Using Automation to Improve the Flight Software Testing Process
NASA Technical Reports Server (NTRS)
ODonnell, James R., Jr.; Andrews, Stephen F.; Morgenstern, Wendy M.; Bartholomew, Maureen O.; McComas, David C.; Bauer, Frank H. (Technical Monitor)
2001-01-01
One of the critical phases in the development of a spacecraft attitude control system (ACS) is the testing of its flight software. The testing (and test verification) of ACS flight software requires a mix of skills involving software, attitude control, data manipulation, and analysis. The process of analyzing and verifying flight software test results often creates a bottleneck which dictates the speed at which flight software verification can be conducted. In the development of the Microwave Anisotropy Probe (MAP) spacecraft ACS subsystem, an integrated design environment was used that included a MAP high fidelity (HiFi) simulation, a central database of spacecraft parameters, a script language for numeric and string processing, and plotting capability. In this integrated environment, it was possible to automate many of the steps involved in flight software testing, making the entire process more efficient and thorough than on previous missions. In this paper, we will compare the testing process used on MAP to that used on previous missions. The software tools that were developed to automate testing and test verification will be discussed, including the ability to import and process test data, synchronize test data and automatically generate HiFi script files used for test verification, and an automated capability for generating comparison plots. A summary of the perceived benefits of applying these test methods on MAP will be given. Finally, the paper will conclude with a discussion of re-use of the tools and techniques presented, and the ongoing effort to apply them to flight software testing of the Triana spacecraft ACS subsystem.
Using Automation to Improve the Flight Software Testing Process
NASA Technical Reports Server (NTRS)
ODonnell, James R., Jr.; Morgenstern, Wendy M.; Bartholomew, Maureen O.
2001-01-01
One of the critical phases in the development of a spacecraft attitude control system (ACS) is the testing of its flight software. The testing (and test verification) of ACS flight software requires a mix of skills involving software, knowledge of attitude control, and attitude control hardware, data manipulation, and analysis. The process of analyzing and verifying flight software test results often creates a bottleneck which dictates the speed at which flight software verification can be conducted. In the development of the Microwave Anisotropy Probe (MAP) spacecraft ACS subsystem, an integrated design environment was used that included a MAP high fidelity (HiFi) simulation, a central database of spacecraft parameters, a script language for numeric and string processing, and plotting capability. In this integrated environment, it was possible to automate many of the steps involved in flight software testing, making the entire process more efficient and thorough than on previous missions. In this paper, we will compare the testing process used on MAP to that used on other missions. The software tools that were developed to automate testing and test verification will be discussed, including the ability to import and process test data, synchronize test data and automatically generate HiFi script files used for test verification, and an automated capability for generating comparison plots. A summary of the benefits of applying these test methods on MAP will be given. Finally, the paper will conclude with a discussion of re-use of the tools and techniques presented, and the ongoing effort to apply them to flight software testing of the Triana spacecraft ACS subsystem.
Modeling and analysis of selected space station communications and tracking subsystems
NASA Technical Reports Server (NTRS)
Richmond, Elmer Raydean
1993-01-01
The Communications and Tracking System on board Space Station Freedom (SSF) provides space-to-ground, space-to-space, audio, and video communications, as well as tracking data reception and processing services. Each major category of service is provided by a communications subsystem which is controlled and monitored by software. Among these subsystems, the Assembly/Contingency Subsystem (ACS) and the Space-to-Ground Subsystem (SGS) provide communications with the ground via the Tracking and Data Relay Satellite (TDRS) System. The ACS is effectively SSF's command link, while the SGS is primarily intended as the data link for SSF payloads. The research activities of this project focused on the ACS and SGS antenna management algorithms identified in the Flight System Software Requirements (FSSR) documentation, including: (1) software modeling and evaluation of antenna management (positioning) algorithms; and (2) analysis and investigation of selected variables and parameters of these antenna management algorithms i.e., descriptions and definitions of ranges, scopes, and dimensions. In a related activity, to assist those responsible for monitoring the development of this flight system software, a brief summary of software metrics concepts, terms, measures, and uses was prepared.
Assurance of Fault Management: Risk-Significant Adverse Condition Awareness
NASA Technical Reports Server (NTRS)
Fitz, Rhonda
2016-01-01
Fault Management (FM) systems are ranked high in risk-based assessment of criticality within flight software, emphasizing the importance of establishing highly competent domain expertise to provide assurance for NASA projects, especially as spaceflight systems continue to increase in complexity. Insight into specific characteristics of FM architectures seen embedded within safety- and mission-critical software systems analyzed by the NASA Independent Verification Validation (IVV) Program has been enhanced with an FM Technical Reference (TR) suite. Benefits are aimed beyond the IVV community to those that seek ways to efficiently and effectively provide software assurance to reduce the FM risk posture of NASA and other space missions. The identification of particular FM architectures, visibility, and associated IVV techniques provides a TR suite that enables greater assurance that critical software systems will adequately protect against faults and respond to adverse conditions. The role FM has with regard to overall asset protection of flight software systems is being addressed with the development of an adverse condition (AC) database encompassing flight software vulnerabilities.Identification of potential off-nominal conditions and analysis to determine how a system responds to these conditions are important aspects of hazard analysis and fault management. Understanding what ACs the mission may face, and ensuring they are prevented or addressed is the responsibility of the assurance team, which necessarily should have insight into ACs beyond those defined by the project itself. Research efforts sponsored by NASAs Office of Safety and Mission Assurance defined terminology, categorized data fields, and designed a baseline repository that centralizes and compiles a comprehensive listing of ACs and correlated data relevant across many NASA missions. This prototype tool helps projects improve analysis by tracking ACs, and allowing queries based on project, mission type, domain component, causal fault, and other key characteristics. The repository has a firm structure, initial collection of data, and an interface established for informational queries, with plans for integration within the Enterprise Architecture at NASA IVV, enabling support and accessibility across the Agency. The development of an improved workflow process for adaptive, risk-informed FM assurance is currently underway.
Launch and Commissioning of the Deep Space Climate Observatory
NASA Technical Reports Server (NTRS)
Frey, Nicholas P.; Davis, Edward P.
2016-01-01
The Deep Space Climate Observatory (DSCOVR), formerly known as Triana, successfully launched on February 11th, 2015. To date, each of the five space-craft attitude control system (ACS) modes have been operating as expected and meeting all guidance, navigation, and control (GN&C) requirements, although since launch, several anomalies were encountered. While unplanned, these anomalies have proven to be invaluable in developing a deeper understanding of the ACS, and drove the design of three alterations to the ACS task of the flight software (FSW). An overview of the GN&C subsystem hardware, including re-furbishment, and ACS architecture are introduced, followed by a chronological discussion of key events, flight performance, as well as anomalies encountered by the GN&C team.
The Implementation of Satellite Control System Software Using Object Oriented Design
NASA Technical Reports Server (NTRS)
Anderson, Mark O.; Reid, Mark; Drury, Derek; Hansell, William; Phillips, Tom
1998-01-01
NASA established the Small Explorer (SMEX) program in 1988 to provide frequent opportunities for highly focused and relatively inexpensive space science missions that can be launched into low earth orbit by small expendable vehicles. The development schedule for each SMEX spacecraft was three years from start to launch. The SMEX program has produced five satellites; Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX), Fast Auroral Snapshot Explorer (FAST), Submillimeter Wave Astronomy Satellite (SWAS), Transition Region and Coronal Explorer (TRACE) and Wide-Field Infrared Explorer (WIRE). SAMPEX and FAST are on-orbit, TRACE is scheduled to be launched in April of 1998, WIRE is scheduled to be launched in September of 1998, and SWAS is scheduled to be launched in January of 1999. In each of these missions, the Attitude Control System (ACS) software was written using a modular procedural design. Current program goals require complete spacecraft development within 18 months. This requirement has increased pressure to write reusable flight software. Object-Oriented Design (OOD) offers the constructs for developing an application that only needs modification for mission unique requirements. This paper describes the OOD that was used to develop the SMEX-Lite ACS software. The SMEX-Lite ACS is three-axis controlled, momentum stabilized, and is capable of performing sub-arc-minute pointing. The paper first describes the high level requirements which governed the architecture of the SMEX-Lite ACS software. Next, the context in which the software resides is explained. The paper describes the benefits of encapsulation, inheritance and polymorphism with respect to the implementation of an ACS software system. This paper will discuss the design of several software components that comprise the ACS software. Specifically, Object-Oriented designs are presented for sensor data processing, attitude control, attitude determination and failure detection. The paper addresses the benefits of the OOD versus a conventional procedural design. The final discussion in this paper will address the establishment of the ACS Foundation Class (AFC) Library. The AFC is a large software repository, requiring a minimal amount of code modifications to produce ACS software for future projects, saving production time and costs.
Porting the Core Flight System to the Dellingr Cubesat
NASA Technical Reports Server (NTRS)
Cudmore, Alan
2017-01-01
Dellingr is a 6U Cubesat developed by NASA Goddard Space Flight Center. It was delivered to the International Space Station in August 2017, and is scheduled to be deployed in November 2017. Compared to a typical NASA satellite, the Dellingr Cubesat had an extremely low budget and short schedule. Although the Dellingr Cubesat has minimal hardware resources, the cFS was ultimately chosen for the flight software. Using the cFS on the Dellingr Cubesat presented a few challenges, but also offered opportunities to help speed up development and verify the ACS flight software. This presentation will cover the lessons learned in porting the cFS to the Dellingr Cubesat, including working with the limited hardware resources, porting the cFS to FreeRTOS, and overcoming limitations related to data storage and file transfer. This presentation will also cover how hardware abstraction was used to run the flight software on multiple platforms and interface with the 42 dynamic simulator.
Super Strypi HWIL 6DOF (Hardware-In-Loop six-degree-of-freedom) Rev. 2175
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilkey, Jeff C.; Harl, Nathan R.; Kowalchuk, Scott A.
2016-02-23
The Super Strypi HWIL is a six degree-of-freedom (6DOF) simulation for the Super Strypi Launch Vehicle. The simulation is used to test the NGC flight software including the navigation software. Aerodynamic and propulsive forces, mass properties, ACS (attitude control system) parameters are defined in input files. Output parameters are saved to a Matlab mat file.
NASA Technical Reports Server (NTRS)
Slafer, Loren I.
1989-01-01
Realtime simulation and hardware-in-the-loop testing is being used extensively in all phases of the design, development, and testing of the attitude control system (ACS) for the new Hughes HS601 satellite bus. Realtime, hardware-in-the-loop simulation, integrated with traditional analysis and pure simulation activities is shown to provide a highly efficient and productive overall development program. Implementation of high fidelity simulations of the satellite dynamics and control system algorithms, capable of real-time execution (using applied Dynamics International's System 100), provides a tool which is capable of being integrated with the critical flight microprocessor to create a mixed simulation test (MST). The MST creates a highly accurate, detailed simulated on-orbit test environment, capable of open and closed loop ACS testing, in which the ACS design can be validated. The MST is shown to provide a valuable extension of traditional test methods. A description of the MST configuration is presented, including the spacecraft dynamics simulation model, sensor and actuator emulators, and the test support system. Overall system performance parameters are presented. MST applications are discussed; supporting ACS design, developing on-orbit system performance predictions, flight software development and qualification testing (augmenting the traditional software-based testing), mission planning, and a cost-effective subsystem-level acceptance test. The MST is shown to provide an ideal tool in which the ACS designer can fly the spacecraft on the ground.
The Implementation of Satellite Attitude Control System Software Using Object Oriented Design
NASA Technical Reports Server (NTRS)
Reid, W. Mark; Hansell, William; Phillips, Tom; Anderson, Mark O.; Drury, Derek
1998-01-01
NASA established the Small Explorer (SNMX) program in 1988 to provide frequent opportunities for highly focused and relatively inexpensive space science missions. The SMEX program has produced five satellites, three of which have been successfully launched. The remaining two spacecraft are scheduled for launch within the coming year. NASA has recently developed a prototype for the next generation Small Explorer spacecraft (SMEX-Lite). This paper describes the object-oriented design (OOD) of the SMEX-Lite Attitude Control System (ACS) software. The SMEX-Lite ACS is three-axis controlled and is capable of performing sub-arc-minute pointing. This paper first describes high level requirements governing the SMEX-Lite ACS software architecture. Next, the context in which the software resides is explained. The paper describes the principles of encapsulation, inheritance, and polymorphism with respect to the implementation of an ACS software system. This paper will also discuss the design of several ACS software components. Specifically, object-oriented designs are presented for sensor data processing, attitude determination, attitude control, and failure detection. Finally, this paper will address the establishment of the ACS Foundation Class (AFC) Library. The AFC is a large software repository, requiring a minimal amount of code modifications to produce ACS software for future projects.
Luczak, Susan E; Rosen, I Gary
2014-08-01
Transdermal alcohol sensor (TAS) devices have the potential to allow researchers and clinicians to unobtrusively collect naturalistic drinking data for weeks at a time, but the transdermal alcohol concentration (TAC) data these devices produce do not consistently correspond with breath alcohol concentration (BrAC) data. We present and test the BrAC Estimator software, a program designed to produce individualized estimates of BrAC from TAC data by fitting mathematical models to a specific person wearing a specific TAS device. Two TAS devices were worn simultaneously by 1 participant for 18 days. The trial began with a laboratory alcohol session to calibrate the model and was followed by a field trial with 10 drinking episodes. Model parameter estimates and fit indices were compared across drinking episodes to examine the calibration phase of the software. Software-generated estimates of peak BrAC, time of peak BrAC, and area under the BrAC curve were compared with breath analyzer data to examine the estimation phase of the software. In this single-subject design with breath analyzer peak BrAC scores ranging from 0.013 to 0.057, the software created consistent models for the 2 TAS devices, despite differences in raw TAC data, and was able to compensate for the attenuation of peak BrAC and latency of the time of peak BrAC that are typically observed in TAC data. This software program represents an important initial step for making it possible for non mathematician researchers and clinicians to obtain estimates of BrAC from TAC data in naturalistic drinking environments. Future research with more participants and greater variation in alcohol consumption levels and patterns, as well as examination of gain scheduling calibration procedures and nonlinear models of diffusion, will help to determine how precise these software models can become. Copyright © 2014 by the Research Society on Alcoholism.
Luczak, Susan E; Hawkins, Ashley L; Dai, Zheng; Wichmann, Raphael; Wang, Chunming; Rosen, I Gary
2018-08-01
Biosensors have been developed to measure transdermal alcohol concentration (TAC), but converting TAC into interpretable indices of blood/breath alcohol concentration (BAC/BrAC) is difficult because of variations that occur in TAC across individuals, drinking episodes, and devices. We have developed mathematical models and the BrAC Estimator software for calibrating and inverting TAC into quantifiable BrAC estimates (eBrAC). The calibration protocol to determine the individualized parameters for a specific individual wearing a specific device requires a drinking session in which BrAC and TAC measurements are obtained simultaneously. This calibration protocol was originally conducted in the laboratory with breath analyzers used to produce the BrAC data. Here we develop and test an alternative calibration protocol using drinking diary data collected in the field with the smartphone app Intellidrink to produce the BrAC calibration data. We compared BrAC Estimator software results for 11 drinking episodes collected by an expert user when using Intellidrink versus breath analyzer measurements as BrAC calibration data. Inversion phase results indicated the Intellidrink calibration protocol produced similar eBrAC curves and captured peak eBrAC to within 0.0003%, time of peak eBrAC to within 18min, and area under the eBrAC curve to within 0.025% alcohol-hours as the breath analyzer calibration protocol. This study provides evidence that drinking diary data can be used in place of breath analyzer data in the BrAC Estimator software calibration procedure, which can reduce participant and researcher burden and expand the potential software user pool beyond researchers studying participants who can drink in the laboratory. Copyright © 2017. Published by Elsevier Ltd.
The Software Design for the Wide-Field Infrared Explorer Attitude Control System
NASA Technical Reports Server (NTRS)
Anderson, Mark O.; Barnes, Kenneth C.; Melhorn, Charles M.; Phillips, Tom
1998-01-01
The Wide-Field Infrared Explorer (WIRE), currently scheduled for launch in September 1998, is the fifth of five spacecraft in the NASA/Goddard Small Explorer (SMEX) series. This paper presents the design of WIRE's Attitude Control System flight software (ACS FSW). WIRE is a momentum-biased, three-axis stabilized stellar pointer which provides high-accuracy pointing and autonomous acquisition for eight to ten stellar targets per orbit. WIRE's short mission life and limited cryogen supply motivate requirements for Sun and Earth avoidance constraints which are designed to prevent catastrophic instrument damage and to minimize the heat load on the cryostat. The FSW implements autonomous fault detection and handling (FDH) to enforce these instrument constraints and to perform several other checks which insure the safety of the spacecraft. The ACS FSW implements modules for sensor data processing, attitude determination, attitude control, guide star acquisition, actuator command generation, command/telemetry processing, and FDH. These software components are integrated with a hierarchical control mode managing module that dictates which software components are currently active. The lowest mode in the hierarchy is the 'safest' one, in the sense that it utilizes a minimal complement of sensors and actuators to keep the spacecraft in a stable configuration (power and pointing constraints are maintained). As higher modes in the hierarchy are achieved, the various software functions are activated by the mode manager, and an increasing level of attitude control accuracy is provided. If FDH detects a constraint violation or other anomaly, it triggers a safing transition to a lower control mode. The WIRE ACS FSW satisfies all target acquisition and pointing accuracy requirements, enforces all pointing constraints, provides the ground with a simple means for reconfiguring the system via table load, and meets all the demands of its real-time embedded environment (16 MHz Intel 80386 processor with 80387 coprocessor running under the VRTX operating system). The mode manager organizes and controls all the software modules used to accomplish these goals, and in particular, the FDH module is tightly coupled with the mode manager.
NASA Astrophysics Data System (ADS)
Sable, Peter; Helminiak, Nathaniel; Harstad, Eric; Gullerud, Arne; Hollenshead, Jeromy; Hertel, Eugene; Sandia National Laboratories Collaboration; Marquette University Collaboration
2017-06-01
With the increasing use of hydrocodes in modeling and system design, experimental benchmarking of software has never been more important. While this has been a large area of focus since the inception of computational design, comparisons with temperature data are sparse due to experimental limitations. A novel temperature measurement technique, magnetic diffusion analysis, has enabled the acquisition of in-flight temperature measurements of hyper velocity projectiles. Using this, an AC-14 bare shaped charge and an LX-14 EFP, both with copper linings, were simulated using CTH to benchmark temperature against experimental results. Particular attention was given to the slug temperature profiles after separation, and the effect of varying equation-of-state and strength models. Simulations are in agreement with experimental, attaining better than 2% error between observed shaped charge temperatures. This varied notably depending on the strength model used. Similar observations were made simulating the EFP case, with a minimum 4% deviation. Jet structures compare well with radiographic images and are consistent with ALEGRA simulations previously conducted. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Temporary Flight Restrictions (TFRs)
DOT National Transportation Integrated Search
1997-02-28
This advisory circular (AC) describes conditions under which the Federal : Aviation Administration (FAA) may impose a temporary flight restriction (TFR). : This AC explalins which FAA elements have been authorized, by the Administrator, : to issue TF...
Space Flight Software Development Software for Intelligent System Health Management
NASA Technical Reports Server (NTRS)
Trevino, Luis C.; Crumbley, Tim
2004-01-01
The slide presentation examines the Marshall Space Flight Center Flight Software Branch, including software development projects, mission critical space flight software development, software technical insight, advanced software development technologies, and continuous improvement in the software development processes and methods.
1978-11-14
Lockheed YO-3A (USA 69-18010 NASA 718) A/C & BELL COBRA HELICOPTER FLIGHT & GROUND TESTS AT EDWARDS AIR FORCE BASE. Rotorcraft Research. NASA SP-1998-3300 Flight Research at Ames: 57 Years of Development and Validation of Aeronautical Technology Fig. 143
Jiang, Xing Fu; Chen, Jian; Zhang, Lei; Sappington, Thomas W; Luo, Li Zhi
2013-01-01
Evaluating ecological safety and conducting pest risk analysis for transgenic crops are vitally important before their commercial planting. The beet armyworm, Spodoptera exigua, a long-distance migratory insect pest, is not a direct target of transgenic Cry1Ac-expressing cotton in China, but nevertheless it has recently become an important pest. Migrants leaving their natal field arrive in other appropriate habitat far away in a short time, often followed by larval outbreaks. S. exigua has low susceptibility to Cry1Ac. However, our results from laboratory experiments identified (i) sublethal effects of Cry1Ac protoxin on larval development rate, larval and pupal weight, and adult lifetime fecundity, and (ii) increased long-flight behavior triggered by Cry1Ac which may contribute to larval outbreaks elsewhere. No significant differences in larval mortality, pupation rate, adult emergence rate, longevity, pre-oviposition period, or oviposition period were observed between controls and larvae fed on artificial diet incorporating a low concentration of Cry1Ac protoxin. The negative sublethal effects on some developmental and reproductive traits and lack of effect on others suggest they do not contribute to the observed severity of S. exigua outbreaks after feeding on Cry1Ac cotton. Interestingly, the percentage of long fliers increased significantly when larvae were reared on diet containing either of two low-dose treatments of Cry1Ac, suggesting a possible increased propensity to disperse long distances triggered by Cry1Ac. We hypothesize that negative effects on development and reproduction caused by Cry1Ac in the diet are offset by increased flight propensity triggered by the poor food conditions, thereby improving the chances of escaping adverse local conditions before oviposition. Increased long-flight propensity in turn may amplify the area damaged by outbreak populations. This phenomenon might be common in other migratory insect pests receiving sublethal doses of Bt toxins and warrants further study.
Jiang, Xing Fu; Chen, Jian; Zhang, Lei; Sappington, Thomas W.; Luo, Li Zhi
2013-01-01
Evaluating ecological safety and conducting pest risk analysis for transgenic crops are vitally important before their commercial planting. The beet armyworm, Spodoptera exigua, a long-distance migratory insect pest, is not a direct target of transgenic Cry1Ac-expressing cotton in China, but nevertheless it has recently become an important pest. Migrants leaving their natal field arrive in other appropriate habitat far away in a short time, often followed by larval outbreaks. S. exigua has low susceptibility to Cry1Ac. However, our results from laboratory experiments identified (i) sublethal effects of Cry1Ac protoxin on larval development rate, larval and pupal weight, and adult lifetime fecundity, and (ii) increased long-flight behavior triggered by Cry1Ac which may contribute to larval outbreaks elsewhere. No significant differences in larval mortality, pupation rate, adult emergence rate, longevity, pre-oviposition period, or oviposition period were observed between controls and larvae fed on artificial diet incorporating a low concentration of Cry1Ac protoxin. The negative sublethal effects on some developmental and reproductive traits and lack of effect on others suggest they do not contribute to the observed severity of S. exigua outbreaks after feeding on Cry1Ac cotton. Interestingly, the percentage of long fliers increased significantly when larvae were reared on diet containing either of two low-dose treatments of Cry1Ac, suggesting a possible increased propensity to disperse long distances triggered by Cry1Ac. We hypothesize that negative effects on development and reproduction caused by Cry1Ac in the diet are offset by increased flight propensity triggered by the poor food conditions, thereby improving the chances of escaping adverse local conditions before oviposition. Increased long-flight propensity in turn may amplify the area damaged by outbreak populations. This phenomenon might be common in other migratory insect pests receiving sublethal doses of Bt toxins and warrants further study. PMID:23675489
Executable assertions and flight software
NASA Technical Reports Server (NTRS)
Mahmood, A.; Andrews, D. M.; Mccluskey, E. J.
1984-01-01
Executable assertions are used to test flight control software. The techniques used for testing flight software; however, are different from the techniques used to test other kinds of software. This is because of the redundant nature of flight software. An experimental setup for testing flight software using executable assertions is described. Techniques for writing and using executable assertions to test flight software are presented. The error detection capability of assertions is studied and many examples of assertions are given. The issues of placement and complexity of assertions and the language features to support efficient use of assertions are discussed.
77 FR 64711 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-23
... Service Bulletin 737-22A1224, dated May 18, 2012, requires installation of FCC software P/N 2274-COL-AC1..., 2010, because that service bulletin only specifies to install FCC OPS software P/N 2276-COL-AC1-05 or P...) Install software identified in table 2 of the Accomplishment Instructions of Boeing Alert Service Bulletin...
The ALMA common software: dispatch from the trenches
NASA Astrophysics Data System (ADS)
Schwarz, J.; Sommer, H.; Jeram, B.; Sekoranja, M.; Chiozzi, G.; Grimstrup, A.; Caproni, A.; Paredes, C.; Allaert, E.; Harrington, S.; Turolla, S.; Cirami, R.
2008-07-01
The ALMA Common Software (ACS) provides both an application framework and CORBA-based middleware for the distributed software system of the Atacama Large Millimeter Array. Building upon open-source tools such as the JacORB, TAO and OmniORB ORBs, ACS supports the development of component-based software in any of three languages: Java, C++ and Python. Now in its seventh major release, ACS has matured, both in its feature set as well as in its reliability and performance. However, it is only recently that the ALMA observatory's hardware and application software has reached a level at which it can exploit and challenge the infrastructure that ACS provides. In particular, the availability of an Antenna Test Facility(ATF) at the site of the Very Large Array in New Mexico has enabled us to exercise and test the still evolving end-to-end ALMA software under realistic conditions. The major focus of ACS, consequently, has shifted from the development of new features to consideration of how best to use those that already exist. Configuration details which could be neglected for the purpose of running unit tests or skeletal end-to-end simulations have turned out to be sensitive levers for achieving satisfactory performance in a real-world environment. Surprising behavior in some open-source tools has required us to choose between patching code that we did not write or addressing its deficiencies by implementing workarounds in our own software. We will discuss these and other aspects of our recent experience at the ATF and in simulation.
A Neutron and X-Ray Diffraction Study of Ca-Mg-Cu Metallic Glasses (Postprint)
2014-04-01
North DM. Phys Chem Liq 1968;1:1. [25] Wright AC. J Non-Cryst Solids 1989;112:33. [26] Patterson AL. Z Kristallogr 1935;90:517. [27] Soper AK. J Phys...PJ, Cundall JA. Acta Cryst 1965;19:807. [31] Hannon AC. Nucl Instrum Meth A 2005;551:88. [32] Soper AK. Gudrun software, http://www.isis.stfc.ac.uk...instruments/sandals/ data-analysis/gudrun8864.html. [33] Hannon AC, Howells WS, Soper AK. IOP Conf Ser 1990;107:193. [34] Soper AK. GudrunX software
1967-02-06
Aerial Survey of Ames Research Center - Flight Simulation Complex' Flight simulators create an authentic aircraft environment by generating the appropriate physical cues that provide the sensations of flight.
Computer Software Configuration Item-Specific Flight Software Image Transfer Script Generator
NASA Technical Reports Server (NTRS)
Bolen, Kenny; Greenlaw, Ronald
2010-01-01
A K-shell UNIX script enables the International Space Station (ISS) Flight Control Team (FCT) operators in NASA s Mission Control Center (MCC) in Houston to transfer an entire or partial computer software configuration item (CSCI) from a flight software compact disk (CD) to the onboard Portable Computer System (PCS). The tool is designed to read the content stored on a flight software CD and generate individual CSCI transfer scripts that are capable of transferring the flight software content in a given subdirectory on the CD to the scratch directory on the PCS. The flight control team can then transfer the flight software from the PCS scratch directory to the Electronically Erasable Programmable Read Only Memory (EEPROM) of an ISS Multiplexer/ Demultiplexer (MDM) via the Indirect File Transfer capability. The individual CSCI scripts and the CSCI Specific Flight Software Image Transfer Script Generator (CFITSG), when executed a second time, will remove all components from their original execution. The tool will identify errors in the transfer process and create logs of the transferred software for the purposes of configuration management.
InterProScan 5: genome-scale protein function classification
Jones, Philip; Binns, David; Chang, Hsin-Yu; Fraser, Matthew; Li, Weizhong; McAnulla, Craig; McWilliam, Hamish; Maslen, John; Mitchell, Alex; Nuka, Gift; Pesseat, Sebastien; Quinn, Antony F.; Sangrador-Vegas, Amaia; Scheremetjew, Maxim; Yong, Siew-Yit; Lopez, Rodrigo; Hunter, Sarah
2014-01-01
Motivation: Robust large-scale sequence analysis is a major challenge in modern genomic science, where biologists are frequently trying to characterize many millions of sequences. Here, we describe a new Java-based architecture for the widely used protein function prediction software package InterProScan. Developments include improvements and additions to the outputs of the software and the complete reimplementation of the software framework, resulting in a flexible and stable system that is able to use both multiprocessor machines and/or conventional clusters to achieve scalable distributed data analysis. InterProScan is freely available for download from the EMBl-EBI FTP site and the open source code is hosted at Google Code. Availability and implementation: InterProScan is distributed via FTP at ftp://ftp.ebi.ac.uk/pub/software/unix/iprscan/5/ and the source code is available from http://code.google.com/p/interproscan/. Contact: http://www.ebi.ac.uk/support or interhelp@ebi.ac.uk or mitchell@ebi.ac.uk PMID:24451626
ACES: Space shuttle flight software analysis expert system
NASA Technical Reports Server (NTRS)
Satterwhite, R. Scott
1990-01-01
The Analysis Criteria Evaluation System (ACES) is a knowledge based expert system that automates the final certification of the Space Shuttle onboard flight software. Guidance, navigation and control of the Space Shuttle through all its flight phases are accomplished by a complex onboard flight software system. This software is reconfigured for each flight to allow thousands of mission-specific parameters to be introduced and must therefore be thoroughly certified prior to each flight. This certification is performed in ground simulations by executing the software in the flight computers. Flight trajectories from liftoff to landing, including abort scenarios, are simulated and the results are stored for analysis. The current methodology of performing this analysis is repetitive and requires many man-hours. The ultimate goals of ACES are to capture the knowledge of the current experts and improve the quality and reduce the manpower required to certify the Space Shuttle onboard flight software.
NASA Technical Reports Server (NTRS)
Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.
1988-01-01
The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-19
... operator experienced a multi-power system loss in-flight of 1, 2, and 3 alternating current (AC) electrical... an operator experienced a multi-power system loss in-flight of 1, 2, and 3 AC electrical power... alternating current electrical power systems located in the main equipment center (MEC). The Federal Aviation...
Flight Demonstration of a Milli-Arcsecond Optical Pointing System for Direct Exoplanet Imaging
NASA Astrophysics Data System (ADS)
Mendillo, Christopher; Chakrabarti, S.; Cook, T.; Hicks, B.
2012-01-01
The PICTURE (Planetary Imaging Concept Testbed Using a Rocket Experiment) sounding rocket attempted to use a white-light nulling interferometer to image the exozodiacal dust disk of Epsilon Eridani (K2V, 3.22 pc) in reflected visible light down to an inner radius of 3 AU. PICTURE launched from White Sands Missile Range on October 8th, 2011. Unfortunately, the main science telemetry channel was lost seconds into flight and no science data was recovered. However, on-board diagnostic data does show that PICTURE successfully demonstrated a fast (200 Hz) optical tracking system that provided 2 milli-arcsecond in-flight pointing stability, a thousand-fold improvement over the raw pointing of the rocket's attitude control system (ACS). The PICTURE flight provides heritage for a technology that will be a key component for many future direct exoplanet imaging missions. We present a spectral analysis of the 200 Hz tracking data in comparison to the 50 Hz ACS gyro data and we provide a precise measurement of the true ACS performance at frequencies higher than 5 Hz where the ACS gyros become noise limited. This work is funded by NASA grant: NNG05WC17G.
Mars Science Laboratory Boot Robustness Testing
NASA Technical Reports Server (NTRS)
Banazadeh, Payam; Lam, Danny
2011-01-01
Mars Science Laboratory (MSL) is one of the most complex spacecrafts in the history of mankind. Due to the nature of its complexity, a large number of flight software (FSW) requirements have been written for implementation. In practice, these requirements necessitate very complex and very precise flight software with no room for error. One of flight software's responsibilities is to be able to boot up and check the state of all devices on the spacecraft after the wake up process. This boot up and initialization is crucial to the mission success since any misbehavior of different devices needs to be handled through the flight software. I have created a test toolkit that allows the FSW team to exhaustively test the flight software under variety of different unexpected scenarios and validate that flight software can handle any situation after booting up. The test includes initializing different devices on spacecraft to different configurations and validate at the end of the flight software boot up that the flight software has initialized those devices to what they are suppose to be in that particular scenario.
NASA Technical Reports Server (NTRS)
Benowitz, E.; Niessner, A.
2003-01-01
This work involves developing representative mission-critical spacecraft software using the Real-Time Specification for Java (RTSJ). This work currently leverages actual flight software used in the design of actual flight software in the NASA's Deep Space 1 (DSI), which flew in 1998.
NASA Technical Reports Server (NTRS)
Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.
1993-01-01
The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.
ACS (Alma Common Software) operating a set of robotic telescopes
NASA Astrophysics Data System (ADS)
Westhues, C.; Ramolla, M.; Lemke, R.; Haas, M.; Drass, H.; Chini, R.
2014-07-01
We use the ALMA Common Software (ACS) to establish a unified middleware for robotic observations with the 40cm Optical, 80cm Infrared and 1.5m Hexapod telescopes located at OCA (Observatorio Cerro Armazones) and the ESO 1-m located at La Silla. ACS permits to hide from the observer the technical specifications, like mount-type or camera-model. Furthermore ACS provides a uniform interface to the different telescopes, allowing us to run the same planning program for each telescope. Observations are carried out for long-term monitoring campaigns to study the variability of stars and AGN. We present here the specific implementation to the different telescopes.
FMT (Flight Software Memory Tracker) For Cassini Spacecraft-Software Engineering Using JAVA
NASA Technical Reports Server (NTRS)
Kan, Edwin P.; Uffelman, Hal; Wax, Allan H.
1997-01-01
The software engineering design of the Flight Software Memory Tracker (FMT) Tool is discussed in this paper. FMT is a ground analysis software set, consisting of utilities and procedures, designed to track the flight software, i.e., images of memory load and updatable parameters of the computers on-board Cassini spacecraft. FMT is implemented in Java.
ACS from development to operations
NASA Astrophysics Data System (ADS)
Caproni, Alessandro; Colomer, Pau; Jeram, Bogdan; Sommer, Heiko; Chiozzi, Gianluca; Mañas, Miguel M.
2016-08-01
The ALMA Common Software (ACS), provides the infrastructure of the distributed software system of ALMA and other projects. ACS, built on top of CORBA and Data Distribution Service (DDS) middleware, is based on a Component- Container paradigm and hides the complexity of the middleware allowing the developer to focus on domain specific issues. The transition of the ALMA observatory from construction to operations brings with it that ACS effort focuses primarily on scalability, stability and robustness rather than on new features. The transition came together with a shorter release cycle and a more extensive testing. For scalability, the most problematic area has been the CORBA notification service, used to implement the publisher subscriber pattern because of the asynchronous nature of the paradigm: a lot of effort has been spent to improve its stability and recovery from run time errors. The original bulk data mechanism, implemented using the CORBA Audio/Video Streaming Service, showed its limitations and has been replaced with a more performant and scalable DDS implementation. Operational needs showed soon the difference between releases cycles for Online software (i.e. used during observations) and Offline software, which requires much more frequent releases. This paper attempts to describe the impact the transition from construction to operations had on ACS, the solution adopted so far and a look into future evolution.
Writing executable assertions to test flight software
NASA Technical Reports Server (NTRS)
Mahmood, A.; Andrews, D. M.; Mccluskey, E. J.
1984-01-01
An executable assertion is a logical statement about the variables or a block of code. If there is no error during execution, the assertion statement results in a true value. Executable assertions can be used for dynamic testing of software. They can be employed for validation during the design phase, and exception and error detection during the operation phase. The present investigation is concerned with the problem of writing executable assertions, taking into account the use of assertions for testing flight software. They can be employed for validation during the design phase, and for exception handling and error detection during the operation phase The digital flight control system and the flight control software are discussed. The considered system provides autopilot and flight director modes of operation for automatic and manual control of the aircraft during all phases of flight. Attention is given to techniques for writing and using assertions to test flight software, an experimental setup to test flight software, and language features to support efficient use of assertions.
Risk-Significant Adverse Condition Awareness Strengthens Assurance of Fault Management Systems
NASA Technical Reports Server (NTRS)
Fitz, Rhonda
2017-01-01
As spaceflight systems increase in complexity, Fault Management (FM) systems are ranked high in risk-based assessment of software criticality, emphasizing the importance of establishing highly competent domain expertise to provide assurance. Adverse conditions (ACs) and specific vulnerabilities encountered by safety- and mission-critical software systems have been identified through efforts to reduce the risk posture of software-intensive NASA missions. Acknowledgement of potential off-nominal conditions and analysis to determine software system resiliency are important aspects of hazard analysis and FM. A key component of assuring FM is an assessment of how well software addresses susceptibility to failure through consideration of ACs. Focus on significant risk predicted through experienced analysis conducted at the NASA Independent Verification & Validation (IV&V) Program enables the scoping of effective assurance strategies with regard to overall asset protection of complex spaceflight as well as ground systems. Research efforts sponsored by NASAs Office of Safety and Mission Assurance (OSMA) defined terminology, categorized data fields, and designed a baseline repository that centralizes and compiles a comprehensive listing of ACs and correlated data relevant across many NASA missions. This prototype tool helps projects improve analysis by tracking ACs and allowing queries based on project, mission type, domain/component, causal fault, and other key characteristics. Vulnerability in off-nominal situations, architectural design weaknesses, and unexpected or undesirable system behaviors in reaction to faults are curtailed with the awareness of ACs and risk-significant scenarios modeled for analysts through this database. Integration within the Enterprise Architecture at NASA IV&V enables interfacing with other tools and datasets, technical support, and accessibility across the Agency. This paper discusses the development of an improved workflow process utilizing this database for adaptive, risk-informed FM assurance that critical software systems will safely and securely protect against faults and respond to ACs in order to achieve successful missions.
Risk-Significant Adverse Condition Awareness Strengthens Assurance of Fault Management Systems
NASA Technical Reports Server (NTRS)
Fitz, Rhonda
2017-01-01
As spaceflight systems increase in complexity, Fault Management (FM) systems are ranked high in risk-based assessment of software criticality, emphasizing the importance of establishing highly competent domain expertise to provide assurance. Adverse conditions (ACs) and specific vulnerabilities encountered by safety- and mission-critical software systems have been identified through efforts to reduce the risk posture of software-intensive NASA missions. Acknowledgement of potential off-nominal conditions and analysis to determine software system resiliency are important aspects of hazard analysis and FM. A key component of assuring FM is an assessment of how well software addresses susceptibility to failure through consideration of ACs. Focus on significant risk predicted through experienced analysis conducted at the NASA Independent Verification Validation (IVV) Program enables the scoping of effective assurance strategies with regard to overall asset protection of complex spaceflight as well as ground systems. Research efforts sponsored by NASA's Office of Safety and Mission Assurance defined terminology, categorized data fields, and designed a baseline repository that centralizes and compiles a comprehensive listing of ACs and correlated data relevant across many NASA missions. This prototype tool helps projects improve analysis by tracking ACs and allowing queries based on project, mission type, domaincomponent, causal fault, and other key characteristics. Vulnerability in off-nominal situations, architectural design weaknesses, and unexpected or undesirable system behaviors in reaction to faults are curtailed with the awareness of ACs and risk-significant scenarios modeled for analysts through this database. Integration within the Enterprise Architecture at NASA IVV enables interfacing with other tools and datasets, technical support, and accessibility across the Agency. This paper discusses the development of an improved workflow process utilizing this database for adaptive, risk-informed FM assurance that critical software systems will safely and securely protect against faults and respond to ACs in order to achieve successful missions.
cFE/CFS (Core Flight Executive/Core Flight System)
NASA Technical Reports Server (NTRS)
Wildermann, Charles P.
2008-01-01
This viewgraph presentation describes in detail the requirements and goals of the Core Flight Executive (cFE) and the Core Flight System (CFS). The Core Flight Software System is a mission independent, platform-independent, Flight Software (FSW) environment integrating a reusable core flight executive (cFE). The CFS goals include: 1) Reduce time to deploy high quality flight software; 2) Reduce project schedule and cost uncertainty; 3) Directly facilitate formalized software reuse; 4) Enable collaboration across organizations; 5) Simplify sustaining engineering (AKA. FSW maintenance); 6) Scale from small instruments to System of Systems; 7) Platform for advanced concepts and prototyping; and 7) Common standards and tools across the branch and NASA wide.
Workstation-Based Avionics Simulator to Support Mars Science Laboratory Flight Software Development
NASA Technical Reports Server (NTRS)
Henriquez, David; Canham, Timothy; Chang, Johnny T.; McMahon, Elihu
2008-01-01
The Mars Science Laboratory developed the WorkStation TestSet (WSTS) to support flight software development. The WSTS is the non-real-time flight avionics simulator that is designed to be completely software-based and run on a workstation class Linux PC. This provides flight software developers with their own virtual avionics testbed and allows device-level and functional software testing when hardware testbeds are either not yet available or have limited availability. The WSTS has successfully off-loaded many flight software development activities from the project testbeds. At the writing of this paper, the WSTS has averaged an order of magnitude more usage than the project's hardware testbeds.
NASA Technical Reports Server (NTRS)
1972-01-01
The shuttle GN&C software functions for horizontal flight operations are defined. Software functional requirements are grouped into two categories: first horizontal flight requirements and full mission horizontal flight requirements. The document privides the intial step in the shuttle GN&C software design process. It also serves as a management tool to identify analyses which are required to define requirements.
An assessment of space shuttle flight software development processes
NASA Technical Reports Server (NTRS)
1993-01-01
In early 1991, the National Aeronautics and Space Administration's (NASA's) Office of Space Flight commissioned the Aeronautics and Space Engineering Board (ASEB) of the National Research Council (NRC) to investigate the adequacy of the current process by which NASA develops and verifies changes and updates to the Space Shuttle flight software. The Committee for Review of Oversight Mechanisms for Space Shuttle Flight Software Processes was convened in Jan. 1992 to accomplish the following tasks: (1) review the entire flight software development process from the initial requirements definition phase to final implementation, including object code build and final machine loading; (2) review and critique NASA's independent verification and validation process and mechanisms, including NASA's established software development and testing standards; (3) determine the acceptability and adequacy of the complete flight software development process, including the embedded validation and verification processes through comparison with (1) generally accepted industry practices, and (2) generally accepted Department of Defense and/or other government practices (comparing NASA's program with organizations and projects having similar volumes of software development, software maturity, complexity, criticality, lines of code, and national standards); (4) consider whether independent verification and validation should continue. An overview of the study, independent verification and validation of critical software, and the Space Shuttle flight software development process are addressed. Findings and recommendations are presented.
Wang, Ningli; Wang, Bingsong; Zhai, Gaoshou; Lei, Kun; Wang, Lan; Congdon, Nathan
2007-05-01
To describe and evaluate a new method for measuring anterior chamber volume (ACV). Observational case series. The authors measured ACV using the anterior chamber (AC) optical coherence tomographer (OCT) and applied image-processing software developed by them. Repeatability was evaluated. The ACV was measured in patient groups with normal ACs, shallow ACs, and deep ACs. The volume difference before and after laser peripheral iridotomy (LPI) was analyzed for the shallow and deep groups. Coefficients of repeatability for intraoperator, interoperator, and interimage measurements were 0.406%, 0.958%, and 0.851%, respectively. The limits of agreement for intraoperator and interoperator measurement were -0.911 microl to 1.343 microl and -7.875 microl to -2.463 microl, respectively. There were significant ACV differences in normal, shallow, and deep AC eyes (P < .001) and before and after LPI in shallow AC (P < .001) and deep AC (P = .008) eyes. The ACV values obtained by this method were repeatable and in accord with clinical observation.
Initial flight qualification and operational maintenance of X-29A flight software
NASA Technical Reports Server (NTRS)
Earls, Michael R.; Sitz, Joel R.
1989-01-01
A discussion is presented of some significant aspects of the initial flight qualification and operational maintenance of the flight control system softward for the X-29A technology demonstrator. Flight qualification and maintenance of complex, embedded flight control system software poses unique problems. The X-29A technology demonstrator aircraft has a digital flight control system which incorporates functions generally considered too complex for analog systems. Organizational responsibilities, software assurance issues, tools, and facilities are discussed.
Software Engineering Research/Developer Collaborations (C104)
NASA Technical Reports Server (NTRS)
Shell, Elaine; Shull, Forrest
2005-01-01
The goal of this collaboration was to produce Flight Software Branch (FSB) process standards for software inspections which could be used across three new missions within the FSB. The standard was developed by Dr. Forrest Shull (Fraunhofer Center for Experimental Software Engineering, Maryland) using the Perspective-Based Inspection approach, (PBI research has been funded by SARP) , then tested on a pilot Branch project. Because the short time scale of the collaboration ruled out a quantitative evaluation, it would be decided whether the standard was suitable for roll-out to other Branch projects based on a qualitative measure: whether the standard received high ratings from Branch personnel as to usability and overall satisfaction. The project used for piloting the Perspective-Based Inspection approach was a multi-mission framework designed for reuse. This was a good choice because key representatives from the three new missions would be involved in the inspections. The perspective-based approach was applied to produce inspection procedures tailored for the specific quality needs of the branch. The technical information to do so was largely drawn through a series of interviews with Branch personnel. The framework team used the procedures to review requirements. The inspections were useful for indicating that a restructuring of the requirements document was needed, which led to changes in the development project plan. The standard was sent out to other Branch personnel for review. Branch personnel were very positive. However, important changes were identified because the perspective of Attitude Control System (ACS) developers had not been adequately represented, a result of the specific personnel interviewed. The net result is that with some further work to incorporate the ACS perspective, and in synchrony with the roll out of independent Branch standards, the PBI approach will be implemented in the FSB. Also, the project intends to continue its collaboration with the technology provider (Dr. Forrest Shull) past the end of the grant, to allow a more rigorous quantitative evaluation.
The Legacy of Space Shuttle Flight Software
NASA Technical Reports Server (NTRS)
Hickey, Christopher J.; Loveall, James B.; Orr, James K.; Klausman, Andrew L.
2011-01-01
The initial goals of the Space Shuttle Program required that the avionics and software systems blaze new trails in advancing avionics system technology. Many of the requirements placed on avionics and software were accomplished for the first time on this program. Examples include comprehensive digital fly-by-wire technology, use of a digital databus for flight critical functions, fail operational/fail safe requirements, complex automated redundancy management, and the use of a high-order software language for flight software development. In order to meet the operational and safety goals of the program, the Space Shuttle software had to be extremely high quality, reliable, robust, reconfigurable and maintainable. To achieve this, the software development team evolved a software process focused on continuous process improvement and defect elimination that consistently produced highly predictable and top quality results, providing software managers the confidence needed to sign each Certificate of Flight Readiness (COFR). This process, which has been appraised at Capability Maturity Model (CMM)/Capability Maturity Model Integration (CMMI) Level 5, has resulted in one of the lowest software defect rates in the industry. This paper will present an overview of the evolution of the Primary Avionics Software System (PASS) project and processes over thirty years, an argument for strong statistical control of software processes with examples, an overview of the success story for identifying and driving out errors before flight, a case study of the few significant software issues and how they were either identified before flight or slipped through the process onto a flight vehicle, and identification of the valuable lessons learned over the life of the project.
Lessons from 30 Years of Flight Software
NASA Technical Reports Server (NTRS)
McComas, David C.
2015-01-01
This presentation takes a brief historical look at flight software over the past 30 years, extracts lessons learned and shows how many of the lessons learned are embodied in the Flight Software product line called the core Flight System (cFS). It also captures the lessons learned from developing and applying the cFS.
Failure detection and recovery in the assembly/contingency subsystem
NASA Technical Reports Server (NTRS)
Gantenbein, Rex E.
1993-01-01
The Assembly/Contingency Subsystem (ACS) is the primary communications link on board the Space Station. Any failure in a component of this system or in the external devices through which it communicates with ground-based systems will isolate the Station. The ACS software design includes a failure management capability (ACFM) that provides protocols for failure detection, isolation, and recovery (FDIR). The the ACFM design requirements as outlined in the current ACS software requirements specification document are reviewed. The activities carried out in this review include: (1) an informal, but thorough, end-to-end failure mode and effects analysis of the proposed software architecture for the ACFM; and (2) a prototype of the ACFM software, implemented as a C program under the UNIX operating system. The purpose of this review is to evaluate the FDIR protocols specified in the ACS design and the specifications themselves in light of their use in implementing the ACFM. The basis of failure detection in the ACFM is the loss of signal between the ground and the Station, which (under the appropriate circumstances) will initiate recovery to restore communications. This recovery involves the reconfiguration of the ACS to either a backup set of components or to a degraded communications mode. The initiation of recovery depends largely on the criticality of the failure mode, which is defined by tables in the ACFM and can be modified to provide a measure of flexibility in recovery procedures.
LANDSAT-D flight segment operations manual. Appendix B: OBC software operations
NASA Technical Reports Server (NTRS)
Talipsky, R.
1981-01-01
The LANDSAT 4 satellite contains two NASA standard spacecraft computers and 65,536 words of memory. Onboard computer software is divided into flight executive and applications processors. Both applications processors and the flight executive use one or more of 67 system tables to obtain variables, constants, and software flags. Output from the software for monitoring operation is via 49 OBC telemetry reports subcommutated in the spacecraft telemetry. Information is provided about the flight software as it is used to control the various spacecraft operations and interpret operational OBC telemetry. Processor function descriptions, processor operation, software constraints, processor system tables, processor telemetry, and processor flow charts are presented.
Flight software requirements and design support system
NASA Technical Reports Server (NTRS)
Riddle, W. E.; Edwards, B.
1980-01-01
The desirability and feasibility of computer-augmented support for the pre-implementation activities occurring during the development of flight control software was investigated. The specific topics to be investigated were the capabilities to be included in a pre-implementation support system for flight control software system development, and the specification of a preliminary design for such a system. Further, the pre-implementation support system was to be characterized and specified under the constraints that it: (1) support both description and assessment of flight control software requirements definitions and design specification; (2) account for known software description and assessment techniques; (3) be compatible with existing and planned NASA flight control software development support system; and (4) does not impose, but may encourage, specific development technologies. An overview of the results is given.
Flight Software for the LADEE Mission
NASA Technical Reports Server (NTRS)
Cannon, Howard N.
2015-01-01
The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft was launched on September 6, 2013, and completed its mission on April 17, 2014 with a directed impact to the Lunar Surface. Its primary goals were to examine the lunar atmosphere, measure lunar dust, and to demonstrate high rate laser communications. The LADEE mission was a resounding success, achieving all mission objectives, much of which can be attributed to careful planning and preparation. This paper discusses some of the highlights from the mission, and then discusses the techniques used for developing the onboard Flight Software. A large emphasis for the Flight Software was to develop it within tight schedule and cost constraints. To accomplish this, the Flight Software team leveraged heritage software, used model based development techniques, and utilized an automated test infrastructure. This resulted in the software being delivered on time and within budget. The resulting software was able to meet all system requirements, and had very problems in flight.
Implications of Responsive Space on the Flight Software Architecture
NASA Technical Reports Server (NTRS)
Wilmot, Jonathan
2006-01-01
The Responsive Space initiative has several implications for flight software that need to be addressed not only within the run-time element, but the development infrastructure and software life-cycle process elements as well. The runtime element must at a minimum support Plug & Play, while the development and process elements need to incorporate methods to quickly generate the needed documentation, code, tests, and all of the artifacts required of flight quality software. Very rapid response times go even further, and imply little or no new software development, requiring instead, using only predeveloped and certified software modules that can be integrated and tested through automated methods. These elements have typically been addressed individually with significant benefits, but it is when they are combined that they can have the greatest impact to Responsive Space. The Flight Software Branch at NASA's Goddard Space Flight Center has been developing the runtime, infrastructure and process elements needed for rapid integration with the Core Flight software System (CFS) architecture. The CFS architecture consists of three main components; the core Flight Executive (cFE), the component catalog, and the Integrated Development Environment (DE). This paper will discuss the design of the components, how they facilitate rapid integration, and lessons learned as the architecture is utilized for an upcoming spacecraft.
Building a world-wide open source community around a software framework: progress, dos, and don'ts
NASA Astrophysics Data System (ADS)
Ibsen, Jorge; Antognini, Jonathan; Avarias, Jorge; Caproni, Alessandro; Fuessling, Matthias; Gimenez, Guillermo; Verma, Khushbu; Mora, Matias; Schwarz, Joseph; Staig, Tomás.
2016-08-01
As we all know too well, building up a collaborative community around a software infrastructure is not easy. Besides recruiting enthusiasts to work as part of it, mostly for free, to succeed you also need to overcome a number of technical, sociological, and, to our surprise, some political hurdles. The ALMA Common Software (ACS) was developed at ESO and partner institutions over the course of more than 10 years. While it was mainly intended for the ALMA Observatory, it was early on thought as a generic distributed control framework. ACS has been periodically released to the public through an LGPL license, which encouraged around a dozen non-ALMA institutions to make use of ACS for both industrial and educational applications. In recent years, the Cherenkov Telescope Array and the LLAMA Observatory have also decided to adopt the framework for their own control systems. The aim of the "ACS Community" is to support independent initiatives in making use of the ACS framework and to further contribute to its development. The Community provides access to a growing network of volunteers eager to develop ACS in areas that are not necessarily in ALMA's interests, and/or were not within the original system scope. Current examples are: support for additional OS platforms, extension of supported hardware interfaces, a public code repository and a build farm. The ACS Community makes use of existing collaborations with Chilean and Brazilian universities, reaching out to promising engineers in the making. At the same time, projects actively using ACS have committed valuable resources to assist the Community's work. Well established training programs like the ACS Workshops are also being continued through the Community's work. This paper aims to give a detailed account of the ongoing (second) journey towards establishing a world-wide open source collaboration around ACS. The ACS Community is growing into a horizontal partnership across a decentralized and diversified group of actors, and we are excited about its technical and human potential.
Expecting the Unexpected: Radiation Hardened Software
NASA Technical Reports Server (NTRS)
Penix, John; Mehlitz, Peter C.
2005-01-01
Radiation induced Single Event Effects (SEEs) are a serious problem for spacecraft flight software, potentially leading to a complete loss of mission. Conventional risk mitigation has been focused on hardware, leading to slow, expensive and outdated on-board computing devices, increased power consumption and launch mass. Our approach is to look at SEEs from a software perspective, and to explicitly design flight software so that it can detect and correct the majority of SEES. Radiation hardened flight software will reduce the significant residual residual risk for critical missions and flight phases, and enable more use of inexpensive and fast COTS hardware.
Spacecraft Trajectory Analysis and Mission Planning Simulation (STAMPS) Software
NASA Technical Reports Server (NTRS)
Puckett, Nancy; Pettinger, Kris; Hallstrom,John; Brownfield, Dana; Blinn, Eric; Williams, Frank; Wiuff, Kelli; McCarty, Steve; Ramirez, Daniel; Lamotte, Nicole;
2014-01-01
STAMPS simulates either three- or six-degree-of-freedom cases for all spacecraft flight phases using translated HAL flight software or generic GN&C models. Single or multiple trajectories can be simulated for use in optimization and dispersion analysis. It includes math models for the vehicle and environment, and currently features a "C" version of shuttle onboard flight software. The STAMPS software is used for mission planning and analysis within ascent/descent, rendezvous, proximity operations, and navigation flight design areas.
Cassini's Test Methodology for Flight Software Verification and Operations
NASA Technical Reports Server (NTRS)
Wang, Eric; Brown, Jay
2007-01-01
The Cassini spacecraft was launched on 15 October 1997 on a Titan IV-B launch vehicle. The spacecraft is comprised of various subsystems, including the Attitude and Articulation Control Subsystem (AACS). The AACS Flight Software (FSW) and its development has been an ongoing effort, from the design, development and finally operations. As planned, major modifications to certain FSW functions were designed, tested, verified and uploaded during the cruise phase of the mission. Each flight software upload involved extensive verification testing. A standardized FSW testing methodology was used to verify the integrity of the flight software. This paper summarizes the flight software testing methodology used for verifying FSW from pre-launch through the prime mission, with an emphasis on flight experience testing during the first 2.5 years of the prime mission (July 2004 through January 2007).
Experience with Ada on the F-18 High Alpha Research Vehicle Flight Test Program
NASA Technical Reports Server (NTRS)
Regenie, Victoria A.; Earls, Michael; Le, Jeanette; Thomson, Michael
1992-01-01
Considerable experience was acquired with Ada at the NASA Dryden Flight Research Facility during the on-going High Alpha Technology Program. In this program, an F-18 aircraft was highly modified by the addition of thrust-vectoring vanes to the airframe. In addition, substantial alteration was made in the original quadruplex flight control system. The result is the High Alpha Research Vehicle. An additional research flight control computer was incorporated in each of the four channels. Software for the research flight control computer was written in Ada. To date, six releases of this software have been flown. This paper provides a detailed description of the modifications to the research flight control system. Efficient ground-testing of the software was accomplished by using simulations that used the Ada for portions of their software. These simulations are also described. Modifying and transferring the Ada for flight software to the software simulation configuration has allowed evaluation of this language. This paper also discusses such significant issues in using Ada as portability, modifiability, and testability as well as documentation requirements.
Experience with Ada on the F-18 High Alpha Research Vehicle flight test program
NASA Technical Reports Server (NTRS)
Regenie, Victoria A.; Earls, Michael; Le, Jeanette; Thomson, Michael
1994-01-01
Considerable experience has been acquired with Ada at the NASA Dryden Flight Research Facility during the on-going High Alpha Technology Program. In this program, an F-18 aircraft has been highly modified by the addition of thrust-vectoring vanes to the airframe. In addition, substantial alteration was made in the original quadruplex flight control system. The result is the High Alpha Research Vehicle. An additional research flight control computer was incorporated in each of the four channels. Software for the research flight control computer was written Ada. To date, six releases of this software have been flown. This paper provides a detailed description of the modifications to the research flight control system. Efficient ground-testing of the software was accomplished by using simulations that used the Ada for portions of their software. These simulations are also described. Modifying and transferring the Ada flight software to the software simulation configuration has allowed evaluation of this language. This paper also discusses such significant issues in using Ada as portability, modifiability, and testability as well as documentation requirements.
Framework Based Guidance Navigation and Control Flight Software Development
NASA Technical Reports Server (NTRS)
McComas, David
2007-01-01
This viewgraph presentation describes NASA's guidance navigation and control flight software development background. The contents include: 1) NASA/Goddard Guidance Navigation and Control (GN&C) Flight Software (FSW) Development Background; 2) GN&C FSW Development Improvement Concepts; and 3) GN&C FSW Application Framework.
NASA Technical Reports Server (NTRS)
Shell, Elaine M.; Lue, Yvonne; Chu, Martha I.
1999-01-01
Flight software is a mission critical element of spacecraft functionality and performance. When ground operations personnel interface to a spacecraft, they are typically dealing almost entirely with the capabilities of onboard software. This software, even more than critical ground/flight communications systems, is expected to perform perfectly during all phases of spacecraft life. Due to the fact that it can be reprogrammed on-orbit to accommodate degradations or failures in flight hardware, new insights into spacecraft characteristics, new control options which permit enhanced science options, etc., the on- orbit flight software maintenance team is usually significantly responsible for the long term success of a science mission. Failure of flight software to perform as needed can result in very expensive operations work-around costs and lost science opportunities. There are three basic approaches to maintaining spacecraft software--namely using the original developers, using the mission operations personnel, or assembling a center of excellence for multi-spacecraft software maintenance. Not planning properly for flight software maintenance can lead to unnecessarily high on-orbit costs and/or unacceptably long delays, or errors, in patch installations. A common approach for flight software maintenance is to access the original development staff. The argument for utilizing the development staff is that the people who developed the software will be the best people to modify the software on-orbit. However, it can quickly becomes a challenge to obtain the services of these key people. They may no longer be available to the organization. They may have a more urgent job to perform, quite likely on another project under different project management. If they havn't worked on the software for a long time, they may need precious time for refamiliarization to the software, testbeds and tools. Further, a lack of insight into issues related to flight software in its on-orbit environment, may find the developer unprepared for the challenges. The second approach is to train a member of the flight operations team to maintain the spacecraft software. This can prove to be a costly and inflexible solution. The person assigned to this duty may not have enough work to do during a problem free period and may have too much to do when a problem arises. If the person is a talented software engineer, he/she may not enjoy the limited software opportunities available in this position; and may eventually leave for newer technology computer science opportunities. Training replacement flight software personnel can be a difficult and lengthy process. The third approach is to assemble a center of excellence for on-orbit spacecraft software maintenance. Personnel in this specialty center can be managed to support flight software of multiple missions at once. The variety of challenges among a set of on-orbit missions, can result in a dedicated, talented staff which is fully trained and available to support each mission's needs. Such staff are not software developers but are rather spacecraft software systems engineers. The cost to any one mission is extremely low because the software staff works and charges, minimally on missions with no current operations issues; and their professional insight into on-orbit software troubleshooting and maintenance methods ensures low risk, effective and minimal-cost solutions to on-orbit issues.
Simulation Testing of Embedded Flight Software
NASA Technical Reports Server (NTRS)
Shahabuddin, Mohammad; Reinholtz, William
2004-01-01
Virtual Real Time (VRT) is a computer program for testing embedded flight software by computational simulation in a workstation, in contradistinction to testing it in its target central processing unit (CPU). The disadvantages of testing in the target CPU include the need for an expensive test bed, the necessity for testers and programmers to take turns using the test bed, and the lack of software tools for debugging in a real-time environment. By virtue of its architecture, most of the flight software of the type in question is amenable to development and testing on workstations, for which there is an abundance of commercially available debugging and analysis software tools. Unfortunately, the timing of a workstation differs from that of a target CPU in a test bed. VRT, in conjunction with closed-loop simulation software, provides a capability for executing embedded flight software on a workstation in a close-to-real-time environment. A scale factor is used to convert between execution time in VRT on a workstation and execution on a target CPU. VRT includes high-resolution operating- system timers that enable the synchronization of flight software with simulation software and ground software, all running on different workstations.
Analyzing the Core Flight Software (CFS) with SAVE
NASA Technical Reports Server (NTRS)
Ganesan, Dharmalingam; Lindvall, Mikael; McComas, David
2008-01-01
This viewgraph presentation describes the SAVE tool and it's application to Core Flight Software (CFS). The contents include: 1) Fraunhofer-a short intro; 2) Context of this Collaboration; 3) CFS-Core Flight Software?; 4) The SAVE Tool; 5) Applying SAVE to CFS -A few example analyses; and 6) Goals.
Automated verification of flight software. User's manual
NASA Technical Reports Server (NTRS)
Saib, S. H.
1982-01-01
(Automated Verification of Flight Software), a collection of tools for analyzing source programs written in FORTRAN and AED is documented. The quality and the reliability of flight software are improved by: (1) indented listings of source programs, (2) static analysis to detect inconsistencies in the use of variables and parameters, (3) automated documentation, (4) instrumentation of source code, (5) retesting guidance, (6) analysis of assertions, (7) symbolic execution, (8) generation of verification conditions, and (9) simplification of verification conditions. Use of AVFS in the verification of flight software is described.
Flight code validation simulator
NASA Astrophysics Data System (ADS)
Sims, Brent A.
1996-05-01
An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer and reads and writes actual hardware sensor locations in which Inertial Measurement Unit data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System in January of 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.
Weckwerth, Wolfram; Wienkoop, Stefanie; Hoehenwarter, Wolfgang; Egelhofer, Volker; Sun, Xiaoliang
2014-01-01
Genome sequencing and systems biology are revolutionizing life sciences. Proteomics emerged as a fundamental technique of this novel research area as it is the basis for gene function analysis and modeling of dynamic protein networks. Here a complete proteomics platform suited for functional genomics and systems biology is presented. The strategy includes MAPA (mass accuracy precursor alignment; http://www.univie.ac.at/mosys/software.html ) as a rapid exploratory analysis step; MASS WESTERN for targeted proteomics; COVAIN ( http://www.univie.ac.at/mosys/software.html ) for multivariate statistical analysis, data integration, and data mining; and PROMEX ( http://www.univie.ac.at/mosys/databases.html ) as a database module for proteogenomics and proteotypic peptides for targeted analysis. Moreover, the presented platform can also be utilized to integrate metabolomics and transcriptomics data for the analysis of metabolite-protein-transcript correlations and time course analysis using COVAIN. Examples for the integration of MAPA and MASS WESTERN data, proteogenomic and metabolic modeling approaches for functional genomics, phosphoproteomics by integration of MOAC (metal-oxide affinity chromatography) with MAPA, and the integration of metabolomics, transcriptomics, proteomics, and physiological data using this platform are presented. All software and step-by-step tutorials for data processing and data mining can be downloaded from http://www.univie.ac.at/mosys/software.html.
2003-08-01
Force of blades Extreme Moderate Moderate Moderate Temperature Heating, no A/C Heating, no A/C Heating, no A/C Heating, no A/C In-flight refueling Yes...CASEVAC CUBE CASEVAC PRICE 6515013215211 Airway Kit Percutaneous Emergency Adult Sterile Disposable 1.00 EA 0.2000 0.0500 $206.27 6515011676637...UI CASEVAC WEIGHT CASEVAC CUBE CASEVAC PRICE 6515014661488 Crystalloid and Colloid Pump Cartridges And IV Sets for the Power Infuser. Sterile
Software Reliability Analysis of NASA Space Flight Software: A Practical Experience
Sukhwani, Harish; Alonso, Javier; Trivedi, Kishor S.; Mcginnis, Issac
2017-01-01
In this paper, we present the software reliability analysis of the flight software of a recently launched space mission. For our analysis, we use the defect reports collected during the flight software development. We find that this software was developed in multiple releases, each release spanning across all software life-cycle phases. We also find that the software releases were developed and tested for four different hardware platforms, spanning from off-the-shelf or emulation hardware to actual flight hardware. For releases that exhibit reliability growth or decay, we fit Software Reliability Growth Models (SRGM); otherwise we fit a distribution function. We find that most releases exhibit reliability growth, with Log-Logistic (NHPP) and S-Shaped (NHPP) as the best-fit SRGMs. For the releases that experience reliability decay, we investigate the causes for the same. We find that such releases were the first software releases to be tested on a new hardware platform, and hence they encountered major hardware integration issues. Also such releases seem to have been developed under time pressure in order to start testing on the new hardware platform sooner. Such releases exhibit poor reliability growth, and hence exhibit high predicted failure rate. Other problems include hardware specification changes and delivery delays from vendors. Thus, our analysis provides critical insights and inputs to the management to improve the software development process. As NASA has moved towards a product line engineering for its flight software development, software for future space missions will be developed in a similar manner and hence the analysis results for this mission can be considered as a baseline for future flight software missions. PMID:29278255
Software Reliability Analysis of NASA Space Flight Software: A Practical Experience.
Sukhwani, Harish; Alonso, Javier; Trivedi, Kishor S; Mcginnis, Issac
2016-01-01
In this paper, we present the software reliability analysis of the flight software of a recently launched space mission. For our analysis, we use the defect reports collected during the flight software development. We find that this software was developed in multiple releases, each release spanning across all software life-cycle phases. We also find that the software releases were developed and tested for four different hardware platforms, spanning from off-the-shelf or emulation hardware to actual flight hardware. For releases that exhibit reliability growth or decay, we fit Software Reliability Growth Models (SRGM); otherwise we fit a distribution function. We find that most releases exhibit reliability growth, with Log-Logistic (NHPP) and S-Shaped (NHPP) as the best-fit SRGMs. For the releases that experience reliability decay, we investigate the causes for the same. We find that such releases were the first software releases to be tested on a new hardware platform, and hence they encountered major hardware integration issues. Also such releases seem to have been developed under time pressure in order to start testing on the new hardware platform sooner. Such releases exhibit poor reliability growth, and hence exhibit high predicted failure rate. Other problems include hardware specification changes and delivery delays from vendors. Thus, our analysis provides critical insights and inputs to the management to improve the software development process. As NASA has moved towards a product line engineering for its flight software development, software for future space missions will be developed in a similar manner and hence the analysis results for this mission can be considered as a baseline for future flight software missions.
Instrument Pilot: Airplane. Flight Test Guide, Part 61 Revised 1973, AC 61-56.
ERIC Educational Resources Information Center
Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.
This flight test guide is designed to assist the applicant and his instructor in preparing for the flight test for Instrument Pilot Airplane Rating under Part 61 (revised) of Federal Aviation Regulations. It contains information concerning pilot operations, procedures, and maneuvers relevant to the flight test required for the Instrument Rating.…
78 FR 32349 - Airworthiness Directives; Cessna Aircraft Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-30
... occurs first: Inspect the A/C compressor motor to determine whether P/N 1134104-1 or P/N 1134104-5 is... number of the A/C compressor motor can be conclusively determined from that review. (h) Inspection of..., any A/C compressor motor is found having P/N 1134104-1 or P/N 1134104-5: Within 30 days or 10 flight...
A Unique Software System For Simulation-to-Flight Research
NASA Technical Reports Server (NTRS)
Chung, Victoria I.; Hutchinson, Brian K.
2001-01-01
"Simulation-to-Flight" is a research development concept to reduce costs and increase testing efficiency of future major aeronautical research efforts at NASA. The simulation-to-flight concept is achieved by using common software and hardware, procedures, and processes for both piloted-simulation and flight testing. This concept was applied to the design and development of two full-size transport simulators, a research system installed on a NASA B-757 airplane, and two supporting laboratories. This paper describes the software system that supports the simulation-to-flight facilities. Examples of various simulation-to-flight experimental applications were also provided.
Introducing high performance distributed logging service for ACS
NASA Astrophysics Data System (ADS)
Avarias, Jorge A.; López, Joao S.; Maureira, Cristián; Sommer, Heiko; Chiozzi, Gianluca
2010-07-01
The ALMA Common Software (ACS) is a software framework that provides the infrastructure for the Atacama Large Millimeter Array and other projects. ACS, based on CORBA, offers basic services and common design patterns for distributed software. Every properly built system needs to be able to log status and error information. Logging in a single computer scenario can be as easy as using fprintf statements. However, in a distributed system, it must provide a way to centralize all logging data in a single place without overloading the network nor complicating the applications. ACS provides a complete logging service infrastructure in which every log has an associated priority and timestamp, allowing filtering at different levels of the system (application, service and clients). Currently the ACS logging service uses an implementation of the CORBA Telecom Log Service in a customized way, using only a minimal subset of the features provided by the standard. The most relevant feature used by ACS is the ability to treat the logs as event data that gets distributed over the network in a publisher-subscriber paradigm. For this purpose the CORBA Notification Service, which is resource intensive, is used. On the other hand, the Data Distribution Service (DDS) provides an alternative standard for publisher-subscriber communication for real-time systems, offering better performance and featuring decentralized message processing. The current document describes how the new high performance logging service of ACS has been modeled and developed using DDS, replacing the Telecom Log Service. Benefits and drawbacks are analyzed. A benchmark is presented comparing the differences between the implementations.
Product assurance policies and procedures for flight dynamics software development
NASA Technical Reports Server (NTRS)
Perry, Sandra; Jordan, Leon; Decker, William; Page, Gerald; Mcgarry, Frank E.; Valett, Jon
1987-01-01
The product assurance policies and procedures necessary to support flight dynamics software development projects for Goddard Space Flight Center are presented. The quality assurance and configuration management methods and tools for each phase of the software development life cycles are described, from requirements analysis through acceptance testing; maintenance and operation are not addressed.
1960-03-01
BELL XV-3 (AF54-148) Convertiplane (experimental tilt rotor) IN FLIGHT Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig. 121
Software control and system configuration management - A process that works
NASA Technical Reports Server (NTRS)
Petersen, K. L.; Flores, C., Jr.
1983-01-01
A comprehensive software control and system configuration management process for flight-crucial digital control systems of advanced aircraft has been developed and refined to insure efficient flight system development and safe flight operations. Because of the highly complex interactions among the hardware, software, and system elements of state-of-the-art digital flight control system designs, a systems-wide approach to configuration control and management has been used. Specific procedures are implemented to govern discrepancy reporting and reconciliation, software and hardware change control, systems verification and validation testing, and formal documentation requirements. An active and knowledgeable configuration control board reviews and approves all flight system configuration modifications and revalidation tests. This flexible process has proved effective during the development and flight testing of several research aircraft and remotely piloted research vehicles with digital flight control systems that ranged from relatively simple to highly complex, integrated mechanizations.
Software control and system configuration management: A systems-wide approach
NASA Technical Reports Server (NTRS)
Petersen, K. L.; Flores, C., Jr.
1984-01-01
A comprehensive software control and system configuration management process for flight-crucial digital control systems of advanced aircraft has been developed and refined to insure efficient flight system development and safe flight operations. Because of the highly complex interactions among the hardware, software, and system elements of state-of-the-art digital flight control system designs, a systems-wide approach to configuration control and management has been used. Specific procedures are implemented to govern discrepancy reporting and reconciliation, software and hardware change control, systems verification and validation testing, and formal documentation requirements. An active and knowledgeable configuration control board reviews and approves all flight system configuration modifications and revalidation tests. This flexible process has proved effective during the development and flight testing of several research aircraft and remotely piloted research vehicles with digital flight control systems that ranged from relatively simple to highly complex, integrated mechanizations.
NASA Astrophysics Data System (ADS)
Syafiqah Syahirah Mohamed, Nor; Amalina Banu Mohamat Adek, Noor; Hamid, Nurul Farhana Abd
2018-03-01
This paper presents the development of Graphical User Interface (GUI) software for sizing main component in AC coupled photovoltaic (PV) hybrid power system based on Malaysia climate. This software provides guideline for PV system integrator to design effectively the size of components and system configuration to match the system and load requirement with geographical condition. The concept of the proposed software is balancing the annual average renewable energy generation and load demand. In this study, the PV to diesel generator (DG) ratio is introduced by considering the hybrid system energy contribution. The GUI software is able to size the main components in the PV hybrid system to meet with the set target of energy contribution ratio. The rated powers of the components to be defined are PV array, grid-tie inverter, bi-directional inverter, battery storage and DG. GUI is used to perform all the system sizing procedures to make it user friendly interface as a sizing tool for AC coupled PV hybrid system. The GUI will be done by using Visual Studio 2015 based on the real data under Malaysia Climate.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-16
... technical support for the production of computer software. The company reports that workers leased from Affiliated Computer Services, Inc., (ACS) were employed on-site at the Provo, Utah location of Novell, Inc... On-Site Leased Workers From Affiliated Computer Services, Inc., (ACS), Provo, UT; Amended...
Comprehensive Software Eases Air Traffic Management
NASA Technical Reports Server (NTRS)
2007-01-01
To help air traffic control centers improve the safety and the efficiency of the National Airspace System, Ames Research Center developed the Future Air Traffic Management Concepts Evaluation Tool (FACET) software, which won NASA's 2006 "Software of the Year" competition. In 2005, Ames licensed FACET to Flight Explorer Inc., for integration into its Flight Explorer (version 6.0) software. The primary FACET features incorporated in the Flight Explorer software system alert airspace users to forecasted demand and capacity imbalances. Advance access to this information helps dispatchers anticipate congested sectors (airspace) and delays at airports, and decide if they need to reroute flights. FACET is now a fully integrated feature in the Flight Explorer Professional Edition (version 7.0). Flight Explorer Professional offers end-users other benefits, including ease of operation; automatic alerts to inform users of important events such as weather conditions and potential airport delays; and international, real-time flight coverage over Canada, the United Kingdom, New Zealand, and sections of the Atlantic and Pacific Oceans. Flight Explorer Inc. recently broadened coverage by partnering with Honeywell International Inc.'s Global Data Center, Blue Sky Network, Sky Connect LLC, SITA, ARINC Incorporated, Latitude Technologies Corporation, and Wingspeed Corporation, to track their aircraft anywhere in the world.
Proteomics of the Autographa californica Nucleopolyhedrovirus Budded Virions ▿
Wang, RanRan; Deng, Fei; Hou, Dianhai; Zhao, Yong; Guo, Lin; Wang, Hualin; Hu, Zhihong
2010-01-01
Baculoviruses produce two progeny phenotypes during their replication cycles. The occlusion-derived virus (ODV) is responsible for initiating primary infection in the larval midgut, and the budded virus (BV) phenotype is responsible for the secondary infection. The proteomics of several baculovirus ODVs have been revealed, but so far, no extensive analysis of BV-associated proteins has been conducted. In this study, the protein composition of the BV of Autographa californica nucleopolyhedrovirus (AcMNPV), the type species of baculoviruses, was analyzed by various mass spectrometry (MS) techniques, including liquid chromatography-triple quadrupole linear ion trap (LC-Qtrap), liquid chromatography-quadrupole time of flight (LC-Q-TOF), and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF). SDS-PAGE and MALDI-TOF analyses showed that the three most abundant proteins of the AcMNPV BV were GP64, VP39, and P6.9. A total of 34 viral proteins associated with the AcMNPV BV were identified by the indicated methods. Thirteen of these proteins, PP31, AC58/59, AC66, IAP-2, AC73, AC74, AC114, AC124, chitinase, polyhedron envelope protein (PEP), AC132, ODV-E18, and ODV-E56, were identified for the first time to be BV-associated proteins. Western blot analyses showed that ODV-E18 and ODV-E25, which were previously thought to be ODV-specific proteins, were also present in the envelop fraction of BV. In addition, 11 cellular proteins were found to be associated with the AcMNPV BV by both LC-Qtrap and LC-Q-TOF analyses. Interestingly, seven of these proteins were also identified in other enveloped viruses, suggesting that many enveloped viruses may commonly utilize certain conserved cellular pathways. PMID:20444894
NASA Technical Reports Server (NTRS)
King, Ellis; Hart, Jeremy; Odegard, Ryan
2010-01-01
The Orion Crew Exploration Vehicle (CET) is being designed to include significantly more automation capability than either the Space Shuttle or the International Space Station (ISS). In particular, the vehicle flight software has requirements to accommodate increasingly automated missions throughout all phases of flight. A data-driven flight software architecture will provide an evolvable automation capability to sequence through Guidance, Navigation & Control (GN&C) flight software modes and configurations while maintaining the required flexibility and human control over the automation. This flexibility is a key aspect needed to address the maturation of operational concepts, to permit ground and crew operators to gain trust in the system and mitigate unpredictability in human spaceflight. To allow for mission flexibility and reconfrgurability, a data driven approach is being taken to load the mission event plan as well cis the flight software artifacts associated with the GN&C subsystem. A database of GN&C level sequencing data is presented which manages and tracks the mission specific and algorithm parameters to provide a capability to schedule GN&C events within mission segments. The flight software data schema for performing automated mission sequencing is presented with a concept of operations for interactions with ground and onboard crew members. A prototype architecture for fault identification, isolation and recovery interactions with the automation software is presented and discussed as a forward work item.
Incorporating Manual and Autonomous Code Generation
NASA Technical Reports Server (NTRS)
McComas, David
1998-01-01
Code can be generated manually or using code-generated software tools, but how do you interpret the two? This article looks at a design methodology that combines object-oriented design with autonomic code generation for attitude control flight software. Recent improvements in space flight computers are allowing software engineers to spend more time engineering the applications software. The application developed was the attitude control flight software for an astronomical satellite called the Microwave Anisotropy Probe (MAP). The MAP flight system is being designed, developed, and integrated at NASA's Goddard Space Flight Center. The MAP controls engineers are using Integrated Systems Inc.'s MATRIXx for their controls analysis. In addition to providing a graphical analysis for an environment, MATRIXx includes an autonomic code generation facility called AutoCode. This article examines the forces that shaped the final design and describes three highlights of the design process: (1) Defining the manual to autonomic code interface; (2) Applying object-oriented design to the manual flight code; (3) Implementing the object-oriented design in C.
Functional description of the ISIS system
NASA Technical Reports Server (NTRS)
Berman, W. J.
1979-01-01
Development of software for avionic and aerospace applications (flight software) is influenced by a unique combination of factors which includes: (1) length of the life cycle of each project; (2) necessity for cooperation between the aerospace industry and NASA; (3) the need for flight software that is highly reliable; (4) the increasing complexity and size of flight software; and (5) the high quality of the programmers and the tightening of project budgets. The interactive software invocation system (ISIS) which is described is designed to overcome the problems created by this combination of factors.
The Curiosity Mars Rover's Fault Protection Engine
NASA Technical Reports Server (NTRS)
Benowitz, Ed
2014-01-01
The Curiosity Rover, currently operating on Mars, contains flight software onboard to autonomously handle aspects of system fault protection. Over 1000 monitors and 39 responses are present in the flight software. Orchestrating these behaviors is the flight software's fault protection engine. In this paper, we discuss the engine's design, responsibilities, and present some lessons learned for future missions.
Research flight software engineering and MUST, an integrated system of support tools
NASA Technical Reports Server (NTRS)
Straeter, T. A.; Foudriat, E. C.; Will, R. W.
1977-01-01
Consideration is given to software development to support NASA flight research. The Multipurpose User-Oriented Software Technology (MUST) program, designed to integrate digital systems into flight research, is discussed. Particular attention is given to the program's special interactive user interface, subroutine library, assemblers, compiler, automatic documentation tools, and test and simulation subsystems.
1976-09-21
Crows Landing Naval Auxiliary Landing Field and flight research facility, Crows Landing, CA Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig. 109
1985-03-12
XV-15 Tilt Rotor (NASA-703) in flight at Ames Research Center Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig 122
NASA Technical Reports Server (NTRS)
Hammrs, Stephan R.
2008-01-01
Virtual Satellite (VirtualSat) is a computer program that creates an environment that facilitates the development, verification, and validation of flight software for a single spacecraft or for multiple spacecraft flying in formation. In this environment, enhanced functionality and autonomy of navigation, guidance, and control systems of a spacecraft are provided by a virtual satellite that is, a computational model that simulates the dynamic behavior of the spacecraft. Within this environment, it is possible to execute any associated software, the development of which could benefit from knowledge of, and possible interaction (typically, exchange of data) with, the virtual satellite. Examples of associated software include programs for simulating spacecraft power and thermal- management systems. This environment is independent of the flight hardware that will eventually host the flight software, making it possible to develop the software simultaneously with, or even before, the hardware is delivered. Optionally, by use of interfaces included in VirtualSat, hardware can be used instead of simulated. The flight software, coded in the C or C++ programming language, is compilable and loadable into VirtualSat without any special modifications. Thus, VirtualSat can serve as a relatively inexpensive software test-bed for development test, integration, and post-launch maintenance of spacecraft flight software.
NASA Technical Reports Server (NTRS)
1979-01-01
Application software intended to reduce the man-hours required per flight design cycle by producing major flight design documents with little or no manual typing is described. The documentation support software is divided into two separately executable processors. However, since both processors support the same overall functions, and most of the software contained in one is also contained in the other, both are collectively presented.
Software Engineering for Human Spaceflight
NASA Technical Reports Server (NTRS)
Fredrickson, Steven E.
2014-01-01
The Spacecraft Software Engineering Branch of NASA Johnson Space Center (JSC) provides world-class products, leadership, and technical expertise in software engineering, processes, technology, and systems management for human spaceflight. The branch contributes to major NASA programs (e.g. ISS, MPCV/Orion) with in-house software development and prime contractor oversight, and maintains the JSC Engineering Directorate CMMI rating for flight software development. Software engineering teams work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements. They seek to infuse automation and autonomy into missions, and apply new technologies to flight processor and computational architectures. This presentation will provide an overview of key software-related projects, software methodologies and tools, and technology pursuits of interest to the JSC Spacecraft Software Engineering Branch.
Man-rated flight software for the F-8 DFBW program
NASA Technical Reports Server (NTRS)
Bairnsfather, R. R.
1975-01-01
The design, implementation, and verification of the flight control software used in the F-8 DFBW program are discussed. Since the DFBW utilizes an Apollo computer and hardware, the procedures, controls, and basic management techniques employed are based on those developed for the Apollo software system. Program Assembly Control, simulator configuration control, erasable-memory load generation, change procedures and anomaly reporting are discussed. The primary verification tools--the all-digital simulator, the hybrid simulator, and the Iron Bird simulator--are described, as well as the program test plans and their implementation on the various simulators. Failure-effects analysis and the creation of special failure-generating software for testing purposes are described. The quality of the end product is evidenced by the F-8 DFBW flight test program in which 42 flights, totaling 58 hours of flight time, were successfully made without any DFCS inflight software, or hardware, failures.
A Core Plug and Play Architecture for Reusable Flight Software Systems
NASA Technical Reports Server (NTRS)
Wilmot, Jonathan
2006-01-01
The Flight Software Branch, at Goddard Space Flight Center (GSFC), has been working on a run-time approach to facilitate a formal software reuse process. The reuse process is designed to enable rapid development and integration of high-quality software systems and to more accurately predict development costs and schedule. Previous reuse practices have been somewhat successful when the same teams are moved from project to project. But this typically requires taking the software system in an all-or-nothing approach where useful components cannot be easily extracted from the whole. As a result, the system is less flexible and scalable with limited applicability to new projects. This paper will focus on the rationale behind, and implementation of the run-time executive. This executive is the core for the component-based flight software commonality and reuse process adopted at Goddard.
NASA Technical Reports Server (NTRS)
Straeter, T. A.; Foudriat, E. C.; Will, R. W.
1977-01-01
The objectives of NASA's MUST (Multipurpose User-oriented Software Technology) program at Langley Research Center are to cut the cost of producing software which effectively utilizes digital systems for flight research. These objectives will be accomplished by providing an integrated system of support software tools for use throughout the research flight software development process. A description of the overall MUST program and its progress toward the release of a first MUST system will be presented. This release includes: a special interactive user interface, a library of subroutines, assemblers, a compiler, automatic documentation tools, and a test and simulation system.
Rover Attitude and Pointing System Simulation Testbed
NASA Technical Reports Server (NTRS)
Vanelli, Charles A.; Grinblat, Jonathan F.; Sirlin, Samuel W.; Pfister, Sam
2009-01-01
The MER (Mars Exploration Rover) Attitude and Pointing System Simulation Testbed Environment (RAPSSTER) provides a simulation platform used for the development and test of GNC (guidance, navigation, and control) flight algorithm designs for the Mars rovers, which was specifically tailored to the MERs, but has since been used in the development of rover algorithms for the Mars Science Laboratory (MSL) as well. The software provides an integrated simulation and software testbed environment for the development of Mars rover attitude and pointing flight software. It provides an environment that is able to run the MER GNC flight software directly (as opposed to running an algorithmic model of the MER GNC flight code). This improves simulation fidelity and confidence in the results. Further more, the simulation environment allows the user to single step through its execution, pausing, and restarting at will. The system also provides for the introduction of simulated faults specific to Mars rover environments that cannot be replicated in other testbed platforms, to stress test the GNC flight algorithms under examination. The software provides facilities to do these stress tests in ways that cannot be done in the real-time flight system testbeds, such as time-jumping (both forwards and backwards), and introduction of simulated actuator faults that would be difficult, expensive, and/or destructive to implement in the real-time testbeds. Actual flight-quality codes can be incorporated back into the development-test suite of GNC developers, closing the loop between the GNC developers and the flight software developers. The software provides fully automated scripting, allowing multiple tests to be run with varying parameters, without human supervision.
Bulk data transfer distributer: a high performance multicast model in ALMA ACS
NASA Astrophysics Data System (ADS)
Cirami, R.; Di Marcantonio, P.; Chiozzi, G.; Jeram, B.
2006-06-01
A high performance multicast model for the bulk data transfer mechanism in the ALMA (Atacama Large Millimeter Array) Common Software (ACS) is presented. The ALMA astronomical interferometer will consist of at least 50 12-m antennas operating at millimeter wavelength. The whole software infrastructure for ALMA is based on ACS, which is a set of application frameworks built on top of CORBA. To cope with the very strong requirements for the amount of data that needs to be transported by the software communication channels of the ALMA subsystems (a typical output data rate expected from the Correlator is of the order of 64 MB per second) and with the potential CORBA bottleneck due to parameter marshalling/de-marshalling, usage of IIOP protocol, etc., a transfer mechanism based on the ACE/TAO CORBA Audio/Video (A/V) Streaming Service has been developed. The ACS Bulk Data Transfer architecture bypasses the CORBA protocol with an out-of-bound connection for the data streams (transmitting data directly in TCP or UDP format), using at the same time CORBA for handshaking and leveraging the benefits of ACS middleware. Such a mechanism has proven to be capable of high performances, of the order of 800 Mbits per second on a 1Gbit Ethernet network. Besides a point-to-point communication model, the ACS Bulk Data Transfer provides a multicast model. Since the TCP protocol does not support multicasting and all the data must be correctly delivered to all ALMA subsystems, a distributer mechanism has been developed. This paper focuses on the ACS Bulk Data Distributer, which mimics a multicast behaviour managing data dispatching to all receivers willing to get data from the same sender.
Private and Commercial Pilot; Heliocoptor. Flight Test Guide, Part 61 Revised, AC 61-59.
ERIC Educational Resources Information Center
Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.
This flight test guide assists the applicant and his instructor in preparing for the Private or Commercial Pilot Rotocraft Certificate with Helicopter Rating under Part 61 (revised) of Federal Aviation Regulations. It contains information and guidance concerning the pilot operations, procedures, and maneuvers relevant to the flight test required…
76 FR 27168 - Airmen Transition to Experimental or Unfamiliar Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-10
... airplanes. The current edition of AC 90-89, Amateur-Built and Ultralight Flight Testing Handbook, provides information on such testing. However, if a pilot is planning on participating in a flight-test program in an... airplanes and to flight instructors who teach in these airplanes. This information and guidance contains...
Modular Filter and Source-Management Upgrade of RADAC
NASA Technical Reports Server (NTRS)
Lanzi, R. James; Smith, Donna C.
2007-01-01
In an upgrade of the Range Data Acquisition Computer (RADAC) software, a modular software object library was developed to implement required functionality for filtering of flight-vehicle-tracking data and management of tracking-data sources. (The RADAC software is used to process flight-vehicle metric data for realtime display in the Wallops Flight Facility Range Control Center and Mobile Control Center.)
1984-03-12
Sikorsky RSRA - Rotor Systems Research Aircraft (72-002 NASA 741) in helicopter configuration flight. Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig. 131
Trends in software reliability for digital flight control
NASA Technical Reports Server (NTRS)
Hecht, H.; Hecht, M.
1983-01-01
Software error data of major recent Digital Flight Control Systems Development Programs. The report summarizes the data, compare these data with similar data from previous surveys and identifies trends and disciplines to improve software reliability.
Nonurgent commercial air travel after acute coronary syndrome: a review of 288 patient events.
Pearce, Emily; Haffner, Faith; Brady, Lauren B; Sochor, Mark; Duchateau, Francois X; O'Connor, Robert E; Verner, Laurent; Brady, William J
2014-01-01
We studied a population of individuals who experienced an acute coronary syndrome (ACS) event while traveling abroad and required nonurgent commercial air travel to the home region. This retrospective study gathered data from 288 patients enrolled in a travel-based medical assistance program. Interventions, complications, and travel home were assessed for trends. Descriptive and comparison statistical analyses were performed. Two hundred eighty-eight patients were identified and entered into the review. Of the patients in this study, 77.1% were male with an average age of 67.7 years. One hundred sixteen (40.3%) patients were diagnosed with unstable angina pectoris (USAP), whereas the remaining 172 (59.7%) patients experienced acute myocardial infarction (AMI). Regarding inpatient complications during the initial admission, 121 (42.0%) patients experienced 1 or more adverse event. The average number of days after an ACS event that a patient began to travel home was 10.5 days for the entire patient population (USAP patients = 8.8 days, AMI patients = 11.8 days). Two hundred twenty (76.4%) patients traveled with a medical escort, and 48 (16.7%) patients received supplemental oxygen during air travel. Four (1.4%) in-flight adverse events occurred in the following ACS diagnostic groups: 2 in the complicated AMI group, 1 in the uncomplicated USAP group, and 1 in the uncomplicated AMI group. No in-flight deaths occurred. Nine (3.1%) deaths were noted within 2 weeks after returning to the home region. The deaths after returning to the home region occurred in the following ACS diagnostic groups: 2 in the complicated USAP group, 1 in the uncomplicated USAP group, and 6 in the complicated AMI group. None of the patients who experienced in-flight events died after returning to their home region. Upon discharge, the vast majority of ACS patients who travel to their home region via commercial air do not experience adverse events in-flight; when such adverse events occur in-flight, these events do not result in a poor outcome. No in-flight deaths occurred; death occurred in a minority of patients after returning to their home region, particularly in the complicated USAP and AMI groups, who were planned readmissions to the hospital. Copyright © 2014 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.
The Mars Science Laboratory Entry, Descent, and Landing Flight Software
NASA Technical Reports Server (NTRS)
Gostelow, Kim P.
2013-01-01
This paper describes the design, development, and testing of the EDL program from the perspective of the software engineer. We briefly cover the overall MSL flight software organization, and then the organization of EDL itself. We discuss the timeline, the structure of the GNC code (but not the algorithms as they are covered elsewhere in this conference) and the command and telemetry interfaces. Finally, we cover testing and the influence that testability had on the EDL flight software design.
Artificial intelligence and expert systems in-flight software testing
NASA Technical Reports Server (NTRS)
Demasie, M. P.; Muratore, J. F.
1991-01-01
The authors discuss the introduction of advanced information systems technologies such as artificial intelligence, expert systems, and advanced human-computer interfaces directly into Space Shuttle software engineering. The reconfiguration automation project (RAP) was initiated to coordinate this move towards 1990s software technology. The idea behind RAP is to automate several phases of the flight software testing procedure and to introduce AI and ES into space shuttle flight software testing. In the first phase of RAP, conventional tools to automate regression testing have already been developed or acquired. There are currently three tools in use.
Replacing the IRAF/PyRAF Code-base at STScI: The Advanced Camera for Surveys (ACS)
NASA Astrophysics Data System (ADS)
Lucas, Ray A.; Desjardins, Tyler D.; STScI ACS (Advanced Camera for Surveys) Team
2018-06-01
IRAF/PyRAF are no longer viable on the latest hardware often used by HST observers, therefore STScI no longer actively supports IRAF or PyRAF for most purposes. STScI instrument teams are in the process of converting all of our data processing and analysis code from IRAF/PyRAF to Python, including our calibration reference file pipelines and data reduction software. This is exemplified by our latest ACS Data Handbook, version 9.0, which was recently published in February 2018. Examples of IRAF and PyRAF commands have now been replaced by code blocks in Python, with references linked to documentation on how to download and install the latest Python software via Conda and AstroConda. With the temporary exception of the ACS slitless spectroscopy tool aXe, all ACS-related software is now independent of IRAF/PyRAF. A concerted effort has been made across STScI divisions to help the astronomical community transition from IRAF/PyRAF to Python, with tools such as Python Jupyter notebooks being made to give users workable examples. In addition to our code changes, the new ACS data handbook discusses the latest developments in charge transfer efficiency (CTE) correction, bias de-striping, and updates to the creation and format of calibration reference files among other topics.
New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiss, T.; Chaney, L.; Meyer, J.
Further improvements in vehicle fuel efficiency require accurate evaluation of the vehicle's transient total power requirement. When operated, the air conditioning (A/C) system is the largest auxiliary load on a vehicle; therefore, accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation software, such as 'Autonomie,' has been used by OEMs to evaluate vehicles' energy performance. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic systemmore » simulation software Matlab/Simulink was used to develop new and more efficient vehicle energy system controls. The various modeling methods used for the new simulation tool are described in detail. Comparison with measured data is provided to demonstrate the validity of the model.« less
A study of software management and guidelines for flight projects
NASA Technical Reports Server (NTRS)
1980-01-01
A survey of present software development policies and practices, and an analysis of these policies and practices are summarized. Background information necessary to assess the adequacy of present NASA flight software development approaches is presented.
Modular Software for Spacecraft Navigation Using the Global Positioning System (GPS)
NASA Technical Reports Server (NTRS)
Truong, S. H.; Hartman, K. R.; Weidow, D. A.; Berry, D. L.; Oza, D. H.; Long, A. C.; Joyce, E.; Steger, W. L.
1996-01-01
The Goddard Space Flight Center Flight Dynamics and Mission Operations Divisions have jointly investigated the feasibility of engineering modular Global Positioning SYSTEM (GPS) navigation software to support both real time flight and ground postprocessing configurations. The goals of this effort are to define standard GPS data interfaces and to engineer standard, reusable navigation software components that can be used to build a broad range of GPS navigation support applications. The paper discusses the GPS modular software (GMOD) system and operations concepts, major requirements, candidate software architecture, feasibility assessment and recommended software interface standards. In additon, ongoing efforts to broaden the scope of the initial study and to develop modular software to support autonomous navigation using GPS are addressed,
Small-scale fixed wing airplane software verification flight test
NASA Astrophysics Data System (ADS)
Miller, Natasha R.
The increased demand for micro Unmanned Air Vehicles (UAV) driven by military requirements, commercial use, and academia is creating a need for the ability to quickly and accurately conduct low Reynolds Number aircraft design. There exist several open source software programs that are free or inexpensive that can be used for large scale aircraft design, but few software programs target the realm of low Reynolds Number flight. XFLR5 is an open source, free to download, software program that attempts to take into consideration viscous effects that occur at low Reynolds Number in airfoil design, 3D wing design, and 3D airplane design. An off the shelf, remote control airplane was used as a test bed to model in XFLR5 and then compared to flight test collected data. Flight test focused on the stability modes of the 3D plane, specifically the phugoid mode. Design and execution of the flight tests were accomplished for the RC airplane using methodology from full scale military airplane test procedures. Results from flight test were not conclusive in determining the accuracy of the XFLR5 software program. There were several sources of uncertainty that did not allow for a full analysis of the flight test results. An off the shelf drone autopilot was used as a data collection device for flight testing. The precision and accuracy of the autopilot is unknown. Potential future work should investigate flight test methods for small scale UAV flight.
Experimenting Maintenance of Flight Software in an Integrated Modular Avionics for Space
NASA Astrophysics Data System (ADS)
Hardy, Johan; Laroche, Thomas; Creten, Philippe; Parisis, Paul; Hiller, Martin
2014-08-01
This paper presents an experiment of Flight Software partitioning in an Integrated Modular Avionics for Space (IMA-SP) system. This experiment also tackles the maintenance aspects of IMA-SP systems. The presented case study is PROBA-2 Flight Software. The paper addresses and discusses the following subjects: On-Board Software Maintenance in IMA- SP, boot strategy for Time and Space Partitioning, considerations about the ground segment related to On-Board Software Maintenance in IMA-SP, and architectural impacts of Time and Space Partitioning for PROBA software's. Finally, this paper presents the results and the achievements of the study and it appeals at further perspectives for IMA-SP and Time and Space Partitioning.
NASA Technical Reports Server (NTRS)
Bordano, Aldo; Uhde-Lacovara, JO; Devall, Ray; Partin, Charles; Sugano, Jeff; Doane, Kent; Compton, Jim
1993-01-01
The Navigation, Control and Aeronautics Division (NCAD) at NASA-JSC is exploring ways of producing Guidance, Navigation and Control (GN&C) flight software faster, better, and cheaper. To achieve these goals NCAD established two hardware/software facilities that take an avionics design project from initial inception through high fidelity real-time hardware-in-the-loop testing. Commercially available software products are used to develop the GN&C algorithms in block diagram form and then automatically generate source code from these diagrams. A high fidelity real-time hardware-in-the-loop laboratory provides users with the capability to analyze mass memory usage within the targeted flight computer, verify hardware interfaces, conduct system level verification, performance, acceptance testing, as well as mission verification using reconfigurable and mission unique data. To evaluate these concepts and tools, NCAD embarked on a project to build a real-time 6 DOF simulation of the Soyuz Assured Crew Return Vehicle flight software. To date, a productivity increase of 185 percent has been seen over traditional NASA methods for developing flight software.
NASA Technical Reports Server (NTRS)
Lawrence, Stella
1992-01-01
This paper is concerned with methods of measuring and developing quality software. Reliable flight and ground support software is a highly important factor in the successful operation of the space shuttle program. Reliability is probably the most important of the characteristics inherent in the concept of 'software quality'. It is the probability of failure free operation of a computer program for a specified time and environment.
SLS Flight Software Testing: Using a Modified Agile Software Testing Approach
NASA Technical Reports Server (NTRS)
Bolton, Albanie T.
2016-01-01
NASA's Space Launch System (SLS) is an advanced launch vehicle for a new era of exploration beyond earth's orbit (BEO). The world's most powerful rocket, SLS, will launch crews of up to four astronauts in the agency's Orion spacecraft on missions to explore multiple deep-space destinations. Boeing is developing the SLS core stage, including the avionics that will control vehicle during flight. The core stage will be built at NASA's Michoud Assembly Facility (MAF) in New Orleans, LA using state-of-the-art manufacturing equipment. At the same time, the rocket's avionics computer software is being developed here at Marshall Space Flight Center in Huntsville, AL. At Marshall, the Flight and Ground Software division provides comprehensive engineering expertise for development of flight and ground software. Within that division, the Software Systems Engineering Branch's test and verification (T&V) team uses an agile test approach in testing and verification of software. The agile software test method opens the door for regular short sprint release cycles. The idea or basic premise behind the concept of agile software development and testing is that it is iterative and developed incrementally. Agile testing has an iterative development methodology where requirements and solutions evolve through collaboration between cross-functional teams. With testing and development done incrementally, this allows for increased features and enhanced value for releases. This value can be seen throughout the T&V team processes that are documented in various work instructions within the branch. The T&V team produces procedural test results at a higher rate, resolves issues found in software with designers at an earlier stage versus at a later release, and team members gain increased knowledge of the system architecture by interfacing with designers. SLS Flight Software teams want to continue uncovering better ways of developing software in an efficient and project beneficial manner. Through agile testing, there has been increased value through individuals and interactions over processes and tools, improved customer collaboration, and improved responsiveness to changes through controlled planning. The presentation will describe agile testing methodology as taken with the SLS FSW Test and Verification team at Marshall Space Flight Center.
Adaptive traffic signal control system (ACS-Lite) for Wolf Road, Albany, New York.
DOT National Transportation Integrated Search
2014-10-01
Adaptive Control Software Lite (ACS : - : Lite) is a : traffic : signal timing optimization system that : dynamically adjusts : traffic : signal timing : s : to meet current traffic demands. : The purpose of this : research project : was : to : deplo...
Software Requirements Specification for Lunar IceCube
NASA Astrophysics Data System (ADS)
Glaser-Garbrick, Michael R.
Lunar IceCube is a 6U satellite that will orbit the moon to measure water volatiles as a function of position, altitude, and time, and measure in its various phases. Lunar IceCube, is a collaboration between Morehead State University, Vermont Technical University, Busek, and NASA. The Software Requirements Specification will serve as contract between the overall team and the developers of the flight software. It will provide a system's overview of the software that will be developed for Lunar IceCube, in that it will detail all of the interconnects and protocols for each subsystem's that Lunar IceCube will utilize. The flight software will be written in SPARK to the fullest extent, due to SPARK's unique ability to make software free of any errors. The LIC flight software does make use of a general purpose, reusable application framework called CubedOS. This framework imposes some structuring requirements on the architecture and design of the flight software, but it does not impose any high level requirements. It will also detail the tools that we will be using for Lunar IceCube, such as why we will be utilizing VxWorks.
Private and Commercial Pilot: Glider. Flight Test Guide, Part 61 Revised, AC 61-61.
ERIC Educational Resources Information Center
Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.
This flight test guide assists the applicant and his instructor in preparing for the Private or Commercial Pilot Certificate with Glider Rating under Part 61 (revised) of Federal Aviation Regulations. It contains information and guidance concerning the pilot operations, procedures, and maneuvers relevant to the flight test required for that…
NASA Technical Reports Server (NTRS)
2008-01-01
A system of software partly automates planning of a flight of the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) -- a polarimetric synthetic-aperture radar system aboard an unpiloted or minimally piloted airplane. The software constructs a flight plan that specifies not only the intended flight path but also the setup of the radar system at each point along the path.
ToxPredictor: a Toxicity Estimation Software Tool
The Computational Toxicology Team within the National Risk Management Research Laboratory has developed a software tool that will allow the user to estimate the toxicity for a variety of endpoints (such as acute aquatic toxicity). The software tool is coded in Java and can be ac...
NASA Technical Reports Server (NTRS)
Wilmot, Jonathan
2005-01-01
The contents include the following: High availability. Hardware is in harsh environment. Flight processor (constraints) very widely due to power and weight constraints. Software must be remotely modifiable and still operate while changes are being made. Many custom one of kind interfaces for one of a kind missions. Sustaining engineering. Price of failure is high, tens to hundreds of millions of dollars.
NASA Technical Reports Server (NTRS)
Becker, D. D.
1980-01-01
The orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are examined. Potential interaction with the software is examined through an evaluation of the software requirements. The analysis is restricted to flight software requirements and excludes utility/checkout software. The results of the hardware/software interaction analysis for the forward reaction control system are presented.
Validation and Verification of LADEE Models and Software
NASA Technical Reports Server (NTRS)
Gundy-Burlet, Karen
2013-01-01
The Lunar Atmosphere Dust Environment Explorer (LADEE) mission will orbit the moon in order to measure the density, composition and time variability of the lunar dust environment. The ground-side and onboard flight software for the mission is being developed using a Model-Based Software methodology. In this technique, models of the spacecraft and flight software are developed in a graphical dynamics modeling package. Flight Software requirements are prototyped and refined using the simulated models. After the model is shown to work as desired in this simulation framework, C-code software is automatically generated from the models. The generated software is then tested in real time Processor-in-the-Loop and Hardware-in-the-Loop test beds. Travelling Road Show test beds were used for early integration tests with payloads and other subsystems. Traditional techniques for verifying computational sciences models are used to characterize the spacecraft simulation. A lightweight set of formal methods analysis, static analysis, formal inspection and code coverage analyses are utilized to further reduce defects in the onboard flight software artifacts. These techniques are applied early and often in the development process, iteratively increasing the capabilities of the software and the fidelity of the vehicle models and test beds.
Feasibility of using a knowledge-based system concept for in-flight primary flight display research
NASA Technical Reports Server (NTRS)
Ricks, Wendell R.
1991-01-01
A study was conducted to determine the feasibility of using knowledge-based systems architectures for inflight research of primary flight display information management issues. The feasibility relied on the ability to integrate knowledge-based systems with existing onboard aircraft systems. And, given the hardware and software platforms available, the feasibility also depended on the ability to use interpreted LISP software with the real time operation of the primary flight display. In addition to evaluating these feasibility issues, the study determined whether the software engineering advantages of knowledge-based systems found for this application in the earlier workstation study extended to the inflight research environment. To study these issues, two integrated knowledge-based systems were designed to control the primary flight display according to pre-existing specifications of an ongoing primary flight display information management research effort. These two systems were implemented to assess the feasibility and software engineering issues listed. Flight test results were successful in showing the feasibility of using knowledge-based systems inflight with actual aircraft data.
1993-01-11
Sikorsky UH-60 (USA 82-23748 NASA-748) Airloads research aircraft - Blackhawk helicopter with MUX-Bucket in flight over Livermore, CA. Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig. 135
Auto-Coding UML Statecharts for Flight Software
NASA Technical Reports Server (NTRS)
Benowitz, Edward G; Clark, Ken; Watney, Garth J.
2006-01-01
Statecharts have been used as a means to communicate behaviors in a precise manner between system engineers and software engineers. Hand-translating a statechart to code, as done on some previous space missions, introduces the possibility of errors in the transformation from chart to code. To improve auto-coding, we have developed a process that generates flight code from UML statecharts. Our process is being used for the flight software on the Space Interferometer Mission (SIM).
GSFC Technology Thrusts and Partnership Opportunities
NASA Technical Reports Server (NTRS)
Le Moigne, Jacqueline
2010-01-01
This slide presentation reviews the technology thrusts and the opportunities to partner in developing software in support of the technological advances at the Goddard Space Flight Center (GSFC). There are thrusts in development of end-to-end software systems for mission data systems in areas of flight software, ground data systems, flight dynamic systems and science data systems. The required technical expertise is reviewed, and the supported missions are shown for the various areas given.
Casualty Risk Assessment Controlled Re-Entry of EPS - Ariane 5ES - ATV Mission
NASA Astrophysics Data System (ADS)
Arnal, M.-H.; Laine, N.; Aussilhou, C.
2012-01-01
To fulfil its mission of compliance check to the French Space Operations Act, CNES has developed ELECTRA© tool in order to estimate casualty risk induced by a space activity (like rocket launch, controlled or un-controlled re-entry on Earth of a space object). This article describes the application of such a tool for the EPS controlled re-entry during the second Ariane 5E/S flight (Johannes Kepler mission has been launched in February 2011). EPS is the Ariane 5E/S upper composite which is de-orbited from a 260 km circular orbit after its main mission (release of the Automated Transfer Vehicle - ATV). After a brief description of the launcher, the ATV-mission and a description of all the failure cases taken into account in the mission design (which leads to "back-up scenarios" into the flight software program), the article will describe the steps which lead to the casualty risk assessment (in case of failure) with ELECTRA©. In particular, the presence on board of two propulsive means of de-orbiting (main engine of EPS, and 4 ACS longitudinal nozzles in case of main engine failure or exhaustion) leads to a low remaining casualty risk.
STARS: a software application for the EBEX autonomous daytime star cameras
NASA Astrophysics Data System (ADS)
Chapman, Daniel; Didier, Joy; Hanany, Shaul; Hillbrand, Seth; Limon, Michele; Miller, Amber; Reichborn-Kjennerud, Britt; Tucker, Greg; Vinokurov, Yury
2014-07-01
The E and B Experiment (EBEX) is a balloon-borne telescope designed to probe polarization signals in the CMB resulting from primordial gravitational waves, gravitational lensing, and Galactic dust emission. EBEX completed an 11 day flight over Antarctica in January 2013 and data analysis is underway. EBEX employs two star cameras to achieve its real-time and post-flight pointing requirements. We wrote a software application called STARS to operate, command, and collect data from each of the star cameras, and to interface them with the main flight computer. We paid special attention to make the software robust against potential in-flight failures. We report on the implementation, testing, and successful in flight performance of STARS.
Towards understanding software: 15 years in the SEL
NASA Technical Reports Server (NTRS)
Mcgarry, Frank; Pajerski, Rose
1990-01-01
For 15 years, the Software Engineering Laboratory (SEL) at GSFC has been carrying out studies and experiments for the purpose of understanding, assessing, and improving software, and software processes within a production software environment. The SEL comprises three major organizations: (1) the GSFC Flight Dynamics Division; (2) the University of Maryland Computer Science Department; and (3) the Computer Sciences Corporation Flight Dynamics Technology Group. These organizations have jointly carried out several hundred software studies, producing hundreds of reports, papers, and documents: all describing some aspect of the software engineering technology that has undergone analysis in the flight dynamics environment. The studies range from small controlled experiments (such as analyzing the effectiveness of code reading versus functional testing) to large, multiple-project studies (such as assessing the impacts of Ada on a production environment). The key findings that NASA feels have laid the foundation for ongoing and future software development and research activities are summarized.
Using Automatic Code Generation in the Attitude Control Flight Software Engineering Process
NASA Technical Reports Server (NTRS)
McComas, David; O'Donnell, James R., Jr.; Andrews, Stephen F.
1999-01-01
This paper presents an overview of the attitude control subsystem flight software development process, identifies how the process has changed due to automatic code generation, analyzes each software development phase in detail, and concludes with a summary of our lessons learned.
Flight simulation software at NASA Dryden Flight Research Center
NASA Technical Reports Server (NTRS)
Norlin, Ken A.
1995-01-01
The NASA Dryden Flight Research Center has developed a versatile simulation software package that is applicable to a broad range of fixed-wing aircraft. This package has evolved in support of a variety of flight research programs. The structure is designed to be flexible enough for use in batch-mode, real-time pilot-in-the-loop, and flight hardware-in-the-loop simulation. Current simulations operate on UNIX-based platforms and are coded with a FORTRAN shell and C support routines. This paper discusses the features of the simulation software design and some basic model development techniques. The key capabilities that have been included in the simulation are described. The NASA Dryden simulation software is in use at other NASA centers, within industry, and at several universities. The straightforward but flexible design of this well-validated package makes it especially useful in an engineering environment.
SSME digital control design characteristics
NASA Technical Reports Server (NTRS)
Mitchell, W. T.; Searle, R. F.
1985-01-01
To protect against a latent programming error (software fault) existing in an untried branch combination that would render the space shuttle out of control in a critical flight phase, the Backup Flight System (BFS) was chartered to provide a safety alternative. The BFS is designed to operate in critical flight phases (ascent and descent) by monitoring the activities of the space shuttle flight subsystems that are under control of the primary flight software (PFS) (e.g., navigation, crew interface, propulsion), then, upon manual command by the flightcrew, to assume control of the space shuttle and deliver it to a noncritical flight condition (safe orbit or touchdown). The problems associated with the selection of the PFS/BFS system architecture, the internal BFS architecture, the fault tolerant software mechanisms, and the long term BFS utility are discussed.
NASA Technical Reports Server (NTRS)
Condon, Steven; Hendrick, Robert; Stark, Michael E.; Steger, Warren
1997-01-01
The Flight Dynamics Division (FDD) of NASA's Goddard Space Flight Center (GSFC) recently embarked on a far-reaching revision of its process for developing and maintaining satellite support software. The new process relies on an object-oriented software development method supported by a domain specific library of generalized components. This Generalized Support Software (GSS) Domain Engineering Process is currently in use at the NASA GSFC Software Engineering Laboratory (SEL). The key facets of the GSS process are (1) an architecture for rapid deployment of FDD applications, (2) a reuse asset library for FDD classes, and (3) a paradigm shift from developing software to configuring software for mission support. This paper describes the GSS architecture and process, results of fielding the first applications, lessons learned, and future directions
Tinoco, Adelita; Drew, Barbara J; Hu, Xiao; Mortara, David; Cooper, Bruce A; Pelter, Michele M
2017-11-01
Cheyne-Stokes respiration (CSR) has been investigated primarily in outpatients with heart failure. In this study we compare CSR and periodic breathing (PB) between healthy and cardiac groups. We compared CSR and PB, measured during 24 hr of continuous 12-lead electrocardiographic (ECG) Holter recording, in a group of 90 hospitalized patients presenting to the emergency department with symptoms suggestive of acute coronary syndrome (ACS) to a group of 100 healthy ambulatory participants. We also examined CSR and PB in the 90 patients presenting with ACS symptoms, divided into a group of 39 (43%) with confirmed ACS, and 51 (57%) with a cardiac diagnosis but non-ACS. SuperECG software was used to derive respiration and then calculate CSR and PB episodes from the ECG Holter data. Regression analyses were used to analyze the data. We hypothesized SuperECG software would differentiate between the groups by detecting less CSR and PB in the healthy group than the group of patients presenting to the emergency department with ACS symptoms. Hospitalized patients with suspected ACS had 7.3 times more CSR episodes and 1.6 times more PB episodes than healthy ambulatory participants. Patients with confirmed ACS had 6.0 times more CSR episodes and 1.3 times more PB episodes than cardiac non-ACS patients. Continuous 12-lead ECG derived CSR and PB appear to differentiate between healthy participants and hospitalized patients. © 2017 Wiley Periodicals, Inc.
Pushing the Limits of Cubesat Attitude Control: A Ground Demonstration
NASA Technical Reports Server (NTRS)
Sanders, Devon S.; Heater, Daniel L.; Peeples, Steven R.; Sules. James K.; Huang, Po-Hao Adam
2013-01-01
A cubesat attitude control system (ACS) was designed at the NASA Marshall Space Flight Center (MSFC) to provide sub-degree pointing capabilities using low cost, COTS attitude sensors, COTS miniature reaction wheels, and a developmental micro-propulsion system. The ACS sensors and actuators were integrated onto a 3D-printed plastic 3U cubesat breadboard (10 cm x 10 cm x 30 cm) with a custom designed instrument board and typical cubesat COTS hardware for the electrical, power, and data handling and processing systems. In addition to the cubesat development, a low-cost air bearing was designed and 3D printed in order to float the cubesat in the test environment. Systems integration and verification were performed at the MSFC Small Projects Rapid Integration & Test Environment laboratory. Using a combination of both the miniature reaction wheels and the micro-propulsion system, the open and closed loop control capabilities of the ACS were tested in the Flight Robotics Laboratory. The testing demonstrated the desired sub-degree pointing capability of the ACS and also revealed the challenges of creating a relevant environment for development testin
Study of fault tolerant software technology for dynamic systems
NASA Technical Reports Server (NTRS)
Caglayan, A. K.; Zacharias, G. L.
1985-01-01
The major aim of this study is to investigate the feasibility of using systems-based failure detection isolation and compensation (FDIC) techniques in building fault-tolerant software and extending them, whenever possible, to the domain of software fault tolerance. First, it is shown that systems-based FDIC methods can be extended to develop software error detection techniques by using system models for software modules. In particular, it is demonstrated that systems-based FDIC techniques can yield consistency checks that are easier to implement than acceptance tests based on software specifications. Next, it is shown that systems-based failure compensation techniques can be generalized to the domain of software fault tolerance in developing software error recovery procedures. Finally, the feasibility of using fault-tolerant software in flight software is investigated. In particular, possible system and version instabilities, and functional performance degradation that may occur in N-Version programming applications to flight software are illustrated. Finally, a comparative analysis of N-Version and recovery block techniques in the context of generic blocks in flight software is presented.
Modular Infrastructure for Rapid Flight Software Development
NASA Technical Reports Server (NTRS)
Pires, Craig
2010-01-01
This slide presentation reviews the use of modular infrastructure to assist in the development of flight software. A feature of this program is the use of model based approach for application unique software. A review of two programs that this approach was use on are: the development of software for Hover Test Vehicle (HTV), and Lunar Atmosphere and Dust Environment Experiment (LADEE).
Integrated testing and verification system for research flight software
NASA Technical Reports Server (NTRS)
Taylor, R. N.
1979-01-01
The MUST (Multipurpose User-oriented Software Technology) program is being developed to cut the cost of producing research flight software through a system of software support tools. An integrated verification and testing capability was designed as part of MUST. Documentation, verification and test options are provided with special attention on real-time, multiprocessing issues. The needs of the entire software production cycle were considered, with effective management and reduced lifecycle costs as foremost goals.
Software Management Environment (SME) concepts and architecture, revision 1
NASA Technical Reports Server (NTRS)
Hendrick, Robert; Kistler, David; Valett, Jon
1992-01-01
This document presents the concepts and architecture of the Software Management Environment (SME), developed for the Software Engineering Branch of the Flight Dynamic Division (FDD) of GSFC. The SME provides an integrated set of experience-based management tools that can assist software development managers in managing and planning flight dynamics software development projects. This document provides a high-level description of the types of information required to implement such an automated management tool.
1985-08-12
Boeing CH-47B (USA 66-19138 NASA-737) Chinook in-flight simulator with Moffet Field Navy Hangar and Ames VMS in background. Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig. 133
NASA Technical Reports Server (NTRS)
Mcgehee, C. R.
1986-01-01
A study was conducted under Drones for Aerodynamic and Structural Testing (DAST) program to accomplish the final design and hardware fabrication for four active control systems compatible with and ready for installation in the NASA Aeroelastic Research Wing No. 2 (ARW-2) and Firebee II drone flight test vehicle. The wing structure was designed so that Active Control Systems (ACS) are required in the normal flight envelope by integrating control system design with aerodynamics and structure technologies. The DAST ARW-2 configuration uses flutter suppression, relaxed static stability, and gust and maneuver load alleviation ACS systems, and an automatic flight control system. Performance goals and criteria were applied to individual systems and the systems collectively to assure that vehicle stability margins, flutter margins, flying qualities and load reductions are achieved.
Software Engineering Improvement Activities/Plan
NASA Technical Reports Server (NTRS)
2003-01-01
bd Systems personnel accomplished the technical responsibilities for this reporting period, as planned. A close working relationship was maintained with personnel of the MSFC Avionics Department Software Group (ED14). Work accomplishments included development, evaluation, and enhancement of a software cost model, performing literature search and evaluation of software tools available for code analysis and requirements analysis, and participating in other relevant software engineering activities. Monthly reports were submitted. This support was provided to the Flight Software Group/ED 1 4 in accomplishing the software engineering improvement engineering activities of the Marshall Space Flight Center (MSFC) Software Engineering Improvement Plan.
NASA Technical Reports Server (NTRS)
Nickum, J. D.
1978-01-01
The software package developed for the KIM-1 Micro-System and the Mini-L PLL receiver to simplify taking flight test data is described along with the address and data bus buffers used in the KIM-1 Micro-system. The interface hardware and timing are also presented to describe completely the software programs.
Glossary of software engineering laboratory terms
NASA Technical Reports Server (NTRS)
1982-01-01
A glossary of terms used in the Software Engineering Laboratory (SEL) is presented. The terms are defined within the context of the software development environment for flight dynamics at Goddard Space Flight Center. A concise reference for clarifying and understanding the language employed in SEL documents and data collection forms is provided.
Flight dynamics system software development environment (FDS/SDE) tutorial
NASA Technical Reports Server (NTRS)
Buell, John; Myers, Philip
1986-01-01
A sample development scenario using the Flight Dynamics System Software Development Environment (FDS/SDE) is presented. The SDE uses a menu-driven, fill-in-the-blanks format that provides online help at all steps, thus eliminating lengthy training and allowing immediate use of this new software development tool.
77 FR 31758 - Airworthiness Directives; the Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-30
.... That NPRM proposed to inspect for part numbers of the operational program software of the flight... operational program software (OPS) of the flight control computers (FCC), and doing corrective actions if... previous NPRM (75 FR 57885, September 23, 2010), we have determined that the software installation required...
NASA Technical Reports Server (NTRS)
Ferguson, Roscoe C.
2011-01-01
As a result of recommendation from the Augustine Panel, the direction for Human Space Flight has been altered from the original plan referred to as Constellation. NASA s Human Exploration Framework Team (HEFT) proposes the use of a Shuttle Derived Heavy Lift Launch Vehicle (SDLV) and an Orion derived spacecraft (salvaged from Constellation) to support a new flexible direction for space exploration. The SDLV must be developed within an environment of a constrained budget and a preferred fast development schedule. Thus, it has been proposed to utilize existing assets from the Shuttle Program to speed development at a lower cost. These existing assets should not only include structures such as external tanks or solid rockets, but also the Flight Software which has traditionally been a "long pole" in new development efforts. The avionics and software for the Space Shuttle was primarily developed in the 70 s and considered state of the art for that time. As one may argue that the existing avionics and flight software may be too outdated to support the new SDLV effort, this is a fallacy if they can be evolved over time into a "modern avionics" platform. The technology may be outdated, but the avionics concepts and flight software algorithms are not. The reuse of existing avionics and software also allows for the reuse of development, verification, and operations facilities. The keyword is evolve in that these assets can support the fast development of such a vehicle, but then be gradually evolved over time towards more modern platforms as budget and schedule permits. The "gold" of the flight software is the "control loop" algorithms of the vehicle. This is the Guidance, Navigation, and Control (GNC) software algorithms. This software is typically the most expensive to develop, test, and verify. Thus, the approach is to preserve the GNC flight software, while first evolving the supporting software (such as Command and Data Handling, Caution and Warning, Telemetry, etc.). This can be accomplished by gradually removing the "support software" from the legacy flight software leaving only the GNC algorithms. The "support software" could be re-developed for modern platforms, while leaving the GNC algorithms to execute on technology compatible with the legacy system. It is also possible to package the GNC algorithms into an emulated version of the original computer (via Field Programmable Gate Arrays or FPGAs), thus becoming a "GNC on a Chip" solution where it could live forever to be embedded in modern avionics platforms.
Pilot/Vehicle display development from simulation to flight
NASA Technical Reports Server (NTRS)
Dare, Alan R.; Burley, James R., II
1992-01-01
The Pilot Vehicle Interface Group, Cockpit Technology Branch, Flight Management Division, at the NASA Langley Research Center is developing display concepts for air combat in the next generation of highly maneuverable aircraft. The High-Alpha Technology Program, under which the research is being done, is involved in flight tests of many new control and display concepts on the High-Alpha Research Vehicle, a highly modified F-18 aircraft. In order to support display concept development through flight testing, a software/hardware system is being developed which will support each phase of the project with little or no software modifications, thus saving thousands of manhours in software development time. Simulation experiments are in progress now and flight tests are slated to begin in FY1994.
Glossary of Software Engineering Laboratory terms
NASA Technical Reports Server (NTRS)
1983-01-01
A glossary of terms used in the Software Engineering Laboratory (SEL) is given. The terms are defined within the context of the software development environment for flight dynamics at the Goddard Space Flight Center. A concise reference for clarifying the language employed in SEL documents and data collection forms is given. Basic software engineering concepts are explained and standard definitions for use by SEL personnel are established.
Shuttle avionics software development trials: Tribulations and successes, the backup flight system
NASA Technical Reports Server (NTRS)
Chevers, E. S.
1985-01-01
The development and verification of the Backup Flight System software (BFS) is discussed. The approach taken for the BFS was to develop a very simple and straightforward software program and then test it in every conceivable manner. The result was a program that contained approximately 12,000 full words including ground checkout and the built in test program for the computer. To perform verification, a series of tests was defined using the actual flight type hardware and simulated flight conditions. Then simulated flights were flown and detailed performance analysis was conducted. The intent of most BFS tests was to demonstrate that a stable flightpath could be obtained after engagement from an anomalous initial condition. The extention of the BFS to meet the requirements of the orbital flight test phase is also described.
Basic Helicopter Handbook, Revised. AC 61-13A.
ERIC Educational Resources Information Center
Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.
This technical manual was designed to assist applicants preparing for the private, commercial, and flight instructor pilot certificates with a helicopter rating. The chapters outline general aerodynamics, aerodynamics of flight, loads and load factors, function of controls, other helicopter components and their functions, introduction to the…
Ahmed, Saeed; Nelms, Benjamin; Kozelka, Jakub; Zhang, Geoffrey; Moros, Eduardo
2016-01-01
The original helical ArcCHECK (AC) diode array and associated software for 3D measurement‐guided dose reconstruction were characterized and validated; however, recent design changes to the AC required that the subject be revisited. The most important AC change starting in 2014 was a significant reduction in the overresponse of diodes to scattered radiation outside of the direct beam, accomplished by reducing the amount of high‐Z materials adjacent to the diodes. This change improved the diode measurement accuracy, but in the process invalidated the dose reconstruction models that were assembled based on measured data acquired with the older version of the AC. A correction mechanism was introduced in the reconstruction software (3DVH) to accommodate this and potential future design changes without requiring updating model parameters. For each permutation of AC serial number and beam model, the user can define in 3DVH a single correction factor which will be used to compensate for the difference in the out‐of‐field response between the new and original AC designs. The exact value can be determined by minimizing the dose‐difference with an ionization chamber or another independent dosimeter. A single value of 1.17, corresponding to the maximum measured out‐of‐field response difference between the new and old AC, provided satisfactory results for all studied energies (6X, 15X, and flattening filter‐free 10XFFF). A library of standard cases recommended by the AAPM TG‐244 Report was used for reconstructed dose verification. The overall difference between reconstructed dose and an ion chamber in a water‐equivalent phantom in the targets was 0.0% ± 1.4% (1 SD). The reconstructed dose on a homogeneous phantom was also compared to a biplanar diode dosimeter (Delta4) using gamma analysis with 2% (local dose‐error normalization)/2 mm/10% cutoff criteria. The mean agreement rate was 96.7% ± 3.7%. For the plans common with the previous comparison, the mean agreement rate was 98.3% ± 0.8%, essentially unchanged. We conclude that the proposed software modification adequately addresses the change in the dosimeter response. PACS number(s): 87.55Qr PMID:27929491
Ahmed, Saeed; Nelms, Benjamin; Kozelka, Jakub; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir
2016-11-08
The original helical ArcCHECK (AC) diode array and associated software for 3D measurement-guided dose reconstruction were characterized and validated; however, recent design changes to the AC required that the subject be revisited. The most important AC change starting in 2014 was a significant reduction in the overresponse of diodes to scattered radiation outside of the direct beam, accom-plished by reducing the amount of high-Z materials adjacent to the diodes. This change improved the diode measurement accuracy, but in the process invalidated the dose reconstruction models that were assembled based on measured data acquired with the older version of the AC. A correction mechanism was intro-duced in the reconstruction software (3DVH) to accommodate this and potential future design changes without requiring updating model parameters. For each permutation of AC serial number and beam model, the user can define in 3DVH a single correction factor which will be used to compensate for the difference in the out-of-field response between the new and original AC designs. The exact value can be determined by minimizing the dose-difference with an ionization chamber or another independent dosimeter. A single value of 1.17, corresponding to the maximum measured out-of-field response difference between the new and old AC, provided satisfactory results for all studied energies (6X, 15X, and flatten-ing filter-free 10XFFF). A library of standard cases recommended by the AAPM TG-244 Report was used for reconstructed dose verification. The overall difference between reconstructed dose and an ion chamber in a water-equivalent phantom in the targets was 0.0% ± 1.4% (1 SD). The reconstructed dose on a homogeneous phantom was also compared to a biplanar diode dosimeter (Delta4) using gamma analysis with 2% (local dose-error normalization) / 2 mm / 10% cutoff criteria. The mean agreement rate was 96.7% ± 3.7%. For the plans common with the previous comparison, the mean agreement rate was 98.3% ± 0.8%, essentially unchanged. We conclude that the proposed software modification adequately addresses the change in the dosimeter response. © 2016 The Authors.
An empirical study of flight control software reliability
NASA Technical Reports Server (NTRS)
Dunham, J. R.; Pierce, J. L.
1986-01-01
The results of a laboratory experiment in flight control software reliability are reported. The experiment tests a small sample of implementations of a pitch axis control law for a PA28 aircraft with over 14 million pitch commands with varying levels of additive input and feedback noise. The testing which uses the method of n-version programming for error detection surfaced four software faults in one implementation of the control law. The small number of detected faults precluded the conduct of the error burst analyses. The pitch axis problem provides data for use in constructing a model in the prediction of the reliability of software in systems with feedback. The study is undertaken to find means to perform reliability evaluations of flight control software.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-11
... version of the AC on the FAA Regulatory and Guidance Library Web site ( http://rgl.faa.gov/ ). III... associated AC guidance material are inconsistent with the quiet and dark flight deck philosophy used on... the quiet and dark flightdeck concept. It is not necessary to specifically refer to Sec. 25.1322 in...
NASA Technical Reports Server (NTRS)
Dunham, J. R. (Editor); Knight, J. C. (Editor)
1982-01-01
The state of the art in the production of crucial software for flight control applications was addressed. The association between reliability metrics and software is considered. Thirteen software development projects are discussed. A short term need for research in the areas of tool development and software fault tolerance was indicated. For the long term, research in format verification or proof methods was recommended. Formal specification and software reliability modeling, were recommended as topics for both short and long term research.
NASA Technical Reports Server (NTRS)
Simmons, D. B.; Marchbanks, M. P., Jr.; Quick, M. J.
1982-01-01
The results of an effort to thoroughly and objectively analyze the statistical and historical information gathered during the development of the Shuttle Orbiter Primary Flight Software are given. The particular areas of interest include cost of the software, reliability of the software, requirements for the software and how the requirements changed during development of the system. Data related to the current version of the software system produced some interesting results. Suggestions are made for the saving of additional data which will allow additional investigation.
NASA Technical Reports Server (NTRS)
Stephan, Amy; Erikson, Carol A.
1991-01-01
As an initial attempt to introduce expert system technology into an onboard environment, a model based diagnostic system using the TRW MARPLE software tool was integrated with prototype flight hardware and its corresponding control software. Because this experiment was designed primarily to test the effectiveness of the model based reasoning technique used, the expert system ran on a separate hardware platform, and interactions between the control software and the model based diagnostics were limited. While this project met its objective of showing that model based reasoning can effectively isolate failures in flight hardware, it also identified the need for an integrated development path for expert system and control software for onboard applications. In developing expert systems that are ready for flight, artificial intelligence techniques must be evaluated to determine whether they offer a real advantage onboard, identify which diagnostic functions should be performed by the expert systems and which are better left to the procedural software, and work closely with both the hardware and the software developers from the beginning of a project to produce a well designed and thoroughly integrated application.
Equivalent circuit modeling of a piezo-patch energy harvester on a thin plate with AC-DC conversion
NASA Astrophysics Data System (ADS)
Bayik, B.; Aghakhani, A.; Basdogan, I.; Erturk, A.
2016-05-01
As an alternative to beam-like structures, piezoelectric patch-based energy harvesters attached to thin plates can be readily integrated to plate-like structures in automotive, marine, and aerospace applications, in order to directly exploit structural vibration modes of the host system without mass loading and volumetric occupancy of cantilever attachments. In this paper, a multi-mode equivalent circuit model of a piezo-patch energy harvester integrated to a thin plate is developed and coupled with a standard AC-DC conversion circuit. Equivalent circuit parameters are obtained in two different ways: (1) from the modal analysis solution of a distributed-parameter analytical model and (2) from the finite-element numerical model of the harvester by accounting for two-way coupling. After the analytical modeling effort, multi-mode equivalent circuit representation of the harvester is obtained via electronic circuit simulation software SPICE. Using the SPICE software, electromechanical response of the piezoelectric energy harvester connected to linear and nonlinear circuit elements are computed. Simulation results are validated for the standard AC-AC and AC-DC configurations. For the AC input-AC output problem, voltage frequency response functions are calculated for various resistive loads, and they show excellent agreement with modal analysis-based analytical closed-form solution and with the finite-element model. For the standard ideal AC input-DC output case, a full-wave rectifier and a smoothing capacitor are added to the harvester circuit for conversion of the AC voltage to a stable DC voltage, which is also validated against an existing solution by treating the single-mode plate dynamics as a single-degree-of-freedom system.
NASA Technical Reports Server (NTRS)
Mcgehee, C. R.
1986-01-01
This is Part 2-Appendices of a study conducted under Drones for Aerodynamic and Structural Testing (DAST) Program to accomplish the final design and hardware fabrication for four active control systems compatible with and ready for installation in the NASA Aeroelastic Research Wing No. 2 (ARW-2) and Firebee II drone flight test vehicle. The wing structure was designed so that Active Control Systems (ACS) are required in the normal flight envelope by integrating control system design with aerodynamics and structure technologies. The DAST ARW-2 configuration uses flutter suppression, relaxed static stability, and gust and maneuver load alleviation ACS systems, and an automatic flight control system. Performance goals and criteria were applied to individual systems and the systems collectively to assure that vehicle stability margins, flutter margins, flying qualities, and load reductions were achieved.
A proven approach for more effective software development and maintenance
NASA Technical Reports Server (NTRS)
Pajerski, Rose; Hall, Dana; Sinclair, Craig
1994-01-01
Modern space flight mission operations and associated ground data systems are increasingly dependent upon reliable, quality software. Critical functions such as command load preparation, health and status monitoring, communications link scheduling and conflict resolution, and transparent gateway protocol conversion are routinely performed by software. Given budget constraints and the ever increasing capabilities of processor technology, the next generation of control centers and data systems will be even more dependent upon software across all aspects of performance. A key challenge now is to implement improved engineering, management, and assurance processes for the development and maintenance of that software; processes that cost less, yield higher quality products, and that self-correct for continual improvement evolution. The NASA Goddard Space Flight Center has a unique experience base that can be readily tapped to help solve the software challenge. Over the past eighteen years, the Software Engineering Laboratory within the code 500 Flight Dynamics Division has evolved a software development and maintenance methodology that accommodates the unique characteristics of an organization while optimizing and continually improving the organization's software capabilities. This methodology relies upon measurement, analysis, and feedback much analogous to that of control loop systems. It is an approach with a time-tested track record proven through repeated applications across a broad range of operational software development and maintenance projects. This paper describes the software improvement methodology employed by the Software Engineering Laboratory, and how it has been exploited within the Flight Dynamics Division with GSFC Code 500. Examples of specific improvement in the software itself and its processes are presented to illustrate the effectiveness of the methodology. Finally, the initial findings are given when this methodology was applied across the mission operations and ground data systems software domains throughout Code 500.
Space shuttle on-orbit flight control software requirements, preliminary version
NASA Technical Reports Server (NTRS)
1975-01-01
Software modules associated with various flight control functions for the space shuttle orbiter are described. Data flow, interface requirements, initialization requirements and module sequencing requirements are considered. Block diagrams and tables are included.
The Dangers of Failure Masking in Fault-Tolerant Software: Aspects of a Recent In-Flight Upset Event
NASA Technical Reports Server (NTRS)
Johnson, C. W.; Holloway, C. M.
2007-01-01
On 1 August 2005, a Boeing Company 777-200 aircraft, operating on an international passenger flight from Australia to Malaysia, was involved in a significant upset event while flying on autopilot. The Australian Transport Safety Bureau's investigation into the event discovered that an anomaly existed in the component software hierarchy that allowed inputs from a known faulty accelerometer to be processed by the air data inertial reference unit (ADIRU) and used by the primary flight computer, autopilot and other aircraft systems. This anomaly had existed in original ADIRU software, and had not been detected in the testing and certification process for the unit. This paper describes the software aspects of the incident in detail, and suggests possible implications concerning complex, safety-critical, fault-tolerant software.
Certification of COTS Software in NASA Human Rated Flight Systems
NASA Technical Reports Server (NTRS)
Goforth, Andre
2012-01-01
Adoption of commercial off-the-shelf (COTS) products in safety critical systems has been seen as a promising acquisition strategy to improve mission affordability and, yet, has come with significant barriers and challenges. Attempts to integrate COTS software components into NASA human rated flight systems have been, for the most part, complicated by verification and validation (V&V) requirements necessary for flight certification per NASA s own standards. For software that is from COTS sources, and, in general from 3rd party sources, either commercial, government, modified or open source, the expectation is that it meets the same certification criteria as those used for in-house and that it does so as if it were built in-house. The latter is a critical and hidden issue. This paper examines the longstanding barriers and challenges in the use of 3rd party software in safety critical systems and cover recent efforts to use COTS software in NASA s Multi-Purpose Crew Vehicle (MPCV) project. It identifies some core artifacts that without them, the use of COTS and 3rd party software is, for all practical purposes, a nonstarter for affordable and timely insertion into flight critical systems. The paper covers the first use in a flight critical system by NASA of COTS software that has prior FAA certification heritage, which was shown to meet the RTCA-DO-178B standard, and how this certification may, in some cases, be leveraged to allow the use of analysis in lieu of testing. Finally, the paper proposes the establishment of an open source forum for development of safety critical 3rd party software.
VML 3.0 Reactive Sequencing Objects and Matrix Math Operations for Attitude Profiling
NASA Technical Reports Server (NTRS)
Grasso, Christopher A.; Riedel, Joseph E.
2012-01-01
VML (Virtual Machine Language) has been used as the sequencing flight software on over a dozen JPL deep-space missions, most recently flying on GRAIL and JUNO. In conjunction with the NASA SBIR entitled "Reactive Rendezvous and Docking Sequencer", VML version 3.0 has been enhanced to include object-oriented element organization, built-in queuing operations, and sophisticated matrix / vector operations. These improvements allow VML scripts to easily perform much of the work that formerly would have required a great deal of expensive flight software development to realize. Autonomous turning and tracking makes considerable use of new VML features. Profiles generated by flight software are managed using object-oriented VML data constructs executed in discrete time by the VML flight software. VML vector and matrix operations provide the ability to calculate and supply quaternions to the attitude controller flight software which produces torque requests. Using VML-based attitude planning components eliminates flight software development effort, and reduces corresponding costs. In addition, the direct management of the quaternions allows turning and tracking to be tied in with sophisticated high-level VML state machines. These state machines provide autonomous management of spacecraft operations during critical tasks like a hypothetic Mars sample return rendezvous and docking. State machines created for autonomous science observations can also use this sort of attitude planning system, allowing heightened autonomy levels to reduce operations costs. VML state machines cannot be considered merely sequences - they are reactive logic constructs capable of autonomous decision making within a well-defined domain. The state machine approach enabled by VML 3.0 is progressing toward flight capability with a wide array of applicable mission activities.
Software Management Environment (SME) installation guide
NASA Technical Reports Server (NTRS)
Kistler, David; Jeletic, Kellyann
1992-01-01
This document contains installation information for the Software Management Environment (SME), developed for the Systems Development Branch (Code 552) of the Flight Dynamics Division of Goddard Space Flight Center (GSFC). The SME provides an integrated set of management tools that can be used by software development managers in their day-to-day management and planning activities. This document provides a list of hardware and software requirements as well as detailed installation instructions and trouble-shooting information.
Space Communication and Navigation Testbed Communications Technology for Exploration
NASA Technical Reports Server (NTRS)
Reinhart, Richard
2013-01-01
NASA developed and launched an experimental flight payload (referred to as the Space Communication and Navigation Test Bed) to investigate software defined radio, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developed by NASA and industry partners. The payload is externally mounted to the International Space Station truss and available to NASA, industry, and university partners to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system communicates with NASAs orbiting satellite relay network, the Tracking, Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station.
What's Happening in the Software Engineering Laboratory?
NASA Technical Reports Server (NTRS)
Pajerski, Rose; Green, Scott; Smith, Donald
1995-01-01
Since 1976 the Software Engineering Laboratory (SEL) has been dedicated to understanding and improving the way in which one NASA organization the Flight Dynamics Division (FDD) at Goddard Space Flight Center, develops, maintains, and manages complex flight dynamics systems. This paper presents an overview of recent activities and studies in SEL, using as a framework the SEL's organizational goals and experience based software improvement approach. It focuses on two SEL experience areas : (1) the evolution of the measurement program and (2) an analysis of three generations of Cleanroom experiments.
System for Secure Integration of Aviation Data
NASA Technical Reports Server (NTRS)
Kulkarni, Deepak; Wang, Yao; Keller, Rich; Chidester, Tom; Statler, Irving; Lynch, Bob; Patel, Hemil; Windrem, May; Lawrence, Bob
2007-01-01
The Aviation Data Integration System (ADIS) of Ames Research Center has been established to promote analysis of aviation data by airlines and other interested users for purposes of enhancing the quality (especially safety) of flight operations. The ADIS is a system of computer hardware and software for collecting, integrating, and disseminating aviation data pertaining to flights and specified flight events that involve one or more airline(s). The ADIS is secure in the sense that care is taken to ensure the integrity of sources of collected data and to verify the authorizations of requesters to receive data. Most importantly, the ADIS removes a disincentive to collection and exchange of useful data by providing for automatic removal of information that could be used to identify specific flights and crewmembers. Such information, denoted sensitive information, includes flight data (here signifying data collected by sensors aboard an aircraft during flight), weather data for a specified route on a specified date, date and time, and any other information traceable to a specific flight. The removal of information that could be used to perform such tracing is called "deidentification." Airlines are often reluctant to keep flight data in identifiable form because of concerns about loss of anonymity. Hence, one of the things needed to promote retention and analysis of aviation data is an automated means of de-identification of archived flight data to enable integration of flight data with non-flight aviation data while preserving anonymity. Preferably, such an automated means would enable end users of the data to continue to use pre-existing data-analysis software to identify anomalies in flight data without identifying a specific anomalous flight. It would then also be possible to perform statistical analyses of integrated data. These needs are satisfied by the ADIS, which enables an end user to request aviation data associated with de-identified flight data. The ADIS includes client software integrated with other software running on flight-operations quality-assurance (FOQA) computers for purposes of analyzing data to study specified types of events or exceedences (departures of flight parameters from normal ranges). In addition to ADIS client software, ADIS includes server hardware and software that provide services to the ADIS clients via the Internet (see figure). The ADIS server receives and integrates flight and non-flight data pertaining to flights from multiple sources. The server accepts data updates from authorized sources only and responds to requests from authorized users only. In order to satisfy security requirements established by the airlines, (1) an ADIS client must not be accessible from the Internet by an unauthorized user and (2) non-flight data as airport terminal information system (ATIS) and weather data must be displayed without any identifying flight information. ADIS hardware and software architecture as well as encryption and data display scheme are designed to meet these requirements. When a user requests one or more selected aviation data characteristics associated with an event (e.g., a collision, near miss, equipment malfunction, or exceedence), the ADIS client augments the request with date and time information from encrypted files and submits the augmented request to the server. Once the user s authorization has been verified, the server returns the requested information in de-identified form.
Configuring the Orion Guidance, Navigation, and Control Flight Software for Automated Sequencing
NASA Technical Reports Server (NTRS)
Odegard, Ryan G.; Siliwinski, Tomasz K.; King, Ellis T.; Hart, Jeremy J.
2010-01-01
The Orion Crew Exploration Vehicle is being designed with greater automation capabilities than any other crewed spacecraft in NASA s history. The Guidance, Navigation, and Control (GN&C) flight software architecture is designed to provide a flexible and evolvable framework that accommodates increasing levels of automation over time. Within the GN&C flight software, a data-driven approach is used to configure software. This approach allows data reconfiguration and updates to automated sequences without requiring recompilation of the software. Because of the great dependency of the automation and the flight software on the configuration data, the data management is a vital component of the processes for software certification, mission design, and flight operations. To enable the automated sequencing and data configuration of the GN&C subsystem on Orion, a desktop database configuration tool has been developed. The database tool allows the specification of the GN&C activity sequences, the automated transitions in the software, and the corresponding parameter reconfigurations. These aspects of the GN&C automation on Orion are all coordinated via data management, and the database tool provides the ability to test the automation capabilities during the development of the GN&C software. In addition to providing the infrastructure to manage the GN&C automation, the database tool has been designed with capabilities to import and export artifacts for simulation analysis and documentation purposes. Furthermore, the database configuration tool, currently used to manage simulation data, is envisioned to evolve into a mission planning tool for generating and testing GN&C software sequences and configurations. A key enabler of the GN&C automation design, the database tool allows both the creation and maintenance of the data artifacts, as well as serving the critical role of helping to manage, visualize, and understand the data-driven parameters both during software development and throughout the life of the Orion project.
NASA Technical Reports Server (NTRS)
Amason, David L.
2008-01-01
The goal of the Solar Dynamics Observatory (SDO) is to understand and, ideally, predict the solar variations that influence life and society. It's instruments will measure the properties of the Sun and will take hifh definition images of the Sun every few seconds, all day every day. The FlatSat is a high fidelity electrical and functional representation of the SDO spacecraft bus. It is a high fidelity test bed for Integration & Test (I & T), flight software, and flight operations. For I & T purposes FlatSat will be a driver to development and dry run electrical integration procedures, STOL test procedures, page displays, and the command and telemetry database. FlatSat will also serve as a platform for flight software acceptance and systems testing for the flight software system component including the spacecraft main processors, power supply electronics, attitude control electronic, gimbal control electrons and the S-band communications card. FlatSat will also benefit the flight operations team through post-launch flight software code and table update development and verification and verification of new and updated flight operations products. This document highlights the benefits of FlatSat; describes the building of FlatSat; provides FlatSat facility requirements, access roles and responsibilities; and, and discusses FlatSat mechanical and electrical integration and functional testing.
Data collection procedures for the Software Engineering Laboratory (SEL) database
NASA Technical Reports Server (NTRS)
Heller, Gerard; Valett, Jon; Wild, Mary
1992-01-01
This document is a guidebook to collecting software engineering data on software development and maintenance efforts, as practiced in the Software Engineering Laboratory (SEL). It supersedes the document entitled Data Collection Procedures for the Rehosted SEL Database, number SEL-87-008 in the SEL series, which was published in October 1987. It presents procedures to be followed on software development and maintenance projects in the Flight Dynamics Division (FDD) of Goddard Space Flight Center (GSFC) for collecting data in support of SEL software engineering research activities. These procedures include detailed instructions for the completion and submission of SEL data collection forms.
Software Management Environment (SME): Components and algorithms
NASA Technical Reports Server (NTRS)
Hendrick, Robert; Kistler, David; Valett, Jon
1994-01-01
This document presents the components and algorithms of the Software Management Environment (SME), a management tool developed for the Software Engineering Branch (Code 552) of the Flight Dynamics Division (FDD) of the Goddard Space Flight Center (GSFC). The SME provides an integrated set of visually oriented experienced-based tools that can assist software development managers in managing and planning software development projects. This document describes and illustrates the analysis functions that underlie the SME's project monitoring, estimation, and planning tools. 'SME Components and Algorithms' is a companion reference to 'SME Concepts and Architecture' and 'Software Engineering Laboratory (SEL) Relationships, Models, and Management Rules.'
1982-04-07
Sikorsky Rotor Systems Research Aircraft ' RSRA' (72-001 NASA-740) compound configuration in flight: NASA Ames Research Center, Hangar and 40x 80x120ft W.T. in the background. Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig. 132
Software Considerations for Subscale Flight Testing of Experimental Control Laws
NASA Technical Reports Server (NTRS)
Murch, Austin M.; Cox, David E.; Cunningham, Kevin
2009-01-01
The NASA AirSTAR system has been designed to address the challenges associated with safe and efficient subscale flight testing of research control laws in adverse flight conditions. In this paper, software elements of this system are described, with an emphasis on components which allow for rapid prototyping and deployment of aircraft control laws. Through model-based design and automatic coding a common code-base is used for desktop analysis, piloted simulation and real-time flight control. The flight control system provides the ability to rapidly integrate and test multiple research control laws and to emulate component or sensor failures. Integrated integrity monitoring systems provide aircraft structural load protection, isolate the system from control algorithm failures, and monitor the health of telemetry streams. Finally, issues associated with software configuration management and code modularity are briefly discussed.
Process Based on SysML for New Launchers System and Software Developments
NASA Astrophysics Data System (ADS)
Hiron, Emmanuel; Miramont, Philippe
2010-08-01
The purpose of this paper is to present the Astrium-ST engineering process based on SysML. This process is currently set-up in the frame of common CNES /Astrium-ST R&T studies related to the Ariane 5 electrical system and flight software modelling. The tool used to set up this process is Rhapsody release 7.3 from IBM-Software firm [1]. This process focuses on the system engineering phase dedicated to Software with the objective to generate both System documents (sequential system design and flight control) and Software specifications.
The Software Engineering Laboratory: An operational software experience factory
NASA Technical Reports Server (NTRS)
Basili, Victor R.; Caldiera, Gianluigi; Mcgarry, Frank; Pajerski, Rose; Page, Gerald; Waligora, Sharon
1992-01-01
For 15 years, the Software Engineering Laboratory (SEL) has been carrying out studies and experiments for the purpose of understanding, assessing, and improving software and software processes within a production software development environment at NASA/GSFC. The SEL comprises three major organizations: (1) NASA/GSFC, Flight Dynamics Division; (2) University of Maryland, Department of Computer Science; and (3) Computer Sciences Corporation, Flight Dynamics Technology Group. These organizations have jointly carried out several hundred software studies, producing hundreds of reports, papers, and documents, all of which describe some aspect of the software engineering technology that was analyzed in the flight dynamics environment at NASA. The studies range from small, controlled experiments (such as analyzing the effectiveness of code reading versus that of functional testing) to large, multiple project studies (such as assessing the impacts of Ada on a production environment). The organization's driving goal is to improve the software process continually, so that sustained improvement may be observed in the resulting products. This paper discusses the SEL as a functioning example of an operational software experience factory and summarizes the characteristics of and major lessons learned from 15 years of SEL operations.
XML Flight/Ground Data Dictionary Management
NASA Technical Reports Server (NTRS)
Wright, Jesse; Wiklow, Colette
2007-01-01
A computer program generates Extensible Markup Language (XML) files that effect coupling between the command- and telemetry-handling software running aboard a spacecraft and the corresponding software running in ground support systems. The XML files are produced by use of information from the flight software and from flight-system engineering. The XML files are converted to legacy ground-system data formats for command and telemetry, transformed into Web-based and printed documentation, and used in developing new ground-system data-handling software. Previously, the information about telemetry and command was scattered in various paper documents that were not synchronized. The process of searching and reading the documents was time-consuming and introduced errors. In contrast, the XML files contain all of the information in one place. XML structures can evolve in such a manner as to enable the addition, to the XML files, of the metadata necessary to track the changes and the associated documentation. The use of this software has reduced the extent of manual operations in developing a ground data system, thereby saving considerable time and removing errors that previously arose in the translation and transcription of software information from the flight to the ground system.
Payload Operations Support Team Tools
NASA Technical Reports Server (NTRS)
Askew, Bill; Barry, Matthew; Burrows, Gary; Casey, Mike; Charles, Joe; Downing, Nicholas; Jain, Monika; Leopold, Rebecca; Luty, Roger; McDill, David;
2007-01-01
Payload Operations Support Team Tools is a software system that assists in (1) development and testing of software for payloads to be flown aboard the space shuttles and (2) training of payload customers, flight controllers, and flight crews in payload operations
NASA Astrophysics Data System (ADS)
Tobar, R. J.; von Brand, H.; Araya, M. A.; Juerges, T.
2010-12-01
The ALMA Common Software (ACS) framework lacks of the real-time capabilities to control the antennas’ instrumentation — as has been probed by previous works — which has lead to non-portable workarounds to the problem. Indeed, the time service used in ACS, based in the Container/Component model, presents plenty of results that confirm this statement. This work addresses the problem of design and integrate a real-time service for ACS, providing to the framework an implementation such that the control operations over the different instruments could be done within real-time constraints. This implementation is compared with the current time service, showing the difference between the two systems when subjecting them to common scenarios. Also, the new implementation is done following the POSIX specification, ensuring interoperability and portability through different operating systems.
STOCHSIMGPU: parallel stochastic simulation for the Systems Biology Toolbox 2 for MATLAB.
Klingbeil, Guido; Erban, Radek; Giles, Mike; Maini, Philip K
2011-04-15
The importance of stochasticity in biological systems is becoming increasingly recognized and the computational cost of biologically realistic stochastic simulations urgently requires development of efficient software. We present a new software tool STOCHSIMGPU that exploits graphics processing units (GPUs) for parallel stochastic simulations of biological/chemical reaction systems and show that significant gains in efficiency can be made. It is integrated into MATLAB and works with the Systems Biology Toolbox 2 (SBTOOLBOX2) for MATLAB. The GPU-based parallel implementation of the Gillespie stochastic simulation algorithm (SSA), the logarithmic direct method (LDM) and the next reaction method (NRM) is approximately 85 times faster than the sequential implementation of the NRM on a central processing unit (CPU). Using our software does not require any changes to the user's models, since it acts as a direct replacement of the stochastic simulation software of the SBTOOLBOX2. The software is open source under the GPL v3 and available at http://www.maths.ox.ac.uk/cmb/STOCHSIMGPU. The web site also contains supplementary information. klingbeil@maths.ox.ac.uk Supplementary data are available at Bioinformatics online.
Software for Engineering Simulations of a Spacecraft
NASA Technical Reports Server (NTRS)
Shireman, Kirk; McSwain, Gene; McCormick, Bernell; Fardelos, Panayiotis
2005-01-01
Spacecraft Engineering Simulation II (SES II) is a C-language computer program for simulating diverse aspects of operation of a spacecraft characterized by either three or six degrees of freedom. A functional model in SES can include a trajectory flight plan; a submodel of a flight computer running navigational and flight-control software; and submodels of the environment, the dynamics of the spacecraft, and sensor inputs and outputs. SES II features a modular, object-oriented programming style. SES II supports event-based simulations, which, in turn, create an easily adaptable simulation environment in which many different types of trajectories can be simulated by use of the same software. The simulation output consists largely of flight data. SES II can be used to perform optimization and Monte Carlo dispersion simulations. It can also be used to perform simulations for multiple spacecraft. In addition to its generic simulation capabilities, SES offers special capabilities for space-shuttle simulations: for this purpose, it incorporates submodels of the space-shuttle dynamics and a C-language version of the guidance, navigation, and control components of the space-shuttle flight software.
Model-Based GN and C Simulation and Flight Software Development for Orion Missions beyond LEO
NASA Technical Reports Server (NTRS)
Odegard, Ryan; Milenkovic, Zoran; Henry, Joel; Buttacoli, Michael
2014-01-01
For Orion missions beyond low Earth orbit (LEO), the Guidance, Navigation, and Control (GN&C) system is being developed using a model-based approach for simulation and flight software. Lessons learned from the development of GN&C algorithms and flight software for the Orion Exploration Flight Test One (EFT-1) vehicle have been applied to the development of further capabilities for Orion GN&C beyond EFT-1. Continuing the use of a Model-Based Development (MBD) approach with the Matlab®/Simulink® tool suite, the process for GN&C development and analysis has been largely improved. Furthermore, a model-based simulation environment in Simulink, rather than an external C-based simulation, greatly eases the process for development of flight algorithms. The benefits seen by employing lessons learned from EFT-1 are described, as well as the approach for implementing additional MBD techniques. Also detailed are the key enablers for improvements to the MBD process, including enhanced configuration management techniques for model-based software systems, automated code and artifact generation, and automated testing and integration.
NASA Technical Reports Server (NTRS)
Allard, Dan; Deforrest, Lloyd
2014-01-01
Flight software parameters enable space mission operators fine-tuned control over flight system configurations, enabling rapid and dynamic changes to ongoing science activities in a much more flexible manner than can be accomplished with (otherwise broadly used) configuration file based approaches. The Mars Science Laboratory (MSL), Curiosity, makes extensive use of parameters to support complex, daily activities via commanded changes to said parameters in memory. However, as the loss of Mars Global Surveyor (MGS) in 2006 demonstrated, flight system management by parameters brings with it risks, including the possibility of losing track of the flight system configuration and the threat of invalid command executions. To mitigate this risk a growing number of missions have funded efforts to implement parameter tracking parameter state software tools and services including MSL and the Soil Moisture Active Passive (SMAP) mission. This paper will discuss the engineering challenges and resulting software architecture of MSL's onboard parameter state tracking software and discuss the road forward to make parameter management tools suitable for use on multiple missions.
NASA Technical Reports Server (NTRS)
Zernic, Michael J.
2001-01-01
Communications technologies are being developed to address safety issues during aviation travel. Some of these technologies enable the aircraft to be in constant bidirectional communications with necessary systems, people, and other aircraft that are not currently in place today. Networking technologies, wireless datalinks, and advanced avionics techniques are areas of particular importance that the NASA Glenn Research Center has contributed. Glenn, in conjunction with the NASA Ames Research Center, NASA Dryden Flight Research Center, and NASA Langley Research Center, is investigating methods and applications that would utilize these communications technologies. In mid-June 2000, the flight readiness of the network and communications technologies were demonstrated via a simulated aircraft. A van simulating an aircraft was equipped with advanced phased-array antennas (Advanced Communications/Air Traffic Management (AC/ATM) Advanced Air Transportation Technologies (AATT) project) that used commercial Ku-band satellite communications to connect Glenn, Dryden, and Ames in a combined system ground test. This test simulated air-ground bidirectional transport of real-time digital audio, text, and video data via a hybrid network configuration that demonstrated the flight readiness of the network and communications technologies. Specifically, a Controller Pilot Data Link Communications application was used with other applications to demonstrate a multiprotocol capability via Internet-protocol encapsulated ATN (Aeronautical Telecommunications Network) data packets. The significance of this combined ground test is its contribution to the Aero Information Technology Base Program Level I milestone (Software Technology investment area) of a real-time data link for the National Airspace System. The objective of this milestone was to address multiprotocol technology applicable for real-time data links between aircraft, a satellite, and the ground as well as the ability to distribute flight data with multilevel priorities among several sites.
Analysis and Synthesis of Robust Data Structures
1990-08-01
1.3.2 Multiversion Software. .. .. .. .. .. .... .. ... .. ...... 5 1.3.3 Robust Data Structure .. .. .. .. .. .. .. .. .. ... .. ..... 6 1.4...context are 0 multiversion software, which is an adaptation oi N-modulo redundancy (NMR) tech- nique. * recovery blocks, which is an adaptation of...implementations using these features for such a hybrid approach. 1.3.2 Multiversion Software Avizienis [AC77] was the first to adapt NMR technique into
2016-04-30
software (OSS) and proprietary (CSS) software elements or remote services (Scacchi, 2002, 2010), eventually including recent efforts to support Web ...specific platforms, including those operating on secured Web /mobile devices. Common Development Technology provides AC development tools and common...transition to OA systems and OSS software elements, specifically for Web and Mobile devices within the realm of C3CB. OA, Open APIs, OSS, and CSS OA
Cassini Attitude Control Flight Software: from Development to In-Flight Operation
NASA Technical Reports Server (NTRS)
Brown, Jay
2008-01-01
The Cassini Attitude and Articulation Control Subsystem (AACS) Flight Software (FSW) has achieved its intended design goals by successfully guiding and controlling the Cassini-Huygens planetary mission to Saturn and its moons. This paper describes an overview of AACS FSW details from early design, development, implementation, and test to its fruition of operating and maintaining spacecraft control over an eleven year prime mission. Starting from phases of FSW development, topics expand to FSW development methodology, achievements utilizing in-flight autonomy, and summarize lessons learned during flight operations which can be useful to FSW in current and future spacecraft missions.
Flight Controller Software Protects Lightweight Flexible Aircraft
NASA Technical Reports Server (NTRS)
2015-01-01
Lightweight flexible aircraft may be the future of aviation, but a major problem is their susceptibility to flutter-uncontrollable vibrations that can destroy wings. Armstrong Flight Research Center awarded SBIR funding to Minneapolis, Minnesota-based MUSYN Inc. to develop software that helps program flight controllers to suppress flutter. The technology is now available for aircraft manufacturers and other industries that use equipment with automated controls.
Results of a Flight Simulation Software Methods Survey
NASA Technical Reports Server (NTRS)
Jackson, E. Bruce
1995-01-01
A ten-page questionnaire was mailed to members of the AIAA Flight Simulation Technical Committee in the spring of 1994. The survey inquired about various aspects of developing and maintaining flight simulation software, as well as a few questions dealing with characterization of each facility. As of this report, 19 completed surveys (out of 74 sent out) have been received. This paper summarizes those responses.
Flight software issues in onboard automated planning: lessons learned on EO-1
NASA Technical Reports Server (NTRS)
Tran, Daniel; Chien, Steve; Rabideau, Gregg; Cichy, Benjamin
2004-01-01
This paper focuses on the onboard planner and scheduler CASPER, whose core planning engine is based on the ground system ASPEN. Given the challenges of developing flight software, we discuss several of the issues encountered in preparing the planner for flight, including reducing the code image size, determining what data to place within the engineering telemetry packet, and performing long term planning.
14 CFR 460.17 - Verification program.
Code of Federal Regulations, 2011 CFR
2011-01-01
... software in an operational flight environment before allowing any space flight participant on board during a flight. Verification must include flight testing. ... TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with Crew § 460.17 Verification...
14 CFR 460.17 - Verification program.
Code of Federal Regulations, 2010 CFR
2010-01-01
... software in an operational flight environment before allowing any space flight participant on board during a flight. Verification must include flight testing. ... TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with Crew § 460.17 Verification...
14 CFR 460.17 - Verification program.
Code of Federal Regulations, 2012 CFR
2012-01-01
... software in an operational flight environment before allowing any space flight participant on board during a flight. Verification must include flight testing. ... TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with Crew § 460.17 Verification...
14 CFR 460.17 - Verification program.
Code of Federal Regulations, 2013 CFR
2013-01-01
... software in an operational flight environment before allowing any space flight participant on board during a flight. Verification must include flight testing. ... TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with Crew § 460.17 Verification...
14 CFR 460.17 - Verification program.
Code of Federal Regulations, 2014 CFR
2014-01-01
... software in an operational flight environment before allowing any space flight participant on board during a flight. Verification must include flight testing. ... TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with Crew § 460.17 Verification...
Simulation of OSCM Concepts for HQ SACT
2007-06-01
effective method for creating understanding, identifying problems and developing solutions. • Simulation of a goal driven organization is a cost...effective method to visualize some aspects of the problem space Toolbox • The team used Extend™, a COTS product from Imagine That!® (http...Nations flow Model OSCM ATARES flow Batching A/C & Pallets Model ISAF Airbridge flow Flying and unbatching A/C Fleet Create resources Calculate flight
Artificial Immune System for Flight Envelope Estimation and Protection
2014-12-31
Throttle Failure 103 5.3. Estimation Algorithms for Sensor AC 108 5.3.1. Roll Rate Sensor Bias 108...4.13. Reference Features-Pattern for a Roll Rate Sensor Under Low Severity Failure 93 Figure 4.14. Reference Features-Pattern for a Roll Rate...Average PI for Different ACs 134 Figure 6.9. Roll Response Under High Magnitude Stabilator Failure 135 Figure 6.10. Pitch
Software Management Environment (SME) release 9.4 user reference material
NASA Technical Reports Server (NTRS)
Hendrick, R.; Kistler, D.; Manter, K.
1992-01-01
This document contains user reference material for the Software Management Environment (SME) prototype, developed for the Systems Development Branch (Code 552) of the Flight Dynamics Division (FDD) of Goddard Space Flight Center (GSFC). The SME provides an integrated set of management tools that can be used by software development managers in their day-to-day management and planning activities. This document provides an overview of the SME, a description of all functions, and detailed instructions concerning the software's installation and use.
NASA Technical Reports Server (NTRS)
Shenitz, C. M.; Mcgarry, F. E.; Tasaki, K. K.
1980-01-01
A guide is presented for National Aeronautics and Space Administration management personnel who stand to benefit from the lessons learned in developing microprocessor-based flight dynamics software systems. The essential functional characteristics of microprocessors are presented. The relevant areas of system support software are examined, as are the distinguishing characteristics of flight dynamics software. Design examples are provided to illustrate the major points presented, and actual development experience obtained in this area is provided as evidence to support the conclusions reached.
NASA Technical Reports Server (NTRS)
Roosta, Ramin; Wang, Xinchen; Sadigursky, Michael; Tracton, Phil
2004-01-01
Field Programmable Gate Arrays (FPGA) have played increasingly important roles in military and aerospace applications. Xilinx SRAM-based FPGAs have been extensively used in commercial applications. They have been used less frequently in space flight applications due to their susceptibility to single-event upsets. Reliability of these devices in space applications is a concern that has not been addressed. The objective of this project is to design a fully programmable hardware/software platform that allows (but is not limited to) comprehensive static/dynamic burn-in test of Virtex-II 3000 FPGAs, at speed test and SEU test. Conventional methods test very few discrete AC parameters (primarily switching) of a given integrated circuit. This approach will test any possible configuration of the FPGA and any associated performance parameters. It allows complete or partial re-programming of the FPGA and verification of the program by using read back followed by dynamic test. Designers have full control over which functional elements of the FPGA to stress. They can completely simulate all possible types of configurations/functions. Another benefit of this platform is that it allows collecting information on elevation of the junction temperature as a function of gate utilization, operating frequency and functionality. A software tool has been implemented to demonstrate the various features of the system. The software consists of three major parts: the parallel interface driver, main system procedure and a graphical user interface (GUI).
Training and Personnel Systems Technology R&D Program Description FY 1988/1989. Revision
1988-05-20
scenario software /database, and computer generated imagery (CIG) subsystem resources; (d) investigation of feasibility of, and preparation of plans... computer language to Army flight simulator for demonstration and evaluation. The objective is to have flight simulators which use the same software as...the Automated Performance and Readiness Training System (APARTS), which is a computer software system which facilitates training management through
AirSTAR Hardware and Software Design for Beyond Visual Range Flight Research
NASA Technical Reports Server (NTRS)
Laughter, Sean; Cox, David
2016-01-01
The National Aeronautics and Space Administration (NASA) Airborne Subscale Transport Aircraft Research (AirSTAR) Unmanned Aerial System (UAS) is a facility developed to study the flight dynamics of vehicles in emergency conditions, in support of aviation safety research. The system was upgraded to have its operational range significantly expanded, going beyond the line of sight of a ground-based pilot. A redesign of the airborne flight hardware was undertaken, as well as significant changes to the software base, in order to provide appropriate autonomous behavior in response to a number of potential failures and hazards. Ground hardware and system monitors were also upgraded to include redundant communication links, including ADS-B based position displays and an independent flight termination system. The design included both custom and commercially available avionics, combined to allow flexibility in flight experiment design while still benefiting from tested configurations in reversionary flight modes. A similar hierarchy was employed in the software architecture, to allow research codes to be tested, with a fallback to more thoroughly validated flight controls. As a remotely piloted facility, ground systems were also developed to ensure the flight modes and system state were communicated to ground operations personnel in real-time. Presented in this paper is a general overview of the concept of operations for beyond visual range flight, and a detailed review of the airborne hardware and software design. This discussion is held in the context of the safety and procedural requirements that drove many of the design decisions for the AirSTAR UAS Beyond Visual Range capability.
Hypersonic Navier Stokes Comparisons to Orbiter Flight Data
NASA Technical Reports Server (NTRS)
Campbell, Charles H.; Nompelis, Ioannis; Candler, Graham; Barnhart, Michael; Yoon, Seokkwan
2009-01-01
Hypersonic chemical nonequilibrium simulations of low earth orbit entry flow fields are becoming increasingly commonplace as software and computational capabilities become more capable. However, development of robust and accurate software to model these environments will always encounter a significant barrier in developing a suite of high quality calibration cases. The US3D hypersonic nonequilibrium Navier Stokes analysis capability has been favorably compared to a number of wind tunnel test cases. Extension of the calibration basis for this software to Orbiter flight conditions will provide an incremental increase in confidence. As part of the Orbiter Boundary Layer Transition Flight Experiment and the Hypersonic Thermodynamic Infrared Measurements project, NASA is performing entry flight testing on the Orbiter to provide valuable aerothermodynamic heating data. An increase in interest related to orbiter entry environments is resulting from this activity. With the advent of this new data, comparisons of the US3D software to the new flight testing data is warranted. This paper will provide information regarding the framework of analyses that will be applied with the US3D analysis tool. In addition, comparisons will be made to entry flight testing data provided by the Orbiter BLT Flight Experiment and HYTHIRM projects. If data from digital scans of the Orbiter windward surface become available, simulations will also be performed to characterize the difference in surface heating between the CAD reference OML and the digitized surface provided by the surface scans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Mark A.; Bigelow, Matthew; Gilkey, Jeff C.
The Super Strypi SWIL is a six degree-of-freedom (6DOF) simulation for the Super Strypi Launch Vehicle that includes a subset of the Super Strypi NGC software (guidance, ACS and sequencer). Aerodynamic and propulsive forces, mass properties, ACS (attitude control system) parameters, guidance parameters and Monte-Carlo parameters are defined in input files. Output parameters are saved to a Matlab mat file.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... Qualification Performance Standards (§ 60.4). 5. Quality Management System (§ 60.5). 6. Sponsor Qualification... inquiries on system compatibility, and minimum system requirements are also included on the NSP Web site. d... Flight Guidance Systems. (15) AC 120-57, as amended, Surface Movement Guidance and Control System (SMGCS...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-01
... flight of civil aircraft in air commerce by prescribing regulations for practices, methods, and... incorporated before further flight if damage or signs of distress are found. (h) Alternative Methods of..., such as FAA Advisory Circular (AC) 43.13-1B Acceptable Methods, Techniques, and Practices--Aircraft...
1964-09-19
XV-5A airplane installed in 40x80ft Subsonic Wind Tunnel at NASA Ames Research Center with Tom Mills. The propulsive lift system was tested to determine power-on performance characteristics in preparation for flight tests. Used in Memoiors of an Aeronautical Engineer, Flight Tests at Ames Research Center 1940-1970 NASA-SP-2002-4526 (Seth B. Anderson)
HAL/S programmer's guide. [space shuttle flight software language
NASA Technical Reports Server (NTRS)
Newbold, P. M.; Hotz, R. L.
1974-01-01
HAL/S is a programming language developed to satisfy the flight software requirements for the space shuttle program. The user's guide explains pertinent language operating procedures and described the various HAL/S facilities for manipulating integer, scalar, vector, and matrix data types.
Space Communication and Navigation SDR Testbed, Overview and Opportunity for Experiments
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.
2013-01-01
NASA has developed an experimental flight payload (referred to as the Space Communication and Navigation (SCAN) Test Bed) to investigate software defined radio (SDR) communications, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developments underway by NASA and industry partners launched in 2012. The payload is externally mounted to the International Space Station truss to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system will communicate with NASAs orbiting satellite relay network, the Tracking and Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station. The system is available for experiments by industry, academia, and other government agencies to participate in the SDR technology assessments and standards advancements.
DAQ: Software Architecture for Data Acquisition in Sounding Rockets
NASA Technical Reports Server (NTRS)
Ahmad, Mohammad; Tran, Thanh; Nichols, Heidi; Bowles-Martinez, Jessica N.
2011-01-01
A multithreaded software application was developed by Jet Propulsion Lab (JPL) to collect a set of correlated imagery, Inertial Measurement Unit (IMU) and GPS data for a Wallops Flight Facility (WFF) sounding rocket flight. The data set will be used to advance Terrain Relative Navigation (TRN) technology algorithms being researched at JPL. This paper describes the software architecture and the tests used to meet the timing and data rate requirements for the software used to collect the dataset. Also discussed are the challenges of using commercial off the shelf (COTS) flight hardware and open source software. This includes multiple Camera Link (C-link) based cameras, a Pentium-M based computer, and Linux Fedora 11 operating system. Additionally, the paper talks about the history of the software architecture's usage in other JPL projects and its applicability for future missions, such as cubesats, UAVs, and research planes/balloons. Also talked about will be the human aspect of project especially JPL's Phaeton program and the results of the launch.
Shuttle mission simulator software conceptual design
NASA Technical Reports Server (NTRS)
Burke, J. F.
1973-01-01
Software conceptual designs (SCD) are presented for meeting the simulator requirements for the shuttle missions. The major areas of the SCD discussed include: malfunction insertion, flight software, applications software, systems software, and computer complex.
Froeling, Vera; Heimann, Uwe; Huebner, Ralf-Harto; Kroencke, Thomas J; Maurer, Martin H; Doellinger, Felix; Geisel, Dominik; Hamm, Bernd; Brenner, Winfried; Schreiter, Nils F
2015-07-01
To evaluate the utility of attenuation correction (AC) of V/P SPECT images for patients with pulmonary emphysema. Twenty-one patients (mean age 67.6 years) with pulmonary emphysema who underwent V/P SPECT/CT were included. AC/non-AC V/P SPECT images were compared visually and semiquantitatively. Visual comparison of AC/non-AC images was based on a 5-point likert scale. Semiquantitative comparison assessed absolute counts per lung (aCpLu) and lung lobe (aCpLo) for AC/non-AC images using software-based analysis; percentage counts (PC = (aCpLo/aCpLu) × 100) were calculated. Correlation between AC/non-AC V/P SPECT images was analyzed using Spearman's rho correlation coefficient; differences were tested for significance with the Wilcoxon rank sum test. Visual analysis revealed high conformity for AC and non-AC V/P SPECT images. Semiquantitative analysis of PC in AC/non-AC images had an excellent correlation and showed no significant differences in perfusion (ρ = 0.986) or ventilation (ρ = 0.979, p = 0.809) SPECT/CT images. AC of V/P SPECT images for lung lobe-based function imaging in patients with pulmonary emphysema do not improve visual or semiquantitative image analysis.
NASA Technical Reports Server (NTRS)
McComas, David C.; Strege, Susanne L.; Carpenter, Paul B. Hartman, Randy
2015-01-01
The core Flight System (cFS) is a flight software (FSW) product line developed by the Flight Software Systems Branch (FSSB) at NASA's Goddard Space Flight Center (GSFC). The cFS uses compile-time configuration parameters to implement variable requirements to enable portability across embedded computing platforms and to implement different end-user functional needs. The verification and validation of these requirements is proving to be a significant challenge. This paper describes the challenges facing the cFS and the results of a pilot effort to apply EXB Solution's testing approach to the cFS applications.
La Macchia, Mariangela; Fellin, Francesco; Amichetti, Maurizio; Cianchetti, Marco; Gianolini, Stefano; Paola, Vitali; Lomax, Antony J; Widesott, Lamberto
2012-09-18
To validate, in the context of adaptive radiotherapy, three commercial software solutions for atlas-based segmentation. Fifteen patients, five for each group, with cancer of the Head&Neck, pleura, and prostate were enrolled in the study. In addition to the treatment planning CT (pCT) images, one replanning CT (rCT) image set was acquired for each patient during the RT course. Three experienced physicians outlined on the pCT and rCT all the volumes of interest (VOIs). We used three software solutions (VelocityAI 2.6.2 (V), MIM 5.1.1 (M) by MIMVista and ABAS 2.0 (A) by CMS-Elekta) to generate the automatic contouring on the repeated CT. All the VOIs obtained with automatic contouring (AC) were successively corrected manually. We recorded the time needed for: 1) ex novo ROIs definition on rCT; 2) generation of AC by the three software solutions; 3) manual correction of AC.To compare the quality of the volumes obtained automatically by the software and manually corrected with those drawn from scratch on rCT, we used the following indexes: overlap coefficient (DICE), sensitivity, inclusiveness index, difference in volume, and displacement differences on three axes (x, y, z) from the isocenter. The time saved by the three software solutions for all the sites, compared to the manual contouring from scratch, is statistically significant and similar for all the three software solutions. The time saved for each site are as follows: about an hour for Head&Neck, about 40 minutes for prostate, and about 20 minutes for mesothelioma. The best DICE similarity coefficient index was obtained with the manual correction for: A (contours for prostate), A and M (contours for H&N), and M (contours for mesothelioma). From a clinical point of view, the automated contouring workflow was shown to be significantly shorter than the manual contouring process, even though manual correction of the VOIs is always needed.
Western aeronautical test range real-time graphics software package MAGIC
NASA Technical Reports Server (NTRS)
Malone, Jacqueline C.; Moore, Archie L.
1988-01-01
The master graphics interactive console (MAGIC) software package used on the Western Aeronautical Test Range (WATR) of the NASA Ames Research Center is described. MAGIC is a resident real-time research tool available to flight researchers-scientists in the NASA mission control centers of the WATR at the Dryden Flight Research Facility at Edwards, California. The hardware configuration and capabilities of the real-time software package are also discussed.
Flight demonstration of a milliarcsecond pointing system for direct exoplanet imaging.
Mendillo, Christopher B; Chakrabarti, Supriya; Cook, Timothy A; Hicks, Brian A; Lane, Benjamin F
2012-10-10
We present flight results from the optical pointing control system onboard the Planetary Imaging Concept Testbed Using a Rocket Experiment (PICTURE) sounding rocket. PICTURE (NASA mission number: 36.225 UG) was launched on 8 October 2011, from White Sands Missile Range. It attempted to directly image the exozodiacal dust disk of ϵ Eridani (K2V, 3.22 pc) down to an inner radius of 1.5 AU using a visible nulling coronagraph. The rocket attitude control system (ACS) provided 627 milliarcsecond (mas) RMS body pointing (~2'' peak-to-valley). The PICTURE fine pointing system (FPS) successfully stabilized the telescope beam to 5.1 mas (0.02λ/D) RMS using an angle tracker camera and fast steering mirror. This level of pointing stability is comparable to that of the Hubble Space Telescope. We present the hardware design of the FPS, a description of the limiting noise sources and a power spectral density analysis of the FPS and rocket ACS in-flight performance.
Big Software for SmallSats: Adapting cFS to CubeSat Missions
NASA Technical Reports Server (NTRS)
Cudmore, Alan P.; Crum, Gary Alex; Sheikh, Salman; Marshall, James
2015-01-01
Expanding capabilities and mission objectives for SmallSats and CubeSats is driving the need for reliable, reusable, and robust flight software. While missions are becoming more complicated and the scientific goals more ambitious, the level of acceptable risk has decreased. Design challenges are further compounded by budget and schedule constraints that have not kept pace. NASA's Core Flight Software System (cFS) is an open source solution which enables teams to build flagship satellite level flight software within a CubeSat schedule and budget. NASA originally developed cFS to reduce mission and schedule risk for flagship satellite missions by increasing code reuse and reliability. The Lunar Reconnaissance Orbiter, which launched in 2009, was the first of a growing list of Class B rated missions to use cFS.
GERICOS: A Generic Framework for the Development of On-Board Software
NASA Astrophysics Data System (ADS)
Plasson, P.; Cuomo, C.; Gabriel, G.; Gauthier, N.; Gueguen, L.; Malac-Allain, L.
2016-08-01
This paper presents an overview of the GERICOS framework (GEneRIC Onboard Software), its architecture, its various layers and its future evolutions. The GERICOS framework, developed and qualified by LESIA, offers a set of generic, reusable and customizable software components for the rapid development of payload flight software. The GERICOS framework has a layered structure. The first layer (GERICOS::CORE) implements the concept of active objects and forms an abstraction layer over the top of real-time kernels. The second layer (GERICOS::BLOCKS) offers a set of reusable software components for building flight software based on generic solutions to recurrent functionalities. The third layer (GERICOS::DRIVERS) implements software drivers for several COTS IP cores of the LEON processor ecosystem.
2014-03-27
bending [45, 402], assuming the vertical deflection takes the form: w = wo ( 1 + r2c a2c )2 (2.28) 9A.C. Ugural has a plate solution for equilateral...science/article/pii/S0096300308000982. [49] Ugural , A.C. Stresses in Plates and Shells. McGraw-Hill, 1981. ISBN 0-07-065730-0. [50] US Centennial of Flight
NASA Technical Reports Server (NTRS)
Smith, Kelly M.; Gay, Robert S.; Stachowiak, Susan J.
2013-01-01
In late 2014, NASA will fly the Orion capsule on a Delta IV-Heavy rocket for the Exploration Flight Test-1 (EFT-1) mission. For EFT-1, the Orion capsule will be flying with a new GPS receiver and new navigation software. Given the experimental nature of the flight, the flight software must be robust to the loss of GPS measurements. Once the high-speed entry is complete, the drogue parachutes must be deployed within the proper conditions to stabilize the vehicle prior to deploying the main parachutes. When GPS is available in nominal operations, the vehicle will deploy the drogue parachutes based on an altitude trigger. However, when GPS is unavailable, the navigated altitude errors become excessively large, driving the need for a backup barometric altimeter to improve altitude knowledge. In order to increase overall robustness, the vehicle also has an alternate method of triggering the parachute deployment sequence based on planet-relative velocity if both the GPS and the barometric altimeter fail. However, this backup trigger results in large altitude errors relative to the targeted altitude. Motivated by this challenge, this paper demonstrates how logistic regression may be employed to semi-automatically generate robust triggers based on statistical analysis. Logistic regression is used as a ground processor pre-flight to develop a statistical classifier. The classifier would then be implemented in flight software and executed in real-time. This technique offers improved performance even in the face of highly inaccurate measurements. Although the logistic regression-based trigger approach will not be implemented within EFT-1 flight software, the methodology can be carried forward for future missions and vehicles.
NASA Technical Reports Server (NTRS)
Smith, Kelly; Gay, Robert; Stachowiak, Susan
2013-01-01
In late 2014, NASA will fly the Orion capsule on a Delta IV-Heavy rocket for the Exploration Flight Test-1 (EFT-1) mission. For EFT-1, the Orion capsule will be flying with a new GPS receiver and new navigation software. Given the experimental nature of the flight, the flight software must be robust to the loss of GPS measurements. Once the high-speed entry is complete, the drogue parachutes must be deployed within the proper conditions to stabilize the vehicle prior to deploying the main parachutes. When GPS is available in nominal operations, the vehicle will deploy the drogue parachutes based on an altitude trigger. However, when GPS is unavailable, the navigated altitude errors become excessively large, driving the need for a backup barometric altimeter to improve altitude knowledge. In order to increase overall robustness, the vehicle also has an alternate method of triggering the parachute deployment sequence based on planet-relative velocity if both the GPS and the barometric altimeter fail. However, this backup trigger results in large altitude errors relative to the targeted altitude. Motivated by this challenge, this paper demonstrates how logistic regression may be employed to semi-automatically generate robust triggers based on statistical analysis. Logistic regression is used as a ground processor pre-flight to develop a statistical classifier. The classifier would then be implemented in flight software and executed in real-time. This technique offers improved performance even in the face of highly inaccurate measurements. Although the logistic regression-based trigger approach will not be implemented within EFT-1 flight software, the methodology can be carried forward for future missions and vehicles
NASA Technical Reports Server (NTRS)
Smith, Kelly M.; Gay, Robert S.; Stachowiak, Susan J.
2013-01-01
In late 2014, NASA will fly the Orion capsule on a Delta IV-Heavy rocket for the Exploration Flight Test-1 (EFT-1) mission. For EFT-1, the Orion capsule will be flying with a new GPS receiver and new navigation software. Given the experimental nature of the flight, the flight software must be robust to the loss of GPS measurements. Once the high-speed entry is complete, the drogue parachutes must be deployed within the proper conditions to stabilize the vehicle prior to deploying the main parachutes. When GPS is available in nominal operations, the vehicle will deploy the drogue parachutes based on an altitude trigger. However, when GPS is unavailable, the navigated altitude errors become excessively large, driving the need for a backup barometric altimeter. In order to increase overall robustness, the vehicle also has an alternate method of triggering the drogue parachute deployment based on planet-relative velocity if both the GPS and the barometric altimeter fail. However, this velocity-based trigger results in large altitude errors relative to the targeted altitude. Motivated by this challenge, this paper demonstrates how logistic regression may be employed to automatically generate robust triggers based on statistical analysis. Logistic regression is used as a ground processor pre-flight to develop a classifier. The classifier would then be implemented in flight software and executed in real-time. This technique offers excellent performance even in the face of highly inaccurate measurements. Although the logistic regression-based trigger approach will not be implemented within EFT-1 flight software, the methodology can be carried forward for future missions and vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Mark A.; Bigelow, Matthew; Gilkey, Jeff C.
The Super Strypi Navigation, Guidance & Control Software is a real-time implementation of the navigation, guidance and control algorithms designed to deliver a payload to a desired orbit for the rail launched Super Strypi launch vehicle. The software contains all flight control algorithms required from pre-launch until orbital insertion. The flight sequencer module calls the NG&C functions at the appropriate times of flight. Additional functionality includes all the low level drivers and I/O for communicating to other systems within the launch vehicle and to the ground support equipment. The software is designed such that changes to the launch location andmore » desired orbit can be changed without recompiling the code.« less
An approach to software cost estimation
NASA Technical Reports Server (NTRS)
Mcgarry, F.; Page, J.; Card, D.; Rohleder, M.; Church, V.
1984-01-01
A general procedure for software cost estimation in any environment is outlined. The basic concepts of work and effort estimation are explained, some popular resource estimation models are reviewed, and the accuracy of source estimates is discussed. A software cost prediction procedure based on the experiences of the Software Engineering Laboratory in the flight dynamics area and incorporating management expertise, cost models, and historical data is described. The sources of information and relevant parameters available during each phase of the software life cycle are identified. The methodology suggested incorporates these elements into a customized management tool for software cost prediction. Detailed guidelines for estimation in the flight dynamics environment developed using this methodology are presented.
ERIC Educational Resources Information Center
Horne, Thomas
1988-01-01
Describes four IBM compatible flight simulator software packages: (1) "Falcon," air to air combat in an F-16 fighter; (2) "Chuck Yeager's Advanced Flight Trainer," test flight 14 different aircraft; (3) "Jet," air to air combat; and (4) "Flight Simulator," a realistic PC flight simulator program. (MVL)
Mars Science Laboratory Workstation Test Set
NASA Technical Reports Server (NTRS)
Henriquez, David A.; Canham, Timothy K.; Chang, Johnny T.; Villaume, Nathaniel
2009-01-01
The Mars Science Laboratory developed the Workstation TestSet (WSTS) is a computer program that enables flight software development on virtual MSL avionics. The WSTS is the non-real-time flight avionics simulator that is designed to be completely software-based and run on a workstation class Linux PC.
Integration of the Remote Agent for the NASA Deep Space One Autonomy Experiment
NASA Technical Reports Server (NTRS)
Dorais, Gregory A.; Bernard, Douglas E.; Gamble, Edward B., Jr.; Kanefsky, Bob; Kurien, James; Muscettola, Nicola; Nayak, P. Pandurang; Rajan, Kanna; Lau, Sonie (Technical Monitor)
1998-01-01
This paper describes the integration of the Remote Agent (RA), a spacecraft autonomy system which is scheduled to control the Deep Space 1 spacecraft during a flight experiment in 1999. The RA is a reusable, model-based autonomy system that is quite different from software typically used to control an aerospace system. We describe the integration challenges we faced, how we addressed them, and the lessons learned. We focus on those aspects of integrating the RA that were either easier or more difficult than integrating a more traditional large software application because the RA is a model-based autonomous system. A number of characteristics of the RA made integration process easier. One example is the model-based nature of RA. Since the RA is model-based, most of its behavior is not hard coded into procedural program code. Instead, engineers specify high level models of the spacecraft's components from which the Remote Agent automatically derives correct system-wide behavior on the fly. This high level, modular, and declarative software description allowed some interfaces between RA components and between RA and the flight software to be automatically generated and tested for completeness against the Remote Agent's models. In addition, the Remote Agent's model-based diagnosis system automatically diagnoses when the RA models are not consistent with the behavior of the spacecraft. In flight, this feature is used to diagnose failures in the spacecraft hardware. During integration, it proved valuable in finding problems in the spacecraft simulator or flight software. In addition, when modifications are made to the spacecraft hardware or flight software, the RA models are easily changed because they only capture a description of the spacecraft. one does not have to maintain procedural code that implements the correct behavior for every expected situation. On the other hand, several features of the RA made it more difficult to integrate than typical flight software. For example, the definition of correct behavior is more difficult to specify for a system that is expected to reason about and flexibly react to its environment than for a traditional flight software system. Consequently, whenever a change is made to the RA it is more time consuming to determine if the resulting behavior is correct. We conclude the paper with a discussion of future work on the Remote Agent as well as recommendations to ease integration of similar autonomy projects.
Grasping objects autonomously in simulated KC-135 zero-g
NASA Technical Reports Server (NTRS)
Norsworthy, Robert S.
1994-01-01
The KC-135 aircraft was chosen for simulated zero gravity testing of the Extravehicular Activity Helper/retriever (EVAHR). A software simulation of the EVAHR hardware, KC-135 flight dynamics, collision detection and grasp inpact dynamics has been developed to integrate and test the EVAHR software prior to flight testing on the KC-135. The EVAHR software will perform target pose estimation, tracking, and motion estimation for rigid, freely rotating, polyhedral objects. Manipulator grasp planning and trajectory control software has also been developed to grasp targets while avoiding collisions.
NASA Technical Reports Server (NTRS)
Brown, Charles; Andrew, Robert; Roe, Scott; Frye, Ronald; Harvey, Michael; Vu, Tuan; Balachandran, Krishnaiyer; Bly, Ben
2012-01-01
The Ascent/Descent Software Suite has been used to support a variety of NASA Shuttle Program mission planning and analysis activities, such as range safety, on the Integrated Planning System (IPS) platform. The Ascent/Descent Software Suite, containing Ascent Flight Design (ASC)/Descent Flight Design (DESC) Configuration items (Cis), lifecycle documents, and data files used for shuttle ascent and entry modeling analysis and mission design, resides on IPS/Linux workstations. A list of tools in Navigation (NAV)/Prop Software Suite represents tool versions established during or after the IPS Equipment Rehost-3 project.
1984-04-01
software are required. Ported air cooling is provided in accordan-4 oith WKIM 600 Level 2 and Adequately supports the pow. dissipation (approxiimately 100... software multiplication with simple shifting operations in order to optimize operating speed. Finally, program development software for microprocessors...requiremuents and that the software was exhaustively verified and validated prior to initiation of flight testing will be describ- ed. A special flight
Range Safety for an Autonomous Flight Safety System
NASA Technical Reports Server (NTRS)
Lanzi, Raymond J.; Simpson, James C.
2010-01-01
The Range Safety Algorithm software encapsulates the various constructs and algorithms required to accomplish Time Space Position Information (TSPI) data management from multiple tracking sources, autonomous mission mode detection and management, and flight-termination mission rule evaluation. The software evaluates various user-configurable rule sets that govern the qualification of TSPI data sources, provides a prelaunch autonomous hold-launch function, performs the flight-monitoring-and-termination functions, and performs end-of-mission safing
A Neutron and X-ray Diffraction Study of Ca-Mg-Cu Metallic Glasses (Preprint)
2011-07-01
A.L. Patterson, Z Kristallogr 90(1935)517. 29. A.K. Soper , J. Phys.: Condens. Matter 19(2007)335206. 30. P.G. Mikolaj and C.J. Pings, Phys. Chem...Liq. 1(1968)93. 31. P.J. Black and J.A. Cundall, Acta Cryst. 19(1965)807. 32. A.C. Hannon, Nucl. Instrum. Meth. A 551(2005)88. 33. A.K. Soper ...Gudrun software: http://www.isis.stfc.ac.uk/instruments/sandals/data- analysis/gudrun8864.html. 34. A.C. Hannon, W.S. Howells and A.K. Soper , IOP Conf
Atomic Structure of Ca40+xMg25Cu35-x Metallic Glasses (Preprint)
2011-12-01
28. A.K. Soper , Gudrun software, http://www.isis.stfc.ac.uk/instruments/sandals/data- analysis/gudrun8864.html. 29. A.C. Hannon, W.S. Howells, A.K... Soper , in: Neutron Scattering Data Analysis, Inst. Phys. Conf. Ser., 107 (1990) 193-211. 30 T.E. Faber and J.M. Ziman, Philos. Mag. 11 (1965) 153
NASA Technical Reports Server (NTRS)
Jacklin, Stephen A.; Schumann, Johann; Guenther, Kurt; Bosworth, John
2006-01-01
Adaptive control technologies that incorporate learning algorithms have been proposed to enable autonomous flight control and to maintain vehicle performance in the face of unknown, changing, or poorly defined operating environments [1-2]. At the present time, however, it is unknown how adaptive algorithms can be routinely verified, validated, and certified for use in safety-critical applications. Rigorous methods for adaptive software verification end validation must be developed to ensure that. the control software functions as required and is highly safe and reliable. A large gap appears to exist between the point at which control system designers feel the verification process is complete, and when FAA certification officials agree it is complete. Certification of adaptive flight control software verification is complicated by the use of learning algorithms (e.g., neural networks) and degrees of system non-determinism. Of course, analytical efforts must be made in the verification process to place guarantees on learning algorithm stability, rate of convergence, and convergence accuracy. However, to satisfy FAA certification requirements, it must be demonstrated that the adaptive flight control system is also able to fail and still allow the aircraft to be flown safely or to land, while at the same time providing a means of crew notification of the (impending) failure. It was for this purpose that the NASA Ames Confidence Tool was developed [3]. This paper presents the Confidence Tool as a means of providing in-flight software assurance monitoring of an adaptive flight control system. The paper will present the data obtained from flight testing the tool on a specially modified F-15 aircraft designed to simulate loss of flight control faces.
1974-03-13
United Airlines DC-8 (N8099U) Two Segment Evaluation. In-Flight Thrust Reversing, Steep Approach Research. The thrust reversing concept was applied to the DC-8 Commercial transport to achieve the rapid descent capability required for FAA certificaiton. Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig 96
NASA Astrophysics Data System (ADS)
Valette, Jean-Jacques; Lemoine, Frank G.; Ferrage, Pascale; Yaya, Philippe; Altamimi, Zuheir; Willis, Pascal; Soudarin, Laurent
2010-12-01
For the first time, the International DORIS Service (IDS) has produced a technique level combination based on the contributions of seven analysis centers (ACs), including the European Space Operations Center (ESOC), Geodetic Observatory Pecny (GOP), Geoscience Australia (GAU), the NASA Goddard Space Flight Center (GSFC), the Institut Géographique National (IGN), the Institute of Astronomy, Russian Academy of Sciences (INASAN, named as INA), and CNES/CLS (named as LCA). The ACs used five different software packages to process the DORIS data from 1992 to 2008, including NAPEOS (ESA), Bernese (GOP), GEODYN (GAU, GSC), GIPSY/OASIS (INA), and GINS (LCA). The data from seven DORIS satellites, TOPEX/Poseidon, SPOT-2, SPOT-3, SPOT-4, SPOT-5, Envisat and Jason-1 were processed and all the analysis centers produced weekly SINEX files in either variance-covariance or normal equation format. The processing by the analysis centers used the latest GRACE-derived gravity models, forward modelling of atmospheric gravity, updates to the radiation pressure modelling to improve the DORIS geocenter solutions, denser parameterization of empirically determined drag coefficients to improve station and EOP solutions, especially near the solar maximum in 2001-2002, updated troposphere mapping functions, and an ITRF2005-derived station set for orbit determination, DPOD2005. The CATREF software was used to process the weekly AC solutions, and produce three iterations of an IDS global weekly combination. Between the development of the initial solution IDS-1, and the final solution, IDS-3, the ACs improved their analysis strategies and submitted updated solutions to eliminate troposphere-derived biases in the solution scale, to reduce drag-related degradations in station positioning, and to refine the estimation strategy to improve the combination geocenter solution. An analysis of the frequency content of the individual AC geocenter and scale solutions was used as the basis to define the scale and geocenter of the IDS-3 combination. The final IDS-3 combination has an internal position consistency (WRMS) that is 15 to 20 mm before 2002 and 8 to 10 mm after 2002, when 4 or 5 satellites contribute to the weekly solutions. The final IDS-3 combination includes solutions for 130 DORIS stations on 67 different sites of which 35 have occupations over 16 years (1993.0-2009.0). The EOPs from the IDS-3 combination were compared with the IERS 05 C04 time series and the RMS agreement was 0.24 mas and 0.35 mas for the X and Y components of polar motion. The comparison to ITRF2005 in station position shows an agreement of 6 to 8 mm RMS in horizontal and 10.3 mm in height. The RMS comparison to ITRF2005 in station velocity is at 1.8 mm/year on the East component, to 1.2 mm/year in North component and 1.6 mm/year in height.
NASA Technical Reports Server (NTRS)
Waligora, Sharon; Bailey, John; Stark, Mike
1995-01-01
The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of applications software. The goals of the SEL are (1) to understand the software development process in the GSFC environment; (2) to measure the effects of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.
Software process improvement in the NASA software engineering laboratory
NASA Technical Reports Server (NTRS)
Mcgarry, Frank; Pajerski, Rose; Page, Gerald; Waligora, Sharon; Basili, Victor; Zelkowitz, Marvin
1994-01-01
The Software Engineering Laboratory (SEL) was established in 1976 for the purpose of studying and measuring software processes with the intent of identifying improvements that could be applied to the production of ground support software within the Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC). The SEL has three member organizations: NASA/GSFC, the University of Maryland, and Computer Sciences Corporation (CSC). The concept of process improvement within the SEL focuses on the continual understanding of both process and product as well as goal-driven experimentation and analysis of process change within a production environment.
SEPAC flight software detailed design specifications, volume 1
NASA Technical Reports Server (NTRS)
1982-01-01
The detailed design specifications (as built) for the SEPAC Flight Software are defined. The design includes a description of the total software system and of each individual module within the system. The design specifications describe the decomposition of the software system into its major components. The system structure is expressed in the following forms: the control-flow hierarchy of the system, the data-flow structure of the system, the task hierarchy, the memory structure, and the software to hardware configuration mapping. The component design description includes details on the following elements: register conventions, module (subroutines) invocaton, module functions, interrupt servicing, data definitions, and database structure.
Long range targeting for space based rendezvous
NASA Technical Reports Server (NTRS)
Everett, Louis J.; Redfield, R. C.
1995-01-01
The work performed under this grant supported the Dexterous Flight Experiment one STS-62 The project required developing hardware and software for automating a TRAC sensor on orbit. The hardware developed by for the flight has been documented through standard NASA channels since it has to pass safety, environmental, and other issues. The software has not been documented previously, therefore, this report provides a software manual for the TRAC code developed for the grant.
Ohue, Masahito; Shimoda, Takehiro; Suzuki, Shuji; Matsuzaki, Yuri; Ishida, Takashi; Akiyama, Yutaka
2014-11-15
The application of protein-protein docking in large-scale interactome analysis is a major challenge in structural bioinformatics and requires huge computing resources. In this work, we present MEGADOCK 4.0, an FFT-based docking software that makes extensive use of recent heterogeneous supercomputers and shows powerful, scalable performance of >97% strong scaling. MEGADOCK 4.0 is written in C++ with OpenMPI and NVIDIA CUDA 5.0 (or later) and is freely available to all academic and non-profit users at: http://www.bi.cs.titech.ac.jp/megadock. akiyama@cs.titech.ac.jp Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.
HTML5 PivotViewer: high-throughput visualization and querying of image data on the web
Taylor, Stephen; Noble, Roger
2014-01-01
Motivation: Visualization and analysis of large numbers of biological images has generated a bottle neck in research. We present HTML5 PivotViewer, a novel, open source, platform-independent viewer making use of the latest web technologies that allows seamless access to images and associated metadata for each image. This provides a powerful method to allow end users to mine their data. Availability and implementation: Documentation, examples and links to the software are available from http://www.cbrg.ox.ac.uk/data/pivotviewer/. The software is licensed under GPLv2. Contact: stephen.taylor@imm.ox.ac.uk and roger@coritsu.com PMID:24849578
NASA Technical Reports Server (NTRS)
Kreifeldt, J. G.; Parkin, L.; Wempe, T. E.; Huff, E. F.
1975-01-01
Perceived orderliness in the ground tracks of five A/C during their simulated flights was studied. Dynamically developing ground tracks for five A/C from 21 separate runs were reproduced from computer storage and displayed on CRTS to professional pilots and controllers for their evaluations and preferences under several criteria. The ground tracks were developed in 20 seconds as opposed to the 5 minutes of simulated flight using speedup techniques for display. Metric and nonmetric multidimensional scaling techniques are being used to analyze the subjective responses in an effort to: (1) determine the meaningfulness of basing decisions on such complex subjective criteria; (2) compare pilot/controller perceptual spaces; (3) determine the dimensionality of the subjects' perceptual spaces; and thereby (4) determine objective measures suitable for comparing alternative traffic management simulations.
Descent and Landing Triggers for the Orion Multi-Purpose Crew Vehicle Exploration Flight Test-1
NASA Technical Reports Server (NTRS)
Bihari, Brian D.; Semrau, Jeffrey D.; Duke, Charity J.
2013-01-01
The Orion Multi-Purpose Crew Vehicle (MPCV) will perform a flight test known as Exploration Flight Test-1 (EFT-1) currently scheduled for 2014. One of the primary functions of this test is to exercise all of the important Guidance, Navigation, Control (GN&C), and Propulsion systems, along with the flight software for future flights. The Descent and Landing segment of the flight is governed by the requirements levied on the GN&C system by the Landing and Recovery System (LRS). The LRS is a complex system of parachutes and flight control modes that ensure that the Orion MPCV safely lands at its designated target in the Pacific Ocean. The Descent and Landing segment begins with the jettisoning of the Forward Bay Cover and concludes with sensing touchdown. This paper discusses the requirements, design, testing, analysis and performance of the current EFT-1 Descent and Landing Triggers flight software.
2002-11-21
The second X-45A Unmanned Combat Air Vehicle (UCAV) technology demonstrator completed its first flight on November 21, 2002, after taking off from a dry lakebed at NASA's Dryden Flight Research Center, Edwards Air Force Base, California. X-45A vehicle two flew for approximately 30 minutes and reached an airspeed of 195 knots and an altitude of 7500 feet. This flight validated the functionality of the UCAV flight software on the second air vehicle. Dryden is supporting the DARPA/Boeing team in the design, development, integration, and demonstration of the critical technologies, processes, and system attributes leading to an operational UCAV system. Dryden support of the X-45A demonstrator system includes analysis, component development, simulations, ground and flight tests.
Flight Planning Branch NASA Co-op Tour
NASA Technical Reports Server (NTRS)
Marr, Aja M.
2013-01-01
This semester I worked with the Flight Planning Branch at the NASA Johnson Space Center. I learned about the different aspects of flight planning for the International Space Station as well as the software that is used internally and ISSLive! which is used to help educate the public on the space program. I had the opportunity to do on the job training in the Mission Control Center with the planning team. I transferred old timeline records from the planning team's old software to the new software in order to preserve the data for the future when the software is retired. I learned about the operations of the International Space Station, the importance of good communication between the different parts of the planning team, and enrolled in professional development classes as well as technical classes to learn about the space station.
The FLIGHT Drosophila RNAi database
Bursteinas, Borisas; Jain, Ekta; Gao, Qiong; Baum, Buzz; Zvelebil, Marketa
2010-01-01
FLIGHT (http://flight.icr.ac.uk/) is an online resource compiling data from high-throughput Drosophila in vivo and in vitro RNAi screens. FLIGHT includes details of RNAi reagents and their predicted off-target effects, alongside RNAi screen hits, scores and phenotypes, including images from high-content screens. The latest release of FLIGHT is designed to enable users to upload, analyze, integrate and share their own RNAi screens. Users can perform multiple normalizations, view quality control plots, detect and assign screen hits and compare hits from multiple screens using a variety of methods including hierarchical clustering. FLIGHT integrates RNAi screen data with microarray gene expression as well as genomic annotations and genetic/physical interaction datasets to provide a single interface for RNAi screen analysis and datamining in Drosophila. PMID:20855970
NASA Astrophysics Data System (ADS)
Spiliotopoulos, I.; Mirmont, M.; Kruijff, M.
2008-08-01
This paper highlights the flight preparation and mission performance of a PC104-based On-Board Computer for ESA's second Young Engineer's Satellite (YES2), with additional attention to the flight software design and experience of QNX as multi-process real-time operating system. This combination of Commercial-Of-The-Shelf (COTS) technologies is an accessible option for small satellites with high computational demands.
X-29A flight control system performance during flight test
NASA Technical Reports Server (NTRS)
Chin, J.; Chacon, V.; Gera, J.
1987-01-01
An account is given of flight control system performance results for the X-29A forward-swept wing 'Advanced Technology Demonstrator' fighter aircraft, with attention to its software and hardware components' achievement of the requisite levels of system stability and desirable aircraft handling qualities. The Automatic Camber Control Logic is found to be well integrated with the stability loop of the aircraft. A number of flight test support software programs developed by NASA facilitated monitoring of the X-29A's stability in real time, and allowed the test team to clear the envelope with confidence.
Proceedings of the Thirteenth Annual Software Engineering Workshop
NASA Technical Reports Server (NTRS)
1988-01-01
Topics covered in the workshop included studies and experiments conducted in the Software Engineering Laboratory (SEL), a cooperative effort of NASA Goddard Space Flight Center, the University of Maryland, and Computer Sciences Corporation; software models; software products; and software tools.
1994-03-16
ER-2: ASHOE/MAESA Expidition art (P.I. S Hipskind) Airborne Southern Hemisphere Ozone Experiment; Measurements for Assessing the Effects of Stratospheric Aircraft - Aircraft Flight Path March 16, - November 1, 1994
Development of a flight software testing methodology
NASA Technical Reports Server (NTRS)
Mccluskey, E. J.; Andrews, D. M.
1985-01-01
The research to develop a testing methodology for flight software is described. An experiment was conducted in using assertions to dynamically test digital flight control software. The experiment showed that 87% of typical errors introduced into the program would be detected by assertions. Detailed analysis of the test data showed that the number of assertions needed to detect those errors could be reduced to a minimal set. The analysis also revealed that the most effective assertions tested program parameters that provided greater indirect (collateral) testing of other parameters. In addition, a prototype watchdog task system was built to evaluate the effectiveness of executing assertions in parallel by using the multitasking features of Ada.
Model-Based Verification and Validation of Spacecraft Avionics
NASA Technical Reports Server (NTRS)
Khan, M. Omair; Sievers, Michael; Standley, Shaun
2012-01-01
Verification and Validation (V&V) at JPL is traditionally performed on flight or flight-like hardware running flight software. For some time, the complexity of avionics has increased exponentially while the time allocated for system integration and associated V&V testing has remained fixed. There is an increasing need to perform comprehensive system level V&V using modeling and simulation, and to use scarce hardware testing time to validate models; the norm for thermal and structural V&V for some time. Our approach extends model-based V&V to electronics and software through functional and structural models implemented in SysML. We develop component models of electronics and software that are validated by comparison with test results from actual equipment. The models are then simulated enabling a more complete set of test cases than possible on flight hardware. SysML simulations provide access and control of internal nodes that may not be available in physical systems. This is particularly helpful in testing fault protection behaviors when injecting faults is either not possible or potentially damaging to the hardware. We can also model both hardware and software behaviors in SysML, which allows us to simulate hardware and software interactions. With an integrated model and simulation capability we can evaluate the hardware and software interactions and identify problems sooner. The primary missing piece is validating SysML model correctness against hardware; this experiment demonstrated such an approach is possible.
Study of the Dependence on Magnetic Field and Bias Voltage of an AC-Biased TES Microcalorimeter
NASA Technical Reports Server (NTRS)
Bandler, Simon
2011-01-01
At SRON we are studying the performance of a Goddard Space Flight Center single pixel TES microcalorimeter operated in the AC bias configuration. For x-ray photons at 6keV the AC biased pixel shows a best energy resolution of 3.7eV, which is about a factor of 2 worse than the energy resolution observed in identical DC-biased pixels. To better understand the reasons of this discrepancy, we investigated the detector performance as a function of temperature, bias working point and applied magnetic field. A strong periodic dependence of the detector noise on the TES AC bias voltage is measured. We discuss the results in the framework of the recent weak-link behaviour observed inTES microcalorimeters.
NASA Astrophysics Data System (ADS)
Ismail, K.; Muharam, A.; Amin; Widodo Budi, S.
2015-12-01
Inverter is widely used for industrial, office, and residential purposes. Inverter supports the development of alternative energy such as solar cells, wind turbines and fuel cells by converting dc voltage to ac voltage. Inverter has been made with a variety of hardware and software combinations, such as the use of pure analog circuit and various types of microcontroller as controller. When using pure analog circuit, modification would be difficult because it will change the entire hardware components. In inverter with microcontroller based design (with software), calculations to generate AC modulation is done in the microcontroller. This increases programming complexity and amount of coding downloaded to the microcontroller chip (capacity flash memory in the microcontroller is limited). This paper discusses the design of a single phase inverter using unipolar modulation of sine wave and triangular wave, which is done outside the microcontroller using data processing software application (Microsoft Excel), result shows that complexity programming was reduce and resolution sampling data is very influence to THD. Resolution sampling must taking ½ A degree to get best THD (15.8%).
Man-rated flight software for the F-8 DFBW program
NASA Technical Reports Server (NTRS)
Bairnsfather, R. R.
1976-01-01
The design, implementation, and verification of the flight control software used in the F-8 DFBW program are discussed. Since the DFBW utilizes an Apollo computer and hardware, the procedures, controls, and basic management techniques employed are based on those developed for the Apollo software system. Program assembly control, simulator configuration control, erasable-memory load generation, change procedures and anomaly reporting are discussed. The primary verification tools are described, as well as the program test plans and their implementation on the various simulators. Failure effects analysis and the creation of special failure generating software for testing purposes are described.
Partitioning Strategy Using Static Analysis Techniques
NASA Astrophysics Data System (ADS)
Seo, Yongjin; Soo Kim, Hyeon
2016-08-01
Flight software is software used in satellites' on-board computers. It has requirements such as real time and reliability. The IMA architecture is used to satisfy these requirements. The IMA architecture has the concept of partitions and this affected the configuration of flight software. That is, situations occurred in which software that had been loaded on one system was divided into many partitions when being loaded. For new issues, existing studies use experience based partitioning methods. However, these methods have a problem that they cannot be reused. In this respect, this paper proposes a partitioning method that is reusable and consistent.
Perspectives on NASA flight software development - Apollo, Shuttle, Space Station
NASA Technical Reports Server (NTRS)
Garman, John R.
1990-01-01
Flight data systems' software development is chronicled for the period encompassing NASA's Apollo, Space Shuttle, and (ongoing) Space Station Freedom programs, with attention to the methodologies and 'development tools' employed in each case and their mutual relationships. A dominant concern in all three programs has been the accommodation of software change; it has also been noted that any such long-term program carries the additional challenge of identifying which elements of its software-related 'institutional memory' are most critical, in order to preclude their loss through the retirement, promotion, or transfer of its 'last expert'.
Study on Spacelab software development and integration concepts
NASA Technical Reports Server (NTRS)
1974-01-01
A study was conducted to define the complexity and magnitude of the Spacelab software challenge. The study was based on current Spacelab program concepts, anticipated flight schedules, and ground operation plans. The study was primarily directed toward identifying and solving problems related to the experiment flight application and tests and checkout software executing in the Spacelab onboard command and data management subsystem (CDMS) computers and electrical ground support equipment (EGSE). The study provides a conceptual base from which it is possible to proceed into the development phase of the Software Test and Integration Laboratory (STIL) and establishes guidelines for the definition of standards which will ensure that the total Spacelab software is understood prior to entering development.
SINBAD flight software, the on-board software of NOMAD in ExoMars 2016
NASA Astrophysics Data System (ADS)
Pastor-Morales, M. C.; Rodríguez-Gómez, Julio F.; Morales-Muñoz, Rafael; Gómez-López, Juan M.; Aparicio-del-Moral, Beatriz; Candini, Gian Paolo; Jerónimo-Zafra, Jose M.; López-Moreno, Jose J.; Robles-Muñoz, Nicolás. F.; Sanz-Mesa, Rosario; Neefs, Eddy; Vandaele, Ann C.; Drummond, Rachel; Thomas, Ian R.; Berkenbosch, Sophie; Clairquin, Roland; Delanoye, Sofie; Ristic, Bojan; Maes, Jeroen; Bonnewijn, Sabrina; Patel, Manish R.; Leese, Mark; Mason, Jon P.
2016-07-01
The Spacecraft INterface and control Board for NomAD (SINBAD) is an electronic interface designed by the Instituto de Astroffisica de Andalucfia (IAA-CSIC). It is part of the Nadir and Occultation for MArs Discovery instrument (NOMAD) on board in the ESAs ExoMars Trace Gas Orbiter mission. This mission was launched in March 2016. The SINBAD Flight Software (SFS) is the software embedded in SINBAD. It is in charge of managing the interfaces, devices, data, observing sequences, patching and contingencies of NOMAD. It is presented in this paper the most remarkable aspects of the SFS design, likewise the main problems and lessons learned during the software development process.
2017-03-17
NASA engineers and test directors gather in Firing Room 3 in the Launch Control Center at NASA's Kennedy Space Center in Florida, to watch a demonstration of the automated command and control software for the agency's Space Launch System (SLS) and Orion spacecraft. The software is called the Ground Launch Sequencer. It will be responsible for nearly all of the launch commit criteria during the final phases of launch countdowns. The Ground and Flight Application Software Team (GFAST) demonstrated the software. It was developed by the Command, Control and Communications team in the Ground Systems Development and Operations (GSDO) Program. GSDO is helping to prepare the center for the first test flight of Orion atop the SLS on Exploration Mission 1.
The Ruggedized STD Bus Microcomputer - A low cost computer suitable for Space Shuttle experiments
NASA Technical Reports Server (NTRS)
Budney, T. J.; Stone, R. W.
1982-01-01
Previous space flight computers have been costly in terms of both hardware and software. The Ruggedized STD Bus Microcomputer is based on the commercial Mostek/Pro-Log STD Bus. Ruggedized PC cards can be based on commercial cards from more than 60 manufacturers, reducing hardware cost and design time. Software costs are minimized by using standard 8-bit microprocessors and by debugging code using commercial versions of the ruggedized flight boards while the flight hardware is being fabricated.
Program Aids Design Of Fluid-Circulating Systems
NASA Technical Reports Server (NTRS)
Bacskay, Allen; Dalee, Robert
1992-01-01
Computer Aided Systems Engineering and Analysis (CASE/A) program is interactive software tool for trade study and analysis, designed to increase productivity during all phases of systems engineering. Graphics-based command-driven software package provides user-friendly computing environment in which engineer analyzes performance and interface characteristics of ECLS/ATC system. Useful during all phases of spacecraft-design program, from initial conceptual design trade studies to actual flight, including pre-flight prediction and in-flight analysis of anomalies. Written in FORTRAN 77.
NASA Technical Reports Server (NTRS)
Defeo, P.; Doane, D.; Saito, J.
1982-01-01
A Digital Flight Control Systems Verification Laboratory (DFCSVL) has been established at NASA Ames Research Center. This report describes the major elements of the laboratory, the research activities that can be supported in the area of verification and validation of digital flight control systems (DFCS), and the operating scenarios within which these activities can be carried out. The DFCSVL consists of a palletized dual-dual flight-control system linked to a dedicated PDP-11/60 processor. Major software support programs are hosted in a remotely located UNIVAC 1100 accessible from the PDP-11/60 through a modem link. Important features of the DFCSVL include extensive hardware and software fault insertion capabilities, a real-time closed loop environment to exercise the DFCS, an integrated set of software verification tools, and a user-oriented interface to all the resources and capabilities.
NASA Astrophysics Data System (ADS)
Delene, D. J.
2014-12-01
Research aircraft that conduct atmospheric measurements carry an increasing array of instrumentation. While on-board personnel constantly review instrument parameters and time series plots, there are an overwhelming number of items. Furthermore, directing the aircraft flight takes up much of the flight scientist time. Typically, a flight engineer is given the responsibility of reviewing the status of on-board instruments. While major issues like not receiving data are quickly identified during a flight, subtle issues like low but believable concentration measurements may go unnoticed. Therefore, it is critical to review data after a flight in near real time. The Airborne Data Processing and Analysis (ADPAA) software package used by the University of North Dakota automates the post-processing of aircraft flight data. Utilizing scripts to process the measurements recorded by data acquisition systems enables the generation of data files within an hour of flight completion. The ADPAA Cplot visualization program enables plots to be quickly generated that enable timely review of all recorded and processed parameters. Near real time review of aircraft flight data enables instrument problems to be identified, investigated and fixed before conducting another flight. On one flight, near real time data review resulted in the identification of unusually low measurements of cloud condensation nuclei, and rapid data visualization enabled the timely investigation of the cause. As a result, a leak was found and fixed before the next flight. Hence, with the high cost of aircraft flights, it is critical to find and fix instrument problems in a timely matter. The use of a automated processing scripts and quick visualization software enables scientists to review aircraft flight data in near real time to identify potential problems.
Intelligence Applied to Air Vehicles
NASA Technical Reports Server (NTRS)
Rosen, Robert; Gross, Anthony R.; Fletcher, L. Skip; Zornetzer, Steven (Technical Monitor)
2000-01-01
The exponential growth in information technology has provided the potential for air vehicle capabilities that were previously unavailable to mission and vehicle designers. The increasing capabilities of computer hardware and software, including new developments such as neural networks, provide a new balance of work between humans and machines. This paper will describe several NASA projects, and review results and conclusions from ground and flight investigations where vehicle intelligence was developed and applied to aeronautical and space systems. In the first example, flight results from a neural network flight control demonstration will be reviewed. Using, a highly-modified F-15 aircraft, a NASA/Dryden experimental flight test program has demonstrated how the neural network software can correctly identify and respond to changes in aircraft stability and control characteristics. Using its on-line learning capability, the neural net software would identify that something in the vehicle has changed, then reconfigure the flight control computer system to adapt to those changes. The results of the Remote Agent software project will be presented. This capability will reduce the cost of future spacecraft operations as computers become "thinking" partners along with humans. In addition, the paper will describe the objectives and plans for the autonomous airplane program and the autonomous rotorcraft project. Technologies will also be developed.
Closing the Certification Gaps in Adaptive Flight Control Software
NASA Technical Reports Server (NTRS)
Jacklin, Stephen A.
2008-01-01
Over the last five decades, extensive research has been performed to design and develop adaptive control systems for aerospace systems and other applications where the capability to change controller behavior at different operating conditions is highly desirable. Although adaptive flight control has been partially implemented through the use of gain-scheduled control, truly adaptive control systems using learning algorithms and on-line system identification methods have not seen commercial deployment. The reason is that the certification process for adaptive flight control software for use in national air space has not yet been decided. The purpose of this paper is to examine the gaps between the state-of-the-art methodologies used to certify conventional (i.e., non-adaptive) flight control system software and what will likely to be needed to satisfy FAA airworthiness requirements. These gaps include the lack of a certification plan or process guide, the need to develop verification and validation tools and methodologies to analyze adaptive controller stability and convergence, as well as the development of metrics to evaluate adaptive controller performance at off-nominal flight conditions. This paper presents the major certification gap areas, a description of the current state of the verification methodologies, and what further research efforts will likely be needed to close the gaps remaining in current certification practices. It is envisioned that closing the gap will require certain advances in simulation methods, comprehensive methods to determine learning algorithm stability and convergence rates, the development of performance metrics for adaptive controllers, the application of formal software assurance methods, the application of on-line software monitoring tools for adaptive controller health assessment, and the development of a certification case for adaptive system safety of flight.
IUS/TUG orbital operations and mission support study. Volume 4: Project planning data
NASA Technical Reports Server (NTRS)
1975-01-01
Planning data are presented for the development phases of interim upper stage (IUS) and tug systems. Major project planning requirements, major event schedules, milestones, system development and operations process networks, and relevant support research and technology requirements are included. Topics discussed include: IUS flight software; tug flight software; IUS/tug ground control center facilities, personnel, data systems, software, and equipment; IUS mission events; tug mission events; tug/spacecraft rendezvous and docking; tug/orbiter operations interface, and IUS/orbiter operations interface.
Transall C-160 Life Extension and Avionics Upgrade Programs
2000-04-01
theoretically). In The A/C of the second series differed from the first reality, however, one flight took only an average of series A/C as follows...configuration. The progress of the crack was Usable cargo space 139.9 m3 monitored under operational conditions and with different loads: The German Air Force...progress data. Today, the French C- 160 aircraft are maintaned by AIA/CIT (Atelier Industriel A6ronautique/Cellule Industrielle Transall) in Clermont
Design, Fabrication, and Testing of a Hopper Spacecraft Simulator
NASA Astrophysics Data System (ADS)
Mucasey, Evan Phillip Krell
A robust test bed is needed to facilitate future development of guidance, navigation, and control software for future vehicles capable of vertical takeoff and landings. Specifically, this work aims to develop both a hardware and software simulator that can be used for future flight software development for extra-planetary vehicles. To achieve the program requirements of a high thrust to weight ratio with large payload capability, the vehicle is designed to have a novel combination of electric motors and a micro jet engine is used to act as the propulsion elements. The spacecraft simulator underwent several iterations of hardware development using different materials and fabrication methods. The final design used a combination of carbon fiber and fiberglass that was cured under vacuum to serve as the frame of the vehicle which provided a strong, lightweight platform for all flight components and future payloads. The vehicle also uses an open source software development platform, Arduino, to serve as the initial flight computer and has onboard accelerometers, gyroscopes, and magnetometers to sense the vehicles attitude. To prevent instability due to noise, a polynomial kalman filter was designed and this fed the sensed angles and rates into a robust attitude controller which autonomously control the vehicle' s yaw, pitch, and roll angles. In addition to the hardware development of the vehicle itself, both a software simulation and a real time data acquisition interface was written in MATLAB/SIMULINK so that real flight data could be taken and then correlated to the simulation to prove the accuracy of the analytical model. In result, the full scale vehicle was designed and own outside of the lab environment and data showed that the software model accurately predicted the flight dynamics of the vehicle.
2nd Generation QUATARA Flight Computer Project
NASA Technical Reports Server (NTRS)
Falker, Jay; Keys, Andrew; Fraticelli, Jose Molina; Capo-Iugo, Pedro; Peeples, Steven
2015-01-01
Single core flight computer boards have been designed, developed, and tested (DD&T) to be flown in small satellites for the last few years. In this project, a prototype flight computer will be designed as a distributed multi-core system containing four microprocessors running code in parallel. This flight computer will be capable of performing multiple computationally intensive tasks such as processing digital and/or analog data, controlling actuator systems, managing cameras, operating robotic manipulators and transmitting/receiving from/to a ground station. In addition, this flight computer will be designed to be fault tolerant by creating both a robust physical hardware connection and by using a software voting scheme to determine the processor's performance. This voting scheme will leverage on the work done for the Space Launch System (SLS) flight software. The prototype flight computer will be constructed with Commercial Off-The-Shelf (COTS) components which are estimated to survive for two years in a low-Earth orbit.
Experimental software engineering: Seventeen years of lessons in the SEL
NASA Technical Reports Server (NTRS)
Mcgarry, Frank E.
1992-01-01
Seven key principles developed by the Software Engineering Laboratory (SEL) at the Goddard Space Flight Center (GSFC) of the National Aeronautics and Space Administration (NASA) are described. For the past 17 years, the SEL has been experimentally analyzing the development of production software as varying techniques and methodologies are applied in this one environment. The SEL has collected, archived, and studied detailed measures from more than 100 flight dynamics projects, thereby gaining significant insight into the effectiveness of numerous software techniques, as well as extensive experience in the overall effectiveness of 'Experimental Software Engineering'. This experience has helped formulate follow-on studies in the SEL, and it has helped other software organizations better understand just what can be accomplished and what cannot be accomplished through experimentation.
An approach to the design and implementation of spacecraft attitude control systems
NASA Technical Reports Server (NTRS)
ODonnell, James R., Jr.; Mangus, David J.
1998-01-01
Over 39 years and a long list of missions, the guidance, navigation, and control (GN&C) groups at the Goddard Space Flight Center have gradually developed approaches to the design and implementation of successful spacecraft attitude control systems. With the recent creation of the Guidance, Navigation, and Control Center at Goddard, there is a desire to document some of these design practices to help to ensure their consistent application in the future. In this paper, we will discuss the beginnings of this effort, drawing primarily on the experience of one of the past attitude control system (ACS) groups at Goddard (what was formerly known as Code 712, the Guidance, Navigation, and Control Branch). We will discuss the analysis and design methods and criteria used, including guidelines for linear and nonlinear analysis, as well as the use of low- and high-fidelity simulation for system design and verification of performance. Descriptions of typical ACS sensor and actuator hardware will be shown, and typical sensor/actuator suites for a variety of mission types detailed. A description of the software and hardware test effort will be given, along with an attempt to make some qualitative estimates on how much effort is involved. The spacecraft and GN&C subsystem review cycles will be discussed, giving an outline of what design reviews are typically held and what information should be presented at each stage. Finally, we will point out some of the lessons learned at Goddard.
An Approach to the Design and Implementation of Spacecraft Attitude Control Systems
NASA Technical Reports Server (NTRS)
ODonnell, James R., Jr.; Mangus, David J.
1998-01-01
Over 39 years and a long list of missions, the guidance, navigation, and control (GN&C) groups at the Goddard Space Flight Center have gradually developed approaches to the design and implementation of successful spacecraft attitude control systems. With the recent creation of the Guidance, Navigation, and Control Center at Goddard, there is a desire to document some of these design practices to help to ensure their consistent application in the future. In this paper, we will discuss the beginnings of this effort, drawing primarily on the experience of one of the past attitude control system (ACS) groups at Goddard (what was formerly known as Code 712, the Guidance, Navigation, and Control Branch). We will discuss the analysis and design methods and criteria used, including guidelines for linear and nonlinear analysis, as well as the use of low- and high-fidelity simulation for system design and verification of performance. Descriptions of typical ACS sensor and actuator hardware will be shown, and typical sensor/actuator suites for a variety of mission types detailed. A description of the software and hardware test effort will be given, along with an attempt to make some qualitative estimates on how much effort is involved. The spacecraft and GN&C subsystem review cycles will be discussed, giving an outline of what design reviews are typically held and .what information should be presented at each stage. Finally, we will point out some of the lessons learned at Goddard.
Development and Testing of Control Laws for the Active Aeroelastic Wing Program
NASA Technical Reports Server (NTRS)
Dibley, Ryan P.; Allen, Michael J.; Clarke, Robert; Gera, Joseph; Hodgkinson, John
2005-01-01
The Active Aeroelastic Wing research program was a joint program between the U.S. Air Force Research Laboratory and NASA established to investigate the characteristics of an aeroelastic wing and the technique of using wing twist for roll control. The flight test program employed the use of an F/A-18 aircraft modified by reducing the wing torsional stiffness and adding a custom research flight control system. The research flight control system was optimized to maximize roll rate using only wing surfaces to twist the wing while simultaneously maintaining design load limits, stability margins, and handling qualities. NASA Dryden Flight Research Center developed control laws using the software design tool called CONDUIT, which employs a multi-objective function optimization to tune selected control system design parameters. Modifications were made to the Active Aeroelastic Wing implementation in this new software design tool to incorporate the NASA Dryden Flight Research Center nonlinear F/A-18 simulation for time history analysis. This paper describes the design process, including how the control law requirements were incorporated into constraints for the optimization of this specific software design tool. Predicted performance is also compared to results from flight.
Air Data Report Improves Flight Safety
NASA Technical Reports Server (NTRS)
2007-01-01
NASA's Aviation Safety Program in the NASA Aeronautics Research Mission Directorate, which seeks to make aviation safer by developing tools for flight data analysis and interpretation and then by transferring these tools to the aviation industry, sponsored the development of Morning Report software. The software, created at Ames Research Center with the assistance of the Pacific Northwest National Laboratory, seeks to detect atypicalities without any predefined parameters-it spots deviations and highlights them. In 2004, Sagem Avionics Inc. entered a licensing agreement with NASA for the commercialization of the Morning Report software, and also licensed the NASA Aviation Data Integration System (ADIS) tool, which allows for the integration of data from disparate sources into the flight data analysis process. Sagem Avionics incorporated the Morning Report tool into its AGS product, a comprehensive flight operations monitoring system that helps users detect irregular or divergent practices, technical flaws, and problems that might develop when aircraft operate outside of normal procedures. Sagem developed AGS in collaboration with airlines, so that the system takes into account their technical evolutions and needs, and each airline is able to easily perform specific treatments and to build its own flight data analysis system. Further, the AGS is designed to support any aircraft and flight data recorders.
1971-03-19
Visual Flgiht Attachment 2 (REDIFON) is a terrain model that is video-coupled with a simulator cockpit to integrate the pilot with the machine for actual STOL operations of the future N-210 Flight Simulation Laboratory
Accelerating NASA GN&C Flight Software Development
NASA Technical Reports Server (NTRS)
Tamblyn, Scott; Henry, Joel; Rapp, John
2010-01-01
When the guidance, navigation, and control (GN&C) system for the Orion crew vehicle undergoes Critical Design Review (CDR), more than 90% of the flight software will already be developed - a first for NASA on a project of this scope and complexity. This achievement is due in large part to a new development approach using Model-Based Design.
ERIC Educational Resources Information Center
Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao
2016-01-01
In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…
Software conversion history of the Flight Dynamics System (FDS)
NASA Technical Reports Server (NTRS)
Liu, K.
1984-01-01
This report summarizes the overall history of the Flight Dynamics System (FDS) applications software conversion project. It describes the background and nature of the project; traces the actual course of conversion; assesses the process, product, and personnel involved; and offers suggestions for future projects. It also contains lists of pertinent reference material and examples of supporting data.
PDSS/IMC requirements and functional specifications
NASA Technical Reports Server (NTRS)
1983-01-01
The system (software and hardware) requirements for the Payload Development Support System (PDSS)/Image Motion Compensator (IMC) are provided. The PDSS/IMC system provides the capability for performing Image Motion Compensator Electronics (IMCE) flight software test, checkout, and verification and provides the capability for monitoring the IMC flight computer system during qualification testing for fault detection and fault isolation.
NASA Technical Reports Server (NTRS)
Newbold, P. M.
1974-01-01
A programming language for the flight software of the NASA space shuttle program was developed and identified as HAL/S. The language is intended to satisfy virtually all of the flight software requirements of the space shuttle. The language incorporates a wide range of features, including applications-oriented data types and organizations, real time control mechanisms, and constructs for systems programming tasks.
Development of software to improve AC power quality on large spacecraft
NASA Technical Reports Server (NTRS)
Kraft, L. Alan
1991-01-01
To insure the reliability of a 20 kHz, alternating current (AC) power system on spacecraft, it is essential to analyze its behavior under many adverse operating conditions. Some of these conditions include overloads, short circuits, switching surges, and harmonic distortions. Harmonic distortions can become a serious problem. It can cause malfunctions in equipment that the power system is supplying, and, during distortions such as voltage resonance, it can cause equipment and insulation failures due to the extreme peak voltages. To address the harmonic distortion issue, work was begun under the 1990 NASA-ASEE Summer Faculty Fellowship Program. Software, originally developed by EPRI, called HARMFLO, a power flow program capable of analyzing harmonic conditions on three phase, balanced, 60 Hz AC power systems, was modified to analyze single phase, 20 kHz, AC power systems. Since almost all of the equipment used on spacecraft power systems is electrically different from equipment used on terrestrial power systems, it was also necessary to develop mathematical models for the equipment to be used on the spacecraft. The modelling was also started under the same fellowship work period. Details of the modifications and models completed during the 1990 NASA-ASEE Summer Faculty Fellowship Program can be found in a project report. As a continuation of the work to develop a complete package necessary for the full analysis of spacecraft AC power system behavior, deployment work has continued through NASA Grant NAG3-1254. This report details the work covered by the above mentioned grant.
Post-Flight Data Analysis Tool
NASA Technical Reports Server (NTRS)
George, Marina
2018-01-01
A software tool that facilitates the retrieval and analysis of post-flight data. This allows our team and other teams to effectively and efficiently analyze and evaluate post-flight data in order to certify commercial providers.
Proceedings of the Seventeenth Annual Software Engineering Workshop
NASA Technical Reports Server (NTRS)
1992-01-01
Proceedings of the Seventeenth Annual Software Engineering Workshop are presented. The software Engineering Laboratory (SEL) is an organization sponsored by NASA/Goddard Space Flight Center and created to investigate the effectiveness of software engineering technologies when applied to the development of applications software. Topics covered include: the Software Engineering Laboratory; process measurement; software reuse; software quality; lessons learned; and is Ada dying.
Distributed asynchronous microprocessor architectures in fault tolerant integrated flight systems
NASA Technical Reports Server (NTRS)
Dunn, W. R.
1983-01-01
The paper discusses the implementation of fault tolerant digital flight control and navigation systems for rotorcraft application. It is shown that in implementing fault tolerance at the systems level using advanced LSI/VLSI technology, aircraft physical layout and flight systems requirements tend to define a system architecture of distributed, asynchronous microprocessors in which fault tolerance can be achieved locally through hardware redundancy and/or globally through application of analytical redundancy. The effects of asynchronism on the execution of dynamic flight software is discussed. It is shown that if the asynchronous microprocessors have knowledge of time, these errors can be significantly reduced through appropiate modifications of the flight software. Finally, the papear extends previous work to show that through the combined use of time referencing and stable flight algorithms, individual microprocessors can be configured to autonomously tolerate intermittent faults.
Basic Guidelines to Introduce Electric Circuit Simulation Software in a General Physics Course
ERIC Educational Resources Information Center
Moya, A. A.
2018-01-01
The introduction of electric circuit simulation software for undergraduate students in a general physics course is proposed in order to contribute to the constructive learning of electric circuit theory. This work focuses on the lab exercises based on dc, transient and ac analysis in electric circuits found in introductory physics courses, and…
From an automated flight-test management system to a flight-test engineer's workstation
NASA Technical Reports Server (NTRS)
Duke, E. L.; Brumbaugh, R. W.; Hewett, M. D.; Tartt, D. M.
1992-01-01
Described here are the capabilities and evolution of a flight-test engineer's workstation (called TEST PLAN) from an automated flight-test management system. The concept and capabilities of the automated flight-test management system are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.
From an automated flight-test management system to a flight-test engineer's workstation
NASA Technical Reports Server (NTRS)
Duke, E. L.; Brumbaugh, Randal W.; Hewett, M. D.; Tartt, D. M.
1991-01-01
The capabilities and evolution is described of a flight engineer's workstation (called TEST-PLAN) from an automated flight test management system. The concept and capabilities of the automated flight test management systems are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.
APMS 3.0 Flight Analyst Guide: Aviation Performance Measuring System
NASA Technical Reports Server (NTRS)
Jay, Griff; Prothero, Gary; Romanowski, Timothy; Lynch, Robert; Lawrence, Robert; Rosenthal, Loren
2004-01-01
The Aviation Performance Measuring System (APMS) is a method-embodied in software-that uses mathematical algorithms and related procedures to analyze digital flight data extracted from aircraft flight data recorders. APMS consists of an integrated set of tools used to perform two primary functions: a) Flight Data Importation b) Flight Data Analysis.
International Aviation (Selected Articles)
1991-04-25
Vibration and Flutter, by Guan Peifang, Zhong Dejun ....................................................... 21 CAAC Xian Administratio Bureau has Been... aErOEngines and main airborne equipments. For thirty years, it- ha ac pLied the national evaluation flight tests c ’ --. cre th-an- 10 types of aircraft and... aeroengines and evaluatio- fli.ght tests of Several hundreds of systems and products related L l insrumTents5, higlh al t itude e scape and’ fre control
1976-04-01
Cessna 402B (NASA-719) on the Ramp. An integrated digital flight management, guidance and navigation system was developed by an industry team from Honeywell and King Radio under the direction of George Callas and Dallas Denery and demonstrated on a Cessna 402B for general aviation applications. Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig. 86 - ref. 90
Automated Flight Dynamics Product Generation for the EOS AM-1 Spacecraft
NASA Technical Reports Server (NTRS)
Matusow, Carla
1999-01-01
As part of NASA's Earth Science Enterprise, the Earth Observing System (EOS) AM-1 spacecraft is designed to monitor long-term, global, environmental changes. Because of the complexity of the AM-1 spacecraft, the mission operations center requires more than 80 distinct flight dynamics products (reports). To create these products, the AM-1 Flight Dynamics Team (FDT) will use a combination of modified commercial software packages (e.g., Analytical Graphic's Satellite ToolKit) and NASA-developed software applications. While providing the most cost-effective solution to meeting the mission requirements, the integration of these software applications raises several operational concerns: (1) Routine product generation requires knowledge of multiple applications executing on variety of hardware platforms. (2) Generating products is a highly interactive process requiring a user to interact with each application multiple times to generate each product. (3) Routine product generation requires several hours to complete. (4) User interaction with each application introduces the potential for errors, since users are required to manually enter filenames and input parameters as well as run applications in the correct sequence. Generating products requires some level of flight dynamics expertise to determine the appropriate inputs and sequencing. To address these issues, the FDT developed an automation software tool called AutoProducts, which runs on a single hardware platform and provides all necessary coordination and communication among the various flight dynamics software applications. AutoProducts, autonomously retrieves necessary files, sequences and executes applications with correct input parameters, and deliver the final flight dynamics products to the appropriate customers. Although AutoProducts will normally generate pre-programmed sets of routine products, its graphical interface allows for easy configuration of customized and one-of-a-kind products. Additionally, AutoProducts has been designed as a mission-independent tool, and can be easily reconfigured to support other missions or incorporate new flight dynamics software packages. After the AM-1 launch, AutoProducts will run automatically at pre-determined time intervals . The AutoProducts tool reduces many of the concerns associated with the flight dynamics product generation. Although AutoProducts required a significant effort to develop because of the complexity of the interfaces involved, its use will provide significant cost savings through reduced operator time and maximum product reliability. In addition, user satisfaction is significantly improved and flight dynamics experts have more time to perform valuable analysis work. This paper will describe the evolution of the AutoProducts tool, highlighting the cost savings and customer satisfaction resulting from its development. It will also provide details about the tool including its graphical interface and operational capabilities.
Design and Development of a Flight Route Modification, Logging, and Communication Network
NASA Technical Reports Server (NTRS)
Merlino, Daniel K.; Wilson, C. Logan; Carboneau, Lindsey M.; Wilder, Andrew J.; Underwood, Matthew C.
2016-01-01
There is an overwhelming desire to create and enhance communication mechanisms between entities that operate within the National Airspace System. Furthermore, airlines are always extremely interested in increasing the efficiency of their flights. An innovative system prototype was developed and tested that improves collaborative decision making without modifying existing infrastructure or operational procedures within the current Air Traffic Management System. This system enables collaboration between flight crew and airline dispatchers to share and assess optimized flight routes through an Internet connection. Using a sophisticated medium-fidelity flight simulation environment, a rapid-prototyping development, and a unified modeling language, the software was designed to ensure reliability and scalability for future growth and applications. Ensuring safety and security were primary design goals, therefore the software does not interact or interfere with major flight control or safety systems. The system prototype demonstrated an unprecedented use of in-flight Internet to facilitate effective communication with Airline Operations Centers, which may contribute to increased flight efficiency for airlines.
NASA Technical Reports Server (NTRS)
Mangieri, Mark
2005-01-01
ARED flight instrumentation software is associated with an overall custom designed resistive exercise system that will be deployed on the International Space Station (ISS). This innovative software application fuses together many diverse and new technologies into a robust and usable package. The software takes advantage of touchscreen user interface technology by providing a graphical user interface on a Windows based tablet PC, meeting a design constraint of keyboard-less interaction with flight crewmembers. The software interacts with modified commercial data acquisition (DAQ) hardware to acquire multiple channels of sensor measurment from the ARED device. This information is recorded on the tablet PC and made available, via International Space Station (ISS) Wireless LAN (WLAN) and telemetry subsystems, to ground based mission medics and trainers for analysis. The software includes a feature to accept electronically encoded prescriptions of exercises that guide crewmembers through a customized regimen of resistive weight training, based on personal analysis. These electronically encoded prescriptions are provided to the crew via ISS WLAN and telemetry subsystems. All personal data is securely associated with an individual crew member, based on a PIN ID mechanism.
Software Innovation in a Mission Critical Environment
NASA Technical Reports Server (NTRS)
Fredrickson, Steven
2015-01-01
Operating in mission-critical environments requires trusted solutions, and the preference for "tried and true" approaches presents a potential barrier to infusing innovation into mission-critical systems. This presentation explores opportunities to overcome this barrier in the software domain. It outlines specific areas of innovation in software development achieved by the Johnson Space Center (JSC) Engineering Directorate in support of NASA's major human spaceflight programs, including International Space Station, Multi-Purpose Crew Vehicle (Orion), and Commercial Crew Programs. Software engineering teams at JSC work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements for genuinely mission critical applications. The innovations described, including the use of NASA Core Flight Software and its associated software tool chain, can lead to software that is more affordable, more reliable, better modelled, more flexible, more easily maintained, better tested, and enabling of automation.
78 FR 79338 - Airworthiness Directives; Bombardier, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-30
...We propose to adopt a new airworthiness directive (AD) for certain Bombardier, Inc. Model DHC-8-400 series airplanes. This proposed AD was prompted by reports of missing clamps that are required to provide positive separation between the alternating current (AC) feeder cables and the hydraulic line of the landing gear alternate extension. This proposed AD would require inspecting for missing clamps, and related investigative and corrective actions if necessary. We are proposing this AD to detect and correct chafing of the AC feeder cable. A chafed and arcing AC feeder cable could puncture the adjacent hydraulic line, which, in combination with the use of the alternate extension system, could result in an in-flight fire.
2015-03-26
pendulum [15] to estimate the MOI. The benefit to this methodology is that instead of a direct comparison to Euler’s equations when using an on-board ACS...the equations of motion of pendulum motion are evaluated to estimate the resistance to angular acceleration. Instead of attempting to compare noisy...sensor data instantaneously when using on-board ACS data, the pendulum oscillation frequency is estimated, which can be globally smoothed for highly
2006-08-01
be developed. A common analysis model covering the aerodynamic-flow effector interaction, the compliant mechanism-SMA dynamics and the control...additional CFD analysis for the finless DRDC-B1AC2R between 15 deg. to 20 deg. to determine where the peak side force is situated. Compare pressure...Carry out CFD study on DRDC-B1AC2R with fins. Decide on analysis matrix. Coordinate with wind tunnel test matrix. Action: DRDC-nh Y0405-7. Decide
Mars Science Laboratory Flight Software Boot Robustness Testing Project Report
NASA Technical Reports Server (NTRS)
Roth, Brian
2011-01-01
On the surface of Mars, the Mars Science Laboratory will boot up its flight computers every morning, having charged the batteries through the night. This boot process is complicated, critical, and affected by numerous hardware states that can be difficult to test. The hardware test beds do not facilitate testing a long duration of back-to-back unmanned automated tests, and although the software simulation has provided the necessary functionality and fidelity for this boot testing, there has not been support for the full flexibility necessary for this task. Therefore to perform this testing a framework has been build around the software simulation that supports running automated tests loading a variety of starting configurations for software and hardware states. This implementation has been tested against the nominal cases to validate the methodology, and support for configuring off-nominal cases is ongoing. The implication of this testing is that the introduction of input configurations that have yet proved difficult to test may reveal boot scenarios worth higher fidelity investigation, and in other cases increase confidence in the robustness of the flight software boot process.
1964-06-19
XV-5A airplane installed in 40x80ft Subsonic Wind Tunnel at NASA Ames Research Center with Tom Mills. The propulsive lift system was tested to determine power-on performance characteristics in preparation for flight tests.
1964-06-19
XV-5A airplane installed in 40x80ft Subsonic Wind Tunnel at NASA Ames Research Center with Tom Mills. The propulsive lift system was tested to determine power-on performance characteristics in preparation for flight tests.
HAL/S programmer's guide. [for space shuttle program
NASA Technical Reports Server (NTRS)
Newbold, P. M.; Hotz, R. L.
1974-01-01
This programming language was developed for the flight software of the NASA space shuttle program. HAL/S is intended to satisfy virtually all of the flight software requirements of the space shuttle. To achieve this, HAL/s incorporates a wide range of features, including applications-oriented data types and organizations, real time control mechanisms, and constructs for systems programming tasks. As the name indicates, HAL/S is a dialect of the original HAL language previously developed. Changes have been incorporated to simplify syntax, curb excessive generality, or facilitate flight code emission.
Certification Processes for Safety-Critical and Mission-Critical Aerospace Software
NASA Technical Reports Server (NTRS)
Nelson, Stacy
2003-01-01
This document is a quick reference guide with an overview of the processes required to certify safety-critical and mission-critical flight software at selected NASA centers and the FAA. Researchers and software developers can use this guide to jumpstart their understanding of how to get new or enhanced software onboard an aircraft or spacecraft. The introduction contains aerospace industry definitions of safety and safety-critical software, as well as, the current rationale for certification of safety-critical software. The Standards for Safety-Critical Aerospace Software section lists and describes current standards including NASA standards and RTCA DO-178B. The Mission-Critical versus Safety-Critical software section explains the difference between two important classes of software: safety-critical software involving the potential for loss of life due to software failure and mission-critical software involving the potential for aborting a mission due to software failure. The DO-178B Safety-critical Certification Requirements section describes special processes and methods required to obtain a safety-critical certification for aerospace software flying on vehicles under auspices of the FAA. The final two sections give an overview of the certification process used at Dryden Flight Research Center and the approval process at the Jet Propulsion Lab (JPL).
Virtual Instrument Simulator for CERES
NASA Technical Reports Server (NTRS)
Chapman, John J.
1997-01-01
A benchtop virtual instrument simulator for CERES (Clouds and the Earth's Radiant Energy System) has been built at NASA, Langley Research Center in Hampton, VA. The CERES instruments will fly on several earth orbiting platforms notably NASDA's Tropical Rainfall Measurement Mission (TRMM) and NASA's Earth Observing System (EOS) satellites. CERES measures top of the atmosphere radiative fluxes using microprocessor controlled scanning radiometers. The CERES Virtual Instrument Simulator consists of electronic circuitry identical to the flight unit's twin microprocessors and telemetry interface to the supporting spacecraft electronics and two personal computers (PC) connected to the I/O ports that control azimuth and elevation gimbals. Software consists of the unmodified TRW developed Flight Code and Ground Support Software which serves as the instrument monitor and NASA/TRW developed engineering models of the scanners. The CERES Instrument Simulator will serve as a testbed for testing of custom instrument commands intended to solve in-flight anomalies of the instruments which could arise during the CERES mission. One of the supporting computers supports the telemetry display which monitors the simulator microprocessors during the development and testing of custom instrument commands. The CERES engineering development software models have been modified to provide a virtual instrument running on a second supporting computer linked in real time to the instrument flight microprocessor control ports. The CERES Instrument Simulator will be used to verify memory uploads by the CERES Flight Operations TEAM at NASA. Plots of the virtual scanner models match the actual instrument scan plots. A high speed logic analyzer has been used to track the performance of the flight microprocessor. The concept of using an identical but non-flight qualified microprocessor and electronics ensemble linked to a virtual instrument with identical system software affords a relatively inexpensive simulation system capable of high fidelity.
Effective Software Engineering Leadership for Development Programs
ERIC Educational Resources Information Center
Cagle West, Marsha
2010-01-01
Software is a critical component of systems ranging from simple consumer appliances to complex health, nuclear, and flight control systems. The development of quality, reliable, and effective software solutions requires the incorporation of effective software engineering processes and leadership. Processes, approaches, and methodologies for…
Payload software technology: Software technology development plan
NASA Technical Reports Server (NTRS)
1977-01-01
Programmatic requirements for the advancement of software technology are identified for meeting the space flight requirements in the 1980 to 1990 time period. The development items are described, and software technology item derivation worksheets are presented along with the cost/time/priority assessments.
Aircraft interrogation and display system: A ground support equipment for digital flight systems
NASA Technical Reports Server (NTRS)
Glover, R. D.
1982-01-01
A microprocessor-based general purpose ground support equipment for electronic systems was developed. The hardware and software are designed to permit diverse applications in support of aircraft flight systems and simulation facilities. The implementation of the hardware, the structure of the software, describes the application of the system to an ongoing research aircraft project are described.
Multicore Considerations for Legacy Flight Software Migration
NASA Technical Reports Server (NTRS)
Vines, Kenneth; Day, Len
2013-01-01
In this paper we will discuss potential benefits and pitfalls when considering a migration from an existing single core code base to a multicore processor implementation. The results of this study present options that should be considered before migrating fault managers, device handlers and tasks with time-constrained requirements to a multicore flight software environment. Possible future multicore test bed demonstrations are also discussed.
Robonaut's Flexible Information Technology Infrastructure
NASA Technical Reports Server (NTRS)
Askew, Scott; Bluethmann, William; Alder, Ken; Ambrose, Robert
2003-01-01
Robonaut, NASA's humanoid robot, is designed to work as both an astronaut assistant and, in certain situations, an astronaut surrogate. This highly dexterous robot performs complex tasks under telepresence control that could previously only be carried out directly by humans. Currently with 47 degrees of freedom (DOF), Robonaut is a state-of-the-art human size telemanipulator system. while many of Robonaut's embedded components have been custom designed to meet packaging or environmental requirements, the primary computing systems used in Robonaut are currently commercial-off-the-shelf (COTS) products which have some correlation to flight qualified computer systems. This loose coupling of information technology (IT) resources allows Robonaut to exploit cost effective solutions while floating the technology base to take advantage of the rapid pace of IT advances. These IT systems utilize a software development environment, which is both compatible with COTS hardware as well as flight proven computing systems, preserving the majority of software development for a flight system. The ability to use highly integrated and flexible COTS software development tools improves productivity while minimizing redesign for a space flight system. Further, the flexibility of Robonaut's software and communication architecture has allowed it to become a widely used distributed development testbed for integrating new capabilities and furthering experimental research.
NASA Technical Reports Server (NTRS)
Over, Ann P.; Barrett, Michael J.; Reinhart, Richard C.; Free, James M.; Cikanek, Harry A., III
2011-01-01
The Communication Navigation and Networking Reconfigurable Testbed (CoNNeCT) is a NASA-sponsored mission, which will investigate the usage of Software Defined Radios (SDRs) as a multi-function communication system for space missions. A softwaredefined radio system is a communication system in which typical components of the system (e.g., modulators) are incorporated into software. The software-defined capability allows flexibility and experimentation in different modulation, coding and other parameters to understand their effects on performance. This flexibility builds inherent redundancy and flexibility into the system for improved operational efficiency, real-time changes to space missions and enhanced reliability/redundancy. The CoNNeCT Project is a collaboration between industrial radio providers and NASA. The industrial radio providers are providing the SDRs and NASA is designing, building and testing the entire flight system. The flight system will be integrated on the Express Logistics Carrier (ELC) on the International Space Station (ISS) after launch on the H-IIB Transfer Vehicle in 2012. This paper provides an overview of the technology research objectives, payload description, design challenges and pre-flight testing results.
Analysis of Wallops Flight Test Data Through an Automated COTS System
NASA Technical Reports Server (NTRS)
Blackstock, Dexter Lee; Theobalds, Andre B.
2005-01-01
During the summer of 2004 NASA Langley Research Center flight tested a Synthetic Vision System (SVS) at the Reno/Tahoe International Airport (RNO) and the Wallops Flight Facility (WAL). The SVS included a Runway Incursion Prevention System (RIPS) to improve pilot situational awareness while operating near and on the airport surface. The flight tests consisted of air and ground operations to evaluate and validate the performance of the system. This paper describes the flight test and emphasizes how positioning data was collected, post processed and analyzed through the use of a COTS-derived software system. The system that was developed to analyze the data was constructed within the MATLAB(TM) environment. The software was modified to read the data, perform several if-then scenarios and produce the relevant graphs, figures and tables.
Operating System Abstraction Layer (OSAL)
NASA Technical Reports Server (NTRS)
Yanchik, Nicholas J.
2007-01-01
This viewgraph presentation reviews the concept of the Operating System Abstraction Layer (OSAL) and its benefits. The OSAL is A small layer of software that allows programs to run on many different operating systems and hardware platforms It runs independent of the underlying OS & hardware and it is self-contained. The benefits of OSAL are that it removes dependencies from any one operating system, promotes portable, reusable flight software. It allows for Core Flight software (FSW) to be built for multiple processors and operating systems. The presentation discusses the functionality, the various OSAL releases, and describes the specifications.
NASA Technical Reports Server (NTRS)
1979-01-01
The detailed logic flow for the Flight Design System Executive is presented. The system is designed to provide the hardware/software capability required for operational support of shuttle flight planning.
A Low Cost Simulation System to Demonstrate Pilot Induced Oscillation Phenomenon
NASA Technical Reports Server (NTRS)
Ali, Syed Firasat
1997-01-01
A flight simulation system with graphics and software on Silicon Graphics computer workstations has been installed in the Flight Vehicle Design Laboratory at Tuskegee University. The system has F-15E flight simulation software from NASA Dryden which uses the graphics of SGI flight simulation demos. On the system, thus installed, a study of pilot induced oscillations is planned for future work. Preliminary research is conducted by obtaining two sets of straight level flights with pilot in the loop. In one set of flights no additional delay is used between the stick input and the appearance of airplane response on the computer monitor. In another set of flights, a 500 ms additional delay is used. The flight data is analyzed to find cross correlations between deflections of control surfaces and response of the airplane. The pilot dynamics features depicted from cross correlations of straight level flights are discussed in this report. The correlations presented here will serve as reference material for the corresponding correlations in a future study of pitch attitude tracking tasks involving pilot induced oscillations.
Calculation of AC loss in two-layer superconducting cable with equal currents in the layers
NASA Astrophysics Data System (ADS)
Erdogan, Muzaffer
2016-12-01
A new method for calculating AC loss of two-layer SC power transmission cables using the commercial software Comsol Multiphysics, relying on the approach of the equal partition of current between the layers is proposed. Applying the method to calculate the AC-loss in a cable composed of two coaxial cylindrical SC tubes, the results are in good agreement with the analytical ones of duoblock model. Applying the method to calculate the AC-losses of a cable composed of a cylindrical copper former, surrounded by two coaxial cylindrical layers of superconducting tapes embedded in an insulating medium with tape-on-tape and tape-on-gap configurations are compared. A good agreement between the duoblock model and the numerical results for the tape-on-gap cable is observed.
NASA TSRV essential flight control system requirements via object oriented analysis
NASA Technical Reports Server (NTRS)
Duffy, Keith S.; Hoza, Bradley J.
1992-01-01
The objective was to analyze the baseline flight control system of the Transport Systems Research Vehicle (TSRV) and to develop a system specification that offers high visibility of the essential system requirements in order to facilitate the future development of alternate, more advanced software architectures. The flight control system is defined to be the baseline software for the TSRV research flight deck, including all navigation, guidance, and control functions, and primary pilot displays. The Object Oriented Analysis (OOA) methodology developed is used to develop a system requirement definition. The scope of the requirements definition contained herein is limited to a portion of the Flight Management/Flight Control computer functionality. The development of a partial system requirements definition is documented, and includes a discussion of the tasks required to increase the scope of the requirements definition and recommendations for follow-on research.
Description and Flight Test Results of the NASA F-8 Digital Fly-by-Wire Control System
NASA Technical Reports Server (NTRS)
1975-01-01
A NASA program to develop digital fly-by-wire (DFBW) technology for aircraft applications is discussed. Phase I of the program demonstrated the feasibility of using a digital fly-by-wire system for aircraft control through developing and flight testing a single channel system, which used Apollo hardware, in an F-8C airplane. The objective of Phase II of the program is to establish a technology base for designing practical DFBW systems. It will involve developing and flight testing a triplex digital fly-by-wire system using state-of-the-art airborne computers, system hardware, software, and redundancy concepts. The papers included in this report describe the Phase I system and its development and present results from the flight program. Man-rated flight software and the effects of lightning on digital flight control systems are also discussed.
Satellite Constellation Optimization for Turkish Armed Forces
2013-03-01
capability. 29 III. OPTIMIZATION WITH STK A. ANALYSIS The goal was to minimize the number of satellites and then minimize the number of planes...www.oosa.unvienna.org/pdf/reports/ac105/AC105_1005E.pdf. Wertz, James R. and Larson, Wiley J. “Space Mission Analysis and Design (Third Edition).” Space...Systems Tool Kit software for simulation and analysis of several possible communications and remote sensing satellite constellations covering Turkish
The SEL Adapts to Meet Changing Times
NASA Technical Reports Server (NTRS)
Pajerski, Rose S.; Basili, Victor R.
1997-01-01
Since 1976, the Software Engineering Laboratory (SEL) has been dedicated to understanding and improving the way in which one NASA organization, the Flight Dynamics Division (FDD) at Goddard Space Flight Center, develops, maintains, and manages complex flight dynamics systems. It has done this by developing and refining a continual process improvement approach that allows an organization such as the FDD to fine-tune its process for its particular domain. Experimental software engineering and measurement play a significant role in this approach. The SEL is a partnership of NASA Goddard, its major software contractor, Computer Sciences Corporation (CSC), and the University of Maryland's (LTM) Department of Computer Science. The FDD primarily builds software systems that provide ground-based flight dynamics support for scientific satellites. They fall into two sets: ground systems and simulators. Ground systems are midsize systems that average around 250 thousand source lines of code (KSLOC). Ground system development projects typically last 1 - 2 years. Recent systems have been rehosted to workstations from IBM mainframes, and also contain significant new subsystems written in C and C++. The simulators are smaller systems averaging around 60 KSLOC that provide the test data for the ground systems. Simulator development lasts up to 1 year. Most of the simulators have been built in Ada on workstations. The SEL is responsible for the management and continual improvement of the software engineering processes used on these FDD projects.
Flight dynamics software in a distributed network environment
NASA Technical Reports Server (NTRS)
Jeletic, J.; Weidow, D.; Boland, D.
1995-01-01
As with all NASA facilities, the announcement of reduced budgets, reduced staffing, and the desire to implement smaller/quicker/cheaper missions has required the Agency's organizations to become more efficient in what they do. To accomplish these objectives, the FDD has initiated the development of the Flight Dynamics Distributed System (FDDS). The underlying philosophy of FDDS is to build an integrated system that breaks down the traditional barriers of attitude, mission planning, and navigation support software to provide a uniform approach to flight dynamics applications. Through the application of open systems concepts and state-of-the-art technologies, including object-oriented specification concepts, object-oriented software, and common user interface, communications, data management, and executive services, the FDD will reengineer most of its six million lines of code.
ERIC Educational Resources Information Center
Ahrens, Fred; Mistry, Rajendra
2005-01-01
In product engineering there often arise design analysis problems for which a commercial software package is either unavailable or cost prohibitive. Further, these calculations often require successive iterations that can be time intensive when performed by hand, thus development of a software application is indicated. This case relates to the…
Extended Bright Bodies - Flight and Ground Software Challenges on the Cassini Mission at Saturn
NASA Technical Reports Server (NTRS)
Sung, Tina S.; Burk, Thomas A.
2016-01-01
Extended bright bodies in the Saturn environment such as Saturn's rings, the planet itself, and Saturn's satellites near the Cassini spacecraft may interfere with the star tracker's ability to find stars. These interferences can create faulty spacecraft attitude knowledge, which would decrease the pointing accuracy or even trip a fault protection response on board the spacecraft. The effects of the extended bright body interference were observed in December of 2000 when Cassini flew by Jupiter. Based on this flight experience and expected star tracker behavior at Saturn, the Cassini AACS operations team defined flight rules to suspend the star tracker during predicted interference windows. The flight rules are also implemented in the existing ground software called Kinematic Predictor Tool to create star identification suspend commands to be uplinked to the spacecraft for future predicted interferences. This paper discusses the details of how extended bright bodies impact Cassini's acquisition of attitude knowledge, how the observed data helped the ground engineers in developing flight rules, and how automated methods are used in the flight and ground software to ensure the spacecraft is continuously operated within these flight rules. This paper also discusses how these established procedures will continue to be used to overcome new bright body challenges that Cassini will encounter during its dips inside the rings of Saturn for its final orbits of a remarkable 20-year mission at Saturn.
SCaN Testbed Software Development and Lessons Learned
NASA Technical Reports Server (NTRS)
Kacpura, Thomas J.; Varga, Denise M.
2012-01-01
National Aeronautics and Space Administration (NASA) has developed an on-orbit, adaptable, Software Defined Radio (SDR)Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The SCAN Testbed Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, SDR platforms and the STRS Architecture.The SDRs are a new technology for NASA, and the support infrastructure they require is different from legacy, fixed function radios. SDRs offer the ability to reconfigure on-orbit communications by changing software for new waveforms and operating systems to enable new capabilities or fix any anomalies, which was not a previous option. They are not stand alone devices, but required a new approach to effectively control them and flow data. This requires extensive software to be developed to utilize the full potential of these reconfigurable platforms. The paper focuses on development, integration and testing as related to the avionics processor system, and the software required to command, control, monitor, and interact with the SDRs, as well as the other communication payload elements. An extensive effort was required to develop the flight software and meet the NASA requirements for software quality and safety. The flight avionics must be radiation tolerant, and these processors have limited capability in comparison to terrestrial counterparts. A big challenge was that there are three SDRs onboard, and interfacing with multiple SDRs simultaneously complicatesd the effort. The effort also includes ground software, which is a key element for both the command of the payload, and displaying data created by the payload. The verification of the software was an extensive effort. The challenges of specifying a suitable test matrix with reconfigurable systems that offer numerous configurations is highlighted. Since the flight system testing requires methodical, controlled testing that limits risk, a nearly identical ground system to the on-orbit flight system was required to develop the software and write verification procedures before it was installed and tested on the flight system. The development of the SCAN testbed was an accelerated effort to meet launch constraints, and this paper discusses tradeoffs made to balance needed software functionality and still maintain the schedule. Future upgrades are discussed that optimize the avionics and allow experimenters to utilize the SCAN testbed potential.
Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)
NASA Technical Reports Server (NTRS)
Niewoehner, Kevin R.; Carter, John (Technical Monitor)
2001-01-01
The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.
Proceedings of the 14th Annual Software Engineering Workshop
NASA Technical Reports Server (NTRS)
1989-01-01
Several software related topics are presented. Topics covered include studies and experiment at the Software Engineering Laboratory at the Goddard Space Flight Center, predicting project success from the Software Project Management Process, software environments, testing in a reuse environment, domain directed reuse, and classification tree analysis using the Amadeus measurement and empirical analysis.
NASA Technical Reports Server (NTRS)
1990-01-01
Papers presented at RICIS Software Engineering Symposium are compiled. The following subject areas are covered: flight critical software; management of real-time Ada; software reuse; megaprogramming software; Ada net; POSIX and Ada integration in the Space Station Freedom Program; and assessment of formal methods for trustworthy computer systems.
A New Definition for Ground Control
NASA Technical Reports Server (NTRS)
2002-01-01
LandForm(R) VisualFlight(R) blends the power of a geographic information system with the speed of a flight simulator to transform a user's desktop computer into a "virtual cockpit." The software product, which is fully compatible with all Microsoft(R) Windows(R) operating systems, provides distributed, real-time three-dimensional flight visualization over a host of networks. From a desktop, a user can immediately obtain a cockpit view, a chase-plane view, or an airborne tracker view. A customizable display also allows the user to overlay various flight parameters, including latitude, longitude, altitude, pitch, roll, and heading information. Rapid Imaging Software sought assistance from NASA, and the VisualFlight technology came to fruition under a Phase II SBIR contract with Johnson Space Center in 1998. Three years later, on December 13, 2001, Ken Ham successfully flew NASA's X-38 spacecraft from a remote, ground-based cockpit using LandForm VisualFlight as part of his primary situation awareness display in a flight test at Edwards Air Force Base, California.
Flight Dynamic Simulation of Fighter In the Asymmetric External Store Release Process
NASA Astrophysics Data System (ADS)
Safi’i, Imam; Arifianto, Ony; Nurohman, Chandra
2018-04-01
In the fighter design, it is important to evaluate and analyze the flight dynamic of the aircraft earlier in the development process. One of the case is the dynamics of external store release process. A simulation tool can be used to analyze the fighter/external store system’s dynamics in the preliminary design stage. This paper reports the flight dynamics of Jet Fighter Experiment (JF-1 E) in asymmetric Advance Medium Range Air to Air Missile (AMRAAM) release process through simulations. The JF-1 E and AIM 120 AMRAAAM models are built by using Advanced Aircraft Analysis (AAA) and Missile Datcom software. By using these softwares, the aerodynamic stability and control derivatives can be obtained and used to model the dynamic characteristic of the fighter and the external store. The dynamic system is modeled by using MATLAB/Simulink software. By using this software, both the fighter/external store integration and the external store release process is simulated, and the dynamic of the system can be analyzed.
SHINE Virtual Machine Model for In-flight Updates of Critical Mission Software
NASA Technical Reports Server (NTRS)
Plesea, Lucian
2008-01-01
This software is a new target for the Spacecraft Health Inference Engine (SHINE) knowledge base that compiles a knowledge base to a language called Tiny C - an interpreted version of C that can be embedded on flight processors. This new target allows portions of a running SHINE knowledge base to be updated on a "live" system without needing to halt and restart the containing SHINE application. This enhancement will directly provide this capability without the risk of software validation problems and can also enable complete integration of BEAM and SHINE into a single application. This innovation enables SHINE deployment in domains where autonomy is used during flight-critical applications that require updates. This capability eliminates the need for halting the application and performing potentially serious total system uploads before resuming the application with the loss of system integrity. This software enables additional applications at JPL (microsensors, embedded mission hardware) and increases the marketability of these applications outside of JPL.
Generalized Support Software: Domain Analysis and Implementation
NASA Technical Reports Server (NTRS)
Stark, Mike; Seidewitz, Ed
1995-01-01
For the past five years, the Flight Dynamics Division (FDD) at NASA's Goddard Space Flight Center has been carrying out a detailed domain analysis effort and is now beginning to implement Generalized Support Software (GSS) based on this analysis. GSS is part of the larger Flight Dynamics Distributed System (FDDS), and is designed to run under the FDDS User Interface / Executive (UIX). The FDD is transitioning from a mainframe based environment to systems running on engineering workstations. The GSS will be a library of highly reusable components that may be configured within the standard FDDS architecture to quickly produce low-cost satellite ground support systems. The estimates for the first release is that this library will contain approximately 200,000 lines of code. The main driver for developing generalized software is development cost and schedule improvement. The goal is to ultimately have at least 80 percent of all software required for a spacecraft mission (within the domain supported by the GSS) to be configured from the generalized components.
Integrated testing and verification system for research flight software design document
NASA Technical Reports Server (NTRS)
Taylor, R. N.; Merilatt, R. L.; Osterweil, L. J.
1979-01-01
The NASA Langley Research Center is developing the MUST (Multipurpose User-oriented Software Technology) program to cut the cost of producing research flight software through a system of software support tools. The HAL/S language is the primary subject of the design. Boeing Computer Services Company (BCS) has designed an integrated verification and testing capability as part of MUST. Documentation, verification and test options are provided with special attention on real time, multiprocessing issues. The needs of the entire software production cycle have been considered, with effective management and reduced lifecycle costs as foremost goals. Capabilities have been included in the design for static detection of data flow anomalies involving communicating concurrent processes. Some types of ill formed process synchronization and deadlock also are detected statically.
2017-03-17
NASA engineers and test directors gather in Firing Room 3 in the Launch Control Center at NASA's Kennedy Space Center in Florida, to watch a demonstration of the automated command and control software for the agency's Space Launch System (SLS) and Orion spacecraft. In front, far right, is Charlie Blackwell-Thompson, launch director for Exploration Mission 1 (EM-1). The software is called the Ground Launch Sequencer. It will be responsible for nearly all of the launch commit criteria during the final phases of launch countdowns. The Ground and Flight Application Software Team (GFAST) demonstrated the software. It was developed by the Command, Control and Communications team in the Ground Systems Development and Operations (GSDO) Program. GSDO is helping to prepare the center for the first test flight of Orion atop the SLS on EM-1.
Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib
2016-04-15
In quantitative PET/MR imaging, attenuation correction (AC) of PET data is markedly challenged by the need of deriving accurate attenuation maps from MR images. A number of strategies have been developed for MRI-guided attenuation correction with different degrees of success. In this work, we compare the quantitative performance of three generic AC methods, including standard 3-class MR segmentation-based, advanced atlas-registration-based and emission-based approaches in the context of brain time-of-flight (TOF) PET/MRI. Fourteen patients referred for diagnostic MRI and (18)F-FDG PET/CT brain scans were included in this comparative study. For each study, PET images were reconstructed using four different attenuation maps derived from CT-based AC (CTAC) serving as reference, standard 3-class MR-segmentation, atlas-registration and emission-based AC methods. To generate 3-class attenuation maps, T1-weighted MRI images were segmented into background air, fat and soft-tissue classes followed by assignment of constant linear attenuation coefficients of 0, 0.0864 and 0.0975 cm(-1) to each class, respectively. A robust atlas-registration based AC method was developed for pseudo-CT generation using local weighted fusion of atlases based on their morphological similarity to target MR images. Our recently proposed MRI-guided maximum likelihood reconstruction of activity and attenuation (MLAA) algorithm was employed to estimate the attenuation map from TOF emission data. The performance of the different AC algorithms in terms of prediction of bones and quantification of PET tracer uptake was objectively evaluated with respect to reference CTAC maps and CTAC-PET images. Qualitative evaluation showed that the MLAA-AC method could sparsely estimate bones and accurately differentiate them from air cavities. It was found that the atlas-AC method can accurately predict bones with variable errors in defining air cavities. Quantitative assessment of bone extraction accuracy based on Dice similarity coefficient (DSC) showed that MLAA-AC and atlas-AC resulted in DSC mean values of 0.79 and 0.92, respectively, in all patients. The MLAA-AC and atlas-AC methods predicted mean linear attenuation coefficients of 0.107 and 0.134 cm(-1), respectively, for the skull compared to reference CTAC mean value of 0.138cm(-1). The evaluation of the relative change in tracer uptake within 32 distinct regions of the brain with respect to CTAC PET images showed that the 3-class MRAC, MLAA-AC and atlas-AC methods resulted in quantification errors of -16.2 ± 3.6%, -13.3 ± 3.3% and 1.0 ± 3.4%, respectively. Linear regression and Bland-Altman concordance plots showed that both 3-class MRAC and MLAA-AC methods result in a significant systematic bias in PET tracer uptake, while the atlas-AC method results in a negligible bias. The standard 3-class MRAC method significantly underestimated cerebral PET tracer uptake. While current state-of-the-art MLAA-AC methods look promising, they were unable to noticeably reduce quantification errors in the context of brain imaging. Conversely, the proposed atlas-AC method provided the most accurate attenuation maps, and thus the lowest quantification bias. Copyright © 2016 Elsevier Inc. All rights reserved.
Adventitious Carbon on Primary Sample Containment Metal Surfaces
NASA Technical Reports Server (NTRS)
Calaway, M. J.; Fries, M. D.
2015-01-01
Future missions that return astromaterials with trace carbonaceous signatures will require strict protocols for reducing and controlling terrestrial carbon contamination. Adventitious carbon (AC) on primary sample containers and related hardware is an important source of that contamination. AC is a thin film layer or heterogeneously dispersed carbonaceous material that naturally accrues from the environment on the surface of atmospheric exposed metal parts. To test basic cleaning techniques for AC control, metal surfaces commonly used for flight hardware and curating astromaterials at JSC were cleaned using a basic cleaning protocol and characterized for AC residue. Two electropolished stainless steel 316L (SS- 316L) and two Al 6061 (Al-6061) test coupons (2.5 cm diameter by 0.3 cm thick) were subjected to precision cleaning in the JSC Genesis ISO class 4 cleanroom Precision Cleaning Laboratory. Afterwards, the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.
NASA Technical Reports Server (NTRS)
Antoine, Lisa
1992-01-01
An outline of the Project Operations Branch at Goddard Space Flight Center is presented that describes the management of the division and each subgroup's responsibility. The paper further describes the development of software tools for the Macintosh personal computer, and their impending implementation. A detailed step by step procedure is given for using these software tools.
The Federal Aviation Administration Plan for Research, Engineering and Development, 1994
1994-05-01
Aeronautical Data Link Communications and (COTS) runway incursion system software will Applications, and 051-130 Airport Safety be demonstrated as a... airport departure and ar- efforts rival scheduling plans that optimize daily traffic flows for long-range flights between major city- * OTFP System to...Expanded HARS planning capabilities to in- aviation dispatchers to develop optimized high clude enhanced communications software for altitude flight
Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A) software assurance plan
NASA Technical Reports Server (NTRS)
Schwantje, Robert; Smith, Claude
1994-01-01
This document defines the responsibilities of Software Quality Assurance (SOA) for the development of the flight software installed in EOS/AMSU-A instruments, and the ground support software used in the test and integration of the EOS/AMSU-A instruments.
Experiences in integrating auto-translated state-chart designs for model checking
NASA Technical Reports Server (NTRS)
Pingree, P. J.; Benowitz, E. G.
2003-01-01
In the complex environment of JPL's flight missions with increasing dependency on advanced software designs, traditional software validation methods of simulation and testing are being stretched to adequately cover the needs of software development.
Reflight certification software design specifications
NASA Technical Reports Server (NTRS)
1984-01-01
The PDSS/IMC Software Design Specification for the Payload Development Support System (PDSS)/Image Motion Compensator (IMC) is contained. The PDSS/IMC is to be used for checkout and verification of the IMC flight hardware and software by NASA/MSFC.
Vehicle management and mission planning systems with shuttle applications
NASA Technical Reports Server (NTRS)
1972-01-01
A preliminary definition of a concept for an automated system is presented that will support the effective management and planning of space shuttle operations. It is called the Vehicle Management and Mission Planning System (VMMPS). In addition to defining the system and its functions, some of the software requirements of the system are identified and a phased and evolutionary method is recommended for software design, development, and implementation. The concept is composed of eight software subsystems supervised by an executive system. These subsystems are mission design and analysis, flight scheduler, launch operations, vehicle operations, payload support operations, crew support, information management, and flight operations support. In addition to presenting the proposed system, a discussion of the evolutionary software development philosophy that the Mission Planning and Analysis Division (MPAD) would propose to use in developing the required supporting software is included. A preliminary software development schedule is also included.
NASA Technical Reports Server (NTRS)
Martinez, Debbie; Davidson, Paul C.; Kenney, P. Sean; Hutchinson, Brian K.
2004-01-01
The Flight Simulation and Software Branch (FSSB) at NASA Langley Research Center (LaRC) maintains the unique national asset identified as the Transport Research Facility (TRF). The TRF is a group of facilities and integration laboratories utilized to support the LaRC's simulation-to-flight concept. This concept incorporates common software, hardware, and processes for both groundbased flight simulators and LaRC s B-757-200 flying laboratory identified as the Airborne Research Integrated Experiments System (ARIES). These assets provide Government, industry, and academia with an efficient way to develop and test new technology concepts to enhance the capacity, safety, and operational needs of the ever-changing national airspace system. The integration of the TRF enables a smooth continuous flow of the research from simulation to actual flight test.
Development of a Low-Cost Sub-Scale Aircraft for Flight Research: The FASER Project
NASA Technical Reports Server (NTRS)
Owens, Donald B.; Cox, David E.; Morelli, Eugene A.
2006-01-01
An inexpensive unmanned sub-scale aircraft was developed to conduct frequent flight test experiments for research and demonstration of advanced dynamic modeling and control design concepts. This paper describes the aircraft, flight systems, flight operations, and data compatibility including details of some practical problems encountered and the solutions found. The aircraft, named Free-flying Aircraft for Sub-scale Experimental Research, or FASER, was outfitted with high-quality instrumentation to measure aircraft inputs and states, as well as vehicle health parameters. Flight data are stored onboard, but can also be telemetered to a ground station in real time for analysis. Commercial-off-the-shelf hardware and software were used as often as possible. The flight computer is based on the PC104 platform, and runs xPC-Target software. Extensive wind tunnel testing was conducted with the same aircraft used for flight testing, and a six degree-of-freedom simulation with nonlinear aerodynamics was developed to support flight tests. Flight tests to date have been conducted to mature the flight operations, validate the instrumentation, and check the flight data for kinematic consistency. Data compatibility analysis showed that the flight data are accurate and consistent after corrections are made for estimated systematic instrumentation errors.
Future Standardization of Space Telecommunications Radio System with Core Flight System
NASA Technical Reports Server (NTRS)
Hickey, Joseph P.; Briones, Janette C.; Roche, Rigoberto; Handler, Louis M.; Hall, Steven
2016-01-01
NASA Glenn Research Center (GRC) is integrating the NASA Space Telecommunications Radio System (STRS) Standard with the Core Flight System (cFS). The STRS standard provides a common, consistent framework to develop, qualify, operate and maintain complex, reconfigurable and reprogrammable radio systems. The cFS is a flexible, open architecture that features a plug-and-play software executive called the Core Flight Executive (cFE), a reusable library of software components for flight and space missions and an integrated tool suite. Together, STRS and cFS create a development environment that allows for STRS compliant applications to reference the STRS APIs through the cFS infrastructure. These APis are used to standardize the communication protocols on NASAs space SDRs. The cFE-STRS Operating Environment (OE) is a portable cFS library, which adds the ability to run STRS applications on existing cFS platforms. The purpose of this paper is to discuss the cFE-STRS OE prototype, preliminary experimental results performed using the Advanced Space Radio Platform (ASRP), the GRC Sband Ground Station and the SCaN (Space Communication and Navigation) Testbed currently flying onboard the International Space Station. Additionally, this paper presents a demonstration of the Consultative Committee for Space Data Systems (CCSDS) Spacecraft Onboard Interface Services (SOIS) using electronic data sheets inside cFE. This configuration allows for the data sheets to specify binary formats for data exchange between STRS applications. The integration of STRS with cFS leverages mission-proven platform functions and mitigates barriers to integration with future missions. This reduces flight software development time and the costs of software-defined radio (SDR) platforms. Furthermore, the combined benefits of STRS standardization with the flexibility of cFS provide an effective, reliable and modular framework to minimize software development efforts for spaceflight missions.
Onboard Processing and Autonomous Operations on the IPEX Cubesat
NASA Technical Reports Server (NTRS)
Chien, Steve; Doubleday, Joshua; Ortega, Kevin; Flatley, Tom; Crum, Gary; Geist, Alessandro; Lin, Michael; Williams, Austin; Bellardo, John; Puig-Suari, Jordi;
2012-01-01
IPEX is a 1u Cubesat sponsored by NASA Earth Science Technology Office (ESTO), the goals or which are: (1) Flight validate high performance flight computing, (2) Flight validate onboard instrument data processing product generation software, (3) flight validate autonomous operations for instrument processing, (4) enhance NASA outreach and university ties.
The Western Aeronautical Test Range. Chapter 10 Tools
NASA Technical Reports Server (NTRS)
Knudtson, Kevin; Park, Alice; Downing, Robert; Sheldon, Jack; Harvey, Robert; Norcross, April
2011-01-01
The Western Aeronautical Test Range (WATR) staff at the NASA Dryden Flight Research Center is developing a translation software called Chapter 10 Tools in response to challenges posed by post-flight processing data files originating from various on-board digital recorders that follow the Range Commanders Council Inter-Range Instrumentation Group (IRIG) 106 Chapter 10 Digital Recording Standard but use differing interpretations of the Standard. The software will read the date files regardless of the vendor implementation of the source recorder, displaying data, identifying and correcting errors, and producing a data file that can be successfully processed post-flight
Final Report for the Advanced Camera for Surveys (ACS)
NASA Technical Reports Server (NTRS)
2004-01-01
ACS was launched aboard the Space Shuttle Columbia just before dawn on March 1, 2002. At the time of liftoff, the Hubble Space Telescope (HST) was reflecting the early morning sun as it moved across the sky. After successfully docking with HST, several components were replaced. One of the components was the Advanced Camera for Surveys built by Ball Aerospace & Technologies Corp. (BATC) in Boulder, Colorado. Over the life of the HST contract at BATC, hundreds of employees had the pleasure of working on the concept, design, fabrication, assembly, and test of ACS. Those employees thank NASA - Goddard Space Flight Center and the science team at Johns Hopkins University (JHU) for the opportunity to participate in building a great science instrument for HST.
NASA Technical Reports Server (NTRS)
McComas, David
2013-01-01
The flight software (FSW) math library is a collection of reusable math components that provides typical math utilities required by spacecraft flight software. These utilities are intended to increase flight software quality reusability and maintainability by providing a set of consistent, well-documented, and tested math utilities. This library only has dependencies on ANSI C, so it is easily ported. Prior to this library, each mission typically created its own math utilities using ideas/code from previous missions. Part of the reason for this is that math libraries can be written with different strategies in areas like error handling, parameters orders, naming conventions, etc. Changing the utilities for each mission introduces risks and costs. The obvious risks and costs are that the utilities must be coded and revalidated. The hidden risks and costs arise in miscommunication between engineers. These utilities must be understood by both the flight software engineers and other subsystem engineers (primarily guidance navigation and control). The FSW math library is part of a larger goal to produce a library of reusable Guidance Navigation and Control (GN&C) FSW components. A GN&C FSW library cannot be created unless a standardized math basis is created. This library solves the standardization problem by defining a common feature set and establishing policies for the library s design. This allows the libraries to be maintained with the same strategy used in its initial development, which supports a library of reusable GN&C FSW components. The FSW math library is written for an embedded software environment in C. This places restrictions on the language features that can be used by the library. Another advantage of the FSW math library is that it can be used in the FSW as well as other environments like the GN&C analyst s simulators. This helps communication between the teams because they can use the same utilities with the same feature set and syntax.
Software Suite to Support In-Flight Characterization of Remote Sensing Systems
NASA Technical Reports Server (NTRS)
Stanley, Thomas; Holekamp, Kara; Gasser, Gerald; Tabor, Wes; Vaughan, Ronald; Ryan, Robert; Pagnutti, Mary; Blonski, Slawomir; Kenton, Ross
2014-01-01
A characterization software suite was developed to facilitate NASA's in-flight characterization of commercial remote sensing systems. Characterization of aerial and satellite systems requires knowledge of ground characteristics, or ground truth. This information is typically obtained with instruments taking measurements prior to or during a remote sensing system overpass. Acquired ground-truth data, which can consist of hundreds of measurements with different data formats, must be processed before it can be used in the characterization. Accurate in-flight characterization of remote sensing systems relies on multiple field data acquisitions that are efficiently processed, with minimal error. To address the need for timely, reproducible ground-truth data, a characterization software suite was developed to automate the data processing methods. The characterization software suite is engineering code, requiring some prior knowledge and expertise to run. The suite consists of component scripts for each of the three main in-flight characterization types: radiometric, geometric, and spatial. The component scripts for the radiometric characterization operate primarily by reading the raw data acquired by the field instruments, combining it with other applicable information, and then reducing it to a format that is appropriate for input into MODTRAN (MODerate resolution atmospheric TRANsmission), an Air Force Research Laboratory-developed radiative transport code used to predict at-sensor measurements. The geometric scripts operate by comparing identified target locations from the remote sensing image to known target locations, producing circular error statistics defined by the Federal Geographic Data Committee Standards. The spatial scripts analyze a target edge within the image, and produce estimates of Relative Edge Response and the value of the Modulation Transfer Function at the Nyquist frequency. The software suite enables rapid, efficient, automated processing of ground truth data, which has been used to provide reproducible characterizations on a number of commercial remote sensing systems. Overall, this characterization software suite improves the reliability of ground-truth data processing techniques that are required for remote sensing system in-flight characterizations.
Future Standardization of Space Telecommunications Radio System with Core Flight System
NASA Technical Reports Server (NTRS)
Briones, Janette C.; Hickey, Joseph P.; Roche, Rigoberto; Handler, Louis M.; Hall, Charles S.
2016-01-01
NASA Glenn Research Center (GRC) is integrating the NASA Space Telecommunications Radio System (STRS) Standard with the Core Flight System (cFS), an avionics software operating environment. The STRS standard provides a common, consistent framework to develop, qualify, operate and maintain complex, reconfigurable and reprogrammable radio systems. The cFS is a flexible, open architecture that features a plugand- play software executive called the Core Flight Executive (cFE), a reusable library of software components for flight and space missions and an integrated tool suite. Together, STRS and cFS create a development environment that allows for STRS compliant applications to reference the STRS application programmer interfaces (APIs) that use the cFS infrastructure. These APIs are used to standardize the communication protocols on NASAs space SDRs. The cFS-STRS Operating Environment (OE) is a portable cFS library, which adds the ability to run STRS applications on existing cFS platforms. The purpose of this paper is to discuss the cFS-STRS OE prototype, preliminary experimental results performed using the Advanced Space Radio Platform (ASRP), the GRC S- band Ground Station and the SCaN (Space Communication and Navigation) Testbed currently flying onboard the International Space Station (ISS). Additionally, this paper presents a demonstration of the Consultative Committee for Space Data Systems (CCSDS) Spacecraft Onboard Interface Services (SOIS) using electronic data sheets (EDS) inside cFE. This configuration allows for the data sheets to specify binary formats for data exchange between STRS applications. The integration of STRS with cFS leverages mission-proven platform functions and mitigates barriers to integration with future missions. This reduces flight software development time and the costs of software-defined radio (SDR) platforms. Furthermore, the combined benefits of STRS standardization with the flexibility of cFS provide an effective, reliable and modular framework to minimize software development efforts for spaceflight missions.
NASA Technical Reports Server (NTRS)
Martin, F. H.
1972-01-01
An overview of the executive system design task is presented. The flight software executive system, software verification, phase B baseline avionics system review, higher order languages and compilers, and computer hardware features are also discussed.
1994-03-16
ER-2: ASHOE/MAESA Expidition art (P.I. S Hipskind) Airborne Southern Hemisphere Ozone Experiment; Measurements for Assessing the Effects of Stratospheric Aircraft - Growth of Antarctic Ozone hole September - October 1993 (false color data from TOMS staellite, Goddard Space Flight Center)
1997-09-03
N-257 CVSRF: control rooms for 747 and ACSF cabs - LEFT SIDE; EOS - ACFS (Advanced Cab Flight Simulator) w. (l-r) Victor Loesche, Hector Reyes & Eric Jacobs and RIGHT SIDE; EOS - 747 Cab with (l-r) David Brown and Cindy Nguyen
Reduced gravity multibody dynamics testing
NASA Technical Reports Server (NTRS)
Sillanpaa, Meija
1993-01-01
The Final Report on reduced gravity multibody dynamics testing is presented. Tests were conducted on board the NASA KC-135 RGA in Houston, Texas. The objective was to analyze the effects of large angle rotations on flexible, multi-segmented structures. The flight experiment was conducted to provide data which will be compared to the data gathered from ground tests of the same configurations. The flight and ground tested data will be used to validate the TREETOPS software, software which models dynamic multibody systems, and other multibody codes. The flight experiment consisted of seven complete flights on board the KC-135 RGA during two one-week periods. The first period of testing was 4-9 Apr. 1993. The second period of testing was 13-18 Jun. 1993.
WFF TOPEX Software Documentation Overview, May 1999. Volume 2
NASA Technical Reports Server (NTRS)
Brooks, Ronald L.; Lee, Jeffrey
2003-01-01
This document provides an overview'of software development activities and the resulting products and procedures developed by the TOPEX Software Development Team (SWDT) at Wallops Flight Facility, in support of the WFF TOPEX Engineering Assessment and Verification efforts.
1985-12-23
QSRA (NASA 715) 400TH FLIGHT PARTICIPANTS. L-R: front row: Jim Ahlman, Bob Innis, Del Watson, Jim Lesko, Lee Mountz, Mike Herschel, Tom Kaisersatt, Jack Stephenson, Back row: Dennis Riddle, Neis Watz, Jack Franklin, Gordon Hardy, Bob Hinds, Charlie Hynes, Richard Young, Jim Martin, Joe Eppel, John White, Bob America, Hien Tran, Bill Bjorkman. Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig. 112
Martin, Nathan; Moore, Kevin; Musto, Callie J; Linn, Charles E
2016-01-01
Previous flight tunnel studies showed that 3-5 % of male European corn borer (ECB) moths, Ostrinia nubilalis, could fly upwind and make contact with sources releasing the sex pheromone of the closely related Asian corn borer (ACB), Ostrina furnacalis, [2:1 (Z)-12-tetradecenyl acetate (Z12-14:OAc) : (E)-12-teradecenyl acetate (E12-14:OAc)] and that 2-4 % of ACB males could similarly fly upwind to the sex pheromone blends of the ECB Z- [97:3 (Z)-tetradecenyl acetate (Z11-14:OAc) : (E)-tetradecenyl acetate (E11-14:Ac)] and E-strains (1:99 Z/E11-14:OAc) pheromones. The results supported the hypothesis that the evolution of the ACB pheromone system from an ECB-like ancestor included a stage in which males could be attracted to the unusual females emitting Z12- and E12-14:OAc while retaining their responsiveness to the ancestral pheromone blend of Z11- and E11-14:OAc. Here, we showed further that ECB E-strain males exhibited upwind oriented flight and source contacts to sources containing all combinations of ECB and ACB components. Maximal response levels were observed with the E-strain 99:1 E11/Z11-14:OAc blend, and high response levels also were observed with two other blends containing E11-14:OAc as the major component (E11:E12 and E11:Z12). Upwind flight and source contact also occurred at lower levels with the remaining blend combinations in which Z11-, E12-, or Z12-14:OAc was the major component. Our current results support the hypothesis concerning the evolution of ACB from an ECB-like ancester by showing that males were able to respond to females producing either the 12-14:Ac isomers, 11-14:Ac isomers, or even mixtures of all four components.
Open Source and Design Thinking at NASA: A Vision for Future Software
NASA Technical Reports Server (NTRS)
Trimble, Jay
2017-01-01
NASA Mission Control Software for the Visualization of data has historically been closed, accessible only to small groups of flight controllers, often bound to a specific mission discipline such as flight dynamics, health and status or mission planning. Open Mission Control Technologies (MCT) provides new capability for NASA mission controllers and, by being fully open source, opens up NASA software for the visualization of mission data to broader communities inside and outside of NASA. Open MCT is the product of a design thinking process within NASA, using participatory design and design sprints to build a product that serves users.
Tools Automate Spacecraft Testing, Operation
NASA Technical Reports Server (NTRS)
2010-01-01
"NASA began the Small Explorer (SMEX) program to develop spacecraft to advance astrophysics and space physics. As one of the entities supporting software development at Goddard Space Flight Center, the Hammers Company Inc. (tHC Inc.), of Greenbelt, Maryland, developed the Integrated Test and Operations System to support SMEX. Later, the company received additional Small Business Innovation Research (SBIR) funding from Goddard for a tool to facilitate the development of flight software called VirtualSat. NASA uses the tools to support 15 satellites, and the aerospace industry is using them to develop science instruments, spacecraft computer systems, and navigation and control software."
Quality Attributes for Mission Flight Software: A Reference for Architects
NASA Technical Reports Server (NTRS)
Wilmot, Jonathan; Fesq, Lorraine; Dvorak, Dan
2016-01-01
In the international standards for architecture descriptions in systems and software engineering (ISO/IEC/IEEE 42010), "concern" is a primary concept that often manifests itself in relation to the quality attributes or "ilities" that a system is expected to exhibit - qualities such as reliability, security and modifiability. One of the main uses of an architecture description is to serve as a basis for analyzing how well the architecture achieves its quality attributes, and that requires architects to be as precise as possible about what they mean in claiming, for example, that an architecture supports "modifiability." This paper describes a table, generated by NASA's Software Architecture Review Board, which lists fourteen key quality attributes, identifies different important aspects of each quality attribute and considers each aspect in terms of requirements, rationale, evidence, and tactics to achieve the aspect. This quality attribute table is intended to serve as a guide to software architects, software developers, and software architecture reviewers in the domain of mission-critical real-time embedded systems, such as space mission flight software.
Independent verification and validation for Space Shuttle flight software
NASA Technical Reports Server (NTRS)
1992-01-01
The Committee for Review of Oversight Mechanisms for Space Shuttle Software was asked by the National Aeronautics and Space Administration's (NASA) Office of Space Flight to determine the need to continue independent verification and validation (IV&V) for Space Shuttle flight software. The Committee found that the current IV&V process is necessary to maintain NASA's stringent safety and quality requirements for man-rated vehicles. Therefore, the Committee does not support NASA's plan to eliminate funding for the IV&V effort in fiscal year 1993. The Committee believes that the Space Shuttle software development process is not adequate without IV&V and that elimination of IV&V as currently practiced will adversely affect the overall quality and safety of the software, both now and in the future. Furthermore, the Committee was told that no organization within NASA has the expertise or the manpower to replace the current IV&V function in a timely fashion, nor will building this expertise elsewhere necessarily reduce cost. Thus, the Committee does not recommend moving IV&V functions to other organizations within NASA unless the current IV&V is maintained for as long as it takes to build comparable expertise in the replacing organization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
The software processes recorded thermal video and detects the flight tracks of birds and bats that passed through the camera's field of view. The output is a set of images that show complete flight tracks for any detections, with the direction of travel indicated and the thermal image of the animal delineated. A report of the descriptive features of each detected track is also output in the form of a comma-separated value text file.
Automated Transfer Vehicle (ATV) Critical Safety Software Overview
NASA Astrophysics Data System (ADS)
Berthelier, D.
2002-01-01
The European Automated Transfer Vehicle is an unmanned transportation system designed to dock to International Space Station (ISS) and to contribute to the logistic servicing of the ISS. Concisely, ATV control is realized by a nominal flight control function (using computers, softwares, sensors, actuators). In order to cover the extreme situations where this nominal chain can not ensure safe trajectory with respect to ISS, a segregated proximity flight safety function is activated, where unsafe free drift trajectories can be encountered. This function relies notably on a segregated computer, the Monitoring and Safing Unit (MSU) ; in case of major ATV malfunction detection, ATV is then controlled by MSU software. Therefore, this software is critical because a MSU software failure could result in catastrophic consequences. This paper provides an overview both of this software functions and of the software development and validation method which is specific considering its criticality. First part of the paper describes briefly the proximity flight safety chain. Second part deals with the software functions. Indeed, MSU software is in charge of monitoring nominal computers and ATV corridors, using its own navigation algorithms, and, if an abnormal situation is detected, it is in charge of the ATV control during the Collision Avoidance Manoeuvre (CAM) consisting in an attitude controlled braking boost, followed by a Post-CAM manoeuvre : a Sun-pointed ATV attitude control during up to 24 hours on a safe trajectory. Monitoring, navigation and control algorithms principles are presented. Third part of this paper describes the development and validation process : algorithms functional studies , ADA coding and unit validations ; algorithms ADA code integration and validation on a specific non real-time MATLAB/SIMULINK simulator ; global software functional engineering phase, architectural design, unit testing, integration and validation on target computer.
Linda Finch speaks to children during World Flight in New Orleans, La.
NASA Technical Reports Server (NTRS)
1997-01-01
Linda Finch, who re-created the flight of Amelia Earhardt's flight around the world 60 years ago, landed at New Orleans Lakefront Airport to speak to groups of inner-city school children during World Flight 1997. Stennis Space Center's Educator Resource Center played a role in the event by providing SSC-developed Geomap software to aid students in tracking Finch's flight.
Preliminary design of a Primary Loop Pump Assembly (PLPA), using electromagnetic pumps
NASA Technical Reports Server (NTRS)
Moss, T. A.; Matlin, G.; Donelan, L.; Johnson, J. L.; Rowe, I.
1972-01-01
A preliminary design study of flight-type dc conduction-permanent magnetic, ac helical induction, and ac linear induction pumps for circulating 883 K (1130 F) NaK at 9.1 kg/sec (20 lb/sec) is described. Various electromagnetic pump geometrics are evaluated against hydraulic performance, and the effects of multiple windings and numbers of pumps per assembly on overall reliability were determined. The methods used in the electrical-hydraulic, stress, and thermal analysis are discussed, and the high temperature electrical materials selected for the application are listed.
(abstract) Scaling Nominal Solar Cell Impedances for Array Design
NASA Technical Reports Server (NTRS)
Mueller, Robert L; Wallace, Matthew T.; Iles, Peter
1994-01-01
This paper discusses a task the objective of which is to characterize solar cell array AC impedance and develop scaling rules for impedance characterization of large arrays by testing single solar cells and small arrays. This effort is aimed at formulating a methodology for estimating the AC impedance of the Mars Pathfinder (MPF) cruise and lander solar arrays based upon testing single cells and small solar cell arrays and to create a basis for design of a single shunt limiter for MPF power control of flight solar arrays having very different inpedances.
NASA Astrophysics Data System (ADS)
Teague, Kelly K.; Smith, G. Louis; Priestley, Kory; Lukashin, Constantine; Roithmayr, Carlos
2012-09-01
Five CERES scanning radiometers have been flown to date. The Proto-Flight Model flew aboard the Tropical Rainfall Measurement Mission spacecraft in November 1997. Two CERES instruments, Flight Models (FM) 1 and 2, are aboard the Terra spacecraft, which was launched in December 1999. Two more CERES instruments, FM-3 and FM-4, are on the Aqua spacecraft, which was placed in orbit in May 2002. These instruments continue to operate after providing over a decade of Earth Radiation Budget data. The CERES FM-5 instrument, onboard the Suomi-NPP spacecraft, launched in October 2011. The CERES FM- 6 instrument is manifested on the JPPS-1 spacecraft to be launched in December 2016. A successor to these instruments is presently in the definition stage. This paper describes the evolving role of flight software in the operation of these instruments to meet the Science objectives of the mission and also the ability to execute supplemental tasks as they evolve. In order to obtain and maintain high accuracy in the data products from these instruments, a number of operational activities have been developed and implemented since the instruments were originally designed and placed in orbit. These new activities are possible because of the ability to exploit and modify the flight software, which operates the instruments. The CERES Flight Software interface was designed to allow for on-orbit modification, and as such, constantly evolves to meet changing needs. The purpose of this paper is to provide a brief overview of modifications which have been developed to allow dedicated targeting of specific geographic locations as the CERES sensor flies overhead on its host spacecraft. This new observing strategy greatly increases the temporal and angular sampling for specific targets of high scientific interest.
NASA Technical Reports Server (NTRS)
Mahmot, Ron; Koslosky, John T.; Beach, Edward; Schwarz, Barbara
1994-01-01
The Mission Operations Division (MOD) at Goddard Space Flight Center builds Mission Operations Centers which are used by Flight Operations Teams to monitor and control satellites. Reducing system life cycle costs through software reuse has always been a priority of the MOD. The MOD's Transportable Payload Operations Control Center development team established an extensive library of 14 subsystems with over 100,000 delivered source instructions of reusable, generic software components. Nine TPOCC-based control centers to date support 11 satellites and achieved an average software reuse level of more than 75 percent. This paper shares experiences of how the TPOCC building blocks were developed and how building block developer's, mission development teams, and users are all part of the process.
Autonomous Flight Safety System
NASA Technical Reports Server (NTRS)
Simpson, James
2010-01-01
The Autonomous Flight Safety System (AFSS) is an independent self-contained subsystem mounted onboard a launch vehicle. AFSS has been developed by and is owned by the US Government. Autonomously makes flight termination/destruct decisions using configurable software-based rules implemented on redundant flight processors using data from redundant GPS/IMU navigation sensors. AFSS implements rules determined by the appropriate Range Safety officials.
Criteria for Operational Approval of Auto Guidance Systems
DOT National Transportation Integrated Search
1997-03-18
This advisory circular (AC) states an acceptable means, but not the only means, : for obtaining operational approval of the initial engagement or use of an Auto : Flight Guidance System (AFGS) under Title 14 of the Code of Federal Regulations : (14 C...
1974-11-22
X-14B NASA-704: A Bell single-place, open cockpit, twin-engine, jet-lift VTOL aircraft in flight over Sunnyvale golf course. The X-14 was used by NASA Ames Research Center to advance state-of-the-art jet-powered VTOL aircraft.
77 FR 60005 - Schedule of Charges Outside the United States
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-01
... Flight Standards Aviation Safety Inspectors outside the United States. The advisory circular has been... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration [AC 187-1F] Schedule of Charges Outside the United States AGENCY: Federal Aviation Administration (FAA), DOT. [[Page 60006
NASA Technical Reports Server (NTRS)
Markos, H.
1978-01-01
Status of the computer programs dealing with space shuttle orbiter avionics is reported. Specific topics covered include: delivery status; SSW software; SM software; DL software; GNC software; level 3/4 testing; level 5 testing; performance analysis, SDL readiness for entry first article configuration inspection; and verification assessment.
NASA Technical Reports Server (NTRS)
Barszcz, Eric; Mosher, Marianne; Huff, Edward M.
2004-01-01
Healthwatch-2 (HW-2) is a research tool designed to facilitate the development and testing of in-flight health monitoring algorithms. HW-2 software is written in C/C++ and executes on an x86-based computer running the Linux operating system. The executive module has interfaces for collecting various signal data, such as vibration, torque, tachometer, and GPS. It is designed to perform in-flight time or frequency averaging based on specifications defined in a user-supplied configuration file. Averaged data are then passed to a user-supplied algorithm written as a Matlab function. This allows researchers a convenient method for testing in-flight algorithms. In addition to its in-flight capabilities, HW-2 software is also capable of reading archived flight data and processing it as if collected in-flight. This allows algorithms to be developed and tested in the laboratory before being flown. Currently HW-2 has passed its checkout phase and is collecting data on a Bell OH-58C helicopter operated by the U.S. Army at NASA Ames Research Center.
NASA Technical Reports Server (NTRS)
Volmer, Paul; Sullivan, Pam (Technical Monitor)
2003-01-01
The Advanced Camera for Surveys ACS was launched aboard the Space Shuttle Columbia just before dawn on March 1, 2002. After successfully docking with the Hubble Space Telescope (HST), several components were replaced. One of the components was the Advanced Camera for Surveys built by Ball Aerospace & Technologies Corp. (BATC) in Boulder, Colorado. Over the life of the HST contract at BATC hundreds of employees had the pleasure of working on the concept, design, fabrication, assembly and test of ACS. Those employees thank NASA - Goddard Space Flight Center and the science team at Johns Hopkins University (JHU) for the opportunity to participate in building a great science instrument for HST. After installation in HST a mini-functional test was performed and later a complete functional test. ACS performed well and has continued performing well since then. One of the greatest rewards for the BATC employees is a satisfied science team. Following is an excerpt from the JHU final report, "The foremost promise of ACS was to increase Hubble's capability for surveys in the near infrared by a factor of 10. That promise was kept. "
Pulsed Plasma Thrusters for Small Spacecraft Attitude Control
NASA Technical Reports Server (NTRS)
McGuire, Melissa L.; Myers, Roger M.
1996-01-01
Pulsed plasma thrusters (PPT's) are a new option for attitude control of a small spacecraft and may result in reduced attitude control system (ACS) mass and cost. The primary purpose of an ACS is to orient the spacecraft configuration to the desired accuracy in inertial space. The ACS functions for which the PPT system will be analyzed include disturbance torque compensation and slewing maneuvers such as sun acquisition for which the small impulse bit and high specific impulse of the PPT offers unique advantages. The NASA Lewis Reserach Center (LeRC) currently has a contracted flight PPT system development program in place with Olin Aerospace and a delivery date of October 1997. The PPT system in this study are based upon the work being done under the NASA LeRC program. Analysis of the use of PPT's for ACS showed that the replacement of the standard momentum wheels and torque rods systems with a PTT system to perform the altitude control maneuvers on a small low Earth orbiting spacecraft reduced the ACS mass by 50 to 75 percent with no increase in required power level over comparable wheel-based systems.
Automated Transfer Vehicle Proximity Flight Safety Overview
NASA Astrophysics Data System (ADS)
Cornier, Dominique; Berthelier, David; Requiston, Helene; Zekri, Eric; Chase, Richard
2005-12-01
The European Automated Transfer Vehicle (ATV) is an unmanned transportation spacecraft designed to contribute to the logistic servicing of the ISS. The ATV will be launched by ARIANE 5 and, after phasing and rendezvous maneuvers, it autonomously docks to the International Space Station (ISS).The ATV control is nominally handled by the Guidance, Navigation and Control (GNC) function using computers, software, sensors and actuators. During rendezvous operations, in order to cover the extreme situations where the GNC function fails to ensure a safe trajectory with respect to the ISS, a segregated Proximity Flight Safety (PFS) function is activated : this function will initiate a collision avoidance maneuver which will place the ATV on a trajectory ensuring safety with respect to the ISS. The PFS function relies on segregated computers, the Monitoring and Safing Units (MSUs) running specific software, on four dedicated thrusters, on dedicated batteries and on specific interfaces with ATV gyrometers.The PFS function being the ultimate protection to ensure ISS safety in case of ATV malfunction, specific rules have been applied to its implementation, in particular for the development of the MSU software, which is critical since any failure of this software may result in catastrophic consequences.This paper provides an overview of the ATV Proximity Flight Safety function. After a short description of the overall ATV avionics architecture and its rationale, the second part of the paper presents more details on the PFS function both in terms of hardware and software implementation. The third part of the paper is dedicated to the MSU software validation method that is specific considering its criticality. The last part of the paper provides information on the different operations related to the use of the PFS function during an ATV flight.
Development of the functional simulator for the Galileo attitude and articulation control system
NASA Technical Reports Server (NTRS)
Namiri, M. K.
1983-01-01
A simulation program for verifying and checking the performance of the Galileo Spacecraft's Attitude and Articulation Control Subsystem's (AACS) flight software is discussed. The program, which is called Functional Simulator (FUNSIM), provides a simple method of interfacing user-supplied mathematical models coded in FORTRAN which describes spacecraft dynamics, sensors, and actuators; this is done with the AACS flight software, coded in HAL/S (High-level Advanced Language/Shuttle). It is thus able to simulate the AACS flight software accurately to the HAL/S statement level in the environment of a mainframe computer system. FUNSIM also has a command and data subsystem (CDS) simulator. It is noted that the input/output data and timing are simulated with the same precision as the flight microprocessor. FUNSIM uses a variable stepsize numerical integration algorithm complete with individual error bound control on the state variable to solve the equations of motion. The program has been designed to provide both line printer and matrix dot plotting of the variables requested in the run section and to provide error diagnostics.
1976-11-01
system. b. Read different program configurations to reconfigure the software during flight. c. Write Digital Integrated Test System (DITS) results...associated witn > inor C):l.e Event must be Unlatched. The sole difference between a Latched ana an lnratcrec Condition is that upon the Scheduling...Table. Furthermore, the block of pointers for one Minor Cycle may be wholly contained witnir the Diock of ocinters for a different Minor Cycle. For
Dynamic assertion testing of flight control software
NASA Technical Reports Server (NTRS)
Andrews, D. M.; Mahmood, A.; Mccluskey, E. J.
1985-01-01
An experiment in using assertions to dynamically test fault tolerant flight software is described. The experiment showed that 87% of typical errors introduced into the program would be detected by assertions. Detailed analysis of the test data showed that the number of assertions needed to detect those errors could be reduced to a minimal set. The analysis also revealed that the most effective assertions tested program parameters that provided greater indirect (collateral) testing of other parameters.
Fault Tolerant Hardware/Software Architecture for Flight Critical Function
1985-09-01
Applications Studies Programme. The results of AGARD work are reported to the member nations and the NATO Authorities through the AGARD series of...systems, and is being advocated as a defense against design deficiencies which can plague software. - -- -- z--mm-L ___ K A critical application area for...day of the lecture series concludes with part I of a paper on the ;use of the Ada programming language In flight critical applications . Ada has been
Software for an Experimental Air-Ground Data Link : Volume 2. System Operation Manual
DOT National Transportation Integrated Search
1975-10-01
This report documents the complete software system developed for the Experimental Data Link System which was implemented for flight test during the Air-Ground Data Link Development Program (FAA-TSC- Project Number FA-13). The software development is ...
Gravity Probe B data system description
NASA Astrophysics Data System (ADS)
Bennett, Norman R.
2015-11-01
The Gravity Probe B data system, developed, integrated, and tested by Lockheed Missiles & Space Company, and later Lockheed Martin Corporation, included flight and ground command, control, and communications software. The development was greatly facilitated, conceptually and by the transfer of key personnel, through Lockheed’s earlier flight and ground test software development for the Hubble Space Telescope (HST). Key design challenges included the tight mission timeline (17 months, 9 days of on-orbit operation), the need to tune the system once on-orbit, and limited 2 Kbps real-time data rates and ground asset availability. The result was a completely integrated space vehicle and Stanford mission operations center, which successfully collected and archived 97% of the ‘guide star valid’ data to support the science analysis. Lessons learned and incorporated from the HST flight software development and on-orbit support experience, and Lockheed’s independent research and development effort, will be discussed.
SEL's Software Process-Improvement Program
NASA Technical Reports Server (NTRS)
Basili, Victor; Zelkowitz, Marvin; McGarry, Frank; Page, Jerry; Waligora, Sharon; Pajerski, Rose
1995-01-01
The goals and operations of the Software Engineering Laboratory (SEL) is reviewed. For nearly 20 years the SEL has worked to understand, assess, and improve software and the development process within the production environment of the Flight Dynamics Division (FDD) of NASA's Goddard Space Flight Center. The SEL was established in 1976 with the goals of reducing: (1) the defect rate of delivered software, (2) the cost of software to support flight projects, and (3) the average time to produce mission-support software. After studying over 125 projects of FDD, the results have guided the standards, management practices, technologies, and the training within the division. The results of the studies have been a 75 percent reduction in defects, a 50 percent reduction in cost, and a 25 percent reduction in development time. Over time the goals of SEL have been clarified. The goals are now stated as: (1) Understand baseline processes and product characteristics, (2) Assess improvements that have been incorporated into the development projects, (3) Package and infuse improvements into the standard SEL process. The SEL improvement goal is to demonstrate continual improvement of the software process by carrying out analysis, measurement and feedback to projects with in the FDD environment. The SEL supports the understanding of the process by study of several processes including, the effort distribution, and error detection rates. The SEL assesses and refines the processes. Once the assessment and refinement of a process is completed, the SEL packages the process by capturing the process in standards, tools and training.
2017-03-21
for public release; distribution is unlimited 13. SUPPLEMENTARY NOTES None 14. ABSTRACT ESTCP project EW-201409 aimed at demonstrating the benefits ...of innovative software technology for building HV AC systems. These benefits included reduced system energy use and cost as wetl as improved...Control Approach March 2017 This document has been cleared for public release; Distribution Statement A
1983-01-01
fonctions gfinbrales et lea uti- litaires fournis en particulier grice 41 UNIX, sont intfigrfs aelon divers points de vue: - par leur accas 41 travers le...Are They Really A Problem? Proceedings, 2nd International Conference On Software Engineering, pp 91-68. Long acCA : IEEE Computer Society. Britton...CD The Hague. Nc KLEINSCIIMIDT, M. Dr Fa. LITEF. Poatfach 774. 7800 Freiburg i. Br., Ge KLEMM, R. Dr FGAN- FFM , D 5 307 Watchberg-Werthhoven. Ge KLENK
A-DaGO-Fun: an adaptable Gene Ontology semantic similarity-based functional analysis tool.
Mazandu, Gaston K; Chimusa, Emile R; Mbiyavanga, Mamana; Mulder, Nicola J
2016-02-01
Gene Ontology (GO) semantic similarity measures are being used for biological knowledge discovery based on GO annotations by integrating biological information contained in the GO structure into data analyses. To empower users to quickly compute, manipulate and explore these measures, we introduce A-DaGO-Fun (ADaptable Gene Ontology semantic similarity-based Functional analysis). It is a portable software package integrating all known GO information content-based semantic similarity measures and relevant biological applications associated with these measures. A-DaGO-Fun has the advantage not only of handling datasets from the current high-throughput genome-wide applications, but also allowing users to choose the most relevant semantic similarity approach for their biological applications and to adapt a given module to their needs. A-DaGO-Fun is freely available to the research community at http://web.cbio.uct.ac.za/ITGOM/adagofun. It is implemented in Linux using Python under free software (GNU General Public Licence). gmazandu@cbio.uct.ac.za or Nicola.Mulder@uct.ac.za Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Gülci, S.; Akgül, M.; Akay, A. E.; Taş, İ.
2017-11-01
This short paper aims to present pros and cons of current usage of ready-to-use drone images in the field of forestry also considering flight planning and photogrammetric processes. The capabilities of DJI Phantom 4, which is the low cost drone producing by Dji company, was evaluated through sample flights in Cinarpinar Forest Enterprise Chief in Kahramanmaras in Turkey. In addition, the photogrammetric workflow of obtained images and automated flight were presented with respect to capabilities of available software. The flight plans were created by using Pix4DCapture software with android based cell phone. The results indicated that high-resolution imagery obtained by drone can provide significant data for assessment of forest resources, forest roads, and stream channels.
Diverter AI based decision aid, phases 1 and 2
NASA Technical Reports Server (NTRS)
Sexton, George A.; Bayles, Scott J.; Patterson, Robert W.; Schulke, Duane A.; Williams, Deborah C.
1989-01-01
It was determined that a system to incorporate artificial intelligence (AI) into airborne flight management computers is feasible. The AI functions that would be most useful to the pilot are to perform situational assessment, evaluate outside influences on the contemplated rerouting, perform flight planning/replanning, and perform maneuver planning. A study of the software architecture and software tools capable of demonstrating Diverter was also made. A skeletal planner known as the Knowledge Acquisition Development Tool (KADET), which is a combination script-based and rule-based system, was used to implement the system. A prototype system was developed which demonstrates advanced in-flight planning/replanning capabilities.
Wake Cycle Robustness of the Mars Science Laboratory Flight Software
NASA Technical Reports Server (NTRS)
Whitehill, Robert
2011-01-01
The Mars Science Laboratory (MSL) is a spacecraft being developed by the Jet Propulsion Laboratory (JPL) for the purpose of in-situ exploration on the surface of Mars. The objective of MSL is to explore and quantitatively assess a local region on the Martian surface as a habitat for microbial life, past or present. This objective will be accomplished through the assessment of the biological potential of at least one target environment, the characterization of the geology and geochemistry of the landing region, an investigation of the planetary process relevant to past habitability, and a characterization of surface radiation. For this purpose, MSL incorporates a total of ten scientific instruments for which functions are to include, among others, atmospheric and descent imaging, chemical composition analysis, and radiation measurement. The Flight Software (FSW) system is responsible for all mission phases, including launch, cruise, entry-descent-landing, and surface operation of the rover. Because of the essential nature of flight software to project success, each of the software modules is undergoing extensive testing to identify and correct errors.
14 CFR 1214.205 - Revisit and/or retrieval services.
Code of Federal Regulations, 2012 CFR
2012-01-01
... a scheduled Shuttle flight, he will only pay for added mission planning, unique hardware or software... Section 1214.205 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT... priced on the basis of estimated costs. If a special dedicated Shuttle flight is required, the full...
14 CFR 1214.205 - Revisit and/or retrieval services.
Code of Federal Regulations, 2011 CFR
2011-01-01
... a scheduled Shuttle flight, he will only pay for added mission planning, unique hardware or software... Section 1214.205 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT... priced on the basis of estimated costs. If a special dedicated Shuttle flight is required, the full...
14 CFR 1214.205 - Revisit and/or retrieval services.
Code of Federal Regulations, 2013 CFR
2013-01-01
... a scheduled Shuttle flight, he will only pay for added mission planning, unique hardware or software... Section 1214.205 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT... priced on the basis of estimated costs. If a special dedicated Shuttle flight is required, the full...
14 CFR § 1214.603 - Official Flight Kit (OFK).
Code of Federal Regulations, 2014 CFR
2014-01-01
..., other Federal agencies, researchers, aerospace contractors, and counterpart institutions of friendly.... The courtesy is also extended to other organizations outside the aerospace community, such as state... Director, Code AC, Johnson Space Center, Houston, TX 77058. (3) All others (aerospace companies, state and...
1965-12-15
6 degree V/STOL Control Systems Research All Axes, Simulator (simulator pilot: Richard K Greif) at the Ames Research Center, Moffett Field, CA Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig. 113
Study of the Dependency on Magnetic Field and Bias Voltage of an AC-Biased TES Microcalorimeter
NASA Technical Reports Server (NTRS)
Gottardi, L.; Bruijn, M.; denHartog, R.; Hoevers, H.; deKorte, P.; vanderKuur, J.; Linderman, M.; Adams, J.; Bailey, C.; Bandler, S.;
2012-01-01
At SRON we are studying the performance of a Goddard Space Flight Center single pixel TES microcalorimeter operated in an AC bias configuration. For x-ray photons at 6 keV the pixel shows an x-ray energy resolution Delta E(sub FWHM) = 3.7 eV, which is about a factor 2 worse than the energy resolution observed in an identical DC-biased pixel. In order to better understand the reasons for this discrepancy we characterized the detector as a function of temperature, bias working point and applied perpendicular magnetic field. A strong periodic dependency of the detector noise on the TES AC bias voltage is measured. We discuss the results in the framework of the recently observed weak-link behaviour of a TES microcalorimeter.
Re-visiting the Amplifier Gains of the HST/ACS Wide Field Channel CCDs
NASA Astrophysics Data System (ADS)
Desjardins, Tyler D.; Grogin, Norman A.; ACS Team
2018-06-01
For the first time since HST Servicing Mission 4 (SM4) in May 2009, we present an analysis of the amplifier gains of the Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) CCDs. Using a series of in-flight flat-field exposures taken in November 2017 with a tungsten calibration lamp, we utilize the photon transfer method to estimate the gains of the WFC1 and WFC2 CCD amplifiers. We find evidence that the gains of the four readout amplifiers have changed by a small, but statistically significant, 1–2% since SM4. We further present a study of historical ACS/WFC observations of the globular cluster NGC 104 (47 Tuc) in an attempt to estimate the time dependence of the gains.
Sekine, Tetsuro; Burgos, Ninon; Warnock, Geoffrey; Huellner, Martin; Buck, Alfred; Ter Voert, Edwin E G W; Cardoso, M Jorge; Hutton, Brian F; Ourselin, Sebastien; Veit-Haibach, Patrick; Delso, Gaspar
2016-08-01
In this work, we assessed the feasibility of attenuation correction (AC) based on a multi-atlas-based method (m-Atlas) by comparing it with a clinical AC method (single-atlas-based method [s-Atlas]), on a time-of-flight (TOF) PET/MRI scanner. We enrolled 15 patients. The median patient age was 59 y (age range, 31-80). All patients underwent clinically indicated whole-body (18)F-FDG PET/CT for staging, restaging, or follow-up of malignant disease. All patients volunteered for an additional PET/MRI scan of the head (no additional tracer being injected). For each patient, 3 AC maps were generated. Both s-Atlas and m-Atlas AC maps were generated from the same patient-specific LAVA-Flex T1-weighted images being acquired by default on the PET/MRI scanner during the first 18 s of the PET scan. An s-Atlas AC map was extracted by the PET/MRI scanner, and an m-Atlas AC map was created using a Web service tool that automatically generates m-Atlas pseudo-CT images. For comparison, the AC map generated by PET/CT was registered and used as a gold standard. PET images were reconstructed from raw data on the TOF PET/MRI scanner using each AC map. All PET images were normalized to the SPM5 PET template, and (18)F-FDG accumulation was quantified in 67 volumes of interest (VOIs; automated anatomic labeling atlas). Relative (%diff) and absolute differences (|%diff|) between images based on each atlas AC and CT-AC were calculated. (18)F-FDG uptake in all VOIs and generalized merged VOIs were compared using the paired t test and Bland-Altman test. The range of error on m-Atlas in all 1,005 VOIs was -4.99% to 4.09%. The |%diff| on the m-Atlas was improved by about 20% compared with s-Atlas (s-Atlas vs. m-Atlas: 1.49% ± 1.06% vs. 1.21% ± 0.89%, P < 0.01). In generalized VOIs, %diff on m-Atlas in the temporal lobe and cerebellum was significantly smaller (s-Atlas vs. m-Atlas: temporal lobe, 1.49% ± 1.37% vs. -0.37% ± 1.41%, P < 0.01; cerebellum, 1.55% ± 1.97% vs. -1.15% ± 1.72%, P < 0.01). The errors introduced using either s-Atlas or m-Atlas did not exceed 5% in any brain region investigated. When compared with the clinical s-Atlas, m-Atlas is more accurate, especially in regions close to the skull base. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Three-phase Four-leg Inverter LabVIEW FPGA Control Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
In the area of power electronics control, Field Programmable Gate Arrays (FPGAs) have the capability to outperform their Digital Signal Processor (DSP) counterparts due to the FPGA’s ability to implement true parallel processing and therefore facilitate higher switching frequencies, higher control bandwidth, and/or enhanced functionality. National Instruments (NI) has developed two platforms, Compact RIO (cRIO) and Single Board RIO (sbRIO), which combine a real-time processor with an FPGA. The FPGA can be programmed with a subset of the well-known LabVIEW graphical programming language. The use of cRIO and sbRIO for power electronics control has developed over the last few yearsmore » to include control of three-phase inverters. Most three-phase inverter topologies include three switching legs. The addition of a fourth-leg to natively generate the neutral connection allows the inverter to serve single-phase loads in a microgrid or stand-alone power system and to balance the three-phase voltages in the presence of significant load imbalance. However, the control of a four-leg inverter is much more complex. In particular, instead of standard two-dimensional space vector modulation (SVM), the inverter requires three-dimensional space vector modulation (3D-SVM). The candidate software implements complete control algorithms in LabVIEW FPGA for a three-phase four-leg inverter. The software includes feedback control loops, three-dimensional space vector modulation gate-drive algorithms, advanced alarm handling capabilities, contactor control, power measurements, and debugging and tuning tools. The feedback control loops allow inverter operation in AC voltage control, AC current control, or DC bus voltage control modes based on external mode selection by a user or supervisory controller. The software includes the ability to synchronize its AC output to the grid or other voltage-source before connection. The software also includes provisions to allow inverter operation in parallel with other voltage regulating devices on the AC or DC buses. This flexibility allows the Inverter to operate as a stand-alone voltage source, connected to the grid, or in parallel with other controllable voltage sources as part of a microgrid or remote power system. In addition, as the inverter is expected to operate under severe unbalanced conditions, the software includes algorithms to accurately compute real and reactive power for each phase based on definitions provided in the IEEE Standard 1459: IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions. Finally, the software includes code to output analog signals for debugging and for tuning of control loops. The software fits on the Xilinx Virtex V LX110 FPGA embedded in the NI cRIO-9118 FPGA chassis, and with a 40 MHz base clock, supports a modulation update rate of 40 MHz, user-settable switching frequencies and synchronized control loop update rates of tens of kHz, and reference waveform generation, including Phase Lock Loop (PLL), update rate of 100 kHz.« less
Spacelab experiment computer study. Volume 1: Executive summary (presentation)
NASA Technical Reports Server (NTRS)
Lewis, J. L.; Hodges, B. C.; Christy, J. O.
1976-01-01
A quantitative cost for various Spacelab flight hardware configurations is provided along with varied software development options. A cost analysis of Spacelab computer hardware and software is presented. The cost study is discussed based on utilization of a central experiment computer with optional auxillary equipment. Groundrules and assumptions used in deriving the costing methods for all options in the Spacelab experiment study are presented. The groundrules and assumptions, are analysed and the options along with their cost considerations, are discussed. It is concluded that Spacelab program cost for software development and maintenance is independent of experimental hardware and software options, that distributed standard computer concept simplifies software integration without a significant increase in cost, and that decisions on flight computer hardware configurations should not be made until payload selection for a given mission and a detailed analysis of the mission requirements are completed.
An Autonomous Flight Safety System
2008-11-01
are taken. AFSS can take vehicle navigation data from redundant onboard sensors and make flight termination decisions using software-based rules...implemented on redundant flight processors. By basing these decisions on actual Instantaneous Impact Predictions and by providing for an arbitrary...number of mission rules, it is the contention of the AFSS development team that the decision making process used by Missile Flight Control Officers
SEXTANT X-Ray Pulsar Navigation Demonstration: Flight System and Test Results
NASA Technical Reports Server (NTRS)
Winternitz, Luke; Mitchell, Jason W.; Hassouneh, Munther A.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven;
2016-01-01
The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper gives an overview of the SEXTANT system architecture and describes progress prior to environmental testing of the NICER flight instrument. It provides descriptions and development status of the SEXTANT flight software and ground system, as well as detailed description and results from the flight software functional and performance testing within the high-fidelity Goddard Space Flight Center (GSFC) X-ray Navigation Laboratory Testbed (GXLT) software and hardware simulation environment. Hardware-in-the-loop simulation results are presented, using the engineering model of the NICER timing electronics and the GXLT pulsar simulator-the GXLT precisely controls NASA GSFC's unique Modulated X-ray Source to produce X-rays that make the NICER detector electronics appear as if they were aboard the ISS viewing a sequence of millisecond pulsars
SEXTANT X-Ray Pulsar Navigation Demonstration: Flight System and Test Results
NASA Technical Reports Server (NTRS)
Winternitz, Luke M. B.; Mitchell, Jason W.; Hassouneh, Munther A.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven;
2016-01-01
The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper gives an overview of the SEXTANT system architecture and describes progress prior to environmental testing of the NICER flight instrument. It provides descriptions and development status of the SEXTANT flight software and ground system, as well as detailed description and results from the flight software functional and performance testing within the highfidelity Goddard Space Flight Center (GSFC) X-ray Navigation Laboratory Testbed (GXLT) software and hardware simulation environment. Hardware-in-the-loop simulation results are presented, using the engineering model of the NICER timing electronics and the GXLT pulsar simulator-the GXLT precisely controls NASA GSFC's unique Modulated X-ray Source to produce X-rays that make the NICER detector electronics appear as if they were aboard the ISS viewing a sequence of millisecond pulsars.
Lessons learned in transitioning to an open systems environment
NASA Technical Reports Server (NTRS)
Boland, Dillard E.; Green, David S.; Steger, Warren L.
1994-01-01
Software development organizations, both commercial and governmental, are undergoing rapid change spurred by developments in the computing industry. To stay competitive, these organizations must adopt new technologies, skills, and practices quickly. Yet even for an organization with a well-developed set of software engineering models and processes, transitioning to a new technology can be expensive and risky. Current industry trends are leading away from traditional mainframe environments and toward the workstation-based, open systems world. This paper presents the experiences of software engineers on three recent projects that pioneered open systems development for NASA's Flight Dynamics Division of the Goddard Space Flight Center (GSFC).
Software modifications to the Demonstration Advanced Avionics Systems (DAAS)
NASA Technical Reports Server (NTRS)
Nedell, B. F.; Hardy, G. H.
1984-01-01
Critical information required for the design of integrated avionics suitable for generation aviation is applied towards software modifications for the Demonstration Advanced Avionics System (DAAS). The program emphasizes the use of data busing, distributed microprocessors, shared electronic displays and data entry devices, and improved functional capability. A demonstration advanced avionics system (DAAS) is designed, built, and flight tested in a Cessna 402, twin engine, general aviation aircraft. Software modifications are made to DAAS at Ames concurrent with the flight test program. The changes are the result of the experience obtained with the system at Ames, and the comments of the pilots who evaluated the system.
NASA Data Acquisitions System (NDAS) Software Architecture
NASA Technical Reports Server (NTRS)
Davis, Dawn; Duncan, Michael; Franzl, Richard; Holladay, Wendy; Marshall, Peggi; Morris, Jon; Turowski, Mark
2012-01-01
The NDAS Software Project is for the development of common low speed data acquisition system software to support NASA's rocket propulsion testing facilities at John C. Stennis Space Center (SSC), White Sands Test Facility (WSTF), Plum Brook Station (PBS), and Marshall Space Flight Center (MSFC).
Software for an experimental air-ground data link : volume 1. functional description and flowcharts.
DOT National Transportation Integrated Search
1975-10-01
This report documents the complete software system developed for the Experimental Data Link System which was implementd for flight test during the Air-Ground Data Link Development Program. The software development is presented in three volumes as fol...
Earth Observing System/Advanced Microwave Sounding Unit-A (EOS/AMSU-A) software management plan
NASA Technical Reports Server (NTRS)
Schwantje, Robert
1994-01-01
This document defines the responsibilites for the management of the like-cycle development of the flight software installed in the AMSU-A instruments, and the ground support software used in the test and integration of the AMSU-A instruments.
A Case Study in Flight Computer Software Redesign
NASA Astrophysics Data System (ADS)
Shimoni, R.; Ben-Zur, Y.
2004-06-01
Historically many real-time systems were developed using technologies that are now obsolete. There is a need for upgrading these systems. A good development process is essential to achieve a well-designed software product. We, at MLM, a subsidary of Israel Aircraft Industries, faced a similar situation in the Flight Mission Computer (Main Airborne Computer-MAC) of the SHAVIT launcher. It was necessary to upgrade the computer hardware and we decided to update the software as well. During the last two years, we have designed and implemented and new version of the MAC software, to be run on a new and stronger target platform. We undertook to create a new version of the MAC program using modern software development techniques. The process included Object-Oriented design using a CASE tool suitable for embedded real-time systems. We have partially implemented the ROPES development process. In this article we present the difficulties and challenges we faced in the software development process.
MD-11 PCA - Research flight team photo
NASA Technical Reports Server (NTRS)
1995-01-01
On Aug. 30, 1995, a the McDonnell Douglas MD-11 transport aircraft landed equipped with a computer-assisted engine control system that has the potential to increase flight safety. In landings at NASA Dryden Flight Research Center, Edwards, California, on August 29 and 30, the aircraft demonstrated software used in the aircraft's flight control computer that essentially landed the MD-11 without a need for the pilot to manipulate the flight controls significantly. In partnership with McDonnell Douglas Aerospace (MDA), with Pratt & Whitney and Honeywell helping to design the software, NASA developed this propulsion-controlled aircraft (PCA) system following a series of incidents in which hydraulic failures resulted in the loss of flight controls. This new system enables a pilot to operate and land the aircraft safely when its normal, hydraulically-activated control surfaces are disabled. This August 29, 1995, photo shows the MD-11 team. Back row, left to right: Tim Dingen, MDA pilot; John Miller, MD-11 Chief pilot (MDA); Wayne Anselmo, MD-11 Flight Test Engineer (MDA); Gordon Fullerton, PCA Project pilot; Bill Burcham, PCA Chief Engineer; Rudey Duran, PCA Controls Engineer (MDA); John Feather, PCA Controls Engineer (MDA); Daryl Townsend, Crew Chief; Henry Hernandez, aircraft mechanic; Bob Baron, PCA Project Manager; Don Hermann, aircraft mechanic; Jerry Cousins, aircraft mechanic; Eric Petersen, PCA Manager (Honeywell); Trindel Maine, PCA Data Engineer; Jeff Kahler, PCA Software Engineer (Honeywell); Steve Goldthorpe, PCA Controls Engineer (MDA). Front row, left to right: Teresa Hass, Senior Project Management Analyst; Hollie Allingham (Aguilera), Senior Project Management Analyst; Taher Zeglum, PCA Data Engineer (MDA); Drew Pappas, PCA Project Manager (MDA); John Burken, PCA Control Engineer.
NASA Technical Reports Server (NTRS)
Wennersten, Miriam Dvorak; Banes, Anthony Vince; Boegner, Gregory J.; Dougherty, Lamar; Edwards, Bernard L.; Roman, Joseph; Bauer, Frank H. (Technical Monitor)
2001-01-01
NASA Goddard Space Flight Center has built an open architecture, 24 channel space flight GPS receiver. The CompactPCI PiVoT GPS receiver card is based on the Mitel/GEC Plessey Builder-2 board. PiVoT uses two Plessey 2021 correlators to allow tracking of up to 24 separate GPS SV's on unique channels. Its four front ends can support four independent antennas, making it a useful card for hosting GPS attitude determination algorithms. It has been built using space quality, radiation tolerant parts. The PiVoT card will track a weaker signal than the original Builder 2 board. It also hosts an improved clock oscillator. The PiVoT software is based on the original Plessey Builder 2 software ported to the Linux operating system. The software is POSIX complaint and can easily be converted to other POSIX operating systems. The software is open source to anyone with a licensing agreement with Plessey. Additional tasks can be added to the software to support GPS science experiments or attitude determination algorithms. The next generation PiVoT receiver will be a single radiation hardened CompactPCI card containing the microprocessor and the GPS receiver optimized for use above the GPS constellation. PiVoT was flown successfully on a balloon in July, 2001, for its first non-simulated flight.
NASA Technical Reports Server (NTRS)
Shell, Elaine M.; Lue, Yvonne; Chu, Martha I.
1999-01-01
Flight software (FSW) is a mission critical element of spacecraft functionality and performance. When ground operations personnel interface to a spacecraft, they are dealing almost entirely with onboard software. This software, even more than ground/flight communications systems, is expected to perform perfectly at all times during all phases of on-orbit mission life. Due to the fact that FSW can be reconfigured and reprogrammed to accommodate new spacecraft conditions, the on-orbit FSW maintenance team is usually significantly responsible for the long-term success of a science mission. Failure of FSW can result in very expensive operations work-around costs and lost science opportunities. There are three basic approaches to staffing on-orbit software maintenance, namely: (1) using the original developers, (2) using mission operations personnel, or (3) assembling a Center of Excellence for multi-spacecraft on-orbit FSW support. This paper explains a National Aeronautics and Space Administration, Goddard Space Flight Center (NASA/GSFC) experience related to the roles of on-orbit FSW maintenance personnel. It identifies the advantages and disadvantages of each of the three approaches to staffing the FSW roles, and demonstrates how a cost efficient on-orbit FSW Maintenance Center of Excellence can be established and maintained with significant return on the investment.
Health management and controls for Earth-to-orbit propulsion systems
NASA Astrophysics Data System (ADS)
Bickford, R. L.
1995-03-01
Avionics and health management technologies increase the safety and reliability while decreasing the overall cost for Earth-to-orbit (ETO) propulsion systems. New ETO propulsion systems will depend on highly reliable fault tolerant flight avionics, advanced sensing systems and artificial intelligence aided software to ensure critical control, safety and maintenance requirements are met in a cost effective manner. Propulsion avionics consist of the engine controller, actuators, sensors, software and ground support elements. In addition to control and safety functions, these elements perform system monitoring for health management. Health management is enhanced by advanced sensing systems and algorithms which provide automated fault detection and enable adaptive control and/or maintenance approaches. Aerojet is developing advanced fault tolerant rocket engine controllers which provide very high levels of reliability. Smart sensors and software systems which significantly enhance fault coverage and enable automated operations are also under development. Smart sensing systems, such as flight capable plume spectrometers, have reached maturity in ground-based applications and are suitable for bridging to flight. Software to detect failed sensors has reached similar maturity. This paper will discuss fault detection and isolation for advanced rocket engine controllers as well as examples of advanced sensing systems and software which significantly improve component failure detection for engine system safety and health management.
An Evaluation of an Ada Implementation of the Rete Algorithm for Embedded Flight Processors
1990-12-01
computers was desired. The VAX VMS operating system has many built-in methods for determining program performance (including VAX PCA), but these methods... overviev , of the target environment-- the MIL-STD-1750A VHSIC Avionic Modular Processor ( VA.IP, running under the Ada Avionics Real-Time Software (AARTS... computers . Mil-STD-1750A, the Air Force’s standard flight computer architecture, however, places severe constraints on applications software processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenney, J.L.
SARS is a data acquisition system designed to gather and process radar data from aircraft flights. A database of flight trajectories has been developed for Albuquerque, NM, and Amarillo, TX. The data is used for safety analysis and risk assessment reports. To support this database effort, Sandia developed a collection of hardware and software tools to collect and post process the aircraft radar data. This document describes the data reduction tools which comprise the SARS, and maintenance procedures for the hardware and software system.
Impact of new computing systems on computational mechanics and flight-vehicle structures technology
NASA Technical Reports Server (NTRS)
Noor, A. K.; Storaasli, O. O.; Fulton, R. E.
1984-01-01
Advances in computer technology which may have an impact on computational mechanics and flight vehicle structures technology were reviewed. The characteristics of supersystems, highly parallel systems, and small systems are summarized. The interrelations of numerical algorithms and software with parallel architectures are discussed. A scenario for future hardware/software environment and engineering analysis systems is presented. Research areas with potential for improving the effectiveness of analysis methods in the new environment are identified.
2001-11-26
KENNEDY SPACE CENTER, Fla. -- A piece of equipment for Hubble Space Telescope Servicing mission is moved inside Hangar AE, Cape Canaveral. In the canister is the Advanced Camera for Surveys (ACS). The ACS will increase the discovery efficiency of the HST by a factor of ten. It consists of three electronic cameras and a complement of filters and dispersers that detect light from the ultraviolet to the near infrared (1200 - 10,000 angstroms). The ACS was built through a collaborative effort between Johns Hopkins University, Goddard Space Flight Center, Ball Aerospace Corporation and Space Telescope Science Institute. The goal of the mission, STS-109, is to service the HST, replacing Solar Array 2 with Solar Array 3, replacing the Power Control Unit, removing the Faint Object Camera and installing the ACS, installing the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cooling System, and installing New Outer Blanket Layer insulation on bays 5 through 8. Mission STS-109 is scheduled for launch Feb. 14, 2002
2001-11-26
KENNEDY SPACE CENTER, Fla. - A piece of equipment for Hubble Space Telescope Servicing mission arrives at Hangar AE, Cape Canaveral. Inside the canister is the Advanced Camera for Surveys (ACS). The ACS will increase the discovery efficiency of the HST by a factor of ten. It consists of three electronic cameras and a complement of filters and dispersers that detect light from the ultraviolet to the near infrared (1200 - 10,000 angstroms). The ACS was built through a collaborative effort between Johns Hopkins University, Goddard Space Flight Center, Ball Aerospace Corporation and Space Telescope Science Institute. The goal of the mission, STS-109, is to service the HST, replacing Solar Array 2 with Solar Array 3, replacing the Power Control Unit, removing the Faint Object Camera and installing the ACS, installing the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cooling System, and installing New Outer Blanket Layer insulation on bays 5 through 8. Mission STS-109 is scheduled for launch Feb. 14, 2002
Measuring the impact of computer resource quality on the software development process and product
NASA Technical Reports Server (NTRS)
Mcgarry, Frank; Valett, Jon; Hall, Dana
1985-01-01
The availability and quality of computer resources during the software development process was speculated to have measurable, significant impact on the efficiency of the development process and the quality of the resulting product. Environment components such as the types of tools, machine responsiveness, and quantity of direct access storage may play a major role in the effort to produce the product and in its subsequent quality as measured by factors such as reliability and ease of maintenance. During the past six years, the NASA Goddard Space Flight Center has conducted experiments with software projects in an attempt to better understand the impact of software development methodologies, environments, and general technologies on the software process and product. Data was extracted and examined from nearly 50 software development projects. All were related to support of satellite flight dynamics ground-based computations. The relationship between computer resources and the software development process and product as exemplified by the subject NASA data was examined. Based upon the results, a number of computer resource-related implications are provided.
Flight software development for the isothermal dendritic growth experiment
NASA Technical Reports Server (NTRS)
Levinson, Laurie H.; Winsa, Edward A.; Glicksman, Martin E.
1989-01-01
The Isothermal Dendritic Growth Experiment (IDGE) is a microgravity materials science experiment scheduled to fly in the cargo bay of the shuttle on the United States Microgravity Payload (USMP) carrier. The experiment will be operated by real-time control software which will not only monitor and control onboard experiment hardware, but will also communicate, via downlink data and uplink commands, with the Payload Operations Control Center (POCC) at NASA George C. Marshall Space Flight Center (MSFC). The software development approach being used to implement this system began with software functional requirements specification. This was accomplished using the Yourdon/DeMarco methodology as supplemented by the Ward/Mellor real-time extensions. The requirements specification in combination with software prototyping was then used to generate a detailed design consisting of structure charts, module prologues, and Program Design Language (PDL) specifications. This detailed design will next be used to code the software, followed finally by testing against the functional requirements. The result will be a modular real-time control software system with traceability through every phase of the development process.
Flight software development for the isothermal dendritic growth experiment
NASA Technical Reports Server (NTRS)
Levinson, Laurie H.; Winsa, Edward A.; Glicksman, M. E.
1990-01-01
The Isothermal Dendritic Growth Experiment (IDGE) is a microgravity materials science experiment scheduled to fly in the cargo bay of the shuttle on the United States Microgravity Payload (USMP) carrier. The experiment will be operated by real-time control software which will not only monitor and control onboard experiment hardware, but will also communicate, via downlink data and unlink commands, with the Payload Operations Control Center (POCC) at NASA George C. Marshall Space Flight Center (MSFC). The software development approach being used to implement this system began with software functional requirements specification. This was accomplished using the Yourdon/DeMarco methodology as supplemented by the Ward/Mellor real-time extensions. The requirements specification in combination with software prototyping was then used to generate a detailed design consisting of structure charts, module prologues, and Program Design Language (PDL) specifications. This detailed design will next be used to code the software, followed finally by testing against the functional requirements. The result will be a modular real-time control software system with traceability through every phase of the development process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Module-level power electronics, such as DC power optimizers, microinverters, and those found in AC modules, are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software. This paper extends the work completed at NREL that provided recommendations to model the performance of distributed power electronics in NREL’s popular PVWatts calculator [1], to provide similar guidelines for modeling these technologies in NREL's more complex System Advisor Model (SAM). Module-level power electronics - such asmore » DC power optimizers, microinverters, and those found in AC modules-- are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software.« less
Flight Dynamics Analysis Branch 2005 Technical Highlights
NASA Technical Reports Server (NTRS)
2005-01-01
This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 595, in support of flight projects and technology development initiatives in Fiscal Year (FY) 2005. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics including spacecraft navigation (autonomous and ground based); spacecraft trajectory design and maneuver planning; attitude analysis; attitude determination and sensor calibration; and attitude control subsystem (ACS) analysis and design. The FDAB currently provides support for missions and technology development projects involving NASA, other government agencies, academia, and private industry.
Khalifé, Maya; Fernandez, Brice; Jaubert, Olivier; Soussan, Michael; Brulon, Vincent; Buvat, Irène; Comtat, Claude
2017-09-21
In brain PET/MR applications, accurate attenuation maps are required for accurate PET image quantification. An implemented attenuation correction (AC) method for brain imaging is the single-atlas approach that estimates an AC map from an averaged CT template. As an alternative, we propose to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft tissue. A linear relationship between histogram normalized ZTE intensity and measured CT density in Hounsfield units ([Formula: see text]) in bone has been established thanks to a CT-MR database of 16 patients. Continuous AC maps were computed based on the segmented ZTE by setting a fixed linear attenuation coefficient (LAC) to air and soft tissue and by using the linear relationship to generate continuous μ values for the bone. Additionally, for the purpose of comparison, four other AC maps were generated: a ZTE derived AC map with a fixed LAC for the bone, an AC map based on the single-atlas approach as provided by the PET/MR manufacturer, a soft-tissue only AC map and, finally, the CT derived attenuation map used as the gold standard (CTAC). All these AC maps were used with different levels of smoothing for PET image reconstruction with and without time-of-flight (TOF). The subject-specific AC map generated by combining ZTE-based segmentation and linear scaling of the normalized ZTE signal into [Formula: see text] was found to be a good substitute for the measured CTAC map in brain PET/MR when used with a Gaussian smoothing kernel of [Formula: see text] corresponding to the PET scanner intrinsic resolution. As expected TOF reduces AC error regardless of the AC method. The continuous ZTE-AC performed better than the other alternative MR derived AC methods, reducing the quantification error between the MRAC corrected PET image and the reference CTAC corrected PET image.
NASA Astrophysics Data System (ADS)
Khalifé, Maya; Fernandez, Brice; Jaubert, Olivier; Soussan, Michael; Brulon, Vincent; Buvat, Irène; Comtat, Claude
2017-10-01
In brain PET/MR applications, accurate attenuation maps are required for accurate PET image quantification. An implemented attenuation correction (AC) method for brain imaging is the single-atlas approach that estimates an AC map from an averaged CT template. As an alternative, we propose to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft tissue. A linear relationship between histogram normalized ZTE intensity and measured CT density in Hounsfield units (HU ) in bone has been established thanks to a CT-MR database of 16 patients. Continuous AC maps were computed based on the segmented ZTE by setting a fixed linear attenuation coefficient (LAC) to air and soft tissue and by using the linear relationship to generate continuous μ values for the bone. Additionally, for the purpose of comparison, four other AC maps were generated: a ZTE derived AC map with a fixed LAC for the bone, an AC map based on the single-atlas approach as provided by the PET/MR manufacturer, a soft-tissue only AC map and, finally, the CT derived attenuation map used as the gold standard (CTAC). All these AC maps were used with different levels of smoothing for PET image reconstruction with and without time-of-flight (TOF). The subject-specific AC map generated by combining ZTE-based segmentation and linear scaling of the normalized ZTE signal into HU was found to be a good substitute for the measured CTAC map in brain PET/MR when used with a Gaussian smoothing kernel of 4~mm corresponding to the PET scanner intrinsic resolution. As expected TOF reduces AC error regardless of the AC method. The continuous ZTE-AC performed better than the other alternative MR derived AC methods, reducing the quantification error between the MRAC corrected PET image and the reference CTAC corrected PET image.
Multiple piezo-patch energy harvesters on a thin plate with respective AC-DC conversion
NASA Astrophysics Data System (ADS)
Aghakhani, Amirreza; Basdogan, Ipek
2018-03-01
Piezoelectric patch energy harvesters can be directly integrated to plate-like structures which are widely used in automotive, marine and aerospace applications, to convert vibrational energy to electrical energy. This paper presents two different AC-DC conversion techniques for multiple patch harvesters, namely single rectifier and respective rectifiers. The first case considers all the piezo-patches are connected in parallel to a single rectifier, whereas in the second case, each harvester is respectively rectified and then connected in parallel to a smoothing capacitor and a resistive load. The latter configuration of AC-DC conversion helps to avoid the electrical charge cancellation which is a problem with the multiple harvesters attached to different locations of the host plate surface. Equivalent circuit model of the multiple piezo-patch harvesters is developed in the SPICE software to simulate the electrical response. The system parameters are obtained from the modal analysis solution of the plate. Simulations of the voltage frequency response functions (FRFs) for the standard AC input - AC output case are conducted and validated by experimental data. Finally, for the AC input - DC output case, numerical simulation and experimental results of the power outputs of multiple piezo-patch harvesters with multiple AC-DC converters are obtained for a wide range of resistive loads and compared with the same array of harvesters connected to a single AC-DC converter.
14 CFR 47.16 - Temporary registration numbers.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRCRAFT REGISTRATION General § 47.16 Temporary registration numbers. (a) Temporary registration numbers... Registration Certificates, AC Form 8050-6, for temporary display on aircraft during flight allowed under Subpart C of this part. (b) The holder of a Dealer's Aircraft Registration Certificate may apply to the...
14 CFR 47.16 - Temporary registration numbers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT REGISTRATION General § 47.16 Temporary registration numbers. (a) Temporary registration numbers... Registration Certificates, AC Form 8050-6, for temporary display on aircraft during flight allowed under Subpart C of this part. (b) The holder of a Dealer's Aircraft Registration Certificate may apply to the...
14 CFR 47.16 - Temporary registration numbers.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRCRAFT REGISTRATION General § 47.16 Temporary registration numbers. (a) Temporary registration numbers... Registration Certificates, AC Form 8050-6, for temporary display on aircraft during flight allowed under Subpart C of this part. (b) The holder of a Dealer's Aircraft Registration Certificate may apply to the...
14 CFR 47.16 - Temporary registration numbers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRCRAFT REGISTRATION General § 47.16 Temporary registration numbers. (a) Temporary registration numbers... Registration Certificates, AC Form 8050-6, for temporary display on aircraft during flight allowed under Subpart C of this part. (b) The holder of a Dealer's Aircraft Registration Certificate may apply to the...
Design development and test: Two-gas atmosphere control subsystem
NASA Technical Reports Server (NTRS)
Jackson, J. K.
1974-01-01
An atmosphere control subsystem (ACS) was developed for NASA-IBJSC which is designed to measure the major atmospheric constituents in the manned cabin of the space shuttle orbiter and control the addition of oxygen and nitrogen to maintain the partial pressures of these gases within very close limits. The ACS includes a mass spectrometer sensor (MSS) which analyzes the atmosphere of a shuttle vehicle pressurized cabin, and an electronic control assembly (ECA). The MSS was built and tested to meet the requirements for flight equipment for the M-171 Metabolic Analyzer experiment for the Skylab flight program. The instrument analyzes an atmospheric gas sample and produces continuous 0-5 vdc analog signals proportional to the partial pressures of H2, O2, N2, H2O, CO2 and total hydrocarbons having a m/e ratio between 50 and 120. It accepts signals from the MSS proportional to the partial pressures of N2 and O2 and controls the supply of these gases to the closed cabin.
Three Dimensional Lightning Launch Commit Criteria Visualization Tool
NASA Technical Reports Server (NTRS)
Bauman, William H., III
2014-01-01
Lightning occurrence too close to a NASA LSP or future SLS program launch vehicle in flight would have disastrous results. The sensitive electronics on the vehicle could be damaged to the point of causing an anomalous flight path and ultimate destruction of the vehicle and payload.According to 45th Weather Squadron (45 WS) Lightning Launch Commit Criteria (LLCC), a vehicle cannot launch if lightning is within 10 NM of its pre-determined flight path. The 45 WS Launch Weather Officers (LWOs) evaluate this LLCC for their launch customers to ensure the safety of the vehicle in flight. Currently, the LWOs conduct a subjective analysis of the distance between lightning and the flight path using data from different display systems. A 3-D display in which the lightning data and flight path are together would greatly reduce the ambiguity in evaluating this LLCC. It would give the LWOs and launch directors more confidence in whether a GO or NO GO for launch should be issued. When lightning appears close to the path, the LWOs likely err on the side of conservatism and deem the lightning to be within 10 NM. This would cause a costly delay or scrub. If the LWOs can determine with a strong level of certainty that the lightning is beyond 10 NM, launch availability would increase without compromising safety of the vehicle, payload or, in the future, astronauts.The AMU was tasked to conduct a market research of commercial, government, and open source software that might be able to ingest and display the 3-D lightning data from the KSC Lightning Mapping Array (LMA), the 45th Space Wing Weather Surveillance Radar (WSR), the National Weather Service in Melbourne Weather Surveillance Radar 1988 Doppler (WSR-88D), and the vehicle flight path data so that all can be visualized together. To accomplish this, the AMU conducted Internet searches for potential software candidates and interviewed software developers.None of the available off-the-shelf software had a 3-D capability that could display all of the data in a single visualization. The AMU determined there are two viable software packages that could satisfy the 45 WS requirement with further development and recommends the KSC Weather Office follow-up with both organizations to request development costs.
Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations
NASA Technical Reports Server (NTRS)
Woronowicz, Michael
2011-01-01
We have learned it is conceivable that the Neutral Mass Spectrometer on board the Lunarr Atmosphere Dust Environment Explorer (LADEE) could measure gases from surface-reflected Attitude Control System (ACS) thruster plume. At minimum altitude, the measurement would be maximized, and gravitational influence minimized ("short" time-of-flight (TOF) situation) Could use to verify aspects of thruster plume modeling Model the transient disturbance to NMS measurements due to ACS gases reflected from lunar surface Observe evolution of various model characteristics as measured by NMS Species magnitudes, TOF measurements, angular distribution, species separation effects
ORATOS: ESA's future flight dynamics operations system
NASA Astrophysics Data System (ADS)
Dreger, Frank; Fertig, Juergen; Muench, Rolf
The Orbit and Attitude Operations System (ORATOS -- the European Space Agency's future orbit and attitude operations system -- will be in use from the mid-nineties until well beyond the year 2000. The ORATOS design is based on the experience from flight dynamics support to all past ESA missions. The ORATOS computer hardware consists of a network of powerful UNIX workstations. ORATOS resides on several hardware platforms, each comprising one or more fileservers, several client workstations and the associated communications interface hardware. The ORATOS software is structured into three layers. The flight dynamics applications layer, the support layer and the operating system layer. This architectural design separates the flight dynamics application software from the support tools and operating system facilities. It allows upgrading and replacement of operating system facilities with a minimum (or no) effect on the application layer.
Simultaneous operation and control of about 100 telescopes for the Cherenkov Telescope Array
NASA Astrophysics Data System (ADS)
Wegner, P.; Colomé, J.; Hoffmann, D.; Houles, J.; Köppel, H.; Lamanna, G.; Le Flour, T.; Lopatin, A.; Lyard, E.; Melkumyan, D.; Oya, I.; Panazol, L.-I.; Punch, M.; Schlenstedt, S.; Schmidt, T.; Stegmann, C.; Schwanke, U.; Walter, R.; Consortium, CTA
2012-12-01
The Cherenkov Telescope Array (CTA) project is an initiative to build the next generation ground-based very high energy (VHE) gamma-ray instrument. Compared to current imaging atmospheric Cherenkov telescope experiments CTA will extend the energy range and improve the angular resolution while increasing the sensitivity up to a factor of 10. With about 100 separate telescopes it will be operated as an observatory open to a wide astrophysics and particle physics community, providing a deep insight into the non-thermal high-energy universe. The CTA Array Control system (ACTL) is responsible for several essential control tasks supporting the evaluation and selection of proposals, as well as the preparation, scheduling, and finally the execution of observations with the array. A possible basic distributed software framework for ACTL being considered is the ALMA Common Software (ACS). The ACS framework follows a container component model and contains a high level abstraction layer to integrate different types of device. To achieve a low-level consolidation of connecting control hardware, OPC UA (OPen Connectivity-Unified Architecture) client functionality is integrated directly into ACS, thus allowing interaction with other OPC UA capable hardware. The CTA Data Acquisition System comprises the data readout of all cameras and the transfer of the data to a camera server farm, thereby using standard hardware and software technologies. CTA array control is also covering conceptions for a possible array trigger system and the corresponding clock distribution. The design of the CTA observations scheduler is introducing new algorithmic technologies to achieve the required flexibility.
Flight data processing with the F-8 adaptive algorithm
NASA Technical Reports Server (NTRS)
Hartmann, G.; Stein, G.; Petersen, K.
1977-01-01
An explicit adaptive control algorithm based on maximum likelihood estimation of parameters has been designed for NASA's DFBW F-8 aircraft. To avoid iterative calculations, the algorithm uses parallel channels of Kalman filters operating at fixed locations in parameter space. This algorithm has been implemented in NASA/DFRC's Remotely Augmented Vehicle (RAV) facility. Real-time sensor outputs (rate gyro, accelerometer and surface position) are telemetered to a ground computer which sends new gain values to an on-board system. Ground test data and flight records were used to establish design values of noise statistics and to verify the ground-based adaptive software. The software and its performance evaluation based on flight data are described
Future of Software Engineering Standards
NASA Technical Reports Server (NTRS)
Poon, Peter T.
1997-01-01
In the new millennium, software engineering standards are expected to continue to influence the process of producing software-intensive systems which are cost-effetive and of high quality. These sytems may range from ground and flight systems used for planetary exploration to educational support systems used in schools as well as consumer-oriented systems.
BioContainers: an open-source and community-driven framework for software standardization.
da Veiga Leprevost, Felipe; Grüning, Björn A; Alves Aflitos, Saulo; Röst, Hannes L; Uszkoreit, Julian; Barsnes, Harald; Vaudel, Marc; Moreno, Pablo; Gatto, Laurent; Weber, Jonas; Bai, Mingze; Jimenez, Rafael C; Sachsenberg, Timo; Pfeuffer, Julianus; Vera Alvarez, Roberto; Griss, Johannes; Nesvizhskii, Alexey I; Perez-Riverol, Yasset
2017-08-15
BioContainers (biocontainers.pro) is an open-source and community-driven framework which provides platform independent executable environments for bioinformatics software. BioContainers allows labs of all sizes to easily install bioinformatics software, maintain multiple versions of the same software and combine tools into powerful analysis pipelines. BioContainers is based on popular open-source projects Docker and rkt frameworks, that allow software to be installed and executed under an isolated and controlled environment. Also, it provides infrastructure and basic guidelines to create, manage and distribute bioinformatics containers with a special focus on omics technologies. These containers can be integrated into more comprehensive bioinformatics pipelines and different architectures (local desktop, cloud environments or HPC clusters). The software is freely available at github.com/BioContainers/. yperez@ebi.ac.uk. © The Author(s) 2017. Published by Oxford University Press.
BioContainers: an open-source and community-driven framework for software standardization
da Veiga Leprevost, Felipe; Grüning, Björn A.; Alves Aflitos, Saulo; Röst, Hannes L.; Uszkoreit, Julian; Barsnes, Harald; Vaudel, Marc; Moreno, Pablo; Gatto, Laurent; Weber, Jonas; Bai, Mingze; Jimenez, Rafael C.; Sachsenberg, Timo; Pfeuffer, Julianus; Vera Alvarez, Roberto; Griss, Johannes; Nesvizhskii, Alexey I.; Perez-Riverol, Yasset
2017-01-01
Abstract Motivation BioContainers (biocontainers.pro) is an open-source and community-driven framework which provides platform independent executable environments for bioinformatics software. BioContainers allows labs of all sizes to easily install bioinformatics software, maintain multiple versions of the same software and combine tools into powerful analysis pipelines. BioContainers is based on popular open-source projects Docker and rkt frameworks, that allow software to be installed and executed under an isolated and controlled environment. Also, it provides infrastructure and basic guidelines to create, manage and distribute bioinformatics containers with a special focus on omics technologies. These containers can be integrated into more comprehensive bioinformatics pipelines and different architectures (local desktop, cloud environments or HPC clusters). Availability and Implementation The software is freely available at github.com/BioContainers/. Contact yperez@ebi.ac.uk PMID:28379341
Quality Assurance of Software Used In Aircraft Or Related Products
DOT National Transportation Integrated Search
1993-02-01
This advisory circular (AC) provides an acceptable means, but not the only means, to show compliance with the quality assurance requirements of Federal Aviation Regulations (FAR) Part 21, Certification Procedures for Products and Parts, as applicable...
The aerospace energy systems laboratory: Hardware and software implementation
NASA Technical Reports Server (NTRS)
Glover, Richard D.; Oneil-Rood, Nora
1989-01-01
For many years NASA Ames Research Center, Dryden Flight Research Facility has employed automation in the servicing of flight critical aircraft batteries. Recently a major upgrade to Dryden's computerized Battery Systems Laboratory was initiated to incorporate distributed processing and a centralized database. The new facility, called the Aerospace Energy Systems Laboratory (AESL), is being mechanized with iAPX86 and iAPX286 hardware running iRMX86. The hardware configuration and software structure for the AESL are described.
Spacelab cost reduction alternatives study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1976-01-01
Alternative approaches to payload operations planning and control and flight crew training are defined for spacelab payloads with the goal of: lowering FY77 and FY 78 costs for new starts; lowering costs to achieve Spacelab operational capability; and minimizing the cost per Spacelab flight. These alternatives attempt to minimize duplication of hardware, software, and personnel, and the investment in supporting facility and equipment. Of particular importance is the possible reduction of equipment, software, and manpower resources such as comtational systems, trainers, and simulators.
Validation of vision-based obstacle detection algorithms for low-altitude helicopter flight
NASA Technical Reports Server (NTRS)
Suorsa, Raymond; Sridhar, Banavar
1991-01-01
A validation facility being used at the NASA Ames Research Center is described which is aimed at testing vision based obstacle detection and range estimation algorithms suitable for low level helicopter flight. The facility is capable of processing hundreds of frames of calibrated multicamera 6 degree-of-freedom motion image sequencies, generating calibrated multicamera laboratory images using convenient window-based software, and viewing range estimation results from different algorithms along with truth data using powerful window-based visualization software.
Ahmad, N H; Isa, M I N
2016-02-10
Two solid biopolymer electrolytes (SBEs) systems of carboxymethyl cellulose doped ammonium chloride (CMC-AC) and propylene carbonate plasticized (CMC-AC-PC) were prepared via solution casting technique. The ionic conductivity of SBEs were analyzed using electrical impedance spectroscopy (EIS) in the frequency range of 50 Hz-1 MHz at ambient temperature (303K). The highest ionic conductivity of CMC-AC SBE is 1.43 × 10(-3)S/cm for 16 wt.% of AC while the highest conductivity of plasticized SBE system is 1.01 × 10(-2)S/cm when added with 8 wt.% of PC. TGA/DSC showed that the addition of PC had increased the decomposition temperature compared of CMC-AC SBE. Fourier transform infrared (FTIR) spectra showed the occurrence of complexation between the SBE components and it is proved successfully executed by Gaussian software. X-ray diffraction (XRD) indicated that amorphous nature of SBEs. It is believed that the PC is one of the most promising plasticizer to enhance the ionic conductivity and performance for SBE system. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Waintal, Xavier; Gaury, Benoit; Weston, Joseph
With single coherent electron sources and electronic interferometers now available in the lab, the time resolved dynamics of electrons can now be probed directly. I will discuss how a fast raise of voltage propagates inside an electronic interferometer and leads to an oscillating current of well controled frequency. This phenomena is the normal counterpart to the AC josephson effect. I will also briefly advertize our software for computing quantum transport properties, Kwant (http://kwant-project.org) and its time-dependent extension T-Kwant.
Systems Architecture for Fully Autonomous Space Missions
NASA Technical Reports Server (NTRS)
Esper, Jamie; Schnurr, R.; VanSteenberg, M.; Brumfield, Mark (Technical Monitor)
2002-01-01
The NASA Goddard Space Flight Center is working to develop a revolutionary new system architecture concept in support of fully autonomous missions. As part of GSFC's contribution to the New Millenium Program (NMP) Space Technology 7 Autonomy and on-Board Processing (ST7-A) Concept Definition Study, the system incorporates the latest commercial Internet and software development ideas and extends them into NASA ground and space segment architectures. The unique challenges facing the exploration of remote and inaccessible locales and the need to incorporate corresponding autonomy technologies within reasonable cost necessitate the re-thinking of traditional mission architectures. A measure of the resiliency of this architecture in its application to a broad range of future autonomy missions will depend on its effectiveness in leveraging from commercial tools developed for the personal computer and Internet markets. Specialized test stations and supporting software come to past as spacecraft take advantage of the extensive tools and research investments of billion-dollar commercial ventures. The projected improvements of the Internet and supporting infrastructure go hand-in-hand with market pressures that provide continuity in research. By taking advantage of consumer-oriented methods and processes, space-flight missions will continue to leverage on investments tailored to provide better services at reduced cost. The application of ground and space segment architectures each based on Local Area Networks (LAN), the use of personal computer-based operating systems, and the execution of activities and operations through a Wide Area Network (Internet) enable a revolution in spacecraft mission formulation, implementation, and flight operations. Hardware and software design, development, integration, test, and flight operations are all tied-in closely to a common thread that enables the smooth transitioning between program phases. The application of commercial software development techniques lays the foundation for delivery of product-oriented flight software modules and models. Software can then be readily applied to support the on-board autonomy required for mission self-management. An on-board intelligent system, based on advanced scripting languages, facilitates the mission autonomy required to offload ground system resources, and enables the spacecraft to manage itself safely through an efficient and effective process of reactive planning, science data acquisition, synthesis, and transmission to the ground. Autonomous ground systems in turn coordinate and support schedule contact times with the spacecraft. Specific autonomy software modules on-board include mission and science planners, instrument and subsystem control, and fault tolerance response software, all residing within a distributed computing environment supported through the flight LAN. Autonomy also requires the minimization of human intervention between users on the ground and the spacecraft, and hence calls for the elimination of the traditional operations control center as a funnel for data manipulation. Basic goal-oriented commands are sent directly from the user to the spacecraft through a distributed internet-based payload operations "center". The ensuing architecture calls for the use of spacecraft as point extensions on the Internet. This paper will detail the system architecture implementation chosen to enable cost-effective autonomous missions with applicability to a broad range of conditions. It will define the structure needed for implementation of such missions, including software and hardware infrastructures. The overall architecture is then laid out as a common thread in the mission life cycle from formulation through implementation and flight operations.
A digital flight control system verification laboratory
NASA Technical Reports Server (NTRS)
De Feo, P.; Saib, S.
1982-01-01
A NASA/FAA program has been established for the verification and validation of digital flight control systems (DFCS), with the primary objective being the development and analysis of automated verification tools. In order to enhance the capabilities, effectiveness, and ease of using the test environment, software verification tools can be applied. Tool design includes a static analyzer, an assertion generator, a symbolic executor, a dynamic analysis instrument, and an automated documentation generator. Static and dynamic tools are integrated with error detection capabilities, resulting in a facility which analyzes a representative testbed of DFCS software. Future investigations will ensue particularly in the areas of increase in the number of software test tools, and a cost effectiveness assessment.
The Core Flight System (cFS) Community: Providing Low Cost Solutions for Small Spacecraft
NASA Technical Reports Server (NTRS)
McComas, David; Wilmot, Jonathan; Cudmore, Alan
2016-01-01
In February 2015 the NASA Goddard Space Flight Center (GSFC) completed the open source release of the entire Core Flight Software (cFS) suite. After the open source release a multi-NASA center Configuration Control Board (CCB) was established that has managed multiple cFS product releases. The cFS was developed and is being maintained in compliance with the NASA Class B software development process requirements and the open source release includes all Class B artifacts. The cFS is currently running on three operational science spacecraft and is being used on multiple spacecraft and instrument development efforts. While the cFS itself is a viable flight software (FSW) solution, we have discovered that the cFS community is a continuous source of innovation and growth that provides products and tools that serve the entire FSW lifecycle and future mission needs. This paper summarizes the current state of the cFS community, the key FSW technologies being pursued, the development/verification tools and opportunities for the small satellite community to become engaged. The cFS is a proven high quality and cost-effective solution for small satellites with constrained budgets.
NASA Technical Reports Server (NTRS)
Perkins, Sharon; Martin, Andrea; Bavinger, Bill
1990-01-01
The Trajectory Operations Applications Software Task (TOAST) is a software development project whose purpose is to provide trajectory operation pre-mission and real-time support for the Space Shuttle. The purpose of the evaluation was to evaluate TOAST as an Application Manager - to assess current and planned capabilities, compare capabilities to commercially-available off the shelf (COTS) software, and analyze requirements of MCC and Flight Analysis Design System (FADS) for TOAST implementation. As a major part of the data gathering for the evaluation, interviews were conducted with NASA and contractor personnel. Real-time and flight design users, orbit navigation users, the TOAST developers, and management were interviewed. Code reviews and demonstrations were also held. Each of these interviews was videotaped and transcribed as appropriate. Transcripts were edited and are presented chronologically.
Study of the Dependency on Magnetic Field and Bias Voltage of an AC-Biased TES Microcalorimeter.
Gottardi, L; Adams, J; Bailey, C; Bandler, S; Bruijn, M; Chervenak, J; Eckart, M; Finkbeiner, F; den Hartog, R; Hoevers, H; Kelley, R; Kilbourne, C; de Korte, P; van der Kuur, J; Lindeman, M; Porter, F; Sadlier, J; Smith, S
At SRON we are studying the performance of a Goddard Space Flight Center single pixel TES microcalorimeter operated in an AC bias configuration. For x-ray photons at 6 keV the pixel shows an x-ray energy resolution Δ E FWHM =3.7 eV, which is about a factor 2 worse than the energy resolution observed in an identical DC-biased pixel. In order to better understand the reasons for this discrepancy we characterised the detector as a function of temperature, bias working point and applied perpendicular magnetic field. A strong periodic dependency of the detector noise on the TES AC bias voltage is measured. We discuss the results in the framework of the recently observed weak-link behaviour of a TES microcalorimeter.
Pulsed plasma thrusters for small spacecraft attitude control
NASA Technical Reports Server (NTRS)
McGuire, Melissa L.; Myers, Roger M.
1996-01-01
Pulsed Plasma Thrusters (PPTS) are a new option for attitude control of a small spacecraft and may result in reduced attitude control system (ACS) mass and cost. The primary purpose of an ACS is to orient the spacecraft to the desired accuracy in inertial space. The ACS functions for which the PPT system will be analyzed include disturbance torque compensation, and slewing maneuvers such as sun acquisition for which the small impulse bit and high specific impulse of the PPT offers unique advantages. The NASA Lewis Research Center (LERC) currently has a contracted flight PPT system development program in place with Olin Aerospace with a delivery date of October 1997. The PPT systems in this study are based upon the work being done under the NASA LERC program. Analysis of the use of PPTs for ACS showed that the replacement of the standard momentum wheels and torque rods with a PPT system to perform the attitude control maneuvers on a small low Earth orbiting spacecraft reduced the ACS mass by 50 to 75% with no increase in required power level over comparable wheel-based systems, though rapid slewing power requirements may present an issue.
Big Software for SmallSats: Adapting CFS to CubeSat Missions
NASA Technical Reports Server (NTRS)
Cudmore, Alan P.; Crum, Gary; Sheikh, Salman; Marshall, James
2015-01-01
Expanding capabilities and mission objectives for SmallSats and CubeSats is driving the need for reliable, reusable, and robust flight software. While missions are becoming more complicated and the scientific goals more ambitious, the level of acceptable risk has decreased. Design challenges are further compounded by budget and schedule constraints that have not kept pace. NASA's Core Flight Software System (cFS) is an open source solution which enables teams to build flagship satellite level flight software within a CubeSat schedule and budget. NASA originally developed cFS to reduce mission and schedule risk for flagship satellite missions by increasing code reuse and reliability. The Lunar Reconnaissance Orbiter, which launched in 2009, was the first of a growing list of Class B rated missions to use cFS. Large parts of cFS are now open source, which has spurred adoption outside of NASA. This paper reports on the experiences of two teams using cFS for current CubeSat missions. The performance overheads of cFS are quantified, and the reusability of code between missions is discussed. The analysis shows that cFS is well suited to use on CubeSats and demonstrates the portability and modularity of cFS code.
Onboard Sensor Data Qualification in Human-Rated Launch Vehicles
NASA Technical Reports Server (NTRS)
Wong, Edmond; Melcher, Kevin J.; Maul, William A.; Chicatelli, Amy K.; Sowers, Thomas S.; Fulton, Christopher; Bickford, Randall
2012-01-01
The avionics system software for human-rated launch vehicles requires an implementation approach that is robust to failures, especially the failure of sensors used to monitor vehicle conditions that might result in an abort determination. Sensor measurements provide the basis for operational decisions on human-rated launch vehicles. This data is often used to assess the health of system or subsystem components, to identify failures, and to take corrective action. An incorrect conclusion and/or response may result if the sensor itself provides faulty data, or if the data provided by the sensor has been corrupted. Operational decisions based on faulty sensor data have the potential to be catastrophic, resulting in loss of mission or loss of crew. To prevent these later situations from occurring, a Modular Architecture and Generalized Methodology for Sensor Data Qualification in Human-rated Launch Vehicles has been developed. Sensor Data Qualification (SDQ) is a set of algorithms that can be implemented in onboard flight software, and can be used to qualify data obtained from flight-critical sensors prior to the data being used by other flight software algorithms. Qualified data has been analyzed by SDQ and is determined to be a true representation of the sensed system state; that is, the sensor data is determined not to be corrupted by sensor faults or signal transmission faults. Sensor data can become corrupted by faults at any point in the signal path between the sensor and the flight computer. Qualifying the sensor data has the benefit of ensuring that erroneous data is identified and flagged before otherwise being used for operational decisions, thus increasing confidence in the response of the other flight software processes using the qualified data, and decreasing the probability of false alarms or missed detections.
NASA Technical Reports Server (NTRS)
Hruby, R. J.; Bjorkman, W. S.
1977-01-01
Flight test results of the strapdown inertial reference unit (SIRU) navigation system are presented. The fault-tolerant SIRU navigation system features a redundant inertial sensor unit and dual computers. System software provides for detection and isolation of inertial sensor failures and continued operation in the event of failures. Flight test results include assessments of the system's navigational performance and fault tolerance.
Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters
Jan, Shau Shiun; Lin, Yu Hsiang
2011-01-01
This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM). PMID:22164029
Integrated flight path planning system and flight control system for unmanned helicopters.
Jan, Shau Shiun; Lin, Yu Hsiang
2011-01-01
This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM).
SEPAC software configuration control plan and procedures, revision 1
NASA Technical Reports Server (NTRS)
1981-01-01
SEPAC Software Configuration Control Plan and Procedures are presented. The objective of the software configuration control is to establish the process for maintaining configuration control of the SEPAC software beginning with the baselining of SEPAC Flight Software Version 1 and encompass the integration and verification tests through Spacelab Level IV Integration. They are designed to provide a simplified but complete configuration control process. The intent is to require a minimum amount of paperwork but provide total traceability of SEPAC software.
NASA Technical Reports Server (NTRS)
Williams, David E.
2007-01-01
The International Space Station (ISS) Pressurized Mating Adapters (PMAs) Environmental Control and Life Support (ECLS) System is comprised of three subsystems: Atmosphere Control and Supply (ACS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). PMA 1 and PMA 2 flew to ISS on Flight 2A and PMA 3 flew to ISS on Flight 3A. This paper provides a summary of the PMAs ECLS design and the detailed Element Verification methodologies utilized during the Qualification phase for the PMAs.
NASA Technical Reports Server (NTRS)
Williams, David E.
2008-01-01
The International Space Station (ISS) Pressurized Mating Adapters (PMAs) Environmental Control and Life Support (ECLS) System is comprised of three subsystems: Atmosphere Control and Supply (ACS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). PMAs 1 and 2 flew to ISS on Flight 2A and Pressurized Mating Adapter (PMA) 3 flew to ISS on Flight 3A. This paper provides a summary of the PMAs ECLS design and a detailed discussion of the ISS ECLS Acceptance Testing methodologies utilized for the PMAs.
Porting DubaiSat-2 Flight Software to RTEMS: A Feasibility Study
NASA Astrophysics Data System (ADS)
Khoory, Mohammed; Al Shamsi, Zakareyya; Al Midfa, Ibrahim
2015-09-01
This paper details the process taken by EIAST to study RTEMS as a potential real-time operating system for future space missions. The direction was to attempt to run the DubaiSat-2 flight software under RTEMS 4.10.2 with as little modification to the original source as possible. The implementation used a “translation layer” to translate system calls used by the DS-2 flight software into RTEMS system calls. The RTEMS RTL project was integrated to satisfy the run-time loading requirement, and some differences in the filesystem were encountered and worked around. The implementation was tested for performance and stability, and comparisons were made. The conclusion is that RTEMS provides an adequate base for future space missions with certain advantages over other RTOS’s including cost, a smaller executable size, and control over the source. Drawbacks include the slow speed of loading tasks during runtime and some filesystem integrity issues during unexpected reboots.
Software Product Lines: Report of the 2010 US Army Software Product Line Workshop
2010-06-01
requirements and statement of work ( SOW ) tasks can be in- cluded in the request for proposal (RFP) and the contract. 2.2.1 Basic Product Line Acquisition... SOW tasks in Figure 1. Two additional tasks (at the third tier level) ac- count for sustaining the production capability over the life cycle and...Acquisition Strategy RFP and SOW Initial Product Line Scope Product Line Business Case Capability Description Document Teaming Product Line
Development of flying qualities criteria for single pilot instrument flight operations
NASA Technical Reports Server (NTRS)
Bar-Gill, A.; Nixon, W. B.; Miller, G. E.
1982-01-01
Flying qualities criteria for Single Pilot Instrument Flight Rule (SPIFR) operations were investigated. The ARA aircraft was modified and adapted for SPIFR operations. Aircraft configurations to be flight-tested were chosen and matched on the ARA in-flight simulator, implementing modern control theory algorithms. Mission planning and experimental matrix design were completed. Microprocessor software for the onboard data acquisition system was debugged and flight-tested. Flight-path reconstruction procedure and the associated FORTRAN program were developed. Algorithms associated with the statistical analysis of flight test results and the SPIFR flying qualities criteria deduction are discussed.
Manager's handbook for software development, revision 1
NASA Technical Reports Server (NTRS)
1990-01-01
Methods and aids for the management of software development projects are presented. The recommendations are based on analyses and experiences of the Software Engineering Laboratory (SEL) with flight dynamics software development. The management aspects of the following subjects are described: organizing the project, producing a development plan, estimating costs, scheduling, staffing, preparing deliverable documents, using management tools, monitoring the project, conducting reviews, auditing, testing, and certifying.
Electronic Flight Bag (EFB) 2015 Industry Survey.
DOT National Transportation Integrated Search
2015-10-01
This document provides an overview of Electronic Flight Bag (EFB) hardware and software capabilities, including portable electronic devices (PEDs) used as EFBs, as of July 2015. This document updates and replaces the Volpe Centers previous EFB ind...
Flight evaluation of modifications to a digital electronic engine control system in an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Myers, L. P.; Zeller, J. R.
1983-01-01
The third phase of a flight evaluation of a digital electronic engine control system in an F-15 has recently been completed. It was found that digital electronic engine control software logic changes and augmentor hardware improvements resulted in significant improvements in engine operation. For intermediate to maximum power throttle transients, an increase in altitude capability of up to 8000 ft was found, and for idle to maximum transients, an increase of up to 4000 ft was found. A nozzle instability noted in earlier flight testing was investigated on a test engine at NASA Lewis Research Center, a digital electronic engine control software logic change was developed and evaluated, and no instability occurred in the Phase 3 flight evaluation. The backup control airstart modification was evaluated, and gave an improvement of airstart capability by reducing the minimum airspeed for successful airstarts by 50 to 75 knots.
1989-02-28
Arctic Ozone Expedition Stavanger Norway: Arlin Carter, NASA Langley Research Center, is shown here with colleague during flight collecting data on the laser ozone mapping experiment. This experiment uses laser beams to determine the extent of column ozone above the DC-8 flying laboratory on which the laser experiment flys.
The separation of some recalcitrant polychlorinated biphenyl (PCB) isomers in extracts from environmental compartments has been a daunting task for environmental chemists. Summed quantitation values for coeluting PCB isomers are often reported. This composite data obscures the ac...
Kaleri works on the SKV-2 AC in the SM during Expedition 8
2003-12-16
ISS008-E-08615 (16 December 2003) --- Cosmonaut Alexander Y. Kaleri, Expedition 8 flight engineer, works to remove and replace a Heat Exchanger on the SKV-2 Air Conditioner in the Zvezda Service Module on the International Space Station (ISS). Kaleri represents Rosaviakosmos.
Proceedings of the First NASA Ada Users' Symposium
NASA Technical Reports Server (NTRS)
1988-01-01
Ada has the potential to be a part of the most significant change in software engineering technology within NASA in the last twenty years. Thus, it is particularly important that all NASA centers be aware of Ada experience and plans at other centers. Ada activity across NASA are covered, with presenters representing five of the nine major NASA centers and the Space Station Freedom Program Office. Projects discussed included - Space Station Freedom Program Office: the implications of Ada on training, reuse, management and the software support environment; Johnson Space Center (JSC): early experience with the use of Ada, software engineering and Ada training and the evaluation of Ada compilers; Marshall Space Flight Center (MSFC): university research with Ada and the application of Ada to Space Station Freedom, the Orbital Maneuvering Vehicle, the Aero-Assist Flight Experiment and the Secure Shuttle Data System; Lewis Research Center (LeRC): the evolution of Ada software to support the Space Station Power Management and Distribution System; Jet Propulsion Laboratory (JPL): the creation of a centralized Ada development laboratory and current applications of Ada including the Real-time Weather Processor for the FAA; and Goddard Space Flight Center (GSFC): experiences with Ada in the Flight Dynamics Division and the Extreme Ultraviolet Explorer (EUVE) project and the implications of GSFC experience for Ada use in NASA. Despite the diversity of the presentations, several common themes emerged from the program: Methodology - NASA experience in general indicates that the effective use of Ada requires modern software engineering methodologies; Training - It is the software engineering principles and methods that surround Ada, rather than Ada itself, which requires the major training effort; Reuse - Due to training and transition costs, the use of Ada may initially actually decrease productivity, as was clearly found at GSFC; and real-time work at LeRC, JPL and GSFC shows that it is possible to use Ada for real-time applications.
Managers Handbook for Software Development
NASA Technical Reports Server (NTRS)
Agresti, W.; Mcgarry, F.; Card, D.; Page, J.; Church, V.; Werking, R.
1984-01-01
Methods and aids for the management of software development projects are presented. The recommendations are based on analyses and experiences with flight dynamics software development. The management aspects of organizing the project, producing a development plan, estimation costs, scheduling, staffing, preparing deliverable documents, using management tools, monitoring the project, conducting reviews, auditing, testing, and certifying are described.
Orbit attitude processor. STS-1 bench program verification test plan
NASA Technical Reports Server (NTRS)
Mcclain, C. R.
1980-01-01
A plan for the static verification of the STS-1 ATT PROC ORBIT software requirements is presented. The orbit version of the SAPIENS bench program is used to generate the verification data. A brief discussion of the simulation software and flight software modules is presented along with a description of the test cases.
78 FR 22432 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-16
... electrical rudder], through Airbus Service Bulletin (SB) A330-27-3176, --software standard P12A/M21A on FCPC.... Since we issued that AD, we have determined that new software standards for the flight control primary.... This proposed AD would require that operators modify or replace all three FCPCs with new software...
Flight Dynamics Analysis Branch End of Fiscal Year 2004 Report
NASA Technical Reports Server (NTRS)
DeLion, Anne (Editor); Stengle, Thomas
2005-01-01
This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 595, in support of flight projects and technology development initiatives in Fiscal Year (FY) 2004. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics including spacecraft navigation (autonomous and ground based); spacecraft trajectory design and maneuver planning; attitude analysis; attitude determination and sensor calibration; and attitude control subsystem (ACS) analysis and design. The FDAB currently provides support for missions and technology development projects involving NASA, other government agencies, academia, and private industry.
Flight Dynamics Analysis Branch End of Fiscal Year 2005 Report
NASA Technical Reports Server (NTRS)
2006-01-01
This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 595, in support of flight projects and technology development initiatives in Fiscal Year (FY) 2005. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics including spacecraft navigation (autonomous and ground based), spacecraft trajectory design and maneuver planning, attitude analysis, attitude determination and sensor calibration, and attitude control subsystem (ACS) analysis and design. The FDAB currently provides support for missions and technology development projects involving NASA, other government agencies, academia, and private industry.
Space-Shuttle Emulator Software
NASA Technical Reports Server (NTRS)
Arnold, Scott; Askew, Bill; Barry, Matthew R.; Leigh, Agnes; Mermelstein, Scott; Owens, James; Payne, Dan; Pemble, Jim; Sollinger, John; Thompson, Hiram;
2007-01-01
A package of software has been developed to execute a raw binary image of the space shuttle flight software for simulation of the computational effects of operation of space shuttle avionics. This software can be run on inexpensive computer workstations. Heretofore, it was necessary to use real flight computers to perform such tests and simulations. The package includes a program that emulates the space shuttle orbiter general- purpose computer [consisting of a central processing unit (CPU), input/output processor (IOP), master sequence controller, and buscontrol elements]; an emulator of the orbiter display electronics unit and models of the associated cathode-ray tubes, keyboards, and switch controls; computational models of the data-bus network; computational models of the multiplexer-demultiplexer components; an emulation of the pulse-code modulation master unit; an emulation of the payload data interleaver; a model of the master timing unit; a model of the mass memory unit; and a software component that ensures compatibility of telemetry and command services between the simulated space shuttle avionics and a mission control center. The software package is portable to several host platforms.
A Flexible Evolvable Architecture for Constellation Mission Systems User Applications
NASA Technical Reports Server (NTRS)
Trimble, Jay P.; Crocker, Alan R.
2008-01-01
While simulating a complex set of repair tasks to be performed by EVA crewmembers on an upcoming mission, flight controllers and astronauts determine that the repair will take much longer than originally anticipated. All equipment in the vicinity of the worksite must be powered off to maintain a safe environment for the astronauts. Because heater power will be unavailable, several critical components will now be at risk of freezing and permanent damage. If an impending thermal violation is detected, Mission Control will have very limited time to react. Therefore, flight controllers must not only modify their procedures to account for these risks, they must also incorporate into their displays outputs from thermal models, alternate temperature measurements, new alarm limits, and emergency power-on commands to enable the detection and response to freezing conditions. Current software for mission control systems makes scenarios like this difficult to address. Given the time frame for modifying software, operations teams are left with labor-intensive operational workarounds as their only options. NASA Ames Research Center (ARC) and NASA Johnson Space Center (JSC) are collaborating on the development of a flexible software system for mission operations that will enable greater user flexibility than has been available to date. Using composable software, end users in the scenario described above could recompose procedures and command and control displays to allow flight controllers to monitor temperature measurements, identify time-critical conditions, and execute the procedures required to respond to these conditions before flight hardware is permanently damaged.
Flight Software Development for the CHEOPS Instrument with the CORDET Framework
NASA Astrophysics Data System (ADS)
Cechticky, V.; Ottensamer, R.; Pasetti, A.
2015-09-01
CHEOPS is an ESA S-class mission dedicated to the precise measurement of radii of already known exoplanets using ultra-high precision photometry. The instrument flight software controlling the instrument and handling the science data is developed by the University of Vienna using the CORDET Framework offered by P&P Software GmbH. The CORDET Framework provides a generic software infrastructure for PUS-based applications. This paper describes how the framework is used for the CHEOPS application software to provide a consistent solution for to the communication and control services, event handling and FDIR procedures. This approach is innovative in four respects: (a) it is a true third-party reuse; (b) re-use is done at specification, validation and code level; (c) the re-usable assets and their qualification data package are entirely open-source; (d) re-use is based on call-back with the application developer providing functions which are called by the reusable architecture. File names missing from here on out (I tried to mimic the files names from before.)
Understanding and Predicting the Process of Software Maintenance Releases
NASA Technical Reports Server (NTRS)
Basili, Victor; Briand, Lionel; Condon, Steven; Kim, Yong-Mi; Melo, Walcelio L.; Valett, Jon D.
1996-01-01
One of the major concerns of any maintenance organization is to understand and estimate the cost of maintenance releases of software systems. Planning the next release so as to maximize the increase in functionality and the improvement in quality are vital to successful maintenance management. The objective of this paper is to present the results of a case study in which an incremental approach was used to better understand the effort distribution of releases and build a predictive effort model for software maintenance releases. This study was conducted in the Flight Dynamics Division (FDD) of NASA Goddard Space Flight Center(GSFC). This paper presents three main results: 1) a predictive effort model developed for the FDD's software maintenance release process; 2) measurement-based lessons learned about the maintenance process in the FDD; and 3) a set of lessons learned about the establishment of a measurement-based software maintenance improvement program. In addition, this study provides insights and guidelines for obtaining similar results in other maintenance organizations.
Data systems and computer science programs: Overview
NASA Technical Reports Server (NTRS)
Smith, Paul H.; Hunter, Paul
1991-01-01
An external review of the Integrated Technology Plan for the Civil Space Program is presented. The topics are presented in viewgraph form and include the following: onboard memory and storage technology; advanced flight computers; special purpose flight processors; onboard networking and testbeds; information archive, access, and retrieval; visualization; neural networks; software engineering; and flight control and operations.
Identification and analysis of o-acetylated sialoglycoproteins.
Mandal, Chandan; Mandal, Chitra
2013-01-01
5-N-acetylneuraminic acid, commonly known as sialic acid (Sia), constitutes a family of N- and O-substituted 9-carbon monosaccharides. Frequent modification of O-acetylations at positions C-7, C-8, or C-9 of Sias generates a family of O-acetylated sialic acid (O-AcSia) and plays crucial roles in many cellular events like cell-cell adhesion, proliferation, migration, etc. Therefore, identification and analysis of O-acetylated sialoglycoproteins (O-AcSGPs) are important. In this chapter, we describe several approaches for successful identification of O-AcSGPs. We broadly divide them into two categories, i.e., invasive and noninvasive methods. Several O-AcSias-binding probes are used for this purpose. Detailed methodologies for step-by-step identification using these probes have been discussed. We have also included a few invasive analytical methods for identification and quantitation of O-AcSias. Several indirect methods are also elaborated for such purpose, in which O-acetyl group from sialic acids is initially removed followed by detection of Sias by several approaches. For molecular identification, we have described methods for affinity purification of O-AcSGPs using an O-AcSias-binding lectin as an affinity matrix followed by sequencing using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF-TOF) mass spectroscopy (MS). In spite of special attention, loss of O-acetyl groups due to its sensitivity towards alkaline pH and high temperature along with migration of labile O-acetyl groups from C7-C8-C9 during sample preparation is difficult to avoid. Therefore there is always a risk for underestimation of O-AcSias.
Ren, Lihui; Ye, Huiming; Wang, Ping; Cui, Yuxia; Cao, Shichang; Lv, Shuzheng
2014-01-01
Background and aims: This study is to compare the short-term and long-term mortality in patients with ST-segment elevation myocardial infarction (STEMI) and non-ST-segment elevation acute coronary syndrome (NSTE-ACS) after percutaneous coronary intervention (PCI). Methods and results: A total of 266 STEMI patients and 140 NSTE-ACS patients received PCI. Patients were followed up by telephone or at medical record or case statistics center and were followed up for 4 years. Descriptive statistics and multivariate survival analyses were employed to compare the mortality in STEMI and NSTE-ACS. All statistical analyses were performed by SPSS19.0 software package. NSTE-ACS patients had significantly higher clinical and angiographic risk profiles at baseline. During the 4-year follow-up, all-cause mortality in STEMI was significantly higher than that in NSTE-ACS after coronary stent placement (HR 1.496, 95% CI 1.019-2.197). In a landmark analysis no difference was seen in all-cause mortality for both STEMI and NSTE-ACS between 6 month and 4 years of follow-up (HR 1.173, 95% CI 0.758-1.813). Conclusions: Patients with STEMI have a worse long-term prognosis compared to patients with NSTE-ACS after PCI, due to higher short-term mortality. However, NSTE-ACS patients have a worse long-term survival after 6 months. PMID:25664077
Bartolucci, Veronica
2017-01-01
This work presents a hardware/software data acquisition system developed for monitoring the temperature in real time of the cells in Air-Cooled Polymer Electrolyte Fuel Cells (AC-PEFC). These fuel cells are of great interest because they can carry out, in a single operation, the processes of oxidation and refrigeration. This allows reduction of weight, volume, cost and complexity of the control system in the AC-PEFC. In this type of PEFC (and in general in any PEFC), the reliable monitoring of temperature along the entire surface of the stack is fundamental, since a suitable temperature and a regular distribution thereof, are key for a better performance of the stack and a longer lifetime under the best operating conditions. The developed data acquisition (DAQ) system can perform non-intrusive temperature measurements of each individual cell of an AC-PEFC stack of any power (from watts to kilowatts). The stack power is related to the temperature gradient; i.e., a higher power corresponds to a higher stack surface, and consequently higher temperature difference between the coldest and the hottest point. The developed DAQ system has been implemented with the low-cost open-source platform Arduino, and it is completed with a modular virtual instrument that has been developed using NI LabVIEW. Temperature vs time evolution of all the cells of an AC-PEFC both together and individually can be registered and supervised. The paper explains comprehensively the developed DAQ system together with experimental results that demonstrate the suitability of the system. PMID:28698497
Segura, Francisca; Bartolucci, Veronica; Andújar, José Manuel
2017-07-09
This work presents a hardware/software data acquisition system developed for monitoring the temperature in real time of the cells in Air-Cooled Polymer Electrolyte Fuel Cells (AC-PEFC). These fuel cells are of great interest because they can carry out, in a single operation, the processes of oxidation and refrigeration. This allows reduction of weight, volume, cost and complexity of the control system in the AC-PEFC. In this type of PEFC (and in general in any PEFC), the reliable monitoring of temperature along the entire surface of the stack is fundamental, since a suitable temperature and a regular distribution thereof, are key for a better performance of the stack and a longer lifetime under the best operating conditions. The developed data acquisition (DAQ) system can perform non-intrusive temperature measurements of each individual cell of an AC-PEFC stack of any power (from watts to kilowatts). The stack power is related to the temperature gradient; i.e., a higher power corresponds to a higher stack surface, and consequently higher temperature difference between the coldest and the hottest point. The developed DAQ system has been implemented with the low-cost open-source platform Arduino, and it is completed with a modular virtual instrument that has been developed using NI LabVIEW. Temperature vs time evolution of all the cells of an AC-PEFC both together and individually can be registered and supervised. The paper explains comprehensively the developed DAQ system together with experimental results that demonstrate the suitability of the system.
NASA Technical Reports Server (NTRS)
Tomayko, James E.
1986-01-01
Twenty-five years of spacecraft onboard computer development have resulted in a better understanding of the requirements for effective, efficient, and fault tolerant flight computer systems. Lessons from eight flight programs (Gemini, Apollo, Skylab, Shuttle, Mariner, Voyager, and Galileo) and three reserach programs (digital fly-by-wire, STAR, and the Unified Data System) are useful in projecting the computer hardware configuration of the Space Station and the ways in which the Ada programming language will enhance the development of the necessary software. The evolution of hardware technology, fault protection methods, and software architectures used in space flight in order to provide insight into the pending development of such items for the Space Station are reviewed.
Integrated Control System Engineering Support.
1984-12-01
interference susceptibility. " Study multiplex bus loading requirements. Flight Control Software 0 " Demonstrate efficiencies of modular software and...Major technical thrusts include the development of: (a) task-tailored mutimode con- trol laws incorporating direct force and weapon line pointing
NASA Astrophysics Data System (ADS)
Cheng, Song; Zhang, Shengzhou; Zhang, Libo; Xia, Hongying; Peng, Jinhui; Wang, Shixing
2017-09-01
Eupatorium adenophorum, global exotic weeds, was utilized as feedstock for preparation of activated carbon (AC) via microwave-induced KOH activation. Influences of the three vital process parameters - microwave power, activation time and impregnation ratio (IR) - have been assessed on the adsorption capacity and yield of AC. The process parameters were optimized utilizing the Design Expert software and were identified to be a microwave power of 700 W, an activation time of 15 min and an IR of 4, with the resultant iodine adsorption number and yield being 2,621 mg/g and 28.25 %, respectively. The key parameters that characterize the AC such as the brunauer emmett teller (BET) surface area, total pore volume and average pore diameter were estimated to be 3,918 m2/g, 2,383 ml/g and 2.43 nm, respectively, under the optimized process conditions. The surface characteristics of AC were characterized by Fourier transform infrared spectroscopy, scanning electron microscope and Transmission electron microscope.
Space station dynamics, attitude control and momentum management
NASA Technical Reports Server (NTRS)
Sunkel, John W.; Singh, Ramen P.; Vengopal, Ravi
1989-01-01
The Space Station Attitude Control System software test-bed provides a rigorous environment for the design, development and functional verification of GN and C algorithms and software. The approach taken for the simulation of the vehicle dynamics and environmental models using a computationally efficient algorithm is discussed. The simulation includes capabilities for docking/berthing dynamics, prescribed motion dynamics associated with the Mobile Remote Manipulator System (MRMS) and microgravity disturbances. The vehicle dynamics module interfaces with the test-bed through the central Communicator facility which is in turn driven by the Station Control Simulator (SCS) Executive. The Communicator addresses issues such as the interface between the discrete flight software and the continuous vehicle dynamics, and multi-programming aspects such as the complex flow of control in real-time programs. Combined with the flight software and redundancy management modules, the facility provides a flexible, user-oriented simulation platform.
Changes and challenges in the Software Engineering Laboratory
NASA Technical Reports Server (NTRS)
Pajerski, Rose
1994-01-01
Since 1976, the Software Engineering Laboratory (SEL) has been dedicated to understanding and improving the way in which one NASA organization, the Flight Dynamics Division (FDD), develops, maintains, and manages complex flight dynamics systems. The SEL is composed of three member organizations: NASA/GSFC, the University of Maryland, and Computer Sciences Corporation. During the past 18 years, the SEL's overall goal has remained the same: to improve the FDD's software products and processes in a measured manner. This requires that each development and maintenance effort be viewed, in part, as a SEL experiment which examines a specific technology or builds a model of interest for use on subsequent efforts. The SEL has undertaken many technology studies while developing operational support systems for numerous NASA spacecraft missions.
NASA Technical Reports Server (NTRS)
Slominski, Christopher J.; Plyler, Valerie E.; Dickson, Richard W.
1992-01-01
This document describes the software created for the Sperry Microprocessor Color Display System used for the Advanced Transport Operating Systems (ATOPS) project on the Transport Systems Research Vehicle (TSRV). The software delivery known as the 'baseline display system', is the one described in this document. Throughout this publication, module descriptions are presented in a standardized format which contains module purpose, calling sequence, detailed description, and global references. The global reference section includes procedures and common variables referenced by a particular module. The system described supports the Research Flight Deck (RFD) of the TSRV. The RFD contains eight cathode ray tubes (CRTs) which depict a Primary Flight Display, Navigation Display, System Warning Display, Takeoff Performance Monitoring System Display, and Engine Display.
APMS: An Integrated Suite of Tools for Measuring Performance and Safety
NASA Technical Reports Server (NTRS)
Statler, Irving C.; Lynch, Robert E.; Connors, Mary M. (Technical Monitor)
1997-01-01
This is a report of work in progress. In it, I summarize the status of the research and development of the Aviation Performance Measuring System (APMS) for managing, processing, and analyzing digital flight-recorded data. The objectives of the NASA-FAA APMS research project are to establish a sound scientific and technological basis for flight-data analysis, to define an open and flexible architecture for flight-data-analysis systems, and to articulate guidelines for a standardized database structure on which to continue to build future flight-data-analysis extensions. APMS will offer to the air transport community an open, voluntary standard for flight-data-analysis software, a standard that will help to ensure suitable functionality, and data interchangeability, among competing software programs. APMS will develop and document the methodologies, algorithms, and procedures for data management and analyses to enable users to easily interpret the implications regarding safety and efficiency of operations. APMS does not entail the implementation of a nationwide flight-data-collection system. It is intended to provide technical tools to ease the large-scale implementation of flight-data analyses at both the air-carrier and the national-airspace levels in support of their Flight Operations and Quality Assurance (FOQA) Programs and Advanced Qualifications Programs (AQP). APMS cannot meet its objectives unless it develops tools that go substantially beyond the capabilities of the current commercially available software and supporting analytic methods that are mainly designed to count special events. These existing capabilities, while of proven value, were created primarily with the needs of air crews in mind. APMS tools must serve the needs of the government and air carriers, as well as air crews, to fully support the FOQA and AQP programs. They must be able to derive knowledge not only through the analysis of single flights (special-event detection), but through statistical evaluation of the performance of large groups of flights. This paper describes the integrated suite of tools that will assist analysts in evaluating the operational performance and safety of the national air transport system, the air carrier, and the air crew.
NASA Technical Reports Server (NTRS)
Statler, Irving C.; Connor, Mary M. (Technical Monitor)
1998-01-01
This is a report of work in progress. In it, I summarize the status of the research and development of the Aviation Performance Measuring System (APMS) for managing, processing, and analyzing digital flight-recorded data, The objectives of the NASA-FAA APMS research project are to establish a sound scientific and technological basis for flight-data analysis, to define an open and flexible architecture for flight-data analysis systems, and to articulate guidelines for a standardized database structure on which to continue to build future flight-data-analysis extensions. APMS offers to the air transport community an open, voluntary standard for flight-data-analysis software; a standard that will help to ensure suitable functionality and data interchangeability among competing software programs. APMS will develop and document the methodologies, algorithms, and procedures for data management and analyses to enable users to easily interpret the implications regarding safety and efficiency of operations. APMS does not entail the implementation of a nationwide flight-data-collection system. It is intended to provide technical tools to ease the large-scale implementation of flight-data analyses at both the air-carrier and the national-airspace levels in support of their Flight Operations and Quality Assurance (FOQA) Programs and Advanced Qualifications Programs (AQP). APMS cannot meet its objectives unless it develops tools that go substantially beyond the capabilities of the current commercially available software and supporting analytic methods that are mainly designed to count special events. These existing capabilities, while of proven value, were created primarily with the needs-of aircrews in mind. APMS tools must serve the needs of the government and air carriers, as well as aircrews, to fully support the FOQA and AQP programs. They must be able to derive knowledge not only through the analysis of single flights (special-event detection), but also through statistical evaluation of the performance of large groups of flights. This paper describes the integrated suite of tools that will assist analysts in evaluating the operational performance and safety of the national air transport system, the air carrier, and the aircrew.
APMS: An Integrated Suite of Tools for Measuring Performance and Safety
NASA Technical Reports Server (NTRS)
Statler, Irving C. (Technical Monitor)
1997-01-01
This is a report of work in progress. In it, I summarize the status of the research and development of the Aviation Performance Measuring System (APMS) for managing, processing, and analyzing digital flight-recorded data. The objectives of the NASA-FAA APMS research project are to establish a sound scientific and technological basis for flight-data analysis, to define an open and flexible architecture for flight-data-analysis systems, and to articulate guidelines for a standardized database structure on which to continue to build future flight-data-analysis extensions . APMS will offer to the air transport community an open, voluntary standard for flight-data-analysis software, a standard that will help to ensure suitable functionality, and data interchangeability, among competing software programs. APMS will develop and document the methodologies, algorithms, and procedures for data management and analyses to enable users to easily interpret the implications regarding safety and efficiency of operations. APMS does not entail the implementation of a nationwide flight-data-collection system. It is intended to provide technical tools to ease the large-scale implementation of flight-data analyses at both the air-carrier and the national-airspace levels in support of their Flight Operations and Quality Assurance (FOQA) Programs and Advanced Qualifications Programs (AQP). APMS cannot meet its objectives unless it develops tools that go substantially beyond the capabilities of the current commercially available software and supporting analytic methods that are mainly designed to count special events. These existing capabilities, while of proven value, were created primarily with the needs of air crews in mind. APMS tools must serve the needs of the government and air carriers, as well as air crews, to fully support the FOQA and AQP programs. They must be able to derive knowledge not only through the analysis of single flights (special-event detection), but through statistical evaluation of the performance of large groups of flights. This paper describes the integrated suite of tools that will assist analysts in evaluating the operational performance and safety of the national air transport system, the air carrier, and the air crew.
APMS: An Integrated Set of Tools for Measuring Safety
NASA Technical Reports Server (NTRS)
Statler, Irving C.; Reynard, William D. (Technical Monitor)
1996-01-01
This is a report of work in progress. In it, I summarize the status of the research and development of the Aviation Performance Measuring System (APMS) for managing, processing, and analyzing digital flight-recorded data. The objectives of the NASA-FAA APMS research project are to establish a sound scientific and technological basis for flight-data analysis, to define an open and flexible architecture for flight-data-analysis systems, and to articulate guidelines for a standardized database structure on which to continue to build future flight-data-analysis extensions. APMS will offer to the air transport community an open, voluntary standard for flight-data-analysis software, a standard that will help to ensure suitable functionality, and data interchangeability, among competing software programs. APMS will develop and document the methodologies, algorithms, and procedures for data management and analyses to enable users to easily interpret the implications regarding safety and efficiency of operations. APMS does not entail the implementation of a nationwide flight-data-collection system. It is intended to provide technical tools to ease the large-scale implementation of flight-data analyses at both the air-carrier and the national-airspace levels in support of their Flight Operations and Quality Assurance (FOQA) Programs and Advanced Qualifications Programs (AQP). APMS cannot meet its objectives unless it develops tools that go substantially beyond the capabilities of the current commercially available software and supporting analytic methods that are mainly designed to count special events. These existing capabilities, while of proven value, were created primarily with the needs of air crews in mind. APMS tools must serve the needs of the government and air carriers, as well as air crews, to fully support the FOQA and AQP programs. They must be able to derive knowledge not only through the analysis of single flights (special-event detection), but through statistical evaluation of the performance of large groups of flights. This paper describes the integrated suite of tools that will assist analysts in evaluating the operational performance and safety of the national air transport system, the air carrier, and the air crew.
Orbiter subsystem hardware/software interaction analysis. Volume 8: Forward reaction control system
NASA Technical Reports Server (NTRS)
Becker, D. D.
1980-01-01
The results of the orbiter hardware/software interaction analysis for the AFT reaction control system are presented. The interaction between hardware failure modes and software are examined in order to identify associated issues and risks. All orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are discussed.
Building an experience factory for maintenance
NASA Technical Reports Server (NTRS)
Valett, Jon D.; Condon, Steven E.; Briand, Lionel; Kim, Yong-Mi; Basili, Victor R.
1994-01-01
This paper reports the preliminary results of a study of the software maintenance process in the Flight Dynamics Division (FDD) of the National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC). This study is being conducted by the Software Engineering Laboratory (SEL), a research organization sponsored by the Software Engineering Branch of the FDD, which investigates the effectiveness of software engineering technologies when applied to the development of applications software. This software maintenance study began in October 1993 and is being conducted using the Quality Improvement Paradigm (QIP), a process improvement strategy based on three iterative steps: understanding, assessing, and packaging. The preliminary results represent the outcome of the understanding phase, during which SEL researchers characterized the maintenance environment, product, and process. Findings indicate that a combination of quantitative and qualitative analysis is effective for studying the software maintenance process, that additional measures should be collected for maintenance (as opposed to new development), and that characteristics such as effort, error rate, and productivity are best considered on a 'release' basis rather than on a project basis. The research thus far has documented some basic differences between new development and software maintenance. It lays the foundation for further application of the QIP to investigate means of improving the maintenance process and product in the FDD.
Supercomputer modeling of flow past hypersonic flight vehicles
NASA Astrophysics Data System (ADS)
Ermakov, M. K.; Kryukov, I. A.
2017-02-01
A software platform for MPI-based parallel solution of the Navier-Stokes (Euler) equations for viscous heat-conductive compressible perfect gas on 3-D unstructured meshes is developed. The discretization and solution of the Navier-Stokes equations are constructed on generalized S.K. Godunov’s method and the second order approximation in space and time. Developed software platform allows to carry out effectively flow past hypersonic flight vehicles simulations for the Mach numbers 6 and higher, and numerical meshes with up to 1 billion numerical cells and with up to 128 processors.
Software technology testbed softpanel prototype
NASA Technical Reports Server (NTRS)
1991-01-01
The following subject areas are covered: analysis of using Ada for the development of real-time control systems for the Space Station; analysis of the functionality of the Application Generator; analysis of the User Support Environment criteria; analysis of the SSE tools and procedures which are to be used for the development of ground/flight software for the Space Station; analysis if the CBATS tutorial (an Ada tutorial package); analysis of Interleaf; analysis of the Integration, Test and Verification process of the Space Station; analysis of the DMS on-orbit flight architecture; analysis of the simulation architecture.
Towards FAA Certification of UAVs
NASA Technical Reports Server (NTRS)
Nelson, Stacy
2003-01-01
As of June 30, 2003, all Unmanned Aerial Vehicles (UAV), no matter how small, must adhere to the same FAA regulations as human-piloted aircraft. These regulations include certification for flying in controlled airspace and certification of flight software based on RTCA DO-178B. This paper provides an overview of the steps necessary to obtain certification, as well as a discussion about the challenges UAV's face when trying to meet these requirements. It is divided into two parts: 1) Certifications for Flying in Controlled Airspace; 2) Certification of Flight Software per RTCA DO-178B.
Flight software operation of the Hubble Space Telescope fine guidance sensor
NASA Technical Reports Server (NTRS)
Rodden, J. J.; Dougherty, H. J.; Cormier, D. J.
1988-01-01
The Hubble Space Telescope (HST) is to carry five major scientific instruments to collect imagery, spectrographic, and photometric astronomical data. The Pointing Control System is designed to achieve pointing accuracies and line of sight jitter levels an order of magnitude less than can be achieved with ground mounted telescopes. This paper describes the operation of the pointing control system flight software in targeting a celestial object in a science instrument aperture and in performing the coordinate transformations necessary for commanding the fine guidance sensor and determining the attitude-error corrections.
1984-10-01
functions", Numer . Math., Engineering , Massachusetts Institute of Technology, 1980. (see 10, 177-183, 1967. also MIT Al Lab Technical Report 597, 1980...and steady growth. We have augmented our hardware and distance. In related work, we have explored the use of software base (Vax plus Grinnel, running...capabilities will be the body of software currently ac- 8. COMPUTING ENVIRONMENT FOR cumulated in the testbed and other programs now being devel- IU