and factor of safety of 3.28, keeping the safety limits, whereas dynamic analysis results assures the load bearing capacity of this device. Thus, the proposed device can be safely used as an orthosis for offloading diabetic ulcerated foot.
Demonstration of passive saturable absorber by utilizing MWCNT-ABS filament as starting material
NASA Astrophysics Data System (ADS)
Zuikafly, S. N. F.; Ahmad, F.; Ibrahim, M. H.; Latif, A. A.; Harun, S. W.
2017-06-01
This work demonstrated a stable passively Q-switched laser with the employment MWCNTs dispersed in acrylonitrile butadiene styrene (ABS) resin (MWCNTs-ABS) based filament as passive saturable absorber. The simple fabrication process of the SA is further explained, started from the process of extruding the filament through a 3D printer nozzle at 210 °C to reduce the diameter from 1.75 mm to 200 μm. It is then weighed to about 25 mg and mixed with 1 ml acetone before sonicated for 5 minutes to dissolve the ABS. The resultant MWCNTs-acetone suspension is dropped on a glass slide to be characterized using Field-Emission Scanning Electron Microscope (FESEM) and Raman spectroscopy. It is also drop-casted on the end of a fiber ferrule to be integrated in the laser cavity. The proposed work revealed that the laser oscillated at about 1558 nm with threshold input pump power of 22.54 mW and maximum input pump power of 108.8 mW. The increase in pump power resulted in the increase in repetition rate where the pulse train increases from 8.96 kHz to 39.34 kHz while the pulse width decreases from 33.58 μs to 5.14 μs. The generated pulsed laser yields a maximum of 1.01 mW and 5.53 nJ of peak power and pulse energy respectively. The signal-to-noise ratio of 40 dB indicates that the generated pulse is stable.
NASA Astrophysics Data System (ADS)
Li, Kun; Gu, Boqin; Zhu, Wanfu
2017-03-01
A molecular dynamics (MD) simulations study is performed on multiwalled carbon nanotubes (MWNTs)/acrylonitrile-butadiene rubber (NBR) composites. The physisorption and interfacial characteristics between the various MWNTs and polymer macromolecular chains are identified. The effects of nanotube layers on the nanotubes/polymer interactions are examined. Each of the situation result and surface features is characterized by binding energy (Eb). It is shown that the binding energy (Eb) increase with the number of layers.
2001-10-01
SAE Rings, Sealing, Butadiene-Acrylonitrile ( NBR ), Rubber Fuel and Low Temperature Resistant 60 - 70 MIL-R-83248C Rubber , Fluorocarbon...KAPTON/TEFLON (COMPOSITE) WIRE I.I.10 34 VI. REFERENCE DOCUMENTS Non-Metallics MIL-HDBK-149B Military Standardization Hand Book Rubber ...ASTM D-1414 Standard Test Methods for Rubber O-Rings ASTM D-412 Type II Standard Test Methods for Vulcanized Rubber and Thermoplastic
Toughening of thermosetting polyimides
NASA Technical Reports Server (NTRS)
Gollob, D. S.; Mandell, J. F.; Mcgarry, F. J.
1979-01-01
Work directed toward increasing the resistance to crack propagation of thermoset polyimides is described. Rubber modification and Teflon microfiber impregnation techniques for increasing fracture toughness are investigated. Unmodified Kerimid 601 has a fracture surface work value of 0.20 in-lbs/sq in. Dispersed particles of amine terminated butadiene acrylonitrile liquid rubber or of silicone rubber do not raise this value much. By contrast, 5 percent of well fibrillated Teflon produces an eight-fold increase in fracture toughness. Further process improvements should increase this factor to 20-30.
Rubber-Modified Epoxies: Morphology and Mechanical Properties.
1980-09-01
matrix and enhances ductility. The elastomers used in the present study are carboxyl-terminated copolymers of butadiene and acrylonitrile ( CTBN ). The...marketed under the trade name Hycar CTBN . The structure of Hycar CTBN is HO - C(CH2CH = CHCH2)x--(CH2-CH) ) -C-OH o CN 0 where x : 5, y = I and z = 10...for a typical copolymer. (Properties of CTBN rubbers are found in ref. 8.) Two rubber modifiers, CTBN (X]3) and CTBN (X8), with 27 and 17 wt
A Fundamental Approach to Adhesion: Synthesis, Surface Analysis, Thermodynamics and Mechanics.
1978-02-01
Polyphenylquinoxaline LSS - Lap Shear Strength Pasa-Jell - Commercial acid etch (See p. 15 ) Turco - Commercial base etch (See p. 17 ) CTBN - Carboxyl-Terminated...solvent- cast films or powders. SEM/EDAX results were obtained from the fracture surfaces of lap-shear tested specimens. Epoxy and two epoxy/ CTBN bulk...A - - 24 CTBN 1300X8 (Goodrich carboxyl- 5 5 terminated butadiene-acrylonitrile) Piperidine 5 5 5 L9 III. RESULTS AND DISCUSS10N A. Titanium 6-4 (SEM
NASA Astrophysics Data System (ADS)
Masoomi, Mohsen; Katbab, Ali Asghar; Nazockdast, Hossein
2006-09-01
Attempts have been made for the first time to prepare a friction material with the characteristic of thermal sensitive modulus, by the inclusion of thermoplastic elastomers (TPE) as viscoelastic polymeric materials into the formulation in order to the increase the damping behavior of the cured friction material. Styrene butadiene styrene (SBS), styrene ethylene butylene styrene (SEBS) and nitrile rubber/polyvinyl chloride (NBR/PVC) blend system were used as TPE materials. In order to evaluate the viscoelastic parameters such as loss factor (tan δ) and storage modulus (E‧) for the friction material, dynamic mechanical analyzer (DMA) were used. Natural frequencies and mode shapes of friction material and brake disc were determined by modal analysis. However, NBR/PVC and SEBS were found to be much more effective in damping behavior. The results from this comparative study suggest that the damping characteristics of commercial friction materials can be strongly affected by the TPE ingredients. This investigation also confirmed that the specimens with high TPE content had low noise propensity.
Organic chemistry. A rhodium catalyst for single-step styrene production from benzene and ethylene.
Vaughan, Benjamin A; Webster-Gardiner, Michael S; Cundari, Thomas R; Gunnoe, T Brent
2015-04-24
Rising global demand for fossil resources has prompted a renewed interest in catalyst technologies that increase the efficiency of conversion of hydrocarbons from petroleum and natural gas to higher-value materials. Styrene is currently produced from benzene and ethylene through the intermediacy of ethylbenzene, which must be dehydrogenated in a separate step. The direct oxidative conversion of benzene and ethylene to styrene could provide a more efficient route, but achieving high selectivity and yield for this reaction has been challenging. Here, we report that the Rh catalyst ((Fl)DAB)Rh(TFA)(η(2)-C2H4) [(Fl)DAB is N,N'-bis(pentafluorophenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene; TFA is trifluoroacetate] converts benzene, ethylene, and Cu(II) acetate to styrene, Cu(I) acetate, and acetic acid with 100% selectivity and yields ≥95%. Turnover numbers >800 have been demonstrated, with catalyst stability up to 96 hours. Copyright © 2015, American Association for the Advancement of Science.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) PRIOR-SANCTIONED..., based on available scientific information and data. 1-Alkyl (C6-C18)3-amino-3-aminopropane monoacetate.* Borax or boric acid for use in adhesives, sizes, and coatings.* Butadiene-styrene copolymer. Chromium...
Code of Federal Regulations, 2014 CFR
2014-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... engineering assessment, as described in paragraph (c)(2) of this section. (1) The owner or operator may choose... sample run. (2) The owner or operator may use engineering assessment to demonstrate compliance with the...
USDA-ARS?s Scientific Manuscript database
Wheat gluten (WG) and wheat starch (WS) are the protein and carbohydrate obtained from wheat flours. Wheat gluten is not water soluble or dispersible due to its hydrophobic nature. To prepare wheat gluten dispersions, an alkali hydrolysis reaction was carried out to produce a stable aqueous disper...
Xu, Shiai; Song, Xiaoxue; Cai, Yangben
2016-07-29
In order to enhance the compatibilization and interfacial adhesion between epoxy and liquid carboxyl-terminated butadiene acrylonitrile (CTBN) rubber, an initiator was introduced into the mixture and heated to initiate the cross-linking reaction of CTBN. After the addition of curing agents, the CTBN/epoxy blends with a localized interpenetrating network structure were prepared. The mechanical properties and morphologies of pre-crosslinked and non-crosslinked CTBN/epoxy blends were investigated. The results show that the tensile strength, elongation at break and impact strength of pre-crosslinked CTBN/epoxy blends are significantly higher than those of non-crosslinked CTBN/epoxy blends, which is primarily due to the enhanced interfacial strength caused by the chemical bond between the two phases and the localized interpenetrating network structure. Both pre-crosslinked and non-crosslinked CTBN/epoxy blends show a bimodal distribution of micron- and nano-sized rubber particles. However, pre-crosslinked CTBN/epoxy blends have smaller micron-sized rubber particles and larger nano-sized rubber particles than non-crosslinked CTBN/epoxy blends. The dynamic mechanical analysis shows that the storage modulus of pre-crosslinked CTBN/epoxy blends is higher than that of non-crosslinked CTBN/epoxy blends. The glass transition temperature of the CTBN phase in pre-crosslinked CTBN/epoxy blends increases slightly compared with the CTBN/epoxy system. The pre-crosslinking of rubber is a promising method for compatibilization and controlling the morphology of rubber-modified epoxy materials.
Xu, Shiai; Song, Xiaoxue; Cai, Yangben
2016-01-01
In order to enhance the compatibilization and interfacial adhesion between epoxy and liquid carboxyl-terminated butadiene acrylonitrile (CTBN) rubber, an initiator was introduced into the mixture and heated to initiate the cross-linking reaction of CTBN. After the addition of curing agents, the CTBN/epoxy blends with a localized interpenetrating network structure were prepared. The mechanical properties and morphologies of pre-crosslinked and non-crosslinked CTBN/epoxy blends were investigated. The results show that the tensile strength, elongation at break and impact strength of pre-crosslinked CTBN/epoxy blends are significantly higher than those of non-crosslinked CTBN/epoxy blends, which is primarily due to the enhanced interfacial strength caused by the chemical bond between the two phases and the localized interpenetrating network structure. Both pre-crosslinked and non-crosslinked CTBN/epoxy blends show a bimodal distribution of micron- and nano-sized rubber particles. However, pre-crosslinked CTBN/epoxy blends have smaller micron-sized rubber particles and larger nano-sized rubber particles than non-crosslinked CTBN/epoxy blends. The dynamic mechanical analysis shows that the storage modulus of pre-crosslinked CTBN/epoxy blends is higher than that of non-crosslinked CTBN/epoxy blends. The glass transition temperature of the CTBN phase in pre-crosslinked CTBN/epoxy blends increases slightly compared with the CTBN/epoxy system. The pre-crosslinking of rubber is a promising method for compatibilization and controlling the morphology of rubber-modified epoxy materials. PMID:28773762
Zheng, Lei; Pan, Luqing; Lin, Pengfei; Miao, Jingjing; Wang, Xiufen; Lin, Yufei; Wu, Jiangyue
2017-12-01
Hazardous and noxious substances (HNS) spill in the marine environment is an issue of growing concern, and it will mostly continue to do so in the future owing to the increase of high chemical traffic. Nevertheless, the effects of HNS spill on marine environment, especially on aquatic organisms are unclear. Consequently, it is emergent to provide valuable information for the toxicities to marine biota caused by HNS spill. Accordingly, the acute toxicity of three preferential HNS and sub-lethal effects of acrylonitrile on Brachionus plicatilis were evaluated. The median lethal concentration (LC 50 ) at 24 h were 47.2 mg acrylonitrile L -1 , 276.9 mg styrene L -1 , and 488.3 mg p-xylene L -1 , respectively. Sub-lethal toxicity effects of acrylonitrile on feeding behavior, development, and reproduction parameters of B. plicatilis were also evaluated. Results demonstrated that rates of filtration and ingestion were significantly reduced at 2.0, 4.0, and 8.0 mg L -1 of acrylonitrile. Additionally, reproductive period, fecundity, and life span were significantly decreased at high acrylonitrile concentrations. Conversely, juvenile period was significantly increased at the highest two doses and no effects were observed on embryonic development and post-reproductive period. Meanwhile, we found that ingestion rate decline could be a good predictor of reproduction toxicity in B. plicatilis and ecologically relevant endpoint for toxicity assessment. These data will be useful to assess and deal with marine HNS spillages.
Bärwinkel, Stefanie; Seidel, Andreas; Hobeika, Sven; Hufen, Ralf; Mörl, Michaela; Altstädt, Volker
2016-01-01
Morphology formation during compounding, as well as injection molding of blends containing 60 wt % polycarbonate (PC) and 40 wt % polybutadiene rubber-modified styrene-acrylonitrile copolymers (ABS), has been investigated by transmission electron microscopy (TEM). Profiles of the blend morphology have been recorded in injection-molded specimens and significant morphology gradients observed between their skin and core. A <10 µm thick surface layer with strongly dispersed and elongated nano-scale (streak-like) styrene acrylonitrile (SAN) phases and well-dispersed, isolated SAN-grafted polybutadiene rubber particles is followed by a 50–150 µm thick skin layer in which polymer morphology is characterized by lamellar SAN/ABS phases. Thickness of these lamellae increases with the distance from the specimen’s surface. In the core of the specimens the SAN-grafted polybutadiene rubber particles are exclusively present within the SAN phases, which exhibit a much coarser and less oriented, dispersed morphology compared to the skin. The effects of the viscosity of the SAN in the PC/ABS blends on phase morphologies and correlations with fracture mechanics in tensile and impact tests were investigated, including scanning electron microscopy (SEM) assessment of the fracture surfaces. A model explaining the mechanisms of morphology formation during injection molding of PC/ABS blends is discussed. PMID:28773780
NASA Astrophysics Data System (ADS)
Xiang, Bo; Zhang, Jun
2018-01-01
For the field of cool material, barium titanate (BaTiO3, BT) is still a new member that needs to be further studied. Herein, the effects of both content and surface hydrophobic modification of BT on the cooling properties of acrylonitrile-styrene-acrylate copolymer (ASA) were detailedly investigated, aiming to fabricate composited cool material. Butyl acrylate (BA) was employed to convert the surface of BT from hydrophilic to hydrophobic. The addition of unmodified BT could significantly improve the solar reflectance of ASA, especially when the addition amount is 3 vol%, the near infrared (NIR) reflectance increased from 22.02 to 72.60%. However, serious agglomeration occurred when the addition amount increased to 5 vol% and therefore led to a relatively smaller increase in solar reflectance and an obvious decline in impact strength. After surface hydrophobic modification, the modified BT (M-BT) presented better dispersibility in ASA matrix, which contributed to the improvement of both solar reflectance and impact strength. In addition, the temperature test provided a more sufficient and intuitive way to evaluate the cooling effect of the composited cool materials, and a significant decrease (over 10 °C) could be achieved in the temperature test when M-BT particles were introduced.
Concentrations and sources of VOCs in urban domestic and public microenvironments.
Kim, Y M; Harrad, S; Harrison, R M
2001-03-15
Concentrations of 15 VOCs including 1,3-butadiene, benzene, and styrene were measured in a wide range of urban microenvironments, viz: homes, offices, restaurants, pubs, department stores, coach and train stations, cinemas, libraries, laboratories, perfume shops, heavily trafficked roadside locations, buses, trains, and automobiles. For most target VOCs-including 1,3-butadiene and benzene-mean concentrations at heavily trafficked roadside locations were exceeded by those in automobiles and were comparable to those in pubs and train stations. With regard to indoor-outdoor relationships in homes, this study revealed higher mean indoor concentrations, no correlation between simultaneously measured indoor and outdoor concentrations, and significantly different patterns of diurnal variation. Thus-in poorly ventilated buildings-indoor emission source strength is considered a more significant influence on VOC concentrations than infiltration of outdoor air. In the six smoking homes studied, environmental tobacco smoke (ETS) was found to make a substantial contribution to concentrations of 1,3-butadiene. This finding was based on the significantly higher concentrations detected in smoking compared to nonsmoking homes, the significant correlation between 1,3-butadiene concentrations and those of 3-ethenylpyridine (an ETS marker), factor analysis, and the results of a source apportionment exercise based on ratios of 1,3-butadiene to 3-ethenylpyridine.
Appraisal of levels and patterns of occupational exposure to 1,3-butadiene.
Scarselli, Alberto; Corfiati, Marisa; Di Marzi, Davide; Iavicoli, Sergio
2017-09-01
Objectives 1,3-butadiene is classified as carcinogenic to human by inhalation and the association with leukemia has been observed in several epidemiological studies. The aim of this study was to evaluate data about occupational exposure levels to 1,3-butadiene in the Italian working force. Methods Airborne concentrations of 1,3-butadiene were extracted from the Italian database on occupational exposure to carcinogens in the period 1996-2015. Descriptive statistics were calculated for exposure-related variables. An analysis through linear mixed model was performed to determine factors influencing the exposure level. The probability of exceeding the exposure limit was predicted using a mixed-effects logistic model. Concurrent exposures with other occupational carcinogens were investigated using the two-step cluster analysis. Results The total number of exposure measurements selected was 23 885, with an overall arithmetic mean of 0.12 mg/m3. The economic sector with the highest number of measurements was manufacturing of chemicals (18 744). The most predictive variables of the exposure level resulted to be the occupational group and its interaction with the measurement year. The highest likelihood of exceeding the exposure limit was found in the manufacture of coke and refined petroleum products. Concurrent exposures were frequently detected, mainly with benzene, acrylonitrile and ethylene dichloride, and three main clusters were identified. Conclusions Exposure to 1,3-butadiene occurs in a wide variety of activity sectors and occupational groups. The use of several statistical analysis methods applied to occupational exposure databases can help to identify exposure situations at high risk for workers' health and better target preventive interventions and research projects.
USDA-ARS?s Scientific Manuscript database
Carbon black is a petroleum byproduct with a million-ton market in the US tire industry. Finding renewable substitutes for carbon black reduces dependence on oil and alleviates global warming. Biochar is a renewable source of carbon that has been studied previously as a replacement for carbon black ...
Tribology and Friction of Soft Materials: Mississippi State Case Study
2010-03-18
elastomers , foams, and fabrics. B. Develop internal state variable (ISV) material model. Model will be calibrated using database and verified...Rubbers Natural rubber Santoprene (Vulcanized Elastomer ) Styrene Butadiene Rubber (SBR) Foams Polypropylene Foam Polyurethane Foam Fabrics Kevlar...Axially symmetric model PC Disk PC Numerical Implementation in FEM Codes Experiment SEM Optical methods ISV Model Void Nucleation FEM Analysis
NASA Astrophysics Data System (ADS)
Lin, Jing; Luo, Yuanfang; Zhong, Bangchao; Hu, Dechao; Jia, Zhixin; Jia, Demin
2018-05-01
A novel antioxidant (HS-s-RT) to improve the mechanical properties and anti-aging performance of styrene-butadiene (SBR) composites was prepared by antioxidant intermediate p-aminodiphenylamine (RT) grafting on the surface of halloysite nanotubes/silica hybrid (HS) via the linkage of silane coupling agent. The analysis of SEM and rubber processing analyzer (RPA) demonstrated HS-s-RT was uniformly dispersed in SBR, and stronger interfacial interaction between HS-s-RT and SBR was formed. Consequently, SBR/HS-s-RT composites have improving mechanical properties. Furthermore, the test of the retention of mechanical properties, Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR), and oxidation induction time (OIT) showed HS-s-RT can effectively improve the anti-aging effect of SBR composites than corresponding low molecular-weight antioxidant N-isopropyl-N‧-phenyl-4-phenylenediamin (4010NA). Then, the mechanism of thermo-oxidative aging of SBR/HS composites was also investigated, and the superior antioxidative efficiency is attributed to the uniform dispersion and excellent migration resistance of HS-s-RT. Hence, this novel antioxidant might open up new opportunities for the fabrication of high-performance rubber composites due to its superior anti-aging effect and reinforcement.
Marzocca, A J; Cerveny, S; Salgueiro, W; Somoza, A; Gonzalez, L
2002-02-01
An experimental investigation was performed to study the effect on the free volume of the advance of the cross-linking reaction in a copolymer of styrene butadiene rubber by sulfur vulcanization. The dynamic modulus and loss tangent were evaluated over samples cured for different times at 433 K by dynamic mechanical tests over a range of frequencies between 5 and 80 Hz at temperatures between 200 and 300 K. Using the William-Landel-Ferry relationship, master curves were obtained at a reference temperature of 298 K and the coefficients c(0)(1) and c(0)(2) were evaluated. From these parameters the dependence of the free volume on the cure time is obtained. Positron annihilation lifetime spectroscopy was also used to estimate the size and number density of free volume sites in the material. The spectra were analyzed in terms of continuous distributions of free volume size. The results suggest an increase of the lower free volume size when cross linking takes place. Both techniques give similar results for the dependence of free volume on the time of cure of the polymer.
NASA Astrophysics Data System (ADS)
Kamar, Nicholas T.
Glass and carbon fiber reinforced/epoxy polymer composites (GFRPs and CFRPs) have high strength-to-weight and stiffness-to-weight ratios. Thus, GFRPs and CFRPs are used to lightweight aircraft, marine and ground vehicles to reduce transportation energy utilization and cost. However, GFRP and CFRP matrices have a low resistance to crack initiation and propagation; i.e. they have low fracture toughness. Current methods to increase fracture toughness of epoxy and corresponding GFRP and CFRPs often reduce composite mechanical and thermomechanical properties. With the advent of nanotechnology, new methods to improve the fracture toughness and impact properties of composites are now available. The goal of this research is to identify the fracture behavior and toughening mechanisms of nanoparticle modified epoxy, GFRPs and CFRPs utilizing the triblock copolymer poly(styrene)-block-poly(butadiene)-block-poly(methylmethacrylate) (SBM) and graphene nanoplatelets (GnPs) as toughening agents. The triblock copolymer SBM was used to toughen the diglycidyl ether of bisphenol-A (DGEBA) resin cured with m-phenylenediamine (mPDA) and corresponding AS4-12k CFRPs. SBM self assembled in epoxy to form nanostructured domains leading to larger increases in fracture toughness, KQ (MPa*m 1/2) than the traditional, phase separating carboxyl-terminated butadiene-acrylonitrile (CTBN) rubber. Additionally, SBM increased the mode-I fracture toughness, GIc (J/m2) of CFRPs without corresponding reductions in composite three-point flexural properties and glass transition temperature (Tg). Fractography of SBM modified epoxy and CFRPs via scanning electron microscopy (SEM) showed that sub 100 nm spherical micelles cavitated to induce void growth and matrix shear yielding toughening mechanisms. Furthermore, SBM did not suppress epoxy Tg, while CTBN decreased Tg with both increasing concentration and acrylonitrile content. Graphene nanoplatelets (GnPs) consist of a few layers of graphene sheets, which are a single atomic layer of sp2 hybridized carbon atoms arranged in a honeycomb lattice. GnPs have excellent thermal, electrical and mechanical properties and are thus attractive fillers for composite materials. GnPs with a basal plane diameter of 5 microm were incorporated between lamina in GFRPs made via vacuum assisted resin transfer molding (VARTM). At only 0.25 wt%, GnPs improved GFRP flexural strength and GIc by 29 and 25%, respectively. GnPs also improved the low velocity drop weight impact properties of the GFRP laminates. Ultrasonic C-scans and dye penetration experiments on impacted laminates showed that the impact-side damage area decreased with increasing concentration of GnPs, while the back-side damage area increased. The addition of GnPs improved absorption and dissipation of impact energy throughout GFRP laminates. Additionally, GnPs were investigated as toughening agents in epoxy and corresponding AS4-12k CFRPs. In epoxy and CFRPs, GnPs activate a crack deflection toughening mechanism, resulting in increased fracture surface area and fracture energy. Hybrid GnP/SBM modified epoxy and CFRPs were also investigated.
Yanar, Numan; Son, Moon; Yang, Eunmok; Kim, Yeji; Park, Hosik; Nam, Seung-Eun; Choi, Heechul
2018-07-01
Recently, feed spacer research for improving the performance of a membrane module has adopted three-dimensional (3D) printing technology. This study aims to improve the performance of membrane feed spacers by using various materials and incorporating 3D printing. The samples were fabricated after modeling with 3D computer-aided design (CAD) software to investigate the mechanical strength, water flux, reverse solute flux, and fouling performances. This research was performed using acrylonitrile butadiene styrene (ABS), polypropylene (PP), and natural polylactic acid (PLA) as printing material, and the spacer model was produced using a diamond-shaped feed spacer, with a commercially available product as a reference. The 3D printed samples were initially compared in terms of size and precision with the 3D CAD model, and deviations were observed between the products and the CAD model. Then, the spacers were tested in terms of mechanical strength, water flux, reverse solute flux, and fouling (alginate-based waste water was used as a model foulant). Although there was not much difference among the samples regarding the water flux, better performances than the commercial product were obtained for reverse solute flux and fouling resistance. When comparing the prominent performance of natural PLA with the commercial product, PLA was found to have approximately 10% less fouling (based on foulant volume per unit area and root mean square roughness values), although it showed similar water flux. Thus, another approach has been introduced for using bio-degradable materials for membrane spacers. Copyright © 2018 Elsevier Ltd. All rights reserved.
Feasibility of 3D printed air slab diode caps for small field dosimetry.
Perrett, Benjamin; Charles, Paul; Markwell, Tim; Kairn, Tanya; Crowe, Scott
2017-09-01
Commercial diode detectors used for small field dosimetry introduce a field-size-dependent over-response relative to an ideal, water-equivalent dosimeter due to high density components in the body of the detector. An air gap above the detector introduces a field-size-dependent under-response, and can be used to offset the field-size-dependent detector over-response. Other groups have reported experimental validation of caps containing air gaps for use with several types of diodes in small fields. This paper examines two designs for 3D printed diode air caps for the stereotactic field diode (SFD)-a cap containing a sealed air cavity, and a cap with an air cavity at the face of the SFD. Monte Carlo simulations of both designs were performed to determine dimensions for an air cavity to introduce the desired dosimetric correction. Various parameter changes were also simulated to estimate the dosimetric uncertainties introduced by 3D printing. Cap layer dimensions, cap density changes due to 3D printing, and unwanted air gaps were considered. For the sealed design the optimal air gap size for water-equivalent cap material was 0.6 mm, which increased to 1.0 mm when acrylonitrile butadiene styrene in the cap was simulated. The unsealed design had less variation, a 0.4 mm air gap is optimal in both situations. Unwanted air pockets in the bore of the cap and density changes introduced by the 3D printing process can potentially introduce significant dosimetric effects. These effects may be limited by using fine print resolutions and minimising the volume of cap material.
3D printing of surgical instruments for long-duration space missions.
Wong, Julielynn Y; Pfahnl, Andreas C
2014-07-01
The first off-Earth fused deposition modeling (FDM) 3D printer will explore thermoplastic manufacturing capabilities in microgravity. This study evaluated the feasibility of FDM 3D printing 10 acrylonitrile butadiene styrene (ABS) thermoplastic surgical instruments on Earth. Three-point bending tests compared stiffness and yield strength between FDM 3D printed and conventionally manufactured ABS thermoplastic. To evaluate the relative speed of using four printed instruments compared to conventional instruments, 13 surgeons completed simulated prepping, draping, incising, and suturing tasks. Each surgeon ranked the performance of six printed instruments using a 5-point Likert scale. At a thickness of 5.75 mm or more, the FDM printing process had a less than 10% detrimental effect on the tested yield strength and stiffness of horizontally printed ABS thermoplastic relative to conventional ABS thermoplastic. Significant weakness was observed when a bending load was applied transversely to a 3D printed layer. All timed tasks were successfully performed using a printed sponge stick, towel clamp, scalpel handle, and toothed forceps. There was no substantial difference in time to completion of simulated surgical tasks with control vs. 3D printed instruments. Of the surgeons, 100%, 92%, 85%, 77%, 77%, and 69% agreed that the printed smooth and tissue forceps, curved and straight hemostats, tissue and right angle clamps, respectively, would perform adequately. It is feasible to 3D print ABS thermoplastic surgical instruments on Earth. Loadbearing structures were designed to be thicker, when possible. Printing orientations were selected so that the printing layering direction of critical structures would not be transverse to bending loads.
Electrical Conductivity in Polymer Blends/ Multiwall Carbon Nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulkarni, Ajit R.; Bose, Suryasarathi; Bhattacharyya, Arup R.
2008-10-23
Carbon nanotubes (CNT) based polymer composites have emerged as the future multifunctional materials in view of its exceptional mechanical, thermal and electrical properties. One of the major interests is to develop conductive polymer composites preferably at low concentration of CNT utilizing their high aspect ratio (L/D) for numerous applications, which include antistatic devices, capacitors and materials for EMI shielding. In this context, polymer blends have emerged as a potential candidate in lowering the percolation thresholds further by the utilization of 'double-percolation' which arises from the synergistic improvements in blend properties associated with the co-continuous morphology. Due to strong inter-tube vanmore » der Waals' forces, they often tend to aggregate and uniform dispersion remains a challenge. To overcome this challenge, we exploited sodium salt of 6-aminohexanoic acid (Na-AHA) which was able to assist in debundlling the multiwall carbon nanotubes (MWNT) through 'cation-{pi}' interactions during melt-mixing leading to percolative 'network-like' structure of MWNT within polyamide6 (PA6) phase in co-continuous PA6/acrylonitrile butadiene styrene (ABS) blends. The composite exhibited low electrical percolation thresholds of 0.25 wt% of MWNT, the lowest reported value in this system so far. Retention of 'network-like structure' in the solid state with significant refinement was observed even at lower MWNT concentration in presence Na-AHA, which was assessed through AC electrical conductivity measurements. Reactive coupling was found to be a dominant factor besides 'cation-{pi}' interactions in achieving low electrical percolation in PA6/ABS+MWNT composites.« less
Feasibility of using Big Area Additive Manufacturing to Directly Manufacture Boat Molds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, Brian K.; Chesser, Phillip C.; Lind, Randall F.
The goal of this project was to explore the feasibility of using Big Area Additive Manufacturing (BAAM) to directly manufacture a boat mold without the need for coatings. All prior tooling projects with BAAM required the use to thick coatings to overcome the surface finish limitations of the BAAM process. While the BAAM process significantly lowers the cost of building the mold, the high cost element rapidly became the coatings (cost of the material, labor on coating, and finishing). As an example, the time and cost to manufacture the molds for the Wind Turbine project with TPI Composites Inc. andmore » the molds for the submarine project with Carderock Naval Warfare Systems was a fraction of the time and cost of the coatings. For this project, a catamaran boat hull mold was designed, manufactured, and assembled with an additional 0.15” thickness of material on all mold surfaces. After printing, the mold was immediately machined and assembled. Alliance MG, LLC (AMG), the industry partner of this project, experimented with mold release agents on the carbon-fiber reinforced acrylonitrile butadiene styrene (CF ABS) to verify that the material can be directly used as a mold (rather than needing a coating). In addition, for large molds (such as the wind turbine mold with TPI Composites Inc.), the mold only provided the target surface. A steel subframe had to be manufactured to provide structural integrity. If successful, this will significantly reduce the time and cost necessary for manufacturing large resin infusion molds using the BAAM process.« less
Reddy, M V; Eachempati, Krishnakiran; Gurava Reddy, A V; Mugalur, Aakash
2018-01-01
Rapid prototyping (RP) is used widely in dental and faciomaxillary surgery with anecdotal uses in orthopedics. The purview of RP in orthopedics is vast. However, there is no error analysis reported in the literature on bone models generated using office-based RP. This study evaluates the accuracy of fused deposition modeling (FDM) using standard tessellation language (STL) files and errors generated during the fabrication of bone models. Nine dry bones were selected and were computed tomography (CT) scanned. STL files were procured from the CT scans and three-dimensional (3D) models of the bones were printed using our in-house FDM based 3D printer using Acrylonitrile Butadiene Styrene (ABS) filament. Measurements were made on the bone and 3D models according to data collection procedures for forensic skeletal material. Statistical analysis was performed to establish interobserver co-relation for measurements on dry bones and the 3D bone models. Statistical analysis was performed using SPSS version 13.0 software to analyze the collected data. The inter-observer reliability was established using intra-class coefficient for both the dry bones and the 3D models. The mean of absolute difference is 0.4 that is very minimal. The 3D models are comparable to the dry bones. STL file dependent FDM using ABS material produces near-anatomical 3D models. The high 3D accuracy hold a promise in the clinical scenario for preoperative planning, mock surgery, and choice of implants and prostheses, especially in complicated acetabular trauma and complex hip surgeries.
3D-printed coded apertures for x-ray backscatter radiography
NASA Astrophysics Data System (ADS)
Muñoz, André A. M.; Vella, Anna; Healy, Matthew J. F.; Lane, David W.; Jupp, Ian; Lockley, David
2017-09-01
Many different mask patterns can be used for X-ray backscatter imaging using coded apertures, which can find application in the medical, industrial and security sectors. While some of these patterns may be considered to have a self-supporting structure, this is not the case for some of the most frequently used patterns such as uniformly redundant arrays or any pattern with a high open fraction. This makes mask construction difficult and usually requires a compromise in its design by drilling holes or adopting a no two holes touching version of the original pattern. In this study, this compromise was avoided by 3D printing a support structure that was then filled with a radiopaque material to create the completed mask. The coded masks were manufactured using two different methods, hot cast and cold cast. Hot casting involved casting a bismuth alloy at 80°C into the 3D printed acrylonitrile butadiene styrene mould which produced an absorber with density of 8.6 g cm-3. Cold casting was undertaken at room temperature, when a tungsten/epoxy composite was cast into a 3D printed polylactic acid mould. The cold cast procedure offered a greater density of around 9.6 to 10 g cm-3 and consequently greater X-ray attenuation. It was also found to be much easier to manufacture and more cost effective. A critical review of the manufacturing procedure is presented along with some typical images. In both cases the 3D printing process allowed square apertures to be created avoiding their approximation by circular holes when conventional drilling is used.
Acceptance Testing of Thermoluminescent Dosimeter Holders.
Romanyukha, Alexander; Grypp, Matthew D; Sharp, Thad J; DiRito, John N; Nelson, Martin E; Mavrogianis, Stanley T; Torres, Jeancarlo; Benevides, Luis A
2018-05-01
The U.S. Navy uses the Harshaw 8840/8841 dosimetric (DT-702/PD) system, which employs LiF:Mg,Cu,P thermoluminescent dosimeters (TLDs), developed and produced by Thermo Fisher Scientific (TFS). The dosimeter consists of four LiF:Mg,Cu,P elements, mounted in Teflon® on an aluminum card and placed in a plastic holder. The holder contains a unique filter for each chip made of copper, acrylonitrile butadiene styrene (ABS), Mylar®, and tin. For accredited dosimetry labs, the ISO/IEC 17025:2005(E) requires an acceptance procedure for all new equipment. The Naval Dosimetry Center (NDC) has developed and tested a new non-destructive procedure, which enables the verification and the evaluation of embedded filters in the holders. Testing is based on attenuation measurements of low-energy radiation transmitted through each filter in a representative sample group of holders to verify that the correct filter type and thickness are present. The measured response ratios are then compared with the expected response ratios. In addition, each element's measured response is compared to the mean response of the group. The test was designed and tested to identify significant nonconformities, such as missing copper or tin filters, double copper or double tin filters, or other nonconformities that may impact TLD response ratios. During the implementation of the developed procedure, testing revealed a holder with a double copper filter. To complete the evaluation, the impact of the nonconformities on proficiency testing was examined. The evaluation revealed failures in proficiency testing categories III and IV when these dosimeters were irradiated to high-energy betas.
Improving the strength of additively manufactured objects via modified interior structure
NASA Astrophysics Data System (ADS)
Al, Can Mert; Yaman, Ulas
2017-10-01
Additive manufacturing (AM), in other words 3D printing, is becoming more common because of its crucial advantages such as geometric complexity, functional interior structures, etc. over traditional manufacturing methods. Especially, Fused Filament Fabrication (FFF) 3D printing technology is frequently used because of the fact that desktop variants of these types of printers are highly appropriate for different fields and are improving rapidly. In spite of the fact that there are significant advantages of AM, the strength of the parts fabricated with AM is still a major problem especially when plastic materials, such as Acrylonitrile butadiene styrene (ABS), Polylactic acid (PLA), Nylon, etc., are utilized. In this study, an alternative method is proposed in which the strength of AM fabricated parts is improved employing direct slicing approach. Traditional Computer Aided Manufacturing (CAM) software of 3D printers takes only the geometry as an input in triangular mesh form (stereolithography, STL file) generated by Computer Aided Design software. This file format includes data only about the outer boundaries of the geometry. Interior of the artifacts are manufactured with homogeneous infill patterns, such as diagonal, honeycomb, linear, etc. according to the paths generated in CAM software. The developed method within this study provides a way to fabricate parts with heterogeneous infill patterns by utilizing the stress field data obtained from a Finite Element Analysis software, such as ABAQUS. According to the performed tensile tests, the strength of the test specimen is improved by about 45% compared to the conventional way of 3D printing.
Ceh, Justin; Youd, Tom; Mastrovich, Zach; Peterson, Cody; Khan, Sarah; Sasser, Todd A; Sander, Ian M; Doney, Justin; Turner, Clark; Leevy, W Matthew
2017-02-24
Radiopacity is a critical property of materials that are used for a range of radiological applications, including the development of phantom devices that emulate the radiodensity of native tissues and the production of protective equipment for personnel handling radioactive materials. Three-dimensional (3D) printing is a fabrication platform that is well suited to creating complex anatomical replicas or custom labware to accomplish these radiological purposes. We created and tested multiple ABS (Acrylonitrile butadiene styrene) filaments infused with varied concentrations of bismuth (1.2-2.7 g/cm³), a radiopaque metal that is compatible with plastic infusion, to address the poor gamma radiation attenuation of many mainstream 3D printing materials. X-ray computed tomography (CT) experiments of these filaments indicated that a density of 1.2 g/cm³ of bismuth-infused ABS emulates bone radiopacity during X-ray CT imaging on preclinical and clinical scanners. ABS-bismuth filaments along with ABS were 3D printed to create an embedded human nasocranial anatomical phantom that mimicked radiological properties of native bone and soft tissue. Increasing the bismuth content in the filaments to 2.7 g/cm³ created a stable material that could attenuate 50% of 99m Technetium gamma emission when printed with a 2.0 mm wall thickness. A shielded test tube rack was printed to attenuate source radiation as a protective measure for lab personnel. We demonstrated the utility of novel filaments to serve multiple radiological purposes, including the creation of anthropomorphic phantoms and safety labware, by tuning the level of radiation attenuation through material customization.
Effects of Hydrocarbon-Based Grease on Rapid Prototype Material Used for Grease Retention Shrouds
NASA Technical Reports Server (NTRS)
Zakrajsek, Andrew J.; Valco, Daniel J.; Street, Kenneth W., Jr.
2010-01-01
Effects of hydrocarbon-based greases on specific rapid prototype (RP) materials used to fabricate grease retention shrouds (GRS) were explored in this study. Grease retention shrouds are being considered as a way to maintain adequate grease lubrication at the gear mesh in a prototype research transmission system. Due to their design and manufacturing flexibility, rapid prototype materials were chosen for the grease retention shrouds. In order to gain a better understanding of the short and long term effects grease pose on RP materials, research was conducted on the interaction of hydrocarbon-based grease with RP materials. The materials used in this study were durable polyamide (nylon), acrylonitrile butadiene styrene (ABS), and WaterClear 10120. Testing was conducted using Mobilgrease 28 and Syn-Tech 3913G grease (gear coupling grease). These greases were selected due to their regular use with mechanical components. To investigate the effect that grease has on RP materials, the following methods were used to obtain qualitative and quantitative data: Fourier transform infrared spectroscopy (FT-IR), interference profilometer measurements, digital camera imaging, physical shape measurement, and visual observations. To record the changes in the RP materials due to contact with the grease, data was taken before and after the grease application. Results showed that the WaterClear 10120 RP material provided the best resistance to grease penetration as compared to nylon and ABS RP materials. The manufacturing process, and thus resulting surface conditions of the RP material, played a key role in the grease penetration properties and resilience of these materials.
Singer, Brett C; Hodgson, Alfred T; Guevarra, Karla S; Hawley, Elisabeth L; Nazaroff, William W
2002-03-01
We measured the emissions of 26 gas-phase organic compounds in environmental tobacco smoke (ETS) using a model room that simulates realistic conditions in residences and offices. Exposure-relevant emission factors (EREFs), which include the effects of sorption and re-emission over a 24-h period, were calculated by mass balance from measured compound concentrations and chamber ventilation rates in a 50-m3 room constructed and furnished with typical materials. Experiments were conducted at three smoking rates (5, 10, and 20 cigarettes day(-1)), three ventilation rates (0.3, 0.6, and 2 h(-1)), and three furnishing levels (wallboard with aluminum flooring, wallboard with carpet, and full furnishings). Smoking rate did not affect EREFs, suggesting that sorption was linearly related to gas-phase concentration. Furnishing level and ventilation rate in the model room had little effect on EREFs of several ETS compounds including 1,3-butadiene, acrolein, acrylonitrile, benzene, toluene, and styrene. However, sorptive losses at low ventilation with full furnishings reduced EREFs for the ETS tracers nicotine and 3-ethenylpyridine by as much as 90 and 65% as compared to high ventilation, wallboard/aluminum experiments. Likewise, sorptive losses were 40-70% for phenol, cresols, naphthalene, and methylnaphthalenes. Sorption persisted for many compounds; for example, almost all of the sorbed nicotine and most of the sorbed cresol remained sorbed 3 days after smoking. EREFs can be used in models and with ETS tracer-based methods to refine and improve estimates of exposures to ETS constituents.
Yang, Jiang; Kwak, Tae-Joon; Zhang, Xiaodong; McClain, Robert; Chang, Woo-Jin; Gunasekaran, Sundaram
2016-11-22
A facile, controllable, inexpensive and green electrochemical synthesis of IrO2-graphene nanohybrid thin films is developed to fabricate an easy-to-use integrated paper microfluidic electrochemical pH sensor for resource-limited settings. Taking advantages from both pH meters and strips, the pH sensing platform is composed of hydrophobic barrier-patterned paper micropad (µPAD) using polydimethylsiloxane (PDMS), screen-printed electrode (SPE) modified with IrO2-graphene films and molded acrylonitrile butadiene styrene (ABS) plastic holder. Repetitive cathodic potential cycling was employed for graphene oxide (GO) reduction which can completely remove electrochemically unstable oxygenated groups and generate a 2D defect-free homogeneous graphene thin film with excellent stability and electronic properties. A uniform and smooth IrO2 film in nanoscale grain size is anodically electrodeposited onto the graphene film, without any observable cracks. The resulting IrO2-RGO electrode showed slightly super-Nernstian responses from pH 2-12 in Britton-Robinson (B-R) buffers with good linearity, small hysteresis, low response time and reproducibility in different buffers, as well as low sensitivities to different interfering ionic species and dissolved oxygen. A simple portable digital pH meter is fabricated, whose signal is measured with a multimeter, using high input-impedance operational amplifier and consumer batteries. The pH values measured with the portable electrochemical paper-microfluidic pH sensors were consistent with those measured using a commercial laboratory pH meter with a glass electrode.
Sustainable Triblock Copolymers for Application as Thermoplastic Elastomers
NASA Astrophysics Data System (ADS)
Ding, Wenyue; Wang, Shu; Ganewatta, Mitra; Tang, Chuanbing; Robertson, Megan
Thermoplastic elastomers (TPEs), combining the processing advantages of thermoplastics with the flexibility and extensibility of elastomeric materials, have found versatile applications in industry, including electronics, clothing, adhesives, and automotive components. ABA triblock copolymers, in which A represents glassy endblocks and B the rubbery midblock, are commercially available as TPEs, such as poly(styrene-b-butadiene-b-styrene) (SBS) or poly(styrene-b-isoprene-b-styrene) (SIS). However, the commercial TPEs are derived from fossil fuels. The finite availability of fossil fuels and the environmental impact of the petroleum manufacturing have led to the increased interest in the development of alternative polymeric materials from sustainable sources. Rosin acids are promising replacement for the petroleum source due to their abundance in conifers, rigid molecular structures, and ease of functionalization. In this study, we explored the utilization of a rosin acid derivative, poly(dehydroabietic ethyl methacrylate) (PDAEMA), as a sustainable alternative for the glassy domain. The triblock copolymer poly(dehydroabietic ethyl methacrylate-b-n-butyl acylate-b-dehydroabietic ethyl methacrylate) (DnBD) was synthesized and characterized. DnBD exhibited tunable morphological and thermal properties. Tensile testing revealed elastomeric behavior.
Flooded Cell Permeation Testing of Elastomers
1994-03-01
cured hydrin (EC) elastomer 3. oxide cured neoprene (CR) 4. sulphur cured styrene-butadiene rubber (SBR) 5. sulphur cured nitrile rubber ( NBR ) 6. cured...Road Adelphi, MD 20783-1197 11. SUPPLEMENTARY NOTES Presented at the meeting of the American Chemical Society, Rubber Division, Orlando, Florida, 26 Oct...6 2. Permeation rate-time curve for DMSO through natural rubber ............................... 6 3. Permeation rate-time curve for DMSO through
Defeating anisotropy in material extrusion 3D printing via materials development
NASA Astrophysics Data System (ADS)
Torrado Perez, Angel Ramon
Additive Manufacturing technologies has been in continuous development for more than 35 years. Specifically, the later denominated Material Extrusion Additive Manufacturing (MEAM), was first developed by S. Scott Crump around 1988 and trademarked later as Fused Deposition Modeling (FDM). Although all of these technologies have been around for a while, it was not until recently that they have been more accessible to everyone. Today, the market of 3D printers covers all ranges of price, from very specialized, heavy and expensive machines, to desktop printers of only a few cubic inches in volume. Until recently, FDM technology had remained somewhat stagnant in terms of developments; however, with the new market boom, scholars and hobbyists have opened new doors for investigation in this area. The technology is now better understood from a software, mechanical, electrical and not less important, materials point of view. The current availability of materials for MEAM is very broad: PLA (Polylactic Acid), ABS (Acrylonitrile Butadiene Styrene), PC (Polycarbonate), PEEK (Polyether Ether Ketone), nylon, polyurethanes, and many others. Even so, these are all materials that were used before for other technologies, adapted but not specifically developed for MEAM. The processes that take place during the production of a part are currently not very well understood, and the final properties exhibited are long ways away from reaching the potential of more traditional manufacturing techniques. Due to the nature of the process, all the material properties always display a certain level of anisotropy. The research covered in these pages aims to shed some light on understanding the different mechanics taking place during the extrusion process of additive manufacturing. The development of new materials for MEAM has been explored. Several blends and composites have been developed, and their tensile properties and fracture mechanics evaluated. The blending of different combinations of ABS, UHMWPE (Ultra High Molecular Weight Polyethylene) and SEBS (Styrene Ethylene Butylene Styrene) were further examined due to the potential they demonstrated as low anisotropic materials in terms of strength. Also, the geometrical influence of different standard tensile specimens was studied. The development of materials that lead to lowered anisotropy on the strength of 3D printed parts has been successfully demonstrated, and alternative methodologies for the evaluation of anisotropic characteristics has been proposed as well. The present work shows the beginning to a better understanding of the mechanics taking place during the fusion of deposited material in MEAM.
Mechanical Behavior and Fatigue Studies of Rubber Components Used in Tracked Vehicles
2010-08-17
durability to this elastomers and polybutadiene is rubber , which gives rubber -like properties. SBR has good abrasion resistance and good aging ...SIMULATION, TESTING AND VALIDATION (MSTV) MINI-SYMPOSIUM AUGUST 17-19 DEARBORN, MICHIGAN MECHANICAL BEHAVIOR AND FATIGUE STUDIES OF RUBBER COMPONENTS USED...Analytics Group US Army TARDEC Warren, MI ABSTRACT In this study, a styrene butadiene rubber , which is similar to the rubber used in road wheel
Physical Aging Studies of Styrene-Butadiene and Carbonate-Siloxane Block Copolymers
1979-11-19
Carbonate-Siloxane Block Copolymers, ,-- by Martin Tant Garth . D D C Prepared for Publication r - r-on n[? in the JAN Journal of Applied Polymer Science B...revereie ifI nocesy and Identify by black mumibo,) Polymer glasses Non equilibrium glasses Stress relaxation Block copolymers 20. AOSTRACT (Continwaon...copolymers in material applications. -2- Introduction The physical aging phenomenon in glassy polymers has drawn considerable interest within the
NASA Astrophysics Data System (ADS)
Shoushtari Zadeh Naseri, Aida; Jalali-Arani, Azam
2015-10-01
Rubber blends based on (styrene-butadiene rubber (SBR)/ethylene-propylene-diene monomer (EPDM)) with and without organoclay (OC) were prepared through a melt mixing process. The concentration ratio of the rubber phases (EPDM/SBR; 50/50 wt%) and the amount of the OC were kept constant. The samples were then vulcanized by means of gamma radiation using a Co-60 gamma source as well as sulfur cure system. The effect of absorbed dose on the formation of the crosslinks was confirmed by the Fourier transform infrared spectroscopy (FTIR). The effects of absorbed dose, sulfur cure system and OC on the gel content, and crosslink density were evaluated by the chemical tests. Applying the Charlesby-Pinner equation to estimate the radiation chemical yield, revealed that the use of OC in the blend caused 20% reduction in the degradation/crosslinking ratio. Employing the swelling test data, some thermodynamic parameters were determined. Using field emission scanning electron microscopy (FE-SEM) to investigate microstructure of the samples revealed a more homogeneous structure and also an increase in compatibility of the blend components in the sample cured by the irradiation in comparison to that cured by the sulfur curing system.
NASA Astrophysics Data System (ADS)
Sangari, Samra; Anita, Hill; Dumitru, Pavel
2004-03-01
There have been significant attempts to devulcanize waste elastomers to facilitate reusing these valuable resources in applications requiring the unique properties of rubber. The difficulty in recycling of elastomers has traditionally been with devulcanizing the elastomer without comprising its properties due to degradation of main chains. This research aimed to devulcanize model styrene-butadiene rubber (SBR) compounds, which had various amounts of poly-, di- and monosulfidic crosslinks using a mechanochemical process. Three model compounds were prepared using SBR using a laboratory two-roll mill. They were then vulcanized in a compression molding press at 140r C. The prepared vulcanized compounds were then ground and devulcanized in an internal mixer using a chemical mixture at a constant rotor speed and temperature. The crosslink density of the compounds before and after the devulcanization was calculated using volume-swelling measurements. The obtained data was used to establish the correlation between crosslink density of the compounds and the degree of devulcanization. The results showed that mechanochemical devulcanization caused a significant decrease in the crosslink density of the compounds by breaking the sulfidic linkages. The break up of polysulfidic crosslinks was predominant, meaning that mechanochemical process selectively affected different types of crosslinks.
Fire-retardant decorative inks for aircraft interiors
NASA Technical Reports Server (NTRS)
Nir, Z.; Mikroyannidis, J. A.; Kourtides, D. A.
1984-01-01
Commercial and experimental fire retardants were screened for possible use wiith acrylic printing inks on aircraft interior sandwich panels. The fire retardants were selected according to their physical properties and thermostabilities. Thermostabilities were determined by thermogravimetric analysis and differential scanning calorimetry. A criterion was then established for selecting the more stable agent. Results show that some of the bromine-containing fire retardants are more thermostable than the acrylic ink, alone, used as a control. Also, the bromine-containing fire retardants yield even better limiting oxygen index values when tested after adding carboxy-terminated butadiene acrylonitrile (CTBN) rubber.
Facile Supramolecular Processing of Carbon Nanotubes and Polymers for Electromechanical Sensors.
Kim, Chae Bin; Jeong, Ki Beom; Yang, Beom Joo; Song, Jong-Won; Ku, Bon-Cheol; Lee, Seunghyun; Lee, Seoung-Ki; Park, Chiyoung
2017-12-18
We herein report a facile, cost-competitive, and scalable method for producing viscoelastic conductors via one-pot melt-blending using polymers and supramolecular gels composed of carbon nanotubes (CNTs), diphenylamine (DP), and benzophenone (BP). When mixed, a non-volatile eutectic liquid (EL) produced by simply blending DP with BP (1:1 molar ratio) enabled not only the gelation of CNTs (EL-CNTs) but also the dissolution of a number of commodity polymers. To make use of these advantages, viscoelastic conductors were produced via one-pot melt-blending the EL and CNTs with a model thermoplastic elastomer, poly(styrene-b-butadiene-b-styrene) (SBS, styrene 30 wt %). The resulting composites displayed an excellent electromechanical sensory along with re-mendable properties. This simple method using cost-competitive EL components is expected to provide an alternative to the use of expensive ionic liquids as well as to facilitate the fabrication of novel composites for various purposes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lorkiewicz, Pawel; Riggs, Daniel W; Keith, Rachel J; Conklin, Daniel J; Xie, Zhengzhi; Sutaria, Saurin; Lynch, Blake; Srivastava, Sanjay; Bhatnagar, Aruni
2018-06-02
Cigarette smoking is associated with an increase in cardiovascular disease risk, attributable in part to reactive volatile organic chemicals (VOCs). However, little is known about the extent of VOC exposure due to the use of other tobacco products. We recruited 48 healthy, tobacco users in four groups: cigarette, smokeless tobacco, occasional users of first generation e-cigarette and e-cigarette menthol and 12 healthy nontobacco users. After abstaining for 48 h, tobacco users used an assigned product. Urine was collected at baseline followed by five collections over a 3-h period to measure urinary metabolites of VOCs, nicotine, and tobacco alkaloids. Urinary levels of nicotine were ≃2-fold lower in occasional e-cigarette and smokeless tobacco users than in the cigarette smokers; cotinine and 3-hydroxycotinine levels were similar in all groups. Compared with nontobacco users, e-cigarette users had higher levels of urinary metabolites of xylene, cyanide, styrene, ethylbenzene, and benzene at baseline and elevated urinary levels of metabolites of xylene, N,N-dimethylformamide, and acrylonitrile after e-cigarette use. Metabolites of acrolein, crotonaldehyde, and 1,3-butadiene were significantly higher in smokers than in users of other products or nontobacco users. VOC metabolite levels in smokeless tobacco group were comparable to those found in nonusers with the exception of xylene metabolite-2-methylhippuric acid (2MHA), which was almost three fold higher than in nontobacco users. Smoking results in exposure to a range of VOCs at concentrations higher than those observed with other products, and first generation e-cigarette use is associated with elevated levels of N,N-dimethylformamide and xylene metabolites. This study shows that occasional users of first generation e-cigarettes have lower levels of nicotine exposure than the users of combustible cigarettes. Compared with combustible cigarettes, e-cigarettes, and smokeless tobacco products deliver lower levels of most VOCs, with the exception of xylene, N,N-dimethylformamide, and acrylonitrile, whose metabolite levels were higher in the urine of e-cigarette users than nontobacco users. Absence of anatabine in the urine of e-cigarette users suggests that measuring urinary levels of this alkaloid may be useful in distinguishing between users of e-cigarettes and combustible cigarettes. However, these results have to be validated in a larger cohortcomprised of users of e-cigarettes of multiple brands.
NASA Astrophysics Data System (ADS)
Lin, Fang-Yi; Hohmann, Austin; Hernández, Nacú; Cochran, Eric
Here we present the phase behavior of a new type of coil-hyperbranched diblock copolymer: poly(styrene- b-acrylated epoxidized soybean oil), or PS-PAESO. PS-PAESO is an example of a biorenewable thermoplastic elastomer (bio-TPE). To date, we have shown that bio-TPEs can be economical commercial substitutes for their petrochemically derived analogues--such as poly(styrene- b-butadiene- b-styrene) (SBS)--in a range of applications including pressure sensitive adhesives and bitumen modification. From a polymer physics perspective, PS-PAESO is an interesting material in that it couples a linear coil-like block with a highly branched block. Thus in contrast to the past five decades of studies on linear AB diblock copolymers, coil-hyperbranched block copolymers are relatively unknown to the community and can be expected to deviate substantially from the standard ``universal'' phase behavior in the AB systems. To explore these new materials, we have constructed a library of PS-PAESO materials spanning a range of molecular weight and composition values. The phase transition behavior and the morphology information will be interpreted by isochronal temperature scanning in dynamic shear rheology, small angle X-ray scattering and the corresponding transmission electron microscopy.
Zhu, Xueying; Cui, Peng; Zhang, Dongju; Liu, Chengbu
2011-07-28
By performing density functional theory calculations, we have studied the synthesis mechanism, electronic structure, and catalytic reactivity of a pyridinium-based ionic liquid, 1-ethylpyridinium trifluoroacetate ([epy](+)[CF(3)COO](-)). It is found that the synthesis of the pyridinium salt follows a S(N)2 mechanism. The electronic structural analyses show that multiple H bonds are generally involved in the pyridinium-based ionic liquid, which may play a decisive role for stabilizing the ionic liquid. The cation-anion interaction mainly involves electron transfer between the lone pair of the oxygen atom in the anion and the antibonding orbital of the C*-H bond (C* denotes the carbon atom at the ortho-position of nitrogen atom in the cation). This present work has also given clearly the catalytic mechanism of [epy](+)[CF(3)COO](-) toward to the Diels-Alder (D-A) reaction of acrylonitrile with 2-methyl-1,3-butadiene. Both the cation and anion are shown to play important roles in promoting the D-A reaction. The cation [epy](+), as a Lewis acid, associates the C≡N group by C≡N···H H bond to increase the polarity of the C═C double bond in acrylonitrile, while the anion CF(3)COO(-) links with the methyl group in 2-methyl-1,3-butadiene by C-H···O H bond, which weakens the electron-donating capability of methyl and thereby lowers the energy barrier of the D-A reaction. The present results are expected to provide valuable information for the design and application of pyridinium-based ionic liquids. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Qi, Yanli; Chen, Tingting; Zhang, Jun
2018-03-01
Hydrophobic surface modification is conducted in this study by using additives with long alkyl chains. Several kinds of metallic soaps, such as calcium stearate (CaSt), zinc stearate (ZnSt), magnesium stearate (MgSt) and barium stearate (BaSt) were employed. Polymer matrix is acrylonitrile-styrene-acrylate (ASA) terpolymer due to its wonderful weather resistance property. The surface chemical characterization was studied by Fourier transformed infrared (FTIR) technology and X-ray photoelectron spectroscopy (XPS). Carboxylate (Osbnd Csbnd O-) indexes of composites in both transmittance and reflection modes were calculated according to FTIR results. As to the ratio of carboxylate index in reflection mode to that in transmittance mode, the sample added with 5 wt% ZnSt shows a higher value of 8.77, and a much higher value of 14.47 for the sample added with 10 wt% ZnSt. The corresponding Csbnd C/ Csbnd H /Cdbnd C peak areas of the samples added with 5 wt% or 10 wt% ZnSt are 75.4% and 77.3% respectively, much higher than other samples. This indicates ZnSt is much easier to out-migrate to material surface and therefore is more suitable for hydrophobic surface modification. In particular, the water contact angle of the ASA/ZnSt composite added with 10 wt% ZnSt significantly increased to 127o (40o increase in comparison with pure ASA), successfully converting the surface wettability from hydrophilic to hydrophobic.
Mallampati, Srinivasa Reddy; Lee, Byoung Ho; Mitoma, Yoshiharu; Simion, Cristian
2017-02-01
The separation of plastics containing brominated flame retardants (BFR) like (acrylonitrile-butadiene-styrene (ABS), high-impact polystyrene (HIPS), and polyvinyl chloride (PVC)) from automobile and electronic waste shredder residue (ASR/ESR) are a major concern for thermal recycling. In laboratory scale tests using a hybrid nano-Fe/Ca/CaO assisted ozonation treatment has been found to selectively hydrophilize the surface of ABS/HIPS and PVC plastics, enhancing ABS wettability and thereby promoting its separation from ASR/ESR by means of froth flotation. The water contact angles, of ABS/HIPS and PVC decreased, about 18.7°, 18.3°, and 17.9° in ASR and about 21.2°, 20.7°, and 20.0° in ESR respectively. SEM-EDS, FT-IR, and XPS analyses demonstrated a marked decrease in [Cl] and a significant increase in the number of hydrophilic groups, such as CO, CO, and (CO)O, on the PVC or ABS surface. Under froth flotation conditions at 50rpm, about 99.1% of combined fraction of ABS/HIPS in ASR samples and 99.6% of ABS/HIPS in ESR samples were separated as settled fraction. After separation, the purity of the recovered combined ABS/HIPS fraction was 96.5% and 97.6% in ASR and ESR samples respectively. Furthermore, at 150rpm a 100% PVC separation in the settled fraction, with 98% and 99% purity in ASR and ESR plastics, respectively. Total recovery of non-ABS/HIPS and PVC plastics reached nearly 100% in the floating fraction. Further, this process improved the quality of recycled ASR/ESR plastics by removing surface contaminants or impurities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Direct electrical arc ignition of hybrid rocket motors
NASA Astrophysics Data System (ADS)
Judson, Michael I., Jr.
Hybrid rockets motors provide distinct safety advantages when compared to traditional liquid or solid propellant systems, due to the inherent stability and relative inertness of the propellants prior to established combustion. As a result of this inherent propellant stability, hybrid motors have historically proven difficult to ignite. State of the art hybrid igniter designs continue to require solid or liquid reactants distinct from the main propellants. These ignition methods however, reintroduce to the hybrid propulsion system the safety and complexity disadvantages associated with traditional liquid or solid propellants. The results of this study demonstrate the feasibility of a novel direct electrostatic arc ignition method for hybrid motors. A series of small prototype stand-alone thrusters demonstrating this technology were successfully designed and tested using Acrylonitrile Butadiene Styrene (ABS) plastic and Gaseous Oxygen (GOX) as propellants. Measurements of input voltage and current demonstrated that arc-ignition will occur using as little as 10 watts peak power and less than 5 joules total energy. The motor developed for the stand-alone small thruster was adapted as a gas generator to ignite a medium-scale hybrid rocket motor using nitrous oxide /and HTPB as propellants. Multiple consecutive ignitions were performed. A large data set as well as a collection of development `lessons learned' were compiled to guide future development and research. Since the completion of this original groundwork research, the concept has been developed into a reliable, operational igniter system for a 75mm hybrid motor using both gaseous oxygen and liquid nitrous oxide as oxidizers. A development map of the direct spark ignition concept is presented showing the flow of key lessons learned between this original work and later follow on development.
Using Arduinos and 3D-printers to Build Research-grade Weather Stations and Environmental Sensors
NASA Astrophysics Data System (ADS)
Ham, J. M.
2013-12-01
Many plant, soil, and surface-boundary-layer processes in the geosphere are governed by the microclimate at the land-air interface. Environmental monitoring is needed at smaller scales and higher frequencies than provided by existing weather monitoring networks. The objective of this project was to design, prototype, and test a research-grade weather station that is based on open-source hardware/software and off-the-shelf components. The idea is that anyone could make these systems with only elementary skills in fabrication and electronics. The first prototypes included measurements of air temperature, humidity, pressure, global irradiance, wind speed, and wind direction. The best approach for measuring precipitation is still being investigated. The data acquisition system was deigned around the Arduino microcontroller and included an LCD-based user interface, SD card data storage, and solar power. Sensors were sampled at 5 s intervals and means, standard deviations, and maximum/minimums were stored at user-defined intervals (5, 30, or 60 min). Several of the sensor components were printed in plastic using a hobby-grade 3D printer (e.g., RepRap Project). Both passive and aspirated radiation shields for measuring air temperature were printed in white Acrylonitrile Butadiene Styrene (ABS). A housing for measuring solar irradiance using a photodiode-based pyranometer was printed in opaque ABS. The prototype weather station was co-deployed with commercial research-grade instruments at an agriculture research unit near Fort Collins, Colorado, USA. Excellent agreement was found between Arduino-based system and commercial weather instruments. The technology was also used to support air quality research and automated air sampling. The next step is to incorporate remote access and station-to-station networking using Wi-Fi, cellular phone, and radio communications (e.g., Xbee).
NASA Technical Reports Server (NTRS)
Prater, T. J.; Bean, Q. A.; Werkheiser, N. J.; Johnston, M. M.; Ordonez, E. A.; Ledbetter, F. E.; Risdon, D. L.; Stockman, T. J.; Sandridge, S. K. R.; Nelson, G. M.
2016-01-01
NASA Marshall Space Flight Center (MSFC) and the Agency as a whole are currently engaged in a number of in-space manufacturing (ISM) activities that have the potential to reduce launch costs, enhance crew safety, and provide the capabilities needed to undertake long-duration spaceflight. The recent 3D Printing in Zero-G experiment conducted on board the International Space Station (ISS) demonstrated that parts of acrylonitrile butadiene styrene (ABS) plastic can be manufactured in microgravity using fused deposition modeling (FDM). This project represents the beginning of the development of a capability that is critical to future NASA missions. Current and future ISM activities will require the development of baseline material properties to facilitate design, analysis, and certification of materials manufactured using in-space techniques. The purpose of this technical interchange meeting (TIM) was to bring together MSFC practitioners and experts in materials characterization and development of baseline material properties for emerging technologies to advise the ISM team as we progress toward the development of material design values, standards, and acceptance criteria for materials manufactured in space. The overall objective of the TIM was to leverage MSFC's shared experiences and collective knowledge in advanced manufacturing and materials development to construct a path forward for the establishment of baseline material properties, standards development, and certification activities related to ISM. Participants were asked to help identify research and development activities that will (1) accelerate acceptance and adoption of ISM techniques among the aerospace design community; (2) benefit future NASA programs, commercial technology developments, and national needs; and (3) provide opportunities and avenues for further collaboration.
NASA Astrophysics Data System (ADS)
Brischetto, Salvatore; Ferro, Carlo Giovanni; Torre, Roberto; Maggiore, Paolo
2018-04-01
Desktop 3D FDM (Fused Deposition Modelling) printers are usually employed for the production of nonstructural objects. In recent years, the present authors tried to use this technology also to produce structural elements employed in the construction of small UAVs (Unmanned Aerial Vehicles). Mechanical stresses are not excessive for small multirotor UAVs. Therefore, the FDM technique combined with polymers, such as the ABS (Acrylonitrile Butadiene Styrene) and the PLA(Poly Lactic Acid), can be successfully employed to produce structural components. The present new work is devoted to the production and preliminary structural analysis of sandwich configurations. These new lamination schemes could lead to an important weight reduction without significant decreases of mechanical properties. Therefore, it could be possible, for the designed application (e.g., a multifunctional small UAV produced via FDM), to have stiffener and lighter structures easy to be manufactured with a low-cost 3D printer. The new sandwich specimens here proposed are PLA sandwich specimens embedding a PLA honeycomb core produced by means of the same extruder, multilayered specimens with ABS external layers and an internal homogeneous PLA core using different extruders for the two materials, sandwich specimens with external ABS skins and an internal PLA honeycomb core using different extruders for the two materials, and sandwich specimens where two different extruders have been employed for PLA material used for skins and for the internal honeycomb core. For all the proposed configurations, a detailed description of the production activity is given.Moreover, several preliminary results about three-point bending tests, different mechanical behaviors and relative delamination problems for each sandwich configuration will be discussed in depth.
Case report of asthma associated with 3D printing.
House, R; Rajaram, N; Tarlo, S M
2017-12-02
Three-dimensional (3D) printing is being increasingly used in manufacturing and by small business entrepreneurs and home hobbyists. Exposure to airborne emissions during 3D printing raises the issue of whether there may be adverse health effects associated with these emissions. We present a case of a worker who developed asthma while using 3D printers, which illustrates that respiratory problems may be associated with 3D printer emissions. The patient was a 28-year-old self-employed businessman with a past history of asthma in childhood, which had resolved completely by the age of eight. He started using 10 fused deposition modelling 3D printers with acrylonitrile-butadiene-styrene filaments in a small work area of approximately 3000 cubic feet. Ten days later, he began to experience recurrent chest tightness, shortness of breath and coughing at work. After 3 months, his work environment was modified by reducing the number of printers, changing to polylactic acid filaments and using an air purifier with an high-efficiency particulate air filter and organic cartridge. His symptoms improved gradually, although he still needed periodic treatment with a salbutamol inhaler. While still symptomatic, a methacholine challenge indicated a provocation concentration causing a 20% fall in FEV1 (PC20) of 4 mg/ml, consistent with mild asthma. Eventually, his symptoms resolved completely and a second methacholine challenge after symptom resolution was normal (PC20 > 16 mg/ml). This case indicates that workers may develop respiratory problems, including asthma when using 3D printers. Further investigation of the specific airborne emissions and health problems from 3D printing is warranted. © The Author 2017. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Content Validity of Temporal Bone Models Printed Via Inexpensive Methods and Materials.
Bone, T Michael; Mowry, Sarah E
2016-09-01
Computed tomographic (CT) scans of the 3-D printed temporal bone models will be within 15% accuracy of the CT scans of the cadaveric temporal bones. Previous studies have evaluated the face validity of 3-D-printed temporal bone models designed to train otolaryngology residents. The purpose of the study was to determine the content validity of temporal bone models printed using inexpensive printers and materials. Four cadaveric temporal bones were randomly selected and clinical temporal bone CT scans were obtained. Models were generated using previously described methods in acrylonitrile butadiene styrene (ABS) plastic using the Makerbot Replicator 2× and Hyrel printers. Models were radiographically scanned using the same protocol as the cadaveric bones. Four images from each cadaveric CT series and four corresponding images from the model CT series were selected, and voxel values were normalized to black or white. Scan slices were compared using PixelDiff software. Gross anatomic structures were evaluated in the model scans by four board certified otolaryngologists on a 4-point scale. Mean pixel difference between the cadaver and model scans was 14.25 ± 2.30% at the four selected CT slices. Mean cortical bone width difference and mean external auditory canal width difference were 0.58 ± 0.66 mm and 0.55 ± 0.46 mm, respectively. Expert raters felt the mastoid air cells were well represented (2.5 ± 0.5), while middle ear and otic capsule structures were not accurately rendered (all averaged <1.8). These results suggest that these models would be sufficient adjuncts to cadaver temporal bones for training residents in cortical mastoidectomies, but less effective for middle ear procedures.
Emission of particulate matter from a desktop three-dimensional (3D) printer
Yi, Jinghai; LeBouf, Ryan F.; Duling, Matthew G.; Nurkiewicz, Timothy; Chen, Bean T.; Schwegler-Berry, Diane; Virji, M. Abbas; Stefaniak, Aleksandr B.
2016-01-01
ABSTRACT Desktop three-dimensional (3D) printers are becoming commonplace in business offices, public libraries, university labs and classrooms, and even private homes; however, these settings are generally not designed for exposure control. Prior experience with a variety of office equipment devices such as laser printers that emit ultrafine particles (UFP) suggests the need to characterize 3D printer emissions to enable reliable risk assessment. The aim of this study was to examine factors that influence particulate emissions from 3D printers and characterize their physical properties to inform risk assessment. Emissions were evaluated in a 0.5-m3 chamber and in a small room (32.7 m3) using real-time instrumentation to measure particle number, size distribution, mass, and surface area. Factors evaluated included filament composition and color, as well as the manufacturer-provided printer emissions control technologies while printing an object. Filament type significantly influenced emissions, with acrylonitrile butadiene styrene (ABS) emitting larger particles than polylactic acid (PLA), which may have been the result of agglomeration. Geometric mean particle sizes and total particle (TP) number and mass emissions differed significantly among colors of a given filament type. Use of a cover on the printer reduced TP emissions by a factor of 2. Lung deposition calculations indicated a threefold higher PLA particle deposition in alveoli compared to ABS. Desktop 3D printers emit high levels of UFP, which are released into indoor environments where adequate ventilation may not be present to control emissions. Emissions in nonindustrial settings need to be reduced through the use of a hierarchy of controls, beginning with device design, followed by engineering controls (ventilation) and administrative controls such as choice of filament composition and color. PMID:27196745
Three-Dimensional Printing of Vitrification Loop Prototypes for Aquatic Species.
Tiersch, Nolan J; Childress, William M; Tiersch, Terrence R
2018-05-16
Vitrification is a method of cryopreservation that freezes samples rapidly, while forming an amorphous solid ("glass"), typically in small (μL) volumes. The goal of this project was to create, by three-dimensional (3D) printing, open vitrification devices based on an elliptical loop that could be efficiently used and stored. Vitrification efforts can benefit from the application of 3D printing, and to begin integration of this technology, we addressed four main variables: thermoplastic filament type, loop length, loop height, and method of loading. Our objectives were to: (1) design vitrification loops with varied dimensions; (2) print prototype loops for testing; (3) evaluate loading methods for the devices; and (4) classify vitrification responses to multiple device configurations. The various configurations were designed digitally using 3D CAD (Computer Aided Design) software, and prototype devices were produced with MakerBot ® 3D printers. The thermoplastic filaments used to produce devices were acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA). Vitrification devices were characterized by the film volumes formed with different methods of loading (pipetting or submersion). Frozen films were classified to determine vitrification quality: zero (opaque, or abundant crystalline ice formation); one (translucent, or partial vitrification), or two (transparent, or substantial vitrification, glass). A published vitrification solution was used to conduct experiments. Loading by pipetting formed frozen films more reliably than by submersion, but submersion yielded fewer filling problems and was more rapid. The loop designs that yielded the highest levels of vitrification enabled rapid transfer of heat, and most often were characterized as being longer and consisting of fewer layers (height). 3D printing can assist standardization of vitrification methods and research, yet can also provide the ability to quickly design and fabricate custom devices when needed.
Customized three-dimensional printed optical phantoms with user defined absorption and scattering
NASA Astrophysics Data System (ADS)
Pannem, Sanjana; Sweer, Jordan; Diep, Phuong; Lo, Justine; Snyder, Michael; Stueber, Gabriella; Zhao, Yanyu; Tabassum, Syeda; Istfan, Raeef; Wu, Junjie; Erramilli, Shyamsunder; Roblyer, Darren M.
2016-03-01
The use of reliable tissue-simulating phantoms spans multiple applications in spectroscopic imaging including device calibration and testing of new imaging procedures. Three-dimensional (3D) printing allows for the possibility of optical phantoms with arbitrary geometries and spatially varying optical properties. We recently demonstrated the ability to 3D print tissue-simulating phantoms with customized absorption (μa) and reduced scattering (μs`) by incorporating nigrosin, an absorbing dye, and titanium dioxide (TiO2), a scattering agent, to acrylonitrile butadiene styrene (ABS) during filament extrusion. A physiologically relevant range of μa and μs` was demonstrated with high repeatability. We expand our prior work here by evaluating the effect of two important 3D-printing parameters, percent infill and layer height, on both μa and μs`. 2 cm3 cubes were printed with percent infill ranging from 10% to 100% and layer height ranging from 0.15 to 0.40 mm. The range in μa and μs` was 27.3% and 19.5% respectively for different percent infills at 471 nm. For varying layer height, the range in μa and μs` was 27.8% and 15.4% respectively at 471 nm. These results indicate that percent infill and layer height substantially alter optical properties and should be carefully controlled during phantom fabrication. Through the use of inexpensive hobby-level printers, the fabrication of optical phantoms may advance the complexity and availability of fully customizable phantoms over multiple spatial scales. This technique exhibits a wider range of adaptability than other common methods of fabricating optical phantoms and may lead to improved instrument characterization and calibration.
Unterhofer, Claudia; Wipplinger, Christoph; Verius, Michael; Recheis, Wolfgang; Thomé, Claudius; Ortler, Martin
Reconstruction of large cranial defects after craniectomy can be accomplished by free-hand poly-methyl-methacrylate (PMMA) or industrially manufactured implants. The free-hand technique often does not achieve satisfactory cosmetic results but is inexpensive. In an attempt to combine the accuracy of specifically manufactured implants with low cost of PMMA. Forty-six consecutive patients with large skull defects after trauma or infection were retrospectively analyzed. The defects were reconstructed using computer-aided design/computer-aided manufacturing (CAD/CAM) techniques. The computer file was imported into a rapid prototyping (RP) machine to produce an acrylonitrile-butadiene-styrene model (ABS) of the patient's bony head. The gas-sterilized model was used as a template for the intraoperative modeling of the PMMA cranioplasty. Thus, not the PMMA implant was generated by CAD/CAM technique but the model of the patients head to easily form a well-fitting implant. Cosmetic outcome was rated on a six-tiered scale by the patients after a minimum follow-up of three months. The mean size of the defect was 74.36cm 2 . The implants fitted well in all patients. Seven patients had a postoperative complication and underwent reoperation. Mean follow-up period was 41 months (range 2-91 months). Results were excellent in 42, good in three and not satisfactory in one patient. Costs per implant were approximately 550 Euros. PMMA implants fabricated in-house by direct molding using a bio-model of the patients bony head are easily produced, fit properly and are inexpensive compared to cranial implants fabricated with other RP or milling techniques. Copyright © 2017 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
3D Printed Surgical Instruments Evaluated by a Simulated Crew of a Mars Mission.
Wong, Julielynn Y; Pfahnl, Andreas C
2016-09-01
The first space-based fused deposition modeling (FDM) 3D printer became operational in 2014. This study evaluated whether Mars simulation crewmembers of the Hawai'i Space Exploration Analog and Simulation (HI-SEAS) II mission with no prior surgical experience could utilize acrylonitrile butadiene styrene (ABS) thermoplastic surgical instruments FDM 3D printed on Earth to complete simulated surgical tasks. This study sought to examine the feasibility of using 3D printed surgical tools when the primary crew medical officer is incapacitated and the back-up crew medical officer must conduct a surgical procedure during a simulated extended space mission. During a 4 mo duration ground-based analog mission, five simulation crewmembers with no prior surgical experience completed 16 timed sets of simulated prepping, draping, incising, and suturing tasks to evaluate the relative speed of using four ABS thermoplastic instruments printed on Earth compared to conventional instruments. All four simulated surgical tasks were successfully performed using 3D printed instruments by Mars simulation crewmembers with no prior surgical experience. There was no substantial difference in time to completion of simulated tasks with control vs. 3D printed sponge stick, towel clamp, scalpel handle, and toothed forceps. These limited findings support further investigation into the creation of an onboard digital catalog of validated 3D printable surgical instrument design files to support autonomous, crew-administered healthcare on Mars missions. Future work could include addressing sterility, biocompatibility, and having astronaut crew medical officers test a wider range of surgical instruments printed in microgravity during actual surgical procedures. Wong JY, Pfahnl AC. 3D printed surgical instruments evaluated by a simulated crew of a Mars mission. Aerosp Med Hum Perform. 2016; 87(9):806-810.
Developing novel 3D antennas using advanced additive manufacturing technology
NASA Astrophysics Data System (ADS)
Mirzaee, Milad
In today's world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas.
Haefner, Matthias Felix; Giesel, Frederik Lars; Mattke, Matthias; Rath, Daniel; Wade, Moritz; Kuypers, Jacob; Preuss, Alan; Kauczor, Hans-Ulrich; Schenk, Jens-Peter; Debus, Juergen; Sterzing, Florian; Unterhinninghofen, Roland
2018-01-01
We developed a new approach to produce individual immobilization devices for the head based on MRI data and 3D printing technologies. The purpose of this study was to determine positioning accuracy with healthy volunteers. 3D MRI data of the head were acquired for 8 volunteers. In-house developed software processed the image data to generate a surface mesh model of the immobilization mask. After adding an interface for the couch, the fixation setup was materialized using a 3D printer with acrylonitrile butadiene styrene (ABS). Repeated MRI datasets (n=10) were acquired for all volunteers wearing their masks thus simulating a setup for multiple fractions. Using automatic image-to-image registration, displacements of the head were calculated relative to the first dataset (6 degrees of freedom). The production process has been described in detail. The absolute lateral (x), vertical (y) and longitudinal (z) translations ranged between −0.7 and 0.5 mm, −1.8 and 1.4 mm, and −1.6 and 2.4 mm, respectively. The absolute rotations for pitch (x), yaw (y) and roll (z) ranged between −0.9 and 0.8°, −0.5 and 1.1°, and −0.6 and 0.8°, respectively. The mean 3D displacement was 0.9 mm with a standard deviation (SD) of the systematic and random error of 0.2 mm and 0.5 mm, respectively. In conclusion, an almost entirely automated production process of 3D printed immobilization masks for the head derived from MRI data was established. A high level of setup accuracy was demonstrated in a volunteer cohort. Future research will have to focus on workflow optimization and clinical evaluation. PMID:29464087
Development of a MPPC-based prototype gantry for future MRI-PET scanners
NASA Astrophysics Data System (ADS)
Kurei, Y.; Kataoka, J.; Kato, T.; Fujita, T.; Ohshima, T.; Taya, T.; Yamamoto, S.
2014-12-01
We have developed a high spatial resolution, compact Positron Emission Tomography (PET) module designed for small animals and intended for use in magnetic resonance imaging (MRI) systems. This module consists of large-area, 4 × 4 ch MPPC arrays (S11830-3344MF; Hamamatsu Photonics K.K.) optically coupled with Ce-doped (Lu,Y)2(SiO4)O (Ce:LYSO) scintillators fabricated into 16 × 16 matrices of 0.5 × 0.5 mm2 pixels. We set the temperature sensor (LM73CIMK-0; National Semiconductor Corp.) at the rear of the MPPC acceptance surface, and apply optimum voltage to maintain the gain. The eight MPPC-based PET modules and coincidence circuits were assembled into a gantry arranged in a ring 90 mm in diameter to form the MPPC-based PET system. We have developed two types PET gantry: one made of non-magnetic metal and the other made of acrylonitrile butadiene styrene (ABS) resins. The PET gantry was positioned around the RF coil of the 4.7 T MRI system. We took an image of a point }22Na source under fast spin echo (FSE) and gradient echo (GE), in order to measure the interference between the MPPC-based PET and MRI. The spatial resolution of PET imaging in a transaxial plane of about 1 mm (FWHM) was achieved in all cases. Operating with PET made of ABS has no effect on MR images, while operating with PET made of non-magnetic metal has a significant detrimental effect on MR images. This paper describes our quantitative evaluations of PET images and MR images, and presents a more advanced version of the gantry for future MRI/DOI-PET systems.
3-D printed 2.4 GHz rectifying antenna for wireless power transfer applications
NASA Astrophysics Data System (ADS)
Skinner, Matthew
In this work, a 3D printed rectifying antenna that operates at the 2.4GHz WiFi band was designed and manufactured. The printed material did not have the same properties of bulk material, so the printed materials needed to be characterized. The antenna and rectifying circuit was printed out of Acrylonitrile Butadiene Styrene (ABS) filament and a conductive silver paste, with electrical components integrated into the circuit. Before printing the full rectifying antenna, each component was printed and evaluated. The printed antenna operated at the desired frequency with a return loss of -16 dBm with a bandwidth of 70MHz. The radiation pattern was measured in an anechoic chamber with good matching to the model. The rectifying circuit was designed in Ansys Circuit Simulation using Schottky diodes to enable the circuit to operate at lower input power levels. Two rectifying circuits were manufactured, one by printing the conductive traces with silver ink, and one with traces made from copper. The printed silver ink is less conductive than the bulk copper and therefore the output voltage of the printed rectifier was lower than the copper circuit. The copper circuit had an efficiency of 60% at 0dBm and the printed silver circuit had an efficiency of 28.6% at 0dBm. The antenna and rectifying circuits were then connected to each other and the performance was compared to a fully printed integrated rectifying antenna. The rectifying antennas were placed in front of a horn antenna while changing the power levels at the antenna. The efficiency of the whole system was lower than the individual components but an efficiency of 11% at 10dBm was measured.
Lai, Bo; Zhou, Yuexi; Wang, Juling; Zhang, Yunhong; Chen, Zhiqiang
2014-01-01
This study provides mechanistic insights into the passivation of the packing particles during the treatment of acrylonitrile-butadiene-styrene (ABS) resin wastewater by the Fe0/GAC system. The granular-activated carbon (GAC) and iron chippings (Fe0) were mixed together with a volumetric ratio of 1:1. GAC has a mean particle size of approximately 3-5 mm, a specific surface of 748 m2 g(-1), a total pore volume of 0.48 mL g(-1) and a bulk density of 0.49 g cm(-3). The iron chippings have a compact and non-porous surface morphology. The results show that the packing particles in the Fe0/GAC system would lose their activity because the removal of TOC and PO4(3-) for ABS resin wastewater could not carried out by the Fe0/GAC system after 40 days continuous running. Meanwhile, the availability of O2 and intrinsic reactivity of Fe0 play a key role on the form of passive film with different iron oxidation states. The passive film on the surface of iron chippings was formed by two phases: (a) local corrosion phase (0-20 d) and (b) co-precipitation phase (20-40 d), while that of GAC was mainly formed by the co-precipitation of corrosion products with SO4(2-) and PO4(3-) because SO4(2-) and PO4(3-) would not easily reach the Fe0 surface. Therefore, in order to avoid the occurrence of filler passivation, high concentrations of SO4(2-) and PO4(3-) in wastewater should be removed before the treatment process of the Fe/GAC system.
Haefner, Matthias Felix; Giesel, Frederik Lars; Mattke, Matthias; Rath, Daniel; Wade, Moritz; Kuypers, Jacob; Preuss, Alan; Kauczor, Hans-Ulrich; Schenk, Jens-Peter; Debus, Juergen; Sterzing, Florian; Unterhinninghofen, Roland
2018-01-19
We developed a new approach to produce individual immobilization devices for the head based on MRI data and 3D printing technologies. The purpose of this study was to determine positioning accuracy with healthy volunteers. 3D MRI data of the head were acquired for 8 volunteers. In-house developed software processed the image data to generate a surface mesh model of the immobilization mask. After adding an interface for the couch, the fixation setup was materialized using a 3D printer with acrylonitrile butadiene styrene (ABS). Repeated MRI datasets (n=10) were acquired for all volunteers wearing their masks thus simulating a setup for multiple fractions. Using automatic image-to-image registration, displacements of the head were calculated relative to the first dataset (6 degrees of freedom). The production process has been described in detail. The absolute lateral (x), vertical (y) and longitudinal (z) translations ranged between -0.7 and 0.5 mm, -1.8 and 1.4 mm, and -1.6 and 2.4 mm, respectively. The absolute rotations for pitch (x), yaw (y) and roll (z) ranged between -0.9 and 0.8°, -0.5 and 1.1°, and -0.6 and 0.8°, respectively. The mean 3D displacement was 0.9 mm with a standard deviation (SD) of the systematic and random error of 0.2 mm and 0.5 mm, respectively. In conclusion, an almost entirely automated production process of 3D printed immobilization masks for the head derived from MRI data was established. A high level of setup accuracy was demonstrated in a volunteer cohort. Future research will have to focus on workflow optimization and clinical evaluation.
NASA Astrophysics Data System (ADS)
Rodríguez-Vidal, Eva; Quintana, Iban; Etxarri, Jon; Azkorbebeitia, Urko; Otaduy, Deitze; González, Francisco; Moreno, Fernando
2012-12-01
Laser transmission welding (LTW) of thermoplastics is a direct bonding technique already used in different industrial applications sectors such as automobiles, microfluidics, electronics, and biomedicine. LTW evolves localized heating at the interface of two pieces of plastic to be joined. One of the plastic pieces needs to be optically transparent to the laser radiation whereas the other part has to be absorbent, being that the radiation produced by high power diode lasers is a good alternative for this process. As consequence, a tailored laser system has been designed and developed to obtain high quality weld seams with weld widths between 0.7 and 1.4 mm. The developed laser system consists of two diode laser bars (50 W per bar) coupled into an optical fiber using a nonimaging solution: equalization of the beam parameter product (BPP) in the slow and fast axes by a pair of step-mirrors. The power scaling was carried out by means of a multiplexing polarization technique. The analysis of energy balance and beam quality was performed considering ray tracing simulation (ZEMAX) and experimental validation. The welding experiments were conducted on acrylonitrile/butadiene/styrene (ABS), a thermoplastic frequently used in automotive, electronics and aircraft applications, doped with two different concentrations of carbon nanotubes (0.01% and 0.05% CNTs). Quality of the weld seams on ABS was analyzed in terms of the process parameters (welding speed, laser power and clamping pressure) by visual and optical microscope inspections. Mechanical properties of weld seams were analyzed by mechanical shear tests. High quality weld seams were produced in ABS, revealing the potential of the laser developed in this work for a wide range of plastic welding applications.
Pediatric laryngeal simulator using 3D printed models: A novel technique.
Kavanagh, Katherine R; Cote, Valerie; Tsui, Yvonne; Kudernatsch, Simon; Peterson, Donald R; Valdez, Tulio A
2017-04-01
Simulation to acquire and test technical skills is an essential component of medical education and residency training in both surgical and nonsurgical specialties. High-quality simulation education relies on the availability, accessibility, and reliability of models. The objective of this work was to describe a practical pediatric laryngeal model for use in otolaryngology residency training. Ideally, this model would be low-cost, have tactile properties resembling human tissue, and be reliably reproducible. Pediatric laryngeal models were developed using two manufacturing methods: direct three-dimensional (3D) printing of anatomical models and casted anatomical models using 3D-printed molds. Polylactic acid, acrylonitrile butadiene styrene, and high-impact polystyrene (HIPS) were used for the directly printed models, whereas a silicone elastomer (SE) was used for the casted models. The models were evaluated for anatomic quality, ease of manipulation, hardness, and cost of production. A tissue likeness scale was created to validate the simulation model. Fleiss' Kappa rating was performed to evaluate interrater agreement, and analysis of variance was performed to evaluate differences among the materials. The SE provided the most anatomically accurate models, with the tactile properties allowing for surgical manipulation of the larynx. Direct 3D printing was more cost-effective than the SE casting method but did not possess the material properties and tissue likeness necessary for surgical simulation. The SE models of the pediatric larynx created from a casting method demonstrated high quality anatomy, tactile properties comparable to human tissue, and easy manipulation with standard surgical instruments. Their use in a reliable, low-cost, accessible, modular simulation system provides a valuable training resource for otolaryngology residents. N/A. Laryngoscope, 127:E132-E137, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Liu, Guicai; Liao, Yanfen; Ma, Xiaoqian
2017-03-01
As important plastic blends in End-of-Life vehicles (ELV), pyrolysis profiles of ABS/PVC, ABS/PA6 and ABS/PC were investigated using thermogravimetric-Fourier transform infrared spectrometer (TG-FTIR). Also, CaCO 3 was added as plastic filler to discuss its effects on the pyrolysis of these plastics. The results showed that the interaction between ABS and PVC made PVC pyrolysis earlier and HCl emission slightly accelerated. The mixing of ABS and PA6 made their decomposition temperature closer, and ketones in PA6 pyrolysis products were reduced. The presence of ABS made PC pyrolysis earlier, and phenyl compounds in PC pyrolysis products could be transferred into alcohol or H 2 O. The interaction between ABS and other polymers in pyrolysis could be attributed to the intermolecular radical transfer, and free radicals from the polymer firstly decomposed led to a fast initiation the decomposition of the other polymer. As plastic filler, CaCO 3 promoted the thermal decomposition of PA6 and PC, and had no obvious effects on ABS and PVC pyrolysis process. Also, CaCO 3 made the pyrolysis products from PA6 and PC further decomposed into small-molecule compounds like CO 2 . The kinetics analysis showed that isoconversional method like Starink method was more suitable for these polymer blends. Starink method showed the average activation energy of ABS50/PVC50, ABS50/PA50 and ABS50/PC50 was 186.63kJ/mol, 239.61kJ/mol and 248.95kJ/mol, respectively, and the interaction among them could be reflected by the activation energy variation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recycling of plastic waste: Screening for brominated flame retardants (BFRs).
Pivnenko, K; Granby, K; Eriksson, E; Astrup, T F
2017-11-01
Flame retardants are chemicals vital for reducing risks of fire and preventing human casualties and property losses. Due to the abundance, low cost and high performance of bromine, brominated flame retardants (BFRs) have had a significant share of the market for years. Physical stability on the other hand, has resulted in dispersion and accumulation of selected BFRs in the environment and receiving biota. A wide range of plastic products may contain BFRs. This affects the quality of waste plastics as secondary resource: material recycling may potentially reintroduce the BFRs into new plastic product cycles and lead to increased exposure levels, e.g. through use of plastic packaging materials. To provide quantitative and qualitative data on presence of BFRs in plastics, we analysed bromophenols (tetrabromobisphenol A (TBBPA), dibromophenols (2,4- and 2,6-DBP) and 2,4,6-tribromophenol (2,4,6-TBP)), hexabromocyclododecane stereoisomers (α-, β-, and γ-HBCD), as well as selected polybrominated diphenyl ethers (PBDEs) in samples of household waste plastics, virgin and recycled plastics. A considerable number of samples contained BFRs, with highest concentrations associated with acrylonitrile butadiene styrene (ABS, up to 26,000,000ngTBBPA/g) and polystyrene (PS, up to 330,000ng∑HBCD/g). Abundancy in low concentrations of some BFRs in plastic samples suggested either unintended addition in plastic products or degradation of higher molecular weight BFRs. The presence of currently restricted flame retardants (PBDEs and HBCD) identified in the plastic samples illustrates that circular material flows may be contaminated for extended periods. The screening clearly showed a need for improved documentation and monitoring of the presence of BFRs in plastic waste routed to recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kiatkamjornwong, Suda; Meechai, Nispa
1997-06-01
Enhancement of the gamma radiation grafting of acrylonitrile onto gelatinized cassava starch was investigated. Infrared spectrometry was used to follow the chemical changes in the grafting reaction and from saponification. The saponified starch- g-PAN (HSPAN) was then characterized in terms of grafting parameters to provide a guide for the optimum total dose (kGy) and the appropriate ratio of starch/acrylonitrile for a fixed dose rate of 2.5 × 10 -1 kGy/min. Other dose rates were also carried out to obtain the appropriate result of grafting copolymerization and of water absorption. A thin aluminium foil, covering the inner wall of the reaction vessel, was found to be far more effective than any other metal films in the enhancement of the grafting reaction and the water absorption as well. Nitric acid in the medium increases the grafting yield and the water absorption. Methyl ether hydroquinone inhibitor was evaluated for its ability to increase homopolymerization and decrease graft reaction. When styrene was used as a comonomer, it hampered the grafting of acrylonitrile onto starch backbone. The water absorption capacity was improved by freeze-drying the HSPAN. The treatment of the HSPAN with aluminium trichloride hexahydrate was found to enhance the degree of wicking, but to decrease the water absorbency.
A Coupled CFD/FEM Structural Analysis to Determine Deformed Shapes of the RSRM Inhibitors
NASA Technical Reports Server (NTRS)
Dill, Richard A.; Whitesides, R. Harold
1996-01-01
Recent trends towards an increase in the stiffness of the acrylonitrile butadiene rubber (NBR) insulation material used in the construction of the redesigned solid rocket motor (RSRM) propellant inhibitors prompted questions about possible effects on RSRM performance. The specific objectives of the computational fluid dynamics (CFD) task included: (1) the definition of pressure loads to calculate the deformed shape of stiffer inhibitors, (2) the calculation of higher port velocities over the inhibitors to determine shifts in the vortex shedding or edge tone frequencies, and (3) the quantification of higher slag impingement and collection rates on the inhibitors and in the submerged nose nozzle cavity.
Development of a slip sensor using separable bilayer with Ecoflex-NBR film
NASA Astrophysics Data System (ADS)
Kim, Sung Joon; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, Ja Choon
2017-04-01
Polymer film-type slip sensor is presented by using novel working principle rather than measuring micro-vibration. The sensor is comprised of bilayer with Ecoflex and NBR(acrylonitrile butadiene rubber) films divided by di-electric. When slip occur on surface, bilayer have relative displacement from each other because friction-induced vibration make a clearance between two layers. This displacement can be obtained by capacitance difference. CNT(carbon nanotube) was employed for electrode because of flexible and stretchable characteristics. Also normal and shear force can be decoupled by the working principle. To verify developed sensor, slip test apparatus was designed and experiments were conducted.
Investigation on fracture behavior and mechanisms of DGEBF toughened by CTBN
NASA Astrophysics Data System (ADS)
Wang, Lulu; Tan, Yefa; Wang, Haitao; Gao, Li; Xiao, Chufan
2018-05-01
Carboxyl-terminated butadiene-co-acrylonitrile (CTBN) was used as the toughener to improve the mechanical performance and fracture toughness of diglycidyl ether of bisphenol F (DGEBF) by prereacted approach. The results show that the chemical bonding interface was formed between DGEBF and CTBN particles in the prepolymerization reaction process, which remarkably enhances the fracture toughness of the composites. Based on the qualitative and quantitative analyses, it shows the main toughening mechanisms are the plastic shear banding effect resulted from the plastic deformation of the EP matrix and the plastic void expansion because of the debonding of CTBN particles from the EP matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubouchi, Masatoshi; Hojo, Hidemitsu
The thermal shock resistance of epoxy resin specimens toughened with carboxy-terminated poly(butadiene-acrylonitrile) (CTBN) and poly-glycol were tested using a new notched disk-type specimen. The new thermal shock testing method consists of quenching a notched disk-type specimen and applying a theoretical analysis to the test results to determine crack propagation conditions. For both toughened epoxy resins, this test method evaluated improvements in thermal shock resistance. The thermal shock resistance of epoxy resin toughened with CTBN exhibited a maximum at a 35 parts per hundred resin content of CTBN. The epoxy resin toughened with polyglycol exhibited improved thermal shock resistance with increasingmore » glycol content. 7 refs., 14 figs., 1 tab.« less
A Study of Styrene-Butadiene Rubber Blends as Improved Flame Agents
1976-06-01
results of air gun tests. Thus, both elasticity and viscosity must be considered when DD I JAN 7 1473 EDITION OF I NOV 63 IS OBSOLETE UNCLASSIFIED sECURITy...L.EGEND!~ 23.9’ C 0~ 1:? 100 >.80 I.. 20 ini Sha at)sc Fiue2. Prcn eoyof2-ecnSR4/0a Vaiu aisa 38 227 I LI I : hi Ilii Al 01 100 130 6n0 40- Shear Rate
Lithium metal doped electrodes for lithium-ion rechargeable chemistry
Liu, Gao; Battaglia, Vince; Wang, Lei
2016-09-13
An embodiment of the invention combines the superior performance of a polyvinylidene difluoride (PVDF) or polyethyleneoxide (POE) binder, the strong binding force of a styrene-butadiene (SBR) binder, and a source of lithium ions in the form of solid lithium metal powder (SLMP) to form an electrode system that has improved performance as compared to PVDF/SBR binder based electrodes. This invention will provide a new way to achieve improved results at a much reduced cost.
Environmental Assessment for Kirtland Air Force Base Perimeter Fencing
2004-07-01
Xylene, Styrene, Toluene, Methyl ethyl ketone, 1,3-Butadiene, Phenol, Propionaldehyde, n-Hexane, Chlorobenzene, Cumene, 1,1,2-Trichloroethane, 2,2,4...piñon-juniper community ranges in elevation from 6,300 to 7,700 feet. This dominant plant community is composed of Colorado piñon pine ( Pinus edulis...Kirtland AFB Perimeter Fencing EA 3-21 Final - July 2004 Ponderosa pine ( Pinus ponderosa) forests occur in the upper elevations, usually above 7,700 feet
The Synergy of Double Cross-linking Agents on the Properties of Styrene Butadiene Rubber Foams
Shao, Liang; Ji, Zhan-You; Ma, Jian-Zhong; Xue, Chao-Hua; Ma, Zhong-Lei; Zhang, Jing
2016-01-01
Sulfur (S) cross-linking styrene butadiene rubber (SBR) foams show high shrinkage due to the cure reversion, leading to reduced yield and increased processing cost. In this paper, double cross-linking system by S and dicumyl peroxide (DCP) was used to decrease the shrinkage of SBR foams. Most importantly, the synergy of double cross-linking agents was reported for the first time to our knowledge. The cell size and its distribution of SBR foams were investigated by FESEM images, which show the effect of DCP content on the cell structure of the SBR foams. The relationships between shrinkage and crystalline of SBR foams were analyzed by the synergy of double cross-linking agents, which were demonstrated by FTIR, Raman spectra, XRD, DSC and TGA. When the DCP content was 0.6 phr, the SBR foams exhibit excellent physical and mechanical properties such as low density (0.223 g/cm3), reduced shrinkage (2.25%) and compression set (10.96%), as well as elevated elongation at break (1.78 × 103%) and tear strength (54.63 N/mm). The results show that these properties are related to the double cross-linking system of SBR foams. Moreover, the double cross-linking SBR foams present high electromagnetic interference (EMI) shielding properties compared with the S cross-linking SBR foams. PMID:27841307
The Synergy of Double Cross-linking Agents on the Properties of Styrene Butadiene Rubber Foams
NASA Astrophysics Data System (ADS)
Shao, Liang; Ji, Zhan-You; Ma, Jian-Zhong; Xue, Chao-Hua; Ma, Zhong-Lei; Zhang, Jing
2016-11-01
Sulfur (S) cross-linking styrene butadiene rubber (SBR) foams show high shrinkage due to the cure reversion, leading to reduced yield and increased processing cost. In this paper, double cross-linking system by S and dicumyl peroxide (DCP) was used to decrease the shrinkage of SBR foams. Most importantly, the synergy of double cross-linking agents was reported for the first time to our knowledge. The cell size and its distribution of SBR foams were investigated by FESEM images, which show the effect of DCP content on the cell structure of the SBR foams. The relationships between shrinkage and crystalline of SBR foams were analyzed by the synergy of double cross-linking agents, which were demonstrated by FTIR, Raman spectra, XRD, DSC and TGA. When the DCP content was 0.6 phr, the SBR foams exhibit excellent physical and mechanical properties such as low density (0.223 g/cm3), reduced shrinkage (2.25%) and compression set (10.96%), as well as elevated elongation at break (1.78 × 103%) and tear strength (54.63 N/mm). The results show that these properties are related to the double cross-linking system of SBR foams. Moreover, the double cross-linking SBR foams present high electromagnetic interference (EMI) shielding properties compared with the S cross-linking SBR foams.
NASA Astrophysics Data System (ADS)
Jiménez, G. Lesly; Reyes-Rodríguez, J. L.; Padilla, Isela; Alarcón-Flores, G.; Falcony, C.
2018-02-01
A highly luminescent europium complex obtained with two different ligands, succinimide (SI) and 2-thenoyltrifluoroacetone (TTA) , was synthetized with different TTA concentrations. The photoluminescence (PL) emission from these materials corresponds to the characteristic inter-electronic energy level transitions of the Eu3+ ions. However, the excitation spectrum is strongly dependent on the presence of TTA, having an optimum response when 0.75 mmol of this compound is added to the EuL3(H2O)3 complex. The quantum yield obtained by these powders were around 72 % ± 1.7 % indicating an optimum sensitization of these complex. The EuL3 TTA complex with the best PL properties was embedded in a styrene butadiene copolymer (SBC) film, produced by the drop casting method, obtaining similar PL behavior at different concentrations, the highest intensity was observed at 1.2% (w/v) of EuL3 TTA complex and the quantum yield of these composite films was 60.5 % ± 2 % . These films were exposed to continuous UV irradiation and after 141 h no photo-bleaching effect was observed in contrast with the EuL3 TTA complex that exhibited a noticeable photoluminescence intensity degradation at much shorter exposure times. Both the Eu-complexes and the composite films were characterized by FT-IR, XRD, SEM and fluorescence spectroscopy.
Yang, Jen Ming; Yang, Jhe-Hao; Huang, Huei Tsz
2014-01-01
The surface of styrene-butadiene-styrene block copolymer (SBS) membrane is modified with tri-steps in this study. At first, two step modified SBS membrane (MSBS) was prepared with epoxidation and ring opening reaction with maleated ionomer. Then chitosan was used as the polycation electrolyte and sodium alginate, poly(γ-glutamic acid) (PGA) and poly(aspartic acid) (PAsp) were selected as polyanion electrolytes to deposit on the surfaces of MSBS membrane by the layer-by-layer self-assembly (LbL) deposition technique to get three [chitosan/polyanion] LbL modified SBS membranes, ([CS/Alg], [CS/PGA] and [CS/PAsp]). From the quantitative XPS analysis and water contact angle measurement, it is found that the order of wettability and the content of functional group percentages of COO(-) and OCN on the three [CS/polyanion] systems are [CS/Alg]>[CS/PGA]>[CS/PAsp]. Performances of water vapor transmission rates, fibronectin adsorption, antibacterial assessment and 3T3 fibroblast cell growth on [CS/Alg], [CS/PGA] and [CS/PAsp] membranes were also evaluated. With the evaluation of water vapor transmission rate, these [CS/Alg], [CS/PGA] and [CS/PAsp] membranes are sterile semipermeable with water evaporation at about 82±8g/day·m(2). It is found that the amount of fibronectin adsorption on the three [CS/polyanion] systems is significantly determined by the sum of the functional group of COO(-) and OCN on the surfaces of [CS/Alg], [CS/PGA] and [CS/PAsp] systems. The results are inverse with the sum of the functional group of COO(-) and OCN on the three [CS/polyanion]. From the cytotoxicity test and cell adhesion and proliferation assay of 3T3 fibroblasts on the three [CS/polyanion] systems, it revealed that the cells not only remained viable but they also proliferated on the surfaces of [CS/Alg], [CS/PGA] and [CS/PAsp]. The bactericidal activity was found on [CS/Alg], [CS/PGA] and [CS/PAsp]. The transport of bacterial through these [CS/polyanion] membranes was also conducted. No bacterial transport was found. © 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, A.; LeMay, J.D.; Sanchez, R.J.
Tearing energies (T) have been evaluated for carbon-black-reinforced SBR tested in uniaxial tension. The influence of notch depth on T and fracture morphology have also been determined. The influence of notch depth on the stress-strain behavior and on the failure stress and failure strain is also illustrated. The ratio of recovered-to-input energy as a function of both stress and strain was determined for notched and notch-free samples.
NASA Astrophysics Data System (ADS)
Vega-Cantu, Yadira Itzel
Poly(acrylonitrile-co-butadiene) or nitrile-butadiene rubber (NBR) is frequently used as an O-ring material in the oil extraction industry due to its excellent chemical properties and resistance to oil. However, degradation of NBR gaskets is known to occur during the well completion and oil extraction process where packers are exposed to completion fluids such as ZnBr2 brine. Under these conditions NBR exhibits accelerated chemical degradation resulting in embrittlement and cracking. Samples of NBR, poly(acrylonitrile) (PAN) and poly(butadiene) (PB) have been exposed to ZnBr2 based completion fluid, and analyzed by ATR and diffuse reflectance IR. Analysis shows the ZnBr2 based completion fluid promotes hydrolysis of the nitrile group to form amides and carboxylic groups. Analysis also shows that carbon-carbon double bonds in NBR are unaffected after short exposure to zinc bromide based completion fluid, but are quickly hydrolyzed in acidic bromide mixtures. Although fluoropolymers have excellent chemical resistance, their strength is less than nitrile rubber and replacing the usual gasket materials with fluoroelastomers is expensive. However, a fluoropolymer surface on a nitrile elastomer can provide the needed chemical resistance while retaining their strength. In this study, we have shown that this can be achieved by direct fluorination, a rather easy and inexpensive process. Samples of NBR O-rings have been fluorinated by exposure to F2 and F2/HF mixtures at various temperatures. Fluorination with F 2 produces the desired fluoropolymer layer; however, fluorination by F2/HF mixtures gave a smoother fluorinated layer at lower temperatures and shorter times. Fluorinated samples were exposed to ZnBr2 drilling fluid and solvents. Elemental analysis shows that the fluorinated layer eliminates ZnBr2 diffusion into the NBR polymeric matrix. It was also found that surface fluorination significantly retards the loss of mechanical properties such as elasticity, tensile strength, toughness and compression set of nitrile rubber when exposed to zinc bromide fluid. This surface fluorination can be applied to extend the useful life of O-rings and packers in the field during oil extraction. The extended life can save millions of dollars by limiting the downtime of the well.
NASA Astrophysics Data System (ADS)
Ramesan, M. T.; Abdu Raheem V., P.; Jayakrishnan, P.; Pradyumnan, P. P.
2014-10-01
Nanocomposites of NBR with manganous-tungstate nanoparticles were prepared through vulcanization process. The extent of interaction of nanoparticles with the polymer was studied by FTIR, SEM, XRD, TGA and AC conductivity. FTIR and XRD ascertain the interaction of NBR with MnWO4 nanoparticles. SEM analysis established that the nanopartilces were well dispersed in the macromolecular chain of NBR. The mechanical properties of the nanocomposites were studied as a function of filler loading. The nanocomposites exhibited enhanced thermal stability as seen in TGA. Conductivity and dielectric properties of nanocomposites increase with increase in concentration of MnWO4 nanoparticles (7phr) and thereafter the value decreases.
The mechanical behaviour of NBR/FEF under compressive cyclic stress strain
NASA Astrophysics Data System (ADS)
Mahmoud, W. E.; El-Eraki, M. H. I.; El-Lawindy, A. M. Y.; Hassan, H. H.
2006-06-01
Acrylonitrile butadiene rubber compounds filled with different concentrations of fast extrusion furnace (FEF) carbon black were experimentally investigated. The stress-strain curves of the composites were studied, which suggest good filler-matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non-spherical particles. The effect of FEF carbon black on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress-strain relationships for any cycle were described by applying Ogden's model for rubber samples. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A simple model was proposed, to investigate the relation between maximum stress and the number of cyclic fatigue.
Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites
NASA Technical Reports Server (NTRS)
Grimsley, Brian W. (Inventor); Gordon, Keith L. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor); Siochi, Emilie J. (Inventor)
2015-01-01
A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, D.A.
The carboxyl-terminated butadiene/acrylonitrile copolymer (CTBN)/epoxy adduct, BKC 20102, which is used for encapsulating electronic devices, was studied to improve its quality and reliability. The average chemical, physical, and mechanical properties were obtained by testing 16 batches of adduct prepared from 13 separate lots of CTBN. Three methods were determined to prepare a clear, soluble liquid adduct that does not separate in storage or transit. Two of these methods also produce a clear epoxy casting and a filled potting compound with improved impact and flexural, compressive, and tensile strengths. Study of the temperature-viscosity profile during the cure of the liquid adductmore » has shown that a slight change in the degassing time can significantly reduce foaming during degassing.« less
Puncture-Healing Thermoplastic Resin Carbon-Fiber Reinforced Composites
NASA Technical Reports Server (NTRS)
Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)
2017-01-01
A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.
Seo, Byeongho; Kang, Jonghyub; Jang, Sukhee; Kang, Yonggu; Kim, Wonho
2013-03-01
Nanoprene is made from chemically cross-linked rubber particles, and has many hydroxyl groups on the surface of the particles. It is speculated that the Nanoprene could reduce the silica-silica network formation by introducing hydrogen bonding between the silanol group of silica and the hydroxyl group of Nanoprene. In this study, the styrene-butadiene rubber (SBR)/silica compounds with two types of the Nanoprene (BM75OH, BM15OH) were evaluated and it could be well explained by the concept of the volume fraction of filler or the volume fraction of rubber. If the Nanoprene applied to the compound is considered as a kind of filler, the minimum torque values and bound rubber contents of the un-vulcanized compounds, the swelling ratio and the stress-strain relationship of the vulcanized compounds could be well explained by the volume fraction of filler (phi(F)). If Nanoprene is considered as a kind of rubber such as SBR, the properties such as peak tan delta, Payne effect, tan delta at 0 degrees C and 60 degrees C, and abrasion resistance could be well explained by the volume fraction of rubber (phi'(R)). However, the improvement of silica dispersion by addition of the Nanoprene particles in the compounds was not significant. The application of BM75OH as a polymer to the tread compound will be suitable for winter tires. In addition, the compound with BM15OH as an additive will be suitable as a tread compound for summer tires.
Matanoski, G M; Santos-Burgoa, C; Schwartz, L
1990-01-01
A cohort of 12,110 male workers employed 1 or more years in eight styrene-butadiene polymer (SBR) manufacturing plants in the United States and Canada has been followed for mortality over a 40-year period, 1943 to 1982. The all-cause mortality of these workers was low [standardized mortality ratio (SMR) = 0.81] compared to that of the general population. However, some specific sites of cancers had SMRs that exceeded 1.00. These sites were then examined by major work divisions. The sites of interest included leukemia and non-Hodgkin's lymphoma in whites. The SMRs for cancers of the digestive tract were higher than expected, especially esophageal cancer in whites and stomach cancer in blacks. The SMR for arteriosclerotic heart disease in black workers was significantly higher than would be expected based on general population rates. Employees were assigned to a work area based on job longest held. The SMRs for specific diseases differed by work area. Production workers showed increased SMRs for hematologic neoplasms and maintenance workers, for digestive cancers. A significant excess SMR for arteriosclerotic heart disease occurred only in black maintenance workers, although excess mortality from this disease occurred in blacks regardless of where they worked the longest. A significant excess SMR for rheumatic heart disease was associated with work in the combined, all-other work areas. For many causes of death, there were significant deficits in the SMRs. PMID:2401250
NASA Astrophysics Data System (ADS)
Karakas, Ahmet Sertac; Bozkurt, Tarik Serhat; Sayin, Baris; Ortes, Faruk
2017-07-01
In passenger and freight traffic on the roads, which has the largest share of the hot mix asphalt (HMA) prepared asphalt concrete pavement is one of the most preferred type of flexible superstructure. During the service life of the road, they must provide the performance which is expected to show. HMA must be high performance mix design, comfortable, safe and resistance to degradation. In addition, it becomes a critical need to use various additives materials for roads to be able to serve long-term against environmental conditions such as traffic and climate due to the fact that the way of raw materials is limited. Styrene Butadiene Styrene (SBS) polymers are widely used among additives. In this study, the numerical analysis of SBS modified HMA designed asphalt concrete coatings prepared with different thicknesses with SBS modified HMA is performed. After that, stress and deformation values of the three pavement models are compared and evaluated.
The use of white-rot fungi as active biofilters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braun-Luellemann, A.; Johannes, C.; Majcherczyk, A.
1995-12-31
White-rot fungi, growing on lignocellulosic substrates, have been successfully used as active organisms in biofilters. Filters using these fungi have a very high biological active surface area, allowing for high degrees of retention, a comparatively low pressure drop, and a high physical stability. The unspecific action of the extracellular enzymes of the white-rot fungi allows for the degradation of a wide variety of substances by the same organism. Degradation of several compounds in the gas phase by the white-rot fungi Trametes versicolor, Pleurotus ostreatus, Bjerkandera adusta, and Phanerochaete chrysosporium was tested. Among the aromatic solvents, styrene was the compound thatmore » was most readily degraded, followed by ethylbenzene, xylenes, and toluene. Tetrahydrofuran and dichloromethane were also degraded, whereas dioxane could not be attacked by fungi under the conditions used. Acrylonitrile and aniline were degraded very well, whereas pyridine was resistant to degradation. The process for removing styrene is now in the scaling-up stage.« less
Modeling the reversible, diffusive sink effect in response to transient contaminant sources.
Zhao, D; Little, J C; Hodgson, A T
2002-09-01
A physically based diffusion model is used to evaluate the sink effect of diffusion-controlled indoor materials and to predict the transient contaminant concentration in indoor air in response to several time-varying contaminant sources. For simplicity, it is assumed the predominant indoor material is a homogeneous slab, initially free of contaminant, and the air within the room is well mixed. The model enables transient volatile organic compound (VOC) concentrations to be predicted based on the material/air partition coefficient (K) and the material-phase diffusion coefficient (D) of the sink. Model predictions are made for three scenarios, each mimicking a realistic situation in a building. Styrene, phenol, and naphthalene are used as representative VOCs. A styrene butadiene rubber (SBR) backed carpet, vinyl flooring (VF), and a polyurethane foam (PUF) carpet cushion are considered as typical indoor sinks. In scenarios involving a sinusoidal VOC input and a double exponential decaying input, the model predicts the sink has a modest impact for SBR/styrene, but the effect increases for VF/phenol and PUF/naphthalene. In contrast, for an episodic chemical spill, SBR is predicted to reduce the peak styrene concentration considerably. A parametric study reveals for systems involving a large equilibrium constant (K), the kinetic constant (D) will govern the shape of the resulting gasphase concentration profile. On the other hand, for systems with a relaxed mass transfer resistance, K will dominate the profile.
NASA Astrophysics Data System (ADS)
Mao, Zepeng; Zhang, Jun
2018-06-01
The phase morphology of two elastomers (i.e., chlorinated polyethylene (CPE) and polybutadiene rubber (BR)) were devised to be a core-shell structure in acrylonitrile-styrene-acrylate (ASA) resin matrix, via the interfacial tension differences of polymer pairs. Selective extraction test and scanning electron microscopy (SEM) were utilized to verify this special phase morphology. The results demonstrated that the core-shell structure, BR core and CPE shell, significantly contributed to improve the low temperature toughness of ASA/CPE/BR ternary blends, which may be because the nonpolar BR core was segregated from polar ASA by the CPE shell. The CPE shell served dual functions: Not only did it play compatibilizing effect in the interface between BR and ASA matrix, but it also toughened the blends at 25 and 0 °C. The blends of ASA/CPE/BR (100/27/3, w/w/w) and ASA/CPE/BR (100/22/8, w/w/w) showed the peak impact strengths at about 28 and 9 kJ/m2 at 0 and -30 °C, respectively, which were higher than both that of ASA/CPE/BR (100/30/0, w/w/w) and ASA/CPE/BR (100/0/30, w/w/w). Moreover, the impact strength of ternary blends at room temperature kept at 40 kJ/m2 when BR content was lower than 10 phr. Other characterizations including contact angle measurement, dynamic mechanical thermal analysis (DMTA), morphology of impact-fractured surfaces, tensile properties, flexural properties, and Fourier transform infrared spectroscopy (FTIR) were measured as well.
Compatibility of elastomers in alternate jet fuels
NASA Technical Reports Server (NTRS)
Kalfayan, S. H.; Fedors, R. F.; Reilly, W. W.
1979-01-01
The compatibility of elastomeric compositions of known resistance to aircraft fuels was tested for potential use in Jet A type fuels obtainable from alternate sources, such as coal. Since such fuels were not available at the time, synthetic alternate fuels were prepared by adding tetralin to a petroleum based Jet A type fuel to simulate coal derived fuels which are expected to contain higher amounts of aromatic and hydroaromatic hydrocarbons. The elastomeric compounds tested were based on butadiene-acrylonitrile rubber, a castable Thiokol polysulfide rubber, and a castable fluorosilicone rubber. Batches of various cross-link densities of these rubbers were made and their chemical stress relaxation behavior in fuel, air, and nitrogen, their swelling properties, and response to mechanical testing were determined.
Fire-retardant decorative inks for aircraft interiors
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Nir, Z.; Mikroyannidis, J. A.
1985-01-01
Commercial and experimental fire retardants were screened as potential fire retardants for acrylic printing inks used on aircraft interior sandwich panels. The fire retardants are selected according to their physical properties and their thermostabilities. A criterion for selecting a more stable fire retardant is established. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) are used to determine thermostabilities. Results show that the fire retardant formulations are more thermally stable than the acrylic ink control. It is determined that an ink formulation containing a brominated phenol and carboxy-terminated butadiene acrylonitrile which has been modified with a brominated polymeric additive (BPA), yields the highest limiting oxygen index (LOI) of all the compounds tested. All of the fire-retardant formulations have a higher oxygen index than the baseline acrylic ink.
Lin, Wen-Ye; Chang, Jung-Tzu; Chu, Chun-Feng
2017-01-01
Despite measures to reduce disease transmission, a risk can occur when blood glucose meters (BGMs) are used on multiple individuals or by caregivers assisting a patient. The laboratory and in-clinic performance of a BGM system before and after disinfection should be demonstrated to guarantee accurate readings and reliable control of blood glucose (BG) for patients. In this study, an effective disinfection procedure, conducting wiping 10 times to assure a one minute contact time of the disinfectant on contaminated surface, was first demonstrated using test samples of the meter housing materials, including acrylonitrile butadiene styrene (ABS), polymethyl methacrylate (PMMA), and polycarbonate (PC), in accordance with ISO 15197:2013. After bench studies comprising 10,000 disinfection cycles, the elemental compositions of the disinfected ABS, PMMA, and PC samples were almost the same as in the original samples, as indicated by electron spectroscopy for chemical analysis. Subsequently, the validated disinfection procedure was then directly applied to disinfect 5 commercial BGM systems composed of ABS, PMMA, or PC to observe the effect of the validated disinfection procedure on meter accuracy. The results of HBsAg values after treatment with HBV sera and disinfectant wipes for each material were less than the LoD of each material of 0.020 IU/mL. Before and after the multiple disinfection cycles, 900 of 900 samples (100%) were within the system accuracy requirements of ISO 15197:2013. All of the systems showed high performance before and after the series of disinfection cycles and met the ISO 15197:2013 requirements. In addition, our results demonstrated multiple cleaning and disinfection cycles that represented normal use over the lifetime of a meter of 3–5 years. Our validated cleaning and disinfection procedure can be directly applied to other registered disinfectants for cleaning commercial BGM products in the future. PMID:28683148
3D printed mitral valve models: affordable simulation for robotic mitral valve repair.
Premyodhin, Ned; Mandair, Divneet; Ferng, Alice S; Leach, Timothy S; Palsma, Ryan P; Albanna, Mohammad Z; Khalpey, Zain I
2018-01-01
3D printed mitral valve (MV) models that capture the suture response of real tissue may be utilized as surgical training tools. Leveraging clinical imaging modalities, 3D computerized modelling and 3D printing technology to produce affordable models complements currently available virtual simulators and paves the way for patient- and pathology-specific preoperative rehearsal. We used polyvinyl alcohol, a dissolvable thermoplastic, to 3D print moulds that were casted with liquid platinum-cure silicone yielding flexible, low-cost MV models capable of simulating valvular tissue. Silicone-moulded MV models were fabricated for 2 morphologies: the normal MV and the P2 flail. The moulded valves were plication and suture tested in a laparoscopic trainer box with a da Vinci Si robotic surgical system. One cardiothoracic surgery fellow and 1 attending surgeon qualitatively evaluated the ability of the valves to recapitulate tissue feel through surveys utilizing the 5-point Likert-type scale to grade impressions of the valves. Valves produced with the moulding and casting method maintained anatomical dimensions within 3% of directly 3D printed acrylonitrile butadiene styrene controls for both morphologies. Likert-type scale mean scores corresponded with a realistic material response to sutures (5.0/5), tensile strength that is similar to real MV tissue (5.0/5) and anatomical appearance resembling real MVs (5.0/5), indicating that evaluators 'agreed' that these aspects of the model were appropriate for training. Evaluators 'somewhat agreed' that the overall model durability was appropriate for training (4.0/5) due to the mounting design. Qualitative differences in repair quality were notable between fellow and attending surgeon. 3D computer-aided design, 3D printing and fabrication techniques can be applied to fabricate affordable, high-quality educational models for technical training that are capable of differentiating proficiency levels among users. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Bovea, María D; Pérez-Belis, Victoria; Ibáñez-Forés, Valeria; Quemades-Beltrán, Pilar
2016-07-01
This paper is focused on characterising small waste electric and electronic equipment, specifically small household appliances, from two different points of views: disassembly properties and material identification. The sample for this characterisation was obtained from a selective collection campaign organised in Castellón de la Plana (Spain). A total amount of 833.7kg (749 units) of small waste electric and electronic equipment was collected, of which 23.3% by weight and 22.4% by units belonged to the subcategory household equipment. This subcategory, composed of appliances such as vacuum cleaners, toasters, sandwich makers, hand blenders, juicers, coffee makers, hairdryers, scales, irons and heaters, was first disassembled in order to analyse different aspects of the disassembly process for each equipment type: type of joints, ease of identification of materials, ease of access to joints for extracting components, ease of separation of components from the whole, uniformity of tools needed for the disassembly process and possibility of reassembly after disassembly. Results show that the most common joints used in these equipment types are snap-fits and screws, although some permanent joints have also been identified. Next, the material composition of each component of each appliance belonging to each equipment type was identified visually and with additional mechanical trials and testing. It can be observed that plastic and electric/electronic components are present in all the equipment types analysed and are also the material fractions that appear with higher percentages in the material composition: 41.1wt% and 39.1wt% for the plastic fraction and electric/electronic components, respectively. The most common plastics are: polypropylene (PP), acrylonitrile butadiene styrene (ABS) and polycarbonate (PC), while the most common electric/electronic components are: cable, plug and printed circuit boards. Results also show that disassembly properties and material characterisation vary widely from one equipment type to another. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Multiple Use Plug Hybrid for NanoSats (MUPHyN) Miniature Thruster
NASA Technical Reports Server (NTRS)
Eilers, Shannon D.; Whitmore, Stephen A.
2012-01-01
The Multiple Use Plug Hybrid (for) Nanosats is a prototype thruster is being developed to fill a niche application for NanoSat-scale spacecraft propulsion. When fully developed, the MUPHyN thruster will provide an effective and low-risk propulsive capability that could enable multiple NanoSats to be independently re-positioned after deployment from a parent launch vehicle. Because the environmentally benign, chemically-stable propellants are mixed only within the combustion chamber after ignition and the flow rate of the fuel is determined by a pyrolysis mechanism that is nearly independent of pressure or fuel grain defects, the system is inherently safe and can be piggy-backed near a secondary payload with little or no overall mission risk increase to the primary payload. The MUPHyN thruster uses safe-handling and inexpensive nitrous oxide (N2O) and acrylonitrile-butadiene-styrene (ABS) as propellants. Fused Deposition Modeling (FDM), a direct digital manufacturing process, is used to fabricate short-form-factor solid fuel grains with multiple helical combustion ports from ABS thermoplastic. This manufacturing process allows for the rapid development and manufacture of complex fuel grain geometries that are not possible to extrude or cast using conventional methods. This technology enables the construction of fuel grains with length-to-diameter ratios appropriate for incorporation into CubeSats while maintaining high surface areas and regression rates that allow the system to maintain a near optimal oxidizer to fuel ratio. The MUPHyN system provides attitude control torques by using secondary-injection thrust vectoring on a truncated aerospike nozzle. This configuration allows large impulse delta V burns and small impulse attitude control firings to be performed with the same system. To ensure survivability during extend duration burns, the MUPHyN incorporates a novel regenerative cooling design where the N2O oxidizer flows through a cooling path embedded in the aerospike nozzle before being injected into the combustion chamber near the nozzle base.
Wang, Di; Wang, Yimeng; Wang, Jianhua; Song, Changhui; Yang, Yongqiang; Zhang, Zimian; Lin, Hui; Zhen, Yongqiang; Liao, Suixiang
2016-07-22
In order to meet the clinical requirements of spine surgery, this paper proposes the fabrication of the customized template for spine surgery through computer-aided design. A 3D metal printing-selective laser melting (SLM) technique was employed to directly fabricate the 316L stainless steel template, and the metal template with tiny locating holes was used as an auxiliary tool to insert spinal screws inside the patient's body. To guarantee accurate fabrication of the template for cervical vertebra operation, the contact face was placed upwards to improve the joint quality between the template and the cervical vertebra. The joint surface of the printed template had a roughness of Ra = 13 ± 2 μm. After abrasive blasting, the surface roughness was Ra = 7 ± 0.5 μm. The surgical metal template was bound with the 3D-printed Acrylonitrile Butadiene Styrene (ABS) plastic model. The micro-hardness values determined at the cross-sections of SLM-processed samples varied from HV0.3 250 to HV0.3 280, and the measured tensile strength was in the range of 450 MPa to 560 MPa, which showed that the template had requisite strength. Finally, the metal template was clinically used in the patient's surgical operation, and the screws were inserted precisely as the result of using the auxiliary template. The geometrical parameters of the template hole (e.g., diameter and wall thickness) were optimized, and measures were taken to optimize the key geometrical units (e.g., hole units) in metal 3D printing. Compared to the traditional technology of screw insertion, the use of the surgical metal template enabled the screws to be inserted more easily and accurately during spinal surgery. However, the design of the high-quality template should fully take into account the clinical demands of surgeons, as well as the advice of the designing engineers and operating technicians.
Design and Fabrication of a Precision Template for Spine Surgery Using Selective Laser Melting (SLM)
Wang, Di; Wang, Yimeng; Wang, Jianhua; Song, Changhui; Yang, Yongqiang; Zhang, Zimian; Lin, Hui; Zhen, Yongqiang; Liao, Suixiang
2016-01-01
In order to meet the clinical requirements of spine surgery, this paper proposes the fabrication of the customized template for spine surgery through computer-aided design. A 3D metal printing-selective laser melting (SLM) technique was employed to directly fabricate the 316L stainless steel template, and the metal template with tiny locating holes was used as an auxiliary tool to insert spinal screws inside the patient’s body. To guarantee accurate fabrication of the template for cervical vertebra operation, the contact face was placed upwards to improve the joint quality between the template and the cervical vertebra. The joint surface of the printed template had a roughness of Ra = 13 ± 2 μm. After abrasive blasting, the surface roughness was Ra = 7 ± 0.5 μm. The surgical metal template was bound with the 3D-printed Acrylonitrile Butadiene Styrene (ABS) plastic model. The micro-hardness values determined at the cross-sections of SLM-processed samples varied from HV0.3 250 to HV0.3 280, and the measured tensile strength was in the range of 450 MPa to 560 MPa, which showed that the template had requisite strength. Finally, the metal template was clinically used in the patient’s surgical operation, and the screws were inserted precisely as the result of using the auxiliary template. The geometrical parameters of the template hole (e.g., diameter and wall thickness) were optimized, and measures were taken to optimize the key geometrical units (e.g., hole units) in metal 3D printing. Compared to the traditional technology of screw insertion, the use of the surgical metal template enabled the screws to be inserted more easily and accurately during spinal surgery. However, the design of the high-quality template should fully take into account the clinical demands of surgeons, as well as the advice of the designing engineers and operating technicians. PMID:28773730
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehler, E; Higgins, P; Dusenbery, K
2014-06-15
Purpose: To validate a method to create per patient phantoms for dosimetric verification measurements. Methods: Using a RANDO phantom as a substitute for an actual patient, a model of the external features of the head and neck region of the phantom was created. A phantom was used instead of a human for two reasons: to allow for dosimetric measurements that would not be possible in-vivo and to avoid patient privacy issues. Using acrylonitrile butadiene styrene thermoplastic as the building material, a hollow replica was created using the 3D printer filled with a custom tissue equivalent mixture of paraffin wax, magnesiummore » oxide, and calcium carbonate. A traditional parallel-opposed head and neck plan was constructed. Measurements were performed with thermoluminescent dosimeters in both the RANDO phantom and in the 3D printed phantom. Calculated and measured dose was compared at 17 points phantoms including regions in high and low dose regions and at the field edges. On-board cone beam CT was used to localize both phantoms within 1mm and 1° prior to radiation. Results: The maximum difference in calculated dose between phantoms was 1.8% of the planned dose (180 cGy). The mean difference between calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was 1.9% ± 2.8% and −0.1% ± 4.9%, respectively. The difference between measured and calculated dose was determined in the RANDO and 3D printed phantoms. The differences between measured and calculated dose in each respective phantom was within 2% for 12 of 17 points. The overlap of the RANDO and 3D printed phantom was 0.956 (Jaccard Index). Conclusion: A custom phantom was created using a 3D printer. Dosimetric calculations and measurements showed good agreement between the dose in the RANDO phantom (patient substitute) and the 3D printed phantom.« less
Lin, Shu-Ping; Lin, Wen-Ye; Chang, Jung-Tzu; Chu, Chun-Feng
2017-01-01
Despite measures to reduce disease transmission, a risk can occur when blood glucose meters (BGMs) are used on multiple individuals or by caregivers assisting a patient. The laboratory and in-clinic performance of a BGM system before and after disinfection should be demonstrated to guarantee accurate readings and reliable control of blood glucose (BG) for patients. In this study, an effective disinfection procedure, conducting wiping 10 times to assure a one minute contact time of the disinfectant on contaminated surface, was first demonstrated using test samples of the meter housing materials, including acrylonitrile butadiene styrene (ABS), polymethyl methacrylate (PMMA), and polycarbonate (PC), in accordance with ISO 15197:2013. After bench studies comprising 10,000 disinfection cycles, the elemental compositions of the disinfected ABS, PMMA, and PC samples were almost the same as in the original samples, as indicated by electron spectroscopy for chemical analysis. Subsequently, the validated disinfection procedure was then directly applied to disinfect 5 commercial BGM systems composed of ABS, PMMA, or PC to observe the effect of the validated disinfection procedure on meter accuracy. The results of HBsAg values after treatment with HBV sera and disinfectant wipes for each material were less than the LoD of each material of 0.020 IU/mL. Before and after the multiple disinfection cycles, 900 of 900 samples (100%) were within the system accuracy requirements of ISO 15197:2013. All of the systems showed high performance before and after the series of disinfection cycles and met the ISO 15197:2013 requirements. In addition, our results demonstrated multiple cleaning and disinfection cycles that represented normal use over the lifetime of a meter of 3-5 years. Our validated cleaning and disinfection procedure can be directly applied to other registered disinfectants for cleaning commercial BGM products in the future.
Bio-reinforced composite development for additive manufacturing: Nanocellulose-PLA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tekinalp, Halil L.; Lu, Yuan; Kunc, Vlastimil
Additive manufacturing (AM) is transitioning from being only a prototyping method towards becoming a manufacturing technique for the quick production of parts with complex geometries. For the complete realization of this transition, the mechanical properties of the printed parts have to meet the requirements of actual load-bearing structural components. Integration of a reinforcing second phase into a polymer is a viable approach for the improvement of resins mechanical performance. Addition of carbon fibers into acrylonitrile-butadiene-styrene (ABS) has already been shown to improve its mechanical properties compared to the neat ABS resin (both additively manufactured), and led to the manufacture ofmore » world s first 3D-printed car. However, both ABS resin and carbon fibers are petroleum-based products, and there is a continuous search for alternative, bio-sourced, renewable materials as a feedstock for manufacturing. Towards this direction, we have investigated the potential of cellulose nanofibril-reinforced polylactic acid (PLA) resin systems as an alternative. CNF-PLA composite systems with up to 40 wt% CNF loadings were prepared via compression molding technique and tested. Significant improvements in both tensile strength (80%) and elastic modulus (128%) were observed. Filaments prepared from the same compositions were also successfully 3D-printed into tensile testing specimens with up to 30% CNF concentrations, and showed similar improvements in mechanical performance. Although CNFs were not individually dispersed in PLA matrix, they were observed to be well blended with the polymer based on SEM micrographs. In summary, preparation and 3D-printing of a 100% bio-based feedstock material with the mechanical properties comparable to the carbon fiber-ABS system was successfully demonstrated that it can open up new window of opportunities in the additive manufacturing industry. Acknowledgement Research sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT-Battelle, LLC.« less
Analysis of the influence of chemical treatment to the strength and surface roughness of FDM
NASA Astrophysics Data System (ADS)
Hambali, R. H.; Cheong, K. M.; Azizan, N.
2017-06-01
The applications of Additive Manufacturing (AM) technology have a greater functionality and wider range of application beyond an intention of prototyping. AM is the process of joining materials to form objects from Computer-Aided Design (CAD) models via layer upon layer process. One of AM technologies is the Fused Deposition Modelling (FDM), which use an extrusion method to create a part. FDM has been applied in many manufacturing applications includes an end-used parts. However, FDM tends to have bad surface quality due to staircase effect and post treatment is required. This chemical treatment is one of a way to improve the surface roughness of FDM fabricated parts. This method is one of economical and faster method. In order to enhance the surface finish of Acrylonitrile-Butadiene-Styrene (ABS) FDM parts by performing chemical treatment in an acetone solution as acetone has very low toxicity, high diffusion and low cost chemical solution. Therefore, the aim of this research is to investigate the influence of chemical treatment to the FDM used part in terms of surface roughness as well as the strength. In this project, ten specimens of standard ASTM D638 dogbone specimens have been fabricated using MOJO 3D printer. Five specimens from the dogbone were tested for surface roughness and tensile testing while another five were immersed in the chemical solution before the same testing. Based on results, the surface roughness of chemically treated dogbone has dramatically improved, compared to untreated dogbone with 97.2% of improvement. However, in term of strength, the tensile strength of dogbone is reduced 42.58% due to the rearrange of material properties and chemical effects to the joining of the filaments. In conclusion, chemical treatment is an economical and sustainable approach to enhance the surface quality of AM parts.
Detwiler-Okabayashi, K; Schaper, M
1995-01-01
Groups of guinea pigs were exposed to the thermal decomposition products (TDP) released from acrylonitrile butadiene styrene (ABS), polypropylene-polyethylene copolymer (CP), polypropylene homopolymer (HP), or plasticized polyvinyl chloride (PVC). In single 50-min exposures to the TDP, guinea pigs exhibited sensory irritation, coughing, and airways constriction. Significant decreases in respiratory frequency (f) occurred during TDP exposure which were magnified during CO2 challenge conducted immediately post-exposure. For each resin, it was possible to demonstrate a linear relationship between the logarithm of heated mass and the percent decrease in f during CO2 challenge. From these relationships, the mass of each resin producing a 50% decrease in f during CO2 challenge (RD50 mass) was obtained. RD50 masses of 2744, 25.2, 16.0, and 6.7 g were obtained for ABS, CP, HP, and PVC, respectively. Thus, the relative potency of their TDP was PVC > CP approximately HP > ABS. Using the RD50 mass of each resin, guinea pigs were exposed to TDP for 50 min/day on 5 consecutive days. These repeated exposures also resulted in sensory irritation, coughing, and airways constriction. However, deaths occurred during exposures, and there was evidence of cumulative respiratory effects, and slower recoveries among survivors. Data obtained in guinea pigs were compared to a previous study with mice exposed to the TDP of the same four resins (Schaper et al. 1994). On the basis of heated mass, mice were 20-500 times more sensitive to the acute respiratory effects of TDP than guinea pigs. Thus, the exposure limits of 0.63, 0.11, 0.08, and 0.35 mg/m3 proposed by Schaper et al. (1994) on the basis of particulates released from ABS, CP, HP and PVC should prevent not only irritation, but also possible coughing, and airways constriction in workers.
Development and investigation of a selective latex flocculant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikitin, I.N.; Preobrazhenskii, B.P.; Tsyrlov, M.Ya.
1982-01-01
Investigations were made on the use of two synthetic latexes as selective flocculants in the flotation cleaning of coal. The most commonly used latex in the industry contained sodium dibutylnaphthalenesulfonate, which is a biologically ''hard'' emulsifier. It was determined that butadiene-styrene latexes may successfully be used as selective coal sludge flocculants. The most efficient was a latex synthesized using biodegradable emulsifiers--potassium soaps of disproportionated rosin with a small quantity of synthetic fatty acids. Also, it was concluded that the values of the ash level in the flotation concentrate and tailings could be controlled by regulating the latex consumption.
QENS investigation of filled rubbers
NASA Astrophysics Data System (ADS)
Triolo, A.; Lo Celso, F.; Negroni, F.; Arrighi, V.; Qian, H.; Lechner, R. E.; Desmedt, A.; Pieper, J.; Frick, B.; Triolo, R.
The polymer segmental dynamics is investigated in a series of silica-filled rubbers. The presence of inert fillers in polymers greatly affects the mechanical and physical performance of the final materials. For example, silica has been proposed as a reinforcing agent of elastomers in tire production. Results from quasielastic neutron scattering and Dynamic Mechanical Thermal Analysis (DMTA) measurements are presented on styrene-ran-butadiene rubber filled with silica. A clear indication is obtained of the existence of a bimodal dynamics, which can be rationalized in terms of the relaxation of bulk rubber and the much slower relaxation of the rubber adsorbed on the filler surface.
Influence of the association of the EVA and NBR on the characteristics of modified bitumen
NASA Astrophysics Data System (ADS)
Bensaada, A.; Soudani, K.; Haddadi, S.; Saoula, S.
2015-03-01
Durability and the performance of pavement depend mainly on the characteristics of materials which change over time like all other organic substances. They are subject to significant changes due to environmental conditions during the different phases of use. In the present work we investigated experimentally the influence of the association of ethyl vinyl acetate polymer (EVA) with an industrial waste, acrylonitrile-butadiene rubber (NBR) on the modification of bitumen AC 35-50 and its rheological behavior. The incorporation of NBR and EVA in the bitumen improved its intrinsic characteristics (softening point, penetration and ductility). In addition to improving the characteristics of bituminous binders that will affect the durability of bituminous structures, the environment will be preserved by the recycling of industrial waste.
A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Nguyen, Canh Toan; Phung, Hoa; Dat Nguyen, Tien; Lee, Choonghan; Kim, Uikyum; Lee, Donghyouk; Moon, Hyungpil; Koo, Jachoon; Nam, Jae-do; Ryeol Choi, Hyouk
2014-06-01
A kind of dielectric elastomer (DE) material, called ‘synthetic elastomer’, has been developed based on acrylonitrile butadiene rubber (NBR) to be used as a dielectric elastomer actuator (DEA). By stacking single layers of synthetic elastomer, a linear actuator, called a multistacked actuator, is produced, and used by mechatronic and robotic systems to generate linear motion. In this paper, we demonstrate the application of the multistacked dielectric elastomer actuator in a biomimetic legged robot. A miniature robot driven by a biomimetic actuation system with four 2-DOF (two-degree-of-freedom) legged mechanisms is realized. Based on the experimental results, we evaluate the performance of the proposed robot and validate the feasibility of the multistacked actuator in a locomotion system as a replacement for conventional actuators.
Heat sterilizable solid-propellant development
NASA Technical Reports Server (NTRS)
Kalfayan, S. H.
1981-01-01
The binders tested were polyurethanes made from two hydroxy-terminated polybutadienes, R-45 and Butarez HT, one hydroxy-terminated butadiene-acrylonitrile copolymer, Hycar 1300X 17, and a hydroxy-terminated prepolymer, Esterdiol 560, made from the dimerized fatty acid Empol 1010. The isocyanates used most extensively were isophorone diisocyanate (IPDI) and a polymeric diisocyanate, DDI. Stress relaxation was used to examine the chemical changes that took place in the binder when subjected to the sterilization temperatures. The thermal stability of the oxidizer, ammonium perchlorate (AP), was tested by thermogravimetry in the isothermal and nonisothermal modes. The effect of particle size, recrystallization, moisture content, and doping on the heat stability of AP could be evaluated by this method. The volatile degradation products, obtained when AP samples were aged at 135 C for prolonged periods, were analyzed by mass spectroscopy.
Adsorption of copolymers at polymer/air and polymer/solid interfaces
NASA Astrophysics Data System (ADS)
Oslanec, Robert
Using mainly low-energy forward recoil spectrometry (LE-FRES) and neutron reflectivity (NR), copolymer behavior at polymer/air and polymer/solid interfaces is investigated. For a miscible blend of poly(styrene-ran-acrylonitrile) copolymers, the volume fraction profile of the copolymer with lower acrylonitrile content is flat near the surface in contrast to mean field predictions. Including copolymer polydispersity into a self consistent mean field (SCMF) model does not account for this profile shape. LE-FRES and NR is also used to study poly(deuterated styrene-block-methyl-methacrylate) (dPS-b-PMMA) adsorption from a polymer matrix to a silicon oxide substrate. The interfacial excess, zsp*, layer thickness, L, and layer-matrix width, w, depend strongly on the number of matrix segments, P, for P 2N, the matrix chains are repelled from the adsorbed layer and the layer characteristics become independent of P. An SCMF model of block copolymer adsorption is developed. SCMF predictions are in qualitative agreement with the experimental behavior of zsp*, L, and w as a function of P. Using this model, the interaction energy of the MMA block with the oxide substrate is found to be -8ksb{B}T. In a subsequent experiment, the matrix/dPS interaction is made increasingly unfavorable by increasing the 4-bromostyrene mole fraction, x, in a poly(styrene-ran-4-bromostyrene) (PBrsbxS) matrix. Whereas experiments show that zsp* slightly decreases as x increases, the SCMF model predicts that zsp* should increase as the matrix becomes more unfavorable. Upon including a small matrix attraction for the substrate, the SCMF model shows that zsp* decreases with x because of competition between PBrsbxS and dPS-b-PMMA for adsorbing sites. In thin film dewetting experiments on silicon oxide, the addition of dPS-b-PMMA to PS coatings acts to slow hole growth and prevent holes from impinging. Dewetting studies show that longer dPS-b-PMMA chains are more effective stabilizing agents than shorter ones and that 3 volume percent dPS-b-PMMA is the optimum additive concentration for this system. For a dPS-b-PMMA:PS blend, atomic force microscopy of the hole floor reveals mounds of residual polymer and a modulated contact line where the rim meets the substrate.
Kinetics of scrap tyre pyrolysis under vacuum conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Gartzen; Aguado, Roberto; Olazar, Martin
2009-10-15
Scrap tyre pyrolysis under vacuum is attractive because it allows easier product condensation and control of composition (gas, liquid and solid). With the aim of determining the effect of vacuum on the pyrolysis kinetics, a study has been carried out in thermobalance. Two data analysis methods have been used in the kinetic study: (i) the treatment of experimental data of weight loss and (ii) the deconvolution of DTG (differential thermogravimetry) curve. The former allows for distinguishing the pyrolysis of the three main components (volatile components, natural rubber and styrene-butadiene rubber) according to three successive steps. The latter method identifies themore » kinetics for the pyrolysis of individual components by means of DTG curve deconvolution. The effect of vacuum in the process is significant. The values of activation energy for the pyrolysis of individual components of easier devolatilization (volatiles and NR) are lower for pyrolysis under vacuum with a reduction of 12 K in the reaction starting temperature. The kinetic constant at 503 K for devolatilization of volatile additives at 0.25 atm is 1.7 times higher than that at 1 atm, and that corresponding to styrene-butadiene rubber at 723 K is 2.8 times higher. Vacuum enhances the volatilization and internal diffusion of products in the pyrolysis process, which contributes to attenuating the secondary reactions of the repolymerization and carbonization of these products on the surface of the char (carbon black). The higher quality of carbon black is interesting for process viability. The large-scale implementation of this process in continuous mode requires a comparison to be made between the economic advantages of using a vacuum and the energy costs, which will be lower when the technologies used for pyrolysis require a lower ratio between reactor volume and scrap tyre flow rate.« less
Kinetics of scrap tyre pyrolysis under vacuum conditions.
Lopez, Gartzen; Aguado, Roberto; Olazar, Martín; Arabiourrutia, Miriam; Bilbao, Javier
2009-10-01
Scrap tyre pyrolysis under vacuum is attractive because it allows easier product condensation and control of composition (gas, liquid and solid). With the aim of determining the effect of vacuum on the pyrolysis kinetics, a study has been carried out in thermobalance. Two data analysis methods have been used in the kinetic study: (i) the treatment of experimental data of weight loss and (ii) the deconvolution of DTG (differential thermogravimetry) curve. The former allows for distinguishing the pyrolysis of the three main components (volatile components, natural rubber and styrene-butadiene rubber) according to three successive steps. The latter method identifies the kinetics for the pyrolysis of individual components by means of DTG curve deconvolution. The effect of vacuum in the process is significant. The values of activation energy for the pyrolysis of individual components of easier devolatilization (volatiles and NR) are lower for pyrolysis under vacuum with a reduction of 12K in the reaction starting temperature. The kinetic constant at 503K for devolatilization of volatile additives at 0.25atm is 1.7 times higher than that at 1atm, and that corresponding to styrene-butadiene rubber at 723K is 2.8 times higher. Vacuum enhances the volatilization and internal diffusion of products in the pyrolysis process, which contributes to attenuating the secondary reactions of the repolymerization and carbonization of these products on the surface of the char (carbon black). The higher quality of carbon black is interesting for process viability. The large-scale implementation of this process in continuous mode requires a comparison to be made between the economic advantages of using a vacuum and the energy costs, which will be lower when the technologies used for pyrolysis require a lower ratio between reactor volume and scrap tyre flow rate.
Glass Transition and Molecular Mobility in Styrene-Butadiene Rubber Modified Asphalt.
Khabaz, Fardin; Khare, Rajesh
2015-11-05
Asphalt, a soft matter consisting of more than a thousand chemical species, is of vital importance for the transportation infrastructure, yet it poses significant challenges for microscopic theory and modeling approaches due to its multicomponent nature. Polymeric additives can potentially enhance the thermo-mechanical properties of asphalt, thus helping reduce the road repair costs; rational design of such systems requires knowledge of the molecular structure and dynamics of these systems. We have used molecular dynamics (MD) simulations to investigate the volumetric, structural, and dynamic properties of the neat asphalt as well as styrene-butadiene rubber (SBR) modified asphalt systems. The volume-temperature behavior of the asphalt systems exhibited a glass transition phenomenon, akin to that observed in experiments. The glass transition temperature, room temperature density, and coefficient of volume thermal expansion of the neat asphalt systems so evaluated were in agreement with experimental data when the effect of the high cooling rate used in simulations was accounted for. While the volumetric properties of SBR modified asphalt were found to be insensitive to the presence of the SBR additive, the addition of SBR led to an increase in the aggregation of asphaltene molecules. Furthermore, addition of SBR caused a reduction in the mobility of the constituent molecules of asphalt, with the reduction being more significant for the larger constituent molecules. Similar to other glass forming liquids, the reciprocal of the diffusion coefficient of the selected molecules was observed to follow the Vogel-Fulcher-Tammann (VFT) behavior as a function of temperature. These results suggest the potential for using polymeric additives for enhancing the dynamic mechanical properties of asphalt without affecting its volumetric properties.
Application of Lignin as Antioxidant in Styrene Butadiene Rubber Composite
NASA Astrophysics Data System (ADS)
Liu, Shusheng; Cheng, Xiansu
2010-11-01
Lignin isolated from enzymatic hydrolyzed cornstalks (EHL) is a renewable natural polymer, and rubber is one of the most important polymer materials. The application of EHL in rubber industry is of great significance. The influence of EHL and antioxidant RD on the vulcanizing characteristics, thermal oxidative aging stability under free condition, and water extraction resistance of styrene-butadiene rubber (SBR) were investigated. The effect of EHL/antioxidant D composite antioxidant on the thermal oxidative ageing of SBR was also evaluated. Results showed that the protection of SBR from thermal oxidative aging by EHL/antioxidant D composite antioxidant was superior to that of antioxidant D. This is because EHL molecules have hindered phenol group and have excellent auxiliary antioxidant role with antioxidant D. Moreover, the influence of EHL on the vulcanizing characteristics of SBR compounds was better than that of antioxidant RD, and EHL can reduce the cure rate and increase the optimum cure time. It is because that the EHL molecules have hindered phenol group and methoxy group, which can form a special structure to capture free radical and terminate the chain reaction. The retained tensile strength of SBR compounds with EHL was similar to that of the samples with antioxidant RD, while the retained elongation at break of SBR compounds with EHL was higher than that of the samples with antioxidant RD. In addition, the SBR compounds with EHL have a good water extraction resistance property, which was similar to the samples with antioxidant RD. This is because EHL have large molecular weight, good stability and low solubility in water. In conclusion, due to the low price, abundant resources, non-toxic and pollution-free, etc., EHL will have broad application prospect.
Sim, H H; Kim, Y J; Choi, H J
2012-12-01
Black inorganic pigment modified with poly(styrene-co-acrylonitrile) was fabricated via dispersion polymerization, and then the synthesized hybrid nanoparticles were examined by SEM to confirm their morphology, while their density and size were studied using a gas pycnometer and electrophoretic light scattering apparatus, respectively. We also confirmed their chemical structure and coated state via FT-IR and TGA. Electrophoretic characteristics including the zeta potential were examined via an electrophoretic light scattering apparatus, while the movement of particles was directly observed by an optical microscopy under an electric field applied. The hybrid nanoparticles were confirmed to possess an electrophoretic property as a potential candidate for the microcapsule-type electrophoretic display.
Hardness and compression resistance of natural rubber and synthetic rubber mixtures
NASA Astrophysics Data System (ADS)
Arguello, J. M.; Santos, A.
2016-02-01
This project aims to mechanically characterize through compression resistance and shore hardness tests, the mixture of hevea brasiliensis natural rubber with butadiene synthetic rubber (BR), styrene-butadiene rubber (SBR) and ethylene-propylene-diene monomer rubber (EPDM). For each of the studied mixtures were performed 10 tests, each of which increased by 10% the content of synthetic rubber in the mixture; each test consisted of carrying out five tests of compression resistance and five tests of shore hardness. The specimens were vulcanized on a temperature of 160°C, during an approximate time of 15 minutes, and the equipment used in the performance of the mechanical tests were a Shimadzu universal machine and a digital durometer. The results show that the A shore hardness increases directly proportional, with a linear trend, with the content of synthetic BR, SBR or EPDM rubber present in the mixture, being the EPDM the most influential. With respect to the compression resistance is observed that the content of BR or SBR increase this property directly proportional through a linear trend; while the EPDM content also increases but with a polynomial trend.
Gawron, Michal; Smith, Danielle M.; Peng, Margaret; Jacob, Peyton; Benowitz, Neal L.
2017-01-01
Introduction: Electronic cigarettes (e-cigarettes) are purported to deliver nicotine aerosol without any toxic combustion products present in tobacco smoke. In this longitudinal within-subjects observational study, we evaluated the effects of e-cigarettes on nicotine delivery and exposure to selected carcinogens and toxicants. Methods: We measured seven nicotine metabolites and 17 tobacco smoke exposure biomarkers in the urine samples of 20 smokers collected before and after switching to pen-style M201 e-cigarettes for 2 weeks. Biomarkers were metabolites of 13 major carcinogens and toxicants in cigarette smoke: one tobacco-specific nitrosamine (NNK), eight volatile organic compounds (1,3-butadiene, crotonaldehyde, acrolein, benzene, acrylamide, acrylonitrile, ethylene oxide, and propylene oxide), and four polycyclic aromatic hydrocarbons (naphthalene, fluorene, phenanthrene, and pyrene). Changes in urine biomarkers concentration were tested using repeated measures analysis of variance. Results: In total, 45% of participants reported complete abstinence from cigarette smoking at 2 weeks, while 55% reported continued smoking. Levels of total nicotine and some polycyclic aromatic hydrocarbon metabolites did not change after switching from tobacco to e-cigarettes. All other biomarkers significantly decreased after 1 week of using e-cigarettes (p < .05). After 1 week, the greatest percentage reductions in biomarkers levels were observed for metabolites of 1,3-butadiene, benzene, and acrylonitrile. Total NNAL, a metabolite of NNK, declined by 57% and 64% after 1 and 2 weeks, respectively, while 3-hydroxyfluorene levels declined by 46% at week 1, and 34% at week 2. Conclusions: After switching from tobacco to e-cigarettes, nicotine exposure remains unchanged, while exposure to selected carcinogens and toxicants is substantially reduced. Implications: To our knowledge, this is the first study that demonstrates that substituting tobacco cigarettes with an e-cigarette may reduce user exposure to numerous toxicants and carcinogens otherwise present in tobacco cigarettes. Data on reduced exposure to harmful constituents that are present in tobacco cigarettes and e-cigarettes can aid in evaluating e-cigarettes as a potential harm reduction device. PMID:27613896