Sample records for act balance sheet

  1. 17 CFR 210.6-04 - Balance sheets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Balance sheets. 210.6-04... 1940, AND ENERGY POLICY AND CONSERVATION ACT OF 1975 Registered Investment Companies § 210.6-04 Balance sheets. This rule is applicable to balance sheets filed by registered investment companies except for...

  2. 17 CFR 210.6-04 - Balance sheets.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false Balance sheets. 210.6-04... 1940, AND ENERGY POLICY AND CONSERVATION ACT OF 1975 Registered Investment Companies § 210.6-04 Balance sheets. This rule is applicable to balance sheets filed by registered investment companies except for...

  3. 17 CFR 210.7-03 - Balance sheets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Balance sheets. 210.7-03... 1940, AND ENERGY POLICY AND CONSERVATION ACT OF 1975 Insurance Companies § 210.7-03 Balance sheets. (a... otherwise permitted by the Commission, should appear on the face of the balance sheets and in the notes...

  4. 17 CFR 210.7-03 - Balance sheets.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false Balance sheets. 210.7-03... 1940, AND ENERGY POLICY AND CONSERVATION ACT OF 1975 Insurance Companies § 210.7-03 Balance sheets. (a... otherwise permitted by the Commission, should appear on the face of the balance sheets and in the notes...

  5. 17 CFR 210.9-03 - Balance sheets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Balance sheets. 210.9-03... 1940, AND ENERGY POLICY AND CONSERVATION ACT OF 1975 Bank Holding Companies § 210.9-03 Balance sheets... face of the balance sheets or in the notes thereto. Assets 1. Cash and due from banks. The amounts in...

  6. 17 CFR 210.9-03 - Balance sheets.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false Balance sheets. 210.9-03... 1940, AND ENERGY POLICY AND CONSERVATION ACT OF 1975 Bank Holding Companies § 210.9-03 Balance sheets... face of the balance sheets or in the notes thereto. Assets 1. Cash and due from banks. The amounts in...

  7. 46 CFR 232.4 - Balance sheet accounts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Balance sheet accounts. 232.4 Section 232.4 Shipping... ACTIVITIES UNIFORM FINANCIAL REPORTING REQUIREMENTS Balance Sheet § 232.4 Balance sheet accounts. (a.... (b) Purpose of balance sheet accounts. The balance sheet accounts are intended to disclose the...

  8. 46 CFR 232.4 - Balance sheet accounts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Balance sheet accounts. 232.4 Section 232.4 Shipping... ACTIVITIES UNIFORM FINANCIAL REPORTING REQUIREMENTS Balance Sheet § 232.4 Balance sheet accounts. (a.... (b) Purpose of balance sheet accounts. The balance sheet accounts are intended to disclose the...

  9. 49 CFR 1243.2 - Condensed balance sheet.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Condensed balance sheet. 1243.2 Section 1243.2... § 1243.2 Condensed balance sheet. Commencing with reports for the 3 months beginning January 1, 1972, and... hereby, required to compile and file quarterly reports of balance sheet items in accordance with...

  10. 49 CFR 1243.2 - Condensed balance sheet.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Condensed balance sheet. 1243.2 Section 1243.2... § 1243.2 Condensed balance sheet. Commencing with reports for the 3 months beginning January 1, 1972, and... hereby, required to compile and file quarterly reports of balance sheet items in accordance with...

  11. 17 CFR 210.5-02 - Balance sheets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Balance sheets. 210.5-02... Balance sheets. The purpose of this rule is to indicate the various line items and certain additional... face of the balance sheets or related notes filed for the persons to whom this article pertains (see...

  12. 17 CFR 210.5-02 - Balance sheets.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false Balance sheets. 210.5-02... Balance sheets. The purpose of this rule is to indicate the various line items and certain additional... face of the balance sheets or related notes filed for the persons to whom this article pertains (see...

  13. 12 CFR 615.5211 - Risk categories-balance sheet assets.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Risk categories-balance sheet assets. 615.5211...—balance sheet assets. Section 615.5210(c) specifies certain balance sheet assets that are not assigned to the risk categories set forth below. All other balance sheet assets are assigned to the percentage...

  14. 12 CFR 615.5211 - Risk categories-balance sheet assets.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Risk categories-balance sheet assets. 615.5211...—balance sheet assets. Section 615.5210(c) specifies certain balance sheet assets that are not assigned to the risk categories set forth below. All other balance sheet assets are assigned to the percentage...

  15. 17 CFR 210.3-01 - Consolidated balance sheets.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false Consolidated balance sheets... Statements § 210.3-01 Consolidated balance sheets. (a) There shall be filed, for the registrant and its subsidiaries consolidated, audited balance sheets as of the end of each of the two most recent fiscal years. If...

  16. 17 CFR 210.3-01 - Consolidated balance sheets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Consolidated balance sheets... Statements § 210.3-01 Consolidated balance sheets. (a) There shall be filed, for the registrant and its subsidiaries consolidated, audited balance sheets as of the end of each of the two most recent fiscal years. If...

  17. 14 CFR Section 6 - Objective Classification of Balance Sheet Elements

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Objective Classification of Balance Sheet... AIR CARRIERS Balance Sheet Classifications Section 6 Objective Classification of Balance Sheet...) Record here all general and working funds available on demand as of the date of the balance sheet which...

  18. 14 CFR Section 6 - Objective Classification of Balance Sheet Elements

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Objective Classification of Balance Sheet... AIR CARRIERS Balance Sheet Classifications Section 6 Objective Classification of Balance Sheet...) Record here all general and working funds available on demand as of the date of the balance sheet which...

  19. 47 CFR 32.101 - Structure of the balance sheet accounts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Structure of the balance sheet accounts. 32.101... UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.101 Structure of the balance sheet accounts. The Balance Sheet accounts shall be maintained as follows...

  20. 47 CFR 32.101 - Structure of the balance sheet accounts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Structure of the balance sheet accounts. 32.101... UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.101 Structure of the balance sheet accounts. The Balance Sheet accounts shall be maintained as follows...

  1. 14 CFR Section 3 - Chart of Balance Sheet Accounts

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Chart of Balance Sheet Accounts Section 3 Section 3 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION... Balance Sheet Classifications Section 3 Chart of Balance Sheet Accounts [See footnotes at end of table...

  2. 14 CFR Section 3 - Chart of Balance Sheet Accounts

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Chart of Balance Sheet Accounts Section 3 Section 3 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION... Balance Sheet Classifications Section 3 Chart of Balance Sheet Accounts [See footnotes at end of table...

  3. 12 CFR 615.5212 - Credit conversion factors-off-balance sheet items.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Credit conversion factors-off-balance sheet... Credit conversion factors—off-balance sheet items. (a) The face amount of an off-balance sheet item is generally incorporated into risk-weighted assets in two steps. For most off-balance sheet items, the face...

  4. 12 CFR 615.5212 - Credit conversion factors-off-balance sheet items.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Credit conversion factors-off-balance sheet... Credit conversion factors—off-balance sheet items. (a) The face amount of an off-balance sheet item is generally incorporated into risk-weighted assets in two steps. For most off-balance sheet items, the face...

  5. 14 CFR Section 23 - Certification and Balance Sheet Elements

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Certification and Balance Sheet Elements... AIR CARRIERS Financial Reporting Requirements Section 23 Certification and Balance Sheet Elements... report except as specifically noted in the financial and statistical statements. Schedule B-1 Balance...

  6. 14 CFR Section 23 - Certification and Balance Sheet Elements

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Certification and Balance Sheet Elements... AIR CARRIERS Financial Reporting Requirements Section 23 Certification and Balance Sheet Elements... report except as specifically noted in the financial and statistical statements. Schedule B-1 Balance...

  7. Balance Velocities of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Joughin, Ian; Fahnestock, Mark; Ekholm, Simon; Kwok, Ron

    1997-01-01

    We present a map of balance velocities for the Greenland ice sheet. The resolution of the underlying DEM, which was derived primarily from radar altimetry data, yields far greater detail than earlier balance velocity estimates for Greenland. The velocity contours reveal in striking detail the location of an ice stream in northeastern Greenland, which was only recently discovered using satellite imagery. Enhanced flow associated with all of the major outlets is clearly visible, although small errors in the source data result in less accurate estimates of the absolute flow speeds. Nevertheless, the balance map is useful for ice-sheet modelling, mass balance studies, and field planning.

  8. A Case Study and Balance Sheet Approach to Unemployment.

    ERIC Educational Resources Information Center

    Hesketh, Beryl; And Others

    1987-01-01

    Describes positive and negative aspects of employment and unemployment in a balance sheet framework. Discusses the value of the balance sheet approach in understanding individual differences in reactions to unemployment. (Author/KS)

  9. On the balance of stresses in the plasma sheet.

    NASA Technical Reports Server (NTRS)

    Rich, F. J.; Wolf, R. A.; Vasyliunas, V. M.

    1972-01-01

    The stress resulting from magnetic tension on the neutral sheet must, in a steady state, be balanced by any one or a combination of (1) a pressure gradient in the direction along the axis of the tail, (2) a similar gradient of plasma flow kinetic energy, and (3) the tension resulting from a pressure anisotropy within the plasma sheet. Stress balance in the first two cases requires that the ratios h/LX and BZ/BX be of the same order of magnitude, where h is the half-thickness of the neutral sheet, LX is the length scale for variations along the axis of the tail, and BZ and BX are the magnetic field components in the plasma sheet just outside the neutral sheet. The second case requires, in addition, that the plasma flow speed within the neutral sheet be of the order of or larger than the Alfven speed outside the neutral sheet. Stress balance in the third case requires that just outside the neutral sheet the plasma pressure obey the marginal firehose stability condition.

  10. Trends in ice sheet mass balance, 1992 to 2017

    NASA Astrophysics Data System (ADS)

    Shepherd, A.; Ivins, E. R.; Smith, B.; Velicogna, I.; Whitehouse, P. L.; Rignot, E. J.; van den Broeke, M. R.; Briggs, K.; Hogg, A.; Krinner, G.; Joughin, I. R.; Nowicki, S.; Payne, A. J.; Scambos, T.; Schlegel, N.; Moyano, G.; Konrad, H.

    2017-12-01

    The Ice Sheet Mass Balance Inter-Comparison Exercise (IMBIE) is a community effort, jointly supported by ESA and NASA, that aims to provide a consensus estimate of ice sheet mass balance from satellite gravimetry, altimetry and mass budget assessments, on an annual basis. The project has five experiment groups, one for each of the satellite techniques and two others to analyse surface mass balance (SMB) and glacial isostatic adjustment (GIA). The basic premise for the exercise is that individual ice sheet mass balance datasets are generated by project participants using common spatial and temporal domains to allow meaningful inter-comparison, and this controlled comparison in turn supports aggregation of the individual datasets over their full period. Participation is open to the full community, and the quality and consistency of submissions is regulated through a series of data standards and documentation requirements. The second phase of IMBIE commenced in 2015, with participant data submitted in 2016 and a combined estimate due for public release in 2017. Data from 48 participant groups were submitted to one of the three satellite mass balance technique groups or to the ancillary dataset groups. The individual mass balance estimates and ancillary datasets have been compared and combined within the respective groups. Following this, estimates of ice sheet mass balance derived from the individual techniques were then compared and combined. The result is single estimates of ice sheet mass balance for Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula. The participants, methodology and results of the exercise will be presented in this paper.

  11. Off-Balance Sheet Financing.

    ERIC Educational Resources Information Center

    Adams, Matthew C.

    1998-01-01

    Examines off-balance sheet financing, the facilities use of outsourcing for selected needs, as a means of saving operational costs and using facility assets efficiently. Examples of using outside sources for energy supply and food services, as well as partnering with business for facility expansion are provided. Concluding comments address tax…

  12. 47 CFR 32.3000 - Instructions for balance sheet accounts-Depreciation and amortization.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Instructions for balance sheet accounts-Depreciation and amortization. 32.3000 Section 32.3000 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... for Balance Sheet Accounts § 32.3000 Instructions for balance sheet accounts—Depreciation and...

  13. 47 CFR 32.3000 - Instructions for balance sheet accounts-Depreciation and amortization.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Instructions for balance sheet accounts-Depreciation and amortization. 32.3000 Section 32.3000 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... for Balance Sheet Accounts § 32.3000 Instructions for balance sheet accounts—Depreciation and...

  14. The balance sheet technique. Volume I. The balance sheet analysis technique for preconstruction review of airports and highways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaBelle, S.J.; Smith, A.E.; Seymour, D.A.

    1977-02-01

    The technique applies equally well to new or existing airports. The importance of accurate accounting of emissions, cannot be overstated. The regional oxidant modelling technique used in conjunction with a balance sheet review must be a proportional reduction technique. This type of emission balancing presumes equality of all sources in the analysis region. The technique can be applied successfully in the highway context, either in planning at the system level or looking only at projects individually. The project-by-project reviews could be used to examine each project in the same way as the airport projects are examined for their impact onmore » regional desired emission levels. The primary limitation of this technique is that it should not be used when simulation models have been used for regional oxidant air quality. In the case of highway projects, the balance sheet technique might appear to be limited; the real limitations are in the transportation planning process. That planning process is not well-suited to the needs of air quality forecasting. If the transportation forecasting techniques are insensitive to change in the variables that affect HC emissions, then no internal emission trade-offs can be identified, and the initial highway emission forecasts are themselves suspect. In general, the balance sheet technique is limited by the quality of the data used in the review. Additionally, the technique does not point out effective trade-off strategies, nor does it indicate when it might be worthwhile to ignore small amounts of excess emissions. Used in the context of regional air quality plans based on proportional reduction models, the balance sheet analysis technique shows promise as a useful method by state or regional reviewing agencies.« less

  15. 47 CFR 32.3999 - Instructions for balance sheet accounts-liabilities and stockholders' equity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Instructions for balance sheet accounts-liabilities and stockholders' equity. 32.3999 Section 32.3999 Telecommunication FEDERAL COMMUNICATIONS... Instructions for Balance Sheet Accounts § 32.3999 Instructions for balance sheet accounts—liabilities and...

  16. 47 CFR 32.3999 - Instructions for balance sheet accounts-liabilities and stockholders' equity.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Instructions for balance sheet accounts-liabilities and stockholders' equity. 32.3999 Section 32.3999 Telecommunication FEDERAL COMMUNICATIONS... Instructions for Balance Sheet Accounts § 32.3999 Instructions for balance sheet accounts—liabilities and...

  17. Learning from Balance Sheet Visualization

    ERIC Educational Resources Information Center

    Tanlamai, Uthai; Soongswang, Oranuj

    2011-01-01

    This exploratory study examines alternative visuals and their effect on the level of learning of balance sheet users. Executive and regular classes of graduate students majoring in information technology in business were asked to evaluate the extent of acceptance and enhanced capability of these alternative visuals toward their learning…

  18. The Ice Sheet Mass Balance Inter-comparison Exercise

    NASA Astrophysics Data System (ADS)

    Shepherd, A.; Ivins, E. R.

    2015-12-01

    Fluctuations in the mass of ice stored in Antarctica and Greenland are of considerable societal importance. The Ice Sheet Mass Balance Inter-Comparison Exercise (IMBIE) is a joint-initiative of ESA and NASA aimed at producing a single estimate of the global sea level contribution to polar ice sheet losses. Within IMBIE, estimates of ice sheet mass balance are developed from a variety of satellite geodetic techniques using a common spatial and temporal reference frame and a common appreciation of the contributions due to external signals. The project brings together the laboratories and space agencies that have been instrumental in developing independent estimates of ice sheet mass balance to date. In its first phase, IMBIE involved 27 science teams, and delivered a first community assessment of ice sheet mass imbalance to replace 40 individual estimates. The project established that (i) there is good agreement between the three main satellite-based techniques for estimating ice sheet mass balance, (ii) combining satellite data sets leads to significant improvement in certainty, (iii) the polar ice sheets contributed 11 ± 4 mm to global sea levels between 1992 and 2012, and (iv) that combined ice losses from Antarctica and Greenland have increased over time, rising from 10% of the global trend in the early 1990's to 30% in the late 2000's. Demand for an updated assessment has grown, and there are now new satellite missions, new geophysical corrections, new techniques, and new teams producing data. The period of overlap between independent satellite techniques has increased from 5 to 12 years, and the full period of satellite data over which an assessment can be performed has increased from 19 to 40 years. It is also clear that multiple satellite techniques are required to confidently separate mass changes associated with snowfall and ice dynamical imbalance - information that is of critical importance for climate modelling. This presentation outlines the approach

  19. Greenland Ice Sheet: High-Elevation Balance and Peripheral Thinning.

    PubMed

    Krabill; Abdalati; Frederick; Manizade; Martin; Sonntag; Swift; Thomas; Wright; Yungel

    2000-07-21

    Aircraft laser-altimeter surveys over northern Greenland in 1994 and 1999 have been coupled with previously reported data from southern Greenland to analyze the recent mass-balance of the Greenland Ice Sheet. Above 2000 meters elevation, the ice sheet is in balance on average but has some regions of local thickening or thinning. Thinning predominates at lower elevations, with rates exceeding 1 meter per year close to the coast. Interpolation of our results between flight lines indicates a net loss of about 51 cubic kilometers of ice per year from the entire ice sheet, sufficient to raise sea level by 0.13 millimeter per year-approximately 7% of the observed rise.

  20. A reconciled estimate of ice-sheet mass balance.

    PubMed

    Shepherd, Andrew; Ivins, Erik R; A, Geruo; Barletta, Valentina R; Bentley, Mike J; Bettadpur, Srinivas; Briggs, Kate H; Bromwich, David H; Forsberg, René; Galin, Natalia; Horwath, Martin; Jacobs, Stan; Joughin, Ian; King, Matt A; Lenaerts, Jan T M; Li, Jilu; Ligtenberg, Stefan R M; Luckman, Adrian; Luthcke, Scott B; McMillan, Malcolm; Meister, Rakia; Milne, Glenn; Mouginot, Jeremie; Muir, Alan; Nicolas, Julien P; Paden, John; Payne, Antony J; Pritchard, Hamish; Rignot, Eric; Rott, Helmut; Sørensen, Louise Sandberg; Scambos, Ted A; Scheuchl, Bernd; Schrama, Ernst J O; Smith, Ben; Sundal, Aud V; van Angelen, Jan H; van de Berg, Willem J; van den Broeke, Michiel R; Vaughan, David G; Velicogna, Isabella; Wahr, John; Whitehouse, Pippa L; Wingham, Duncan J; Yi, Donghui; Young, Duncan; Zwally, H Jay

    2012-11-30

    We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agreement between different satellite methods--especially in Greenland and West Antarctica--and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by -142 ± 49, +14 ± 43, -65 ± 26, and -20 ± 14 gigatonnes year(-1), respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 ± 0.20 millimeter year(-1) to the rate of global sea-level rise.

  1. A Reconciled Estimate of Ice-Sheet Mass Balance

    NASA Technical Reports Server (NTRS)

    Shepherd, Andrew; Ivins, Erik R.; Geruo, A.; Barletta, Valentia R.; Bentley, Mike J.; Bettadpur, Srinivas; Briggs, Kate H.; Bromwich, David H.; Forsberg, Rene; Galin, Natalia; hide

    2012-01-01

    We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agreement between different satellite methods-especially in Greenland and West Antarctica-and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by -142 plus or minus 49, +14 plus or minus 43, -65 plus or minus 26, and -20 plus or minus 14 gigatonnes year(sup -1), respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 plus or minus 0.20 millimeter year(sup -1) to the rate of global sea-level rise.

  2. 47 CFR 32.103 - Balance sheet accounts for other than regulated-fixed assets to be maintained.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Balance sheet accounts for other than regulated... for Balance Sheet Accounts § 32.103 Balance sheet accounts for other than regulated-fixed assets to be maintained. Balance sheet accounts to be maintained by Class A and Class B telephone companies for other than...

  3. 47 CFR 32.103 - Balance sheet accounts for other than regulated-fixed assets to be maintained.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Balance sheet accounts for other than regulated... for Balance Sheet Accounts § 32.103 Balance sheet accounts for other than regulated-fixed assets to be maintained. Balance sheet accounts to be maintained by Class A and Class B telephone companies for other than...

  4. Communicating the balance sheet in breast cancer screening.

    PubMed

    Giordano, Livia; Cogo, Carla; Patnick, Julietta; Paci, Eugenio

    2012-01-01

    Despite the difficulties, there is a moral responsibility to provide the public with the best estimates of benefits and harms of breast cancer screening. In this paper we review the issues in communication of benefits and harms of medical interventions and discuss these in terms of the principles of the balance sheet proposed in this supplement. The balance sheet can be seen as a tool to convey estimates based on the best available evidence and addressed to a readership wider than just potential screening participants. It reflects a re-assessment of screening efficacy, showing again that screening is effective and brings more benefits than harms. It can be viewed as an opportunity to re-affirm some basic principles of good evidence-based communication. Further research is needed to improve communication strategy, to assess the impact of this communication on women's awareness and to evaluate its utility in the informed decision-making process. The balance sheet could be a starting point for a broader vision of informed decision-making in screening, which should also recognize the role played by 'non-numerical' factors on women's choice of participating in breast cancer screening.

  5. Overview of Ice-Sheet Mass Balance and Dynamics from ICESat Measurements

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay

    2010-01-01

    The primary purpose of the ICESat mission was to determine the present-day mass balance of the Greenland and Antarctic ice sheets, identify changes that may be occurring in the surface-mass flux and ice dynamics, and estimate their contributions to global sea-level rise. Although ICESat's three lasers were planned to make continuous measurements for 3 to 5 years, the mission was re-planned to operate in 33-day campaigns 2 to 3 times each year following failure of the first laser after 36 days. Seventeen campaigns were conducted with the last one in the Fall of 2009. Mass balance maps derived from measured ice-sheet elevation changes show that the mass loss from Greenland has increased significantly to about 170 Gt/yr for 2003 to 2007 from a state of near balance in the 1990's. Increased losses (189 Gt/yr) from melting and dynamic thinning are over seven times larger'than increased gains (25 gt/yr) from precipitation. Parts of the West Antarctic ice sheet and the Antarctic Peninsula are losing mass at an increasing rate, but other parts of West Antarctica and the East Antarctic ice sheet are gaining mass at an increasing rate. Increased losses of 35 Gt/yr in Pine Island, Thwaites-Smith, and Marie-Bryd.Coast are more than balanced by gains in base of Peninsula and ice stream C, D, & E systems. From the 1992-2002 to 2003-2007 period, the overall mass balance for Antarctica changed from a loss of about 60 Gt/yr to near balance or slightly positive.

  6. 17 CFR 210.6-04 - Balance sheets.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... receivable from (1) sales of investments; (2) subscriptions to capital shares; (3) dividends and interest; (4) directors and officers; and (5) others. (b) If the aggregate amount of notes receivable exceeds 10 percent... balance sheet or in a note thereto, for accounts receivable and notes receivable. 7. Deposits for...

  7. 17 CFR 210.6-04 - Balance sheets.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... receivable from (1) sales of investments; (2) subscriptions to capital shares; (3) dividends and interest; (4) directors and officers; and (5) others. (b) If the aggregate amount of notes receivable exceeds 10 percent... balance sheet or in a note thereto, for accounts receivable and notes receivable. 7. Deposits for...

  8. 17 CFR 210.6-04 - Balance sheets.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... receivable from (1) sales of investments; (2) subscriptions to capital shares; (3) dividends and interest; (4) directors and officers; and (5) others. (b) If the aggregate amount of notes receivable exceeds 10 percent... balance sheet or in a note thereto, for accounts receivable and notes receivable. 7. Deposits for...

  9. 17 CFR 240.15c1-9 - Use of pro forma balance sheets.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Use of pro forma balance sheets. 240.15c1-9 Section 240.15c1-9 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... pro forma balance sheets. The term manipulative, deceptive, or other fraudulent device or contrivance...

  10. 17 CFR 240.15c1-9 - Use of pro forma balance sheets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Use of pro forma balance sheets. 240.15c1-9 Section 240.15c1-9 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... pro forma balance sheets. The term manipulative, deceptive, or other fraudulent device or contrivance...

  11. Off-balance-sheet financing can generate capital for strategic development.

    PubMed

    Campobasso, F D

    2000-06-01

    To manage their real estate portfolios effectively and obtain funding for strategic development, IDSs should consider adopting off-balance-sheet financing strategies, such as sale-and-leaseback transactions, synthetic leases, and joint-venture arrangements. Under these approaches, real estate assets are moved off of the organization's balance sheet via a partial or complete transfer of ownership to a third-party entity. The organization typically retains a satisfactory degree of control over the assets as lessee in sale-and-leaseback and synthetic-lease arrangements, or limited or minority partner in a joint venture, while freeing up cash to use for other strategic purposes.

  12. Ice-sheet mass balance and climate change.

    PubMed

    Hanna, Edward; Navarro, Francisco J; Pattyn, Frank; Domingues, Catia M; Fettweis, Xavier; Ivins, Erik R; Nicholls, Robert J; Ritz, Catherine; Smith, Ben; Tulaczyk, Slawek; Whitehouse, Pippa L; Zwally, H Jay

    2013-06-06

    Since the 2007 Intergovernmental Panel on Climate Change Fourth Assessment Report, new observations of ice-sheet mass balance and improved computer simulations of ice-sheet response to continuing climate change have been published. Whereas Greenland is losing ice mass at an increasing pace, current Antarctic ice loss is likely to be less than some recently published estimates. It remains unclear whether East Antarctica has been gaining or losing ice mass over the past 20 years, and uncertainties in ice-mass change for West Antarctica and the Antarctic Peninsula remain large. We discuss the past six years of progress and examine the key problems that remain.

  13. 17 CFR 210.6-06 - Special provisions applicable to the balance sheets of issuers of face-amount certificates.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... to the balance sheets of issuers of face-amount certificates. 210.6-06 Section 210.6-06 Commodity and... balance sheets of issuers of face-amount certificates. Balance sheets filed by issuers of face-amount... balances. 3. Receivables. (a) State separately amounts receivable from (1) sales of investments; (2...

  14. 17 CFR 210.6-06 - Special provisions applicable to the balance sheets of issuers of face-amount certificates.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... to the balance sheets of issuers of face-amount certificates. 210.6-06 Section 210.6-06 Commodity and... balance sheets of issuers of face-amount certificates. Balance sheets filed by issuers of face-amount... balances. 3. Receivables. (a) State separately amounts receivable from (1) sales of investments; (2...

  15. Estimates of Ice Sheet Mass Balance from Satellite Altimetry: Past and Future

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    A major uncertainty in predicting sea level rise is the sensitivity of ice sheet mass balance to climate change, as well as the uncertainty in present mass balance. Since the annual water exchange is about 8 mm of global sea level equivalent, the 20% uncertainty in current mass balance corresponds to 1.6 mm/yr in sea level change. Furthermore, estimates of the sensitivity of the mass balance to temperature change range from perhaps as much as - 10% to + 10% per K. A principal purpose of obtaining ice sheet elevation changes from satellite altimetry has been estimation of the current ice sheet mass balance. Limited information on ice sheet elevation change and their implications about mass balance have been reported by several investigators from radar altimetry (Seasat, Geosat, ERS-1&2). Analysis of ERS-1&2 data over Greenland for 7 years from 1992 to 1999 shows mixed patterns of ice elevation increases and decreases that are significant in terms of regional-scale mass balances. Observed seasonal and interannual variations in ice surface elevation are larger than previously expected because of seasonal and interannUal variations in precipitation, melting, and firn compaction. In the accumulation zone, the variations in firn compaction are modeled as a function of temperature leaving variations in precipitation and the mass balance trend. Significant interannual variations in elevation in some locations, in particular the difference in trends from 1992 to 1995 compared to 1995 to 1999, can be explained by changes in precipitation over Greenland. Over the 7 years, trends in elevation are mostly positive at higher elevations and negative at lower elevations. In addition, trends for the winter seasons (from a trend analysis through the average winter elevations) are more positive than the corresponding trends for the summer. At lower elevations, the 7-year trends in some locations are strongly negative for summer and near zero or slightly positive for winter. These

  16. Airborne Laser Altimetry Mapping of the Greenland Ice Sheet: Application to Mass Balance Assessment

    NASA Technical Reports Server (NTRS)

    Abdalati, W.; Krabill, W.; Frederick, E.; Manizade, S.; Martin, C.; Sonntag, J.; Swift, R.; Thomas, R.; Wright, W.; Yungel, J.

    2000-01-01

    In 1998 and '99, the Arctic Ice Mapping (AIM) program completed resurveys of lines occupied 5 years earlier revealing elevation changes of the Greenland ice sheet and identifying areas of significant thinning, thickening and balance. In planning these surveys, consideration had to be given to the spatial constraints associated with aircraft operation, the spatial nature of ice sheet behavior, and limited resources, as well as temporal issues, such as seasonal and interannual variability in the context of measurement accuracy. This paper examines the extent to which the sampling and survey strategy is valid for drawing conclusions on the current state of balance of the Greenland ice sheet. The surveys covered the entire ice sheet with an average distance of 21.4 km between each location on the ice sheet and the nearest flight line. For most of the ice sheet, the elevation changes show relatively little spatial variability, and their magnitudes are significantly smaller than the observed elevation change signal. As a result, we conclude that the density of the sampling and the accuracy of the measurements are sufficient to draw meaningful conclusions on the state of balance of the entire ice sheet over the five-year survey period. Outlet glaciers, however, show far more spatial and temporal variability, and each of the major ones is likely to require individual surveys in order to determine its balance.

  17. Pressure anisotropy and radial stress balance in the Jovian neutral sheet

    NASA Technical Reports Server (NTRS)

    Paranicas, C. P.; Mauk, B. H.; Krimigis, S. M.

    1991-01-01

    By examining particle and magnetic field data from the Voyager 1 and 2 spacecraft, signatures were found indicating that the (greater than about 28 keV) particle pressure parallel to the magnetic field is greater than the pressure perpendicular to the field within the nightside neutral sheet (three nightside neutral sheet crossings, with favorable experimental conditions, were used). By incorporating the pressure anisotropy into the calculation of radial forces within the hightside neutral sheet, it is found that (1) force balance is approximately achieved and (2) the anisotropy force term provides the largest contribution of the other particle forces considered (pressure gradients and the corotation centrifugal force). With regard to the problem of understanding the balance of radial forces within the dayside neutral sheet (McNutt, 1984; Mauk and Krimigis, 1987), the nightside pressure anisotropy force is larger than the dayside pressure gradient forces at equivalent radial distances; however, a full accounting of the dayside regions remains to be achieved.

  18. Antarctic and Greenland ice sheet mass balance products from satellite gravimetry

    NASA Astrophysics Data System (ADS)

    Horwath, Martin; Groh, Andreas; Horvath, Alexander; Forsberg, René; Meister, Rakia; Barletta, Valentina R.; Shepherd, Andrew

    2017-04-01

    Because of their important role in the Earth's climate system, ESA's Climate Change Initiative (CCI) has identified both the Antarctic Ice Sheet (AIS) and the Greenland Ice Sheet (GIS) as Essential Climate Variables (ECV). Since respondents of a user survey indicated that the ice sheet mass balance is one of the most important ECV data products needed to better understand climate change, the AIS_cci and the GIS_cci project provide Gravimetric Mass Balance (GMB) products based on satellite gravimetry data. The GMB products are derived from GRACE (Gravity Recovery and Climate Experiment) monthly solutions of release ITSG-Grace2016 produced at TU Graz. GMB basin products (i.e. time series of monthly mass changes for the entire ice sheets and selected drainage basins) and GMB gridded products (e.g. mass balance estimates with a formal resolution of about 50km, covering the entire ice sheets) are generated for the period from 2002 until present. The first GMB product was released in mid 2016. Here we present an extended and updated version of the ESA CCI GMB products, which are freely available through data portals hosted by the projects (https://data1.geo.tu-dresden.de/ais_gmb, http://products.esa-icesheets-cci.org/products/downloadlist/GMB). Since the initial product release, the applied processing strategies have been improved in order to further reduce GRACE errors and to enhance the separation of signals super-imposed to the ice mass changes. While a regional integration approach is used by the AIS_cci project, the GMB products of the GIS_cci project are derived using a point mass inversion. The differences between both approaches are investigated through the example of the GIS, where an alternative GMB product was generated using the regional integration approach implemented by the AIS_cci. Finally, we present the latest mass balance estimates for both ice sheets as well as their corresponding contributions to global sea level rise.

  19. Surface Energy and Mass Balance Model for Greenland Ice Sheet and Future Projections

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojian

    The Greenland Ice Sheet contains nearly 3 million cubic kilometers of glacial ice. If the entire ice sheet completely melted, sea level would raise by nearly 7 meters. There is thus considerable interest in monitoring the mass balance of the Greenland Ice Sheet. Each year, the ice sheet gains ice from snowfall and loses ice through iceberg calving and surface melting. In this thesis, we develop, validate and apply a physics based numerical model to estimate current and future surface mass balance of the Greenland Ice Sheet. The numerical model consists of a coupled surface energy balance and englacial model that is simple enough that it can be used for long time scale model runs, but unlike previous empirical parameterizations, has a physical basis. The surface energy balance model predicts ice sheet surface temperature and melt production. The englacial model predicts the evolution of temperature and meltwater within the ice sheet. These two models can be combined with estimates of precipitation (snowfall) to estimate the mass balance over the Greenland Ice Sheet. We first compare model performance with in-situ observations to demonstrate that the model works well. We next evaluate how predictions are degraded when we statistically downscale global climate data. We find that a simple, nearest neighbor interpolation scheme with a lapse rate correction is able to adequately reproduce melt patterns on the Greenland Ice Sheet. These results are comparable to those obtained using empirical Positive Degree Day (PDD) methods. Having validated the model, we next drove the ice sheet model using the suite of atmospheric model runs available through the CMIP5 atmospheric model inter-comparison, which in turn built upon the RCP 8.5 (business as usual) scenarios. From this exercise we predict how much surface melt production will increase in the coming century. This results in 4-10 cm sea level equivalent, depending on the CMIP5 models. Finally, we try to bound melt water

  20. Land motion due to 20th century mass balance of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Kjeldsen, K. K.; Khan, S. A.

    2017-12-01

    Quantifying the contribution from ice sheets and glaciers to past sea level change is of great value for understanding sea level projections into the 21st century. However, quantifying and understanding past changes are equally important, in particular understanding the impact in the near-field where the signal is highest. We assess the impact of 20th century mass balance of the Greenland Ice Sheet on land motion using results from Kjeldsen et al, 2015. These results suggest that the ice sheet on average lost a minimum of 75 Gt/yr, but also show that the mass balance was highly spatial- and temporal variable, and moreover that on a centennial time scale changes were driven by a decreasing surface mass balance. Based on preliminary results we discuss land motion during the 20th century due to mass balance changes and the driving components surface mass balance and ice dynamics.

  1. Technology strategy and the balance sheet: 3 points to consider.

    PubMed

    Waldron, David J

    2005-05-01

    Most hospitals use technology strategically to differentiate themselves from their competition. The rapid rate of change in healthcare technologies necessitates development of a technology life-cycle management program. Having access to flexible sources of capital appropriate to each category of technology assets allows liabilities and assets to be matched on a "balanced" balance sheet.

  2. Surface Mass Balance of the Greenland Ice Sheet Derived from Paleoclimate Reanalysis

    NASA Astrophysics Data System (ADS)

    Badgeley, J.; Steig, E. J.; Hakim, G. J.; Anderson, J.; Tardif, R.

    2017-12-01

    Modeling past ice-sheet behavior requires independent knowledge of past surface mass balance. Though models provide useful insight into ice-sheet response to climate forcing, if past climate is unknown, then ascertaining the rate and extent of past ice-sheet change is limited to geological and geophysical constraints. We use a novel data-assimilation framework developed under the Last Millennium Reanalysis Project (Hakim et al., 2016) to reconstruct past climate over ice sheets with the intent of creating an independent surface mass balance record for paleo ice-sheet modeling. Paleoclimate data assimilation combines the physics of climate models and the time series evidence of proxy records in an offline, ensemble-based approach. This framework allows for the assimilation of numerous proxy records and archive types while maintaining spatial consistency with known climate dynamics and physics captured by the models. In our reconstruction, we use the Community Climate System Model version 4, CMIP5 last millennium simulation (Taylor et al., 2012; Landrum et al., 2013) and a nearly complete database of ice core oxygen isotope records to reconstruct Holocene surface temperature and precipitation over the Greenland Ice Sheet on a decadal timescale. By applying a seasonality to this reconstruction (from the TraCE-21ka simulation; Liu et al., 2009), our reanalysis can be used in seasonally-based surface mass balance models. Here we discuss the methods behind our reanalysis and the performance of our reconstruction through prediction of unassimilated proxy records and comparison to paleoclimate reconstructions and reanalysis products.

  3. ARARS Q's and A's: The fund-balancing waiver. Fact sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    The fact sheet implements the applicable or relevant and appropriate requirements (ARARs) provisions EPA has developed guidance and provided training to Regions and States on the identification of and compliance with ARARs. It is part of a series that provide guidance on a number of questions that arose in developing ARARs policies, in ARARs training sessions, and in identifying and complying with ARARs at specific sites. The fact sheet addresses the Fund-balancing waiver.

  4. The Decisional Balance Sheet to Promote Healthy Behavior Among Ethnically Diverse Older Adults

    PubMed Central

    Geller, Karly S.; Mendoza, Ilora D.; Timbobolan, Jasah; Montjoy, Holly L.; Nigg, Claudio R.

    2012-01-01

    Objective The rising health care costs and increasing older adult population in the United States make preventive medicine for this age group especially crucial. Regular physical activity and fruit and vegetable consumption may prevent or delay the onset of many chronic conditions that are common among older adults. The decisional balance sheet is a promotional tool targeting the perceived pros and cons of behavior adoption. The current study tested the efficiency and effectiveness of a single-day decisional balance sheet program, targeting increased physical activity and fruit and vegetable intake among older adults. Design and Sample Participating adults (N = 21, age = 72.2) who represented a diverse population in Hawaii (Japanese = 5, Filipino = 4, Caucasian = 4, Native American = 1, Native Hawaiian = 1, Hispanic = 1, and Others = 5) were recruited from housing communities and randomized to a decisional balance sheet program adapted for physical activity or fruit and vegetable consumption. Measures Physical activity was assessed using the International Physical Activity Questionnaire (IPAQ) short form, and daily fruit and vegetable intake with the National Health and Nutrition Examination Survey single item instrument. Baseline and follow-up data were collected. Results Both programs were implemented efficiently, and participants in both groups improved their daily physical activity. The decisional balance sheet for fruit and vegetable consumption appeared less effective. Conclusions Specific suggestions for similar programs are reported. PMID:22512425

  5. Antarctic Glacial Isostatic Adjustment and Ice Sheet Mass Balance using GRACE: A Report from the Ice-sheet Mass Balance Exercise (IMBIE)

    NASA Astrophysics Data System (ADS)

    Ivins, E. R.; Wahr, J. M.; Schrama, E. J.; Milne, G. A.; Barletta, V.; Horwath, M.; Whitehouse, P.

    2012-12-01

    In preparation for the Inter-govermental Panel on Climate Change: Assessment Report 5 (IPCC AR5), ESA and NASA have formed a committee of experts to perform a formal set of comparative experiments concerning space observations of ice sheet mass balance. This project began in August of 2011 and has now concluded with a report submitted for Science (Shepherd et al., 2012). The focus of the work conducted is to re-evaluate scientific reports on the mass balance of Greenland ice sheet (GIS) and Antarctic ice sheet (AIS). The most serious discrepancies have been reported for the AIS, amounting to as much as 0.9 mm/yr in discrepant sea level contribution. A direct method of determining the AIS is by space gravimetry. However, for this method to contribute to our understanding of sea level change, we require knowledge of present-day non-elastic vertical movements of bedrock in Antarctica. Quantifying the uncertainty and bias caused by lack of observational control on models of regional glacial isostatic adjustment (GIA), was a major focus for our experiments. This regional process is the most problematic error source for GRACE-determinations of ice mass balance in Antarctica. While GIA likely dominates some large vertical motions in Antarctica that are now observed with GPS (Thomas et al., 2011, GRL), interpretations still require models. The reported uncertainty for space gravimetric (GRACE) based sea level sourcing is roughly 0.20 to 0.35 mm/yr. The uncertainty is also part of the error budget for mass balances derived from altimetry measurements, though at a much lower level. Analysis of the GRACE time series using CSR RL04 (2003.0-2010.10) for AIS mass balance reveals a small trend of order +1 to -24 Gt/yr without a GIA correction. Three periods were selected over which to perform inter-comparisons (see Table). One class of GIA models, that relies primarily on far field sea level reconstructions (e.g. ICE-5G), provide a GIA correction that places AIS mass imbalance (

  6. Determination of Interannual to Decadal Changes in Ice Sheet Mass Balance from Satellite Altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Busalacchi, Antonioa J. (Technical Monitor)

    2001-01-01

    A major uncertainty in predicting sea level rise is the sensitivity of ice sheet mass balance to climate change, as well as the uncertainty in present mass balance. Since the annual water exchange is about 8 mm of global sea level equivalent, the +/- 25% uncertainty in current mass balance corresponds to +/- 2 mm/yr in sea level change. Furthermore, estimates of the sensitivity of the mass balance to temperature change range from perhaps as much as - 10% to + 10% per K. Although the overall ice mass balance and seasonal and inter-annual variations can be derived from time-series of ice surface elevations from satellite altimetry, satellite radar altimeters have been limited in spatial coverage and elevation accuracy. Nevertheless, new data analysis shows mixed patterns of ice elevation increases and decreases that are significant in terms of regional-scale mass balances. In addition, observed seasonal and interannual variations in elevation demonstrate the potential for relating the variability in mass balance to changes in precipitation, temperature, and melting. From 2001, NASA's ICESat laser altimeter mission will provide significantly better elevation accuracy and spatial coverage to 86 deg latitude and to the margins of the ice sheets. During 3 to 5 years of ICESat-1 operation, an estimate of the overall ice sheet mass balance and sea level contribution will be obtained. The importance of continued ice monitoring after the first ICESat is illustrated by the variability in the area of Greenland surface melt observed over 17-years and its correlation with temperature. In addition, measurement of ice sheet changes, along with measurements of sea level change by a series of ocean altimeters, should enable direct detection of ice level and global sea level correlations.

  7. The decisional balance sheet to promote healthy behavior among ethnically diverse older adults.

    PubMed

    Geller, Karly S; Mendoza, Ilora D; Timbobolan, Jasah; Montjoy, Holly L; Nigg, Claudio R

    2012-01-01

    The rising health care costs and increasing older adult population in the United States make preventive medicine for this age group especially crucial. Regular physical activity and fruit and vegetable consumption may prevent or delay the onset of many chronic conditions that are common among older adults. The decisional balance sheet is a promotional tool targeting the perceived pros and cons of behavior adoption. The current study tested the efficiency and effectiveness of a single-day decisional balance sheet program, targeting increased physical activity and fruit and vegetable intake among older adults. Participating adults (N = 21, age = 72.2) who represented a diverse population in Hawaii (Japanese = 5, Filipino = 4, Caucasian = 4, Native American = 1, Native Hawaiian = 1, Hispanic = 1, and Others = 5) were recruited from housing communities and randomized to a decisional balance sheet program adapted for physical activity or fruit and vegetable consumption. Physical activity was assessed using the International Physical Activity Questionnaire (IPAQ) short form, and daily fruit and vegetable intake with the National Health and Nutrition Examination Survey single item instrument. Baseline and follow-up data were collected. Both programs were implemented efficiently, and participants in both groups improved their daily physical activity. The decisional balance sheet for fruit and vegetable consumption appeared less effective. Specific suggestions for similar programs are reported. © 2011 Wiley Periodicals, Inc.

  8. Education, 1961-1971: A Balance Sheet. Topical Talks, 27.

    ERIC Educational Resources Information Center

    Auerbach, F. E.

    During the first decade as a republic we have made some great strides in education, but in certain respects we have also fallen behind. As there are differences of opinion about what our most urgent educational priorities are, I have tried to make this a balance sheet, showing assets and liabilities without pronouncing judgment on which side is…

  9. A balanced water layer concept for subglacial hydrology in large scale ice sheet models

    NASA Astrophysics Data System (ADS)

    Goeller, S.; Thoma, M.; Grosfeld, K.; Miller, H.

    2012-12-01

    There is currently no doubt about the existence of a wide-spread hydrological network under the Antarctic ice sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain inspired by the Gamburtsev Mountains, Antarctica. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux-basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out, that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  10. Antarctic Ice-Sheet Mass Balance from Satellite Altimetry 1992 to 2001

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Brenner, Anita C.; Cornejo, Helen; Giovinetto, Mario; Saba, Jack L.; Yi, Donghui

    2003-01-01

    A major uncertainty in understanding the causes of the current rate of sea level rise is the potential contributions from mass imbalances of the Greenland and Antarctic ice sheets. Estimates of the current mass balance of the Antarctic ice sheet are derived from surface- elevation changes obtained from 9 years of ERS - 1 & 2 radar altimeter data. Elevation time-series are created from altimeter crossovers among 90-day data periods on a 50 km grid to 81.5 S. The time series are fit with a multivariate linear/sinusoidal function to give the average rate of elevation change (dH/dt). On the major Rome-Filchner, Ross, and Amery ice shelves, the W d t are small or near zero. In contrast, the ice shelves of the Antarctic Peninsula and along the West Antarctic coast appear to be thinning significantly, with a 23 +/- 3 cm per year surface elevation decrease on the Larsen ice shelf and a 65 +/- 4 cm per year decrease on the Dotson ice shelf. On the grounded ice, significant elevation decreases are obtained over most of the drainage basins of the Pine Island and Thwaites glaciers in West Antarctica and inland of Law Dome in East Antarctica. Significant elevation increases are observed within about 200 km of the coast around much of the rest of the ice sheet. Farther inland, the changes are a mixed pattern of increases and decreases with increases of a few centimeters per year at the highest elevations of the East Antarctic plateau. The derived elevation changes are combined with estimates of the bedrock uplift from several models to provide maps of ice thickness change. The ice thickness changes enable estimates of the ice mass balances for the major drainage basins, the overall mass balance, and the current contribution of the ice sheet to global sea level change.

  11. Writing by Number: Teaching Students to Read the Balance Sheet.

    ERIC Educational Resources Information Center

    Cross, Mary

    1990-01-01

    Describes an assignment in which students write a short memo report analyzing and comparing both what a company says in its annual report and what its balance sheet shows. Describes four simple mathematical formulas students can use to quickly diagnose a company's financial health. Appends a sample of the short report format. (RS)

  12. Mass Balance of the Greenland Ice Sheet at High Elevations.

    PubMed

    Thomas; Akins; Csatho; Fahnestock; Gogineni; Kim; Sonntag

    2000-07-21

    Comparison of ice discharge from higher elevation areas of the entire Greenland Ice Sheet with total snow accumulation gives estimates of ice thickening rates over the past few decades. On average, the region has been in balance, but with thickening of 21 centimeters per year in the southwest and thinning of 30 centimeters per year in the southeast. The north of the ice sheet shows less variability, with average thickening of 2 centimeters per year in the northeast and thinning of about 5 centimeters per year in the northwest. These results agree well with those from repeated altimeter surveys, except in the extreme south, where we find substantially higher rates of both thickening and thinning.

  13. Abortion Decision and Ambivalence: Insights via an Abortion Decision Balance Sheet

    ERIC Educational Resources Information Center

    Allanson, Susie

    2007-01-01

    Decision ambivalence is a key concept in abortion literature, but has been poorly operationalised. This study explored the concept of decision ambivalence via an Abortion Decision Balance Sheet (ADBS) articulating reasons both for and against terminating an unintended pregnancy. Ninety-six women undergoing an early abortion for psychosocial…

  14. Balance Sheets Versus Decision Dashboards to Support Patient Treatment Choices: A Comparative Analysis.

    PubMed

    Dolan, James G; Veazie, Peter J

    2015-12-01

    Growing recognition of the importance of involving patients in preference-driven healthcare decisions has highlighted the need to develop practical strategies to implement patient-centered shared decision-making. The use of tabular balance sheets to support clinical decision-making is well established. More recent evidence suggests that graphic, interactive decision dashboards can help people derive deeper a understanding of information within a specific decision context. We therefore conducted a non-randomized trial comparing the effects of adding an interactive dashboard to a static tabular balance sheet on patient decision-making. The study population consisted of members of the ResearchMatch registry who volunteered to participate in a study of medical decision-making. Two separate surveys were conducted: one in the control group and one in the intervention group. All participants were instructed to imagine they were newly diagnosed with a chronic illness and were asked to choose between three hypothetical drug treatments, which varied with regard to effectiveness, side effects, and out-of-pocket cost. Both groups made an initial treatment choice after reviewing a balance sheet. After a brief "washout" period, members of the control group made a second treatment choice after reviewing the balance sheet again, while intervention group members made a second treatment choice after reviewing an interactive decision dashboard containing the same information. After both choices, participants rated their degree of confidence in their choice on a 1 to 10 scale. Members of the dashboard intervention group were more likely to change their choice of preferred drug (10.2 versus 7.5%; p = 0.054) and had a larger increase in decision confidence than the control group (0.67 versus 0.075; p < 0.03). There were no statistically significant between-group differences in decisional conflict or decision aid acceptability. These findings suggest that clinical decision dashboards may

  15. Improving Surface Mass Balance Over Ice Sheets and Snow Depth on Sea Ice

    NASA Technical Reports Server (NTRS)

    Koenig, Lora Suzanne; Box, Jason; Kurtz, Nathan

    2013-01-01

    Surface mass balance (SMB) over ice sheets and snow on sea ice (SOSI) are important components of the cryosphere. Large knowledge gaps remain in scientists' abilities to monitor SMB and SOSI, including insufficient measurements and difficulties with satellite retrievals. On ice sheets, snow accumulation is the sole mass gain to SMB, and meltwater runoff can be the dominant single loss factor in extremely warm years such as 2012. SOSI affects the growth and melt cycle of the Earth's polar sea ice cover. The summer of 2012 saw the largest satellite-recorded melt area over the Greenland ice sheet and the smallest satellite-recorded Arctic sea ice extent, making this meeting both timely and relevant.

  16. Improving Estimates of Greenland Ice Sheet Surface Mass Balance with Satellite Observations

    NASA Astrophysics Data System (ADS)

    Briggs, K.

    2016-12-01

    Mass losses from the Greenland Ice Sheet have been accelerating over recent years (e.g. McMillan et al., 2016; Velicogna et al., 2014). This acceleration has predominantly been linked to increasing rates of negative surface mass balance, and in particular, increasing ice surface melt rates (e.g. McMillan et al., 2016; Velicogna et al., 2014). At the ice sheet scale, SMB is assessed using SMB model outputs, which in addition to enabling understanding of the origin of mass balance signals, are required as ancillary data in mass balance assessments from altimetry and the mass budget method. Due to the importance of SMB for mass balance over Greenland and the sensitivity of mass balance assessments to SMB model outputs, high accuracy of these models is crucial. A critical limiting factor in SMB modeling is however, a lack of in-situ data that is required for model constraint and evaluation. Such data is limited in time and space due to inherent logistical and financial constraints. Remote sensing datasets, being spatially extensive and relatively densely sampled in both space and time, do not suffer such constraints. Here, we show satellite observations of Greenland SMB. McMillan, M., Leeson, A., Shepherd, A., Briggs, K., Armitage, T. W.K., Hogg, A., Kuipers Munneke, P., van den Broeke, M., Noël, B., van de Berg, W., Ligtenberg, S., Horwath, M., Groh, A. , Muir, A. and Gilbert, L. 2016. A high resolution record of Greenland Mass Balance. Geophysical Research Letters. 43, doi:10.1002/2016GL069666 Velicogna, I., Sutterley, T. C. and van den Broeke, M. R. 2014. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophysical Research Letters. 41, 8130-8137, doi:10.1002/2014GL061052

  17. Knowledge synthesis of benefits and adverse effects of measles vaccination: the Lasbela balance sheet.

    PubMed

    Ledogar, Robert J; Fleming, John; Andersson, Neil

    2009-10-14

    In preparation for a cluster-randomized controlled trial of a community intervention to increase the demand for measles vaccination in Lasbela district of Pakistan, a balance sheet summarized published evidence on benefits and possible adverse effects of measles vaccination. The balance sheet listed: 1) major health conditions associated with measles; 2) the risk among the unvaccinated who contract measles; 3) the risk among the vaccinated; 4) the risk difference between vaccinated and unvaccinated; and 5) the likely net gain from vaccination for each condition. Two models revealed very different projections of net gain from measles vaccine. A Lasbela-specific combination of low period prevalence of measles among the unvaccinated, medium vaccination coverage and low vaccine efficacy rate, as revealed by the baseline survey, resulted in less-than-expected gains attributable to vaccination. Modelled on estimates where the vaccine had greater efficacy, the gains from vaccination would be more substantial. Specific local conditions probably explain the low rates among the unvaccinated while the high vaccine failure rate is likely due to weaknesses in the vaccination delivery system. Community perception of these realities may have had some role in household decisions about whether to vaccinate, although the major discouraging factor was inadequate access. The balance sheet may be useful as a communication tool in other circumstances, applied to up-to-date local evidence.

  18. [Continuing medical education and the Social Balance Sheet].

    PubMed

    Gatti, Giorgio

    2010-06-01

    The social balance sheet is an instrument used to obtain a clear and transparent account, that helps to develop an analysis of the budget from the point of view of the stakeholders; this is not all that is required by law, but it takes into account the ability of the health institutions to obtain a collaboration with the neighboring environment and with the social issues that enter into the relationship. This could be a valuable tool also for educational purposes; it is an useful task to be performed by the health workers, and an opportunity to redefine the information needs through the analysis of the results achieved.

  19. 48 CFR 752.225-9 - Buy American Act-Trade Agreements Act-Balance of Payments Program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Buy American Act-Trade Agreements Act-Balance of Payments Program. 752.225-9 Section 752.225-9 Federal Acquisition Regulations... CLAUSES Texts of Provisions and Clauses 752.225-9 Buy American Act—Trade Agreements Act—Balance of...

  20. 48 CFR 752.225-9 - Buy American Act-Trade Agreements Act-Balance of Payments Program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Buy American Act-Trade Agreements Act-Balance of Payments Program. 752.225-9 Section 752.225-9 Federal Acquisition Regulations... CLAUSES Texts of Provisions and Clauses 752.225-9 Buy American Act—Trade Agreements Act—Balance of...

  1. Coupled energy-balance/ice-sheet model simulations of the glacial cycle: A possible connection between terminations and terrigenous dust

    NASA Astrophysics Data System (ADS)

    Peltier, W. Richard; Marshall, Shawn

    1995-07-01

    We apply a coupled energy-balance/ice-sheet climate model in an investigation of northern hemisphere ice-sheet advance and retreat over the last glacial cycle. When driven only by orbital insolation variations, the model predicts ice-sheet advances over the continents of North America and Eurasia that are in good agreement with geological reconstructions in terms of the timescale of advance and the spatial positioning of the main ice masses. The orbital forcing alone, however, is unable to induce the observed rapid ice-sheet retreat, and we conclude that additional climatic feedbacks not explicitly included in the basic model must be acting. In the analyses presented here we have parameterized a number of potentially important effects in order to test their relative influence on the process of glacial termination. These include marine instability, thermohaline circulation effects, carbon dioxide variations, and snow albedo changes caused by dust loading during periods of high atmospheric aerosol concentration. For the purpose of these analyses the temporal changes in the latter two variables were inferred from ice core records. Of these various influences, our analyses suggest that the albedo variations in the ice-sheet ablation zone caused by dust loading may represent an extremely important ablation mechanism. Using our parameterization of "dirty" snow in the ablation zone we find glacial retreat to be strongly accelerated, such that complete collapse of the otherwise stable Laurentide ice sheet ensues. The last glacial maximum configurations of the Laurentide and Fennoscandian complexes are also brought into much closer accord with the ICE-3G reconstruction of Tushingham and Peltier (1991,1992) and the ICE-4G reconstruction of Peltier (1994) when this effect is reasonably introduced.

  2. A Look at Constitutional Checks and Balances: Study Sheets for U.S. History.

    ERIC Educational Resources Information Center

    Scott, Nancy

    This document is intended as a resource guide for teachers to use in helping students to understand how the United States system of government operates. It examines the background, historical application, and current debate concerning the principle of checks and balances. Ten study sheets feature various figures and episodes prominently associated…

  3. Use of Cognitive Therapy and the Balance Sheet Procedure to Assist Career Decision Making.

    ERIC Educational Resources Information Center

    O'Hare, Marianne M.

    1989-01-01

    A balance sheet technique enables counselors to help clients identify and overcome anxiety associated with career decision making. Steps include describing the problem, brainstorming alternatives, listing expected positive and negative outcomes in terms of self and others, seeking information, and choosing alternatives. (SK)

  4. 48 CFR 252.225-7001 - Buy American Act and Balance of Payments Program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Balance of Payments Program. 252.225-7001 Section 252.225-7001 Federal Acquisition Regulations System... AND CONTRACT CLAUSES Text of Provisions And Clauses 252.225-7001 Buy American Act and Balance of Payments Program. As prescribed in 225.1101(2)(i), use the following clause: Buy American Act and Balance...

  5. 48 CFR 252.225-7001 - Buy American Act and Balance of Payments Program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Balance of Payments Program. 252.225-7001 Section 252.225-7001 Federal Acquisition Regulations System... AND CONTRACT CLAUSES Text of Provisions And Clauses 252.225-7001 Buy American Act and Balance of Payments Program. As prescribed in 225.1101(2), use the following clause: Buy American Act and Balance of...

  6. Teaching about the Income Statement and Balance Sheet in a Beginning Business German Course.

    ERIC Educational Resources Information Center

    Rudolf, Uwe

    A review of business German textbooks reveals that few give significant attention to accounting terminology. Both German majors and business majors enrolled in business German need to be introduced to the balance sheet and income statement. It is possible to devote one or two class sessions to accounting by limiting content to a minimal but solid…

  7. Changes in ice dynamics and mass balance of the Antarctic ice sheet.

    PubMed

    Rignot, Eric

    2006-07-15

    The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 degrees C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.

  8. Balance of the West Antarctic Ice Sheet

    NASA Technical Reports Server (NTRS)

    2002-01-01

    For several decades, measurements of the West Antarctic Ice Sheet showed it to be retreating rapidly. But new data derived from satellite-borne radar sensors show the ice sheet to be growing. Changing Antarctic ice sheets remains an area of high scientific interest, particularly in light of recent global warming concerns. These new findings are significant because scientists estimate that sea level would rise 5-6 meters (16-20 feet) if the ice sheet collapsed into the sea. Do these new measurements signal the end of the ice sheet's 10,000-year retreat? Or, are these new satellite data simply much more accurate than the sparse ice core and surface measurements that produced the previous estimates? Another possibility is that the ice accumulation may simply indicate that the ice sheet naturally expands and retreats in regular cycles. Cryologists will grapple with these questions, and many others, as they examine the new data. The image above depicts the region of West Antarctica where scientists measured ice speed. The fast-moving central ice streams are shown in red. Slower tributaries feeding the ice streams are shown in blue. Green areas depict slow-moving, stable areas. Thick black lines depict the areas that collect snowfall to feed their respective ice streams. Reference: Ian Joughin and Slawek Tulaczyk Science Jan 18 2002: 476-480. Image courtesy RADARSAT Antarctic Mapping Project

  9. Radar Interferometry Studies of the Mass Balance of Polar Ice Sheets

    NASA Technical Reports Server (NTRS)

    Rignot, Eric (Editor)

    1999-01-01

    The objectives of this work are to determine the current state of mass balance of the Greenland and Antarctic Ice Sheets. Our approach combines different techniques, which include satellite synthetic-aperture radar interferometry (InSAR), radar and laser altimetry, radar ice sounding, and finite-element modeling. In Greenland, we found that 3.5 times more ice flows out of the northern part of the Greenland Ice Sheet than previously accounted for. The discrepancy between current and past estimates is explained by extensive basal melting of the glacier floating sections in the proximity of the grounding line where the glacier detaches from its bed and becomes afloat in the ocean. The inferred basal melt rates are very large, which means that the glaciers are very sensitive to changes in ocean conditions. Currently, it appears that the northern Greenland glaciers discharge more ice than is being accumulated in the deep interior, and hence are thinning. Studies of temporal changes in grounding line position using InSAR confirm the state of retreat of northern glaciers and suggest that thinning is concentrated at the lower elevations. Ongoing work along the coast of East Greenland reveals an even larger mass deficit for eastern Greenland glaciers, with thinning affecting the deep interior of the ice sheet. In Antarctica, we found that glaciers flowing into a large ice shelf system, such as the Ronne Ice Shelf in the Weddell Sea, exhibit an ice discharge in remarkable agreement with mass accumulation in the interior, and the glacier grounding line positions do not migrate with time. Glaciers flowing rapidly into the Amudsen Sea, unrestrained by a major ice shelf, are in contrast discharging more ice than required to maintain a state of mass balance and are thinning quite rapidly near the coast. The grounding line of Pine Island glacier (see diagram) retreated 5 km in 4 years, which corresponds to a glacier thinning rate of 3.5 m/yr. Mass imbalance is even more negative

  10. Greenland ice sheet mass balance: a review.

    PubMed

    Khan, Shfaqat A; Aschwanden, Andy; Bjørk, Anders A; Wahr, John; Kjeldsen, Kristian K; Kjær, Kurt H

    2015-04-01

    Over the past quarter of a century the Arctic has warmed more than any other region on Earth, causing a profound impact on the Greenland ice sheet (GrIS) and its contribution to the rise in global sea level. The loss of ice can be partitioned into processes related to surface mass balance and to ice discharge, which are forced by internal or external (atmospheric/oceanic/basal) fluctuations. Regardless of the measurement method, observations over the last two decades show an increase in ice loss rate, associated with speeding up of glaciers and enhanced melting. However, both ice discharge and melt-induced mass losses exhibit rapid short-term fluctuations that, when extrapolated into the future, could yield erroneous long-term trends. In this paper we review the GrIS mass loss over more than a century by combining satellite altimetry, airborne altimetry, interferometry, aerial photographs and gravimetry data sets together with modelling studies. We revisit the mass loss of different sectors and show that they manifest quite different sensitivities to atmospheric and oceanic forcing. In addition, we discuss recent progress in constructing coupled ice-ocean-atmosphere models required to project realistic future sea-level changes.

  11. Greenland Ice Sheet Mass Balance

    NASA Technical Reports Server (NTRS)

    Reeh, N.

    1984-01-01

    Mass balance equation for glaciers; areal distribution and ice volumes; estimates of actual mass balance; loss by calving of icebergs; hydrological budget for Greenland; and temporal variations of Greenland mass balance are examined.

  12. State of balance of the cryosphere

    NASA Technical Reports Server (NTRS)

    Van Der Veen, C. J.

    1991-01-01

    Available observations and mass balance estimates of the cryosphere are summarized. Problems discussed include mountain glaciers, the Greenland ice sheet, the Antarctic ice sheet, conventional glacier measurement techniques, and satellite applications in glacier mass balance studies. It is concluded that the interior part of the Greenland ice sheet is thickening or in near equilibrium. Estimates of the mass balance of the Antarctic ice sheet suggest that it is positive, although the error limits allow for a slightly negative balance.

  13. Balancing Act

    Cancer.gov

    Part of being an Active, More Powerful You means finding balance in your daily life: taking on the Must-dos and finding time for some Should Dos and Want-to-Dos. Sometimes, emotions and commitments can come into play and upset the balance.

  14. The Greenland Ice Sheet's surface mass balance in a seasonally sea ice-free Arctic

    NASA Astrophysics Data System (ADS)

    Day, J. J.; Bamber, J. L.; Valdes, P. J.

    2013-09-01

    General circulation models predict a rapid decrease in sea ice extent with concurrent increases in near-surface air temperature and precipitation in the Arctic over the 21st century. This has led to suggestions that some Arctic land ice masses may experience an increase in accumulation due to enhanced evaporation from a seasonally sea ice-free Arctic Ocean. To investigate the impact of this phenomenon on Greenland Ice Sheet climate and surface mass balance (SMB), a regional climate model, HadRM3, was used to force an insolation-temperature melt SMB model. A set of experiments designed to investigate the role of sea ice independently from sea surface temperature (SST) forcing are described. In the warmer and wetter SI + SST simulation, Greenland experiences a 23% increase in winter SMB but 65% reduced summer SMB, resulting in a net decrease in the annual value. This study shows that sea ice decline contributes to the increased winter balance, causing 25% of the increase in winter accumulation; this is largest in eastern Greenland as the result of increased evaporation in the Greenland Sea. These results indicate that the seasonal cycle of Greenland's SMB will increase dramatically as global temperatures increase, with the largest changes in temperature and precipitation occurring in winter. This demonstrates that the accurate prediction of changes in sea ice cover is important for predicting Greenland SMB and ice sheet evolution.

  15. 48 CFR 252.225-7000 - Buy American Act-Balance of Payments Program Certificate.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Buy American Act-Balance... PROVISIONS AND CONTRACT CLAUSES Text of Provisions And Clauses 252.225-7000 Buy American Act—Balance of Payments Program Certificate. Buy American Act—Balance of Payments Program Certificate (DEC 2009) (a...

  16. 48 CFR 252.225-7000 - Buy American Act-Balance of Payments Program Certificate.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Buy American Act-Balance... PROVISIONS AND CONTRACT CLAUSES Text of Provisions And Clauses 252.225-7000 Buy American Act—Balance of... Act—Balance of Payments Program Certificate (DEC 2009) (a) Definitions. “Commercially available off...

  17. Adaptive Equilibrium Regulation: A Balancing Act in Two Timescales

    PubMed Central

    Boker, Steven M.

    2015-01-01

    An equilibrium involves a balancing of forces. Just as one maintains upright posture in standing or walking, many self-regulatory and interpersonal behaviors can be framed as a balancing act between an ever changing environment and within-person processes. The emerging balance between person and environment, the equilibria, are dynamic and adaptive in response to development and learning. A distinction is made between equilibrium achieved solely due to a short timescale balancing of forces and a longer timescale preferred equilibrium which we define as a state towards which the system slowly adapts. Together, these are developed into a framework that this article calls Adaptive Equilibrium Regulation (ÆR), which separates a regulatory process into two timescales: a faster regulation that automatically balances forces and a slower timescale adaptation process that reconfigures the fast regulation so as to move the system towards its preferred equilibrium when an environmental force persists over the longer timescale. This way of thinking leads to novel models for the interplay between multiple timescales of behavior, learning, and development. PMID:27066197

  18. Ice-sheet contributions to future sea-level change.

    PubMed

    Gregory, J M; Huybrechts, P

    2006-07-15

    Accurate simulation of ice-sheet surface mass balance requires higher spatial resolution than is afforded by typical atmosphere-ocean general circulation models (AOGCMs), owing, in particular, to the need to resolve the narrow and steep margins where the majority of precipitation and ablation occurs. We have developed a method for calculating mass-balance changes by combining ice-sheet average time-series from AOGCM projections for future centuries, both with information from high-resolution climate models run for short periods and with a 20km ice-sheet mass-balance model. Antarctica contributes negatively to sea level on account of increased accumulation, while Greenland contributes positively because ablation increases more rapidly. The uncertainty in the results is about 20% for Antarctica and 35% for Greenland. Changes in ice-sheet topography and dynamics are not included, but we discuss their possible effects. For an annual- and area-average warming exceeding 4.5+/-0.9K in Greenland and 3.1+/-0.8K in the global average, the net surface mass balance of the Greenland ice sheet becomes negative, in which case it is likely that the ice sheet would eventually be eliminated, raising global-average sea level by 7m.

  19. Modelling the climate and surface mass balance of polar ice sheets using RACMO2 - Part 1: Greenland (1958-2016)

    NASA Astrophysics Data System (ADS)

    Noël, Brice; van de Berg, Willem Jan; Melchior van Wessem, J.; van Meijgaard, Erik; van As, Dirk; Lenaerts, Jan T. M.; Lhermitte, Stef; Kuipers Munneke, Peter; Smeets, C. J. P. Paul; van Ulft, Lambertus H.; van de Wal, Roderik S. W.; van den Broeke, Michiel R.

    2018-03-01

    We evaluate modelled Greenland ice sheet (GrIS) near-surface climate, surface energy balance (SEB) and surface mass balance (SMB) from the updated regional climate model RACMO2 (1958-2016). The new model version, referred to as RACMO2.3p2, incorporates updated glacier outlines, topography and ice albedo fields. Parameters in the cloud scheme governing the conversion of cloud condensate into precipitation have been tuned to correct inland snowfall underestimation: snow properties are modified to reduce drifting snow and melt production in the ice sheet percolation zone. The ice albedo prescribed in the updated model is lower at the ice sheet margins, increasing ice melt locally. RACMO2.3p2 shows good agreement compared to in situ meteorological data and point SEB/SMB measurements, and better resolves the spatial patterns and temporal variability of SMB compared with the previous model version, notably in the north-east, south-east and along the K-transect in south-western Greenland. This new model version provides updated, high-resolution gridded fields of the GrIS present-day climate and SMB, and will be used for projections of the GrIS climate and SMB in response to a future climate scenario in a forthcoming study.

  20. Estimation of Greenland's Ice Sheet Mass Balance Using ICESat and GRACE Data

    NASA Astrophysics Data System (ADS)

    Slobbe, D.; Ditmar, P.; Lindenbergh, R.

    2007-12-01

    Data of the GRACE gravity mission and the ICESat laser altimetry mission are used to create two independent estimates of Greenland's ice sheet mass balance over the full measurement period. For ICESat data, a processing strategy is developed using the elevation differences of geometrically overlapping footprints of both crossing and repeated tracks. The dataset is cleaned using quality flags defined by the GLAS science team. The cleaned dataset reveals some strong, spatially correlated signals that are shown to be related to physical phenomena. Different processing strategies are used to convert the observed temporal height differences to mass changes for 6 different drainage systems, further divided into a region above and below 2000 meter elevation. The results are compared with other altimetry based mass balance estimates. In general, the obtained results confirm trends discovered by others, but we also show that the choice of processing strategy strongly influences our results, especially for the areas below 2000 meter. Furthermore, GRACE based monthly variations of the Earth's gravity field as processed by CNES, CSR, GFZ and DEOS are used to estimate the mass balance change for North and South Greenland. It is shown that our results are comparable with recently published GRACE estimates (mascon solutions). On the other hand, the estimates based on GRACE data are only partly confirmed by the ICESat estimates. Possible explanations for the obvious differences will be discussed.

  1. Mass balance of the Antarctic ice sheet.

    PubMed

    Wingham, D J; Shepherd, A; Muir, A; Marshall, G J

    2006-07-15

    The Antarctic contribution to sea-level rise has long been uncertain. While regional variability in ice dynamics has been revealed, a picture of mass changes throughout the continental ice sheet is lacking. Here, we use satellite radar altimetry to measure the elevation change of 72% of the grounded ice sheet during the period 1992-2003. Depending on the density of the snow giving rise to the observed elevation fluctuations, the ice sheet mass trend falls in the range -5-+85Gtyr-1. We find that data from climate model reanalyses are not able to characterise the contemporary snowfall fluctuation with useful accuracy and our best estimate of the overall mass trend-growth of 27+/-29Gtyr-1-is based on an assessment of the expected snowfall variability. Mass gains from accumulating snow, particularly on the Antarctic Peninsula and within East Antarctica, exceed the ice dynamic mass loss from West Antarctica. The result exacerbates the difficulty of explaining twentieth century sea-level rise.

  2. From Outlet Glacier Changes to Ice Sheet Mass Balance - Evolution of Greenland Ice Sheet from Laser Altimetry Data

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Schenk, A.; Nagarajan, S.; Babonis, G. S.

    2010-12-01

    Investigations of ice sheet mass balance and the changing dynamics of outlet glaciers have been hampered by the lack of comprehensive data. In recent years, this situation has been remedied. Satellite laser altimetry data from the Ice Cloud and land Elevation Satellite mission (ICESat), combined with airborne laser altimetry, provide accurate measurements of surface elevation changes, and surface velocities derived from various satellite platforms yield crucial information on changing glacier dynamics. Taken together, a rich and diverse data set is emerging that allows for characterizing the spatial and temporal evolution of ice sheets and outlet glaciers. In particular, it enables quantitative studies of outlet glaciers undergoing rapid and complex changes. Although airborne and laser altimetry have been providing precise measurements of ice sheet topography since the early 1990s, determining detailed and accurate spatial and temporal distribution of surface changes remains a challenging problem. We have developed a new, comprehensive method, called Surface Elevation Reconstruction And Change detection (SERAC), which estimates surface changes by a simultaneous reconstruction of surface topography from fused multisensor data. The mathematical model is based on the assumption that for a small surface area, only the absolute elevation changes over time but not the shape of the surface patch. Therefore, laser points of all time epochs contribute to the shape parameters; points of each time period determine the absolute elevation of the surface patch at that period. This method provides high-resolution surface topography, precise changes and a rigorous error estimate of the quantities. By using SERAC we combined ICESat and ATM laser altimetry data to determine the evolution of surface change rates of the whole Greenland Ice Sheet between 2003 and 2009 on a high-resolution grid. Our reconstruction, consistent with GRACE results, shows ice sheet thinning propagating

  3. Monitoring southwest Greenland's ice sheet melt with ambient seismic noise.

    PubMed

    Mordret, Aurélien; Mikesell, T Dylan; Harig, Christopher; Lipovsky, Bradley P; Prieto, Germán A

    2016-05-01

    The Greenland ice sheet presently accounts for ~70% of global ice sheet mass loss. Because this mass loss is associated with sea-level rise at a rate of 0.7 mm/year, the development of improved monitoring techniques to observe ongoing changes in ice sheet mass balance is of paramount concern. Spaceborne mass balance techniques are commonly used; however, they are inadequate for many purposes because of their low spatial and/or temporal resolution. We demonstrate that small variations in seismic wave speed in Earth's crust, as measured with the correlation of seismic noise, may be used to infer seasonal ice sheet mass balance. Seasonal loading and unloading of glacial mass induces strain in the crust, and these strains then result in seismic velocity changes due to poroelastic processes. Our method provides a new and independent way of monitoring (in near real time) ice sheet mass balance, yielding new constraints on ice sheet evolution and its contribution to global sea-level changes. An increased number of seismic stations in the vicinity of ice sheets will enhance our ability to create detailed space-time records of ice mass variations.

  4. Mass balance and sliding velocity of the Puget lobe of the cordilleran ice sheet during the last glaciation

    USGS Publications Warehouse

    Booth, D.B.

    1986-01-01

    An estimate of the sliding velocity and basal meltwater discharge of the Puget lobe of the Cordilleran ice sheet can be calculated from its reconstructed extent, altitude, and mass balance. Lobe dimensions and surface altitudes are inferred from ice limits and flow-direction indicators. Net annual mass balance and total ablation are calculated from relations empirically derived from modern maritime glaciers. An equilibrium-line altitude between 1200 and 1250 m is calculated for the maximum glacial advance (ca. 15,000 yr B.P.) during the Vashon Stade of the Fraser Glaciation. This estimate is in accord with geologic data and is insensitive to plausible variability in the parameters used in the reconstruction. Resultant sliding velocities are as much as 650 m/a at the equilibrium line, decreasing both up- and downglacier. Such velocities for an ice sheet of this size are consistent with nonsurging behavior. Average meltwater discharge increases monotonically downglacier to 3000 m3/sec at the terminus and is of a comparable magnitude to ice discharge over much of the glacier's ablation area. Palcoclimatic inferences derived from this reconstruction are consistent with previous, independently derived studies of late Pleistocene temperature and precipitation in the Pacific Northwest. ?? 1986.

  5. Satellite-derived, melt-season surface temperature of the Greenland Ice Sheet (2000-2005) and its relationship to mass balance

    USGS Publications Warehouse

    Hall, D.K.; Williams, R.S.; Casey, K.A.; DiGirolamo, N.E.; Wan, Z.

    2006-01-01

    Mean, clear-sky surface temperature of the Greenland Ice Sheet was measured for each melt season from 2000 to 2005 using Moderate-Resolution Imaging Spectroradiometer (MODIS)–derived land-surface temperature (LST) data-product maps. During the period of most-active melt, the mean, clear-sky surface temperature of the ice sheet was highest in 2002 (−8.29 ± 5.29°C) and 2005 (−8.29 ± 5.43°C), compared to a 6-year mean of −9.04 ± 5.59°C, in agreement with recent work by other investigators showing unusually extensive melt in 2002 and 2005. Surface-temperature variability shows a correspondence with the dry-snow facies of the ice sheet; a reduction in area of the dry-snow facies would indicate a more-negative mass balance. Surface-temperature variability generally increased during the study period and is most pronounced in the 2005 melt season; this is consistent with surface instability caused by air-temperature fluctuations.

  6. Energy balance in the core of the Saturn plasma sheet: H2O chemistry

    NASA Astrophysics Data System (ADS)

    Shemansky, D. E.; Yoshii, J.; Liu, X.

    2011-10-01

    A model of the weakly ionized plasma at Saturn has been developed to investigate the properties of the system. Energy balance is a critical consideration. The present model is based on two sources of mass, H2O, and HI. H2O is a variable. HI is a significant volume of gas flowing through the plasma imposed by the source at Saturn [1,2,3]. The energy sources are solar radiation and heterogeneous magnetosphere electrons. The model calculations produce energy rates, species partitioning, and relaxation lifetimes. For the first time the state of the ambient plasma sheet electrons is directly connected to the energy forcing functions. Within limits of knowledge, the predicted state of the core region of the plasma sheet in neutral and ionized gas corresponds satisfactorily to observation. The dominant ions in these calculations are H2O+ and H3O+ with lifetimes of several days. The lifetime of H2O is roughly 60 days. In calculations carried out so far the predicted source rate for H2O is lower than the rates quoted from the Enceladus encounters.

  7. 77 FR 41213 - Cross-Border Application of Certain Swaps Provisions of the Commodity Exchange Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... Consumer Protection Act In the fall of 2008 a series of large financial institution failures triggered a... lack of supervisory oversight for certain financial institutions as a whole, and the interconnectedness... $700 billion of troubled assets that weighed down the balance sheets of U.S. financial institutions...

  8. Laurentide ice-sheet instability during the last deglaciation

    NASA Astrophysics Data System (ADS)

    Ullman, David J.; Carlson, Anders E.; Anslow, Faron S.; Legrande, Allegra N.; Licciardi, Joseph M.

    2015-07-01

    Changes in the amount of summer incoming solar radiation (insolation) reaching the Northern Hemisphere are the underlying pacemaker of glacial cycles. However, not all rises in boreal summer insolation over the past 800,000 years resulted in deglaciation to present-day ice volumes, suggesting that there may be a climatic threshold for the disappearance of land-based ice. Here we assess the surface mass balance stability of the Laurentide ice sheet--the largest glacial ice mass in the Northern Hemisphere--during the last deglaciation (24,000 to 9,000 years ago). We run a surface energy balance model with climate data from simulations with a fully coupled atmosphere-ocean general circulation model for key time slices during the last deglaciation. We find that the surface mass balance of the Laurentide ice sheet was positive throughout much of the deglaciation, and suggest that dynamic discharge was mainly responsible for mass loss during this time. Total surface mass balance became negative only in the early Holocene, indicating the transition to a new state where ice loss occurred primarily by surface ablation. We conclude that the Laurentide ice sheet remained a viable ice sheet before the Holocene and began to fully deglaciate only once summer temperatures and radiative forcing over the ice sheet increased by 6-7 °C and 16-20 W m-2, respectively, relative to full glacial conditions.

  9. Application of GRACE to the assessment of model-based estimates of monthly Greenland Ice Sheet mass balance (2003-2012)

    NASA Astrophysics Data System (ADS)

    Schlegel, Nicole-Jeanne; Wiese, David N.; Larour, Eric Y.; Watkins, Michael M.; Box, Jason E.; Fettweis, Xavier; van den Broeke, Michiel R.

    2016-09-01

    Quantifying the Greenland Ice Sheet's future contribution to sea level rise is a challenging task that requires accurate estimates of ice sheet sensitivity to climate change. Forward ice sheet models are promising tools for estimating future ice sheet behavior, yet confidence is low because evaluation of historical simulations is challenging due to the scarcity of continental-wide data for model evaluation. Recent advancements in processing of Gravity Recovery and Climate Experiment (GRACE) data using Bayesian-constrained mass concentration ("mascon") functions have led to improvements in spatial resolution and noise reduction of monthly global gravity fields. Specifically, the Jet Propulsion Laboratory's JPL RL05M GRACE mascon solution (GRACE_JPL) offers an opportunity for the assessment of model-based estimates of ice sheet mass balance (MB) at ˜ 300 km spatial scales. Here, we quantify the differences between Greenland monthly observed MB (GRACE_JPL) and that estimated by state-of-the-art, high-resolution models, with respect to GRACE_JPL and model uncertainties. To simulate the years 2003-2012, we force the Ice Sheet System Model (ISSM) with anomalies from three different surface mass balance (SMB) products derived from regional climate models. Resulting MB is compared against GRACE_JPL within individual mascons. Overall, we find agreement in the northeast and southwest where MB is assumed to be primarily controlled by SMB. In the interior, we find a discrepancy in trend, which we presume to be related to millennial-scale dynamic thickening not considered by our model. In the northwest, seasonal amplitudes agree, but modeled mass trends are muted relative to GRACE_JPL. Here, discrepancies are likely controlled by temporal variability in ice discharge and other related processes not represented by our model simulations, i.e., hydrological processes and ice-ocean interaction. In the southeast, GRACE_JPL exhibits larger seasonal amplitude than predicted by

  10. Ice sheet radar altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, J.

    1988-01-01

    The surface topography of the Greenland and Antarctic ice sheets between 72 degrees north and south was mapped using radar altimetry data from the U.S. Navy GEOSAT. The glaciological objectives of this activity were to study the dynamics of the ice flow, changes in the position of floating ice-shelf fronts, and ultimately to measure temporal changes in ice surface elevation indicative of ice sheet mass balance.

  11. One-dimensional Vlasov-Maxwell equilibrium for the force-free Harris sheet.

    PubMed

    Harrison, Michael G; Neukirch, Thomas

    2009-04-03

    In this Letter, the first nonlinear force-free Vlasov-Maxwell equilibrium is presented. One component of the equilibrium magnetic field has the same spatial structure as the Harris sheet, but whereas the Harris sheet is kept in force balance by pressure gradients, in the force-free solution presented here force balance is maintained by magnetic shear. Magnetic pressure, plasma pressure and plasma density are constant. The method used to find the equilibrium is based on the analogy of the one-dimensional Vlasov-Maxwell equilibrium problem to the motion of a pseudoparticle in a two-dimensional conservative potential. The force-free solution can be generalized to a complete family of equilibria that describe the transition between the purely pressure-balanced Harris sheet to the force-free Harris sheet.

  12. Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model

    DOE PAGES

    Lenaerts, Jan T. M.; Vizcaino, Miren; Fyke, Jeremy Garmeson; ...

    2016-02-01

    Here, we present climate and surface mass balance (SMB) of the Antarctic ice sheet (AIS) as simulated by the global, coupled ocean–atmosphere–land Community Earth System Model (CESM) with a horizontal resolution of ~1° in the past, present and future (1850–2100). CESM correctly simulates present-day Antarctic sea ice extent, large-scale atmospheric circulation and near-surface climate, but fails to simulate the recent expansion of Antarctic sea ice. The present-day Antarctic ice sheet SMB equals 2280 ± 131Gtyear –1, which concurs with existing independent estimates of AIS SMB. When forced by two CMIP5 climate change scenarios (high mitigation scenario RCP2.6 and high-emission scenariomore » RCP8.5), CESM projects an increase of Antarctic ice sheet SMB of about 70 Gtyear –1 per degree warming. This increase is driven by enhanced snowfall, which is partially counteracted by more surface melt and runoff along the ice sheet’s edges. This intensifying hydrological cycle is predominantly driven by atmospheric warming, which increases (1) the moisture-carrying capacity of the atmosphere, (2) oceanic source region evaporation, and (3) summer AIS cloud liquid water content.« less

  13. Mass Balance of the West Antarctic Ice-Sheet from ICESat Measurements

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Li, Jun; Robins, John; Saba, Jack L.; Yi, Donghui

    2011-01-01

    Mass balance estimates for 2003-2008 are derived from ICESat laser altimetry and compared with estimates for 1992-2002 derived from ERS radar altimetry. The net mass balance of 3 drainage systems (Pine Island, Thwaites/Smith, and the coast of Marie Bryd) for 2003-2008 is a loss of 100 Gt/yr, which increased from a loss of 70 Gt/yr for the earlier period. The DS including the Bindschadler and MacAyeal ice streams draining into the Ross Ice Shelf has a mass gain of 11 Gt/yr for 2003-2008, compared to an earlier loss of 70 Gt/yr. The DS including the Whillans and Kamb ice streams has a mass gain of 12 Gt/yr, including a significant thickening on the upper part of the Kamb DS, compared to a earlier gain of 6 Gt/yr (includes interpolation for a large portion of the DS). The other two DS discharging into the Ronne Ice Shelf and the northern Ellsworth Coast have a mass gain of 39 Gt/yr, compared to a gain of 4 Gt/yr for the earlier period. Overall, the increased losses of 30 Gt/yr in the Pine Island, Thwaites/Smith, and the coast of Marie Bryd DSs are exceeded by increased gains of 59 Gt/yr in the other 4 DS. Overall, the mass loss from the West Antarctic ice sheet has decreased to 38 Gt/yr from the earlier loss of 67 Gt/yr, reducing the contribution to sea level rise to 0.11 mm/yr from 0.19 mm/yr

  14. Involving patients in treatment decisions - a delicate balancing act for Swedish dentists.

    PubMed

    Röing, Marta; Holmström, Inger Knutsson

    2014-08-01

    This study focuses on patients' participation in treatment decisions related to the delivery of oral health care in the social welfare state of Sweden. In 1985, the National Dental Service Act gave dental patients the right to take an active role in decisions regarding their treatment and, in doing so, strengthened them as consumers. Little is known how dentists in Sweden have adapted to this change. This study explores how dentists in Sweden perceive and experience involving patients in dental treatment decisions. Data were collected from open-ended interviews with nineteen dentists, and an inductive qualitative content analysis was chosen to analyse the transcribed interviews. Involving patients in treatment decisions appeared to be delicate balancing acts between the ideals of patient involvement and the reality of how it is practised in Sweden. These balancing acts in turn revealed obstacles to patient involvement and the role that economy can play on the decisions of some patients regarding their treatment. This study has given insight into a relationship in which some dentists in Sweden find it hard to adapt to and change their professional role with patients who appear to act more as consumers. For these dentists, better practice of patient involvement may require adoption of a more consumerist approach. However, in situations where economy influences patients' treatment choices, the ideals of patient involvement may remain unattainable. © 2012 John Wiley & Sons Ltd.

  15. Understanding Recent Mass Balance Changes of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    vanderVeen, Cornelius

    2003-01-01

    The ultimate goal of this project is to better understand the current transfer of mass between the Greenland Ice Sheet, the world's oceans and the atmosphere, and to identify processes controlling the rate of this transfer, to be able to predict with greater confidence future contributions to global sea level rise. During the first year of this project, we focused on establishing longer-term records of change of selected outlet glaciers, reevaluation of mass input to the ice sheet and analysis of climate records derived from ice cores, and modeling meltwater production and runoff from the margins of the ice sheet.

  16. Troughs in Ice Sheets and Other Icy Deposits on Mars: Analysis of Their Radiative Balance

    NASA Technical Reports Server (NTRS)

    Fountain, A.; Kargel, J.; Lewis, K.; MacAyeal, D.; Pfeffer, T.; Zwally, H. J.

    2000-01-01

    It has long been known that groove-like structures in glaciers and ice sheets can trap more incoming solar radiation than is the case for a 'normal' flat, smooth surface. In this presentation, we shall describe the radiative regimes of typical scarps and troughs on icy surfaces of Mars, and suggest how these features originate and evolve through time. The basis of our analysis is the radiation balance model presented by Pfeffer and Bretherton. Their model considers the visible band radiation regime of a V-shaped groove on a terrestrial ice surface, and shows that absorbed energy can be enhanced by up to 50 percent for grooves with small opening angles and with typical polar values of the solar zenith angle. Our work extends this model by considering: (a) departures from V-shaped geometry, (b) both englacial and surficial dust and debris, and (c) the infrared spectrum. We apply the extended model to various features on the Martian surface, including the spiral-like scarps on the Northern and Southern ice sheets, the large-scale chasms (e.g., Chasm Borealis), and groove-like lineations on valley floors thought to be filled with mixtures of dust and icy substances. In conjunction with study of valley-closure experiments, we suggest that spiral-like scarps and chasms are stable features of the Martian climate regime. We also suggest that further study of scarps and chasms may shed light on the composition (i.e., relative proportions of water ice, carbon-dioxide ice and dust) of the Martian ice sheets and valley fills.

  17. A Range Correction for Icesat and Its Potential Impact on Ice-sheet Mass Balance Studies

    NASA Technical Reports Server (NTRS)

    Borsa, A. A.; Moholdt, G.; Fricker, H. A.; Brunt, Kelly M.

    2014-01-01

    We report on a previously undocumented range error in NASA's Ice, Cloud and land Elevation Satellite (ICESat) that degrades elevation precision and introduces a small but significant elevation trend over the ICESat mission period. This range error (the Gaussian-Centroid or 'G-C'offset) varies on a shot-to-shot basis and exhibits increasing scatter when laser transmit energies fall below 20 mJ. Although the G-C offset is uncorrelated over periods less than1 day, it evolves over the life of each of ICESat's three lasers in a series of ramps and jumps that give rise to spurious elevation trends of -0.92 to -1.90 cm yr(exp -1), depending on the time period considered. Using ICESat data over the Ross and Filchner-Ronne ice shelves we show that (1) the G-C offset introduces significant biases in ice-shelf mass balance estimates, and (2) the mass balance bias can vary between regions because of different temporal samplings of ICESat.We can reproduce the effect of the G-C offset over these two ice shelves by fitting trends to sample-weighted mean G-C offsets for each campaign, suggesting that it may not be necessary to fully repeat earlier ICESat studies to determine the impact of the G-C offset on ice-sheet mass balance estimates.

  18. Effect of self-consistent magnetic field on plasma sheet penetration to the inner magnetosphere under enhanced convection: RCM simulations combined with force-balance magnetic field solver

    NASA Astrophysics Data System (ADS)

    Gkioulidou, M.; Wang, C.; Lyons, L. R.; Wolf, R. A.

    2010-12-01

    Transport of plasma sheet particles into the inner magnetosphere is strongly affected by the penetration of the convection electric field, which is the result of the large-scale magnetosphere-ionosphere electromagnetic coupling. This transport, on the other hand, results in plasma heating and magnetic field stretching, which become very significant in the inner plasma sheet (inside 20 RE). We have previously run simulations with the Rice Convection Model (RCM) to investigate how the earthward penetration of convection electric field, and therefore plasma sheet population, depends on plasma sheet boundary conditions. Outer boundary conditions at r ~20 RE are a function of MLT and interplanetary conditions based on 11 years of Geotail data. In the previous simulations, Tsyganenko 96 magnetic field model (T96) was used so force balance between plasma pressure and magnetic fields was not maintained. We have now integrated the RCM with a magnetic field solver (Liu et al., 2006) to obtain the required force balance in the equatorial plane. We have run the self-consistent simulations under enhanced convection with different boundary conditions in which we kept different parameters (flux tube particle content, plasma pressure, plasma beta, or magnetic fields) at the outer boundary to be MLT-dependent but time independent. Different boundary conditions result in qualitatively similar plasma sheet profiles. The results show that magnetic field has a dawn dusk asymmetry with field lines being more stretched in the pre-midnight sector, due to relatively higher plasma pressure there. The asymmetry in the magnetic fields in turn affects the radial distance and MLT of plasma sheet penetration into the inner magnetosphere. In comparison with results using the T96, plasma transport under self-consistent magnetic field results in proton and electron plasma sheet inner edges that are located in higher latitudes, weaker pressure gradients, and more efficient shielding of the near

  19. Firn Thickness Changes (1982-2015) Driven by SMB from MERRA-2, RACMO2.3, ERA-Int and AVHRR Surface Temperature and the Impacts to Greenland Ice Sheet Mass Balance

    NASA Astrophysics Data System (ADS)

    Li, J.; Medley, B.; Neumann, T.; Smith, B. E.; Luthcke, S. B.; Zwally, H. J.

    2016-12-01

    Surface mass balance (SMB) data are essential in the derivation of ice sheet mass balance. This is because ice sheet mass change consists of short-term and long-term variations. The short-term variations are directly given by the SMB data. For altimetry based ice sheet mass balance studies, these short-term mass changes are converted to firn thickness changes by using a firn densification-elevation model, and then the variations are subtracted from the altimetry measurements to give the long-term ice thickness changes that are associated with the density of ice. So far various SMB data sets such as ERA-Interim, RACMO and MERRA are available and some have been widely used in large number of ice sheet mass balance studies. However theses data sets exhibit the clear discrepancies in both random and systematic manner. In this study, we use our time dependent firn densification- elevation model, driven by the SMB data from MERRA-2, RACMO2.3 and ERA-Int for the period of 1982-2015 and the temperature variations from AVHRR for the same period to examine the corresponding firn thickness variations and the impacts to the mass changes over the Greenland ice sheet. The model was initialized with the1980's climate. Our results show that the relative smaller (centimeter level) differences in the firn thickness driven by the different data set occur at the early stage (1980's) of the model run. As the time progressing, the discrepancies between the SMB data sets accumulate, and the corresponding firn thickness differences quickly become larger with the value > 2m at the end of the period. Although the overall rates for the whole period driven by each of the three data sets are small ranging -0.2 - 0.2 cm a-1 (-3.0-2.7 Gt a-1), the decadal rates can vary greatly with magnitude > 3 cm a-1 and the impact to the Greenland mass change exceeds 30 Gt a-1.

  20. Development of Cu-bearing bake-hardenable steel sheets for automotive exposed panels

    NASA Astrophysics Data System (ADS)

    Hong, Moon-Hi; Cho, Noi-Ha; Kim, Sung-Il; Kwon, Ohjoon; Lim, Sung-Hwan; Moon, Won-Jin

    2010-12-01

    Recently, newly developed bake-hardenable (BH) steel sheets strengthened by copper sulfide (CuS) have been successfully employed in commercial production lines that supply automotive outer panels. The metallurgical concepts governing fabrication of these new BH steel sheets require keeping carbon content as low as 0.0015 wt.% without any additional amount of titanium and/or niobium for solute carbon scavenging. The role of CuS precipitates has turned out to raise the yield strength acting as a barrier against dislocation movement. In this paper, we studied the effects of chemical compositions and manufacturing process variables on the microstructure and mechanical properties of newly developed BH steel sheets. We found that the control of carbon and nitrogen showed a good balance between bake-hardenability (BH) and yield point elongation (YP-El). We identified the crystallographic relationship between the nano-size CuS precipitates and the ferrite matrix of (001)sulfide//(001)α-Fe and [001]sulfide//[001]α-Fe. We also found that the BH and YP-El were affected by the formation of aluminium nitride (AlN) and the annealing temperature.

  1. Effect of self-consistent magnetic field on plasma sheet penetration to the inner magnetosphere: Rice convection model simulations combined with modified Dungey force-balanced magnetic field solver

    NASA Astrophysics Data System (ADS)

    Gkioulidou, Matina; Wang, Chih-Ping; Lyons, Larry R.

    2011-12-01

    Transport of plasma sheet particles into the inner magnetosphere is crucial to the development of the region 2 (R2) field-aligned current system (FAC), which results in the shielding of the penetration electric field and the formation of subauroral polarization streams (SAPS) and the Harang reversal, phenomena closely associated with storms and substorms. In addition to the electric field, this transport is also strongly affected by the magnetic field, which changes with plasma pressure and is distinctly different from the dipole field in the inner plasma sheet. To determine the feedback of force-balanced magnetic field to the transport, we have integrated the Rice convection model (RCM) with a modified Dungey magnetic field solver to obtain the required force balance in the equatorial plane. Comparing our results with those from a RCM run using a T96 magnetic field, we find that transport under a force-balanced magnetic field results in weaker pressure gradients and thus weaker R2 FAC in the near-Earth region and weaker shielding of the penetration electric field. As a result, plasma sheet protons and electrons penetrate farther earthward, and their inner edges become closer together and more azimuthally symmetric than in the T96 case. The Harang reversal extends farther dawnward, and the SAPS become more confined in radial and latitudinal extents. The magnitudes of azimuthal pressure gradient, the inner edges of thermal protons and electrons, the latitudinal range of the Harang reversal, and the radial and latitudinal widths of the SAPS from the force-balanced run are found to be more consistent with observations.

  2. Combining evidence and values in priority setting: testing the balance sheet method in a low-income country.

    PubMed

    Makundi, Emmanuel; Kapiriri, Lydia; Norheim, Ole Frithjof

    2007-09-24

    Procedures for priority setting need to incorporate both scientific evidence and public values. The aim of this study was to test out a model for priority setting which incorporates both scientific evidence and public values, and to explore use of evidence by a selection of stakeholders and to study reasons for the relative ranking of health care interventions in a setting of extreme resource scarcity. Systematic search for and assessment of relevant evidence for priority setting in a low-income country. Development of a balance sheet according to Eddy's explicit method. Eight group interviews (n-85), using a modified nominal group technique for eliciting individual and group rankings of a given set of health interventions. The study procedure made it possible to compare the groups' ranking before and after all the evidence was provided to participants. A rank deviation is significant if the rank order of the same intervention differed by two or more points on the ordinal scale. A comparison between the initial rank and the final rank (before deliberation) showed a rank deviation of 67%. The difference between the initial rank and the final rank after discussion and voting gave a rank deviation of 78%. Evidence-based and deliberative decision-making does change priorities significantly in an experimental setting. Our use of the balance sheet method was meant as a demonstration project, but could if properly developed be feasible for health planners, experts and health workers, although more work is needed before it can be used for laypersons.

  3. Modelling the climate and surface mass balance of polar ice sheets using RACMO2 - Part 2: Antarctica (1979-2016)

    NASA Astrophysics Data System (ADS)

    Melchior van Wessem, Jan; van de Berg, Willem Jan; Noël, Brice P. Y.; van Meijgaard, Erik; Amory, Charles; Birnbaum, Gerit; Jakobs, Constantijn L.; Krüger, Konstantin; Lenaerts, Jan T. M.; Lhermitte, Stef; Ligtenberg, Stefan R. M.; Medley, Brooke; Reijmer, Carleen H.; van Tricht, Kristof; Trusel, Luke D.; van Ulft, Lambertus H.; Wouters, Bert; Wuite, Jan; van den Broeke, Michiel R.

    2018-04-01

    We evaluate modelled Antarctic ice sheet (AIS) near-surface climate, surface mass balance (SMB) and surface energy balance (SEB) from the updated polar version of the regional atmospheric climate model, RACMO2 (1979-2016). The updated model, referred to as RACMO2.3p2, incorporates upper-air relaxation, a revised topography, tuned parameters in the cloud scheme to generate more precipitation towards the AIS interior and modified snow properties reducing drifting snow sublimation and increasing surface snowmelt. Comparisons of RACMO2 model output with several independent observational data show that the existing biases in AIS temperature, radiative fluxes and SMB components are further reduced with respect to the previous model version. The model-integrated annual average SMB for the ice sheet including ice shelves (minus the Antarctic Peninsula, AP) now amounts to 2229 Gt y-1, with an interannual variability of 109 Gt y-1. The largest improvement is found in modelled surface snowmelt, which now compares well with satellite and weather station observations. For the high-resolution ( ˜ 5.5 km) AP simulation, results remain comparable to earlier studies. The updated model provides a new, high-resolution data set of the contemporary near-surface climate and SMB of the AIS; this model version will be used for future climate scenario projections in a forthcoming study.

  4. Models for mirror symmetry breaking via β-sheet-controlled copolymerization: (i) mass balance and (ii) probabilistic treatment.

    PubMed

    Blanco, Celia; Hochberg, David

    2012-12-06

    Experimental mechanisms that yield the growth of homochiral copolymers over their heterochiral counterparts have been advocated by Lahav and co-workers. These chiral amplification mechanisms proceed through racemic β-sheet-controlled polymerization operative in both surface crystallites as well as in solution. We develop two complementary theoretical models for these template-induced desymmetrization processes leading to multicomponent homochiral copolymers. First, assuming reversible β-sheet formation, the equilibrium between the free monomer pool and the polymer strand within the template is assumed. This yields coupled nonlinear mass balance equations whose solutions are used to calculate enantiomeric excesses and average lengths of the homochiral chains formed. The second approach is a probabilistic treatment based on random polymerization. The occlusion probabilities depend on the polymerization activation energies for each monomer species and are proportional to the concentrations of the monomers in solution in the constant pool approximation. The monomer occlusion probabilities are represented geometrically in terms of unit simplexes from which conditions for maximizing or minimizing the likelihood for mirror symmetry breaking can be determined.

  5. The relationship between the Balanced Budget Act and length of stay for Medicare patients in US hospitals.

    PubMed

    Younis, Mustafa Z; Forgione, Dana A

    2009-02-01

    The Balanced Budget Act (BBA) of 1997 and Balanced Budget Refinement Act (BBRA) of 1999 led to deep financial cuts for hospitals and nursing homes. We examine the effects of these acts on hospital length of stay (LOS) for Medicare recipients. Using data for all short-stay community hospitals in the country, we compared LOS for Medicare patients before and after the BBA/BBRA relative to known determinants of LOS, e.g., hospital ownership, region, beds, financial performance, and conversion/change in ownership type. Hospital LOS was reduced as a result of the acts. Reductions were more apparent for larger urban hospitals that provided safety-net services. LOS varied slightly by hospital ownership. This study is among the first to evaluate the impact of BBA and BBRA on hospital services. These acts had a negative effect on the ability of hospitals to continue offering safety-net services and negatively affected LOS.

  6. Effects of electron pressure anisotropy on current sheet configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artemyev, A. V., E-mail: aartemyev@igpp.ucla.edu; Angelopoulos, V.; Runov, A.

    2016-09-15

    Recent spacecraft observations in the Earth's magnetosphere have demonstrated that the magnetotail current sheet can be supported by currents of anisotropic electron population. Strong electron currents are responsible for the formation of very thin (intense) current sheets playing the crucial role in stability of the Earth's magnetotail. We explore the properties of such thin current sheets with hot isotropic ions and cold anisotropic electrons. Decoupling of the motions of ions and electrons results in the generation of a polarization electric field. The distribution of the corresponding scalar potential is derived from the electron pressure balance and the quasi-neutrality condition. Wemore » find that electron pressure anisotropy is partially balanced by a field-aligned component of this polarization electric field. We propose a 2D model that describes a thin current sheet supported by currents of anisotropic electrons embedded in an ion-dominated current sheet. Current density profiles in our model agree well with THEMIS observations in the Earth's magnetotail.« less

  7. Evaluation of a 12-km Satellite-Era Reanalysis of Surface Mass Balance for the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Cullather, R. I.; Nowicki, S.; Zhao, B.; Max, S.

    2016-12-01

    The recent contribution to sea level change from the Greenland Ice Sheet is thought to be strongly driven by surface processes including melt and runoff. Global reanalyses are potential means of reconstructing the historical time series of ice sheet surface mass balance (SMB), but lack spatial resolution needed to resolve ablation areas along the periphery of the ice sheet. In this work, the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) is used to examine the spatial and temporal variability of surface melt over the Greenland Ice Sheet. MERRA-2 is produced for the period 1980 to the present at a grid spacing of ½° latitude by ⅝° longitude, and includes snow hydrology processes including compaction, meltwater percolation and refreezing, runoff, and a prognostic surface albedo. The configuration of the MERRA-2 system allows for the background model - the Goddard Earth Observing System model, version 5 (GEOS-5) - to be carried in phase space through analyzed states via the computation of analysis increments, a capability referred to as "replay". Here, a MERRA-2 replay integration is conducted in which atmospheric forcing fields are interpolated and adjusted to sub- atmospheric grid-scale resolution. These adjustments include lapse-rate effects on temperature, humidity, precipitation, and other atmospheric variables that are known to have a strong elevation dependency over ice sheets. The surface coupling is performed such that mass and energy are conserved. The atmospheric forcing influences the surface representation, which operates on land surface tiles with an approximate 12-km spacing. This produces a high-resolution, downscaled SMB which is interactively coupled to the reanalysis model. We compare the downscaled SMB product with other reanalyses, regional climate model values, and a second MERRA-2 replay in which the background model has been replaced with a 12-km, non-hydrostatic version of GEOS-5. The assessment

  8. Determining Greenland Ice Sheet Accumulation Rates from Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Jezek, Kenneth C.

    2001-01-01

    An important component of NASA's Program for Arctic Regional Climate Assessment (PARCA) is a mass balance investigation of the Greenland Ice Sheet. The mass balance is calculated by taking the difference between the snow accumulation and the ice discharge of the ice sheet. Uncertainties in this calculation include the snow accumulation rate, which has traditionally been determined by interpolating data from ice core samples taken throughout the ice sheet. The sparse data associated with ice cores, coupled with the high spatial and temporal resolution provided by remote sensing, have motivated scientists to investigate relationships between accumulation rate and microwave observations.

  9. Large Ice Discharge From the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Rignot, Eric

    1999-01-01

    The objectives of this work are to measure the ice discharge of the Greenland Ice Sheet close to the grounding line and/or calving front, and compare the results with mass accumulation and ablation in the interior to estimate the ice sheet mass balance.

  10. A Transient Initialization Routine of the Community Ice Sheet Model for the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    van der Laan, Larissa; van den Broeke, Michiel; Noël, Brice; van de Wal, Roderik

    2017-04-01

    The Community Ice Sheet Model (CISM) is to be applied in future simulations of the Greenland Ice Sheet under a range of climate change scenarios, determining the sensitivity of the ice sheet to individual climatic forcings. In order to achieve reliable results regarding ice sheet stability and assess the probability of future occurrence of tipping points, a realistic initial ice sheet geometry is essential. The current work describes and evaluates the development of a transient initialization routine, using NGRIP 18O isotope data to create a temperature anomaly field. Based on the latter, surface mass balance components runoff and precipitation are perturbed for the past 125k years. The precipitation and runoff fields originate from a downscaled 1 km resolution version of the regional climate model RACMO2.3 for the period 1961-1990. The result of the initialization routine is a present-day ice sheet with a transient memory of the last glacial-interglacial cycle, which will serve as the future runs' initial condition.

  11. On the Utilization of Ice Flow Models and Uncertainty Quantification to Interpret the Impact of Surface Radiation Budget Errors on Estimates of Greenland Ice Sheet Surface Mass Balance and Regional Estimates of Mass Balance

    NASA Astrophysics Data System (ADS)

    Schlegel, N.; Larour, E. Y.; Gardner, A. S.; Lang, C.; Miller, C. E.; van den Broeke, M. R.

    2016-12-01

    How Greenland ice flow may respond to future increases in surface runoff and to increases in the frequency of extreme melt events is unclear, as it requires detailed comprehension of Greenland surface climate and the ice sheet's sensitivity to associated uncertainties. With established uncertainty quantification tools run within the framework of Ice Sheet System Model (ISSM), we conduct decadal-scale forward modeling experiments to 1) quantify the spatial resolution needed to effectively force distinct components of the surface radiation budget, and subsequently surface mass balance (SMB), in various regions of the ice sheet and 2) determine the dynamic response of Greenland ice flow to variations in components of the net radiation budget. The Glacier Energy and Mass Balance (GEMB) software is a column surface model (1-D) that has recently been embedded as a module within ISSM. Using the ISSM-GEMB framework, we perform sensitivity analyses to determine how perturbations in various components of the surface radiation budget affect model output; these model experiments allow us predict where and on what spatial scale the ice sheet is likely to dynamically respond to changes in these parameters. Preliminary results suggest that SMB should be forced at at least a resolution of 23 km to properly capture dynamic ice response. In addition, Monte-Carlo style sampling analyses reveals that the areas with the largest uncertainty in mass flux are located near the equilibrium line altitude (ELA), upstream of major outlet glaciers in the North and West of the ice sheet. Sensitivity analysis indicates that these areas are also the most vulnerable on the ice sheet to persistent, far-field shifts in SMB, suggesting that continued warming, and upstream shift in the ELA, are likely to result in increased velocities, and consequentially SMB-induced thinning upstream of major outlet glaciers. Here, we extend our investigation to consider various components of the surface radiation

  12. Assessment of Antarctic Ice-Sheet Mass Balance Estimates: 1992 - 2009

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Giovinetto, Mario B.

    2011-01-01

    Published mass balance estimates for the Antarctic Ice Sheet (AIS) lie between approximately +50 to -250 Gt/year for 1992 to 2009, which span a range equivalent to 15% of the annual mass input and 0.8 mm/year Sea Level Equivalent (SLE). Two estimates from radar-altimeter measurements of elevation change by European Remote-sensing Satellites (ERS) (+28 and -31 Gt/year) lie in the upper part, whereas estimates from the Input-minus-Output Method (IOM) and the Gravity Recovery and Climate Experiment (GRACE) lie in the lower part (-40 to -246 Gt/year). We compare the various estimates, discuss the methodology used, and critically assess the results. Although recent reports of large and accelerating rates of mass loss from GRACE=based studies cite agreement with IOM results, our evaluation does not support that conclusion. We find that the extrapolation used in the published IOM estimates for the 15 % of the periphery for which discharge velocities are not observed gives twice the rate of discharge per unit of associated ice-sheet area than the 85% faster-moving parts. Our calculations show that the published extrapolation overestimates the ice discharge by 282 Gt/yr compared to our assumption that the slower moving areas have 70% as much discharge per area as the faster moving parts. Also, published data on the time-series of discharge velocities and accumulation/precipitation do not support mass output increases or input decreases with time, respectively. Our modified IOM estimate, using the 70% discharge assumption and substituting input from a field-data compilation for input from an atmospheric model over 6% of area, gives a loss of only 13 Gt/year (versus 136 Gt/year) for the period around 2000. Two ERS-based estimates, our modified IOM, and a GRACE-based estimate for observations within 1992 to 2005 lie in a narrowed range of +27 to - 40 Gt/year, which is about 3% of the annual mass input and only 0.2 mm/year SLE. Our preferred estimate for 1992-2001 is - 47 Gt

  13. The Mental Capacity Act--a balance between protection and liberty.

    PubMed

    Walters, Thomas Paul

    The stated aim of the Mental Capacity Act is to provide greater protection to those who may lose their mental capacities, particularly in terms of informed consent, patient affairs, advanced decisions and research. This article attempts to explore this new statute by way of examining the scope to which the Act departs from the previous Common Law. Three key themes are identified within this new Act, which differentiate it from Common Law: patients' best interests, which is paramount to any care or treatment; proxy consent, whereby donees can now be appointed to take charge of medical decisions; and advanced directives, where so-called living wills can be enforced provided that they are specific, written, signed and witnessed. However, upon examining the statute it appears that rather than increasing patient autonomy and self-determination, evidence suggests that power is still being held by the medical profession. Whether patients have full autonomy or not, the main issue could be how to strike an effective and workable balance between protection and liberty.

  14. Enhanced ice sheet melting driven by volcanic eruptions during the last deglaciation.

    PubMed

    Muschitiello, Francesco; Pausata, Francesco S R; Lea, James M; Mair, Douglas W F; Wohlfarth, Barbara

    2017-10-24

    Volcanic eruptions can impact the mass balance of ice sheets through changes in climate and the radiative properties of the ice. Yet, empirical evidence highlighting the sensitivity of ancient ice sheets to volcanism is scarce. Here we present an exceptionally well-dated annual glacial varve chronology recording the melting history of the Fennoscandian Ice Sheet at the end of the last deglaciation (∼13,200-12,000 years ago). Our data indicate that abrupt ice melting events coincide with volcanogenic aerosol emissions recorded in Greenland ice cores. We suggest that enhanced ice sheet runoff is primarily associated with albedo effects due to deposition of ash sourced from high-latitude volcanic eruptions. Climate and snowpack mass-balance simulations show evidence for enhanced ice sheet runoff under volcanically forced conditions despite atmospheric cooling. The sensitivity of past ice sheets to volcanic ashfall highlights the need for an accurate coupling between atmosphere and ice sheet components in climate models.

  15. Involving patients in treatment decisions – a delicate balancing act for Swedish dentists

    PubMed Central

    Röing, Marta; Holmström, Inger Knutsson

    2012-01-01

    Abstract Background  This study focuses on patients’ participation in treatment decisions related to the delivery of oral health care in the social welfare state of Sweden. In 1985, the National Dental Service Act gave dental patients the right to take an active role in decisions regarding their treatment and, in doing so, strengthened them as consumers. Little is known how dentists in Sweden have adapted to this change. Objective  This study explores how dentists in Sweden perceive and experience involving patients in dental treatment decisions. Design  Data were collected from open‐ended interviews with nineteen dentists, and an inductive qualitative content analysis was chosen to analyse the transcribed interviews. Findings  Involving patients in treatment decisions appeared to be delicate balancing acts between the ideals of patient involvement and the reality of how it is practised in Sweden. These balancing acts in turn revealed obstacles to patient involvement and the role that economy can play on the decisions of some patients regarding their treatment. Conclusions  This study has given insight into a relationship in which some dentists in Sweden find it hard to adapt to and change their professional role with patients who appear to act more as consumers. For these dentists, better practice of patient involvement may require adoption of a more consumerist approach. However, in situations where economy influences patients’ treatment choices, the ideals of patient involvement may remain unattainable. PMID:22512804

  16. The Great Balancing Act. Nutrition Comes Alive. Level 4. Nutrition Educator's Guide and Work Sheets, Information Sheets, Story, Letters to Parents. Revised Edition.

    ERIC Educational Resources Information Center

    Waldron, Laurie

    This guide offers a nutrition education program for students in Kindergarten through Grade 6. Activities span all grades as well as activities for the specific level. Nutrition education objectives are stated for each grade level: (1) grade four--students will explore how to balance food intake and energy output for overall health and physical…

  17. A balancing act: physical balance, through arousal, influences size perception.

    PubMed

    Geuss, Michael N; Stefanucci, Jeanine K; de Benedictis-Kessner, Justin; Stevens, Nicholas R

    2010-10-01

    Previous research has demonstrated that manipulating vision influences balance. Here, we question whether manipulating balance can influence vision and how it may influence vision--specifically, the perception of width. In Experiment 1, participants estimated the width of beams while balanced and unbalanced. When unbalanced, participants judged the widths to be smaller. One possible explanation is that unbalanced participants did not view the stimulus as long as when balanced because they were focused on remaining balanced. In Experiment 2, we tested this notion by limiting viewing time. Experiment 2 replicated the findings of Experiment 1, but viewing time had no effect on width judgments. In Experiment 3, participants' level of arousal was manipulated, because the balancing task likely produced arousal. While jogging, participants judged the beams to be smaller. In Experiment 4, participants completed another arousing task (counting backward by sevens) that did not involve movement. Again, participants judged the beams to be smaller when aroused. Experiment 5A raised participants' level of arousal before estimating the board widths (to control for potential dual-task effects) and showed that heightened arousal still influenced perceived width of the boards. Collectively, heightened levels of arousal, caused by multiple manipulations (including balance), influenced perceived width.

  18. Balancing Act

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2007-01-01

    For some administrators and planners, designing and building education facilities may sometimes seem like a circus act--trying to project a persona of competence and confidence while juggling dozens of issues. Meanwhile, the audience--students, staff members and taxpayers--watch and wait with anticipation in hopes of getting what they paid for and…

  19. The relationship between the Balanced Budget Act (BBA) and hospital profitability.

    PubMed

    Younis, Mustafa Z

    2006-01-01

    The Balanced Budget Act of 1997 (BBA) reduced the payment for fees for service providers and reduced the subsidy paid by the government for teaching hospitals. Since the passage of such cost containment measures, debates regarding their impact on hospitals, graduate medical education, and access to health care were raised. The need to examine the effect of such payment reduction on hospital profitability was widely ignored. We examined the relationship between the BBA and hospital profitability by using return on assets to measure profitability, by running an ordinary least squares regression for 1996 as pre-BBA and 1999 as post-BBA. We controlled for variables that were not included in previous literature, such as disproportionate share hospital status, critical access hospital status, and graduate medical education, measured by teaching hospitals to measure the effect of BBA cuts on teaching hospitals. Furthermore we incorporated several economic, financial, and utilization variables in the model. We used 1996 and 1999 data in our analysis to bridge potential effects of the BBA. To locate hospitals that changed ownership status we cross-matched the Medicare Cost Report data with the American Hospital Association Annual Survey. We found that overall hospital profitability declined as a result of the introduction of the BBA; however, small rural hospitals that converted to critical access status enjoyed improvement in financial status over the period of our study. Hospitals that converted to for-profit status did not improve in financial status, and showed a lower earning after the conversation. Our results show that the BBA had a negative effect on hospitals because of cuts in its reimbursement policy, except for critical access hospitals, which show improvement because of their exemption from the prospective payment system. Our study differs from others by using national comprehensive data for years that focus exclusively on the Balanced Budget Act period. We

  20. Ice stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation.

    PubMed

    Stokes, C R; Margold, M; Clark, C D; Tarasov, L

    2016-02-18

    The contribution of the Greenland and West Antarctic ice sheets to sea level has increased in recent decades, largely owing to the thinning and retreat of outlet glaciers and ice streams. This dynamic loss is a serious concern, with some modelling studies suggesting that the collapse of a major ice sheet could be imminent or potentially underway in West Antarctica, but others predicting a more limited response. A major problem is that observations used to initialize and calibrate models typically span only a few decades, and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves over longer timescales. This represents one of the largest sources of uncertainty when predicting the contributions of ice sheets to sea-level rise. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. Here we reconstruct the activity of 117 ice streams that operated at various times during deglaciation of the Laurentide Ice Sheet (from about 22,000 to 7,000 years ago) and show that as they activated and deactivated in different locations, their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter and their total discharge decreased. The underlying geology and topography clearly influenced ice stream activity, but--at the ice-sheet scale--their drainage network adjusted and was linked to changes in ice sheet volume. It is unclear whether these findings can be directly translated to modern ice sheets. However, contrary to the view that sees ice streams as unstable entities that can accelerate ice-sheet deglaciation, we conclude that ice streams exerted progressively less influence on ice sheet mass balance during the retreat of the Laurentide Ice Sheet.

  1. Spatiotemporal Variability of Meltwater Refreezing in Southwest Greenland Ice Sheet Firn

    NASA Astrophysics Data System (ADS)

    Rennermalm, A. K.; Hock, R.; Tedesco, M.; Corti, G.; Covi, F.; Miège, C.; Kingslake, J.; Leidman, S. Z.; Munsell, S.

    2017-12-01

    A substantial fraction of the summer meltwater formed on the surface of the Greenland ice sheet is retained in firn, while the remaining portion runs to the ocean through surface and subsurface channels. Refreezing of meltwater in firn can create impenetrable ice lenses, hence being a crucial process in the redistribution of surface runoff. To quantify the impact of refreezing on runoff and current and future Greenland surface mass balance, a three year National Science Foundation funded project titled "Refreezing in the firn of the Greenland ice sheet: Spatiotemporal variability and implications for ice sheet mass balance" started this past year. Here we present an overview of the project and some initial results from the first field season in May 2017 conducted in proximity of the DYE-2 site in the percolation zone of the Southwest Greenland ice sheet at elevations between 1963 and 2355 m a.s.l.. During this fieldwork two automatic weather stations were deployed, outfitted with surface energy balance sensors and 16 m long thermistor strings, over 300 km of ground penetrating radar data were collected, and five 20-26 m deep firn cores were extracted and analyzed for density and stratigraphy. Winter snow accumulation was measured along the radar tracks. Preliminary work on the firn-core data reveals increasing frequency and thickness of ice lenses at lower ice-sheet elevations, in agreement with other recent work in the area. Data collected within this project will facilitate advances in our understanding of the spatiotemporal variability of firn refreezing and its role in the hydrology and surface mass balance of the Greenland Ice Sheet.

  2. Probability based hydrologic catchments of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Hudson, B. D.

    2015-12-01

    Greenland Ice Sheet melt water impacts ice sheet flow dynamics, fjord and coastal circulation, and sediment and biogeochemical fluxes. Melt water exiting the ice sheet also is a key term in its mass balance. Because of this, knowledge of the area of the ice sheet that contributes melt water to a given outlet (its hydrologic catchment) is important to many ice sheet studies and is especially critical to methods using river runoff to assess ice sheet mass balance. Yet uncertainty in delineating ice sheet hydrologic catchments is a problem that is rarely acknowledged. Ice sheet catchments are delineated as a function of both basal and surface topography. While surface topography is well known, basal topography is less certain because it is dependent on radar surveys. Here, I a present a Monte Carlo based approach to delineating ice sheet catchments that quantifies the impact of uncertain basal topography. In this scheme, over many iterations I randomly vary the ice sheet bed elevation within published error bounds (using Morlighem et al., 2014 bed and bed error datasets). For each iteration of ice sheet bed elevation, I calculate the hydraulic potentiometric surface and route water over its path of 'steepest' descent to delineate the catchment. I then use all realizations of the catchment to arrive at a probability map of all major melt water outlets in Greenland. I often find that catchment size is uncertain, with small, random perturbations in basal topography leading to large variations in catchments size. While some catchments are well defined, others can double or halve in size within published basal topography error bars. While some uncertainty will likely always remain, this work points to locations where studies of ice sheet hydrology would be the most successful, allows reinterpretation of past results, and points to where future radar surveys would be most advantageous.

  3. Clouds enhance Greenland ice sheet mass loss

    NASA Astrophysics Data System (ADS)

    Van Tricht, Kristof; Gorodetskaya, Irina V.; L'Ecuyer, Tristan; Lenaerts, Jan T. M.; Lhermitte, Stef; Noel, Brice; Turner, David D.; van den Broeke, Michiel R.; van Lipzig, Nicole P. M.

    2015-04-01

    Clouds have a profound influence on both the Arctic and global climate, while they still represent one of the key uncertainties in climate models, limiting the fidelity of future climate projections. The potentially important role of thin liquid-containing clouds over Greenland in enhancing ice sheet melt has recently gained interest, yet current research is spatially and temporally limited, focusing on particular events, and their large scale impact on the surface mass balance remains unknown. We used a combination of satellite remote sensing (CloudSat - CALIPSO), ground-based observations and climate model (RACMO) data to show that liquid-containing clouds warm the Greenland ice sheet 94% of the time. High surface reflectivity (albedo) for shortwave radiation reduces the cloud shortwave cooling effect on the absorbed fluxes, while not influencing the absorption of longwave radiation. Cloud warming over the ice sheet therefore dominates year-round. Only when albedo values drop below ~0.6 in the coastal areas during summer, the cooling effect starts to overcome the warming effect. The year-round excess of energy due to the presence of liquid-containing clouds has an extensive influence on the mass balance of the ice sheet. Simulations using the SNOWPACK snow model showed not only a strong influence of these liquid-containing clouds on melt increase, but also on the increased sublimation mass loss. Simulations with the Community Earth System Climate Model for the end of the 21st century (2080-2099) show that Greenland clouds contain more liquid water path and less ice water path. This implies that cloud radiative forcing will be further enhanced in the future. Our results therefore urge the need for improving cloud microphysics in climate models, to improve future projections of ice sheet mass balance and global sea level rise.

  4. A Balancing Act

    ERIC Educational Resources Information Center

    Lewis, Tamika; Mobley, Mary; Huttenlock, Daniel

    2013-01-01

    It's the season for the job hunt, whether one is looking for their first job or taking the next step along their career path. This article presents first-person accounts to see how teachers balance the rewards and challenges of working in different types of schools. Tamica Lewis, a third-grade teacher, states that faculty at her school is…

  5. Ultraviolet photodetectors based on ZnO sheets: The effect of sheet size on photoresponse properties

    NASA Astrophysics Data System (ADS)

    Ghasempour Ardakani, Abbas; Pazoki, Meysam; Mahdavi, Seyed Mohammad; Bahrampour, Ali Reza; Taghavinia, Nima

    2012-05-01

    In this work, ultraviolet photodetectors based on electrodeposited ZnO sheet thin films were fabricated on a glass substrate. Before electrodeposition, a thin buffer layer of ZnO was deposited on the glass by pulsed laser deposition method. This layer not only acted as a nucleation site for ZnO sheet growth, but also made it possible to use cheap glass substrate instead of conventional fluorine-doped tin oxide (FTO) substrate. Our results showed that photoresponse properties of the photodetectors strongly depend on the sheet sizes. The smaller sheets exhibited enhanced photosensitivity, shortened fall times and decreased gain compared to larger ones. We showed that photodetectors based on ZnO sheets have a faster response than ones based on polycrystalline films. It was also shown that even less response time could be obtained by using comb-like electrodes instead of two-electrode.

  6. Leakage of the Greenland Ice Sheet through accelerated ice flow

    NASA Astrophysics Data System (ADS)

    Rignot, E.

    2005-12-01

    A map of coastal velocities of the Greenland ice sheet was produced from Radarsat-1 acquired during the background mission of 2000 and combined with radio echo sounding data to estimate the ice discharge from the ice sheet. On individual glaciers, ice discharge was compared with snow input from the interior and melt above the flux gate to determine the glacier mass balance. Time series of velocities on several glaciers at different latitudes reveal seasonal fluctuations of only 7-8 percent so that winter velocities are only 2 percent less than the yearly mean. The results show the northern Greenland glaciers to be close to balance yet losing mass. No change in ice flow is detected on Petermann, 79north and Zachariae Isstrom in 2000-2004. East Greenland glaciers are in balance and flowing steadily north of Kangerdlussuaq, but Kangerdlussuaq, Helheim and all the southeastern glaciers are thinning dramatically. All these glaciers accelerated, Kangerdlussuaq in 2000, Helheim prior to 2004, and southeast Greenland glaciers accelerated 10 to 50 percent in 2000-2004. Glacier acceleration is generally brutal, probably once the glacier reached a threshold, and sustained. In the northwest, most glaciers are largely out of balance. Jakobshavn accelerated significantly in 2002, and glaciers in its immediate vicinity accelerated more than 50 percent in 2000-2004. Less is known about southwest Greenland glaciers due to a lack of ice thickness data but the glaciers have accelerated there as well and are likely to be strongly out of balance despite thickening of the interior. Overall, I estimate the mass balance of the Greenland ice sheet to be about -80 +/-10 cubic km of ice per year in 2000 and -110 +/-15 cubic km of ice per year in 2004, i.e. more negative than based on partial altimetry surveys of the outlet glaciers. As climate continues to warm, more glaciers will accelerate, and the mass balance will become increasingly negative, regardless of the evolution of the ice sheet

  7. Impact of the global SST gradients changes on the Antarctic ice sheet surface mass balance through the Plio/Pliocene transition

    NASA Astrophysics Data System (ADS)

    Colleoni, Florence; Florindo, Fabio; McKay, Robert; Golledge, Nicholas; Sangiorgi, Francesca; Montoli, Enea; Masina, Simona; Cherchi, Annalisa; De Santis, Laura

    2017-04-01

    Sea Surface Temperatures (SST) reconstructions have shown that the Pliocene global zonal and meridional temperature gradients were different from today, implying changes of atmospheric and oceanic circulations, and thus of the main teleconnections. The impact of the main atmospheric teleconnections on the surface mass balance (SMB) of the Antarctic ice sheet (AIS) in the past has been seldom investigated. The ANDRILL marine record have shown that at the end of the Pliocene, the ice sheet expanded in the Ross Sea concomitantly with the expansion of the sea ice cover. This would have enhanced the formation of bottom waters that in turn, would have fostered upwelling along the West African coast and along the coast of Peru. The impact of Antarctica on the tropical climate dynamics has been shown by previous studies. To close the loop, this work investigates the impact of the tropical and high-latitude SST cooling on the main atmospheric teleconnections and then on the Antarctic SMB through the Plio/Pleistocene transition. Idealized Atmospheric General Circulation Model simulations are performed, in which high-latitude and tropical SST cooling are prescribed starting from the Pliocene SST. The atmospheric conditions obtained are then used to force an ice sheet model and a stand-alone energy balance model to investigate the impact on the SMB of the two main atmospheric teleconnections active in the Southern Hemisphere, namely the Southern Annular Mode (SAM) and the Pacific-South-American oscillation (PSA. In agreement with ANDRILL marine records, results show that the Easterlies strengthen along the Antarctic coasts during the Plio/Pleistocene transition. This, however, occurs only after cooling the tropical SSTs in the AGCM simulations. More importantly, the cooling of the tropical SST, through the strengthening of the PSA, has the largest influence on the spatial distribution of the climatic anomalies over Antarctica. This explains most of the SMB patterns simulated

  8. Ice sheet topography by satellite altimetry

    USGS Publications Warehouse

    Brooks, R.L.; Campbell, W.J.; Ramseier, R.O.; Stanley, H.R.; Zwally, H.J.

    1978-01-01

    The surface elevation of the southern Greenland ice sheet and surface features of the ice flow are obtained from the radar altimeter on the GEOS 3 satellite. The achieved accuracy in surface elevation is ???2 m. As changes in surface elevation are indicative of changes in ice volume, the mass balance of the present ice sheets could be determined by repetitive mapping of the surface elevation and the surface could be monitored to detect surging or significant changes in ice flow. ?? 1978 Nature Publishing Group.

  9. Response of the Antarctic ice sheet to ocean forcing using the POPSICLES coupled ice sheet-ocean model

    NASA Astrophysics Data System (ADS)

    Martin, D. F.; Asay-Davis, X.; Price, S. F.; Cornford, S. L.; Maltrud, M. E.; Ng, E. G.; Collins, W.

    2014-12-01

    We present the response of the continental Antarctic ice sheet to sub-shelf-melt forcing derived from POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period 1990 to 2010. Simulations are performed at 0.1 degree (~5 km) ocean resolution and ice sheet resolution as fine as 500 m using adaptive mesh refinement. A comparison of fully-coupled and comparable standalone ice-sheet model results demonstrates the importance of two-way coupling between the ice sheet and the ocean. The POPSICLES model couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), and the BISICLES ice-sheet model (Cornford et al., 2012). BISICLES makes use of adaptive mesh refinement to fully resolve dynamically-important regions like grounding lines and employs a momentum balance similar to the vertically-integrated formulation of Schoof and Hindmarsh (2009). Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests like MISMIP3D (Pattyn et al., 2013) and realistic configurations (Favier et al. 2014). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). A companion presentation, "Present-day circum-Antarctic simulations using the POPSICLES coupled land ice-ocean model" in session C027 describes the ocean-model perspective of this work, while we focus on the response of the ice sheet and on details of the model. The figure shows the BISICLES-computed vertically-integrated ice velocity field about 1 month into a 20-year coupled Antarctic run. Groundling lines are shown in green.

  10. Interhemispheric ice-sheet synchronicity during the last glacial maximum

    USGS Publications Warehouse

    Weber, Michael E.; Clark, Peter U.; Ricken, Werner; Mitrovica, Jerry X.; Hostetler, Steven W.; Kuhn, Gerhard

    2011-01-01

    The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.

  11. Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum.

    PubMed

    Weber, Michael E; Clark, Peter U; Ricken, Werner; Mitrovica, Jerry X; Hostetler, Steven W; Kuhn, Gerhard

    2011-12-02

    The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.

  12. Troughs on Martian Ice Sheets: Analysis of Their Closure and Mass Balance

    NASA Technical Reports Server (NTRS)

    Fountain, A.; Kargel, J.; Lewis, K.; MacAyeal, D.; Pfeffer, T.; Zwally, J.

    2000-01-01

    At the Copenhagen workshop on Martian polar processes, Ralf Greve commented that the flow regime surrounding scarps and troughs of the Martian polar ice sheets cannot be modeled using traditional "plan view" ice-sheet models. Such models are inadequate because they typically use reduced equations that embody certain simplifications applicable only to terrestrial ice sheets where the upper ice sheet surface is smooth. In response to this suggestion, we have constructed a 2-dimensional, time dependent "side view" (two spatial dimensions: one horizontal, one vertical) model of scarp closure that is designed to overcome the difficulties described by Greve. The purpose of the model is to evaluate the scales of stress variation and styles of flow closure so as to estimate errors that may be encountered by "plan view" models. We show that there may be avenues whereby the complications associated with scarp closure can be overcome in "plan view" models through appropriate parameterizations of 3-dimensional effects. Following this, we apply the flow model to simulate the evolution of a typical scarp on the North Polar Cap of Mars. Our simulations investigate: (a) the role of "radiation trapping" (see our companion abstract) in creating and maintaining "spiral-like" scarps on the ice sheet, (b) the consequences of different flowlaws and ice compositions on scarp evolution and, in particular, scarp age, and (c) the role of dust and debris in scarp evolution.

  13. Matters of Cost: Part I. Jones Learns about Balance Sheets: Part II. A Look at Budgetary Control: Part III. The Supervisor's "Do-It-Yourself" Series 3.

    ERIC Educational Resources Information Center

    Smith, J. E.; And Others

    This guide, which is intended for new supervisors and managers to use in an independent study setting, deals with costing, balance sheets, and budgetary control. The first section, "Matters of Cost" by J. E. and J. F. Smith, deals with the following topics: profits and productivity, principles of costing, cost control and cost reduction, fixed and…

  14. Modeling North American Ice Sheet Response to Changes in Precession and Obliquity

    NASA Astrophysics Data System (ADS)

    Tabor, C.; Poulsen, C. J.; Pollard, D.

    2012-12-01

    Milankovitch theory proposes that changes in insolation due to orbital perturbations dictate the waxing and waning of the ice sheets (Hays et al., 1976). However, variations in solar forcing alone are insufficient to produce the glacial oscillations observed in the climate record. Non-linear feedbacks in the Earth system likely work in concert with the orbital cycles to produce a modified signal (e.g. Berger and Loutre, 1996), but the nature of these feedbacks remain poorly understood. To gain a better understand of the ice dynamics and climate feedbacks associated with changes in orbital configuration, we use a complex Earth system model consisting of the GENESIS GCM and land surface model (Pollard and Thompson, 1997), the Pennsylvania State University ice sheet model (Pollard and DeConto, 2009), and the BIOME vegetation model (Kaplan et al., 2001). We began this study by investigating ice sheet sensitivity to a range of commonly used ice sheet model parameters, including mass balance and albedo, to optimize simulations for Pleistocene orbital cycles. Our tests indicate that choice of mass balance and albedo parameterizations can lead to significant differences in ice sheet behavior and volume. For instance, use of an insolation-temperature mass balance scheme (van den Berg, 2008) allows for a larger ice sheet response to orbital changes than the commonly employed positive degree-day method. Inclusion of a large temperature dependent ice albedo, representing phenomena such as melt ponds and dirty ice, also enhances ice sheet sensitivity. Careful tuning of mass balance and albedo parameterizations can help alleviate the problem of insufficient ice sheet retreat during periods of high summer insolation (Horton and Poulsen, 2007) while still accurately replicating the modern climate. Using our optimized configuration, we conducted a series of experiments with idealized transient orbits in an asynchronous coupling scheme to investigate the influence of obliquity and

  15. [Studies of time-course changes in human body balance after ingestion of long-acting hypnotics].

    PubMed

    Nakamura, Masahiro; Ishii, Masanori; Niwa, Yoji; Yamazaki, Momoko; Ito, Hiroshi

    2004-02-01

    Falling accidents are a serious nocosomial problem, with balance disorders after the ingestion of hypnotics said to be a cause. Based on the results of animal studies, it was postulated that this problem involves the muscle relaxation that is a pharmacological effect of benzodiazepines (BZP). No reports have, to our knowledge, been made of time-course changes in human body balance after ingestion of hypnotics. Accordingly, we used quazepam (Doral), a long-acting hypnotic considered to show comparatively weak muscle relaxation, to study static balance after drug ingestion in human volunteers. Briefly, informed consent was obtained from 8 healthy adults, then a gait analytic system (Gangas) was used to test static balance after drug ingestion (Mann and Romberg tests). We also measured circulating drug concentration over time. Our results showed that balance disorders occurred after quazepam ingestion with an unstable posture particularly striking. Given the function of quazepam receptors, it is difficult to surmise that balance disorders after drug ingestion were due to the drug's muscle relaxation. We surmised that inhibition from the central nervous system in connection with nerves awakening was involved. We found a strong correlation between the manifestation of balance disorders after drug ingestion and circulating drug concentration.

  16. Recent Ice Sheet and Glacier Elevation Changes in Greenland from Aircraft Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Krabill, William B.; Thomas, R.; Sonntag, J.; Manizade, S.; Yungel, J.

    2008-01-01

    The Arctic Ice Mapping group (Project AIM) at the NASA Goddard Space Flight Center Wallops Flight Facility has been conducting systematic topographic surveys of the Greenland Ice Sheet (GIS) since 1993, using scanning airborne laser altimeters combined with Global Positioning System (UPS) technology. Earlier surveys showed the ice sheet above 2000-rn elevation to be in balance, but with localized regions of thickening or thinning. Thinning predominates at lower elevations and thinning rates have recently increased, resulting in a negative mass balance for the entire ice sheet. Recently, critical segments of near-coastal flight lines in Greenland were resurveyed. Results from the new data will be presented.

  17. An ice sheet model validation framework for the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P.; Evans, Katherine J.; Kennedy, Joseph H.; Lenaerts, Jan; Lipscomb, William H.; Perego, Mauro; Salinger, Andrew G.; Tuminaro, Raymond S.; van den Broeke, Michiel R.; Nowicki, Sophie M. J.

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013, using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin-scale and whole-ice-sheet-scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of < 1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate a predictive skill with respect to observed dynamic changes that have occurred on

  18. An ice sheet model validation framework for the Greenland ice sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.

    We propose a new ice sheet model validation framework the Cryospheric Model Comparison Tool (CMCT) that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013 using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quanti- tative metricsmore » for use in evaluating the different model simulations against the observations. We find 10 that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin- and whole-ice-sheet scale metrics, the model initial condition as well as output from idealized and dynamic models all provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CMCT, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate predictive skill with respect to observed dynamic changes occurring on Greenland over the past few

  19. An ice sheet model validation framework for the Greenland ice sheet

    PubMed Central

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P.; Evans, Katherine J.; Kennedy, Joseph H.; Lenaerts, Jan; Lipscomb, William H.; Perego, Mauro; Salinger, Andrew G.; Tuminaro, Raymond S.; van den Broeke, Michiel R.; Nowicki, Sophie M. J.

    2018-01-01

    We propose a new ice sheet model validation framework – the Cryospheric Model Comparison Tool (CmCt) – that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013 using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin- and whole-ice-sheet scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate predictive skill with respect to observed dynamic changes occurring on Greenland over the

  20. An ice sheet model validation framework for the Greenland ice sheet.

    PubMed

    Price, Stephen F; Hoffman, Matthew J; Bonin, Jennifer A; Howat, Ian M; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P; Evans, Katherine J; Kennedy, Joseph H; Lenaerts, Jan; Lipscomb, William H; Perego, Mauro; Salinger, Andrew G; Tuminaro, Raymond S; van den Broeke, Michiel R; Nowicki, Sophie M J

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013 using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin- and whole-ice-sheet scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate predictive skill with respect to observed dynamic changes occurring on Greenland over the past

  1. An ice sheet model validation framework for the Greenland ice sheet

    DOE PAGES

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; ...

    2017-01-17

    We propose a new ice sheet model validation framework the Cryospheric Model Comparison Tool (CMCT) that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013 using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quanti- tative metricsmore » for use in evaluating the different model simulations against the observations. We find 10 that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin- and whole-ice-sheet scale metrics, the model initial condition as well as output from idealized and dynamic models all provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CMCT, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate predictive skill with respect to observed dynamic changes occurring on Greenland over the past few

  2. An Ice Sheet Model Validation Framework for the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas A.; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey R.; Chambers, Don P.; Evans, Katherine J.; hide

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013, using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin-scale and whole-ice-sheet-scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of less than 1 meter). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate a predictive skill with respect to observed dynamic changes that have occurred

  3. Glaciological constraints on current ice mass changes from modelling the ice sheets over the glacial cycles

    NASA Astrophysics Data System (ADS)

    Huybrechts, P.

    2003-04-01

    The evolution of continental ice sheets introduces a long time scale in the climate system. Large ice sheets have a memory of millenia, hence the present-day ice sheets of Greenland and Antarctica are still adjusting to climatic variations extending back to the last glacial period. This trend is separate from the direct response to mass-balance changes on decadal time scales and needs to be correctly accounted for when assessing current and future contributions to sea level. One way to obtain estimates of current ice mass changes is to model the past history of the ice sheets and their underlying beds over the glacial cycles. Such calculations assist to distinguish between the longer-term ice-dynamic evolution and short-term mass-balance changes when interpreting altimetry data, and are helpful to isolate the effects of postglacial rebound from gravity and altimetry trends. The presentation will discuss results obtained from 3-D thermomechanical ice-sheet/lithosphere/bedrock models applied to the Antarctic and Greenland ice sheets. The simulations are forced by time-dependent boundary conditions derived from sediment and ice core records and are constrained by geomorphological and glacial-geological data of past ice sheet and sea-level stands. Current simulations suggest that the Greenland ice sheet is close to balance, while the Antarctic ice sheet is still losing mass, mainly due to incomplete grounding-line retreat of the West Antarctic ice sheet since the LGM. The results indicate that altimetry trends are likely dominated by ice thickness changes but that the gravitational signal mainly reflects postglacial rebound.

  4. Enhanced optical gradient forces between coupled graphene sheets

    PubMed Central

    Xu, Xinbiao; Shi, Lei; Liu, Yang; Wang, Zheqi; Zhang, Xinliang

    2016-01-01

    Optical gradient forces between monolayer infinite-width graphene sheets as well as single-mode graphene nanoribbon pairs of graphene surface plasmons (GSPs) at mid-infrared frequencies were theoretically investigated. Although owing to the strongly enhanced optical field, the normalized optical force, fn, can reach 50 nN/μm/mW, which is the largest fn as we know, the propagation loss is also large. But we found that by changing the chemical potential of graphene, fn and the optical propagation loss can be balanced. The total optical force acted on the nanoribbon waveguides can thus enhance more than 1 order of magnitude than that in metallic surface plasmons (MSPs) waveguides with the same length and the loss can be lower. Owing to the enhanced optical force and the significant neff tuning by varying the chemical potential of graphene, we also propose an ultra-compact phase shifter. PMID:27338252

  5. Holocene deceleration of the Greenland Ice Sheet.

    PubMed

    MacGregor, Joseph A; Colgan, William T; Fahnestock, Mark A; Morlighem, Mathieu; Catania, Ginny A; Paden, John D; Gogineni, S Prasad

    2016-02-05

    Recent peripheral thinning of the Greenland Ice Sheet is partly offset by interior thickening and is overprinted on its poorly constrained Holocene evolution. On the basis of the ice sheet's radiostratigraphy, ice flow in its interior is slower now than the average speed over the past nine millennia. Generally higher Holocene accumulation rates relative to modern estimates can only partially explain this millennial-scale deceleration. The ice sheet's dynamic response to the decreasing proportion of softer ice from the last glacial period and the deglacial collapse of the ice bridge across Nares Strait also contributed to this pattern. Thus, recent interior thickening of the Greenland Ice Sheet is partly an ongoing dynamic response to the last deglaciation that is large enough to affect interpretation of its mass balance from altimetry. Copyright © 2016, American Association for the Advancement of Science.

  6. Wrapping a liquid drop with a thin elastic sheet

    NASA Astrophysics Data System (ADS)

    Paulsen, Joseph; Démery, Vincent; Davidovitch, Benny; Santangelo, Chris; Russell, Thomas; Menon, Narayanan

    2014-11-01

    We study the wrapping of a liquid drop by an initially-planar ultrathin (~ 100 nm) circular sheet. These elastic sheets can completely relax compressive stresses by forming wrinkles. In the experiment, we find that when a small fraction of the drop is covered, the overall shape of the sheet (i.e. averaging over the wrinkles) is axisymmetric. As we shrink the drop further, the sheet develops radial folds that break the axisymmetry of the sheet and the drop. Our data are consistent with a model where the sheet selects the shape that minimizes the exposed liquid surface area. We thus identify a ``geometric wrapping'' regime, where the partially-wrapped shape depends only on the relative radii of the sheet and the drop; the global breaking of axisymmetry is independent of the elastic energy of the deformed sheet. This regime requires that bending energy is negligible compared to surface energy, in contrast to the ``capillary origami'' regime where the static shape of the drop comes from a balance of bending and capillary forces.

  7. Using ATM laser altimetry to constrain surface mass balance estimates and supraglacial hydrology of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Studinger, M.; Medley, B.; Manizade, S.; Linkswiler, M. A.

    2016-12-01

    Repeat airborne laser altimetry measurements can provide large-scale field observations to better quantify spatial and temporal variability of surface processes contributing to seasonal elevation change and therefore surface mass balance. As part of NASA's Operation IceBridge the Airborne Topographic Mapper (ATM) laser altimeter measured the surface elevation of the Greenland Ice Sheet during spring (March - May) and fall (September - October) of 2015. Comparison of the two surveys reveals a general trend of thinning for outlet glaciers and for the ice sheet in a manner related to elevation and latitude. In contrast, some thickening is observed on the west (but not on the east) side of the ice divide above 2200 m elevation in the southern half, below latitude 69°N.The observed magnitude and spatial patterns of the summer melt signal can be utilized as input into ice sheet models and for validating reanalysis of regional climate models such as RACMO and MAR. We use seasonal anomalies in MERRA-2 climate fields (temperature, precipitation) to understand the observed spatial signal in seasonal change. Aside from surface elevation change, runoff from meltwater pooling in supraglacial lakes and meltwater channels accounts for at least half of the total mass loss. The ability of the ATM laser altimeters to image glacial hydrological features in 3-D and determine the depth of supraglacial lakes could be used for process studies and for quantifying melt processes over large scales. The 1-meter footprint diameter of ATM laser on the surface, together with a high shot density, allows for the production of large-scale, high-resolution, geodetic quality DEMs (50 x 50 cm) suitable for fine-scale glacial hydrology research and as input to hydrological models quantifying runoff.

  8. Periodic folding of viscous sheets

    NASA Astrophysics Data System (ADS)

    Ribe, Neil M.

    2003-09-01

    The periodic folding of a sheet of viscous fluid falling upon a rigid surface is a common fluid mechanical instability that occurs in contexts ranging from food processing to geophysics. Asymptotic thin-layer equations for the combined stretching-bending deformation of a two-dimensional sheet are solved numerically to determine the folding frequency as a function of the sheet’s initial thickness, the pouring speed, the height of fall, and the fluid properties. As the buoyancy increases, the system bifurcates from “forced” folding driven kinematically by fluid extrusion to “free” folding in which viscous resistance to bending is balanced by buoyancy. The systematics of the numerically predicted folding frequency are in good agreement with laboratory experiments.

  9. European breast cancer service screening outcomes: a first balance sheet of the benefits and harms.

    PubMed

    Paci, Eugenio; Broeders, Mireille; Hofvind, Solveig; Puliti, Donella; Duffy, Stephen William

    2014-07-01

    A recent comprehensive review has been carried out to quantify the benefits and harms of the European population-based mammographic screening programs. Five literature reviews were conducted on the basis of the observational published studies evaluating breast cancer mortality reduction, breast cancer overdiagnosis, and false-positive results. On the basis of the studies reviewed, the authors present a first estimate of the benefit and harm balance sheet. For every 1,000 women screened biennially from ages 50 to 51 years until ages 68 to 69 years and followed up until age 79 years, an estimated seven to nine breast cancer deaths are avoided, four cases are overdiagnosed, 170 women have at least one recall followed by noninvasive assessment with a negative result, and 30 women have at least one recall followed by invasive procedures yielding a negative result. The chance of a breast cancer death being avoided by population-based mammography screening of appropriate quality is more than that of overdiagnosis by screening. These outcomes should be communicated to women offered service screening in Europe. ©2014 American Association for Cancer Research.

  10. Graphanes: Sheets and stacking under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Xiao-Dong; Hand, Louis; Labet, Vanessa

    2011-04-26

    Eight isomeric two-dimensional graphane sheets are found in a theoretical study. Four of these nets—two built on chair cyclohexanes, two on boat—are more stable thermodynamically than the isomeric benzene, or polyacetylene. Three-dimensional crystals are built up from the two-dimensional sheets, and their hypothetical behavior under pressure (up to 300 GPa) is explored. While the three-dimensional graphanes remain, as expected, insulating or semiconducting in this pressure range, there is a remarkable inversion in stability of the five crystals studied. Two stacking polytypes that are not the most stable at ambient pressure (one based on an unusual chair cyclohexane net, the othermore » on a boat) are significantly stabilized with increasing pressure relative to stackings of simple chair sheets. The explanation may lie in the balance on intra and intersheet contacts in the extended arrays.« less

  11. Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume.

    PubMed

    Abe-Ouchi, Ayako; Saito, Fuyuki; Kawamura, Kenji; Raymo, Maureen E; Okuno, Jun'ichi; Takahashi, Kunio; Blatter, Heinz

    2013-08-08

    The growth and reduction of Northern Hemisphere ice sheets over the past million years is dominated by an approximately 100,000-year periodicity and a sawtooth pattern (gradual growth and fast termination). Milankovitch theory proposes that summer insolation at high northern latitudes drives the glacial cycles, and statistical tests have demonstrated that the glacial cycles are indeed linked to eccentricity, obliquity and precession cycles. Yet insolation alone cannot explain the strong 100,000-year cycle, suggesting that internal climatic feedbacks may also be at work. Earlier conceptual models, for example, showed that glacial terminations are associated with the build-up of Northern Hemisphere 'excess ice', but the physical mechanisms underpinning the 100,000-year cycle remain unclear. Here we show, using comprehensive climate and ice-sheet models, that insolation and internal feedbacks between the climate, the ice sheets and the lithosphere-asthenosphere system explain the 100,000-year periodicity. The responses of equilibrium states of ice sheets to summer insolation show hysteresis, with the shape and position of the hysteresis loop playing a key part in determining the periodicities of glacial cycles. The hysteresis loop of the North American ice sheet is such that after inception of the ice sheet, its mass balance remains mostly positive through several precession cycles, whose amplitudes decrease towards an eccentricity minimum. The larger the ice sheet grows and extends towards lower latitudes, the smaller is the insolation required to make the mass balance negative. Therefore, once a large ice sheet is established, a moderate increase in insolation is sufficient to trigger a negative mass balance, leading to an almost complete retreat of the ice sheet within several thousand years. This fast retreat is governed mainly by rapid ablation due to the lowered surface elevation resulting from delayed isostatic rebound, which is the lithosphere

  12. How do plants enlarge? A balancing act; Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyer, J.S.

    1996-12-31

    Cells of plants are surrounded by strong walls that prevent rupture from internal pressures that can be two or three times that of an automobile tire. In this way, the walls protect the cytoplasm. However, at the same time, the cells can enlarge as they grow. How this balancing act works and how it enlarges the plant were the subject of a recent conference at the University of Delaware in Lewes. The aim was to identify areas for future research that could explain the enlargement of whole plants. There is a large practical need to predict and modify plant enlargementmore » but the additional processes that overlie the molecular ones need to be integrated with the molecular information before a picture will emerge. How best to accomplish this involved input from cross-disciplinary areas in biomechanics, physics and engineering as well as molecular biology, biochemistry and ultrastructure.« less

  13. Energy. Overview: ERIC Fact Sheet No. 6.

    ERIC Educational Resources Information Center

    Arrington, Larry

    This fact sheet provides a basic overview of energy problems and programs in the United States and discusses the role that vocational education can play in solving those problems. The National Energy Plan is described including its objectives, strategies, and seven legislative acts: (1) The National Energy Conservation Act; (2) The Power Plant and…

  14. 17 CFR 240.12g5-2 - Definition of “total assets”.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) GENERAL RULES AND REGULATIONS, SECURITIES EXCHANGE ACT OF 1934 Rules and Regulations Under the... total assets as shown on the issuer's balance sheet or the balance sheet of the issuer and its...

  15. Protein unfolding versus β-sheet separation in spider silk nanocrystals

    NASA Astrophysics Data System (ADS)

    Alam, Parvez

    2014-03-01

    In this communication a mechanism for spider silk strain hardening is proposed. Shear failure of β-sheet nanocrystals is the first failure mode that gives rise to the creation of smaller nanocrystals, which are of higher strength and stiffness. β-sheet unfolding requires more energy than nanocrystal separation in a shear mode of failure. As a result, unfolding occurs after the nanocrystals separate in shear. β-sheet unfolding yields a secondary strain hardening effect once the β-sheet conformation is geometrically stable and acts like a unidirectional fibre in a fibre reinforced composite. The mechanism suggested herein is based on molecular dynamics calculations of residual inter-β-sheet separation strengths against residual intra-β-sheet unfolding strengths.

  16. Mass Balance Changes and Ice Dynamics of Greenland and Antarctic Ice Sheets from Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Babonis, G. S.; Csatho, B.; Schenk, T.

    2016-06-01

    During the past few decades the Greenland and Antarctic ice sheets have lost ice at accelerating rates, caused by increasing surface temperature. The melting of the two big ice sheets has a big impact on global sea level rise. If the ice sheets would melt down entirely, the sea level would rise more than 60 m. Even a much smaller rise would cause dramatic damage along coastal regions. In this paper we report about a major upgrade of surface elevation changes derived from laser altimetry data, acquired by NASA's Ice, Cloud and land Elevation Satellite mission (ICESat) and airborne laser campaigns, such as Airborne Topographic Mapper (ATM) and Land, Vegetation and Ice Sensor (LVIS). For detecting changes in ice sheet elevations we have developed the Surface Elevation Reconstruction And Change detection (SERAC) method. It computes elevation changes of small surface patches by keeping the surface shape constant and considering the absolute values as surface elevations. We report about important upgrades of earlier results, for example the inclusion of local ice caps and the temporal extension from 1993 to 2014 for the Greenland Ice Sheet and for a comprehensive reconstruction of ice thickness and mass changes for the Antarctic Ice Sheets.

  17. Modelling large-scale ice-sheet-climate interactions at the last glacial inception

    NASA Astrophysics Data System (ADS)

    Browne, O. J. H.; Gregory, J. M.; Payne, A. J.; Ridley, J. K.; Rutt, I. C.

    2010-05-01

    In order to investigate the interactions between coevolving climate and ice-sheets on multimillenial timescales, a low-resolution atmosphere-ocean general circulation model (AOGCM) has been coupled to a three-dimensional thermomechanical ice-sheet model. We use the FAMOUS AOGCM, which is almost identical in formulation to the widely used HadCM3 AOGCM, but on account of its lower resolution (7.5° longitude × 5° latitude in the atmosphere, 3.75°× 2.5° in the ocean) it runs about ten times faster. We use the community ice-sheet model Glimmer at 20 km resolution, with the shallow ice approximation and an annual degree-day scheme for surface mass balance. With the FAMOUS-Glimmer coupled model, we have simulated the growth of the Laurentide and Fennoscandian ice sheets at the last glacial inception, under constant orbital forcing and atmospheric composition for 116 ka BP. Ice grows in both regions, totalling 5.8 m of sea-level equivalent in 10 ka, slower than proxy records suggest. Positive climate feedbacks reinforce this growth at local scales (order hundreds of kilometres), where changes are an order of magnitude larger than on the global average. The albedo feedback (higher local albedo means a cooler climate) is important in the initial expansion of the ice-sheet area. The topography feedback (higher surface means a cooler climate) affects ice-sheet thickness and is not noticeable for the first 1 ka. These two feedbacks reinforce each other. Without them, the ice volume is ~90% less after 10 ka. In Laurentia, ice expands initially on the Canadian Arctic islands. The glaciation of the islands eventually cools the nearby mainland climate sufficiently to produce a positive mass balance there. Adjacent to the ice-sheets, cloud feedbacks tend to reduce the surface mass balance and restrain ice growth; this is an example of a local feedback whose simulation requires a model that includes detailed atmospheric physics.

  18. A study of thin liquid sheet flows

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1993-01-01

    This study was a theoretical and experimental investigation of thin liquid sheet flows in vacuum. A sheet flow created by a narrow slit of width, W, coalesces to a point at a distance, L, as a result of surface tension forces acting at the sheet edges. As the flow coalesces, the fluid accumulates in the sheet edges. The observed triangular shape of the sheet agrees with the calculated triangular result. Experimental results for L/W as a function of Weber number, We, agree with the calculated result, L/W = the sq. root of 8We. The edge cross sectional shape is found to oscillate from elliptic to 'cigar' like to 'peanut' like and then back to elliptic in the flow direction. A theoretical one-dimensional model was developed that yielded only elliptic solutions for the edge cross section. At the points where the elliptic shapes occur, there is agreement between theory and experiment.

  19. Autism: General Information. Fact Sheet Number 1 = Autismo: Informacion General. Fact Sheet Number 22.

    ERIC Educational Resources Information Center

    Interstate Research Associates, McLean, VA.

    This fact sheet on autism is offered in both English and Spanish, and is the same in both languages although numbered differently. It provides a definition, information on incidence, typical characteristics, and educational implications. It notes that autism is listed as a separate category under the Individuals with Disabilities Education Act.…

  20. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2010-08-01

    We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated dynamic calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of streams in this new 3-D marine ice sheet model.

  1. A balancing act for autophagin.

    PubMed

    Till, Andreas; Subramani, Suresh

    2010-07-01

    Autophagy is a tightly regulated catabolic process whereby cells degrade their constituents to dispose of unwanted cytoplasmic elements and recycle nutrients for cellular remodeling. Studies of autophagy in mammals have elicited substantial interest because it is linked to a range of physiologic and pathologic states. In this issue of the JCI, Mariño et al. uncover a role for autophagy in a balance disorder related to inner ear pathologies. Mice lacking the protease autophagy-related 4B (Atg4b, also known as autophagin-1) exhibited a systemic reduction in autophagy and showed defects in the development of otoconia, organic particles that contain calcium carbonate crystals and proteins and that are essential for balance perception (equilibrioception) in mammals. The intriguing aspect of this work is that an autophagy block impairs the secretion and assembly of otoconial proteins, emphasizing a role for autophagy in functions distinct from macromolecule degradation.

  2. A balancing act? Work-life balance, health and well-being in European welfare states.

    PubMed

    Lunau, Thorsten; Bambra, Clare; Eikemo, Terje A; van der Wel, Kjetil A; Dragano, Nico

    2014-06-01

    Recent analyses have shown that adverse psychosocial working conditions, such as job strain and effort-reward imbalance, vary by country and welfare state regimes. Another work-related factor with potential impact on health is a poor work-life balance. The aims of this study are to determine the association between a poor work-life balance and poor health across a variety of European countries and to explore the variation of work-life balance between European countries. Data from the 2010 European Working Conditions Survey were used with 24,096 employees in 27 European countries. Work-life balance is measured with a question on the fit between working hours and family or social commitments. The WHO-5 well-being index and self-rated general health are used as health indicators. Logistic multilevel models were calculated to assess the association between work-life balance and health indicators and to explore the between-country variation of a poor work-life balance. Employees reporting a poor work-life balance reported more health problems (Poor well-being: OR = 2.06, 95% CI = 1.83-2.31; Poor self-rated health: OR = 2.00, 95% CI = 1.84-2.17). The associations were very similar for men and women. A considerable part of the between-country variation of work-life balance is explained by working hours, working time regulations and welfare state regimes. The best overall work-life balance is reported by Scandinavian men and women. This study provides some evidence on the public health impact of a poor work-life balance and that working time regulations and welfare state characteristics can influence the work-life balance of employees. © The Author 2014. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  3. A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958-2015)

    NASA Astrophysics Data System (ADS)

    Noël, Brice; van de Berg, Willem Jan; Machguth, Horst; Lhermitte, Stef; Howat, Ian; Fettweis, Xavier; van den Broeke, Michiel R.

    2016-10-01

    This study presents a data set of daily, 1 km resolution Greenland ice sheet (GrIS) surface mass balance (SMB) covering the period 1958-2015. Applying corrections for elevation, bare ice albedo and accumulation bias, the high-resolution product is statistically downscaled from the native daily output of the polar regional climate model RACMO2.3 at 11 km. The data set includes all individual SMB components projected to a down-sampled version of the Greenland Ice Mapping Project (GIMP) digital elevation model and ice mask. The 1 km mask better resolves narrow ablation zones, valley glaciers, fjords and disconnected ice caps. Relative to the 11 km product, the more detailed representation of isolated glaciated areas leads to increased precipitation over the southeastern GrIS. In addition, the downscaled product shows a significant increase in runoff owing to better resolved low-lying marginal glaciated regions. The combined corrections for elevation and bare ice albedo markedly improve model agreement with a newly compiled data set of ablation measurements.

  4. Growth of Greenland ice sheet - Interpretation

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay

    1989-01-01

    An observed 0.23 m/year thickening of the Greenland ice sheet indicates a 25 percent to 45 percent excess ice accumulation over the amount required to balance the outward ice flow. The implied global sea-level depletion is 0.2 to 0.4 mm/year, depending on whether the thickening is only recent (5 to 10 years) or longer term (less than 100 years). If there is a similar imbalance in the northern 60 percent of the ice-sheet area, the depletion is 0.35 to 0.7 mm/year. Increasing ice thickness suggests that the precipitation is higher than the long-term average; higher precipitation may be a characteristic of warmer climates in polar regions.

  5. Fact Sheet: Vulnerable Young Children

    ERIC Educational Resources Information Center

    Shaw, Evelyn, Comp.; Goode, Sue, Comp.

    2008-01-01

    This fact sheet provides data on infants, toddlers and young children who are experiencing high stress as a result of a number of risk factors specifically identified in the Individuals with Disabilities Education Improvement Act of 2004 (IDEA 2004), including substantiated abuse or neglect, foster care placement, homelessness, exposure to family…

  6. Influence of temperature fluctuations on equilibrium
    ice sheet volume

    NASA Astrophysics Data System (ADS)

    Bøgeholm Mikkelsen, Troels; Grinsted, Aslak; Ditlevsen, Peter

    2018-01-01

    Forecasting the future sea level relies on accurate modeling of the response of the Greenland and Antarctic ice sheets to changing temperatures. The surface mass balance (SMB) of the Greenland Ice Sheet (GrIS) has a nonlinear response to warming. Cold and warm anomalies of equal size do not cancel out and it is therefore important to consider the effect of interannual fluctuations in temperature. We find that the steady-state volume of an ice sheet is biased toward larger size if interannual temperature fluctuations are not taken into account in numerical modeling of the ice sheet. We illustrate this in a simple ice sheet model and find that the equilibrium ice volume is approximately 1 m SLE (meters sea level equivalent) smaller when the simple model is forced with fluctuating temperatures as opposed to a stable climate. It is therefore important to consider the effect of interannual temperature fluctuations when designing long experiments such as paleo-spin-ups. We show how the magnitude of the potential bias can be quantified statistically. For recent simulations of the Greenland Ice Sheet, we estimate the bias to be 30 Gt yr-1 (24-59 Gt yr-1, 95 % credibility) for a warming of 3 °C above preindustrial values, or 13 % (10-25, 95 % credibility) of the present-day rate of ice loss. Models of the Greenland Ice Sheet show a collapse threshold beyond which the ice sheet becomes unsustainable. The proximity of the threshold will be underestimated if temperature fluctuations are not taken into account. We estimate the bias to be 0.12 °C (0.10-0.18 °C, 95 % credibility) for a recent estimate of the threshold. In light of our findings it is important to gauge the extent to which this increased variability will influence the mass balance of the ice sheets.

  7. ISMIP6 - initMIP: Greenland ice sheet model initialisation experiments

    NASA Astrophysics Data System (ADS)

    Goelzer, Heiko; Nowicki, Sophie; Payne, Tony; Larour, Eric; Abe Ouchi, Ayako; Gregory, Jonathan; Lipscomb, William; Seroussi, Helene; Shepherd, Andrew; Edwards, Tamsin

    2016-04-01

    Earlier large-scale Greenland ice sheet sea-level projections e.g. those run during ice2sea and SeaRISE initiatives have shown that ice sheet initialisation can have a large effect on the projections and gives rise to important uncertainties. This intercomparison exercise (initMIP) aims at comparing, evaluating and improving the initialization techniques used in the ice sheet modeling community and to estimate the associated uncertainties. It is the first in a series of ice sheet model intercomparison activities within ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6). The experiments are conceived for the large-scale Greenland ice sheet and are designed to allow intercomparison between participating models of 1) the initial present-day state of the ice sheet and 2) the response in two schematic forward experiments. The latter experiments serve to evaluate the initialisation in terms of model drift (forward run without any forcing) and response to a large perturbation (prescribed surface mass balance anomaly). We present and discuss first results of the intercomparison and highlight important uncertainties with respect to projections of the Greenland ice sheet sea-level contribution.

  8. Epilepsy: General Information. Fact Sheet Number 6 = La Epilepsia: Informacion General. Fact Sheet Number 20.

    ERIC Educational Resources Information Center

    Interstate Research Associates, McLean, VA.

    This fact sheet on epilepsy is offered in both English and Spanish. It provides a definition, information on incidence, typical characteristics, and educational implications. It notes that epilepsy is classified as "other health impaired" under the Individuals with Disabilities Education Act and that students with epilepsy are eligible for special…

  9. Static current-sheet models of quiescent prominences

    NASA Technical Reports Server (NTRS)

    Wu, F.; Low, B. C.

    1986-01-01

    A particular class of theoretical models idealize the prominence to be a discrete flat electric-current sheet suspended vertically in a potential magnetic field. The weight of the prominence is supported by the Lorentz force in the current sheet. These models can be extended to have curved electric-current sheets and to vary three-dimensionally. The equation for force balance is 1 over 4 pi (del times B) times Bdel p- p9 z=zero. Using Cartesian coordinates we take, for simplicity, a uniform gravity with constant acceleration g in the direction -z. If we are interested not in the detailed internal structure of the prominence, but in the global magnetic configuration around the prominence, we may take prominence plasma to be cold. Consideration is given to how such equilibrium states can be constructed. To simplify the mathematical problem, suppose there is no electric current in the atmosphere except for the discrete currents in the cold prominence sheet. Let us take the plane z =0 to be the base of the atmosphere and restrict our attention to the domain z greater than 0. The task we have is to solve for a magnetic field which is everywhere potential except on some free surface S, subject to suit able to boundary conditions. The surface S is determined by requiring that it possesses a discrete electric current density such that the Lorentz force on it is everywhere vertically upward to balance the weight of the material m(S). Since the magnetic field is potential in the external atmosphere, the latter is decoupled from the magnetic field and its plane parallel hydrostatic pressure and density can be prescribed.

  10. Static current-sheet models of quiescent prominences

    NASA Astrophysics Data System (ADS)

    Wu, F.; Low, B. C.

    1986-12-01

    A particular class of theoretical models idealize the prominence to be a discrete flat electric-current sheet suspended vertically in a potential magnetic field. The weight of the prominence is supported by the Lorentz force in the current sheet. These models can be extended to have curved electric-current sheets and to vary three-dimensionally. The equation for force balance is 1 over 4 pi (del times B) times Bdel p- p9 z=zero. Using Cartesian coordinates we take, for simplicity, a uniform gravity with constant acceleration g in the direction -z. If we are interested not in the detailed internal structure of the prominence, but in the global magnetic configuration around the prominence, we may take prominence plasma to be cold. Consideration is given to how such equilibrium states can be constructed. To simplify the mathematical problem, suppose there is no electric current in the atmosphere except for the discrete currents in the cold prominence sheet. Let us take the plane z =0 to be the base of the atmosphere and restrict our attention to the domain z greater than 0. The task we have is to solve for a magnetic field which is everywhere potential except on some free surface S, subject to suit able to boundary conditions. The surface S is determined by requiring that it possesses a discrete electric current density such that the Lorentz force on it is everywhere vertically upward to balance the weight of the material m(S). Since the magnetic field is potential in the external atmosphere, the latter is decoupled from the magnetic field and its plane parallel hydrostatic pressure and density can be prescribed.

  11. Simulating Thin Sheets: Buckling, Wrinkling, Folding and Growth

    NASA Astrophysics Data System (ADS)

    Vetter, Roman; Stoop, Norbert; Wittel, Falk K.; Herrmann, Hans J.

    2014-03-01

    Numerical simulations of thin sheets undergoing large deformations are computationally challenging. Depending on the scenario, they may spontaneously buckle, wrinkle, fold, or crumple. Nature's thin tissues often experience significant anisotropic growth, which can act as the driving force for such instabilities. We use a recently developed finite element model to simulate the rich variety of nonlinear responses of Kirchhoff-Love sheets. The model uses subdivision surface shape functions in order to guarantee convergence of the method, and to allow a finite element description of anisotropically growing sheets in the classical Rayleigh-Ritz formalism. We illustrate the great potential in this approach by simulating the inflation of airbags, the buckling of a stretched cylinder, as well as the formation and scaling of wrinkles at free boundaries of growing sheets. Finally, we compare the folding of spatially confined sheets subject to growth and shrinking confinement to find that the two processes are equivalent.

  12. 32 CFR Appendix E to Part 505 - Litigation Status Sheet

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Litigation Status Sheet E Appendix E to Part 505 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES AND PUBLIC RELATIONS ARMY PRIVACY ACT PROGRAM Pt. 505, App. E Appendix E to Part 505—Litigation Status Sheet...

  13. 32 CFR Appendix E to Part 505 - Litigation Status Sheet

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Litigation Status Sheet E Appendix E to Part 505 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES AND PUBLIC RELATIONS ARMY PRIVACY ACT PROGRAM Pt. 505, App. E Appendix E to Part 505—Litigation Status Sheet...

  14. Self-consistent current sheet structures in the quiet-time magnetotail

    NASA Technical Reports Server (NTRS)

    Holland, Daniel L.; Chen, James

    1993-01-01

    The structure of the quiet-time magnetotail is studied using a test particle simulation. Vlasov equilibria are obtained in the regime where v(D) = E(y) c/B(z) is much less than the ion thermal velocity and are self-consistent in that the current and magnetic field satisfy Ampere's law. Force balance between the plasma and magnetic field is satisfied everywhere. The global structure of the current sheet is found to be critically dependent on the source distribution function. The pressure tensor is nondiagonal in the current sheet with anisotropic temperature. A kinetic mechanism is proposed whereby changes in the source distribution results in a thinning of the current sheet.

  15. Understanding ice sheet evolution to avoid massive sea level rise instead of experiencing it (Louis Agassiz Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Rignot, Eric

    2017-04-01

    With unabated climate warming, massive sea level rise from the melting of ice sheets in Greenland and Antarctica looms at the horizon. This is unfortunately an experiment that we can afford to run only once. Satellite and airborne sensors have significantly helped reveal the magnitude of the mass balance of the ice sheets, where the changes take place, when they started, how they change with time and the nature of the physical processes controlling them. These observations have constrained the maturation of numerical modeling techniques for projecting changes in these ice sheets, including the coupling of ocean and ice sheet models, yet significant uncertainties remain to make these projections directly policy relevant and many challenges remain. I will review the state of balance of the ice sheets as we know it today and the fundamental processes that will drive fast ice sheet retreat and sea level change: ice-ocean interaction and iceberg calving. Ice-ocean interaction are dominated by the wind-forced intrusion of warm, salty, subsurface waters toward the ice sheet periphery to melt ice from below at rates orders of magnitude greater than at the surface. In Greenland, these rates are difficult to observe, but model simulations indicate rates of ice melt along vertical calving faces of meters per day, along with undercutting of the ice faces. Constraining the temperature of the ocean waters from high resolution models and observations, however, remains a significant challenge. I will describe the progress we have made in addressing one major issue which is the mapping of fjord bathymetry around Greenland to define the pathways for warm waters. In Antarctica, the rates of melt are measured from remote sensing data but averaged over long periods, so that we are dependent on in-situ observations to understand the interaction of ocean waters with ice within the sub-ice-shelf cavities. I will describe progress made in mapping the bathymetry of the ice shelves and how

  16. The Balanced Budget Act of 1997 and the financial health of teaching hospitals.

    PubMed

    Phillips, Robert L; Fryer, George E; Chen, Frederick M; Morgan, Sarah E; Green, Larry A; Valente, Ernest; Miyoshi, Thomas J

    2004-01-01

    We wanted to evaluate the most recent, complete data related to the specific effects of the Balanced Budget Act of 1997 relative to the overall financial health of teaching hospitals. We also define cost report variables and calculations necessary for continued impact monitoring. We undertook a descriptive analysis of hospital cost report variables for 1996, 1998, and 1999, using simple calculations of total, Medicare, prospective payment system, graduate medical education (GME), and bad debt margins, as well as the proportion with negative total operating margins. Nearly 35% of teaching hospitals had negative operating margins in 1999. Teaching hospital total margins fell by nearly 50% between 1996 and 1999, while Medicare margins remained relatively stable. GME margins have fallen by nearly 24%, however, even as reported education costs have risen by nearly 12%. Medicare + Choice GME payments were less than 10% of those projected. Teaching hospitals realized deep cuts in profitability between 1996 and 1999; however, these cuts were not entirely attributable to the Balanced Budget Act of 1997. Medicare payments remain an important financial cushion for teaching hospitals, more than one third of which operated in the red. The role of Medicare in supporting GME has been substantially reduced and needs special attention in the overall debate. Medicare + Choice support of the medical education enterprise is 90% less than baseline projections and should be thoroughly investigated. The Medicare Payment Advisory Commission, which has a critical role in evaluating the effects of Medicare policy changes, should be more transparent in its methods.

  17. The balance between innovation and competition: the Hatch-Waxman Act, the 2003 Amendments, and beyond.

    PubMed

    Kelly, Colleen

    2011-01-01

    In 1984, Congress passed the Hatch-Waxman Act, a landmark statute designed both to encourage innovation by pioneer drug companies and to increase competition by generic drug companies. After its enactment, drug companies attempted to "ga the regulatory regime to their respective economic advantage. In 2003, in an effort to address these issues, FDA promulgated a final rule and Congress passed the Medicare Modernization Act, amending the Hatch-Waxman Act. This article provides a comprehensive look at the 2003 statutory and regulatory changes. First, the article analyzes the history and provisions of the original Hatch-Waxman Act and the issues that arose after its enactment. Second, the article discusses the passage of the 2003 FDA rule and the 2003 Medicare Modernization Act. Next, the article demonstrates that, although the 2003 amendments may have definitively resolved some issues, the amendments did not resolve all interpretive issues and have even led to unintended consequences. In particular, the article discusses several areas of current controversy, including the effect of patent delisting and patent expiration on 180-day exclusivity, the patent delisting counterclaim provision, the declaratory judgment action provision, patent settlement agreements, and authorized generics. Finally, the article assesses the potential for future reform of the Hatch-Waxman Act. The article concludes that maintaining the balance between innovation and competition will likely remain a daunting task for legislators and regulators in the future.

  18. 76 FR 18519 - Polyethylene Terephthalate Film, Sheet, and Strip From Taiwan: Amended Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... Film, Sheet, and Strip From Taiwan: Amended Final Results of Antidumping Duty Review AGENCY: Import... duty administrative review of polyethylene terephthalate film, sheet, and strip (PET Film) from Taiwan... amended (the Act). \\1\\ See Polyethylene Terephthalate Film, Sheet, and Strip From Taiwan: Final Results of...

  19. Controllable curvature from planar polymer sheets in response to light.

    PubMed

    Hubbard, Amber M; Mailen, Russell W; Zikry, Mohammed A; Dickey, Michael D; Genzer, Jan

    2017-03-22

    The ability to change shape and control curvature in 3D structures starting from planar sheets can aid in assembly and add functionality to an object. Herein, we convert planar sheets of shape memory polymers (SMPs) into 3D objects with controllable curvature by dictating where the sheets shrink. Ink patterned on the surface of the sheet absorbs infrared (IR) light, resulting in localized heating, and the material shrinks locally wherever the temperature exceeds the activation temperature, T a . We introduce two different mechanisms for controlling curvature within SMP sheets. The 'direct' mechanism uses localized shrinkage to induce curvature only in regions patterned with ink. The 'indirect' mechanism uses localized shrinkage in regions patterned with ink to induce curvature in neighboring regions without ink through a balance of internal stresses. Finite element analysis predicts the final shape of the polymer sheets with excellent qualitative agreement with experimental studies. Results from this study show that curvature can be controlled by the distribution and darkness of the ink pattern on the polymer sheet. Additionally, we utilize the direct and indirect curvature mechanisms to demonstrate the formation and actuation of gripper devices, which represent the potential utility of this approach.

  20. Fast imaging of live organisms with sculpted light sheets

    NASA Astrophysics Data System (ADS)

    Chmielewski, Aleksander K.; Kyrsting, Anders; Mahou, Pierre; Wayland, Matthew T.; Muresan, Leila; Evers, Jan Felix; Kaminski, Clemens F.

    2015-04-01

    Light-sheet microscopy is an increasingly popular technique in the life sciences due to its fast 3D imaging capability of fluorescent samples with low photo toxicity compared to confocal methods. In this work we present a new, fast, flexible and simple to implement method to optimize the illumination light-sheet to the requirement at hand. A telescope composed of two electrically tuneable lenses enables us to define thickness and position of the light-sheet independently but accurately within milliseconds, and therefore optimize image quality of the features of interest interactively. We demonstrated the practical benefit of this technique by 1) assembling large field of views from tiled single exposure each with individually optimized illumination settings; 2) sculpting the light-sheet to trace complex sample shapes within single exposures. This technique proved compatible with confocal line scanning detection, further improving image contrast and resolution. Finally, we determined the effect of light-sheet optimization in the context of scattering tissue, devising procedures for balancing image quality, field of view and acquisition speed.

  1. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2011-09-01

    We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for bed topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and sub-shelf basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of sliding-dominated flow in stream-like features in this new 3-D marine ice sheet model.

  2. Surface melt effects on Cryosat-2 elevation retrievals in the ablation zone of the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Slater, T.; McMillan, M.; Shepherd, A.; Leeson, A.; Cornford, S. L.; Hogg, A.; Gilbert, L.; Muir, A. S.; Briggs, K.

    2017-12-01

    Over the past two decades, there has been an acceleration in the rate of mass losses from the Greenland ice sheet. This acceleration is, in part, attributed to an increasingly negative surface mass balance (SMB), linked to increasing melt water runoff rates due to enhanced surface melting. Understanding the past, present and future evolution in surface melting is central to ongoing monitoring of ice sheet mass balance and, in turn, to building realistic future projections. Currently, regional climate models are commonly used for this purpose, because direct in-situ observations are spatially and temporally sparse due to the logistics and resources required to collect such data. In particular, modelled SMB is used to estimate the extent and magnitude of surface melting, which influences (1) many geodetic mass balance estimates, and (2) snowpack microwave scattering properties. The latter is poorly understood and introduces uncertainty into radar altimeter estimates of ice sheet evolution. Here, we investigate the changes in CryoSat-2 waveforms and elevation measurements caused by the onset of surface melt in the summer months over the ablation zone of the Greenland ice sheet. Specifically, we use CryoSat-2 SARIn mode data acquired between 2011 and 2016, to characterise the effect of high variability in surface melt during this period, and to assess the associated impact on estimates of ice mass balance.

  3. Estimates of magnetic flux, and energy balance in the plasma sheet during substorm expansion

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim; Pulkkinen, Tuija

    1996-01-01

    The energy and magnetic flux budgets of the magnetotail plasma sheet during substorm expansion are investigated. The possible mechanisms that change the energy content of the closed field line region which contains all the major dissipation mechanisms of relevance during substorms, are considered. The compression of the plasma sheet mechanism and the diffusion mechanism are considered and excluded. It is concluded that the magnetic reconnection mechanism can accomplish the required transport. Data-based empirical magnetic field models are used to investigate the magnetic flux transport required to account for the observed magnetic field dipolarizations in the inner magnetosphere. It is found that the magnetic flux permeating the current sheet is typically insufficient to supply the required magnetic flux. It is concluded that no major substorm-type magnetospheric reconfiguration is possible in the absence of magnetic reconnection.

  4. The balance sheet of benefits and harms of breast cancer population-based screening in Europe: outcome research, practice and future challenges.

    PubMed

    Broeders, Mireille; Paci, Eugenio

    2015-11-01

    Breast cancer screening programs are still object of harsh debate. In 2012, the Independent UK Panel reviewed the benefits and harms of mammography screening based on randomized trials and the EUROSCREEN Working Group reviewed European observational outcome studies. The conclusion was that screening programs should continue, while acknowledging that harms, such as the occurrence of false-positive results and overdiagnosis, can have a negative impact on a woman's life. Information on the balance sheet of the benefits and harms of breast cancer screening should help women and their physicians to make an informed choice. The future challenge for breast screening programs is to assess the feasibility, acceptability, effectiveness and impact of risk-based screening in order to maximize benefit-to-harm ratios.

  5. Active volcanism beneath the West Antarctic ice sheet and implications for ice-sheet stability

    USGS Publications Warehouse

    Blankenship, D.D.; Bell, R.E.; Hodge, S.M.; Brozena, J.M.; Behrendt, John C.; Finn, C.A.

    1993-01-01

    IT is widely understood that the collapse of the West Antarctic ice sheet (WAIS) would cause a global sea level rise of 6 m, yet there continues to be considerable debate about the detailed response of this ice sheet to climate change1-3. Because its bed is grounded well below sea level, the stability of the WAIS may depend on geologically controlled conditions at the base which are independent of climate. In particular, heat supplied to the base of the ice sheet could increase basal melting and thereby trigger ice streaming, by providing the water for a lubricating basal layer of till on which ice streams are thought to slide4,5. Ice streams act to protect the reservoir of slowly moving inland ice from exposure to oceanic degradation, thus enhancing ice-sheet stability. Here we present aerogeophysical evidence for active volcanism and associated elevated heat flow beneath the WAIS near the critical region where ice streaming begins. If this heat flow is indeed controlling ice-stream formation, then penetration of ocean waters inland of the thin hot crust of the active portion of the West Antarctic rift system could lead to the disappearance of ice streams, and possibly trigger a collapse of the inland ice reservoir.

  6. Ice sheets on plastically-yielding beds

    NASA Astrophysics Data System (ADS)

    Hewitt, Ian

    2016-11-01

    Many fast flowing regions of ice sheets are underlain by a layer of water-saturated sediments, or till. The rheology of the till has been the subject of some controversy, with laboratory tests suggesting almost perfectly plastic behaviour (stress independent of strain rate), but many models adopting a pseudo-viscous description. In this work, we consider the behaviour of glaciers underlain by a plastic bed. The ice is treated as a viscous gravity current, on a bed that allows unconstrained slip above a critical yield stress. This simplified description allows rapid sliding, and aims to investigate 'worst-case' scenarios of possible ice-sheet disintegration. The plastic bed results in an approximate ice-sheet geometry that is primarily controlled by force balance, whilst ice velocity is determined from mass conservation (rather than the other way around, as standard models would hold). The stability of various states is considered, and particular attention is given to the pace at which transitions between unstable states can occur. Finally, we observe that the strength of basal tills depends strongly on pore pressure, and combine the model with a description of subglacial hydrology. Implications for the present-day ice sheets in Greenland and Antarctica will be discussed. Funding: ERC Marie Curie FP7 Career Integration Grant.

  7. Current status of liquid sheet radiator research

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Calfo, Frederick D.; Mcmaster, Matthew S.

    1993-01-01

    Initial research on the external flow, low mass liquid sheet radiator (LSR), has been concentrated on understanding its fluid mechanics. The surface tension forces acting at the edges of the sheet produce a triangular planform for the radiating surface of width, W, and length, L. It has been experimentally verified that (exp L)/W agrees with the theoretical result, L/W = (We/8)exp 1/2, where We is the Weber number. Instability can cause holes to form in regions of large curvature such as where the edge cylinders join the sheet of thickness, tau. The W/tau limit that will cause hole formation with subsequent destruction of the sheet has yet to be reached experimentally. Although experimental measurements of sheet emissivity have not yet been performed because of limited program scope, calculations of the emissivity and sheet lifetime is determined by evaporation losses were made for two silicon based oils; Dow Corning 705 and Me(sub 2). Emissivities greater than 0.75 are calculated for tau greater than or equal to 200 microns for both oils. Lifetimes for Me(sub 2) are much longer than lifetimes for 705. Therefore, Me(sub 2) is the more attractive working fluid for higher temperatures (T greater than or equal to 400 K).

  8. Formation and interpretation of eskers beneath retreating ice sheets

    NASA Astrophysics Data System (ADS)

    Creyts, T. T.; Hewitt, I.

    2017-12-01

    The retreat of the ice sheets during the Pleistocene left large and spectacular subglacial features exposed. Understanding these features gives us insight into how the ice sheets retreated, how meltwater influenced retreat, and can help inform our understanding of potential future rates of ice sheet retreat. Among these features, eskers, long sinuous ridges primarily composed of clastic sediments, lack a detailed explanation of how surface melt rates and ice sheet retreat rates influence their growth and spatial distribution. Here, we develop a theory for esker formation based on the initial work of Rothlisberger modified for sediment transport and inclusion of surface meltwater forcing. The primary subglacial ingredients include water flow through subglacial tunnels with the addition of mass balances for sediment transport. We show how eskers when water flow slows below a critical stress for sediment motion. This implies that eskers are deposited in a localized region near the snout of the ice sheet. Our findings suggest that very long eskers form sequentially as the ice front retreats. The position of the esker follows the path of the channel mouth through time, which does not necessarily coincide with the instantaneous route of the feeding channel. However, in most cases, we expect those locations to be similar. The role of surface meltwater and the climatology associated with the forcing is crucial to the lateral spacing of the eskers. We predict that high surface melt rates lead to narrower catchments but that the greater extent of the ablation area means that channels are likely larger. At the same time, for a given channel size (and hence sediment flux), the size of a deposited esker depends on a margin retreat rate. Hence, the size of the eskers is related delicately to the balance between surface melt rates and margin retreat rates. We discuss how our theory can be combined with observed esker distributions to infer the relationship between these two rates

  9. Balance and flexibility.

    PubMed

    2003-12-01

    The 'work-life balance' and flexible working are currently key buzz terms in the NHS. Those looking for more information on these topics should visit Flexibility at www.flexibility.co.uk for a host of resources designed to support new ways of working, including information on flexible workers and flexible rostering, the legal balancing act for work-life balance and home working.

  10. Validation of Modelled Ice Dynamics of the Greenland Ice Sheet using Historical Forcing

    NASA Astrophysics Data System (ADS)

    Hoffman, M. J.; Price, S. F.; Howat, I. M.; Bonin, J. A.; Chambers, D. P.; Tezaur, I.; Kennedy, J. H.; Lenaerts, J.; Lipscomb, W. H.; Neumann, T.; Nowicki, S.; Perego, M.; Saba, J. L.; Salinger, A.; Guerber, J. R.

    2015-12-01

    Although ice sheet models are used for sea level rise projections, the degree to which these models have been validated by observations is fairly limited, due in part to the limited duration of the satellite observation era and the long adjustment time scales of ice sheets. Here we describe a validation framework for the Greenland Ice Sheet applied to the Community Ice Sheet Model by forcing the model annually with flux anomalies at the major outlet glaciers (Enderlin et al., 2014, observed from Landsat/ASTER/Operation IceBridge) and surface mass balance (van Angelen et al., 2013, calculated from RACMO2) for the period 1991-2012. The ice sheet model output is compared to ice surface elevation observations from ICESat and ice sheet mass change observations from GRACE. Early results show promise for assessing the performance of different model configurations. Additionally, we explore the effect of ice sheet model resolution on validation skill.

  11. Sense and readability: participant information sheets for research studies.

    PubMed

    Ennis, Liam; Wykes, Til

    2016-02-01

    Informed consent in research is partly achieved through the use of information sheets. There is a perception however that these information sheets are long and complex. The recommended reading level for patient information is grade 6, or 11-12 years old. To investigate whether the readability of participant information sheets has changed over time, whether particular study characteristics are related to poorer readability and whether readability and other study characteristics are related to successful study recruitment. Method: We obtained 522 information sheets from the UK National Institute for Health Research Clinical Research Network: Mental Health portfolio database and study principal investigators. Readability was assessed with the Flesch reading index and the Grade level test. Information sheets increased in length over the study period. The mean grade level across all information sheets was 9.8, or 15-16 years old. A high level of patient involvement was associated with more recruitment success and studies involving pharmaceutical or device interventions were the least successful. The complexity of information sheets had little bearing on successful recruitment. Information sheets are far more complex than the recommended reading level of grade 6 for patient information. The disparity may be exacerbated by an increasing focus on legal content. Researchers would benefit from clear guidance from ethics committees on writing succinctly and accessibly and how to balance the competing legal issues with the ability of participants to understand what a study entails. © The Royal College of Psychiatrists 2016.

  12. Sense and readability: participant information sheets for research studies

    PubMed Central

    Ennis, Liam; Wykes, Til

    2016-01-01

    Background Informed consent in research is partly achieved through the use of information sheets. There is a perception however that these information sheets are long and complex. The recommended reading level for patient information is grade 6, or 11–12 years old. Aims To investigate whether the readability of participant information sheets has changed over time, whether particular study characteristics are related to poorer readability and whether readability and other study characteristics are related to successful study recruitment. Method We obtained 522 information sheets from the UK National Institute for Health Research Clinical Research Network: Mental Health portfolio database and study principal investigators. Readability was assessed with the Flesch reading index and the Grade level test. Results Information sheets increased in length over the study period. The mean grade level across all information sheets was 9.8, or 15–16 years old. A high level of patient involvement was associated with more recruitment success and studies involving pharmaceutical or device interventions were the least successful. The complexity of information sheets had little bearing on successful recruitment. Conclusions Information sheets are far more complex than the recommended reading level of grade 6 for patient information. The disparity may be exacerbated by an increasing focus on legal content. Researchers would benefit from clear guidance from ethics committees on writing succinctly and accessibly and how to balance the competing legal issues with the ability of participants to understand what a study entails. PMID:26382948

  13. Quantifying Uncertainty in the Greenland Surface Mass Balance Elevation Feedback

    NASA Astrophysics Data System (ADS)

    Edwards, T.

    2015-12-01

    As the shape of the Greenland ice sheet responds to changes in surface mass balance (SMB) and dynamics, it affects the surface mass balance through the atmospheric lapse rate and by altering atmospheric circulation patterns. Positive degree day models include simplified representations of this feedback, but it is difficult to simulate with state-of-the-art models because it requires coupling of regional climate models with dynamical ice sheet models, which is technically challenging. This difficulty, along with the high computational expense of regional climate models, also drastically limits opportunities for exploring the impact of modelling uncertainties on sea level projections. We present a parameterisation of the SMB-elevation feedback in the MAR regional climate model that provides a far easier and quicker estimate than atmosphere-ice sheet model coupling, which can be used with any ice sheet model. This allows us to use ensembles of different parameter values and ice sheet models to assess the effect of uncertainty in the feedback and ice sheet model structure on future sea level projections. We take a Bayesian approach to uncertainty in the feedback parameterisation, scoring the results from multiple possible "SMB lapse rates" according to how well they reproduce a MAR simulation with altered ice sheet topography. We test the impact of the resulting parameterisation on sea level projections using five ice sheet models forced by MAR (in turned forced by two different global climate models) under the emissions scenario A1B. The estimated additional sea level contribution due to the SMB-elevation feedback is 4.3% at 2100 (95% credibility interval 1.8-6.9%), and 9.6% at 2200 (3.6-16.0%).

  14. Carrier induced magnetic coupling transitions in phthalocyanine-based organometallic sheet.

    PubMed

    Zhou, Jian; Sun, Qiang

    2014-01-07

    A two-dimensional sheet with long range ferromagnetic (FM) order has been hotly pursued currently. The recent success in synthesizing polymerized Fe-phthalocyanine (poly-FePc) porous sheets paves a possible way to achieve this goal. However, the poly-FePc and its analog poly-CrPc structure are intrinsically antiferromagnetic (AFM). Using first principles combined with Monte-Carlo simulations, we study systematically the carrier-induced magnetic coupling transitions in poly-CrPc and poly-FePc sheets. We show that electron doping can induce stable FM states with Curie temperatures of 130-140 K, while hole doping will enhance the stability of the AFM states. Such changes in magnetic couplings depend on the balance of AFM superexchange and FM p-d exchange.

  15. Modified Unzipping Technique to Prepare Graphene Nano-Sheets

    NASA Astrophysics Data System (ADS)

    Al-Tamimi, B. H.; Farid, S. B. H.; Chyad, F. A.

    2018-05-01

    Graphene nano-sheets have been prepared via unzipping approach of multiwall carbon nanotubes (MWCNTs). The method includes two chemical-steps, in which a multi-parameter oxidation step is performed to achieve unzipping the carbon nanotubes. Then, a reduction step is carried out to achieve the final graphene nano-sheets. In the oxidation step, the oxidant material was minimized and balanced with longer curing time. This modification is made in order to reduce the oxygen-functional groups at the ends of graphene basal planes, which reduce its electrical conductivity. In addition, a similar adjustment is achieved in the reduction step, i.e. the consumed chemicals is reduced which make the overall process more economic and eco-friendly. The prepared nano-sheets were characterized by atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. The average thickness of the prepared graphene was about 5.23 nm.

  16. Increases in plasma sheet temperature with solar wind driving during substorm growth phases

    NASA Astrophysics Data System (ADS)

    Forsyth, C.; Watt, C. E. J.; Rae, I. J.; Fazakerley, A. N.; Kalmoni, N. M. E.; Freeman, M. P.; Boakes, P. D.; Nakamura, R.; Dandouras, I.; Kistler, L. M.; Jackman, C. M.; Coxon, J. C.; Carr, C. M.

    2014-12-01

    During substorm growth phases, magnetic reconnection at the magnetopause extracts ~1015 J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase.

  17. Endogenous Sheet-Averaged Tension Within a Large Epithelial Cell Colony.

    PubMed

    Dumbali, Sandeep P; Mei, Lanju; Qian, Shizhi; Maruthamuthu, Venkat

    2017-10-01

    Epithelial cells form quasi-two-dimensional sheets that function as contractile media to effect tissue shape changes during development and homeostasis. Endogenously generated intrasheet tension is a driver of such changes, but has predominantly been measured in the presence of directional migration. The nature of epithelial cell-generated forces transmitted over supracellular distances, in the absence of directional migration, is thus largely unclear. In this report, we consider large epithelial cell colonies which are archetypical multicell collectives with extensive cell-cell contacts but with a symmetric (circular) boundary. Using the traction force imbalance method (TFIM) (traction force microscopy combined with physical force balance), we first show that one can determine the colony-level endogenous sheet forces exerted at the midline by one half of the colony on the other half with no prior assumptions on the uniformity of the mechanical properties of the cell sheet. Importantly, we find that this colony-level sheet force exhibits large variations with orientation-the difference between the maximum and minimum sheet force is comparable to the average sheet force itself. Furthermore, the sheet force at the colony midline is largely tensile but the shear component exhibits significantly more variation with orientation. We thus show that even an unperturbed epithelial colony with a symmetric boundary shows significant directional variation in the endogenous sheet tension and shear forces that subsist at the colony level.

  18. Recent Changes in Ices Mass Balance of the Amundsen Sea Sector

    NASA Astrophysics Data System (ADS)

    Sutterley, T. C.; Velicogna, I.; Rignot, E. J.; Mouginot, J.; Flament, T.; van den Broeke, M. R.; van Wessem, M.; Reijmer, C.

    2014-12-01

    The glaciers flowing into the Amundsen Sea Embayment (ASE) sector of West Antarctica were confirmed in the Ice Sheet Mass Balance Inter-comparison Exercise (IMBIE) to be the dominant contributors to the current Antarctic ice mass loss, and recently recognized to be undergoing marine ice sheet instability. Here, we investigate their regional ice mass balance using a time series of satellite and airborne data combined with model output products from the Regional Atmospheric and Climate Model (RACMO). Our dataset includes laser altimetry from NASA's ICESat-1 satellite mission and from Operation IceBridge (OIB) airborne surveys, satellite radar altimetry data from ESA's Envisat mission, time-variable gravity data from NASA/DLR's GRACE mission, surface mass balance products from RACMO, ice velocity from a combination of international synthetic aperture radar satellites and ice thickness data from OIB. We find a record of ice mass balance for the ASE where all the analyzed techniques agree remarkably in magnitude and temporal variability. The mass loss of the region has been increasing continuously since 1992, with no indication of a slow down. The mass loss during the common period averaged 91 Gt/yr and accelerated 20 Gt/yr2. In 1992-2013, the ASE contributed 4.5 mm global sea level rise. Overall, our results demonstrate the synergy of multiple analysis techniques for examining Antarctic Ice Sheet mass balance at the regional scale. This work was performed at UCI and JPL under a contract with NASA.

  19. Overview and Assessment of Antarctic Ice-Sheet Mass Balance Estimates: 1992-2009

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Giovinetto, Mario B.

    2011-01-01

    Mass balance estimates for the Antarctic Ice Sheet (AIS) in the 2007 report by the Intergovernmental Panel on Climate Change and in more recent reports lie between approximately ?50 to -250 Gt/year for 1992 to 2009. The 300 Gt/year range is approximately 15% of the annual mass input and 0.8 mm/year Sea Level Equivalent (SLE). Two estimates from radar altimeter measurements of elevation change by European Remote-sensing Satellites (ERS) (?28 and -31 Gt/year) lie in the upper part, whereas estimates from the Input-minus-Output Method (IOM) and the Gravity Recovery and Climate Experiment (GRACE) lie in the lower part (-40 to -246 Gt/year). We compare the various estimates, discuss the methodology used, and critically assess the results. We also modify the IOM estimate using (1) an alternate extrapolation to estimate the discharge from the non-observed 15% of the periphery, and (2) substitution of input from a field data compilation for input from an atmospheric model in 6% of area. The modified IOM estimate reduces the loss from 136 Gt/year to 13 Gt/year. Two ERS-based estimates, the modified IOM, and a GRACE-based estimate for observations within 1992 2005 lie in a narrowed range of ?27 to -40 Gt/year, which is about 3% of the annual mass input and only 0.2 mm/year SLE. Our preferred estimate for 1992 2001 is -47 Gt/year for West Antarctica, ?16 Gt/year for East Antarctica, and -31 Gt/year overall (?0.1 mm/year SLE), not including part of the Antarctic Peninsula (1.07% of the AIS area). Although recent reports of large and increasing rates of mass loss with time from GRACE-based studies cite agreement with IOM results, our evaluation does not support that conclusion

  20. Interpretation of high-speed flows in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Chen, C. X.; Wolf, R. A.

    1993-01-01

    Pursuing an idea suggested by Pontius and Wolf (1990), we propose that the `bursty bulk flows' observed by Baumjohann et al. (1990) and Angelopoulos et al. (1992) are `bubbles' in the Earth's plasma sheet. Specifically, they are flux tubes that have lower values of pV(exp 5/3) than their neighbors, where p is the thermal pressure of the particles and V is the volume of a tube containing one unit of magnetic flux. Whether they are created by reconnection or some other mechanism, the bubbles are propelled earthward by a magnetic buoyancy force, which is related to the interchange instability. Most of the major observed characteristics of the bursty bulk flows can be interpreted naturally in terms of the bubble picture. We propose a new `stratified fluid' picture of the plasma sheet, based on the idea that bubbles constitute the crucial transport mechanism. Results from simple mathematical models of plasma sheet transport support the idea that bubbles can resolve the pressure balance inconsistency, particularly in cases where plasma sheet ions are lost by gradient/curvature drift out the sides of the tail or bubbles are generated by reconnection in the middle of plasma sheet.

  1. Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Weber, M. E.; Clark, P. U.; Ricken, W.; Mitrovica, J. X.; Hostetler, S. W.; Kuhn, G.

    2012-04-01

    The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood because only a few findings with robust chronologies exist for Antarctic ice sheets. We developed a chronology for the Weddell Sea sector of the East Antarctic ice sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates the advance to their maximum extent at 29 -28 ka, and retreat from their maximum extent at 19 ka was nearly synchronous with Northern Hemisphere ice sheets (Weber, M.E., Clark, P. U., Ricken, W., Mitrovica, J. X., Hostetler, S. W., and Kuhn, G. (2011): Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum. - Science, 334, 1265-1269, doi: 10.1126:science.1209299). As for the deglaciation, modeling studies suggest a late ice-sheet retreat starting around 14 ka BP and ending around 7 ka BP with a large impact of an unstable West Antarctic Ice Sheet (WAIS) and a small impact of a stable East Antarctic Ice Sheet (EAIS). However, the Weddell Sea sites studied here, as well as sites from the Scotia Sea, provide evidence that specifically the EAIS responded much earlier, possibly provided a significant contribution to the last sea-level rise, and was much more dynamic than previously thought. Using the results of an atmospheric general circulation we conclude that surface climate forcing of Antarctic ice mass balance would likely cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Furthermore, our new data support teleconnections involving a sea-level fingerprint forced from Northern Hemisphere ice sheets as indicated by gravitational modeling. Also, changes in North Atlantic Deepwater formation and attendant heat flux to Antarctic grounding lines may have contributed to synchronizing the hemispheric ice sheets.

  2. Modelling the Climate - Greenland Ice Sheet Interaction in the Coupled Ice-sheet/Climate Model EC-EARTH - PISM

    NASA Astrophysics Data System (ADS)

    Yang, S.; Madsen, M. S.; Rodehacke, C. B.; Svendsen, S. H.; Adalgeirsdottir, G.

    2014-12-01

    Recent observations show that the Greenland ice sheet (GrIS) has been losing mass with an increasing speed during the past decades. Predicting the GrIS changes and their climate consequences relies on the understanding of the interaction of the GrIS with the climate system on both global and local scales, and requires climate model systems with an explicit and physically consistent ice sheet module. A fully coupled global climate model with a dynamical ice sheet model for the GrIS has recently been developed. The model system, EC-EARTH - PISM, consists of the EC-EARTH, an atmosphere, ocean and sea ice model system, and the Parallel Ice Sheet Model (PISM). The coupling of PISM includes a modified surface physical parameterization in EC-EARTH adapted to the land ice surface over glaciated regions in Greenland. The PISM ice sheet model is forced with the surface mass balance (SMB) directly computed inside the EC-EARTH atmospheric module and accounting for the precipitation, the surface evaporation, and the melting of snow and ice over land ice. PISM returns the simulated basal melt, ice discharge and ice cover (extent and thickness) as boundary conditions to EC-EARTH. This coupled system is mass and energy conserving without being constrained by any anomaly correction or flux adjustment, and hence is suitable for investigation of ice sheet - climate feedbacks. Three multi-century experiments for warm climate scenarios under (1) the RCP85 climate forcing, (2) an abrupt 4xCO2 and (3) an idealized 1% per year CO2 increase are performed using the coupled model system. The experiments are compared with their counterparts of the standard CMIP5 simulations (without the interactive ice sheet) to evaluate the performance of the coupled system and to quantify the GrIS feedbacks. In particular, the evolution of the Greenland ice sheet under the warm climate and its impacts on the climate system are investigated. Freshwater fluxes from the Greenland ice sheet melt to the Arctic

  3. Limited Impact of Subglacial Supercooling Freeze-on for Greenland Ice Sheet Stratigraphy

    NASA Astrophysics Data System (ADS)

    Dow, Christine F.; Karlsson, Nanna B.; Werder, Mauro A.

    2018-02-01

    Large units of disrupted radiostratigraphy (UDR) are visible in many radio-echo sounding data sets from the Greenland Ice Sheet. This study investigates whether supercooling freeze-on rates at the bed can cause the observed UDR. We use a subglacial hydrology model to calculate both freezing and melting rates at the base of the ice sheet in a distributed sheet and within basal channels. We find that while supercooling freeze-on is a phenomenon that occurs in many areas of the ice sheet, there is no discernible correlation with the occurrence of UDR. The supercooling freeze-on rates are so low that it would require tens of thousands of years with minimal downstream ice motion to form the hundreds of meters of disrupted radiostratigraphy. Overall, the melt rates at the base of the ice sheet greatly overwhelm the freeze-on rates, which has implications for mass balance calculations of Greenland ice.

  4. Buttressing and stability of marine Ice sheets

    NASA Astrophysics Data System (ADS)

    Goldberg, D.; Holland, D. M.; Schoof, C.

    2009-04-01

    The West Antarctic Ice Sheet is marine in nature, meaning most of its base is below sea level. At the grounding line (where it becomes thin enough to float), its outlet streams flow into large ice shelves. Gravitational stress in the shelf is transmitted back to the grounding line, and largely balanced by basal friction in the transition zone. The details of this force balance control the evolution of both the thickness and grounded extent of the ice sheet, and can lead to Weertman's (1974) Marine Instability for a foredeepened bedrock (one that deepens inland). However, the presence of rigid sidewalls and locally grounded regions in the shelf can reduce the longitudinal stresses felt at the grounding line (a phenomenon called buttressing). Thomas (1979) and others pointed out that Marine Instability may be lessened or reversed by ice shelf buttressing. When modelling marine ice sheets numerically, the physics of the grounded-to-floating transition must be represented and the associated small length scales must be resolved (Schoof, 2007). Failing to do so can result in nonphysical or numerically inconsistent behavior (Vieli and Payne, 2005). While several methods have been developed to treat these issues (Vieli and Payne, 2005; Pattyn et al, 2006; Schoof, 2007) they are limited to flowline models. We present a model that represents the physics of the grounded-to-floating transition in a time-dependent three-dimensional marine ice sheet, using mesh adaption to resolve the transition zone. We show that in the special case of a two-dimensional sheet our model reproduces the theoretical results of the MISMIP experiments, and that it produces robust results when both horizontal dimensions are resolved. In idealized experiments in a channel with rigid sidewalls and a foredeepened bed, we narrow the channel to determine whether buttressing is sufficient to reverse instability. We find that for strong beds (high friction coefficients), while the timescales and dynamics are

  5. The balance sheet for transcription: an analysis of nuclear RNA metabolism in mammalian cells.

    PubMed

    Jackson, D A; Pombo, A; Iborra, F

    2000-02-01

    The control of RNA synthesis from protein-coding genes is fundamental in determining the various cell types of higher eukaryotes. The activation of these genes is driven by promoter complexes, and RNA synthesis is performed by an enzyme mega-complex-the RNA polymerase II holoenzyme. These two complexes are the fundamental components required to initiate gene expression and generate the primary transcripts that, after processing, yield mRNAs that pass to the cytoplasm where protein synthesis occurs. But although this gene expression pathway has been studied intensively, aspects of RNA metabolism remain difficult to comprehend. In particular, it is unclear why >95% of RNA polymerized by polymerase II remains in the nucleus, where it is recycled. To explain this apparent paradox, this review presents a detailed description of nuclear RNA (nRNA) metabolism in mammalian cells. We evaluate the number of active transcription units, discuss the distribution of polymerases on active genes, and assess the efficiency with which the products mature and pass to the cytoplasm. Differences between the behavior of mRNAs on this productive pathway and primary transcripts that never leave the nucleus lead us to propose that these represent distinct populations. We discuss possible roles for nonproductive RNAs and present a model to describe the metabolism of these RNAs in the nuclei of mammalian cells.-Jackson, D. A., Pombo, A., Iborra, F. The balance sheet for transcription: an analysis of nuclear RNA metabolism in mammalian cells.

  6. Greenland ice sheet surface mass-balance modeling in a 131-year perspective, 1950-2080

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mernild, Sebastian Haugard; Liston, Glen; Hiemstra, Christopher

    2009-01-01

    Fluctuations in the Greenland Ice Sheet (GrIS) surface mass-balance (SMB) and freshwater influx to the surrounding oceans closely follow climate fluctuations and are of considerable importance to the global eustatic sea level rise. SnowModel, a state-of-the-art snow-evolution modeling system, was used to simulate variations in the GrIS melt extent, surface water balance components, changes in SMB, and freshwater influx to the ocean. The simulations are based on the IPCC scenario AlB modeled by the HIRHAM4 RCM (using boundary conditions from ECHAM5 AOGCM) from 1950 through 2080. In-situ meteorological station (GC-Net and WMO DMI) observations from inside and outside the GrISmore » were used to validate and correct RCM output data before it was used as input for SnowModel. Satellite observations and independent SMB studies were used to validate the SnowModel output and confirm the model's robustness. We simulated a {approx}90% increase in end-of-summer surface melt extent (0.483 x 10{sup 6} km{sup 2}) from 1950 to 2080, and a melt index (above 2,000-m elevation) increase of 138% (1.96 x 10{sup 6} km{sup 2} x days). The greatest difference in melt extent occured in the southern part of the GrIS, and the greatest changes in the number of melt days was seen in the eastern part of the GrIS ({approx}50-70%) and was lowest in the west ({approx}20-30%). The rate of SMB loss, largely tied to changes in ablation processes, lead to an enhanced average loss of 331 km{sup 3} from 1950 to 2080, an average 5MB level of -99 km{sup 3} for the period 2070-2080. GrIS surface freshwater runoff yielded an eustatic rise in sea level from 0.8 {+-} 0.1 (1950-1959) to 1.9 {+-} 0.1 mm (2070-2080) sea level equivalent (SLE) y{sup -1}. The accumulated GrIS freshwater runoff contribution from surface melting equaled 160 mm SLE from 1950 through 2080.« less

  7. How might the North American ice sheet influence the northwestern Eurasian climate?

    NASA Astrophysics Data System (ADS)

    Beghin, P.; Charbit, S.; Dumas, C.; Kageyama, M.; Ritz, C.

    2015-10-01

    It is now widely acknowledged that past Northern Hemisphere ice sheets covering Canada and northern Europe at the Last Glacial Maximum (LGM) exerted a strong influence on climate by causing changes in atmospheric and oceanic circulations. In turn, these changes may have impacted the development of the ice sheets themselves through a combination of different feedback mechanisms. The present study is designed to investigate the potential impact of the North American ice sheet on the surface mass balance (SMB) of the Eurasian ice sheet driven by simulated changes in the past glacial atmospheric circulation. Using the LMDZ5 atmospheric circulation model, we carried out 12 experiments under constant LGM conditions for insolation, greenhouse gases and ocean. In these experiments, the Eurasian ice sheet is removed. The 12 experiments differ in the North American ice-sheet topography, ranging from a white and flat (present-day topography) ice sheet to a full-size LGM ice sheet. This experimental design allows the albedo and the topographic impacts of the North American ice sheet onto the climate to be disentangled. The results are compared to our baseline experiment where both the North American and the Eurasian ice sheets have been removed. In summer, the sole albedo effect of the American ice sheet modifies the pattern of planetary waves with respect to the no-ice-sheet case, resulting in a cooling of the northwestern Eurasian region. By contrast, the atmospheric circulation changes induced by the topography of the North American ice sheet lead to a strong decrease of this cooling. In winter, the Scandinavian and the Barents-Kara regions respond differently to the American ice-sheet albedo effect: in response to atmospheric circulation changes, Scandinavia becomes warmer and total precipitation is more abundant, whereas the Barents-Kara area becomes cooler with a decrease of convective processes, causing a decrease of total precipitation. The gradual increase of the

  8. Hospital cost shifting revisited: new evidence from the balanced budget act of 1997.

    PubMed

    Wu, Vivian Y

    2010-03-01

    This paper analyzes hospital cost shifting using a natural experiment generated by the Balanced Budget Act (BBA) of 1997. I find evidence that urban hospitals were able to shift part of the burden of Medicare payment reduction onto private payers. However, the overall estimated degree of cost shifting is small and varies according to a hospital's share of private patients. At hospitals where Medicare is a small payer relative to private insurers, up to 37% of BBA cuts was transferred to private payers through higher payments. In contrast, hospitals with greater reliance on Medicare were more financially distressed, as these hospitals saw large BBA cuts but were limited in their abilities to cost shift.

  9. Radiation Climatology of the Greenland Ice Sheet Derived from Greenland Climate Network Data

    NASA Technical Reports Server (NTRS)

    Steffen, Konrad; Box, Jason

    2003-01-01

    The magnitude of shortwave and longwave dative fluxes are critical to surface energy balance variations over the Greenland ice sheet, affecting many aspects of its climate, including melt rates, the nature of low-level temperature inversions, the katabatic wind regime and buoyant stability of the atmosphere. Nevertheless, reliable measurements of the radiative fluxes over the ice sheet are few in number, and have been of limited duration and areal distribution (e.g. Ambach, 1960; 1963, Konzelmann et al., 1994, Harding et al., 1995, Van den Broeke, 1996). Hourly GC-Net radiation flux measurements spanning 1995-2001 period have been used to produce a monthly dataset of surface radiation balance components. The measurements are distributed widely across Greenland and incorporate multiple sensors

  10. A century of variation in the dependence of Greenland iceberg calving on ice sheet surface mass balance and regional climate change.

    PubMed

    Bigg, G R; Wei, H L; Wilton, D J; Zhao, Y; Billings, S A; Hanna, E; Kadirkamanathan, V

    2014-06-08

    Iceberg calving is a major component of the total mass balance of the Greenland ice sheet (GrIS). A century-long record of Greenland icebergs comes from the International Ice Patrol's record of icebergs (I48N) passing latitude 48° N, off Newfoundland. I48N exhibits strong interannual variability, with a significant increase in amplitude over recent decades. In this study, we show, through a combination of nonlinear system identification and coupled ocean-iceberg modelling, that I48N's variability is predominantly caused by fluctuation in GrIS calving discharge rather than open ocean iceberg melting. We also demonstrate that the episodic variation in iceberg discharge is strongly linked to a nonlinear combination of recent changes in the surface mass balance (SMB) of the GrIS and regional atmospheric and oceanic climate variability, on the scale of the previous 1-3 years, with the dominant causal mechanism shifting between glaciological (SMB) and climatic (ocean temperature) over time. We suggest that this is a change in whether glacial run-off or under-ice melting is dominant, respectively. We also suggest that GrIS calving discharge is episodic on at least a regional scale and has recently been increasing significantly, largely as a result of west Greenland sources.

  11. ICESat's First Year of Measurements Over the Polar Ice Sheets

    NASA Astrophysics Data System (ADS)

    Shuman, C. A.

    2004-05-01

    NASA's Ice, Cloud and Land Elevation Satellite (ICESat) mission was developed to measure changes in elevation of the Greenland and Antarctic ice sheets. Its primary mission goal is to significantly refine estimates of polar ice sheet mass balance. Obtaining precise, spatially dense, ice sheet elevations through time is the first step towards this goal. ICESat data will then enable study of associations between observed ice changes and dynamic or climatic forcing factors, and thus enable improved estimation of the present and future contributions of the ice sheets to global sea level rise. ICESat was launched on January 12, 2003 and acquired science data from February 20th to March 29th with the first of the three lasers of the Geoscience Laser Altimeter System (GLAS). Data acquisition with the second laser began on September 25th and continued until November 18th, 2003. For one-year change detection, the second laser is scheduled for operation from approximately February 17th to March 20th, 2004. Additional operational periods will be selected to 1) enable periodic measurements through the year, and 2) to support of other NASA Earth Science Enterprise missions and activities. To obtain these precise ice sheet elevations, GLAS has a 1064 nm wavelength laser operating at 40 Hz with a designed range precision of about 10 cm. The laser footprints are about 70 m in diameter on the Earth's surface and are spaced every 172 m along-track. The on-board GPS receiver enables radial orbit determinations to an accuracy better than 5 cm. The star-tracking attitude-determination system will enable laser footprints to be located to 6 m horizontally when attitude calibration is completed. The orbital altitude averages 600 km at an inclination of 94 degrees with coverage extending from 86 degrees N and S latitude. The spacecraft attitude can be controlled to point the laser beam to within 50 m of surface reference tracks over the ice sheets and to point off-nadir up to 5 degrees to

  12. Bayesian prediction of future ice sheet volume using local approximation Markov chain Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Davis, A. D.; Heimbach, P.; Marzouk, Y.

    2017-12-01

    We develop a Bayesian inverse modeling framework for predicting future ice sheet volume with associated formal uncertainty estimates. Marine ice sheets are drained by fast-flowing ice streams, which we simulate using a flowline model. Flowline models depend on geometric parameters (e.g., basal topography), parameterized physical processes (e.g., calving laws and basal sliding), and climate parameters (e.g., surface mass balance), most of which are unknown or uncertain. Given observations of ice surface velocity and thickness, we define a Bayesian posterior distribution over static parameters, such as basal topography. We also define a parameterized distribution over variable parameters, such as future surface mass balance, which we assume are not informed by the data. Hyperparameters are used to represent climate change scenarios, and sampling their distributions mimics internal variation. For example, a warming climate corresponds to increasing mean surface mass balance but an individual sample may have periods of increasing or decreasing surface mass balance. We characterize the predictive distribution of ice volume by evaluating the flowline model given samples from the posterior distribution and the distribution over variable parameters. Finally, we determine the effect of climate change on future ice sheet volume by investigating how changing the hyperparameters affects the predictive distribution. We use state-of-the-art Bayesian computation to address computational feasibility. Characterizing the posterior distribution (using Markov chain Monte Carlo), sampling the full range of variable parameters and evaluating the predictive model is prohibitively expensive. Furthermore, the required resolution of the inferred basal topography may be very high, which is often challenging for sampling methods. Instead, we leverage regularity in the predictive distribution to build a computationally cheaper surrogate over the low dimensional quantity of interest (future ice

  13. Increases in plasma sheet temperature with solar wind driving during substorm growth phases

    PubMed Central

    Forsyth, C; Watt, C E J; Rae, I J; Fazakerley, A N; Kalmoni, N M E; Freeman, M P; Boakes, P D; Nakamura, R; Dandouras, I; Kistler, L M; Jackman, C M; Coxon, J C; Carr, C M

    2014-01-01

    During substorm growth phases, magnetic reconnection at the magnetopause extracts ∼1015 J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase. PMID:26074645

  14. Increases in plasma sheet temperature with solar wind driving during substorm growth phases.

    PubMed

    Forsyth, C; Watt, C E J; Rae, I J; Fazakerley, A N; Kalmoni, N M E; Freeman, M P; Boakes, P D; Nakamura, R; Dandouras, I; Kistler, L M; Jackman, C M; Coxon, J C; Carr, C M

    2014-12-28

    During substorm growth phases, magnetic reconnection at the magnetopause extracts ∼10 15  J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase.

  15. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 1: Model description

    NASA Astrophysics Data System (ADS)

    Winkelmann, R.; Martin, M. A.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2011-09-01

    We present the Potsdam Parallel Ice Sheet Model (PISM-PIK), developed at the Potsdam Institute for Climate Impact Research to be used for simulations of large-scale ice sheet-shelf systems. It is derived from the Parallel Ice Sheet Model (Bueler and Brown, 2009). Velocities are calculated by superposition of two shallow stress balance approximations within the entire ice covered region: the shallow ice approximation (SIA) is dominant in grounded regions and accounts for shear deformation parallel to the geoid. The plug-flow type shallow shelf approximation (SSA) dominates the velocity field in ice shelf regions and serves as a basal sliding velocity in grounded regions. Ice streams can be identified diagnostically as regions with a significant contribution of membrane stresses to the local momentum balance. All lateral boundaries in PISM-PIK are free to evolve, including the grounding line and ice fronts. Ice shelf margins in particular are modeled using Neumann boundary conditions for the SSA equations, reflecting a hydrostatic stress imbalance along the vertical calving face. The ice front position is modeled using a subgrid-scale representation of calving front motion (Albrecht et al., 2011) and a physically-motivated calving law based on horizontal spreading rates. The model is tested in experiments from the Marine Ice Sheet Model Intercomparison Project (MISMIP). A dynamic equilibrium simulation of Antarctica under present-day conditions is presented in Martin et al. (2011).

  16. Determining Greenland Ice Sheet Accumulation Rates from Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Jezek, Kenneth C.

    2002-01-01

    An important component of NASA's Program for Arctic Regional Climate Assessment (PARCA) is a mass balance investigation of the Greenland Ice Sheet. The mass balance is calculated by taking the difference between the areally Integrated snow accumulation and the net ice discharge of the ice sheet. Uncertainties in this calculation Include the snow accumulation rate, which has traditionally been determined by interpolating data from ice core samples taken from isolated spots across the ice sheet. The sparse data associated with ice cores juxtaposed against the high spatial and temporal resolution provided by remote sensing , has motivated scientists to investigate relationships between accumulation rate and microwave observations as an option for obtaining spatially contiguous estimates. The objective of this PARCA continuation proposal was to complete an estimate of surface accumulation rate on the Greenland Ice Sheet derived from C-band radar backscatter data compiled in the ERS-1 SAR mosaic of data acquired during, September-November, 1992. An empirical equation, based on elevation and latitude, is used to determine the mean annual temperature. We examine the influence of accumulation rate, and mean annual temperature on C-band radar backscatter using a forward model, which incorporates snow metamorphosis and radar backscatter components. Our model is run over a range of accumulation and temperature conditions. Based on the model results, we generate a look-up table, which uniquely maps the measured radar backscatter, and mean annual temperature to accumulation rate. Our results compare favorably with in situ accumulation rate measurements falling within our study area.

  17. Criticality and turbulence in a resistive magnetohydrodynamic current sheet

    NASA Astrophysics Data System (ADS)

    Klimas, Alexander J.; Uritsky, Vadim M.

    2017-02-01

    Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.

  18. Criticality and turbulence in a resistive magnetohydrodynamic current sheet.

    PubMed

    Klimas, Alexander J; Uritsky, Vadim M

    2017-02-01

    Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.

  19. Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison

    NASA Astrophysics Data System (ADS)

    Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin; Beckley, Matthew; Abe-Ouchi, Ayako; Aschwanden, Andy; Calov, Reinhard; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Golledge, Nicholas R.; Gregory, Jonathan; Greve, Ralf; Humbert, Angelika; Huybrechts, Philippe; Kennedy, Joseph H.; Larour, Eric; Lipscomb, William H.; Le clec'h, Sébastien; Lee, Victoria; Morlighem, Mathieu; Pattyn, Frank; Payne, Antony J.; Rodehacke, Christian; Rückamp, Martin; Saito, Fuyuki; Schlegel, Nicole; Seroussi, Helene; Shepherd, Andrew; Sun, Sainan; van de Wal, Roderik; Ziemen, Florian A.

    2018-04-01

    Earlier large-scale Greenland ice sheet sea-level projections (e.g. those run during the ice2sea and SeaRISE initiatives) have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. The goal of this initMIP-Greenland intercomparison exercise is to compare, evaluate, and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6), which is the primary activity within the Coupled Model Intercomparison Project Phase 6 (CMIP6) focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of (1) the initial present-day state of the ice sheet and (2) the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and in response to a large perturbation (prescribed surface mass balance anomaly); they should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions, and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.

  20. Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison

    DOE PAGES

    Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin; ...

    2018-04-19

    Earlier large-scale Greenland ice sheet sea-level projections (e.g. those run during the ice2sea and SeaRISE initiatives) have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. Here, the goal of this initMIP-Greenland intercomparison exercise is to compare, evaluate, and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6), which is the primary activity within themore » Coupled Model Intercomparison Project Phase 6 (CMIP6) focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of (1) the initial present-day state of the ice sheet and (2) the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and in response to a large perturbation (prescribed surface mass balance anomaly); they should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions, and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.« less

  1. Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin

    Earlier large-scale Greenland ice sheet sea-level projections (e.g. those run during the ice2sea and SeaRISE initiatives) have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. Here, the goal of this initMIP-Greenland intercomparison exercise is to compare, evaluate, and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6), which is the primary activity within themore » Coupled Model Intercomparison Project Phase 6 (CMIP6) focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of (1) the initial present-day state of the ice sheet and (2) the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and in response to a large perturbation (prescribed surface mass balance anomaly); they should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions, and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.« less

  2. Thriving and surviving in home care and skilled nursing facilities under the Balanced Budget Act of 1997.

    PubMed

    Turnbull, G B

    2000-03-01

    The Balanced Budget Act of 1997 (BBA 97) contains the most dramatic changes to the Medicare program since its genesis nearly 35 years ago. To remain financially viable under the cost-cutting measures mandated in this Act, hospitals, home health agencies, skilled nursing facilities, and their employees must have a working knowledge of its contents. In addition, the patients served by these health care providers must have well documented and positive health outcomes, and they must be satisfied with the care and service they receive. Nevertheless, merely understanding the changes mandated by BBA 97 is not sufficient for success; clinicians also must develop innovative solutions to the hurdles the Act erects and quickly integrate them into daily practice. Issues of payment and reimbursement have everything to do with the delivery of today's patient care, regardless of the setting where it is delivered. BBA 97 offers special opportunities to wound, ostomy, and continence care clinicians.

  3. Surface water hydrology and the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Smith, L. C.; Yang, K.; Pitcher, L. H.; Overstreet, B. T.; Chu, V. W.; Rennermalm, A. K.; Cooper, M. G.; Gleason, C. J.; Ryan, J.; Hubbard, A.; Tedesco, M.; Behar, A.

    2016-12-01

    Mass loss from the Greenland Ice Sheet now exceeds 260 Gt/year, raising global sea level by >0.7 mm annually. Approximately two-thirds of this total mass loss is now driven by negative ice sheet surface mass balance (SMB), attributed mainly to production and runoff of meltwater from the ice sheet surface. This new dominance of runoff as a driver of GrIS total mass loss will likely persist owing to anticipated further increases in surface melting, reduced meltwater storage in firn, and the waning importance of dynamical mass losses (ice calving) as the ice sheets retreat from their marine-terminating margins. It also creates the need and opportunity for integrative research pairing traditional surface water hydrology approaches with glaciology. As one example, we present a way to measure supraglacial "runoff" (i.e. specific discharge) at the supraglacial catchment scale ( 101-102 km2), using in situ measurements of supraglacial river discharge and high-resolution satellite/drone mapping of upstream catchment area. This approach, which is standard in terrestrial hydrology but novel for ice sheet science, enables independent verification and improvement of modeled SMB runoff estimates used to project sea level rise. Furthermore, because current SMB models do not consider the role of fluvial watershed processes operating on the ice surface, inclusion of even a simple surface routing model materially improves simulations of runoff delivered to moulins, the critical pathways for meltwater entry into the ice sheet. Incorporating principles of surface water hydrology and fluvial geomorphology and into glaciological models will thus aid estimates of Greenland meltwater runoff to the global ocean as well as connections to subglacial hydrology and ice sheet dynamics.

  4. Propagation of large amplitude Alfven waves in the solar wind neutral sheet

    NASA Technical Reports Server (NTRS)

    Malara, F.; Primavera, L.; Veltri, P.

    1995-01-01

    Analysis of solar wind fluctuation data show that the correlation between velocity and magnetic field fluctuations decreases when going farther away from the Sun. This decorrelation can be attributed either to the time evolution of the fluctuations, carried away by the solar wind, or to the interaction between the solar wind neutral sheet and Alfven waves. To check this second hypothesis we have numerically studied the propagation of Alfven waves in the solar wind neutral sheet. The initial conditions have been set up in order to guarantee B(exp 2) = const, so that the following numerical evolution is only due to the inhomogeneity in the background magnetic field. The analysis of the results shows that compressive structures are formed, mainly in the neutral sheet where they have been identified as pressure balanced structures, i.e., tangential discontinuities. Fast perturbations, which are also produced, have a tendency to leave the simulation domain, propagating also perpendicularly to the mean magnetic field. For this reason the level of fast perturbations is always smaller with respect to the previously cited plasma balanced structures, which are slow mode perturbations. A comparison between the numerical results and some particular observational issues is also presented.

  5. Hypsometric amplification and routing moderation of Greenland ice sheet meltwater release

    NASA Astrophysics Data System (ADS)

    van As, Dirk; Mikkelsen, Andreas Bech; Holtegaard Nielsen, Morten; Box, Jason E.; Claesson Liljedahl, Lillemor; Lindbäck, Katrin; Pitcher, Lincoln; Hasholt, Bent

    2017-06-01

    Concurrent ice sheet surface runoff and proglacial discharge monitoring are essential for understanding Greenland ice sheet meltwater release. We use an updated, well-constrained river discharge time series from the Watson River in southwest Greenland, with an accurate, observation-based ice sheet surface mass balance model of the ˜ 12 000 km2 ice sheet area feeding the river. For the 2006-2015 decade, we find a large range of a factor of 3 in interannual variability in discharge. The amount of discharge is amplified ˜ 56 % by the ice sheet's hypsometry, i.e., area increase with elevation. A good match between river discharge and ice sheet surface meltwater production is found after introducing elevation-dependent transit delays that moderate diurnal variability in meltwater release by a factor of 10-20. The routing lag time increases with ice sheet elevation and attains values in excess of 1 week for the upper reaches of the runoff area at ˜ 1800 m above sea level. These multi-day routing delays ensure that the highest proglacial discharge levels and thus overbank flooding events are more likely to occur after multi-day melt episodes. Finally, for the Watson River ice sheet catchment, we find no evidence of meltwater storage in or release from the en- and subglacial environments in quantities exceeding our methodological uncertainty, based on the good match between ice sheet runoff and proglacial discharge.

  6. Hierarchical regrowth of flowerlike nanographene sheets on oxygen-plasma-treated carbon nanowalls

    NASA Astrophysics Data System (ADS)

    Shimoeda, Hironao; Kondo, Hiroki; Ishikawa, Kenji; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru

    2014-04-01

    Cauliflorous nanographene sheets were hierarchically regrown on the spearlike structures of carbon nanowalls (CNWs) produced by O2-plasma etching. The spears on the CNWs acted as a stem for the growth of flowerlike flaky nanographene sheets, where the root of the nanoflower was located at a defect or disordered site. The defects on the graphitic structures were induced by irradiation with oxygen-related radicals and ions in the O2-based plasmas and acted as sites for the nucleation of flowerlike nanographene. The porous carbon nanostructures regrown after O2-plasma treatment have a relatively higher surface area and are thus promising materials for electrochemical applications.

  7. Current state and future perspectives on coupled ice-sheet - sea-level modelling

    NASA Astrophysics Data System (ADS)

    de Boer, Bas; Stocchi, Paolo; Whitehouse, Pippa L.; van de Wal, Roderik S. W.

    2017-08-01

    The interaction between ice-sheet growth and retreat and sea-level change has been an established field of research for many years. However, recent advances in numerical modelling have shed new light on the precise interaction of marine ice sheets with the change in near-field sea level, and the related stability of the grounding line position. Studies using fully coupled ice-sheet - sea-level models have shown that accounting for gravitationally self-consistent sea-level change will act to slow down the retreat and advance of marine ice-sheet grounding lines. Moreover, by simultaneously solving the 'sea-level equation' and modelling ice-sheet flow, coupled models provide a global field of relative sea-level change that is consistent with dynamic changes in ice-sheet extent. In this paper we present an overview of recent advances, possible caveats, methodologies and challenges involved in coupled ice-sheet - sea-level modelling. We conclude by presenting a first-order comparison between a suite of relative sea-level data and output from a coupled ice-sheet - sea-level model.

  8. Food balance sheet and household budget survey dietary data and mortality patterns in Europe.

    PubMed

    Naska, Androniki; Berg, Mari-Anna; Cuadrado, Carmen; Freisling, Heinz; Gedrich, Kurt; Gregoric, Matej; Kelleher, Cecily; Leskova, Emilia; Nelson, Michael; Pace, Lucienne; Remaut, Anne-Marie; Rodrigues, Sara; Sekula, Wlodzimierz; Sjöstrom, Michael; Trygg, Kerstin; Turrini, Aida; Volatier, Jean Luc; Zajkas, Gabor; Trichopoulou, Antonia

    2009-07-01

    Worldwide dietary data for nutrition monitoring and surveillance are commonly derived from food balance sheets (FBS) and household budget surveys (HBS). We have compared food supply from FBS and food availability data from HBS among eighteen European countries and have estimated the extent to which they correlate, focusing on food groups which are comparably captured by FBS and HBS and for which there is epidemiological evidence that they can have a noticeable impact on population mortality. Spearman's correlation coefficient was +0.78 (P < 10- 3) for vegetables (including legumes),+0.76 (P < 10- 3) for fruits, +0.69 (P < 10- 3) for fish and seafood and +0.93 (P < 10- 3) for olive oil. With respect to meat and meat products, the coefficient was lower at +0.39 (P = 0.08). Moreover, we have examined whether the supply (FBS) or the availability (HBS) of food groups known or presumed to have beneficial effect on the occurrence of CHD and total cancer can predict overall, coronary and cancer mortality in ecological analyses. After controlling for purchasing power parity-adjusted gross domestic product and tobacco smoking we found that for vegetables, fruits, fish and seafood, as well as for olive oil, both the FBS and the HBS estimates were inversely associated with all three indicators of mortality, although the number of countries with complete information on all study variables hindered formal statistical documentation (P>0.05 in some instances). FBS and HBS have their own strengths and weaknesses, but they may complement each other in dietary assessments at the population level.

  9. Incorporation of ice sheet models into an Earth system model: Focus on methodology of coupling

    NASA Astrophysics Data System (ADS)

    Rybak, Oleg; Volodin, Evgeny; Morozova, Polina; Nevecherja, Artiom

    2018-03-01

    Elaboration of a modern Earth system model (ESM) requires incorporation of ice sheet dynamics. Coupling of an ice sheet model (ICM) to an AOGCM is complicated by essential differences in spatial and temporal scales of cryospheric, atmospheric and oceanic components. To overcome this difficulty, we apply two different approaches for the incorporation of ice sheets into an ESM. Coupling of the Antarctic ice sheet model (AISM) to the AOGCM is accomplished via using procedures of resampling, interpolation and assigning to the AISM grid points annually averaged meanings of air surface temperature and precipitation fields generated by the AOGCM. Surface melting, which takes place mainly on the margins of the Antarctic peninsula and on ice shelves fringing the continent, is currently ignored. AISM returns anomalies of surface topography back to the AOGCM. To couple the Greenland ice sheet model (GrISM) to the AOGCM, we use a simple buffer energy- and water-balance model (EWBM-G) to account for orographically-driven precipitation and other sub-grid AOGCM-generated quantities. The output of the EWBM-G consists of surface mass balance and air surface temperature to force the GrISM, and freshwater run-off to force thermohaline circulation in the oceanic block of the AOGCM. Because of a rather complex coupling procedure of GrIS compared to AIS, the paper mostly focuses on Greenland.

  10. TSCA Chemical Data Reporting Fact Sheet: Articles

    EPA Pesticide Factsheets

    This fact sheet provides guidance on classifying articles under the Toxic Substances Control Act (TSCA) and determining the applicability of EPA’s articles exclusion policy for purposes of the Chemical Data Reporting (CDR) rule. The primary goal of this document is to help the regulated community comply with the requirements of the CDR rule.

  11. High-resolution coupled ice sheet-ocean modeling using the POPSICLES model

    NASA Astrophysics Data System (ADS)

    Ng, E. G.; Martin, D. F.; Asay-Davis, X.; Price, S. F.; Collins, W.

    2014-12-01

    It is expected that a primary driver of future change of the Antarctic ice sheet will be changes in submarine melting driven by incursions of warm ocean water into sub-ice shelf cavities. Correctly modeling this response on a continental scale will require high-resolution modeling of the coupled ice-ocean system. We describe the computational and modeling challenges in our simulations of the full Southern Ocean coupled to a continental-scale Antarctic ice sheet model at unprecedented spatial resolutions (0.1 degree for the ocean model and adaptive mesh refinement down to 500m in the ice sheet model). The POPSICLES model couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), with the BISICLES ice-sheet model (Cornford et al., 2012) using a synchronous offline-coupling scheme. Part of the PISCEES SciDAC project and built on the Chombo framework, BISICLES makes use of adaptive mesh refinement to fully resolve dynamically-important regions like grounding lines and employs a momentum balance similar to the vertically-integrated formulation of Schoof and Hindmarsh (2009). Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests like MISMIP3D (Pattyn et al., 2013) and realistic configurations (Favier et al. 2014). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). For the POPSICLES Antarctic-Southern Ocean simulations, ice sheet and ocean models communicate at one-month coupling intervals.

  12. Results of the Greenland ice sheet model initialisation experiments: ISMIP6 - initMIP-Greenland

    NASA Astrophysics Data System (ADS)

    Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin; Beckley, Matthew

    2017-04-01

    Ice sheet model initialisation has a large effect on projected future sea-level contributions and gives rise to important uncertainties. The goal of this intercomparison exercise for the continental-scale Greenland ice sheet is therefore to compare, evaluate and improve the initialisation techniques used in the ice sheet modelling community. The initMIP-Greenland project is the first in a series of ice sheet model intercomparison activities within ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6). The experimental set-up has been designed to allow comparison of the initial present-day state of the Greenland ice sheet between participating models and against observations. Furthermore, the initial states are tested with two schematic forward experiments to evaluate the initialisation in terms of model drift (forward run without any forcing) and response to a large perturbation (prescribed surface mass balance anomaly). We present and discuss results that highlight the wide diversity of data sets, boundary conditions and initialisation techniques used in the community to generate initial states of the Greenland ice sheet.

  13. Decadal-Scale Response of the Antarctic Ice sheet to a Warming Ocean using the POPSICLES Coupled Ice Sheet-Ocean model

    NASA Astrophysics Data System (ADS)

    Martin, D. F.; Asay-Davis, X.; Cornford, S. L.; Price, S. F.; Ng, E. G.; Collins, W.

    2015-12-01

    We present POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period from 1990 to 2010. We use the CORE v. 2 interannual forcing data to force the ocean model. Simulations are performed at 0.1o(~5 km) ocean resolution with adaptive ice sheet resolution as fine as 500 m to adequately resolve the grounding line dynamics. We discuss the effect of improved ocean mixing and subshelf bathymetry (vs. the standard Bedmap2 bathymetry) on the behavior of the coupled system, comparing time-averaged melt rates below a number of major ice shelves with those reported in the literature. We also present seasonal variability and decadal melting trends from several Antarctic regions, along with the response of the ice shelves and the consequent dynamic response of the grounded ice sheet.POPSICLES couples the POP2x ocean model, a modified version of the Parallel Ocean Program, and the BISICLES ice-sheet model. POP2x includes sub-ice-shelf circulation using partial top cells and the commonly used three-equation boundary layer physics. Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP) and other continental-scale simulations and melt-rate observations. BISICLES makes use of adaptive mesh refinement and a 1st-order accurate momentum balance similar to the L1L2 model of Schoof and Hindmarsh to accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests (MISMIP-3d) and realistic configurations.The figure shows the BISICLES-computed vertically-integrated grounded ice velocity field 5 years into a 20-year coupled full-continent Antarctic-Southern-Ocean simulation. Submarine melt rates are painted onto the surface of the floating ice shelves. Grounding lines are shown in green.

  14. Epilepsy. Fact Sheet = Epilepsia. Hojas Informativas Sobre Discapacidades.

    ERIC Educational Resources Information Center

    National Information Center for Children and Youth with Disabilities, Washington, DC.

    This fact sheet, written in both English and Spanish, provides a definition, information on incidence, typical characteristics, and educational implications of epilepsy. It notes that epilepsy is classified as "other health impaired" under the Individuals with Disabilities Education Act (IDEA) and that children with epilepsy or seizure disorders…

  15. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 1: Model description

    NASA Astrophysics Data System (ADS)

    Winkelmann, R.; Martin, M. A.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2010-08-01

    We present the Potsdam Parallel Ice Sheet Model (PISM-PIK), developed at the Potsdam Institute for Climate Impact Research to be used for simulations of large-scale ice sheet-shelf systems. It is derived from the Parallel Ice Sheet Model (Bueler and Brown, 2009). Velocities are calculated by superposition of two shallow stress balance approximations within the entire ice covered region: the shallow ice approximation (SIA) is dominant in grounded regions and accounts for shear deformation parallel to the geoid. The plug-flow type shallow shelf approximation (SSA) dominates the velocity field in ice shelf regions and serves as a basal sliding velocity in grounded regions. Ice streams naturally emerge through this approach and can be identified diagnostically as regions with a significant contribution of membrane stresses to the local momentum balance. All lateral boundaries in PISM-PIK are free to evolve, including the grounding line and ice fronts. Ice shelf margins in particular are modeled using Neumann boundary conditions for the SSA equations, reflecting a hydrostatic stress imbalance along the vertical calving face. The ice front position is modeled using a subgrid scale representation of calving front motion (Albrecht et al., 2010) and a physically motivated dynamic calving law based on horizontal spreading rates. The model is validated within the Marine Ice Sheet Model Intercomparison Project (MISMIP) and is used for a dynamic equilibrium simulation of Antarctica under present-day conditions in the second part of this paper (Martin et al., 2010).

  16. Sea-level response to ice sheet evolution: An ocean perspective

    NASA Technical Reports Server (NTRS)

    Jacobs, Stanley S.

    1991-01-01

    The ocean's influence upon and response to Antarctic ice sheet changes is considered in relation to sea level rise over recent and future decades. Assuming present day ice fronts are in approximate equilibrium, a preliminary budget for the ice sheet is estimated from accumulation vs. iceberg calving and the basal melting that occurs beneath floating ice shelves. Iceberg calving is derived from the volume of large bergs identified and tracked by the Navy/NOAA Joint Ice Center and from shipboard observations. Basal melting exceeds 600 cu km/yr and is concentrated near the ice fronts and ice shelf grounding lines. An apparent negative mass balance for the Antarctic ice sheet may result from an anomalous calving rate during the past decade, but there are large uncertainties associated with all components of the ice budget. The results from general circulation models are noted in the context of projected precipitation increases and ocean temperature changes on and near the continent. An ocean research program that could help refine budget estimates is consistent with goals of the West Antarctic Ice Sheet Initiative.

  17. Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Stibal, Marek; Box, Jason E.; Cameron, Karen A.; Langen, Peter L.; Yallop, Marian L.; Mottram, Ruth H.; Khan, Alia L.; Molotch, Noah P.; Chrismas, Nathan A. M.; Calı Quaglia, Filippo; Remias, Daniel; Smeets, C. J. P. Paul; van den Broeke, Michiel R.; Ryan, Jonathan C.; Hubbard, Alun; Tranter, Martyn; van As, Dirk; Ahlstrøm, Andreas P.

    2017-11-01

    Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light-absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of nonalgal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere.

  18. A 25-year Record of Antarctic Ice Sheet Elevation and Mass Change

    NASA Astrophysics Data System (ADS)

    Shepherd, A.; Muir, A. S.; Sundal, A.; McMillan, M.; Briggs, K.; Hogg, A.; Engdahl, M.; Gilbert, L.

    2017-12-01

    Since 1992, the European Remote-Sensing (ERS-1 and ERS-2), ENVISAT, and CryoSat-2 satellite radar altimeters have measured the Antarctic ice sheet surface elevation, repeatedly, at approximately monthly intervals. These data constitute the longest continuous record of ice sheet wide change. In this paper, we use these observations to determine changes in the elevation, volume and mass of the East Antarctic and West Antarctic ice sheets, and of parts of the Antarctic Peninsula ice sheet, over a 25-year period. The root mean square difference between elevation rates computed from our survey and 257,296 estimates determined from airborne laser measurements is 54 cm/yr. The longevity of the satellite altimeter data record allows to identify and chart the evolution of changes associated with meteorology and ice flow, and we estimate that 3.6 % of the continental ice sheet, and 21.7 % of West Antarctica, is in a state of dynamical imbalance. Based on this partitioning, we estimate the mass balance of the East and West Antarctic ice sheet drainage basins and the root mean square difference between these and independent estimates derived from satellite gravimetry is less than 5 Gt yr-1.

  19. Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed lakes.

    PubMed

    Krinner, G; Mangerud, J; Jakobsson, M; Crucifix, M; Ritz, C; Svendsen, J I

    2004-01-29

    Large proglacial lakes cool regional summer climate because of their large heat capacity, and have been shown to modify precipitation through mesoscale atmospheric feedbacks, as in the case of Lake Agassiz. Several large ice-dammed lakes, with a combined area twice that of the Caspian Sea, were formed in northern Eurasia about 90,000 years ago, during the last glacial period when an ice sheet centred over the Barents and Kara seas blocked the large northbound Russian rivers. Here we present high-resolution simulations with an atmospheric general circulation model that explicitly simulates the surface mass balance of the ice sheet. We show that the main influence of the Eurasian proglacial lakes was a significant reduction of ice sheet melting at the southern margin of the Barents-Kara ice sheet through strong regional summer cooling over large parts of Russia. In our simulations, the summer melt reduction clearly outweighs lake-induced decreases in moisture and hence snowfall, such as has been reported earlier for Lake Agassiz. We conclude that the summer cooling mechanism from proglacial lakes accelerated ice sheet growth and delayed ice sheet decay in Eurasia and probably also in North America.

  20. Results of the Greenland Ice Sheet Model Initialisation Experiments ISMIP6 - initMIP-Greenland

    NASA Astrophysics Data System (ADS)

    Goelzer, H.; Nowicki, S.; Edwards, T.; Beckley, M.; Abe-Ouchi, A.; Aschwanden, A.; Calov, R.; Gagliardini, O.; Gillet-chaulet, F.; Golledge, N. R.; Gregory, J. M.; Greve, R.; Humbert, A.; Huybrechts, P.; Larour, E. Y.; Lipscomb, W. H.; Le ´h, S.; Lee, V.; Kennedy, J. H.; Pattyn, F.; Payne, A. J.; Rodehacke, C. B.; Rückamp, M.; Saito, F.; Schlegel, N.; Seroussi, H. L.; Shepherd, A.; Sun, S.; Vandewal, R.; Ziemen, F. A.

    2016-12-01

    Earlier large-scale Greenland ice sheet sea-level projections e.g. those run during ice2sea and SeaRISE initiatives have shown that ice sheet initialisation can have a large effect on the projections and gives rise to important uncertainties. The goal of this intercomparison exercise (initMIP-Greenland) is to compare, evaluate and improve the initialization techniques used in the ice sheet modeling community and to estimate the associated uncertainties. It is the first in a series of ice sheet model intercomparison activities within ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6). Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of 1) the initial present-day state of the ice sheet and 2) the response in two schematic forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without any forcing) and response to a large perturbation (prescribed surface mass balance anomaly). We present and discuss final results of the intercomparison and highlight important uncertainties with respect to projections of the Greenland ice sheet sea-level contribution.

  1. Design study of shaft face seal with self-acting lift augmentation. 4: Force balance

    NASA Technical Reports Server (NTRS)

    Ludwig, L. P.; Zuk, J.; Johnson, R. L.

    1972-01-01

    A method for predicting the operating film thickness of self-acting seals is described. The analysis considers a 16.76-cm mean diameter seal that is typical of large gas turbines for aircraft. Four design points were selected to cover a wide range of operation for advanced engines. This operating range covered sliding speeds of 61 to 153 m/sec, sealed pressures of 45 to 217 N/sq cm abs, and gas temperatures of 311 to 977 K. The force balance analysis revealed that the seal operated without contact over the operating range with gas film thicknesses ranging between 0.00046 to 0.00119 cm, and with gas leakage rates between 0.01 to 0.39 scmm.

  2. Impact of Medicare's prospective payment system on hospitals, skilled nursing facilities, and home health agencies: how the Balanced Budget Act of 1997 may have altered service patterns for Medicare providers.

    PubMed

    Kulesher, Robert R

    2006-01-01

    The prospective payment system is one of many changes in reimbursement that has affected the delivery of health care. Originally developed for the payment of inpatient hospital services, it has become a major factor in how all health insurance is reimbursed. The policy implications extend beyond the Medicare program and affect the entire health care delivery system. Initially implemented in 1982 for payments to hospitals, prospective payment system was extended to payments for skilled nursing facility and home health agency services by the Balanced Budget Act of 1997. The intent of the Balanced Budget Act was to bring into balance the federal budget through reductions in spending. The decisions that providers have made to mitigate the impact are a function of ownership type, organizational mission, and current level of Medicare participation. This article summarizes the findings of several initial studies on the Balanced Budget Act's impact and discusses how changes in Medicare reimbursement policy have influenced the delivery of health care for the general public and for Medicare beneficiaries.

  3. Role of ice sheet dynamics in the collapse of the early-Holocene Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Matero, I. S. O.; Gregoire, L. J.; Cornford, S. L.; Ivanovic, R. F.

    2017-12-01

    The last stage of the deglaciation of the Laurentide Ice Sheet (LIS) during the early Holocene Thermal Maximum ( 9000 to 7000 years ago) provides an analogy and insight to the possible responses of contemporary ice sheets in a warming climate. What makes LIS particularly interesting is that meltwater from the collapse of an ice saddle over Hudson Bay was recently shown to be the primary forcing for the period of abrupt northern hemisphere cooling known as the 8.2 ka event. The evolution of the LIS during this period was likely influenced by its interaction with marginal lakes and the ocean, and its major ice stream, which exported ice towards Hudson Strait. Accurately simulating the early Holocene LIS evolution thus requires a model such as BISICLES, capable of accurately and efficiently resolving ice stream dynamics and grounding line migration thanks to the combined use of higher order physics and adaptive mesh refinement. We drive the BISICLES model using a positive degree day mass balance scheme with monthly precipitation and temperature from the HadCM3 climate model under climatic conditions from 10,000 to 8,000 years ago. We test the effect of varying the initial topographies and ice thicknesses from different timeslices in the ICE-6Gc reconstruction. We also test different parameterisations for the basal friction based on the thicknesses of the underlying sediments. These simulations evaluate the role of the Hudson Strait ice stream, ice sheet dynamics and interactions with the adjacent proglacial Lake Agassiz and North Atlantic Ocean in the collapse of the LIS. Our results highlight that the choice of parameterisation for basal friction has major effects on ice sheet dynamics and evolution.

  4. Rewriting Ice Sheet "Glacier-ology"

    NASA Astrophysics Data System (ADS)

    Bindschadler, R.

    2006-12-01

    The revolution in glaciology driven by the suite of increasingly sophisticated satellite instruments has been no more extreme than in the area of ice dynamics. Years ago, glaciologists were (probably unwittingly) selective in what properties of mountain glaciers were also applied to ice sheets. This reinforced the view that they responded slowly to their environment. Notions of rapid response driven by the ideas of John Mercer, Bill Budd and Terry Hughes were politely rejected by the centrists of mainstream glaciological thought. How the tables have turned--and by the ice sheets themselves, captured in the act of rapidly changing by modern remote sensors! The saw-toothed record of sea-level change over past glacial-interglacial cycles required the existence of rapid ice loss processes. Satellite based observations, supported by hard-earned field observations have extended the time scale over which ice sheets can suddenly change to ever shorter intervals: from centuries, to decades, to years to even minutes. As changes continue to be observed, the scientific community is forced to consider new or previously ignored processes to explain these observations. The penultimate goal of ice-sheet dynamics is to credibly predict the future of both the Greenland and Antarctic ice sheets. In this important endeavor, there is no substitute for our ability to observe. Without the extensive data sets provided by remote sensing, numerical models can be neither tested nor improved. The impact of remote sensing on our existing ability to predict the future must be compared to our probable state of knowledge and ability were these data never collected. Among many satellite observed phenomena we would be largely or wholly ignorant of are the recent acceleration of ice throughout much of coastal Greenland; the sudden disintegration of multiple ice shelves along the Antarctic Peninsula; and the dramatic thinning and acceleration of the Amundsen Sea sector of West Antarctica. These

  5. A Historical Forcing Ice Sheet Model Validation Framework for Greenland

    NASA Astrophysics Data System (ADS)

    Price, S. F.; Hoffman, M. J.; Howat, I. M.; Bonin, J. A.; Chambers, D. P.; Kalashnikova, I.; Neumann, T.; Nowicki, S.; Perego, M.; Salinger, A.

    2014-12-01

    We propose an ice sheet model testing and validation framework for Greenland for the years 2000 to the present. Following Perego et al. (2014), we start with a realistic ice sheet initial condition that is in quasi-equilibrium with climate forcing from the late 1990's. This initial condition is integrated forward in time while simultaneously applying (1) surface mass balance forcing (van Angelen et al., 2013) and (2) outlet glacier flux anomalies, defined using a new dataset of Greenland outlet glacier flux for the past decade (Enderlin et al., 2014). Modeled rates of mass and elevation change are compared directly to remote sensing observations obtained from GRACE and ICESat. Here, we present a detailed description of the proposed validation framework including the ice sheet model and model forcing approach, the model-to-observation comparison process, and initial results comparing model output and observations for the time period 2000-2013.

  6. Ice sheet climate modeling: past achievements, ongoing challenges, and future endeavors

    NASA Astrophysics Data System (ADS)

    Lenaerts, J.

    2017-12-01

    Fluctuations in surface mass balance (SMB) mask out a substantial portion of contemporary Greenland and Antarctic ice sheet mass loss. That implies that we need accurate, consistent, and long-term SMB time series to isolate the mass loss signal. This in turn requires understanding of the processes driving SMB, and how they interplay. The primary controls on present-day ice sheet SMB are snowfall, which is regulated by large-scale atmospheric variability, and surface meltwater production at the ice sheet's edges, which is a complex result of atmosphere-surface interactions. Additionally, wind-driven snow redistribution and sublimation are large SMB contributors on the downslope areas of the ice sheets. Climate models provide an integrated framework to simulate all these individual ice sheet components. Recent developments in RACMO2, a regional climate model bound by atmospheric reanalyses, have focused on enhancing horizontal resolution, including blowing snow, snow albedo, and meltwater processes. Including these physics not only enhanced our understanding of the ice sheet climate system, but also enabled to obtain increasingly accurate estimates of ice sheet SMB. However, regional models are not suitable to capture the mutual interactions between ice sheet and the remainder of the global climate system in transient climates. To take that next step, global climate models are essential. In this talk, I will highlight our present work on improving ice sheet climate in the Community Earth System Model (CESM). In particular, we focus on an improved representation of polar firn, ice sheet clouds, and precipitation. For this exercise, we extensively use field observations, remote sensing data, as well as RACMO2. Next, I will highlight how CESM is used to enhance our understanding of ice sheet SMB, its drivers, and past and present changes.

  7. Redox and the circadian clock in plant immunity: A balancing act.

    PubMed

    Karapetyan, Sargis; Dong, Xinnian

    2018-05-01

    Plants' reliance on sunlight for energy makes their light-driven circadian clock a critical regulator in balancing the energy needs for vital activities such as growth and defense. Recent studies show that the circadian clock acts as a strategic planner to prime active defense responses towards the morning or daytime when conditions, such as the opening of stomata required for photosynthesis, are favorable for attackers. Execution of the defense response, on the other hand, is determined according to the cellular redox state and is regulated in part by the production of reactive oxygen and nitrogen species upon pathogen challenge. The interplay between redox and the circadian clock further gates the onset of defense response to a specific time of the day to avoid conflict with growth-related activities. In this review, we focus on discussing the roles of the circadian clock as a robust overseer and the cellular redox as a dynamic executor of plant defense. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. The Balanced Budget Act of 1997 and U.S. hospital operations.

    PubMed

    Bazzoli, Gloria J; Lindrooth, Richard C; Hasnain-Wynia, Romana; Needleman, Jack

    The Balanced Budget Act (BBA) of 1997 initiated several changes to Medicare payment policy in an effort to slow the growth of hospital Medicare payments and ensure the future of the Medicare Hospital Insurance Trust Fund. Although subsequent federal legislation relaxed some original proposals, restored funds were limited and directed to specific types of hospitals. In addition, these Medicare policy changes came at a time when hospitals faced private sector payment constraints. This paper assesses the short-term effects of the BBA on operations of nonprofit hospitals in the United States and compares these effects to those observed in the early 1980s during implementation of the Medicare prospective payment system (PPS). We found that some operational changes instituted by hospitals facing financial pressures from the BBA were similar to those observed for hospitals that faced pressure from Medicare PPS, including efforts to contain Medicare cost growth, to expand outpatient service provision, and to contain hospital staffing. However, during PPS implementation hospitals experienced declining inpatient use and growing profit margins, whereas post-BBA hospitals experienced growing inpatient use and declining margins.

  9. Sea level rise from the Greenland Ice Sheet during the Eemian interglacial: Review of previous work with focus on the surface mass balance

    NASA Astrophysics Data System (ADS)

    Plach, Andreas; Hestnes Nisancioglu, Kerim

    2016-04-01

    The contribution from the Greenland Ice Sheet (GIS) to the global sea level rise during the Eemian interglacial (about 125,000 year ago) was the focus of many studies in the past. A main reason for the interest in this period is the considerable warmer climate during the Eemian which is often seen as an equivalent for possible future climate conditions. Simulated sea level rise during the Eemian can therefore be used to better understand a possible future sea level rise. The most recent assessment report of the Intergovernmental Panel on Climate Change (IPCC AR5) gives an overview of several studies and discusses the possible implications for a future sea level rise. The report also reveals the big differences between these studies in terms of simulated GIS extent and corresponding sea level rise. The present study gives a more exhaustive review of previous work discussing sea level rise from the GIS during the Eemian interglacial. The smallest extents of the GIS simulated by various authors are shown and summarized. A focus is thereby given to the methods used to calculate the surface mass balance. A hypothesis of the present work is that the varying results of the previous studies can largely be explained due to the various methods used to calculate the surface mass balance. In addition, as a first step for future work, the surface mass balance of the GIS for a proxy-data derived forcing ("index method") and a direct forcing with a General Circulation Model (GCM) are shown and discussed.

  10. A Smartphone Inertial Balance

    ERIC Educational Resources Information Center

    Barrera-Garrido, Azael

    2017-01-01

    In order to measure the mass of an object in the absence of gravity, one useful tool for many decades has been the inertial balance. One of the simplest forms of inertial balance is made by two mass holders or pans joined together with two stiff metal plates, which act as springs.

  11. Depth and areal extent of sheet and rill erosion based on radionuclides in soils and suspended sediment

    NASA Astrophysics Data System (ADS)

    Whiting, Peter J.; Bonniwell, E. Chris; Matisoff, Gerald

    2001-12-01

    Sheetwash and rilling are two important mechanisms of soil erosion by runoff. The relative contribution of each mechanism has been a vexing question because measuring thin sheet erosion is difficult. Fortuitously, various fallout radionuclides have distinct distributions in the soil column; thus, different depths of erosion produce suspended sediment with unique radionuclide signatures. Those signatures can be used to estimate the depth and areal extent of sheet and rill erosion. We developed a model to execute multiple mass balances on soil and radionuclides to quantify these erosion mechanisms. Radionuclide activities (7Be, 137Cs, 210Pb) in the soil of a 6.03 ha agricultural field near Treynor, Iowa, and in suspended sediment washed off the field during thunderstorm runoff were determined by gamma spectroscopy. Using the model, we examined 15.5 million possible combinations of the depth and areal extent of rill and sheet erosion. The best solution to the mass balances corresponded to rills eroding 0.38% of the basin to a depth of 35 mm and sheetwash eroding 37% of the basin to a depth of 0.012 mm. Rill erosion produced 29 times more sediment than sheet erosion.

  12. Ocean Tide Influences on the Antarctic and Greenland Ice Sheets

    NASA Astrophysics Data System (ADS)

    Padman, Laurie; Siegfried, Matthew R.; Fricker, Helen A.

    2018-03-01

    Ocean tides are the main source of high-frequency variability in the vertical and horizontal motion of ice sheets near their marine margins. Floating ice shelves, which occupy about three quarters of the perimeter of Antarctica and the termini of four outlet glaciers in northern Greenland, rise and fall in synchrony with the ocean tide. Lateral motion of floating and grounded portions of ice sheets near their marine margins can also include a tidal component. These tide-induced signals provide insight into the processes by which the oceans can affect ice sheet mass balance and dynamics. In this review, we summarize in situ and satellite-based measurements of the tidal response of ice shelves and grounded ice, and spatial variability of ocean tide heights and currents around the ice sheets. We review sensitivity of tide heights and currents as ocean geometry responds to variations in sea level, ice shelf thickness, and ice sheet mass and extent. We then describe coupled ice-ocean models and analytical glacier models that quantify the effect of ocean tides on lower-frequency ice sheet mass loss and motion. We suggest new observations and model developments to improve the representation of tides in coupled models that are used to predict future ice sheet mass loss and the associated contribution to sea level change. The most critical need is for new data to improve maps of bathymetry, ice shelf draft, spatial variability of the drag coefficient at the ice-ocean interface, and higher-resolution models with improved representation of tidal energy sinks.

  13. The Balanced Budget Act (1997) and the supplyof nursing home subacute care.

    PubMed

    Qaseem, Amir; Weech-Maldonado, Robert; Mkanta, William

    2007-01-01

    This article examines the impact of the Medicare prospective payment system (PPS) on the supply of subacute care services by nursing homes. A quasi-experimental interrupted time-series design using Heckman's two-stage regression model is employed to test for changes before and after the implementation of Medicare PPS. Our findings suggest that the change in Medicare reimbursement from cost-based to PPS under the Balanced Budget Act of 1997 resulted in a decrease of 1.7 percent in the supply of subacute care beds by nursing homes. However, this was a one-time, short-term negative effect. The supply of nursing home subacute care remained stable in the long-term. Other environmental factors, such as Medicare hospital discharges, hospital-based subacute care, Medicare managed care penetration, availability of home health, and per capita income were associated with nursing home subacute care supply. Organizational-level factors, such as occupancy rate, RN staff mix, and Medicare payer mix were also predictors of nursing home subacute care supply.

  14. Family Planning in Sweden. Fact Sheets on Sweden.

    ERIC Educational Resources Information Center

    Swedish Inst., Stockholm.

    This fact sheet explores attitudes in Sweden toward sexuality and childbirth from a historical perspective. After describing the strict social control over abortion and contraception in place 100 years ago, and the gradual easing of those controls in response to the low birth rate, the paper goes on to discuss the 1974 Abortion Act, which…

  15. 76 FR 27005 - Polyethylene Terephthalate Film, Sheet, and Strip From the Republic of Korea: Initiation and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... Film, Sheet, and Strip From the Republic of Korea: Initiation and Preliminary Results of Antidumping... changed circumstances review of the antidumping duty order on polyethylene terephthalate film, sheet and strip (PET film) from the Republic of Korea (Korea) pursuant to section 751(b) of the Tariff Act of 1930...

  16. Greenland Ice Sheet Surface Temperature, Melt, and Mass Loss: 2000-2006

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Williams, Richard S., Jr.; Luthcke, Scott B.; DiGirolamo, Nocolo

    2007-01-01

    Extensive melt on the Greenland Ice Sheet has been documented by a variety of ground and satellite measurements in recent years. If the well-documented warming continues in the Arctic, melting of the Greenland Ice Sheet will likely accelerate, contributing to sea-level rise. Modeling studies indicate that an annual or summer temperature rise of 1 C on the ice sheet will increase melt by 20-50% therefore, surface temperature is one of the most important ice-sheet parameters to study for analysis of changes in the mass balance of the ice-sheet. The Greenland Ice Sheet contains enough water to produce a rise in eustatic sea level of up to 7.0 m if the ice were to melt completely. However, even small changes (centimeters) in sea level would cause important economic and societal consequences in the world's major coastal cities thus it is extremely important to monitor changes in the ice-sheet surface temperature and to ultimately quantify these changes in terms of amount of sea-level rise. We have compiled a high-resolution, daily time series of surface temperature of the Greenland Ice Sheet, using the I-km resolution, clear-sky land-surface temperature (LST) standard product from the Moderate-Resolution Imaging Spectroradiometer (MODIS), from 2000 - 2006. We also use Gravity Recovery and Climate Experiment (GRACE) data, averaged over 10-day periods, to measure change in mass of the ice sheet as it melt and snow accumulates. Surface temperature can be used to determine frequency of surface melt, timing of the start and the end of the melt season, and duration of melt. In conjunction with GRACE data, it can also be used to analyze timing of ice-sheet mass loss and gain.

  17. connecting the dots between Greenland ice sheet surface melting and ice flow dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Box, J. E.; Colgan, W. T.; Fettweis, X.; Phillips, T. P.; Stober, M.

    2013-12-01

    This presentation is of a 'unified theory' in glaciology that first identifies surface albedo as a key factor explaining total ice sheet mass balance and then surveys a mechanistic self-reinforcing interaction between melt water and ice flow dynamics. The theory is applied in a near-real time total Greenland mass balance retrieval based on surface albedo, a powerful integrator of the competing effects of accumulation and ablation. New snowfall reduces sunlight absorption and increases meltwater retention. Melting amplifies absorbed sunlight through thermal metamorphism and bare ice expansion in space and time. By ';following the melt'; we reveal mechanisms linking existing science into a unified theory. Increasing meltwater softens the ice sheet in three ways: 1.) sensible heating given the water temperature exceeds that of the ice sheet interior; 2.) Some infiltrating water refreezes, transferring latent heat to the ice; 3.) Friction from water turbulence heats the ice. It has been shown that for a point on the ice sheet, basal lubrication increases ice flow speed to a time when an efficient sub-glacial drainage network develops that reduces this effect. Yet, with an increasing melt duration the point where the ice sheet glides on a wet bed increases inland to a larger area. This effect draws down the ice surface elevation, contributing to the ';elevation feedback'. In a perpetual warming scenario, the elevation feedback ultimately leads to ice sheet loss reversible only through much slower ice sheet growth in an ice age environment. As the inland ice sheet accelerates, the horizontal extension pulls cracks and crevasses open, trapping more sunlight, amplifying the effect of melt accelerated ice. As the bare ice area increases, the direct sun-exposed crevassed and infiltration area increases further allowing the ice warming process to occur more broadly. Considering hydrofracture [a.k.a. hydrofracking]; surface meltwater fills cracks, attacking the ice integrity

  18. Change in oligosaccharides during processing of soybean sheet.

    PubMed

    Wang, Qiushuang; Ke, Leqin; Yang, Dongmei; Bao, Bili; Jiang, Jianmei; Ying, Tiejin

    2007-01-01

    Oligosaccharides have been credited with many health-promoting functions, which had been identified in many clinical studies, such as promoting the growth of Bifidobacterium in human intestine and balance of intestinal bacteria, modulating the immune response, inhibition of cancer and tumor, stimulation of mineral absorption. In this study the effect of processing unit operations on the levels of soybean oligosaccharides during production of soybean sheet were investigated. The concentrations of oligosaccharide in initial raw soybean were: sucrose 43.05 g/kg, raffinose 7.52 g/kg and stachyose 41.32 g/kg (in dry matter). Oligosaccharide losses in the soaking water, in the first filtrating stage, in the second filtrating stage and finally in the sheet formation stage were 0.68, 10.3, 8.15 and 47.22 g/kg (initial dry soybean) respectively, representing 0.74, 11.21, 8.87 and 51.39% of the total oligosaccharides present in the initial soybeans. The recovery of oligosaccharides in the final soybean sheet from the initial soybean was 27.92%. The loss of soybean oligosaccharides in different processing stages, especially in the by-product, the sweet slurry, was considerable. The loss of oligosaccharides was mainly associated with water/matter removal in production process. The analysis of loss profile implied possible ways to improve the technology for production of oligosaccharides-enriched soy-sheets.

  19. A model of the Greenland ice sheet deglaciation

    NASA Astrophysics Data System (ADS)

    Lecavalier, Benoit

    The goal of this thesis is to improve our understanding of the Greenland ice sheet (GrIS) and how it responds to climate change. This was achieved using ice core records to infer elevation changes of the GrIS during the Holocene (11.7 ka BP to Present). The inferred elevation changes show the response of the ice sheet interior to the Holocene Thermal Maximum (HTM; 9-5 ka BP) when temperatures across Greenland were warmer than present. These ice-core derived thinning curves act as a new set of key constraints on the deglacial history of the GrIS. Furthermore, a calibration was conducted on a three-dimensional thermomechanical ice sheet, glacial isostatic adjustment, and relative sea-level model of GrIS evolution during the most recent deglaciation (21 ka BP to present). The model was data-constrained to a variety of proxy records from paleoclimate archives and present-day observations of ice thickness and extent.

  20. Nonadiabatic heating of the central plasma sheet at substorm onset

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Frank, L. A.; Rostoker, G.; Fennell, J.; Mitchell, D. G.

    1992-01-01

    Heating events in the plasma sheet boundary layer and central plasma sheet are found to occur at the onset of expansive phase activity. The main effect is a dramatic increase in plasma temperature, coincident with a partial dipolarization of the magnetic field. Fluxes of energetic particles increase without dispersion during these events which occur at all radial distances up to 23 RE, the apogee of the ISEE spacecraft. A major difference between these heating events and those observed at geosynchronous distances lies in the heating mechanism which is nonadiabatic beyond 10 RE but may be adiabatic closer to earth. The energy required to account for the increase in plasma thermal energy is comparable with that required for Joule heating of the ionosphere. The plasma sheet must be considered as a major sink in the energy balance of a substorm. Lobe magnetic pressures during these events are estimated. Change in lobe pressure are generally not correlated with onsets or intensifications of expansive phase activity.

  1. Entrainment, transport and concentration of meteorites in polar ice sheets

    NASA Technical Reports Server (NTRS)

    Drewry, D. J.

    1986-01-01

    Glaciers and ice sheets act as slow-moving conveyancing systems for material added to both their upper and lower surfaces. Because the transit time for most materials is extremely long the ice acts as a major global storage facility. The effects of horizontal and vertical motions on the flow patterns of Antarctic ice sheets are summarized. The determination of the source areas of meteorites and their transport paths is a problem of central importance since it relates not only directly to concentration mechanisms but also to the wider issues in glaciology and meteorites. The ice and snow into which a meteorite falls, and which moves with it to the concentration area, encodes information about the infall area. The principle environmental conditions being former elevation, temperature (also related to elevation), and age of the ice. This encoded information could be used to identify the infall area.

  2. Changes in the Mass Balance of the Greenland Ice Sheet in a Warming Climate During 2003-2009

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Luthcke, Scott

    2010-01-01

    Mass changes of the Greenland ice sheet (GIS) derived from ICESat and GRACE data both show that the net mass loss from GIS during 2003-2009 is about 175 Gt/year, which contributes 0.5mm/yr global sea-level rise. The rate of mass loss has increased significantly since the 1990's when the GIS was close to mass balance. Even though the GIS was close to mass balance during the 1990's, it was already showing characteristics of responding to8 warmer climate, specifically thinning at the margins and thickening inland at higher elevations. During 2003-2009, increased ice thinning due to increases in melting and acceleration of outlet glaciers began to strongly exceed the inland thickening from increases in accumulation. Over the entire GIS, the mass loss between the two periods, from increased melting and ice dynamics, increased by about 190 Gt/year while the mass gain, from increased precipitation and accumulation, increased by only about 15Gt/year. These ice changes occurred during a time when the temperature on GIS changed at rate of about 2K/decade. The distribution of elevation and mass changes derived from ICESat have high spatial resolution showing details over outlet glaciers, by drainage systems, and by elevation. However, information on the seasonal cycle of changes from ICESat data is limited, because the ICESat lasers were only operated during two to three campaigns per year of about 35 days duration each. In contrast, the temporal resolution of GRACE data, provided by the continuous data collection, is much better showing details of the seasonal cycle and the inter-annual variability. The differing sensitivity of the ICESat altimetry and the GRACE gravity methods to motion of the underlying bedrock from glacial isostatic adjustment (GIA) is used to evaluate the GIA corrections provided by models. The two data types are also combined to make estimates of the partitioning of the mass gains and losses among accumulation, melting, and ice discharge from outlet

  3. Summary of the SeaRISE Project's Experiments on Modeled Ice-Sheet Contributions to Future Sea Level: Linearities and Non-linearities

    NASA Astrophysics Data System (ADS)

    Bindschadler, Robert

    2013-04-01

    The SeaRISE (Sea-level Response to Ice Sheet Evolution) project achieved ice-sheet model ensemble responses to a variety of prescribed changes to surface mass balance, basal sliding and ocean boundary melting. Greenland ice sheet models are more sensitive than Antarctic ice sheet models to likely atmospheric changes in surface mass balance, while Antarctic models are most sensitive to basal melting of its ice shelves. An experiment approximating the IPCC's RCP8.5 scenario produces first century contributions to sea level of 22.3 and 7.3 cm from Greenland and Antarctica, respectively, with a range among models of 62 and 17 cm, respectively. By 200 years, these projections increase to 53.2 and 23.4 cm, respectively, with ranges of 79 and 57 cm. The considerable range among models was not only in the magnitude of ice lost, but also in the spatial pattern of response to identical forcing. Despite this variation, the response of any single model to a large range in the forcing intensity was remarkably linear in most cases. Additionally, the results of sensitivity experiments to single types of forcing (i.e., only one of the surface mass balance, or basal sliding, or ocean boundary melting) could be summed to accurately predict any model's result for an experiment when multiple forcings were applied simultaneously. This suggests a limited amount of feedback through the ice sheet's internal dynamics between these types of forcing over the time scale of a few centuries (SeaRISE experiments lasted 500 years).

  4. Preliminary research on quantitative methods of water resources carrying capacity based on water resources balance sheet

    NASA Astrophysics Data System (ADS)

    Wang, Yanqiu; Huang, Xiaorong; Gao, Linyun; Guo, Biying; Ma, Kai

    2018-06-01

    Water resources are not only basic natural resources, but also strategic economic resources and ecological control factors. Water resources carrying capacity constrains the sustainable development of regional economy and society. Studies of water resources carrying capacity can provide helpful information about how the socioeconomic system is both supported and restrained by the water resources system. Based on the research of different scholars, major problems in the study of water resources carrying capacity were summarized as follows: the definition of water resources carrying capacity is not yet unified; the methods of carrying capacity quantification based on the definition of inconsistency are poor in operability; the current quantitative research methods of water resources carrying capacity did not fully reflect the principles of sustainable development; it is difficult to quantify the relationship among the water resources, economic society and ecological environment. Therefore, it is necessary to develop a better quantitative evaluation method to determine the regional water resources carrying capacity. This paper proposes a new approach to quantifying water resources carrying capacity (that is, through the compilation of the water resources balance sheet) to get a grasp of the regional water resources depletion and water environmental degradation (as well as regional water resources stock assets and liabilities), figure out the squeeze of socioeconomic activities on the environment, and discuss the quantitative calculation methods and technical route of water resources carrying capacity which are able to embody the substance of sustainable development.

  5. Superplastic Forming/Adhesive Bonding of Aluminum (SPF/AB) Multi-Sheet Structures

    NASA Technical Reports Server (NTRS)

    Wagner, John A. (Technical Monitor); Will, Jeff D.; Cotton, James D.

    2003-01-01

    A significant fraction of airframe structure consists of stiffened panels that are costly and difficult to fabricate. This program explored a potentially lower-cost processing route for producing such panels. The alternative process sought to apply concurrent superplastic forming and adhesive bonding of aluminum alloy sheets. Processing conditions were chosen to balance adequate superplasticity of the alloy with thermal stability of the adhesive. As a first objective, an air-quenchable, superplastic aluminum-lithium alloy and a low-volatile content, low-viscosity adhesive with compatible forming/curing cycles were identified. A four-sheet forming pack was assembled which consisted of a welded two-sheet core separated from the face sheets by a layer of adhesive. Despite some preliminary success, of over 30 forming trials none was completely successful. The main problem was inadequate superplasticity in the heat-affected zones of the rib welds, which generally fractured prior to completion of the forming cycle. The welds are a necessary component in producing internal ribs by the 'four-sheet' process. Other challenges, such as surface preparation and adhesive bonding, were adequately solved. But without the larger issue of tearing at the weld locations, complex panel fabrication by SPF/AB does not appear viable.

  6. Balancing - an equilibrium act between different positions: an exploratory study on general practitioners' comprehension of their professional role.

    PubMed

    Hansson, Anders; Gunnarsson, Ronny; Mattsson, Bengt

    2007-06-01

    There is a call to make the duties and working conditions of the GP more transparent. The aim of this study was to explore practising GPs' personal experiences of their professional role and what they regard to be its salient characteristics. An exploratory and descriptive study was undertaken by interviewing GPs and by performing a focus-group study of experienced GPs. The interviews were transcribed and analysed, and the text was categorized according to content analysis. The practice of the interviewed GPs. Seven GPs in individual interviews and a focus group of experienced GPs. A major theme, Balancing, was identified. It was derived from a number of opposing concepts to which different features were related. "The good shepherd" versus "The medical expert"; "Curing" versus "Caring"; "Short visits" versus "Long consultations"; "The personal doctor" versus "The society's doctor". In many consultations the GP has to contemplate how to stay in focus between these diverse roles. General practice requires a balance to be achieved between a number of opposing conditions. In their clinical work GPs have to adjust to and integrate alternative perspectives. Problems of recruiting new GPs might be associated with dilemmas in this balancing act.

  7. Penetration of the Interplanetary Magnetic Field B(sub y) into Earth's Plasma Sheet

    NASA Technical Reports Server (NTRS)

    Hau, L.-N.; Erickson, G. M.

    1995-01-01

    There has been considerable recent interest in the relationship between the cross-tail magnetic field component B(sub y) and tail dynamics. The purpose of this paper is to give an overall description of the penetration of the interplanetary magnetic field (IMF) B(sub y) into the near-Earth plasma sheet. We show that plasma sheet B(sub y) may be generated by the differential shear motion of field lines and enhanced by flux tube compression. The latter mechanism leads to a B(sub y) analogue of the pressure-balance inconsistency as flux tubes move from the far tail toward the Earth. The growth of B(sub y), however, may be limited by the dawn-dusk asymmetry in the shear velocity as a result of plasma sheet tilting. B(sub y) penetration into the plasma sheet implies field-aligned currents flowing between hemispheres. These currents together with the IMF B(sub y) related mantle field-aligned currents effectively shield the lobe from the IMF B(sub y).

  8. The abandoned ice sheet base at Camp Century, Greenland, in a warming climate

    NASA Astrophysics Data System (ADS)

    Colgan, William; Machguth, Horst; MacFerrin, Mike; Colgan, Jeff D.; As, Dirk; MacGregor, Joseph A.

    2016-08-01

    In 1959 the U.S. Army Corps of Engineers built Camp Century beneath the surface of the northwestern Greenland Ice Sheet. There they studied the feasibility of deploying ballistic missiles within the ice sheet. The base and its wastes were abandoned with minimal decommissioning in 1967, under the assumption they would be preserved for eternity by perpetually accumulating snowfall. Here we show that a transition in ice sheet surface mass balance at Camp Century from net accumulation to net ablation is plausible within the next 75 years, under a business-as-usual anthropogenic emissions scenario (Representative Concentration Pathway 8.5). Net ablation would guarantee the eventual remobilization of physical, chemical, biological, and radiological wastes abandoned at the site. While Camp Century and four other contemporaneous ice sheet bases were legally established under a Danish-U.S. treaty, the potential remobilization of their abandoned wastes, previously regarded as sequestered, represents an entirely new pathway of political dispute resulting from climate change.

  9. The Abandoned Ice Sheet Base at Camp Century, Greenland, in a Warming Climate

    NASA Technical Reports Server (NTRS)

    Colgan, William; Machguth, Horst; Macferrin, Mike; Colgan, Jeff D.; Van As, Dirk; Macgregor, Joseph A.

    2016-01-01

    In 1959 the U.S. Army Corps of Engineers built Camp Century beneath the surface of the northwestern Greenland Ice Sheet. There they studied the feasibility of deploying ballistic missiles within the ice sheet. The base and its wastes were abandoned with minimal decommissioning in 1967, under the assumption they would be preserved for eternity by perpetually accumulating snowfall. Here we show that a transition in ice sheet surface mass balance at Camp Century from net accumulation to net ablation is plausible within the next 75years, under a business-as-usual anthropogenic emissions scenario (Representative Concentration Pathway 8.5). Net ablation would guarantee the eventual remobilization of physical, chemical, biological, and radiological wastes abandoned at the site. While Camp Century and four other contemporaneous ice sheet bases were legally established under a Danish-U.S. treaty, the potential remobilization of their abandoned wastes, previously regarded as sequestered, represents an entirely new pathway of political dispute resulting from climate change.

  10. Antarctic mass balance changes from GRACE

    NASA Astrophysics Data System (ADS)

    Kallenberg, B.; Tregoning, P.

    2012-04-01

    The Antarctic ice sheet contains ~30 million km3 of ice and constitutes a significant component of the global water balance with enough freshwater to raise global sea level by ~60 m. Altimetry measurements and climate models suggest variable behaviour across the Antarctic ice sheet, with thickening occurring in a vast area of East Antarctica and substantial thinning in West Antarctica caused by increased temperature gradients in the surrounding ocean. However, the rate at which the polar ice cap is melting is still poorly constrained. To calculate the mass loss of an ice sheet it is necessary to separate present day mass balance changes from glacial isostatic adjustment (GIA), the response of the Earth's crust to mass loss, wherefore it is essential to undertake sufficient geological and geomorphological sampling. As there is only a limited possibility for this in Antarctica, all models (i.e. geological, hydrological as well as atmospheric) are very poorly constrained. Therefore, space-geodetic observations play an important role in detecting changes in mass and spatial variations in the Earth's gravity field. The Gravity Recovery And Climate Experiment (GRACE) observed spatial variations in the Earth's gravity field over the past ten years. The satellite detects mass variations in the Earth system including geophysical, hydrological and atmospheric shifts. GRACE itself is not able to separate the GIA from mass balance changes and, due to the insufficient geological and geomorphological database, it is not possible to model the GIA effect accurately for Antarctica. However, the results from GRACE can be compared with other scientific results, coming from other geodetic observations such as satellite altimetry and GPS or by the use of geological observations. In our contribution we compare the GRACE data with recorded precipitation patterns and mass anomalies over East Antarctica to separate the observed GRACE signal into its two components: GIA as a result of mass

  11. 18 CFR 367.1080 - Account 108, Accumulated provision for depreciation of service company property.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... COMPANY ACT OF 2005, FEDERAL POWER ACT AND NATURAL GAS ACT Balance Sheet Chart of Accounts § 367.1080..., Accumulated provision for depreciation of service company property. 367.1080 Section 367.1080 Conservation of... THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005, FEDERAL POWER ACT AND NATURAL GAS ACT UNIFORM SYSTEM...

  12. ER sheet persistence is coupled to myosin 1c-regulated dynamic actin filament arrays.

    PubMed

    Joensuu, Merja; Belevich, Ilya; Rämö, Olli; Nevzorov, Ilya; Vihinen, Helena; Puhka, Maija; Witkos, Tomasz M; Lowe, Martin; Vartiainen, Maria K; Jokitalo, Eija

    2014-04-01

    The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network.

  13. Development of a multi-sensor elevation time series pole-ward of 86°S in support of altimetry validation and ice sheet mass balance studies

    NASA Astrophysics Data System (ADS)

    Studinger, M.; Brunt, K. M.; Casey, K.; Medley, B.; Neumann, T.; Manizade, S.; Linkswiler, M. A.

    2015-12-01

    In order to produce a cross-calibrated long-term record of ice-surface elevation change for input into ice sheet models and mass balance studies it is necessary to "link the measurements made by airborne laser altimeters, satellite measurements of ICESat, ICESat-2, and CryoSat-2" [IceBridge Level 1 Science Requirements, 2012] and determine the biases and the spatial variations between radar altimeters and laser altimeters using different wavelengths. The convergence zones of all ICESat tracks (86°S) and all ICESat-2 and CryoSat-2 tracks (88°S) are in regions of relatively low accumulation, making them ideal for satellite altimetry calibration. In preparation for ICESat-2 validation, the IceBridge and ICESat-2 science teams have designed IceBridge data acquisitions around 86°S and 88°S. Several aspects need to be considered when comparing and combining elevation measurements from different radar and laser altimeters, including: a) foot print size and spatial sampling pattern; b) accuracy and precision of each data sets; c) varying signal penetration into the snow; and d) changes in geodetic reference frames over time, such as the International Terrestrial Reference Frame (ITRF). The presentation will focus on the analysis of several IceBridge flights around 86 and 88°S with the LVIS and ATM airborne laser altimeters and will evaluate the accuracy and precision of these data sets. To properly interpret the observed elevation change (dh/dt) as mass change, however, the various processes that control surface elevation fluctuations must be quantified and therefore future work will quantify the spatial variability in snow accumulation rates pole-ward of 86°S and in particular around 88°S. Our goal is to develop a cross-validated multi-sensor time series of surface elevation change pole-ward of 86°S that, in combination with measured accumulation rates, will support ICESat-2 calibration and validation and ice sheet mass balance studies.

  14. Factors controlling the size of graphene oxide sheets produced via the graphite oxide route.

    PubMed

    Pan, Shuyang; Aksay, Ilhan A

    2011-05-24

    We have studied the effect of the oxidation path and the mechanical energy input on the size of graphene oxide sheets derived from graphite oxide. The cross-planar oxidation of graphite from the (0002) plane results in periodic cracking of the uppermost graphene oxide layer, limiting its lateral dimension to less than 30 μm. We use an energy balance between the elastic strain energy associated with the undulation of graphene oxide sheets at the hydroxyl and epoxy sites, the crack formation energy, and the interaction energy between graphene layers to determine the cell size of the cracks. As the effective crack propagation rate in the cross-planar direction is an order of magnitude smaller than the edge-to-center oxidation rate, graphene oxide single sheets larger than those defined by the periodic cracking cell size are produced depending on the aspect ratio of the graphite particles. We also demonstrate that external energy input from hydrodynamic drag created by fluid motion or sonication, further reduces the size of the graphene oxide sheets through tensile stress buildup in the sheets.

  15. 18 CFR 367.1440 - Account 144, Accumulated provision for uncollectible accounts-Credit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... UTILITY HOLDING COMPANY ACT OF 2005, FEDERAL POWER ACT AND NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED SERVICE COMPANIES SUBJECT TO THE PROVISIONS OF THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005, FEDERAL POWER ACT AND NATURAL GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367...

  16. Mountain glaciers vs Ice sheet in Greenland - learning from a new monitoring site in West Greenland

    NASA Astrophysics Data System (ADS)

    Abermann, Jakob; van As, Dirk; Wacker, Stefan; Langley, Kirsty

    2017-04-01

    Only 5 out of the 20.000 peripheral glaciers and ice caps surrounding Greenland are currently monitored due to logistical challenges and despite their significance for sea level rise. Large spatial coast-to-icesheet mass and energy balance gradients limit simple upscaling methods from ice-sheet observations, which builds the motivation for this study. We present results from a new mass and energy balance time series at Qasigiannguit glacier (64°09'N; 51°21'W) in Southwest Greenland. Inter-annual variability is discussed and the surface energy balance over two summers is quantified and a ranking of the main drivers performed. We find that short-wave net radiation is by far the most dominant energy source during summer, followed by similar amounts of net longwave radiation and sensible heat, respectively. We then relate these observations to synchronous measurements at similar latitude on an outlet glacier of the ice sheet a mere 100 km away. We find very pronounced horizontal surface mass balance gradients, with generally more positive values closer to the coast. We conclude that despite minor differences of atmospheric parameters (i.e. humidity, radiation, and temperature) the main reason for the strongly different signal is a pronounced winter precipitation gradient that translates in a different duration of ice exposure and through that an albedo gradient. Modelled energy balance gradients converted into mass changes show good agreement to measured surface mass balance gradients and we explore a latitudinal signal of these findings.

  17. Balancing adequacy and affordability?: Essential Health Benefits under the Affordable Care Act.

    PubMed

    Haeder, Simon F

    2014-12-01

    The Essential Health Benefits provisions under the Affordable Care Act require that eligible plans provide coverage for certain broadly defined service categories, limit consumer cost-sharing, and meet certain actuarial value requirements. Although the Department of Health and Human Services (HHS) was tasked with the regulatory development of these EHB under the ACA, the department quickly devolved this task to the states. Not surprisingly, states fully exploited the leeway provided by HHS, and state decision processes and outcomes differed widely. However, none of the states took advantage of the opportunity to restructure fundamentally their health insurance markets, and only a very limited number of states actually included sophisticated policy expertise in their decisionmaking processes. As a result, and despite a major expansion of coverage, the status quo ex ante in state insurance markets was largely perpetuated. Decisionmaking for the 2016 revisions should be transparent, included a wide variety of stakeholders and policy experts, and focus on balancing adequacy and affordability. However, the 2016 revisions provide an opportunity to address these previous shortcomings. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Emotional Disturbance. Fact Sheet = Problemas Emocionales. Hojas Informativas Sobre Discapacidades.

    ERIC Educational Resources Information Center

    National Information Center for Children and Youth with Disabilities, Washington, DC.

    This fact sheet, written in both English and Spanish, provides a definition, information on incidence, typical characteristics, and educational implications of emotional disturbance. The definition is from the Individuals with Disabilities Education Act (IDEA) and incidence in 1999-2000 is reported as about 470,000 children and youth. Educational…

  19. Flow-induced voltage generation by moving a nano-sized ionic liquids droplet over a graphene sheet: Molecular dynamics simulation.

    PubMed

    Shao, Qunfeng; Jia, Jingjing; Guan, Yongji; He, Xiaodong; Zhang, Xiaoping

    2016-03-28

    In this work, the phenomenon of the voltage generation is explored by using the molecular dynamics simulations, which is performed by driving a nano-sized droplet of room temperature ionic liquids moving along the monolayer graphene sheet for the first time. The studies show that the cations and anions of the droplet will move with velocity nonlinearly increasing to saturation arising by the force balance. The traditional equation for calculating the induced voltage is developed by taking the charge density into consideration, and larger induced voltages in μV-scale are obtained from the nano-size simulation systems based on the ionic liquids (ILs) for its enhanced ionic drifting velocities. It is also derived that the viscosity acts as a reduction for the induced voltage by comparing systems composed of two types of ILs with different viscosity and temperature.

  20. Thinning of the ice sheet in northwest Greenland over the past forty years.

    PubMed

    Paterson, W S; Reeh, N

    2001-11-01

    Thermal expansion of the oceans, as well as melting of glaciers, ice sheets and ice caps have been the main contributors to global sea level rise over the past century. The greatest uncertainty in predicting future sea level changes lies with our estimates of the mass balance of the ice sheets in Greenland and Antarctica. Satellite measurements have been used to determine changes in these ice sheets on short timescales, demonstrating that surface-elevation changes on timescales of decades or less result mainly from variations in snow accumulation. Here we present direct measurements of the changes in surface elevation between 1954 and 1995 on a traverse across the north Greenland ice sheet. Measurements over a time interval of this length should reflect changes in ice flow-the important quantity for predicting changes in sea level-relatively unperturbed by short-term fluctuations in snow accumulation. We find only small changes in the eastern part of the transect, except for some thickening of the north ice stream. On the west side, however, the thinning rates of the ice sheet are significantly higher and thinning extends to higher elevations than had been anticipated from previous studies.

  1. Proglacial River Reveals Substantial Greenland Ice Sheet Climate Sensitivity and Meltwater Routing Delays

    NASA Astrophysics Data System (ADS)

    van As, D.; Mikkelsen, A. B.; Holtegaard Nielsen, M.; Claesson Liljedahl, L.; Lindback, K.; Pitcher, L. H.; Hasholt, B.

    2016-12-01

    A 12.000 km2 area of the Greenland ice sheet discharges meltwater via the proglacial Watson River in west Greenland. In a ten-year time span of continuous monitoring (2006-2015), the river discharged 3.8 km3 to 11.2 km3 yr-1. The large interannual variability is for an important part explained by hypsometric amplification: the flattening of the ice sheet with elevation adds 70% meltwater discharge sensitivity to atmospheric temperature. Comparing river discharge with ice sheet surface meltwater production from an observation-based surface mass balance model we quantify multiple-day routing delays for meltwater transit through the supra-, en-, sub- and proglacial system. This delay increases with ice sheet surface elevation: on average five days for surface water at the previous-known equilibrium line altitude (ELA) of ca. 1550 m, and seven days at the 2009-2015 ELA of ca. 1800 m above sea level. A flooding of the Kangerlussuaq bridge as in July 2012 thus requires a multi-day high-melt episode and can therefore be anticipated by in-situ monitoring of ice sheet melt. No evidence of significant en- or subglacial meltwater retention is found.

  2. Modeling the fracture of ice sheets on parallel computers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waisman, Haim; Bell, Robin; Keyes, David

    2010-03-01

    The objective of this project is to investigate the complex fracture of ice and understand its role within larger ice sheet simulations and global climate change. At the present time, ice fracture is not explicitly considered within ice sheet models due in part to large computational costs associated with the accurate modeling of this complex phenomena. However, fracture not only plays an extremely important role in regional behavior but also influences ice dynamics over much larger zones in ways that are currently not well understood. Dramatic illustrations of fracture-induced phenomena most notably include the recent collapse of ice shelves inmore » Antarctica (e.g. partial collapse of the Wilkins shelf in March of 2008 and the diminishing extent of the Larsen B shelf from 1998 to 2002). Other fracture examples include ice calving (fracture of icebergs) which is presently approximated in simplistic ways within ice sheet models, and the draining of supraglacial lakes through a complex network of cracks, a so called ice sheet plumbing system, that is believed to cause accelerated ice sheet flows due essentially to lubrication of the contact surface with the ground. These dramatic changes are emblematic of the ongoing change in the Earth's polar regions and highlight the important role of fracturing ice. To model ice fracture, a simulation capability will be designed centered around extended finite elements and solved by specialized multigrid methods on parallel computers. In addition, appropriate dynamic load balancing techniques will be employed to ensure an approximate equal amount of work for each processor.« less

  3. The Utility of Corporate-Style Balance Sheets for DoD Managers

    DTIC Science & Technology

    2014-06-01

    operations of the executive branch ( United States Department of Commerce, 2014, p. 3- 2). 19 5. The Federal Financial Management Improvement Act of...federal financial management systems requirements, applicable federal accounting standards, and the United States Government Standard General Ledger at...General Accountability Office (1991). The Chief Financial Officers Act: A mandate for federal financial management reform. Washington, DC: Author. United

  4. 18 CFR 367.1710 - Account 171, Interest and dividends receivable.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ACT OF 2005, FEDERAL POWER ACT AND NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED SERVICE... NATURAL GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367.1710 Account 171..., notes, commercial paper, loans, open accounts, deposits, and other similar items, the payment of which...

  5. Simulating a Dynamic Antarctic Ice Sheet in the Early to Middle Miocene

    NASA Astrophysics Data System (ADS)

    Gasson, E.; DeConto, R.; Pollard, D.; Levy, R. H.

    2015-12-01

    There are a variety of sources of geological data that suggest major variations in the volume and extent of the Antarctic ice sheet during the early to middle Miocene. Simulating such variability using coupled climate-ice sheet models is problematic due to a strong hysteresis effect caused by height-mass balance feedback and albedo feedback. This results in limited retreat of the ice sheet once it has reached the continental size, as likely occurred prior to the Miocene. Proxy records suggest a relatively narrow range of atmospheric CO2 during the early to middle Miocene, which exacerbates this problem. We use a new climate forcing which accounts for ice sheet-climate feedbacks through an asynchronous GCM-RCM coupling, which is able to better resolve the narrow Antarctic ablation zone in warm climate simulations. When combined with recently suggested mechanisms for retreat into subglacial basins due to ice shelf hydrofracture and ice cliff failure, we are able to simulate large-scale variability of the Antarctic ice sheet in the Miocene. This variability is equivalent to a seawater oxygen isotope signal of ~0.5 ‰, or a sea level equivalent change of ~35 m, for a range of atmospheric CO2 between 280 - 500 ppm.

  6. Assessing the Extent of Influence Subglacial Hydrology Has on Dynamic Ice Sheet Behavior

    NASA Astrophysics Data System (ADS)

    Babonis, G. S.; Csatho, B. M.

    2012-12-01

    Numerous recent studies have done an excellent job capturing and quantifying the complex pattern of dynamic changes of the Greenland Ice Sheet (GrIS) over the past several decades. The timing of changes in ice velocities and mass balance indicate that the mechanisms controlling these behaviors, both external and internal, act over variable spatial and temporal regimes, can change in rapid and complex fashion, and have significant effect on ice sheet behavior as well as sea level rise. With roughly half of the estimated ice loss from the GrIS attributed to dynamic processes, these changes account for about 250 Gt/yr (2003-2008), equivalence to 0.6 mm/yr sea level rise. One of the primary influences of dynamic ice behavior is ice sheet hydrology, including the storage and transport of water from the supraglacial to subglacial environment, and the subsequent development of water transport pathways, thus demonstrating the need for further characterization of the subglacial environment. Enhanced dynamic flow of ice due to the influence of meltwater distribution on the subglacial environment has been reported, including In-SAR observations of large velocity increases over short periods of time, suggesting regions where dynamic changes are likely being caused by changes in hydrology. Additionally, building upon the 1993-2011 laser altimetry record, analyzed by our Surface Elevation Reconstruction And Change detection (SERAC) procedure, we have detected complex patterns of rapid thickening and thinning patterns over several outlet glaciers. This study presents a comprehensive investigation of hydrologic control on dynamic glacier behavior for several key sites in Greenland. We combine a high resolution surface digital elevation model (DEM) derived by fusing space- and airborne laser altimetry observations and SPIRIT SPOT DEMs, with a high resolution, hydrologically-corrected bedrock DEM derived from a combination of CResIS and Operation Icebridge ice penetrating radar data

  7. Effects of wave shape on sheet flow sediment transport

    USGS Publications Warehouse

    Hsu, T.-J.; Hanes, D.M.

    2004-01-01

    A two-phase model is implemented to study the effects of wave shape on the transport of coarse-grained sediment in the sheet flow regime. The model is based on balance equations for the average mass, momentum, and fluctuation energy for both the fluid and sediment phases. Model simulations indicate that the responses of the sheet flow, such as the velocity profiles, the instantaneous bed shear stress, the sediment flux, and the total amount of the mobilized sediment, cannot be fully parameterized by quasi-steady free-stream velocity and may be correlated with the magnitude of local horizontal pressure gradient (or free-stream acceleration). A net sediment flux in the direction of wave advance is obtained for both skewed and saw-tooth wave shapes typical of shoaled and breaking waves. The model further suggests that at critical values of the horizontal pressure gradient, there is a failure event within the bed that mobilizes more sediment into the mobile sheet and enhances the sediment flux. Preliminary attempts to parameterize the total bed shear stress and the total sediment flux appear promising. Copyright 2004 by the American Geophysical Union.

  8. Disentangling the Roles of Atmospheric and Oceanic Forcing on the Last Deglaciation of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Keisling, B. A.; Deconto, R. M.

    2017-12-01

    Today the Greenland Ice Sheet loses mass via both oceanic and atmospheric processes. However, the relative importance of these mass balance components is debated, especially their potential impact on ongoing and future mass imbalance. Discerning the impact of oceanic versus atmospheric forcing during past periods of mass loss provides potential insight into the future behavior of the ice sheet. Here we present an ensemble of Greenland Ice Sheet simulations of the last deglaciation, designed to assess separately the roles of the ocean and the atmosphere in driving mass loss over the last twenty thousand years. We use twenty-eight different ocean forcing scenarios along with a cutting-edge reconstruction of time-evolving atmospheric conditions based on climate model output and δ15N-based temperature reconstructions to generate a range of ice-sheet responses during the deglaciation. We then compare the simulated timing of ice-retreat in individual catchments with estimates based on both 10Be (exposure) and 14C (minimum-limiting) dates. These experiments allow us to identify the ocean forcing scenario that best match the data on a local-to-regional (i.e., 100-1000 km) scales, providing an assessment of the relative importance of ocean and atmospheric forcing components around the periphery of Greenland. We use these simulations to quantify the importance of the three major mass balance terms (calving, oceanic melting, and surface melting) and assess the uncertainty of the relative influence of these factors during the most recent periods of major ice loss. Our results show that mass balance components around different sectors of the ice sheet respond differently to forcing, with oceanic components driving the majority of retreat in south and east Greenland and atmospheric forcing dominating in west and north Greenland In addition, we target three areas at high spatial resolution ( 1 km) around Greenland currently undergoing substantial change (Jakobshavn, Petermann

  9. Energy characteristics of the CO2 laser cutting of thick steel sheets

    NASA Astrophysics Data System (ADS)

    Orishich, A. M.

    2012-01-01

    In the present paper the scaling laws for the oxygen-assisted laser cutting of low-carbon steel of 5-25 mm is studied experimentally. No dross and minimal roughness of the cut surface were chosen as criteria of quality. The paper also studies the possibility to describe the cutting process by the similarity method and as ratios between dimensionless variables. Normalized power W/ktT, normalized velocity Vcb/a (Peclet number) and kerf width have special optimum numb. Formulas were obtained to determine the optimum values of the laser power and cutting speed for the given sheet thickness. The energy balance of the oxygen-assisted laser cutting is studied experimentally at these optimum parameters. The absorbed laser energy, heat conduction losses and cut width were measured experimentally, and then the energy of exothermic reaction of oxidation was found from the balance equation. To define the integral coefficient of absorption, the laser power was measured on the cutting channel exit during the cutting. The heat conduction losses were measured by the calorimetric method. It has been established that the absorbed laser energy, oxidation energy, thermal losses and melting enthalpy related to a sheet thickness unit, do not depend on the sheet thickness at the cutting with the minimal roughness. The results enable to determine the fraction of the oxidized iron in the melt and thermal efficiency at the cutting with the minimal roughness. The share of the oxidation reaction energy is 50-60% in the total contributed energy.

  10. Temporal variability of the Antarctic Ice sheet observed from space-based geodesy

    NASA Astrophysics Data System (ADS)

    Memin, A.; King, M. A.; Boy, J. P.; Remy, F.

    2017-12-01

    Quantifying the Antarctic Ice Sheet (AIS) mass balance still remains challenging as several processes compete to differing degrees at the basin scale with regional variations, leading to multiple mass redistribution patterns. For instance, analysis of linear trends in surface-height variations from 1992-2003 and 2002-2006 shows that the AIS is subject to decimetric scale variability over periods of a few years. Every year, snowfalls in Antarctica represent the equivalent of 6 mm of the mean sea level. Therefore, any fluctuation in precipitation can lead to changes in sea level. Besides, over the last decade, several major glaciers have been thinning at an accelerating rate. Understanding the processes that interact on the ice sheet is therefore important to precisely determine the response of the ice sheet to a rapid changing climate and estimate its contribution to sea level changes. We estimate seasonal and interannual changes of the AIS between January 2003 and October 2010 and to the end of 2016 from a combined analysis of surface-elevation and surface-mass changes derived from Envisat data and GRACE solutions, and from GRACE solutions only, respectively. While we obtain a good correlation for the interannual signal between the two techniques, important differences (in amplitude, phase, and spatial pattern) are obtained for the seasonal signal. We investigate these discrepancies by comparing the crustal motion observed by GPS and those predicted using monthly surface mass balance derived from the regional atmospheric climate model RACMO.

  11. 18 CFR 367.1070 - Account 107, Construction work in progress.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ACT OF 2005, FEDERAL POWER ACT AND NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED SERVICE... NATURAL GAS ACT Balance Sheet Chart of Accounts § 367.1070 Account 107, Construction work in progress. (a... research, development, and demonstration projects for construction of facilities are to be included in a...

  12. ER sheet persistence is coupled to myosin 1c–regulated dynamic actin filament arrays

    PubMed Central

    Joensuu, Merja; Belevich, Ilya; Rämö, Olli; Nevzorov, Ilya; Vihinen, Helena; Puhka, Maija; Witkos, Tomasz M.; Lowe, Martin; Vartiainen, Maria K.; Jokitalo, Eija

    2014-01-01

    The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network. PMID:24523293

  13. Recent Changes in the Greenland Ice Sheet as Seen from Space

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.

    2011-01-01

    Many changes in the Greenland Ice Sheet have been reported in the recent scientific literature and have been attributed to various responses of the ice sheet due to regional (and global) warming. Because melting of the ice sheet would contribute approximately 7 m to sea-level rise, the lives and habitat of hundreds of millions of people worldwide would be directly and indirectly affected if continued ice-sheet melting occurs. As mean-annual global temperatures have increased, there has been an increasing focus on studying the Greenland Ice Sheet using available satellite data, and numerous expeditions have been undertaken. Regional "clear-sky" surface temperature increases since the early 1980s in the Arctic, measured using Advanced Very High Resolution Radiometer (AVHRR) infrared data, range from 0.57+/-0.02 C to 0.72+/-0.10 C per decade. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near O C during the melt season, and is thus vulnerable to more extensive melting if temperatures continue to increase. An increase in melting of the ice sheet would accelerate sea-level rise, an issue of increasing concern to billions of people worldwide. The surface temperature of the ice sheet has been studied in even greater detail using Moderate-Resolution Imaging Spectroradiometer (MODIS) data in the six individual drainage basins as well as for the ice sheet as a whole. Surface temperature trends in the decade of the 2000s have not been strong, according to the MODIS measurements. In addition to surface-temperature increases over the last few decades as measured by AVHRR, other changes have been observed such as accelerated movement of many of Greenland's outlet glaciers and sudden draining of supraglacial lakes. Decreasing mass of the ice sheet since (at least) 2002 has been measured using Gravity Recovery and Climate Experiment (GRACE) data, along with an build-up of ice at the higher

  14. Atmospheric river impacts on Greenland Ice Sheet surface melt and mass balance

    NASA Astrophysics Data System (ADS)

    Mattingly, K.; Mote, T. L.

    2017-12-01

    Mass loss from the Greenland Ice Sheet (GrIS) has accelerated during the early part of the 21st Century. Several episodes of widespread GrIS melt in recent years have coincided with intense poleward moisture transport by atmospheric rivers (ARs), suggesting that variability in the frequency and intensity of these events may be an important driver of the surface mass balance (SMB) of the GrIS. ARs may contribute to GrIS surface melt through the greenhouse effect of water vapor, the radiative effects of clouds, condensational latent heating within poleward-advected air masses, and the energy provided by liquid precipitation. However, ARs may also provide significant positive contributions to GrIS SMB through enhanced snow accumulation. Prior research on the role of ARs in Arctic climate has consisted of case studies of ARs associated with major GrIS melt events or examined the effects of poleward moisture flux on Arctic sea ice. In this study, a long-term (1979-2016) record of intense moisture transport events affecting Greenland is compiled using a conventional AR identification algorithm as well as a self-organizing map (SOM) classification applied to integrated water vapor transport (IVT) data from several atmospheric reanalysis datasets. An analysis of AR effects on GrIS melt and SMB is then performed with GrIS surface melt data from passive microwave satellite observations and the Modèle Atmosphérique Régional (MAR) regional climate model. Results show that meltwater production is above normal during and after AR impact days throughout the GrIS during all seasons, with surface melt enhanced most by strong (> 85th percentile IVT) and extreme (> 95th percentile IVT) ARs. This relationship holds at the seasonal scale, as the total amount of water vapor transported to the GrIS by ARs is significantly greater during above-normal melt seasons. ARs exert a more complex influence on SMB. Normal (< 85th percentile IVT) ARs generally do not have a substantial impact on

  15. Greenland Ice Sheet flow response to runoff variability

    NASA Astrophysics Data System (ADS)

    Stevens, Laura A.; Behn, Mark D.; Das, Sarah B.; Joughin, Ian; Noël, Brice P. Y.; Broeke, Michiel R.; Herring, Thomas

    2016-11-01

    We use observations of ice sheet surface motion from a Global Positioning System network operating from 2006 to 2014 around North Lake in west Greenland to investigate the dynamical response of the Greenland Ice Sheet's ablation area to interannual variability in surface melting. We find no statistically significant relationship between runoff season characteristics and ice flow velocities within a given year or season. Over the 7 year time series, annual velocities at North Lake decrease at an average rate of -0.9 ± 1.1 m yr-2, consistent with the negative trend in annual velocities observed in neighboring regions over recent decades. We find that net runoff integrated over several preceding years has a negative correlation with annual velocities, similar to findings from the two other available decadal records of ice velocity in western Greenland. However, we argue that this correlation is not necessarily evidence for a direct hydrologic mechanism acting on the timescale of multiple years but could be a statistical construct. Finally, we stress that neither the decadal slowdown trend nor the negative correlation between velocity and integrated runoff is predicted by current ice-sheet models, underscoring that these models do not yet capture all the relevant feedbacks between runoff and ice dynamics needed to predict long-term trends in ice sheet flow.

  16. 18 CFR 367.1860 - Account 186, Miscellaneous deferred debits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY... COMPANIES SUBJECT TO THE PROVISIONS OF THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005, FEDERAL POWER ACT AND NATURAL GAS ACT Balance Sheet Chart of Accounts Deferred Debits § 367.1860 Account 186, Miscellaneous...

  17. Regionally Optimized GRACE Processing and Inter-comparison on the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Mohajerani, Y.; Velicogna, I.; Sutterley, T. C.; Rignot, E. J.

    2017-12-01

    The Antarctic ice sheet is losing mass at an accelerating rate, with a sea level contribution that changed from 0.08mm/yr from 1992 to 2001 to 0.4mm/yr from 2002 to 2011. While most of this contribution comes from West Antarctica, Totten Glacier has the largest discharge of ice in East Antarctica, with a sea level rise potential of 3.9 m. Furthermore, the drainage basin of Totten Glacier, along the neighboring Moscow University Glacier are below sea level, extending hundreds of kilometers inland. Therefore, obtaining regional estimates of both western and eastern Antarctic basins are of critical importance. The GRACE (Gravity Recovery and Climate Experiment) satellite has been providing mass balance time-series from geoid changes since 2002. Several mascon and harmonic GRACE solutions are available from different processing centers. Here, we evaluate the various solutions across the ice sheet and a new set of regionally optimized mascons to study the mass balance of Totten and Moscow University glaciers. We obtain a trend of -16.5±4.1Gt/yr with an acceleration of -2.0±1.8Gt/yr2 for the two glaciers for the period April 2002 to December 2016 using the Ivins et al (2013) GIA model (errors include leakage, GIA, and regression errors). We compare the results with the Mass Budget Method that combines ice discharge (D) and surface mass balance (SMB) from two models: 1) RACMO2.3, and 2) MAR3.6.4. MBM/RACMO2.3 shows the best agreement with the GRACE estimates. Within the common period from April 2002 to December 2015, the MBM/RACMO2.3 and MAR3.6.4 results are -15.6±1.8Gt/yr and -6.7±1.5Gt/yr respectively, while the GRACE time-series has a trend of -14.8±2.7 Gt/yr. We extend the study to the Getz Ice Shelf, the third largest ice shelf in West Antarctica after Ronne and Ross West ice shelves. We compare our gravity-derived mass estimates, the mass budget estimates, and the volume changes from altimetry data to compare the estimates and obtain a multi-sensor assessment

  18. Long term ice sheet mass change rates and inter-annual variability from GRACE gravimetry.

    NASA Astrophysics Data System (ADS)

    Harig, C.

    2017-12-01

    The GRACE time series of gravimetry now stretches 15 years since its launch in 2002. Here we use Slepian functions to estimate the long term ice mass trends of Greenland, Antarctica, and several glaciated regions. The spatial representation shows multi-year to decadal regional shifts in accelerations, in agreement with increases in radar derived ice velocity. Interannual variations in ice mass are of particular interest since they can directly link changes in ice sheets to the drivers of change in the polar ocean and atmosphere. The spatial information retained in Slepian functions provides a tool to determine how this link varies in different regions within an ice sheet. We present GRACE observations of the 2013-2014 slowdown in mass loss of the Greenland ice sheet, which was concentrated in specific parts of the ice sheet and in certain months of the year. We also discuss estimating the relative importance of climate factors that control ice mass balance, as a function of location of the glacier/ice cap as well as the spatial variation within an ice sheet by comparing gravimetry with observations of surface air temperature, ocean temperature, etc. as well as model data from climate reanalysis products.

  19. A combined surface/volume scattering retracking algorithm for ice sheet satellite altimetry

    NASA Technical Reports Server (NTRS)

    Davis, Curt H.

    1992-01-01

    An algorithm that is based upon a combined surface-volume scattering model is developed. It can be used to retrack individual altimeter waveforms over ice sheets. An iterative least-squares procedure is used to fit the combined model to the return waveforms. The retracking algorithm comprises two distinct sections. The first generates initial model parameter estimates from a filtered altimeter waveform. The second uses the initial estimates, the theoretical model, and the waveform data to generate corrected parameter estimates. This retracking algorithm can be used to assess the accuracy of elevations produced from current retracking algorithms when subsurface volume scattering is present. This is extremely important so that repeated altimeter elevation measurements can be used to accurately detect changes in the mass balance of the ice sheets. By analyzing the distribution of the model parameters over large portions of the ice sheet, regional and seasonal variations in the near-surface properties of the snowpack can be quantified.

  20. Present-day Circum-Antarctic Simulations using the POPSICLES Coupled Ice Sheet-Ocean Model

    NASA Astrophysics Data System (ADS)

    Asay-Davis, X.; Martin, D. F.; Price, S. F.; Maltrud, M. E.; Collins, W.

    2014-12-01

    We present POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period 1990 to 2010. Simulations are performed at 0.1o (~5 km) ocean resolution and with adaptive ice-sheet model resolution as fine as 500 m. We compare time-averaged melt rates below a number of major ice shelves with those reported by Rignot et al. (2013) as well as other recent studies. We also present seasonal variability and decadal trends in submarine melting from several Antarctic regions. Finally, we explore the influence on basal melting and system dynamics resulting from two different choices of climate forcing: a "normal-year" climatology and the CORE v. 2 forcing data (Large and Yeager 2008).POPSICLES couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), and the BISICLES ice-sheet model (Cornford et al., 2012). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). BISICLES makes use of adaptive mesh refinement and a 1st-order accurate momentum balance similar to the L1L2 model of Schoof and Hindmarsh (2009) to accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests (MISMIP-3D; Pattyn et al., 2013) and realistic configurations (Favier et al. 2014).A companion presentation, "Response of the Antarctic Ice Sheet to ocean forcing using the POPSICLES coupled ice sheet-ocean model" in session C024 covers the ice-sheet response to these melt rates in the coupled simulation

  1. Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber.

    PubMed

    Burchardt, Steffi; Troll, Valentin R; Mathieu, Lucie; Emeleus, Henry C; Donaldson, Colin H

    2013-10-08

    The Palaeogene Ardnamurchan central igneous complex, NW Scotland, was a defining place for the development of the classic concepts of cone-sheet and ring-dyke emplacement and has thus fundamentally influenced our thinking on subvolcanic structures. We have used the available structural information on Ardnamurchan to project the underlying three-dimensional (3D) cone-sheet structure. Here we show that a single elongate magma chamber likely acted as the source of the cone-sheet swarm(s) instead of the traditionally accepted model of three successive centres. This proposal is supported by the ridge-like morphology of the Ardnamurchan volcano and is consistent with the depth and elongation of the gravity anomaly underlying the peninsula. Our model challenges the traditional model of cone-sheet emplacement at Ardnamurchan that involves successive but independent centres in favour of a more dynamical one that involves a single, but elongate and progressively evolving magma chamber system.

  2. The Application of Sheet Technology in Cartilage Tissue Engineering.

    PubMed

    Ge, Yang; Gong, Yi Yi; Xu, Zhiwei; Lu, Yanan; Fu, Wei

    2016-04-01

    Cartilage tissue engineering started to act as a promising, even essential alternative method in the process of cartilage repair and regeneration, considering adult avascular structure has very limited self-renewal capacity of cartilage tissue in adults and a bottle-neck existed in conventional surgical treatment methods. Recent progressions in tissue engineering realized the development of more feasible strategies to treat cartilage disorders. Of these strategies, cell sheet technology has shown great clinical potentials in the regenerative areas such as cornea and esophagus and is increasingly considered as a potential way to reconstruct cartilage tissues for its non-use of scaffolds and no destruction of matrix secreted by cultured cells. Acellular matrix sheet technologies utilized in cartilage tissue engineering, with a sandwich model, can ingeniously overcome the drawbacks that occurred in a conventional acellular block, where cells are often blocked from migrating because of the non-nanoporous structure. Electrospun-based sheets with nanostructures that mimic the natural cartilage matrix offer a level of control as well as manipulation and make them appealing and widely used in cartilage tissue engineering. In this review, we focus on the utilization of these novel and promising sheet technologies to construct cartilage tissues with practical and beneficial functions.

  3. Annual accumulation over the Greenland ice sheet interpolated from historical and newly compiled observation data

    USGS Publications Warehouse

    Shen, Dayong; Liu, Yuling; Huang, Shengli

    2012-01-01

    The estimation of ice/snow accumulation is of great significance in quantifying the mass balance of ice sheets and variation in water resources. Improving the accuracy and reducing uncertainty has been a challenge for the estimation of annual accumulation over the Greenland ice sheet. In this study, we kriged and analyzed the spatial pattern of accumulation based on an observation data series including 315 points used in a recent research, plus 101 ice cores and snow pits and newly compiled 23 coastal weather station data. The estimated annual accumulation over the Greenland ice sheet is 31.2 g cm−2 yr−1, with a standard error of 0.9 g cm−2 yr−1. The main differences between the improved map developed in this study and the recently published accumulation maps are in the coastal areas, especially southeast and southwest regions. The analysis of accumulations versus elevation reveals the distribution patterns of accumulation over the Greenland ice sheet.

  4. Toward Surface Mass Balance Modeling over Antarctic Peninsula with Improved Snow/Ice Physics within WRF

    NASA Astrophysics Data System (ADS)

    Villamil-Otero, G.; Zhang, J.; Yao, Y.

    2017-12-01

    The Antarctic Peninsula (AP) has long been the focus of climate change studies due to its rapid environmental changes such as significantly increased glacier melt and retreat, and ice-shelf break-up. Progress has been continuously made in the use of regional modeling to simulate surface mass changes over ice sheets. Most efforts, however, focus on the ice sheets of Greenland with considerable fewer studies in Antarctica. In this study the Weather Research and Forecasting (WRF) model, which has been applied to the Antarctic region for weather modeling, is adopted to capture the past and future surface mass balance changes over AP. In order to enhance the capabilities of WRF model simulating surface mass balance over the ice surface, we implement various ice and snow processes within the WRF and develop a new WRF suite (WRF-Ice). The WRF-Ice includes a thermodynamic ice sheet model that improves the representation of internal melting and refreezing processes and the thermodynamic effects over ice sheet. WRF-Ice also couples a thermodynamic sea ice model to improve the simulation of surface temperature and fluxes over sea ice. Lastly, complex snow processes are also taken into consideration including the implementation of a snowdrift model that takes into account the redistribution of blowing snow as well as the thermodynamic impact of drifting snow sublimation on the lower atmospheric boundary layer. Intensive testing of these ice and snow processes are performed to assess the capability of WRF-Ice in simulating the surface mass balance changes over AP.

  5. Implementation of higher-order vertical finite elements in ISSM v4.13 for improved ice sheet flow modeling over paleoclimate timescales

    NASA Astrophysics Data System (ADS)

    Cuzzone, Joshua K.; Morlighem, Mathieu; Larour, Eric; Schlegel, Nicole; Seroussi, Helene

    2018-05-01

    Paleoclimate proxies are being used in conjunction with ice sheet modeling experiments to determine how the Greenland ice sheet responded to past changes, particularly during the last deglaciation. Although these comparisons have been a critical component in our understanding of the Greenland ice sheet sensitivity to past warming, they often rely on modeling experiments that favor minimizing computational expense over increased model physics. Over Paleoclimate timescales, simulating the thermal structure of the ice sheet has large implications on the modeled ice viscosity, which can feedback onto the basal sliding and ice flow. To accurately capture the thermal field, models often require a high number of vertical layers. This is not the case for the stress balance computation, however, where a high vertical resolution is not necessary. Consequently, since stress balance and thermal equations are generally performed on the same mesh, more time is spent on the stress balance computation than is otherwise necessary. For these reasons, running a higher-order ice sheet model (e.g., Blatter-Pattyn) over timescales equivalent to the paleoclimate record has not been possible without incurring a large computational expense. To mitigate this issue, we propose a method that can be implemented within ice sheet models, whereby the vertical interpolation along the z axis relies on higher-order polynomials, rather than the traditional linear interpolation. This method is tested within the Ice Sheet System Model (ISSM) using quadratic and cubic finite elements for the vertical interpolation on an idealized case and a realistic Greenland configuration. A transient experiment for the ice thickness evolution of a single-dome ice sheet demonstrates improved accuracy using the higher-order vertical interpolation compared to models using the linear vertical interpolation, despite having fewer degrees of freedom. This method is also shown to improve a model's ability to capture sharp

  6. From cyclic ice streaming to Heinrich-like events: the grow-and-surge instability in the Parallel Ice Sheet Model

    NASA Astrophysics Data System (ADS)

    Feldmann, Johannes; Levermann, Anders

    2017-08-01

    Here we report on a cyclic, physical ice-discharge instability in the Parallel Ice Sheet Model, simulating the flow of a three-dimensional, inherently buttressed ice-sheet-shelf system which periodically surges on a millennial timescale. The thermomechanically coupled model on 1 km horizontal resolution includes an enthalpy-based formulation of the thermodynamics, a nonlinear stress-balance-based sliding law and a very simple subglacial hydrology. The simulated unforced surging is characterized by rapid ice streaming through a bed trough, resulting in abrupt discharge of ice across the grounding line which is eventually calved into the ocean. We visualize the central feedbacks that dominate the subsequent phases of ice buildup, surge and stabilization which emerge from the interaction between ice dynamics, thermodynamics and the subglacial till layer. Results from the variation of surface mass balance and basal roughness suggest that ice sheets of medium thickness may be more susceptible to surging than relatively thin or thick ones for which the surge feedback loop is damped. We also investigate the influence of different basal sliding laws (ranging from purely plastic to nonlinear to linear) on possible surging. The presented mechanisms underlying our simulations of self-maintained, periodic ice growth and destabilization may play a role in large-scale ice-sheet surging, such as the surging of the Laurentide Ice Sheet, which is associated with Heinrich events, and ice-stream shutdown and reactivation, such as observed in the Siple Coast region of West Antarctica.

  7. Using paleoclimate data to improve models of the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    King, M. A.; Phipps, S. J.; Roberts, J. L.; White, D.

    2016-12-01

    Ice sheet models are the most descriptive tools available to simulate the future evolution of the Antarctic Ice Sheet (AIS), including its contribution towards changes in global sea level. However, our knowledge of the dynamics of the coupled ice-ocean-lithosphere system is inevitably limited, in part due to a lack of observations. Furthemore, to build computationally efficient models that can be run for multiple millennia, it is necessary to use simplified descriptions of ice dynamics. Ice sheet modeling is therefore an inherently uncertain exercise. The past evolution of the AIS provides an opportunity to constrain the description of physical processes within ice sheet models and, therefore, to constrain our understanding of the role of the AIS in driving changes in global sea level. We use the Parallel Ice Sheet Model (PISM) to demonstrate how paleoclimate data can improve our ability to predict the future evolution of the AIS. A large, perturbed-physics ensemble is generated, spanning uncertainty in the parameterizations of four key physical processes within ice sheet models: ice rheology, ice shelf calving, and the stress balances within ice sheets and ice shelves. A Latin hypercube approach is used to optimally sample the range of uncertainty in parameter values. This perturbed-physics ensemble is used to simulate the evolution of the AIS from the Last Glacial Maximum ( 21,000 years ago) to present. Paleoclimate records are then used to determine which ensemble members are the most realistic. This allows us to use data on past climates to directly constrain our understanding of the past contribution of the AIS towards changes in global sea level. Critically, it also allows us to determine which ensemble members are likely to generate the most realistic projections of the future evolution of the AIS.

  8. Dynamic Harris current sheet thickness from Cluster current density and plasma measurements

    NASA Technical Reports Server (NTRS)

    Thompson, S. M.; Kivelson, M. G.; Khurana, K. K.; McPherron, R. L.; Weygand, J. M.; Balogh, A.; Reme, H.; Kistler, L. M.

    2005-01-01

    We use the first accurate measurements of current densities in the plasma sheet to calculate the half-thickness and position of the current sheet as a function of time. Our technique assumes a Harris current sheet model, which is parameterized by lobe magnetic field B(o), current sheet half-thickness h, and current sheet position z(sub o). Cluster measurements of magnetic field, current density, and plasma pressure are used to infer the three parameters as a function of time. We find that most long timescale (6-12 hours) current sheet crossings observed by Cluster cannot be described by a static Harris current sheet with a single set of parameters B(sub o), h, and z(sub o). Noting the presence of high-frequency fluctuations that appear to be superimposed on lower frequency variations, we average over running 6-min intervals and use the smoothed data to infer the parameters h(t) and z(sub o)(t), constrained by the pressure balance lobe magnetic field B(sub o)(t). Whereas this approach has been used in previous studies, the spatial gnuhen& now provided by the Cluster magnetometers were unavailable or not well constrained in earlier studies. We place the calculated hdf&cknessa in a magnetospheric context by examining the change in thickness with substorm phase for three case study events and 21 events in a superposed epoch analysis. We find that the inferred half-thickness in many cases reflects the nominal changes experienced by the plasma sheet during substorms (i.e., thinning during growth phase, thickening following substorm onset). We conclude with an analysis of the relative contribution of (Delta)B(sub z)/(Delta)X to the cross-tail current density during substorms. We find that (Delta)B(sub z)/(Delta)X can contribute a significant portion of the cross-tail c m n t around substorm onset.

  9. Global ice-sheet system interlocked by sea level

    NASA Astrophysics Data System (ADS)

    Denton, George H.; Hughes, Terence J.; Karlén, Wibjörn

    1986-07-01

    Denton and Hughes (1983, Quaternary Research20, 125-144) postulated that sea level linked a global ice-sheet system with both terrestrial and grounded marine components during late Quaternary ice ages. Summer temperature changes near Northern Hemisphere melting margins initiated sea-level fluctuations that controlled marine components in both polar hemispheres. It was further proposed that variations of this ice-sheet system amplified and transmitted Milankovitch summer half-year insolation changes between 45 and 75°N into global climatic changes. New tests of this hypothesis implicate sea level as a major control of the areal extent of grounded portions of the Antarctic Ice Sheet, thus fitting the concept of a globally interlocked ice-sheet system. But recent atmospheric modeling results ( Manabe and Broccoli, 1985, Journal of Geophysical Research90, 2167-2190) suggest that factors other than areal changes of the grounded Antarctic Ice Sheet strongly influenced Southern Hemisphere climate and terminated the last ice age simultaneously in both polar hemispheres. Atmospheric carbon dioxide linked to high-latitude oceans is the most likely candidate ( Shackleton and Pisias, 1985, Atmospheric carbon dioxide, orbital forcing, and climate. In "The Carbon Cycle and Atmospheric CO 2: Natural Variations Archean to Present" (E. T. Sundquest and W. S. Broecker, Eds.), pp. 303-318. Geophysical Monograph 32, American Geophysical Union, Washington, D.C.), but another potential influence was high-frequency climatic oscillations (2500 yr). It is postulated that variations in atmospheric carbon dioxide acted through an Antarctic ice shelf linked to the grounded ice sheet to produce and terminate Southern Hemisphere ice-age climate. It is further postulated that Milankovitch summer insolation combined with a warm high-frequency oscillation caused marked recession of Northern Hemisphere ice-sheet melting margins and the North Atlantic polar front about 14,000 14C yr B.P. This

  10. A Balancing Act-How Mental Health Professionals Experience Being Personal in Their Relationships with Service Users.

    PubMed

    Ljungberg, Amanda; Denhov, Anne; Topor, Alain

    2017-07-01

    Although being personal in relationships with service users is commonly described as an important aspect of the way that professionals help people with severe mental problems, this has also been described to bring with it a need to keep a distance and set boundaries. This study aims to explore how professionals working in psychiatric care view being personal in their relationships with users. Qualitative interviews with 21 professionals working in three outpatient psychiatric units, analyzed through thematic analysis. Being personal in their relationships with users was described as something that participants regarded to be helpful, but that also entails risks. Participants described how they balanced being personal by keeping a distance and maintaining boundaries in their relationships based on their "experience-based knowledge" to counter these risks. While these boundaries seemed to play an important part in the way that they act and behave, they were not seen as fixed, but rather as flexible and dynamic. Boundaries could sometimes be transgressed to the benefit of users. Being personal was viewed as something that may be helpful to users, but that also entails risks. Although boundaries may be a useful concept for use in balancing these risks, they should be understood as something complex and flexible.

  11. The impact of the Balanced Budget Act on the utilization and financial condition of children's services in California hospitals.

    PubMed

    McCue, Michael J

    2002-01-01

    The objective of this study was to evaluate the utilization and financial performance of children's services after the Balanced Budget Act of 1997. The author analyzed these performance factors by hospital ownership, HMO penetration, and disproportionate share hospitals. Using data from California hospitals and conducting an analysis from 1997 to 1999, the author found that public hospitals were able to increase their profits from pediatric and neonatal intensive care services. The study also revealed that DSH hospitals located in high HMO penetration markets reduced their operating losses in nursery and pediatric services.

  12. Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing

    PubMed Central

    Golledge, Nicholas R.; Fogwill, Christopher J.; Mackintosh, Andrew N.; Buckley, Kevin M.

    2012-01-01

    Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in ice dynamics may have modulated the resultant pattern and timing of decay of the Antarctic ice sheet has so far received little attention, however, despite the growing recognition that dynamic effects account for a sizeable proportion of mass-balance changes observed in modern ice sheets. Here we use a 5-km resolution whole-continent numerical ice-sheet model to assess whether differences in the mechanisms governing ice sheet flow could account for discrepancies between geochronological studies in different parts of the continent. We first simulate the geometry and flow characteristics of an equilibrium LGM ice sheet, using pan-Antarctic terrestrial and marine geological data for constraint, then perturb the system with sea level and ocean heat flux increases to investigate ice-sheet vulnerability. Our results identify that fast-flowing glaciers in the eastern Weddell Sea, the Amundsen Sea, central Ross Sea, and in the Amery Trough respond most rapidly to ocean forcings, in agreement with empirical data. Most significantly, we find that although ocean warming and sea-level rise bring about mainly localized glacier acceleration, concomitant drawdown of ice from neighboring areas leads to widespread thinning of entire glacier catchments—a discovery that has important ramifications for the dynamic changes presently being observed in modern ice sheets. PMID:22988078

  13. Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing.

    PubMed

    Golledge, Nicholas R; Fogwill, Christopher J; Mackintosh, Andrew N; Buckley, Kevin M

    2012-10-02

    Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in ice dynamics may have modulated the resultant pattern and timing of decay of the Antarctic ice sheet has so far received little attention, however, despite the growing recognition that dynamic effects account for a sizeable proportion of mass-balance changes observed in modern ice sheets. Here we use a 5-km resolution whole-continent numerical ice-sheet model to assess whether differences in the mechanisms governing ice sheet flow could account for discrepancies between geochronological studies in different parts of the continent. We first simulate the geometry and flow characteristics of an equilibrium LGM ice sheet, using pan-Antarctic terrestrial and marine geological data for constraint, then perturb the system with sea level and ocean heat flux increases to investigate ice-sheet vulnerability. Our results identify that fast-flowing glaciers in the eastern Weddell Sea, the Amundsen Sea, central Ross Sea, and in the Amery Trough respond most rapidly to ocean forcings, in agreement with empirical data. Most significantly, we find that although ocean warming and sea-level rise bring about mainly localized glacier acceleration, concomitant drawdown of ice from neighboring areas leads to widespread thinning of entire glacier catchments-a discovery that has important ramifications for the dynamic changes presently being observed in modern ice sheets.

  14. Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber

    PubMed Central

    Burchardt, Steffi; Troll, Valentin R.; Mathieu, Lucie; Emeleus, Henry C.; Donaldson, Colin H.

    2013-01-01

    The Palaeogene Ardnamurchan central igneous complex, NW Scotland, was a defining place for the development of the classic concepts of cone-sheet and ring-dyke emplacement and has thus fundamentally influenced our thinking on subvolcanic structures. We have used the available structural information on Ardnamurchan to project the underlying three-dimensional (3D) cone-sheet structure. Here we show that a single elongate magma chamber likely acted as the source of the cone-sheet swarm(s) instead of the traditionally accepted model of three successive centres. This proposal is supported by the ridge-like morphology of the Ardnamurchan volcano and is consistent with the depth and elongation of the gravity anomaly underlying the peninsula. Our model challenges the traditional model of cone-sheet emplacement at Ardnamurchan that involves successive but independent centres in favour of a more dynamical one that involves a single, but elongate and progressively evolving magma chamber system. PMID:24100542

  15. The Giacobini-Zinner magnetotail - Tail configuration and current sheet

    NASA Technical Reports Server (NTRS)

    Mccomas, D. J.; Gosling, J. T.; Bame, S. J.; Slavin, J. A.; Smith, E. J.

    1987-01-01

    The configuration and properties of the draped Giacobini-Zinner magnetotail and its field-reversing current sheet are studied using the combined magnetic field and plasma electron data sets obtained from the International Cometary Explorer spacecraft when it traversed (in October 1985) the comet 7800 km downstream of the nucleus. The MHD equations are used to derive pressure balance and plasma acceleration conditions. The implications of the various properties derived are examined, particularly with regard to the upstream near-nucleus region where the tail formation process occurs.

  16. 18 CFR 367.1310 - Account 131, Cash.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005, FEDERAL POWER ACT AND NATURAL GAS ACT Balance Sheet... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 131, Cash. 367.1310 Section 367.1310 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION...

  17. Reconstruction of the Greenland ice sheet dynamics in a fully coupled Earth System Model

    NASA Astrophysics Data System (ADS)

    Rybak, Oleg; Volodin, Evgeny; Huybrechts, Philippe

    2016-04-01

    Earth system models (ESMs) are undoubtedly effective tools for studying climate dynamics. Incorporation of evolving ice sheets to ESMs is a challenging task because response times of the climate system and of ice sheets differ by several orders of magnitude. Besides, AO GCMs operate on spatial and temporal resolutions substantially differing from those of ice sheet models (ICMs). Therefore elaboration of an effective coupling methodology of an AO GCM and an ICM is the key problem of an ESM construction and utilization. Several downscaling strategies of varying complexity exist now of data exchange between modeled climate system and ice sheets. Application of a particular strategy depends on the research objectives. In our view, the optimum approach for model studying of significant environmental changes (e.g. glacial/interglacial transitions) when ice sheets undergo substantial evolution of geometry and volume would be an asynchronous coupling. The latter allows simulation in the interactive way of growth and decay of ice sheets in the changing climatic conditions. In the focus of the presentation, is the overview of coupling aspects of an AO GCM INMCM32 elaborated in the Institute of Numerical Mathematics (Moscow, Russia) to the Greenland ice sheet model (GrISM, Vrije Uninersiteit Brussel, Belgium). To provide interactive coupling of INMCM32 (spatial resolution 5°×4°, 21 vertical layers and temporal resolution 6 min. in the atmospheric block) and GrISM (spatial resolution 20×20 km, 51 vertical layers and 1 yr temporal resolution), we employ a special energy- and water balance model (EWBM-G), which serves as a buffer providing effective data exchange between INMCM32 and GrISM. EWBM-G operates in a rectangle domain including Greenland. Transfer of daily meanings of simulated climatic variables (air surface temperature and specific humidity) is provided on the lateral boundarias of the domain and inside the domain (sea level air pressure, wind speed and total

  18. Obesity therapy: altering the energy intake-and-expenditure balance sheet.

    PubMed

    Crowley, Vivion E F; Yeo, Giles S H; O'Rahilly, Stephen

    2002-04-01

    Obesity is associated with numerous health complications, which range from non-fatal debilitating conditions such as osteoarthritis, to life-threatening chronic diseases such as coronary heart disease, diabetes and certain cancers. The psychological consequences of obesity can range from lowered self-esteem to clinical depression. Despite the high prevalence of obesity and the many advances in our understanding of how it develops, current therapies have persistently failed to achieve long-term success. This review focuses on how fat mass can be reduced by altering the balance between energy intake and expenditure.

  19. SPICE: Sentinel-3 Performance Improvement for Ice Sheets

    NASA Astrophysics Data System (ADS)

    McMillan, M.; Escola, R.; Roca, M.; Thibaut, P.; Aublanc, J.; Shepherd, A.; Remy, F.; Benveniste, J.; Ambrózio, A.; Restano, M.

    2017-12-01

    For the past 25 years, polar-orbiting satellite radar altimeters have provided a valuable record of ice sheet elevation change and mass balance. One of the principle challenges associated with radar altimetry comes from the relatively large ground footprint of conventional pulse-limited radars, which reduces their capacity to make measurements in areas of complex topographic terrain. In recent years, progress has been made towards improving ground resolution, through the implementation of Synthetic Aperture Radar (SAR), or Delay-Doppler, techniques. In 2010, the launch of CryoSat-2 heralded the start of a new era of SAR Interferometric (SARIn) altimetry. However, because the satellite operated in SARIn and LRM mode over the ice sheets, many of the non-interferometric SAR altimeter processing techniques have been optimized for water and sea ice surfaces only. The launch of Sentinel-3, which provides full non-interferometric SAR coverage of the ice sheets, therefore presents the opportunity to further develop these SAR processing methodologies over ice sheets. Here we present results from SPICE, a 2 year study that focuses on (1) developing and evaluating Sentinel-3 SAR altimetry processing methodologies over the Polar ice sheets, and (2) investigating radar wave penetration through comparisons of Ku- and Ka-band satellite measurements. The project, which is funded by ESA's SEOM (Scientific Exploitation of Operational Missions) programme, has worked in advance of the operational phase of Sentinel-3, to emulate Sentinel-3 SAR and pseudo-LRM data from dedicated CryoSat-2 SAR acquisitions made at the Lake Vostok, Dome C and Spirit sites in East Antarctica, and from reprocessed SARIn data in Greenland. In Phase 1 of the project we have evaluated existing processing methodologies, and in Phase 2 we are investigating new evolutions to the Delay-Doppler Processing (DDP) and retracking chains. In this presentation we (1) evaluate the existing Sentinel-3 processing chain by

  20. Coastal estuaries and lagoons: The delicate balance at the edge of the sea

    USGS Publications Warehouse

    Conrads, Paul A.; Rodgers, Kirk D.; Passeri, Davina L.; Prinos, Scott T.; Smith, Christopher; Swarzenski, Christopher M.; Middleton, Beth A.

    2018-04-19

    Coastal communities are increasingly concerned about the dynamic balance between freshwater and saltwater because of its implications for societal, economic, and ecological resources. While the mixing of freshwater and saltwater sources defines coastal estuaries and lagoons, sudden changes in this balance can have a large effect on critical ecosystems and infrastructure. Any change to the delivery of water from either source has the potential to affect the health of both humans and natural biota and also to damage coastal infrastructure. This fact sheet discusses the potential of major shifts in the dynamic freshwater-saltwater balance to alter the environment and coastal stability.

  1. Interaction of ice sheets and climate during the past 800 000 years

    NASA Astrophysics Data System (ADS)

    Stap, L. B.; van de Wal, R. S. W.; de Boer, B.; Bintanja, R.; Lourens, L. J.

    2014-12-01

    During the Cenozoic, land ice and climate interacted on many different timescales. On long timescales, the effect of land ice on global climate and sea level is mainly set by large ice sheets in North America, Eurasia, Greenland and Antarctica. The climatic forcing of these ice sheets is largely determined by the meridional temperature profile resulting from radiation and greenhouse gas (GHG) forcing. As a response, the ice sheets cause an increase in albedo and surface elevation, which operates as a feedback in the climate system. To quantify the importance of these climate-land ice processes, a zonally averaged energy balance climate model is coupled to five one-dimensional ice sheet models, representing the major ice sheets. In this study, we focus on the transient simulation of the past 800 000 years, where a high-confidence CO2 record from ice core samples is used as input in combination with Milankovitch radiation changes. We obtain simulations of atmospheric temperature, ice volume and sea level that are in good agreement with recent proxy-data reconstructions. We examine long-term climate-ice-sheet interactions by a comparison of simulations with uncoupled and coupled ice sheets. We show that these interactions amplify global temperature anomalies by up to a factor of 2.6, and that they increase polar amplification by 94%. We demonstrate that, on these long timescales, the ice-albedo feedback has a larger and more global influence on the meridional atmospheric temperature profile than the surface-height-temperature feedback. Furthermore, we assess the influence of CO2 and insolation by performing runs with one or both of these variables held constant. We find that atmospheric temperature is controlled by a complex interaction of CO2 and insolation, and both variables serve as thresholds for northern hemispheric glaciation.

  2. The influence of atmospheric grid resolution in a climate model-forced ice sheet simulation

    NASA Astrophysics Data System (ADS)

    Lofverstrom, Marcus; Liakka, Johan

    2018-04-01

    Coupled climate-ice sheet simulations have been growing in popularity in recent years. Experiments of this type are however challenging as ice sheets evolve over multi-millennial timescales, which is beyond the practical integration limit of most Earth system models. A common method to increase model throughput is to trade resolution for computational efficiency (compromise accuracy for speed). Here we analyze how the resolution of an atmospheric general circulation model (AGCM) influences the simulation quality in a stand-alone ice sheet model. Four identical AGCM simulations of the Last Glacial Maximum (LGM) were run at different horizontal resolutions: T85 (1.4°), T42 (2.8°), T31 (3.8°), and T21 (5.6°). These simulations were subsequently used as forcing of an ice sheet model. While the T85 climate forcing reproduces the LGM ice sheets to a high accuracy, the intermediate resolution cases (T42 and T31) fail to build the Eurasian ice sheet. The T21 case fails in both Eurasia and North America. Sensitivity experiments using different surface mass balance parameterizations improve the simulations of the Eurasian ice sheet in the T42 case, but the compromise is a substantial ice buildup in Siberia. The T31 and T21 cases do not improve in the same way in Eurasia, though the latter simulates the continent-wide Laurentide ice sheet in North America. The difficulty to reproduce the LGM ice sheets in the T21 case is in broad agreement with previous studies using low-resolution atmospheric models, and is caused by a substantial deterioration of the model climate between the T31 and T21 resolutions. It is speculated that this deficiency may demonstrate a fundamental problem with using low-resolution atmospheric models in these types of experiments.

  3. Section 609 of the Clean Air Act: MVAC

    EPA Pesticide Factsheets

    Fact sheet provides a general overview of EPA regulations under Section 609 of the Clean Air Act, which is focused on preventing the release of refrigerants during the servicing of motor vehicle air-conditioning systems and similar appliances.

  4. Modeling the growth and decay of the Antarctic Peninsula Ice Sheet

    NASA Astrophysics Data System (ADS)

    Payne, A. J.; Sugden, D. E.; Clapperton, C. M.

    1989-03-01

    A model of the growth and decay of the Antarctic Peninsula Ice Sheet during the last glacial/interglacial cycle is used to identify the main controls on ice sheet behavior. Using as input glaciological assumptions derived by W. F. Budd and I. N. Smith (1982, Annals of Glaciology3, 42-49), bedrock topography, isostatic compensation, and mass balance relationships, the model is driven by sea-level change over the last 40,000 yr in association with assumed changes in the rate of melting beneath ice shelves. An ice sheet dome over 3.5 km thick grows on the offshore shelf and straits west of the Antarctic Peninsula and reaches a maximum at 18,000 yr B.P. Collapse begins at 14,000 yr B.P. but becomes rapid and continuous after 10,000 yr B.P. The present stable ice cover is achieved at 6500 yr B.P. Ice growth and decay are characterized by thresholds which separate periods of steady state from periods of rapid transition; the thresholds usually relate to topography. Tests show that ice sheet behavior is most sensitive to sea-level change, basal marine melting, and accumulation and is less sensitive to isostasy, spatial variation in accumulation, calving rates, and ice flow parameterization. Tests of the model against field evidence show good agreement in places, as well as discrepancies which require further work.

  5. Antarctic ice-sheet loss driven by basal melting of ice shelves.

    PubMed

    Pritchard, H D; Ligtenberg, S R M; Fricker, H A; Vaughan, D G; van den Broeke, M R; Padman, L

    2012-04-25

    Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating ice shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of ice-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic ice-sheet mass balance, and hence global sea level, on annual to decadal timescales.

  6. The stories of older parents of adult sons and daughters with autism: a balancing act.

    PubMed

    Hines, Monique; Balandin, Susan; Togher, Leanne

    2014-03-01

    Researchers acknowledge the importance of understanding how families of children with autism cope. Yet, little is known about the experiences of older parents of adults with autism. In-depth interviews were conducted with 16 older parents of adults with autism. Narrative analysis was used to gain insights into their lived experiences. Participants' narratives reflected the notion that much of their experience was a delicate balancing act as they attempted to manage their offspring's symptoms of autism whilst achieving a degree of fulfilment in their own lives. Parents did not believe that formal services had adequately supported their ability to provide care whilst meeting other needs within the family context. The findings have implications for services that attempt to support older parents' abilities to provide care, including the need for tailored intervention strategies that match each family's unique needs. © 2013 John Wiley & Sons Ltd.

  7. Physical properties of polyurethane plastic sheets produced from polyols from canola oil.

    PubMed

    Kong, Xiaohua; Narine, Suresh S

    2007-07-01

    Polyurethane (PUR) plastic sheets were prepared by reacting polyols synthesized from canola oil with aromatic diphenylmethane diisocyanate. The properties of the material were measured by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) as well as tensile properties measurements. The effect of stoichiometric balance (i.e., OH/NCO molar ratio) on the final properties was evaluated. The concentration of elastically active network chains (EANCs), nue, of the polymer networks was calculated using rubber elasticity theory. The glass transition temperatures (Tg) for the plastic sheets with OH/NCO molar ratios of 1.0/1.0, 1.0/1.1, and 1.0/1.2 were found to be 23, 41, and 43 degrees C, respectively. The kinetic studies of the degradation process of the PUR plastics showed three well-defined steps of degradation. The PUR plastic sheets with OH/NCO molar ratio 1.0/1.1 had the highest nue, lowest number-average molecule weight between cross-links, MC, and excellent mechanical properties, indicating that this is the optimum ratio in the PUR formulations.

  8. Climate change and forest fires synergistically drive widespread melt events of the Greenland Ice Sheet.

    PubMed

    Keegan, Kaitlin M; Albert, Mary R; McConnell, Joseph R; Baker, Ian

    2014-06-03

    In July 2012, over 97% of the Greenland Ice Sheet experienced surface melt, the first widespread melt during the era of satellite remote sensing. Analysis of six Greenland shallow firn cores from the dry snow region confirms that the most recent prior widespread melt occurred in 1889. A firn core from the center of the ice sheet demonstrated that exceptionally warm temperatures combined with black carbon sediments from Northern Hemisphere forest fires reduced albedo below a critical threshold in the dry snow region, and caused the melting events in both 1889 and 2012. We use these data to project the frequency of widespread melt into the year 2100. Since Arctic temperatures and the frequency of forest fires are both expected to rise with climate change, our results suggest that widespread melt events on the Greenland Ice Sheet may begin to occur almost annually by the end of century. These events are likely to alter the surface mass balance of the ice sheet, leaving the surface susceptible to further melting.

  9. Fact Sheet: Control Techniques Guidelines (CTG) for Shipbuilding and Ship Repair Facilities Operation (Surface Coating)

    EPA Pesticide Factsheets

    This page contains an August 1996 fact sheet with information regarding the CTG and Alternative Control Techniques (ACT) for Surface Coating at Shipbuilding and Ship Repair Facilities Operations. This document provides a summary of this guidance

  10. Deep-Learning Technique To Convert a Crude Piezoresistive Carbon Nanotube-Ecoflex Composite Sheet into a Smart, Portable, Disposable, and Extremely Flexible Keypad.

    PubMed

    Lee, Jin-Woong; Chung, Jiyong; Cho, Min-Young; Timilsina, Suman; Sohn, Keemin; Kim, Ji Sik; Sohn, Kee-Sun

    2018-06-20

    An extremely simple bulk sheet made of a piezoresistive carbon nanotube (CNT)-Ecoflex composite can act as a smart keypad that is portable, disposable, and flexible enough to be carried crushed inside the pocket of a pair of trousers. Both a rigid-button-imbedded, rollable (or foldable) pad and a patterned flexible pad have been introduced for use as portable keyboards. Herein, we suggest a bare, bulk, macroscale piezoresistive sheet as a replacement for these complex devices that are achievable only through high-cost fabrication processes such as patterning-based coating, printing, deposition, and mounting. A deep-learning technique based on deep neural networks (DNN) enables this extremely simple bulk sheet to play the role of a smart keypad without the use of complicated fabrication processes. To develop this keypad, instantaneous electrical resistance change was recorded at several locations on the edge of the sheet along with the exact information on the touch position and pressure for a huge number of random touches. The recorded data were used for training a DNN model that could eventually act as a brain for a simple sheet-type keypad. This simple sheet-type keypad worked perfectly and outperformed all of the existing portable keypads in terms of functionality, flexibility, disposability, and cost.

  11. Using palaeoclimate data to improve models of the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Phipps, Steven; King, Matt; Roberts, Jason; White, Duanne

    2017-04-01

    Ice sheet models are the most descriptive tools available to simulate the future evolution of the Antarctic Ice Sheet (AIS), including its contribution towards changes in global sea level. However, our knowledge of the dynamics of the coupled ice-ocean-lithosphere system is inevitably limited, in part due to a lack of observations. Furthemore, to build computationally efficient models that can be run for multiple millennia, it is necessary to use simplified descriptions of ice dynamics. Ice sheet modelling is therefore an inherently uncertain exercise. The past evolution of the AIS provides an opportunity to constrain the description of physical processes within ice sheet models and, therefore, to constrain our understanding of the role of the AIS in driving changes in global sea level. We use the Parallel Ice Sheet Model (PISM) to demonstrate how palaeoclimate data can improve our ability to predict the future evolution of the AIS. A 50-member perturbed-physics ensemble is generated, spanning uncertainty in the parameterisations of three key physical processes within the model: (i) the stress balance within the ice sheet, (ii) basal sliding and (iii) calving of ice shelves. A Latin hypercube approach is used to optimally sample the range of uncertainty in parameter values. This perturbed-physics ensemble is used to simulate the evolution of the AIS from the Last Glacial Maximum ( 21,000 years ago) to present. Palaeoclimate records are then used to determine which ensemble members are the most realistic. This allows us to use data on past climates to directly constrain our understanding of the past contribution of the AIS towards changes in global sea level. Critically, it also allows us to determine which ensemble members are likely to generate the most realistic projections of the future evolution of the AIS.

  12. Toward a Tighter Coupling between Models and Observations of Arctic Energy Balance

    NASA Astrophysics Data System (ADS)

    L'Ecuyer, T. S.

    2016-12-01

    The Arctic climate is changing more rapidly than almost anywhere else on Earth owing to a number of unique feedbacks that locally amplify the effects of increased greenhouse gas concentrations. While the basic theory behind these feedback mechanisms has been known for a long time, current climate models still struggle to capture observed rates of sea ice decline and ice sheet melt. This may be explained, at least partially, by a lack of observational constraints on cloud and precipitation processes owing to the challenges of making sustained, high quality atmospheric measurements in this inhospitable region. This presentation will introduce a new multi-satellite, multi-model combined Arctic dataset for probing the state of the Arctic climate and documenting and improving prediction models. Recent satellite-based reconstructions of the Arctic energy budget and its annual cycle contained within this dataset will used to demonstrate that many climate models exhibit significant biases in several key energy flows in the region. These biases, in turn, lead to discrepancies in both the magnitude and seasonality of the implied heat transport into the Arctic from lower latitudes. The potential impacts of these biases on the surface mass balance of the Greenland Ice Sheet will be explored. New estimates of downwelling radiative fluxes that explicitly account for the effects of super-cooled liquid water observed by new active satellite sensors will be used to drive a regional ice sheet model to assess the sensitivity of ice sheet dynamical processes to uncertainties in surface radiation balance.

  13. Analytical theory of neutral current sheets with a sheared magnetic field in collisionless relativistic plasma

    NASA Astrophysics Data System (ADS)

    Kocharovsky, V. V.; Kocharovsky, Vl V.; Martyanov, V. Yu; Nechaev, A. A.

    2017-12-01

    We derive and describe analytically a new wide class of self-consistent magnetostatic structures with sheared field lines and arbitrary energy distributions of particles. To do so we analyze superpositions of two planar current sheets with orthogonal magnetic fields and cylindrically symmetric momentum distribution functions, such that the magnetic field of one of them is directed along the symmetry axis of the distribution function of the other. These superpositions satisfy the pressure balance equation and allow one to construct configurations with an almost arbitrarily sheared magnetic field. We show that most of previously known current sheet families with sheared magnetic field lines are included in this novel class.

  14. The Great Balancing Act: Financial Equity and Local Control. Can Vermont's Act 60 Do It?

    ERIC Educational Resources Information Center

    Jimerson, Lorna

    Vermont's Equal Educational Opportunity Act of 1997 (Act 60) has attracted attention because of its funding and quality components, and the highly publicized responses to its implementation. A key feature is its "recapture" provision in which property-wealthy towns contribute to a state educational fund that helps support education in…

  15. 17 CFR 403.3 - Use of customers' free credit balances.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... balances. 403.3 Section 403.3 Commodity and Securities Exchanges DEPARTMENT OF THE TREASURY REGULATIONS UNDER SECTION 15C OF THE SECURITIES EXCHANGE ACT OF 1934 PROTECTION OF CUSTOMER SECURITIES AND BALANCES § 403.3 Use of customers' free credit balances. Every registered government securities broker or dealer...

  16. 17 CFR 403.3 - Use of customers' free credit balances.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... balances. 403.3 Section 403.3 Commodity and Securities Exchanges DEPARTMENT OF THE TREASURY REGULATIONS UNDER SECTION 15C OF THE SECURITIES EXCHANGE ACT OF 1934 PROTECTION OF CUSTOMER SECURITIES AND BALANCES § 403.3 Use of customers' free credit balances. Every registered government securities broker or dealer...

  17. The mass balance of the ice plain of Ice Stream B and Crary Ice Rise

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert

    1993-01-01

    The region in the mouth of Ice Stream B (the ice plain) and that in the vicinity of Crary Ice Rise are experiencing large and rapid changes. Based on velocity, ice thickness, and accumulation rate data, the patterns of net mass balance in these regions were calculated. Net mass balance, or the rate of ice thickness change, was calculated as the residual of all mass fluxes into and out of subregions (or boxes). Net mass balance provides a measure of the state of health of the ice sheet and clues to the current dynamics.

  18. Reversible Hydrogel–Solution System of Silk with High Beta-Sheet Content

    PubMed Central

    2015-01-01

    Silkworm silk has been widely used as a textile fiber, as biomaterials and in optically functional materials due to its extraordinary properties. The β-sheet-rich natural nanofiber units of about 10–50 nm in diameter are often considered the origin of these properties, yet it remains unclear how silk self-assembles into these hierarchical structures. A new system composed of β-sheet-rich silk nanofibers about 10–20 nm in diameter is reported here, where these nanofibers formed into “flowing hydrogels” at 0.5–2% solutions and could be transformed back into the solution state at lower concentrations, even with a high β-sheet content. This is in contrast with other silk processed materials, where significant β-sheet content negates reversibility between solution and solid states. These fibers are formed by regulating the self-assembly process of silk in aqueous solution, which changes the distribution of negative charges while still supporting β-sheet formation in the structures. Mechanistically, there appears to be a shift toward negative charges along the outside of the silk nanofibers in our present study, resulting in a higher zeta potential (above −50 mV) than previous silk materials which tend to be below −30 mV. The higher negative charge on silk nanofibers resulted in electrostatic repulsion strong enough to negate further assembly of the nanofibers. Changing silk concentration changed the balance between hydrophobic interactions and electrostatic repulsion of β-sheet-rich silk nanofibers, resulting in reversible hydrogel–solution transitions. Furthermore, the silk nanofibers could be disassembled into shorter fibers and even nanoparticles upon ultrasonic treatment following the transition from hydrogel to solution due to the increased dispersion of hydrophobic smaller particles, without the loss of β-sheet content, and with retention of the ability to transition between hydrogel and solution states through reversion to longer nanofibers

  19. Sea-level and solid-Earth deformation feedbacks in ice sheet modelling

    NASA Astrophysics Data System (ADS)

    Konrad, Hannes; Sasgen, Ingo; Klemann, Volker; Thoma, Malte; Grosfeld, Klaus; Martinec, Zdeněk

    2014-05-01

    The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.

  20. Reversible hydrogel-solution system of silk with high beta-sheet content.

    PubMed

    Bai, Shumeng; Zhang, Xiuli; Lu, Qiang; Sheng, Weiqin; Liu, Lijie; Dong, Boju; Kaplan, David L; Zhu, Hesun

    2014-08-11

    Silkworm silk has been widely used as a textile fiber, as biomaterials and in optically functional materials due to its extraordinary properties. The β-sheet-rich natural nanofiber units of about 10-50 nm in diameter are often considered the origin of these properties, yet it remains unclear how silk self-assembles into these hierarchical structures. A new system composed of β-sheet-rich silk nanofibers about 10-20 nm in diameter is reported here, where these nanofibers formed into "flowing hydrogels" at 0.5-2% solutions and could be transformed back into the solution state at lower concentrations, even with a high β-sheet content. This is in contrast with other silk processed materials, where significant β-sheet content negates reversibility between solution and solid states. These fibers are formed by regulating the self-assembly process of silk in aqueous solution, which changes the distribution of negative charges while still supporting β-sheet formation in the structures. Mechanistically, there appears to be a shift toward negative charges along the outside of the silk nanofibers in our present study, resulting in a higher zeta potential (above -50 mV) than previous silk materials which tend to be below -30 mV. The higher negative charge on silk nanofibers resulted in electrostatic repulsion strong enough to negate further assembly of the nanofibers. Changing silk concentration changed the balance between hydrophobic interactions and electrostatic repulsion of β-sheet-rich silk nanofibers, resulting in reversible hydrogel-solution transitions. Furthermore, the silk nanofibers could be disassembled into shorter fibers and even nanoparticles upon ultrasonic treatment following the transition from hydrogel to solution due to the increased dispersion of hydrophobic smaller particles, without the loss of β-sheet content, and with retention of the ability to transition between hydrogel and solution states through reversion to longer nanofibers during self

  1. Probabilistic framework for assessing the ice sheet contribution to sea level change.

    PubMed

    Little, Christopher M; Urban, Nathan M; Oppenheimer, Michael

    2013-02-26

    Previous sea level rise (SLR) assessments have excluded the potential for dynamic ice loss over much of Greenland and Antarctica, and recently proposed "upper bounds" on Antarctica's 21st-century SLR contribution are derived principally from regions where present-day mass loss is concentrated (basin 15, or B15, drained largely by Pine Island, Thwaites, and Smith glaciers). Here, we present a probabilistic framework for assessing the ice sheet contribution to sea level change that explicitly accounts for mass balance uncertainty over an entire ice sheet. Applying this framework to Antarctica, we find that ongoing mass imbalances in non-B15 basins give an SLR contribution by 2100 that: (i) is comparable to projected changes in B15 discharge and Antarctica's surface mass balance, and (ii) varies widely depending on the subset of basins and observational dataset used in projections. Increases in discharge uncertainty, or decreases in the exceedance probability used to define an upper bound, increase the fractional contribution of non-B15 basins; even weak spatial correlations in future discharge growth rates markedly enhance this sensitivity. Although these projections rely on poorly constrained statistical parameters, they may be updated with observations and/or models at many spatial scales, facilitating a more comprehensive account of uncertainty that, if implemented, will improve future assessments.

  2. Recent Changes in Arctic Glaciers, Ice Caps, and the Greenland Ice Sheet: Cold Facts About Warm Ice

    NASA Astrophysics Data System (ADS)

    Abdalati, W.

    2005-12-01

    One of the major manifestations of Arctic change can be observed in the state of balance of Arctic glaciers and ice caps and the Greenland ice sheet. These ice masses are estimated to contain nearly 3 million cubic kilometers of ice, which is more than six times greater than all the water stored in the Earth's lakes, rivers, and snow combined and is the equivalent of over 7 meters of sea level. Most of these ice masses have been shrinking in recent in years, but their mass balance is highly variable on a wide range of spatial and temporal scales. On the Greenland ice sheet most of the coastal regions have thinned substantially as melt has increased and some of its outlet glaciers have accelerated. Near the equilibrium line in West Greenland, we have seen evidence of summer acceleration that is linked to surface meltwater production, suggesting a relatively rapid response mechanism of the ice sheet change to a warming climate. At the same time, however, the vast interior regions of the Greenland ice sheet have shown little change or slight growth, as accumulation in these areas may have increased. Throughout much of the rest of the Arctic, many glaciers and ice caps have been shrinking in the past few decades, and in Canada and Alaska, the rate of ice loss seems to have accelerated during the late 1990s. These recent observations offer only a snapshot in time of the long-term behavior, but they are providing crucial information about the current state of ice mass balance and the mechanisms that control it in one of the most climatically sensitive regions on Earth. As we continue to learn more through a combination of remote sensing observations, in situ measurements and improved modeling capabilities, it is important that we coordinate and integrate these approaches effectively in order to predict future changes and their impact on sea level, freshwater discharge, and ocean circulation.

  3. Trade-off between the Mechanical Strength and Microwave Electrical Properties of Functionalized and Irradiated Carbon Nanotube Sheets.

    PubMed

    Williams, Tiffany S; Orloff, Nathan D; Baker, James S; Miller, Sandi G; Natarajan, Bharath; Obrzut, Jan; McCorkle, Linda S; Lebron-Colón, Marisabel; Gaier, James; Meador, Michael A; Liddle, J Alexander

    2016-04-13

    Carbon nanotube (CNT) sheets represent a novel implementation of CNTs that enable the tailoring of electrical and mechanical properties for applications in the automotive and aerospace industries. Small molecule functionalization and postprocessing techniques, such as irradiation with high-energy particles, are methods that can enhance the mechanical properties of CNTs. However, the effect that these modifications have on the electrical conduction mechanisms has not been extensively explored. By characterizing the mechanical and electrical properties of multiwalled carbon nanotube (MWCNT) sheets with different functional groups and irradiation doses, we can expand our insights into the extent of the trade-off that exists between mechanical strength and electrical conductivity for commercially available CNT sheets. Such insights allow for the optimization of design pathways for engineering applications that require a balance of material property enhancements.

  4. Effect of tail plasma sheet conditions on the penetration of the convection electric field in the inner magnetosphere: RCM simulations with self-consistent magnetic field

    NASA Astrophysics Data System (ADS)

    Gkioulidou, M.; Wang, C.; Lyons, L. R.; Wolf, R.

    2009-12-01

    Transport of plasma sheet particles into the inner magnetosphere is strongly affected by the penetration of the convection electric field, which is the result of the large-scale magnetosphere ionosphere electromagnetic coupling. This transport, on the other hand, results in plasma heating and magnetic field stretching, which become very significant in the inner plasma sheet (inside 20 RE). We have previously run simulations with the Rice Convection Model (RCM), using the Tsyganenko 96 magnetic field model, to investigate how the earthward penetration of electric field depends on plasma sheet conditions. Outer proton and electron sources at r ~20 RE, are based on 11 years of Geotail data, and realistically represent the mixture of cold and hot plasma sheet population as a function of MLT and interplanetary conditions. We found that shielding of the inner magnetosphere electric field is more efficient for a colder and denser plasma sheet, which is found following northward IMF, than for the hotter and more tenuous plasma sheet found following southward IMF. Our simulation results so far indicate further earthward penetration of plasma sheet particles in response to enhanced convection if the preceding IMF is southward, which leads to weaker electric field shielding. Recently we have integrated the RCM with a magnetic field solver to obtain magnetic fields that are in force balance with given plasma pressures in the equatorial plane. We expect the self-consistent magnetic field to have a pronounced dawn dusk asymmetry due to the asymmetric inner magnetospheric pressure. This should affect the radial distance and MLT of plasma sheet penetration into the inner magnetosphere. We are currently using this force-balanced and self-consistent model with our realistic boundary conditions to evaluate the dependence of the shielding timescale on pre-existing plasma sheet number density and temperature and to more quantitatively determine the correlation between the plasma sheet

  5. Engineering tubular bone using mesenchymal stem cell sheets and coral particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Wenxin; Ma, Dongyang; Yan, Xingrong

    Highlights: • We developed a novel engineering strategy to solve the limitations of bone grafts. • We fabricated tubular constructs using cell sheets and coral particles. • The composite constructs showed high radiological density and compressive strength. • These characteristics were similar to those of native bone. -- Abstract: The development of bone tissue engineering has provided new solutions for bone defects. However, the cell-scaffold-based approaches currently in use have several limitations, including low cell seeding rates and poor bone formation capacity. In the present study, we developed a novel strategy to engineer bone grafts using mesenchymal stem cell sheetsmore » and coral particles. Rabbit bone marrow mesenchymal stem cells were continuously cultured to form a cell sheet with osteogenic potential and coral particles were integrated into the sheet. The composite sheet was then wrapped around a cylindrical mandrel to fabricate a tubular construct. The resultant tubular construct was cultured in a spinner-flask bioreactor and subsequently implanted into a subcutaneous pocket in a nude mouse for assessment of its histological characteristics, radiological density and mechanical property. A similar construct assembled from a cell sheet alone acted as a control. In vitro observations demonstrated that the composite construct maintained its tubular shape, and exhibited higher radiological density, compressive strength and greater extracellular matrix deposition than did the control construct. In vivo experiments further revealed that new bone formed ectopically on the composite constructs, so that the 8-week explants of the composite sheets displayed radiological density similar to that of native bone. These results indicate that the strategy of using a combination of a cell sheet and coral particles has great potential for bone tissue engineering and repairing bone defects.« less

  6. Dynamic Inland Propagation of Thinning Due to Ice Loss at the Margins of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Wang, Wei Li; Li, Jun J.; Zwally, H. Jay

    2012-01-01

    Mass-balance analysis of the Greenland ice sheet based on surface elevation changes observed by the European Remote-sensing Satellite (ERS) (1992-2002) and Ice, Cloud and land Elevation Satellite (ICESat) (2003-07) indicates that the strongly increased mass loss at lower elevations (<2000 m) of the ice sheet, as observed during 2003-07, appears to induce interior ice thinning at higher elevations. In this paper, we perform a perturbation experiment with a three-dimensional anisotropic ice-flow model (AIF model) to investigate this upstream propagation. Observed thinning rates in the regions below 2000m elevation are used as perturbation inputs. The model runs with perturbation for 10 years show that the extensive mass loss at the ice-sheet margins does in fact cause interior thinning on short timescales (i.e. decadal). The modeled pattern of thinning over the ice sheet agrees with the observations, which implies that the strong mass loss since the early 2000s at low elevations has had a dynamic impact on the entire ice sheet. The modeling results also suggest that even if the large mass loss at the margins stopped, the interior ice sheet would continue thinning for 300 years and would take thousands of years for full dynamic recovery.

  7. On the scalability of the Albany/FELIX first-order Stokes approximation ice sheet solver for large-scale simulations of the Greenland and Antarctic ice sheets

    DOE PAGES

    Tezaur, Irina K.; Tuminaro, Raymond S.; Perego, Mauro; ...

    2015-01-01

    We examine the scalability of the recently developed Albany/FELIX finite-element based code for the first-order Stokes momentum balance equations for ice flow. We focus our analysis on the performance of two possible preconditioners for the iterative solution of the sparse linear systems that arise from the discretization of the governing equations: (1) a preconditioner based on the incomplete LU (ILU) factorization, and (2) a recently-developed algebraic multigrid (AMG) preconditioner, constructed using the idea of semi-coarsening. A strong scalability study on a realistic, high resolution Greenland ice sheet problem reveals that, for a given number of processor cores, the AMG preconditionermore » results in faster linear solve times but the ILU preconditioner exhibits better scalability. In addition, a weak scalability study is performed on a realistic, moderate resolution Antarctic ice sheet problem, a substantial fraction of which contains floating ice shelves, making it fundamentally different from the Greenland ice sheet problem. We show that as the problem size increases, the performance of the ILU preconditioner deteriorates whereas the AMG preconditioner maintains scalability. This is because the linear systems are extremely ill-conditioned in the presence of floating ice shelves, and the ill-conditioning has a greater negative effect on the ILU preconditioner than on the AMG preconditioner.« less

  8. Triggering of explosive reconnection in a thick current sheet via current sheet compression: Less current sheet thinning, more temperature anisotropy

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Shinohara, I.; Fujimoto, M.

    2016-12-01

    Two-dimensional kinetic simulations of compression of thick current sheets are performed to see how it can lead to triggering of explosive magnetic reconnection. The current sheet under study is simply in a Harris-like anti-paralell and symmetric geometry. A one-dimensional pre-study shows that the compression is more effective to make the plasma anisotropy than to thin the current sheet width. When the lobe magnetic field is amplified by a factor of 2, the plasma temperature anisotropy inside the current sheet reaches 2 but the current sheet thickness is reduced only by 1/sqrt(2). If a current sheet thickness needs to be comparable to the ion inertial scale for reconnection triggering take place, as is widely and frequently mentioned in the research community, the initial thickness cannot be more than a few ion scale for reconnection to set-in. On the other hand, the temperature anisotropy of 2 can be significant for the triggering problem. Two-dimensional simulations show explosive magnetic reconnection to take place even when the initial current sheet thickness more than an order of magnitude thicker than the ion scale, indicating the resilient triggering drive supplied by the temperature anisotropy. We also discuss how the reconnection triggering capability of the temperature anisotropy boosted tearing mode for thick current sheets compares with the instabilities in the plane orthogonal to the reconnecting field.

  9. The Nitrogen Balancing Act: Tracking the Environmental Performance of Food Production

    PubMed Central

    McLellan, Eileen L; Cassman, Kenneth G; Eagle, Alison J; Woodbury, Peter B; Sela, Shai; Tonitto, Christina; Marjerison, Rebecca D; van Es, Harold M

    2018-01-01

    Abstract Farmers, food supply-chain entities, and policymakers need a simple but robust indicator to demonstrate progress toward reducing nitrogen pollution associated with food production. We show that nitrogen balance—the difference between nitrogen inputs and nitrogen outputs in an agricultural production system—is a robust measure of nitrogen losses that is simple to calculate, easily understood, and based on readily available farm data. Nitrogen balance provides farmers with a means of demonstrating to an increasingly concerned public that they are succeeding in reducing nitrogen losses while also improving the overall sustainability of their farming operation. Likewise, supply-chain companies and policymakers can use nitrogen balance to track progress toward sustainability goals. We describe the value of nitrogen balance in translating environmental targets into actionable goals for farmers and illustrate the potential roles of science, policy, and agricultural support networks in helping farmers achieve them. PMID:29662247

  10. Novel safety floors do not influence early compensatory balance reactions in older adults.

    PubMed

    Wright, Alexander D; Heckman, George A; McIlroy, William E; Laing, Andrew C

    2014-01-01

    Novel safety flooring systems are a promising approach for reducing fall-related injuries in seniors, as they have been demonstrated to substantially reduce impact severity during falls, while minimally impairing balance control in community-dwelling older women. This pilot study aimed to characterize the potential effects of flooring conditions on dynamic balance control in retirement home-dwellers with more limited mobility. A tether-release paradigm was used to simulate a trip-type perturbation in 15 seniors across five flooring surfaces (three novel safety floors and one carpet compared to institutional-grade resilient rolled-sheeting). Kinetic and kinematic data tracked the displacement profiles of the underfoot centre-of-pressure and whole-body centre-of-mass, which were used to characterize compensatory balance reactions. Difference tests (ANOVA) found that the onset of the compensatory balance reaction was not associated with floor condition, nor were the timing and magnitude of peak centre-of-pressure excursion (minimum margin of safety) and velocity. Accordingly, the minimum margin of safety of the centre-of-mass was not significantly different across floors. Equivalence tests supported these findings. This study provides evidence that the carpet and novel safety floors tested do not negatively influence characteristics of initial dynamic balance responses following a lean-and-release perturbation compared to an institutional-grade resilient rolled-sheeting surface. In combination with reports of substantial force attenuative properties during fall-related impacts, these findings support the promise of novel safety floors as a biomechanically effective strategy for reducing fall-related injuries. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  11. Lives in the Balance.

    ERIC Educational Resources Information Center

    Our Children, 1997

    1997-01-01

    Changes in the workplace that would provide flexibility for working parents are slowly developing and receiving government, business, and societal attention. A sidebar, "Mother, Professional, Volunteer: One Woman's Balancing Act," presents an account of how one woman rearranged her professional life to enable her to do full-time…

  12. Evaluation of three methods of different levels of complexity to represent the interactions between the Greenland ice sheet and the atmosphere at the century time scale.

    NASA Astrophysics Data System (ADS)

    Le clec'h, Sébastien; Fettweis, Xavier; Quiquet, Aurelien; Dumas, Christophe; Kageyama, Masa; Charbit, Sylvie; Ritz, Catherine

    2017-04-01

    Based on numerous studies showing implications of polar ice sheets on the climate system, the climate community recommended the development of methods to account for feedbacks between polar ice sheets and the other climate components. In this study we used three methods of different levels of complexity to represent the interactions between a Greenland ice sheet model (GRISLI) and a regional atmospheric model (MAR) under the RCP8.5 scenario. The simplest method, i.e. uncoupled, does not account for interactions between both models. In this method MAR computes varying atmospheric conditions using the same present-day observed Greenland ice sheet topography and extent. The outputs are then used to force GRISLI. The second method is a one-way coupling method in which the MAR outputs are corrected to account for topography changes before their transfer to GRISLI. The third method is a fully coupled method allowing the full representation of interactions between MAR and GRISLI. In this case, the ice sheet topography and its extent as seen by the atmospheric model is updated for each ice sheet model time step. The three methods are evaluated regarding the Greenland ice sheet response from 2000 to 2150. As expected, the uncoupled method shows a coastal thinning of the ice sheet due to a decreasing surface mass balance for coastal regions related to increased mean surface temperature. The one-way coupling and the full coupling methods tend to amplify the surface mass balance due to surface elevation feedback. The uncoupled method tends to underestimate the Greenland ice sheet volume reduction compared to both coupling methods over 150 years. This underestimation is of the same order of magnitude of the ice loss from the Greenland peripheral glaciers at the end of the 21st century. As for the uncoupled method, the thinning of the ice sheet occurs in coastal regions for both coupling methods. However compared to the one-way coupling method, the fully coupled method tends to

  13. Balancing truth-telling: relatives acting as translators for older adult cancer patients of Turkish or northwest African origin in Belgium.

    PubMed

    van Eechoud, I; Grypdonck, M; Leman, J; Van Den Noortgate, N; Deveugele, M; Verhaeghe, S

    2017-09-01

    The first generation of Turkish and Northwest African immigrants in Belgium are ageing and at risk for developing cancer. Relatives play an important role and provide both emotional and practical care, including mental support and acting as a contact person and/or a translator for improving access to healthcare, as most patients and their spouses have only a limited command of the language. Although access to professional interpreters has shown to be the best guarantee for qualitative healthcare, oncology health providers working with relatives as interpreters is much more common than professional interpreters. The aim of this study was to provide insight into the process wherein relatives balance truth-telling in translating for an older family member diagnosed with cancer. This was a qualitative research study, with elements of constructivist grounded theory. Twenty-eight loosely structured interviews were conducted. Most relatives consider it their responsibility to contribute to a positive attitude of the patient. Relatives decided to what extent they inform the patient, based on several motives and embedded in their assessment of the patient's emotional strength, understanding and need to be informed. What they decide influences the way they act as a translator and/or a contact person between the patient and health professional(s). Some considered it best to omit medical information while others considered it best to inform the patient fully. The results emphasise the importance for healthcare providers to take into account the complexity and unpredictable character of the process of balancing truth-telling when family members translate for their ill older relative. © 2016 John Wiley & Sons Ltd.

  14. Characteristics of ion flow in the quiet state of the inner plasma sheet

    NASA Technical Reports Server (NTRS)

    Angelopoulos, V.; Kennel, C. F.; Coroniti, F. V.; Pellat, R.; Spence, H. E.; Kivelson, M. G.; Walker, R. J.; Baumjohann, W.; Feldman, W. C.; Gosling, J. T.

    1993-01-01

    We use AMPTE/IRM and ISEE 2 data to study the properties of the high beta plasma sheet, the inner plasma sheet (IPS). Bursty bulk flows (BBFs) are excised from the two databases, and the average flow pattern in the non-BBF (quiet) IPS is constructed. At local midnight this ensemble-average flow is predominantly duskward; closer to the flanks it is mostly earthward. The flow pattern agrees qualitatively with calculations based on the Tsyganenko (1987) model (T87), where the earthward flow is due to the ensemble-average cross tail electric field and the duskward flow is the diamagnetic drift due to an inward pressure gradient. The IPS is on the average in pressure equilibrium with the lobes. Because of its large variance the average flow does not represent the instantaneous flow field. Case studies also show that the non-BBF flow is highly irregular and inherently unsteady, a reason why earthward convection can avoid a pressure balance inconsistency with the lobes. The ensemble distribution of velocities is a fundamental observable of the quiet plasma sheet flow field.

  15. Mass-balance measurements in Alaska and suggestions for simplified observation programs

    USGS Publications Warehouse

    Trabant, D.C.; March, R.S.

    1999-01-01

    US Geological Survey glacier fieldwork in Alaska includes repetitious measurements, corrections for leaning or bending stakes, an ability to reliably measure seasonal snow as deep as 10 m, absolute identification of summer surfaces in the accumulation area, and annual evaluation of internal accumulation, internal ablation, and glacier-thickness changes. Prescribed field measurement and note-taking techniques help eliminate field errors and expedite the interpretative process. In the office, field notes are transferred to computerized spread-sheets for analysis, release on the World Wide Web, and archival storage. The spreadsheets have error traps to help eliminate note-taking and transcription errors. Rigorous error analysis ends when mass-balance measurements are extrapolated and integrated with area to determine glacier and basin mass balances. Unassessable errors in the glacier and basin mass-balance data reduce the value of the data set for correlations with climate change indices. The minimum glacier mass-balance program has at least three measurement sites on a glacier and the measurements must include the seasonal components of mass balance as well as the annual balance.

  16. 71. PALMDALE WATER COMPANY, EASTWOOD MULTIPLEARCHED DAM: STRESS SHEET, SHEET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. PALMDALE WATER COMPANY, EASTWOOD MULTIPLE-ARCHED DAM: STRESS SHEET, SHEET 3; DECEMBER 20, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  17. Maximizing RNA folding rates: a balancing act.

    PubMed Central

    Thirumalai, D; Woodson, S A

    2000-01-01

    Large ribozymes typically require very long times to refold into their active conformation in vitro, because the RNA is easily trapped in metastable misfolded structures. Theoretical models show that the probability of misfolding is reduced when local and long-range interactions in the RNA are balanced. Using the folding kinetics of the Tetrahymena ribozyme as an example, we propose that folding rates are maximized when the free energies of forming independent domains are similar to each other. A prediction is that the folding pathway of the ribozyme can be reversed by inverting the relative stability of the tertiary domains. This result suggests strategies for optimizing ribozyme sequences for therapeutics and structural studies. PMID:10864039

  18. Comparative evaluation of absorbable hemostats: advantages of fibrin-based sheets.

    PubMed

    Krishnan, Lissy K; Mohanty, Mira; Umashankar, P R; Lal, Arthur Vijayan

    2004-11-01

    Bioactive hemostats and wound dressings consist of either inherently active materials or act as delivery vehicles which contain such materials. Fibrin is a natural hemostat and scaffold, guiding the direction of wound contraction and closure. In order to improve the ease of application of liquid fibrin glue, we have made a freeze-dried form of polymerized fibrin that supports hemostasis and wound healing. The bleeding from the middle ear artery of rabbits was found to be arrested instantaneously on application of fibrin sheets, even when the animal was heparinized systemically. As the fibrin sheet was found to be fragile, gelatin was incorporated to the sheet and thus the mechanical stability was improved without compromising the hemostatic effect. The efficacy of the fabricated fibrin and fibrin-gelatin sheets to seal traumatized rat liver was compared with commercially available hemostats, Abgel (cross-linked gelatin) and Surgicel (cross-linked cellulose). Tissue compatibility of all the hemostats was studied by analyzing the liver tissue 15 days after application. While the hemostatic effect was best with fibrin and fibrin-gelatin sheets, both Surgicel and Abgel were not capable of arresting the bleeding quickly. Gross analysis of tissue on the 15th day of application, visibly, Abgel was not only degraded but resulted in severe adhesions of internal organs and histologically capsule formation around the implant was evident. Though Surgicel was also seen as cream soft material on the site of application that joined two pieces of liver, there was no adhesion of other internal organs and histologically, immune reaction and foreign-body-type giant cells were present in large amounts. Fibrin was not found grossly on application site whereas fibrin-gelatin was seen as a small white spot. Granulation tissue formation and cell migration into the fibrin-based sheets were evident, and therefore, fibrin-based sheets are not only efficient hemostats but showed optimum

  19. Dynamical balance in the Indonesian Seas circulation

    NASA Astrophysics Data System (ADS)

    Burnett, William H.; Kamenkovich, Vladimir M.; Jaffe, David A.; Gordon, Arnold L.; Mellor, George L.

    2000-09-01

    A high resolution, four-open port, non-linear, barotropic ocean model (2D POM) is used to analyze the Indonesian Seas circulation. Both local and overall momentum balances are studied. It is shown that geostrophy holds over most of the area and that the Pacific-Indian Ocean pressure difference is essentially balanced by the resultant of pressure forces acting on the bottom.

  20. 18 CFR 367.2161 - Account 216.1, Unappropriated undistributed subsidiary earnings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., FEDERAL POWER ACT AND NATURAL GAS ACT Balance Sheet Chart of Accounts Proprietary Capital § 367.2161... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 216.1, Unappropriated undistributed subsidiary earnings. 367.2161 Section 367.2161 Conservation of Power and Water...

  1. 18 CFR 367.2420 - Account 242, Miscellaneous current and accrued liabilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., FEDERAL POWER ACT AND NATURAL GAS ACT Balance Sheet Chart of Accounts Current and Accrued Liabilities... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 242, Miscellaneous current and accrued liabilities. 367.2420 Section 367.2420 Conservation of Power and Water...

  2. Surface mass balance of Greenland mountain glaciers and ice caps

    NASA Astrophysics Data System (ADS)

    Benson, R. J.; Box, J. E.; Bromwich, D. H.; Wahr, J. M.

    2009-12-01

    Mountain glaciers and ice caps contribute roughly half of eustatic sea-level rise. Greenland has thousands of small mountain glaciers and several ice caps > 1000 sq. km that have not been included in previous mass balance calculations. To include small glaciers and ice caps in our study, we use Polar WRF, a next-generation regional climate data assimilation model is run at grid resolution less than 10 km. WRF provides surface mass balance data at sufficiently high resolution to resolve not only the narrow ice sheet ablation zone, but provides information useful in downscaling melt and accumulation rates on mountain glaciers and ice caps. In this study, we refine Polar WRF to simulate a realistic surface energy budget. Surface melting is calculated in-line from surface energy budget closure. Blowing snow sublimation is computed in-line. Melt water re-freeze is calculated using a revised scheme. Our results are compared with NASA's Gravity Recovery and Climate Experiment (GRACE) and associated error is calculated on a regional and local scale with validation from automated weather stations (AWS), snow pits and ice core data from various regions along the Greenland ice sheet.

  3. Reconstructions of the 1900-2015 Greenland ice sheet surface mass balance using the regional climate MAR model

    NASA Astrophysics Data System (ADS)

    Fettweis, Xavier; Box, Jason E.; Agosta, Cécile; Amory, Charles; Kittel, Christoph; Lang, Charlotte; van As, Dirk; Machguth, Horst; Gallée, Hubert

    2017-04-01

    With the aim of studying the recent Greenland ice sheet (GrIS) surface mass balance (SMB) decrease relative to the last century, we have forced the regional climate MAR (Modèle Atmosphérique Régional; version 3.5.2) model with the ERA-Interim (ECMWF Interim Re-Analysis; 1979-2015), ERA-40 (1958-2001), NCEP-NCARv1 (National Centers for Environmental Prediction-National Center for Atmospheric Research Reanalysis version 1; 1948-2015), NCEP-NCARv2 (1979-2015), JRA-55 (Japanese 55-year Reanalysis; 1958-2014), 20CRv2(c) (Twentieth Century Reanalysis version 2; 1900-2014) and ERA-20C (1900-2010) reanalyses. While all these forcing products are reanalyses that are assumed to represent the same climate, they produce significant differences in the MAR-simulated SMB over their common period. A temperature adjustment of +1 °C (respectively -1 °C) was, for example, needed at the MAR boundaries with ERA-20C (20CRv2) reanalysis, given that ERA-20C (20CRv2) is ˜ 1 °C colder (warmer) than ERA-Interim over Greenland during the period 1980-2010. Comparisons with daily PROMICE (Programme for Monitoring of the Greenland Ice Sheet) near-surface observations support these adjustments. Comparisons with SMB measurements, ice cores and satellite-derived melt extent reveal the most accurate forcing datasets for the simulation of the GrIS SMB to be ERA-Interim and NCEP-NCARv1. However, some biases remain in MAR, suggesting that some improvements are still needed in its cloudiness and radiative schemes as well as in the representation of the bare ice albedo. Results from all MAR simulations indicate that (i) the period 1961-1990, commonly chosen as a stable reference period for Greenland SMB and ice dynamics, is actually a period of anomalously positive SMB (˜ +40 Gt yr-1) compared to 1900-2010; (ii) SMB has decreased significantly after this reference period due to increasing and unprecedented melt reaching the highest rates in the 120-year common period; (iii) before 1960, both ERA

  4. Modelled Growth and Decay of the Cordilleran Ice Sheet Through the Last Glacial Cycle

    NASA Astrophysics Data System (ADS)

    Marshall, S. J.; Banwell, A.

    2015-12-01

    The Cordilleran Ice Sheet in western North America had an enigmatic evolution during the last glacial cycle, developing out of sync with the larger Laurentide and global glaciation. The geological record suggests that the ice sheet emerged late, ca. 45 ka, growing to be a fully-established ice sheet in isotope stages 3 and 2 and deglaciating late in the glacial cycle. This has been a challenge to model, and is a paleoclimatic curiosity, because the western Cordillera of North America is heavily glacierized today, and one would intuitively expect it to act as an inception centre for the Pleistocene ice sheets. The region receives heavy precipitation, and modest cooling should induce large-scale glacier expansion. Indeed, a Cordilleran Ice Sheet quickly nucleates in isotope substage 5d in most ice sheet modeling studies to date, and is a resilient feature throughout the glaciation. The fact that a full-scale Cordilleran Ice Sheet did not develop until relatively late argues for either: (a) ice sheet models that have been inadequate in resolving the process of alpine-style glaciation, i.e., the coalescence of alpine icefields, or (b) a climatic history in western North America that deviated strongly from the hemispheric-scale cooling which drove the growth of the Laurentide and Scandinavian Ice Sheets, as recorded in Greenland. We argue that reasonable reconstructions of Cordilleran Ice Sheet growth and decay implicate a combination of these two considerations. Sufficient model resolution is required to capture the valley-bottom melt that suppresses icefield coalescence, while early-glacial cooling must have been modest in the Pacific sector of North America. We argue for a persistent warm, dry climate relative to that in eastern North America and the Atlantic sector, likely associated with positive feedbacks between atmospheric circulation and the nascent Laurentide Ice Sheet (i.e., peristent circulation patterns similar to those of 2014-2015). This must have been

  5. Ice sheet altimetry

    NASA Technical Reports Server (NTRS)

    Brooks, R. L.

    1981-01-01

    Generalized surface slopes were computed for the Antarctic and Greenland ice sheets by differencing plotted contour levels and dividing them by the distance between the contours. It was observed that more than 90% of the ice sheets have surface slopes less than 1%. Seasat test mode-1 Seasat altimeter measurements over Greenland were analyzed by comparisons with collinear and intersecting normal mode Seasat altimeter passes. Over the ice sheet, the computed surface elevations from test mode-1 measurements were consistently lower by about 45 m and the AGC levels were down by approximately 6 dB. No test mode-1 data were acquired over Antarctica. It is concluded that analysis of the existing altimeter data base over the two ice sheets is crucial in designing a future improved altimeter tracking capability. It is recommended that additional waveform retracking be performed to characterize ice sheet topography as a function of geographic area and elevation.

  6. 5. Historic American Buildings Survey Taken from drawing sheet, SHEET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey Taken from drawing sheet, SHEET #21, Showing the house as restored since Survey. (Dormer windows omitted as not authentic) - Samuel des Marest House, River Road, New Milford, Bergen County, NJ

  7. The quiet evening auroral arc and the structure of the growth phase near-Earth plasma sheet

    NASA Astrophysics Data System (ADS)

    Coroniti, F. V.; Pritchett, P. L.

    2014-03-01

    The plasma pressure and current configuration of the near-Earth plasma sheet that creates and sustains the quiet evening auroral arc during the growth phase of magnetospheric substorms is investigated. We propose that the quiet evening arc (QEA) connects to the thin near-Earth current sheet, which forms during the development of the growth phase enhancement of convection. The current sheet's large polarization electric fields are shielded from the ionosphere by an Inverted-V parallel potential drop, thereby producing the electron precipitation responsible for the arc's luminosity. The QEA is located in the plasma sheet region of maximal radial pressure gradient and, in the east-west direction, follows the vanishing of the approximately dawn-dusk-directed gradient or fold in the plasma pressure. In the evening sector, the boundary between the Region1 and Region 2 current systems occurs where the pressure maximizes (approximately radial gradient of the pressure vanishes) and where the approximately radial gradient of the magnetic flux tube volume also vanishes in an inflection region. The proposed intricate balance of plasma sheet pressure and currents may well be very sensitive to disruption by the arrival of equatorward traveling auroral streamers and their associated earthward traveling dipolarization fronts.

  8. Fact Sheet on the History of the Resource Conservation and Recovery Act (RCRA) Corrective Action Program

    EPA Pesticide Factsheets

    This fact sheet provides an overview of the main events that have shaped the current RCRA Corrective Action Program. It also provides a brief history of the statutory authorities, regulations, and policy that form the framework for the program.

  9. The Balancing Act of Women Administrators: Home and Career.

    ERIC Educational Resources Information Center

    Villadsen, Alice W.

    The study discussed in this paper investigated the problems that women in educational administration face as they try to balance career and home responsibilities. A survey was taken of 335 women administrators in 56 public colleges and universities in 5 southern states. Twenty women of the 8 percent who responded were interviewed. Results showed…

  10. Balancing Act: Motherhood, Marriage, and Employment among American Women.

    ERIC Educational Resources Information Center

    Spain, Daphne; Bianchi, Suzanne M.

    Data collected by the U.S. Census Bureau (the Current Population Survey and Survey of Income and Program Participation) and other federal agencies were used to examine trends in the ways different cohorts of women born between 1906 and 1975 have attempted to balance motherhood, marriage, and employment. The study focused on the following:…

  11. Abrupt Shift in the Observed Runoff from the Southwest Greenland Ice Sheet?

    NASA Astrophysics Data System (ADS)

    Ahlstrom, A.; Petersen, D.; Box, J.; Langen, P. P.; Citterio, M.

    2016-12-01

    Mass loss of the Greenland ice sheet has contributed significantly to sea level rise in recent years and is considered a crucial parameter when estimating the impact of future climate change. Few observational records of sufficient length exist to validate surface mass balance models, especially the estimated runoff. Here we present an observation time series from 1975-2014 of discharge from a large proglacial lake, Tasersiaq, in West Greenland (66.3°N, 50.4°W) with a mainly ice-covered catchment. We argue that the discharge time series is representative measure of ice sheet runoff, making it the only observational record of runoff to exceed the 30-year period needed to assess the climatological state of the ice sheet. We proceed to isolate the runoff part of the signal from precipitation and identified glacial lake outburst floods from a small sub-catchment. Similarly, the impact from major volcanic eruptions is clearly identified. We examine the trend and annual variability in the annual discharge, relating it to likely atmospheric forcing mechanisms and compare the observational time series with modelled runoff from the regional climate model HIRHAM.

  12. Residual-stress-induced grain growth of twinned grains and its effect on formability of magnesium alloy sheet at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Se-Jong; Kim, Daeyong, E-mail: daeyong@kims.re.kr; Lee, Keunho

    2015-11-15

    A magnesium alloy sheet was subjected to in-plane compression along with a vertical load to avoid buckling during compression. Pre-compressed specimens machined from the sheet were annealed at different temperatures and the changes in microstructure and texture were observed using electron back scattered diffraction (EBSD). Twinned grains preferentially grew during annealing at 300 °C, so that a strong texture with the < 0001 > direction parallel to the transverse direction developed. EBSD analysis confirmed that the friction caused by the vertical load induced inhomogeneous distribution of residual stress, which acted as an additional driving force for preferential grain growth ofmore » twinned grain during annealing. The annealed specimen showed excellent formability. - Highlights: • A magnesium alloy sheet subjected to in-plane compression under a vertical load • The vertical load induced inhomogeneous distribution of the residual stress. • The residual stress acted as an additional driving force for grain growth. • The annealed specimen with strong non-basal texture showed excellent formability.« less

  13. Cell sheet mechanics: How geometrical constraints induce the detachment of cell sheets from concave surfaces.

    PubMed

    Yamashita, Tadahiro; Kollmannsberger, Philip; Mawatari, Kazuma; Kitamori, Takehiko; Vogel, Viola

    2016-11-01

    Despite of the progress made to engineer structured microtissues such as BioMEMS and 3D bioprinting, little control exists how microtissues transform as they mature, as the misbalance between cell-generated forces and the strength of cell-cell and cell-substrate contacts can result in unintended tissue deformations and ruptures. To develop a quantitative perspective on how cellular contractility, scaffold curvature and cell-substrate adhesion control such rupture processes, human aortic smooth muscle cells were grown on glass substrates with submillimeter semichannels. We quantified cell sheet detachment from 3D confocal image stacks as a function of channel curvature and cell sheet tension by adding different amounts of Blebbistatin and TGF-β to inhibit or enhance cell contractility, respectively. We found that both higher curvature and higher contractility increased the detachment probability. Variations of the adhesive strength of the protein coating on the substrate revealed that the rupture plane was localized along the substrate-extracellular matrix interface for non-covalently adsorbed adhesion proteins, while the collagen-integrin interface ruptured when collagen I was covalently crosslinked to the substrate. Finally, a simple mechanical model is introduced that quantitatively explains how the tuning of substrate curvature, cell sheet contractility and adhesive strength can be used as tunable parameters as summarized in a first semi-quantitative phase diagram. These parameters can thus be exploited to either inhibit or purposefully induce a collective detachment of sheet-like microtissues for the use in tissue engineering and regenerative therapies. Despite of the significant progress in 3D tissue fabrication technologies at the microscale, there is still no quantitative model that can predict if cells seeded on a 3D structure maintain the imposed geometry while they form a continuous microtissue. Especially, detachment or loss of shape control of growing

  14. 17 CFR 256.01-13 - Submission of questions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... UTILITY HOLDING COMPANY ACT OF 1935 General Instructions § 256.01-13 Submission of questions. To promote... consideration and decision. Balance Sheet Accounts: Assets and Other Debit Accounts 1. service company property ...

  15. 18 CFR 367.2330 - Account 233, Notes payable to associate companies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... POWER ACT AND NATURAL GAS ACT Balance Sheet Chart of Accounts Current and Accrued Liabilities § 367.2330... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 233, Notes payable to associate companies. 367.2330 Section 367.2330 Conservation of Power and Water Resources...

  16. 18 CFR 367.2430 - Account 243, Obligations under capital leases-Current.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... POWER ACT AND NATURAL GAS ACT Balance Sheet Chart of Accounts Current and Accrued Liabilities § 367.2430... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 243, Obligations under capital leases-Current. 367.2430 Section 367.2430 Conservation of Power and Water Resources...

  17. 18 CFR 367.1460 - Account 146, Accounts receivable from associate companies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... POWER ACT AND NATURAL GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367.1460... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 146, Accounts receivable from associate companies. 367.1460 Section 367.1460 Conservation of Power and Water Resources...

  18. 18 CFR 367.1740 - Account 174, Miscellaneous current and accrued assets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... POWER ACT AND NATURAL GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367.1740... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 174, Miscellaneous current and accrued assets. 367.1740 Section 367.1740 Conservation of Power and Water Resources...

  19. 18 CFR 367.1890 - Account 189, Unamortized loss on reacquired debt.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... POWER ACT AND NATURAL GAS ACT Balance Sheet Chart of Accounts Deferred Debits § 367.1890 Account 189... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 189, Unamortized loss on reacquired debt. 367.1890 Section 367.1890 Conservation of Power and Water Resources...

  20. 18 CFR 367.2340 - Account 234, Accounts payable to associate companies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... POWER ACT AND NATURAL GAS ACT Balance Sheet Chart of Accounts Current and Accrued Liabilities § 367.2340... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 234, Accounts payable to associate companies. 367.2340 Section 367.2340 Conservation of Power and Water Resources...

  1. 18 CFR 367.2270 - Account 227, Obligations under capital lease-Non-current.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., FEDERAL POWER ACT AND NATURAL GAS ACT Balance Sheet Chart of Accounts Other Noncurrent Liabilities § 367... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 227, Obligations under capital lease-Non-current. 367.2270 Section 367.2270 Conservation of Power and Water...

  2. 18 CFR 367.1450 - Account 145, Notes receivable from associate companies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... POWER ACT AND NATURAL GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367.1450... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 145, Notes receivable from associate companies. 367.1450 Section 367.1450 Conservation of Power and Water Resources...

  3. Evaluation of Ice sheet evolution and coastline changes from 1960s in Amery Ice Shelf using multi-source remote sensing images

    NASA Astrophysics Data System (ADS)

    Qiao, G.; Ye, W.; Scaioni, M.; Liu, S.; Feng, T.; Liu, Y.; Tong, X.; Li, R.

    2013-12-01

    Global change is one of the major challenges that all the nations are commonly facing, and the Antarctica ice sheet changes have been playing a critical role in the global change research field during the past years. Long time-series of ice sheet observations in Antarctica would contribute to the quantitative evaluation and precise prediction of the effects on global change induced by the ice sheet, of which the remote sensing technology would make critical contributions. As the biggest ice shelf and one of the dominant drainage systems in East Antarctic, the Amery Ice Shelf has been making significant contributions to the mass balance of the Antarctic. Study of Amery Ice shelf changes would advance the understanding of Antarctic ice shelf evolution as well as the overall mass balance. At the same time, as one of the important indicators of Antarctica ice sheet characteristics, coastlines that can be detected from remote sensing imagery can help reveal the nature of the changes of ice sheet evolution. Most of the scientific research on Antarctica with satellite remote sensing dated from 1970s after LANDSAT satellite was brought into operation. It was the declassification of the cold war satellite reconnaissance photographs in 1995, known as Declassified Intelligence Satellite Photograph (DISP) that provided a direct overall view of the Antarctica ice-sheet's configuration in 1960s, greatly extending the time span of Antarctica surface observations. This paper will present the evaluation of ice-sheet evolution and coastline changes in Amery Ice Shelf from 1960s, by using multi-source remote sensing images including the DISP images and the modern optical satellite images. The DISP images scanned from negatives were first interior-oriented with the associated parameters, and then bundle block adjustment technology was employed based on the tie points and control points, to derive the mosaic image of the research region. Experimental results of coastlines generated

  4. A Microsample Tensile Test Application: Local Strength of Impact Welds Between Sheet Metals

    NASA Astrophysics Data System (ADS)

    Benzing, J. T.; He, M.; Vivek, A.; Taber, G. A.; Mills, M. J.; Daehn, G. S.

    2017-03-01

    Microsample tensile testing was conducted to evaluate the quality of impact welds created by vaporizing foil actuator welding. Tensile test samples with a gauge length of 0.6 mm were electro-discharge machined out of welds created between 1-mm-thick aluminum alloy type 6061 (AA6061) sheets and 6-mm-thick copper (Cu110) plates. Aluminum sheets were used as flyers, while copper plates acted as targets. Flyer sheets in T6 as well as T4 temper conditions were utilized to create welds. Some of the welds made with T4 temper flyers were heat treated to a T6 temper. It was found that the welds made with T4 temper flyers were slightly stronger (max. of 270 MPa) than those produced with T6 temper flyers. Generally, failure propagated in a brittle manner across the weld interface; however, elemental mapping reveals material transfer on either member of the welded system. This work proves the feasibility to apply microsample tensile testing to assess impact welding, even when conducted with flyer sheets of 1 mm or less, and provides insight that is complementary to other test methods.

  5. The Management of Diversity in Schools--A Balancing Act

    ERIC Educational Resources Information Center

    van Vuuren, Herman J.; van der Westhuizen, Philip C.; van der Walt, J. L.

    2012-01-01

    The authors contend that diversity and its counter-pole universality as such cannot be managed in the normal sense of the word. What can be managed though is the balance between these two poles. Over-emphasis of the one to the detriment of the other will in the long run somehow be penalized. A conceptual-theoretical framework is provided in which…

  6. Assessment of climate variability of the Greenland ice sheet: Integration of in situ and satellite data

    NASA Technical Reports Server (NTRS)

    Steffen, K.; Abdalati, W.; Stroeve, J.; Stober, M.; Nolin, A.; Key, J.

    1995-01-01

    The proposed research involves the application of multispectral satellite data in combination with ground truth measurements to monitor surface properties of the Greenland ice sheet which are essential for describing the energy and mass of the ice sheet. Several key components of the energy balance are parameterized using satellite data and in situ measurements. The analysis will be done for a ten year time period in order to get statistics on the seasonal and interannual variations of the surface processes and the climatology. Our goal is to investigate to what accuracy and over what geographic areas large scale snow properties and radiative fluxes can be derived based upon a combination of available remote sensing and meterological data sets. Data analysis showed the following results: (1)cloud classification based on longwave sky radiation revealed that overcast sky occurred for 25% of the time in winter, and for 15% in spring and summer respectively (winter and summer both show the same occurrence of clear sky of approximately 26%); (2) comparison of aerodynamic profile method with eddy correlation method to derive sensible and latent heat flux showed good agreement in the diurnal cycle and the turbulent fluxes were underestimated with the aerodynamic method by 10 - 30% as compared to the in situ eddy flux method; (3) the katabatic wind shows a distinct diurnal cycle with a maximum in the morning (7-9 h solar time) and a minimum in the later afternoon (18 h solar time); (4) snow grain size was modeled with a surface energy balance model (SNTHERM) and compared with in situ measurements. Sharp decreases in the modeled snow grain size, caused by accumulation events such as precipitation and deposition, could be verified with observational data; (4) radiative transfer modeling of firn supports our beliefs that the observed trends in 18 and 19 GHz passive microwave brightness temperatures are attributable to accumulation rate changes (modeling also indicates the

  7. Guidelines Regarding §16 of the German Transplantation Act - Initial Experiences with Structured Reporting.

    PubMed

    Pinto Dos Santos, Daniel; Arnhold, Gordon; Mildenberger, Peter; Düber, Christoph; Kloeckner, Roman

    2017-12-01

    Purpose  To transfer the report sheet from the guidelines regarding the German Transplantation Act to a standards-compliant report template and to evaluate it in the clinical routine. Materials and Methods  The template was developed using the freely available software brackets.io. It was implemented in the clinical routine using a reporting platform developed in-house. Interfaces to the department RIS and PACS allowed for integration into the usual reporting workflow. The evaluation period was 70 days. Results  Developing the template for implementation of the guidelines was possible without any difficulties. The content of the report sheet provided in the guidelines was transferred one to one. Additionally, a text field was included to allow for further remarks. In the period under review, 7 radiologists performed 44 evaluations in line with § 16 of the German Transplantation Act. Users of the template, referring physicians and the employees of the transplantation office reported a high degree of satisfaction. Conclusion  Implementing report sheets that are required by law (e. g. in the guidelines regarding § 16 of the German Transplantation Act) in the clinical routine electronically is easy and achieves a high degree of acceptance. The standard supported by the German Radiological Society (IHE - "Management of radiology report templates") allows for a quick response to the growing demand for structured and standardized reporting. Key Points   · Report sheets as required by law can easily be incorporated electronically into the clinical routine.. · Templates for structured reporting as supported by the German Radiological Society allow for a quick response to the growing demand for standardized reporting.. · Radiologists as well as referring physicians report a high degree of satisfaction with the electronic version of the report sheet.. Citation Format · Pinto dos Santos D, Arnhold G, Mildenberger P et al. Guidelines Regarding §16 of

  8. Summary of the Privacy Act

    EPA Pesticide Factsheets

    The purpose of the Privacy Act is to balance the government's need to maintain information about individuals with the rights of individuals to be protected against unwarranted invasions of their privacy.

  9. A Climate-Data Record (CDR) of the "Clear-Sky" Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Comiso, Josefino C.; DiGirolamo, Nocolo E.; Shuman, Christopher A.

    2011-01-01

    We have developed a climate-data record (CDR) of "clear-sky" ice-surface temperature (IST) of the Greenland Ice Sheet using Moderate-Resolution Imaging Spectroradiometer (MODIS) data. The CDR provides daily and monthly-mean IST from March 2000 through December 2010 on a polar stereographic projection at a resolution of 6.25 km. The CDR is amenable to extension into the future using Visible/Infrared Imager Radiometer Suite (VIIRS) data. Regional "clear-sky" surface temperature increases since the early 1980s in the Arctic, measured using Advanced Very High Resolution Radiometer (AVHRR) infrared data, range from 0.57 +/- 0.02 to 0.72 +/- 0.1 c per decade. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near O C during the melt season, and is thus vulnerable to rapid melting if temperatures continue to increase. An increase in melting of the ice sheet would accelerate sea-level rise, an issue affecting potentially billions of people worldwide. The IST CDR will provide a convenient data set for modelers and for climatologists to track changes of the surface temperature of the ice sheet as a whole and of the individual drainage basins on the ice sheet. The daily and monthly maps will provide information on surface melt as well as "clear-sky" temperature. The CDR will be further validated by comparing results with automatic-weather station data and with satellite-derived surface-temperature products.

  10. Numerical simulations of the Cordilleran ice sheet through the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Seguinot, Julien; Rogozhina, Irina; Stroeven, Arjen P.; Margold, Martin; Kleman, Johan

    2016-03-01

    After more than a century of geological research, the Cordilleran ice sheet of North America remains among the least understood in terms of its former extent, volume, and dynamics. Because of the mountainous topography on which the ice sheet formed, geological studies have often had only local or regional relevance and shown such a complexity that ice-sheet-wide spatial reconstructions of advance and retreat patterns are lacking. Here we use a numerical ice sheet model calibrated against field-based evidence to attempt a quantitative reconstruction of the Cordilleran ice sheet history through the last glacial cycle. A series of simulations is driven by time-dependent temperature offsets from six proxy records located around the globe. Although this approach reveals large variations in model response to evolving climate forcing, all simulations produce two major glaciations during marine oxygen isotope stages 4 (62.2-56.9 ka) and 2 (23.2-16.9 ka). The timing of glaciation is better reproduced using temperature reconstructions from Greenland and Antarctic ice cores than from regional oceanic sediment cores. During most of the last glacial cycle, the modelled ice cover is discontinuous and restricted to high mountain areas. However, widespread precipitation over the Skeena Mountains favours the persistence of a central ice dome throughout the glacial cycle. It acts as a nucleation centre before the Last Glacial Maximum and hosts the last remains of Cordilleran ice until the middle Holocene (6.7 ka).

  11. High resolution (1 km) positive degree-day modelling of Greenland ice sheet surface mass balance, 1870–2012 using reanalysis data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilton, David J.; Jowett, Amy; Hanna, Edward

    Here, we show results from a positive degree-day (PDD) model of Greenland ice sheet (GrIS) surface mass balance (SMB), 1870–2012, forced with reanalysis data. The model includes an improved daily temperature parameterization as compared with a previous version and is run at 1 km rather than 5 km resolution. The improvements lead overall to higher SMB with the same forcing data. We also compare our model with results from two regional climate models (RCMs). While there is good qualitative agreement between our PDD model and the RCMs, it usually results in lower precipitation and lower runoff but approximately equivalent SMB:more » mean 1979–2012 SMB (± standard deviation), in Gt a –1, is 382 ± 78 in the PDD model, compared with 379 ± 101 and 425 ± 90 for the RCMs. Comparison with in situ SMB observations suggests that the RCMs may be more accurate than PDD at local level, in some areas, although the latter generally compares well. Dividing the GrIS into seven drainage basins we show that SMB has decreased sharply in all regions since 2000. Finally we show correlation between runoff close to two calving glaciers and either calving front retreat or calving flux, this being most noticeable from the mid-1990s.« less

  12. High resolution (1 km) positive degree-day modelling of Greenland ice sheet surface mass balance, 1870–2012 using reanalysis data

    DOE PAGES

    Wilton, David J.; Jowett, Amy; Hanna, Edward; ...

    2016-12-15

    Here, we show results from a positive degree-day (PDD) model of Greenland ice sheet (GrIS) surface mass balance (SMB), 1870–2012, forced with reanalysis data. The model includes an improved daily temperature parameterization as compared with a previous version and is run at 1 km rather than 5 km resolution. The improvements lead overall to higher SMB with the same forcing data. We also compare our model with results from two regional climate models (RCMs). While there is good qualitative agreement between our PDD model and the RCMs, it usually results in lower precipitation and lower runoff but approximately equivalent SMB:more » mean 1979–2012 SMB (± standard deviation), in Gt a –1, is 382 ± 78 in the PDD model, compared with 379 ± 101 and 425 ± 90 for the RCMs. Comparison with in situ SMB observations suggests that the RCMs may be more accurate than PDD at local level, in some areas, although the latter generally compares well. Dividing the GrIS into seven drainage basins we show that SMB has decreased sharply in all regions since 2000. Finally we show correlation between runoff close to two calving glaciers and either calving front retreat or calving flux, this being most noticeable from the mid-1990s.« less

  13. Oceanic Low Blows Hitting Ice Sheets Where It Hurts

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert

    2006-01-01

    The recent acceleration, thinning and retreat of large outlet glaciers in both Antarctica and Greenland is altering the mass balance of these two large ice sheets and increasing their contribution to rising sea level. In this short Perspective solicited by Science for a special March 24th issue on sea level change, I argue that the cause of these bihemispheric changes is that warmer water has gained access to the undersides of these glaciers where they come afloat from the continent. This process is particularly effective at accelerating glaciers because the beds of the large outlet glaciers are well below sea level (1000 meters or more) but "guarded" downstream by a shallow moraine formed when the glacier was more advanced. Once warmer water can breach this moraine, it sinks in the colder, fresh water behind the moraine and reaches the submarine front of the glacier. The pressure melting effect lowers the melting point of this deep ice allowing the warmer water to melt ice at rates of many tens of meters per year. This melting reduces . the frictional hold of the bed on the ice, allowing the ice to accelerate in agreement with the observations, Hansen has discussed the likelihood that approximately half of the Earth's radiation imbalance is manifesting in warmer ocean waters and Levitus et al. have seen warming in ocean temperature measurements at mid and low latitudes. The behavior of these outlet glaciers indicates this ocean warmth is reaching polar waters. The prognosis is for a continuation of this process, more negative ice sheet mass balances and increased rates of sea level rise.

  14. Boiler MACT Technical Assistance (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-03-01

    Fact sheet describing the changes to Environmental Protection Act process standards. The DOE will offer technical assistance to ensure that major sources burning coal and oil have information on cost-effective, clean energy strategies for compliance, and to promote cleaner, more efficient boiler burning to cut harmful pollution and reduce operational costs. The U.S. Environmental Protection Agency (EPA) is expected to finalize the reconsideration process for its Clean Air Act pollution standards National Emissions Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters (known as Boiler Maximum Achievable Control Technology (MACT)), in Spring 2012.more » This rule applies to large and small boilers in a wide range of industrial facilities and institutions. The U.S. Department of Energy (DOE) will offer technical assistance to ensure that major sources burning coal or oil have information on cost-effective clean energy strategies for compliance, including combined heat and power, and to promote cleaner, more efficient boilers to cut harmful pollution and reduce operational costs.« less

  15. Non-linear optical flow cytometry using a scanned, Bessel beam light-sheet.

    PubMed

    Collier, Bradley B; Awasthi, Samir; Lieu, Deborah K; Chan, James W

    2015-05-29

    Modern flow cytometry instruments have become vital tools for high-throughput analysis of single cells. However, as issues with the cellular labeling techniques often used in flow cytometry have become more of a concern, the development of label-free modalities for cellular analysis is increasingly desired. Non-linear optical phenomena (NLO) are of growing interest for label-free analysis because of the ability to measure the intrinsic optical response of biomolecules found in cells. We demonstrate that a light-sheet consisting of a scanned Bessel beam is an optimal excitation geometry for efficiently generating NLO signals in a microfluidic environment. The balance of photon density and cross-sectional area provided by the light-sheet allowed significantly larger two-photon fluorescence intensities to be measured in a model polystyrene microparticle system compared to measurements made using other excitation focal geometries, including a relaxed Gaussian excitation beam often used in conventional flow cytometers.

  16. Transporter for Treated Sheet Materials

    NASA Technical Reports Server (NTRS)

    Pollack, M., H.

    1983-01-01

    Plastic spacers keep parts separated during transport or storage. Cart with rods and spacers holds sheets with delicate finishes for storage or transport. Sheets supported vertically by rods, or horizontally. Spacers keep sheets separated. Designed to eliminate time and expense of tapping, wrapping, and sometimes refinishing aluminum sheets with delicate anodized finished.

  17. Perforating Thin Metal Sheets

    NASA Technical Reports Server (NTRS)

    Davidson, M. E.

    1985-01-01

    Sheets only few mils thick bonded together, punched, then debonded. Three-step process yields perforated sheets of metal. (1): Individual sheets bonded together to form laminate. (2): laminate perforated in desired geometric pattern. (3): After baking, laminate separates into individual sheets. Developed for fabricating conductive layer on blankets that collect and remove ions; however, perforated foils have other applications - as conductive surfaces on insulating materials; stiffeners and conductors in plastic laminates; reflectors in antenna dishes; supports for thermal blankets; lightweight grille cover materials; and material for mockup of components.

  18. 18 CFR 367.2250 - Account 225, Unamortized premium on long-term debt.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... POWER ACT AND NATURAL GAS ACT Balance Sheet Chart of Accounts Long-Term Debt § 367.2250 Account 225... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 225, Unamortized premium on long-term debt. 367.2250 Section 367.2250 Conservation of Power and Water Resources...

  19. 18 CFR 367.2260 - Account 226, Unamortized discount on long-term debt-Debit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., FEDERAL POWER ACT AND NATURAL GAS ACT Balance Sheet Chart of Accounts Long-Term Debt § 367.2260 Account... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 226, Unamortized discount on long-term debt-Debit. 367.2260 Section 367.2260 Conservation of Power and Water...

  20. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets.

    PubMed

    Pritchard, Hamish D; Arthern, Robert J; Vaughan, David G; Edwards, Laura A

    2009-10-15

    Many glaciers along the margins of the Greenland and Antarctic ice sheets are accelerating and, for this reason, contribute increasingly to global sea-level rise. Globally, ice losses contribute approximately 1.8 mm yr(-1) (ref. 8), but this could increase if the retreat of ice shelves and tidewater glaciers further enhances the loss of grounded ice or initiates the large-scale collapse of vulnerable parts of the ice sheets. Ice loss as a result of accelerated flow, known as dynamic thinning, is so poorly understood that its potential contribution to sea level over the twenty-first century remains unpredictable. Thinning on the ice-sheet scale has been monitored by using repeat satellite altimetry observations to track small changes in surface elevation, but previous sensors could not resolve most fast-flowing coastal glaciers. Here we report the use of high-resolution ICESat (Ice, Cloud and land Elevation Satellite) laser altimetry to map change along the entire grounded margins of the Greenland and Antarctic ice sheets. To isolate the dynamic signal, we compare rates of elevation change from both fast-flowing and slow-flowing ice with those expected from surface mass-balance fluctuations. We find that dynamic thinning of glaciers now reaches all latitudes in Greenland, has intensified on key Antarctic grounding lines, has endured for decades after ice-shelf collapse, penetrates far into the interior of each ice sheet and is spreading as ice shelves thin by ocean-driven melt. In Greenland, glaciers flowing faster than 100 m yr(-1) thinned at an average rate of 0.84 m yr(-1), and in the Amundsen Sea embayment of Antarctica, thinning exceeded 9.0 m yr(-1) for some glaciers. Our results show that the most profound changes in the ice sheets currently result from glacier dynamics at ocean margins.

  1. Capillary origami: spontaneous wrapping of a droplet with an elastic sheet.

    PubMed

    Py, Charlotte; Reverdy, Paul; Doppler, Lionel; Bico, José; Roman, Benoît; Baroud, Charles N

    2007-04-13

    The interaction between elasticity and capillarity is used to produce three-dimensional structures through the wrapping of a liquid droplet by a planar sheet. The final encapsulated 3D shape is controlled by tailoring the initial geometry of the flat membrane. Balancing interfacial energy with elastic bending energy provides a critical length scale below which encapsulation cannot occur, which is verified experimentally. This length is found to depend on the thickness as h3/2, a scaling favorable to miniaturization which suggests a new way of mass production of 3D micro- or nanoscale objects.

  2. 17. INTAKE PIER, BRIDGE STRESS SHEET, SHEET 8 OF 117, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. INTAKE PIER, BRIDGE STRESS SHEET, SHEET 8 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  3. Last Interglacial climate and sea-level evolution from a coupled ice sheet-climate model

    NASA Astrophysics Data System (ADS)

    Goelzer, Heiko; Huybrechts, Philippe; Loutre, Marie-France; Fichefet, Thierry

    2016-12-01

    As the most recent warm period in Earth's history with a sea-level stand higher than present, the Last Interglacial (LIG, ˜ 130 to 115 kyr BP) is often considered a prime example to study the impact of a warmer climate on the two polar ice sheets remaining today. Here we simulate the Last Interglacial climate, ice sheet, and sea-level evolution with the Earth system model of intermediate complexity LOVECLIM v.1.3, which includes dynamic and fully coupled components representing the atmosphere, the ocean and sea ice, the terrestrial biosphere, and the Greenland and Antarctic ice sheets. In this setup, sea-level evolution and climate-ice sheet interactions are modelled in a consistent framework.Surface mass balance change governed by changes in surface meltwater runoff is the dominant forcing for the Greenland ice sheet, which shows a peak sea-level contribution of 1.4 m at 123 kyr BP in the reference experiment. Our results indicate that ice sheet-climate feedbacks play an important role to amplify climate and sea-level changes in the Northern Hemisphere. The sensitivity of the Greenland ice sheet to surface temperature changes considerably increases when interactive albedo changes are considered. Southern Hemisphere polar and sub-polar ocean warming is limited throughout the Last Interglacial, and surface and sub-shelf melting exerts only a minor control on the Antarctic sea-level contribution with a peak of 4.4 m at 125 kyr BP. Retreat of the Antarctic ice sheet at the onset of the LIG is mainly forced by rising sea level and to a lesser extent by reduced ice shelf viscosity as the surface temperature increases. Global sea level shows a peak of 5.3 m at 124.5 kyr BP, which includes a minor contribution of 0.35 m from oceanic thermal expansion. Neither the individual contributions nor the total modelled sea-level stand show fast multi-millennial timescale variations as indicated by some reconstructions.

  4. Minimum and Maximum Potential Contributions to Future Sea Level Rise from Polar Ice Sheets

    NASA Astrophysics Data System (ADS)

    Deconto, R. M.; Pollard, D.

    2017-12-01

    New climate and ice-sheet modeling, calibrated to past changes in sea-level, is painting a stark picture of the future fate of the great polar ice sheets if greenhouse gas emissions continue unabated. This is especially true for Antarctica, where a substantial fraction of the ice sheet rests on bedrock more than 500-meters below sea level. Here, we explore the sensitivity of the polar ice sheets to a warming atmosphere and ocean under a range of future greenhouse gas emissions scenarios. The ice sheet-climate-ocean model used here considers time-evolving changes in surface mass balance and sub-ice oceanic melting, ice deformation, grounding line retreat on reverse-sloped bedrock (Marine Ice Sheet Instability), and newly added processes including hydrofracturing of ice shelves in response to surface meltwater and rain, and structural collapse of thick, marine-terminating ice margins with tall ice-cliff faces (Marine Ice Cliff Instability). The simulations improve on previous work by using 1) improved atmospheric forcing from a Regional Climate Model and 2) a much wider range of model physical parameters within the bounds of modern observations of ice dynamical processes (particularly calving rates) and paleo constraints on past ice-sheet response to warming. Approaches to more precisely define the climatic thresholds capable of triggering rapid and potentially irreversible ice-sheet retreat are also discussed, as is the potential for aggressive mitigation strategies like those discussed at the 2015 Paris Climate Conference (COP21) to substantially reduce the risk of extreme sea-level rise. These results, including physics that consider both ice deformation (creep) and calving (mechanical failure of marine terminating ice) expand on previously estimated limits of maximum rates of future sea level rise based solely on kinematic constraints of glacier flow. At the high end, the new results show the potential for more than 2m of global mean sea level rise by 2100

  5. FDTD modeling of thin impedance sheets

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond; Kunz, Karl

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. It is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods. These sheets are characterized by a discontinuity in the tangential magnetic field on either side of the sheet but no discontinuity in tangential electric field. This continuity, or single valued behavior of the electric field, allows the sheet current to be expressed in terms of an impedance multiplying this electric field.

  6. Cell Sheet-Based Tissue Engineering for Organizing Anisotropic Tissue Constructs Produced Using Microfabricated Thermoresponsive Substrates.

    PubMed

    Takahashi, Hironobu; Okano, Teruo

    2015-11-18

    In some native tissues, appropriate microstructures, including orientation of the cell/extracellular matrix, provide specific mechanical and biological functions. For example, skeletal muscle is made of oriented myofibers that is responsible for the mechanical function. Native artery and myocardial tissues are organized three-dimensionally by stacking sheet-like tissues of aligned cells. Therefore, to construct any kind of complex tissue, the microstructures of cells such as myotubes, smooth muscle cells, and cardiomyocytes also need to be organized three-dimensionally just as in the native tissues of the body. Cell sheet-based tissue engineering allows the production of scaffold-free engineered tissues through a layer-by-layer construction technique. Recently, using microfabricated thermoresponsive substrates, aligned cells are being harvested as single continuous cell sheets. The cell sheets act as anisotropic tissue units to build three-dimensional tissue constructs with the appropriate anisotropy. This cell sheet-based technology is straightforward and has the potential to engineer a wide variety of complex tissues. In addition, due to the scaffold-free cell-dense environment, the physical and biological cell-cell interactions of these cell sheet constructs exhibit unique cell behaviors. These advantages will provide important clues to enable the production of well-organized tissues that closely mimic the structure and function of native tissues, required for the future of tissue engineering. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Climatic impact of glacial cycle polar motion: Coupled oscillations of ice sheet mass and rotation pole position

    USGS Publications Warehouse

    Bills, Bruce G.; James, Thomas S.; Mengel, John G.

    1999-01-01

    Precessional motion of Earth's rotation axis relative to its orbit is a well-known source of long-period climatic variation. It is less well appreciated that growth and decay of polar ice sheets perturb the symmetry of the global mass distribution enough that the geographic location of the rotation axis will change by at least 15 km and possibly as much as 100 km during a single glacial cycle. This motion of the pole will change the seasonal and latitudinal pattern of temperatures. We present calculations, based on a diurnal average energy balance, which compare the summer and winter temperature anomalies due to a 1° decrease in obliquity with those due to a 1° motion of the rotation pole toward Hudson Bay. Both effects result in peak temperature perturbations of about 1° Celsius. The obliquity change primarily influences the amplitude of the seasonal cycle, while the polar motion primarily changes the annual mean temperatures. The polar motion induced temperature anomaly is such that it will act as a powerful negative feedback on ice sheet growth. We also explore the evolution of the coupled system composed of ice sheet mass and pole position. Oscillatory solutions result from the conflicting constraints of rotational and thermal stability. A positive mass anomaly on an otherwise featureless Earth is in rotational equilibrium only at the poles or the equator. The two polar equilibria are rotationally unstable, and the equatorial equilibrium, though rotationally stable, is thermally unstable. We find that with a plausible choice for the strength of coupling between the thermal and rotational systems, relatively modest external forcing can produce significant response at periods of 104–106 years, but it strongly attenuates polar motion at longer periods. We suggest that these coupled oscillations may contribute to the observed dominance of 100 kyr glacial cycles since the mid-Pleistocene and will tend to stabilize geographic patterns that are suitable to

  8. Coupled ice sheet - climate simulations of the last glacial inception and last glacial maximum with a model of intermediate complexity that includes a dynamical downscaling of heat and moisture

    NASA Astrophysics Data System (ADS)

    Quiquet, Aurélien; Roche, Didier M.

    2017-04-01

    Comprehensive fully coupled ice sheet - climate models allowing for multi-millenia transient simulations are becoming available. They represent powerful tools to investigate ice sheet - climate interactions during the repeated retreats and advances of continental ice sheets of the Pleistocene. However, in such models, most of the time, the spatial resolution of the ice sheet model is one order of magnitude lower than the one of the atmospheric model. As such, orography-induced precipitation is only poorly represented. In this work, we briefly present the most recent improvements of the ice sheet - climate coupling within the model of intermediate complexity iLOVECLIM. On the one hand, from the native atmospheric resolution (T21), we have included a dynamical downscaling of heat and moisture at the ice sheet model resolution (40 km x 40 km). This downscaling accounts for feedbacks of sub-grid precipitation on large scale energy and water budgets. From the sub-grid atmospheric variables, we compute an ice sheet surface mass balance required by the ice sheet model. On the other hand, we also explicitly use oceanic temperatures to compute sub-shelf melting at a given depth. Based on palaeo evidences for rate of change of eustatic sea level, we discuss the capability of our new model to correctly simulate the last glacial inception ( 116 kaBP) and the ice volume of the last glacial maximum ( 21 kaBP). We show that the model performs well in certain areas (e.g. Canadian archipelago) but some model biases are consistent over time periods (e.g. Kara-Barents sector). We explore various model sensitivities (e.g. initial state, vegetation, albedo) and we discuss the importance of the downscaling of precipitation for ice nucleation over elevated area and for the surface mass balance of larger ice sheets.

  9. Free oscillations in a climate model with ice-sheet dynamics

    NASA Technical Reports Server (NTRS)

    Kallen, E.; Crafoord, C.; Ghil, M.

    1979-01-01

    A study of stable periodic solutions to a simple nonlinear model of the ocean-atmosphere-ice system is presented. The model has two dependent variables: ocean-atmosphere temperature and latitudinal extent of the ice cover. No explicit dependence on latitude is considered in the model. Hence all variables depend only on time and the model consists of a coupled set of nonlinear ordinary differential equations. The globally averaged ocean-atmosphere temperature in the model is governed by the radiation balance. The reflectivity to incoming solar radiation, i.e., the planetary albedo, includes separate contributions from sea ice and from continental ice sheets. The major physical mechanisms active in the model are (1) albedo-temperature feedback, (2) continental ice-sheet dynamics and (3) precipitation-rate variations. The model has three-equilibrium solutions, two of which are linearly unstable, while one is linearly stable. For some choices of parameters, the stability picture changes and sustained, finite-amplitude oscillations obtain around the previously stable equilibrium solution. The physical interpretation of these oscillations points to the possibility of internal mechanisms playing a role in glaciation cycles.

  10. Method for heating a glass sheet

    DOEpatents

    Boaz, Premakaran Tucker

    1998-01-01

    A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed.

  11. The Emotional Balancing Act of Teaching: A Burnout Recovery Plan

    ERIC Educational Resources Information Center

    Sproles, Karyn Z.

    2018-01-01

    This chapter integrates two of the most influential authorities on teaching, Robert Boice and Parker Palmer, into the system's approach to teaching articulated by Douglas Robertson in order to help college teachers find sustainable balance by acknowledging and managing emotions in the classroom.

  12. Clinching for sheet materials

    PubMed Central

    He, Xiaocong

    2017-01-01

    Abstract Latest developments in the clinching of sheet materials are reviewed in this article. Important issues are discussed, such as tool design, process parameters and joinability of some new lightweight sheet materials. Hybrid and modified clinching processes are introduced to a general reader. Several unaddressed issues in the clinching of sheet materials are identified. PMID:28656065

  13. Liquid sheet radiator

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; White, K. Alan, III

    1987-01-01

    A new external flow radiator concept, the liquid sheet radiator (LSR), is introduced. The LSR sheet flow is described and an expression for the length/width (l/w), ratio is presented. A linear dependence of l/w on velocity is predicted that agrees with experimental results. Specific power for the LSR is calculated and is found to be nearly the same as the specific power of a liquid droplet radiator, (LDR). Several sheet thicknesses and widths were experimentally investigated. In no case was the flow found to be unstable.

  14. Bedrock Erosion Surfaces Record Former East Antarctic Ice Sheet Extent

    NASA Astrophysics Data System (ADS)

    Paxman, Guy J. G.; Jamieson, Stewart S. R.; Ferraccioli, Fausto; Bentley, Michael J.; Ross, Neil; Armadillo, Egidio; Gasson, Edward G. W.; Leitchenkov, German; DeConto, Robert M.

    2018-05-01

    East Antarctica hosts large subglacial basins into which the East Antarctic Ice Sheet (EAIS) likely retreated during past warmer climates. However, the extent of retreat remains poorly constrained, making quantifying past and predicted future contributions to global sea level rise from these marine basins challenging. Geomorphological analysis and flexural modeling within the Wilkes Subglacial Basin are used to reconstruct the ice margin during warm intervals of the Oligocene-Miocene. Flat-lying bedrock plateaus are indicative of an ice sheet margin positioned >400-500 km inland of the modern grounding zone for extended periods of the Oligocene-Miocene, equivalent to a 2-m rise in global sea level. Our findings imply that if major EAIS retreat occurs in the future, isostatic rebound will enable the plateau surfaces to act as seeding points for extensive ice rises, thus limiting extensive ice margin retreat of the scale seen during the early EAIS.

  15. Method for heating a glass sheet

    DOEpatents

    Boaz, P.T.

    1998-07-21

    A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed. 5 figs.

  16. Hydrostatic Paradox: Experimental Verification of Pressure Equilibrium

    ERIC Educational Resources Information Center

    Kodejška, C.; Ganci, S.; Ríha, J.; Sedlácková, H.

    2017-01-01

    This work is focused on the experimental verification of the balance between the atmospheric pressure acting on the sheet of paper, which encloses the cylinder completely or partially filled with water from below, where the hydrostatic pressure of the water column acts against the atmospheric pressure. First of all this paper solves a theoretical…

  17. Geometry of thin liquid sheet flows

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1994-01-01

    Incompresible, thin sheet flows have been of research interest for many years. Those studies were mainly concerned with the stability of the flow in a surrounding gas. Squire was the first to carry out a linear, invicid stability analysis of sheet flow in air and compare the results with experiment. Dombrowski and Fraser did an experimental study of the disintegration of sheet flows using several viscous liquids. They also detected the formulation of holes in their sheet flows. Hagerty and Shea carried out an inviscid stability analysis and calculated growth rates with experimental values. They compared their calculated growth rates with experimental values. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. Brown experimentally investigated thin liquid sheet flows as a method of application of thin films. Clark and Dumbrowski carried out second-order stability analysis for invicid sheet flows. Lin introduced viscosity into the linear stability analysis of thin sheet flows in a vacuum. Mansour and Chigier conducted an experimental study of the breakup of a sheet flow surrounded by high-speed air. Lin et al. did a linear stability analysis that included viscosity and a surrounding gas. Rangel and Sirignano carried out both a linear and nonlinear invisid stability analysis that applies for any density ratio between the sheet liquid and the surrounding gas. Now there is renewed interest in sheet flows because of their possible application as low mass radiating surfaces. The objective of this study is to investigate the fluid dynamics of sheet flows that are of interest for a space radiator system. Analytical expressions that govern the sheet geometry are compared with experimental results. Since a space radiator will operate in a vacuum, the analysis does not include any drag force on the sheet flow.

  18. 37 CFR 1.76 - Application data sheet.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Application data sheet. 1.76... Application data sheet. (a) Application data sheet. An application data sheet is a sheet or sheets, that may... bibliographic data, arranged in a format specified by the Office. An application data sheet must be titled...

  19. Women, Work and Health Hazards: A Fact Sheet and Cosmetologists: Health Risks at Work.

    ERIC Educational Resources Information Center

    National Commission on Working Women, Washington, DC.

    The first part of this document is a fact sheet that provides information on health hazards faced by employed women. It covers the Occupational Safety and Health Act (OSHA), job-related diseases suffered by workers in female-dominated occupations, employer responsibilities under OSHA, and the lack of statistical reporting on job-related disease.…

  20. Communication Fact Sheet.

    ERIC Educational Resources Information Center

    American Speech-Language-Hearing Association, Rockville, MD.

    This brief fact sheet examines key aspects of communication, communication disabilities, and intervention. The fact sheet addresses the following questions: the nature of communication; communication disabilities (definitions of hearing impairments and speech and language impairments are given); effects of communication disabilities (factors…

  1. Mammography with and without radiolucent positioning sheets: Comparison of projected breast area, pain experience, radiation dose and technical image quality.

    PubMed

    Timmers, Janine; Voorde, Marloes Ten; Engen, Ruben E van; Landsveld-Verhoeven, Cary van; Pijnappel, Ruud; Greve, Kitty Droogh-de; Heeten, Gerard J den; Broeders, Mireille J M

    2015-10-01

    To compare projected breast area, image quality, pain experience and radiation dose between mammography performed with and without radiolucent positioning sheets. 184 women screened in the Dutch breast screening programme (May-June 2012) provided written informed consent to have one additional image taken with positioning sheets. 5 cases were excluded (missing data). Pain was scored using the Numeric Rating Scale. Radiation dose was estimated using the Dance model and projected breast area using computer software. Two radiologists and two radiographers assessed image quality. With positioning sheets significantly more pectoral muscle, lateral and medial breast tissue was projected (CC-views) and more and deeper depicted pectoral muscle (MLO-views). In contrast, visibility of white and darker areas was better on images without positioning sheets, radiologists were therefore better able to detect abnormalities (MLO-views). Women experienced more pain with positioning sheets (MLO-views only, mean difference NRS 0.98; SD 1.71; p=0,00). Mammograms with positioning sheets showed more breast tissue. Increased breast thickness after compression with sheets resulted in less visibility of white and darker areas and thus reduced detection of abnormalities. Also, women experienced more pain (MLO-views) due to the sheet material. A practical consideration is the fact that more subcutaneous fat tissue and skin are being pulled forward leading to folds in the nipple area. On balance, improvement to the current design is required before implementation in screening practice can be considered. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Evaluation of changes in atmospheric and oceanic fluxes during continental ice sheet retreat

    NASA Astrophysics Data System (ADS)

    Martin, J.; Martin, E. E.; Deuerling, K. M.

    2017-12-01

    Extensive land areas were exposed across North America, Eurasia, and to a lesser extent Greenland as continental ice sheets retreated following the last glacial maximum. A transect of watersheds from the coast to the western Greenland Ice Sheet (GrIS) provides an opportunity to evaluate possible changes in oceanic solute fluxes and atmospheric CO2 exchange as ice sheets retreat. We evaluate these fluxes in one proglacial watershed (draining ice sheet runoff) and four deglaciated watersheds (draining local precipitation and permafrost melt). Sr isotope ratios indicate bedrock near the coast has experienced greater weathering than near the ice sheet. A mass balance model of the major element composition of stream water indicates weathering in deglaciated watersheds is dominated by carbonic acid dissolution of carbonate minerals near the ice sheet that switches to carbonic acid alteration of silicate minerals near the coast. In addition, weathering by sulfuric acid, derived from oxidative dissolution of sulfide minerals, increases from the ice sheet to the coast. These changes in the weathered minerals and weathering acids impact CO2 sequestration associated with weathering. Weathering consumes 350 to 550 µmol CO2/L in watersheds near the ice sheet, but close to the coast, consumes only 15 µmol CO2/L in one watershed and sources 140 µmol CO2/L to the atmosphere at another coastal watershed. The decreasing CO2 weathering sink from the GrIS to coast reflects decreased carbonic acid weathering and increased sulfuric acid weathering of carbonate minerals. The proglacial stream shows downstream variations in composition from mixing of two water sources, with only minor in-stream weathering, which consumes < 0.1 µmol CO2/L. Discharge from the deglaciated watersheds is currently unknown but their higher solute concentrations and CO2 exchange than proglacial systems suggest deglaciated watersheds dominate atmospheric fluxes of CO2 and oceanic solute fluxes. These results

  3. Building America Case Study: Balancing Hydronic Systems in Multifamily Buildings, Chicago, Illinois (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-09-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution and controls. The effects of imbalance include tenant discomfort, higher energy use intensity and inefficient building operation. This paper explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The research was conducted by The Partnership for Advanced Residential Retrofit (PARR) in conjunction with Elevate Energy. The team surveyed existingmore » knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61 degrees F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1 degrees F to 15.5 degrees F.« less

  4. 18 CFR 367.4330 - Account 433, Balance transferred from income.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 433, Balance transferred from income. 367.4330 Section 367.4330 Conservation of Power and Water Resources FEDERAL ENERGY... GAS ACT Retained Earnings Accounts § 367.4330 Account 433, Balance transferred from income. This...

  5. 18 CFR 367.4330 - Account 433, Balance transferred from income.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Account 433, Balance transferred from income. 367.4330 Section 367.4330 Conservation of Power and Water Resources FEDERAL ENERGY... GAS ACT Retained Earnings Accounts § 367.4330 Account 433, Balance transferred from income. This...

  6. Balancing Act: Bridging the Traditional and Technological Aspects of Culture through Art Education

    ERIC Educational Resources Information Center

    Lawton, Pamela Harris

    2007-01-01

    This paper addresses the benefits of connecting and balancing education in the visual arts and in technology through discussion of actual examples. This balanced connection accomplishes three goals: to further advance and enhance quality of life, to cultivate humane and ethical behaviors, and to initiate global dialogue on issues that matter among…

  7. Manufacture of a four-sheet complex component from different titanium alloys by superplastic forming

    NASA Astrophysics Data System (ADS)

    Allazadeh, M. R.; Zuelli, N.

    2017-10-01

    A superplastic forming (SPF) technology process was deployed to form a complex component with eight-pocket from a four-sheet sandwich panel sheetstock. Six sheetstock packs were composed of two core sheets made of Ti-6Al-4V or Ti-5Al-4Cr-4Mo-2Sn-2Zr titanium alloy and two skin sheets made of Ti-6Al-4V or Ti-6Al-2Sn-4Zr-2Mo titanium alloy in three different combinations. The sheets were welded with two subsequent welding patterns over the core and skin sheets to meet the required component's details. The applied welding methods were intermittent and continuous resistance seam welding for bonding the core sheets to each other and the skin sheets over the core panel, respectively. The final component configuration was predicted based on the die drawings and finite element method (FEM) simulations for the sandwich panels. An SPF system set-up with two inlet gas pipe feeding facilitated the trials to deliver two pressure-time load cycles acting simultaneously which were extracted from FEM analysis for specific forming temperature and strain rate. The SPF pressure-time cycles were optimized via GOM scanning and visually inspecting some sections of the packs in order to assess the levels of core panel formation during the inflation process of the sheetstock. Two sets of GOM scan results were compared via GOM software to inspect the surface and internal features of the inflated multisheet packs. The results highlighted the capability of the tested SPF process to form complex components from a flat multisheet pack made of different titanium alloys.

  8. Training Costs with Reference to the Industrial Training Act.

    ERIC Educational Resources Information Center

    Garbutt, Douglas

    Provisions and implications of the British Industrial Training Act of 1964 (including the system of training grants and levies) are set forth. Procedures for accounting and budgeting for training costs, routines for collecting training information, documents (budgets, cost sheets, control statements) for collecting and controlling costs, means of…

  9. Sensitivities of Greenland ice sheet volume inferred from an ice sheet adjoint model

    NASA Astrophysics Data System (ADS)

    Heimbach, P.; Bugnion, V.

    2009-04-01

    We present a new and original approach to understanding the sensitivity of the Greenland ice sheet to key model parameters and environmental conditions. At the heart of this approach is the use of an adjoint ice sheet model. Since its introduction by MacAyeal (1992), the adjoint method has become widespread to fit ice stream models to the increasing number and diversity of satellite observations, and to estimate uncertain model parameters such as basal conditions. However, no attempt has been made to extend this method to comprehensive ice sheet models. As a first step toward the use of adjoints of comprehensive three-dimensional ice sheet models we have generated an adjoint of the ice sheet model SICOPOLIS of Greve (1997). The adjoint was generated by means of the automatic differentiation (AD) tool TAF. The AD tool generates exact source code representing the tangent linear and adjoint model of the nonlinear parent model provided. Model sensitivities are given by the partial derivatives of a scalar-valued model diagnostic with respect to the controls, and can be efficiently calculated via the adjoint. By way of example, we determine the sensitivity of the total Greenland ice volume to various control variables, such as spatial fields of basal flow parameters, surface and basal forcings, and initial conditions. Reliability of the adjoint was tested through finite-difference perturbation calculations for various control variables and perturbation regions. Besides confirming qualitative aspects of ice sheet sensitivities, such as expected regional variations, we detect regions where model sensitivities are seemingly unexpected or counter-intuitive, albeit ``real'' in the sense of actual model behavior. An example is inferred regions where sensitivities of ice sheet volume to basal sliding coefficient are positive, i.e. where a local increase in basal sliding parameter increases the ice sheet volume. Similarly, positive ice temperature sensitivities in certain parts

  10. Microcomponent sheet architecture

    DOEpatents

    Wegeng, R.S.; Drost, M.K..; McDonald, C.E.

    1997-03-18

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation. 14 figs.

  11. Microcomponent sheet architecture

    DOEpatents

    Wegeng, Robert S.; Drost, M. Kevin; McDonald, Carolyn E.

    1997-01-01

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation.

  12. Greenland Ice Sheet Mass Balance: Distribution of Increased Mass Loss with Climate Warming; 2003-07 Versus 1992-2002

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Li, Jun; Benner, Anita C.; Beckley, Matthew; Cornejo, Helen G.; DiMarzio, John; Giovinetto, Mario B.; Neumann, Thomas A.; Robbins, John; Saba, Jack L.; hide

    2011-01-01

    We derive mass changes of the Greenland ice sheet (GIS) for 2003-07 from ICESat laser altimetry and compare them with results for 1992-2002 from ERS radar and airborne laser altimetry. The GIS continued to grow inland and thin at the margins during 2003 07, but surface melting and accelerated flow significantly increased the marginal thinning compared with the 1990s. The net balance changed from a small loss of 7 plus or minus 3 Gt a 1(sup -1) in the 1990s to 171 plus or minus 4 Gt a (sup -1) for 2003-07, contributing 0.5 mm a(sup -1) to recent global sea-level rise. We divide the derived mass changes into two components: (1) from changes in melting and ice dynamics and (2) from changes in precipitation and accumulation rate. We use our firn compaction model to calculate the elevation changes driven by changes in both temperature and accumulation rate and to calculate the appropriate density to convert the accumulation-driven changes to mass changes. Increased losses from melting and ice dynamics (17-206 Gt a(sup-1) are over seven times larger than increased gains from precipitation (10 35 Gt a(sup-1) during a warming period of approximately 2 K (10 a)(sup -1) over the GIS. Above 2000m elevation, the rate of gain decreased from 44 to 28 Gt a(sup-1), while below 2000m the rate of loss increased from 51 to 198 Gt a(sup-1). Enhanced thinning below the equilibrium line on outlet glaciers indicates that increased melting has a significant impact on outlet glaciers, as well as accelerating ice flow. Increased thinning at higher elevations appears to be induced by dynamic coupling to thinning at the margins on decadal timescales.

  13. Aircraft Sheet Metal Practices; Sheet Metal Work 2: 9855.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course outline will serve as a guide to the 11th grade student interested in sheet metal occupations. Requiring 135 clock hours, the basic course covers orientation and techniques in aircraft sheet metal. Emphasis will be placed on the proper use of tools and machines, safety, fabrication methods, aircraft materials, basic layout, and special…

  14. Fuels planning: science synthesis and integration; economic uses fact sheet 05: NEPA and economics

    Treesearch

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    The National Environmental Policy Act (NEPA) is the law that requires Federal agencies to consider the environmental impacts of their actions, involve the public in the decisionmaking process, and disclose information, starting at the initial stages of planning. This fact sheet discusses when you should consider economics in the NEPA process, when to do an analysis,...

  15. Construction of osteochondral-like tissue graft combining β-tricalcium phosphate block and scaffold-free centrifuged chondrocyte cell sheet.

    PubMed

    Niyama, Kouhei; Ide, Naoto; Onoue, Kaori; Okabe, Takahiro; Wakitani, Shigeyuki; Takagi, Mutsumi

    2011-09-01

    The combination of a β-tricalcium phosphate (βTCP) block with a scaffold-free chondrocyte sheet formed by the centrifugation of chondrocytes in a well was investigated with the aim of constructing an osteochondral-like structure. Human and porcine articular cartilage chondrocytes were respectively centrifuged in a 96-well plate or cell culture insert (0.32 cm(2)) that was set in a 24-well plate, cultivated in the respective vessel for 3 weeks, and the cell sheets were harvested. In some cases, a cylindrical βTCP block (diameter 5 mm, height 3 mm) was placed on the sheet on days 1-7. The sheet size, cell number, and sulfated glycosaminoglycan accumulation were determined. The use of a 96-well plate for not suspension but adhesion culture and the initial centrifugation of a well containing cells were crucial to obtaining a uniformly thick cell sheet. The glycosaminoglycan density of the harvested cell sheet was comparable to that of the pellet culture. An inoculum cell number of more than 31 × 10(5) cells tended to result in a curved cell sheet. Culture involving 18.6 × 10(5) cells and the 96-well plate for adhesion culture showed no curving of the cell sheet (thickness of 0.85 mm), and these were found to be the best of the culture conditions tested. The timing of the addition of a βTCP block to the cell sheet (1-7 days) markedly affected the balance between the thickness of cell sheet parts on and in the βTCP block. Centrifugation and subsequent cultivation of chondrocytes (18.6 × 10(5) cells) in a 96-well plate for adhesion culture led to the production of a scaffold-free cartilage-like cell sheet with a thickness of 0.85 mm. A combined osteochondral-like structure was produced by putting a βTCP block on the cell sheet. The thickness of the cell sheet on the βTCP block and the binding strength between the cell sheet and the βTCP block could be optimized by adjusting the inoculum cell number and timing of βTCP block addition.

  16. 13. Photograph of sheet 1 (index and title sheet) of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photograph of sheet 1 (index and title sheet) of the Indiana State Highway Commission repair plans of 1969 for the Cicott Street Bridge. Photograph of a 24' by 36' print made from microfilm in the archives of the Indiana Department of Transportation in Indianapolis. - Cicott Street Bridge, Spanning Wabash River at State Road 25, Logansport, Cass County, IN

  17. Nonlinear distortion of thin liquid sheets

    NASA Astrophysics Data System (ADS)

    Mehring, Carsten Ralf

    Thin planar, annular and conical liquid sheets or films are analyzed, in a unified manner, by means of a reduced- dimension approach providing governing equations for the nonlinear motion of planar and swirling annular thin inviscid and incompressible liquid sheets in zero gravity and with axial disturbances only. Temporal analyses of periodically disturbed infinite sheets are considered, as well as spatial analyses of semi-infinite sheets modulated at the nozzle exit. Results on planar and swirling annular or conical sheets are presented for a zero density ambient gas. Here, conical sheets are obtained in the nearfield of the nozzle exit by considering sheets or films with swirl in excess of that needed to stabilize the discharging stream in its annular configuration. For nonswirling annular sheets a spatially and/or temporally constant gas-core pressure is assumed. A model extension considering the influence of aerodynamic effects on planar sheets is proposed. For planar and annular sheets, linear analyses of the pure initial- and pure boundary-value problem provide insight into the propagation characteristics of dilational and sinuous waves, the (linear) coupling between both wave modes, the stability limits for the annular configuration, as well as the appearance of particular waves on semi-infinite modulated sheets downstream from the nozzle exit. Nonlinear steady-state solutions for the conical configuration (without modulation) are illustrated. Comparison between nonlinear and linear numerical and linear analytical solutions for temporally or spatially developing sheets provides detailed information on the nonlinear distortion characteristics including nonlinear wave propagation and mode-coupling for all the considered geometric configurations and for a variety of parameter configurations. Sensitivity studies on the influence of Weber number, modulation frequency, annular radius, forcing amplitude and sheet divergence on breakup or collapse length and times

  18. Snowmelt on the Greenland Ice Sheet as Derived From Passive Microwave Satellite Data

    NASA Technical Reports Server (NTRS)

    Abdalati, Waleed; Steffen, Konrad

    1997-01-01

    The melt extent of the snow on the Greenland ice sheet is of considerable importance to the ice sheet's mass and energy balance, as well as Arctic and global climates. By comparing passive microwave satellite data to field observations, variations in melt extent have been detected by establishing melt thresholds in the cross-polarized gradient ratio (XPGR). The XPGR, defined as the normalized difference between the 19-GHz horizontal channel and the 37-GHz vertical channel of the Special Sensor Microwave/Imager (SSM/I), exploits the different effects of snow wetness on different frequencies and polarizations and establishes a distinct melt signal. Using this XPGR melt signal, seasonal and interannual variations in snowmelt extent of the ice sheet are studied. The melt is found to be most extensive on the western side of the ice sheet and peaks in late July. Moreover, there is a notable increasing trend in melt area between the years 1979 and 1991 of 4.4% per year, which came to an abrupt halt in 1992 after the eruption of Mt. Pinatubo. A similar trend is observed in the temperatures at six coastal stations. The relationship between the warming trend and increasing melt trend between 1979 and 1991 suggests that a 1 C temperature rise corresponds to an increase in melt area of 73000 sq km, which in general exceeds one standard deviation of the natural melt area variability.

  19. US residency training before and after the 1997 Balanced Budget Act.

    PubMed

    Salsberg, Edward; Rockey, Paul H; Rivers, Kerri L; Brotherton, Sarah E; Jackson, Gregory R

    2008-09-10

    Graduate medical education (GME) determines the size and characteristics of the future workforce. The 1997 Balanced Budget Act (BBA) limited Medicare funding for additional trainees in GME. There has been concern that because Medicare is the primary source of GME funding, the BBA would discourage growth in GME. To examine the number of residents in training before and after the BBA, as well as more recent changes in GME by specialty, sex, and type and location of education. Descriptive study using the American Medical Association/Association of American Medical Colleges National GME Census on physicians in Accreditation Council for Graduate Medical Education (ACGME)-accredited programs to examine changes in the number and characteristics of residents before and after the BBA. Differences in the number of physicians in ACGME-accredited training programs overall, by specialty, and by location and type of education. The number of residents and fellows changed little between academic year (AY) 1997 (n = 98,143) and AY 2002 (n = 98,258) but increased to 106,012 in AY 2007, a net increase of 7869 (8.0%) over the decade. The annual number of new entrants into GME increased by 7.6%, primarily because of increasing international medical graduates (IMGs). United States medical school graduates (MDs) comprised 44.0% of the overall growth from 2002 to 2007, followed by IMGs (39.2%) and osteopathic school graduates (18.8%). United States MD growth largely resulted from selection of specialties with longer training periods. From 2002 to 2007, US MDs training in primary care specialties decreased by 2641, while IMGs increased by 3286. However, increasing subspecialization rates led to fewer physicians entering generalist careers. After the 1997 BBA, there appears to have been a temporary halt in the growth of physicians training in ACGME programs; however, the number increased from 2002 to 2007.

  20. Challenges faced by ice sheet projections: lessons from the SeaRISE effort

    NASA Astrophysics Data System (ADS)

    Nowicki, S.

    2013-12-01

    Projecting the future evolution of the Greenland and Antarctic ice sheets is a problem of enormous societal importance, as ice sheet influence our future sea levels. This crucial issue is however a non trivial task, as demonstrated by the Sea level Response to Ice Sheet Evolution (SeaRISE) effort: prescribing simple external forcings to a group of ice sheet models results in a spread in responses. Understanding the source of the diversity in the model results is therefore crucial in order to reduce the uncertainty in the projection. Just as in any future climate simulation, the analysis presented here demonstrates that the model spread in the SeaRISE effort is due to a number of factors. First is the problem of obtaining an initial configuration for the projection. The two commonly used methods, interglacial spin-up or data assimilation, have both advantages and drawbacks, and will affect the determination of fields that cannot be measured (such as basal slipperiness). Second is the uncertainty in actual observations, which includes but is not limited to surface mass balance, basal topography, ice thickness, and surface velocities. An additional issue with these observations is that they can be transient quantities which are not measured at the same time, but ice sheet models require them to be simultaneous. Third is the uncertainty in the models' physics and discretization, which is limited by our understanding (or lack of understanding) of crucial processes that often occur at subgrid scale relative to the resolution used by continental ice sheet models, and thus require parameterization. Grounding line migration and sliding laws are such an example. Fourth is the determination of the future forcing scenarios and their implementation as the external forcing. Unfortunately, as demonstrated in this analysis, all ice sheet models face these limitations to some degree, so that it is extremely difficult to identify a set of models and projections that should be

  1. School to Work Fact Sheets: Making School to Work Opportunities Happen for Youth with Disabilities.

    ERIC Educational Resources Information Center

    Horne, Richard L.; Thuli, Kelli J.

    These six fact sheets are designed to communicate strategies for serving all youth, especially youth with disabilities, in school to work programs: (1) "Overview of the School-to-Work Opportunities Act" briefly describes this 1994 federal law and the three components of school-to-work programs: school-based learning, work-based learning,…

  2. Balancing Act: A View of Benefits and Work-Life Balance through the Eyes of Advancement Professionals

    ERIC Educational Resources Information Center

    Collins, Mary Ellen

    2011-01-01

    People who choose careers in advancement know they're not entering a 9-to-5, 40-hours-a-week profession. Staffers juggle personal lives with their commitment to stressful jobs that involve travel, long hours, weekend events, and deadlines. Work-life balance means different things to different people, but flexibility seems to be a priority for…

  3. 48 CFR 252.225-7036 - Buy American Act-Free Trade Agreements-Balance of Payments Program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Trade Agreements-Balance of Payments Program. 252.225-7036 Section 252.225-7036 Federal Acquisition... Trade Agreements—Balance of Payments Program. As prescribed in 225.1101(11)(i)(A), use the following clause: Buy American Act—Free Trade Agreements—Balance of Payments Program (DEC 2010) (a) Definitions. As...

  4. 48 CFR 252.225-7036 - Buy American Act-Free Trade Agreements-Balance of Payments Program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Trade Agreements-Balance of Payments Program. 252.225-7036 Section 252.225-7036 Federal Acquisition... Trade Agreements—Balance of Payments Program. As prescribed in 225.1101(11)(i), use the following clause: Buy American Act—Free Trade Agreements—Balance of Payments Program (JUL 2009) (a) Definitions. As used...

  5. A Tale of Two Forcings: Present-Day Coupled Antarctic Ice-sheet/Southern Ocean dynamics using the POPSICLES model.

    NASA Astrophysics Data System (ADS)

    Martin, Daniel; Asay-Davis, Xylar; Cornford, Stephen; Price, Stephen; Ng, Esmond; Collins, William

    2015-04-01

    We present POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period 1990 to 2010 resulting from two different choices of climate forcing: a 'normal-year' climatology and the CORE v. 2 interannual forcing data (Large and Yeager 2008). Simulations are performed at 0.1o (~5 km) ocean resolution and adaptive ice sheet resolution as fine as 500 m. We compare time-averaged melt rates below a number of major ice shelves with those reported by Rignot et al. (2013) as well as other recent studies. We also present seasonal variability and decadal melting trends from several Antarctic regions, along with the response of the ice shelves and consequent dynamics of the grounded ice sheet. POPSICLES couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), and the BISICLES ice-sheet model (Cornford et al., 2012). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). BISICLES makes use of adaptive mesh refinement and a 1st-order accurate momentum balance similar to the L1L2 model of Schoof and Hindmarsh (2009) to accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests (MISMIP-3d; Pattyn et al., 2013) and realistic configurations (Favier et al. 2014).

  6. The influence of ice sheets on temperature during the past 38 million years inferred from a one-dimensional ice sheet-climate model

    NASA Astrophysics Data System (ADS)

    Stap, Lennert B.; van de Wal, Roderik S. W.; de Boer, Bas; Bintanja, Richard; Lourens, Lucas J.

    2017-09-01

    Since the inception of the Antarctic ice sheet at the Eocene-Oligocene transition (˜ 34 Myr ago), land ice has played a crucial role in Earth's climate. Through feedbacks in the climate system, land ice variability modifies atmospheric temperature changes induced by orbital, topographical, and greenhouse gas variations. Quantification of these feedbacks on long timescales has hitherto scarcely been undertaken. In this study, we use a zonally averaged energy balance climate model bidirectionally coupled to a one-dimensional ice sheet model, capturing the ice-albedo and surface-height-temperature feedbacks. Potentially important transient changes in topographic boundary conditions by tectonics and erosion are not taken into account but are briefly discussed. The relative simplicity of the coupled model allows us to perform integrations over the past 38 Myr in a fully transient fashion using a benthic oxygen isotope record as forcing to inversely simulate CO2. Firstly, we find that the results of the simulations over the past 5 Myr are dependent on whether the model run is started at 5 or 38 Myr ago. This is because the relation between CO2 and temperature is subject to hysteresis. When the climate cools from very high CO2 levels, as in the longer transient 38 Myr run, temperatures in the lower CO2 range of the past 5 Myr are higher than when the climate is initialised at low temperatures. Consequently, the modelled CO2 concentrations depend on the initial state. Taking the realistic warm initialisation into account, we come to a best estimate of CO2, temperature, ice-volume-equivalent sea level, and benthic δ18O over the past 38 Myr. Secondly, we study the influence of ice sheets on the evolution of global temperature and polar amplification by comparing runs with ice sheet-climate interaction switched on and off. By passing only albedo or surface height changes to the climate model, we can distinguish the separate effects of the ice-albedo and surface

  7. 9. Photograph of sheet 1 (index and title sheet) of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photograph of sheet 1 (index and title sheet) of the State Highway Department of Indiana repair plans of 1957 for the Cicott Street Bridge. Photograph of a 24' by 36' print made from microfilm in the archives of the Indiana Department of Transportation in Indianapolis. - Cicott Street Bridge, Spanning Wabash River at State Road 25, Logansport, Cass County, IN

  8. FDTD modeling of thin impedance sheets

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. In this paper it is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods.

  9. Synthesis of a quarter-century of satellite and airborne altimetry records to resolve long-term ice sheet elevation change

    NASA Astrophysics Data System (ADS)

    Nilsson, J.; Paolo, F. S.; Simonsen, S.; Gardner, A. S.

    2017-12-01

    Satellite and airborne altimetry provide the longest continuous record from which the mass balance of the Antarctic ice sheet can be derived, starting with the launch of ERS-1 in 1992. Accurate knowledge of the long-term mass balance is vital for understanding the geophysical processes governing the ice sheet contribution to present day sea-level rise. However, this record is comprised of several different measurement systems, with different accuracies and varying resolution. This poses a major challenge on the interpretation and reconstruction of consistent elevation-change time series for determining long-term ice sheet trends and variability. Previous studies using data from multiple satellite altimetry missions have relied on a cross-calibration technique based on crossover bias analysis to merge records from different sensors. This methodology, though accurate, limits the spatial coverage to typical resolutions of 10-50 km, restricting the approach to regional or continental-wide studies. In this study, we present a novel framework for seamless integration of heterogeneous altimetry records, using an adaptive least-squares minimization technique. The procedure allows reconstructing time series at fine spatial (<5 km) and temporal (monthly) scales, while accounting for sensor-dependent biases and heterogeneous data quality. We synthesize altimetry records spanning the time period 1992-2016 to derive long-term time series of elevation change for the Antarctica ice sheet, including both data from the European Space Agency (ERS-1, ERS-2, Envisat and CryoSat-2) and NASA (ICESat and Operation IceBridge), with future inclusion of data from NASA's ICESat-2. Mission specific errors, estimated from independent airborne measurements and crossover analysis, are propagated to derive uncertainty bounds for each individual time series. We also perform an extensive analysis of the major corrections applied to raw satellite altimetry data to assess their overall effect on the

  10. A Newly Updated Database of Elevation-changes of the Greenand Ice Sheet to Study Surface Processes and Ice Dynamics

    NASA Astrophysics Data System (ADS)

    Schenk, A. F.; Csatho, B. M.; van den Broeke, M.; Kuipers Munneke, P.

    2015-12-01

    This paper reports about important upgrades of the Greenland Ice Sheet (GrIS) surface elevation and elevation-change database obtained with our Surface Elevation And Change detection (SERAC) software suite. We have developed SERAC to derive information from laser altimetry data, particularly time series of elevation changes and their partitioning into changes caused by ice dynamics. This allows direct investigation of ice dynamic processes that is much needed for improving the predictive power of ice sheet models. SERAC is different from most other change detection methods. It is based on detecting changes of surface patches, about 1 km by 1 km in size, rather than deriving elevation changes from individual laser points. The current database consists of ~100,000 time series with satellite laser altimetry data from ICESat, airborne laser observations obtained by NASA's Airborne Topographic Mapper (ATM) and the Land, Vegetation and Ice Sensor (LVIS). The upgrade is significant, because not only new observations from 2013 and 2014 have been added but also a number of improvements lead to a more comprehensive and consistent record of elevation-changes. First, we used the model that gives in addition to ice sheet also information about ice caps and glaciers (Rastner et al., 2012) for deciding if a laser point is on the ice sheet or ice cap. Then we added small gaps that exist in the ICESat GLA12 data set because the ice sheet mask is not wide enough. The new database is now more complete and will facilitate more accurate comparisons of mass balance studies obtained from the Gravity Recovery and Climate Experiment system (GRACE). For determining the part of a time series caused by ice dynamics we used the new firn compaction model and Surface Mass Balance (SMB) estimates from RACMO2.3. The new database spans the time period from 1993 to 2014. Adding new observations amounts to a spatial densification of the old record and at the same time extends the time domain by two

  11. Defense Threat Reduction Agency > Home > DTRA No Fear Act Reporting

    Science.gov Websites

    FOIA Electronic Reading Room Privacy Impact Assessment DTRA No Fear Act Reporting Nuclear Test Personnel Review NTPR Fact Sheets NTPR Radiation Dose Assessment Documents US Atmospheric Nuclear Test History Documents US Underground Nuclear Test History Reports NTPR Radiation Exposure Reports Enewetak

  12. High geothermal heat flux measured below the West Antarctic Ice Sheet

    PubMed Central

    Fisher, Andrew T.; Mankoff, Kenneth D.; Tulaczyk, Slawek M.; Tyler, Scott W.; Foley, Neil

    2015-01-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m2, significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m2. The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region. PMID:26601210

  13. Spheromaks, solar prominences, and Alfvén instability of current sheets

    NASA Astrophysics Data System (ADS)

    Bellan, P. M.; Yee, J.; Hansen, J. F.

    2001-06-01

    Three related efforts underway at Caltech are discussed: experimental studies of spheromak formation, experimental simulation of solar prominences, and Alfvén wave instability of current sheets. Spheromak formation has been studied by using a coaxial magnetized plasma gun to inject helicity-bearing plasma into a very large vacuum chamber. The spheromak is formed without a flux conserver and internal λ profiles have been measured. Spheromak-based technology has been used to make laboratory plasmas having the topology and dynamics of solar prominences. The physics of these structures is closely related to spheromaks (low β, force-free, relaxed state equilibrium) but the boundary conditions and symmetry are different. Like spheromaks, the equilibrium involves a balance between hoop forces, pinch forces, and magnetic tension. It is shown theoretically that if a current sheet becomes sufficiently thin (of the order of the ion skin depth or smaller), it becomes kinetically unstable with respect to the emission of Alfvén waves and it is proposed that this wave emission is an important aspect of the dynamics of collisionless reconnection.

  14. High geothermal heat flux measured below the West Antarctic Ice Sheet.

    PubMed

    Fisher, Andrew T; Mankoff, Kenneth D; Tulaczyk, Slawek M; Tyler, Scott W; Foley, Neil

    2015-07-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m(2), significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m(2). The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region.

  15. Surface mass balance model evaluation from satellite and airborne lidar mapping

    NASA Astrophysics Data System (ADS)

    Sutterley, T. C.; Velicogna, I.; Fettweis, X.; van den Broeke, M. R.

    2016-12-01

    We present estimates of Greenland Ice Sheet (GrIS) surface elevation change from a novel combination of satellite and airborne laser altimetry measurements. Our method combines measurements from the Airborne Topographic Mapper (ATM), the Land, Vegetation and Ice Sensor (LVIS) and ICESat-1 to generate elevation change rates at high spatial resolution. This method allows to extend the records of each instrument, increases the overall spatial coverage compared to a single instrument, and produces high-quality, coherent maps of surface elevation change. In addition by combining the lidar datasets, we are able to investigate seasonal and interannual surface elevation change for years where Spring and Fall Operation IceBridge campaigns are available. We validate our method by comparing with the standard NSIDC elevation change product calculated using overlapping Level-1B ATM data. We use the altimetry-derived mass changes to evaluate the uncertainty in surface mass balance, particularly in the runoff component, from two Regional Climate Models (RCM's), the Regional Atmospheric Climate Model (RACMO) and the Modéle Atmosphérique Régional (MAR), and one Global Climate Model (GCM), MERRA2/GEOS-5. We investigate locations with low ice sheet surface velocities that are within the estimated ablation zones of each regional climate model. We find that the surface mass balance outputs from RACMO and MAR show good correspondence with mass changes derived from surface elevation changes over long periods. At two sites in Northeast Greenland (NEGIS), the MAR model has better correspondence with the altimetry estimate. We find that the differences at these locations are primarily due to the characterization of meltwater refreeze within the ice sheet.

  16. Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise.

    PubMed

    Shannon, Sarah R; Payne, Antony J; Bartholomew, Ian D; van den Broeke, Michiel R; Edwards, Tamsin L; Fettweis, Xavier; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Goelzer, Heiko; Hoffman, Matthew J; Huybrechts, Philippe; Mair, Douglas W F; Nienow, Peter W; Perego, Mauro; Price, Stephen F; Smeets, C J P Paul; Sole, Andrew J; van de Wal, Roderik S W; Zwinger, Thomas

    2013-08-27

    We assess the effect of enhanced basal sliding on the flow and mass budget of the Greenland ice sheet, using a newly developed parameterization of the relation between meltwater runoff and ice flow. A wide range of observations suggest that water generated by melt at the surface of the ice sheet reaches its bed by both fracture and drainage through moulins. Once at the bed, this water is likely to affect lubrication, although current observations are insufficient to determine whether changes in subglacial hydraulics will limit the potential for the speedup of flow. An uncertainty analysis based on our best-fit parameterization admits both possibilities: continuously increasing or bounded lubrication. We apply the parameterization to four higher-order ice-sheet models in a series of experiments forced by changes in both lubrication and surface mass budget and determine the additional mass loss brought about by lubrication in comparison with experiments forced only by changes in surface mass balance. We use forcing from a regional climate model, itself forced by output from the European Centre Hamburg Model (ECHAM5) global climate model run under scenario A1B. Although changes in lubrication generate widespread effects on the flow and form of the ice sheet, they do not affect substantial net mass loss; increase in the ice sheet's contribution to sea-level rise from basal lubrication is projected by all models to be no more than 5% of the contribution from surface mass budget forcing alone.

  17. Colorado Vocational Act. Twentieth and Twenty-First Annual Reports.

    ERIC Educational Resources Information Center

    Smith, Gregory P.; Lillard, Jerry

    This document combines two annual reports on the Colorado Vocational Act for 1990 and 1991. Both reports contain the following materials: (1) a letter from the president; (2) information and fact sheet; (3) definitions; and statistical data on the following: (4) enrollment and placement trends, 1987-1990; (5) Colorado vocational and other…

  18. Greenland ice sheet beyond 2100: Simulating its evolution and influence using the coupled climate-ice sheet model EC-Earth - PISM

    NASA Astrophysics Data System (ADS)

    Yang, S.; Christensen, J. H.; Madsen, M. S.; Ringgaard, I. M.; Petersen, R. A.; Langen, P. P.

    2017-12-01

    Greenland ice sheet (GrIS) is observed undergoing a rapid change in the recent decades, with an increasing area of surface melting and ablation and a speeding mass loss. Predicting the GrIS changes and their climate consequences relies on the understanding of the interaction of the GrIS with the climate system on both global and local scales, and requires climate model systems incorporating with an explicit and physically consistent ice sheet module. In this work we study the GrIS evolution and its interaction with the climate system using a fully coupled global climate model with a dynamical ice sheet model for the GrIS. The coupled model system, EC-EARTH - PISM, consisting of the atmosphere-ocean-sea ice model system EC-EARTH, and the Parallel Ice Sheet Model (PISM), has been employed for a 1400-year simulation forced by CMIP5 historical forcing from 1850 to 2005 and continued along an extended RCP8.5 scenario with the forcing peaking at 2200 and stabilized hereafter. The simulation reveals that, following the anthropogenic forcing increase, the global mean surface temperature rapidly rises about 10 °C in the 21st and 22nd century. After the forcing stops increasing after 2200, the temperature change slows down and eventually stabilizes at about 12.5 °C above the preindustrial level. In response to the climate warming, the GrIS starts losing mass slowly in the 21st century, but the ice retreat accelerates substantially after 2100 and ice mass loss continues hereafter at a constant rate of approximately 0.5 m sea level rise equivalence per 100 years, even as the warming rate gradually levels off. Ultimately the volume and extent of GrIS reduce to less than half of its preindustrial value. To understand the interaction of GrIS with the climate system, the characteristics of atmospheric and oceanic circulation in the warm climate are analyzed. The circulation patterns associated with the negative surface mass balance that leads to GrIS retreat are investigated

  19. A downscaled 1 km dataset of daily Greenland ice sheet surface mass balance components (1958-2014)

    NASA Astrophysics Data System (ADS)

    Noel, B.; Van De Berg, W. J.; Fettweis, X.; Machguth, H.; Howat, I. M.; van den Broeke, M. R.

    2015-12-01

    The current spatial resolution in regional climate models (RCMs), typically around 5 to 20 km, remains too coarse to accurately reproduce the spatial variability in surface mass balance (SMB) components over the narrow ablation zones, marginal outlet glaciers and neighbouring ice caps of the Greenland ice sheet (GrIS). In these topographically rough terrains, the SMB components are highly dependent on local variations in topography. However, the relatively low-resolution elevation and ice mask prescribed in RCMs contribute to significantly underestimate melt and runoff in these regions due to unresolved valley glaciers and fjords. Therefore, near-km resolution topography is essential to better capture SMB variability in these spatially restricted regions. We present a 1 km resolution dataset of daily GrIS SMB covering the period 1958-2014, which is statistically downscaled from data of the polar regional climate model RACMO2.3 at 11 km, using an elevation dependence. The dataset includes all individual SMB components projected on the elevation and ice mask from the GIMP DEM, down-sampled to 1 km. Daily runoff and sublimation are interpolated to the 1 km topography using a local regression to elevation valid for each day specifically; daily precipitation is bi-linearly downscaled without elevation corrections. The daily SMB dataset is then reconstructed by summing downscaled precipitation, sublimation and runoff. High-resolution elevation and ice mask allow for properly resolving the narrow ablation zones and valley glaciers at the GrIS margins, leading to significant increase in runoff estimate. In these regions, and especially over narrow glaciers tongues, the downscaled products improve on the original RACMO2.3 outputs by better representing local SMB patterns through a gradual ablation increase towards the GrIS margins. We discuss the impact of downscaling on the SMB components in a case study for a spatially restricted region, where large elevation

  20. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1987-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  1. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1988-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  2. MULTIPLE CURRENT SHEET SYSTEMS IN THE OUTER HELIOSPHERE: ENERGY RELEASE AND TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, D.; Gingell, P. W.; Matteini, L.

    2016-05-01

    In the outer heliosphere, beyond the solar wind termination shock, it is expected that the warped heliospheric current sheet forms a region of closely packed, multiple, thin current sheets. Such a system may be subject to the ion-kinetic tearing instability, and hence may generate magnetic islands and hot populations of ions associated with magnetic reconnection. Reconnection processes in this environment have important implications for local particle transport, and for particle acceleration at reconnection sites and in turbulence. We study this complex environment by means of three-dimensional hybrid simulations over long timescales, in order to capture the evolution from linear growthmore » of the tearing instability to a fully developed turbulent state at late times. The final state develops from the highly ordered initial state via both forward and inverse cascades. Component and spectral anisotropy in the magnetic fluctuations is present when a guide field is included. The inclusion of a population of newborn interstellar pickup protons does not strongly affect these results. Finally, we conclude that reconnection between multiple current sheets can act as an important source of turbulence in the outer heliosphere, with implications for energetic particle acceleration and propagation.« less

  3. Investigation of the magnetic properties of Si-gradient steel sheet by comparison with 6.5%Si steel sheet

    NASA Astrophysics Data System (ADS)

    Hiratani, T.; Zaizen, Y.; Oda, Y.; Yoshizaki, S.; Senda, K.

    2018-05-01

    In this study, we investigated the magnetic properties of Si-gradient steel sheet produced by CVD (chemical vapor deposition) siliconizing process, comparing with 6.5% Si steel sheet. The Si-gradient steel sheet having silicon concentration gradient in the thickness direction, has larger hysteresis loss and smaller eddy current loss than the 6.5% Si steel sheet. In such a loss configuration, the iron loss of the Si-gradient steel sheet becomes lower than that of the 6.5% Si steel sheet at high frequencies. The experiment suggests that tensile stress is formed at the surface layer and compressive stress is formed at the inner layer in the Si gradient steel sheet. The magnetic anisotropy is induced by the internal stress and it is considered to affect the magnetization behavior of the Si-gradient steel sheet. The small eddy current loss of Si-gradient steel sheet can be explained as an effect of magnetic flux concentration on the surface layer.

  4. Wave-induced drift of large floating sheets

    NASA Astrophysics Data System (ADS)

    Christensen, K. H.; Weber, J. E.

    In this article we study the wave-induced drift of large, flexible shallow floating objects, referred to as sheets. When surface waves propagate through a sheet, they provide a mean stress on the sheet, resulting in a mean drift. In response, the sheet generates an Ekman current. The drift velocity of the sheet is determined by (i) the wave-induced stress, (ii) the viscous stress due to the Ekman current, and (iii) the Coriolis force. The sheet velocity and the current beneath the sheet are determined for constant and depth-varying eddy viscosities.

  5. Mass balance assessment using GPS

    NASA Technical Reports Server (NTRS)

    Hulbe, Christina L.

    1993-01-01

    Mass balance is an integral part of any comprehensive glaciological investigation. Unfortunately, it is hard to determine at remote locations where there is no fixed reference. The Global Positioning System (GPS) offers a solution. Simultaneous GPS observations at a known location and the remote field site, processed differentially, will accurately position the camp site. From there, a monument planted in the firn atop the ice can also be accurately positioned. Change in the monument's vertical position is a direct indicator of ice thickness change. Because the monument is not connected to the ice, its motion is due to both mass balance change and to the settling of firn as it densifies into ice. Observations of relative position change between the monument and anchors at various depths within the firn are used to remove the settling effect. An experiment to test this method has begun at Byrd Station on the West Antarctic Ice Sheet and the first epoch of observations was made. Analysis indicates that positioning errors will be very small. It appears likely that the largest errors involved with this technique will arise from ancillary data needed to determine firn settling.

  6. Skill Sheets for Agricultural Mechanics.

    ERIC Educational Resources Information Center

    Iowa State Univ. of Science and Technology, Ames. Dept. of Agricultural Education.

    This set of 33 skill sheets for agricultural mechanics was developed for use in high school and vocational school agricultural mechanics programs. Some sheets teach operational procedures while others are for simple projects. Each skill sheet covers a single topic and includes: (1) a diagram, (2) a step-by-step construction or operational…

  7. Sheet production apparatus for removing a crystalline sheet from the surface of a melt using gas jets located above and below the crystalline sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kellerman, Peter L.; Thronson, Gregory D.

    In one embodiment, a sheet production apparatus comprises a vessel configured to hold a melt of a material. A cooling plate is disposed proximate the melt and is configured to form a sheet of the material on the melt. A first gas jet is configured to direct a gas toward an edge of the vessel. A sheet of a material is translated horizontally on a surface of the melt and the sheet is removed from the melt. The first gas jet may be directed at the meniscus and may stabilize this meniscus or increase local pressure within the meniscus.

  8. Electron Pitch-Angle Distribution in Pressure Balance Structures Measured by Ulysses/SWOOPS

    NASA Technical Reports Server (NTRS)

    Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi; Six, N. Frank (Technical Monitor)

    2002-01-01

    Pressure balance structures (PBSs) are a common feature in the high-latitude solar wind near solar minimum. From previous studies, PBSs are believed to be remnants of coronal plumes. Yamauchi et al [2002] investigated the magnetic structures of the PBSs, applying a minimum variance analysis to Ulysses/Magnetometer data. They found that PBSs contain structures like current sheets or plasmoids, and suggested that PBSs are associated with network activity such as magnetic reconnection in the photosphere at the base of polar plumes. We have investigated energetic electron data from Ulysses/SWOOPS to see whether bi-directional electron flow exists and we have found evidence supporting the earlier conclusions. We find that 45 ot of 53 PBSs show local bi-directional or isotopic electron flux or flux associated with current-sheet structure. Only five events show the pitch-angle distribution expected for Alfvenic fluctuations. We conclude that PBSs do contain magnetic structures such as current sheets or plasmoids that are expected as a result of network activity at the base of polar plumes.

  9. Assessment of climate variability of the Greenland Ice Sheet: Integration of in situ and satellite data

    NASA Technical Reports Server (NTRS)

    Steffen, K.; Abdalati, W.; Stroeve, J.; Key, J.

    1994-01-01

    The proposed research involves the application of multispectral satellite data in combination with ground truth measurements to monitor surface properties of the Greenland Ice Sheet which are essential for describing the energy and mass of the ice sheet. Several key components of the energy balance are parameterized using satellite data and in situ measurements. The analysis will be done for a ten year time period in order to get statistics on the seasonal and interannual variations of the surface processes and the climatology. Our goal is to investigate to what accuracy and over what geographic areas large scale snow properties and radiative fluxes can be derived based upon a combination of available remote sensing and meteorological data sets. Operational satellite sensors are calibrated based on ground measurements and atmospheric modeling prior to large scale analysis to ensure the quality of the satellite data. Further, several satellite sensors of different spatial and spectral resolution are intercompared to access the parameter accuracy. Proposed parameterization schemes to derive key component of the energy balance from satellite data are validated. For the understanding of the surface processes a field program was designed to collect information on spectral albedo, specular reflectance, soot content, grain size and the physical properties of different snow types. Further, the radiative and turbulent fluxes at the ice/snow surface are monitored for the parameterization and interpretation of the satellite data. The expected results include several baseline data sets of albedo, surface temperature, radiative fluxes, and different snow types of the entire Greenland Ice Sheet. These climatological data sets will be of potential use for climate sensitivity studies in the context of future climate change.

  10. The Physics of Ice Sheets

    ERIC Educational Resources Information Center

    Bassis, J. N.

    2008-01-01

    The great ice sheets in Antarctica and Greenland are vast deposits of frozen freshwater that contain enough to raise sea level by approximately 70 m if they were to completely melt. Because of the potentially catastrophic impact that ice sheets can have, it is important that we understand how ice sheets have responded to past climate changes and…

  11. Your Rights under Section 504 of the Rehabilitation Act. Fact Sheet

    ERIC Educational Resources Information Center

    US Department of Health and Human Services, 2006

    2006-01-01

    Section 504 of the Rehabilitation Act of 1973 is a national law that protects qualified individuals from discrimination based on their disability. The nondiscrimination requirements of the law apply to employers and organizations that receive financial assistance from any Federal department or agency, including the U.S. Department of Health and…

  12. Stability of Thin Liquid Sheet Flows

    NASA Technical Reports Server (NTRS)

    McConley, Marc W.; Chubb, Donald L.; McMaster, Matthew S.; Afjeh, Abdollah A.

    1997-01-01

    A two-dimensional, linear stability analysis of a thin nonplanar liquid sheet flow in vacuum is carried out. A sheet flow created by a narrow slit of W and tau attains a nonplanar cross section as a consequence of cylinders forming on the sheet edge under the influence of surface tension forces. The region where these edge cylinders join the sheet is one of high curvature, and this is found to be the location where instability is most likely to occur. The sheet flow is found to be unstable, but with low growth rates for symmetric wave disturbances and high growth rates for antisymmetric disturbances. By combining the symmetric and antisymmetric disturbance modes, a wide range of stability characteristics is obtained. The product of unstable growth rate and flow time is proportional to the width-to-thickness ratio of the sift generating the sheet Three-dimensional effects can alter these results, particularly when the sheet length-to-width ratio is not much greater than unity.

  13. Reversible thermal denaturation of a 60-kDa genetically engineered beta-sheet polypeptide.

    PubMed

    Lednev, Igor K; Ermolenkov, Vladimir V; Higashiya, Seiichiro; Popova, Ludmila A; Topilina, Natalya I; Welch, John T

    2006-11-15

    A de novo 687-amino-acid residue polypeptide with a regular 32-amino-acid repeat sequence, (GA)(3)GY(GA)(3)GE(GA)(3)GH(GA)(3)GK, forms large beta-sheet assemblages that exhibit remarkable folding properties and, as well, form fibrillar structures. This construct is an excellent tool to explore the details of beta-sheet formation yielding intimate folding information that is otherwise difficult to obtain and may inform folding studies of naturally occurring materials. The polypeptide assumes a fully folded antiparallel beta-sheet/turn structure at room temperature, and yet is completely and reversibly denatured at 125 degrees C, adopting a predominant polyproline II conformation. Deep ultraviolet Raman spectroscopy indicated that melting/refolding occurred without any spectroscopically distinct intermediates, yet the relaxation kinetics depend on the initial polypeptide state, as would be indicative of a non-two-state process. Thermal denaturation and refolding on cooling appeared to be monoexponential with characteristic times of approximately 1 and approximately 60 min, respectively, indicating no detectable formation of hairpin-type nuclei in the millisecond timescale that could be attributed to nonlocal "nonnative" interactions. The polypeptide folding dynamics agree with a general property of beta-sheet proteins, i.e., initial collapse precedes secondary structure formation. The observed folding is much faster than expected for a protein of this size and could be attributed to a less frustrated free-energy landscape funnel for folding. The polypeptide sequence suggests an important balance between the absence of strong nonnative contacts (salt bridges or hydrophobic collapse) and limited repulsion of charged side chains.

  14. Plasma Sheet Circulation Pathways

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.; Delcourt, D. C.; Slinker, S. P.; Fedder, J. A.; Damiano, P.; Lotko, W.

    2008-01-01

    Global simulations of Earth's magnetosphere in the solar wind compute the pathways of plasma circulation through the plasma sheet. We address the pathways that supply and drain the plasma sheet, by coupling single fluid simulations with Global Ion Kinetic simulations of the outer magnetosphere and the Comprehensive Ring Current Model of the inner magnetosphere, including plasmaspheric plasmas. We find that the plasma sheet is supplied with solar wind plasmas via the magnetospheric flanks, and that this supply is most effective for northward IMF. For southward IMF, the innermost plasma sheet and ring current region are directly supplied from the flanks, with an asymmetry of single particle entry favoring the dawn flank. The central plasma sheet (near midnight) is supplied, as expected, from the lobes and polar cusps, but the near-Earth supply consists mainly of slowly moving ionospheric outflows for typical conditions. Work with the recently developed multi-fluid LFM simulation shows transport via plasma "fingers" extending Earthward from the flanks, suggestive of an interchange instability. We investigate this with solar wind ion trajectories, seeking to understand the fingering mechanisms and effects on transport rates.

  15. Scaling results for the liquid sheet radiator

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Calfo, Frederick D.

    1989-01-01

    Surface tension forces at the edges of a thin liquid (approx 100 micrometers) sheet flow result in a triangularly shaped sheet. Such a geometry is ideal for an external flow radiator. The experimental investigation of such sheet flows was extended to large sheets (width = 23.5 cm, length = 3.5 m). Experimental L/W results are greater than the calculated results. However, more experimental results are necessary for a complete comparison. The calculated emissivity of a sheet of Dow-Corning 705 silicone oil, which is low temperature (300-400 K) candidate for a liquid sheet radiator (LSR), is greater than 0.8 for sheet thicknesses greater than 100 micrometers.

  16. Changes in the firn structure of the western Greenland Ice Sheet caused by recent warming

    DOE PAGES

    de la Peña, S.; Howat, I. M.; Nienow, P. W.; ...

    2015-06-11

    Atmospheric warming over the Greenland Ice Sheet during the last 2 decades has increased the amount of surface meltwater production, resulting in the migration of melt and percolation regimes to higher altitudes and an increase in the amount of ice content from refrozen meltwater found in the firn above the superimposed ice zone. Here we present field and airborne radar observations of buried ice layers within the near-surface (0–20 m) firn in western Greenland, obtained from campaigns between 1998 and 2014. We find a sharp increase in firn-ice content in the form of thick widespread layers in the percolation zone,more » which decreases the capacity of the firn to store meltwater. The estimated total annual ice content retained in the near-surface firn in areas with positive surface mass balance west of the ice divide in Greenland reached a maximum of 74 ± 25 Gt in 2012, when compared to the 1958–1999 average of 13 ± 2 Gt, while the percolation zone area more than doubled between 2003 and 2012. Increased melt and column densification resulted in surface lowering averaging -0.80 ± 0.39 m yr -1 between 1800 and 2800 m in the accumulation zone of western Greenland. Since 2007, modeled annual melt and refreezing rates in the percolation zone at elevations below 2100 m surpass the annual snowfall from the previous year, implying that mass gain in the region is retained after melt in the form of refrozen meltwater. Furthermore, if current melt trends over high elevation regions continue, subsequent changes in firn structure will have implications for the hydrology of the ice sheet and related abrupt seasonal densification could become increasingly significant for altimetry-derived ice sheet mass balance estimates.« less

  17. Flexible Structural-Health-Monitoring Sheets

    NASA Technical Reports Server (NTRS)

    Qing, Xinlin; Kuo, Fuo

    2008-01-01

    A generic design for a type of flexible structural-health-monitoring sheet with multiple sensor/actuator types and a method of manufacturing such sheets has been developed. A sheet of this type contains an array of sensing and/or actuation elements, associated wires, and any other associated circuit elements incorporated into various flexible layers on a thin, flexible substrate. The sheet can be affixed to a structure so that the array of sensing and/or actuation elements can be used to analyze the structure in accordance with structural-health-monitoring techniques. Alternatively, the sheet can be designed to be incorporated into the body of the structure, especially if the structure is made of a composite material. Customarily, structural-health monitoring is accomplished by use of sensors and actuators arrayed at various locations on a structure. In contrast, a sheet of the present type can contain an entire sensor/actuator array, making it unnecessary to install each sensor and actuator individually on or in a structure. Sensors of different types such as piezoelectric and fiber-optic can be embedded in the sheet to form a hybrid sensor network. Similarly, the traces for electric communication can be deposited on one or two layers as required, and an entirely separate layer can be employed to shield the sensor elements and traces.

  18. A panel method study of vortex sheets with special emphasis on sheets of axisymmetric geometry. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Sugioka, I.; Widnall, S. E.

    1985-01-01

    The self induced evolution of a vortex sheet was simulated by modeling the sheet using an integration of discrete elements of vorticity. Replacing small sections of a vortex sheet by flat panels of constant vorticity is found to reproduce more accurately the initial conditions for the Lagrangian simulation technique than replacement by point vortices. The flat panel method for the vortex sheet was then extended to model axisymmetric vortex sheets. The local and far field velocities induced by the axisymmetric panels were obtained using matched asymptotic analysis, and some of the uncertainties involved in other models of the axisymmetric vortex sheet have been eliminated. One important result of this analysis is the determination of the proper choice of core size for a circular vortex filament which may replace a section of an axisymmetric vortex sheet. Roll-up of both two dimensional and axisymmetric vortex sheets was computed using the panel methods developed in the report.

  19. Dynamics of Radially Expanding Liquid Sheets

    NASA Astrophysics Data System (ADS)

    Majumdar, Nayanika; Tirumkudulu, Mahesh S.

    2018-04-01

    The process of atomization often involves ejecting thin liquid sheets at high speeds from a nozzle that causes the sheet to flap violently and break up into fine droplets. The flapping of the liquid sheet has long been attributed to the sheet's interaction with the surrounding gas phase. Here, we present experimental evidence to the contrary and show that the flapping is caused by the thinning of the liquid sheet as it spreads out from the nozzle exit. The measured growth rates of the waves agree remarkably well with the predictions of a recent theory that accounts for the sheet's thinning but ignores aerodynamic interactions. We anticipate these results to not only lead to more accurate predictions of the final drop-size distribution but also enable more efficient designs of atomizers.

  20. 48 CFR 252.225-7035 - Buy American Act-Free Trade Agreements-Balance of Payments Program Certificate.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Trade Agreements-Balance of Payments Program Certificate. 252.225-7035 Section 252.225-7035 Federal... Trade Agreements—Balance of Payments Program Certificate. As prescribed in 225.1101(10)(i), use the following provision: Buy American Act—Free Trade Agreements—Balance of Payments Program Certificate (DEC...