Science.gov

Sample records for acrylonitrile stanniciv tungstate

  1. Acrylonitrile

    Integrated Risk Information System (IRIS)

    Acrylonitrile ; CASRN 107 - 13 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  2. Acrylonitrile butadiene rubber (NBR)/manganous tungstate (MnWO4) nanocomposites: Characterization, mechanical and electrical properties

    NASA Astrophysics Data System (ADS)

    Ramesan, M. T.; Abdu Raheem V., P.; Jayakrishnan, P.; Pradyumnan, P. P.

    2014-10-01

    Nanocomposites of NBR with manganous-tungstate nanoparticles were prepared through vulcanization process. The extent of interaction of nanoparticles with the polymer was studied by FTIR, SEM, XRD, TGA and AC conductivity. FTIR and XRD ascertain the interaction of NBR with MnWO4 nanoparticles. SEM analysis established that the nanopartilces were well dispersed in the macromolecular chain of NBR. The mechanical properties of the nanocomposites were studied as a function of filler loading. The nanocomposites exhibited enhanced thermal stability as seen in TGA. Conductivity and dielectric properties of nanocomposites increase with increase in concentration of MnWO4 nanoparticles (7phr) and thereafter the value decreases.

  3. Uranyl tungstate and zirconium tungstate in salt melts

    SciTech Connect

    Kryukova, A.I.; Bragina, R.A.; Kazantsev, G.N.; Korshunov, I.A.

    1988-05-01

    The article discusses the preparation, properties, and behavior of uranyl tungstate and zirconium tungstate in salt melts. Procedures for their preparation are presented. The radiographic and IR spectroscopic characteristics, the thermal stability, and solubility and stability in chloride-tungstate melts of different composition have been studied.

  4. Toxicologic profile of acrylonitrile.

    PubMed

    Woutersen, R A

    1998-01-01

    Acrylonitrile is a monomer used extensively as a raw material in the manufacturing of acrylic fibers, plastics, synthetic rubbers, and acrylamide. It has been classified as a probable human carcinogen according to the results of numerous chronic rat bioassays. The present report summarizes the toxicity data on acrylonitrile and reviews available data concerning the mechanism (genetic versus epigenetic) by which acrylonitrile is carcinogenic in rats. From the evaluation of the relevant toxicity data, it can be concluded that acrylonitrile is indeed carcinogenic to rats after either oral or inhalational exposure. However, information on other mammalian species is lacking, and, moreover, the exact mechanism of the carcinogenic process is unclear. Therefore, it is recommended to conduct an additional long-term inhalation carcinogenicity study with acrylonitrile in mice, as well as studies into the mechanism by which acrylonitrile induces (brain) tumors in rats (genetic versus epigenetic).

  5. Acrylonitrile: a suspected human carcinogen.

    PubMed

    Koerselman, W; van der Graaf, M

    1984-01-01

    The literature on carcinogenicity of acrylonitrile (an important intermediate in the chemical industry) is reviewed. The three main conclusions are: (1) Acrylonitrile has genotoxic effects in various tests in microorganisms and in mammal cells. (2) Chronic exposure to acrylonitrile causes tumours in rats. (3) Results of epidemiological studies indicate that acrylonitrile may be a human carcinogen. From this it is clear that acrylonitrile is very probably carcinogenic to humans. Therefore the authors plead for a reduction of acrylonitrile standards to the lowest practicable limit.

  6. Metabolism of acrylonitrile and interactions

    SciTech Connect

    Hogy, L.L.

    1986-01-01

    Metabolic activation by liver microsomes is necessary for the covalent binding to DNA of acrylonitrile, a widely used industrial chemical. However, tumor formation is localized in the brain, not in the liver. The reasons for such target organ specificity and the mechanism of carcinogenicity are unknown, and studies were performed to provide insights into these events. The metabolism of acrylonitrile was studied in isolated rat hepatocytes to establish the quantitative relationship between oxidative and conjugative metabolism. Approximately 85% of the acrylonitrile reacted with glutathione to form S-(2-cyanoethyl)glutathione while another 5% alkylated protein, especially by cyanoethylation of sulfhydryl groups. About 10% of the acrylonitrile was metabolized to the relatively stable epoxide, 2-cyanoethylene oxide. Further experiments were carried out to study in vivo any genetic damage by acrylonitrile and assess the role of 2-cyanoethylene oxide. Unscheduled DNA synthesis was observed in the livers, but not the brains of acrylonitrile-treated rats. When perfused rat livers were treated with acrylonitrile, 2-cyanoethylene oxide accumulated in the perfusate. 2-Cyano-(2,3-/sup 14/C)-ethylene oxide administered to rats intraperitoneally was found to label both liver and brain protein, but no covalent binding to nucleic acids was detected. These results demonstrate that acrylonitrile has some limited potential for genotoxicity in vivo and that the epoxide can circulate from the liver to the brain to alkylate macromolecules in a carcinogenic target organ generally less capable of DNA repair.

  7. The acrylonitrile dimer ion

    NASA Astrophysics Data System (ADS)

    Ervasti, Henri K.; Jobst, Karl J.; Burgers, Peter C.; Ruttink, Paul J. Ae; Terlouw, Johan K.

    2007-04-01

    Large energy barriers prohibit the rearrangement of solitary acrylonitrile ions, CH2CHCN+, into their more stable hydrogen-shift isomers CH2CCNH+ or CHCH-CNH+. This prompted us to examine if these isomerizations occur by self-catalysis in acrylonitrile dimer ions. Such ions, generated by chemical ionization experiments of acrylonitrile with an excess of carbon dioxide, undergo five dissociations in the [mu]s time frame, as witnessed by peaks at m/z 53, 54, 79, 80 and 105 in their metastable ion mass spectrum. Collision experiments on these product ions, deuterium labeling, and a detailed computational analysis using the CBS-QB3 model chemistry lead to the following conclusions: (i) the m/z 54 ions are ions CH2CHCNH+ generated by self-protonation in ion-dipole stabilized hydrogen-bridged dimer ions [CH2CHCN...H-C(CN)CH2]+ and [CH2CHCN...H-C(H)C(H)CN]+; the proton shifts in these ions are associated with a small reverse barrier; (ii) dissociation of the H-bridged ions into CH2CCNH+ or CHCH-CNH+ by self-catalysis is energetically feasible but kinetically improbable: experiment shows that the m/z 53 ions are CH2CHCN+ ions, generated by back dissociation; (iii) the peaks at m/z 79, 80 and 105 correspond with the losses of HCN, C2H2 and H, respectively. The calculations indicate that these ions are generated from dimer ions that have adopted the (much more stable) covalently bound "head-to-tail" structure [CH2CHCN-C(H2)C(H)CN]+; experiments indicate that the m/z 79 (C5H5N) and m/z 105 (C6H6N2) ions have linear structures but the m/z 80 (C4H4N2) ions consist of ionized pyrimidine in admixture with its stable pyrimidine-2-ylidene isomer. Acrylonitrile is a confirmed species in interstellar space and our study provides experimental and computational evidence that its dimer radical cation yields the ionized prebiotic pyrimidine molecule.

  8. Reduction of acrylamide and acrylonitrile emissions

    SciTech Connect

    Knee, W. R.; Cutie, S. S.

    1985-10-01

    A method comprising contacting a vapor stream resulting from air sparging of aqueous acrylamide containing acrylonitrile with sufficient activated carbon adsorbent to substantially remove acrylamide and acrylonitrile from the vapor stream. This is a particularly advantageous method when aqueous acrylamide is stored in remote locations.

  9. Ion-Molecule Association in Acrylonitrile

    NASA Technical Reports Server (NTRS)

    Wilson, Paul F.; Milligan, Daniel B.; McEwan, Murray J.

    1997-01-01

    Acrylonitrile (propernenitrile or vinyl cyanide) polymerizes readily via a radical mechanism in solution at room temparature. The propensity to polymerize is sufficiently strong that it is usual to add a radical scavenger to the solution to prevent polymerization when oxygen (an inhibitor) is removed. Polymerization of acrylonitrile is also know to occur via nucleophilic addition of an anion by a michael-type reaction.

  10. A high-resolution tungstate membrane label

    SciTech Connect

    Hainfeld, J.F.; Quaite, F.E. ); Lipka, J.J. )

    1990-01-01

    A new class of membrane labels was synthesized which contain a tungstate cluster (having 11 tungsten atoms) and an aliphatic organo-tin moiety with various chain lengths (C{sub 4}, C{sub 8}, C{sub 12}, C{sub 18}, C{sub 22}). These molecules were found to insert into synthetic phospholipid vesicles and biological membranes (human red blood cell membranes). The tungstate clusters can be individually visualized in the high resolution STEM or seen en mass in thin-sectioned labeled membranes in the CTEM. These new labels should provide a means for direct high-resolution imaging of lipid-phase systems.

  11. Morphology Tuning of Strontium Tungstate Nanoparticles

    SciTech Connect

    Joseph, S.; George, T.; George, K. C.; Sunny, A. T.; Mathew, S.

    2007-08-22

    Strontium tungstate nanocrystals in two different morphologies are successfully synthesized by controlled precipitation in aqueous and in poly vinyl alcohol (PVA) medium. Structural characterizations are carried out by XRD and SEM. The average particle size calculated for the SrWO4 prepared in the two different solvents ranges 20-24 nm. The SEM pictures show that the surface morphologies of the SrWO4 nanoparticles in aqueous medium resemble mushroom and the SrWO4 nanoparticles in PVA medium resemble cauliflower. Investigations on the room temperature luminescent properties of the strontium tungstate nanoparticles prepared in aqueous and PVA medium shows strong emissions around 425 nm.

  12. 29 CFR 1910.1045 - Acrylonitrile.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fibers, acrylic plastics and resins, speciality polymers, nitrile rubbers, and other organic chemicals... Acrylonitrile. (a) Scope and application. (1) This section applies to all occupational exposures to... of finished polymers, and products fabricated from such finished polymers; (ii) Materials made...

  13. Sodium tungstate modulates ATM function upon DNA damage.

    PubMed

    Rodriguez-Hernandez, C J; Llorens-Agost, M; Calbó, J; Murguia, J R; Guinovart, J J

    2013-05-21

    Both radiotherapy and most effective chemotherapeutic agents induce different types of DNA damage. Here we show that tungstate modulates cell response to DNA damaging agents. Cells treated with tungstate were more sensitive to etoposide, phleomycin and ionizing radiation (IR), all of which induce DNA double-strand breaks (DSBs). Tungstate also modulated the activation of the central DSB signalling kinase, ATM, in response to these agents. These effects required the functionality of the Mre11-Nbs1-Rad50 (MRN) complex and were mimicked by the inhibition of PP2A phosphatase. Therefore, tungstate may have adjuvant activity when combined with DNA-damaging agents in the treatment of several malignancies.

  14. Acrylonitrile-induced oxidative DNA damage in rat astrocytes.

    PubMed

    Pu, Xinzhu; Kamendulis, Lisa M; Klaunig, James E

    2006-10-01

    Chronic administration of acrylonitrile results in a dose-related increase in astrocytomas in rat brain, but the mechanism of acrylonitrile carcinogenicity is not fully understood. The potential of acrylonitrile or its metabolites to induce direct DNA damage as a mechanism for acrylonitrile carcinogenicity has been questioned, and recent studies indicate that the mechanism involves the induction of oxidative stress in rat brain. The present study examined the ability of acrylonitrile to induce DNA damage in the DI TNC1 rat astrocyte cell line using the alkaline Comet assay. Oxidized DNA damage also was evaluated using formamidopyrimidine DNA glycosylase treatment in the modified Comet assay. No increase in direct DNA damage was seen in astrocytes exposed to sublethal concentrations of acrylonitrile (0-1.0 mM) for 24 hr. However, acrylonitrile treatment resulted in a concentration-related increase in oxidative DNA damage after 24 hr. Antioxidant supplementation in the culture media (alpha-tocopherol, (-)-epigallocathechin-3 gallate, or trolox) reduced acrylonitrile-induced oxidative DNA damage. Depletion of glutathione using 0.1 mM DL-buthionine-[S,R]-sulfoximine increased acrylonitrile-induced oxidative DNA damage (22-46%), while cotreatment of acrylonitrile with 2.5 mM L-2-oxothiazolidine-4-carboxylic acid, a precursor for glutathione biosynthesis, significantly reduced acrylonitrile-induced oxidative DNA damage (7-47%). Cotreatment of acrylonitrile with 0.5 mM 1-aminobenzotriazole, a suicidal inhibitor of cytochrome P450, prevented the oxidative DNA damage produced by acrylonitrile. Cyanide (0.1-0.5 mM) increased oxidative DNA damage (44-160%) in astrocytes. These studies demonstrate that while acrylonitrile does not directly damage astrocyte DNA, it does increase oxidative DNA damage. The oxidative DNA damage following acrylonitrile exposure appears to arise mainly through the P450 metabolic pathway; moreover, glutathione depletion may contribute to the

  15. IRIS Toxicological Review of Acrylonitrile (External Review Draft)

    EPA Science Inventory

    [UPDATE] New Schedule for IRIS Acrylonitrile Assessment

    In May 2012, EPA developed a new schedule for completing the IRIS acrylonitrile assessment. Acrylonitrile is primarily used in the manufacture of acrylic and modacrylic fibers, plastics, and nitrile rubbers. It ...

  16. Modulation of glucose transporters in rat diaphragm by sodium tungstate.

    PubMed

    Girón, M D; Caballero, J J; Vargas, A M; Suárez, M D; Guinovart, J J; Salto, R

    2003-05-08

    Oral administration of sodium tungstate is an effective treatment for diabetes in animal models. We examined the effects of 6 weeks of oral administration of tungstate on glucose transporters (GLUT) in streptozotocin-induced diabetic rat diaphragm. Diabetes decreased GLUT4 expression while tungstate treatment normalized not only GLUT4 protein but also GLUT4 mRNA in the diabetic rats. Furthermore, treatment increased GLUT4 protein in plasma and internal membranes, suggesting a stimulation of its translocation to the plasma membrane. Tungstate had no effect on healthy animals. There were no differences in the total amount of GLUT1 transporter in any group. We conclude that the normoglycemic effect of tungstate may be partly due to a normalization of the levels and subcellular localization of GLUT4, which should result in an increase in muscle glucose uptake.

  17. 21 CFR 180.22 - Acrylonitrile copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... analytical methods used to determine the complex and the acrylonitrile migration, and validation studies of... articles intended for repeated use: (1) Qualitative and quantitative migration values at a time equivalent... use. (2) Qualitative and quantitative migration values at the time of equilibrium...

  18. 21 CFR 180.22 - Acrylonitrile copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... determine the complex and the acrylonitrile migration, and validation studies of these analytical methods... repeated use: (1) Qualitative and quantitative migration values at a time equivalent to initial batch usage... quantitative migration values at the time of equilibrium extractions, utilizing solvents and...

  19. 21 CFR 180.22 - Acrylonitrile copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... determine the complex and the acrylonitrile migration, and validation studies of these analytical methods... repeated use: (1) Qualitative and quantitative migration values at a time equivalent to initial batch usage... quantitative migration values at the time of equilibrium extractions, utilizing solvents and...

  20. 21 CFR 180.22 - Acrylonitrile copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... determine the complex and the acrylonitrile migration, and validation studies of these analytical methods... repeated use: (1) Qualitative and quantitative migration values at a time equivalent to initial batch usage... quantitative migration values at the time of equilibrium extractions, utilizing solvents and...

  1. 21 CFR 180.22 - Acrylonitrile copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... determine the complex and the acrylonitrile migration, and validation studies of these analytical methods... repeated use: (1) Qualitative and quantitative migration values at a time equivalent to initial batch usage... quantitative migration values at the time of equilibrium extractions, utilizing solvents and...

  2. Interaction of rat liver glucocorticoid receptor with sodium tungstate.

    PubMed

    Murakami, N; Healy, S P; Moudgil, V K

    1982-06-15

    Effects of sodium tungstate on various properties of rat liver glucocorticoid receptor were examined at pH7 and pH 8. At pH 7, [3H]triamcinolone acetonide binding in rat liver cytosol preparations was completely blocked in the presence of 10--20 mM-sodium tungstate at 4 degrees C, whereas at 37 degrees C a 30 min incubation of cytosol receptor preparation with 1 mM-sodium tungstate reduced the loss of unoccupied receptor by 50%. At pH 8.0, tungstate presence during the 37 degrees C incubation maintained the steroid-binding capacity of unoccupied glucocorticoid receptor at control (4 degrees C) levels. In addition, heat-activation of cytosolic glucocorticoid-receptor complex was blocked by 1 mM- and 10 mM-sodium tungstate at pH 7 and pH 8 respectively. The DNA-cellulose binding by activated receptor was also inhibited completely and irreversibly by 5 mM-tungstate at pH 7, whereas at pH 8 no significant effect was observed with up to 20 mM-tungstate. The entire DNA-cellulose-bound glucocorticoid-receptor complex from control samples could be extracted by incubation with 1 mM- and 20 mM-tungstate at pH 7 and pH 8 respectively, and appeared to sediment as a 4.3--4.6 S molecule, both in 0.01 M- and 0.3 M-KCl-containing sucrose gradients. Tungstate effects are, therefore, pH-dependent and appear to involve an interaction with both the non-activated and the activated forms of the glucocorticoid receptor.

  3. Cancer occurrence among workers exposed to acrylonitrile.

    PubMed

    Rothman, K J

    1994-10-01

    A MEDLINE search identified 12 published epidemiologic studies that have reported incidence or mortality experience among workers exposed to acrylonitrile. Many of the studies contain scanty descriptions of subject ascertainment, and most do not have good information on exposure assessment. Many also may have suffered from incomplete follow-up, as evinced by an overall deficit in the number of deaths observed, compared with the number expected from general population mortality rates. Such problems are not unique to studies on acrylonitrile, and to some extent they reflect the difficulties of conducting retrospective cohort studies. Despite these drawbacks, a simplified meta-analysis of the mortality experience reported for these cohorts revealed little evidence for carcinogenicity. Approximately the same number of cancer deaths was observed as was expected according to general population mortality rates (standardized mortality ratio 1.03, 90% confidence interval 0.92-1.15). The combined information from these studies is insufficient to support confidence about a lack of carcinogenicity at all sites. Nevertheless, despite the flaws in some of the individual studies, the summarized findings offer reassurance that workers exposed to acrylonitrile face no striking increases in mortality for all cancers or for respiratory cancer.

  4. 21 CFR 181.32 - Acrylonitrile copolymers and resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylonitrile copolymers and resins. 181.32 Section 181.32 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... acrylonitrile monomer extraction for finished food-contact articles, determined by using the method of...

  5. 21 CFR 181.32 - Acrylonitrile copolymers and resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylonitrile copolymers and resins. 181.32 Section 181.32 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... acrylonitrile monomer extraction for finished food-contact articles, determined by using the method of...

  6. ABSORPTION OF CO2 IN HIGH ACRYLONITRILE CONTENT COPOLYMERS: DEPENDENCE ON ACRYLONITRILE CONTENT. (R829555)

    EPA Science Inventory

    In continuation of our goal to determine the ability of CO2 to plasticize acrylonitrile (AN) copolymers and facilitate melt processing at temperatures below the onset of thermal degradation, a systematic study has been performed to determine the influence of AN cont...

  7. Tuning the architecture and properties of microstructured yttrium tungstate oxide hydroxide and lanthanum tungstate.

    PubMed

    Kaczmarek, Anna M; Liu, Ying-Ya; Van der Voort, Pascal; Van Deun, Rik

    2013-04-21

    In this paper, various microstructures of yttrium and lanthanum tungstates were synthesized under hydrothermal conditions, at pH 5, in a ligand-free environment, and in the presence of a dioctyl sodium sulfosuccinate (DSS) surfactant. It was observed that the shape of the nanobuilding blocks, and therefore the architecture of the microstructures, could be tuned by controlling the reaction conditions, such as the source of the rare earth, the amount of a surfactant and the reaction time. X-ray powder diffraction (XRD), elemental analysis, scanning electron microscopy (SEM), and N2 adsorption were employed to characterize the obtained products. The photoluminescent properties of Eu(3+) and Dy(3+) doped tungstate materials were investigated. Luminescence measurements showed an efficient charge transfer from the WO4(2-) groups to Eu(3+) and Dy(3+) ions. It was found that under UV excitation the Dy(3+) doped Y(WO3)2(OH)3 and La2(WO4)3 precursors exhibit white emission.

  8. Synchrotron-based far-infrared spectroscopy of nickel tungstate

    NASA Astrophysics Data System (ADS)

    Kalinko, A.; Kuzmin, A.; Roy, P.; Evarestov, R. A.

    2016-07-01

    Monoclinic antiferromagnetic NiWO4 was studied by far-infrared (30-600 cm-1) absorption spectroscopy in the temperature range of 5-300 K using the synchrotron radiation from SOLEIL source. Two isomorphous CoWO4 and ZnWO4 tungstates were investigated for comparison. The phonon contributions in the far-infrared range of tungstates were interpreted using the first-principles spin-polarized linear combination of atomic orbital calculations. No contributions from magnetic excitations were found in NiWO4 and CoWO4 below their Neel temperatures down to 5 K.

  9. Effects of sodium tungstate on oxidative stress enzymes in rats.

    PubMed

    Sachdeva, Sherry; Kushwaha, Pramod; Flora, S J S

    2013-09-01

    Tungsten, due to its distinguished physical properties, has wide industrial and military applications. Environmental exposure to tungsten, which mainly occurs through various sources like food, water, soil, etc., is of growing concern as various toxic effects have recently been reported. In this study, we investigated the effects of oral and intraperitoneal (i.p.) administration of sodium tungstate on various biochemical variables indicative of oxidative stress in erythrocytes and soft tissue damage in rats. Male rats were administered to 119 mg, 238 mg/kg of sodium tungstate orally or 20 mg and 41 mg/kg through i.p. route, for 14 consecutive days. The results demonstrated a significant increase in Reactive Oxygen Species (ROS) and an increase in catalase and glutathione peroxidase antioxidant enzymes activities in erythrocytes. Erythrocyte glutathione-S-transferase (GST) activity showed significant inhibition, while tissue ROS and thiobarbituric acid reactive substance levels increased accompanied by a decreased reduced glutathione, oxidized glutathione (GSH:GSSG) ratio. These changes were supported by an increase in plasma transaminases activities, creatinine, and urea levels, suggesting hepatic and renal injury. These biochemical alterations were prominent in rats intraperitoneally administrated with sodium tungstate than oral administration, suggesting more pronounced toxicity. The study also suggests oxidative stress as one of the major mechanism involved in the toxic manifestations of sodium tungstate.

  10. 21 CFR 181.32 - Acrylonitrile copolymers and resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... with polyvinyl chloride resins—for use only on paper and paperboard in contact with meats and lard. (ii... fruits, vegetables, and fish. (iii) Acrylonitrile/butadiene/styrene copolymer—no restrictions....

  11. 21 CFR 181.32 - Acrylonitrile copolymers and resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... with polyvinyl chloride resins—for use only on paper and paperboard in contact with meats and lard. (ii... fruits, vegetables, and fish. (iii) Acrylonitrile/butadiene/styrene copolymer—no restrictions....

  12. Effects of sodium tungstate on insulin and glucagon secretion in the perfused rat pancreas.

    PubMed

    Rodríguez-Gallardo, J; Silvestre, R A; Egido, E M; Marco, J

    2000-08-18

    Both the direct effect of sodium tungstate on insulin and glucagon secretion in the perfused rat pancreas, and the insulin response to glucose and arginine in pancreases isolated from tungstate-pretreated rats were studied. Infusion of tungstate stimulated insulin output in a dose-dependent manner. The insulinotropic effect of tungstate was observed at normal (5.5 mM), and moderately high (9 mM) glucose concentrations, but not at a low glucose concentration (3.2 mM). Tungstate-induced insulin output was blocked by diazoxide, somatostatin, and amylin, suggesting several targets for tungstate at the B-cell secretory machinery. Glucagon release was not modified by tungstate. Pancreases from chronically tungstate-treated rats showed an enhanced response to glucose but not to arginine. Our results indicate that the reported reduction of glycemia caused by tungstate administration is, at least in part, due to its direct insulinotropic activity. Furthermore, chronic tungstate treatment may prime the B-cell, leading to over-response to a glucose stimulus.

  13. Tungstate sulfuric acid (TSA)/KMnO4 as a novel heterogeneous system for rapid deoximation.

    PubMed

    Karami, Bahador; Montazerozohori, Morteza

    2006-09-28

    Neat chlorosulfonic acid reacts with anhydrous sodium tungstate to give tungstate sulfuric acid (TSA), a new dibasic inorganic solid acid in which two sulfuric acid molecules connect to a tungstate moiety via a covalent bond. A variety of oximes were oxidized to their parent carbonyl compounds under mild conditions with excellent yields in short times by a heterogeneous wet TSA/KMnO4 in dichloromethane system.

  14. Synthesis of europium- or terbium-activated calcium tungstate phosphors

    NASA Astrophysics Data System (ADS)

    Forgaciu, Flavia; Popovici, Elisabeth-Jeanne; Ungur, Laura; Vadan, Maria; Vasilescu, Marilena; Nazarov, Mihail

    2001-06-01

    Utilization of luminescent substances in various optoelectronic devices depends on their luminescent properties and sensitivity to various excitation radiation as well as on particle size distribution and crystalline structure of luminous powders. Calcium tungstate phosphors are well excited with roentgen radiation, so that they are largely used for manufacture of x-ray intensifying screens. Being sensitive to short UV-radiation as well, they could be utilized in Plasma Display Panels or in advertising signs fluorescent tubes. In order to diversify the utilization possibilities of this tungstate class, luminescent powders based on CaWO4:Eu3+ and CaWO4:Tb3+ were synthesized and characterized. As compared with the starting self-activated phosphor, larger excitation wavelength domain and emission colors from blue-to-green-to- yellow-to-red were obtained. The good UV excitability and variable luminescence color recommend these phosphors for optoelectronic device manufacture.

  15. Solubility of sodium tungstate in nitrate-nitrite melts

    SciTech Connect

    Yurkinskii, V.P.; Firsova, E.G.; Morachevskii, A.G.; Sazanova, O.B.

    1988-10-10

    Nitrate melts are employed as electrolytes for the electrochemical oxidation of tungsten. The authors studied the solubility of sodium tungstate in a number of nitrate-nitrite melts. The investigations were carried out in individual melts of NaNO/sub 3/ and NaNO/sub 2/ and in LiNO/sub 3/-NaNO/sub 3/-KNO/sub 3/ and NaNO/sub 3/-KNO/sub 3/ eutectic mixtures in the 440-690 K temperature range in an atmosphere of argon. The solubility of sodium tungstate increases slightly upon the transition from an LiNO/sub 3/-NaNO/sub 3/-KNO/sub 3/ melt to an NaNO/sub 3/-KNO/sub 3/ melt. The solubility of Na/sub 2/WO/sub 4/ in sodium nitrite is considerably higher than that in sodium nitrate.

  16. Mutagenicity, carcinogenicity, and teratogenicity of acrylonitrile.

    PubMed

    Léonard, A; Gerber, G B; Stecca, C; Rueff, J; Borba, H; Farmer, P B; Sram, R J; Czeizel, A E; Kalina, I

    1999-05-01

    Acrylonitrile (AN) is an important intermediary for the synthesis of a variety of organic products, such as artificial fibres, household articles and resins. Although acute effects are the primary concern for an exposure to AN, potential genotoxic, carcinogenic and teratogenic risks of AN have to be taken seriously in view of the large number of workers employed in such industries and the world-wide population using products containing and possibly liberating AN. An understanding of the effect of acrylonitrile must be based on a characterization of its metabolism as well as of the resulting products and their genotoxic properties. Tests for mutagenicity in bacteria have in general been positive, those in plants and on unscheduled DNA synthesis doubtful, and those on chromosome aberrations in vivo negative. Wherever positive results had been obtained, metabolic activation of AN appeared to be a prerequisite. The extent to which such mutagenic effects are significant in man depends, however, also on the conditions of exposure. It appears from the limited data that the ultimate mutagenic factor(s), such as 2-cyanoethylene oxide, may have little opportunity to act under conditions where people are exposed because it is formed only in small amounts and is rapidly degraded. The carcinogenic action of AN has been evaluated by various agencies and ranged from 'reasonably be anticipated to be a human carcinogen' to 'cannot be excluded', the most recent evaluation being 'possibly carcinogenic to humans'. Animal data that confirm the carcinogenic potential of AN have certain limitations with respect to the choice of species, type of tumors and length of follow up. Epidemiological studies which sometimes, but not always, yielded positive results, encounter the usual difficulties of confounding factors in chemical industries. Exposure of workers to AN should continue to be carefully monitored, but AN would not have to be considered a cancer risk to the population provided

  17. Polyimide nanocomposites based on cubic zirconium tungstate

    NASA Astrophysics Data System (ADS)

    Ramasubramanian Sharma, Gayathri

    2009-12-01

    In this research, cubic zirconium tungstate (ZrW2O8) was used as a filler to reduce the CTE of polyimides (PI), and the effect of ZrW2O8 nanoparticles on the bulk polymer properties was studied. Polyimides are high performance polymers with exceptional thermal stability, and there is a need for PIs with low CTEs for high temperature applications. The nanofiller, cubic ZrW2O8, is well known for its isotropic negative thermal expansion (NTE) over a wide temperature range from -272.7 to 777°C. The preparation of nanocomposites involved the synthesis of ZrW 2O8 nanofiller, engineering the polymer-filler interface using linker groups and optimization of processing strategies to prepare free-standing PI nanocomposite films. A hydrothermal method was used to synthesize ZrW 2O8 nanoparticles. Polyimide-ZrW2O8 interface interaction was enhanced by covalently bonding linker moieties to the surface of ZrW2O8 nanoparticles. Specifically, ZrW 2O8 nanoparticles were functionalized with two different linker groups: (1) a short aliphatic silane, and (2) low molecular weight PI. The surface functionalization was confirmed using X-ray photoelectron spectroscopy and thermal gravimetric analysis (TGA). Reprecipitation blending was used to prepare the freestanding PI-ZrW2O8 nanocomposite films with up to 15 volume% filler loading. SEM images showed the improvements in polymer-filler wetting behavior achieved using interface engineering. SEM images indicated that there was better filler dispersion in the PI matrix using reprecipitation blending, compared to the filler dispersion achieved in the nanocomposites prepared using conventional blending technique. The structure-property relationships in PI-ZrW2O8 nanocomposites were investigated by studying the thermal degradation, glass transition, tensile and thermal expansion properties of the nanocomposites. The properties were studied as a function of filler loading and interface linker groups. Addition of ZrW2O8 nanoparticles did not

  18. [Toxicology of acrylonitrile (AN) (author's transl)].

    PubMed

    Hashimoto, K

    1980-09-01

    Acrylonitrile (AN, CH2 = CH CN), a highly reactive compound having an active vinyl and cyanide group, has been widely used in various synthetic chemical industries. AN is known to produce toxic actions to human beings as well as experimental animals by inhalation and cutaneous contact. Its oral LD50 in animals are between 50 mg (for mouse) and 100 mg/kg (for rat, guinea pig, rabbit), and IC50 in 4 hours are between 110-140 ppm for mouse and dog, and 400-500 ppm for guinea pig. Although the mechanism of action of AN has not been completely understood, the action of both cyanide which is liberated in the organism and AN molecules themselves is considered to play some roles. Recent studies have shown that AN also produces chronic toxicity to human beings and experimental animals, and mutagenicity to microorganisms. In the U.S.A. experimental studies have shown an increased incidence of tumor in various organs after long-term administration of AN in rats. A preliminary report on an epidemiologic study conducted in the U.S.A. indicated excess cancer incidence and cancer mortality among workers exposed to AN. Further investigations will be needed to elucidate the carcinogenicity of the compound.

  19. Anti-diabetic and anti-obesity agent sodium tungstate enhances GCN pathway activation through Glc7p inhibition.

    PubMed

    Rodriguez-Hernandez, C J; Guinovart, J J; Murguia, J R

    2012-02-03

    Tungstate counteracts diabetes and obesity in animal models, but its molecular mechanisms remain elusive. Our Saccharomyces cerevisiae-based approach has found that tungstate alleviated the growth defect induced by nutrient stress and enhanced the activation of the GCN pathway. Tungstate relieved the sensitivity to starvation of a gcn2-507 yeast hypomorphic mutant, indicating that tungstate modulated the GCN pathway downstream of Gcn2p. Interestingly, tungstate inhibited Glc7p and PP1 phosphatase activity, both negative regulators of the GCN pathway in yeast and humans, respectively. Accordingly, overexpression of a dominant-negative Glc7p mutant in yeast mimicked tungstate effects. Therefore tungstate alleviates nutrient stress in yeast by in vivo inhibition of Glc7p. These data uncover a potential role for tungstate in the treatment of PP1 and GCN related diseases.

  20. 76 FR 54228 - Draft Toxicological Review of Acrylonitrile: In Support of Summary Information on the Integrated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ... Acrylonitrile: In Support of Summary Information on the Integrated Risk Information System (IRIS)'' (EPA/635/R... Acrylonitrile: In Support of Summary Information on the Integrated Risk Information System (IRIS)'' is available... AGENCY Draft Toxicological Review of Acrylonitrile: In Support of Summary Information on the...

  1. Survey of volatile substances in kitchen utensils made from acrylonitrile-butadiene-styrene and acrylonitrile-styrene resin in Japan.

    PubMed

    Abe, Yutaka; Yamaguchi, Miku; Mutsuga, Motoh; Kawamura, Yoko; Akiyama, Hiroshi

    2014-05-01

    Residual levels of 14 volatile substances, including 1,3-butadiene, acrylonitrile, benzene, ethylbenzene, and styrene, in 30 kitchen utensils made from acrylonitrile-butadiene-styrene resin (ABS) and acrylonitrile-styrene resin (AS) such as slicers, picks, cups, and lunch boxes in Japan were simultaneously determined using headspace gas chromatography/mass spectroscopy (HS-GC/MS). The maximum residual levels in the ABS and AS samples were found to be 2000 and 2800 μg/g of styrene, respectively. The residual levels of 1,3-butadiene ranged from 0.06 to 1.7 μg/g in ABS, and three of 15 ABS samples exceeded the regulatory limit for this compound as established by the European Union (EU). The residual levels of acrylonitrile ranged from 0.15 to 20 μg/g in ABS and from 19 to 180 μg/g in AS. The levels of this substance in seven ABS and six AS samples exceeded the limit set by the U.S. Food and Drug Administration (FDA). Furthermore, the levels of acrylonitrile in three AS samples exceeded the voluntary standard established by Japanese industries. These results clearly indicate that the residual levels of some volatile compounds are still high in ABS and AS kitchen utensils and further observations are needed.

  2. A functional leptin system is essential for sodium tungstate antiobesity action.

    PubMed

    Canals, Ignasi; Carmona, María C; Amigó, Marta; Barbera, Albert; Bortolozzi, Analía; Artigas, Francesc; Gomis, Ramon

    2009-02-01

    Sodium tungstate is a novel agent in the treatment of obesity. In diet-induced obese rats, it is able to reduce body weight gain by increasing energy expenditure. This study evaluated the role of leptin, a key regulator of energy homeostasis, in the tungstate antiobesity effect. Leptin receptor-deficient Zucker fa/fa rats and leptin-deficient ob/ob mice were treated with tungstate. In lean animals, tungstate administration reduced body weight gain and food intake and increased energy expenditure. However, in animals with deficiencies in the leptin system, treatment did not modify these parameters. In ob/ob mice in which leptin deficiency was restored through adipose tissue transplantation, treatment restored the tungstate-induced body weight gain and food intake reduction as well as energy expenditure increase. Furthermore, in animals in which tungstate administration increased energy expenditure, changes in the expression of key genes involved in brown adipose tissue thermogenesis were detected. Finally, the gene expression of the hypothalamic neuropeptides, Npy, Agrp, and Cart, involved in the leptin regulation of energy homeostasis, was also modified by tungstate in a leptin-dependent manner. In summary, the results indicate that the effectiveness of tungstate in reducing body weight gain is completely dependent on a functional leptin system.

  3. Sodium tungstate alleviates biomechanical properties of diabetic rat femur via modulation of oxidative stress.

    PubMed

    Donmez, Baris O; Ozturk, Nihal; Sarikanat, Mehmet; Oguz, Nurettin; Sari, Ramazan; Ozdemir, Semir

    2014-01-01

    Diabetes mellitus leads to bone disorders such as osteopenia and osteoporosis that can increase fracture risk. On the other hand, sodium tungstate is an inorganic compound which exerts anti-diabetic activity in experimental studies due to its suggested insulin-mimetic or antioxidant activity. Therefore this study was designed to investigate the effect of tungstate on bone quality in diabetic rat femurs. The rats were divided into four groups: Control (C), tungstate-treated control (C+Tung), diabetes (STZ-D) and tungstate-treated diabetes (STZ-D+Tung). Diabetes mellitus was induced by single injection of streptozotocin (50 mg/kg). The treated rats received 150 mg/kg/day of sodium tungstate for 12 weeks. Sodium tungstate achieved a little (17%) but significant reduction on blood glucose levels, while it didn't recover the reduced body weights of diabetic rats. In addition, impaired bone mechanical quality was reversed, despite the unchanged mineral density. Sodium tungstate administration significantly lowered the 2-thiobarbituric acid reactive substances and restored the activity of tissue antioxidant enzymes such as glutathione peroxidase, catalase and superoxide dismutase in diabetic rats. On the other hand, glutathione levels didn't change in either case. These findings indicate that tungstate can improve the reduced mechanical quality of diabetic rat femurs due probably to reduction of reactive oxygen species and modulation of antioxidant enzymes as well as reduction in blood glucose levels.

  4. Molecular mechanisms of tungstate-induced pancreatic plasticity: a transcriptomics approach

    PubMed Central

    Altirriba, Jordi; Barbera, Albert; Del Zotto, Héctor; Nadal, Belen; Piquer, Sandra; Sánchez-Pla, Alex; Gagliardino, Juan J; Gomis, Ramon

    2009-01-01

    Background Sodium tungstate is known to be an effective anti-diabetic agent, able to increase beta cell mass in animal models of diabetes, although the molecular mechanisms of this treatment and the genes that control pancreas plasticity are yet to be identified. Using a transcriptomics approach, the aim of the study is to unravel the molecular mechanisms which participate in the recovery of exocrine and endocrine function of streptozotocin (STZ) diabetic rats treated with tungstate, determining the hyperglycemia contribution and the direct effect of tungstate. Results Streptozotocin (STZ)-diabetic rats were treated orally with tungstate for five weeks. Treated (STZ)-diabetic rats showed a partial recovery of exocrine and endocrine function, with lower glycemia, increased insulinemia and amylasemia, and increased beta cell mass achieved by reducing beta cell apoptosis and raising beta cell proliferation. The microarray analysis of the pancreases led to the identification of three groups of differentially expressed genes: genes altered due to diabetes, genes restored by the treatment, and genes specifically induced by tungstate in the diabetic animals. The results were corroborated by quantitative PCR. A detailed description of the pathways involved in the pancreatic effects of tungstate is provided in this paper. Hyperglycemia contribution was studied in STZ-diabetic rats treated with phloridzin, and the direct effect of tungstate was determined in INS-1E cells treated with tungstate or serum from untreated or treated STZ-rats, observing that tungstate action in the pancreas takes places via hyperglycemia-independent pathways and via a combination of tungstate direct and indirect (through the serum profile modification) effects. Finally, the MAPK pathway was evaluated, observing that it has a key role in the tungstate-induced increase of beta cell proliferation as tungstate activates the mitogen-activated protein kinase (MAPK) pathway directly by increasing p42/p44

  5. Synthesis of (Z)-3-aryloxy-acrylonitriles, (E)-3-aryloxy-acrylonitriles and 3-cyanobenzofurans through the sequential reactions of phenols with propiolonitriles.

    PubMed

    Zhou, Wei; Zhang, Yicheng; Li, Pinhua; Wang, Lei

    2012-09-21

    A Na(2)CO(3)-promoted addition of phenols to propiolonitriles generated (Z)-3-aryloxy-acrylonitriles in nearly quantitative yields with exclusively Z-isomers, and a DABCO-promoted addition reaction of phenols with propiolonitriles afforded mainly (E)-3-aryloxy-acrylonitriles with high yields. The obtained (E)-3-aryloxy-acrylonitriles underwent intramolecular cyclization to give 3-cyanobenzofurans in good yields through palladium-catalyzed direct C-H bond functionalization.

  6. Sodium tungstate (Na2WO4) exposure increases apoptosis in human peripheral blood lymphocytes.

    PubMed

    Osterburg, Andrew R; Robinson, Chad T; Schwemberger, Sandy; Mokashi, Vishwesh; Stockelman, Michael; Babcock, George F

    2010-01-01

    The potential for adverse health effects of using tungsten and its alloys in military munitions are an important concern to both civilians and the US military. The toxicological implications of exposure to tungsten, its alloys, and the soluble tungstate (Na(2)WO(4)) are currently under investigation. To examine tungstate toxicity, a series of experiments to determine its in vitro effects on cells of the immune system were performed. We identified alterations in isolated human peripheral blood lymphocytes (PBL) treated in vitro with sodium tungstate (0.01, 0.1, 1.0, and 10 mM). Analyses of apoptosis with annexin V and propidium iodide revealed a dose- and time-dependent increase in the quantity of cells in early apoptosis after tungstate exposure. Reductions in the number of cells entering into the cell cycle were also noted. Exposure of PBL to tungstate (1 mM) and Concanavalin A (ConA) for 72 h reduced the number of cells in S and G(2)/M phases of the cell cycle. There were alterations in the numbers of cells in G(0)/G(1), S, and G(2)/M phases of the cell cycle in long-term THP-1 (acute leukemic monocytes) cultures treated with tungstate (0.01, 0.1, 1.0, and 10 mM). Gel electrophoresis, silver staining, and LC-MS/MS showed the cytoplasmic presence of histone H1b and H1d after 72 h of tungstate exposure. The addition of tungstate to cultures resulted in significant reductions in the quantity of interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-alpha), and IL-6 produced by stimulated [CD3/CD28, ConA, or lipopolysaccharide (LPS)] and tungstate-treated lymphocytes. Taken together, these data indicate that tungstate increases apoptosis of PBL, alters cell cycle progression, reduces cytokine production, and therefore warrants further investigation.

  7. Radiation-induced graft copolymerization of binary monomer mixture containing acrylonitrile onto polyethylene films

    NASA Astrophysics Data System (ADS)

    Choi, Seong-Ho; Nho, Young Chang

    2000-04-01

    Graft copolymerization of acrylonitrile (AN)/acrylic acid (AA), acrylonitrile (AN)/methacrylic acid (MA), and acrylonitrile (AN)/glycidyl methacrylate (GMA) onto pre-irradiated polyethylene (PE) films were studied. The effect of reaction conditions such as solvents, additives, and monomer composition on the grafting yields was investigated. The extent of grafting was found to increase with increasing sulfuric acid concentration when sulfuric acid as an additive was added to the grafting solution. In AN/AA mixture, the proportion of acrylonitrile in the copolymer increased with an increasing AN component in feed monomers. On the other hand, in AN/MA mixture, acrylonitrile component in copolymer was very slight in spite of the increase AN component in feed monomers. In the AN/GMA mixture, the proportion of acrylonitrile in the copolymer increased with increasing acrylonitrile component in AN/GMA feed monomer.

  8. IRIS Toxicological Review of Acrylonitrile (Interagency Science Consultation Draft)

    EPA Science Inventory

    On June 30, 2011, the draft Toxicological Review of Acrylonitrile and the charge to external peer reviewers were released for external peer review and public comment. The Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and White House...

  9. Extraction of DNA-cellulose-bound glucocorticoid-receptor complexes with sodium tungstate.

    PubMed

    Murakami, N; Moudgil, V K

    1981-09-04

    Glucocorticoid-receptor complex from rat liver cytosol, activated by warming at 23 degrees C or fractionation with (NH4)2SO4, was adsorbed over DNA-cellulose. This DNA-cellulose-bound [3H]triamcinolone acetonide-receptor complex was extracted in a dose-dependent manner by incubation with different concentrations of sodium tungstate. A 50% recovery of receptor was achieved with 5 mM sodium tungstate. Almost the entire glucocorticoid-receptor complex bound to DNA-cellulose could be extracted with 20 mM sodium tungstate. The [3H]triamcinolone acetonide released from DNA-cellulose following tungstate and molybdate treatment was found to be associated with a macromolecule, as seen by analysis on a Sephadex G-75 column. The glucocorticoid-receptor complex extracted by both the compounds sedimented as a 4 S entity of 5-20% sucrose gradients under low- and high-salt conditions. Addition of tungstate or molybdate to the preparations containing activated receptor had no effect on the sedimentation rate of receptor. However, addition of tungstate to non-activated receptor preparation caused aggregates of larger size. The tungstate-extracted glucocorticoid-receptor complex failed to rebind to DNA-cellulose even after extensive dialysis, whereas receptor in molybdate-extract retained its DNA-cellulose binding capacity.

  10. Oral administration of sodium tungstate improves cardiac performance in streptozotocin-induced diabetic rats.

    PubMed

    Nagareddy, Prabhakara Reddy; Vasudevan, Harish; McNeill, John H

    2005-05-01

    Normalization of hyperglycemia and hyperlipidemia is an important objective in preventing diabetes-induced cardiac dysfunction. Our study investigated the effects of sodium tungstate on cardiac performance in streptozotocin-induced (STZ) diabetic rats based on its potential antidiabetic and antioxidant activity. Male Wistar rats were made STZ-diabetic and then treated with tungstate in their drinking water for 9 weeks. Body mass, food and fluid intake, plasma glucose, insulin, triglyceride, and free fatty acids levels were measured. At the termination of the study period, an oral glucose tolerance test (OGTT) was performed, and cardiac performance was evaluated using an isolated working heart apparatus. Tungstate-treated STZ-diabetic rats showed a significant reduction in fluid and food intake, plasma glucose, triglycerides, and free fatty acid levels, and improved tolerance to glucose in OGTT, owing to tungstate-mediated enhancement of insulin activity rather than increased insulin levels. Left ventricular pressure development, the rate of contraction (+dP/dT), and the rate of relaxation (-dP/dT) were significantly improved in tungstate-treated diabetic rats. Apart from a decreased rate of body mass gain, no other signs of toxicity or hypoglycemic episodes were observed in tungstate-treated rats. This study extends previous observations on the antidiabetic activities of tungstate, and also reports for the first time the salutary effects in preventing diabetic cardiomyopathy.

  11. Toxicity of sodium tungstate to earthworm, oat, radish, and lettuce.

    PubMed

    Bamford, Josie E; Butler, Alicia D; Heim, Katherine E; Pittinger, Charles A; Lemus, Ranulfo; Staveley, Jane P; Lee, K Brian; Venezia, Carmen; Pardus, Michael J

    2011-10-01

    Due to unknown effects of the potential exposure of the terrestrial environment to tungsten substances, a series of toxicity studies of sodium tungstate (Na(2) WO(4) ) was conducted. The effect on earthworm (Eisenia fetida) survival and reproduction was examined using Organisation for Economic Co-operation and Development (OECD) Guideline 222. No effect on either endpoint was seen at the highest concentration tested, resulting in a 56-d no-observed-effect concentration (NOEC) of ≥586 mg tungsten/kg dry soil (nominal concentrations). The effect of sodium tungstate on emergence and growth of plant species was examined according to OECD Guideline 208: oat (Avena sativa), radish (Raphanus sativus), and lettuce (Lactuca sativa). No effects on emergence, shoot height, and dry shoot weight were observed in oats exposed to the highest concentration, resulting in a 21-d NOEC of ≥586 mg tungsten/kg dry soil. The NOECs for radish and lettuce were 65 and 21.7 mg tungsten/kg dry soil (nominal concentrations), respectively. Respective 21-d median effective concentration values (EC50) for radish and lettuce were >586 and 313 mg tungsten/kg dry soil (based on shoot height) (confidence level [CL] -8.5-615); EC25 values were 152 (CL 0-331) and 55 (CL 0-114) mg tungsten/kg dry soil. Results are consistent with the few other tungsten substance terrestrial toxicity studies in the literature.

  12. Femtosecond laser ablation of cadmium tungstate for scintillator arrays

    NASA Astrophysics Data System (ADS)

    Richards, S.; Baker, M. A.; Wilson, M. D.; Lohstroh, A.; Seller, P.

    2016-08-01

    Ultrafast pulsed laser ablation has been investigated as a technique to machine CdWO4 single crystal scintillator and segment it into small blocks with the aim of fabricating a 2D high energy X-ray imaging array. Cadmium tungstate (CdWO4) is a brittle transparent scintillator used for the detection of high energy X-rays and γ-rays. A 6 W Yb:KGW Pharos-SP pulsed laser of wavelength 1028 nm was used with a tuneable pulse duration of 10 ps to 190 fs, repetition rate of up to 600 kHz and pulse energies of up to 1 mJ was employed. The effect of varying the pulse duration, pulse energy, pulse overlap and scan pattern on the laser induced damage to the crystals was investigated. A pulse duration of ≥500 fs was found to induce substantial cracking in the material. The laser induced damage was minimised using the following operating parameters: a pulse duration of 190 fs, fluence of 15.3 J cm-2 and employing a serpentine scan pattern with a normalised pulse overlap of 0.8. The surface of the ablated surfaces was studied using scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy and X-ray photoelectron spectroscopy. Ablation products were found to contain cadmium tungstate together with different cadmium and tungsten oxides. These laser ablation products could be removed using an ammonium hydroxide treatment.

  13. Anti-Obesity Sodium Tungstate Treatment Triggers Axonal and Glial Plasticity in Hypothalamic Feeding Centers

    PubMed Central

    Amigó-Correig, Marta; Barceló-Batllori, Sílvia; Soria, Guadalupe; Krezymon, Alice; Benani, Alexandre; Pénicaud, Luc; Tudela, Raúl; Planas, Anna Maria; Fernández, Eduardo

    2012-01-01

    Objective This study aims at exploring the effects of sodium tungstate treatment on hypothalamic plasticity, which is known to have an important role in the control of energy metabolism. Methods Adult lean and high-fat diet-induced obese mice were orally treated with sodium tungstate. Arcuate and paraventricular nuclei and lateral hypothalamus were separated and subjected to proteomic analysis by DIGE and mass spectrometry. Immunohistochemistry and in vivo magnetic resonance imaging were also performed. Results Sodium tungstate treatment reduced body weight gain, food intake, and blood glucose and triglyceride levels. These effects were associated with transcriptional and functional changes in the hypothalamus. Proteomic analysis revealed that sodium tungstate modified the expression levels of proteins involved in cell morphology, axonal growth, and tissue remodeling, such as actin, CRMP2 and neurofilaments, and of proteins related to energy metabolism. Moreover, immunohistochemistry studies confirmed results for some targets and further revealed tungstate-dependent regulation of SNAP25 and HPC-1 proteins, suggesting an effect on synaptogenesis as well. Functional test for cell activity based on c-fos-positive cell counting also suggested that sodium tungstate modified hypothalamic basal activity. Finally, in vivo magnetic resonance imaging showed that tungstate treatment can affect neuronal organization in the hypothalamus. Conclusions Altogether, these results suggest that sodium tungstate regulates proteins involved in axonal and glial plasticity. The fact that sodium tungstate could modulate hypothalamic plasticity and networks in adulthood makes it a possible and interesting therapeutic strategy not only for obesity management, but also for other neurodegenerative illnesses like Alzheimer’s disease. PMID:22802935

  14. Sodium tungstate activates glycogen synthesis through a non-canonical mechanism involving G-proteins.

    PubMed

    Zafra, Delia; Nocito, Laura; Domínguez, Jorge; Guinovart, Joan J

    2013-01-31

    Tungstate treatment ameliorates experimental diabetes by increasing liver glycogen deposition through an as yet unidentified mechanism. The signalling mechanism of tungstate was studied in CHOIR cells and primary cultured hepatocytes. This compound exerted its pro-glycogenic effects through a new G-protein-dependent and Tyr-Kinase Receptor-independent mechanism. Chemical or genetic disruption of G-protein signalling prevented the activation of the Ras/ERK cascade and the downstream induction of glycogen synthesis caused by tungstate. Thus, these findings unveil a novel non-canonical signalling pathway that leads to the activation of glycogen synthesis and that could be exploited as an approach to treat diabetes.

  15. Neurobehavioral Effects of Sodium Tungstate Exposure on Rats and Their Progeny

    DTIC Science & Technology

    2007-06-30

    Neurobehavioral Effects of Sodium Tungstate Expo sure on Rats and Their Progeny S.M. McInturf ALYNV. Bekkedal A. Olabisi D. Arfsten E. Wilfong IL...20071116226 Neurobehavioral Effects of Sodium Tungstate Exposure on Rats and. Their Progeny S.M. McInturf M.Y.V. Bekkedal A. Olabisi D. Arfsten E...days of daily tungsten exposure via drinking water. Sprague-Dawley rats were orally dosed with diH20 vehicle, 5 or 125 mg/kg/day of sodium tungstate for

  16. Optical Properties of Potassium Erbium Double Tungstate KEr(WO4)2

    DTIC Science & Technology

    2001-01-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO 11914 TITLE: Optical Properties of Potassium Erbium Double Tungstate ...potassium erbium double tungstate KEr(W0 4)2 T.Zayarnyukl*, M.T.Borowiecl*, V.DyakonovŖ, H.Szymczak’, E.Zubov Ŗ, A.Pavlyuk3, M.Barafiski’ 1Institute of... tungstate KEr(WO4)2 are reported. The single crystals of KEr(WO4)2 were grown by Top Seeded Solution Growth (TSSG) technique. They belong to the chain

  17. Poly (acrylonitrile - co -1-vinylimidazole): A New Melt Processable Carbon Fiber Precursor

    DTIC Science & Technology

    2011-01-01

    REPORT Poly (acrylonitrile – co -1-vinylimidazole): A new melt processable carbon fiber precursor 14. ABSTRACT 16. SECURITY CLASSIFICATION OF...Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Carbon fiber precursor, Thermal cross-linking, Melt processable Wesley P. Hoffman, Dennis W...Z39.18 - Poly (acrylonitrile – co -1-vinylimidazole): A new melt processable carbon fiber precursor Report Title ABSTRACT Acrylonitrile/1-vinylimidazole

  18. Acrylonitrile-Induced Oxidative Stress and Oxidative DNA Damage in Male Sprague-Dawley Rats

    PubMed Central

    Kamendulis, Lisa M.; Klaunig, James E.

    2009-01-01

    Studies have demonstrated that the induction of oxidative stress may be involved in brain tumor induction in rats by acrylonitrile. The present study examined whether acrylonitrile induces oxidative stress and DNA damage in rats and whether blood can serve as a valid surrogate for the biomonitoring of oxidative stress induced by acrylonitrile in the exposed population. Male Sprague-Dawley rats were treated with 0, 3, 30, 100, and 200 ppm acrylonitrile in drinking water for 28 days. One group of rats were also coadministered N-acetyl cysteine (NAC) (0.3% in diet) with acrylonitrile (200 ppm in drinking water) to examine whether antioxidant supplementation was protective against acrylonitrile-induced oxidative stress. Direct DNA strand breakage in white blood cells (WBC) and brain was measured using the alkaline comet assay. Oxidative DNA damage in WBC and brain was evaluated using formamidopyrimidine DNA glycosylase (fpg)-modified comet assay and with high-performance liquid chromatography-electrochemical detection. No significant increase in direct DNA strand breaks was observed in brain and WBC from acrylonitrile-treated rats. However, oxidative DNA damage (fpg comet and 8′hydroxyl-2-deoxyguanosine) in brain and WBC was increased in a dose-dependent manner. In addition, plasma levels of reactive oxygen species (ROS) increased in rats administered acrylonitrile. Dietary supplementation with NAC prevented acrylonitrile-induced oxidative DNA damage in brain and WBC. A slight, but significant, decrease in the GSH:GSSG ratio was seen in brain at acrylonitrile doses > 30 ppm. These results provide additional support that the mode of action for acrylonitrile-induced astrocytomas involves the induction of oxidative stress and damage. Significant associations were seen between oxidative DNA damage in WBC and brain, ROS formation in plasma, and the reported tumor incidences. Since oxidative DNA damage in brain correlated with oxidative damage in WBC, these results suggest

  19. Molybdate and tungstate act like vanadate on glucose metabolism in isolated hepatocytes.

    PubMed Central

    Fillat, C; Rodríguez-Gil, J E; Guinovart, J J

    1992-01-01

    In rat hepatocytes, molybdate and tungstate inactivate glycogen synthase by a mechanism independent of Ca2+ and activate glycogen phosphorylase by a Ca(2+)-dependent mechanism. On the other hand, both molybdate and tungstate increase fructose 2,6-bisphosphate levels and counteract the decrease in this metabolite induced by glucagon. These effectors do not directly modify 6-phosphofructo-2-kinase activity, even though they partially counteract the inactivation of this enzyme induced by glucagon. These effects are related to an increase on the glycolytic flux, as indicated by the increase in L-lactate and CO2 production and the decrease in glucose 6-phosphate levels in the presence of glucose. All these effects are similar to those previously reported for vanadate, although molybdate and tungstate are less effective than vanadate. These results could indicate that molybdate, tungstate and vanadate act on glucose metabolism in isolated hepatocytes by a similar mechanism of action. PMID:1313228

  20. Vibrational Spectroscopic Studies on Some Double Alkali Tungstates Belonging to Orthorhombic Class at Room Temperature

    SciTech Connect

    Sharaff, Usha; Bajpai, P. K.; Choudhary, R. N. P.

    2011-11-22

    Room temperature IR and Raman spectra of rubidium lithium tungstate and sodium lithium tungstates belonging to double alkali tungstate family are investigated using group theoretical methods. Observed internal and lattice modes in both systems studied are assigned. Analysis of spectral behavior reveals that the effect of site potential around tungstates ion is weak and the factor group splitting is operative. Differences in the lattice mode mixing and splitting of internal modes is influenced by the statistical ordering between two alkali ions having large and small ionic radii and is explained using size and charge effect observed earlier in scheelite type of structure. Thus, vibrational spectroscopic analysis may be a tool to understand the alkali ion ordering in double alkali systems.

  1. Ultrafine silver nanoparticles obtained from ethylene glycol at room temperature: catalyzed by tungstate ions.

    PubMed

    Li, Jin; Zhu, Junwu; Liu, Xiaoheng

    2014-01-07

    Ethylene glycol (EG) has been widely utilized to fabricate silver nanoparticles with uniform size and morphology. However, the majority of the work reported to date using EG routinely require not only heating, but also a surfactant. In the present paper, we report a surfactant-free and facile method for the synthesis of fairly monodisperse smaller silver nanoparticles (~6 nm) through the reaction of silver ions with EG by using tungstates (such as potassium tungstate, sodium tungstate) as catalysts at room temperature. Particularly, in this method, tungstates as catalysts can dramatically speed up the reduction of silver ions, and EG acts as both a solvent and a reducing agent to reduce silver ions to Ag metal. Meantime, we have carried out a series of experiments to investigate the performance of the as-prepared silver nanoparticles. It was found that the silver nanoparticles show excellent catalytic activity for the reduction of 4-nitrophenol in the presence of NaBH4.

  2. Theoretical calculations of emission of wolframite and scheelite-type tungstate crystals

    SciTech Connect

    Nikolaenko, T.; Hizhnyi, Y.; Nedilko, S.

    2009-01-21

    Tungstate crystals AWO{sub 4} (A = Zn,Cd,Pb) are well-known scintillation materials for various applications in science and technology. In recent years the optical properties of these crystals were intensively studied experimentally and theoretically. However, the origin of luminescence in lead, cadmium and zinc tungstates is still the subject of discussion. According to generally accepted view, the centers of luminescence in AWO{sub 4} crystals are in some or other way related to the tungstate anionic groups. We developed a cluster approach in theoretical investigation of the electronic structure of AWO{sub 4} tungstate crystals based on the configuration interaction (CI) computation in which the lattice vibrations were taken into account.

  3. Hepatoprotective activity of quercetin against acrylonitrile-induced hepatotoxicity in rats.

    PubMed

    Abo-Salem, Osama M; Abd-Ellah, Mohamed F; Ghonaim, Mabrouk M

    2011-01-01

    Acrylonitrile is a potent hepatotoxic, mutagen, and carcinogen. A role for free radical-mediated lipid peroxidation in the toxicity of acrylonitrile has been suggested. The present study was designed to assess the hepatoprotective effect of quercetin against acrylonitrile-induced hepatotoxicity in rats. Liver damage was induced by oral administration of acrylonitrile (50 mg/kg/day/5 weeks). Acrylonitrile produced a significant elevation of malondialdehyde (138.9%) with a marked decrease in reduced glutathione (72.4%), and enzymatic antioxidants; superoxide dismutase (81%), and glutathione peroxidase (53.2%) in the liver. Serum aspartate aminotransferase, alanine aminotransferases, direct bilirubin, and total bilirubin showed a significant increase in acrylonitrile alone treated rats (115.5%, 110.8%, 1006.8%, and 1000.8%, respectively). Pretreatment with quercetin (70 mg/kg/day/6 weeks) and its coadministration with acrylonitrile prevented acrylonitrile-induced alterations in hepatic lipid peroxides and enzymatic antioxidants as well as serum aminotransferases and bilirubin. Histopathological findings supported the biochemical results. We suggest that querectin possess hepatoprotective effect against acrylonitrile-induced hepatotoxicity through its antioxidant activity.

  4. Raman studies of A2MWO6 tungstate double perovskites.

    PubMed

    Andrews, R L; Heyns, A M; Woodward, P M

    2015-06-21

    The Raman spectra of seven A(2)MWO(6) tungstate double perovskites are analysed. Ba(2)MgWO(6) is a cubic double perovskite with Fm3[combining macron]m symmetry and its Raman spectrum contain three modes that can be assigned in a straightforward manner. A fourth mode, the asymmetric stretch of the [WO(6)](6-) octahedron, is too weak to be observed. The symmetry of Ba(2)CaWO(6) is lowered to tetragonal I4/m due to octahedral tilting, but the distortion is sufficiently subtle that the extra bands predicted to appear in the Raman spectrum are not observed. The remaining five compounds have additional octahedral tilts that lower the symmetry to monoclinic P2(1)/n. The further reduction of symmetry leads to the appearance of additional lattice modes involving translations of the A-site cations and librations of the octahedra. Comparing the Raman spectra of fourteen different A(2)MWO(6) tungstate double perovskites shows that the frequency of the symmetric stretch (ν(1)) of the [WO(6)](6-) octahedron is relatively low for cubic perovskites with tolerance factors greater than one due to underbonding of the tungsten and/or M cation. The frequency of this mode increases rapidly as the tolerance factor drops below one, before decreasing gradually as the octahedral tilting gets larger. The frequency of the oxygen bending mode (ν(5)) is shown to be dependent on the mass of the A-site cation due to coupling of the internal bending mode with external A-site cation translation modes.

  5. Effect of sodium tungstate on visual evoked potentials in diabetic rats

    PubMed Central

    Bulut, Mehmet; Dönmez, Barış Özgür; Öztürk, Nihal; Başaranlar, Göksun; Kencebay Manas, Ceren; Derin, Narin; Özdemir, Semir

    2016-01-01

    AIM To evaluate the effect of sodium tungstate on visual evoked potentials (VEPs) in diabetic rats. METHODS Wistar rats were randomly divided into three groups as normal control, diabetic control and diabetic rats treated with sodium tungstate. Diabetes was induced by single intraperitoneal injection of streptozotocin (50 mg/kg). Sodium tungstate [40 mg/(kg·d)] was administered for 12wk and then VEPs were recorded. Additionally, thiobarbituric acid reactive substance (TBARS) levels were measured in brain tissues. RESULTS The latencies of P1, N1, P2, N2 and P3 waves were significantly prolonged in diabetic rats compared with control group. Diabetes mellitus caused an increase in the lipid peroxidation process that was accompanied by changes in VEPs. However, prolonged latencies of VEPs for all components returned to control levels in sodium tungstate-treated group. The treatment of sodium tungstate significantly decreased brain TBARS levels and depleted the prolonged latencies of VEP components compared with diabetic control group. CONCLUSION Sodium tungstate shows protective effects on visual pathway in diabetic rats, and it can be worthy of further study for potential use. PMID:27275420

  6. Sodium tungstate induced neurological alterations in rat brain regions and their response to antioxidants.

    PubMed

    Sachdeva, Sherry; Pant, Satish C; Kushwaha, Pramod; Bhargava, Rakesh; Flora, Swaran J S

    2015-08-01

    Tungsten, recognized recently as an environmental contaminant, is being used in arms and ammunitions as substitute to depleted uranium. We studied the effects of sodium tungstate on oxidative stress, few selected neurological variables like acetylcholinesterase, biogenic amines in rat brain regions (cerebral cortex, hippocampus and cerebellum) and their prevention following co-administration of N-acetylcysteine (NAC), naringenin and quercetin. Animals were sub-chronically exposed to sodium tungstate (100 ppm in drinking water) and orally co-supplemented with different antioxidants (0.30 mM) for three months. Sodium tungstate significantly decreased the activity of acetylcholinesterase, dopamine, nor-epinephrine and 5-hydroxytryptamine levels while it increased monoamine oxidase activity in different brain regions. Tungstate exposure produced a significant increase in biochemical variables indicative of oxidative stress while, neurological alterations were more pronounced in the cerebral cortex compared to other regions. Co-administration of NAC and flavonoids with sodium tungstate significantly restored glutathione, prevented changes in the brain biogenic amines, reactive oxygen species (ROS) and TBARS levels in the different brain regions. The protection was more prominent in the animals co-administered with NAC. We can thus conclude that sodium tungstate induced brain oxidative stress and the alterations in some neurological variables can effectively be reduced by co-supplementation of NAC.

  7. Sodium tungstate decreases sucrase and Na+/D-glucose cotransporter in the jejunum of diabetic rats.

    PubMed

    Miró-Queralt, Montserrat; Guinovart, Joan J; Planas, Joana M

    2008-09-01

    Sodium tungstate reduces glycemia and reverts the diabetic phenotype in several induced and genetic animal models of diabetes. Oral administration of this compound has recently emerged as an effective treatment for diabetes. Here we examined the effects of 30 days of oral administration of tungstate on disaccharidase and Na+/D-glucose cotransporter (SGLT1) activity in the jejunum of control and streptozotocin-induced diabetic rats. Diabetes increased sucrase-specific activity in the jejunal mucosa but did not affect the activity of lactase, maltase, or trehalase. The abundance and the maximal rate of transport of SGLT1 in isolated brush-border membrane vesicles also increased. Tungstate decreased sucrase activity and normalized SGLT1 expression and activity in the jejunum of diabetic rats. Furthermore, tungstate did not change the affinity of SGLT1 for d-glucose and had no effect on the diffusional component. In control animals, tungstate had no effect on disaccharidases or SGLT1 expression. Northern blot analysis showed that the amount of specific SGLT1 mRNA was the same in the jejunum from all experimental groups, thereby indicating that changes in SGLT1 abundance are due to posttranscriptional mechanisms. We conclude that the antidiabetic effect of tungstate is partly due to normalization of the activity of sucrase and SGLT1 in the brush-border membrane of enterocytes.

  8. Phosphorylation events implicating p38 and PI3K mediate tungstate-effects in MIN6 beta cells.

    PubMed

    Piquer, Sandra; Barceló-Batllori, Sílvia; Julià, Marta; Marzo, Nuria; Nadal, Belen; Guinovart, Joan J; Gomis, Ramon

    2007-06-29

    Oral administration of sodium tungstate is an effective treatment for diabetes in animal models. Several lines of evidence indicate the pancreatic beta cell as one of the targets of tungstate action. Here, we examined the molecular mechanism by which this compound exerts its effects on the beta cell line MIN6. Tungstate treatment induced phosphorylation and subsequent activation of p38 and PI3K which in turn are implicated in tungstate PDX-1 nuclear localization and activation. Although no effect was observed in glucose-induced insulin secretion we found that tungstate activates basal insulin release, a process driven, at least in part, by activation of p38. These results show a direct involvement of p38 and PI3K phosphorylation in the mechanism of action of tungstate in the beta cell.

  9. Phosphorylation events implicating p38 and PI3K mediate tungstate-effects in MIN6 beta cells

    SciTech Connect

    Piquer, Sandra; Gomis, Ramon . E-mail: rgomis@clinic.ub.es

    2007-06-29

    Oral administration of sodium tungstate is an effective treatment for diabetes in animal models. Several lines of evidence indicate the pancreatic beta cell as one of the targets of tungstate action. Here, we examined the molecular mechanism by which this compound exerts its effects on the beta cell line MIN6. Tungstate treatment induced phosphorylation and subsequent activation of p38 and PI3K which in turn are implicated in tungstate PDX-1 nuclear localization and activation. Although no effect was observed in glucose-induced insulin secretion we found that tungstate activates basal insulin release, a process driven, at least in part, by activation of p38. These results show a direct involvement of p38 and PI3K phosphorylation in the mechanism of action of tungstate in the beta cell.

  10. 76 FR 38387 - Draft Toxicological Review of Acrylonitrile: In Support of Summary Information on the Integrated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-30

    ... Review of Acrylonitrile: In Support of Summary Information on the Integrated Risk Information System... Information on the Integrated Risk Information System (IRIS)'' is available primarily via the Internet on the... AGENCY Draft Toxicological Review of Acrylonitrile: In Support of Summary Information on the...

  11. 21 CFR 177.1040 - Acrylonitrile/styrene copoly-mer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Styrene Monomers-Gas Chromatographic Internal Standard Method”; “Infrared Spectrophotometric Determination... methods for determination of residual acrylonitrile monomer content, maximum extractable fraction, number... Weights of Acrylonitrile/Styrene Copolymers,” and “Analytical Method for 10% Solution Viscosity of...

  12. 21 CFR 177.1040 - Acrylonitrile/styrene copoly-mer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Styrene Monomers-Gas Chromatographic Internal Standard Method”; “Infrared Spectrophotometric Determination... methods for determination of residual acrylonitrile monomer content, maximum extractable fraction, number... Weights of Acrylonitrile/Styrene Copolymers,” and “Analytical Method for 10% Solution Viscosity of...

  13. 21 CFR 177.1040 - Acrylonitrile/styrene copoly-mer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Styrene Monomers-Gas Chromatographic Internal Standard Method”; “Infrared Spectrophotometric Determination... methods for determination of residual acrylonitrile monomer content, maximum extractable fraction, number... Weights of Acrylonitrile/Styrene Copolymers,” and “Analytical Method for 10% Solution Viscosity of...

  14. 21 CFR 177.1040 - Acrylonitrile/styrene copoly-mer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Styrene Monomers-Gas Chromatographic Internal Standard Method”; “Infrared Spectrophotometric Determination... methods for determination of residual acrylonitrile monomer content, maximum extractable fraction, number... Weights of Acrylonitrile/Styrene Copolymers,” and “Analytical Method for 10% Solution Viscosity of...

  15. 21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylonitrile/butadiene/sty-rene co-polymer. 177... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances.../butadiene/sty-rene co-polymer. Acrylonitrile/butadiene/styrene copolymer identified in this section may...

  16. 21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylonitrile/butadiene/sty-rene co-polymer. 177... SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1020 Acrylonitrile/butadiene/sty-rene co-polymer....

  17. 21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylonitrile/butadiene/sty-rene co-polymer. 177... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances.../butadiene/sty-rene co-polymer. Acrylonitrile/butadiene/styrene copolymer identified in this section may...

  18. 21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylonitrile/butadiene/sty-rene co-polymer. 177... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances.../butadiene/sty-rene co-polymer. Acrylonitrile/butadiene/styrene copolymer identified in this section may...

  19. 21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acrylonitrile/butadiene/sty-rene co-polymer. 177... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances.../butadiene/sty-rene co-polymer. Acrylonitrile/butadiene/styrene copolymer identified in this section may...

  20. Sodium tungstate attenuate oxidative stress in brain tissue of streptozotocin-induced diabetic rats.

    PubMed

    Nakhaee, Alireza; Bokaeian, Mohammad; Akbarzadeh, Azim; Hashemi, Mohammad

    2010-08-01

    High blood glucose concentration in diabetes induces free radical production and, thus, causes oxidative stress. Damage of cellular structures by free radicals play an important role in development of diabetic complications. In this study, we evaluated effects of sodium tungstate on enzymatic and nonenzymatic markers of oxidative stress in brain of streptozotocin (STZ)-induced diabetic rats. Rats were divided into four groups (ten rats in each group): untreated control, sodium tungstate-treated control, untreated diabetic, and sodium tungstate-treated diabetic. Diabetes was induced with an intraperitoneal STZ injection (65 mg/kg body weight), and sodium tungstate with concentration of 2 g/L was added to drinking water of treated animals for 4 weeks. Diabetes caused a significant increase in the brain thiobarbituric acid reactive substances (P < 0.01) and protein carbonyl levels (P < 0.01) and a decrease in ferric reducing antioxidant power (P < 0.01). Moreover, diabetic rats presented a reduction in brain glucose-6-phosphate dehydrogenase (21%), superoxide dismutase (41%), glutathione peroxidase (19%), and glutathione reductase (36%) activities. Sodium tungstate reduced the hyperglycemia and restored the diabetes-induced changes in all mentioned markers of oxidative stress. However, catalase activity was not significantly affected by diabetes (P = 0.4), while sodium tungstate caused a significant increase in enzyme activity of treated animals (P < 0.05). Data of present study indicated that sodium tungstate can ameliorate brain oxidative stress in STZ-induced diabetic rats, probably by reducing of the high glucose-induced oxidative stress and/or increasing of the antioxidant defense mechanisms.

  1. Vibrations of acrylonitrile in N 1s excited states

    NASA Astrophysics Data System (ADS)

    Ilakovac, V.; Carniato, S.; Gallet, J.-J.; Kukk, E.; Horvatić, D.; Ilakovac, A.

    2008-01-01

    The N 1s near edge x-ray absorption fine structure spectra of acrylonitrile gas are accurately reproduced by a complete ab initio multidimensional vibrational analysis. The role of π∗ -orbital localization and hybridization on vibrations accompanying core excitation is discussed. Transition to the π⊥∗(C=C-C≡N) delocalized orbital excites mostly stretching vibrations of the whole spinal column of the molecule. Promoting a core electron to the localized π∥∗(C≡N) produces C≡N stretching vibration combined with two strong bending modes of the C-C≡N end of the molecule, related to the change of carbon hybridization.

  2. The antidiabetic agent sodium tungstate activates glycogen synthesis through an insulin receptor-independent pathway.

    PubMed

    Domínguez, Jorge E; Muñoz, M Carmen; Zafra, Delia; Sanchez-Perez, Isabel; Baqué, Susanna; Caron, Martine; Mercurio, Ciro; Barberà, Albert; Perona, Rosario; Gomis, Ramon; Guinovart, Joan J

    2003-10-31

    Sodium tungstate is a powerful antidiabetic agent when administered orally. In primary cultured hepatocytes, tungstate showed insulin-like actions, which led to an increase in glycogen synthesis and accumulation. However, this compound did not significantly alter the insulin receptor activation state or dephosphorylation rate in cultured cells (CHO-R) or in primary hepatocytes, in either short or long term treatments. In contrast, at low concentrations, tungstate induced a transient strong activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) after 5-10 min of treatment, in a similar way to insulin. Moreover, this compound did not significantly delay or inhibit the dephosphorylation of ERK1/2. ERK1/2 activation triggered a cascade of downstream events, which included the phosphorylation of p90rsk and glycogen synthase-kinase 3beta. Experiments with a specific inhibitor of ERK1/2 activation and kinase assays indicate that these proteins were directly involved in the stimulation of glycogen synthase and glycogen synthesis induced by tungstate without a direct involvement of protein kinase B (PKB/Akt). These results show a direct involvement of ERK1/2 in the mechanism of action of tungstate at the hepatic level.

  3. Tungstate stimulates insulin release and inhibits somatostatin output in the perfused rat pancreas.

    PubMed

    Silvestre, Ramona A; Egido, Eva M; Hernández, Raquel; Marco, José

    2005-09-05

    In the rat pancreas, infusion of sodium-tungstate stimulates basal insulin release in a dose-dependent manner. We have studied tungstate's effects on the insulin secretion elicited by various B-cell secretagogues. Somatostatin output was also measured. The study was performed in the perfused pancreas isolated from normal or somatostatin-depleted pancreases as induced by cysteamine pre-treatment. In control rats, tungstate co-infusion (5 mM) potentiated the insulin secretory responses to glucose (2.7-fold; P<0.01), arginine (2-fold; P<0.01), exendin-4 (3-fold; P<0.01), glucagon (4-fold; P<0.05), and tolbutamide (2-fold; P<0.01). It also inhibited the somatostatin secretory responses to glucose (90%; P<0.01), arginine (95%; P<0.01), glucagon (80%; P<0.025), exendin-4 (80%; P<0.05) and tolbutamide (85%; P<0.01). In somatostatin-depleted pancreases, the stimulatory effect of tungstate on basal insulin secretion and its potentiation of arginine-induced insulin output were comparable to those found in control rats. Our observations suggest an amplifying effect of tungstate on a common step in the insulin stimulus/secretion coupling process, and would rule out a paracrine effect mediated by the inhibition of somatostatin secretion induced by this compound.

  4. Tungstate treatment improves Leydig cell function in streptozotocin-diabetic rats.

    PubMed

    Ballester, Joan; Domínguez, Jorge; Muñoz, M Carmen; Sensat, Meritxell; Rigau, Teresa; Guinovart, Joan J; Rodríguez-Gil, Joan E

    2005-01-01

    Oral administration of sodium tungstate to adult male streptozotocin-diabetic rats for 3 months normalized serum levels of glucose, insulin, luteinizing hormone, and follicle-stimulating hormone. These effects were accompanied by an increase in reproductive performance, which was related to a strong improvement in Leydig cell function markers, such as the recovery of the number of Leydig cells and serum testosterone levels. Moreover, this in vivo recovery was related to a concomitant increase in the cell expression of insulin receptors. Tungstate treatment did not modify Leydig cell function in healthy rats. Furthermore, the addition of tungstate or insulin to the mTLC-1 cell line from Leydig cell origin increased the phosphorylation states of MAP-kinase and glycogen synthase kinase-3. Our results indicate that tungstate treatment in diabetic rats leads to a recovery of reproductive performance by increasing the number of Leydig cells. This increase contributes to the recovery of their functionality, thereby improving the overall function of these cells. We propose that this improvement is caused by the combined effect of the tungstate-induced normalization of insulin glucose and luteinizing hormone serum levels and a direct action of the effector on Leydig cells through modulation of at least MAP-kinase and glycogen synthase kinase-3 activities.

  5. Preclinical and Clinical Studies for Sodium Tungstate: Application in Humans.

    PubMed

    Bertinat, Romina; Nualart, Francisco; Li, Xuhang; Yáñez, Alejandro J; Gomis, Ramón

    2015-02-01

    Diabetes is a complex metabolic disorder triggered by the deficient secretion of insulin by the pancreatic β-cell or the resistance of peripheral tissues to the action of the hormone. Chronic hyperglycemia is the major consequence of this failure, and also the main cause of diabetic problems. Indeed, several clinical trials have agreed in that tight glycemic control is the best way to stop progression of the disease. Many anti-diabetic drugs for treatment of type 2 diabetes are commercially available, but no ideal normoglycemic agent has been developed yet. Moreover, weight gain is the most common side effect of many oral anti-diabetic agents and insulin, and increased weight has been shown to worsen glycemic control and increase the risk of diabetes progression. In this sense, the inorganic salt sodium tungstate (NaW) has been studied in different animal models of metabolic syndrome and diabetes, proving to have a potent effect on normalizing blood glucose levels and reducing body weight, without any hypoglycemic action. Although the liver has been studied as the main site of NaW action, positive effects have been also addressed in muscle, pancreas, brain, adipose tissue and intestine, explaining the effective anti-diabetic action of this salt. Here, we review NaW research to date in these different target organs. We believe that NaW deserves more attention, since all available anti-diabetic treatments remain suboptimal and new therapeutics are urgently needed.

  6. Characterization and Recovery of Lead Tungstate (PWO4) Crystals

    NASA Astrophysics Data System (ADS)

    McShane, Abigail; Griggs, Dannie

    2016-09-01

    The potential of Lead Tungstate (PWO) crystals in EM calorimeters like the Neutral Particle Spectrometer at 12 GeV JLab and future particle identification detectors of the Electron Ion Collider has been researched extensively. The small Moliere radius of PWO crystals make them ideal for use in a compact detector and their light yield outperforms that of other heavy crystals. Recent measurements have shown large variations in crystal properties. This is a major concern for the construction of particle identification detectors. Testing of the crystal uniformity and understanding the origin of the variation have thus become necessary. The characterization of PWO includes measurements of the crystal dimensions, optical transmittance, both longitudinal and transverse, the light yield and decay kinetics to identify slow luminescence components, as well as tests of radiation hardness. Optical clarity after radiation damage can in principle be restored by stimulated recovery with light. Optical bleaching with blue light is the default method, but curing at longer wavelength may be possible. The results of crystal characterization and effects of radiation on optical properties, as well as the effectiveness and practicality of the LED curing system will be discussed. This work was supported in part by NSF Grant PHY-1306227.

  7. pH-dependent effects of sodium tungstate on the steroid-binding properties of the hen oviduct progesterone receptor.

    PubMed

    Murakami, N; Quattrociocchi, T M; Szocik, J F; Moudgil, V K

    1982-11-24

    Effects of sodium tungstate on the steroid-binding properties of hen oviduct progesterone receptor were examined and were found to be pH-dependent. When freshly prepared hen oviduct cytosol containing progesterone receptor was heated at 37 degrees C for 20 min, its ability to bind [3H]progesterone decreased to 20% level of unheated samples. At pH 7, presence of 2-3 mM tungstate during the above incubation period reduced this loss of binding. At higher tungstate concentrations (greater than 5 mM), this stabilizing effect was gradually abolished. Similar results were obtained with preparations that contained [3H]progesterone-receptor complexes; 70-80% of which remained after a 20 min incubation at 37 degrees C in the presence of 2-3 mM tungstate at pH 7. At pH 8, presence of tungstate (1-10 mM) during the 37 degrees C incubation stabilized both the steroid-bound and the unoccupied progesterone receptor in a concentration-dependent manner. The extent of steroid binding by the receptor at 4 degrees C remained unchanged in the presence of up to 10 mM tungstate at both pH 7 and pH 8 assay conditions while presence of 20 mM tungstate lowered this binding capacity. These results indicate that tungstate effects may be mediated via its interaction with the progesterone receptor.

  8. Activity of sulphate reducing bacteria according to COD/SO4(2-) ratio of acrylonitrile wastewater containing high sulphate.

    PubMed

    Byun, I G; Lee, T H; Kim, Y O; Song, S K; Park, T J

    2004-01-01

    This study was performed to evaluate the biodegradability of acrylonitrile wastewater, microbial inhibition effect of acrylonitrile wastewater on removal efficiency and the activity of sulphate reducing bacteria (SRB) according to COD/sulphate ratio. Acrylonitrile wastewater was hardly biodegradable in a biodegradability test, however, SRB activity was 57% for overall consumption of electron donor and it was relatively high value compared to 17% of reference test with glucose. COD removal of acrylonitrile wastewater was improved to 57% and 61% from 20% as the COD/sulphate ratio were 0.5 and 0.3 by sulphate addition to acrylonitrile wastewater. First order reaction rate constants k on organic removal of acrylonitrile wastewater were 0.001, 0.004 and 0.004 at each COD/sulphate ratio of 0.9, 0.5 and 0.3. Thus it was suggested that the activity of SRB was a significant factor for removing organics and sulphate simultaneously in acrylonitrile wastewater.

  9. Sodium tungstate decreases the phosphorylation of tau through GSK3 inactivation.

    PubMed

    Gómez-Ramos, Alberto; Domínguez, Jorge; Zafra, Delia; Corominola, Helena; Gomis, Ramon; Guinovart, Joan J; Avila, Jesús

    2006-02-01

    Tungstate treatment increases the phosphorylation of glycogen synthase kinase-3beta (GSK3beta) at serine 9, which triggers its inactivation both in cultured neural cells and in vivo. GSK3 phosphorylation is dependent on the activation of extracellular signal-regulated kinases 1/2 (ERK1/2) induced by tungstate. As a consequence of GSK3 inactivation, the phosphorylation of several GSK3-dependent sites of the microtubule-associated protein tau decreases. Tungstate reduces tau phosphorylation only in primed sequences, namely, those prephosphorylated by other kinases before GSK3beta modification, which are serines 198, 199, or 202 and threonine 231. The phosphorylation at these sites is involved in reduction of the interaction of tau with microtubules that occurs in Alzheimer's disease.

  10. The effects of molybate, tungstate and lxd on aldehyde oxidase and xanthine dehydrogenase in Drosophila melanogaster.

    PubMed

    Bentley, M M; Williamson, J H; Oliver, M J

    1981-01-01

    The effects of dietary sodium molybdate and sodium tungstate on eye color and aldehyde oxidase and xanthine dehydrogenase activities have been determined in Drosophila melanogaster. Dietary sodium tungstate administration has been used as a screening procedure to identify two new lxd alleles. Tungstate administration results in increased frequencies of "brown-eyed" flies in lxd stocks and a coordinate decrease in AO and XDH activities in all genotypes tested. The two new lxd alleles affect AO and XDH in a qualitatively but not quantitatively similar fashion to the original lxd allele. AO and XDH activity and AO-CRM levels appear much more sensitive to mutational perturbations of this gene-enzyme than do XDH-CRM levels in the genotypes tested.

  11. Low-temperature synthesis of metal tungstates nanocrystallites in ethylene glycol

    SciTech Connect

    Chen Di; Shen Guozhen; Tang Kaibin; Zheng Huagui; Qian Yitai

    2003-11-26

    In this paper, we report the low-temperature synthesis of metal tungstate, MWO{sub 4} (M=Ca, Sr, Ba, Cd, Zn, Pb) nanocrystallites. By reaction between metal chloride and sodium tungstate in ethylene glycol at 180 deg. C for 10 h, well-crystallized tungstate particles were successfully obtained. Characterization by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) shows that the product powders consist of nanosize particles. Photoluminescence measurement reveals that the as-obtained CaWO{sub 4}, CdWO{sub 4}, and PbWO{sub 4} show excitonic peaks at about 430, 500 and 500 nm, respectively. The solvent and reaction conditions are important in the formation of the products.

  12. Poly(acrylonitrile)chitosan composite membranes for urease immobilization.

    PubMed

    Gabrovska, Katya; Georgieva, Aneliya; Godjevargova, Tzonka; Stoilova, Olya; Manolova, Nevena

    2007-05-10

    (Poly)acrylonitrile/chitosan (PANCHI) composite membranes were prepared. The chitosan layer was deposited on the surface as well as on the pore walls of the base membrane. This resulted in the reduction of the pore size of the membrane and in an increase of their hydrophilicity. The pore structure of PAN and PANCHI membranes were determined by TEM and SEM analyses. It was found that the average size of the pore under a selective layer base PAN membrane is 7 microm, while the membrane coated with 0.25% chitosan shows a reduced pore size--small or equal to 5 microm and with 0.35% chitosan--about 4 microm. The amounts of the functional groups, the degree of hydrophilicity and transport characteristics of PAN/Chitosan composite membranes were determined. Urease was covalently immobilized onto all kinds of PAN/chitosan composite membranes using glutaraldehyde. Both the amount of bound protein and relative activity of immobilized urease were measured. The highest activity (94%) was measured for urease bound to PANCHI2 membranes (0.25% chitosan). The basic characteristics (pH(opt), pH(stability), T(opt), T(stability), heat inactivation and storage stability) of immobilized urease were determined. The obtained results show that the poly(acrylonitrile)chitosan composite membranes are suitable for enzyme immobilization.

  13. Oral tungstate treatment improves only transiently alteration of glucose metabolism in a new rat model of type 2 diabetes.

    PubMed

    Fierabracci, Vanna; De Tata, Vincenzo; Pocai, Alessandro; Novelli, Michela; Barberà, Albert; Masiello, Pellegrino

    2002-11-01

    It has been shown that tungstate is an effective hypoglycemic agent in several animal models of diabetes. In this study, we examined the effectiveness of oral tungstate treatment in a new experimental diabetic syndrome, induced by streptozotocin (STZ) and nicotinamide in adult rats, that shares several features with human type 2 diabetes. Sodium tungstate was administered in the drinking water (2 mg/mL) of control and diabetic rats for 15, 30, 60, and 90 d. Glucose metabolism was explored in vivo by intravenous glucose tolerance test. Insulin secretion and action were assessed in vitro in the isolated perfused pancreas and isolated adipocytes, respectively. Two weeks of tungstate treatment did not modify the moderate hyperglycemia of diabetic rats but reduced their intolerance to glucose, owing to an enhancement of postloading insulin secretion. However, this effect was transient, since it declined after 30 d and vanished after 60 and 90 d of tungstate administration, whereas a trend toward a reduction in basal hyperglycemia was observed on prolonged treatment. Oral tungstate was unable to modify glucose-stimulated insulin secretion in the isolated perfused pancreas, as well as muscle glycogen levels, hepatic glucose metabolism, and insulin-stimulated lipogenesis in isolated adipocytes. Nevertheless, the decreased insulin content of pancreatic islets of diabetic rats was partially restored on prolonged tungstate treatment. In conclusion, in the STZ-nicotinamide model of diabetes, tungstate was unable to permanently correct the alterations in glucose metabolism, despite some indirect evidence of a trophic effect on beta-cells. The ineffectiveness of tungstate could be related to the absence, in this diabetic syndrome, of relevant metabolic alterations in the liver, which thus appear to constitute the major target of tungstate action.

  14. Characterization and development of new hydrogenated acrylonitrile-butadiene rubber blends

    NASA Astrophysics Data System (ADS)

    Severe, Geralda

    Characteristics were determined for hydrogenated acrylonitrile-butadiene rubber (HNBR), which is a copolymer of butadiene and acrylonitrile made from hydrogenation of the diene segment in acrylonitrile rubber. There was close attention given to the glass transition behavior of HNBR and its tendency to crystallize in the quiescent and in stretching state. The glass transition behavior in HNBR was similar to that of other ethylene copolymers such as for example ethylene vinyl-acetate etc. The crystallinity in HNBR at high acrylonitrile content was due to alternating sequence of acrylonitrile and hydrogenated trans-1,4 butadiene rubber. Furthermore, the structure of HNBR does not have any effect on it rheological properties at the temperature investigated. HNBR exhibits a zero shear viscosity. It is common knowledge that most polymers are immiscible. However, over the years scientists have found numerous miscible polymers. On that basis we investigated miscibility between HNBR with ethylenic copolymers, chlorinated polymers, diene polymers, and hydrogenated acrylonitrile-butadiene rubber. HNBR is miscible with high chlorine content chlorinated polymers like chlorinated polyethylene (42% Cl), chlorosulfonated polyethylene (43% Cl), PVC and CPVC. We have also developed dynamically vulcanized blends of HNBR with polychloroprene, epoxydized natural rubber, chlorobutyl, and carboxylated acrylonitrile-butadiene copolymer. Most of the blends at 75/25 composition have promising properties.

  15. Tungsten speciation and toxicity: acute toxicity of mono- and poly-tungstates to fish.

    PubMed

    Strigul, Nikolay; Koutsospyros, Agamemnon; Christodoulatos, Christos

    2010-02-01

    Tungsten is a widely used transition metal for which very limited information on environmental and toxicological effects is available. Of particular interest is the lack of information linking tungsten speciation and environmental effects. Tungsten anions may polymerize (depending upon concentration, pH, and aquatic geochemistry) in aquatic and soil systems. However, to this date, of all soluble tungstate species only monotungstates have been scrutinized to a fair extent in toxicological studies. The objective of this work is a comparative assessment of the acute toxicity of monotungstates (sodium tungstate, Na(2)WO(4)) and polytungstates (sodium metatungstate, 3Na(2)WO(4).9WO(3)) to Poecilia reticulate. The experiments have been performed according to the OEDC protocols 203 and 204. LD50 values for 1-14 days show that sodium metatungstate is significantly more toxic to fish than sodium tungstate. Based on LD50 (0.86-3.88gL(-1) or 4.67-21.1x10(-3)molNa(2)WO(4)L(-1)), sodium tungstate may be classified as a chemical of low toxicity to fish. Sodium metatungstate caused similar fish mortality to sodium tungstate when it was introduced in 55-80 times lower concentrations (in terms of molL(-1)) than sodium tungstate. LD50 values for sodium metatungstate range from 0.13 to 0.85gWL(-1) or 5.69 to 38.71x10(-5)mol 3Na(2)WO(4).9WO(3)L(-1). Based on these values sodium metatungstate can be classified as a moderate toxic agent to fish.

  16. Neurobehavioral effects of sodium tungstate exposure on rats and their progeny.

    PubMed

    McInturf, Shawn M; Bekkedal, Marni Y-V; Wilfong, Erin; Arfsten, Darryl; Gunasekar, Palur G; Chapman, Gail D

    2008-01-01

    The use of tungsten as a replacement for lead and depleted uranium in munitions began in the mid 1990's. Recent reports demonstrate tungsten solubilizes in soil and can migrate into drinking water supplies and therefore is a potential health risk to humans. This study evaluated the reproductive and neurobehavioral effects of sodium tungstate in Sprague-Dawley rats following 70 days of daily pre- and postnatal exposure. Adult male and female rats were orally dosed with diH(2)O vehicle, 5 or 125 mg/kg/day of sodium tungstate through mating, gestation, and weaning (PND 0-20). Daily administration of sodium tungstate produced no overt evidence of toxicity and had no apparent effect on mating success or offspring physical development. Distress vocalizations were elevated in the highest dose group. There was no treatment related effect on righting reflex latencies, however, the males had significantly shorter latencies than the females. Locomotor activity was affected in both the low and high dose groups of F0 females. Those in the low dose group showed increased distance traveled, more time in ambulatory movements, and less time in stereotypic behavior than controls or high dose animals. The high dose group had more time in stereotypical movements than controls, and less time resting than controls and the lowest exposure group. Maternal retrieval was not affected by sodium tungstate exposure and there were no apparent effects of treatment on F1 acoustic startle response or water maze navigation. Overall, the results of this study suggest pre- and postnatal oral exposure to sodium tungstate may produce subtle neurobehavioral effects in offspring related to motor activity and emotionality. These findings warrant further investigation to characterize the neurotoxicity of sodium tungstate on dams and their developing pups.

  17. Kinetic and equilibrium studies of acrylonitrile binding to cytochrome c peroxidase and oxidation of acrylonitrile by cytochrome c peroxidase compound I.

    PubMed

    Chinchilla, Diana; Kilheeney, Heather; Vitello, Lidia B; Erman, James E

    2014-01-03

    Ferric heme proteins bind weakly basic ligands and the binding affinity is often pH dependent due to protonation of the ligand as well as the protein. In an effort to find a small, neutral ligand without significant acid/base properties to probe ligand binding reactions in ferric heme proteins we were led to consider the organonitriles. Although organonitriles are known to bind to transition metals, we have been unable to find any prior studies of nitrile binding to heme proteins. In this communication we report on the equilibrium and kinetic properties of acrylonitrile binding to cytochrome c peroxidase (CcP) as well as the oxidation of acrylonitrile by CcP compound I. Acrylonitrile binding to CcP is independent of pH between pH 4 and 8. The association and dissociation rate constants are 0.32±0.16 M(-1) s(-1) and 0.34±0.15 s(-1), respectively, and the independently measured equilibrium dissociation constant for the complex is 1.1±0.2 M. We have demonstrated for the first time that acrylonitrile can bind to a ferric heme protein. The binding mechanism appears to be a simple, one-step association of the ligand with the heme iron. We have also demonstrated that CcP can catalyze the oxidation of acrylonitrile, most likely to 2-cyanoethylene oxide in a "peroxygenase"-type reaction, with rates that are similar to rat liver microsomal cytochrome P450-catalyzed oxidation of acrylonitrile in the monooxygenase reaction. CcP compound I oxidizes acrylonitrile with a maximum turnover number of 0.61 min(-1) at pH 6.0.

  18. Synthesis and ion-exchange properties of lanthanum tungstate, a new inorganic ion exchanger

    SciTech Connect

    Husain, S.W.; Rasheedzad, S.; Manzoori, J.L.; Jabbari, Y.

    1982-01-01

    Amorphous samples of a new inorganic ion exchanger, lanthanum tungstate, have been prepared under varying conditions. The material prepared by mixing 0.05 M lanthanum nitrate and 0.05 M sodium tungstate in a ratio of 1:2 was studied in detail for its ion-exchange capacity, chemical stability, ir, thermogravimetry, and K/sub d/ values. Its columns have been used for the separation of C/sup 2 +/ from Pd/sup 2 +/, Mn/sup 2 +/, and Cu/sup 2 +/, and Ni/sup 2 +/ from Pd/sup 2 +/. 3 figures, 4 tables.

  19. Hydrothermal synthesis of sodium tungstate nanorods and nanobundles in the presence of sodium sulfate

    SciTech Connect

    Cao Guangxiang; Song Xinyu; Yu Haiyun; Fan Chunhua; Yin Zhilei; Sun Sixiu . E-mail: ssx@sdu.edu.cn

    2006-02-02

    Sodium tungstate nanorods and nanobundles have been successfully prepared, for the first time, through a simple salt-assisted hydrothermal route based on the reaction between Na{sub 2}WO{sub 4} and HCl in aqueous solution. The resultant sodium tungstate nanorods and nanobundles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electronic diffraction (SAED) techniques. The ingredients of the sample have been detected by energy-dispersive spectrum (EDS) method. It is found that hydrothermal temperature and time play important roles in the control of the morphology and size of the products.

  20. Sodium Tungstate for Promoting Mesenchymal Stem Cell Chondrogenesis.

    PubMed

    Khader, Ateka; Sherman, Lauren S; Rameshwar, Pranela; Arinzeh, Treena L

    2016-12-15

    Articular cartilage has a limited ability to heal. Mesenchymal stem cells (MSCs) derived from the bone marrow have shown promise as a cell type for cartilage regeneration strategies. In this study, sodium tungstate (Na2WO4), which is an insulin mimetic, was evaluated for the first time as an inductive factor to enhance human MSC chondrogenesis. MSCs were seeded onto three-dimensional electrospun scaffolds in growth medium (GM), complete chondrogenic induction medium (CCM) containing insulin, and CCM without insulin. Na2WO4 was added to the media leading to final concentrations of 0, 0.01, 0.1, and 1 mM. Chondrogenic differentiation was assessed by biochemical analyses, immunostaining, and gene expression. Cytotoxicity using human peripheral blood mononuclear cells (PBMCS) was also investigated. The chondrogenic differentiation of MSCs was enhanced in the presence of low concentrations of Na2WO4 compared to control, without Na2WO4. In the induction medium containing insulin, cells in 0.01 mM Na2WO4 produced significantly higher sulfated glycosaminoglycans, collagen type II, and chondrogenic gene expression than all other groups at day 28. Cells in 0.1 mM Na2WO4 had significantly higher collagen II production and significantly higher sox-9 and aggrecan gene expression compared to control at day 28. Cells in GM and induction medium without insulin containing low concentrations of Na2WO4 also expressed chondrogenic markers. Na2WO4 did not stimulate PBMC proliferation or apoptosis. The results demonstrate that Na2WO4 enhances chondrogenic differentiation of MSCs, does not have a toxic effect, and may be useful for MSC-based approaches for cartilage repair.

  1. Radical-initiated controlled synthesis of homo- and copolymers based on acrylonitrile

    NASA Astrophysics Data System (ADS)

    Grishin, D. F.; Grishin, I. D.

    2015-07-01

    Data on the controlled synthesis of polyacrylonitrile and acrylonitrile copolymers with other (meth)acrylic and vinyl monomers upon radical initiation and metal complex catalysis are analyzed. Primary attention is given to the use of metal complexes for the synthesis of acrylonitrile-based (co)polymers with defined molecular weight and polydispersity in living mode by atom transfer radical polymerization. The prospects for using known methods of controlled synthesis of macromolecules for the preparation of acrylonitrile homo- and copolymers as carbon fibre precursors are estimated. The major array of published data analyzed in the review refers to the last decade. The bibliography includes 175 references.

  2. Study of tungstate-protein interaction in human serum by LC-ICP-MS and MALDI-TOF.

    PubMed

    Rodríguez-Fariñas, Nuria; Gomez-Gomez, M Milagros; Camara-Rica, Carmen

    2008-01-01

    Oral administration of sodium tungstate is an effective treatment for type 1 and 2 diabetes in animal models; it does not incur significant side effects, and it may constitute an alternative to insulin. However, the mechanism by which tungstate exerts its observed metabolic effects in vivo is still not completely understood. In this work, serum-containing proteins which bind tungstate have been characterized. Size exclusion chromatography (SEC) coupled to inductively coupled plasma mass spectrometry (ICP-MS) with a Phenomenex Bio-Sep-S 2000 column and 20 mM HEPES and 150 mM NaCl at pH 7.4 as the mobile phase was chosen as the most appropriate methodology to screen for tungsten-protein complexes. When human serum was incubated with tungstate, three analytical peaks were observed, one related to tungstate-albumin binding, one to free tungstate, and one to an unknown protein binding (MW higher than 300 kDa). Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometric analysis of the tungsten-containing fractions collected from SEC-ICP-MS chromatograms, after desalting and preconcentration processes, confirmed the association of tungstate with albumin and the other unknown protein. [figure: see text

  3. Hydration of acrylonitrile to produce acrylamide using biocatalyst in a membrane dispersion microreactor.

    PubMed

    Li, Jiahui; Chen, Jie; Wang, Yujun; Luo, Guangsheng; Yu, Huimin

    2014-10-01

    In this work, a membrane dispersion microreactor was utilized for the hydration of acrylonitrile to produce acrylamide. Through observation using a microscopy, it was found that the acrylonitrile was dispersed into the continuous phase (the aqueous phase contains nitrile hydratase (NHase)) as droplets with a diameter ranged from 25 to 35 μm, hence the mass transfer specific surface area was significantly increased, and the concentration of acrylamide reached 52.5 wt% within 50 min. By contrast, in stirred tanks, the concentration of acrylamide only got 39.5 wt% within 245 min. Moreover, only a few amounts of acrylonitrile were accumulated in this microreactor system. Through optimizing the flow rate, the concentration of acrylamide reached 45.8 wt% within 35 min, the short reaction time greatly weakened the inhibition of acrylonitrile and acrylamide on the enzyme activity, which is suitable for prolonging the life of free cell.

  4. Sodium tungstate administration ameliorated diabetes-induced electrical and contractile remodeling of rat heart without normalization of hyperglycemia.

    PubMed

    Aydemir, Mustafa; Ozturk, Nihal; Dogan, Serdar; Aslan, Mutay; Olgar, Yusuf; Ozdemir, Semir

    2012-08-01

    Recently, sodium tungstate was suggested to improve cardiac performance of diabetic rats in perfused hearts based on its insulinomimetic activity. In this study, we aimed to investigate the cellular and molecular mechanisms underlying this beneficial effect of sodium tungstate. Tungstate was administered (100 mg/kg/day) to diabetic and control rats intragastrically for 6 weeks. Blood glucose levels increased, whereas body weight, heart weight and plasma insulin levels decreased significantly in diabetic animals. Interestingly, none of these parameters was changed by tungstate treatment. On the other hand, fractional shortening and accompanying intracellular Ca(2+) [Ca(2+)](i) transients of isolated ventricular myocytes were measured, and sodium tungstate was found to improve the peak shortening and the amplitude of [Ca(2+)](i) transients in diabetic cardiomyocytes. Potassium and L-type Ca(2+) currents were also recorded in isolated ventricular cells. Significant restoration of suppressed I (to) and I (ss) was achieved by tungstate administration. Nevertheless, L-type calcium currents did not change either in untreated or treated diabetic rats. Tissue biochemical parameters including TBARS, protein carbonyl content, xanthine oxidase (XO) and xanthine dehydogenase (XDH) were also determined, and diabetes revealed a marked increase in TBARS and carbonyl content which were decreased significantly by tungstate treatment. Conversely, although XO and XDH activities didn't change in untreated diabetic rats, a remarkable but insignificant decrease was detected in treated animals. In conclusion, tungstate treatment improved diabetes-induced contractile abnormalities via restoration of dysregulated [Ca(2+)](i) and altered ionic currents. This beneficial effect is due to antioxidant property of sodium tungstate rather than normalization of hyperglycemia.

  5. Reactive processing of recycled polycarbonate/acrylonitrile butadiene styrene.

    PubMed

    Jung, Woo-Hyuk; Choi, Yeon-Sil; Moon, Jung-Min; Tortorrela, Nathan; Beatty, Charles L; Lee, Jang-Oo

    2009-04-01

    Cellular phone housings were ground to make original particulates using a knife mill. Foams and adhesives with a lighter density than water were removed from ground mixtures using a sink-float process in water; ground metals, button rubbers, and wires were separated from desired materials by using a sink float process in salt All housing materials, consisting of seven thermoplastics included in cellular phone housings, showed better tensile properties than pure housing materials made of polycarbonate/acrylonitrile butadiene styrene, but they only had about half of the impact strength. In contrast, the low impact strength for all housing materials was improved by adding 25 wt % polyethylene elastomer and/or 2.4 wt % ground epoxy circuit boards for batch mixing. Impact strengths, tensile strengths, and the energy absorption ability of all housing materials were improved by adding 5.4wt% glycidyl methacrylate for twin screw extrusion.

  6. Hydrolyzed Poly(acrylonitrile) Electrospun Ion-Exchange Fibers

    PubMed Central

    Jassal, Manisha; Bhowmick, Sankha; Sengupta, Sukalyan; Patra, Prabir K.; Walker, Douglas I.

    2014-01-01

    Abstract A potential ion-exchange material was developed from poly(acrylonitrile) fibers that were prepared by electrospinning followed by alkaline hydrolysis (to convert the nitrile group to the carboxylate functional group). Characterization studies performed on this material using X-ray photoelectron spectroscopy, scanning electron microscopy, Fourier-Transform infra-red spectroscopy, and ion chromatography confirmed the presence of ion-exchange functional group (carboxylate). Optimum hydrolysis conditions resulted in an ion-exchange capacity of 2.39 meq/g. Ion-exchange fibers were used in a packed-bed column to selectively remove heavy-metal cation from the background of a benign, competing cation at a much higher concentration. The material can be efficiently regenerated and used for multiple cycles of exhaustion and regeneration. PMID:24963270

  7. A risk assessment for acrylonitrile in consumer products.

    PubMed

    Johnston, P K; Rock, A R

    1990-12-15

    A carcinogenic risk assessment for acrylonitrile in consumer products was prepared as part of the Second Workshop on Pragmatics of Risk Assessment, Bethesda, MD. Data from one inhalation and two oral rat bioassays served as input into several high-to-low-dose mathematical risk extrapolation models. The final unit risk estimates for humans were based on maximum likelihood estimates from the Global83 implementation of the multistage model after adjustments for surface area differences, continuous versus intermittent exposures, and the proportion of lifetime exposed. The unit risk estimates for lifetime exposure to 1 mg kg-1 day-1 by inhalation and ingestion were 0.0531 and 0.2385, respectively. These risks are equivalent to risks of 3.3 x 10(-8) for inhalation of 1 ppt in air and 3.4 x 10(-9) for ingestion of 1 ng day.-1

  8. Pervaporative removal of acrylonitrile from aqueous streams through polydimethylsiloxane membrane.

    PubMed

    Aliabadi, Majid; Aroujalian, Abdolreza; Raisi, Ahmadreza

    2011-01-01

    This study describes the successful separation of acrylonitrile (ACN) from dilute aqueous streams using pervaporation process. The influences of ACN feed concentration, permeate pressure, operating temperature, feed flow rate and membrane thickness on the membrane separation performance were investigated. The results showed that with an increase in ACN concentration in the feed solution, the permeation flux of ACN increased while the enrichment factor decreased. It was also indicated that increasing the permeate pressure reduced the driving force for mass transfer and consequently the permeation flux dropped while the enrichment factor enhanced. Polydimethylsiloxane membranes used in this study showed very good properties in the separation process, leading to enrichment factors in the range of 70-140. Furthermore, the activation energy for pervaporation of both ACN and water calculated from Arrhenius plot indicated that the permeation of water through the membrane was more temperature dependant than ACN.

  9. Direct Hydrothermal Precipitation of Pyrochlore-Type Tungsten Trioxide Hemihydrate from Alkaline Sodium Tungstate Solution

    NASA Astrophysics Data System (ADS)

    Li, Xiaobin; Li, Jianpu; Zhou, Qiusheng; Peng, Zhihong; Liu, Guihua; Qi, Tiangui

    2012-04-01

    Pyrochlore-type tungsten trioxide hemihydrate (WO3·0.5H2O) powder with the average particle size of 0.5 μm was prepared successfully from the weak alkaline sodium tungstate solution by using organic substances of sucrose or cisbutenedioic acid as the acidification agent. The influences of solution pH and acidification agents on the precipitation process were investigated. The results showed that organic acidification agents such as sucrose and cisbutenedioic acid could improve the precipitation of pyrochlore WO3·0.5H2O greatly from sodium tungstate solution compared with the traditional acidification agent of hydrochloric acid. In addition, the pH value of the hydrothermal system played a critical role in the precipitation process of WO3·0.5H2O, and WO3·0.5H2O precipitation mainly occured in the pH range of 7.0 to 8.5. The precipitation rate of tungsten species in the sodium tungstate solution could reach up to 98 pct under the optimized hydrothermal conditions. This article proposed also the hydrothermal precipitation mechanism of WO3·0.5H2O from the weak alkaline sodium tungstate solution. The novel method reported in this study has a great potential to improve the efficiency of advanced tungsten trioxide-based functional material preparation, as well as for the pollution-reducing and energy-saving tungsten extractive metallurgy.

  10. Preparation of ammonium paratungstate from a sodium tungstate-sodium chloride phase

    SciTech Connect

    Raddatz, A.E.; Gomes, J.M.; Carnahan, T.G.

    1988-01-01

    The objective of this work was to demonstrate that the tungstate-bearing sodium chloride phase can be a suitable feed material for preparing ammonium paratungstate (APT) by a modification to the present industrial solvent extraction process. A combined crossflow-countercurrent flow solvent extraction technique to extract tungsten is presented.

  11. Equilibrium diagrams at 27 [degree]C of the water + sodium tungstate + dodecylamine chloride system

    SciTech Connect

    Dantas Neto, A.A.; Castro Dantas, T.N. de; Duarte, M.M.L.; Avelino, S. . Programa de Pos-Graduacao em Engenharia Quimica)

    1993-01-01

    Amines are usually used in extracting tungsten from scheelite. Dodecylamine chloride in kerosene and octanol was used as an extracting agent in order to establish the phase diagram at 27C for water + sodium tungstate + dodecylamine chloride. Acetone was used to prevent emulsion formation. This procedure made it possible to achieve better partition coefficients; however, there appears to be a saturation region.

  12. Influence of food and diabetes on pharmacokinetics of sodium tungstate in rat.

    PubMed

    Le Lamer-Déchamps, S; Poucheret, P; Cros, G; Bressolle, F

    2002-11-06

    In this paper, the influence of food and diabetes on the pharmacokinetics of sodium tungstate in rat was investigated. The compound was administered intravenously (9 mg/kg) and orally in the form of solution (36 mg/kg). An empirical Bayes methodology was used to compute individual pharmacokinetic parameters. Sodium tungstate followed first-order kinetics, and plasma concentration versus time data were described by a two-compartment model. A significant relationship was found between the bioavailability and the status of the animals. Total plasma clearance and elimination half-life averaged 3.1 ml/min/kg and 1.6 h, respectively. Food had some effects on the extent of sodium tungstate absorption. After oral administration, the bioavailability (0.67 versus 0.85), C(max) (6.10 versus 15.2 microg/ml) and AUC (70.7 versus 105 mgh/l) were 20, 60 and 32% lower in fed than in fasted rats, respectively. The presence of cellulose and sulphate anions in rat chow could partially explain the fed state-associated reduction of tungstate bioavailability. In streptozotocin-induced diabetic fed rats, a 25% decrease occurred in AUC and F, and a 14% increase occurred in the elimination rate constant compared with healthy fed rats. These changes could be explain on the one hand, by the increase of liquid consumption and food intake, and on the other hand, by a gastroparesis in the early diabetic rats.

  13. Distorted octahedral coordination of tungstate in a subfamily of specific binding proteins.

    PubMed

    Hollenstein, Kaspar; Comellas-Bigler, Mireia; Bevers, Loes E; Feiters, Martin C; Meyer-Klaucke, Wolfram; Hagedoorn, Peter-Leon; Locher, Kaspar P

    2009-06-01

    Bacteria and archaea import molybdenum and tungsten from the environment in the form of the oxyanions molybdate (MoO(4) (2-)) and tungstate (WO(4) (2-)). These substrates are captured by an external, high-affinity binding protein, and delivered to ATP binding cassette transporters, which move them across the cell membrane. We have recently reported a crystal structure of the molybdate/tungstate binding protein ModA/WtpA from Archaeoglobus fulgidus, which revealed an octahedrally coordinated central metal atom. By contrast, the previously determined structures of three bacterial homologs showed tetracoordinate molybdenum and tungsten atoms in their binding pockets. Until then, coordination numbers above four had only been found for molybdenum/tungsten in metalloenzymes where these metal atoms are part of the catalytic cofactors and coordinated by mostly non-oxygen ligands. We now report a high-resolution structure of A. fulgidus ModA/WtpA, as well as crystal structures of four additional homologs, all bound to tungstate. These crystal structures match X-ray absorption spectroscopy measurements from soluble, tungstate-bound protein, and reveal the details of the distorted octahedral coordination. Our results demonstrate that the distorted octahedral geometry is not an exclusive feature of the A. fulgidus protein, and suggest distinct binding modes of the binding proteins from archaea and bacteria.

  14. The Rotational Spectrum of Acrylonitrile to 1.67 THz

    NASA Astrophysics Data System (ADS)

    Kisiel, Zbigniew; Pszczółkowski, Lech; Drouin, Brian J.; Brauer, Carolyn S.; Yu, Shanshan; Pearson, John C.

    2009-06-01

    Acrylonitrile (vinyl cyanide) is an astrophysical molecule of sufficient abundance for detection of its ^{13}C isotopologues. In fact this molecule has been identified as one of the 'weed' species, that will contribute a plethora of lines in broadband submillimetre spectra from the new tools of radioastronomy, such as the Herschel Space Observatory or ALMA. We presently report the first stage in extending the knowledge of the rotational spectrum of acrylonitrile well into the THz region. The spectrum was recorded with the jpl cascaded harmonic multiplication instrument in the form of several broadband segments covering 390-540, 818-930, 967-1160, and 1576-1669 GHz. The analysis of the ground state spectrum has been extended up to J=128, K_a=29, and a combined data set of over 3000 fitted lines. It is found that transitions in all measurable vibrational states, inclusive of the ground state, show evidence of perturbations with other states. Several different perturbations between the ground state and v_{11}=1 at 228 cm^{-1} were identified and have been successfully fitted, resulting in E_{11}=228.29994(3) cm^{-1}, to compare with a direct far-infrared value of 228.83(18) cm^{-1}. H.S.P.Müller et al., J. Mol. Spectrosc., 251, 319-325 (2008). B.J.Drouin, F.W.Maiwald, J.C.Pearson, Rev. Sci. Instrum., 76, 093113-1-10 (2005). A.R.H.Cole, A.A.Green, J. Mol. Spectrosc., 48, 246-253 (1973).

  15. A vinylic Rosenmund-von Braun reaction: practical synthesis of acrylonitriles.

    PubMed

    Pradal, Alexandre; Evano, Gwilherm

    2014-10-14

    An efficient system based on acetone cyanohydrin and catalytic amounts of copper(I) iodide and 1,10-phenanthroline is reported for the cyanation of alkenyl iodides. A wide range of polysubstituted acrylonitriles could be obtained in fair to good yields and with complete retention of the geometry of the double bond. This extension of the Rosenmund-von Braun reaction also enabled a straightforward formal synthesis of the naturally occurring acrylonitrile alliarinoside.

  16. Sodium tungstate and vanadyl sulfate effects on blood pressure and vascular prostanoids production in fructose-overloaded rats.

    PubMed

    Peredo, Horatio A; Zabalza, Maria; Mayer, Marcos A; Carranza, Andrea; Puyó, Ana M

    2010-01-01

    This study analyzes the effects of sodium tungstate and vanadyl sulphate in the fructose-overloaded rat, a model of metabolic syndrome. Fructose (9 weeks) increased blood pressure, triglycerydemia, glycemia, and reduced release of vasodilator prostaglandins (prostacyclin and prostaglandin E2 ) in the mesenteric vascular bed. Sodium tungstate prevented those alterations; meanwhile vanadyl sulfate only prevented the increase in glycemia. In conclusion, the present experiments showed that sodium tungstate is more effective than vanadyl sulfate for the treatment of experimental metabolic syndrome in rats.

  17. Role of sodium tungstate as a potential antiplatelet agent

    PubMed Central

    Fernández-Ruiz, Rebeca; Pino, Marc; Hurtado, Begoña; García de Frutos, Pablo; Caballo, Carolina; Escolar, Ginés; Gomis, Ramón; Diaz-Ricart, Maribel

    2015-01-01

    Purpose Platelet inhibition is a key strategy in the management of atherothrombosis. However, the large variability in response to current strategies leads to the search for alternative inhibitors. The antiplatelet effect of the inorganic salt sodium tungstate (Na2O4W), a protein tyrosine phosphatase 1B (PTP1B) inhibitor, has been investigated in this study. Methods Wild-type (WT) and PTP1B knockout (PTP1B−/−) mice were treated for 1 week with Na2O4W to study platelet function with the platelet function analyzer PFA-100, a cone-and-plate analyzer, a flat perfusion chamber, and thrombus formation in vivo. Human blood aliquots were incubated with Na2O4W for 1 hour to measure platelet function using the PFA-100 and the annular perfusion chamber. Aggregometry and thromboelastometry were also performed. Results In WT mice, Na2O4W treatment prolonged closure times in the PFA-100 and decreased the surface covered (%SC) by platelets on collagen. Thrombi formed in a thrombosis mice model were smaller in animals treated with Na2O4W (4.6±0.7 mg vs 8.9±0.7 mg; P<0.001). Results with Na2O4W were similar to those in untreated PTP1B−/− mice (5.0±0.3 mg). Treatment of the PTP1B−/− mice with Na2O4W modified only slightly this response. In human blood, a dose-dependent effect was observed. At 200 μM, closure times in the PFA-100 were prolonged. On denuded vessels, %SC and thrombi formation (%T) decreased with Na2O4W. Neither the aggregating response nor the viscoelastic clot properties were affected. Conclusion Na2O4W decreases consistently the hemostatic capacity of platelets, inhibiting their adhesive and cohesive properties under flow conditions in mice and in human blood, resulting in smaller thrombi. Although Na2O4W may be acting on platelet PTP1B, other potential targets should not be disregarded. PMID:26060394

  18. Reactive magnetron sputtering deposition of bismuth tungstate onto titania nanoparticles for enhancing visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ratova, Marina; Kelly, Peter J.; West, Glen T.; Tosheva, Lubomira; Edge, Michele

    2017-01-01

    Titanium dioxide - bismuth tungstate composite materials were prepared by pulsed DC reactive magnetron sputtering of bismuth and tungsten metallic targets in argon/oxygen atmosphere onto anatase and rutile titania nanoparticles. The use of an oscillating bowl placed beneath the two magnetrons arranged in a co-planar closed field configuration enabled the deposition of bismuth tungstate onto loose powders, rather than a solid substrate. The atomic ratio of the bismuth/tungsten coatings was controlled by varying the power applied to each target. The effect of the bismuth tungstate coatings on the phase, optical and photocatalytic properties of titania was investigated by X-ray diffraction, energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET) surface area measurements, transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy and an acetone degradation test. The latter involved measurements of the rate of CO2 evolution under visible light irradiation of the photocatalysts, which indicated that the deposition of bismuth tungstate resulted in a significant enhancement of visible light activity, for both anatase and rutile titania particles. The best results were achieved for coatings with a bismuth to tungsten atomic ratio of 2:1. In addition, the mechanism by which the photocatalytic activity of the TiO2 nanoparticles was enhanced by compounding it with bismuth tungstate was studied by microwave cavity perturbation. The results of these tests confirmed that such enhancement of the photocatalytic properties is due to more efficient photogenerated charge carrier separation, as well as to the contribution of the intrinsic photocatalytic properties of Bi2WO6.

  19. Tungsten transport protein A (WtpA) in Pyrococcus furiosus: the first member of a new class of tungstate and molybdate transporters.

    PubMed

    Bevers, Loes E; Hagedoorn, Peter-Leon; Krijger, Gerard C; Hagen, Wilfred R

    2006-09-01

    A novel tungstate and molybdate binding protein has been discovered from the hyperthermophilic archaeon Pyrococcus furiosus. This tungstate transport protein A (WtpA) is part of a new ABC transporter system selective for tungstate and molybdate. WtpA has very low sequence similarity with the earlier-characterized transport proteins ModA for molybdate and TupA for tungstate. Its structural gene is present in the genome of numerous archaea and some bacteria. The identification of this new tungstate and molybdate binding protein clarifies the mechanism of tungstate and molybdate transport in organisms that lack the known uptake systems associated with the ModA and TupA proteins, like many archaea. The periplasmic protein of this ABC transporter, WtpA (PF0080), was cloned and expressed in Escherichia coli. Using isothermal titration calorimetry, WtpA was observed to bind tungstate (dissociation constant [K(D)] of 17 +/- 7 pM) and molybdate (K(D) of 11 +/- 5 nM) with a stoichiometry of 1.0 mol oxoanion per mole of protein. These low K(D) values indicate that WtpA has a higher affinity for tungstate than do ModA and TupA and an affinity for molybdate similar to that of ModA. A displacement titration of molybdate-saturated WtpA with tungstate showed that the tungstate effectively replaced the molybdate in the binding site of the protein.

  20. Time- and energy-efficient solution combustion synthesis of binary metal tungstate nanoparticles with enhanced photocatalytic activity.

    PubMed

    Thomas, Abegayl; Janáky, Csaba; Samu, Gergely F; Huda, Muhammad N; Sarker, Pranab; Liu, J Ping; van Nguyen, Vuong; Wang, Evelyn H; Schug, Kevin A; Rajeshwar, Krishnan

    2015-05-22

    In the search for stable and efficient photocatalysts beyond TiO2 , the tungsten-based oxide semiconductors silver tungstate (Ag2 WO4 ), copper tungstate (CuWO4 ), and zinc tungstate (ZnWO4 ) were prepared using solution combustion synthesis (SCS). The tungsten precursor's influence on the product was of particular relevance to this study, and the most significant effects are highlighted. Each sample's photocatalytic activity towards methyl orange degradation was studied and benchmarked against their respective commercial oxide sample obtained by solid-state ceramic synthesis. Based on the results herein, we conclude that SCS is a time- and energy-efficient method to synthesize crystalline binary tungstate nanomaterials even without additional excessive heat treatment. As many of these photocatalysts possess excellent photocatalytic activity, the discussed synthetic strategy may open sustainable materials chemistry avenues to solar energy conversion and environmental remediation.

  1. The Phase Transitions in Double Tungstate in Extremely Low-Dimensional and Low-Symmetry Compounds with Cooperative Jahn-Teller Effect

    DTIC Science & Technology

    2001-01-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO 11897 TITLE: The Phase Transitions in Double Tungstate in Extremely...report: ADP011865 thru ADP011937 UNCLASSIFIED Invited Paper The phase transitions in double tungstate - in extremely low-dimensional and low-symmetry...Warsaw, Poland ABSTRACT The rare earth double tungstates are of special interest because of manifestation of cooperative Jahn-Teller effect (CJTE) for low

  2. Acrylonitrile is a multisite carcinogen in male and female B6C3F1 mice.

    PubMed

    Ghanayem, Burhan I; Nyska, Abraham; Haseman, Joseph K; Bucher, John R

    2002-07-01

    Acrylonitrile is a heavily produced unsaturated nitrile, which is used in the production of synthetic fibers, plastics, resins, and rubber. Acrylonitrile is a multisite carcinogen in rats after exposure via gavage, drinking water, or inhalation. No carcinogenicity studies of acrylonitrile in a second animal species were available. The current studies were designed to assess the carcinogenicity of acrylonitrile in B6C3F1 mice of both sexes. Acrylonitrile was administered by gavage at 0, 2.5, 10, or 20 mg/kg/day, 5 days per week, for 2 years. Urinary thiocyanate and N-acetyl-S-(2-cyanoethyl)-L-cysteine were measured as markers of exposure to acrylonitrile. In general, there were dose-related increases in urinary thiocyanate and N-acetyl-S-(2-cyanoethyl)-L-cysteine concentrations in all dosed groups of mice and at all time points. Survival was significantly (p < 0.001) reduced in the top dose (20 mg/kg) group of male and female mice relative to controls. The incidence of forestomach papillomas and carcinomas was increased in mice of both sexes in association with an increase in forestomach epithelial hyperplasia. The incidence of Harderian gland adenomas and carcinomas was also markedly increased in the acrylonitrile-dosed groups. In female mice, the incidence of benign or malignant granulosa cell tumors (combined) in the ovary in the 10 mg/kg dose group was greater than that in the vehicle control group, but because of a lack of dose response, this was considered an equivocal finding. In addition, the incidences of atrophy and cysts in the ovary of the 10 and 20 mg/kg dose groups were significantly increased. The incidences of alveolar/bronchiolar adenoma or carcinoma (combined) were significantly increased in female mice treated with acrylonitrile at 10 mg/kg/day for 2 years. This was also considered an equivocal result. In conclusion, these studies demonstrated that acrylonitrile causes multiple carcinogenic effects after gavage administration to male and female B6

  3. Immobilization of urease onto chemically modified acrylonitrile copolymer membranes.

    PubMed

    Godjevargova, T; Gabrovska, K

    2003-06-26

    Poly (acrylonitrile-methylmethacrylate-sodium vinylsulfonate) membranes were subjected to seven different chemical modifications. The amounts of new groups incorporated in the membranes with the modifications were determined. Urease was covalently immobilized on the modified membranes. Both the amount of bound protein and relative activity of immobilized urease were measured. The highest activity was found for urease bound to membranes modified with hydroxylammonium sulfate (68%) and hydrazinium sulfate (67%). Optimum pH of free urease was determined to be 5.8. For positively charged membranes, pH optimum was shifted to higher values, while for negatively charged membranes-to lower pH. The charge of the matrix affected also the rate of the enzyme reaction. The highest rate was measured with urease immobilized on membranes modified with hydroxylammonium sulfate and hydrazinium sulfate. The major part of the immobilized enzyme on different modified membranes remained stable-only ca. 20% of enzyme activity was lost for 4 h at 70 degrees C while the free enzyme was totally inactivated.

  4. Recycling of Chrome Tanned Leather Dust in Acrylonitrile Butadiene Rubber

    NASA Astrophysics Data System (ADS)

    El-Sabbagh, Salwa H.; Mohamed, Ola A.

    2010-06-01

    Concerns on environmental waste problem caused by chrome tanned leather wastes in huge amount have caused an increasing interest in developing this wastes in many composite formation. This leather dust was used as filler in acrylonitrile butadiene rubber (NBR) before treatment and after treatment with ammonia solution and sod. formate. Different formulations of NBR/ leather dust (untreated-treated with ammonia solution—treated with sod. formate) composites are prepared. The formed composite exhibit a considerable improvement in some of their properties such as rheometric characteristics especially with composites loaded with treated leather dust. Tensile strength, modulus at 100% elongation, hardness and youngs modulus were improved then by further loading start to be steady or decrease. Cross linking density in toluene were increased by incorporation of leather dust treated or untreated resulting in decreases in equilibrium swelling. Distinct increase in the ageing coefficient of both treated and untreated leather with drop in NBR vulcanizates without leather dust. Addition of leather dust treated or untreated exhibit better thermal stability.

  5. Role of neutrophils in acrylonitrile-induced gastric mucosal damage.

    PubMed

    Hamdy, Nadia M; Al-Abbasi, Fahad A; Alghamdi, Hassan A; Tolba, Mai F; Esmat, Ahmed; Abdel-Naim, Ashraf B

    2012-01-25

    Acrylonitrile (ACN) is a widely used intermediate in the manufacture of plastics, acrylic fibers, synthetic rubbers and resins that are used in a variety of products including food containers and medical devices. ACN is a possible human carcinogen and a documented animal carcinogen, with the stomach being an important target of its toxicity. ACN has been previously reported to require metabolic activation to reactive intermediates and finally to cyanide (CN⁻). The current study aimed at exploring the potential role of neutrophils in ACN-induced gastric damage in rats. Experimental neutropenia was attained by injecting rats with methotrexate. This significantly ameliorated gastric mucosal injury induced by ACN. This is evidenced by protection against the increase in gastric ulcer index, myeloperoxidase (MPO) activity and CN⁻ level. Also, neutropenia guarded against the decrease in prostaglandin E2 (PGE2), induction of oxidative stress and reduction of total nitrites and alleviated histopathological alterations in rat stomachs. These data indicate that neutrophil infiltration is, at least partly, involved in ACN-induced gastric damage in rats.

  6. Antioxidants do not prevent acrylonitrile-induced toxicity.

    PubMed

    Carrera, M P; Antolín, I; Martín, V; Sainz, R M; Mayo, J C; Herrera, F; García-Santos, G; Rodríguez, C

    2007-03-30

    Several reports have recently described that acrylonitrile (ACN) toxicity resides in its capacity for inducing oxidative stress. ACN can be conjugated with glutathione (GSH), diminishing its cellular content, or being metabolized to cyanide. In the present report, we determine the effect of ACN on the viability of primary-cultured astrocytes as well as the oxidative damage generated by ACN by measuring GSH levels in primary cultured astrocytes. We also analyzed whether the ACN (2.5mM) toxicity could be avoided by using antioxidants such as taurine (5mM), N-acetylcysteine (20 mM), trolox (100 microM), estradiol (10 microM) and melatonin (100 nM-1mM). In this cell culture model, antioxidants were not able to prevent ACN-induced cell damage, with the exception of NAC, confirming that only GSH seems to play a key role in ACN-derived toxicity. Additionally, we measured different parameters of oxidative stress such as catalase activity, lipid peroxidation and GSH concentration, as indicators of the potential oxidative stress mediated by the toxicity of ACN, after exposure of Wistar rats to a concentration of 200 ppm ACN for 14 days. At the concentration assayed, we did not find any evidence of oxidative damage in the brain of ACN-treated rats.

  7. Lactoperoxidase catalyzes in vitro activation of acrylonitrile to cyanide.

    PubMed

    Nasralla, Sherry N; Ghoneim, Asser I; Khalifa, Amani E; Gad, Mohamed Z; Abdel-Naim, Ashraf B

    2009-12-15

    Acrylonitrile (ACN) is a widely used industrial chemical. Although it is a well reported animal carcinogen, its current designation to humans is "possibly carcinogenic". The present study aimed at investigating the ability of LPO enzyme system to oxidize ACN to cyanide (CN(-)) in vitro. Detection of CN(-) served as a marker for the possible generation of free radical intermediates implicated in ACN induced toxicity in the activation process. Optimum conditions for the oxidation of ACN to CN(-) were characterized with respect to pH, temperature and time of incubation as well as ACN, LPO and H(2)O(2) concentrations in incubation mixtures. Maximum reaction velocity (V(max)) and Michaelis-Menten constant (K(m)) were assessed. Addition of nitrite (NO(2)(-)) salts to the reaction mixtures significantly enhanced the rate of the reaction. Free radical scavengers (quercetin and trolox C), LPO enzyme inhibitor (resorcinol) and competitors for LPO binding (sodium azide and indomethacin) were found to reduce the rate of CN(-) production. Inclusion of the sulfhydryl compounds glutathione (GSH), NAC (N-acetylcysteine), D-penicillamine or L-cysteine enhanced the rate of ACN oxidation. The present results demonstrate the ability of LPO enzyme system to oxidize ACN to CN(-) and provide insight for the elucidation of ACN chronic toxicity.

  8. Assessment of risk from exposure to acrylonitrile: the general approach used by a consultant.

    PubMed

    Page, N P; Cook, B

    1990-12-15

    The concern from low-level exposure to acrylonitrile is primarily due to its potential for carcinogenicity. Several epidemiology studies provide suggestive evidence for an association of lung cancer in workers exposed to acrylonitrile; however, smoking may be a contributing factor and therefore the role of acrylonitrile as a causative factor is unclear. Seven animal bioassays, using three routes of exposure and two strains of rats, have provided consistent results. Tumors were induced in all studies, with the primary sites of tumor induction being the brain, ear canal, gastrointestinal tract and mammary glands. The linearized multistage model was used for extrapolation purposes. The risk based on brain tumors (astrocytomas) and stomach tumors following oral exposures ranged from 1 x 10(-1) to 4 x 10(-1)mg-1kg-1day-1. The risk of inhalation exposure is somewhat less, (2-3) x 10(-2). Support for carcinogenic potential is obtained from mutagenicity studies. Acrylonitrile has been found to be mutagenic and also binds with DNA. It has been speculated that acrylonitrile is metabolized to 2-cyanoethylene oxide, which is the proximate carcinogen.

  9. High power tungstate-crystal Raman laser operating in the strong thermal lensing regime.

    PubMed

    McKay, Aaron; Kitzler, Ondrej; Mildren, Richard P

    2014-01-13

    We report an investigation into a double metal tungstate Raman laser when pumped at elevated average powers. Potassium gadolinium tungstate (KGW) was placed in an external cavity configured for second-Stokes output and pumped at pulse repetition rate of 38 kHz with up to 46 W of average power. For output powers above 3 W, we observe preferential excitation of Hermite-Gaussian transverse modes whose order in the X(1)(') principal direction of the thermal expansion tensor scales linearly with Raman power. We deduce that strong astigmatic thermal lensing is induced in the Raman crystal with a negative component in the X(1)(') direction. At maximum pump power, 8.3 W of output power was obtained at a conversion efficiency of 18%.

  10. Oral tungstate (Na2WO4) exposure reduces adaptive immune responses in mice after challenge.

    PubMed

    Osterburg, Andrew R; Robinson, Chad T; Mokashi, Vishwesh; Stockelman, Michael; Schwemberger, Sandy J; Chapman, Gail; Babcock, George F

    2014-01-01

    Tungstate (WO²⁻₄) has been identified as a ground water contaminant at military firing ranges and can be absorbed by ingestion. In this study, C57BL6 mice were exposed to sodium tungstate (Na2WO4·2H2O) (0, 2, 62.5, 125, and 200 mg/kg/day) in their drinking water for an initial 28-day screen and in a one-generation (one-gen) model. Twenty-four hours prior to euthanasia, mice were intraperitoneally injected with Staphylococcal enterotoxin B (SEB) (20 μg/mouse) or saline as controls. After euthanasia, splenocytes and blood were collected and stained with lymphocyte and/or myeloid immunophenotyping panels and analyzed by flow cytometry. In the 28-day and one-gen exposure, statistically significant reductions were observed in the quantities of activated cytotoxic T-cells (TCTL; CD3(+)CD8(+)CD71(+)) and helper T-cells (TH; CD3(+)CD4(+)CD71(+)) from spleens of SEB-treated mice. In the 28-day exposures, CD71(+) TCTL cells were 12.87 ± 2.05% (SE) in the 0 tungstate (control) group compared to 4.44 ± 1.42% in the 200 mg/kg/day (p < 0.001) group. TH cells were 4.85 ± 1.23% in controls and 2.76 ± 0.51% in the 200 mg/kg/day (p < 0.003) group. In the one-gen exposures, TCTL cells were 7.98 ± 0.49% and 6.33 ± 0.49% for P and F1 mice after 0 mg/kg/day tungstate vs 1.58 ± 0.23% and 2.52 ± 0.25% after 200 mg/kg/day of tungstate (p < 0.001). Similarly, TH cells were reduced to 6.21 ± 0.39% and 7.20 ± 0.76%, respectively, for the 0 mg/kg/day P and F1 mice, and 2.28 ± 0.41% and 2.85 ± 0.53%, respectively, for the 200 mg/kg/day tungstate P and F1 groups (p < 0.001). In delayed-type hypersensitivity Type IV experiments, tungstate exposure prior to primary and secondary antigen challenge significantly reduced footpad swelling at 20 and 200 mg/kg/day. These data indicate that exposure to tungstate can result in immune suppression that may, in turn, reduce host defense against

  11. A photon calorimeter using lead tungstate crystals for the CEBAF HAll A Compton polarimeter

    SciTech Connect

    D. Neyret; T. Pussieux; T. Auger; M. Baylac; E. Burtin; C. Cavata; R. Chipaux; S. Escoffier; N. Falletto; J. Jardillier; S. Kerhoas; D. Lhuillier; F. Marie; C. Veyssiere; J. Ahrens; R. Beck; M. Lang

    2000-05-01

    A new Compton polarimeter is built on the CEBAF Hall A electron beam line. Performances of 10% resolution and 1% calibration are required for the photon calorimeter of this polarimeter. This calorimeter is built with lead tungstate scintillators coming from the CMS electromagnetic calorimeter R&D. Beam tests of this detector have been made using the tagged photon beam line at MAMI, Mainz, and a resolution of 1.76%+2.75%/v+0.41%/E has been measured.

  12. Electrodeposition of single-crystalline molybdenum layers from tungstate-molybdate melts

    SciTech Connect

    Esina, N.O.; Tarasova, K.P.; Baraboshkin, A.N.

    1987-07-01

    The structure and growth rates of single-crystalline molybdenum layers produced by electrolysis of tungstate-molybdate melts on single-crystalline substrates with the orientations (110), (112), (100), and (111) were investigated. Growth pyramids having a symmetry coincident with that of the substrate plane were revealed as the characteristic feature of surface structure of these layers. The change from single- to polycrystalline molybdenum structure occurs via the development of twinning defects.

  13. Pre-irradiation induced emulsion graft polymerization of acrylonitrile onto polyethylene nonwoven fabric

    NASA Astrophysics Data System (ADS)

    Liu, Hanzhou; Yu, Ming; Deng, Bo; Li, Linfan; Jiang, Haiqing; Li, Jingye

    2012-01-01

    Acrylonitrile has been widely used in the modification of polymers by graft polymerization. In the present work, pre-irradiation induced emulsion graft polymerization method is used to introduce acrylonitrile onto PE nonwoven fabric instead of the traditional reaction in organic solvents system. The degree of grafting (DG) is measured by gravimetric method and the kinetics of the graft polymerization is studied. The existence of the graft chains is proven by Fourier transform infrared spectroscopy (FT-IR) analysis. Thermal stability of the grafted polymer is measured by Thermogravimetric analysis (TGA).

  14. A quantitative study of sodium tungstate protective effect on pancreatic beta cells in streptozotocin-induced diabetic rats.

    PubMed

    Heidari, Zahra; Mahmoudzadeh-Sagheb, Hamidreza; Moudi, Bita

    2008-12-01

    Diabetes is a major public health problem. Development of new therapies that are able to improve glycemia management, cure diabetes, and can even protect from it, are of great interest. This study investigated the protective effect of sodium tungstate against STZ-induced beta-cell damages by means of stereological methods. Sixty rats were divided into six groups: control (C), tungstate-treated control (TC), STZ-induced diabetic (D), STZ-induced diabetic rats were treated by sodium tungstate from 1 week before STZ injection (TDB), food-restricted diabetic (FRD), and diabetic rats treated with sodium tungstate 1 week after STZ administration (TDA). Stereological estimation of pancreas volume, islets volume density, volume-weighted mean islets volume and mass of beta cells, islets, and pancreas and total number of islets were done. Islets volume density, volume-weighted mean islets volume, and mass of beta cells, islets, and pancreas of TDB group was significantly higher than D, FRD and TDA groups (P<0.001) and was comparable to controls (C and TC groups). Total number of islets, pancreas wet weight and volume did not show any significant changes between these groups (P>0.05). Results suggested that sodium tungstate preserves pancreatic beta cells from STZ-induced damages and diabetes induction in rats.

  15. Tungstate-induced color-pattern modifications of butterfly wings are independent of stress response and ecdysteroid effect.

    PubMed

    Otaki, Joji M; Ogasawara, Tsuyoshi; Yamamoto, Haruhiko

    2005-06-01

    Systemic injections of sodium tungstate, a protein-tyrosine phosphatase (PTPase) inhibitor, to pupae immediately after pupation have been shown to efficiently produce characteristic color-pattern modifications on the wings of many species of butterflies. Here we demonstrated that the tungstate-induced modification pattern was entirely different from other chemically-induced ones in a species of nymphalid butterfly Junonia (Precis) orithya. In this species, the systemic injections of tungstate produced characteristic expansion of black area and shrinkage of white area together with the move of parafocal elements toward the wing base. Overall, pattern boundaries became obscure. In contrast, an entirely different modification pattern, overall darkening of wings, was observed by the injections of stress-inducing chemicals, thapsigargin, ionomycin, or geldanamycin, to pupae under the rearing conditions for the adult summer form. On the ventral wings, this darkening was due to an increase of the proportion of peppered dark scales, which was reminiscent of the natural fall form of this species. Under the same rearing conditions, the injections of ecdysteroid, which is a well-known hormone being responsible for the seasonal polyphenism of nymphalid butterflies, yielded overall expansion of orange area especially around eyespots. Taken together, we conclude that the tungstate-induced modifications are clearly distinguishable from those of stress response and ecdysteroid effect. This conclusion then suggests that the putative PTPase signaling pathway that is sensitive to tungstate uniquely contributes to the wing-wide color-pattern development in butterflies.

  16. Efficacy of some antioxidants supplementation in reducing oxidative stress post sodium tungstate exposure in male wistar rats.

    PubMed

    Sachdeva, S; Flora, S J S

    2014-04-01

    This study aimed to evaluate the protective efficacy of some antioxidants against sodium tungstate induced oxidative stress in male wistar rats. Animals were sub-chronically exposed to sodium tungstate (100ppm in drinking water) for three months except for control group. In the same time, many rats were supplemented orally with different antioxidants (alpha-lipoic acid (ALA), n-acetylcysteine (NAC), quercetin or naringenin (0.30mM)) for five consecutive days a week for the same mentioned period before. Exposure to sodium tungstate significantly (P<0.05) inhibit blood δ-aminolevulinic acid dehydratase (ALAD) activity, liver and blood reduced glutathione (GSH) levels and an increase in oxidized glutathione (GSSG) and thiobarbituric acid reactive species (TBARS) levels in tissues. ALA acid and NAC supplementation post sodium tungstate exposure increased GSH and also, was beneficial in the recovery of altered superoxide dismutase and catalase activity, besides, significantly reducing blood and tissue reactive oxygen species and TBARS levels. The results suggest a more pronounced efficacy of ALA acid and NAC supplementation than quercetin or naringenin supplementation post sodium tungstate exposure in preventing induced oxidative stress in rats.

  17. Immunohistochemical characterization of spontaneous and acrylonitrile-induced brain tumors in the rat.

    PubMed

    Kolenda-Roberts, Holly Meredith; Harris, Nancy; Singletary, Emily; Hardisty, Jerry F

    2013-01-01

    Twenty-eight spontaneously occurring glial tumors (previously diagnosed as astrocytomas, oligodendrogliomas, and gliomas) and eleven granular cell tumors (GCTs) were selected for evaluation using a panel of immunohistochemistry (IHC) stains (Ricinus communis agglutinin type 1 [RCA-1], ionized calcium-binding adapter molecule 1 [Iba-1], OX-6/major immunohistocompatibility complex class II, oligodendrocytes transcription factor 2 [Olig2], glial fibrillary acidic protein [GFAP], S100 beta, glutamine synthetase, neurofilament, proliferating cell nuclear antigen). In addition, nine brain tumors from a 2-year drinking water study for acrylonitrile were obtained from the Acrylonitrile Group, Inc. Based on IHC staining characteristics, Olig2+ oligodendrogliomas were the most commonly diagnosed spontaneous tumor in these animals. Many of the spontaneous tumors previously diagnosed as astrocytomas were RCA-1+, Iba-1+ and negative for GFAP, S100beta, and glutamine synthetase; the diagnosis of malignant microglial tumor is proposed for these neoplasms. Three mixed tumors were identified with Olig2+ (oligodendrocytes) and Iba-1+ (macrophage/microglia) cell populations. The term mixed glioma is not recommended for these tumors, as it is generally used to refer to oligoastrocytomas, which were not observed in this study. GCT were positive for RCA-1 and Iba-1. All acrylonitrile tumors were identified as malignant microglial tumors. These results may indicate that oligodendrogliomas are more common as spontaneous tumors, while acrylonitrile-induced neoplasms are microglial/histiocytic in origin. No astrocytomas (GFAP, S100 beta, and/or glutamine synthetase-positive neoplasms) were observed.

  18. ABSORPTION OF CO2 AND SUBSEQUENT VISCOSITY REDUCTION OF AN ACRYLONITRILE COPOLYMER. (R829555)

    EPA Science Inventory

    Acrylonitrile (AN) copolymers (AN content greater than about 85 mol%) are traditionally solution processed to avoid a cyclization and crosslinking reaction that takes place at temperatures where melt processing would be feasible. It is well known that carbon dioxide (CO

  19. Comparison of the local and the average crystal structure of proton conducting lanthanum tungstate and the influence of molybdenum substitution.

    PubMed

    Magrasó, Anna; Frontera, Carlos

    2016-03-07

    We report on the comparison of the local and average structure reported recently for proton conducting lanthanum tungstate, of general formula La28-xW4+xO54+δv2-δ, and the impact of molybdenum-substitution on the crystal structure of the material. Partial replacement of W with 10 and 30 mol% Mo is investigated here, i.e. La27(W1-xMox)5O55.5 for x = 0.1 and 0.3. This study addresses the interpretation and the description of a disordered cation and anion sublattice in this material, which enables the understanding of the fundamental properties related to hydration, transport properties and degradation in lanthanum tungstate. The report shows that Mo-substituted lanthanum tungstate is a promising material as a dense oxide membrane for hydrogen separation at intermediate temperatures.

  20. Phase equilibria diagrams, crystal growth peculiarities and Raman investigations of lead and sodium-bismuth tungstate-molybdate solid solutions

    NASA Astrophysics Data System (ADS)

    Lebedev, Andrei V.; Avanesov, Samvel A.; Yunalan, Tyliay M.; Klimenko, Valeriy A.; Ignatyev, Boris V.; Isaev, Vladislav A.

    2016-02-01

    In this paper a comprehensive study of lead and sodium-bismuth tungstate-molybdate solid solutions was carried out, including the clarification of their structural peculiarities and phase diagrams of PbMoO4-PbWO4 and NaBi(MoO4)2-NaBi(WO4)2 systems, the study of spontaneous Raman spectra of these compounds, as well as preliminary experiments on single crystals growth of lead tungstate-molybdate. The linewidths, peak and integral intensities of the totally symmetric Raman vibrations of solid solutions were estimated in comparison with known SRS-active crystals. The conditions of the Czochralski growth of optically transparent lead tungstate-molybdate mixed crystals were found and SRS effect was observed in these crystals when pumping by 12 ns 1064 nm laser pulses.

  1. Activation of ERK by sodium tungstate induces protein synthesis and prevents protein degradation in rat L6 myotubes.

    PubMed

    Salto, Rafael; Vílchez, José D; Cabrera, Elena; Guinovart, Joan J; Girón, María D

    2014-06-27

    The balance between the rates of protein synthesis and degradation in muscle is regulated by PI3K/Akt signaling. Here we addressed the effect of ERK activation by sodium tungstate on protein turnover in rat L6 myotubes. Phosphorylation of ERK by this compound increased protein synthesis by activating MTOR and prevented dexamethasone-induced protein degradation by blocking FoxO3a activity, but it did not alter Akt phosphorylation. Thus, activation of ERK by tungstate improves protein turnover in dexamethasone-treated cells. On the basis of our results, we propose that tungstate be considered an alternative to IGF-I and its analogs in the prevention of skeletal muscle atrophy.

  2. Induction of oxidative stress in rat brain by acrylonitrile (ACN).

    PubMed

    Jiang, J; Xu, Y; Klaunig, J E

    1998-12-01

    Chronic treatment with acrylonitrile (ACN) has been shown to produce a dose-related increase in glial cell tumors (astrocytomas) in rats. The mechanism(s) for ACN-induced carcinogenicity remains unclear. While ACN has been reported to induce DNA damage in a number of short-term systems, evidence for a genotoxic mechanism of tumor induction is the brain is not strong. Other toxic mechanisms appear to participate in the induction of tumor or induce the astrocytomas solely. In particular, nongenotoxic mechanisms of carcinogen induction have been implicated in this ACN-induced carcinogenic effect in the rat brain. One major pathway of ACN metabolism is through glutathione (GSH) conjugation. Extensive utilization and depletion of GSH, an important intracellular antioxidant, by ACN may lead to cellular oxidative stress. The present study examined the ability of ACN to induce oxidative stress in male Sprague-Dawley rats. Rats were administered ACN at concentrations of 0, 5, 10, 100, or 200 ppm in the drinking water and sampled after 14, 28, or 90 days of continuous treatment. Oxidative DNA damage indicated by the presence of 8-hydroxy-2'-deoxyguanosine (OH8dG) and lipid peroxidation indicated by the presence of malondialdehyde (MDA), a lipid peroxidation product, in rat brains and livers were examined. The levels of reactive oxygen species (ROS) were also determined in different rat tissues. Both the levels of nonenzymatic antioxidants (GSH, vitamin E) and the activities of enzymatic antioxidants (catalase, superoxide dismutase, glutathione peroxidase) in rat brains and livers were measured. Increased levels of OH8dG, MDA, and ROS were found in the brains of ACN-treated rats. Decreased levels of GSH and activities of catalase and SOD were also observed in the brains of ACN-treated rats compared to the control group. Interestingly, there were no changes of these indicators of oxidative stress in the livers of ACN-treated rats. Rat liver is not a target for ACN

  3. Controlled polymerization of acrylonitrile proceeded along with the Belousov-Zhabotinsky oscillator by changing its stirring conditions

    NASA Astrophysics Data System (ADS)

    Furue, Yuuka; Okano, Kunihiko; Banno, Taisuke; Asakura, Kouichi

    2016-02-01

    Chemical oscillations of the manganese-ion catalyzed Belousov-Zhabotinsky (BZ) reaction system were found to be controlled by changing its stirring conditions. The oscillation stopped at a high stirring rate, while it reappeared immediately by reducing the stirring rate. It is known in the BZ reaction system, that the radical polymerization takes place along with the oscillation when acrylic monomers are added. By the addition of acrylonitrile to the system stirred at a high stirring rate, the oscillation as well as the polymerization of acrylonitrile stopped. The radical polymerization of acrylonitrile by the BZ oscillator is thus found to be made controllable by changing the mixing conditions.

  4. Analysis of solid solutions stability in scheelite-type molybdates and tungstates

    SciTech Connect

    Zhuravlev, V.D.; Reznitskikh, O.G.; Velikodnyi, Yu.A.; Patrusheva, T.A.; Sivtsova, O.V.

    2011-10-15

    Mutual solubility of bivalent metal molybdates and tungstates with scheelite structure was theoretically estimated by calculating formation enthalpies and the maximal decomposition temperatures of solid solutions at different temperatures. The theoretical stability of continuous solid solutions in binary systems of bivalent metal molybdates and tungstates was found to be higher than reported literature data. After cooling down continuous substitution solid solution should remain in following systems: CaMoO{sub 4}-CdMoO{sub 4}, SrMoO{sub 4}-MMoO{sub 4} (M=Ba, Pb), BaMoO{sub 4}-PbMoO{sub 4}, SrWO{sub 4}-MWO{sub 4} (M=Ca, Pb), and BaWO{sub 4}-PbWO{sub 4}. There is a probability that at room temperature in systems CaMoO{sub 4}-SrMoO{sub 4,} CaWO{sub 4}-PbWO{sub 4}, and BaWO{sub 4}-SrWO{sub 4} the single homogeneity region may decompose to limited solid solutions. It was shown experimentally that a continuous series of scheelite-structure solid solutions M{sub 1-x}M{sup I}{sub x}TO{sub 4} can be formed via citrate synthesis at temperatures below 500 deg. S. - Graphical abstract: Calculated boundaries of solid solutions in BaWO{sub 4}-CaWO{sub 4} (1) and PbMoO{sub 4}-CaMoO{sub 4} (2) systems. Highlights: > Stability of solid solutions molybdates and tungstates has been investigated. > The ionic model for isovalent substitutions was used. > In 'polyhedral substitution model' enthalphies of mixing were calculated. > Most of the examined series of solid solutions is stable at room temperatures. > Solid solutions M{sub 1-x}M{sup I}{sub x}Mo(W)O{sub 4} (x=0-1) were formed via citrate synthesis below 500 S.

  5. Tissue distribution of tungsten in mice following oral exposure to sodium tungstate.

    PubMed

    Guandalini, Gustavo S; Zhang, Lingsu; Fornero, Elisa; Centeno, Jose A; Mokashi, Vishwesh P; Ortiz, Pedro A; Stockelman, Michael D; Osterburg, Andrew R; Chapman, Gail G

    2011-04-18

    Heavy metal tungsten alloys have replaced lead and depleted uranium in many munitions applications, due to public perception of these elements as environmentally unsafe. Tungsten materials left in the environment may become bioaccessible as tungstate, which might lead to population exposure through water and soil contamination. Although tungsten had been considered a relatively inert and toxicologically safe material, recent research findings have raised concerns about possible deleterious health effects after acute and chronic exposure to this metal. This investigation describes tissue distribution of tungsten in mice following oral exposure to sodium tungstate. Twenty-four 6-9 weeks-old C57BL/6 laboratory mice were exposed to different oral doses of sodium tungstate (0, 62.5, 125, and 200 mg/kg/d) for 28 days, and after one day, six organs were harvested for trace element analysis with inductively coupled plasma mass spectrometry (ICP-MS). Kidney, liver, colon, bone, brain, and spleen were analyzed by sector-field high-resolution ICP-MS. The results showed increasing tungsten levels in all organs with increased dose of exposure, with the highest concentration found in the bones and the lowest concentration found in brain tissue. Gender differences were noticed only in the spleen (higher concentration of tungsten in female animals), and increasing tungsten levels in this organ were correlated with increased iron levels, something that was not observed for any other organ or either of the two other metals analyzed (nickel and cobalt). These findings confirmed most of what has been published on tungsten tissue distribution; they also showed that the brain is relatively protected from oral exposure. Further studies are necessary to clarify the findings in splenic tissue, focusing on possible immunological effects of tungsten exposure.

  6. Pharmacokinetics of sodium tungstate in rat and dog: a population approach.

    PubMed

    Le Lamer, S; Poucheret, P; Cros, G; de Richter, R K; Bonnet, P A; Bressolle, F

    2000-08-01

    Sodium tungstate has been found to correct hyperglycemia in insulin- and noninsulin-dependent models of diabetes when administered in drinking fluid with a low degree of toxicity; thus, it provides a potential treatment for diabetes. In the present report, pharmacokinetic studies with sodium tungstate were carried out in the Sprague-Dawley rat and beagle dog. This drug was administered either i.v. (8.97 mg/kg in rat; 25 and 50 mg/kg in dog) or orally in the form of solution (35.9 and 107.7 mg/kg in rat; 25 and 50 mg/kg in dog). Tungsten was quantified using an inductively coupled plasma method. Pharmacokinetic parameters were estimated using a population approach. Sodium tungstate followed first order kinetics, and plasma concentration-versus-time data were adequately described by a two-compartment model. In rat, bioavailability was high (92%), whereas it was lower in dog (approximately 65%). The total volume of distribution expressed by unit of body weight was much higher when the animal was smaller (0.46 l/kg in rat versus 0.23 l/kg in dog). The total body clearance normalized by weight, 0.19 l/h/kg in rat versus 0.043 l/h/kg in dog, changed as for the volume of distribution. The elimination half-life was two times higher in dog (approximately 4 h) than in rat (approximately 1.7 h). In the range of 35.9 to 107.7 mg/kg after oral administration in rat and 25 to 50 mg/kg after oral and i.v. administration in dog, tungsten plasma concentrations increased in proportion to dose.

  7. Special features in the electroreduction of oxidic molybdenum(VI) forms in tungstate melt

    SciTech Connect

    Shapoval, V.I.; Baraboshkin, A.N.; Kushkhov, K.B.; Malyshev, V.V.

    1988-01-01

    The electrochemical behavior of oxidic molybdenum in tungstate melt was studied under equilibrium and nonequilibrium conditions. Chronovoltammetry and transient polarization was used. The current-voltage curves were recorded with a pulse potentiostat and the experiments were performed in a quartz reactor with platinum and molybdenum electrodes and a platinum crucible served as the melt container and anode. The end product of the oxidic molybdenum forms were shown to depend on the acid-base properties of the melt which allows for choosing the properties and controlling the electrode process.

  8. Comparison of radiation damage in lead tungstate crystals under pion and gamma irradiation

    SciTech Connect

    Batarin, V.A.; Butler, J.; Davidenko, A.M.; Derevschikov, A.A.; Goncharenko, Y.M.; Grishin, V.N.; Kachanov, V.A.; Khodyrev, V.Y.; Konstantinov, A.S.; Kravtsov, V.I.; Kubota, Y.; Lukanin, V.S.; Matulenko, Y.A.; Melnick, Y.M.; Meschanin, A.P.; Mikhalin, N.E.; Minaev, N.G.; Mochalov, V.V.; Morozov, D.A.; Nogach, L.V.; Ryazantsev, A.V.; /Serpukhov, IHEP /Fermilab /Minnesota U. /Syracuse U. /Nanjing U.

    2003-12-01

    Studies of the radiation hardness of lead tungstate crystals produced by the Bogoroditsk Techno-Chemical Plant in Russia and the Shanghai Institute of Ceramics in China have been carried out at IHEP, Protvino. The crystals were irradiated by a 40 GeV pion beam. After full recovery, the same crystals were irradiated using a {sup 137}Cs {gamma}-ray source. The dose rate profiles along the crystal length were observed to be quite similar. We compare the effects of the two types of radiation on the crystals light output.

  9. Adsorptional removal of methylene blue by guar gum-cerium (IV) tungstate hybrid cationic exchanger.

    PubMed

    Gupta, V K; Pathania, Deepak; Singh, Pardeep; Kumar, Amit; Rathore, B S

    2014-01-30

    Guar gum-cerium (IV) tungstate nanocomposite (GG/CTNC) cationic exchanger was synthesized using simple sol gel method. The GG/CTNC was characterized using X-ray diffraction (XRD), Fourier transmission infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray spectrophotometer (EDX). The XRD studies confirmed amorphous and fibrous in nature of GG/CTNC. The high percentage of oxygen in the nanocomposite material confirmed the functionality tungstate (WO4(-)). The ion exchange capacity of GG/CTNC for Na(+) ion was observed to be 1.30 mequivg(-1). The hybrid exchanger was used as potential adsorbent for the removal of methylene blue (MB) from aqueous system. The correlation coefficients value indicated a good fit of monolayer Langmuir model to the adsorption of methylene blue onto GG/CTNC. The adsorption kinetic study revealed that the adsorption process followed the pseudo second order kinetic. The Gibbs free energy (ΔG) values confirmed the spontaneous nature of adsorption process.

  10. Double aberration-corrected TEM/STEM of tungstated zirconia nanocatalysts for the synthesis of paracetamol

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Shiju, N. R.; Brown, D. R.; Boyes, E. D.; Gai, P. L.

    2010-07-01

    We report highly active tungstated zirconia nanocatalysts for the synthesis of paracetamol by Beckmann rearrangement of 4-hydroxyacetophenone oxime. Double aberration-corrected (2AC)-TEM/STEM studies were performed in a JEOL 2200FS FEG TEM/STEM at the 1 Angstrom (1 Å = 0.1 nanometer) level. Observations at close to zero defocus were carried out using the AC-TEM as well as AC-STEM including high angle annular dark field (HAADF) imaging, from the same areas of the catalyst crystallites. The studies from the same areas have revealed the location and the nanostructure of the polytungstate species (clusters) and the nanograins of zirconia. The AC (S)TEM was crucial to observe the nanostructure and location of polytungstate clusters on the zirconia grains. Polytungstate clusters as small as 0.5 nm have been identified using the HAADF-STEM. The nanostructures of the catalyst and the W surface density have been correlated with paracetamol reaction studies. The results demonstrate the nature of active sites and high activity of the tungstated zirconia nanocatalyst, which is an environmentally clean alternative to the current homogeneous process.

  11. Synthesis and characterization of lead iron tungstate ceramics obtained by two preparation methods

    SciTech Connect

    Zhou, L.; Vilarinho, P.M.; Baptista, J.L. . Dept. de Engenharia Ceramica e do Vidro)

    1994-11-01

    Lead iron tungstate (Pb(Fe[sub 2/3]W[sub 1/3])O[sub 3]) is difficult to sinter as a single phase perovskite ceramic. Side reactions lead to undesirable second phases damaging the dielectric properties of the sintered material. Understanding these reaction routes is necessary to eliminate them and to improve on the properties of these ceramics. Lead iron tungstate ceramics were sintered from powders prepared by reaction of mixtures of the three oxides, or by reaction of prereacted iron oxide and tungsten oxide with lead oxide, in an attempt to control the formation of the perovskite phase. The reaction sequences, different in both cases, lead to a higher yield of the perovskite phase when the prereacted powders were used, avoiding therefore the presence of undesirable phases. The microstructures and dielectric properties of the sintered ceramics obtained by both methodologies are reported and compared. The prereacted intermediate phase method leads to a more ordered perovskite structure with better dielectric characteristics.

  12. Two-Dimensional Iron Tungstate: A Ternary Oxide Layer With Honeycomb Geometry

    PubMed Central

    2016-01-01

    The exceptional physical properties of graphene have sparked tremendous interests toward two-dimensional (2D) materials with honeycomb structure. We report here the successful fabrication of 2D iron tungstate (FeWOx) layers with honeycomb geometry on a Pt(111) surface, using the solid-state reaction of (WO3)3 clusters with a FeO(111) monolayer on Pt(111). The formation process and the atomic structure of two commensurate FeWOx phases, with (2 × 2) and (6 × 6) periodicities, have been characterized experimentally by combination of scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), and temperature-programmed desorption (TPD) and understood theoretically by density functional theory (DFT) modeling. The thermodynamically most stable (2 × 2) phase has a formal FeWO3 stoichiometry and corresponds to a buckled Fe2+/W4+ layer arranged in a honeycomb lattice, terminated by oxygen atoms in Fe–W bridging positions. This 2D FeWO3 layer has a novel structure and stoichiometry and has no analogues to known bulk iron tungstate phases. It is theoretically predicted to exhibit a ferromagnetic electronic ground state with a Curie temperature of 95 K, as opposed to the antiferromagnetic behavior of bulk FeWO4 materials. PMID:27110319

  13. Deposition of Highly Luminescent Zinc Tungstate Thin Films on Various Substrates

    NASA Astrophysics Data System (ADS)

    Farrakhan, Rashad

    Zinc tungstate films have promising applications in small form factor backscatter electron detectors. We are developing a multistep technology for synthesis of these films. Zinc and tungsten were co-sputtered onto substrates through the process of magnetron sputtering. The metallic films were oxidized in a vacuum sealed tube furnace in controlled flow of argon and oxygen at 800 °C. The chemical composition of the film was characterized by Energy-Dispersive X-Ray Spectroscopy (EDS). The structure of the film was investigated by Raman Spectroscopy. The photoluminescence quantum efficiency of the films was found to be 60%. Process parameters for obtaining the desired 1-1 ratio of zinc to tungsten in the film is explored through varying factors such as: the composition of the target used in the sputtering, the power and or voltage used in the sputtering process. Our experiments show that zinc tungstate thin films can be deposited on various substrates with good adhesion and mechanical integrity, and still be efficient light emitters.

  14. Simultaneous speciation analysis of chromate, molybdate, tungstate and vanadate in welding fume alkaline extracts by HPLC-ICP-MS.

    PubMed

    Ščančar, Janez; Berlinger, Balázs; Thomassen, Yngvar; Milačič, Radmila

    2015-09-01

    A novel analytical procedure was developed for the simultaneous speciation analysis of chromate, molybdate, tungstate and vanadate by anion-exchange high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). Linear gradient elution from 100% water to 100% 0.7 M NaCl was applied for chromatographic separation of metal species. In standard aqueous solution at neutral pH molybdate, tungstate and vanadate exist in several aqueous species, while chromate is present as a single CrO4(2-) species. Consequently, only chromate can be separated from this solution in a sharp chromatographic peak. For obtaining sharp chromatographic peaks for molybdate, tungstate and vanadate, the pH of aqueous standard solutions was raised to 12. At highly alkaline conditions single CrO4(2-), MoO4(2-) and WO4(2-) are present and were eluted in sharp chromatographic peaks, while VO4(3-) species, which predominates at pH 12 was eluted in slightly broaden peak. In a mixture of aqueous standard solutions (pH 12) chromate, molybdate, tungstate and vanadate were eluted at retention times from 380 to 420 s, 320 to 370 s, 300 to 350 s and 240 to 360 s, respectively. Eluted species were simultaneously detected on-line by ICP-MS recording m/z 52, 95, 182 and 51. The developed procedure was successfully applied to the analysis of leachable concentrations of chromate, molybdate, tungstate and vanadate in alkaline extracts (2% NaOH+3% Na2CO3) of manual metal arc (MMA) welding fumes loaded on filters. Good repeatability and reproducibility of measurement (RSD±3.0%) for the investigated species were obtained in both aqueous standard solutions (pH 12) and in alkaline extracts of welding fumes. Low limits of detection (LODs) were found for chromate (0.02 ng Cr mL(-1)), molybdate (0.1 ng Mo mL(-1)), tungstate (0.1 ng W mL(-1)) and vanadate (0.2 ng V mL(-1)). The accuracy of analytical procedure for the determination of chromate was checked by analysis of

  15. Bioconversion of acrylonitrile to acrylamide using polyacrylamide entrapped cells of Rhodococcus rhodochrous PA-34.

    PubMed

    Raj, J; Prasad, S; Sharma, N N; Bhalla, T C

    2010-09-01

    The nitrile hydratase (NHase) of Rhodococcus rhodochrous PA-34 catalyzed the conversion of acrylonitrile to acrylamide. The resting cells (having NHase activity) (8 %; 1 mL corresponds to 22 mg dry cell mass, DCM) were immobilized in polyacrylamide gel containing 12.5 % acrylamide, 0.6 % bisacrylamide, 0.2 % diammonium persulfate and 0.4 % TEMED. The polyacrylamide entrapped cells (1.12 mg DCM/mL) completely converted acrylonitrile in 3 h at 10 °C, using 0.1 mol/L potassium phosphate buffer. In a partitioned fed batch reactor, 432 g/L acrylamide was accumulated after 1 d. The polyacrylamide discs were recycled up to 3×; 405, 210 and 170 g/L acrylamide was produced in 1st, 2nd and 3rd recycling reactions. In four cycles, a total of 1217 g acrylamide was produced by recycling the same mass of entrapped cells.

  16. Preparation and characterization of zinc sulphide nanocomposites based on acrylonitrile butadiene rubber

    NASA Astrophysics Data System (ADS)

    Ramesan, M. T.; Nihmath, A.; Francis, Joseph

    2013-06-01

    Rubber composite based on acrylonitrile butadiene rubber (NBR) reinforced with nano zinc sulphide (ZnS) have been prepared via vulcanization process and characterized by several techniques. Processing characteristics such as scorch time, optimum cure time decreases with increase in concentration of nano filler in acrylonitrile butadiene rubber. Mechanical properties such as tensile and tear strength increases with increase in concentration of nano filler up to 7 phr of loading thereafter the value decreases, whereas hardness, and flame resistance increases with the dosage of fillers. These enhanced properties are due to the homogenous dispersion of nano fillers in NBR matrix, which is evidenced from the structure that evaluated using X-ray diffraction (XRD) and scanning electron microscopy (SEM).

  17. Urinary excretion of the acrylonitrile metabolite 2-cyanoethylmercapturic acid is correlated with a variety of biomarkers of tobacco smoke exposure and consumption.

    PubMed

    Minet, Emmanuel; Cheung, Francis; Errington, Graham; Sterz, Katharina; Scherer, Gerhard

    2011-02-01

    Acrylonitrile is an IARC class 2B carcinogen present in cigarette smoke. Urinary 2-cyanoethylmercapturic acid (CEMA) is an acrylonitrile metabolite and a potential biomarker for acrylonitrile exposure. The objective of this work was to study the dose response of CEMA in urine of non-smokers and smokers of different ISO tar yield cigarettes. We observed that smokers excreted >100-fold higher amounts of urinary CEMA than non-smokers. The CEMA levels in smokers were significantly correlated with ISO tar yield, daily cigarette consumption, and urinary biomarkers of smoke exposure. In conclusion, urinary CEMA is a suitable biomarker for assessing smoking-related exposure to acrylonitrile.

  18. Urinary excretion of the acrylonitrile metabolite 2-cyanoethylmercapturic acid is correlated with a variety of biomarkers of tobacco smoke exposure and consumption

    PubMed Central

    Minet, Emmanuel; Cheung, Francis; Errington, Graham; Sterz, Katharina; Scherer, Gerhard

    2011-01-01

    Acrylonitrile is an IARC class 2B carcinogen present in cigarette smoke. Urinary 2-cyanoethylmercapturic acid (CEMA) is an acrylonitrile metabolite and a potential biomarker for acrylonitrile exposure. The objective of this work was to study the dose response of CEMA in urine of non-smokers and smokers of different ISO tar yield cigarettes. We observed that smokers excreted >100-fold higher amounts of urinary CEMA than non-smokers. The CEMA levels in smokers were significantly correlated with ISO tar yield, daily cigarette consumption, and urinary biomarkers of smoke exposure. In conclusion, urinary CEMA is a suitable biomarker for assessing smoking-related exposure to acrylonitrile. PMID:21108560

  19. Three-generation reproduction study of rats receiving acrylonitrile in drinking water.

    PubMed

    Friedman, M A; Beliles, R P

    2002-06-24

    Acrylonitrile, a high volume organic chemical, was tested for reproductive effects in a three generation drinking water study with two matings per generation. Sprague-Dawley rats were exposed to acrylonitrile in drinking water at 0, 100, or 500 ppm. This corresponds to 0, 11+/-5 and 37+/-10 mg/kg, respectively, for males and 0, 20+/-3 and 40+/-8 mg/kg per day for the females, respectively. Water consumption was reduced in F0 rats in the 100 and 500 ppm groups. At 500 ppm, acrylonitrile reduced body weight gain and food intake of the first generation parental rats (F0). These parameters were not investigated at subsequent generations. The pup survival (both viability and lactation indices) was reduced at the 500 ppm treatment level in both matings of all three generations. Fostering the 500 ppm pups onto untreated mothers following the second mating lessened mortality, suggesting a maternal effect consistent with decreased water consumption. There was no remarkable change in the reproductive capacity in any of matings in rats at the 100 ppm concentration. In contrast, in all three generations, the body weights of the pups of the 500 ppm treatment level were reduced on Day 21 at both matings. No adverse findings were observed in the tissues of a limited number of third generation weanlings (F3b) upon gross and microscopic evaluation. No effect on the sciatic nerve was evident among the adult female rats held for 20 weeks after weaning of the second litter. There was a dose-related effect of acrylonitrile on gross masses in female rats at each parental generation held 20 weeks after the weaning of the second litter. Histopathological evaluation of these dams showed an increase in astrocytomas and zymbal gland tumors.

  20. Dynamic Evolution of Acrylonitrile Butadiene Styrene (ABS) Subjected to High Strain Rate Compressive Loads

    DTIC Science & Technology

    2013-01-01

    Salisbury, M. Worswick, D. Lloyd, M. Finn, High strain rate tensile testing of automotive aluminum alloy sheet, International Journal of Impact...selected aluminum alloys, Materials Science and Engineering: A, Volume 278, Issues 1–2, 15 February 2000, Pages 225-235 [6] A.G. Odeshi, S. Al-ameeri...mechanical behavior of the of 3D-printed Acrylonitrile Butadiene Styrene material to assess potential strain rate dependency. The mechanical

  1. Estimation of the Surface Properties of Styrene-Acrylonitrile Random Copolymers from Contact Angle Measurements.

    PubMed

    Adão; Saramago; Fernandes

    1999-09-01

    The surface free energy per unit area of a solid, gamma(S), is a fundamental property of materials and determines their surface and interfacial behavior in processes like wetting and adhesion. In this study the gamma(S) of a series of styrene-acrylonitrile random copolymers is evaluated. Three different approaches are used to determine the components in which the surface free energy can be decomposed. Using the geometric and the harmonic mean approach, the dispersive, gamma(d), and polar, gamma(p), components of the solid surface free energy were determined and compared to the Lifshitz-van der Waals, gamma(LW), and acid-base, gamma(AB), components using the approach developed by C. J. van Oss et al. (1987, Adv. Colloid Interface Sci. 28, 35). The acid-base approach was also used to evaluate the work of adhesion of the test liquids: water, glycerol, and thiodiglycol. It was found that the contact angles of these liquids follow closely the predictions of Cassie equation. The evaluation of the surface free energy components on one hand and the relative magnitude of the work of adhesion components on the other hand, suggest that below 50% of acrylonitrile the polystyrene repeating units are preferentially at the surface. Above 50% of acrylonitrile the segregation of the low-energy homopolymer at the surface decreases. Copyright 1999 Academic Press.

  2. Alteration of Acrylonitrile-Methylacrylate-Butadiene Terpolymer by Nocardia rhodochrous and Penicillium notatum†

    PubMed Central

    Antoine, A. D.; Dean, A. V.; Gilbert, S. G.

    1980-01-01

    [14C]Barex-210, a terpolymer of acrylonitrile, methylacrylate, and butadiene, was tested for bioconversion. Powdered samples of polymer, each specifically 14C labeled at different carbon atoms of the polymer, were incubated with either Nocardia rhodochrous or Penicillium notatum in an enriched growth medium for various periods of time. After 6 months of incubation, the 14C-labeled polymer was transformed from a high-molecular-weight material completely soluble in dimethyl formamide (DMF) into both a lower-molecular-weight form still soluble in DMF and a second form that was no longer soluble in DMF. The amount of 14C-labeled carbon atoms converted into DMF-insoluble material was 8% of the backbone carbon-carbon atoms and 12% of the side-chain nitrile and acrylate atoms from the acrylonitrile-methylacrylate copolymer and 60% of the elastomer (acrylonitrile-butadiene copolymer) atoms. Metabolism of the polymer was not established from measurements of metabolic 14CO2. Evolution of 14CO2 amounted to only 0.3, 0.6, 1.8, and 3.3% of these four fractions, respectively. Although the transformation of high-molecular-weight polymer into DMF-insoluble material was rapid in the early stages of microbial growth, the accompanying CO2 evolution was much slower. Further evidence of polymer alteration was indicated by the infrared spectrum of the insoluble material, which showed a disappearance of the nitrile and methylacrylate peaks. PMID:16345541

  3. Sorption studies on Cr (VI) removal from aqueous solution using cellulose grafted with acrylonitrile monomer.

    PubMed

    Hajeeth, T; Sudha, P N; Vijayalakshmi, K; Gomathi, T

    2014-05-01

    Graft copolymerization of acrylonitrile on to cellulosic material derived from sisal fiber can be initiated effectively with ceric ammonium nitrate. The grafting conditions were optimized by changing the concentration of initiator and monomer. The change in crystallinity of the grafted polymeric samples was concluded from the XRD patterns. The prepared cellulose grafted acrylonitrile copolymer was used as an adsorbent to remove Cr (VI) ions from aqueous solutions. The efficiency of the adsorbent was identified from the variation in the percentage of adsorption with contact time, adsorbent dose and pH. From the observed results it was evident that the adsorption of metal ions increases with the increase in contact time and metal ion concentration. An optimum pH was found to be 5.0 for the removal of Cr (VI) from the aqueous solution. The results of the Langmuir, Freundlich, and pseudo first- and second-order studies revealed that the adsorption was found to fit well with Freundlich isotherm and follows pseudo second-order kinetics. From the above results, it was concluded that the cellulose-g-acrylonitrile copolymer was found to be an efficient adsorbent for the removal of Cr (VI) from aqueous waste generated from industries.

  4. Optical spectroscopy and frequency upconversion properties of Tm3+ doped tungstate fluorophosphate glasses

    NASA Astrophysics Data System (ADS)

    Poirier, Gaël; Jerez, Vladimir A.; de Araújo, Cid B.; Messaddeq, Younes; Ribeiro, Sidney J. L.; Poulain, Marcel

    2003-02-01

    Tungstate fluorophosphate glasses of good optical quality were synthesized by fusion of the components and casting under air atmosphere. The absorption spectra from near-infrared to visible were obtained and the Judd-Ofelt parameters determined from the absorption bands. Transition probabilities, excited state lifetimes and transition branching ratios were determined from the measurements. Pumping with a 354.7 nm beam from a pulsed laser resulted in emission at 450 nm due to transition 1D2→3F4 in Tm3+ ions and a broadband emission centered at ≈550 nm attributed to the glass matrix. When pumping at 650 nm, two emission bands at 450 nm (1D2→3F4) and at 790 nm (3H4→3H6) were observed. Excitation spectra were also obtained in order to understand the origin of both emissions. Theoretical and experimental lifetimes were determined and the results were explained in terms of multiphonon relaxation.

  5. Scintillation of lead tungstate crystal studied with single-electron beam from KUFEL

    SciTech Connect

    Rizwan, Mohamad Uozumi, Yusuke; Matsuo, Kazuki; Ohgaki, Hideaki; Kii, Toshiteru; Zen, Heishun; Tsamalaidze, Zviadi; Evtoukhovitch, Petr; Valentin, Samoilov

    2015-04-29

    Lead tungstate (PWO) crystal has a very fast response, high atomic density and high radiation hardness. Therefore, they are suitable to be used for high-energy nuclear data measurements under high-background circumstances. Although a good electron-ion separation with a pulse shape analysis technique is essential, scintillation pulse shapes have not been observed with electron beams of a wide energy range. A single-electron beam technique has been developed at Kyoto University Free Electron Laser (KUFEL), and electron beams of 4-38 MeV are available. During the experiments, single electron beams bombarded a PWO crystal. By using oscilloscope we observed scintillation pulses of a PWO crystal coupled with a photomultiplier tube. Measured spectra were compared with the simulation code of EGS5 to analyze scattering effects. As the result, the pulse amplitudes show good linearity and the pulse shapes are almost constant in the observed energy range.

  6. Specific directions of ultrasound propagation in double potassium tungstates for light modulation.

    PubMed

    Mazur, M M; Mazur, L I; Pozhar, V E

    2017-01-01

    Acousto-optical characteristics of double potassium tungstates are analyzed and specific directions for light modulation are found. First, an important subgroup of elasto-optic coefficients of KYb(WO4)2 and KLu(WO4)2 crystals are calculated with use of experimental data. It is revealed that with proper choice of ultrasound direction the acousto-optical figure-of-merit approximately 2 times exceeds the maximum value detected in previous experiments. Another unique direction is determined, which permits modulation of randomly polarized light. The elasto-optic characteristics of KYb(WO4)2 and KLu(WO4)2 crystals are compared to those of previously investigated materials of the same crystal group: KY(WO4)2, KGd(WO4)2.

  7. Corrosion of nickel metal by hydrothermal sodium tungstate solution observed by in-situ infrared spectroscopy

    SciTech Connect

    Hoffmann, M.M.; Fulton, J.L.

    2000-05-01

    Corrosion of nickel metal in a high-temperature aqueous tungstate solution was described. The corrosion altered the solution's pH, which affected the equilibrium of the solution chemistry. These secondary effects of the corrosion process were observed with in-situ infrared (IR) spectroscopy, demonstrating that important information on corrosion phenomena at the solid-fluid interface may be obtained from in-situ spectroscopic studies of the fluid phase. Subsequent scanning electron microscopy (SEM) analysis of the corroded nickel metal and solid corrosion products support conclusions drawn from solution chemistry measurements. The presented findings are of interest to researchers and engineers that use pure nickel or nickel-bearing alloys as a material for high-temperature, high-pressure applications in aqueous solutions.

  8. Enzymatic activities in brains of diabetic rats treated with vanadyl sulphate and sodium tungstate.

    PubMed

    Lemberg, A; Fernández, M A; Ouviña, G; Rodríguez, R R; Peredo, H A; Susemihl, C; Villarreal, I; Filinger, E J

    2007-12-01

    The hypothesis of the present study was that diabetes mellitus might affect brain metabolism. Streptozotocin (STZ)-induced diabetic rats, treated with vanadyl sulphate (V) and sodium tungstate (T) were employed to observe the aspartate aminotransferase (AST), alanine aminotransferase (ALT) and creatine kinase (CK) activities in brain homogenates. Significant increases in AST, ALT and CK activities were found in diabetic brain homogenates against controls, suggesting increments of transamination in brain and/or increases in cell membrane permeability to these enzymes. The increase in brain CK possibly expresses alterations in energy production. The decrease in CK activity caused by V and T treatment in diabetic rats suggests that both agents tend to normalize energy consumption. It is also possible that V and T-induced hypoglycemic effects cause metabolic alterations in brain.

  9. An efficient bismuth tungstate visible-light-driven photocatalyst for breaking down nitric oxide.

    PubMed

    Li, Guisheng; Zhang, Dieqing; Yu, Jimmy C; Leung, Michael K H

    2010-06-01

    This paper reports a photocatalytic removal of 400 ppb level of NO in air under visible light irradiation by utilizing three-dimensional (3D) hierarchical bismuth tungstate (Bi(2)WO(6)) microspheres. A facile microwave-assisted hydrothermal method involving bismuth nitrate and sodium wolframate was developed to synthesize the photocatalyst. The Bi(2)WO(6) samples were characterized by using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), Raman and ultraviolet-visible reflectance (UV-vis) spectroscopy. The relationship between the physicochemical property and the photocatalytic performance of the as prepared samples is discussed. The present work demonstrates that the 3D hierarchical Bi(2)WO(6) microspheres are effective visible-light-driven photocatalytic functional materials for air purification.

  10. Tungstate (VI) sorption on hematite: An in situ ATR-FTIR probe on the mechanism.

    PubMed

    Rakshit, Sudipta; Sallman, Bryan; Davantés, Athénais; Lefèvre, Grégory

    2017-02-01

    Owing to the suspected toxicity and carcinogenicity of tungstate (VI) oxyanions [i.e. mono tungstate and several polytungstate, generally represented by W (VI)], the environmental fate of W (VI) has been widely studied. Sorption is regarded as a major mechanism by which W (VI) species are retained in the solid/water interface. Iron (hydr)oxides have been considered important environmental sinks for W (VI) species. Here we report sorption mechanisms of W (VI) on a common iron oxide mineral-hematite under environmentally relevant solution properties using in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic probes. Initial W (VI) loadings varied from 10 to 200 μM at fixed pH values ranged from 4.6 to 8.1. For pH envelop (pHs = 4.6, 5.0, 5.5, 6.0, 6.5, 7.5, and 8.1) experiments, fixed W (VI) concentrations (i.e. 10 & 200 μM) were used to understand the effects of pH. The results indicated that at acidic pH values (pH < 6.0) the sorbed polytungstate surface species are prominent at 200 μM initial W (VI) conc. The pH envelop experiments revealed that sorbed polytungstates can be present even at lower initial W (VI) conc. (i.e. 10 μM) at pH values <5.5. Overall, our in situ ATR-FTIR experiments indicated that W (VI) forms inner-sphere type bonds on hematite surface and the strength of the interaction increases with decreasing pH. In addition, initial W (VI) concentration affected the sorption mechanisms of W (VI) on hematite. Our study will aid the molecular level understanding of W (VI) retention on iron oxide surfaces.

  11. Lasing properties of new Nd 3+-doped tungstate, molybdate, and fluoride materials under selective optical pumping

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Jelínkova, Helena; Basiev, Tolstoban T.; Doroschenko, Maxim E.; Ivleva, Ludmila I.; Osiko, Vyacheslav V.; Zverev, Peter G.

    2006-02-01

    The purpose of this work was to determine the relative efficiencies of new Nd 3+-doped laser active/Raman - tungstate, molybdate, and fluoride - materials (SrWO 4, PbWO 4, BaWO 4, SrMoO 4, PbMoO 4, SrF II, and LaF 3) under selective longitudinal optical pumping by the alexandrite (~750nm), or diode (~800nm) laser. Crystals with various length, orientations and active ions concentrations were tested. To optimize the output of the tested lasers a set of input dichroic and output dielectric mirrors with different reflectivities were used. For realized lasers operating at pulsed free-running regime, threshold energy, slope efficiency, emission wavelength, and radiation polarization were determined. For each crystal, fluorescence lifetime and absorption coefficient under given pumping were established. The slope efficiency in case of Nd 3+:PbMoO 4 laser at wavelength 1054nm was measured to be 54.3% with total efficiency of 46% which is the best result obtained for all new tested crystals. For Nd 3+ doped SrWO 4, PbWO 4, and BaWO 4 crystals simultaneous laser and self-Raman emission were demonstrated in Q-switched regime. Thus newly proposed laser Raman crystals demonstrate high efficiency for Nd 3+ laser oscillations comparable with well known and widely used Nd:KGW crystal. Further improvement in the quality of tungstate and molybdate type crystals should result in further increase in lasing efficiency at 1.06μm wavelength. Self Raman frequency conversion of Nd 3+-laser oscillations in these crystals should result in high efficient pulse shortening, high peak power and new wavelengths in 1.2-1.5μm wavelength region.

  12. A study of the optical and radiation damage properties of lead tungstate crystals

    SciTech Connect

    Woody, C.L.; Kierstead, J.A.; Stoll, S.P.; Zhu, R.Y.; Ma, D.A.; Newman, H.B.

    1995-12-31

    Lead tungstate (PbWO{sub 4}) is a new scintillating material which is of great interest for use in high energy electromagnetic calorimeters. It has a very high density, short radiation length and small Moliere radius and has a scintillation light output which peaks between 450--550 nm with a decay time in the range from 5--15 ns. It is presently being considered for use in two large, high resolution electromagnetic calorimeters, one for the CMS experiment and the other for the ALICE experiment, at the Large Hadron Collider at CERN. In order to meet the stringent demands of these two experiments, the crystals are required to be of high purity, produced uniform light output, and, in the case of CMS, be resistant to radiation damage up to several megarads. Here, a study has been made of the optical and radiation damage properties of undoped and niobium doped lead tungstate crystals. Data were obtained on the optical absorbance, the intensity and decay time of the scintillation light output, and the radioluminescence and photoluminescence emission spectra. Radiation damage was studied in several undoped and niobium doped samples using {sup 60}Co gamma ray irradiation. The change in optical absorption and observed scintillation light output was measured as a function of dose up to total cumulative doses on the order of 800 krad. The radiation induced phosphorescence and thermoluminescence was also measured, as well as recovery from damage by optical bleaching and thermal annealing. An investigation was also made to determine trace element impurities in several samples.

  13. Comparative studies on the removal of heavy metals ions onto cross linked chitosan-g-acrylonitrile copolymer.

    PubMed

    Shankar, P; Gomathi, Thandapani; Vijayalakshmi, K; Sudha, P N

    2014-06-01

    The graft copolymerization of acrylonitrile onto cross linked chitosan was carried out using ceric ammonium nitrate as an initiator. The prepared cross linked chitosan-g-acrylonitrile copolymer was characterized using FT-IR and XRD studies. The adsorption behavior of chromium(VI), copper(II) and nickel(II) ions from aqueous solution onto cross linked chitosan graft acrylonitrile copolymer was investigated through batch method. The efficiency of the adsorbent was identified from the varying the contact time, adsorbent dose and pH. The results evident that the adsorption of metal ions increases with the increase of shaking time and metal ion concentration. An optimum pH was found to be 5.0 for both Cr(VI) and Cu(II), whereas the optimum pH is 5.5 for the adsorption of Ni(II) onto cross linked chitosan-g-acrylonitrile copolymer. The Langmuir and Freundlich adsorption models were applied to describe the isotherms and isotherm constants. Adsorption isothermal data could be well interpreted by the Freundlich model. The kinetic experimental data properly correlated with the second-order kinetic model. From the above results it was concluded that the cross linked chitosan graft acrylonitrile copolymer was found to be the efficient adsorbent for removing the heavy metals under optimum conditions.

  14. Characterisation of recycled acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment in Brazil.

    PubMed

    Hirayama, Denise; Saron, Clodoaldo

    2015-06-01

    Polymeric materials constitute a considerable fraction of waste computer equipment and polymers acrylonitrile-butadiene-styrene and high-impact polystyrene are the main thermoplastic polymeric components found in waste computer equipment. Identification, separation and characterisation of additives present in acrylonitrile-butadiene-styrene and high-impact polystyrene are fundamental procedures to mechanical recycling of these polymers. The aim of this study was to evaluate the methods for identification of acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment in Brazil, as well as their potential for mechanical recycling. The imprecise utilisation of symbols for identification of the polymers and the presence of additives containing toxic elements in determinate computer devices are some of the difficulties found for recycling of acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment. However, the considerable performance of mechanical properties of the recycled acrylonitrile-butadiene-styrene and high-impact polystyrene when compared with the virgin materials confirms the potential for mechanical recycling of these polymers.

  15. On the nature of defect states in tungstate nanoflake arrays as promising photoanodes in solar fuel cells.

    PubMed

    Mohamed, Aya M; Amer, Ahmad W; AlQaradawi, Siham Y; Allam, Nageh K

    2016-08-10

    An electrochemical method is presented to study the nature of the defect states in sub-stoichiometric tungsten oxide nanoflake photoanodes used in water splitting. First, stoichiometric/sub-stoichiometric tungstate nanoflake arrays were deliberately developed via annealing under different atmospheres (air, O2, and H2) in different sequences. UV-Vis diffuse reflectance spectra and Tauc analysis indicated the presence of oxygen vacancies, which was also confirmed via XRD and Raman analysis, with samples annealed in an air/O2 sequence resulting in the most stoichiometric monoclinic structures. A defect sensitivity factor was proposed to explain the nature of defects whether they are deep or shallow. Mott-Schottky analysis was used to confirm the expected defect donor densities, as well as to confirm the nature of the developed oxygen vacancy defect states. The tungstate photoanodes were tested in photoelectrochemical water splitting cells and their photoconversion efficiency was demonstrated and discussed in detail.

  16. Dinuclear Face-Sharing Bi-octahedral Tungsten(VI) Core and Unusual Thermal Behavior in Complex Th Tungstates.

    PubMed

    Xiao, Bin; Gesing, Thorsten M; Robben, Lars; Bosbach, Dirk; Alekseev, Evgeny V

    2015-05-18

    Invited for the cover of this issue are the groups of Evgeny V. Alekseev at the Forchungszentrum Jülich and Thorstem M. Gesing at the University of Bremen. The image depicts the complex thorium tungstate polyanions, having a six-leafed lily cross-section, containing a rare confacial [W2 O9 ](6-) bioctahedral core. Read the full text of the article at 10.1002/chem.201500500.

  17. Assessing the performance under ionising radiation of lead tungstate scintillators for EM calorimetry in the CLAS12 Forward Tagger

    NASA Astrophysics Data System (ADS)

    Fegan, S.; Auffray, E.; Battaglieri, M.; Buchanan, E.; Caiffi, B.; Celentano, A.; Colaneri, L.; D`Angelo, A.; De Vita, R.; Dormenev, V.; Fanchini, E.; Lanza, L.; Novotny, R. W.; Parodi, F.; Rizzo, A.; Sokhan, D.; Tarasov, I.; Zonta, I.

    2015-07-01

    The well-established technology of electromagnetic calorimetry using Lead Tungstate crystals has recently seen an upheaval, with the closure of one of the most experienced large-scale suppliers of such crystals, the Bogoroditsk Technical Chemical Plant (BTCP), which was instrumental in the development of mass production procedures for PWO-II, the current benchmark for this scintillator. Obtaining alternative supplies of Lead Tungstate crystals matching the demanding specifications of contemporary calorimeter devices now presents a significant challenge to detector research and development programmes. In this paper we describe a programme of assessment carried out for the selection, based upon the performance under irradiation, of Lead Tungstate crystals for use in the Forward Tagger device, part of the CLAS12 detector in Hall B at Jefferson Lab. The crystals tested were acquired from SICCAS, the Shanghai Institute of Ceramics, Chinese Academy of Sciences. The tests performed are intended to maximise the performance of the detector within the practicalities of the crystal manufacturing process. Results of light transmission, before and after gamma ray irradiation, are presented and used to calculate dk, the induced radiation absorption coefficient, at 420 nm, the peak of the Lead Tungstate emission spectrum. Results for the SICCAS crystals are compared with identical measurements carried out on Bogoroditsk samples, which were acquired for the Forward Tagger development program before the closure of the facility. Also presented are a series of tests performed to determine the feasibility of recovering radiation damage to the crystals using illumination from an LED, with such illumination available in the Forward Tagger from a light monitoring system integral to the detector.

  18. Estimation of pharmacokinetic parameters of sodium tungstate after multiple-dose during preclinical studies in beagle dogs.

    PubMed

    Le Lamer, S; Cros, G; Serrano, J J; Piñol, C; Fernändez-Alvarez, J; Bressolle, F

    2001-12-01

    In this paper, an empirical Bayes methodology was used to determine the pharmacokinetic profile of sodium tungstate in beagle dogs after multiple oral dosing using the P-PHARM computer program. The population estimation algorithm used in P-PHARM is an EM-type procedure. Sodium tungstate was administered orally, three times a day, (i) for 11 days (21 and 42 mg/kg per day) to 18 dogs (nine males and nine females) and (ii) for 13 weeks (15, 30 and 60 mg/kg per day) to 28 dogs (14 males, 14 females). Six other dogs received the compound intravenously (25 and 50 mg/kg). Plasma concentration profiles versus time were compatible with a two-compartment model and first-order kinetics. After oral administration, F (0.61+/-0.086 vs. 0.48+/-0.093), and normalized (to a 7-mg/kg dose of sodium tungstate) AUC (54+/-8.4 vs. 41.2+/-8.5 mg/l x h), C(max) (10.6+/-0.49 vs. 8.5+/-0.57 microg/ml) and C(min) (3.04+/-0.23 vs. 2.04+/-0.22 microg/ml), were higher in male than in female dogs. However, the introduction of the gender in the final model did not contribute statistically to an improvement of the fit of the population pharmacokinetic model. In males, t(1/2) elimination averaged 3.1+/-0.56 vs. 2.6+/-0.18 h in females. The duration of treatment did not modify statistically the pharmacokinetic parameters. After repeated multiple oral administration of 15-60 mg/kg per day of sodium tungstate, tungsten plasma concentrations increased in proportion to dose. No dose-dependent changes in pharmacokinetic parameters occurred.

  19. Mechanism of Selective Ammoxidation of Propene to Acrylonitrile on Bismuth Molybdates from Quantum Mechanical Calculations

    SciTech Connect

    Pudar, Sanja; Oxgaard, Jonas; Goddard, William A

    2010-08-25

    In order to understand the mechanism for selective ammoxidation of propene to acrylonitrile by bismuth molybdates, we report quantum mechanical studies (using the B3LYP flavor of density functional theory) for the various steps involved in converting the allyl-activated intermediate to acrylonitrile over molybdenum oxide (using a Mo3O9 cluster model) under conditions adjusted to describe both high and low partial pressures of NH3 in the feed. We find that the rate-determining step in converting of allyl to acrylonitrile at all feed partial pressures is the second hydrogen abstraction from the nitrogen-bound allyl intermediate (Mo-NH-CH2-CH=CH2) to form Mo-NH=CH-CH=CH2). We find that imido groups (Mo=NH) have two roles: (1) a direct effect on H abstraction barriers, H abstraction by an imido moiety is (~8 kcal/mol) more favorable than abstraction by an oxo moiety (Mo=O), and (2) an indirect effect, the presence of spectator imido groups decreases the H abstraction barriers by an additional ~15 kcal/mol. Therefore, at higher NH3 pressures (which increases the number of Mo=NH groups), the second H abstraction barrier decreases significantly, in agreement with experimental observations that propene conversion is higher at higher partial pressures of NH3. At high NH3 pressures we find that the final hydrogen abstraction has a high barrier [ΔHfourth-ab = 31.6 kcal/mol compared to ΔHsecond-ab = 16.4 kcal/mol] due to formation of low Mo oxidation states in the final state. However, we find that reoxidizing the surface prior to the last hydrogen abstraction leads to a significant reduction of this barrier to ΔHfourth-ab = 15.9 kcal/mol, so that this step is no longer rate determining. Therefore, we conclude that reoxidation during the reaction is necessary for facile conversion of allyl to

  20. Synthesis, Acaricidal Activity, and Structure-Activity Relationships of Pyrazolyl Acrylonitrile Derivatives.

    PubMed

    Yu, Haibo; Cheng, Yan; Xu, Man; Song, Yuquan; Luo, Yanmei; Li, Bin

    2016-12-28

    A series of novel pyrazolyl acrylonitrile derivatives was designed, targeting Tetranychus cinnabarinus, and synthesized. Their structures were identified by combination of (1)H NMR, (13)C NMR, and MS spectra. The structures of compounds 18 and 19 were further confirmed by X-ray diffraction. Extensive greenhouse bioassays indicated that compound 19 exhibits excellent acaricidal activity against all developmental stages of T. cinnabarinus, which is better than the commercialized compounds cyenopyrafen and spirodiclofen. It was shown that the acute toxicity of compounds 19 to mammals is quite low. The structure-activity relationships are also discussed.

  1. Mechanical properties of products of thermocatalytic and radiolytic styrene - acrylonitrile copolymerization

    SciTech Connect

    Gadalla, A.M.; Derini, M.A.E.

    1983-12-01

    The mechanical properties of styrene (S)-acrylonitrile (AN) mixtures, ranging from 20 to 80 wt % S, polymerized by thermocatalytic and radiolytic techniques were studied. Maximum compressive and tensile strength was obtained for the mixture containing 60 wt % styrene. The hardness increased with styrene concentration up to 40 wt % and then remained nearly constant. Radiolytic copolymerization gave stronger copolymers than thermal copolymerization since irradiation enhances crosslinking. For the same composition, as the dose increases, the strength increases to a maximum and then decreases due to competing rates of crosslinking and degradation. 5 figures.

  2. Two-dimensional spectra of electron collisions with acrylonitrile and methacrylonitrile reveal nuclear dynamics

    NASA Astrophysics Data System (ADS)

    Regeta, K.; Allan, M.

    2015-05-01

    Detailed experimental information on the motion of a nuclear packet on a complex (resonant) anion potential surface is obtained by measuring 2-dimensional (2D) electron energy loss spectra. The cross section is plotted as a function of incident electron energy, which determines which resonant anion state is populated, i.e., along which normal coordinate the wave packet is launched, and of the electron energy loss, which reveals into which final states each specific resonant state decays. The 2D spectra are presented for acrylonitrile and methacrylonitrile, at the incident energy range 0.095-1.0 eV, where the incoming electron is temporarily captured in the lowest π∗ orbital. The 2D spectra reveal selectivity patterns with respect to which vibrations are excited in the attachment and de-excited in the detachment. Further insight is gained by recording 1D spectra measured along horizontal, vertical, and diagonal cuts of the 2D spectrum. The methyl group in methacrylonitrile increases the resonance width 7 times. This converts the sharp resonances of acrylonitrile into boomerang structures but preserves the essence of the selectivity patterns. Selectivity of vibrational excitation by higher-lying shape resonances up to 8 eV is also reported.

  3. Two-dimensional spectra of electron collisions with acrylonitrile and methacrylonitrile reveal nuclear dynamics

    SciTech Connect

    Regeta, K. Allan, M.

    2015-05-14

    Detailed experimental information on the motion of a nuclear packet on a complex (resonant) anion potential surface is obtained by measuring 2-dimensional (2D) electron energy loss spectra. The cross section is plotted as a function of incident electron energy, which determines which resonant anion state is populated, i.e., along which normal coordinate the wave packet is launched, and of the electron energy loss, which reveals into which final states each specific resonant state decays. The 2D spectra are presented for acrylonitrile and methacrylonitrile, at the incident energy range 0.095-1.0 eV, where the incoming electron is temporarily captured in the lowest π{sup ∗} orbital. The 2D spectra reveal selectivity patterns with respect to which vibrations are excited in the attachment and de-excited in the detachment. Further insight is gained by recording 1D spectra measured along horizontal, vertical, and diagonal cuts of the 2D spectrum. The methyl group in methacrylonitrile increases the resonance width 7 times. This converts the sharp resonances of acrylonitrile into boomerang structures but preserves the essence of the selectivity patterns. Selectivity of vibrational excitation by higher-lying shape resonances up to 8 eV is also reported.

  4. Sodium tungstate on some biochemical parameters of the parotid salivary gland of streptozotocin-induced diabetic rats: a short-term study.

    PubMed

    Leite, Mariana Ferreira; Nicolau, José

    2009-02-01

    Several studies have shown the antidiabetic properties of sodium tungstate. In this study, we evaluated some biochemical parameters of the parotid salivary gland of streptozotocin-induced diabetic rats treated with sodium tungstate solution (2 mg/ml). The studied groups were: untreated control (UC), treated control (TC), untreated diabetic (UD), and treated diabetic (TD). After 2 and 6 weeks of treatment, parotid gland was removed and total protein and sialic acid (free and total) concentration and amylase and peroxidase activities were determined. Data were compared by variance analysis and Tukey test (p < 0.05). The sodium tungstate treatment modestly decreased the glycemia of streptozotocin-induced diabetic rats. At week 2 of the study, parotid gland of diabetic rats presented a reduction of total protein concentration (55%) and an increase of amylase (120%) and peroxidase (160%) activities, free (150%) and total (170%) sialic acid concentration. No alteration in the evaluated parameters at week 6 of the study was observed. Sodium tungstate presented no significant effect in parotid gland. Our results suggest that diabetes causes initial modification in biochemical composition of parotid. However, this gland showed a recovery capacity after 6 week of the experimental time. Sodium tungstate has no effect in peripheral tissues, such as salivary glands.

  5. Efficient photo-catalytic degradation of malachite green using nickel tungstate material as photo-catalyst.

    PubMed

    Helaïli, N; Boudjamaa, A; Kebir, M; Bachari, K

    2017-01-10

    The present study focused on the evaluation of photo-catalytic and photo-electrochemical properties of the photo-catalyst based on nickel tungstate material prepared by a nitrate method through the degradation of malachite green (MG) dye's. The effect of catalyst loading and dye concentration was examined. Physico-chemical, optical, electrical, electrochemical, and photo-electrochemical properties of the prepared material were analyzed by X-ray diffraction (XRD), fourier transform-infrared spectroscopy (FTIR), BET analysis, optical reflectance diffuse (DR), scanning electron microscopy (SEM/EDX), electrical conductivity, cyclic voltammetry (CV), current intensity, mott-shottky, and nyquist. XRD revealed the formation of monoclinic structure with a small particle size. BET surface area of the sample was around 10 m(2)/g. The results show that the degradation of MG was more than 80%, achieved after 3 h of irradiation at pH 4.6 and with a catalyst loading of 75 mg. Also, it was found that the dye photo-degradation obeyed the pseudo-first order kinetic via Langmuir Hinshelwood model.

  6. Two-photon interband absorption coefficients in tungstate and molybdate crystals

    NASA Astrophysics Data System (ADS)

    Lukanin, V. I.; Karasik, A. Ya.

    2015-02-01

    Two-photon absorption (TPA) coefficients were measured in tungstate and molybdate crystals - BaWO4, KGW, CaMoO4, BaMoO4, CaWO4, PbWO4 and ZnWO4 upon different orientations of excitation polarization with respect to the crystallographic axes. Trains of 25 ps pulses with variable radiation intensities of third (349 nm) harmonics of passively mode-locked 1047 nm Nd:YLF laser were used for interband two-photon excitation of the crystals. It was suggested that in the case, when 349 nm radiation pumping energy exceeds the bandgap width (hν>Eg), the nonlinear excitation process can be considered as two-step absorption. The interband two-photon absorption in all the studied crystals induces the following one-photon absorption from the exited states, which affects the nonlinear process dynamics and leads to a hysteresis in the dependence of the transmission on the excitation intensity. This fact was taken into account under analysis of the experimental dependences of the reciprocal transmission on the excitation intensity. Laser excitation in the transparency region of the crystals caused stimulated Raman scattering (SRS) not for all the crystals studied. The measured nonlinear coefficients allowed us to explain the suppression of SRS in crystals as a result of competition between the SRS and TPA.

  7. Monitoring and Correcting for Response Changes in the CMS Lead-tungstate Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Ferri, Federico

    2012-12-01

    The CMS Electromagnetic Calorimeter (ECAL) comprises 75848 lead-tungstate scintillating crystals. Changes in the ECAL response, due to crystal radiation damage or changes in photo-detector output, are monitored in real time with a sophisticated system of lasers to allow corrections to the energy measurements to be calculated and used. The excellent intrinsic resolution of the CMS ECAL requires the monitoring system itself to be calibrated to a high precision and its stability to be controlled and understood. The components of the CMS ECAL monitoring system, and how it has evolved to include modern solid-state lasers, are described. Several physics channels are exploited to normalise the ECAL response to the changes measured by the monitoring system. These include low energy diphoton resonances, electrons from W and Z decays (using shower energy versus track momentum measurements), and the azimuthal symmetry of low energy deposits in minimum bias events. This paper describes how the monitoring system is operated, how the corrections are obtained, and the resulting ECAL performance.

  8. Investigation of the kinetics of reduction of nickel tungstate by hydrogen

    SciTech Connect

    Sridhar, S. . Dept. of Materials Science and Engineering); Du Sichen; Seetharaman, S. . Dept. of Metallurgy)

    1994-06-01

    In the present work, the kinetics of reduction of nickel tungstate, NiWO[sub 4], by hydrogen was investigated by a thermogravimetric method in the temperature range 891 to 1,141 K. The experiments were conducted under both isothermal and nonisothermal conditions. The products were examined by X-ray diffraction analysis. The results indicate that the reduction reaction proceeds in two steps; first, reduction of NiWO[sub 4] to nickel as well as WO[sub 2] and then WO[sub 2] to tungsten. From the isothermal experiments, the activation energies of the two reaction steps were calculated to be 95.3 [+-] 4.9 and 80.8 [+-] 6.4 kJ [center dot] mol[sup [minus]1], respectively. The activation energy value obtained from nonisothermal experiments for the first step is in agreement with the isothermal experiments. The values are compared with the activation energies reported in other literature for the individual oxides.

  9. Zirconium tungstate/epoxy nanocomposites: effect of nanoparticle morphology and negative thermal expansivity.

    PubMed

    Wu, Hongchao; Rogalski, Mark; Kessler, Michael R

    2013-10-09

    The ability to tailor the coefficient of thermal expansion (CTE) of a polymer is essential for mitigating thermal residual stress and reducing microcracks caused by CTE mismatch of different components in electronic applications. This work studies the effect of morphology and thermal expansivity of zirconium tungstate nanoparticles on the rheological, thermo-mechanical, dynamic-mechanical, and dielectric properties of ZrW2O8/epoxy nanocomposites. Three types of ZrW2O8 nanoparticles were synthesized under different hydrothermal conditions and their distinct properties were characterized, including morphology, particle size, aspect ratio, surface area, and CTE. Nanoparticles with a smaller particle size and larger surface area led to a more significant reduction in gel-time and glass transition temperature of the epoxy nanocomposites, while a higher initial viscosity and significant shear thinning behavior was found in prepolymer suspensions containing ZrW2O8 with larger particle sizes and aspect ratios. The thermo- and dynamic-mechanical properties of epoxy-based nanocomposites improved with increasing loadings of the three types of ZrW2O8 nanoparticles. In addition, the introduced ZrW2O8 nanoparticles did not negatively affect the dielectric constant or the breakdown strength of the epoxy resin, suggesting potential applications of ZrW2O8/epoxy nanocomposites in the microelectronic insulation industry.

  10. Investigation of oxygen vacancy and photoluminescence in calcium tungstate nanophosphors with different particle sizes

    SciTech Connect

    Li, Yezhou; Wang, Zhaofeng; Sun, Luyi; Wang, Zhilong; Wang, Shiqin; Liu, Xiong; Wang, Yuhua

    2014-02-01

    Highlights: • CaWO{sub 4} nanophosphors with different particle sizes were prepared by hydrothermal processes through controlling the concentration of surfactant. • Green emission band of oxygen vacancy in CaWO{sub 4} nanophosphor was clearly observed upon the irradiation of 350 nm excitation. • The concentration of oxygen vacancy in CaWO{sub 4} nanophosphor could be increased by reducing its size. - Abstract: Calcium tungstate (CaWO{sub 4}) nanophosphors with the particle sizes from 35 to 90 nm were synthesized by a hydrothermal process through exactly controlling the pre-treated conditions. The influence of particle size on oxygen vacancy and photoluminescence properties in CaWO{sub 4} nanophosphors was investigated and discussed. The crystal structure of the CaWO{sub 4} nanophosphors presented a certain level of distortion due to the high concentration of oxygen vacancy. Under 350 nm excitation, a clear green emission aroused by oxygen vacancy was observed. The possible luminescence processes for the matrix and oxygen vacancy were proposed. The luminescence spectra of the nanophosphors revealed that the emission and absorption intensity aroused by oxygen vacancy were both enhanced when the size is decreased. On the basis of the above results, the essential relationship between particle size and oxygen vacancy in CaWO{sub 4} nanophosphors was concluded that the concentration of oxygen vacancy could be increased by reducing its size, which was further confirmed by decay lifetimes.

  11. Tungstate-ferrates of some alkali and alkaline-earth metals

    SciTech Connect

    Gruba, A.I.; Danileiko, L.A.; Moroz, Ya.A.; Zyats, M.N.

    1988-02-01

    Tungstate-ferrates of some alkali and alkaline-earth metals with the ratio Fe:W = 2:11, the iron ions in which are found in two types of coordination, tetrahedral and octahedral, were synthesized. The similarity of the IR spectra of the compounds obtained and known compounds with the anion structure of the Keggin type with the composition M/sub X/(XZW/sub 11/O/sub 40/H/sub m/) x nH/sub 2/O indicates that their heteropolyanions are isostructural. The thermal stability of the compounds studied and the structure of the products of thermolysis depend on the charge and radius of the extrasphere cation. When the ratio of the radii of the extrasphere cation of the alkali or alkaline-earth metal to the radius of the ion of the central 3d element, appearing in the coordination sphere of the heteropolytungstates, exceeds 1.6, the most likely products of thermolysis of heteropolycompounds are the compounds of the pyrochlore family and tungsten bronzes.

  12. Subchronic Oral Toxicity of Sodium Tungstate in Sprague-Dawley Rats.

    PubMed

    McCain, Wilfred C; Crouse, Lee C B; Bazar, Mathew A; Roszell, Laurie E; Leach, Glenn J; Middleton, John R; Reddy, Gunda

    2015-01-01

    The subchronic toxicity of sodium tungstate dihydrate aqueous solution in male and female Sprague-Dawley rats was evaluated by daily oral gavage of 0, 10, 75, 125, or 200 mg/kg/d for 90 days. Measured parameters included food consumption, body weight measurements, hematology, clinical chemistry, and histopathological changes. There was a significant decrease in food consumption and body weight gain in males at 200 mg/kg/d from days 77 to 90; however, there was no effect in food consumption and body weights in females. There were no changes in the hematological and clinical parameters studied. Histopathological changes were seen in kidney of male and female and epididymis of male rats. Histopathological changes were observed in the kidneys of male and female rats dosed at 125 or 200 mg/k/d consisting of mild to severe cortical tubule basophilia in 2 high-dose groups. Histological changes in epididymides included intraluminal hypospermia with cell debris in the 200 mg/kg/d dosed male rats. Histopathological changes were observed in the glandular stomach including inflammation and metaplasia in the high-dose groups (125 or 200 mg/kg/d) of both sexes of rats. Based on histopathology effects seen in the kidneys, the lowest observable adverse effect level was 125 mg/kg/d and the no observable adverse effect level was 75 mg/kg/d in both sexes of rats for oral subchronic toxicity.

  13. Photo- and electroluminescence properties of lanthanide tungstate-doped porous anodic aluminum oxide

    NASA Astrophysics Data System (ADS)

    Staninski, Krzysztof; Piskuła, Zbigniew; Kaczmarek, Małgorzata

    2017-02-01

    A new cathode material for the potential use in light-emitting devices, based on porous anodic alumina (PAA), aluminum and ITO layers has been synthesized. Porous alumina samples with ordered pore arrays were prepared electrochemically from high purity Al sheet in H2SO4 and H3PO4. To be able to apply the matrix obtained in the electroluminescence cell, the thickness of the barrier layer of aluminum oxide was decreased by slow reduction of the anodization voltage to zero. The luminescence and electroluminescence (EL) properties of the Al2O3 matrix admixtured with Eu3+ and Tb3+ ions as well as europium and terbium tungstates, were determined. The particles of inorganic luminophore were synthesized on the walls of the matrix cylindrical nanopores in the two-step process of immersion in solutions of TbCl3 or EuCl3 and Na2WO4. The effect of the nanopores diameter and the thickness of the porous Al2O3 layer on the intensity and relative yield of electroluminescence was analyzed, the best results were obtained for 80-90 μm PAA layers with 140 nm nanopores.

  14. Lattice dynamics study of scheelite tungstates under high pressure I. BaWO4

    NASA Astrophysics Data System (ADS)

    Manjón, F. J.; Errandonea, D.; Garro, N.; Pellicer-Porres, J.; Rodríguez-Hernández, P.; Radescu, S.; López-Solano, J.; Mujica, A.; Muñoz, A.

    2006-10-01

    Room-temperature Raman scattering has been measured in barium tungstate (BaWO4) up to 16GPa . We report the pressure dependence of all the Raman active first-order phonons of the tetragonal scheelite phase ( BaWO4-I , space group I41/a ), which is stable at normal conditions. As pressure increases the Raman spectrum undergoes significant changes around 6.9GPa due to the onset of the structural phase transition to the monoclinic BaWO4-II phase (space group P21/n ). This transition is only completed above 9.5GPa . A further change in the spectrum is observed at 7.5GPa related to a scheelite-to-fergusonite transition. The scheelite, BaWO4-II , and fergusonite phases coexist up to 9.0GPa due to the sluggishness of the I→II phase transition. Further to the experimental study, we have performed ab initio lattice dynamics calculations that have greatly helped us in assigning and discussing the pressure behavior of the observed Raman modes of the three phases.

  15. Lattice dynamics study of scheelite tungstates under high pressure II. PbWO4

    NASA Astrophysics Data System (ADS)

    Manjon, F. J.; Errandonea, D.; Garro, N.; Pellicer-Porres, J.; López-Solano, J.; Rodríguez-Hernández, P.; Radescu, S.; Mujica, A.; Muñoz, A.

    2006-10-01

    Room-temperature Raman scattering has been measured in lead tungstate up to 17GPa . We report the pressure dependence of all the Raman modes of the tetragonal scheelite phase ( PbWO4-I or stolzite, space group I41/a ), which is stable at ambient conditions. Upon compression the Raman spectrum undergoes significant changes around 6.2GPa due to the onset of a partial structural phase transition to the monoclinic PbWO4-III phase (space group P21/n ). Further changes in the spectrum occur at 7.9GPa , related to a scheelite-to-fergusonite transition. This transition is observed due to the sluggishness and kinetic hindrance of the I→III transition. Consequently, we found the coexistence of the scheelite, PbWO4-III , and fergusonite phases from 7.9to9GPa , and of the last two phases up to 14.6GPa . We have performed ab initio lattice-dynamics calculations, which have greatly helped us in assigning the Raman modes of the three phases and discussing their pressure dependence. The Raman modes of the free WO4 molecule are discussed.

  16. ROLE OF TUNGSTEN IN THE AQUEOUS PHASE HYDRODEOXYGENATION OF ETHYLENE GLYCOL ON TUNGSTATED ZIRCONIA SUPPORTED PALLADIUM

    SciTech Connect

    Marin-Flores, Oscar G.; Karim, Ayman M.; Wang, Yong

    2014-11-15

    The focus of the present work was specifically on the elucidation of the role played by tungsten on the catalytic activity and selectivity of tungstated zirconia supported palladium (Pd-mWZ) for the aqueous phase hydrodeoxygenation (APHDO) of ethylene glycol (EG). Zirconia supported palladium (Pd-mZ) was used as reference. The catalysts were prepared via incipient wet impregnation and characterized using X-ray diffraction (XRD), temperature-programmed reduction (TPR), CO pulse chemisorption, CO-DRIFTS, ammonia temperature-programmed desorption (NH3-TPD) and pyridine adsorption. The presence of W results in larger Pd particles on supported Pd catalysts, i.e., 0.9 and 6.1 nm Pd particles are for Pd-mZ and Pd-mWZ, respectively. For comparison purposes, the activity of the catalytic materials used in this work was obtained using a well-defined set of operating conditions. The catalytic activity measurements show that the overall intrinsic activity of Pd particles on mWZ is 1.9 times higher than on mZ. APHDO process appears to be highly favored on Pd-mWZ whereas Pd-mZ exhibits a higher selectivity for reforming. This difference in terms of selectivity seems to be related to the high concentration of Brønsted acid sites and electron-deficient Pd species present on Pd-mWZ.

  17. Ultrasonic velocity and absorption study of binary mixtures of cyclohexane with acrylonitrile by interferometric method at different frequencies

    NASA Astrophysics Data System (ADS)

    Pawar, N. R.; Chimankar, O. P.; Bhandakkar, V. D.; Padole, N. N.

    2012-12-01

    The ultrasonic velocity (u), absorption (α), density (ρ), and viscosity (η) has been measured at different frequencies (1MHz to 10MHz) in the binary mixtures of cyclohexane with acrylonitriile over the entire range of composition at temperature 303K. Vander Waal's constant (b), adiabatic compressibility (βa), acoustic impedance (Z), molar volume (V), free length (Lf), free volume, internal pressure, intermolecular radius and relative association have been also calculated. A special application for acrylonitrile is in the manufacture of carbon fibers. These are produced by paralysis of oriented poly acrylonitrile fibers and are used to reinforce composites for high-performance applications in the aircraft, defense and aerospace industries. Other applications of acrylonitrile are in the production of fatty amines, ion exchange resins and fatty amine amides used in cosmetics, adhesives, corrosion inhibitors and water-treatment resins. Cyclohexane derivatives can be used for the synthesis of pharmaceuticals, dyes, herbicides, plant growth regulator, plasticizers, rubber chemicals, nylon, cyclamens and other organic compounds. In the view of these extensive applications of acrylonitrile and cyclohexane in the engineering process, textile and pharmaceutical industries present study provides qualitative information regarding the nature and strength of interaction in the liquid mixtures through derive parameters from ultrasonic velocity and absorption measurement.

  18. 21 CFR 177.1050 - Acrylonitrile/styrene copoly-mer modified with butadiene/styrene elastomer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... chapter as Type VI-B under conditions for use E, F, or G described in table 2 of § 176.170(c) of this.... (e) Accelerated extraction end test. The modified copolymer shall yield acrylonitrile monomer not in... room temperature. A sample of the extracting solvent is then withdrawn and analyzed for...

  19. 21 CFR 177.1050 - Acrylonitrile/styrene copoly-mer modified with butadiene/styrene elastomer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... chapter as Type VI-B under conditions for use E, F, or G described in table 2 of § 176.170(c) of this.... (e) Accelerated extraction end test. The modified copolymer shall yield acrylonitrile monomer not in... room temperature. A sample of the extracting solvent is then withdrawn and analyzed for...

  20. Synergetic effect of copper-plating wastewater as a catalyst for the destruction of acrylonitrile wastewater in supercritical water oxidation.

    PubMed

    Shin, Young Ho; Lee, Hong-shik; Lee, Young-Ho; Kim, Jaehoon; Kim, Jae-Duck; Lee, Youn-Woo

    2009-08-15

    A new supercritical water oxidation process for the simultaneous treatment of mixed wastewater containing wastewater from acrylonitrile manufacturing processes and copper-plating processes was investigated using a continuous tubular reactor system. Experiments were carried out at temperatures ranging from 400 to 600 degrees C and a pressure of 25 MPa. The residence time was fixed at 2s by changing the flow rates of feeds, depending on reaction temperature. The initial total organic carbon (TOC) concentration of the wastewaters and the O(2) concentration at the reactor inlet were kept constant at 0.49 and 0.74 mol/L. It was confirmed that the copper-plating wastewater accelerated the TOC conversion of acrylonitrile wastewater from 17.6% to 67.3% at a temperature of 450 degrees C. Moreover, copper and copper oxide nanoparticles were generated in the process of supercritical water oxidation (SCWO) of mixed wastewater. 99.8% of copper in mixed wastewater was recovered as solid copper and copper oxides at a temperature of 600 degrees C, with their average sizes ranging from 150 to 160 nm. Our study showed that SCWO provides a synergetic effect for simultaneous treatment of acrylonitrile and copper-plating wastewater. During the reaction, the oxidation rate of acrylonitrile wastewater was enhanced due to the in situ formation of nano-catalysts of copper and/or copper oxides, while the exothermic decomposition of acrylonitrile wastewater supplied enough heat for the recovery of solid copper and copper oxides from copper-plating wastewater. The synergetic effect of wastewater treatment by the newly proposed SCWO process leads to full TOC conversion, color removal, detoxification, and odor elimination, as well as full recovery of copper.

  1. Simple and rapid determination of hydrogen peroxide using phosphine-based fluorescent reagents with sodium tungstate dihydrate.

    PubMed

    Onoda, Maki; Uchiyama, Takefumi; Mawatari, Ken-Ichi; Kaneko, Kiyoko; Nakagomi, Kazuya

    2006-06-01

    A simple batch method for the fluorometric determination of hydrogen peroxide using phosphine-based fluorescent reagents has been developed. A rapid, mild and selective derivatization reaction was achieved by adding sodium tungstate dihydrate to the reaction mixture of hydrogen peroxide and a phosphine-based fluorescent reagent. When 4-diphenylphosphino-7-methylthio-2,1,3-benzoxadiazole was used as a reagent, the derivatization reaction was completed after 2 min at room temperature. The calibration curve was linear between 12.5 and 500 ng hydrogen peroxide in a 10 microL sample solution. This method is accurate and has potential for on-line applications.

  2. Cation–cation interactions and cation exchange in a series of isostructural framework uranyl tungstates

    SciTech Connect

    Balboni, Enrica; Burns, Peter C.

    2014-05-01

    treatments. The framework of these compounds is robust to cation exchange and heat. (yellow polyhedra=uranium pentagonal bipyramids; blue polyhedra=tungsten octahedral, purple balls=K; yellow balls=Na; grey balls=Tl). - Highlights: • Five isostructural uranyl tungstates compounds were synthesized hydrothermally. • The structures consist of a chains of uranium and tungstate polyhedral. • Chains are connected into a framework by cation–cation interactions. • Cation exchange does not alter the structural integrity of the compounds. • Cation exchange was successful at room temperature and mild hydrothermal conditions.

  3. Sarcoplasmic reticulum calcium ATPase interactions with decaniobate, decavanadate, vanadate, tungstate and molybdate.

    PubMed

    Fraqueza, Gil; Ohlin, C André; Casey, William H; Aureliano, Manuel

    2012-02-01

    Over the last few decades there has been increasing interest in oxometalate and polyoxometalate applications to medicine and pharmacology. This interest arose, at least in part, due to the properties of these classes of compounds as anti-cancer, anti-diabetic agents, and also for treatment of neurodegenerative diseases, among others. However, our understanding of the mechanism of action would be improved if biological models could be used to clarify potential toxicological effects in main cellular processes. Sarcoplasmic reticulum (SR) vesicles, containing a large amount of Ca(2+)-ATPase, an enzyme that accumulates calcium by active transport using ATP, have been suggested as a useful model to study the effects of oxometalates on calcium homeostasis. In the present article, it is shown that decavanadate, decaniobate, vanadate, tungstate and molybdate, all inhibited SR Ca(2+)-ATPase, with the following IC(50) values: 15, 35, 50, 400 μM and 45 mM, respectively. Decaniobate (Nb(10)), is the strongest P-type enzyme inhibitor, after decavanadate (V(10)). Atomic-absorption spectroscopy (AAS) analysis, indicates that decavanadate binds to the protein with a 1:1 decavanadate:Ca(2+)-ATPase stoichiometry. Furthermore, V(10) binds with similar extension to all the protein conformations, which occur during calcium translocation by active transport, namely E1, E1P, E2 and E2P, as analysed by AAS. In contrast, it was confirmed that the binding of monomeric vanadate (H(2)VO(4)(2-); V(1)) to the calcium pump is favoured only for the E2 and E2P conformations of the ATPase, whereas no significant amount of vanadate is bound to the E1 and E1P conformations. Scatchard plot analysis, confirmed a 1:1 ratio for decavanadate-Ca(2+)-ATPase, with a dissociation constant, k(d) of 1 μM(-1). The interaction of decavanadate V(10)O(28)(6-) (V(10)) with Ca(2+)-ATPase is prevented by the isostructural and isoelectronic decaniobate Nb(10)O(28)(6-) (Nb(10)), whereas no significant effects were

  4. Structural, microstructural and vibrational analyses of the monoclinic tungstate BiLuWO{sub 6}

    SciTech Connect

    Ait Ahsaine, H.; Taoufyq, A.; Patout, L.; Ezahri, M.; Benlhachemi, A.; Bakiz, B.; Villain, S.; Guinneton, F.; Gavarri, J.-R.

    2014-10-15

    The bismuth lutetium tungstate phase BiLuWO{sub 6} has been prepared using a solid state route with stoichiometric mixtures of oxide precursors. The obtained polycrystalline phase has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. In the first step, the crystal structure has been refined using Rietveld method: the crystal cell was resolved using monoclinic system (parameters a, b, c, β) with space group A2/m. SEM images showed the presence of large crystallites with a constant local nominal composition (BiLuW). TEM analyses showed that the actual local structure could be better represented by a superlattice (a, 2b, c, β) associated with space groups P2 or P2/m. The Raman spectroscopy showed the presence of vibrational bands similar to those observed in the compounds BiREWO{sub 6} with RE=Y, Gd, Nd. However, these vibrational bands were characterized by large full width at half maximum, probably resulting from the long range Bi/Lu disorder and local WO{sub 6} octahedron distortions in the structure. - Graphical abstract: The average structure of BiLuWO{sub 6} determined from X-ray diffraction data can be represented by A2/m space group. Experimental Electron Diffraction patterns along the [0vw] zone axes of the monoclinic structure and associated simulated patterns show the existence of a monoclinic superstructure with space group P2 or P2/m. - Highlights: • A new monoclinic BiLuWO{sub 6} phase has been elaborated from solid-state reaction. • The space group of the monoclinic disordered average structure should be A2/m. • Transmission electron microscopy leads to a superlattice with P2/m space group. • Raman spectroscopy suggests existence of local disorder.

  5. In-situ growth of zinc tungstate nanorods on graphene for enhanced photocatalytic performance

    SciTech Connect

    Rao, Lei; Xu, Junling; Ao, Yanhui; Wang, Peifang

    2014-09-15

    Graphical abstract: Graphene/ZnWO{sub 4} (G–ZnWO{sub 4}) nanorod composite photocatalysts were prepared by a simple one-step method. Namely, the reduction of graphene oxide and the growth of ZnWO{sub 4} nanorod occurred simultaneously in one single process. An enhancement in the photocatalytic activities were observed in G–ZnWO{sub 4} composites compared with pure ZnWO{sub 4} under UV light irradiation. - Highlights: • Graphene–ZnWO{sub 4} composite photocatalyst was prepared for the first time. • The as-prepared composite photocatalysts show high activity for dye degradation. • Effect of graphene amount on the photocatalytic activity was investigated. - Abstract: Graphene–zinc tungstate (G–ZnWO{sub 4}) hybrid photocatalysts were prepared by an in-situ growth method in which the reduction of graphene oxide (GO) and the growth of ZnWO{sub 4} crystals occurred simultaneously. The materials were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV–vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. The photocatalytic activity was investigated by the degradation of dye methylene blue (MB). An enhancement in the photocatalytic activity was observed for G–ZnWO{sub 4} hybrids compared with pure ZnWO{sub 4} under UV light. This improvement was attributed to the following two reasons: increased migration efficiency of photo-induced electrons and increased adsorption activity for dye molecules. The effect of the amount of graphene on the photocatalytic activity was also investigated. Results showed that there was an optimum amount of 2%.

  6. Enhanced Quantum Cutting via Li(+) Doping from a Bi(3+)/Yb(3+)-Codoped Gadolinium Tungstate Phosphor.

    PubMed

    Yadav, Ran Vijay; Yadav, Ram Sagar; Bahadur, Amresh; Singh, Akhilesh Kumar; Rai, Shyam Bahadur

    2016-11-07

    The Bi(3+)/Yb(3+)-codoped gadolinium tungstate phosphor has been synthesized through a solid-state reaction method. The structural characterization reveals the crystalline nature of the phosphor. The Bi(3+)-doped phosphor emits visible radiation from the blue to red regions upon excitation with 330 and 355 nm. The addition of Yb(3+) to the Bi(3+)-doped phosphor reduces the emission intensity in the visible region and emits an intense near-infrared (NIR) photon centered at 976 nm through a quantum-cutting (QC) phenomenon. This is due to cooperative energy transfer (CET) from the (3)P1 level of Bi(3+) to the (2)F5/2 level of Yb(3+). The presence of Li(+) ions in the Bi(3+)/Yb(3+)-codoped phosphor enhances the emission intensity in the NIR region up to by 3 times, whereas the emission intensity in the visible region is significantly reduced. The energy transfer (ET) from the Bi(3+) ions to the Yb(3+) ions is confirmed by lifetime measurements, and the lifetime for the (3)P1 level of Bi(3+) decreases continuously with increasing Yb(3+) concentration. The ET efficiency (ηETE) and corresponding QC efficiency (ηQE) are calculated and found to be 29% and 129%, respectively. The presence of Li(+) enhances the QC efficiency of the phosphor up to 43%. Thus, the Bi(3+)/Yb(3+)/Li(+)-codoped phosphor is a promising candidate to enhance the efficiency of a crystalline-silicon-based solar cell through spectral conversion.

  7. A flexible Li polymer primary cell with a novel gel electrolyte based on poly(acrylonitrile)

    NASA Astrophysics Data System (ADS)

    Akashi, Hiroyuki; Tanaka, Ko-ichi; Sekai, Koji

    The performance of a Li polymer primary cell with fire-retardant poly(acrylonitrile) (PAN)-based gel electrolytes is reported. By optimizing electrodes, electrolytes, the packaging material, and the structural design of the polymer cell, we succeeded in developing a "film-like" Li polymer primary cell with sufficient performance for practical use. The cell is flexible and less than 0.5 mm thick, which makes it suitable for a power source for some smart devices, such as an IC card. Fast cation conduction in the gel electrolyte minimizes the drop of the discharge capacity even at -20 °C. The high chemical stability of the gel electrolytes and the new packaging material allow the self-discharge rate to be limited to under 4.3%, which is equivalent to that of conventional coin-shaped or cylindrical Li-MnO 2 cells.

  8. Dielectric Relaxation Behavior of Poly(acrylonitrile-co-methacrylonitrile) Microcapsules Dispersed in a Silicone Matrix

    NASA Technical Reports Server (NTRS)

    Park, Taigyoo; OBrien, Emmett; Lizotte, Jeremy R.; Glass, Thomas E.; Ward, Thomas C.; Long, Timothy E.; Leo, Donald J.

    2006-01-01

    The dielectric relaxation behavior of poly(acrylonitrile-co-methacrylonitrile) dispersed in a cured polydimethyl siloxane (PDMS) matrix as microcapsules was investigated over multiple thermal cycles and at varying concentrations. The copolymer microcapsules contained an isopentane core. In the PDMS matrix this copolymer displayed a pronounced relaxation signal at temperatures above the glass transition of the copolymers due to Maxwell-Wagner-Sillars (MWS) relaxation. The mechanism of MWS relaxation interpreted by the Havriliak-Negami and Kohlrausch-Williams-Watts relaxation functions was found to be very similar to previous studies of neat polyacrylonitrile and its copolymer. The activation energy of the relaxation decreased over successive thermal cycling coincident with a decreasing strength of the relaxation. These observations were attributed to the decreasing concentration of nitrile groups due to intramolecular cyclizations.

  9. Synthesis, characterization, and antimicrobial activity of poly(acrylonitrile-co-methyl methacrylate) with silver nanoparticles.

    PubMed

    El-Aassar, M R; Hafez, Elsayed E; Fouda, Moustafa M G; Al-Deyab, Salem S

    2013-10-01

    Nanotechnology is expected to open some new aspects to fight and prevent diseases using atomic-scale tailoring of materials. The main aim of this study is to biosynthesize silver nanoparticles (AgNPs) using Trichoderma viride (HQ438699); the metabolite of this fungus will help either in reduction of the silver nitrate-adding active materials which will be loaded on the surface of the produced AgNPs. Poly(acrylonitrile-co-methyl methacrylate) copolymer (poly (AN-co-MMA)) was grafted with the prepared AgNPs. The poly(AN-co-MMA)/AgNPs were examined against ten different pathogenic bacterial strains, and the result was compared with another four different generic antibiotics. The produced poly(AN-co-MMA)/AgNPs showed high antibacterial activity compared with the four standard antibiotics. Moreover, the grafting of these AgNPs into the copolymer has potential application in the biomedical field.

  10. Carcinogenicity and other health effects of acrylonitrile with reference to occupational exposure limit.

    PubMed

    Sakurai, H

    2000-04-01

    The occupational exposure limit for acrylonitrile (AN) has been set by many organizations on the basis of its carcinogenicity. However, recent epidemiological studies do not afford evidence supporting the hypothesis that AN is carcinogenic to humans. Review of the 18 published cohort studies revealed that, although there is not adequate evidence in humans for carcinogenicity of AN, the possibility of a causal association between high exposure to AN and lung cancer in humans cannot be excluded. It was pointed out that carcinogenic potential of AN may be weak, if any, to humans, and the current occupational exposure limit (OEL) for AN of 2 ppm was evaluated as appropriate in view of AN exposure levels reported by epidemiological studies. Based also on review of the literature on health effects other than carcinogenicity, it was concluded that the current OEL for AN is a reasonable value and there is no need for a revision at present.

  11. Comparison of cancer risks projected from animal bioassays to epidemiologic studies of acrylonitrile-exposed workers.

    PubMed

    Ward, C E; Starr, T B

    1993-10-01

    Bioassay findings have demonstrated that acrylonitrile (ACN) is a rodent carcinogen, but the available epidemiologic evidence provides little support for the human carcinogenicity of ACN. This discordance between laboratory animal and human study findings is explored by determining post hoc the statistical power of 11 epidemiologic studies of ACN-exposed workers to detect the all-site and brain cancer excesses that are projected from rodent drinking water bioassay data. At reasonable estimates of the level and duration of exposures among the occupational cohorts, a majority of the human studies had sufficient power (> 80%) to detect the projected excesses, yet such responses were consistently absent. We conclude, subject to certain caveats, that the upper bound estimate of ACN's inhalation cancer potency of 1.5 x 10(-4) per ppm is too high to be consistent with the human ACN experience.

  12. Cytotoxic effects of acrylonitrile on human umbilical cord mesenchymal stem cells in vitro.

    PubMed

    Sun, Xiaochun; Sun, Min; Xie, Yan; Zhai, Wei; Zhu, Wei; Ma, Rui; Lu, Rongzhu; Xu, Wenrong

    2014-01-01

    The effects of acrylonitrile (ACN) on human umbilical cord mesenchymal stem cells (hUC‑MSCs) remain unknown. The proliferation, differentiation, clonogenicity and apoptosis effects of ACN and/or N‑acetyl‑L‑cysteine (NAC) on hUC‑MSCs were investigated. The results showed that although ACN at a concentration of 0.1 µg/ml did not affect proliferation or the morphology of hUC‑MSCs compared with the control, osteogenic differentiation and the positive rate of alkaline phosphatase staining in the experimental group were significantly lower compared with the control (P<0.01). All of the effects of ACN were counteracted using NAC, a typical antioxidant. Using a flow cytometry assay, it was observed that ACN induced apoptosis in hUC‑MSCs. The results indicated that the toxic effect produced by ACN on hUC‑MSCs is based on a redox mechanism.

  13. Studies of plastic crystal gel polymer electrolytes based on poly(vinylidene chloride-co-acrylonitrile)

    NASA Astrophysics Data System (ADS)

    Hambali, D.; Zainuddin, Z.; Supa'at, I.; Osman, Z.

    2016-02-01

    In this work, we have prepared systems of poly(vinylidene chloride-co-acrylonitrile) (PVdC-co-AN) based gel polymer electrolytes (GPEs) which are single plasticized-GPEs and double plasticized-GPEs. Both systems comprised plastic crystal succinonitrile SN to form plastic crystal gel polymer electrolyte (PGPE) films. The ionic conductivity of the PGPE films were analysed by means of a.c. impedance spectroscopy at room temperature as well as at the temperature range of 303 K to 353 K. The temperature dependence ionic conductivity was found to obey the VTF rule. To study the interactions among the constituents in the PGPEs, Fourier Transform Infrared Spectroscopy (FTIR) was carried out and hence, the complexation between them has also been confirmed.

  14. Prevention of acrylonitrile-induced gastrointestinal bleeding by sulfhydryl compounds, atropine and cimetidine

    SciTech Connect

    Ghanayem, B.I.; Ahmed, A.E.

    1986-07-01

    We have recently demonstrated that acrylonitrile (VCN) causes acute gastric hemorrhage and mucosal erosions. The current studies were undertaken to investigate the effects of the sulfhydryl-containing compounds, cysteine and cysteamine, the cholinergic blocking agent atropine and the histamine H2 receptor antagonist, cimetidine on the VCN-induced gastrointestinal (GI) bleeding in rats. Our data shows that pretreatment with L-cysteine, cysteamine, atropine or cimetidine has significantly protected rats against the VCN-induced GI bleeding. A possible mechanism of the VCN-induced GI bleeding may involve the interaction of VCN with critical sulfhydryl groups that, in turn, causes alteration of acetylcholine muscarinic receptors to lead to gastric hemorrhagic lesions and bleeding.

  15. Experimental study on behaviors of dielectric elastomer based on acrylonitrile butadiene rubber

    NASA Astrophysics Data System (ADS)

    An, Kuangjun; Chuc, Nguyen Huu; Kwon, Hyeok Yong; Phuc, Vuong Hong; Koo, Jachoon; Lee, Youngkwan; Nam, Jaedo; Choi, Hyouk Ryeol

    2010-04-01

    Previously, the dielectric elastomer based on Acrylonitrile Butadiene Rubber (NBR), called synthetic elastomer has been reported by our group. It has the advantages that its characteristics can be modified according to the requirements of performances, and thus, it is applicable to a wide variety of applications. In this paper, we address the effects of additives and vulcanization conditions on the overall performance of synthetic elastomer. In the present work, factors to have effects on the performances are extracted, e.g additives such as dioctyl phthalate (DOP), barium titanium dioxide (BaTiO3) and vulcanization conditions such as dicumyl peroxide (DCP), cross-linking times. Also, it is described how the performances can be optimized by using DOE (Design of Experiments) technique and experimental results are analyzed by ANOVA (Analysis of variance).

  16. Intumescent flame retardants for polymers. I. The poly(acrylonitrile)-ammonium polyphosphate-hexabromocyclododecane system

    SciTech Connect

    Ballistreri, A.; Montaudo, G.; Puglisi, C.; Scamporrino, E.; Vitalini, D.

    1983-05-01

    The influence of ammonium polyphosphate (APP) and hexabromocyclododecane (HBCD) as flame retardant (FR) on poly(acrylonitrile) (PAN) has been examined. The APP-HBCD system behaves as an intumescent flame retardant (IFR) formulation, APP being the char-forming agent and HBCD the blowing agent. A negligible gas-phase mode of action was ascertained for HBCD with this substrate. A synergism between the two FR agents was observed, corresponding to about 50% increased efficacy with respect to the separate effects of the two components. Thermogravimetry (TG), oxygen index (OI), nitrous oxide index (NOI) experiments and phosphorous residue measurements were performed to substantiate the conclusion that a condensed phase mechanism of action accounts for all the facts observed.

  17. Preparing cellulose nanocrystal/acrylonitrile-butadiene-styrene nanocomposites using the master-batch method.

    PubMed

    Ma, Libo; Zhang, Yang; Meng, Yujie; Anusonti-Inthra, Phuriwat; Wang, Siqun

    2015-07-10

    The master-batch method provides a simple way to apply cellulose nanocrystal (CNC) as reinforcement in a hydrophobic matrix. The two-stage process includes making high-CNC content (70 wt%) master batch pellets, then mixing acrylonitrile-butadiene-styrene (ABS) and maleic anhydride grafted polyethylene with the master batch pellets to prepare the ABS/CNC nanocomposite in extruder. SEM image indicates that self-assembled CNC nanosheets disperse evenly throughout the polymer matrix. The improved mechanical properties shown in tensile and DMA tests reveal that the CNC combines well with the ABS. TGA results show that the thermal degradation temperature of CNC in the master batch increases because of the protection of the ABS coating. This approach not only improves the dispersion ability and the thermal stability of CNC, but it is also applicable to use with other hydrophobic thermoplastics in industrial scale production.

  18. Covalent immobilization of glucose oxidase onto new modified acrylonitrile copolymer/silica gel hybrid supports.

    PubMed

    Godjevargova, Tzonka; Nenkova, Ruska; Dimova, Nedyalka

    2005-08-12

    New polymer/silica gel hybrid supports were prepared by coating high surface area of silica gel with modified acrylonitrile copolymer. The concentrations of the modifying agent (NaOH) and the modified polymer were varied. GOD was covalently immobilized on these hybrid supports and the relative activity and the amount of bound protein were determined. The highest relative activity and sufficient amount of bound protein of the immobilized GOD were achieved in 10% NaOH and 2% solution of modified acrylonitrile copolymer. The influence of glutaraldehyde concentration and the storage time on enzyme efficiency were examined. Glutaraldehyde concentration of 0.5% is optimal for the immobilized GOD. It was shown that the covalently bound enzyme (using 0.5% glutaraldehyde) had higher relative activity than the activity of the adsorbed enzyme. Covalently immobilized GOD with 0.5% glutaraldehyde was more stable for four months in comparison with the one immobilized on pure silica gel, hybrid support with 10% glutaraldehyde and the free enzyme. The effect of the pore size on the enzyme efficiency was studied on four types of silica gel with different pore size. Silica with large pores (CPC-Silica carrier, 375 A) presented higher relative activity than those with smaller pore size (Silica gel with 4, 40 and 100 A). The amount of bound protein was also reduced with decreasing the pore size. The effect of particle size was studied and it was found out that the smaller the particle size was, the greater the activity and the amount of immobilized enzyme were. The obtained results proved that these new polymer/silica gel hybrid supports were suitable for GOD immobilization.

  19. Perinatal toxicity and carcinogenicity studies of styrene-acrylonitrile trimer, a ground water contaminant.

    PubMed

    Behl, Mamta; Elmore, Susan A; Malarkey, David E; Hejtmancik, Milton R; Gerken, Diane K; Chhabra, Rajendra S

    2013-12-06

    Styrene acrylonitrile (SAN) trimer is a by-product in the production of acrylonitrile styrene plastics. Following a report of a childhood cancer cluster in the Toms River section of Dover Township, New Jersey, SAN Trimer was identified as one of the groundwater contaminants at Reich Farm Superfund site in the township. The contaminants from the Reich Farm site's ground water plume impacted two wells at the Parkway well field. The National Toxicology Program (NTP) studied the toxicity and carcinogenicity of SAN Trimer in rats exposed during their perinatal developmental period and adulthood. The chronic toxicity and carcinogenicity studies in F344/N rats were preceded by 7- and 18-week perinatal toxicity studies to determine the exposure concentrations for the 2-year studies. Subsequently, Fisher 344 pregnant dams were exposed to SAN Trimer containing diet at 400, 800, or 1600ppm concentrations during gestation, nursing and weaning periods of offspring followed by two year of adult exposures to both male and female pups. There was no statistically significant evidence of carcinogenic activity following SAN-Trimer exposure; however, rare neoplasms in the brain and spinal cord were observed in males and to lesser extent in female rats. These incidences were considered within the range of historical background in the animal model used in the current studies. Therefore, the presence of a few rarely occurring CNS tumors in the treated groups were not judged to be associated with the SAN Trimer exposure. The major finding was a dose-related peripheral neuropathy associated with the sciatic nerves in females and spinal nerve roots in males and females thereby suggesting that SAN Trimer is potentially a nervous system toxicant.

  20. Photoinitiated decomposition of substituted ethylenes: The photodissociation of vinyl chloride and acrylonitrile at 193 nm

    SciTech Connect

    Blank, D.A.; Suits, A.G.; Lee, Y.T.

    1997-04-01

    Ethylene and its substituted analogues (H{sub 2}CCHX) are important molecules in hydrogen combustion. As the simplest {pi}-bonded hydrocarbons these molecules serve as prototypical systems for understanding the decomposition of this important class of compounds. The authors have used the technique of photofragment translational spectroscopy at beamline 9.0.2.1 to investigate the dissociation of vinyl chloride (X=Cl) and acrylonitrile (X=CN) following absorption at 193 nm. The technique uses a molecular beam of the reactant seeded in helium which is crossed at 90 degrees with the output of an excimer laser operating on the ArF transition, 193.3 nm. The neutral photoproducts which recoil out of the molecular beam travel 15.1 cm where they are photoionized by the VUV undulator radiation, mass selected, and counted as a function of time. The molecular beam source is rotatable about the axis of the dissociation laser. The authors have directly observed all four of the following dissociation channels for both systems: (1) H{sub 2}CCHX {r_arrow} H + C{sub 2}H{sub 2}X; (2) H{sub 2}CCHX {r_arrow} X + C{sub 2}H{sub 3}; (3) H{sub 2}CCHX {r_arrow} H{sub 2} + C{sub 2}HX; and (4) H{sub 2}CCHX {r_arrow} HX + C{sub 2}H{sub 2}. They measured translational energy distributions for all of the observed channels and measured the photoionization onset for many of the photoproducts which provided information about their chemical identity and internal energy content. In the case of acrylonitrile, selective product photoionization provided the ability to discriminate between channels 2 and 4 which result in the same product mass combination.

  1. Perinatal Toxicity and Carcinogenicity Studies of Styrene –Acrylonitrile Trimer, A Ground Water Contaminant

    PubMed Central

    Behl, Mamta; Elmore, Susan A.; Malarkey, David E.; Hejtmancik, Milton R.; Gerken, Diane K.; Chhabra, Rajendra S.

    2015-01-01

    Styrene Acrylonitrile (SAN) Trimer is a by-product in the production of acrylonitrile styrene plastics. Following a report of a childhood cancer cluster in the Toms River section of Dover Township, New Jersey, SAN Trimer was identified as one of the groundwater contaminants at Reich Farm Superfund site in the township. The contaminants from the Reich Farm site’s ground water plume impacted two wells at the Parkway well field. The National Toxicology Program (NTP) studied the toxicity and carcinogenicity of SAN Trimer in rats exposed during their perinatal developmental period and adulthood. The chronic toxicity and carcinogenicity studies in F344/N rats were preceded by 7- and 18-week perinatal toxicity studies to determine the exposure concentrations for the 2-year studies. Subsequently, Fisher 344 pregnant dams were exposed to SAN Trimer containing diet at 400, 800, or 1600 ppm concentrations during gestation, nursing and weaning periods of offspring followed by two year of adult exposures to both male and female pups. There was no statistically significant evidence of carcinogenic activity following SAN-Trimer exposure; however, rare neoplasms in the brain and spinal cord were observed in males and to lesser extent in female rats. These incidences were considered within the range of historical background in the animal model used in the current studies. Therefore, the presence of a few rarely occurring CNS tumors in the treated groups were not judged to be associated with the SAN Trimer exposure. The major finding was a dose-related peripheral neuropathy associated with the sciatic nerves in females and spinal nerve roots in males and females thereby suggesting that SAN trimer is potentially a nervous system toxicant. PMID:24060431

  2. Immunoassay of haemoglobin-acrylonitrile adduct in rat as a biomarker of exposure.

    PubMed

    L Wong Yu Ting Zheng Junyu Li Carlo H Tamburro Frederick W Benz, J

    1998-01-01

    Acrylonitrile (AN) is a rat carcinogen. Human exposure may come from chemical industries and smoking. A haemoglobin adduct of acrylonitrile (Hb-AN) has been used as a biomarker of exposure by means of gas chromatography-mass spectrometry (GC-MS) analysis. We have developed specific monoclonal antibodies (Mab) to human Hb-AN and wish to report evaluation of an immunoassay in rats using an Mab that cross-reacts with rat Hb-AN. A dose response study of LD 0, 10, 50, and 90 in Sprague-Dawley rats was undertaken, with each rat receiving \\[2,3-14C]AN at 50 Ci kg-1 sc, and Hb from an aliquot of blood was taken for covalent binding analysis by liquid scintillation spectrometry and fluorescence ELISA. The dose responses of rats at 0.25, 0.5, 1.0, and 2.0 h after AN doses of 20, 50, 80, 115 mg kg-1 were compared by both methods with Hb and globin samples. Regression analysis showed a linear relationship between immunoassay and 14C-AN binding. This indicates that an antigenic form of Hb-AN may be used as a surrogate of Hb-AN adduct. The sensitivity of ELISA was tested in rats exposed for 1 h to sub-toxic doses of AN (10-1.1 mg kg-1). Quantification of Hb-AN by immunoassay was achieved by calibration with a synthetic adduct HbAN4h, a reference adduct prepared by treating rat Hb with excess AN for 4 h. ELISA and GC-MS analysis of N-terminal valine-AN in the Hb-AN adduct were compared and similar detection levels were found. This rat study appears to have validated the new immunoassay method for biomonitoring of AN exposure.

  3. Novel inducers of the envelope stress response BaeSR in Salmonella Typhimurium: BaeR is critically required for tungstate waste disposal.

    PubMed

    Appia-Ayme, Corinne; Patrick, Elaine; Sullivan, Matthew J; Alston, Mark J; Field, Sarah J; AbuOun, Manal; Anjum, Muna F; Rowley, Gary

    2011-01-01

    The RpoE and CpxR regulated envelope stress responses are extremely important for Salmonella Typhimurium to cause infection in a range of hosts. Until now the role for BaeSR in both the Salmonella Typhimurium response to stress and its contribution to infection have not been fully elucidated. Here we demonstrate stationary phase growth, iron and sodium tungstate as novel inducers of the BaeRregulon, with BaeR critically required for Salmonella resistance to sodium tungstate. We show that functional overlap between the resistance nodulation-cell division (RND) multidrug transporters, MdtA, AcrD and AcrB exists for the waste disposal of tungstate from the cell. We also point to a role for enterobactinsiderophores in the protection of enteric organisms from tungstate, akin to the scenario in nitrogen fixing bacteria. Surprisingly, BaeR is the first envelope stress response pathway investigated in S. Typhimurium that is not required for murine typhoid in either ity(S) or ity(R) mouse backgrounds. BaeR is therefore either required for survival in larger mammals such as pigs or calves, an avian host such as chickens, or survival out with the host altogether where Salmonella and related enterics must survive in soil and water.

  4. Selection and preliminary evaluation of three structures as potential solid conductors of alkali ions: Two hollandites, a titanate, and a tungstate

    NASA Technical Reports Server (NTRS)

    Singer, J.; Kautz, H. E.; Fielder, W. L.; Fordyce, J. S.

    1973-01-01

    Utilization of crystal-chemical criteria has suggested three structure types in which alkali ions may be mobile: (1)hollandites K(x)Mg(x/2)Ti(8-x/2)O16 and K(x)Al(x)Ti(8-x)O16 for 1.6 less than or equal to x less than or equal to 2.0 tungstate K2W4013; and (3) sodium hexatitante Na2Ti6O13. Each is a tunnel structure. An electrical screening procedure, previously tested on beta-alumina, has indicated high K(+) ion mobility in the hollandites and in the tungstate, but not in the hexatitanate. Specimens were polycrystalline disks near 90 percent of theoretical density. The ac conductivity calculated from dielectric and capacitance measurements has been attributed to ion mobility. This ac conductivity was up to 0.01/ohm-cm for hollandites and about 0.0001/ohm-cm for the tungstate, with approximate activation energies of 21 to 25 and 16 kJ/mole (5 to 6 and 4 kcal/mole), respectively. Electronic conduction and chemical reactivity have eliminated the tungstate from further consideration. The hollandites have been considered worthy of further development and evaluation.

  5. Biospeciation of tungsten in the serum of diabetic and healthy rats treated with the antidiabetic agent sodium tungstate.

    PubMed

    Gómez-Gómez, M Milagros; Rodríguez-Fariñas, Nuria; Cañas-Montalvo, Benito; Domínguez, Jorge; Guinovart, Joan; Cámara-Rica, Carmen

    2011-05-30

    It is known that oral administration of sodium tungstate preserves the pancreatic beta cell function in diabetic rats. Healthy and streptozotocin-induced diabetic rats were treated with sodium tungstate for one, three or six weeks, after which the species of W in serum, were analysed. An increase in serum W with treatment time was observed. After six weeks, the serum W concentration in diabetic rats (70 mg L(-1)) was about 4.6 times higher than in healthy specimens. This different behaviour was also observed for Cu accumulation, while the Zn pattern follows the contrary. The patterns observed in the retention of Cu and Zn may be attributable to a normalization of glycaemia. The speciation analysis of W was performed using 2D separations, including an immunoaffinity packing and a SEC (Size Exclusion Chromatography) column coupled to an ICP-MS (Inductively Coupled Plasma Mass Spectrometry) for elemental detection. Ultrafiltration data together with SEC-ICP-MS results proved that around 80% of serum W was bound to proteins, the diabetic rats registering a higher W content than their healthy counterparts. Most of the protein-bound W was due to a complex with albumin. An unknown protein with a molecular weight higher than 100 kDa was also found to bind a small amount of W (about 2%). MALDI-TOF (Matrix-Assisted Laser Desorption Ionization Time-of-Flight) analysis of the desalted and concentrated chromatographic fractions confirmed albumin as the main protein bound to tungstate in rat serum, while no binding to transferrin (Tf) was detected. The interaction between glutathione and W was also evaluated using standard solutions; however, the formation of complexes was not observed. The stability of the complexes between W and proteins when subjected to more stringent procedures, like those used in proteomic methodologies (denaturing with urea or SDS, boiling, sonication, acid media, reduction with β-mercaptoethanol (BME) or DTT (dithiotreitol) and alkylation with

  6. Specific recognition of guanines in non-duplex regions of nucleic acids with potassium tungstate and hydrogen peroxide

    PubMed Central

    Mao, Wuxiang; Xu, Xiaowei; He, Huan; Huang, Rong; Chen, Xi; Xiao, Heng; Yu, Zhenduo; Liu, Yi; Zhou, Xiang

    2015-01-01

    Structural features of nucleic acids have become an integral part of current biomedical research. Highly selective and readily performed methods with little toxicity that target guanosines in non-duplex nucleic acids are needed, which led us to search for an effective agent for guanosine sequencing. Treatment of DNA or RNA with potassium tungstate and hydrogen peroxide produced damaged guanosines in DNA or RNA sequences. The damaged guanosines in non-duplex DNA could be cleaved by hot piperidine. Similarly, damaged guanosines in non-duplex RNA could be cleaved by aniline acetate. We could identify structural features of nucleic acid using this strategy instead of dimethyl sulphate and Ribonuclease T1. PMID:25355517

  7. Slurry sampling ETAAS determination of sodium impurities in optical crystals of potassium titanyl phosphate and potassium gadolinium tungstate.

    PubMed

    Detcheva, Albena; Gentscheva, Galia; Havezov, Ivan; Ivanova, Elisaveta

    2002-09-12

    Slurry sampling ETAAS was successfully applied to the determination of sodium impurities in single crystals of potassium titanyl phosphate (KTP) and potassium gadolinium tungstate (KGW). Platform atomizers coated with titanium carbide or tungsten carbide, respectively, were used in order to avoid sensitivity drift due to the changes in the composition and the structure of the platform surface. Calibration curves with aqueous standards could be used for the KGW slurry (no matrix effects); analysis of KTP slurry required the standard additions method. The precision of the proposed method was better than 3% R.S.D. The results obtained by the present method showed a good agreement with those obtained by an independent method-flame AAS after sample digestion, which is an evidence for the good accuracy of the proposed method.

  8. The use of a sodium tungstate developer markedly improves the electron microscopic localization of zinc by the Timm method.

    PubMed

    Seress, L; Gallyas, F

    2000-07-31

    The Timm's sulfide-silver method is frequently used for the demonstration of the mossy fiber bundle or sprouted mossy fibers in the normal or epileptic hippocampal dentate gyrus. Under the light microscope the results are excellent, but the ultrastructure is considerably impaired and the silver grains produced are too large as compared to the sizes of intra-synaptic structures. The present study was meant to test a series of physical developers containing, instead of gum arabic, sodium tungstate as protective colloid. One of them left the ultrastructure fairly intact and produced small, round silver grains, making it possible to precisely locate zinc in mossy terminals. With this method, it could be demonstrated that zinc is contained inside synaptic vesicles in the resting axon terminals of granule cells. As a consequence of prolonged sodium sulfide perfusion, zinc is released from synaptic vesicles and enters the synaptic cleft.

  9. Luminescence properties of alkali europium double tungstates and molybdates AEuM/sub 2/O/sub 8/

    SciTech Connect

    van Vliet, J.P.M.; Blasse, G.; Brixner, L.H.

    1988-09-01

    The luminescence properties of AEuW/sub 2/O/sub 8/ and AEuMo/sub 2/O/sub 8/ (A/sup +/ = alkali metal ion) are reported. These properties depend on the crystal structure type. Vibronic coupling between the electronic transitions of the Eu/sup 3 +/ ion and the vibrational transitions of the tungstate of molybdate group is observed. The concentration quenching of the Eu/sup 3 +/ luminescence is weak. The analysis of the Eu/sup 3 +/ decay curves points to energy migration and shows the two-dimensionality of the Eu/sup 3 +/ sublattice in KEuMo/sub 2/O/sub 8/ and the one-dimensionality of the Eu/sup 3 +/ sublattice in KEuW/sub 2/O/sub 8/ and RbEuW/sub 2/O/sub 8/.

  10. Pharmacokinetics of radiolabeled tungsten ((188)W) in male Sprague-Dawley rats following acute sodium tungstate inhalation.

    PubMed

    Radcliffe, Pheona M; Leavens, Teresa L; Wagner, Dean J; Olabisi, Ayodele O; Struve, Melanie F; Wong, Brian A; Tewksbury, Earl; Chapman, Gail D; Dorman, David C

    2010-01-01

    Aerosol cloud formation may occur when certain tungsten munitions strike hard targets, placing military personnel at increased risk of exposure. Although the pharmacokinetics of various forms of tungsten have been studied in animals following intravenous and oral administration, tungsten disposition following inhalation remains incompletely characterized. The objective of this study was to evaluate the pharmacokinetics of inhaled tungstate (WO(4)) in rats. Male, 16-wk-old, CD rats (n = 7 rats/time point) underwent a single, 90-min, nose-only exposure to an aerosol (mass median aerodynamic diameter [MMAD] 1.50 mum ) containing 256 mg W/m(3) as radiolabeled sodium tungstate (Na(2)(188)WO(4)). (188)W tissue concentrations were determined at 0, 1, 3, 7, and 21 days postexposure by gamma spectrometry. The thyroid and urine had the highest (188)W levels postexposure, and urinary excretion was the primary route of (188)W elimination. The pharmacokinetics of tungsten in most tissues was best described with a two-compartment pharmacokinetic model with initial phase half-lives of approximately 4 to 6 h and a longer terminal phase with half-lives of approximately 6 to 67 days. The kidney, adrenal, spleen, femur, lymph nodes, and brain continued to accumulate small amounts of tungsten as reflected by tissue:blood activity ratios that increased throughout the 21-day period. At day 21 all tissues except the thyroid, urine, lung, femur, and spleen had only trace levels of (188)W. Data from this study can be used for development and refinement of pharmacokinetic models for tungsten inhalation exposure in environmental and occupational settings.

  11. Pre-irradiation grafting of acrylonitrile onto chitin for adsorption of arsenic in water

    NASA Astrophysics Data System (ADS)

    Hanh, Truong Thi; Huy, Ha Thuc; Hien, Nguyen Quoc

    2015-01-01

    Radiation-induced grafting is an effective technique for preparation of novel materials. In this study, partially deacetylated chitin with deacetylation degree (DDA) of about 40% was graft-copolymerized with acrylonitrile (AN) by a γ-ray pre-irradiation method. The maximal grafting degree of AN onto pre-irradiated chitin at 25±1.2 kGy was 114% for AN concentration in dimethylformamide of 40% (v/v) at 70 °C for 8 h. The mixture ratio of 0.1 N NH2OH·HCl to 0.1 N NaOH was selected to be 7:3 (v/v) for amidoxime conversion of cyano-groups on grafted chitin (Chi-g-AN). The characteristics of modified chitin were depicted by the FT-IR spectra, BET area and SEM images. Adsorption equilibrium of As(III) onto Chi-g-AN converted amidoxime (Chi-g-AN-C) fits with the Langmuir model and the maximal adsorption capacity was 19.724 mg/g. The break-through times of As(III) on Chi-g-AN-C in column adsorption experiments increased with the increase in bed depths.

  12. 2-Cyanoethylmercapturic acid (CEMA) in the urine as a possible indicator of exposure to acrylonitrile.

    PubMed

    Jakubowski, M; Linhart, I; Pielas, G; Kopecký, J

    1987-12-01

    The aim of this study was to evaluate the efficiency of metabolism of acrylonitrile (ACN) to N-acetyl-S-(2-cyanoethyl)-L-cysteine (2-cyanoethylmercapturic acid (CEMA) in man, the kinetics of excretion of this metabolite, and the relation between the uptake of ACN and the excretion of CEMA in urine. Eleven experiments were performed on six male volunteers exposed for eight hours to ACN at concentrations of 5 or 10 mg/m3. The average respiratory retention of ACN was 52% and 21.8% of the retained ACN was excreted as CEMA in urine. Elimination approximated first order kinetics with half life of about eight hours. The best correlation between the uptake of ACN in the lungs and excretion of CEMA in urine was obtained when the concentration of CEMA in the urine fraction, collected between the sixth and eighth hours after the beginning of exposure, was adjusted to a specific gravity of 1.016 (y = 0.33x-13.3; r = 0.83). CEMA excretion, however, cannot be used as an individual index of exposure.

  13. Preirradiation grafting of acrylonitrile onto polypropylene monofilament for biomedical applications: I. Influence of synthesis conditions

    NASA Astrophysics Data System (ADS)

    Gupta, Bhuvanesh; Jain, Rachna; Anjum, Nishat; Singh, Harpal

    2006-01-01

    Graft polymerization of acrylonitrile onto polypropylene (PP) monofilament was carried out by a preirradiation method using a 60Co gamma radiation source. The influence of synthesis conditions, such as preirradiation dose, reaction time, monomer concentration, reaction temperature and additives was determined. The grafting was considerably influenced by the instantaneous swelling of the monofilament in the reaction mixture during the course of the grafting process. The order of dependence of the rate of grafting on monomer concentration was found to be 1.04. The nature of the medium of the grafting and the additives had profound influence over the grafting reaction. The accelerative effects of solvent medium on the grafting were higher in methylethyl ketone (MEK) and dimethylformamide (DMF) as compared to methanol. At the same time, partial replacement of DMF with water led to acceleration in the grafting with peak maxima at 20% solvent composition. The addition of a small amount of sulfuric acid to the reaction mixture also resulted in a significant acceleration of the degree of grafting.

  14. Design and testing of digitally manufactured paraffin Acrylonitrile-butadiene-styrene hybrid rocket motors

    NASA Astrophysics Data System (ADS)

    McCulley, Jonathan M.

    This research investigates the application of additive manufacturing techniques for fabricating hybrid rocket fuel grains composed of porous Acrylonitrile-butadiene-styrene impregnated with paraffin wax. The digitally manufactured ABS substrate provides mechanical support for the paraffin fuel material and serves as an additional fuel component. The embedded paraffin provides an enhanced fuel regression rate while having no detrimental effect on the thermodynamic burn properties of the fuel grain. Multiple fuel grains with various ABS-to-Paraffin mass ratios were fabricated and burned with nitrous oxide. Analytical predictions for end-to-end motor performance and fuel regression are compared against static test results. Baseline fuel grain regression calculations use an enthalpy balance energy analysis with the material and thermodynamic properties based on the mean paraffin/ABS mass fractions within the fuel grain. In support of these analytical comparisons, a novel method for propagating the fuel port burn surface was developed. In this modeling approach the fuel cross section grid is modeled as an image with white pixels representing the fuel and black pixels representing empty or burned grid cells.

  15. Cobalt-Mediated Radical Polymerization of Vinyl Acetate and Acrylonitrile in Supercritical Carbon Dioxide.

    PubMed

    Kermagoret, Anthony; Chau, Ngoc Do Quyen; Grignard, Bruno; Cordella, Daniela; Debuigne, Antoine; Jérôme, Christine; Detrembleur, Christophe

    2016-03-01

    Cobalt-mediated radical polymerization (CMRP) of vinyl acetate (VAc) is successfully achieved in supercritical carbon dioxide (scCO2). CMRP of VAc is conducted using an alkyl-cobalt(III) adduct that is soluble in scCO2. Kinetics studies coupled to visual observations of the polymerization medium highlight that the melt viscosity and PVAc molar mass (Mn) are key parameters that affect the CMRP in scCO2. It is noticed that CMRP is controlled for Mn up to 10 000 g mol(-1), but loss of control is progressively observed for higher molar masses when PVAc precipitates in the polymerization medium. Low molar mass PVAc macroinitiator, prepared by CMRP in scCO2, is then successfully used to initiate the acrylonitrile polymerization. PVAc-b-PAN block copolymer is collected as a free flowing powder at the end of the process although the dispersity of the copolymer increases with the reaction time. Although optimization is required to decrease the dispersity of the polymer formed, this CMRP process opens new perspectives for macromolecular engineering in scCO2 without the utilization of fluorinated comonomers or organic solvents.

  16. Adsorptive removal of acrylonitrile by commercial grade activated carbon: kinetics, equilibrium and thermodynamics.

    PubMed

    Kumar, Arvind; Prasad, B; Mishra, I M

    2008-04-01

    The potential of activated carbons--powdered (PAC) and granular (GAC), for the adsorption of acrylonitrile (AN) at different initial AN concentrations (50

  17. An investigation on chloroprene-compatibilized acrylonitrile butadiene rubber/high density polyethylene blends.

    PubMed

    Ahmed, Khalil

    2015-11-01

    Blends of acrylonitrile butadiene rubber/high density polyethylene (NBR/HDPE) compatibilized by Chloroprene rubber (CR) were prepared. A fixed quantity of industrial waste such as marble waste (MW, 40 phr) was also included. The effect of the blend ratio and CR on cure characteristics, mechanical and swelling properties of MW-filled NBR/HDPE blends was investigated. The results showed that the MW-filled NBR/HDPE blends revealed an increase in tensile strength, tear, modulus, hardness and cross-link density for increasing weight ratio of HDPE. The minimum torque (M L) and maximum torque (M H) of blends increased with increasing weight ratio of HDPE while scorch time (ts2) cure time (tc90), compression set and abrasion loss of blends decreased with increasing weight ratio of HDPE. The blends also showed a continuous reduction in elongation at break as well as swelling coefficient with increasing HDPE amount in blends. MW filled blends based on CR provided the most encouraging balance values of overall properties.

  18. Modification of fiber properties through grafting of acrylonitrile to rayon by chemical and radiation methods.

    PubMed

    Kaur, Inderjeet; Sharma, Neelam; Kumari, Vandna

    2013-11-01

    Fibrous properties of rayon has been modified through synthesis of graft copolymers of rayon with acrylonitrile (AN) by chemical method using ceric ammonium nitrate (CAN/HNO3) as a redox initiator and gamma radiation mutual method. Percentage of grafting (Pg) was determined as a function of initiator concentration, monomer concentration, irradiation dose, temperature, time of reaction and the amount of water. Maximum percentage of grafting (160.01%) using CAN/HNO3 was obtained at [CAN] = 22.80 × 10(-3) mol/L, [HNO3] = 112.68 × 10(-2) mol/L and [AN] = 114.49 × 10(-2) mol/L in 20 mL of water at 45 °C within 120 min while in case of gamma radiation method, maximum Pg (90.24%) was obtained at an optimum concentration of AN of 76.32 × 10(-2) mol/L using 10 mL of water at room temperature with total dose exposure of 3.456 kGy/h. The grafted fiber was characterized by FTIR, SEM, TGA and XRD studies. Swelling behavior of grafted rayon in different solvents such as water, methanol, ethanol, DMF and acetone was studied and compared with the unmodified rayon. Dyeing behavior of the grafted fiber was also investigated.

  19. Hg(II) adsorption using amidoximated porous acrylonitrile/itaconic copolymers prepared by suspended emulsion polymerization.

    PubMed

    Ji, Chunnuan; Qu, Rongjun; Chen, Hou; Liu, Xiguang; Sun, Changmei; Ma, Caixia

    2016-01-01

    Initially, porous acrylonitrile/itaconic acid copolymers (AN/IA) were prepared by suspended emulsion polymerization. Successively, the cyano groups in AN/IA copolymers were converted to amidoxime (AO) groups by the reaction with hydroxylamine hydrochloride. The structures of the AN/IA and amidoximated AN/IA (AO AN/IA) were characterized by infrared spectroscopy, scanning electron microscopy, and porous structural analysis. The adsorption properties of AO AN/IA for Hg(II) were investigated. The results show that AO AN/IA has mesopores and macropores, and surface area of 11.71 m(2) g(-1). It was found that AO AN/IA has higher affinity for Hg(II), with the maximum adsorption capacity of 84.25 mg g(-1). The AO AN/IA also can effectively remove Hg(II) from different binary metal ion mixture systems. Furthermore, the adsorption kinetics and thermodynamics were studied in detail. The adsorption equilibrium can quickly be achieved in 4 h determined by an adsorption kinetics study. The adsorption process is found to belong to the second-order model, and can be described by the Freundlich model.

  20. The physical and degradation properties of starch-graft-acrylonitrile/carboxylated nitrile butadiene rubber latex films.

    PubMed

    Misman, M A; Azura, A R; Hamid, Z A A

    2015-09-05

    Starch-graft-acrylonitrile (ANS) is compounded with carboxylated nitrile butadiene rubber (XNBR) latex. The control XNBR and the ANS/XNBR latex films were prepared through a coagulant dipping process. The films were subjected to ageing and soil burial procedures. For the biodegradation experiment, the surface of the film was assessed after the 2nd, 4th and 8th week of soil burial. The ANS, XNBR, and ANS/XNBR colloidal stability were determined with a Malvern Zetasizer. For the dipped latex films, the mechanical, morphological and thermal properties were analyzed. The addition of ANS into the XNBR latex increased the stability of the colloidal dispersions, decreased the latex film tensile strength, but increased the elongation at break due to the bipolar interaction of the ANS and XNBR particles. The ANS/XNBR latex films aged faster than the control films while the morphological analysis showed the existence of a starch crystal region and the formation of microbial colonies on the surfaces of the films. Based on the TGA-DTA curves, a higher ΔT was observed for the ANS/XNBR latex films signifying high thermal energy needed for the film to thermally degrade.

  1. Nanostructured synthetic carbons obtained by pyrolysis of spherical acrylonitrile/divinylbenzene copolymers.

    PubMed

    Malik, Danish J; Trochimczuk, Andrzej W; Ronka, Sylwia

    2012-01-01

    Novel carbon materials have been prepared by the carbonization of acrylonitrile (AN)/divinylbenzene (DVB) suspension porous copolymers having nominal crosslinking degrees in the range of 30-70% and obtained in the presence of various amounts of porogens. The carbons were obtained by pre-oxidation of AN/DVB copolymers at 250-350°C in air followed by pyrolysis at 850°C in an N(2) atmosphere. Both processes were carried out in one furnace and the resulting material needed no further activation. Resulting materials were characterized by XPS and low temperature nitrogen adsorption/desorption. It was found that maximum pyrolysis yield was ca. 50% depending on the oxidation conditions but almost independent of the crosslinking degree of the polymers. Porous structure of the carbons was characterized for the presence of micropores and macropores, when obtained from highly crosslinked polymers or polymers oxidized at 350°C and meso- and macropores in all other cases. The latter pores are prevailing in the structure of carbons obtained from less porous AN/DVB resins. Specific surface area (BET) of polymer derived carbons can vary between 440 m(2)/g and 250 m(2)/g depending on the amount of porogen used in the synthesis of the AN/DVB polymeric precursors.

  2. An investigation on chloroprene-compatibilized acrylonitrile butadiene rubber/high density polyethylene blends

    PubMed Central

    Ahmed, Khalil

    2014-01-01

    Blends of acrylonitrile butadiene rubber/high density polyethylene (NBR/HDPE) compatibilized by Chloroprene rubber (CR) were prepared. A fixed quantity of industrial waste such as marble waste (MW, 40 phr) was also included. The effect of the blend ratio and CR on cure characteristics, mechanical and swelling properties of MW-filled NBR/HDPE blends was investigated. The results showed that the MW-filled NBR/HDPE blends revealed an increase in tensile strength, tear, modulus, hardness and cross-link density for increasing weight ratio of HDPE. The minimum torque (ML) and maximum torque (MH) of blends increased with increasing weight ratio of HDPE while scorch time (ts2) cure time (tc90), compression set and abrasion loss of blends decreased with increasing weight ratio of HDPE. The blends also showed a continuous reduction in elongation at break as well as swelling coefficient with increasing HDPE amount in blends. MW filled blends based on CR provided the most encouraging balance values of overall properties. PMID:26644917

  3. Differential response to acrylonitrile toxicity in rat primary astrocytes and microglia

    PubMed Central

    Caito, Samuel; Yu, Yingchun; Aschner, Michael

    2016-01-01

    Acrylonitrile (ACN) is a widely used chemical in the production of plastics, resins, nitriles, acrylic fibers, synthetic rubber and acrylamide. While acute high level exposures to ACN are known to be lethal, chronic low dose exposures causes glial cell tumors in rats. Recently, these glial tumors have been characterized as microglial in origin. While effects of ACN on astrocytes, the more numerous glial cell, have been investigated, the effects on microglia are unknown. This study was conducted to compare the responses of astrocytes and microglia to ACN treatment in vitro to address differential sensitivities and adaptive responses to this toxic chemical. Cell viability, ACN uptake, lipid peroxidation byproducts (F2-isoprostanes), glutathione (GSH) levels and expression of NF-E2-related factor 2 (Nrf2) were evaluated in primary rat microglia and astrocytes following ACN treatment. Results indicate that microglia are more sensitive to ACN than astrocytes, accumulating less ACN while demonstrating higher F2-isoprostane levels. GSH levels were up-regulated in both cell types, as a protective mechanism against ACN-induced oxidative stress, while Nrf2 levels were only induced in microglia. Our data suggest that microglia and astrocytes exhibit different sensitivities and responses to ACN, which are linked to the intracellular thiol status inherent to each of these cell types. PMID:23628792

  4. Induction of oxidative stress and oxidative damage in rat glial cells by acrylonitrile.

    PubMed

    Kamendulis, L M; Jiang, J; Xu, Y; Klaunig, J E

    1999-08-01

    Chronic treatment of rats with acrylonitrile (ACN) resulted in a dose-related increase in glial cell tumors (astrocytomas). While the exact mechanism(s) for ACN-induced carcinogenicity remains unresolved, non-genotoxic and possibly tumor promotion modes of action appear to be involved in the induction of glial tumors. Recent studies have shown that ACN induced oxidative stress selectively in rat brain in a dose-responsive manner. The present study examined the ability of ACN to induce oxidative stress in a rat glial cell line, a target tissue, and in cultured rat hepatocytes, a non-target tissue of ACN carcinogenicity. Glial cells and hepatocytes were treated for 1, 4 and 24 h with sublethal concentrations of ACN. ACN induced an increase in oxidative DNA damage, as evidenced by increased production of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) in glial cells but not in rat hepatocytes. Hydroxyl radical formation following ACN treatment was also selectively increased in glial cells. Following 1 and 4 h of ACN exposure, the levels of the non-enzymatic antioxidant glutathione, as well as the activities of the enzymatic antioxidants catalase and superoxide dismutase were significantly decreased in the rat glial cells. Lipid peroxidation and the activity of glutathione peroxidase were not affected by ACN treatment in rat glial cells. No changes in any of these biomarkers of oxidative stress were observed in hepatocytes treated with ACN. These data indicate that ACN selectively induced oxidative stress in rat glial cells.

  5. Weight-of-the-evidence review of acrylonitrile reproductive and developmental toxicity studies.

    PubMed

    Neal, Barbara H; Collins, James J; Strother, Dale E; Lamb, James C

    2009-01-01

    Risk assessment of acrylonitrile (AN) toxicity to humans has focused on potential carcinogenicity and acute toxicity. Epidemiological studies from China reported reproductive and developmental effects in AN workers, including infertility, birth defects, and spontaneous abortions. A weight-of-the-evidence (WoE) evaluation of the AN database assessed study strength, characterized toxicity, and identified no-observed-adverse-effect levels (NOAELs). The epidemiological studies do not demonstrate causality and are not sufficiently robust to be used for risk assessment. Rodent developmental studies showed fetotoxicity and malformations at maternally toxic levels; there was no unique developmental susceptibility. NOAELs for oral and inhalation exposures were 10 mg/kg/day and 12 ppm (6 h/day), respectively. Drinking-water and inhalation reproductive toxicity studies showed no clear effects on reproductive performance or fertility. Maternally toxic concentrations caused decreased pup growth. The drinking-water reproductive NOAEL was 100 ppm (moderate confidence due to study limitations). The inhalation exposure reproductive and neonatal toxicity high confidence NOAEL was 45 ppm (first generation 90 ppm) (6 h/day). The inhalation reproductive toxicity study provides the most robust data for risk assessment. Based on the WoE evaluation, AN is not expected to be a developmental or reproductive toxicant in the absence of significant maternal toxicity.

  6. Design, synthesis, and anti-melanogenic effects of (E)-2-benzoyl-3-(substituted phenyl)acrylonitriles

    PubMed Central

    Yun, Hwi Young; Kim, Do Hyun; Son, Sujin; Ullah, Sultan; Kim, Seong Jin; Kim, Yeon-Jeong; Yoo, Jin-Wook; Jung, Yunjin; Chun, Pusoon; Moon, Hyung Ryong

    2015-01-01

    Background Tyrosinase is the most prominent target for inhibitors of hyperpigmentation because it plays a critical role in melaninogenesis. Although many tyrosinase inhibitors have been identified, from both natural and synthetic sources, there remains a considerable demand for novel tyrosinase inhibitors that are safer and more effective. Methods (E)-2-Benzoyl-3-(substituted phenyl)acrylonitriles (BPA analogs) with a linear β-phenyl-α,β-unsaturated carbonyl scaffold were designed and synthesized as potential tyrosinase inhibitors. We evaluated their effects on cellular tyrosinase activity and melanin biosynthesis in murine B16F10 melanoma cells and their ability to inhibit mushroom tyrosinase activity. Results BPA analogs exhibited inhibitory activity against mushroom tyrosinase. In particular, BPA13 significantly suppressed melanin biosynthesis and inhibited cellular tyrosinase activity in B16F10 cells in a dose-dependent manner. A docking study revealed that BPA13 had higher binding affinity for tyrosinase than kojic acid. Conclusion BPA13, which possesses a linear β-phenyl-α,β-unsaturated carbonyl scaffold, is a potential candidate skin-whitening agent and treatment for diseases associated with hyperpigmentation. PMID:26347064

  7. Hesperidin, an antioxidant flavonoid, prevents acrylonitrile-induced oxidative stress in rat brain.

    PubMed

    El-Sayed, El-Sayed M; Abo-Salem, Osama M; Abd-Ellah, Mohamed F; Abd-Alla, Gamil M

    2008-01-01

    Acrylonitrile (ACN) is a volatile, toxic liquid used as a monomer in the manufacture of synthetic rubber, styrene plastics, acrylic fiber, and adhesives. ACN is a potent neurotoxin. A role for free radical mediated lipid peroxidation in the toxicity of ACN has been suggested. We examined the ability of hesperidin, an antioxidant flavonoid, to attenuate ACN-induced alterations in lipid peroxidation in rat brains. The daily oral administration of ACN to male albino rats in a dose of 50 mg/kg bwt for a period of 28 days produced a significant elevation in brain lipid peroxides measured as malondialdehyde (MDA) amounting to 107%, accompanied by a marked decrease in brain-reduced glutathione (GSH) content reaching 63%. In addition, ACN administration resulted in significant reductions in the enzymatic antioxidant parameters of brain; superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione-S-transferase (GST) recording 43%, 64%, 52%, and 43%, respectively. On the other hand, pretreatment with hesperidin and its coadministration with ACN once daily in a dose of 200 mg/kg bwt i.p. for 28 days ameliorated ACN-induced alterations in brain lipid peroxidation. These results suggest that hesperidin may have a beneficial role against ACN-induced oxidative stress in the brain; an effect that is mainly attributed to the antioxidant property of hesperidin.

  8. Effects of acrylonitrile on lymphocyte lipid rafts and RAS/RAF/MAPK/ERK signaling pathways.

    PubMed

    Li, X J; Li, B; Huang, J S; Shi, J M; Wang, P; Fan, W; Zhou, Y L

    2014-09-26

    Acrylonitrile (ACN) is a widely used chemical in the production of plastics, resins, nitriles, acrylic fibers, and synthetic rubber. Previous epidemiological investigations and animal studies have confirmed that ACN affects the lymphocytes and spleen. However, the immune toxicity mechanism is unknown. Lipid rafts are cell membrane structures that are rich in cholesterol and involved in cell signal transduction. The B cell lymophoma-10 (Bcl10) protein is a joint protein that is important in lymphocyte development and signal pathways. This study was conducted to examine the in vitro effects of ACN. We separated lipid rafts, and analyzed Bcl10 protein and caveolin. Western blotting was used to detect mitogen-activated protein kinase (MAPK) and phosphorylated MAPK levels. The results indicated that with increasing ACN concentration, the total amount of Bcl10 remained stable, but was concentrated mainly in part 4 to part 11 in electrophoretic band district which is high density in gradient centrifugation. Caveolin-1 was evaluated as a lipid raft marker protein; caveolin-1 content and position were relatively unchanged. Western blotting showed that in a certain range, MAPK protein was secreted at a higher level. At some ACN exposure levels, MAPK protein secretion was significantly decreased compared to the control group (P < 0.05). These results indicate that ACN can cause immune toxicity by damaging lipid raft structures, causing Bcl10 protein and lipid raft separation and restraining Ras-Raf-MAPK-extracellular signal-regulated kinase signaling pathways.

  9. Acrylonitrile induced apoptosis via oxidative stress in neuroblastoma SH-SY5Y cell.

    PubMed

    Watcharasit, Piyajit; Suntararuks, Sumitra; Visitnonthachai, Daranee; Thiantanawat, Apinya; Satayavivad, Jutamaad

    2010-10-01

    Acrylonitrile (ACN) is a chemical that is widely used in the production of plastics, acrylic fibers, synthetic rubbers and resins. It has been reported that ACN can cause oxidative stress, a condition which is well recognized as an apoptotic initiator; however, information regarding ACN-induced apoptosis is limited. This present study investigated whether ACN induces apoptosis in human neuroblastoma SH-SY5Y cells, and whether its apoptotic induction involves oxidative stress. The results showed that ACN caused activation of caspase-3, a key enzyme involved in apoptosis, in a dose- and time-dependent manner. Detection of sub-G1 apoptotic cell death and apoptotic nuclear condensation revealed that ACN caused an increase in the number of apoptotic cells indicating ACN induces apoptosis in SH-SY5Y cells. ACN dose- and time-dependently increased the level of proapoptotic protein, Bax. Pretreatment with N-acetylcysteine (NAC), an antioxidant, attenuated caspase-3 activation by ACN, as evidenced by a reduction in proteolysis of PARP, a known caspase-3 substrate, as well as in the number of sub-G1 apoptotic cells. Moreover, induction of Bax by ACN was abolished by NAC. Taken together, the results indicate that ACN induces apoptosis in SH-SY5Y cells via a mechanism involving generation of oxidative stress-mediated Bax induction.

  10. Differential response to acrylonitrile toxicity in rat primary astrocytes and microglia.

    PubMed

    Caito, Samuel; Yu, Yingchun; Aschner, Michael

    2013-07-01

    Acrylonitrile (ACN) is a widely used chemical in the production of plastics, resins, nitriles, acrylic fibers, synthetic rubber and acrylamide. While acute high level exposures to ACN are known to be lethal, chronic low dose exposures causes glial cell tumors in rats. Recently, these glial tumors have been characterized as microglial in origin. While effects of ACN on astrocytes, the more numerous glial cell, have been investigated, the effects on microglia are unknown. This study was conducted to compare the responses of astrocytes and microglia to ACN treatment in vitro to address differential sensitivities and adaptive responses to this toxic chemical. Cell viability, ACN uptake, lipid peroxidation byproducts (F2-isoprostanes), glutathione (GSH) levels and expression of NF-E2-related factor 2 (Nrf2) were evaluated in primary rat microglia and astrocytes following ACN treatment. Results indicate that microglia are more sensitive to ACN than astrocytes, accumulating less ACN while demonstrating higher F2-isoprostane levels. GSH levels were up-regulated in both cell types, as a protective mechanism against ACN-induced oxidative stress, while Nrf2 levels were only induced in microglia. Our data suggest that microglia and astrocytes exhibit different sensitivities and responses to ACN, which are linked to the intracellular thiol status inherent to each of these cell types.

  11. Differential inflammatory response to acrylonitrile in rat primary astrocytes and microglia.

    PubMed

    Caito, Samuel W; Yu, Yingchun; Aschner, Michael

    2014-05-01

    Acrylonitrile (ACN) is extensively used in the production of plastics, resins, nitriles and other commercial products. Chronic low dose exposures to ACN cause glial cell tumors in rats, primarily microglial in origin. Recently it has been determined that astrocytes and microglia respond to ACN-induced oxidative stress differently, which may influence cell-specific activation of inflammatory and carcinogenic pathways. This study was conducted to compare the inflammatory responses of astrocytes and microglia following ACN treatment in vitro to further characterize differential sensitivities and adaptive responses in these cell types. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and p53 levels were measured along with levels of 12 different cytokines and chemokines in primary rat microglia and astrocytes. Additionally levels of cytochrome P450 2E1 (CYP2E1) were measured to evaluate the cells' ability to metabolize ACN. Results indicate that while both cells upregulate p53 and NF-κB, the cytokines and chemokines produced differ between the cell types. Astrocytes, but not microglia, upregulated CYP2E1 in response to ACN, which may be due to the astrocytes accumulating more ACN than the microglia. Altogether our data implicate the inflammatory response as an important event in ACN-induced neurotoxicity.

  12. Acrylonitrile Butadiene Styrene (ABS) plastic based low cost tissue equivalent phantom for verification dosimetry in IMRT.

    PubMed

    Kumar, Rajesh; Sharma, S D; Deshpande, Sudesh; Ghadi, Yogesh; Shaiju, V S; Amols, H I; Mayya, Y S

    2009-12-17

    A novel IMRT phantom was designed and fabricated using Acrylonitrile Butadiene Styrene (ABS) plastic. Physical properties of ABS plastic related to radiation interaction and dosimetry were compared with commonly available phantom materials for dose measurements in radiotherapy. The ABS IMRT phantom has provisions to hold various types of detectors such as ion chambers, radiographic/radiochromic films, TLDs, MOSFETs, and gel dosimeters. The measurements related to pre-treatment dose verification in IMRT of carcinoma prostate were carried out using ABS and Scanditronics-Wellhoffer RW3 IMRT phantoms for five different cases. Point dose data were acquired using ionization chamber and TLD discs while Gafchromic EBT and radiographic EDR2 films were used for generating 2-D dose distributions. Treatment planning system (TPS) calculated and measured doses in ABS plastic and RW3 IMRT phantom were in agreement within +/-2%. The dose values at a point in a given patient acquired using ABS and RW3 phantoms were found comparable within 1%. Fluence maps and dose distributions of these patients generated by TPS and measured in ABS IMRT phantom were also found comparable both numerically and spatially. This study indicates that ABS plastic IMRT phantom is a tissue equivalent phantom and dosimetrically it is similar to solid/plastic water IMRT phantoms. Though this material is demonstrated for IMRT dose verification but it can be used as a tissue equivalent phantom material for other dosimetry purposes in radiotherapy.

  13. Phenomena affecting morphology of microporous poly(acrylonitrile) prepared via phase separation from solution

    SciTech Connect

    Legasse, R.R.; Weagley, R.J.; Leslie, P.K.; Schneider, D.A.

    1990-01-01

    This paper is concerned with controlling the morphology of microporous polymers prepared via thermal demixing of solutions. 2 wt % solutions of poly(acrylonitrile) in maleic anhydride, a poor solvent, are first cooled to produce separated polymer-rich and solvent-rich phases. Removing the solvent by freeze drying then produces a microporous material having a density of 33 mg/cm{sup 3}, a void fraction of 97%, and a pore size of about 10 {mu}m. We find that the morphology cannot be explained by existing models, which focus on phase diagrams and kinetics of phase transformations during cooling of the solution. In conflict with those models, we find that two radically different morphologies can be produced even when the polymer concentration and cooling path are held strictly constant. A hypothesis that polymer degradation causes the different morphologies is not supported by GPC, {sup 13}C NMR, and FTIR experiments. Instead, we offer evidence that the different microporous morphologies are caused by different polymer conformations in solutions having the same concentration and temperature. 11 refs., 3 figs.

  14. Method for the separation of high impact polystyrene (HIPS) and acrylonitrile butadiene styrene (ABS) plastics

    DOEpatents

    Jody, Bassam J.; Arman, Bayram; Karvelas, Dimitrios E.; Pomykala, Jr., Joseph A.; Daniels, Edward J.

    1997-01-01

    An improved method is provided for separating acrylonitrile butadiene styrene (ABS) and high impact polystyrene (HIPS) plastics from each other. The ABS and HIPS plastics are shredded to provide a selected particle size. The shredded particles of the ABS and HIPS plastics are applied to a solution having a solution density in a predefined range between 1.055 gm/cm.sup.3 and 1.07 gm/cm.sup.3, a predefined surface tension in a range between 22 dynes/cm to 40 dynes/cm and a pH in the range of 1.77 and 2.05. In accordance with a feature of the invention, the novel method is provided for separating ABS and HIPS, two solid thermoplastics which have similar densities by selectively modifying the effective density of the HIPS using a binary solution with the appropriate properties, such as pH, density and surface tension, such as a solution of acetic acid and water or a quaternary solution having the appropriate density, surface tension, and pH.

  15. High-Energy-Density Poly(styrene-co-acrylonitrile) Thin Films

    NASA Astrophysics Data System (ADS)

    Wen, Fei; Xu, Zhuo; Xia, Weimin; Ye, Hongjun; Wei, Xiaoyong; Zhang, Zhicheng

    2013-12-01

    The dielectric response of poly(styrene-co-acrylonitrile) (PSAN) thin films fabricated by a solution casting process was investigated in this work. Linear dielectric behavior was obtained in PSAN films under an electric field at frequencies from 100 Hz to 1 MHz and temperature of -50°C to 100°C. The polymer films exhibited an intermediate dielectric permittivity of 4 and low dielectric loss (tan δ) of 0.027. Under 400 MV/m, the energy density of the PSAN films was 6.8 J/cm3, which is three times higher than that of biaxially oriented polypropylene (BOPP) (about 1.6 J/cm3). However, their charge-discharge efficiency (about 90%) was rather close to that of BOPP. The calculated effective dielectric permittivity of the PSAN films under high electric field was as high as 9, which may be attributed to the improved displacement of the cyanide groups (-CN) polarized at high electric fields. These high-performance features make PSAN attractive for high-energy-density capacitor applications.

  16. (Z)-3-(1H-Indol-3-yl)-2-(3,4,5-tri­methoxy­phen­yl)acrylonitrile

    PubMed Central

    Penthala, Narsimha Reddy; Parkin, Sean; Crooks, Peter A.

    2012-01-01

    In the title compound, C20H18N2O3, the C=C bond of the acrylonitrile group that links the indole and the 3,4,5-trimeth­oxy­phenyl rings has Z geometry, with dihedral angles between the plane of the acrylonitrile unit and the planes of the benzene and indole ring systems of 21.96 (5) and 38.94 (7)°, respectively. The acrylonitrile group is planar (r.m.s. deviation from planarity = 0.037 Å). Mol­ecules are linked into head-to-tail chains that propagate along the b-axis direction by bifurcated N—H⋯O inter­molecular hydrogen bonds, which form an R 1 2(5) motif between the indole NH group and the two meth­oxy O atoms furthest from the nitrile group. PMID:22412611

  17. Acrylonitrile quenching of trp phosphorescence in proteins: a probe of the internal flexibility of the globular fold.

    PubMed

    Strambini, Giovanni B; Gonnelli, Margherita

    2010-08-04

    Quenching of Trp phosphorescence in proteins by diffusion of solutes of various molecular sizes unveils the frequency-amplitude of structural fluctuations. To cover the sizes gap between O(2) and acrylamide, we examined the potential of acrylonitrile to probe conformational flexibility of proteins. The distance dependence of the through-space acrylonitrile quenching rate was determined in a glass at 77 K, with the indole analog 2-(3-indoyl) ethyl phenyl ketone. Intensity and decay kinetics data were fitted to a rate, k(r) =k(0) exp[-(r -r(0))/r(e)], with an attenuation length r(e) = 0.03 nm and a contact rate k(0) = 3.6 x 10(10) s(-1). At ambient temperature, the bimolecular quenching rate constant (kq) was determined for a series of proteins, appositely selected to test the importance of factors such as the degree of Trp burial and structural rigidity. Relative to kq = 1.9 x 10(9) M(-1)s(-1) for free Trp in water, in proteins kq ranged from 6.5 x 10(6) M(-1)s(-1) for superficial sites to 1.3 x 10(2) M(-1)s(-1) for deep cores. The short-range nature of the interaction and the direct correlation between kq and structural flexibility attest that in the microsecond-second timescale of phosphorescence acrylonitrile readily penetrates even compact protein cores and exhibits significant sensitivity to variations in dynamical structure of the globular fold.

  18. Lasing properties of sodium-gadolinium tungstate NaGd(WO{sub 4}){sub 2} crystals doped with Tm{sup 3+} ions

    SciTech Connect

    Zharikov, Evgeny V; Lis, Denis A; Popov, A V; Subbotin, Kirill A; Ushakov, S N; Shestakov, A V; Razdobreev, I M

    2006-06-30

    Lasing is obtained in Tm{sup 3+}-doped sodium-gadolinium tungstate NaGd(WO{sub 4}){sub 2} crystals longitudinally pumped by pulses from a laser diode bar. The slope lasing efficiency is 16%. Lasing was observed at wavelengths of 1957, 1944, 1936, and 1901 nm for the transmission coefficients of the output mirror T{sub out} = 0.3%, 1.4%, 3.3%, and 8.5%, respectively. (lasers)

  19. Pre-irradiation induced emulsion co-graft polymerization of acrylonitrile and acrylic acid onto a polyethylene nonwoven fabric

    NASA Astrophysics Data System (ADS)

    Liu, Hanzhou; Yu, Ming; Ma, Hongjuan; Wang, Ziqiang; Li, Linfan; Li, Jingye

    2014-01-01

    A pre-irradiation induced emulsion co-graft polymerization method was used to introduce acrylonitrile and acrylic acid onto a PE nonwoven fabric. The use of acrylic acid is meant to improve the hydrophilicity of the modified fabric. The kinetics of co-graft polymerization were studied. The existence of polyacrylonitrile (PAN) and poly(acrylic acid) (PAAc) graft chains was proven by Fourier transform infrared spectroscopy (FTIR) analysis. The existence of the nitrile groups in the graft chains indicates that they are ready for further amidoximation and adsorption of heavy metal ions.

  20. A correlation study applied to biomarkers of internal and effective dose for acrylonitrile and 4-aminobiphenyl in smokers.

    PubMed

    Scherer, Gerhard; Newland, Kirk; Papadopoulou, Ermioni; Minet, Emmanuel

    2014-06-01

    The urinary metabolites 2-cyanoethylmercapturic acid and 4-aminobiphenyl have been correlated with tobacco smoke exposure. Similarly, 2-cyanoethylvaline and 4-aminobiphenyl haemoglobin adducts have been used as biomarkers of effective dose for the exposure to acrylonitrile and 4-aminobiphenyl, respectively. Each pair of biomarkers is derived from the same parent chemical; however, the correlation between the urinary and the haemoglobin biomarkers has not been investigated. Using clinical study samples, we report a weak correlation between urinary and haemoglobin biomarkers due to different accumulation and elimination rates. Time course analysis showed that a reduction in exposure was paralleled by a delayed reduction in haemoglobin adducts.

  1. The role of acrylonitrile in controlling the structure and properties of nanostructured ionomer films.

    PubMed

    Tungchaiwattana, Somjit; Musa, Muhamad Sharan; Yan, Junfeng; Lovell, Peter A; Shaw, Peter; Saunders, Brian R

    2014-07-14

    Ionomers are polymers which contain ionic groups that are covalently bound to the main chain. The presence of a small percentage of ionic groups strongly affects the polymer's mechanical properties. Here, we examine a new family of nanostructured ionomer films prepared from core-shell polymer nanoparticles containing acrylonitrile (AN), 1,3-butadiene (Bd) and methacrylic acid (MAA). Three new AN-containing dispersions were investigated in this study. The core-shell nanoparticles contained a PBd core. The shells contained copolymerised Bd, AN and MAA, i.e., PBd-AN-MAA. Three types of crosslinking were present in these films: covalent crosslinks (from Bd); strong physical crosslinks (involving ionic bonding of RCOO(-) and Zn(2+)) and weaker physical crosslinks (from AN). We examined and compared the roles of AN and ionic crosslinking (from added Zn(2+)) on the structure and mechanical properties of the films. The FTIR spectroscopy data showed evidence for RCOOH-nitrile hydrogen bonding with tetrahedral geometry. DMTA studies showed that AN copolymerised within the PBd-AN-MAA phase uniformly. Tensile stress-strain data showed that inclusion of AN increased elasticity and toughness. Analysis showed that about 33 AN groups were required to provide an elastically-effective chain. However, only 1.5 to 2 ionically bonded RCOO(-) groups were required to generate an elastically-effective chain. By contrast to ionic bonding, AN inclusion increased the modulus without compromising ductility. Our results show that AN is an attractive, versatile, monomer for increasing the toughness of nanostructured ionomers and this should also be the case for other nanostructured polymer elastomers.

  2. Modeling contaminant transport and remediation at an acrylonitrile spill site in Turkey.

    PubMed

    Sengör, S Sevinç; Unlü, Kahraman

    2013-07-01

    The August 1999 earthquake in Turkey damaged three acrylonitrile (AN) storage tanks at a plant producing synthetic fiber by polymerization. A numerical modeling study was carried out to analyze the groundwater flow and contaminant (AN) transport at the spill site. This study presents the application of a numerical groundwater model to determine the hydrogeological parameters of the site, where such data were not available during the field surveys prior to the simulation studies. The two- and three-dimensional transient flow and transport models were first calibrated using the first 266days of observed head and concentration data and then verified using the remaining 540-day observed data set. Off-site migration of the contaminant plume was kept under control within the site boundaries owing to the favorable geology of the site, the characteristics of the local groundwater flow regime and the pumping operations. As expected, the applied pump-and-treat system was effective at high-permeability zones, but not fully effective at low-permeability zones. The results of long-term simulations for unconfined aquifer showed that the size of the plume in the high permeability zone shrank significantly due to the dilution by natural recharge. However, in the low permeability zone, it was not significantly affected. The study showed that accurate and sufficient data regarding the source characteristics, concentration and groundwater level measurements, groundwater pumping rates and their durations at each of the extraction points involved in the pump-and-treat system along with the hydrogeological site characterization are the key parameters for successful flow and transport model calibrations.

  3. Effect of cytochrome P450 inhibitors and anticonvulsants on the acute toxicity of acrylonitrile.

    PubMed

    Benz, Frederick W; Nerland, Donald E

    2005-10-01

    Some of the more striking expressions of toxicity are the tremors and seizures observed approximately 100 min after exposure of rats to an acutely toxic dose of acrylonitrile (AN). These early events are followed by a second wave of severe clonic convulsions that occur just prior to death at about 3-4 h. For AN, at least two chemical entities could produce these toxic effects, namely the parent AN molecule, the metabolically-released cyanide, or both. Which of these two agents is responsible for each of the symptoms of acute intoxication is not known. To help dissect the toxicity, it was anticipated that an effective inhibitor of the oxidative metabolism of AN to cyanide could help us to understand which toxic symptoms might be associated with each agent. Three inhibitors of oxidative metabolism were tested, namely SKF-525A, 1-benzylimidazole and metyrapone and one alternative substrate, ethanol. As compared to SKF-525A and metyrapone, both 1-benzylimidazole and ethanol were highly effective in reducing blood cyanide levels to insignificant levels in rats treated with an LD90 dose of AN. In addition, both agents abolished the early seizure activity, suggesting that this first phase of seizures is due to cyanide and not the parent molecule. 1-Benzylimidazole did not prevent the severe clonic convulsive phase preceding death, suggesting that these terminal convulsions are due to the toxic effects of the parent AN molecule. The CNS depressant ethanol was only partially effective in attenuating the terminal convulsions. None of these agents affected the incidence of AN-induced mortality, clearly establishing that, even in the absence of cyanide, the parent AN molecule is acutely toxic. The partial effectiveness of ethanol suggested that anticonvulsants might be of benefit. Both phenobarbital and phenytoin protected rats from both the early and terminal convulsions, while valproic acid was ineffective. These effects were not related to a reduction in blood cyanide

  4. Screening-level risk assessment for styrene-acrylonitrile (SAN) trimer detected in soil and groundwater.

    PubMed

    Kirman, C R; Gargas, M L; Collins, J J; Rowlands, J C

    2012-01-01

    A screening-level risk assessment was conducted for styrene-acrylonitrile (SAN) Trimer detected at the Reich Farm Superfund site in Toms River, NJ. Consistent with a screening-level approach, on-site and off-site exposure scenarios were evaluated using assumptions that are expected to overestimate actual exposures and hazards at the site. Environmental sampling data collected for soil and groundwater were used to estimate exposure point concentrations. Several exposure scenarios were evaluated to assess potential on-site and off-site exposures, using parameter values for exposures to soil (oral, inhalation of particulates, and dermal contact) and groundwater (oral, dermal contact) to reflect central tendency exposure (CTE) and reasonable maximum exposure (RME) conditions. Three reference dose (RfD) values were derived for SAN Trimer for short-term, subchronic, and chronic exposures, based upon its effects on the liver in exposed rats. Benchmark (BMD) methods were used to assess the relationship between exposure and response, and to characterize appropriate points of departure (POD) for each RfD. An uncertainty factor of 300 was applied to each POD to yield RfD values of 0.1, 0.04, and 0.03 mg/kg-d for short-term, subchronic, and chronic exposures, respectively. Because a chronic cancer bioassay for SAN Trimer in rats (NTP 2011a) does not provide evidence of carcinogenicity, a cancer risk assessment is not appropriate for this chemical. Potential health hazards to human health were assessed using a hazard index (HI) approach, which considers the ratio of exposure dose (i.e., average daily dose, mg/kg-d) to toxicity dose (RfD, mg/kg-d) for each scenario. All CTE and RME HI values are well below 1 (where the average daily dose is equivalent to the RfD), indicating that there is no concern for potential noncancer effects in exposed populations even under the conservative assumptions of this screening-level assessment.

  5. Acrylonitrile-induced gastric toxicity in rats: The role of xanthine oxidase

    PubMed Central

    Al-Abbasi, Fahad A.

    2012-01-01

    Summary Background Acrylonitrile (ACN) is an extensively produced aliphatic nitrile. The gastrointestinal tract is an important target organ for ACN toxicity. The objective of the present study was to investigate the role of xanthine oxidase (XO) in ACN-induced gastric toxicity in rats. Material/Methods We assessed the effect of ACN on oxidative stress parameters as xanthine oxidase (XO) and total xanthine dehydrogenase (XD)/ XO activity, superoxide anion (O2·−) production, reduced glutathione (GSH) levels and lipid peroxidation in gastric tissues. Results A single oral dose of ACN (25 mg/kg) caused a significant enhancement in XO activity. ACN also caused a significant depletion of GSH levels, enhanced O2·− production and increased lipid peroxidation in the time-course experiment. In the dose-response experiment, ACN accelerated the conversion of XD to XO, with a significant depletion of gastric GSH in a dose-related manner. A strong negative correlation existed between the levels of GSH and the percentage enhancement in XO activity (r =−0.997). (O2·−) production and malondialdehyde (MDA) formation were significantly elevated in a dose-related manner. Pretreatment with allopurinol (50 mg/kg) significantly protected against ACN-induced rise in XO activity, depletion of GSH, and elevated production of (O2·−). However, pretreatment with diethyl maleate (DEM; 100 mg/kg) significantly aggravated the ACN-induced GSH depletion and rise in XO activity. Furthermore, DEM significantly enhanced (O2·−) and MDA production. Conclusions The present study indicates that enhancement of XO activity could be implicated in ACN-induced gastric damage in rats. PMID:22648241

  6. Laboratory-scale biofiltration of acrylonitrile by Rhodococcus rhodochrous DAP 96622 in a trickling bed bioreactor.

    PubMed

    Zhang, Jie; Pierce, George E

    2009-07-01

    Acrylonitrile (ACN), a volatile component of the waste generated during the production of acrylamide, also is often associated with aromatic contaminants such as toluene and styrene. Biofiltration, considered an effective technique for the treatment of volatile hydrocarbons, has not been used to treat volatile nitriles. An experimental laboratory-scale trickling bed bioreactor using cells of Rhodococcus rhodochrous DAP 96622 supported on granular activated carbon (GAC) was developed and evaluated to assess the ability of biofiltration to treat ACN. In addition to following the course of treatability of ACN, kinetics of ACN biodegradation during both recycle batch and open modes of operation by immobilized and free cells were evaluated. For fed-batch mode bioreactor with immobilized cells, almost complete ACN removal (>95%) was achieved at a flow rate of 0.1 microl/min ACN and 0.8 microl/min toluene (TOL) (for comparative purposes this is equivalent to 6.9 mg l(-1) h(-1) ACN and 83.52 mg l(-1) h(-1) TOL). In a single-pass mode bioreactor with immobilized cells, at ACN inlet loads of 100-200 mg l(-1) h(-1) and TOL inlet load of approximately 400 mg l(-1) h(-1), with empty bed retention time (EBRT) of 8 min, ACN removal efficiency was approximately 90%. The three-dimensional structure and characteristics of the biofilm were investigated using confocal scanning laser microscopy (CSLM). CLSM images revealed a robust and heterogeneous biofilm, with microcolonies interspersed with voids and channels. Analysis of the precise measurement of biofilm characteristics using COMSTAT agreed with the assumption that both biomass and biofilm thickness increased along the carbon column depth.

  7. Acrylonitrile-induced toxicity and oxidative stress in isolated rat colonocytes.

    PubMed

    Mohamadin, Ahmed M; El-Demerdash, Ebtehal; El-Beshbishy, Hesham A; Abdel-Naim, Ashraf B

    2005-02-01

    Acrylonitrile (ACN), an environmental toxic pollutant, has been detected in drinking water, food products and occupational environment. The objective of the present work was to investigate the cytotoxic effects as well as the oxidative stress induced by ACN in cultured rat colonocytes. Colonocytes were exposed in vitro to different concentrations of ACN (0.1-2.0mM) for 60min. Also, colonocytes were incubated with ACN (1.0mM) for different time intervals extending to 180min. Cytotoxicity was determined by assessing cell viability and lactate dehydrogenase (LDH) release. Oxidative stress was assessed by determining reduced glutathione (GSH) level and lipid peroxidation as indicated by thiobarbituric acid reactive substances (TBARS) production. Exposure of colonocytes to ACN (1.0mM) for 60min caused nearly a 50% decrease in cell viability and induced a 2.5-fold increase of LDH leakage. In the same experiment, ACN caused a significant decrease in cellular GSH content as well as a significant enhancement of TBARS accumulation. These toxic responses to ACN were dependent on both concentration and duration of exposure to ACN. There was a good correlation between LDH release and TBARS formation (r(2)=0.97, p<0.05). Treatment of colonocytes with GSH, N-acetyl-l-cysteine (NAC) or dithiothreitol (DDT) prior to exposure to ACN afforded different degrees of protection as indicated by significant decrease in the LDH leakage and TBARS formation as compared to ACN alone-treated cells. Also, pretreatment of colonocytes with the antioxidant enzyme superoxide dismutase (SOD) or catalase (CAT) significantly inhibited LDH leakage and TBARS production. Preincubation with dimethyl sulfoxide (DMSO), a hydroxyl radical scavenger or desferroxiamine (DFO), an iron chelator, diminished ACN-induced LDH leakage and TBARS generation. Our results suggest that ACN has a potential cytotoxic effect in rat colonocytes; and thiol group-donors, antioxidant enzymes, hydroxyl radical scavengers and iron

  8. Surfactant-assisted hydrothermal synthesis of Eu(3+)-doped white light hydroxyl sodium yttrium tungstate microspheres and their conversion to NaY(WO(4))(2).

    PubMed

    Lei, Fang; Yan, Bing; Chen, Hao Hong; Zhao, Jing Tai

    2009-08-17

    In this work, large-scale three-dimensional "flake-ball" microarchitectures of Eu(3+) doped white light hydroxyl sodium yttrium tungstate were prepared by the well-known hydrothermal approach at 180 degrees C for 48 h in the presence of triblock-copolymer poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123). NaY(WO(4))(2):Eu(3+) phosphor was formed by annealing the hydrothermal product at approximately 630 degrees C for 2 h. A time-dependent microstructure evolution study was performed under hydrothermal reaction. The evolution process is the self-assembly process of P123, and the effects of other reaction parameters, such as influence of the concentration of P123 on morphology, and the influence of temperature on PL. The mechanism by which the "flake-ball" particles are formed is discussed in detail. The PL spectra of Eu(3+)-doped hydroxyl sodium yttrium tungstate phosphor contain two parts: the broad blue-green band and the (5)D(0)-->(7)F(J) (J = 1, and 2) characteristic transition of Eu(3+). This approach provides a facile route for the production of high-quality hydroxyl sodium yttrium tungstate microstructures with an interesting optical property.

  9. Fabrication of Acrylonitrile-Butadiene-Styrene Nanostructures with Anodic Alumina Oxide Templates, Characterization and Biofilm Development Test for Staphylococcus epidermidis.

    PubMed

    Desrousseaux, Camille; Cueff, Régis; Aumeran, Claire; Garrait, Ghislain; Mailhot-Jensen, Bénédicte; Traoré, Ousmane; Sautou, Valérie

    2015-01-01

    Medical devices can be contaminated by microbial biofilm which causes nosocomial infections. One of the strategies for the prevention of such microbial adhesion is to modify the biomaterials by creating micro or nanofeatures on their surface. This study aimed (1) to nanostructure acrylonitrile-butadiene-styrene (ABS), a polymer composing connectors in perfusion devices, using Anodic Alumina Oxide templates, and to control the reproducibility of this process; (2) to characterize the physico-chemical properties of the nanostructured surfaces such as wettability using captive-bubble contact angle measurement technique; (3) to test the impact of nanostructures on Staphylococcus epidermidis biofilm development. Fabrication of Anodic Alumina Oxide molds was realized by double anodization in oxalic acid. This process was reproducible. The obtained molds present hexagonally arranged 50 nm diameter pores, with a 100 nm interpore distance and a length of 100 nm. Acrylonitrile-butadiene-styrene nanostructures were successfully prepared using a polymer solution and two melt wetting methods. For all methods, the nanopicots were obtained but inside each sample their length was different. One method was selected essentially for industrial purposes and for better reproducibility results. The flat ABS surface presents a slightly hydrophilic character, which remains roughly unchanged after nanostructuration, the increasing apparent wettability observed in that case being explained by roughness effects. Also, the nanostructuration of the polymer surface does not induce any significant effect on Staphylococcus epidermidis adhesion.

  10. Fabrication of Acrylonitrile-Butadiene-Styrene Nanostructures with Anodic Alumina Oxide Templates, Characterization and Biofilm Development Test for Staphylococcus epidermidis

    PubMed Central

    Desrousseaux, Camille; Cueff, Régis; Aumeran, Claire; Garrait, Ghislain; Mailhot-Jensen, Bénédicte; Traoré, Ousmane; Sautou, Valérie

    2015-01-01

    Medical devices can be contaminated by microbial biofilm which causes nosocomial infections. One of the strategies for the prevention of such microbial adhesion is to modify the biomaterials by creating micro or nanofeatures on their surface. This study aimed (1) to nanostructure acrylonitrile-butadiene-styrene (ABS), a polymer composing connectors in perfusion devices, using Anodic Alumina Oxide templates, and to control the reproducibility of this process; (2) to characterize the physico-chemical properties of the nanostructured surfaces such as wettability using captive-bubble contact angle measurement technique; (3) to test the impact of nanostructures on Staphylococcus epidermidis biofilm development. Fabrication of Anodic Alumina Oxide molds was realized by double anodization in oxalic acid. This process was reproducible. The obtained molds present hexagonally arranged 50 nm diameter pores, with a 100 nm interpore distance and a length of 100 nm. Acrylonitrile-butadiene-styrene nanostructures were successfully prepared using a polymer solution and two melt wetting methods. For all methods, the nanopicots were obtained but inside each sample their length was different. One method was selected essentially for industrial purposes and for better reproducibility results. The flat ABS surface presents a slightly hydrophilic character, which remains roughly unchanged after nanostructuration, the increasing apparent wettability observed in that case being explained by roughness effects. Also, the nanostructuration of the polymer surface does not induce any significant effect on Staphylococcus epidermidis adhesion. PMID:26284922

  11. Acrylonitrile potentiates hearing loss and cochlear damage induced by moderate noise exposure in rats

    SciTech Connect

    Pouyatos, BenoIt . E-mail: benoit.pouyatos@med.va.gov; Gearhart, Caroline A.; Fechter, Laurence D.

    2005-04-01

    The diversity of chemical and drugs that can potentiate noise-induced hearing loss (NIHL) has impeded efforts to predict such interactions. We have hypothesized that chemical contaminants that disrupt intrinsic antioxidant defenses hold significant risk for potentiating NIHL. If this is true, then acrylonitrile (ACN) would be expected to potentiate NIHL. ACN, one of the 50 most commonly used chemicals in the United States, is metabolized via two pathways that are likely to disrupt intrinsic reactive oxygen species (ROS) buffering systems: (1) it conjugates glutathione, depleting this important antioxidant rapidly; (2) a second pathway involves the formation of cyanide, which can inhibit superoxide dismutase. We hypothesized that moderate noise exposure, that does not produce permanent hearing loss by itself, could initiate oxidative stress and that ACN could render the inner ear more sensitive to noise by disrupting intrinsic antioxidant defenses. Temporary and persistent effects of ACN alone (50 mg/kg, sc 5 days), noise alone (95 or 97 dB octave band noise, 4 h/day for 5 days), or ACN in combination with noise were determined using distortion product otoacoustic emissions (DPOAEs) and compound action potential (CAP) amplitudes. Histopathological damage to hair cells resulting from these treatments was also investigated using surface preparations of the organ of Corti. Individually, neither ACN nor noise exposures caused any permanent hearing or hair cell loss; only a reversible temporary threshold shift was measured in noise-exposed animals. However, when given in combination, ACN and noise induced permanent threshold shifts (13-16 dB between 7 and 40 kHz) and a decrease in DPOAE amplitudes (up to 25 dB at 19 kHz), as well as significant outer hair cell (OHC) loss (up to 20% in the first row between 13 and 47 kHz). This investigation demonstrates that ACN can potentiate NIHL at noise levels that are realistic in terms of human exposure, and that the OHCs are the

  12. Two-year toxicity and oncogenicity study with acrylonitrile incorporated in the drinking water of rats.

    PubMed

    Quast, John F

    2002-06-24

    Sprague-Dawley rats (80 per sex per control and 48 per sex in each treatment group) were given drinking water formulated to contain 0, 35, 100, or 300 ppm acrylonitrile (AN) for up to 2-years. An additional ten rats per sex per group were added for a 1-year interim necropsy. The equivalent doses of AN consumed were 0, 3.4, 8.5, and 21.3 mg/kg per day for males and 0, 4.4, 10.8, and 25.0 for females. Rats were closely monitored clinically with body weight, feed and water consumption measured at numerous intervals. Hematology, clinical chemistry, and urinalysis were evaluated six times. All rats were necropsied when moribund, found dead, or at scheduled termination, with extensive histopathology of all rats. Numerous adverse toxic and oncogenic effects were observed in both sexes of all AN treatment groups. Decreased water consumption, feed consumption, and concomitant body weight suppression occurred within days of study initiation and persisted throughout the study in all treatment groups. An early onset of Zymbal gland tumors in high dose male and female rats, and in the mammary gland of all treated groups of females, was detected in-life. Hematology, clinical chemistry, and urinalysis, repeatedly evaluated, were without significant biological effects, except for an increased urine specific gravity due to the rats lower water intake. Organ weights at study termination were not significantly affected. Mortality was high in all female treated groups, with no surviving male or female 300 ppm rats during the last 2 months of the study. The most significant findings in this study were detected following gross and microscopic examination of an extensive list of tissues from all rats in the study. Nontumorous and tumorous lesions were found at an increased and/or decreased rate in a number of tissues of both sexes at all treatment levels. The primary nontumorous histopathologic effects of AN exposure occurred in the forestomach and the central nervous system of rats of

  13. Screening-Level Risk Assessment for Styrene-Acrylonitrile (SAN) Trimer Detected in Soil and Groundwater

    PubMed Central

    Kirman, C. R.; Gargas, M. L.; Collins, J. J.; Rowlands, J. C.

    2012-01-01

    A screening-level risk assessment was conducted for styrene-acrylonitrile (SAN) Trimer detected at the Reich Farm Superfund site in Toms River, NJ. Consistent with a screening-level approach, on-site and off-site exposure scenarios were evaluated using assumptions that are expected to overestimate actual exposures and hazards at the site. Environmental sampling data collected for soil and groundwater were used to estimate exposure point concentrations. Several exposure scenarios were evaluated to assess potential on-site and off-site exposures, using parameter values for exposures to soil (oral, inhalation of particulates, and dermal contact) and groundwater (oral, dermal contact) to reflect central tendency exposure (CTE) and reasonable maximum exposure (RME) conditions. Three reference dose (RfD) values were derived for SAN Trimer for short-term, subchronic, and chronic exposures, based upon its effects on the liver in exposed rats. Benchmark (BMD) methods were used to assess the relationship between exposure and response, and to characterize appropriate points of departure (POD) for each RfD. An uncertainty factor of 300 was applied to each POD to yield RfD values of 0.1, 0.04, and 0.03 mg/kg-d for short-term, subchronic, and chronic exposures, respectively. Because a chronic cancer bioassay for SAN Trimer in rats (NTP 2011a) does not provide evidence of carcinogenicity, a cancer risk assessment is not appropriate for this chemical. Potential health hazards to human health were assessed using a hazard index (HI) approach, which considers the ratio of exposure dose (i.e., average daily dose, mg/kg-d) to toxicity dose (RfD, mg/kg-d) for each scenario. All CTE and RME HI values are well below 1 (where the average daily dose is equivalent to the RfD), indicating that there is no concern for potential noncancer effects in exposed populations even under the conservative assumptions of this screening-level assessment. PMID:23030654

  14. Photoluminescence in solid solutions and thin films of tungstates CaWO{sub 4}-CdWO{sub 4}

    SciTech Connect

    Taoufyq, A.; Mauroy, V.; Guinneton, F.; Valmalette, J-C.; Fiorido, T.; Benlhachemi, A.; Lyoussi, A.; Nolibe, G.; Gavarri, J-R.

    2015-07-01

    In this study, we present two types of studies on the luminescence properties under UV and X-ray excitations of solid solutions Ca{sub 1-x}Cd{sub x}WO{sub 4} and of thin layers of CaWO{sub 4} and CdWO{sub 4}. These tungstate based solid solutions are susceptible to be integrated into new radiation sensors, in order to be used in different fields of applications such as reactor measurements, safeguards, homeland security, nuclear nondestructive assays, LINAC emission radiation measurement. However these complex materials were rarely investigated in the literature. One first objective of our studies was to establish correlations between luminescence efficiency, chemical substitution and the degree of crystallization resulting from elaboration conditions. A second objective will be to determine the efficiency of luminescence properties of thin layers of these materials. In the present work, we focus our attention on the role of chemical substitution on photon emissions under UV and X-ray irradiations. The luminescence spectra of Ca{sub 1-x}Cd{sub x}WO{sub 4} polycrystalline materials have been investigated at room temperature as a function of composition (0≤x≤1). In addition, we present a preliminary study of the luminescence of CaWO{sub 4} and CdWO{sub 4} thin layers: oscillations observed in the case of X-ray excitations in the luminescence spectra are discussed. (authors)

  15. Zirconium(IV) tungstate nanoparticles prepared through chemical co-precipitation method and its function as solid acid catalyst

    NASA Astrophysics Data System (ADS)

    Sadanandan, Manoj; Bhaskaran, Beena

    2014-08-01

    In this paper, we report the synthesis of zirconium(IV) tungstate nanoparticles, a new and efficient catalyst for the oxidation of benzyl alcohol and esterification of acetic acid with various alcohols. The nanoparticle catalyst was prepared using the room temperature chemical co-precipitation method. The catalyst was characterized with thermogravimetric and differential thermal analysis, elemental analysis, X-ray diffraction analysis (XRD), fourier transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and the Brunauer-Emmett-Teller (BET) surface area. The crystallite size was found to be ~20 nm as revealed by XRD, HRTEM and AFM. The Na+ exchange capacity was found to be 2.76 meq g-1 and the surface area of the compound measured using BET method was found to be 250-265 m2 g-1. The high value of ion exchange capacity indicates the presence of surface hydroxyl groups. The prepared nanoparticles have proven to be excellent catalysts for both oxidation and ester synthesis under mild reaction conditions. The mechanism of the catalytic reaction was studied as well.

  16. Lasing properties of selectively pumped Raman-active Nd{sup 3+}-doped molybdate and tungstate crystals

    SciTech Connect

    Basiev, Tasoltan T; Doroshenko, Maxim E; Ivleva, Lyudmila I; Osiko, Vyacheslav V; Kosmyna, M B; Komar', V K; Sulc, J; Jelinkova, H

    2006-08-31

    The lasing efficiency of Nd{sup 3+} ions is studied in laser materials capable of self-Raman frequency conversion. The lasing properties of tungstate and molybdate crystals with the scheelite structure (SrWO{sub 4}, BaWO{sub 4}, PbWO{sub 4}, SrMoO{sub 4}, PbMoO{sub 4}) activated with neodymium ions are investigated upon longitudinal pumping by a 750-nm alexandrite laser or a 800-nm diode laser. The slope lasing efficiency obtained for a Nd{sup 3+}:PbMoO{sub 4} laser emitting at 1054 nm is 54.3% for the total lasing efficiency of 46%, which is the best result for all the crystals with the scheelite structure studied so far. The simultaneous Q-switched lasing and self-Raman frequency conversion were demonstrated in neodymium-doped SrWO{sub 4}, PbWO{sub 4}, and BaWO{sub 4} crystals. (papers devoted to the 90th anniversary of a.m.prokhorov)

  17. Radioprotective effects of sodium tungstate on hematopoietic injury by exposure to 60Co gamma-rays in Wistar rats.

    PubMed

    Sato, K; Ichimasa, M; Miyahara, K; Shiomi, M; Nishimura, Y; Ichimasa, Y

    1999-06-01

    Radioprotective effects of sodium tungstate (ST) on 60Co gamma-ray induced decrease in hematocrit value and in survival rate in Wistar strain male rats were examined. A long-term administration of ST (less than 150 mg/kg body weight/day) for 60-300 days had no significant effects on body and organs weights and survival days. The LD50/60 in 20 weeks old rats was 220 mg/kg body weight/day. Daily administration of 38, 75 or 150 mg from 7 days before and after irradiation to 60 days significantly mitigated the decrease in hematocrit values, especially at 23 days after irradiation (P < 0.05). The highest mitigation rate of the decrease in hematocrit value was observed in rats administered at a dose of 38 mg ST/day. Simultaneously, a dose of 38 mg ST/day inhibited lethal effect of 60Co gamma-rays significantly. The dose-reduction factor for survival of 38 mg ST administered rats was 1.14.

  18. Self-Phase-Matched Second-Harmonic and White-Light Generation in a Biaxial Zinc Tungstate Single Crystal

    PubMed Central

    Osewski, Pawel; Belardini, Alessandro; Petronijevic, Emilija; Centini, Marco; Leahu, Grigore; Diduszko, Ryszard; Pawlak, Dorota A.; Sibilia, Concita

    2017-01-01

    Second-order nonlinear optical materials are used to generate new frequencies by exploiting second-harmonic generation (SHG), a phenomenon where a nonlinear material generates light at double the optical frequency of the input beam. Maximum SHG is achieved when the pump and the generated waves are in phase, for example through birefringence in uniaxial crystals. However, applying these materials usually requires a complicated cutting procedure to yield a crystal with a particular orientation. Here we demonstrate the first example of phase matching under the normal incidence of SHG in a biaxial monoclinic single crystal of zinc tungstate. The crystal was grown by the micro-pulling-down method with the (102) plane perpendicular to the growth direction. Additionally, at the same time white light was generated as a result of stimulated Raman scattering and multiphoton luminescence induced by higher-order effects such as three-photon luminescence enhanced by cascaded third-harmonic generation. The annealed crystal offers SHG intensities approximately four times larger than the as grown one; optimized growth and annealing conditions may lead to much higher SHG intensities. PMID:28338074

  19. Influence of La/W ratio on electrical conductivity of lanthanum tungstate with high La/W ratio

    NASA Astrophysics Data System (ADS)

    Kojo, Gen; Shono, Yohei; Ushiyama, Hiroshi; Oshima, Yoshito; Otomo, Junichiro

    2017-04-01

    The proton-conducting properties of lanthanum tungstates (LWOs) with high La/W ratios were investigated using electrochemical measurements and quantum chemical calculations. Single phases of LWOs with high La/W ratios (6.3≤La/W≤6.7) were synthesized by high-temperature sintering at around 1700 °C. The electrical conductivity of LWO increased with increasing La/W ratio in the single-phase region. The LWO synthesized at the optimum sintering temperature and time, and with the optimum La/W ratio gave the maximum conductivity, i.e., 2.7×10-3 S cm-1 with La/W=6.7 at 500 °C. Density functional theory calculations, using the nudged elastic band method, were performed to investigate the proton diffusion barrier. The results suggest that the proton diffusion paths around La sites have the lowest proton diffusion barrier. These findings improve our understanding of LWO synthesis and the proton-conducting mechanism and provide a strategy for improving proton conduction in LWOs.

  20. Self-Phase-Matched Second-Harmonic and White-Light Generation in a Biaxial Zinc Tungstate Single Crystal

    NASA Astrophysics Data System (ADS)

    Osewski, Pawel; Belardini, Alessandro; Petronijevic, Emilija; Centini, Marco; Leahu, Grigore; Diduszko, Ryszard; Pawlak, Dorota A.; Sibilia, Concita

    2017-03-01

    Second-order nonlinear optical materials are used to generate new frequencies by exploiting second-harmonic generation (SHG), a phenomenon where a nonlinear material generates light at double the optical frequency of the input beam. Maximum SHG is achieved when the pump and the generated waves are in phase, for example through birefringence in uniaxial crystals. However, applying these materials usually requires a complicated cutting procedure to yield a crystal with a particular orientation. Here we demonstrate the first example of phase matching under the normal incidence of SHG in a biaxial monoclinic single crystal of zinc tungstate. The crystal was grown by the micro-pulling-down method with the (102) plane perpendicular to the growth direction. Additionally, at the same time white light was generated as a result of stimulated Raman scattering and multiphoton luminescence induced by higher-order effects such as three-photon luminescence enhanced by cascaded third-harmonic generation. The annealed crystal offers SHG intensities approximately four times larger than the as grown one; optimized growth and annealing conditions may lead to much higher SHG intensities.

  1. Accurate quantification of the mercapturic acids of acrylonitrile and its genotoxic metabolite cyanoethylene-epoxide in human urine by isotope-dilution LC-ESI/MS/MS.

    PubMed

    Schettgen, T; Bertram, J; Kraus, T

    2012-08-30

    Acrylonitrile is a highly important industrial chemical with a high production volume worldwide, especially in the plastics industry. It is classified as a possible human carcinogen by the International Agency for Research on Cancer (IARC group 2B). During metabolism of acrylonitrile, the genotoxic metabolite cyanoethylene-epoxide is formed. The urinary mercapturic acids of acrylonitrile, namely N-acetyl-S-(2-cyanoethyl)-L-cysteine (CEMA) and cyanoethylene-epoxide, namely N-acetyl-S-(1-cyano-2-hydroxyethyl)-L-cysteine (CHEMA) are specific biomarkers for the determination of individual internal exposure to acrylonitrile and its highly reactive metabolite. We have developed and validated a sensitive method for the accurate determination of CEMA and CHEMA in human urine with a multidimensional LC/MS/MS-method using deuterium-labelled analogues for both analytes as internal standards. Analytes were stripped from urinary matrix by online extraction on a restricted access material, transferred to the analytical column and determined by tandem mass spectrometry. The limit of quantification (LOQ) for CEMA and CHEMA was 1 μg/L urine and allowed to quantify the background exposure of the (smoking) general population. Precision within and between series for CHEMA ranged from 2.6 to 8.0% at four concentrations ranging from 8.3 to 86 μg/L urine, mean accuracy was between 94 and 100%. For CEMA, precision within and between series ranged from 2.4 to 14.5% at four concentrations ranging from 15.1 to 196 μg/L urine, mean accuracy was between 91 and 104%. We applied the method to spot urine samples of 83 subjects of the general population with no known occupational exposure to acrylonitrile. Median levels (range) for CEMA and CHEMA in urine samples of non-smokers (n=47) were 1.9 μg/L (<1-16.4 μg/L) and<1 μg/L (<1-3 μg/L), while in urine samples of smokers (n=36), median levels were 184 μg/L (2-907 μg/L) and 29.3 μg/L (<1-147 μg/L), respectively. Smokers showed a

  2. Development and validation of personal monitoring methods for low levels of acrylonitrile in workplace atmosphere. II. Thermal desorption and field validation

    SciTech Connect

    Borders, R.A.; Gluck, S.J.; Sowle, W.F.; Melcher, R.G.

    1986-03-01

    Thermal desorption is a more sensitive alternative to solvent desorption for the determination of acrylonitrile in air. A dual-bed collection tube (Tenax GC and Carbosieve B) was developed for collecting and concentrating low levels of acrylonitrile. Two thermal desorption techniques were evaluated for the recovery of acrylonitrile collected on the dual-bed tubes over a concentration range from 0.05 to 5 ppm. A commercially-available system, the Century Programmable Thermal Desorption Unit, was easy to operate, allowed for multiple injections of the sample and had a recovery of 82 +/- 12% (RSD). Sampled were stored for up to two months without affecting the recovery and there was not an observable effect from humidity or from the presence of other organic compounds. This system was found to have limitations at acrylonitrile concentrations above 1 ppm. A field validation study tested the sampling and analytical methods developed for monitoring low levels of acrylonitrile in the workplace. Three methods employing Pittsburgh Coconut-Base activated charcoal, Ambersorb XE-348 and Tenax-GC and Carbosieve B sampling mediums were validated for concentrations ranging from 0.05 to 5 ppm and confirmed in the field from 0.02 to 3 ppm in tests conducted at plant sites. These field studies were run over varying humidity and temperature conditions. The overall absolute recoveries and relative standard deviations found for these methods found during the field trials are 90 +/- 18% for charcoal; 85 +/- 11% for Ambersorb XE-348; and 90 +/- 19% for the Century dual-bed sorbent. These values were in quite good agreement with the 91 +/- 10%, 88 +/- 8%, and 82 +/- 12% determined in laboratory studies.

  3. Copolymers of acrylonitrile with quaternizable thiazole and triazole side-chain methacrylates as potent antimicrobial and hemocompatible systems.

    PubMed

    Tejero, Rubén; Gutiérrez, Beatriz; López, Daniel; López-Fabal, Fátima; Gómez-Garcés, José L; Fernández-García, Marta

    2015-10-01

    A series of six copolymeric families, P(AN-co-MTAs) with various molar fractions of acrylonitrile (fAN) and methacrylates (fMTA) based on 1,3-thiazole and 1,2,3-triazole pendant groups with several spacers of different length and nature (alkyl or succinic), have been synthesized by conventional radical polymerization. The molar fraction of acrylonitrile in the copolymers (FAN) was determined by CHNS elemental analysis. The copolymers were also characterized by ATR-FTIR and molecular weights were determined by size exclusion chromatography (SEC). Due to the nucleophilic nature of the azole heterocycles the copolymers have been easily modified by N-alkylation reaction with butyl iodide leading to polyelectrolytes of diverse amphiphilic balance, P(AN-co-MTAs-BuI). The degree of quaternization (DQ) was quantitative in all instances and was determined by (1)H NMR spectroscopy. Dynamic light scattering (DLS) measurements were performed in order to determine the particle size and the charge density of the systems. The antimicrobial activity of the copolymers was studied in terms of minimal inhibitory concentration (MIC) against the Gram-positive bacteria Staphylococcus aureus, the Gram-negative Pseudomonas aeruginosa and the yeast Candida parapsilosis, as well as the cytotoxic activity toward human red blood cells (RBCs). These types of amphiphilic copolycations presented high selectivity (>300) maintaining moderate to good antimicrobial activity (MIC=4-64 μg/mL) and being non-hemolytic even at high molar fractions of AN in the copolymers compared to PMTAs-BuI homopolymers. Moreover, two examples of acrylonitrile-enriched copolymers (FAN=0.6) presented an excellent time-killing efficiency against microorganisms with 99.9% of killing ranging from 5 to 30 min. Besides, important changes in the morphology of the cell envelop of the microorganisms after treatment with P(AN-co-MTAs) were observed by Field Emission Scanning Electron Microscopy (FE-SEM) compared to untreated

  4. Effect of reactive compatibilization on the morphology and physical properties of bisphenol-A-polycarbonate/acrylonitrile-butadiene-styrene blends

    NASA Astrophysics Data System (ADS)

    Wildes, Gregg Stephen

    1998-11-01

    An amine functional styrene-acrylonitrile (SAN-amine) polymer is proposed as a reactive compatibilizer for bisphenol-A-polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) blends. This polymer is miscible with the styrene/acrylonitrile (SAN) copolymer matrix of ABS materials, and the pendant secondary amine groups react with PC at the carbonate linkage to form a SAN-g-PC copolymer. The graft copolymer molecules reside at the PC/ABS interface and provide improved morphological stability at elevated temperatures by suppressing phase coalescence. The synthesis of this reactive compatibilizer and its reaction with carbonate moieties is described. Characterization of this reaction was done by NMR and GPC using model secondary amine and carbonate containing compounds. A technique was developed for the quantitative measurement of the kinetics of dispersed phase particle coalescence in these blends; the morphology was examined using TEM. While uncompatibilized PC/SAN blends showed an increase in particle size from approximately 1 mum to 2 mum (depending on PC viscosity) in less than five minutes at 270sp°C; compatibilized blends containing as little as 1% SAN-amine exhibited no change in morphology after 20 minutes. The effects of dispersed phase concentration, viscosity ratio and interfacial compatibilization using the SAN-amine compatibilizer on the process induced morphology of PC/SAN blends were also examined. Dispersed phase particle size increased significantly with SAN concentration and, although the morphology of uncompatibilized PC/SAN blends mixed in a Brabender mixer, single and twin screw extruders were quite similar, the twin screw extruder produced significantly finer morphologies in blends containing SAN-amine. The average particle size for blends compatibilized with the SAN-amine polymer was approximately half that of uncompatibilized blends and was relatively independent of viscosity ratio and dispersed phase composition. The fracture of thin (3.18 mm

  5. Immunotoxic effects of sodium tungstate dihydrate on female B6C3F1/N mice when administered in drinking water.

    PubMed

    Frawley, Rachel P; Smith, Matthew J; White, Kimber L; Elmore, Susan A; Herbert, Ron; Moore, Rebecca; Staska, Lauren M; Behl, Mamta; Hooth, Michelle J; Kissling, Grace E; Germolec, Dori R

    2016-09-01

    Tungsten is a naturally occurring, high-tensile strength element that has been used in a number of consumer products. Tungsten has been detected in soil, waterways, groundwater, and human tissue and body fluids. Elevated levels of tungsten in urine were reported for populations exposed to tungstate in drinking water in areas where natural tungsten formations were prevalent. Published reports indicated that sodium tungstate may modulate hematopoiesis, immune cell populations, and immune responses in rodent models. The objective of this study was to assess potential immunotoxicity of sodium tungstate dihydrate (STD), a drinking water contaminant. Female B6C3F1/N mice received 0-2000 mg STD/L in their drinking water for 28 d, and were evaluated for effects on immune cell populations in spleen and bone marrow, and humoral-mediated, cell-mediated, and innate immunity. Three different parameters of cell-mediated immunity were similarly affected at 1000 mg STD/L. T-cell proliferative responses against allogeneic leukocytes and anti-CD3 were decreased 32%, and 21%, respectively. Cytotoxic T-lymphocyte activity was decreased at all effector:target cell ratios examined. At 2000 mg STD/L, the absolute numbers of CD3(+) T-cell progenitor cells in bone marrow were increased 86%, but the alterations in B-lymphocyte and other progenitor cells were not significant. There were no effects on bone marrow DNA synthesis or colony forming capabilities. STD-induced effects on humoral-mediated immunity, innate immunity, and splenocyte sub-populations were limited. Enhanced histopathology did not detect treatment-related lesions in any of the immune tissues. These data suggest exposure to STD in drinking water may adversely affect cell-mediated immunity.

  6. Effect of concentration of polyfunctional monomers on physical properties of acrylonitrile butadiene rubber under electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Yasin, Tariq; Ahmed, Shamshad; Ahmed, Munir; Yoshii, Fumio

    2005-06-01

    An investigation has been undertaken to find out the effect of concentration of different polyfunctional monomers (PFMs) on the physical properties of the acrylonitrile-butadiene rubber (NBR) crosslinked by electron beam (EB). The PFMs used were diethylene glycol dimethacrylate, trimethylol propane trimethacrylate and trimethylol propane triacrylate. The physical properties of EB-irradiated NBR sheets were evaluated by measuring the tensile strength, elongation percent at break, hardness and gel fraction. The results showed a remarkable increase in tensile strength, hardness and gel fraction as the concentration of PFMs was increased from 1 part per hundred (phr) to 5 phr in the NBR samples whereas elongation percent decreased in a steady manner. The improvement in physical properties of radiation crosslinked NBR in the presence of PFMs may be attributed to its increased crosslinking density as observed by the corresponding increase in gel content.

  7. Free radical induced grafting of acrylonitrile on pre-treated rice straw for enhancing its durability and flame retardancy.

    PubMed

    Mukherjee, Aparna; Halder, Seema; Datta, Deepshikha; Anupam, Kumar; Hazra, Biren; Kanti Mandal, Mrinal; Halder, Gopinath

    2017-01-01

    The present investigation highlights the feasibility of a polymer grafting process to enhance the durability and flame retardancy of rice straw towards application as a low cost roofing material. The success of this grafting methodology was perceived to depend upon a bi-step pre-treatment process encompassing delignification and inorganic salts dispersion. Subsequently free radical polymer grafting of acrylonitrile onto rice straw was implemented by immersion mechanism initiated by oxalic acid-potassium permanganate initiator. The percentage of grafting, limiting oxygen index (LOI), biodegradability of the grafted rice straw and grafting yield percentage was estimated to be 57%, 27%, 0.02% and 136.67%, respectively. The weight loss of polymer grafted rice straw implied its less biodegradability over raw straw. Thus, the process of grafting contrived in the present analysis can be a promising and reliable technique for the efficient utilization of rice straw as an inexpensive roofing element through the augmentation of its durability and flame retardancy.

  8. Development of radiopure cadmium tungstate crystal scintillators from enriched {sup 106}Cd and {sup 116}Cd to search for double beta decay

    SciTech Connect

    Danevich, F. A.; Boiko, R. S.; Chernyak, D. M.; Kobychev, V. V.; Kropivyansky, B. N.; Mokina, V. M.; Nikolaiko, A. S.; Poda, D. V.; Podviyanuk, R. B.; Tretyak, V. I.; Barabash, A. S.; Konovalov, S. I.; Umatov, V. I.; Belli, P.; Bernabei, R.; D'Angelo, S.; Brudanin, V. B.; Cappella, F.; Incicchitti, A.; Caracciolo, V.; and others

    2013-08-08

    Cadmium tungstate crystal scintillators enriched in {sup 106}Cd up to 66% ({sup 106}CdWO{sub 4}) and in {sup 116}Cd up to 82% ({sup 116}CdWO{sub 4}) have been developed. The low radioactive contamination of the crystals measured on the level of ≤ 1.5 mBq/kg ({sup 40}K), ≤ 0.005 - 0.012 mBq/kg ({sup 226}Ra), 0.04 - 0.07 mBq/kg ({sup 228}Th) allows to carry out high sensitivity experiments to search for double beta processes in {sup 106}Cd and {sup 116}Cd.

  9. Decavanadate, decaniobate, tungstate and molybdate interactions with sarcoplasmic reticulum Ca(2+)-ATPase: quercetin prevents cysteine oxidation by vanadate but does not reverse ATPase inhibition.

    PubMed

    Fraqueza, Gil; Batista de Carvalho, Luís A E; Marques, M Paula M; Maia, Luisa; Ohlin, C André; Casey, William H; Aureliano, Manuel

    2012-11-07

    Recently we demonstrated that the decavanadate (V(10)) ion is a stronger Ca(2+)-ATPase inhibitor than other oxometalates, such as the isoelectronic and isostructural decaniobate ion, and the tungstate and molybdate monomer ions, and that it binds to this protein with a 1 : 1 stoichiometry. The V(10) interaction is not affected by any of the protein conformations that occur during the process of calcium translocation (i.e. E1, E1P, E2 and E2P) (Fraqueza et al., J. Inorg. Biochem., 2012). In the present study, we further explore this subject, and we can now show that the decaniobate ion, [Nb(10) = Nb(10)O(28)](6-), is a useful tool in deducing the interaction and the non-competitive Ca(2+)-ATPase inhibition by the decavanadate ion [V(10) = V(10)O(28)](6-). Moreover, decavanadate and vanadate induce protein cysteine oxidation whereas no effects were detected for the decaniobate, tungstate or molybdate ions. The presence of the antioxidant quercetin prevents cysteine oxidation, but not ATPase inhibition, by vanadate or decavanadate. Definitive V(IV) EPR spectra were observed for decavanadate in the presence of sarcoplasmic reticulum Ca(2+)-ATPase, indicating a vanadate reduction at some stage of the protein interaction. Raman spectroscopy clearly shows that the protein conformation changes that are induced by V(10), Nb(10) and vanadate are different from the ones induced by molybdate and tungstate monomer ions. Here, Mo and W cause changes similar to those by phosphate, yielding changes similar to the E1P protein conformation. The putative reduction of vanadium(V) to vanadium(IV) and the non-competitive binding of the V(10) and Nb(10) decametalates may explain the differences in the Raman spectra compared to those seen in the presence of molybdate or tungstate. Putting it all together, we suggest that the ability of V(10) to inhibit the Ca(2+)-ATPase may be at least in part due to the process of vanadate reduction and associated protein cysteine oxidation. These

  10. Dielectric analysis of the upper critical solution temperature behaviour of a poly(acrylamide-co-acrylonitrile) copolymer system in water.

    PubMed

    Asadujjaman, Asad; Bertin, Annabelle; Schönhals, Andreas

    2017-03-15

    A copolymer consisting of acrylamide (AAm) and acrylonitrile (AN) in aqueous solution was investigated using broadband dielectric spectroscopy at frequencies between 10(-1) Hz and 10(6) Hz in the temperature range from 2 °C to 60 °C. This system shows an UCST phase behavior. The phase transition and aggregation behavior is monitored by both the temperature and frequency dependence of the complex conductivity σ*(f, T), where the AN fraction and the concentration of the solution were varied. Additionally, the dielectric data are compared with the results obtained from dynamic light scattering measurements. The temperature dependence of the DC conductivity (σDC) of the copolymer solution is monitored and the phase transition temperature (PTT) of the poly(AAm-co-AN) copolymer is deduced from a change in the T-dependence of the DC conductivity. The change in σDC can be explained by decreased effective charge carrier mobility and a reduction of the effective charge number density at temperatures below the phase transition temperature of the poly(AAm-co-AN) solution. A pronounced interfacial polarization effect on the frequency dependence of the real part of the conductivity (σ') is observed at temperatures below the phase transition temperature. The charge carriers are blocked at the formed aggregates giving rise to this interfacial polarization. The dependence of the interfacial polarization on the acrylonitrile fraction in the copolymer and the concentration of the solution is studied in detail and conclusions concerning the internal structures of the copolymer aggregates are drawn.

  11. Genotoxicity of Styrene–Acrylonitrile Trimer in Brain, Liver, and Blood Cells of Weanling F344 Rats

    PubMed Central

    Hobbs, Cheryl A.; Chhabra, Rajendra S.; Recio, Leslie; Streicker, Michael; Witt, Kristine L.

    2012-01-01

    Styrene–acrylonitrile Trimer (SAN Trimer), a by-product in production of acrylonitrile styrene plastics, was identified at a Superfund site in Dover Township, NJ, where childhood cancer incidence rates were elevated for a period of several years. SAN Trimer was therefore tested by the National Toxicology Program in a 2-year perinatal carcinogenicity study in F344/N rats and a bacterial mutagenicity assay; both studies gave negative results. To further characterize its genotoxicity, SAN Trimer was subsequently evaluated in a combined micronucleus (MN)/Comet assay in juvenile male and female F344 rats. SAN Trimer (37.5, 75, 150, or 300 mg/kg/day) was administered by gavage once daily for 4 days. Micronucleated reticulocyte (MN-RET) frequencies in blood were determined by flow cytometry, and DNA damage in blood, liver, and brain cells was assessed using the Comet assay. Highly significant dose-related increases (P < 0.0001) in MN-RET were measured in both male and female rats administered SAN Trimer. The RET population was reduced in high dose male rats, suggesting chemical-related bone marrow toxicity. Results of the Comet assay showed significant, dose-related increases in DNA damage in brain cells of male (P < 0.0074) and female (P < 0.0001) rats; increased levels of DNA damage were also measured in liver cells and leukocytes of treated rats. Chemical-related cytotoxicity was not indicated in any of the tissues examined for DNA damage. The results of this subacute MN/Comet assay indicate induction of significant genetic damage in multiple tissues of weanling F344 male and female rats after oral exposure to SAN Trimer. PMID:22351108

  12. Genotoxicity of styrene-acrylonitrile trimer in brain, liver, and blood cells of weanling F344 rats.

    PubMed

    Hobbs, Cheryl A; Chhabra, Rajendra S; Recio, Leslie; Streicker, Michael; Witt, Kristine L

    2012-04-01

    Styrene-acrylonitrile Trimer (SAN Trimer), a by-product in production of acrylonitrile styrene plastics, was identified at a Superfund site in Dover Township, NJ, where childhood cancer incidence rates were elevated for a period of several years. SAN Trimer was therefore tested by the National Toxicology Program in a 2-year perinatal carcinogenicity study in F344/N rats and a bacterial mutagenicity assay; both studies gave negative results. To further characterize its genotoxicity, SAN Trimer was subsequently evaluated in a combined micronucleus (MN)/Comet assay in juvenile male and female F344 rats. SAN Trimer (37.5, 75, 150, or 300 mg/kg/day) was administered by gavage once daily for 4 days. Micronucleated reticulocyte (MN-RET) frequencies in blood were determined by flow cytometry, and DNA damage in blood, liver, and brain cells was assessed using the Comet assay. Highly significant dose-related increases (P < 0.0001) in MN-RET were measured in both male and female rats administered SAN Trimer. The RET population was reduced in high dose male rats, suggesting chemical-related bone marrow toxicity. Results of the Comet assay showed significant, dose-related increases in DNA damage in brain cells of male (P < 0.0074) and female (P < 0.0001) rats; increased levels of DNA damage were also measured in liver cells and leukocytes of treated rats. Chemical-related cytotoxicity was not indicated in any of the tissues examined for DNA damage. The results of this subacute MN/Comet assay indicate induction of significant genetic damage in multiple tissues of weanling F344 male and female rats after oral exposure to SAN Trimer.

  13. The potential reproductive, neurobehavioral and systemic effects of soluble sodium tungstate exposure in Sprague-Dawley rats

    SciTech Connect

    McInturf, S.M.; Bekkedal, M.Y.V.; Wilfong, E.; Arfsten, D.; Chapman, G.; Gunasekar, P.G.

    2011-07-15

    The debate on tungsten (W) is fostered by its continuous usage in military munitions. Reports demonstrate W solubilizes in soil and can migrate into drinking water supplies and, therefore, is a potential health risk to humans. This study evaluated the reproductive, systemic and neurobehavioral effects of sodium tungstate (NaW) in rats following 70 days of daily pre-and postnatal exposure via oral gavage to 5, 62.5 and 125 mg/kg/day of NaW through mating, gestation and weaning (PND 0-20). Daily administration of NaW produced no overt evidence of toxicity and had no apparent effect on mating success or offspring physical development. Distress vocalizations were elevated in F{sub 1} offspring from the high dose group, whereas righting reflex showed unexpected sex differences where males demonstrated faster righting than females; however, the effects were not dose-dependent. Locomotor activity was affected in both low and high-dose groups of F{sub 1} females. Low-dose group showed increased distance traveled, more time in ambulatory movements and less time in stereotypic behavior than controls or high dose animals. The high-dose group had more time in stereotypical movements than controls, and less time resting than controls and the lowest exposure group. Maternal retrieval was not affected by NaW exposure. Tungsten analysis showed a systemic distribution of NaW in both parents and offspring, with preferential uptake within the immune organs, including the femur, spleen and thymus. Histopathological evidence suggested no severe chronic injury or loss of function in these organs. However, the heart showed histological lesions, histiocytic inflammation from minimal to mild with cardiomyocyte degeneration and necrosis in several P{sub 0} animals of 125 mg NaW dose group. The result of this study suggests that pre and postnatal exposure to NaW may produce subtle neurobehavioral effects in offspring related to motor activity and emotionality.

  14. In vivo sodium tungstate treatment prevents E-cadherin loss induced by diabetic serum in HK-2 cell line.

    PubMed

    Bertinat, Romina; Silva, Pamela; Mann, Elizabeth; Li, Xuhang; Nualart, Francisco; Yáñez, Alejandro J

    2015-10-01

    Diabetic nephropathy (DN) is characterized by interstitial inflammation and fibrosis, which is the result of chronic accumulation of extracellular matrix produced by activated fibroblasts in the renal tubulointerstitium. Renal proximal tubular epithelial cells (PTECs), through the process of epithelial-to-mesenchymal transition (EMT), are the source of fibroblasts within the interstitial space, and loss of E-cadherin has shown to be one of the earliest steps in this event. Here, we studied the effect of the anti-diabetic agent sodium tungstate (NaW) in the loss of E-cadherin induced by transforming growth factor (TGF) β-1, the best-characterized in vitro EMT promoter, and serum from untreated or NaW-treated diabetic rats in HK-2 cell line, a model of human kidney PTEC. Our results showed that both TGFβ-1 and serum from diabetic rat induced a similar reduction in E-cadherin expression. However, E-cadherin loss induced by TGFβ-1 was not reversed by NaW, whereas sera from NaW-treated rats were able to protect HK-2 cells. Searching for soluble mediators of NaW effect, we compared secretion of TGFβ isoforms and vascular endothelial growth factor (VEGF)-A, which have opposite actions on EMT. One millimolar NaW alone reduced secretion of both TGFβ-1 and -2, and stimulated secretion of VEGF-A after 48 h. However, these patterns of secretion were not observed after diabetic rat serum treatment, suggesting that protection from E-cadherin loss by serum from NaW-treated diabetic rats originates from an indirect rather than a direct effect of this salt on HK-2 cells, via a mechanism independent of TGFβ and VEGF-A functions.

  15. Crystal structures of deuterated sodium molybdate dihydrate and sodium tungstate dihydrate from time-of-flight neutron powder diffraction.

    PubMed

    Fortes, A Dominic

    2015-07-01

    Time-of-flight neutron powder diffraction data have been measured from ∼90 mol% deuterated isotopologues of Na2MoO4·2H2O and Na2WO4·2H2O at 295 K to a resolution of sin (θ)/λ = 0.77 Å(-1). The use of neutrons has allowed refinement of structural parameters with a precision that varies by a factor of two from the heaviest to the lightest atoms; this contrasts with the X-ray based refinements where precision may be > 20× poorer for O atoms in the presence of atoms such as Mo and W. The accuracy and precision of inter-atomic distances and angles are in excellent agreement with recent X-ray single-crystal structure refinements whilst also completing our view of the hydrogen-bond geometry to the same degree of statistical certainty. The two structures are isotypic, space-group Pbca, with all atoms occupying general positions, being comprised of edge- and corner-sharing NaO5 and NaO6 polyhedra that form layers parallel with (010) inter-leaved with planes of XO4 (X = Mo, W) tetra-hedra that are linked by chains of water mol-ecules along [100] and [001]. The complete structure is identical with the previously described molybdate [Capitelli et al. (2006 ▸). Asian J. Chem. 18, 2856-2860] but shows that the purported three-centred inter-action involving one of the water mol-ecules in the tungstate [Farrugia (2007 ▸). Acta Cryst. E63, i142] is in fact an ordinary two-centred 'linear' hydrogen bond.

  16. The potential reproductive, neurobehavioral and systemic effects of soluble sodium tungstate exposure in Sprague-Dawley rats.

    PubMed

    McInturf, S M; Bekkedal, M Y V; Wilfong, E; Arfsten, D; Chapman, G; Gunasekar, P G

    2011-07-15

    The debate on tungsten (W) is fostered by its continuous usage in military munitions. Reports demonstrate W solubilizes in soil and can migrate into drinking water supplies and, therefore, is a potential health risk to humans. This study evaluated the reproductive, systemic and neurobehavioral effects of sodium tungstate (NaW) in rats following 70 days of daily pre-and postnatal exposure via oral gavage to 5, 62.5 and 125 mg/kg/day of NaW through mating, gestation and weaning (PND 0-20). Daily administration of NaW produced no overt evidence of toxicity and had no apparent effect on mating success or offspring physical development. Distress vocalizations were elevated in F(1) offspring from the high dose group, whereas righting reflex showed unexpected sex differences where males demonstrated faster righting than females; however, the effects were not dose-dependent. Locomotor activity was affected in both low and high-dose groups of F(1) females. Low-dose group showed increased distance traveled, more time in ambulatory movements and less time in stereotypic behavior than controls or high dose animals. The high-dose group had more time in stereotypical movements than controls, and less time resting than controls and the lowest exposure group. Maternal retrieval was not affected by NaW exposure. Tungsten analysis showed a systemic distribution of NaW in both parents and offspring, with preferential uptake within the immune organs, including the femur, spleen and thymus. Histopathological evidence suggested no severe chronic injury or loss of function in these organs. However, the heart showed histological lesions, histiocytic inflammation from minimal to mild with cardiomyocyte degeneration and necrosis in several P(0) animals of 125 mg NaW dose group. The result of this study suggests that pre and postnatal exposure to NaW may produce subtle neurobehavioral effects in offspring related to motor activity and emotionality.

  17. Anti-Diabetic Agent Sodium Tungstate Induces the Secretion of Pro- and Anti-Inflammatory Cytokines by Human Kidney Cells.

    PubMed

    Bertinat, Romina; Westermeier, Francisco; Silva, Pamela; Shi, Jie; Nualart, Francisco; Li, Xuhang; Yáñez, Alejandro J

    2017-02-01

    Diabetic kidney disease (DKD) is the major cause of end stage renal disease. Sodium tungstate (NaW) exerts anti-diabetic and immunomodulatory activities in diabetic animal models. Here, we used primary cultures of renal proximal tubule epithelial cells derived from type-2-diabetic (D-RPTEC) and non-diabetic (N-RPTEC) subjects as in vitro models to study the effects of NaW on cytokine secretion, as these factors participate in intercellular regulation of inflammation, cell growth and death, differentiation, angiogenesis, development, and repair, all processes that are dysregulated during DKD. In basal conditions, D-RPTEC cells secreted higher levels of prototypical pro-inflammatory IL-6, IL-8, and MCP-1 than N-RPTEC cells, in agreement with their diabetic phenotype. Unexpectedly, NaW further induced IL-6, IL-8, and MCP-1 secretion in both N- and D-RPTEC, together with lower levels of IL-1 RA, IL-4, IL-10, and GM-CSF, suggesting that it may contribute to the extent of renal damage/repair during DKD. Besides, NaW induced the accumulation of IκBα, the main inhibitor protein of one major pathway involved in cytokine production, suggesting further anti-inflammatory effect in the long-term. A better understanding of the mechanisms involved in the interplay between the anti-diabetic and immunomodulatory properties of NaW will facilitate future studies about its clinical relevance. J. Cell. Physiol. 232: 355-362, 2017. © 2016 Wiley Periodicals, Inc.

  18. Crystal structures of deuterated sodium molybdate dihydrate and sodium tungstate dihydrate from time-of-flight neutron powder diffraction

    PubMed Central

    Fortes, A. Dominic

    2015-01-01

    Time-of-flight neutron powder diffraction data have been measured from ∼90 mol% deuterated isotopologues of Na2MoO4·2H2O and Na2WO4·2H2O at 295 K to a resolution of sin (θ)/λ = 0.77 Å−1. The use of neutrons has allowed refinement of structural parameters with a precision that varies by a factor of two from the heaviest to the lightest atoms; this contrasts with the X-ray based refinements where precision may be > 20× poorer for O atoms in the presence of atoms such as Mo and W. The accuracy and precision of inter­atomic distances and angles are in excellent agreement with recent X-ray single-crystal structure refinements whilst also completing our view of the hydrogen-bond geometry to the same degree of statistical certainty. The two structures are isotypic, space-group Pbca, with all atoms occupying general positions, being comprised of edge- and corner-sharing NaO5 and NaO6 polyhedra that form layers parallel with (010) inter­leaved with planes of XO4 (X = Mo, W) tetra­hedra that are linked by chains of water mol­ecules along [100] and [001]. The complete structure is identical with the previously described molybdate [Capitelli et al. (2006 ▸). Asian J. Chem. 18, 2856–2860] but shows that the purported three-centred inter­action involving one of the water mol­ecules in the tungstate [Farrugia (2007 ▸). Acta Cryst. E63, i142] is in fact an ordinary two-centred ‘linear’ hydrogen bond. PMID:26279871

  19. Size- and shape-controlled conversion of tungstate-based inorganic-organic hybrid belts to WO3 nanoplates with high specific surface areas.

    PubMed

    Chen, Deliang; Gao, Lian; Yasumori, Atsuo; Kuroda, Kazuyuki; Sugahara, Yoshiyuki

    2008-10-01

    Two-dimensional monoclinic WO(3) nanoplates with high specific surface areas are synthesized through a novel conversion process using tungstate-based inorganic-organic hybrid micro/nanobelts as precursors. The process developed involves a topochemical transformation of tungstate-based inorganic-organic hybrid belts into WO(3) nanoplates via an intermediate product of H(2)WO(4) nanoplates, utilizing the similarity of the W-O octahedral layers in both H(2)WO(4) and WO(3). The as-obtained WO(3) nanoplates show a single-crystalline nanostructure with the smallest side along the [001] direction. The WO(3) nanoplates are 200-500 nm x 200-500 nm x 10-30 nm in size, and their specific surface areas are up to 180 m(2) g(-1). Photocatalytic measurements of visible-light-driven oxidation of water for O(2) generation in the presence of Ag(+) ions indicate that the activity of the as-obtained WO(3) nanoplates is one order of magnitude higher than that of commercially available WO(3) powders.

  20. Development and validation of personal monitoring methods for low levels of acrylonitrile in workplace atmosphere. I. Test atmosphere generation and solvent desorption methods

    SciTech Connect

    Melcher, R.G.; Borders, R.A.; Coyne, L.B.

    1986-03-01

    The purpose of this study was to optimize monitoring methods and to investigate new technology for the determination of low levels of acrylonitrile (0.05 to 5 ppm) in workplace atmospheres. In the first phase of the study, a dynamic atmosphere generation system was developed to produce low levels of acrylonitrile in simulated workplace atmospheres. Various potential sorbents were investigated in the second phase, and the candidate methods were compared in a laboratory validation study over a concentration range from 0.05 to 5 ppm acrylonitrile in the presence of potential interferences and under relative humidity conditions from 30% to 95% RH. A collection tube containing 600 mg Pittsburgh coconut base charcoal was found to be the optimum tube for sampling for a full 8 -hr shift. No breakthrough was observed over the concentrations and humidities tested. The recovery was 91.3% with a total relative precision of +/-21% over the test range, and the recovery was not affected by storage for up to five weeks.

  1. Melt-processable hydrophobic acrylonitrile-based copolymer systems with adjustable elastic properties designed for biomedical applications.

    PubMed

    Cui, J; Trescher, K; Kratz, K; Jung, F; Hiebl, B; Lendlein, A

    2010-01-01

    Acrylonitrile-based polymer systems (PAN) are comprehensively explored as versatile biomaterials having various potential biomedical applications, such as membranes for extra corporal devices or matrixes for guided skin reconstruction. The surface properties (e.g. hydrophilicity or charges) of such materials can be tailored over a wide range by variation of molecular parameters such as different co-monomers or their sequence structure. Some of these materials show interesting biofunctionalities such as capability for selective cell cultivation. So far, the majority of AN-based copolymers, which were investigated in physiological environments, were processed from the solution (e.g. membranes), as these materials are thermo-sensitive and might degrade when heated. In this work we aimed at the synthesis of hydrophobic, melt-processable AN-based copolymers with adjustable elastic properties for preparation of model scaffolds with controlled pore geometry and size. For this purpose a series of copolymers from acrylonitrile and n-butyl acrylate (nBA) was synthesized via free radical copolymerisation technique. The content of nBA in the copolymer varied from 45 wt% to 70 wt%, which was confirmed by 1H-NMR spectroscopy. The glass transition temperatures (Tg) of the P(AN-co-nBA) copolymers determined by differential scanning calorimetry (DSC) decreased from 58 degrees C to 20 degrees C with increasing nBA-content, which was in excellent agreement with the prediction of the Gordon-Taylor equation based on the Tgs of the homopolymers. The Young's modulus obtained in tensile tests was found to decrease significantly with rising nBA-content from 1062 MPa to 1.2 MPa. All copolymers could be successfully processed from the melt with processing temperatures ranging from 50 degrees C to 170 degrees C, whereby thermally induced decomposition was only observed at temperatures higher than 320 degrees C in thermal gravimetric analysis (TGA). Finally, the melt processed P

  2. Phase transition and aggregation behaviour of an UCST-type copolymer poly(acrylamide-co-acrylonitrile) in water: effect of acrylonitrile content, concentration in solution, copolymer chain length and presence of electrolyte.

    PubMed

    Asadujjaman, Asad; Kent, Ben; Bertin, Annabelle

    2017-01-18

    An UCST-type copolymer of acrylamide (AAm) and acrylonitrile (AN) (poly(AAm-co-AN)) was prepared by reversible addition fragmentation chain transfer (RAFT) polymerization and its temperature-induced phase transition and aggregation behaviour studied by turbidimetry, static and dynamic light scattering, small angle neutron scattering (SANS) and cryo-transmission electron microscopy (cryo-TEM) measurements. The phase transition temperature was found to increase with increasing AN content in the copolymer, concentration of the solutions and copolymer chain length. A significant effect was observed onto the phase transition temperature by addition of different electrolytes into the copolymer solution. The copolymer chains were aggregated below the phase transition temperature and disaggregated above it. The size of the aggregates increases with increasing AN contents and concentration of the copolymer solutions below the phase transition temperature. The copolymer chains were expanded and weekly associated in solution above the phase transition temperature. A model is proposed to explain such association-aggregation behaviour of poly(AAm-co-AN) copolymers depending on AN contents and concentration of the copolymer solutions as a function of temperature.

  3. Acute and chronic effects of sodium tungstate on an aquatic invertebrate (Daphnia magna), green alga (Pseudokirchneriella subcapitata), and zebrafish (Danio rerio).

    PubMed

    Clements, Leslie N; Lemus, Ranulfo; Butler, Alicia D; Heim, Kate; Rebstock, Matthew R; Venezia, Carmen; Pardus, Michael

    2012-10-01

    Although aquatic toxicity data exists for tungstate substances, insufficient data of high quality and relevancy are available for conducting an adequate risk assessment. Therefore, a series of acute and chronic toxicity tests with sodium tungstate (Na(2)WO(4)) were conducted on an aquatic invertebrate (Daphnia magna), green alga (Pseudokirchneriella subcapitata), and zebrafish (Danio rerio). Collectively, the data from these studies suggest that sodium tungstate exhibits a relatively low toxicity to these taxa under these test conditions. All studies were conducted in the same laboratory under good laboratory practice standards using Organisation for Economic Co-operation and Development guidelines with the same stock of test material and the same analytical methods. All results are reported as mg W/L. The following toxicity values were based on mean measured concentrations. For D. magna, the 21 day test no-observable effect concentration (NOEC) was 25.9 mg W/L, and the 48-h median effective concentration (EC(50)) from the acute test was >95.5 mg W/L (the highest concentration tested). The P. subcapitata test yielded an ErC(50) of 31 mg W/L. A 38-day test with zebrafish resulted in an NOEC ≥5.74 mg W/L with no effects at any concentration. The 96-h LC(50) from the acute test with zebrafish was >106 mg W/L. The results of the current acute study for daphnids and fish are consistent with published literature, whereas the algae results are different from previously reported values. Transformation/dissolution (T/D) studies, which were conducted according to United Nations Globally Harmonized System of Classification and Labelling of Chemicals protocol, confirmed that the WO (4) (-2) anion accounted for most of the tungsten in solution. For classification purposes, the algae ecotoxity reference value was then compared with T/D data and would not classify Na(2)WO(4) as an aquatic toxicant under the European Union Classification, Labelling and Packaging scheme.

  4. N-acetyl-S-(1-cyano-2-hydroxyethyl)-L-cysteine, a new urinary metabolite of acrylonitrile and oxiranecarbonitrile.

    PubMed

    Linhart, I; Smejkal, J; Novák, J

    1988-01-01

    Two mercapturic acids, i.e., N-acetyl-S-(1-cyano-2-hydroxyethyl)-L-cysteine (CHEMA) and N-acetyl-S-(2-hydroxyethyl)-L-cysteine (HEMA), were isolated from the urine of rats dosed with four successive doses of oxiranecarbonitrile (glycidonitrile, GN), 5 mg/kg, a reactive metabolic intermediate of acrylonitrile (AN). GC-MS analysis of methylated urine extracts from both AN- and GN-dosed rats showed another mercapturate which was identified as N-acetyl-S-(1-cyanoethenyl)-L-cysteine (1-CEMA) methyl ester using an authentic reference sample. The mass spectrum of this compound was very similar to that of a methylated metabolite of AN tentatively identified by Langvardt et al. (1980) as N-acetyl-3-carboxy-5-cyanothiazane (ACCT). In contrast, no ACCT was found in rats dosed with either GN or AN. Hence, there is no evidence for the formation of ACCT or its isomers in rats dosed with AN or GN. The methyl ester of 1-CEMA is formed artificially by dehydration of CHEMA methyl ester in the injector of the gas chromatograph.

  5. Electron Beam Damage in Poly(Vinyl Chloride) and Poly(Acrylonitrile) as Observed by Auger Electron Spectroscopy

    SciTech Connect

    Lea, Alan S.; Engelhard, Mark H.; Baer, Donald R.

    2003-03-07

    AES spectra of spun-cast films of poly(vinyl chloride) (PVC) and poly(acrylonitrile) (PAN) were collected over a period of time to determine specimen damage during exposure to a 10kV electron beam. For the PVC, loss of chlorine was observed over a period of 203 minutes to the extent that the final chlorine concentration was only 20% of its original value. PAN exhibited a loss in nitrogen content over a period of 120 minutes, but the rate of damage to the polymer was significantly less than PVC. Figure 1 shows the atomic concentration in the PVC film as a function of dose (time). It takes a dose of approximately 7.0x10-5 Ccm-5 for the chlorine concentration to fall from its original value by 10% (one definition of critical dose). Figure 2 shows a similar drop in nitrogen concentration in the PAN film as a function of dose. For this polymer, it takes a dose of 1.3x10-3 Ccm-2 for the nitrogen concentration to fall by 10%.

  6. Separation of polycarbonate and acrylonitrile-butadiene-styrene waste plastics by froth flotation combined with ammonia pretreatment.

    PubMed

    Wang, Chong-Qing; Wang, Hui; Liu, Qun; Fu, Jian-Gang; Liu, You-Nian

    2014-12-01

    The objective of this research is flotation separation of polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) waste plastics combined with ammonia pretreatment. The PC and ABS plastics show similar hydrophobicity, and ammonia treatment changes selectively floatability of PC plastic while ABS is insensitive to ammonia treatment. The contact angle measurement indicates the dropping of flotation recovery of PC is ascribed to a decline of contact angle. X-ray photoelectron spectroscopy demonstrates reactions occur on PC surface, which makes PC surface more hydrophilic. Separation of PC and ABS waste plastics was conducted based on the flotation behavior of single plastic. At different temperatures, PC and ABS mixtures were separated efficiently through froth flotation with ammonia pretreatment for different time (13 min at 23 °C, 18 min at 18 °C and 30 min at 23 °C). For both PC and ABS, the purity and recovery is more than 95.31% and 95.35%, respectively; the purity of PC and ABS is up to 99.72% and 99.23%, respectively. PC and ABS mixtures with different particle sizes were separated effectively, implying that ammonia treatment possesses superior applicability.

  7. Reclamation of post-consumer plastics for development of polycarbonate and acrylonitrile butadiene styrene based nanocomposites with nanoclay

    NASA Astrophysics Data System (ADS)

    Zicans, Janis; Meri, Remo Merijs; Ivanova, Tatjana; Berzina, Rita; Saldabola, Ruuta; Maksimov, Robert

    2016-05-01

    Suitability of recycled acrylonitrile-butadiene-styrene (R-ABS) and recycled polycarbonate (R-PC) for the development of polymer matrix nanocomposites with organically modified nanoclay (OMMT) is evaluated in comparison to virgin polymers (V-ABS and V-PC) based systems. The influence of OMMT content on the structure as well as calorimetric, mechanical and thermal properties of virgin and recycled polymers containing systems is revealed. Increase in stiffness and strength of virgin and recycled polymers based systems is observed along with rising nanoclay content. However, it is observed that reinforcing efficiency of clays on the R-ABS containing systems is reduced to certain extent in comparison to those, based on virgin polymers. It is shown, that in the presence of OMMT approximation of glass transition temperatures of both polymeric components is observed, which can testify about certain improvement of compatibility between PC and ABS. Increment of the modulus of elasticity and yield strength of the nanocomposites is associated with anisodiametric shape of OMMT, as well as with intercalation of polymer within the interlaminar space of the clay nanoparticles. It is also demonstrated that addition of nanoclay improves thermogravimetric behavior of the investigated compositions. Consequently, it is suggested that nanoclays can be used as promising functional additives and replace halogenated flame-retardants, without reducing mechanical properties of the composites.

  8. Toxicity and oxidative stress of acrylonitrile in rat primary glial cells: preventive effects of N-acetylcysteine.

    PubMed

    Esmat, Ahmed; El-Demerdash, Ebtehal; El-Mesallamy, Hala; Abdel-Naim, Ashraf B

    2007-07-10

    Brain is a target organ for acrylonitrile (ACN) toxicity. The objective of the current work was to investigate ACN cytotoxicity in rat primary glial cells, using N-acetyl-l-cysteine (NAC) as a potential protective agent. Cells were exposed in vitro to different concentrations of ACN for different time intervals. Cell membrane integrity was assessed by trypan blue exclusion and lactate dehydrogenase (LDH) leakage. Approximately 50% membrane damage was observed in the incubations containing 1.0mM ACN for 3h. Therefore, these experimental conditions were used in subsequent studies. ACN enhanced lipid peroxidation, as indicated by malondialdehyde (MDA) accumulation, and depleted reduced glutathione (GSH) level with no change in total glutathione. Also, ACN was activated to cyanide (CN(-)) with dramatic decrease in ATP level. Cell treatment with NAC prior to exposure to ACN afforded some protection; as indicated by reducing MDA level and elevating level of both reduced and total glutathione. Further, pretreatment with NAC inhibited CN(-) formation and caused an increase in ATP level. Our results indicate that ACN is toxic to rat primary glial cells as evidenced by induction of oxidative stress and generation of CN(-) with subsequent energy depletion. NAC can play an important role against ACN-induced oxidative damage.

  9. Effect of PAHM (Poly-acrylonitrile Hollow Microsphere) addition on the Lightweight and Firing Behavior of Whiteware

    NASA Astrophysics Data System (ADS)

    Choi, H. S.; Pee, J. H.; Kim, G. H.; Kim, J. Y.; Cho, W. S.; Kim, K. J.

    2011-10-01

    The pore generation technology using PAHM (Poly-acrylonitrile Hollow Microsphere) was studied in order to reduce the weights of tableware. In this study, we verify the property of modified slurry and plasticity of green body by adding PAHM. The modified slurry was prepared by adding 25~55vol% of PAHM to the slurry for whiteware. The viscosity of slurry was controlled to be low value (25~45vol%). However, the viscosity of modified slurry increased and the plasticity of modified green body decreased inside the 45~55vol% range. The formed specimen by slip casting was fired at 1225 °C, 1240°C. As the amount of PAHM content increased, the weight decreased and the addition of 45vol/% of PAHM resulted in a weight drop of 39%. However, when the PAHM content increased, the strength decreases over 50%. This is caused by the presence of a large volume of surface defects (pores) and defects from the agglomeration of PAHM.

  10. PAPERS DEVOTED TO THE 90TH ANNIVERSARY OF A.M.PROKHOROV: Lasing properties of selectively pumped Raman-active Nd3+-doped molybdate and tungstate crystals

    NASA Astrophysics Data System (ADS)

    Basiev, Tasoltan T.; Doroshenko, Maxim E.; Ivleva, Lyudmila I.; Osiko, Vyacheslav V.; Kosmyna, M. B.; Komar', V. K.; Sulc, J.; Jelinkova, H.

    2006-08-01

    The lasing efficiency of Nd3+ ions is studied in laser materials capable of self-Raman frequency conversion. The lasing properties of tungstate and molybdate crystals with the scheelite structure (SrWO4, BaWO4, PbWO4, SrMoO4, PbMoO4) activated with neodymium ions are investigated upon longitudinal pumping by a 750-nm alexandrite laser or a 800-nm diode laser. The slope lasing efficiency obtained for a Nd3+:PbMoO4 laser emitting at 1054 nm is 54.3% for the total lasing efficiency of 46%, which is the best result for all the crystals with the scheelite structure studied so far. The simultaneous Q-switched lasing and self-Raman frequency conversion were demonstrated in neodymium-doped SrWO4, PbWO4, and BaWO4 crystals.

  11. Morphological evolution and visible light-induced degradation of Rhodamine 6G by nanocrystalline bismuth tungstate prepared using a template-based approach

    NASA Astrophysics Data System (ADS)

    Silva, Raissa Mendes; Batista Barbosa, Diego Augusto; de Jesus Silva Mendonça, Caritas; de Oliveira Lima, José Renato; Silva, Fernando Carvalho; Longo, Elson; Maciel, Adeilton Pereira; de Araujo Paschoal, Carlos William; Almeida, Marcio Aurélio Pinheiro

    2016-09-01

    The cleaning of water contaminated with organic dyes is a crucial problem nowadays. The search for good catalysts is intense, and bismuth tungstates have attracted a lot of attention because of their catalytic properties which are related to their crystal structure and morphology. In this study, we show that Bi2WO6 (BWO) crystals synthesized by the surfactant-assisted hydrothermal method create a different morphology than non-assisted crystals. With the assistance of the PVP surfactant, even the BWO crystalline structure could change, crystallizing into a high-symmetry metastable phase. These changes in morphology imply a decrease in BWO catalytic activity, which shows that insightful control of BWO synthesis is necessary to improve the BWO properties.

  12. Use of sodium tungstate as a permanent chemical modifier for slurry sampling electrothermal atomic absorption spectrometric determination of indium in soils.

    PubMed

    López-García, Ignacio; Rivas, Ricardo E; Hernández-Córdoba, Manuel

    2008-06-01

    A number of chemical modifiers have been assessed for the direct determination of indium in soils using electrothermal atomic absorption spectrometry and slurry sampling. The best results were obtained when the graphite atomizer was impregnated with sodium tungstate, which acts as a permanent chemical modifier. Slurries were prepared by suspending 100 mg sample in a solution containing 1% (v/v) concentrated nitric acid and 10% (v/v) concentrated hydrofluoric acid and then 15-microL aliquots were directly introduced into the atomizer. Standard indium solutions prepared in the suspension medium in the range 4-80 microg L(-1) indium were used for calibration. The relative standard deviation for ten consecutive measurements of a 40 microg L(-1) indium solution was 2.8%. The limit of detection in soils was 0.1 microg g(-1). The reliability of the procedures was confirmed by analysing two standard reference materials and by using an alternative procedure.

  13. Simultaneous quantitation of urinary cotinine and acrylonitrile-derived mercapturic acids with ultraperformance liquid chromatography-tandem mass spectrometry.

    PubMed

    Wu, Chia-Fang; Uang, Shi-Nian; Chiang, Su-Yin; Shih, Wei-Chung; Huang, Yu-Fang; Wu, Kuen-Yuh

    2012-02-01

    Acrylonitrile (AN), a widely used industrial chemical also found in tobacco smoke, has been classified as a possible human carcinogen (group 2B) by the International Agency for Research on Cancer. AN can be detoxified by glutathione S-transferase (GST) to form glutathione (GSH) conjugates in vivo. It can be metabolically activated by cytochrome P450 2E1 to form 2-cyanoethylene oxide, which can also be detoxified by GST to generate GSH conjugates. The GSH conjugates can be further metabolized to mercapturic acids (MAs), namely, N-acetyl-S-(2-cyanoethyl)cysteine (CEMA), N-acetyl-S-(2-hydroxyethyl)cysteine (HEMA), and N-acetyl-S-(1-cyano-2-hydroxyethyl)cysteine (CHEMA). This study developed an ultraperformance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) method to quantitatively profile the major AN urinary metabolites (CEMA, HEMA, and CHEMA) to assess AN exposure, as well as analyze urinary cotinine (COT) as an indicator for tobacco smoke exposure. The limits of quantitation were 0.1, 0.1, 1.0, and 0.05 μg/L for HEMA, CEMA, CHEMA, and COT, respectively. This method was applied to analyze the three AN-derived MAs in 36 volunteers with no prior occupational AN exposure. Data analysis showed significant correlations between the level of COT and the levels of these MAs, suggesting them as biomarkers for exposure to low levels of AN. The results demonstrate that a highly specific and sensitive UPLC-MS/MS method has been successfully developed to quantitatively profile the major urinary metabolites of AN in humans to assess low AN exposure.

  14. Induction or inhibition of cytochrome P450 2E1 modifies the acute toxicity of acrylonitrile in rats: biochemical evidence.

    PubMed

    Suhua, Wang; Rongzhu, Lu; Wenrong, Xu; Guangwei, Xing; Xiaowu, Zhao; Shizhong, Wang; Ye, Zhang; Fangan, Han; Aschner, Michael

    2010-06-01

    The present study was designed to examine the effects of the inhibition or induction of CYP2E1 activity on acute acrylonitrile (AN) toxicity in rats. Increased or decreased hepatic CYP2E1 activity was achieved by pretreatment with acetone or trans-1,2-dichloroethylene (DCE), respectively. AN (50 mg/kg) was administered by intraperitoneal injection. Onset of convulsions and death were observed in rats with increased CYP2E1 activity, whereas convulsions and death did not appear in rats within 1 h after treatment with AN alone. Convulsions occurred in all AN-treated animals with increased CYP2E1 activity at approximately 18 min. The levels of cyanide (CN(-)), a terminal metabolite of AN, were significantly increased in the brains and livers of the AN-treated rats with increased CYP2E1 activity, compared with the levels in rats treated with AN alone, DCE + AN or acetone + DCE + AN. The cytochrome c oxidase (CcOx) activities in the brains and livers of the rats treated with AN or AN + acetone were significantly lower than those in the normal control rats and the rats treated with DCE, whereas the CcOx activities in the brains and livers of rats with decreased CYP2E1 activity were significantly higher than those in AN-treated rats. Brain lipid peroxidation was enhanced, and the antioxidant capacity was significantly compromised in rats with decreased CYP2E1 activity compared with rats with normal or increased CYP2E1 activity. Therefore, inhibition of CYP2E1 and simultaneous antioxidant therapy should be considered as supplementary therapeutic interventions in acute AN intoxication cases with higher CYP2E1 activity, thus a longer window of opportunity would be got to offer further emergency medication.

  15. Role of cytochrome P450 2E1 in the metabolism of acrylamide and acrylonitrile in mice.

    PubMed

    Sumner, S C; Fennell, T R; Moore, T A; Chanas, B; Gonzalez, F; Ghanayem, B I

    1999-11-01

    Acrylonitrile (AN) and acrylamide (AM) are commonly used in the synthesis of plastics and polymers. In rodents, AM and AN are metabolized to the epoxides glycidamide and cyanoethylene oxide, respectively. The aim of this study was to determine the role of cytochrome P450 in the metabolism of AM and AN in vivo. Wild-type (WT) mice, WT mice pretreated with aminobenzotriazole (ABT, 50 mg/kg ip, 2 h pre-exposure), and mice devoid of cytochrome P450 2E1 (P450 2E1-null) were treated with 50 mg/kg [(13)C]AM po. WT mice and P450 2E1-null mice were treated with 2.5 or 10 mg/kg [(13)C]AN po. Urine was collected for 24 h, and metabolites were characterized using (13)C NMR. WT mice excreted metabolites derived from the epoxides and from direct GSH conjugation with AM or AN. Only metabolites derived from direct GSH conjugation with AM or AN were observed in the urine from ABT-pretreated WT mice and P450 2E1-null mice. On the basis of evaluation of urinary metabolites at these doses, these data suggest that P450 2E1 is possibly the only cytochrome P450 enzyme involved in the metabolism of AM and AN in mice, that inhibiting total P450 activity does not result in new pathways of non-P450 metabolism of AM, and that mice devoid of P450 2E1 do not excrete metabolites of AM or AN that would be produced by oxidation by other cytochrome P450s. P450 2E1-null mice may be an appropriate model for the investigation of the role of oxidative metabolism in the toxicity or carcinogenicity of these compounds.

  16. Neurovestibular toxicities of acrylonitrile and iminodipropionitrile in rats: a comparative evaluation of putative mechanisms and target sites.

    PubMed

    Khan, Haseeb Ahmad; Alhomida, Abdullah Saleh; Arif, Ibrahim Abdulwahid

    2009-05-01

    This investigation was aimed to study the effects of individual and concomitant exposures of the two nitrile compounds, the industrially important acrylonitrile (ACN; 5, 15, 45 mg/kg/day) and the positive control iminodipropionitrile (IDPN; 100 mg/kg/day) in rats. The six treatment groups were 1 (control), 2 (ACN 5), 3 (ACN 15), 4 (ACN 45), 5 (IDPN), and 6 (IDPN + ACN 15). Both the drugs were started on the same day and continued for 9 days (IDPN was given daily 30 min before ACN but stopped a day earlier). The animals were daily observed for neurobehavioral abnormalities including dyskinetic head movements, circling, tail hanging, air righting reflex, and contact inhibition of righting reflex. There was no dyskinetic behavioral abnormality in the animals treated with any of the three doses of ACN whereas all the rats in IDPN alone treated group developed clear symptoms of excitation, circling, and chorea syndrome (ECC syndrome) on day 9. Concomitant treatment of rats with ACN significantly attenuated the severity of IDPN-induced behavioral deficits. Administration of ACN significantly depleted glutathione (GSH) in striatum, hippocampus and cerebral cortex; IDPN significantly reduced the GSH only in striatum. The anterior striatum showed intense tyrosine hydroxylase (TH) expression in IDPN alone treated rat as compared to control and ACN alone treated rat. Cotreatment with ACN reduced the intensity of TH immunostaining in IDPN-treated rats. Administration of IDPN alone caused massive loss of vestibular sensory hair cells in the crista ampullaris whereas the sensory epithelium appeared intact in ACN alone treated groups. The animals receiving the combination of ACN and IDPN showed comparatively less degeneration of sensory hair cells than IDPN alone group. These findings suggest that ACN and IDPN produce different behavioral effects that are exerted through entirely different mechanisms; the nervous and vestibular systems appear to be the major target sites of these

  17. Spatial distribution of stabilizer-derived nitroxide radicals during thermal degradation of poly(acrylonitrile-butadiene-styrene) copolymers: a unified picture from pulsed ELDOR and ESR imaging.

    PubMed

    Jeschke, Gunnar; Schlick, Shulamith

    2006-09-21

    Double Electron-Electron Resonance (DEER) provides information on the spatial distribution of radicals on the length scale of a few nanometres, while Electron Spin Resonance Imaging (ESRI) provides information on a length scale of millimetres with a resolution of about 100 micrometres. Despite the gap between these length scales, results from the two techniques are found to complement and support each other in the characterization of the identity and distribution of nitroxide radicals derived from the Hindered Amine Stabilizer (HAS) Tinuvin 770 in poly(acrylonitrile-butadiene-styrene) (ABS) copolymers. DEER measurements demonstrate that there is no significant formation of biradicals from the bifunctional HAS, and provide the distributions of local radical concentrations. These distributions are poorly resolved for model-free analysis of the DEER data by the Tikhonov regularization; the resolution was significantly improved by utilizing information obtained by ESRI. DEER data can be fitted with only one adjustable parameter, namely the average radical concentration, if 1D and 2D spectral--spatial ESRI results on both the spatial distribution of nitroxides and their distribution between the acrylonitrile--styrene-rich (SAN) and butadiene-rich (B) microphases are considered.

  18. Removal of As(V), Cr(III) and Cr(VI) from aqueous environments by poly(acrylonitril-co-acrylamidopropyl-trimethyl ammonium chloride)-based hydrogels.

    PubMed

    Dudu, Tuba Ersen; Sahiner, Mehtap; Alpaslan, Duygu; Demirci, Sahin; Aktas, Nahit

    2015-09-15

    Cationic poly(Acrylonitril-co-Acrylamidopropyl-trimethyl Ammonium Chloride) (p(AN-co-APTMACl)) hydrogels in bulk were synthesized by using acrylonitrile (AN) and 3-acrylamidopropyl-trimethyl ammonium chloride (APTMACl) as monomers. The prepared hydrogels were exposed to amidoximation reaction to replace hydrophobic nitrile groups with hydrophilic amidoxime groups that have metal ion binding ability. Those replacements were increased the hydrogels absorption capacity for As(V) and Cr(VI). Langmuir and Freundlich isotherms equations were utilized to obtain the best-fitted isotherm model for the absorption of the ions at different metal ion concentrations. The absorption data of As(V) ion were fitted well to Freundlich isotherm while those of Cr(VI) and Cr(III) ions were fitted well to Langmuir isotherm. The maximum absorption of poly(3-acrylamidopropyl-trimethyl ammonium chloride (p(APTMACl)) and amid-p(AN-co-APTMACl) macro gels were 22.39 mg and 21.83 mg for As(V), and 30.65 mg and 18.16 mg for Cr(VI) ion per unit gram dried gel, respectively. Kinetically, the absorption behaviors of Cr(III) and Cr(VI) ions were fitted well to a pseudo 2nd-order kinetic model and those of As(V) ions were fitted well to a pseudo 1st order kinetic model.

  19. Acrylonitrile has Distinct Hormetic Effects on Acetyl-Cholinesterase Activity in Mouse Brain and Blood that are Modulated by Ethanol

    PubMed Central

    Yuanqing, He; Suhua, Wang; Guangwei, Xing; Chunlan, Ren; Hai, Qian; Wenrong, Xu; Rongzhu, Lu; Aschner, Michael; Milatovic, Dejan

    2013-01-01

    Acrylonitrile(AN) is a neurotoxin both in animals and humans, but its effects on acetylcholinesterase (AChE) activity remain controversial. This study aimed to determine the dose-response effects of AN on AChE activity and the modulatory role of ethanol pre-treatment. A total of 144 Kunming mice were randomly divided into 18 groups: nine groups received 5% ethanol in their drinking water, and the remaining nine groups received regular tap water. One week later, both the ethanol and tap water only groups were given an intraperitoneal injection of AN at the following doses: 0 (control), 0.156, 0.3125, 0.625, 1.25, 2.5, 5, 10 or 20 mg AN/kg body weight. AChE activity was determined on whole blood and brain 24 h later. Blood AChE activity was higher in AN-injected mice than in controls at all doses. AChE activity in blood increased in a dose-dependent manner, peaking at 0.156 mg/kg, after which a gradual decrease ensued, displaying a β-typed dose-response relationship. In contrast, brain AChE activity, following a single AN injection, was consistently lower than in control mice, and continued to fall up to a dose of 0.313 mg/kg, and thereafter increased gradually with higher doses. Mice receiving a 20 mg/kg dose of AN exhibited AChE brain activity indistinguishable from that of control mice, demonstrating a typical U-typed dose-response relationship. The activity of AChE in the blood and brain of the AN + ethanol-treated groups displayed a shift to the right, and the magnitude of the decrease in AChE activity induced by AN was attenuated relative to the AN-only group. These results suggest that AN affects AChE activity in both mouse blood and brain in a hormetic manner. Pretreatment with ethanol modifies the effect of AN on AChE, indicating that parent AN has a more prominent role than its metabolites in modulating enzyme activity. PMID:23550232

  20. Chronic toxicity and oncogenic dose-response effects of lifetime oral acrylonitrile exposure to Fischer 344 rats.

    PubMed

    Johannsen, Frederick R; Levinskas, George J

    2002-06-24

    Acrylonitrile (AN) was administered in the drinking water for approximately 2 years to groups of 100 male and 100 female Fischer 344 rats at nominal concentrations of 1, 3, 10, 30, and 100 ppm. Two groups, each of 100 males and 100 females, were used as untreated controls. Average daily intake was 0.1, 0.3, 0.8, 2.5 or 8.4 mg AN per kg body weight per day, respectively, for treated male rats and 0.1, 0.4, 1.3, 3.7, or 10.9 mg AN per kg per body weight per day, respectively, for dosed females. Clinical biochemistry, interim necropsies, organ weights and microscopic evaluation of tissues and organs were performed on groups of ten rats per sex per group at months 6, 12, and 18 and at study termination. Females were sacrificed in the 24th month and males were terminated after 26 months of dosing. A consistent decrease in survival, lower body weight and reduced water intake, as well as small reductions in hematological parameters, were observed in both sexes of the 100 ppm group. Elevated numbers of early deaths were observed in groups of males receiving 10 ppm AN and females receiving 30 ppm AN. Organ:body weight ratios at various study intervals were consistently elevated in the high dose group and likely were related to lower body weights. At these same intervals, mean absolute weights were either comparable to controls or only slightly elevated and few changes in weight ratios were seen when organ weights were compared with brain weights. No biochemical changes suggested a treatment-related effect. An increase in urine specific gravity in 100 ppm male rats was reflective of a decrease in liquid intake at this level. The only significant non-neoplastic finding observed histologically was a dose-related increase in hyperplasia/hyperkeratosis in squamous cells of the forestomach in male and female rats given 3 ppm and higher AN. This observation correlated with the induction of treatment-related squamous cell tumors (papillomas and carcinomas) of the forestomach seen

  1. Preparation and evaluation of cerium(IV) tungstate powder as inorganic exchanger in sorption of cobalt and europium ions from aqueous solutions.

    PubMed

    El-Kamash, A M; El-Gammal, B; El-Sayed, A A

    2007-03-22

    Cerium(IV) tungstate powder was chemically synthesized and exploited as adsorbent material for the decontamination study of cobalt and europium ions from radioactive waste solutions under simulated conditions using batch technique. The influences of pH, particle size and temperature have been reported. The uptake of europium was found to be slightly greater than that of cobalt and the apparent sorption capacity increases with increase in temperature. Thermodynamic parameters such as changes in Gibbs free energy (DeltaG degrees), enthalpy (DeltaH degrees), and entropy (DeltaS degrees) were calculated. The numerical value of DeltaG degrees decreases with an increase in temperature, indicating that the sorption reaction of each ion was spontaneous and more favorable at higher temperature. The positive values of DeltaH degrees correspond to the endothermic nature of sorption processes and suggested that chemisorption was the predominant mechanism. A comparison of kinetic models applied to the sorption rate data of each ion was evaluated for the pseudo first-order, the pseudo second-order, intraparticle diffusion and homogeneous particle diffusion kinetic models. The results showed that both the pseudo second-order and the homogeneous particle diffusion models were found to best correlate the experimental rate data. The numerical values of the rate constants and particle diffusion coefficients were determined from the graphical representation of the proposed models. Activation energy (E(a)) and entropy (DeltaS++) of activation were also computed from the linearized form of Arrhenius equation.

  2. Tunable quasi-cw two-micron lasing in diode-pumped crystals of mixed Tm{sup 3+}-doped sodium - lanthanum - gadolinium molybdates and tungstates

    SciTech Connect

    Bol'shchikov, F A; Ryabochkina, P A; Zharikov, Evgeny V; Lis, Denis A; Subbotin, Kirill A; Zakharov, N G; Antipov, Oleg L

    2010-12-09

    Two-micron lasing is obtained for the first time on the {sup 3}F{sub 4} {yields} {sup 3}H{sub 6} transition of Tm{sup 3+} ions in diode-pumped crystals of mixed sodium - lanthanum - gadolinium tungstate Tm:NaLa{sub 1/2}Gd{sub 1/2}(WO{sub 4}){sub 2} (C{sub Tm} = 3.6 at %) (3.6Tm : NLGW) and molybdate Tm:NaLa{sub 1/3}Gd{sub 2/3}(MoO{sub 4}){sub 2} (C{sub Tm} = 4.8 at %) (4.8Tm : NLGM). For the 3.6Tm : NLGW crystal, the quasi-cw laser output power exceeded 200 mW and the slope efficiency (with respect to absorbed pump power) for the {pi}- and {sigma}-polarisations at wavelengths of 1908 and 1918 nm was 34% and 30%, respectively. The laser wavelength of this crystal was continuously tuned within the spectral range of 1860 - 1935 nm. For the 4.8Tm : NLGM crystal, the slope efficiency for the {pi}- and {sigma}-polarisations at wavelengths of 1910 and 1918 nm was 27% and 23%, respectively, and the laser wavelength was tunable within the spectral range of 1870 - 1950 nm. (lasers)

  3. Comparative performance of passively Q-switched diode-pumped Yb:GGG, Yb:YAG, and Yb-doped tungstates lasers using Cr 4+ -doped garnets

    NASA Astrophysics Data System (ADS)

    Kalisky, Y.; Kalisky, O.; Rachum, U.; Boulon, G.; Brenier, A.

    2006-02-01

    We investigated the CW free-running and repetitive modulation in the kHz frequency domain of a passively Q-switched, diode-pumped Yb:YAG, Yb:GGG and Yb:KYW lasers, by using Cr 4+:YAG as a saturable absorber. The results presented here are focused towards the design of a passively Q-switched Yb doped garnets or Yb doped tungstates microlaser. The free-running performance of Yb:YAG, Yb:GGG, Yb:KGW and Yb:KYW were characterized, and experimental parameters such as gain and loss were evaluated. We carried out a fit between our experimental results and an existing numerical model, which relates the experimental and the physical parameters of the ytterbium diode-pumped system to the minimal threshold pumping power. The best performance among the laser crystals was obtained for Yb:YAG laser. A maximum peak power of ~4.5-kW, at an average output power of 1.32-W, were extracted with of ~25 % extraction efficiency.

  4. The magnetic structures of double tungstates, NaM(WO 4) 2, M=Fe, Cr: Examples for superexchange couplings mediated by [NaO 6]-octahedra

    NASA Astrophysics Data System (ADS)

    Nyam-Ochir, L.; Ehrenberg, H.; Buchsteiner, A.; Senyshyn, A.; Fuess, H.; Sangaa, D.

    The crystal structures of the double tungstates NaM(WO 4) 2 with M=Fe, Cr and their solid solution are similar to the wolframite-type structure in the space group P2/c, but with doubled a lattice parameter. Magnetization and neutron-diffraction data reveal that NaFe(WO 4) 2 orders antiferromagnetically below 5 K with a commensurate propagation vector k=({1}/{2},{1}/{2},{1}/{2}) and magnetic moments of Fe 3+ ions oriented along the a-axis. NaCr(WO 4) 2 is antiferromagnetic below 10 K. Its magnetic structure is based on the propagation vector k=({1}/{2},{1}/{2},0), and the magnetic moments of Cr 3+ ions are aligned along the b-axis. The magnetic structure in the bc-plane is explained by a supersuperexchange mechanism. Long-range magnetic superexchange interactions along paths including [NaO 6]-octahedra are necessary to explain the observed magnetic structures. Mixed NaFe xCr 1-x(WO 4) 2, with x=0.25, 0.5, 0.75, do not indicate magnetic order, neither in magnetization nor neutron-diffraction data.

  5. Modification on liquid retention property of cassava starch by radiation grafting with acrylonitrile. I. Effect of γ-irradiation on grafting parameters

    NASA Astrophysics Data System (ADS)

    Kiatkamjornwong, S.; Chvajarernpun, J.; Nakason, C.

    1993-07-01

    Radiation modification on liquid retention properties of native cassava starch, gelatinized at 85°C, by graft copolymerization with acrylonitrile was carried out by mutual irradiation to gamma-rays. A thin aluminum foil was used to cover the inner wall of the reaction vessel, so that the homopolymer concentration was reduced to be less than 1.0% with a distilled water retention value of 665 g/g of the dry weight of the saponified grafted product. Confirmation of graft copolymerization and saponification reactions was made by the infrared spectrophotometric technique. The combined effect of radiation parameters in terms of an irradiation time and a dose rate to the total dose on the extent of the grafting reaction expressed in terms of grafting parameters which directly influenced liquid retention values was evaluated in conjunction with statistical analysis.

  6. Synchrotron-based FTIR microspectroscopy for the mapping of photo-oxidation and additives in acrylonitrile-butadiene-styrene model samples and historical objects.

    PubMed

    Saviello, Daniela; Pouyet, Emeline; Toniolo, Lucia; Cotte, Marine; Nevin, Austin

    2014-09-16

    Synchrotron-based Fourier transform infrared micro-spectroscopy (SR-μFTIR) was used to map photo-oxidative degradation of acrylonitrile-butadiene-styrene (ABS) and to investigate the presence and the migration of additives in historical samples from important Italian design objects. High resolution (3×3 μm(2)) molecular maps were obtained by FTIR microspectroscopy in transmission mode, using a new method for the preparation of polymer thin sections. The depth of photo-oxidation in samples was evaluated and accompanied by the formation of ketones, aldehydes, esters, and unsaturated carbonyl compounds. This study demonstrates selective surface oxidation and a probable passivation of material against further degradation. In polymer fragments from design objects made of ABS from the 1960s, UV-stabilizers were detected and mapped, and microscopic inclusions of proteinaceous material were identified and mapped for the first time.

  7. The influence of nano silica particles on gamma-irradiation ageing of elastomers based on chlorosulphonated polyethylene and acrylonitrile butadiene rubber

    NASA Astrophysics Data System (ADS)

    Marković, G.; Marinović-Cincović, M.; Tanasić, Lj.; Jovanović, V.; Samaržija-Jovanović, S.; Vukić, N.; Budinski-Simendić, J.

    2011-12-01

    The goal of this work was to study gamma irradiation ageing of rubber blends based on acrylonitrile butadiene rubber (NBR) and chlorosulphonated polyethylene rubber (CSM) reinforced by silica nano particles. The NBR/CSM compounds (50: 50, w/w) filled with different content of filler (0-100 phr) were crosslinked by sulfur. The vulcanization characteristics were assessed using the rheometer with an oscillating disk. The vulcanizates were prepared in a hydraulic press. The obtained materials were exposed to the different irradiation doses (100, 200, 300 and 400 kGy). The mechanical properties (hardness, modulus at 100% elongation, tensile strength and elongation at break) and swelling numbers were assessed before and after gamma irradiation ageing.

  8. Molecularly imprinted films of acrylonitrile/methyl methacrylate/acrylic acid terpolymers: influence of methyl methacrylate in the binding performance of L-ephedrine imprinted films.

    PubMed

    Brisbane, Carrie; McCluskey, Adam; Bowyer, Michael; Holdsworth, Clovia I

    2013-05-07

    Molecularly imprinted polymeric films (MIPFs) highly selective to 1R,2S(-)ephedrine (L-ephedrine, EPD) were produced by phase inversion post-polymerization imprinting on poly(acrylonitrile-co-methyl methacrylate-co-acrylic acid) (PAMA) terpolymers. The inclusion of methyl methacrylate (MMA) to the polymer formulation resulted in enhanced EPD selectivity which appears to be dictated by polymer composition to achieve the necessary balance between polymer rigidity and porosity. Substitution of MMA with methyl acrylate, ethyl acrylate and n-butyl acrylate resulted in a loss of EPD selectivity and EPD entrapment within the polymer matrix not observed in PAMA MIPFs. MMA, by virtue of its methyl group, is able to provide the scaffolding and rigidity necessary for stability and preservation of imprinted cavities within the PAMA MIPF leading to high EPD selectivity.

  9. Acrylonitrile grafted to PVDF

    SciTech Connect

    Yang, Jin; Eitouni, Hany Basam

    2015-03-31

    PVDF-g-PAN has been synthesized by grafting polyacrylonitrile onto polyvinylidene fluoride using an ATRP/AGET method. The novel polymer is ionically conducive and has much more flexibility than PVDF alone, making it especially useful either as a binder in battery cell electrodes or as a polymer electrolyte in a battery cell.

  10. 183W NMR Study of Peroxotungstates Involved in the Disproportionation of Hydrogen Peroxide into Singlet Oxygen ((1)O(2), (1)Delta(g)) Catalyzed by Sodium Tungstate in Neutral and Alkaline Water.

    PubMed

    Nardello, V.; Marko, J.; Vermeersch, G.; Aubry, J. M.

    1998-10-19

    The disproportionation of aqueous hydrogen peroxide catalyzed by sodium tungstate has been investigated with regard to the multiplicity of the oxygen molecules released. Trapping experiments and detection of the IR luminescence of (1)O(2) have shown that the yield of (1)O(2) is virtually quantitative. The mono-, di-, and tetraperoxotungstate intermediates W(O(2))(n)()O(4)(-)(n)()(2)(-) (n = 1, 2, 4) have been characterized by UV and (183)W NMR spectroscopies. The diperoxo species is proposed as the precursor of (1)O(2).

  11. Exposure to sodium tungstate and Respiratory Syncytial Virus results in hematological/immunological disease in C57BL/6J mice.

    PubMed

    Fastje, Cynthia D; Harper, Kevin; Terry, Chad; Sheppard, Paul R; Witten, Mark L

    2012-04-05

    The etiology of childhood leukemia is not known. Strong evidence indicates that precursor B-cell Acute Lymphoblastic Leukemia (Pre-B ALL) is a genetic disease originating in utero. Environmental exposures in two concurrent, childhood leukemia clusters have been profiled and compared with geographically similar control communities. The unique exposures, shared in common by the leukemia clusters, have been modeled in C57BL/6 mice utilizing prenatal exposures. This previous investigation has suggested in utero exposure to sodium tungstate (Na2WO4) may result in hematological/immunological disease through genes associated with viral defense. The working hypothesis is (1) in addition to spontaneously and/or chemically generated genetic lesions forming pre-leukemic clones, in utero exposure to Na2WO4 increases genetic susceptibility to viral influence(s); (2) postnatal exposure to a virus possessing the 1FXXKXFXXA/V9 peptide motif will cause an unnatural immune response encouraging proliferation in the B-cell precursor compartment. This study reports the results of exposing C57BL/6J mice to Na2WO4 in utero via water (15 ppm, ad libetum) and inhalation (mean concentration PM5 3.33 mg/m3) and to Respiratory Syncytial Virus (RSV) within 2 weeks of weaning. Inoculation of C57BL/6J mice with RSV was associated with a neutrophil shift in 56% of 5-month old mice. When the RSV inoculation was combined with Na2WO4-exposure, significant splenomegaly resulted (p=0.0406, 0.0184, 0.0108 for control, Na2WO4-only and RSV-only, respectively) in addition to other hematological pathologies which were not significant. Exposure to Na2WO4 and RSV resulted in hematological/immunological disease, the nature of which is currently inconclusive. Further research is needed to characterize this potential leukemia mouse model.

  12. An application of population kinetics analysis to estimate pharmacokinetic parameters of sodium tungstate after multiple-dose during preclinical studies in rats.

    PubMed

    Le Lamer, Sophie; Cros, Gérard; Piñol, Carmen; Fernández-Alvarez, Josepha; Bressolle, Françoise

    2002-02-01

    The purpose of this study was to use a population approach in the preclinical development program of sodium tungstate in the rat in order i) to compute individual pharmacokinetic parameters of this compound after repeated oral administrations, until the 4-week toxicology study, using an empirical Bayes methodology; and ii) to study the influence of the administered dose, of the gender and of the duration of treatment on the pharmacokinetic parameters. Four studies were used representing a mixture of single intravenous administration and multiple oral administrations. The treatment duration ranged from 7 to 28 days. Intravenous dose was 9 mg/kg; three different oral doses were tested, 50, 100 and 200 mg/kg/day. Plasma concentration profiles versus time were compatible with a two-compartment model. A significant gender effect was found on bioavailability. The duration of treatment and the administered dose did not significantly explain part of the interindividual variability of pharmacokinetic parameters. The absorption of tungsten was rapid (1-3 hr). Total plasma clearance and elimination half-life averaged 2.8 ml/min/kg and 3.04 hr in males, and 3 ml/min/kg and 2.74 hr in females. The bioavailability was on an average 70%; being significantly higher in females than in males (0.78 versus 0.61). This compartmental approach should be considered as complementary to the usual non-compartmental approach used for analysis of preclinical data and should be a valuable tool to characterise the pharacokinetic/pharmacodynamic behaviour of a drug.

  13. A method for the quantification of biomarkers of exposure to acrylonitrile and 1,3-butadiene in human urine by column-switching liquid chromatography-tandem mass spectrometry.

    PubMed

    Schettgen, T; Musiol, A; Alt, A; Ochsmann, E; Kraus, T

    2009-02-01

    1,3-Butadiene and acrylonitrile are important industrial chemicals that have a high production volume and are ubiquitous environmental pollutants. The urinary mercapturic acids of 1,3-butadiene and acrylonitrile-N-acetyl-S-(3,4-dihydroxybutyl)cysteine (DHBMA) and MHBMA (an isomeric mixture of N-acetyl-S-((1-hydroxymethyl)-2-propenyl)cysteine and N-acetyl-S-((2-hydroxymethyl)-3-propenyl)cysteine) for the former and N-acetyl-S-2-cyanoethylcysteine (CEMA) for the latter-are specific biomarkers for the determination of individual internal exposure to these chemicals. We have developed and validated a fast, specific, and very sensitive method for the simultaneous determination of DHBMA, MHBMA, and CEMA in human urine using an automated multidimensional LC/MS/MS method that requires no additional sample preparation. Analytes are stripped from urinary matrix by online extraction on a restricted access material, transferred to the analytical column, and subsequently determined by tandem mass spectrometry using labeled internal standards. The limits of quantification (LOQs) for DHBMA, MHBMA, and CEMA were 10 microg/L, 2 microg/L, and 1 microg/L urine, respectively, and were sufficient to quantify the background exposure of the general population. Precision within series and between series for all analytes ranged from 5.4 to 9.9%; mean accuracy was between 95 and 115%. We applied the method on spot urine samples from 210 subjects from the general population with no occupational exposure to 1,3-butadiene or acrylonitrile. A background exposure of the general population to acrylonitrile was discovered that is basically influenced by individual exposure to passive smoke as well as active smoking habits. Smokers showed a significantly higher excretion of MHBMA, whereas DHBMA levels did not differ significantly. Owing to its automation, our method is well suited for application in occupational or environmental studies.

  14. Comparative chronic toxicity and carcinogenicity of acrylonitrile by drinking water and oral intubation to Spartan Sprague-Dawley rats.

    PubMed

    Johannsen, Frederick R; Levinskas, George J

    2002-06-24

    Groups of 100 male and 100 female Spartan Sprague-Dawley rats were administered lifetime oral doses of Acrylonitrile (AN) by one of two routes of dosing, either at 0.1 or 10 mg/kg per day, 7 day per week by intubation or continually at 1 or 100 ppm AN in their drinking water. The doses selected were designed to approximate the same daily intake of AN in each of two separate studies, whether by a single bolus dose (intubation) or a more continuous dosing regimen in drinking water. Each study had its own untreated control group of 100 rats per sex. In the drinking water study, the equivalent mean dosage of AN administered to males and females were 0, 0.09, and 0.15 mg/kg per day, respectively, at the 1 ppm level, and 0, 8.0 and 10.7 mg/kg per day, respectively, for 100 ppm dose groups. In both studies, groups of ten rats per sex were sacrificed at 6, 12 and 18 months and at study term. Ophthalmoscopic, hematological, clinical biochemistry, urinalysis and full histopathological exams were performed on control and high dose groups of rats in each study. Similar tests were done in lower dose groups, as required, to define dose-responses of observed effects. All animals were necropsied and underwent microscopic examination of target tissues, including brain, ear canal, stomach, spinal cord and any observable tissue masses. High dose male and female rats in both studies exhibited statistically decreased body weights. Food consumption and water intake were reduced only in the drinking water study. Due to increased deaths in groups of high dose rats of both studies receiving AN, all intubation test groups were terminated after 20 months of treatment. Surviving males and females in the drinking water study were terminated after 22 and 19 months, respectively. Small, sometimes statistically significant, reductions in hemoglobin, hematocrit and erythrocyte count were observed in male and female rats in both high dose (10 mg/kg per day intubation and 100 ppm drinking water

  15. Kinetics of generation, relaxation, and accumulation of electronic excitations under two-photon interband picosecond absorption in tungstate and molibdate crystals

    SciTech Connect

    Lukanin, V. I.; Karasik, A. Ya.

    2013-08-15

    Under two-photon 523.5 nm interband picosecond laser excitation, we measured the kinetics of induced absorption in PbWO{sub 4}, ZnWO{sub 4}, and PbMoO{sub 4} crystals with 532 to 633 nm continuous probe radiation. We obtained real-time information about the dynamics of the generation, relaxation, and accumulations of electronic excitations over a wide time range (from picoseconds to hundreds of seconds) and the 77-300 K temperature range. For the studied crystals, exponential temperature-independent growth of the induced absorption (IA) with 60 ns rise time reflects the dynamics of the generation of electronic excitation. The kinetics of the IA exponential growth with temperature-dependent 3.5-11 {mu}s time constants reflect the dynamics of energy migration between neighboring tungstate (molibdate) ions to traps for the studied crystals. The multiexponential relaxation absorption kinetics strongly depend on temperature, and the relaxation decay time of induced absorption increased from tens to hundreds of milliseconds to seconds under crystal cooling from 300 to 77 K. We found that the increase in the laser pump repetition rate (0-10 Hz) leads to the accumulation of electronic excitations. Control of the repetition rate and the number of excitations allowed us to change the relaxation time of the induced absorption by more than two orders of magnitude. Due to accumulation of excitations at 77 K, the absorption relaxation time can exceed 100 s for PbWO{sub 4} and PbMoO{sub 4} crystals. In the initially transparent crystals, two-photon interband absorption (2PA) leads to crystals opacity at the 523 and 633 nm wavelengths. (An inverse optical transmission of the crystals exceeds 50-55 at a 50-100 GW/cm{sup 2} pump intensity.) Measured at {approx}1 mW probe radiation of 532 and 633 nm wavelengths, the induced absorption values are comparable with those obtained under two-photon absorption at {approx}5 kW pump power. An optical 2PA shutter for the visible spectral range

  16. A comparative study of the surface structure, acidity, and catalytic performance of tungstated zirconia prepared from crystalline zirconia or amorphous zirconium oxyhydroxide.

    PubMed

    Lebarbier, Vanessa; Clet, Guillaume; Houalla, Marwan

    2006-07-20

    Tungstated zirconias prepared from W deposition on zirconium oxyhydroxide are reportedly active for alkane isomerization, whereas solids synthesized by impregnation of zirconia are inactive. The origin of the differences between the two preparations is not fully understood. The present paper examines the influence of W surface density and the nature of the support on the surface structure, development of the acidity, and catalytic performance of WO(x)()/ ZrO(2) catalysts. Two series of catalysts containing W surface densities up to 5.2 at. W/nm(2) were prepared by pore volume impregnation of two different supports: zirconium oxyhydroxide and predominantly tetragonal zirconia (65% tetragonal, 35% monoclinic). The texture and structure of the catalysts were investigated by BET measurements, X-ray diffraction, Raman and infrared spectroscopy. The catalytic activity was tested for 2-propanol dehydration and n-hexane isomerization. For catalysts obtained by impregnation of Zr oxyhydroxide, Raman results showed that W was present as a surface phase. Infrared spectra indicated an increase in the degree of polymerization of W species with increasing W surface density. The development of the acidity was monitored by lutidine adsorption and desorption at 523 K, followed by infrared spectroscopy. The results indicated the presence of a threshold of W surface density at 1.3 at. W/ nm(2) for the detection of these acid sites, followed by a progressive increase in their abundance with increasing W surface density. The development of Brønsted acidity correlated with the evolution of the infrared bands attributed to "extensively" polymerized W species. A direct relationship was observed between the abundance of Brønsted acid sites and the catalytic activity for 2-propanol dehydration. For n-hexane isomerization, compared to 2-propanol dehydration, a higher threshold of W surface densities (3.4 at. W/ nm(2)) for the development of activity was observed. The difference was

  17. Effects of aminopropyltriethoxysilane (γ-APS) on tensile properties and morphology of polypropylene (PP), recycle acrylonitrile butadiene rubber (NBRr) and sugarcane bagasse (SCB) composites

    NASA Astrophysics Data System (ADS)

    Santiagoo, Ragunathan; Omar, Latifah; Zainal, Mustaffa; Ting, Sam Sung; Ismail, Hanafi

    2015-07-01

    The performance of sugarcane baggase (SCB) treated with γ-APS filled polypropylene (PP)/recycled acrylonitrile butadiene rubber (NBRr) biocomposites were investigated. The composites with different filler loading ranging from 5 to 30 wt % were prepared using heated two roll mill by melt mixing at temperature of 180 °C. Tensile properties of the PP/NBRr/SCB composites which is tensile strength, Young Modulus and elongation at break were investigated. Increasing of treated SCB filler loading in PP/NBRr/SCB composites have increased the Young modulus however decreased the tensile strength and elongation at break of the PP/NBRr/SCB composites. From the results, γ-APS treated SCB composites shown higher tensile strength and Young Modulus but lower elongation at break when compared to the untreated SCB composites. This is due to the stronger bonding between γ-APS treated SCB with PP/NBRr matrices. These findings was supported by micrograph pictures from morphological study. SCB filler treated with γ-APS has improved the adhesion as well as gave strong interfacial bonding between SCB filler and PP/NBRr matrices which results in good tensile strength of PP/NBRr/SCB composites.

  18. A poly(acrylonitrile)-functionalized porous aromatic framework synthesized by atom-transfer radical polymerization for the extraction of uranium from seawater

    SciTech Connect

    Yue, Yanfeng; Zhang, Chenxi; Tang, Qing; Mayes, Richard T.; Liao, Wei -Po; Liao, Chen; Tsouris, Costas; Stankovich, Joseph J.; Chen, Jihua; Hensley, Dale K.; Abney, Carter W.; Jiang, De-en; Brown, Suree; Dai, Sheng

    2015-10-30

    In order to ensure a sustainable reserve of fuel for nuclear power generation, tremendous research efforts have been devoted to developing advanced sorbent materials for extracting uranium from seawater. In this work, a porous aromatic framework (PAF) was surface-functionalized with poly(acrylonitrile) through atom-transfer radical polymerization (ATRP). Batches of this adsorbent were conditioned with potassium hydroxide (KOH) at room temperature or 80 °C prior to contact with a uranium-spiked seawater simulant, with minimal differences in uptake observed as a function of conditioning temperature. A maximum capacity of 4.81 g-U/kg-ads was obtained following 42 days contact with uranium-spiked filtered environmental seawater, which demonstrates a comparable adsorption rate. A kinetic investigation revealed extremely rapid uranyl uptake, with more than 80% saturation reached within 14 days. Furthermore, relying on the semiordered structure of the PAF adsorbent, density functional theory (DFT) calculations reveal cooperative interactions between multiple adsorbent groups yield a strong driving force for uranium binding.

  19. Heat shrinkable behavior, physico-mechanical and structure properties of electron beam cross-linked blends of high-density polyethylene with acrylonitrile-butadiene rubber

    NASA Astrophysics Data System (ADS)

    Reinholds, Ingars; Kalkis, Valdis; Merijs-Meri, Remo; Zicans, Janis; Grigalovica, Agnese

    2016-03-01

    In this study, heat-shrinkable composites of electron beam irradiated high-density polyethylene (HDPE) composites with acrylonitrile-butadiene rubber (NBR) were investigated. HDPE/NBR blends at a ratio of components 100/0, 90/10, 80/20, 50/50 and 20/80 wt% were prepared using a two-roll mill. The compression molded films were irradiated high-energy (5 MeV) accelerated electrons up to irradiation absorbed doses of 100-300 kGy. The effect of electron beam induced cross-linking was evaluated by the changes of mechanical properties, gel content and by the differences of thermal properties, detected by differential scanning calorimetry. The thermo-shrinkage forces were determined as the kinetics of thermorelaxation and the residual shrinkage stresses of previously oriented (stretched up to 100% at above melting temperature of HDPE and followed by cooling to room temperature) specimens of irradiated HDPE/NBR blends under isometric heating-cooling mode. The compatibility between the both components was enhanced due to the formation of cross-linked sites at amorphous interphase. The results showed increase of mechanical stiffness of composites with increase of irradiation dose. The values of gel fraction compared to thermorelaxation stresses increased with the growth of irradiation dose level, as a result of formation cross-linked sites in amorphous PP/NBR interphase.

  20. Microwave absorption properties of lightweight absorber based on Fe50Ni50-coated poly(acrylonitrile) microspheres and reduced graphene oxide composites

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Wang, Jun; Wang, Junpeng; Huo, Siqi; Zhang, Bin; Tang, Yushan

    2016-09-01

    In this paper, we proposed a facile method to obtain the lightweight composites consisting of surface modified Fe50Ni50-coated poly(acrylonitrile) microspheres (PANS@SMF), reduced graphene oxide (RGO) and epoxy resin. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometry (VSM) and vector network analyzer (VNA). Impedance matching condition and electromagnetic wave attenuation characteristic were used for the reflection loss (RL) performance of the composites. Compared with pure PANS@SMF and RGO composites, the -10 dB absorption bandwidth and the minimum RL of the hybrid composites were enhanced. The bandwidth less than -10 dB was almost 4.5 GHz in the range of 10 GHz to 14.5 GHz, with a matching thickness of 2.5 mm. The density of the hybrid composites was in the range of 0.25-0.34 g/cm3. Therefore, the hybrid composite can be considered as a potential lightweight microwave absorber.

  1. Three-dimensional Printed Acrylonitrile Butadiene Styrene Framework Coated with Cu-BTC Metal-organic Frameworks for the Removal of Methylene Blue

    PubMed Central

    Wang, Zongyuan; Wang, Jiajun; Li, Minyue; Sun, Kaihang; Liu, Chang-jun

    2014-01-01

    Three-dimensional (3D) printing was applied for the fabrication of acrylonitrile butadiene styrene (ABS) framework. Functionalization of the ABS framework was then performed by coating of porous Cu-BTC (BTC = benzene tricarboxylic acid) metal-organic frameworks on it using a step-by-step in-situ growth. The size of the Cu-BTC particles on ABS was ranged from 200 nm to 900 nm. The Cu-BTC/ABS framework can take up most of the space of the tubular reactor that makes the adsorption effective with no need of stirring. Methylene blue (MB) can be readily removed from aqueous solution by this Cu-BTC/ABS framework. The MB removal efficiency for solutions with concentrations of 10 and 5 mg/L was 93.3% and 98.3%, respectively, within 10 min. After MB adsorption, the Cu-BTC/ABS composite can easily be recovered without the need for centrifugation or filtration and the composite is reusable. In addition the ABS framework can be recovered for subsequent reuse. A significant advantage of 3D-printed frameworks is that different frameworks can be easily fabricated to meet the needs of different applications. This is a promising strategy to synthesize new frameworks using MOFs and polymers to develop materials for applications beyond adsorption. PMID:25089616

  2. Co-recycling of acrylonitrile-butadiene-styrene waste plastic and nonmetal particles from waste printed circuit boards to manufacture reproduction composites.

    PubMed

    Sun, Zhixing; Shen, Zhigang; Zhang, Xiaojing; Ma, Shulin

    2015-01-01

    This study investigated the feasibility of using acrylonitrile-butadiene-styrene (ABS) waste plastic and nonmetal particles from waste printed circuit boards (WPCB) to manufacture reproduction composites (RC), with the aim of co-recycling these two waste resources. The composites were prepared in a twin-crew extruder and investigated by means of mechanical testing, in situ flexural observation, thermogravimatric analysis, and dimensional stability evaluation. The results showed that the presence of nonmetal particles significantly improved the mechanical properties and the physical performance of the RC. A loading of 30 wt% nonmetal particles could achieve a flexural strength of 72.6 MPa, a flexural modulus of 3.57 GPa, and an impact strength of 15.5 kJ/m2. Moreover, it was found that the application of maleic anhydride-grafted ABS as compatilizer could effectively promote the interfacial adhesion between the ABS plastic and the nonmetal particles. This research provides a novel method to reuse waste ABS and WPCB nonmetals for manufacturing high value-added product, which represents a promising way for waste recycling and resolving the environmental problem.

  3. Process Window for Direct Recycling of Acrylonitrile-Butadiene-Styrene and High-Impact Polystyrene from Electrical and Electronic Equipment Waste.

    PubMed

    Vazquez, Yamila V; Barbosa, Silvia E

    2017-01-01

    The aim of this paper is to assess recycling process window of ABS (Acrylonitrile-Butadiene-Styrene) and HIPS (High impact Polystyrene) from WEEE (waste from electrical and electronic equipment) through a final properties/structure screening study on their blends. Main motivation is to evaluate which amount of one plastic WEEE can be included into the other at least keeping their properties. In this sense, a wider margin of error during sorting could be admitted to obtain recycling materials with similar technological application of recycled ABS and HIPS by themselves. Results are discussed in terms of final blend structure, focusing in the interaction, within blends, of copolymers phases and fillers presents in WEEE. The comparative analysis of mechanical performance and morphology of HIPS/ABS blends indicates that the addition of 50wt% HIPS to ABS even improves 50% the elongation at break maintaining the strength. On the opposite, HIPS maintains its properties with 20wt% of ABS added. This study allows enlarging composition process window of recycling plastic WEEE for similar applications. This could be a sustainable way to improve benefit of e-scrap with low costs and easy processability. In consequence, social interest in the recycling of this kind of plastic scrap could be encourage from either ecological or economical points of view.

  4. An industrial perspective on a quantitative estimation of risk associated with low level exposures of humans, with acrylonitrile as a case study.

    PubMed

    Gad, S C

    1990-12-15

    Having been presented with a set of data on acrylonitrile to be utilized as a case study, an assessment was performed of the potential risk of carcinogenesis associated with low level exposures to a material with the characteristics in the supplied data package. This study attempts to present the risk assessment process in an open manner, clearly identifying the multiple complex steps involved in the process and the uncertainty associated with each of the steps. The approach used was truly pragmatic, as the author believes that, in many cases, those performing risk assessments stand on dogma, failing to recognize that what is scientifically best in addressing uncertainty is not that which is most conservative (i.e., uses a worst case decision mode), but rather that which reduces the uncertainty the most. All available data of suitable quality should be utilized in either performing the risk assessment or in checking the result. All the mathematical steps involved in the risk assessment process have limited biological basis. As a result, any risk assessment process that results in predictions which are refuted by real data should be rejected.

  5. Acrylonitrile-induced extracellular signal-regulated kinase (ERK) activation via protein kinase C (PKC) in SK-N-SH neuroblastoma cells.

    PubMed

    Chantara, Wantika; Watcharasit, Piyajit; Thiantanawat, Apinya; Satayavivad, Jutamaad

    2006-01-01

    Acrylonitrile (ACN) is classified by IARC as a probable carcinogen. Chronic exposure to ACN increases the incidence of tumors in various organs of test animals, including the brain and lung. ERK1/2 activation plays crucial roles in cell proliferation and is involved in many steps of tumor progression. Therefore, this study examined whether ACN altered the activation state of ERK1/2 in human neuroblastoma SK-N-SH cells. Treatment of these cells with ACN greatly increased phosphorylation of ERK1/2 in dose- and time-dependent manners. This effect was inhibited by PD 98059 and U 0126, specific inhibitors of MEK, indicating that MEK, an upstream activator of ERK1/2, was directly involved in ACN-induced ERK1/2 activation. Furthermore, the activation of ERK1/2 by ACN was attenuated by inhibition of PKC with GF 109203X, rottlerin and prolonged incubation with PMA (phorbol 12-myristate 13-acetate). This demonstrated the participation of PKC in the ACN-stimulated activation of ERK1/2. Taken together, our results indicate that ACN-induced ERK1/2 activation involves PKC through a MEK-dependent pathway.

  6. Successful startup of a full-scale acrylonitrile wastewater biological treatment plant (ACN-WWTP) by eliminating the inhibitory effects of toxic compounds on nitrification.

    PubMed

    Han, Yuanyuan; Jin, Xibiao; Wang, Feng; Liu, Yongdi; Chen, Xiurong

    2014-01-01

    During the startup of a full-scale anoxic/aerobic (A/O) biological treatment plant for acrylonitrile wastewater, the removal efficiencies of NH(3)-N and total Kjeldahl nitrogen (TKN) were 1.29 and 0.83% on day 30, respectively. The nitrification process was almost totally inhibited, which was mainly caused by the inhibitory effects of toxic compounds. To eliminate the inhibition, cultivating the bacteria that degrade toxic compounds with patience was applied into the second startup of the biological treatment plant. After 75 days of startup, the inhibitory effects of the toxic compounds on nitrification were eliminated. The treatment plant has been operated stably for more than 3 years. During the last 100 days, the influent concentrations of chemical oxygen demand (COD), NH(3)-N, TKN and total cyanide (TCN) were 831-2,164, 188-516, 306-542 and 1.17-9.57 mg L(-1) respectively, and the effluent concentrations were 257 ± 30.9, 3.30 ± 1.10, 31.6 ± 4.49 and 0.40 ± 0.10 mg L(-1) (n = 100), respectively. Four strains of cyanide-degrading bacteria which were able to grow with cyanide as the sole carbon and nitrogen source were isolated from the full-scale biological treatment plant. They were short and rod-shaped under scanning electron microscopy (SEM) and were identified as Brevundimonas sp., Rhizobium sp., Dietzia natronolimnaea and Microbacterium sp., respectively.

  7. Three-dimensional Printed Acrylonitrile Butadiene Styrene Framework Coated with Cu-BTC Metal-organic Frameworks for the Removal of Methylene Blue

    NASA Astrophysics Data System (ADS)

    Wang, Zongyuan; Wang, Jiajun; Li, Minyue; Sun, Kaihang; Liu, Chang-Jun

    2014-08-01

    Three-dimensional (3D) printing was applied for the fabrication of acrylonitrile butadiene styrene (ABS) framework. Functionalization of the ABS framework was then performed by coating of porous Cu-BTC (BTC = benzene tricarboxylic acid) metal-organic frameworks on it using a step-by-step in-situ growth. The size of the Cu-BTC particles on ABS was ranged from 200 nm to 900 nm. The Cu-BTC/ABS framework can take up most of the space of the tubular reactor that makes the adsorption effective with no need of stirring. Methylene blue (MB) can be readily removed from aqueous solution by this Cu-BTC/ABS framework. The MB removal efficiency for solutions with concentrations of 10 and 5 mg/L was 93.3% and 98.3%, respectively, within 10 min. After MB adsorption, the Cu-BTC/ABS composite can easily be recovered without the need for centrifugation or filtration and the composite is reusable. In addition the ABS framework can be recovered for subsequent reuse. A significant advantage of 3D-printed frameworks is that different frameworks can be easily fabricated to meet the needs of different applications. This is a promising strategy to synthesize new frameworks using MOFs and polymers to develop materials for applications beyond adsorption.

  8. Synthesis, crystal structure and thin-film-optical properties of 3-amino-2-(2-nitrophenyl)diazinyl-3-(morpholin-1-yl)acrylonitrile.

    PubMed

    El-Menyawy, E M; Elagamey, A A; Elgogary, S R; Abu El-Enein, R A N

    2013-05-01

    3-Amino-2-(2-nitrophenyl)diazinyl-3-(morpholin-1-yl)acrylonitrile (ANMA) has been successfully synthesized via conventional solvent method, and its molecular structure has been identified by using various techniques including FTIR, (1)H NMR, MS and elemental analysis. The crystal structure of ANMA is characterized by single crystal X-ray crystallography. Crystallographic data revealed that the spatial structure of ANMA belongs to monoclinic, P21 a space group. ANMA thin films were deposited onto optical flat quartz substrates by using thermal evaporation under vacuum pressure of 2×10(-4) Pa. The optical properties of the films are studied in terms of the measurements of transmittance and reflectance determined at the normal incident of light over the spectral range 200-2400 nm. The absorption coefficient of the films is computed and the optical band gap of the films is estimated. In addition, the complex refractive index for the films has been calculated and described. Single oscillator model is found to be applicable for the films in which the dispersion parameters namely; single oscillator energy, dispersion energy, dielectric constant at high frequency, lattice dielectric constant and the ratio of carrier concentration to the effective mass are estimated.

  9. A poly(acrylonitrile)-functionalized porous aromatic framework synthesized by atom-transfer radical polymerization for the extraction of uranium from seawater

    DOE PAGES

    Yue, Yanfeng; Zhang, Chenxi; Tang, Qing; ...

    2015-10-30

    In order to ensure a sustainable reserve of fuel for nuclear power generation, tremendous research efforts have been devoted to developing advanced sorbent materials for extracting uranium from seawater. In this work, a porous aromatic framework (PAF) was surface-functionalized with poly(acrylonitrile) through atom-transfer radical polymerization (ATRP). Batches of this adsorbent were conditioned with potassium hydroxide (KOH) at room temperature or 80 °C prior to contact with a uranium-spiked seawater simulant, with minimal differences in uptake observed as a function of conditioning temperature. A maximum capacity of 4.81 g-U/kg-ads was obtained following 42 days contact with uranium-spiked filtered environmental seawater, whichmore » demonstrates a comparable adsorption rate. A kinetic investigation revealed extremely rapid uranyl uptake, with more than 80% saturation reached within 14 days. Furthermore, relying on the semiordered structure of the PAF adsorbent, density functional theory (DFT) calculations reveal cooperative interactions between multiple adsorbent groups yield a strong driving force for uranium binding.« less

  10. Topological analysis of void spaces in tungstate frameworks: Assessing storage properties for the environmentally important guest molecules and ions: CO2, UO2, PuO2, U, Pu, Sr2+, Cs+, CH4, and H2

    DOE PAGES

    Cole, Jacqueline M.; Cramer, Alisha J.; Zeidler, Anita

    2015-07-15

    The identification of inorganic materials, which are able to encapsulate environmentally important small molecules or ions via host-guest interactions, is crucial for the design and development of next-generation energy sources and for storing environmental waste. Especially sought after are molecular sponges with the ability to incorporate CO2, gas pollutants, or nuclear waste materials such as UO2 and PuO2 oxides or U, Pu, Sr2+ or Cs+ ions. Porous framework structures promise very attractive prospects for applications in environmental technologies, if they are able to incorporate CH4 for biogas energy applications, or to store H2, which is important for fuel cells e.g.more » in the automotive industry. All of these applications should benefit from the host being resistant to extreme conditions such as heat, nuclear radiation, rapid gas expansion, or wear and tear from heavy gas cycling. As inorganic tungstates are well known for their thermal stability, and their rigid open-framework networks, the potential of Na2O-Al2O3-WO3 and Na2O-WO3 phases for such applications was evaluated. To this end, all known experimentally-determined crystal structures with the stoichiometric formula MaM’bWcOd (M = any element) are surveyed together with all corresponding theoretically calculated NaaAlbWcOd and NaxWyOz structures that are statistically likely to form. Network descriptors that categorize these host structures are used to reveal topological patterns in the hosts, including the nature of porous cages which are able to accommodate a certain type of guest; this leads to the classification of preferential structure types for a given environmental storage application. Crystal structures of two new tungstates NaAlW2O8 (1) and NaAlW3O11 (2) and one updated structure determination of Na2W2O7 (3) are also presented from in-house X-ray diffraction studies, and their potential merits for environmental applications are assessed against those of this larger data-sourced survey

  11. Zinc oxide nanorod assisted rapid single-step process for the conversion of electrospun poly(acrylonitrile) nanofibers to carbon nanofibers with a high graphitic content

    NASA Astrophysics Data System (ADS)

    Nain, Ratyakshi; Singh, Dhirendra; Jassal, Manjeet; Agrawal, Ashwini K.

    2016-02-01

    The effect of incorporation of rigid zinc oxide (ZnO) nanostructures on carbonization behavior of electrospun special acrylic fiber grade poly(acrylonitrile) (PAN-SAF) nanofibers was investigated. ZnO nanorods with high aspect ratios were incorporated into a PAN-N,N-dimethylformamide system and the composite nanofibers reinforced with aligned ZnO rods up to 50 wt% were successfully electrospun, and subsequently, carbonized. The morphology and the structural analysis of the resultant carbon nanofibers revealed that the rigid ZnO nanorods, present inside the nanofibers, possibly acted as scaffolds (temporary support structures) for immobilization of polymer chains and assisted in uniform heat distribution. This facilitated rapid and efficient conversion of the polymer structure to the ladder, and subsequently, the graphitized structure. At the end of the process, the ZnO nanorods were found to completely separate from the carbonized fibers yielding pure carbon nanofibers with a high graphitic content and surface area. The approach could be used to eliminate the slow, energy intensive stabilization step and achieve fast conversion of randomly laid carbon nanofiber webs in a single step to carbon nanofibers without the application of external tension or internal templates usually employed to achieve a high graphitic content in such systems.The effect of incorporation of rigid zinc oxide (ZnO) nanostructures on carbonization behavior of electrospun special acrylic fiber grade poly(acrylonitrile) (PAN-SAF) nanofibers was investigated. ZnO nanorods with high aspect ratios were incorporated into a PAN-N,N-dimethylformamide system and the composite nanofibers reinforced with aligned ZnO rods up to 50 wt% were successfully electrospun, and subsequently, carbonized. The morphology and the structural analysis of the resultant carbon nanofibers revealed that the rigid ZnO nanorods, present inside the nanofibers, possibly acted as scaffolds (temporary support structures) for

  12. Mechanistic insight into selective catalytic combustion of acrylonitrile (C2H3CN): NCO formation and its further transformation towards N2.

    PubMed

    Liu, Ning; Yuan, Xiaoning; Zhang, Runduo; Xu, Rongrong; Li, Yingxia

    2017-03-15

    A series of zeolite catalysts, M(Cu, Fe, Co)-ZSM-5, was prepared by an impregnation method and evaluated for the selective catalytic combustion of acrylonitrile (AN-SCC). Cu-ZSM-5, exhibiting the highest AN conversion activity and best N2 yield, was further selected for an AN-SCC mechanism investigation, wherein both experimental [in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS)] and theoretical [density functional theory (DFT)] approaches were employed. The in situ DRIFTS revealed that AN-SCC followed a hydrolysis mechanism at T < 300 °C via intermediates of acylamino species (-CONH2) and NH3, while it followed an oxidation mechanism at T > 300 °C via an intermediate of NCO. The DFT simulations gave much deeper insights suggesting that: (i) the NCO could be generated by oxidation of AN over [Cu](+) active sites, with an assistance of dissociated atomic O from gaseous O2; (ii) three types of reaction routes could be proposed for the further reaction of NCO to produce N2, namely NCO direct dissociation, NCO coupling, and NO + NCO reaction; and (iii) the last route (NO + NCO), possessing the lowest energy barrier, was the most probable reaction pathway, wherein the NO could be produced by oxidation of NCO. The DFT energy calculation results and microkinetic analyses revealed that the NCO generation step, possessing an energy barrier of 17.0 kcal mol(-1) and a forward reaction rate constant of 2.20 × 10(7) s(-1), was the rate-determining step of the whole catalytic cycle.

  13. Surface hydrophilic modification of acrylonitrile-butadiene-styrene terpolymer by poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate): Preparation, characterization, and properties studies

    NASA Astrophysics Data System (ADS)

    Chen, Tingting; Zhang, Jun

    2016-12-01

    Surface hydrophilic modified acrylonitrile-butadiene-styrene (ABS) terpolymer was prepared by melt blending with poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) (PETG) random copolymer as the modifier. Attenuated total reflectance-Fourier transform-infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) were used for surface analysis. Through the contact angle measurement, the relationship between surface properties of the ABS/PETG blends and PETG content was investigated. Scanning electron microscope (SEM) and dynamical mechanical thermal analysis (DMTA) were used to characterize interface morphology and compatibility of the blends. The effect of PETG content on the mechanical and rheological properties was examined. The ATR-FTIR and XPS analysis suggested that the hydrophilic groups were enriched on the surface with increasing PETG content in the blend. The decrease of the water contact angle and the increase of the polarity for the blends with increasing PETG content indicated that the hydrophilic property of the blends was enhanced with increasing PETG content. The ABS/PETG blends were partially miscible. And the blends with ≤50 wt% PETG had better compatibility than the blends with above 50 wt% PETG. It was clear that below 50 wt% PETG, the PETG phase was dispersed in spherical form and the ABS phase was continuous. Above 50 wt% PETG, the PETG phase became continuous and the ABS phase was dispersed in irregular form. Moreover, the tensile strength and flexural strength of the blends were enhanced with increasing PETG content. The flexural modulus almost remained constant. And the impact strength was decreased when the content of PETG was increasing.

  14. Copper-catalyzed retro-aldol reaction of β-hydroxy ketones or nitriles with aldehydes: chemo- and stereoselective access to (E)-enones and (E)-acrylonitriles.

    PubMed

    Zhang, Song-Lin; Deng, Zhu-Qin

    2016-07-26

    A copper-catalyzed transfer aldol type reaction of β-hydroxy ketones or nitriles with aldehydes is reported, which enables chemo- and stereoselective access to (E)-α,β-unsaturated ketones and (E)-acrylonitriles. A key step of the in situ copper(i)-promoted retro-aldol reaction of β-hydroxy ketones or nitriles is proposed to generate a reactive Cu(i) enolate or cyanomethyl intermediate, which undergoes ensuing aldol condensation with aldehydes to deliver the products. This reaction uses 1.2 mol% Cu(IPr)Cl (IPr denotes 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) as the catalyst in the presence of 6.0 mol% NaOtBu cocatalyst at room temperature or 70 °C. A range of aryl and heteroaryl aldehydes as well as acrylaldehydes are compatible with many useful functional groups being tolerated. Under the mild and weakly basic conditions, competitive Cannizzaro-type reaction of benzaldehydes and side reactions of base-sensitive functional groups can be effectively suppressed, which show synthetic advantages of this reaction compared to classic aldol reactions. The synthetic potential of this reaction is further demonstrated by the one-step synthesis of biologically active quinolines and 1,8-naphthyridine in excellent yields (up to 91%). Finally, a full catalytic cycle for this reaction has been constructed using DFT computational studies in the context of a retro-aldol/aldol two-stage mechanism. A rather flat reaction energy profile is found indicating that both stages are kinetically facile, which is consistent with the mild reaction conditions.

  15. Excited state dynamics of acrylonitrile: Substituent effects at conical intersections interrogated via time-resolved photoelectron spectroscopy and ab initio simulation

    NASA Astrophysics Data System (ADS)

    MacDonell, Ryan J.; Schalk, Oliver; Geng, Ting; Thomas, Richard D.; Feifel, Raimund; Hansson, Tony; Schuurman, Michael S.

    2016-09-01

    We report a joint experimental and theoretical study on the photoinitiated ultrafast dynamics of acrylonitrile (AN) and two methylated analogs: crotonitrile (CrN) and methacrylonitrile (MeAN). Time-resolved photoelectron spectroscopy (TRPES) and ab initio simulation are employed to discern the conical intersection mediated vibronic dynamics leading to relaxation to the ground electronic state. Each molecule is pumped with a femtosecond pulse at 200 nm and the ensuing wavepackets are probed by means of one and two photon ionization at 267 nm. The predominant vibrational motions involved in the de-excitation process, determined by ab initio trajectory simulations, are an initial twisting about the C=C axis followed by pyramidalization at a carbon atom. The decay of the time-resolved photoelectron signal for each molecule is characterized by exponential decay lifetimes for the passage back to the ground state of 60 ± 10, 86 ± 11, and 97 ± 9 fs for AN, CrN, and MeAN, respectively. As these results show, the excited state dynamics are sensitive to the choice of methylation site and the explanation for the observed trend may be found in the trajectory simulations. Specifically, since the pyramidalization motion leading to the conical intersection with the ground state is accompanied by the development of a partial negative charge at the central atom of the pyramidal group, the electron donation of the cyano group ensures that this occurs exclusively at the medial carbon atom. In this way, the donated electron density from the cyano group "directs" the wavepacket to a particular region of the intersection seam. The excellent agreement between the experimental and simulated TRPES spectra, the latter determined by employing trajectory simulations, demonstrates that this mechanistic picture is consistent with the spectroscopic results.

  16. Cancer dose--response assessment for acrylonitrile based upon rodent brain tumor incidence: use of epidemiologic, mechanistic, and pharmacokinetic support for nonlinearity.

    PubMed

    Kirman, C R; Gargas, M L; Marsh, G M; Strother, D E; Klaunig, J E; Collins, J J; Deskin, R

    2005-10-01

    A cancer dose-response assessment was conducted for acrylonitrile (AN) using updated information on mechanism of action, epidemiology, toxicity, and pharmacokinetics. Although more than 10 chronic bioassays indicate that AN produces multiple tumors in rats and mice, a number of large, well-conducted epidemiology studies provide no evidence of a causal association between AN exposure and cancer mortality of any type. The epidemiological data include early industry exposures that are far higher than occur today and that approach or exceed levels found to be tumorigenic in animals. Despite the absence of positive findings in the epidemiology data, a dose-response assessment was conducted for AN based on brain tumors in rats. Mechanistic studies implicate the involvement of oxidative stress in rat brain due to a metabolite (2-cyanoethylene oxide or CEO, cyanide), but do not conclusively rule out a potential role for the direct genotoxicity of CEO. A PBPK model was used to predict internal doses (peak CEO in brain) for 12 data sets, which were pooled together to provide a consistent characterization of the dose-response relationship for brain tumor incidence in the rat. The internal dose corresponding to a 5% increase in extra risk (ED 05=0.017 mg/L brain) and its lower confidence limit (LED 05=0.014 mg/L brain) was used as the point of departure. The weight-of-evidence supports the use of a nonlinear extrapolation for the cancer dose-response assessment. A quantitative comparison of the epidemiology exposure-response data (lung and brain cancer mortality) to the rat brain tumor data in terms of internal dose adds to the confidence in the nonlinear extrapolation. Uncertainty factors of 200 and 220 (for the oral and inhalation routes, respectively) were applied to the LED 05 to account for interspecies variation, intraspecies variation, and the severity of the response measure. Accordingly, oral doses below 0.009 mg/kg-day and air concentrations below 0.1mg/m(3) are not

  17. Comparative metabolism of methacrylonitrile and acrylonitrile to cyanide using cytochrome P4502E1 and microsomal epoxide hydrolase-null mice

    SciTech Connect

    El Hadri, L.; Chanas, B.; Ghanayem, B.I. . E-mail: ghanayem@niehs.nih.gov

    2005-06-01

    Methacrylonitrile (MAN) and acrylonitrile (AN) are metabolized via glutathione (GSH) conjugation or epoxide formation. We have recently shown that CYP2E1 is essential for AN epoxidation and subsequent cyanide liberation. Current studies were designed to compare the enzymatic basis of MAN vs. AN metabolism to cyanide using wild-type (WT), CYP2E1-, and mEH-null mice. Mice received a single gavage dose of 0.047, 0.095, 0.19, or 0.38 mmol/kg of MAN or AN, and blood cyanide was measured at 1 or 3 h later. Blood cyanide levels in WT mice treated with AN or MAN were dose and time dependent. At equimolar doses, significantly higher levels of cyanide were detected in the blood of MAN- vs. AN-treated mice. Further, while significant reduction in blood cyanide levels occurred in MAN-treated CYP2E1-null vs. WT mice, AN metabolism to cyanide was largely abolished in CYP2E1-null mice. Pretreatment of mice with 1-aminobenzotriazole (ABT, CYP inhibitor) demonstrated that CYPs other than CYP2E1 also contribute to MAN metabolism to cyanide. Blood cyanide levels in mEH-null mice treated with aliphatic nitriles are generally lower than levels in similarly treated WT mice. Western blot analysis showed that expression of sEH was greater in male vs. female mice. The role of various epoxide hydrolases (EHs) in the production of cyanide from aliphatic nitriles is apparently structure and dose dependent. Regardless of genotype, significantly higher levels of cyanide were measured in the blood of male vs. female mice treated with MAN or AN. In conclusion, these data showed that (1) at equimolar doses, higher blood cyanide levels were detected in mice treated with MAN vs. AN; (2) while CYP2E1 is the only enzyme responsible for AN metabolism to cyanide, other CYPs also contribute to MAN metabolism; and (3) significantly higher levels of cyanide were measured in the blood of male vs. female treated with either nitrile. Higher blood cyanide levels in male vs. female mice and in MAN- vs. AN

  18. Chemical bond properties and charge transfer bands of O(2-)-Eu(3+), O(2-)-Mo(6+) and O(2-)-W(6+) in Eu(3+)-doped garnet hosts Ln3M5O12 and ABO4 molybdate and tungstate phosphors.

    PubMed

    Liu, Xiaoguang; Li, Ling; Noh, Hyeon Mi; Moon, Byung Kee; Choi, Byung Chun; Jeong, Jung Hyun

    2014-06-21

    Charge transfer (CT) energy from the ligand to the central ions is an important factor in luminescence properties for rare earth doped inorganic phosphors. The dielectric theory of complex crystals was used to calculate chemical bond properties. Combining the photoluminescence and the dielectric theory of complex crystals, the CT bands of O(2-)-Eu(3+), O(2-)-Mo(6+) and O(2-)-W(6+) for Eu(3+)-doped inorganic phosphors have been investigated experimentally and theoretically. Taking Eu(3+)-doped Ln3M5O12 (Ln = Y, Lu and M = Al, Ga), Gd3Ga5O12, MMoO4 (M = Ca, Sr, Ba) and MWO4 (M = Ca, Sr, Ba) as typical phosphors, we investigated the effects of the cation size on the CT bands and chemical bond properties including the bond length (d), the covalency (fc), the bond polarizability (αb) and the environmental factor (he) of O(2-)-Eu(3+), O(2-)-Mo(6+) and O(2-)-W(6+), respectively. For systematic isostructural Ln3M5O12 (Ln = Y, Lu and M = Al, Ga) phosphors, with the increasing M ion radius, the bond length of Ln-O decreases, but fc and αb increase, which is the main reason that the environmental factor increased. For the isostructural MMoO4:Eu, with the increasing M ion radius, the Mo-O bond length increases, but fc and αb decrease, and thus he decreases. However, in the compound system MWO4:Eu (M = Ca, Ba) with the increasing M ion radius, the O-W bond length increases, but fc and αb increase, and thus he increases and the O-W CT energy decreases. Their O(2-)-Eu(3+), O(2-)-Mo(6+) and O(2-)-W(6+) CT bands as well as their full width at half maximum (FWHM) were directly influenced by he. And with the increasing he, CT bands of O-Eu or O-Mo or O-W decrease and their FWHM increases. These results indicate a promising approach for changing the material properties, searching for new Eu(3+) doped molybdate, tungstate or other oxide phosphors and analyzing the experimental result.

  19. Evaluation of the detoxication efficiencies for acrylonitrile wastewater treated by a combined anaerobic oxic-aerobic biological fluidized tank (A/O-ABFT) process: Acute toxicity and zebrafish embryo toxicity.

    PubMed

    Na, Chunhong; Zhang, Ying; Deng, Minjie; Quan, Xie; Chen, Shuo; Zhang, Yaobin

    2016-07-01

    Acrylonitrile (ACN) wastewater generated during ACN production has been reported to be toxic to many aquatic organisms. However, few studies have evaluated toxicity removal of ACN wastewater during and after the treatment process. In this study, the detoxication ability of an ACN wastewater treatment plant (WWTP) was evaluated using Daphnia magna, Danio rerio and zebrafish embryo. This ACN WWTP has a combined anaerobic oxic-aerobic biological fluidized tank (A/O-ABFT) process upgraded from the traditional anaerobic oxic (A/O) process. Moreover, the potential toxicants of the ACN wastewaters were identified by gas chromatography-mass spectrometry (GC-MS). The raw ACN wastewater showed high acute and embryo toxicity. 3-Cyanopyridine, succinonitrile and a series of nitriles were detected as the toxic contributors of ACN wastewater. The A/O process was effective for the acute and embryo toxicity removal, as well as the organic toxicants. However, the A/O effluent still showed acute and embryo toxicity which was attributed by the undegraded and the newly generated toxicants during the A/O process. The residual acute and embryo toxicity as well as the organic toxicants in the A/O effluent were further reduced after going through the downstream ABFT process system. The final effluent displayed no significant acute and embryo toxicity, and less organic toxicants were detected in the final effluent. The upgrade of this ACN WWTP results in the improved removal efficiencies for acute and embryo toxicity, as well as the organic toxicants.

  20. Preparation and Characterization of Facilitated Transport Membranes Composed of Chitosan-Styrene and Chitosan-Acrylonitrile Copolymers Modified by Methylimidazolium Based Ionic Liquids for CO2 Separation from CH4 and N2

    PubMed Central

    Otvagina, Ksenia V.; Mochalova, Alla E.; Sazanova, Tatyana S.; Petukhov, Anton N.; Moskvichev, Alexandr A.; Vorotyntsev, Andrey V.; Afonso, Carlos A. M.; Vorotyntsev, Ilya V.

    2016-01-01

    CO2 separation was found to be facilitated by transport membranes based on novel chitosan (CS)–poly(styrene) (PS) and chitosan (CS)–poly(acrylonitrile) (PAN) copolymer matrices doped with methylimidazolium based ionic liquids: [bmim][BF4], [bmim][PF6], and [bmim][Tf2N] (IL). CS plays the role of biodegradable film former and selectivity promoter. Copolymers were prepared implementing the latest achievements in radical copolymerization with chosen monomers, which enabled the achievement of outstanding mechanical strength values for the CS-based membranes (75–104 MPa for CS-PAN and 69–75 MPa for CS-PS). Ionic liquid (IL) doping affected the surface and mechanical properties of the membranes as well as the gas separation properties. The highest CO2 permeability 400 Barrers belongs to CS-b-PS/[bmim][BF4]. The highest selectivity α (CO2/N2) = 15.5 was achieved for CS-b-PAN/[bmim][BF4]. The operational temperature of the membranes is under 220 °C. PMID:27294964

  1. Experimental (FT-IR, NMR and UV) and theoretical (M06-2X and DFT) investigation, and frequency estimation analyses on (E)-3-(4-bromo-5-methylthiophen-2-yl)acrylonitrile

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Balakit, Asim A.; Öztürk, Nuri; Ucun, Fatih; El-Hiti, Gamal A.

    2014-10-01

    The spectroscopic properties of (E)-3-(4-bromo-5-methylthiophen-2-yl)acrylonitrile have been investigated by FT-IR, UV, 1H and 13C NMR techniques. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parameterized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been carried out by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies were in good agreement with the corresponding experimental data, and with the results in the literature. 1H and 13C NMR chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strength wavelengths were performed by B3LYP methods. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted.

  2. Experimental (FT-IR, NMR and UV) and theoretical (M06-2X and DFT) investigation, and frequency estimation analyses on (E)-3-(4-bromo-5-methylthiophen-2-yl)acrylonitrile.

    PubMed

    Sert, Yusuf; Balakit, Asim A; Öztürk, Nuri; Ucun, Fatih; El-Hiti, Gamal A

    2014-10-15

    The spectroscopic properties of (E)-3-(4-bromo-5-methylthiophen-2-yl)acrylonitrile have been investigated by FT-IR, UV, (1)H and (13)C NMR techniques. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parameterized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been carried out by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies were in good agreement with the corresponding experimental data, and with the results in the literature. (1)H and (13)C NMR chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strength wavelengths were performed by B3LYP methods. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted.

  3. Important role of molecular packing and intermolecular interactions in two polymorphs of (Z)-2-phenyl-3-(4-(pyridin-2-yl)phenyl)acrylonitrile. Preparation, structures, and optical properties

    NASA Astrophysics Data System (ADS)

    Percino, M. Judith; Cerón, Margarita; Ceballos, Paulina; Soriano-Moro, Guillermo; Castro, M. Eugenia; Chapela, Víctor M.; Bonilla-Cruz, José; Reyes-Reyes, Marisol; López-Sandoval, Román; Siegler, Maxime A.

    2014-12-01

    The novel compound Z-2-phenyl-3-(4-(pyridin-2-yl)phenyl)acrylonitrile (PPyPAN) was synthesized from the condensation reaction between phenylacetonitrile and 4-(pyridin-2-yl)benzaldehyde. This compound crystallizes in two forms: polymorph I (triclinic, P - 1, Z‧ = 2) and polymorph II (orthorhombic, Pbc21, Z‧ = 2). The molecular structures and optical properties of the two polymorphs have been characterized via1H NMR, EI, FTIR, UV-Vis spectroscopy, DSC, single-crystal and XRPD. The molecular structure, packing properties, and intermolecular interactions were examined for both polymorphs of PPyPAN in order to interpret the emission properties. A subtle change in the molecular conformation (e.g., a rotation around single Csbnd C bonds) found for both polymorph plays an important role in their solid-state properties. The structure and optical properties of the new structures were well characterized and showed unique features for both polymorphic phases. For phase I, we observed an excitation spectrum with an λex at 325-346 nm, which is the maximum excitation or absorption wavelength for the lowest So → S1 transition, which is characteristic to the π-π* transition, and an emission spectrum with an λemmax at 454 nm. For phase II, the excitation spectrum showed an λexmax at 325 nm, whereas the λemmax showed a red-shift to 492 nm.

  4. Preparation and Characterization of Facilitated Transport Membranes Composed of Chitosan-Styrene and Chitosan-Acrylonitrile Copolymers Modified by Methylimidazolium Based Ionic Liquids for CO₂ Separation from CH₄ and N₂.

    PubMed

    Otvagina, Ksenia V; Mochalova, Alla E; Sazanova, Tatyana S; Petukhov, Anton N; Moskvichev, Alexandr A; Vorotyntsev, Andrey V; Afonso, Carlos A M; Vorotyntsev, Ilya V

    2016-06-09

    CO₂ separation was found to be facilitated by transport membranes based on novel chitosan (CS)-poly(styrene) (PS) and chitosan (CS)-poly(acrylonitrile) (PAN) copolymer matrices doped with methylimidazolium based ionic liquids: [bmim][BF₄], [bmim][PF₆], and [bmim][Tf₂N] (IL). CS plays the role of biodegradable film former and selectivity promoter. Copolymers were prepared implementing the latest achievements in radical copolymerization with chosen monomers, which enabled the achievement of outstanding mechanical strength values for the CS-based membranes (75-104 MPa for CS-PAN and 69-75 MPa for CS-PS). Ionic liquid (IL) doping affected the surface and mechanical properties of the membranes as well as the gas separation properties. The highest CO₂ permeability 400 Barrers belongs to CS-b-PS/[bmim][BF₄]. The highest selectivity α (CO₂/N₂) = 15.5 was achieved for CS-b-PAN/[bmim][BF₄]. The operational temperature of the membranes is under 220 °C.

  5. Poly(methyl methacrylate-acrylonitrile-ethyl acrylate) terpolymer based gel electrolyte for LiNi0.5Mn1.5O4 cathode of high voltage lithium ion battery

    NASA Astrophysics Data System (ADS)

    Sun, Ping; Liao, Youhao; Xie, Huili; Chen, Tingting; Rao, Mumin; Li, Weishan

    2014-12-01

    A novel gel polymer electrolyte (GPE), based on poly(methyl methacrylate-acrylonitrile-ethyl acrylate) (P(MMA-AN-EA)) terpolymer, is designed to match LiNi0.5Mn1.5O4 cathode of 5 V lithium ion battery. The performances of the synthesized P(MMA-AN-EA) terpolymer and the corresponding membrane and GPE are investigated by scanning electron microscope, energy dispersive spectroscopy, nuclear magnetic resonance spectra, Fourier transform infrared spectra, thermogravimetric analyzer, electrochemical impedance spectroscopy, linear sweep voltammetry, and charge/discharge test. It is found that the pore structure of P(MMA-AN-EA) membrane is affected by the dose of pore forming agent, polyethylene glycol (PEG400). The membrane with 3 wt% PEG400 presents the best pore structure, in which pores are dispersed uniformly and interconnected, and exhibits the largest electrolyte uptake, resulting in the highest ionic conductivity of 3.82 × 10-3 S cm-1 for the corresponding GPE at room temperature. The GPE has improved compatibility with lithium anode and is electrochemically stable up to 5.2 V (vs. Li/Li+). The high voltage LiNi0.5Mn1.5O4 cathode using the resulting GPE exhibits excellent cyclic stability, maintaining 97.9% of its initial discharge capacity after 100 cycles compared to that of 79.7% for the liquid electrolyte at 0.5 C.

  6. Stability improvement of gel-state dye-sensitized solar cells by utilization the co-solvent effect of propionitrile/acetonitrile and 3-methoxypropionitrile/acetonitrile with poly(acrylonitrile-co-vinyl acetate)

    NASA Astrophysics Data System (ADS)

    Venkatesan, Shanmugam; Su, Song-Chuan; Kao, Shon-Chen; Teng, Hsisheng; Lee, Yuh-Lang

    2015-01-01

    Propionitrile (PPN) or 3-methoxypropionitrile (MPN) is mixed with acetonitrile (ACN) to prepare ACN/PPN and ACN/MPN co-solvents and used to fabricate polymer gel electrolytes (PGEs) of dye-sensitized solar cells (DSSCs), aiming at improving the stability of gel-state DSSCs. Co-solvents with various ratios are utilized to prepare PGEs using poly(acrylonitrile-co-vinyl acetate) (PAN-VA) as the gelator. The ratio effects of the co-solvents on the properties of PGEs and the performances of the corresponding DSSCs are studied. The results show that in-situ gelation of the gel-electrolytes can still be performed at the presence of 40% PPN or 30% MPN. However, increasing the composition of PPN and MPN in the co-solvents triggers a decrease in the diffusivity and conductivity of the PGEs, but an increase in the viscosity. Therefore, the energy conversion efficiencies of the cells decrease as a result. However, the introduction of PPN and MPN elevates the gel-to-liquid transition temperature (Tp) of the PGEs which significantly increases the stability of the gel-state DSSCs. Comparing between the effects of the two co-solvents, PPN and MPN have similar effect on elevation of Tp, but the conductivity of PGEs and the corresponding cell efficiency are higher for the ACN/PPN system, attributed to its lower viscosity compared with ACN/MPN system. By using the ACN/PPN (60/40) co-solvent at the presence of TiO2 fillers, gel-state cell with an efficiency of 8.3% can be achieved, which is even higher than that obtained by the liquid state cell (8%). After 500 h test at 60 °C, the cell can retain 95.4% of its initial efficiency.

  7. Comparison of sodium naphthenate and air-ionization corona discharge as surface treatments for the ethylene-tetrafluoroethylene polymer (ETFE) to improve adhesion between ETFE and acrylonitrile-butadiene-styrene polymer (ABS) in the presence of a cyanoacrylate adhesive (CAA)

    NASA Astrophysics Data System (ADS)

    Lucía Johanning-Solís, Ana; Stradi-Granados, Benito A.

    2014-09-01

    This study compares two ethylene-tetrafluoroethylene (ETFE) surface activation treatments, namely chemical attack with a solution of sodium naphthenate and plasma erosion via air-ionization corona discharge in order to improve the adhesive properties of the ETFE. An experimental design was prepared for both treatments in order to assess the effect of the treatment characteristics on the tensile load needed to break the bond between the ETFE and the acrylonitrile-butadiene-styrene polymer (ABS) formed with a cyanoacrylate adhesive (CAA) applied between them. The reason for the selection of this problem is that both polymers are frequently used in the biomedical industry for their properties, and they need to be joined firmly in biomedical devices, and the cyanoacrylate adhesive is the adhesive traditionally used for fluoropolymers, in this case the ETFE, and the same CAA has also shown good adhesion with ABS. However, the strength of the bond for the triplet ETFE-CAA-ABS has not been reported and the improvement of the strength of the bond with surface treatments is not found in scholarly journals for modern medical devices such as stents and snares. Both treatments were compared based on the aforementioned design of experiments. The case where ETFE receives no surface treatment serves as the reference. The results indicated that the three factors evaluated (initial drying of the material, temperature of the chemical bath, and immersion time), and their interactions have no significant effect over the tensile load at failure (tensile strength) of the adhesive bond being evaluated. For the air-ionization corona discharge treatment, two factors were evaluated: discharge exposition time and air pressure. The results obtained from this experimental design indicate that there is no significant difference between the levels of the factors evaluated. These results were unexpected as the ranges used were representative of the maximum ranges permissible in manufacturing

  8. Topological analysis of void spaces in tungstate frameworks: Assessing storage properties for the environmentally important guest molecules and ions: CO2, UO2, PuO2, U, Pu, Sr2+, Cs+, CH4, and H2

    SciTech Connect

    Cole, Jacqueline M.; Cramer, Alisha J.; Zeidler, Anita

    2015-07-15

    The identification of inorganic materials, which are able to encapsulate environmentally important small molecules or ions via host-guest interactions, is crucial for the design and development of next-generation energy sources and for storing environmental waste. Especially sought after are molecular sponges with the ability to incorporate CO2, gas pollutants, or nuclear waste materials such as UO2 and PuO2 oxides or U, Pu, Sr2+ or Cs+ ions. Porous framework structures promise very attractive prospects for applications in environmental technologies, if they are able to incorporate CH4 for biogas energy applications, or to store H2, which is important for fuel cells e.g. in the automotive industry. All of these applications should benefit from the host being resistant to extreme conditions such as heat, nuclear radiation, rapid gas expansion, or wear and tear from heavy gas cycling. As inorganic tungstates are well known for their thermal stability, and their rigid open-framework networks, the potential of Na2O-Al2O3-WO3 and Na2O-WO3 phases for such applications was evaluated. To this end, all known experimentally-determined crystal structures with the stoichiometric formula MaM’bWcOd (M = any element) are surveyed together with all corresponding theoretically calculated NaaAlbWcOd and NaxWyOz structures that are statistically likely to form. Network descriptors that categorize these host structures are used to reveal topological patterns in the hosts, including the nature of porous cages which are able to accommodate a certain type of guest; this leads to the classification of preferential structure types for a given environmental storage application. Crystal structures of two new tungstates NaAlW2

  9. 29 CFR 1910.1045 - Acrylonitrile.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... history and medical history with special attention to skin, respiratory, and gastrointestinal systems, and..., gastrointestinal system, respiratory system, skin, and thyroid; (iii) A 14- by 17-inch posteroanterior chest X-ray... achievable by these controls, and shall supplement them by the use of respiratory protection which...

  10. 29 CFR 1910.1045 - Acrylonitrile.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... history and medical history with special attention to skin, respiratory, and gastrointestinal systems, and..., gastrointestinal system, respiratory system, skin, and thyroid; (iii) A 14- by 17-inch posteroanterior chest X-ray... achievable by these controls, and shall supplement them by the use of respiratory protection which...

  11. 29 CFR 1910.1045 - Acrylonitrile.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... history and medical history with special attention to skin, respiratory, and gastrointestinal systems, and..., gastrointestinal system, respiratory system, skin, and thyroid; (iii) A 14- by 17-inch posteroanterior chest X-ray... achievable by these controls, and shall supplement them by the use of respiratory protection which...

  12. 29 CFR 1910.1045 - Acrylonitrile.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... history and medical history with special attention to skin, respiratory, and gastrointestinal systems, and..., gastrointestinal system, respiratory system, skin, and thyroid; (iii) A 14- by 17-inch posteroanterior chest X-ray... achievable by these controls, and shall supplement them by the use of respiratory protection which...

  13. Synthesis of Compositionally Defined Single-Crystalline Eu 3+ -Activated Molybdate–Tungstate Solid-Solution Composite Nanowires and Observation of Charge Transfer in a Novel Class of 1D CaMoO 4 –CaWO 4 :Eu 3+ –0D CdS/CdSe QD Nanoscale Heterostructures

    SciTech Connect

    Han, Jinkyu; McBean, Coray; Wang, Lei; Jaye, Cherno; Liu, Haiqing; Fischer, Daniel A.; Wong, Stanislaus S.

    2015-02-10

    As a first step, we have synthesized and optically characterized a systematic series of one-dimensional (1D) single-crystalline Eu³⁺-activated alkaline-earth metal tungstate/molybdate solid solution composite CaW₁₋xMoxO₄ (0 ≤ ‘x’ ≤ 1) nanowires of controllable chemical composition using a modified template-directed methodology under ambient room-temperature conditions. Extensive characterization of the resulting nanowires has been performed using X-ray diffraction, electron microscopy, and optical spectroscopy. The crystallite size and single crystallinity of as-prepared 1D CaW₁₋xMoxO₄: Eu³⁺ (0 ≤ ‘x’ ≤ 1) solid solution composite nanowires increase with increasing Mo component (‘x’). We note a clear dependence of luminescence output upon nanowire chemical composition with our 1D CaW₁₋xMoxO₄: Eu³⁺ (0 ≤ ‘x’ ≤ 1) evincing the highest photoluminescence (PL) output at ‘x’ = 0.8, amongst samples tested. Subsequently, coupled with either zero-dimensional (0D) CdS or CdSe quantum dots (QDs), we successfully synthesized and observed charge transfer processes in 1D CaW1-xMoxO4: Eu3+ (‘x’ = 0.8) – 0D QD composite nanoscale heterostructures. Our results show that CaW₁₋xMoxO₄: Eu³⁺ (‘x’ = 0.8) nanowires give rise to PL quenching when CdSe QDs and CdS QDs are anchored onto the surfaces of 1D CaW₁₋xMoxO₄: Eu³⁺ nanowires. The observed PL quenching is especially pronounced in CaW₁₋xMoxO₄: Eu³⁺ (‘x’ = 0.8) – 0D CdSe QD heterostructures. Conversely, the PL output and lifetimes of CdSe and CdS QDs within these heterostructures are not noticeably altered as compared with unbound CdSe and CdS QDs. The difference in optical behavior between 1D Eu³⁺ activated tungstate and molybdate solid solution nanowires and the semiconducting 0D QDs within our

  14. Synthesis of Compositionally Defined Single-Crystalline Eu 3+ -Activated Molybdate–Tungstate Solid-Solution Composite Nanowires and Observation of Charge Transfer in a Novel Class of 1D CaMoO 4 –CaWO 4 :Eu 3+ –0D CdS/CdSe QD Nanoscale Heterostructures

    DOE PAGES

    Han, Jinkyu; McBean, Coray; Wang, Lei; ...

    2015-02-10

    As a first step, we have synthesized and optically characterized a systematic series of one-dimensional (1D) single-crystalline Eu³⁺-activated alkaline-earth metal tungstate/molybdate solid solution composite CaW₁₋xMoxO₄ (0 ≤ ‘x’ ≤ 1) nanowires of controllable chemical composition using a modified template-directed methodology under ambient room-temperature conditions. Extensive characterization of the resulting nanowires has been performed using X-ray diffraction, electron microscopy, and optical spectroscopy. The crystallite size and single crystallinity of as-prepared 1D CaW₁₋xMoxO₄: Eu³⁺ (0 ≤ ‘x’ ≤ 1) solid solution composite nanowires increase with increasing Mo component (‘x’). We note a clear dependence of luminescence output upon nanowire chemical composition withmore » our 1D CaW₁₋xMoxO₄: Eu³⁺ (0 ≤ ‘x’ ≤ 1) evincing the highest photoluminescence (PL) output at ‘x’ = 0.8, amongst samples tested. Subsequently, coupled with either zero-dimensional (0D) CdS or CdSe quantum dots (QDs), we successfully synthesized and observed charge transfer processes in 1D CaW1-xMoxO4: Eu3+ (‘x’ = 0.8) – 0D QD composite nanoscale heterostructures. Our results show that CaW₁₋xMoxO₄: Eu³⁺ (‘x’ = 0.8) nanowires give rise to PL quenching when CdSe QDs and CdS QDs are anchored onto the surfaces of 1D CaW₁₋xMoxO₄: Eu³⁺ nanowires. The observed PL quenching is especially pronounced in CaW₁₋xMoxO₄: Eu³⁺ (‘x’ = 0.8) – 0D CdSe QD heterostructures. Conversely, the PL output and lifetimes of CdSe and CdS QDs within these heterostructures are not noticeably altered as compared with unbound CdSe and CdS QDs. The difference in optical behavior between 1D Eu³⁺ activated tungstate and molybdate solid solution nanowires and the semiconducting 0D QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. We propose that

  15. Buffing dust as a filler of carboxylated butadiene-acrylonitrile rubber and butadiene-acrylonitrile rubber.

    PubMed

    Chronska, K; Przepiorkowska, A

    2008-03-01

    Buffing dust from chrome tanned leather is one of the difficult tannery wastes to manage. It is also hazardous to both human health and the environment. The scientific literature rarely reports studies on dust management, especially on its utilization as a filler for elastomers. In this connection we have made an attempt to use this leather waste as a filler for rubbers such as XNBR and NBR. The addition of the buffing dust to rubber mixes brought improvement in mechanical properties, and increase in resistance to thermal ageing as well as in electric conductivity and crosslink density of vulcalizates.

  16. Surface crystallography and electronic structure of potassium yttrium tungstate

    SciTech Connect

    Atuchin, V. V.; Pokrovsky, L. D.; Khyzhun, O. Yu.; Sinelnichenko, A. K.; Ramana, C. V.

    2008-08-01

    Structural and electronic characteristics of KY(WO{sub 4}){sub 2} (KYW) (010) crystal surfaces have been studied using reflection high-energy electron diffraction (RHEED) and x-ray photoelectron spectroscopy (XPS). The results indicate that the crystal structure and chemical composition of the mechanically polished pristine surface is stoichiometrically well maintained as expected for KYW crystals. Combined measurements of RHEED and XPS as a function of 1.5 keV Ar{sup +} ion irradiation of the KYW (010) surfaces indicate amorphization, partial loss of potassium atoms, and partial transformation of chemical valence state of tungsten from W{sup 6+} to a lower valence state, W{sup 0} state predominantly, which induces electronic states at the top of valence band.

  17. Thermodynamic Properties of the Gaseous Gallium Molybdates and Tungstates

    NASA Astrophysics Data System (ADS)

    Lopatin, S. I.; Shugurov, S. M.; Gunina, A. O.

    2009-10-01

    A number of gaseous oxyacid salts have been identified by Knudsen effusion mass spectrometry by vaporizing Ga2O3 from molybdenum and tungsten cells. The stability of gaseous molecules Ga2MoO4, Ga2WO4, Ga2Mo2O7, and Ga2W2O7 was deduced from the measurements. The structures and molecular parameters of all salts investigated were obtained using quantum chemical calculations. On the basis of equilibrium constants measured for gas-phase reactions, the standard formation enthalpies were determined to be -827 ± 26, -843 ± 26, -1578 ± 32, and -1525 ± 34 kJ·mol-1 for Ga2MoO4, Ga2WO4, Ga2Mo2O7, and Ga2W2O7, respectively.

  18. Thermodynamic properties of the gaseous gallium molybdates and tungstates.

    PubMed

    Lopatin, S I; Shugurov, S M; Gunina, A O

    2009-12-03

    A number of gaseous oxyacid salts have been identified by Knudsen effusion mass spectrometry by vaporizing Ga(2)O(3) from molybdenum and tungsten cells. The stability of gaseous molecules Ga(2)MoO(4), Ga(2)WO(4), Ga(2)Mo(2)O(7), and Ga(2)W(2)O(7) was deduced from the measurements. The structures and molecular parameters of all salts investigated were obtained using quantum chemical calculations. On the basis of equilibrium constants measured for gas-phase reactions, the standard formation enthalpies were determined to be -827 +/- 26, -843 +/- 26, -1578 +/- 32, and -1525 +/- 34 kJ.mol(-1) for Ga(2)MoO(4), Ga(2)WO(4), Ga(2)Mo(2)O(7), and Ga(2)W(2)O(7), respectively.

  19. Synthesis, characterization, and properties of reduced europium molybdates and tungstates

    SciTech Connect

    Abeysinghe, Dileka; Gerke, Birgit; Morrison, Gregory; Hsieh, Chun H.; Smith, Mark D.; Pöttgen, Rainer; Makris, Thomas M.; Loye, Hans-Conrad zur

    2015-09-15

    Single crystals of K{sub 0.094}Eu{sub 0.906}MoO{sub 4}, K{sub 0.097}Eu{sub 0.903}WO{sub 4}, EuWO{sub 4}, and EuMoO{sub 4} were grown from molten chloride fluxes contained in vacuum-sealed fused silica and structurally characterized via single crystal X-ray diffraction. The in situ reduction of Eu{sup 3+} to Eu{sup 2+} was carried out using Mo, W, and Zn as metal reducing agents. All four compounds crystallize in the tetragonal space group of I4{sub 1}/a and adopt the scheelite (CaWO{sub 4}) structure type. The magnetic susceptibility of the reported compounds shows paramagnetic behavior down to 2 K. {sup 151}Eu Mössbauer spectroscopy was used to analyze the relative Eu{sup 2+} and Eu{sup 3+} content of the samples. All the compounds were further characterized by EPR, and UV-vis spectroscopy. - Graphical abstract: TOC Caption Two new reduced europium containing quaternary oxides, K{sub 0.094}Eu{sub 0.906}MoO{sub 4} and K{sub 0.097}Eu{sub 0.903}WO{sub 4}, and two previously reported ternary reduced oxides, EuWO{sub 4} and EuMoO{sub 4}, were synthesized via an in situ reduction of Eu{sup 3+} to Eu{sup 2+} under flux method using Mo, W, and Zn as metal reducing agents. {sup 151}Eu Mössbauer spectroscopy was used to analyze the relative Eu{sup 2+} and Eu{sup 3+} content of the samples. - Highlights: • K{sub 0.094}Eu{sub 0.906}MoO{sub 4}, K{sub 0.097}Eu{sub 0.903}WO{sub 4}, EuWO{sub 4}, and EuMoO{sub 4} have been synthesized and characterized. • The in situ reduction of Eu{sup 3+} to Eu{sup 2+} was carried out using Mo, W, and Zn as metal reducing agents. • Magnetic susceptibility data were collected. • {sup 151}Eu Mössbauer spectroscopy was used to analyze Eu{sup 2+} and Eu{sup 3+} content.

  20. Hydroflux synthesis and crystal structure of new lanthanide tungstate oxyhydroxides

    NASA Astrophysics Data System (ADS)

    Latshaw, Allison M.; Smith, Mark D.; Chance, W. Michael; zur Loye, Hans-Conrad

    2015-04-01

    Single crystals of Na5Ln(OH)6WO4 where Ln = Er, Tm, and Yb were grown out of a NaOH hydroflux. The crystals were characterized by single crystal X-ray diffraction and were found to crystallize in the monoclinic space group I2/a. The lattice parameter ranges for the three structures are a = 11.2024(7) Å-11.2412(6) Å, b = 16.1850(10) Å-16.2220(10) Å, and c = 11.9913(7) Å-12.0323(7) Å while the β angle range is 101.999(2)°-102.025(2)°.

  1. Composition, morphology, and properties of sodium-bismuth tungstate crystals

    SciTech Connect

    Nefedov, P. V.; Leonyuk, N. I.

    2009-01-15

    A correlation has been revealed between the formation conditions, composition, morphology, and physicochemical properties of NaBi{sub 1-x}(W{sub 1+y}O{sub 4}){sub 2} crystals (0 {<=} x {<=} 0.16, 0 {<=} y {<=} 0.11). The effect of melt deviation from stoichiometry on the decomposition rate of grown crystals under electron beam irradiation is shown by transmission electron microscopy. A nonuniform dopant distribution over the crystal boule cross-section is found by microprobe analysis. The Raman spectra of the samples depend on their crystallographic orientation.

  2. Emf study of ionic composition of tungstate melts

    SciTech Connect

    Khvatov, A. Yu.; Baraboshkin, A.N.; Tarasova, K.P.

    1986-06-01

    The emf of cells W (1-x)Na/sub 2/WO/sub 4/ + xWO/sub 3/ Pt, O/sub 2/ were measured for x-values between 0.01 and 0.20 over the temperature range from 1023 to 1223/sup 0/K. It was shown that the experimental results can be described satisfactorily by a model for ionic composition of the melts which assumes that ions WO/sub 4//sup 2 -/, W/sub 2/O/sub 7//sup 2 -/, O/sup 2 -/, and Na/sub +/ with concentration-independent activity coefficients exist in the melt. It was found that the emf of cells Pt, O/sub 2/ 0.9 Na/sub 2/WO/sub 4/ + 0.1 WO/sub 3/ (1-x)Na/sub 2/WO/sub 4/ + xWO/sub 3/ O/sub 2/,Pt calculated via this model do not differ by more than 8 mV from the experimental emf over the concentration range from 0.5 to 20 mole % of WO/sub 3/.

  3. 21 CFR 181.32 - Acrylonitrile copolymers and resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...—0.003 milligram/square inch when extracted to equilibrium at 120 °F with food-simulating solvents... calculated on the basis of the volume of the container when extracted to equilibrium at 120 °F with...

  4. Synthesis of zirconium tungstate-zirconia core-shell composite particles

    SciTech Connect

    Khazeni, Nasser; Mavis, Bora; Guenduez, Guengoer; Colak, Uner

    2011-11-15

    Highlights: {yields} ZrW{sub 2}O{sub 8}-ZrO{sub 2} core-shell particles to offer solutions for sintering problems. {yields} Core synthesis by a precursor based on tungstic acid and zirconium acetate. {yields} Shell phase by urea hydrolysis in the presence of zirconium ions. {yields} [Urea]/[ZrOCl{sub 2}] ratio controls the rate of shell precursor precipitation. -- Abstract: In this work, ZrW{sub 2}O{sub 8}-ZrO{sub 2} core-shell composite particles were synthesized. ZrW{sub 2}O{sub 8} that was used in the core is a material with negative coefficient of thermal expansion, and it was synthesized from a high-pH precursor based on use of tungstic acid and zirconium acetate. Shell layer was composed of ZrO{sub 2} nanocrystallites and precipitated from an aqueous solution by urea hydrolysis. While volume of the shell was effectively controlled by the initial zirconium ion concentration in the solutions, the rate of precipitation was a function of the ratio of initial concentrations of urea to zirconium ions. It is hypothesized that isolation of the ZrW{sub 2}O{sub 8} within a layer of ZrO{sub 2}, will be a key element in solving problems associated with reactivity of ZrW{sub 2}O{sub 8} towards other components in sintering of ceramic-ceramic composites with tuned or zero thermal expansion coefficient.

  5. Evaluation of lanthanum tungstates as electrolytes for proton conductors Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Zayas-Rey, M. J.; dos Santos-Gómez, L.; Porras-Vázquez, J. M.; Losilla, E. R.; Marrero-López, D.

    2015-10-01

    La27W4NbO55-δ (LWNO) has been tested as electrolyte for proton conductor Solid Oxide Fuel Cells (PC-SOFCs). For this purpose, different electrodes and composite electrodes are considered, including: La0.8Sr0.2MnO3-δ, La0.6Sr0.4Co1-xFexO3-δ, La0.75Sr0.25Cr0.5Mn0.5O3-δ, SrFe0.75Nb0.25O3-δ and NiO. Chemical compatibility between the cell components is investigated by X-ray powder diffraction (XRPD) and energy dispersive spectroscopy (EDS). Furthermore, area specific resistance (ASR) for the different electrodes is determined in symmetrical cells by impedance spectroscopy. XRPD and EDS analysis does not reveal significant bulk reactivity between most of these electrodes and LWNO electrolyte in the typical operating temperature range of an SOFC (600-900 °C). However, minor interdiffusion of elements at the electrolyte/electrode interface has negative effects on both the ohmic losses and electrode polarization of the cells. ASR values are significantly improved by using a porous buffer layer of Ce0.8Gd0.2O1.9 (CGO), deposited between the electrolyte and electrode materials, to prevent reactivity. A single cell with a 350 μm-thick electrolyte, NiO-CGO and La0.6Sr0.4Co0.8Fe0.2O3-δ-CGO composite as anode and cathode, respectively, generates maximum power densities of 140 and 18 mWcm-2 at 900 and 650 °C, respectively.

  6. Polymorphism in Strontium Tungstate SrWO4 under Quasi-Hydrostatic Compression.

    PubMed

    Santamaria-Perez, David; Errandonea, Daniel; Rodriguez-Hernandez, Placida; Muñoz, Alfonso; Lacomba-Perales, Raul; Polian, Alain; Meng, Yue

    2016-10-03

    The structural and vibrational properties of SrWO4 have been studied experimentally up to 27 and 46 GPa, respectively, by angle-dispersive synchrotron X-ray diffraction and Raman spectroscopy measurements as well as using ab initio calculations. The existence of four polymorphs upon quasi-hydrostatic compression is reported. The three phase transitions were found at 11.5, 19.0, and 39.5 GPa. The ambient-pressure SrWO4 tetragonal scheelite-type structure (S.G. I41/a) undergoes a transition to a monoclinic fergusonite-type structure (S.G. I2/a) at 11.5 GPa with a 1.5% volume decrease. Subsequently, at 19.0 GPa, another structural transformation takes place. Our calculations indicate two possible post-fergusonite phases, one monoclinic and the other orthorhombic. In the diffraction experiments, we observed the theoretically predicted monoclinic LaTaO4-type phase coexisting with the fergusonite-type phase up to 27 GPa. The coexistence of the two phases and the large volume collapse at the transition confirm a kinetic hindrance typical of first-order phase transitions. Significant changes in Raman spectra suggest a third pressure-induced transition at 39.5 GPa. The conclusions extracted from the experiments are complemented and supported by ab initio calculations. Our data provides insight into the structural mechanism of the first transition, with the formation of two additional W-O contacts. The fergusonite-type phase can be therefore considered as a structural bridge between the scheelite structure, composed of [WO4] tetrahedra, and the new higher pressure phases, which contain [WO6] octahedra. All the observed phases are compatible with the high-pressure structural systematics predicted for ABO4 compounds using crystal-chemistry arguments such as the diagram proposed by Bastide.

  7. Polishing procedure and surface characterization lead tungstate crystal scintillator Road No. 723 and No. 754

    SciTech Connect

    Kellam, M

    1996-05-01

    Step by step procedures are given for polishing the scintillator rods. A Strasbaugh spindle polishing machine was used along with visual inspection and hand polishing. Extensive data is given on pre-polish surface characterization, profilometry, microphotography, and interferometry.

  8. Dielectric properties and aging effects of manganese modified lead iron tungstate relaxor ceramics

    SciTech Connect

    Zhou, L.; Vilarinho, P.M.; Baptista, J.L.

    1996-06-01

    Mn-doped samples were used to study the effects of Mn dopant on the dielectric properties of PFW ceramics, especially on its aging behavior, since they could add some knowledge on the role of lattice defects on the aging mechanisms of this relaxor ferroelectric. Mn doping does not cause marked changes in the maximum of permittivity ({var_epsilon}{sub rmax}), transition temperature (T{sub 0}), and diffuseness coefficient ({delta}) under the solubility limit, whereas the resistivity increases significantly with increasing the Mn content. Mn-modified PFW ceramics exhibit evident aging behavior and its level increases with the increase in Mn content. The aging shows strong dependence on the frequency and has a log-linear function of aging time. Probable lattice defects in the ceramics are discussed and it is suggested that the acceptor Mn ions are dominantly compensated by oxygen vacancies, providing reorientable dipole pairs which are responsible for the aging process of Mn-modified PFW ceramics.

  9. Single Unit Cell Bismuth Tungstate Layers Realizing Robust Solar CO2 Reduction to Methanol.

    PubMed

    Liang, Liang; Lei, Fengcai; Gao, Shan; Sun, Yongfu; Jiao, Xingchen; Wu, Ju; Qamar, Shaista; Xie, Yi

    2015-11-16

    Solar CO2 reduction into hydrocarbons helps to solve the global warming and energy crisis. However, conventional semiconductors usually suffer from low photoactivity and poor photostability. Here, atomically-thin oxide-based semiconductors are proposed as excellent platforms to overcome this drawback. As a prototype, single-unit-cell Bi2WO6 layers are first synthesized by virtue of a lamellar Bi-oleate intermediate. The single-unit-cell thickness allows 3-times larger CO2 adsorption capacity and higher photoabsorption than bulk Bi2WO6. Also, the increased conductivity, verified by density functional theory calculations and temperature-dependent resistivities, favors fast carrier transport. The carrier lifetime increased from 14.7 to 83.2 ns, revealed by time-resolved fluorescence spectroscopy, which accounts for the improved electron-hole separation efficacy. As a result, the single-unit-cell Bi2WO6 layers achieve a methanol formation rate of 75 μmol g(-1) h(-1), 125-times higher than that of bulk Bi2WO6. The catalytic activity of the single-unit-cell layers proceeds without deactivation even after 2 days. This work will shed light on designing efficient and robust photoreduction CO2 catalysts.

  10. Nano-Zirconium Tungstate Reinforced Liquid Crystalline Thermosetting Composites with Near Zero Thermal Expansion

    DTIC Science & Technology

    2015-06-25

    the self- organized liquid crystalline phase and are promising candidates for the polymer matrices in structural composites. Lightly crosslinked LCERs...the self- organized liquid crystalline phase and are promising candidates for the polymer matrices in structural composites. Lightly crosslinked...they are regarded as self- reinforcing materials and have shown great potential in applications as polymer matrices in high performance composites

  11. Effects of Te(IV) Oxo-Anion Incorporation into Thorium Molybdates and Tungstates.

    PubMed

    Xiao, Bin; Klinkenberg, Martina; Bosbach, Dirk; Suleimanov, Evgeny V; Alekseev, Evgeny V

    2015-06-15

    The exploration of phase formation in the Th-Mo/W-Te systems has resulted in four mixed oxo-anion compounds from high-temperature solid-state reactions: ThWTe2O9, Th(WO4)(TeO3), ThMoTe2O9, and Th2(MoO4)(TeO3)3. All four compounds contain edge-sharing thorium polyhedra linked by MoO4/WO6 and different tellurium oxo-groups to form three-dimensional frameworks. In ThWTe2O9, each helical Th based chain is connected by four tungstotellurite clusters resulting in a building fragment which has a cross-section of four-leafed clovers. The structure of Th(WO4)(TeO3) exhibits a multilayer-sandwich framework composed of thorium tellurite layers with tungsten chains in between. In the case of the molybdate family, ThMoTe2O9 and Th2(MoO4)(TeO3)3 are built from puckered Th-Te sheets which are further interconnected by MoO4 tetrahedral linkers. The DSC-TG technique was performed to gain insight into the thermal behavior of the synthesized compounds. Raman spectra of as-prepared phases were obtained and analyzed for signature peaks.

  12. Random lasing in Nd{sup 3+} doped potassium gadolinium tungstate crystal powder

    SciTech Connect

    Moura, André L.; Fewo, Serge I.; Carvalho, Mariana T.; Gomes, Anderson S. L.; Araújo, Cid B. de; Kuzmin, Andrey N.; Prasad, Paras N.

    2015-02-28

    Random laser (RL) emission in Nd{sup 3+} doped potassium gadolinium tungstate—KGd(WO{sub 4}){sub 2}:Nd{sup 3+}—crystal powder is demonstrated. The powder was excited at 813 nm in resonance with the Nd{sup 3+} transition {sup 4}I{sub 9/2}→{sup 4}F{sub 5/2}. RL emission at 1067 nm due to the {sup 4}F{sub 3/2}→{sup 4}I{sub 11/2} transition was observed and characterized. An intensity threshold dependent on the laser spot area and bandwidth narrowing from ≈2.20 nm to ≈0.40 nm were observed and measured. For a beam spot area of 0.4 mm{sup 2}, a RL threshold of 6.5 mJ/mm{sup 2} (90 MW/cm{sup 2}) was determined. For excitation intensity smaller than the RL threshold, only spontaneous emission from level {sup 4}F{sub 3/2} with decay time in the tens microsecond range was observed, but for excitation above the RL threshold, significant shortening of excited level lifetime, characteristic of a stimulated process was found. The overall characteristics measured show that KGd(WO{sub 4}){sub 2}:Nd{sup 3+} is an efficient material for operation of solid state RLs in the near-infrared.

  13. Polypyrrole-encapsulated iron tungstate nanocomposites: a versatile platform for multimodal tumor imaging and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyin; Peng, Chen; Jiang, Xiaohong; Peng, Yuxuan; Huang, Xiaojuan; Guan, Guoqiang; Zhang, Wenlong; Liu, Xiaoming; Qin, Zongyi; Hu, Junqing

    2016-06-01

    A versatile nanoplatform of FeWO4@Polypyrrole (PPy) core/shell nanocomposites, which was facilely fabricated by first hydrothermal synthesis of FeWO4 nanoparticles and subsequent surface-coating of polypyrrole shell, was developed as an effective nanotheranostic agent of cancer. The as-prepared nanocomposites demonstrated excellent dispersion in saline, long-term colloidal storage, outstanding photo-stability and high photothermal efficiency in solution. In particular, FeWO4@PPy exhibited efficient performance for hyperthermia-killing of cancer cells under the irradiation of an 808 nm laser, accompanied with multimodal contrast capabilities for magnetic resonance imaging, X-ray computed tomography and infrared thermal imaging in vitro and in vivo. Furthermore, the nanocomposites presented impactful tumor growth inhibition and good biocompability in animal experiments. Blood circulation and biodistribution of the nanocomposites were also investigated to understand their in vivo behaviours. Our results verified the platform of FeWO4@PPy nanocomposites as a promising photothermal agent for imaging-guided cancer theranostics.A versatile nanoplatform of FeWO4@Polypyrrole (PPy) core/shell nanocomposites, which was facilely fabricated by first hydrothermal synthesis of FeWO4 nanoparticles and subsequent surface-coating of polypyrrole shell, was developed as an effective nanotheranostic agent of cancer. The as-prepared nanocomposites demonstrated excellent dispersion in saline, long-term colloidal storage, outstanding photo-stability and high photothermal efficiency in solution. In particular, FeWO4@PPy exhibited efficient performance for hyperthermia-killing of cancer cells under the irradiation of an 808 nm laser, accompanied with multimodal contrast capabilities for magnetic resonance imaging, X-ray computed tomography and infrared thermal imaging in vitro and in vivo. Furthermore, the nanocomposites presented impactful tumor growth inhibition and good biocompability in animal experiments. Blood circulation and biodistribution of the nanocomposites were also investigated to understand their in vivo behaviours. Our results verified the platform of FeWO4@PPy nanocomposites as a promising photothermal agent for imaging-guided cancer theranostics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03336a

  14. Studies of lead tungstate crystals for the ALICE electromagnetic calorimeter PHOS

    NASA Astrophysics Data System (ADS)

    Ippolitov, M.; Beloglovsky, S.; Bogolubsky, M.; Burachas, S.; Erin, S.; Klovning, A.; Kuriakin, A.; Lebedev, V.; Lobanov, M.; Maeland, O.; Manko, V.; Nikulin, S.; Nyanin, A.; Odland, O. H.; Punin, V.; Sadovsky, S.; Samoilenko, V.; Sibiriak, Yu.; Skaali, B.; Tsvetkov, A.; Vinogradov, Yu.; Vasiliev, A.

    2002-06-01

    Full-size (22×22×180 mm 3) A LICE crystals were delivered by "North Crystals" company, Apatity, Russia. These crystals were tested with test benches, specially built for measurements of the crystals optical transmission and light yield. Beam-test results of different sets of 3×3 matrices with Hamamatsu APD light readout are presented. Data were taken at electron momenta from 600 MeV/ c up to 10 GeV/ c. Energy resolution and linearity curves are measured. The tests were carried out at the C ERN PS and SPS secondary beam-lines.

  15. Electrical transport properties of potassium germanide tungstates (K10Ge18WO4): A theoretical study

    NASA Astrophysics Data System (ADS)

    Azam, Sikander; Reshak, A. H.

    2014-06-01

    The total and partial density of states, electronic charge density and optical properties of the monoclinic structure K10Ge18WO4 compound have been investigated using a full relativistic version of the full-potential augmented plane-wave method based on the density functional theory, within local density approximation (LDA), generalized gradient approximation (GGA) and Engel-Vosko GGA (EVGGA). Density of states discloses the semiconductor nature of the calculated compound. There exists a strong hybridization between K-p and K-s, W-d and O-p, W-f and K-p. The analysis of the chemical bonding shows that the bonding possesses strong covalent nature. The dielectric optical properties were also calculated and discussed in detail. The electrical transport coefficients of the under observation compound have been investigated using the density functional theory calculation within EVGGA.

  16. Microemulsion-mediated solvothermal synthesis and photoluminescent properties of europium tungstate nanostructures.

    PubMed

    Gao, Li-Li; Song, Shu-Yan; Ma, Jian-Fang; Yang, Jin

    2013-06-01

    The controlled synthesis of Eu2(WO4)3 nanostructures with different morphologies, namely ellipsoidlike, rodlike, cubelike, rod-bundlelike, and mesoporous spindlike, has been successfully achieved by the cationic surfactant-CTAB (cetyltrimethylammoniumbromide)-microemulsion-mediated and anionic surfactant-SDS (sodium dodecyl sulfate)-microemulsion-mediated solvothermal method separately. Various comparison experiments showed that fundamental experimental parameters, such as the water content, reaction temperature and the type of surfactants played important roles in the morphological control of Eu2(WO4)3 nanostructures. The possible growth mechanisms of these nanocrystals were elucidated in detail.

  17. New photomultiplier active base for Hall C Jefferson Lab lead tungstate calorimeter

    SciTech Connect

    Popov, Vladimir E.; Mkrtchyan, Hamlet G.

    2012-11-01

    A new photomultiplier tube active base was designed and tested. The base combines active voltage division circuit and fast amplifier, powered by the current flowing through voltage divider. This base is developed to upgrade older photomultiplier bases of Jefferson Lab lead-tungsten calorimeter (about ˜1200 crystals of PbWO{sub 4} from the PrimEx experimental setup). This is needed for the extension of detectors' rate capability to meet requirements of new Hall C proposal PR12-11-102 of measurements of the L/T separated cross sections and their ratio R = πL/πT in neutral-pion p(e,e'π0)p deep exclusive and p(p(e,e'π{sup 0})p)X semi-inclusive scattering regions. New active base is direct replacement of older passive base circuit without adding of additional power or signal lines. However, it extends detectors rate capability with factor over 20. Moreover, transistorized voltage divider improves detector's amplitude resolution due to reduction of photomultiplier gain dependence from tube anode current. The PMT active base is the invention disclosed in V. Popov's U.S. Patent No. 6,791,269, which successfully works over ten years in several Jefferson Lab Cherenkov detectors. The following design is a new revised and improved electronic circuit with better gain stability and linearity in challenge to meet requirements of new Hall C experimental setup. New active base performance was tested using fast LED light source and Pr:LuAG scintillator and gamma sources. Electronics radiation hardness was tested on JLab accelerator. Results of testing R4125 Hamamatsu photomultiplier tube in new active base are presented.

  18. Impact of Sodium Tungstate and Tungsten Alloys on the Growth of Selected Microorganisms with Environmental Significance

    DTIC Science & Technology

    2010-07-30

    catechol siderophores, small chelating compounds that serve to hunt and return iron to the bacteria. The N2-fixing bacterium, Azotobacter vinelandii...produces catechol siderophores in response to the presence of tungsten. These siderophores can distinguish targets (i.e., iron and molybdenum) from...microbial community isolated during this study may also produce these catechol siderophores and could therefore discriminate between tungsten and

  19. Novel perovskite-related barium tungstate Ba 11W 4O 23

    NASA Astrophysics Data System (ADS)

    Hong, Seung-Tae

    2007-11-01

    Ba 11W 4O 23 was synthesized at 1300 °C, followed by quenching with liquid nitrogen. The crystal structure, which was known to be cryolite-related but has remained unclear, was initially determined by single-crystal X-ray diffraction for the isostructural Ru-substituted compound Ba 11(W 3.1Ru 0.9)O 22.5, which was discovered during exploratory synthesis in the Ba-Ru-O system. The structure of Ba 11W 4O 23 was refined by a combined powder X-ray and neutron Rietveld method ( Fd-3 m, a=17.1823(1) Å, Z=8, Rp=3.09%, Rwp=4.25%, χ2=2.8, 23 °C). The structure is an example of A-site vacancy-ordered 4×4×4 superstructure of a simple perovskite ABO 3, and it may be written as (Ba 1.75□ 0.25)BaWO 5.75□ 0.25, emphasizing vacancies on both metal and anion sites. The local structure of one of two asymmetric tungsten ions is the WO 6 octahedron, typical of perovskite. The other tungsten, however, is surrounded by oxygen and anionic vacancies statistically distributed over three divided sites to form 18 partially occupied oxygen atoms (˜30% on average), represented as WO 18/3. The A-site cation-vacancies are ordered at the 8a ( {1}/{8}, {1}/{8}, {1}/{8}) site in between adjoining WO 18/3 polyhedra which form 1-D arrangements along [110] and equivalent directions. In situ high-temperature XRD data have shown that the quenched Ba 11W 4O 23 at room temperature is isostructural to the high-temperature phase at 1100 °C.

  20. Tissue Distribution of Tungsten in Mice Following Oral Exposure to Sodium Tungstate

    DTIC Science & Technology

    2010-08-31

    1mL) solution under a pressure and temperature controlled microwave digestion system (MarsXpress, CEM Inc, Mathews, North Carolina, USA), and then... nickel and cobalt). These findings confirmed most of what has been published on tungsten tissue distribution; they also showed that the brain is...other organ or either of the other two metals that were analyzed ( nickel and cobalt). These findings confirmed most of what has been published on

  1. Dynamic Evaluation of Acrylonitrile Butadiene Styrene Subjected to High-Strain-Rate Compressive Loads

    DTIC Science & Technology

    2014-12-01

    Approved for public release; distribution is unlimited. ii REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting...with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1... Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 iii Contents List of Figures iv List of Tables iv 1. Introduction 1 2. Experimental

  2. Poly(acrylonitrile) grafted Ipomoea seed-gums: a renewable reservoir to industrial gums.

    PubMed

    Singh, Vandana; Tiwari, Ashutosh; Tripathi, Devendra Narayan; Sanghi, Rashmi

    2005-01-01

    Plants of Ipomoea genus are widely distributed in India as wild vegetation and are reported source for the seed gums. Seed gums from Ipomoea dasysperma, Ipomoea hederacea, and Ipomoea palmata plants were grafted with polyacrylonitrile (PAN) using potassium persulfate/ascorbic acid redox initiator for modifying their properties for potential industrial applications. Under identical grafting conditions, the extent of the grafting was observed to be dependent on the galactose-to-mannose ratio and the degree of the branching in the galactomannans. Viscosity, gel formation, film formation, and the shelf life of the grafted gum solutions and water and saline retention capacity of the grafted seed gums were determined and compared with the parent gums. Water retention of the alkalie hydrolyzed grafted seed gums were also studied. Grafted gums were characterized using FTIR, NMR, and XRD analysis.

  3. From Green Aerogels to Porous Graphite by Emulsion Gelation of Acrylonitrile

    DTIC Science & Technology

    2012-01-01

    latter are referred to as high internal phase emulsions or HIPEs);16 and conformally coating the entire nanostructure with thermally detachable...catalyst is formed in situ by carbothermal reduction of the dopant ions. 21 Direct graphitization would prevent contamination with elements that may...deposited on microfibrous carbon paper; the PAN aerogel layer is a few nm thick and consists of entangled fibers.29 Here, moving along the importance of

  4. Coconut shell powder as cost effective filler in copolymer of acrylonitrile and butadiene rubber.

    PubMed

    Keerthika, B; Umayavalli, M; Jeyalalitha, T; Krishnaveni, N

    2016-08-01

    Filler is one of the major additives in rubber compounds to enhance the physical properties. Even though numerous benefits obtained from agricultural by products like coconut shell, rice husk etc., still they constitute a large source of environmental pollution. In this investigation, one of the agricultural bye product coconut shell powder (CSP) is used as filler in the compounding KNB rubber. It shows the positive and satisfied result was achieved only by the use of filler Fast Extrusion Furnace (FEF) and coconut shell powder (CSP) which was used 50% in each. The effect of these fillers on the mechanical properties of a rubber material at various loading raging from 0 to 60PHP was studied. Mercaptodibanzothiazole disulphide (MBTS) was used as an accelerator. The result shows that presence of 25% and 50% of the composites has better mechanical properties like Hardness, Tensile strength, Elongation at break and Specific gravity when compared with other two combinations. Even though both 25% and 50% of composites shows good mechanical properties, 50% of CSP have more efficient than 25% of CSP.

  5. 21 CFR 177.1480 - Nitrile rubber modified acrylonitrile-methyl acrylate copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Extractives limitations. The following extractive limitations are determined by an infrared spectrophotometric method titled, “Infrared Spectrophotometric Determination of Polymer Extracted from Borex ® 210...

  6. 21 CFR 177.1480 - Nitrile rubber modified acrylonitrile-methyl acrylate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Extractives limitations. The following extractive limitations are determined by an infrared spectrophotometric method titled, “Infrared Spectrophotometric Determination of Polymer Extracted from Borex ® 210...

  7. 21 CFR 177.1480 - Nitrile rubber modified acrylonitrile-methyl acrylate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Extractives limitations. The following extractive limitations are determined by an infrared spectrophotometric method titled, “Infrared Spectrophotometric Determination of Polymer Extracted from Borex ® 210...

  8. 21 CFR 177.1480 - Nitrile rubber modified acrylonitrile-methyl acrylate copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Extractives limitations. The following extractive limitations are determined by an infrared spectrophotometric method titled, “Infrared Spectrophotometric Determination of Polymer Extracted from Borex ® 210...

  9. 21 CFR 177.1040 - Acrylonitrile/styrene copoly-mer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Internal Standard Method”; “Infrared Spectrophotometric Determination of Polymer Extracted from Barex 210... °F) for the finished article is 0.04 barrer. 3 1 Use methods for determination of residual... Copolymers,” and “Analytical Method for 10% Solution Viscosity of Tyril,” which are incorproated by...

  10. 21 CFR 177.1480 - Nitrile rubber modified acrylonitrile-methyl acrylate copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... limitations are determined by an infrared spectrophotometric method titled, “Infrared Spectrophotometric... acetonitrile at 25 °C is not less than 0.29 deciliter per gram as determined by ASTM method D1243-79, “Standard Test Method for Dilute Solution Viscosity of Vinyl Chloride Polymers,” which is incorporated...

  11. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    NASA Astrophysics Data System (ADS)

    See, Tian Long; Liu, Zhu; Li, Lin; Zhong, Xiang Li

    2016-02-01

    This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser-material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (Fth = 0.087 J/cm2) than that for the femtosecond laser ablation of ABS (Fth = 1.576 J/cm2), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α-1 = 223 nm) than that for femtosecond laser ablation (α-1 = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the Cdbnd C bond completely through the chain scission process whereas Cdbnd C bond is partially eliminated through the femtosecond laser treatment due to the difference in photon energy of the two laser beams. A reduction in the Cdbnd C bond through the chain scission process creates free radical carbons which then form crosslinks with each other or react with oxygen, nitrogen and water in air producing oxygen-rich (Csbnd O and Cdbnd O bond) and nitrogen-rich (Csbnd N) functional groups.

  12. 21 CFR 177.1030 - Acrylonitrile/butadiene/styrene/methyl methacrylate copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .../styrene/methyl methacrylate copolymer consists of: (1) 73 to 79 parts by weight of a matrix polymer... composition range as the matrix polymer. (b) Adjuvants. The copolymer identified in paragraph (a) of this...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces §...

  13. 21 CFR 177.1030 - Acrylonitrile/butadiene/styrene/methyl methacrylate copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .../styrene/methyl methacrylate copolymer consists of: (1) 73 to 79 parts by weight of a matrix polymer... composition range as the matrix polymer. (b) Adjuvants. The copolymer identified in paragraph (a) of this... HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES:...

  14. 21 CFR 177.1030 - Acrylonitrile/butadiene/styrene/methyl methacrylate copolymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .../styrene/methyl methacrylate copolymer consists of: (1) 73 to 79 parts by weight of a matrix polymer... composition range as the matrix polymer. (b) Adjuvants. The copolymer identified in paragraph (a) of this...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces §...

  15. 21 CFR 177.1030 - Acrylonitrile/butadiene/styrene/methyl methacrylate copolymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... consists of: (1) 73 to 79 parts by weight of a matrix polymer containing 64 to 69 parts by weight of...) 5 to 10 parts by weight of a graft polymer having the same composition range as the matrix polymer... HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as...

  16. 21 CFR 177.1030 - Acrylonitrile/butadiene/styrene/methyl methacrylate copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .../styrene/methyl methacrylate copolymer consists of: (1) 73 to 79 parts by weight of a matrix polymer... composition range as the matrix polymer. (b) Adjuvants. The copolymer identified in paragraph (a) of this...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces §...

  17. 76 FR 77267 - Acrylonitrile Standard; Extension of the Office of Management and Budget's (OMB) Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ... Office at (202) 693- 1648. Mail, hand delivery, express mail, messenger, or courier service: When using...-2625, 200 Constitution Avenue NW., Washington, DC 20210. Deliveries (hand, express mail, messenger, and... procedures concerning the delivery of materials by hand, express delivery, messenger, or courier...

  18. Structural, thermal, optical properties and simulation of white light of titanium-tungstate-tellurite glasses doped with dysprosium

    SciTech Connect

    Jyothi, L.; Upender, G.; Kuladeep, R.; Rao, D. Narayana

    2014-02-01

    Graphical abstract: CIE coordinate diagram of different concentrations of the Dy{sup 3+}-doped TTWD glasses with coordinates in the white light region. - Highlights: • Radiative lifetime of {sup 4}F{sub 9/2} level of Dy{sup 3+} ions is longer in the tellurite glass. • Quantum efficiency is found to be high. • These glasses are suitable materials for generating white light. - Abstract: Structural, thermal, optical properties and simulation of white light of Dy{sup 3+}-doped tellurite glasses of composition TTWD: (75 − x)TeO{sub 2} − 10TiO{sub 2} − 15WO{sub 3} − xDy{sub 2}O{sub 3} (x = 0, 0.1, 0.5, 1.0 and 2.0 mol%) were investigated. Raman spectra revealed that the glass contains TeO{sub 4}, TeO{sub 3}, WO{sub 4} and WO{sub 6} units. Differential scanning calorimetry (DSC) measurements were carried out to measure the glass transition temperature of all the glasses. From the optical absorption spectra, luminescence spectra and using the Judd–Ofelt (JO) analysis, we estimated the radiative transition probabilities, emission cross-sections, branching ratios and radiative lifetimes. The decay curves at lower concentrations are exponential while they show a non-exponential behavior at higher concentrations (≥0.5 mol%) due to energy transfer processes. The effective lifetime for the {sup 4}F{sub 9/2} level decreases with increase in Dy{sub 2}O{sub 3} concentration for the glasses under investigation. The non-exponential decay curves could fit well to the Inokuti–Hirayama (IH) model with S = 6, indicating that the nature of interaction responsible for energy transfer is of dipole–dipole type. Simulation of white light is examined with varying concentration and the results indicate that these glasses are suitable for white light emitting diode applications.

  19. High index contrast potassium double tungstate waveguides towards efficient rare-earth ion amplification on-chip

    NASA Astrophysics Data System (ADS)

    Sefunc, Mustafa Akin; Segerink, Frans; Garcia-Blanco, Sonia

    2015-02-01

    Rare-earth ion doped KY(WO4)2 amplifiers are proposed to be a good candidate for many future applications by benefiting from the excellent gain characteristics of rare-earth ions, namely high bit rate amplification (

  20. Generation and detection of gaseous W12O41-* and other tungstate anions by laser desorption ionization mass spectrometry.

    PubMed

    Pavlov, Julius; Braida, Washington; Ogundipe, Adebayo; O'Connor, Gregory; Attygalle, Athula B

    2009-10-01

    The presence of a peak centered near m/z 2862, observed for the first time for the caged dodecatungstate radical-anion, [W12O41]-*, enables distinguishing WO2 from WO3 by Laser Desorption Ionization mass spectrometry (LDI-MS). In addition to WO2, laser irradiation of dry deposits made from aqueous ammonium paratungstate, and calcium and lead orthotungstate also produce the [W12O41]-. In contrast, spectra recorded from deposits made from aqueous Na2WO4, sodium metatungstate, and WO3, or non-aqueous calcium and lead orthotungstate, and ammonium paratungstate, failed to show the m/z 2862 peak cluster. These observations support the hypothesis that polycondensation reactions to form [W12O41]-* occur solely in the presence of water. Although dry spots are irradiated for ionization, the solvent used for sample preparation plays an important role on the chemical composition endowed to ions detected. For example, the m/z 2862 peak seen from deposits made from aqueous ammonium paratungstate, and calcium and lead orthotungstate, is absent in the spectra recorded either from pristine deposits or those derived from solutions made with organic solvents such as acetonitrile or ethanol.

  1. Acute sodium tungstate inhalation is associated with minimal olfactory transport of tungsten (188W) to the rat brain.

    PubMed

    Radcliffe, Pheona M; Olabisi, Ayodele O; Wagner, Dean J; Leavens, Teresa; Wong, Brian A; Struve, Melanie F; Chapman, Gail D; Wilfong, Erin R; Dorman, David C

    2009-05-01

    Olfactory transport of represents an important mechanism for direct delivery of certain metals to the central nervous system (CNS). The objective of this study was to determine whether inhaled tungsten (W) undergoes olfactory uptake and transport to the rat brain. Male, 16-week-old, Sprague-Dawley rats underwent a single, 90-min, nose-only exposure to a Na(2)(188)WO(4) aerosol (256 mg W/m(3)). Rats had the right nostril plugged to prevent nasal deposition of (188)W on the occluded side. The left and right sides of the nose and brain, including the olfactory pathway and striatum, were sampled at 0, 1, 3, 7, and 21 days post-exposure. Gamma spectrometry (n=7 rats/time point) was used to compare the levels of (188)W found on the left and right sides of the nose and brain and blood to determine the contribution of olfactory uptake to brain (188)W levels. Respiratory and olfactory epithelial samples from the side with the occluded nostril had significantly lower end-of-exposure (188)W levels confirming the occlusion procedure. Olfactory bulb, olfactory tract/tubercle, striatum, cerebellum, rest of brain (188)W levels paralleled blood (188)W concentrations at approximately 2-3% of measured blood levels. Brain (188)W concentrations were highest immediately following exposure, and returned to near background concentrations within 3 days. A statistically significant difference in olfactory bulb (188)W concentration was seen at 3 days post-exposure. At this time, (188)W concentrations in the olfactory bulb from the side ipsilateral to the unoccluded nostril were approximately 4-fold higher than those seen in the contralateral olfactory bulb. Our data suggest that the concentration of (188)W in the olfactory bulb remained low throughout the experiment, i.e., approximately 1-3% of the amount of tungsten seen in the olfactory epithelium suggesting that olfactory transport plays a minimal role in delivering tungsten to the rat brain.

  2. Hydrothermal synthesis and tunable luminescence of persimmon-like sodium lanthanum tungstate:Tb3+, Eu3+ hierarchical microarchitectures.

    PubMed

    Tian, Yue; Chen, Baojiu; Tian, Bining; Yu, Naisen; Sun, Jiashi; Li, Xiangping; Zhang, Jinsu; Cheng, Lihong; Zhong, Haiyang; Meng, Qingyu; Hua, Ruinian

    2013-03-01

    Persimmon-like NaLa(WO(4))(2) microarchitectures were prepared via hydrothermal process with using trisodium citrate (Na(3)Cit) as chelated reagent and characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), photoluminescence (PL), and fluorescent dynamics. The influences of Na(3)Cit concentration, organic additivities, and reaction time on the morphologies of NaLa(WO(4))(2) phosphor were studied. The results revealed that Na(3)Cit species had double functions of strong ligand and structure-directing reagent that could efficiently control the formation of persimmon-like NaLa(WO(4))(2) microarchitectures. The possible mechanism for the growth of persimmon-like NaLa(WO(4))(2) microarchitectures was attributed to the Ostwald ripening mechanism. The energy transfer from Tb(3+) to Eu(3+) in the persimmon-like NaLa(WO(4))(2) phosphors was observed. The energy transfer efficiencies and emission colors can be tuned by changing the concentration of Eu(3+). Finally, it was deduced that the electric dipole-dipole interaction (D-D) is the main mechanism for energy transfer between Tb(3+) and Eu(3+) in the persimmon-like NaLa(WO(4))(2) phosphor.

  3. Conformational and Molecular Structures of α,β-Unsaturated Acrylonitrile Derivatives: Photophysical Properties and Their Frontier Orbitals.

    PubMed

    Percino, María Judith; Cerón, Margarita; Rodríguez, Oscar; Soriano-Moro, Guillermo; Castro, María Eugenia; Chapela, Víctor M; Siegler, Maxime A; Pérez-Gutiérrez, Enrique

    2016-03-28

    We report single crystal X-ray diffraction (hereafter, SCXRD) analyses of derivatives featuring the electron-donor N-ethylcarbazole or the (4-diphenylamino)phenyl moieties associated with a -CN group attached to a double bond. The compounds are (2Z)-3-(4-(diphenylamino)-phenyl)-2-(pyridin-3-yl)prop-2-enenitrile (I), (2Z)-3-(4-(diphenylamino)phenyl)-2-(pyridin-4-yl)-prop-2-enenitrile (II) and (2Z)-3-(9-ethyl-9H-carbazol-3-yl)-2-(pyridin-2-yl)enenitrile (III). SCXRD analyses reveal that I and III crystallize in the monoclinic space groups P2/c with Z' = 2 and C2/c with Z' = 1, respectively. Compound II crystallized in the orthorhombic space group Pbcn with Z' = 1. The molecular packing analysis was conducted to examine the pyridine core effect, depending on the ortho, meta- and para-positions of the nitrogen atom, with respect to the optical properties and number of independent molecules (Z'). It is found that the double bond bearing a diphenylamino moiety introduced properties to exhibit a strong π-π-interaction in the solid state. The compounds were examined to evaluate the effects of solvent polarity, the role of the molecular structure, and the molecular interactions on their self-assembly behaviors. Compound I crystallized with a cell with two conformers, anti and syn, due to interaction with solvent. DFT calculations indicated the anti and syn structures of I are energetically stable (less than 1 eV). Also electrochemical and photophysical properties of the compounds were investigated, as well as the determination of optimization calculations in gas and different solvent (chloroform, cyclohexane, methanol, ethanol, tetrahydrofuran, dichloromethane and dimethyl sulfoxide) in the Gaussian09 program. The effect of solvent by PCM method was also investigated. The frontier HOMO and LUMO energies and gap energies are reported.

  4. Effect of winding layer and speed on kenaf/glass fiber hybrid reinforced acrylonitrile butadiene styrene (ABS) composites

    NASA Astrophysics Data System (ADS)

    Khoni, Norizzahthul Ainaa Abdul; Sharifah Shahnaz S., B.; Ghazali, Che Mohd Ruzaidi

    2016-07-01

    The usage of natural fiber is becoming significant in composite industries due to their good performance. Single and continuous natural fibers have relatively high mechanical properties; especially their young modulus can be as high as glass fibers. Filament winding is a method to produce technically aligned composites which have high fibers content. The properties of filament winding can be tailored to meet the end product requirements. This research studied the compression properties of kenaf/glass fibers hybrid reinforced composites. Kenaf/glass fibers hybrid composite samples were fabricated by filament winding technique and their properties were compared with the properties of neat kenaf fiber and glass fibers composites. The kenaf/glass fiber hybrid composites exhibited higher strength compared to the neat glass fibers composites. Composites of helical pattern, which produced at low winding speed showed better compression resistance than hoop pattern winding, which produced at high winding speed. As predicted, kenaf composite showed highest water absorption; followed by kenaf/glass fiber hybrid composites while neat glass fiber has lowest water absorption capability.

  5. Preparation and dielectric analysis of microphase-separated poly(acrylonitrile-co-acrylamide-co-acrylic acid) hydrogels

    SciTech Connect

    Hu, D.Shiaw-Guang; Lin, Yow-Shi

    1993-12-31

    The acidic hydrolysis of polyacrylonitrile was carried out to yield a variety of terpolymers made up of nitriles, amides and acids. The formation of block structure was shown to follow a ripper mechanism occurring to acrylamide groups, that is more pronounced for a certain range of acrylamide content, evidenced by the composition analysis using {sup 1}H-NMR and base titration. The rates of formation of acrylamide fraction and acid fraction in the consecutive mode are approximately the same, yielding the content of ionic groups from 0.8 to 2.2. mole percent, dependent on the time of hydrolysis. The dielectric relaxation measurement on swollen gels shows three relaxation transitions, {alpha}, {beta}, {gamma}, over -150{degrees}C to 0{degrees}C, as influenced by the chemical composition and water absorption. The {beta} and {gamma} are associated with the polymer-water interaction and short-range motion of polymers and water.

  6. Production of Acrylonitrile Butadiene Styrene/High-Density Polyethylene Composites from Waste Sources by Using Coupling Agents

    NASA Astrophysics Data System (ADS)

    Miskolczi, N.; Szakacs, H.; Sedlarik, V.; Kucharczyk, P.; Riegel, E.

    2014-07-01

    A possible way of recycling plastic wastes has been investigated. Polyalkenyl-poly-maleic-anhydride derivates were synthesized and employed in ABS and HDPE blends to eliminate their immiscibility. By this way, the recycling of ABS and HDPE could be performed with improved mechanical properties of reshaped specimens.

  7. 21 CFR 177.1050 - Acrylonitrile/styrene copoly-mer modified with butadiene/styrene elastomer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as... of a blend of: (1) 82-88 parts by weight of a matrix copolymer produced by polymerization of 77-82... by the method titled, “Determination of β-Dodecyl-mercaptopropionitrile in NR-16 Polymer,” which...

  8. 21 CFR 177.1050 - Acrylonitrile/styrene copoly-mer modified with butadiene/styrene elastomer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Determination of Polymer Extracted from Borex ® 210 Resin Pellets,” which is incorporated by reference. Copies... ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces... butadiene/styrene elastomer consists of a blend of: (1) 82-88 parts by weight of a matrix copolymer...

  9. 21 CFR 177.1050 - Acrylonitrile/styrene copoly-mer modified with butadiene/styrene elastomer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Determination of Polymer Extracted from Borex ® 210 Resin Pellets,” which is incorporated by reference. Copies... ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces... butadiene/styrene elastomer consists of a blend of: (1) 82-88 parts by weight of a matrix copolymer...

  10. Benzimidazole acrylonitriles as multifunctional push-pull chromophores: Spectral characterisation, protonation equilibria and nanoaggregation in aqueous solutions.

    PubMed

    Horak, Ema; Vianello, Robert; Hranjec, Marijana; Krištafor, Svjetlana; Zamola, Grace Karminski; Steinberg, Ivana Murković

    2017-05-05

    Heterocyclic donor-π-acceptor molecular systems based on an N,N-dimethylamino phenylacrylonitrile benzimidazole skeleton have been characterised and are proposed for potential use in sensing applications. The benzimidazole moiety introduces a broad spectrum of useful multifunctional properties to the system including electron accepting ability, pH sensitivity and compatibility with biomolecules. The photophysical characterisation of the prototropic forms of these chromophores has been carried out in both solution and on immobilisation in polymer films. The experimental results are further supported by computational determination of pKa values. It is noticed that compound 3 forms nanoaggregates in aqueous solutions with aggregation-induced emission (AIE) at 600nm. All the systems demonstrate spectral pH sensitivity in acidic media which shifts towards near-neutral values upon immobilisation in polymer films or upon aggregation in an aqueous environment (compound 3). The structure-property relationships of these functional chromophores, involving their spectral characteristics, acid-base equilibria, pKa values and aggregation effects have been determined. Potential applications of the molecules as pH and biomolecular sensors are proposed based on their pH sensitivity and AIE properties.

  11. Thermal behavior of vehicle plastic blends contained acrylonitrile-butadiene-styrene (ABS) in pyrolysis using TG-FTIR.

    PubMed

    Liu, Guicai; Liao, Yanfen; Ma, Xiaoqian

    2017-03-01

    As important plastic blends in End-of-Life vehicles (ELV), pyrolysis profiles of ABS/PVC, ABS/PA6 and ABS/PC were investigated using thermogravimetric-Fourier transform infrared spectrometer (TG-FTIR). Also, CaCO3 was added as plastic filler to discuss its effects on the pyrolysis of these plastics. The results showed that the interaction between ABS and PVC made PVC pyrolysis earlier and HCl emission slightly accelerated. The mixing of ABS and PA6 made their decomposition temperature closer, and ketones in PA6 pyrolysis products were reduced. The presence of ABS made PC pyrolysis earlier, and phenyl compounds in PC pyrolysis products could be transferred into alcohol or H2O. The interaction between ABS and other polymers in pyrolysis could be attributed to the intermolecular radical transfer, and free radicals from the polymer firstly decomposed led to a fast initiation the decomposition of the other polymer. As plastic filler, CaCO3 promoted the thermal decomposition of PA6 and PC, and had no obvious effects on ABS and PVC pyrolysis process. Also, CaCO3 made the pyrolysis products from PA6 and PC further decomposed into small-molecule compounds like CO2. The kinetics analysis showed that isoconversional method like Starink method was more suitable for these polymer blends. Starink method showed the average activation energy of ABS50/PVC50, ABS50/PA50 and ABS50/PC50 was 186.63kJ/mol, 239.61kJ/mol and 248.95kJ/mol, respectively, and the interaction among them could be reflected by the activation energy variation.

  12. Electrochemical and physical properties of poly(acrylonitrile)/poly(vinyl acetate)-based gel electrolytes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Amaral, Fábio A.; Dalmolin, Carla; Canobre, Sheila C.; Bocchi, Nerilso; Rocha-Filho, Romeu C.; Biaggio, Sonia R.

    Polymeric gel electrolytes have been extensively studied for application in lithium ion batteries, since the electrolyte can be fabricated as a thin film leading to major performance improvements. This is mainly due to the higher ionic mobility and the higher concentration of charge carriers, yielding ionic conductivities of about 10 -3 S cm -1 at room temperature and sufficient mechanical strength. PAN-based gels have been studied together with a wide range of plasticizers and tested in lithium battery systems with excellent results. Based on these results, we developed PAN-based gels with EC:PC and EC:DMC mixtures as plasticizers, LiClO 4 or LiBF 4 as the ionic salt and the copolymer PAN-PVA as the polymeric matrix to be used as separator and electrolyte in lithium ion batteries. The choice of the copolymer was made due to its hydrophobic properties, low cost and easy access, since it is widely used in textile industries as precursor for acrylic fibers manufacture. These new electrolytes were characterized by electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in order to determine their stability window and conductivity. The charge/discharge performance of the PAN-PVA-based gel electrolytes was investigated for two different systems: Li/gel/LiMn 2O 4 and Li/gel/Pani (Pani = polyaniline). FT-IR analyses showed that PAN-PVA is not a passive polymer host but an active component in the gel, where Li + ions are located close to C dbnd O groups of the plasticizers and C tbnd N groups of PAN. In addition to ionic conductivities higher than 10 -3 S cm -1, these gels presented excellent electrochemical and chemical stabilities, which means a slight increased performance when compared to PAN-based gels only, and suitable charge/discharge profiles.

  13. Soluble irradiation targets and methods for the production of radiorhenium

    SciTech Connect

    Vanderhevden, J.L.E.; Su, F.M.; Ehrhardt, G.J.

    1992-09-08

    This patent describes a method of producing a rhenium-188 radionuclide generator. It comprises irradiating a water soluble irradiation target selected from the group consisting of sodium tungstate and lithium tungstate, reacting the irradiated target with an aqueous zirconium solution to obtain an insoluble zirconium tungstate gel, and disposing the zirconium tungstate in an elutable container to obtain the rhenium-188 radionuclide generator.

  14. Monte Carlo analysis of megavoltage x-ray interaction-induced signal and noise in cadmium tungstate detectors for cargo container inspection

    NASA Astrophysics Data System (ADS)

    Kim, J.; Park, J.; Kim, J.; Kim, D. W.; Yun, S.; Lim, C. H.; Kim, H. K.

    2016-11-01

    For the purpose of designing an x-ray detector system for cargo container inspection, we have investigated the energy-absorption signal and noise in CdWO4 detectors for megavoltage x-ray photons. We describe the signal and noise measures, such as quantum efficiency, average energy absorption, Swank noise factor, and detective quantum efficiency (DQE), in terms of energy moments of absorbed energy distributions (AEDs) in a detector. The AED is determined by using a Monte Carlo simulation. The results show that the signal-related measures increase with detector thickness. However, the improvement of Swank noise factor with increasing thickness is weak, and this energy-absorption noise characteristic dominates the DQE performance. The energy-absorption noise mainly limits the signal-to-noise performance of CdWO4 detectors operated at megavoltage x-ray beam.

  15. High-resolution measurement and mapping of tungstate in waters, soils and sediments using the low-disturbance DGT sampling technique.

    PubMed

    Guan, Dong-Xing; Williams, Paul N; Xu, Hua-Cheng; Li, Gang; Luo, Jun; Ma, Lena Q

    2016-10-05

    Increasing tungsten (W) use for industrial and military applications has resulted in greater W discharge into natural waters, soils and sediments. Risk modeling of W transport and fate in the environment relies on measurement of the release/mobilization flux of W in the bulk media and the interfaces between matrix compartments. Diffusive gradients in thin-films (DGT) is a promising passive sampling technique to acquire such information. DGT devices equipped with the newly developed high-resolution binding gels (precipitated zirconia, PZ, or ferrihydrite, PF, gels) or classic/conventional ferrihydrite slurry gel were comprehensively assessed for measuring W in waters. (Ferrihydrite)DGT can measure W at various ionic strengths (0.001-0.5molL(-1) NaNO3) and pH (4-8), while (PZ)DGT can operate across slightly wider environmental conditions. The three DGT configurations gave comparable results for soil W measurement, showing that typically W resupply is relatively poorly sustained. 1D and 2D high-resolution W profiling across sediment-water and hotspot-bulk media interfaces from Lake Taihu were obtained using (PZ)DGT coupled with laser ablation ICP-MS measurement, and the apparent diffusion fluxes across the interfaces were calculated using a numerical model.

  16. Copper(ii) tungstate nanoflake array films: sacrificial template synthesis, hydrogen treatment, and their application as photoanodes in solar water splitting

    NASA Astrophysics Data System (ADS)

    Hu, Dianyi; Diao, Peng; Xu, Di; Xia, Mengyang; Gu, Yue; Wu, Qingyong; Li, Chao; Yang, Shubin

    2016-03-01

    We report the preparation of CuWO4 nanoflake (NF) array films by using a solid phase reaction method in which WO3 NFs were employed as sacrificial templates. The SEM, TEM and XRD results demonstrated that the obtained CuWO4 films possessed a network structure that was composed of single crystalline NFs intersected with each other. The CuWO4 NF films showed superior photoelectrochemical (PEC) activity to other CuWO4 photoanodes reported recently for the oxygen evolution reaction (OER). We attributed the high activity to the unique morphological and crystalline structure of the CuWO4 film, which enhanced the photoactivity by providing a large specific area, a short hole transport distance from the inside of CuWO4 to the CuWO4/solution interface, and a low grain boundary density. Hydrogen treatment by annealing the CuWO4 NF film in mixed gases of H2 and Ar could further enhance the photoactivity, as hydrogen treatment significantly increased the electron density of CuWO4 by generating oxygen vacancy in the lattice. The photocurrent density for OER obtained on the hydrogen-treated (H-treated) CuWO4 NF film is the largest ever reported on CuWO4 photoanodes in the literature. Moreover, the CuWO4 photoanodes exhibit good stability in weak alkaline solution, while the H-treated CuWO4 photoanodes exhibit acceptable stability. This work not only reveals the potential of CuWO4 as a photoanode material for solar water splitting but also shows that the construction of nanostructured CuWO4 photoanodes is a promising method to achieve high PEC activity toward OER.We report the preparation of CuWO4 nanoflake (NF) array films by using a solid phase reaction method in which WO3 NFs were employed as sacrificial templates. The SEM, TEM and XRD results demonstrated that the obtained CuWO4 films possessed a network structure that was composed of single crystalline NFs intersected with each other. The CuWO4 NF films showed superior photoelectrochemical (PEC) activity to other CuWO4 photoanodes reported recently for the oxygen evolution reaction (OER). We attributed the high activity to the unique morphological and crystalline structure of the CuWO4 film, which enhanced the photoactivity by providing a large specific area, a short hole transport distance from the inside of CuWO4 to the CuWO4/solution interface, and a low grain boundary density. Hydrogen treatment by annealing the CuWO4 NF film in mixed gases of H2 and Ar could further enhance the photoactivity, as hydrogen treatment significantly increased the electron density of CuWO4 by generating oxygen vacancy in the lattice. The photocurrent density for OER obtained on the hydrogen-treated (H-treated) CuWO4 NF film is the largest ever reported on CuWO4 photoanodes in the literature. Moreover, the CuWO4 photoanodes exhibit good stability in weak alkaline solution, while the H-treated CuWO4 photoanodes exhibit acceptable stability. This work not only reveals the potential of CuWO4 as a photoanode material for solar water splitting but also shows that the construction of nanostructured CuWO4 photoanodes is a promising method to achieve high PEC activity toward OER. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09210h

  17. Copper(II) tungstate nanoflake array films: sacrificial template synthesis, hydrogen treatment, and their application as photoanodes in solar water splitting.

    PubMed

    Hu, Dianyi; Diao, Peng; Xu, Di; Xia, Mengyang; Gu, Yue; Wu, Qingyong; Li, Chao; Yang, Shubin

    2016-03-21

    We report the preparation of CuWO4 nanoflake (NF) array films by using a solid phase reaction method in which WO3 NFs were employed as sacrificial templates. The SEM, TEM and XRD results demonstrated that the obtained CuWO4 films possessed a network structure that was composed of single crystalline NFs intersected with each other. The CuWO4 NF films showed superior photoelectrochemical (PEC) activity to other CuWO4 photoanodes reported recently for the oxygen evolution reaction (OER). We attributed the high activity to the unique morphological and crystalline structure of the CuWO4 film, which enhanced the photoactivity by providing a large specific area, a short hole transport distance from the inside of CuWO4 to the CuWO4/solution interface, and a low grain boundary density. Hydrogen treatment by annealing the CuWO4 NF film in mixed gases of H2 and Ar could further enhance the photoactivity, as hydrogen treatment significantly increased the electron density of CuWO4 by generating oxygen vacancy in the lattice. The photocurrent density for OER obtained on the hydrogen-treated (H-treated) CuWO4 NF film is the largest ever reported on CuWO4 photoanodes in the literature. Moreover, the CuWO4 photoanodes exhibit good stability in weak alkaline solution, while the H-treated CuWO4 photoanodes exhibit acceptable stability. This work not only reveals the potential of CuWO4 as a photoanode material for solar water splitting but also shows that the construction of nanostructured CuWO4 photoanodes is a promising method to achieve high PEC activity toward OER.

  18. Differential effects of sodium tungstate and vanadyl sulfate on vascular responsiveness to vasoactive agents and insulin sensitivity in fructose-fed rats.

    PubMed

    Al-Awwadi, Najim; Bichon-Laurent, Florence; Dimo, Théophile; Michel, Alain; Portet, Karine; Cros, Gérard; Poucheret, Patrick

    2004-10-01

    High fructose feeding induces insulin resistance, impaired glucose tolerance, and hypertension in rats and mimics most of the features of the metabolic syndrome X. The effects of a 6-week treatment with the transition metals administered in drinking water, vanadium (VOSO4.5H2O, 0.75 mg/mL) or tungsten (Na2O4W, 2 g/mL), were investigated on the reactivity to norepinephrine (NEPI) or acetylcholine (ACh) of thoracic aorta rings isolated from fructose (60%) or standard chow fed rats. Maximal effect (Emax) and pD2 (-log EC50) values were determined in each case in the presence or absence of endothelium, while the degree of insulin resistance was determined using the euglycemic hyper insulinemic glucose clamp technique. Aortic segments isolated from 6-week fructose-fed animals were characterized by NEPI hyperresponsiveness (increase in Emax) and endothelium-dependent NEPI supersensitivity (increase in pD2) without any change in the reactivity to ACh. Vanadium or tungsten administered in fructose-fed animals prevented both hypertension and NEPI hyperresponsiveness, while vanadium, but not tungsten, reduced NEPI supersensitivity. Vanadium, but not tungsten, increased the relaxing activity of ACh, both in control and fructose-fed animals. Insulin resistance associated with high fructose feeding was reversed by vanadium but not by tungsten treatment. The differential effects of the two transition metals on vascular responsiveness to NEPI or ACh may be explained by their differential effects on insulin sensitivity.

  19. Mobility, Geochemistry, and Speciation of Tungsten

    DTIC Science & Technology

    2008-12-01

    deionized water used had a resistivity of 18.3 MΩ . cm. Sodium carbonate, sodium polytungstate, and sodium tungstate dihydrate was purchased from Sigma... tungstate anion, although polymerization to form poly- and heteropoly- tungstates has been shown to occur. The current study investigates tungsten...are found in a variety of minerals, which can dissolve to yield the tungstate in most common environmental matrices (Seiler, Stollenwerk, and

  20. Poly (vinylidene fluoride) / Poly (acrylonitrile)-based Superior Hydrophobic Piezoelectric Solid Derived by Aligned Carbon Nanotube in Electrospinning: Fabrication, the Phase Conversion and Surface Energy.

    PubMed

    Aqeel, Salem M; Wang, Zhe; Than, Lisa; Sreenivasulu, Gollapudi; Zeng, Xiangqun

    2015-01-01

    Multifunctional materials have attracted many interests from both fundamental and practical aspects, such as field-effect transistor, electric protection, transducers and biosensor. Here we demonstrated the first superior hydrophobic piezoelectric surface based on the polymer blend of polyvinylidene fluoride (PVDF)-polyacrilonitrile (PAN) assisted with functionalized multiwalled nanotubes (MWNTs), by a modified electrospinning method. Typically the β-phase polyvinylidene fluoride (PVDF) was considered as the excellent piezoelectric and pyroelectric materials. However, polar β-phase of PVDF exhibited a natural high hydrophilicity. As a well-known fact, the wettability of the surface is dominated by two major factors: surface composition and surface roughness. The significant conversions derived by the incorporation of MWNTs, from nonpolar α-phase to highly polar β-phase of PVDF, were confirmed by FTIR. Meanwhile, the effects of MWNTs on the improvement of the roughness and the hydrophobicity of polymer blend were evaluated by atomic force microscopy (AFM) and contact angle (CA). Molar free energy of wetting of the polymer nanocomposite decreases with increasing the wt.% of MWNTs. All molar free energy of wetting of PVDF-PAN/MWNTs were negative, which means the non-wettability of film. The combination of surface roughness and low-surface-energy modification in nanostructured composites leads to high hydrophobicity. Particularly, fabrication of superior hydrophobic surfaces not only has fundamental interest but also various possible functional applications in micro- and nano-materials and devices.

  1. Poly (vinylidene fluoride) / Poly (acrylonitrile)–based Superior Hydrophobic Piezoelectric Solid Derived by Aligned Carbon Nanotube in Electrospinning: Fabrication, the Phase Conversion and Surface Energy

    PubMed Central

    Aqeel, Salem M.; Than, Lisa; Sreenivasulu, Gollapudi

    2015-01-01

    Multifunctional materials have attracted many interests from both fundamental and practical aspects, such as field–effect transistor, electric protection, transducers and biosensor. Here we demonstrated the first superior hydrophobic piezoelectric surface based on the polymer blend of polyvinylidene fluoride (PVDF)–polyacrilonitrile (PAN) assisted with functionalized multiwalled nanotubes (MWNTs), by a modified electrospinning method. Typically the β–phase polyvinylidene fluoride (PVDF) was considered as the excellent piezoelectric and pyroelectric materials. However, polar β–phase of PVDF exhibited a natural high hydrophilicity. As a well–known fact, the wettability of the surface is dominated by two major factors: surface composition and surface roughness. The significant conversions derived by the incorporation of MWNTs, from nonpolar α–phase to highly polar β–phase of PVDF, were confirmed by FTIR. Meanwhile, the effects of MWNTs on the improvement of the roughness and the hydrophobicity of polymer blend were evaluated by atomic force microscopy (AFM) and contact angle (CA). Molar free energy of wetting of the polymer nanocomposite decreases with increasing the wt.% of MWNTs. All molar free energy of wetting of PVDF–PAN/MWNTs were negative, which means the non–wettability of film. The combination of surface roughness and low–surface–energy modification in nanostructured composites leads to high hydrophobicity. Particularly, fabrication of superior hydrophobic surfaces not only has fundamental interest but also various possible functional applications in micro– and nano–materials and devices. PMID:26989486

  2. A novel composite nanofiltration (NF) membrane prepared from graft copolymer of trimethylallyl ammonium chloride onto chitosan (GCTACC)/poly(acrylonitrile) (PAN) by epichlorohydrin cross-linking.

    PubMed

    Huang, Ruihua; Chen, Guohua; Sun, Mingkun; Gao, Congjie

    2006-12-11

    A novel composite nanofiltration (NF) membrane was prepared by over-coating the PAN ultrafiltration (UF) membrane with a GCTACC thin layer. The effects of membrane preparation techniques and operating conditions on the performance of the composite membrane were studied. The results indicate that a composite NF membrane from 1.0wt% GCTACC casting solution, vaporized for 2h at 50 degrees C, cross-linked for 20h at 50 degrees C and pH approximately 12 with ethanol/epichlorohydrin (50/0.45 wt/wt) had optimum performance. The resultant GCTACC/PAN composite membrane was positively charged. Scanning electron microscopy showed its asymmetric and composite features. At 25 degrees C and 30L/h of cycling flow, the permeability of pure water through this membrane is 6.3L/hm(2)MPa. At 25 degrees C, 1.2MPa and 30L/h of cycling flow, the rejection of 1000mg/L MgCl(2), CaCl(2), MgSO(4), Na(2)SO(4), and NaCl solutions is 0.976, 0.972, 0.897, 0.65, and 0.407, respectively, with fluxes of 6.8, 6.12, 6.12, 5.57, and 5.51L/hm(2), respectively. The order of rejection of different salts follows the decreasing order of MgCl(2), CaCl(2), MgSO(4), NaCl, KCl, Na(2)SO(4), and K(2)SO(4), which reveals the characteristics of the positively charged NF membrane. In addition, the curve for the streaming potential also illustrates the positively charged characteristics of this membrane, with a pressure osmotic coefficient of 11.7mVMPa(-1).

  3. The reaction of the acrylonitrile ion CH 2dbnd CH-C tbnd N rad + with HCN: Proton-transport catalysis vs formation of ionized pyrimidine

    NASA Astrophysics Data System (ADS)

    Ervasti, Henri K.; Jobst, Karl J.; Gerbaux, Pascal; Burgers, Peter C.; Ruttink, Paul J. A.; Terlouw, Johan K.

    2009-11-01

    The CBS-QB3 model chemistry predicts that the title ion-molecule reaction, of potential interest in astrochemistry, yields a stable head-to-tail dimer, [HC dbnd N-CH 2C(H)C tbnd N] rad + ( D1). Cyclization of D1 into ionized pyrimidine seems possible, but the initiating 1,2-H shift is close in energy to back-dissociation into CH 2dbnd C(H)CN rad + ( AN) + HCN. Less energy demanding is formation of the H-bridged isomers [CH 2dbnd C(CN)H--N tbnd CH] rad + and [HC tbnd N--HC(H) dbnd C(H)CN] rad +, whose HCN component may catalyze isomerization of AN into CH 2dbnd C dbnd C dbnd NH rad + ( AN1) and CH dbnd C(H)C dbnd NH rad + ( AN2) respectively. Tandem mass spectrometry based experiments using 15N/ 13C labelling show that cyclization of D1 does not occur and that AN1 is the predominant reaction product instead.

  4. Optical Spectra of Yb(3+) in Crystals with Scheelite Structure. I. Explanation of the Spectra.

    DTIC Science & Technology

    1980-09-01

    consisted of the scheelite powder (crystal grade) Yb203 (99.9 percent), and for the charge compensation, sodium tungstate (NaWO4 ) or sodium molybdate...group C4h(1 4 1/a). The scheelites that we have used in this study were cadmium molybdate (CdMoO4 ), calcium tungstate (CaWO4 ), calcium molybdate...CaMeO4), strontium tungstate (SrWO4), strontium molybdate (SrM3O 4 ), lead * tungstate (PbWO4 ), lead molybdate (PbMoO4 ), barium tungstate (BaWO4

  5. EPA Method 524.2: Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry

    EPA Pesticide Factsheets

    SAM lists this method for preparation and analysis of water samples. This method determines carbon disulfide and 1,2-dichloroethane in drinking water and acrylonitrile and methyl acrylonitrile in drinking and aqueous/liquid samples.

  6. Study of two tungstates Ca0.5 Cd0.5 WO4 and Ca0.2 Cd0.8 WO4 by transmission electron microscopy.

    PubMed

    Taoufyq, A; Patout, L; Guinneton, F; Benlhachemi, A; Bakiz, B; Villain, S; Lyoussi, A; Nolibe, G; Gavarri, J-R

    2015-01-01

    To better understand the role of crystal structures and local disorder in the photonic properties of the system (1 - x)CaWO4  - xCdWO4 with 0 < x < 1, two specific phases with compositions x = 0.5 (scheelite phase) and 0.8 (wolframite phase) have been studied by scanning and transmission electron microscopies. High-resolution electron microscopy images and image simulations, associated with X-ray diffraction data, allowed confirming the lattices and space groups I41 /a and P2/c of the two scheelite and wolframite phases, at the local scale. The electron microscopy data show the existence of a high degree of crystallization associated with statistical distribution of Ca or Cd atoms on a Ca1- x Cdx site in each lattice.

  7. catena-Poly[[tetra­kis­(hexa­methyl­phospho­ramide-κO)bis­(nitrato-κ2 O,O′)terbium(III)] [silver(I)-di-μ-sulfido-tungstate(VI)-di-μ-sulfido

    PubMed Central

    Zhang, Jinfang

    2012-01-01

    In the title compound, {[Tb(NO3)2(C6H18N3OP)4][AgWS4]}n, the polymeric anionic chain {[AgWS4]−}n extends along [001]. The TbIII atom in the cation is coordinated by eight O atoms from two nitrate and four hexamethylphosphate ligands in a distorted square-anti­prismatic geometry. Together with the two nitrate ligands, the cation is univalent, which leads to the anionic chain having a [WS4Ag] repeat unit. The polymeric anionic chain has a distorted linear configuration with W—Ag—W and Ag—W—Ag angles of 161.49 (2) and 153.743 (13) °, respectively. The title complex is isotypic with the Y, Yb, Eu, Nd, La, Dy, Sm and Lu analogues. PMID:22719381

  8. Ethyl-enedi-ammonium sodium tetra-kis-[bis-(ethyl-enedi-amine-κ(2) N,N')(oxalato-κ(2) O (1),O (2))cobalt(III)] [penta-hydrogen di(phosphato-octa-deca-tungstate)] tetra-deca-hydrate.

    PubMed

    Zhang, Shuzhuo; Wang, Jing; Xu, Yun

    2013-10-16

    The title compound, Na(C2H10N2)[Co(C2O4)(C2H8N2)2]4[H5(P2W18O62)2]·14H2O, prepared under hydro-thermal conditions, consists of two Dawson-type [P2W18O62](6-) anions, four isolated [Co(en)2(ox)](+) cations (en = ethyl-enedi-amine and ox = oxalate), one Na(+) cation, one [H2en](2+) cation, and a number of ordered (14) and disordered solvent water mol-ecules. The [P2W18O62](6-) polyoxidometalate anion has site symmetry 1 and contains two structurally distinct types of W atoms: viz. six W atoms on vertical pseudo-mirror planes grouped in two sets of three, and 12 equatorial W atoms that do not lie in the pseudo-mirror planes grouped in two sets of six. In each [Co(en)2(ox)](+) cation, the Co(III) ion is coordinated by four N atoms from two en ligands and two O atoms from the ox ligands, completing a distorted octa-hedral structure. The sodium cation lies on an inversion centre and additionally links the complex cations and anions. In the crystal, the various units are linked by N-H⋯O and O-H⋯O hydrogen bonds, which together with C-H⋯O hydrogen bonds form a three-dimensional structure. The contribution of a region of disordered electron density, possibly highly disordered solvent water mol-ecules, to the scattering was removed with the SQUEEZE option of PLATON [Spek (2009 ▶). Acta Cryst. D65, 148-155]. To equilibrate the charges five H(+) ions have been added to the polyoxidometalate. These H(+) ions and the disordered solvent contribution were not included in the reported mol-ecular weight and density.

  9. Development of Powder Processing Models and Techniques for Meso-scale Devices: Perspirable Skin

    DTIC Science & Technology

    2008-03-31

    and the other with zirconium tungstate (ZrW208)-based FGM core and Reinforced Carbon-Carbon Composite (RCC) skin. The former uses the difference in...Reinforced Carbon-Carbon Composite (RCC) and zirconium tungstate (ZrW208)-based Functionally Graded Materials (FGMs)). The former can be used when the...materials with negative CTEs such as zirconia tungstate (ZrW208 or ZT) [2] and the skin material with near zero CTE such as RCC [3] are being

  10. Speciation and Geochemistry of Tungsten in Soil

    DTIC Science & Technology

    2006-11-01

    sodium tungstate dihydrate was purchased from Sigma Aldrich (St. Louis, MO) and Alfa Aesar (Ward Hill, MA), respectively. Single element and mixed...yielding an amorphous tungsten oxide (WO3) coating. This coating rapidly dissolves to yield the tungstate anion (WO42-), which can migrate in...well characterized. Tungsten exists in most environmental matrices as the soluble and mobile tungstate anion, which can polymerize with itself and

  11. Design and Development of an Engineering Prototype Compact X-Ray Scanner (FMS 5000)

    DTIC Science & Technology

    1989-03-31

    two to three less radiation for the same resulting image information. Currently the FMS detector uses Cadmium Tungstate (CdWO4) single crystals as...detector rings, for example the Picker-Imatron C-100 Fastrac). The single-crystal cadmium tungstate material is shaped into elongated rectangular prisms, one...measure the basic photon detection capability of our cadmium- tungstate on silicon photodiode detectors. He was concerned about degradation of the x-ray

  12. Solution for Depositing an Electroless Cobalt Alloy.

    DTIC Science & Technology

    SOLUTIONS(MIXTURES), *ELECTROLESS PLATING), (*PATENTS, ELECTROLESS PLATING), (*COBALT ALLOYS, ELECTROLESS PLATING), ADDITIVES, SODIUM COMPOUNDS... TUNGSTATES , POTASSIUM COMPOUNDS, NICKEL COMPOUNDS, SULFATES, THIOUREA, MAGNETIC PROPERTIES

  13. A Review of the Science and Technology of Cathodes from the Viewpoint of Spacecraft TWT Applications

    DTIC Science & Technology

    1980-06-01

    on tungstate and scandate impregnants. In the tungstate cathode, a mixture of BaCO3 V SrCO3 , and W0 3 is heated to form a compound that can be...and tungstate cathodes were all 2 57 evaluated in a simulated tube geometry at 2 A/cm, . 57The tungstate cathode was found to be unsatisfactory in the...investigated. Coadsorption of an electropositive species with oxygen on metal substrates, e. g., sodium on oxygen-covered tungsten (Na-O-W), i0 Cs-/-W0 0

  14. Tungsten exposure causes a selective loss of histone demethylase protein.

    PubMed

    Laulicht-Glick, Freda; Wu, Feng; Zhang, Xiaoru; Jordan, Ashley; Brocato, Jason; Kluz, Thomas; Sun, Hong; Costa, Max

    2017-02-20

    In the course of our investigations into the toxicity of tungstate, we discovered that cellular exposure resulted in the loss of the histone demethylase protein. We specifically investigated the loss of two histone demethylase dioxygenases, JARID1A and JMJD1A. Both of these proteins were degraded in the presence of tungstate and this resulted in increased global levels of H3K4me3 and H3K9me2, the substrates of JARID1A and JMJD1A, respectively. Treatment with MG132 completely inhibited the loss of the demethylase proteins induced by tungstate treatment, suggesting that tungstate activated the proteasomal degradation of these proteins. The changes in global histone marks and loss of histone demethylase protein persisted for at least 48 h after removing sodium tungstate from the culture. The increase in global histone methylation remained when cells were cultured in methionine-free media, indicating that the increased histone methylation did not depend upon any de novo methylation process, but rather was due to the loss of the demethylase protein. Similar increases of H3K4me3 and H3K9me2 were observed in the livers of the mice that were acutely exposed to tungstate via their drinking water. Taken together, our results indicated that tungstate exposure specifically reduced histone demethylase JARID1A and JMJD1A via proteasomal degradation, leading to increased histone methylation.

  15. Melt processing and property testing of a model system of plastics contained in waste from electrical and electronic equipment.

    PubMed

    Triantou, Marianna I; Tarantili, Petroula A; Andreopoulos, Andreas G

    2015-05-01

    In the present research, blending of polymers used in electrical and electronic equipment, i.e. acrylonitrile-butadiene-styrene terpolymer, polycarbonate and polypropylene, was performed in a twin-screw extruder, in order to explore the effect process parameters on the mixture properties, in an attempt to determine some characteristics of a fast and economical procedure for waste management. The addition of polycarbonate in acrylonitrile-butadiene-styrene terpolymer seemed to increase its thermal stability. Also, the addition of polypropylene in acrylonitrile-butadiene-styrene terpolymer facilitates its melt processing, whereas the addition of acrylonitrile-butadiene-styrene terpolymer in polypropylene improves its mechanical performance. Moreover, the upgrading of the above blends by incorporating 2 phr organically modified montmorillonite was investigated. The prepared nanocomposites exhibit greater tensile strength, elastic modulus and storage modulus, as well as higher melt viscosity, compared with the unreinforced blends. The incorporation of montmorillonite nanoplatelets in polycarbonate-rich acrylonitrile-butadiene-styrene terpolymer/polycarbonate blends turns the thermal degradation mechanism into a two-stage process. Alternatively to mechanical recycling, the energy recovery from the combustion of acrylonitrile-butadiene-styrene terpolymer/polycarbonate and acrylonitrile-butadiene-styrene terpolymer/polypropylene blends was recorded by measuring the gross calorific value. Comparing the investigated polymers, polypropylene presents the higher gross calorific value, followed by acrylonitrile-butadiene-styrene terpolymer and then polycarbonate. The above study allows a rough comparative evaluation of various methodologies for treating plastics from waste from electrical and electronic equipment.

  16. 40 CFR 63.11398 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... synthetic polymer composed of at least 85 percent by weight of acrylonitrile units. Acrylic and modacrylic... where acrylonitrile and comonomers are dissolved in a solvent to form a polymer solution (typically... resulting reactor polymer solution (spin dope) is filtered and pumped directly to the fiber spinning...

  17. Carbon Nanotube Based Electrochemical Supercapacitor Electrodes

    DTIC Science & Technology

    2009-05-30

    solution properties and electrospinning conditions, one can produce particles or fibers with controlled morphology for specific applications...Poly( acrylonitrile) (PAN) based nanofibers were electrospun with controlled diameter . A sacrificial polymer, poly(styrene-co-acrylonitrile) (SAN...has been used to control porosity. Carbon nanotubes (CNT) have been used to increase electrode conductivity and hence power density. The diameter of

  18. 40 CFR Table 6 to Subpart Jjj of... - Known Organic HAP Emitted From the Production of Thermoplastic Products

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... = methyl methacrylate acrylonitrile butadiene styrene resin. PET = poly(ethylene terephthalate) resin. SAN = styrene acrylonitrile resin. MBS = methyl methacrylate butadiene styrene resin. ...-diene (106-99-0) 1,4-Dioxane (123-91-1) Ethylene Glycol (107-21-1) Methanol (67-56-1) Methyl...

  19. Solution and inhibition of iron in neutral solution in the presence of a nonstoichiometric surface oxide

    SciTech Connect

    Oshe, E.K.; Fokin, M.N.; Zimina, T.Y.

    1986-07-01

    This paper suggests a mechanism of solution and passivation of iron in neutral solution in the presence of a surface oxide. The influence of sodium tungstate on these processes is discussed and it is shown that the oxyanion WO/sup 2 -//sub 4/ possesses electron-acceptor properties. Using the photoelectric data the authors make an estimate of the quantity of tungstate ion adsorbed on the oxide surface for a protective concentration of the inhibitors. If the centers of preferential adsorption are anion vacancies, the minimal quantity of adsorbed tungstate giving complete protection corresponds to the initial concentration of vacancies in the absence of the inhibitor.

  20. Multiple reuses of Rhodococcus ruber TH3 free cells to produce acrylamide in a membrane dispersion microreactor.

    PubMed

    Li, Jiahui; Liu, Junqi; Chen, Jie; Wang, Yujun; Luo, Guangsheng; Yu, Huimin

    2015-01-01

    In this work, multiple reuses of Rhodococcus ruber TH3 free cells for the hydration of acrylonitrile to produce acrylamide in a membrane dispersion microreactor were carried out. Through using a centrifuge, the reactions reached 39.9, 39.5, 38.6 and 38.0wt% of the final acrylamide product concentration respectively within 35min in a four cycle reuse of free cells. In contrast, using a stirring tank, free cells could only be used once with the same addition speed of acrylonitrile with a microreactor. Through observing the dissolution behavior of acrylonitrile microdroplets in a free cell solution using a coaxial microfluidic device and microscope, it was found that the acrylonitrile microdroplets with a diameter of 75μm were rarely observed within a length of 2cm channel within 10s, which illustrated that the microreactor can intensify the reaction rate to reduce the inhibition of acrylonitrile and acrylamide.

  1. Reflections on some Recent Studies of Materials of Importance in Aqueous Electrochemical Energy-Storage Systems

    DTIC Science & Technology

    1979-01-01

    Corp., NY, 1979). acme effects have practical interest. Thus color changes accompanying charge acceptance by vanadates and tungstate ...aqueous systems. If this finding is confinmed, the search of the transition region becomes more cogent. Further, the rechargeability of sodium and

  2. Green and blue emitting 3D structured Tb:Ce2(WO4)3 and Tb:Ce10W22O81 micromaterials.

    PubMed

    Kaczmarek, Anna M; Ndagsi, Dorine; Van Driessche, Isabel; Van Hecke, Kristof; Van Deun, Rik

    2015-06-14

    In this paper, various microstructures of Ce2(WO4)3 and Ce10W22O81 were prepared by applying a hydrothermal synthesis, in a ligand-free environment, and in the presence of a dioctyl sodium sulfosuccinate (DSS) surfactant, after which the materials were heat treated at a temperature of 900 °C. Depending on the ratio of cerium ions to sodium tungstate, as well as the reaction pH, two different cerium tungstate materials were obtained. The source of cerium, and the presence or absence of the surfactant had a significant influence on the morphology of the final product. The photoluminescence properties of Tb(3+) doped cerium tungstate materials were investigated. Luminescence measurements showed an efficient charge transfer from the tungstate groups to the Tb(3+) ions. All the materials emitted blue or green light under UV excitation.

  3. Lubrication with Naturally Occurring Double Oxide Films

    DTIC Science & Technology

    1982-11-10

    sodium molybdate and tungstate at the sliding interface. Here the films were Identified. McDonald (27) showed that the presence of cobalt and molybdenum...activation energy of viscous flow. Whether the other oxides behaved in a similar manner has not been determined. For the molybdates and the tungstates the...Battelle (26) has found that molybdenum and tungsten are effective sliding materials for sodium and NaK. This has been attributed to the formation of

  4. Influence of Sintering Time on the Structure Formation of Al-ZrW2O8 Pseudo Alloys

    NASA Astrophysics Data System (ADS)

    Shadrin, V. S.; Kulkov, S. N.

    2017-02-01

    Al – ZrW2O8 pseudo alloys were synthesized by free sintering of Al – ZrW2O8 powder mixture. Influence of sintering time on the structure formation of the pseudo alloys obtained was investigated. It has been shown that during sintering process zirconium tungstate decomposes into constituent oxides and re-synthesis of zirconium tungstate proceeds through intermediate stage – formation of WAl12 and ZrAl3 intermetallic compounds.

  5. JPRS Report, Science & Technology, USSR: Chemistry

    DTIC Science & Technology

    1990-12-28

    Vol 32 No 4, Jul-Aug 90] 29 Stability of Tetravalent Curium and Californium Ions in Potassium Phosphorus Tungstate [V. M. Chistyakov, A. A...546.799.6+546.799.8 Stability of Tetravalent Curium and Californium Ions in Potassium Phosphorus Tungstate 917M0012D Leningrad RADIOKHIMIYA in Russian...curium and californium , is a serious problem in modern radiochemistry. The authors of the study reported herein studied the stability of curium (IV) and

  6. Process for the recovery of tungsten in a pure form from tungsten-containing materials

    SciTech Connect

    Fruchter, M.; Moscovici, A.

    1986-12-16

    A process is described for the recovery of tungsten from tungsten-containing materials which comprises the steps of (i) admixing the tungsten-containing material with a melt at a temperature of between 680/sup 0/C and 750/sup 0/C. The melt consists of a salt selected from the group consisting of sodium nitrate, sodium nitrite and mixtures thereof in a substantially stoichiometrical amount to the tungsten constituent of the tungsten-containing material. This is done to disintegrate the tungsten-containing material and to form sodium tungstate, cooling the melt, and leaching the cooled melt with water to obtain an aqueous solution of sodium tungstate; (ii) admixing a solution of calcium chloride with the aqueous solution of sodium tungstate at a temperature of between 40/sup 0/C and 95/sup 0/C to form a calcium tungstate precipitate and separating the calcium tungstate; (iii) admixing the calcium tungstate with a preheated concentrated hydrochloric acid solution to form a tungstic acid precipitate and a CaCl/sub 2/ solution having a concentration of between 80 g/l and 180 g/l free HCl and separating the tungstic acid precipitate and obtaining tungstic acid which is substantially free of calcium ions, and (iv) calcining the tungstic acid to convert it to tungstic oxide and reducing the tungstic oxide to form metallic tungsten.

  7. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1995-09-12

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  8. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  9. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1995-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  10. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  11. 40 CFR 721.8965 - 1H-Pyrole-2, 5-dione, 1-(2,4,6-tribromophenyl)-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... dewatering step during polymerization of acrylonitrile/butadiene/styrene), and (g)(5). (iii) Industrial... apply to releases of the PMN substance during the dewatering step of the polymerization reactions...

  12. 40 CFR 61.01 - Lists of pollutants and applicability of part 61.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... published. Asbestos (36 FR 5931; Mar. 31, 1971) Benzene (42 FR 29332; June 8, 1977) Beryllium (36 FR 5931... cancer, from ambient air exposure to the substance. Acrylonitrile (50 FR 24319; June 10, 1985)...

  13. 40 CFR 61.01 - Lists of pollutants and applicability of part 61.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... published. Asbestos (36 FR 5931; Mar. 31, 1971) Benzene (42 FR 29332; June 8, 1977) Beryllium (36 FR 5931... cancer, from ambient air exposure to the substance. Acrylonitrile (50 FR 24319; June 10, 1985)...

  14. 40 CFR 61.01 - Lists of pollutants and applicability of part 61.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... published. Asbestos (36 FR 5931; Mar. 31, 1971) Benzene (42 FR 29332; June 8, 1977) Beryllium (36 FR 5931... cancer, from ambient air exposure to the substance. Acrylonitrile (50 FR 24319; June 10, 1985)...

  15. 40 CFR 61.01 - Lists of pollutants and applicability of part 61.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... published. Asbestos (36 FR 5931; Mar. 31, 1971) Benzene (42 FR 29332; June 8, 1977) Beryllium (36 FR 5931... cancer, from ambient air exposure to the substance. Acrylonitrile (50 FR 24319; June 10, 1985)...

  16. 40 CFR 61.01 - Lists of pollutants and applicability of part 61.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... published. Asbestos (36 FR 5931; Mar. 31, 1971) Benzene (42 FR 29332; June 8, 1977) Beryllium (36 FR 5931... cancer, from ambient air exposure to the substance. Acrylonitrile (50 FR 24319; June 10, 1985)...

  17. MW-assisted synthesis of carboxymethyl tamarind kernel polysaccharide-g-polyacrylonitrile: optimization and characterization.

    PubMed

    Meenkashi; Ahuja, Munish; Verma, Purnima

    2014-11-26

    Microwave-assisted synthesis of graft copolymer of carboxymethyl tamarind seed polysaccharide and polyacrylonitrile was carried out. The effect of formulation and process variables on grafting efficiency of carboxymethyl tamarind kernel polysaccharide-g-poly(acrylonitrile) was studied using response surface methodology. The results revealed that the significant factors affecting grafting efficiency were concentrations of ammonium persulphate, acrylonitrile and interaction effects of ammonium persulphate and acrylonitrile concentrations. The optimal calculated parameters were found to be microwave exposure time-99.48 s, microwave exposure power-160 W, concentration of acrylonitrile-0.10% (w/v), concentration of ammonium persulphate--40 mmol/l, which provided graft copolymer with grafting efficiency of 96%. The formation of graft copolymer was confirmed by FT-IR studies and validated by scanning electron micrographs. Thermogravimetric analysis indicated higher thermal stability of graft copolymer and X-ray diffraction study revealed increase in crystallinity on graft polymerization. Further, the graft copolymer showed pH dependant swelling.

  18. Chemical Plant Security

    DTIC Science & Technology

    2005-02-14

    hydrocyanic acid , phosgene, propionitrile, bromine, and acrylonitrile.) Belke found the median population “affected” in a worst case accident was 15...include anhydrous ammonia, hydrogen fluoride, sulfur dioxide, chlorine dioxide, oleum (fuming sulfuric acid ), sulfur trioxide, hydrogen chloride

  19. Road asphalt modifiers based on oil-resistant rubbers and products of thermal transformations of coals

    SciTech Connect

    Sharypov, V.I.; Kiselev, V.P.; Beregovtsova, N.G.; Bugaenko, M.B.; Kuznetsov, B.N.

    2008-07-15

    The properties of asphalt binder modifiers prepared by dissolving butadiene-acrylonitrile rubbers and their production waste in liquid products of heat treatment of various brands of coal were studied.

  20. Recycling of engineering plastics from waste electrical and electronic equipments: influence of virgin polycarbonate and impact modifier on the final performance of blends.

    PubMed

    Ramesh, V; Biswal, Manoranjan; Mohanty, Smita; Nayak, Sanjay K

    2014-05-01

    This study is focused on the recovery and recycling of plastics waste, primarily polycarbonate, poly(acrylonitrile-butadiene-styrene) and high impact polystyrene, from end-of-life waste electrical and electronic equipments. Recycling of used polycarbonate, acrylonitrile-butadiene-styrene, polycarbonate/acrylonitrile-butadiene-styrene and acrylonitrile-butadiene-styrene/high impact polystrene material was carried out using material recycling through a melt blending process. An optimized blend composition was formulated to achieve desired properties from different plastics present in the waste electrical and electronic equipments. The toughness of blended plastics was improved with the addition of 10 wt% of virgin polycarbonate and impact modifier (ethylene-acrylic ester-glycidyl methacrylate). The mechanical, thermal, dynamic-mechanical and morphological properties of recycled blend were investigated. Improved properties of blended plastics indicate better miscibility in the presence of a compatibilizer suitable for high-end application.

  1. 24 CFR 3280.803 - Power supply.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... rubber, neoprene, or other approved materials which have been found suitable for the purpose, and shall... polyethylene (PE), poly-vinylchloride (PVC) or acrylonitrile-butadiene-styrene (ABS) plastic tubing having...

  2. 24 CFR 3280.803 - Power supply.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... configuration shown. It shall be molded of butyl rubber, neoprene, or other approved materials which have been... acrylonitrile-butadiene-styrene (ABS) plastic tubing having a minimum wall thickness of nominal 1/8 inch....

  3. 77 FR 67726 - Department of State: State Department Sanctions Information and Guidance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... potentially sanctionable. ``Petrochemical products'' includes any aromatic, olefin, and synthesis gas, and any of their derivatives, including ethylene, propylene, butadiene, benzene, toluene, xylene, ammonia..., acrylonitrile butadiene styrene, alachlor, ammonium nitrate, ammonium sulfate, anhydrous ammonia,...

  4. Jet Engine Exhaust Analysis by Subtractive Chromatography

    DTIC Science & Technology

    1978-12-01

    and J. J. Brooks. Development of a portable miniature collection system for the exposure as- sessment within the microenvironment for carcinogens ...65 A-2. Recovery of acrylonitrile from standard sample generation system ...... ............. 66 B-I. Jet engine exhaust sampling and analysis...7 n-Butane 0.16 2.6 minutes 8 Propylene oxide 3.14 52 minutes 9 Acrylonitrile 9.35 2.6 hours 10 Phenanthrene 1.9 x 106 61 years 11 4-Bromodiphenyl

  5. Anthocyanins facilitate tungsten accumulation in Brassica

    SciTech Connect

    Hale, K.L.

    2002-11-01

    Accumulation of molybdenum in Brassica was recently found to be correlated with anthocyanin content, involving the formation of a blue complex. Here the role of anthocyanins in tungsten sequestration was investigated using three species of Brassica: B. rapa (cv. Fast plants), B. juncea (Indian mustard) and B. oleracea (red cabbage). Seedlings of B. rapa and B. juncea turned blue when supplied with colourless tungstate. The blue compound co-localized with anthocyanins in the peripheral cell layers, and the degree of blueness was correlated with anthocyanin content. The direct involvement of anthocyanins in the blue coloration was evident when purified anthocyanins showed a colour change from pink to blue in vitro upon addition of tungstate, over a wide pH range. Anthocyanin production was upregulated 3-fold by W in B. juncea, possibly reflecting a function for anthocyanins in W tolerance or sequestration. The presence of anthocyanins facilitated W accumulation in B. rapa: anthocyanin-containing seedlings accumulated 3-fold more W than an anthocyaninless mutant. There was no correlation between anthocyanin content and W tolerance under these conditions. The nature of the interaction between anthocyanins and tungstate was investigated. X-ray absorption spectroscopy showed no change in the local chemical environment of Wupon uptake of tungstate by the plant; HPLC analysis of purified anthocyanin with or without tungstate showed no peak shift after metal treatment.

  6. Development of a new electrolyte matrix for MCFC

    SciTech Connect

    Nagashima, I.; Higaki, K.; Terada, S.; Suemitsu, T.

    1996-12-31

    To prolong the life of cell is one of the most important issues for MCFC to be brought into actual application. In this respect, investigators have been proposing the addition of tungstate salt such as K2WO4 into MCFC electrolyte, which is supposed effectively to reduce the sintering of anode probably by precipitates formed through the reduction of tungstate with dissolved hydrogen near the anode surface. In this research, such effect upon sintering of anode was quantitatively examined by out-of-cell tests and the validity of above assumption for the mechanism was confirmed. Also other effects of tungstate salt addition into electrolyte, such upon corrosion of separator, solubility of cathode, stability of matrix substrates (LiAlO{sub 2}) were investigated.

  7. Structure-acidity correlation of supported tungsten(VI)-oxo-species: FT-IR and TPD studies of adsorbed pyridine and catalytic decomposition of 2-propanol

    NASA Astrophysics Data System (ADS)

    Zaki, M. I.; Mekhemer, G. A. H.; Fouad, N. E.; Rabee, A. I. M.

    2014-07-01

    The amount of 10 wt%-WO3 was supported on alumina, titania or silica by impregnation with aqueous solution of ammonium paratungstate and subsequent calcination at 500 °C for 10 h. Tungstate-related chemical and physical changes in the calcination products were resolved by ex-situ infrared (IR) spectroscopy. Nature of exposed surface acid sites were probed by in-situ IR spectroscopy of adsorbed pyridine (Py) molecules at room temperature (RT). The relative strength of the acid sites thus probed was gauged by combining results of temperature-programmed desorption (TPD) measurements of the RT-adsorbed Py with those communicated by in-situ IR spectra of residual Py on the surface after a brief thermoevacuation at high temperatures (100-300 °C). Reactivity of the surface acid sites was tested toward 2-propanal catalytic decomposition, and observed by in-situ IR gas phase spectra. Results obtained were correlated with predominant structures assumed by the supported tungstate species. Accordingly, polymerization of the supported tungstate into 2-/3-dimensional structures, was found to be relatively most advanced on favorable locations of titania surfaces as compared to the case on alumina or silica surfaces. Consequently, the Lewis acidity was strengthened, and strong Bronsted acidity was evolved, leading to a 2-propanol dehydration catalyst (tungstate/titania) of optimal activity and selectivity. Strong tungstate/support interfacial interactions were found to hamper the formation of the strongly acidic and catalytically active polymeric structures of the supported tungstate (i.e., the case on alumina or silica).

  8. Molecular dynamics and reverse Monte Carlo modeling of scheelite-type AWO4 (A = Ca, Sr, Ba) W L 3-edge EXAFS spectra

    NASA Astrophysics Data System (ADS)

    Kalinko, Aleksandr; Bauer, Matthias; Timoshenko, Janis; Kuzmin, Alexei

    2016-11-01

    Classical molecular dynamics (MD) and reverse Monte Carlo methods coupled with ab initio multiple-scattering extended x-ray absorption fine structure (EXAFS) calculations were used for modeling of scheelite-type AWO4 (A = Ca, Sr, Ba) W L 3-edge EXAFS spectra. The two theoretical approaches are complementary and allowed us to perform analysis of full EXAFS spectra. Both methods reproduce well the structure and dynamics of tungstates in the outer coordination shells, however the classical MD simulations underestimate the W-O bond MSRD due to a neglect of quantum zero-point-motion. The thermal vibration amplitudes, correlation effects and anisotropy of the tungstate structure were also estimated.

  9. The Thermal Expansion and Tensile Properties of Nanofiber-ZrW2O8 Reinforced Epoxy Resin Nanocomposites

    NASA Astrophysics Data System (ADS)

    Shan, Xinran; Huang, Chuanjun; Yang, Huihui; Wu, Zhixiong; Li, Jingwen; Huang, Rongjin; Li, Laifeng

    Zirconium tungstate/epoxy (ZrW2O8/EP) nanocomposites were prepared and their thermal expansion properties were investigated within the temperature range of 4-300 K. Compared to unmodified epoxy resin, zirconium tungstate/epoxy composites lowers the thermal expansion coefficient (CTEs). The tensile strength was investigated at room temperature (300 K) and liquid nitrogen temperature (77 K). The fracture surfaces were examined by scanning electron microscopy (SEM). Results showed that the tensile strength and elongation at break increases with the increasing ZrW2O8 content.

  10. Research study for gel precursors as glass and ceramic starting materials for space processing applications research

    NASA Technical Reports Server (NTRS)

    Downs, R. L.; Miller, W. J.

    1983-01-01

    The development of techniques for the preparation of glass and ceramic starting materials that will result in homogeneous glasses or ceramic products when melted and cooled in a containerless environment is described. Metal-organic starting materials were used to make compounds or mixtures which were then decomposed by hydrolysis reactions to the corresponding oxides. The sodium tungstate system was chosen as a model for a glass with a relatively low melting temperature. The alkoxide tungstates also have interesting optical properties. For all the compositions studied, comparison samples were prepared from inorganic starting materials and submitted to the same analyses.

  11. Design and Synthesis of Candidate Prophylactic and Therapeutic Compounds for Use in the Management of Organophosphorus Poisoning.

    DTIC Science & Technology

    1985-01-01

    followed a general literature procedure (ref. 42). Thus compound 1 was treated with hydrogen peroxide in the presence of sodium tungstate and tetrasodium...ethylenediaminetetraacetate (1.0 g, 0.002 mol) and sodium tungstate dihydrate (1.0 g, 0.003 mol) in water (10 mL) was added to a solution of 4-bromo-2,2,6,6...was employed as shown in Chart No. 3. Diphenyl(ethyl)phosphine oxide was treated with powdered sodium hydroxide at 250C to give phosphinic acid 1 in 69

  12. Molecular Toxicology of Chromatin

    DTIC Science & Technology

    1992-01-01

    FINAL 01 Jan 89 TO 31 Dec 91 4. ITL ANO SUS Y, L RE %UMAS MOLECULAR TOXICOLOGY OF CHROMATIN AFOSR-89-0231 PE - 61102F AUT PR - 2312 TA - A5 Dr Ernest Kun...Waterbury, CT), 2-mercaptoethanol, NAD+, NADPH, nucleo- tides, sodium tungstate , hydrogen peroxide, Tris and MES buffers from Sigma (St. Louis, MO...ml) with sodium tungstate (5.93 g, in 20 ml H20) for 1.5 h followed by extraction of the green product into ethyl acetate, washing with 0.1 N HCl, and

  13. Managing Chemical & Material Risks

    DTIC Science & Technology

    2011-12-01

    List – Dec 2011  Tungsten /sodium tungstate  Tungsten alloys 1,4-dioxane* Metal Nanomaterials Carbon Nanomaterials Perfluorooctyl sulfonate...Be) Sulfur Hexafluoride (SF6) Lead  Phase II Impact Assessment completed. Acquisition, Technology and Logistics 7

  14. WC@meso-Pt core-shell nanostructures for fuel cells.

    PubMed

    Chen, Zhao-Yang; Ma, Chun-An; Chu, You-Qun; Jin, Jia-Mei; Lin, Xiao; Hardacre, Christopher; Lin, Wen-Feng

    2013-12-25

    We developed a facile method to synthesize core-shell WC@meso-Pt nanocatalysts by carburizing ammonium tungstate and copper nitrate via gas-solid reactions, followed by a Pt replacement reaction. The mesoporous nanocomposite displays higher activity and stability towards methanol electrooxidation than commercial Pt/C catalysts.

  15. Luminescence in trilanthanumtrichlorotungstate (La 3WO 6Cl 3)

    NASA Astrophysics Data System (ADS)

    Blasse, G.; Dirksen, G. J.; Brixner, L. H.

    1983-03-01

    The luminescence properties of La 3WO 6Cl 3 are reported and discussed. The tungstate group occurs as a trigonal prismatic WO 6-6 complex. The blue luminescence is, for the greater part, quenched at room temperature. No energy migration occurs in this lattice. The decay times are discussed in terms of a simple molecular-orbital (MO) scheme. The luminescence of the following activating ions was studied: Mo 6+, Bi 3+, Eu 3+, Sm 3+, Ce 3+, and Tb 3+. The molybdate group produces a red emission with low efficiency. The Bi 3+ ion induces a narrow band emission with small Stokes shift. This is interpreted using a Bi 3+O 2-W 6+ charge-transfer state. Except for Ce 3+, the rare earth activators show luminescence, but the total transfer efficiency from tungstate to the rare-earth ions is low. This is not due to the one-step tungstate-rare-earth transfer (which is efficient), but to the localized nature of the tungstate excitation. The Eu 3+ charge-transfer band is at very low energies.

  16. Barium Transport Process in Impregnated Dispenser Cathodes.

    DTIC Science & Technology

    1982-01-25

    Distribution of Autoelectronic Emission from Single Crystal Metal Points. II. The Adsorption, Migration and Evaporation of Thorium, Barium, and Sodium on...1966, Alkaline Earth Tungstate : Equilibrium Instability in the M-W-O Systems, J. Am. Ceram. Soc. 49, p. 385. 26 LABORAT)RY OPIRATI JS The Labratory

  17. Feasibility of Inspection of Fungicidal Finishes on Textiles by X-Ray, Infrared and Ultrasonic Methods

    DTIC Science & Technology

    1989-08-01

    tungstate and photxircritiplier (HC). This combination gives not only the intrinsic high dynamic range offered by the more standard sodium iodide/TMT...proportional counter (IND Model 4546) was used for these purposes. The alternative of the beryllium-varriowed scintillation counter employing a sodium iodide

  18. Polyoxometalates for radioactive waste treatment. Annual progress report, June 15, 1996--September 30, 1997

    SciTech Connect

    Pope, M.T.

    1997-01-01

    'Four areas of research have been investigated during the first year of this project: (1) Selective separations of Ln{sup 3+} and An{sup 4+}; (2) Very large tungstate complexes of Ln{sup 3+}; (3) U{sup 4+} and UO{sub 2}{sup 2+} polytungstate complexes; (4) Rhenium (technetium) polyoxometalates. Progress in each of these areas is summarized.'

  19. Vanadium Trineodecanoate Promoter for Fiberglass-Polyester Soil Surfacings.

    DTIC Science & Technology

    1980-06-01

    2 H3PO4 and 5 ml of 0.5 M sodium tungstate were added to the solution, and the final solution was diluted to 100 ml. The absorbance of the solution at...conditions were investigated as follows: 1. Sodium neodecanoate (0.03 molar) + vanadyl sulfate (0.01 molar). Mixing aqueous solutions gave a dark material

  20. SERDP and ESTCP Technical Exchange Meeting on DoD Operational Range Assessment and Management Approaches

    DTIC Science & Technology

    2007-10-01

    considering sensitive environmental receptors. There is a need to research the presence or absence of explosives in surface water systems and...exposure conditions. Given the sensitive life stages of some ecological receptors, subchronic data may be of critical importance when examining...tetranitrate [PETN], and other MCs [including metals; antimony, tungstate ]). Additional effort should focus on statistical approaches for calculating