Science.gov

Sample records for act instrument concepts

  1. Instrument Concept for the Proposed DESDynI SAR instrument

    NASA Technical Reports Server (NTRS)

    Perkovic-Martin, Dragana; Hoffman, James P.; Veilleux, Louise

    2012-01-01

    The proposed DESDynI (Solid Earth Deformation, Ecosystems Structure and Dynamics of Ice) SAR (synthetic aperture radar) Instrument would expand the trade-space of radar instrument concepts and push the boundaries of high-level integration of digital and RF subsystems in order to achieve very precise assessments of system's behavior; DESDynI mission concept would provide continuous science measurements that would greatly enhance understanding of geophysical and anthropological effects in three science disciplines; Trades in instrument architecture implementations and partnership discussions are producing a set of options for science community and NASA to evaluate and consider implementing late in the decade.

  2. Advanced instrumentation concepts for environmental control subsystems

    NASA Technical Reports Server (NTRS)

    Yang, P. Y.; Schubert, F. H.; Gyorki, J. R.; Wynveen, R. A.

    1978-01-01

    Design, evaluation and demonstration of advanced instrumentation concepts for improving performance of manned spacecraft environmental control and life support systems were successfully completed. Concepts to aid maintenance following fault detection and isolation were defined. A computer-guided fault correction instruction program was developed and demonstrated in a packaged unit which also contains the operator/system interface.

  3. Monitoring Earth's Shortwave Reflectance: GEO Instrument Concept

    NASA Technical Reports Server (NTRS)

    Brageot, Emily; Mercury, Michael; Green, Robert; Mouroulis, Pantazis; Gerwe, David

    2015-01-01

    In this paper we present a GEO instrument concept dedicated to monitoring the Earth's global spectral reflectance with a high revisit rate. Based on our measurement goals, the ideal instrument needs to be highly sensitive (SNR greater than 100) and to achieve global coverage with spectral sampling (less than or equal to 10nm) and spatial sampling (less than or equal to 1km) over a large bandwidth (380-2510 nm) with a revisit time (greater than or equal to greater than or equal to 3x/day) sufficient to fully measure the spectral-radiometric-spatial evolution of clouds and confounding factor during daytime. After a brief study of existing instruments and their capabilities, we choose to use a GEO constellation of up to 6 satellites as a platform for this instrument concept in order to achieve the revisit time requirement with a single launch. We derive the main parameters of the instrument and show the above requirements can be fulfilled while retaining an instrument architecture as compact as possible by controlling the telescope aperture size and using a passively cooled detector.

  4. Space interferometer mission (SIM) instrument design concepts.

    NASA Astrophysics Data System (ADS)

    Duncan, A. L.

    SIM is a 12 meter baseline interferometer to be built as part of the NASA Origins program, designed to fly in space and provide high precision astrometry measurements of astronomical objects. SIM will provide angular measurements three orders of magnitude more precise than current space or ground based sensors, allowing the indirect detection of Earth-like planets around neighboring stars. The SIM mission will also include the ability to synthesize images by varying the interferometer baseline lengths and will demonstrate a nulling beam combiner as a technology pathfinder for future missions. A team at Lockheed Martin Missiles and Space (LMMS) in Sunnyvale, CA has been chosen by JPL to enter a partnership to design and build the SIM instrument. This paper describes the overall LMMS SIM instrument concept and its unique features, including the full aperture laser metrology approach for high precision metrology.

  5. SPICE: An innovative, flexible instrument concept

    NASA Astrophysics Data System (ADS)

    Nishioka, Kenji; Cauffman, D. P.; Jurcevich, B.; Mendez, David J.; Ryder, James T.

    Studies and plans for orbital capture of cosmic dust and interplanetary dust particles (IDP's) looked very bright with the advent of space station Freedom (SSF) and formal selection of Cosmic Dust Collection Facility (CDCF) as an attached payload in 1990. Unfortunately it has been downhill since its selection, culminating in CDCF being dropped as attached payload in the SSF redesign process this year. This action was without any input from the science or cosmic dust communities. The Exobiology Intact Capture Experiment (Exo-ICE) as an experiment on CDCF was also lost. Without CDCF, no facility-class instrument for cosmic dust studies is available or planned. When CDCF (and Exo-ICE) was selected as a SSF attached payload, an exercise called the small particle intact capture experiment (SPICE) was started for Exo-ICE to develop an understanding and early testing of the necessary expertise and technology for intact capture of cosmic dust and IDP's. This SPICE activity looks to fly small, meter square or less, collection area experiments on early orbital platforms of opportunity such as EURECA, MIR, WESTAR, and others, including the shuttle. The SPICE activity has focused on developing techniques and instrument concepts to capture particles intact and without inadvertent contamination. It began with a survey and screening of available capture media concepts and then focused on the development of a capture medium that can meet these requirements. Evaluation and development of the chosen capture medium, aerogel (a silicon oxide gel), has so far lived up to the expectations of meeting the requirements and is highlighted in a companion paper at this workshop. Others such as McDonnell's Timeband Capture Cell Experiment (TICCE) on EuReCa and Tsuo's GAS-CAN lid experiments on STS 47 and 57 have flown aerogel, but without addressing the contamination issue/requirement, especially regarding organics. Horz, Zolenskym and others have studied and have also been advocates for its

  6. SPICE: An innovative, flexible instrument concept

    NASA Technical Reports Server (NTRS)

    Nishioka, Kenji; Cauffman, D. P.; Jurcevich, B.; Mendez, David J.; Ryder, James T.

    1994-01-01

    Studies and plans for orbital capture of cosmic dust and interplanetary dust particles (IDP's) looked very bright with the advent of space station Freedom (SSF) and formal selection of Cosmic Dust Collection Facility (CDCF) as an attached payload in 1990. Unfortunately it has been downhill since its selection, culminating in CDCF being dropped as attached payload in the SSF redesign process this year. This action was without any input from the science or cosmic dust communities. The Exobiology Intact Capture Experiment (Exo-ICE) as an experiment on CDCF was also lost. Without CDCF, no facility-class instrument for cosmic dust studies is available or planned. When CDCF (and Exo-ICE) was selected as a SSF attached payload, an exercise called the small particle intact capture experiment (SPICE) was started for Exo-ICE to develop an understanding and early testing of the necessary expertise and technology for intact capture of cosmic dust and IDP's. This SPICE activity looks to fly small, meter square or less, collection area experiments on early orbital platforms of opportunity such as EURECA, MIR, WESTAR, and others, including the shuttle. The SPICE activity has focused on developing techniques and instrument concepts to capture particles intact and without inadvertent contamination. It began with a survey and screening of available capture media concepts and then focused on the development of a capture medium that can meet these requirements. Evaluation and development of the chosen capture medium, aerogel (a silicon oxide gel), has so far lived up to the expectations of meeting the requirements and is highlighted in a companion paper at this workshop. Others such as McDonnell's Timeband Capture Cell Experiment (TICCE) on EuReCa and Tsuo's GAS-CAN lid experiments on STS 47 and 57 have flown aerogel, but without addressing the contamination issue/requirement, especially regarding organics. Horz, Zolenskym and others have studied and have also been advocates for its

  7. Multiple instrument distributed aperture sensor (MIDAS) science payload concept

    NASA Astrophysics Data System (ADS)

    Stubbs, David M.; Duncan, Alan L.; Pitman, Joe T.; Sigler, Robert D.; Kendrick, Richard L.; Chilese, John F.; Smith, Eric H.

    2004-10-01

    We describe the Multiple Instrument Distributed Aperture Sensor (MIDAS) concept, an innovative approach to future planetary science mission remote sensing that enables order of magnitude increased science return. MIDAS provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional space telescopes, by integrating advanced optical interferometry technologies. All telescope optical assemblies are integrated into MIDAS as the primary remote sensing science payload, thereby reducing the cost, resources, complexity, I&T and risks of a set of back-end science instruments (SI's) tailored to a specific mission. MIDAS interfaces to multiple science instruments, enabling sequential and concurrent functional modes, thereby expanding the potential planetary science return many fold. Passive imaging modes with MIDAS enable remote sensing at diffraction-limited resolution sequentially by each science instrument, or at lower resolution by multiple science instruments acting concurrently on the image, such as in different wavebands. Our MIDAS concept inherently provides nanometer-resolution hyperspectral passive imaging without the need for any moving parts in the science instruments. For planetary science missions, the MIDAS optical design provides high-resolution imaging for long dwell times at high altitudes, thereby enabling real-time, wide-area remote sensing of dynamic surface characteristics. In its active remote sensing modes, using an integrated solid-state laser source, MIDAS enables LIDAR, vibrometry, surface illumination, and various active or ablative spectroscopies. Our concept is scalable to apertures well over 10m, achieved by autonomous deployments or manned assembly in space. MIDAS is a proven candidate for future planetary science missions, enabled by our continued investments in focused MIDAS technology development areas. In this paper we present the opto-mechanical design for a 1.5m MIDAS point

  8. Multiple instrument distributed aperture sensor (MIDAS) evolved design concept

    NASA Astrophysics Data System (ADS)

    Stubbs, David; Duncan, Alan; Pitman, Joseph T.; Sigler, Robert; Kendrick, Rick; Smith, Eric H.; Mason, James

    2004-10-01

    An innovative approach to future space telescopes that enables order of magnitude increased science return for astronomical, Earth-observing and planetary science missions is described. Our concept, called Multiple Instrument Distributed Aperture Sensor (MIDAS), provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional space telescopes. MIDAS integrates many optical interferometry advances as an evolution of over a decade of technology development in distributed aperture optical imaging systems. Nine collector telescopes are integrated into MIDAS as the primary remote sensing science payload, supporting a collection of six back-end science instruments tailored to a specific mission. By interfacing to multiple science instruments, enabling sequential and concurrent functional modes, we expand the potential science return of future space science missions many fold. Passive imaging modes with MIDAS enable remote sensing at diffraction-limited resolution sequentially by each science instrument, as well as in somewhat lower resolution by multiple science instruments acting concurrently on the image, such as in different wavebands. Our MIDAS concept inherently provides nanometer-resolution hyperspectral passive imaging without the need for any moving parts in the science instruments. For Earth-observing and planetary science missions, the MIDAS optical design provides high-resolution imaging at high altitudes for long dwell times, thereby enabling real-time, wide-area remote sensing of dynamic planetary surface characteristics. In its active remote sensing modes, using an integrated solid-state laser source, MIDAS enables surface illumination, active spectroscopy, LIDAR, vibrometery, and optical communications. Our concept is directly scalable to telescope synthetic apertures of 5m, limited by launch vehicle fairing diameter, and above 5m diameter achieved by means of autonomous deployments or manned

  9. New Worlds Observer Telescope and Instrument Optical Design Concepts

    NASA Technical Reports Server (NTRS)

    Howard, Joseph M.; Noecker, Charlie; Kendrick, Steve; Woodgate, Bruce; Kilstron, Steve; Cash, Webster

    2008-01-01

    Optical design concepts for the telescope and instrumentation for NASA s New Worlds Observer program are presented. A four-meter multiple channel telescope is discussed, as well as a suite of science instrument concepts. Wide field instrumentation (imager and spectrograph) would be accommodated by a three-mirror-anastigmat telescope design. Planet finding and characterization, and a UV instrument would use a separate channel that is picked off after the first two mirrors (primary and secondary). Guiding concepts are also discussed.

  10. ACTS advanced system concepts and experimentation

    NASA Technical Reports Server (NTRS)

    Abbe, Brian S.; Theofylaktos, Noulie

    1993-01-01

    Over the course of the first two years of experimentation with the Advanced Communications Technology Satellite (ACTS), many different K/Ka-band applications-oriented experiments will be conducted and evaluated for their commercial viability. In addition, the technological developments and advanced systems concepts associated with the various terminals and the satellite itself will also be examined. Beyond these existing experiments and the current terminal developments, many other new and exciting experiment ideas and advanced system concepts exist. With the additional use of ACTS for the last two years of its lifetime, many of these ideas could be explored. In the mobile satellite communications arena, a particular applications-oriented concept that has yet to be developed is a maritime-mobile experiment. Applications of K/Ka-band mobile satcom technologies to the pleasure cruise industry could provide similar communications services as those that are being developed for the broadband aeronautical experiments. A second applications-oriented experiment that could be of interest is the development of a hybrid satellite-cellular system experiment. In such an experimental system, a mobile K/Ka-band satellite service would extend the coverage of the already existing cellular network. Many new system concepts and terminal developments could also be accomplished. The initial characterization of the K/Ka-band mobile satellite communications propagation channel and evaluation of the currently existing rain compensation algorithms (RCA's) could lead to a second generation RCA development that would improve the overall ACTS Mobile Terminal (AMT) performance. In addition, the development of an enhanced modem to be used with the AMT that utilizes CDMA spread spectrum would also improve the overall terminal efficiency and provide a greater commercial potential for K/Ka-band applications. Other techniques worthy of further exploration and evaluation include the development of

  11. Instrumentation concepts for the Very Large Hadron Collider (VLHC)

    NASA Astrophysics Data System (ADS)

    Foster, G. William

    2000-11-01

    Instrumentation concepts for the Very Large Hadron Collider (VLHC) are discussed. Different design concepts for the VLHC result in substantially different instrumentation layouts. High field, cold bore magnets have instrumentation requirements very similar to the SSC and LHC. In contrast, the low field warm bore "transmission line" magnets have very sparse instrumentation and the long magnet length allows the cable plant to be preinstalled on the magnets. Specialized beam instrumentation concepts including permanently sealed semi-rigid coax BLMs and distributed coupled-bunch damping systems are discussed.

  12. Multitrait-Multimethod Analyses of Two Self-Concept Instruments.

    ERIC Educational Resources Information Center

    Marsh, Herbert W.; Smith, Ian D.

    1982-01-01

    The multidimensionality of self-concept and the use of factor analysis in the development of self-concept instruments are supported in multitrait-multimethod analyses of the Sears and Coopersmith instruments. Convergent validity and discriminate validity of subscales in factor analysis and multitrait-multimethod analysis of longitudinal data are…

  13. New Worlds Observer Telescope and Instrument Optical Design Concepts

    NASA Technical Reports Server (NTRS)

    Howard, Joseph; Kilston, Steve; Kendrick, Steve

    2008-01-01

    Optical design concepts for the telescope and instrumentation for NASA's New Worlds Observer program are presented. First order parameters are derived from the science requirements, and estimated performance metrics are shown using optical models. A four meter multiple channel telescope is discussed, as well as a suite of science instrument concepts. Wide field instrumentation (imager and spectrograph) would be accommodated by a three-mirror anastigmat telescope design. Planet finding and characterization would use a separate channel which is picked off after the first two mirrors (primary and secondary). Guiding concepts are also discussed.

  14. Concept for a Micro Autonomous Ultrasonic Instrument (MAUI)

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2002-01-01

    We investigate a concept for the construction a mobile Micro Optical ElectroMechanical Systems (MOEMS) based laser ultrasonic instrument to serve as a Micro Autonomous Ultrasonic Instrument (MAUI). The system will consist of a laser ultrasonic instrument fabricated using Micro Electro-Mechanical Systems (MEMS) technology, and a MEMS based walking platform like those developed by Pister et al. at Berkeley. This small system will allow for automated remote Non-Destructive Evaluation (NDE) of aerospace vehicles.

  15. Solid state instrumentation concepts for earth resource observation

    NASA Technical Reports Server (NTRS)

    Richard, H. L.

    1982-01-01

    Late in 1980, specifications were prepared for detail design definition of a six band solid state multispectral instrument having three visible (VIS), one near infrared (NIR), and two short wave infrared (SWIR) bands. This instrument concept, known as the Multispectral Linear Array (MLA), also offered increased spatial resolution, on board gain and offset correction, and additional operational modes which would allow for cross track and stereoscopic viewing as well as a multialtitude operational capability. A description is presented of a summary of some of the salient features of four different MLA design concepts, as developed by four American companies. The designs ranged from the use of multiple refractive telescopes utilizing three groups of focal plane detectors electronic correlation processing for achieving spatial registration, and incorporating palladium silicide (PdSi) SWIR detectors, to a four-mirror all-reflective telecentric system utilizing a beam splitter for spatial registration.

  16. XMM instrument on-board software maintenance concept

    NASA Technical Reports Server (NTRS)

    Peccia, N.; Giannini, F.

    1994-01-01

    While the pre-launch responsibility for the production, validation and maintenance of instrument on-board software traditionally lies with the experimenter, the post-launch maintenance has been the subject of ad hoc arrangements with the responsibility shared to different extent between the experimenter, ESTEC and ESOC. This paper summarizes the overall design and development of the instruments on-board software for the XMM satellite, and describes the concept adopted for the maintenance of such software post-launch. The paper will also outline the on-board software maintenance and validation facilities and the expected advantages to be gained by the proposed strategy. Conclusions with respect to adequacy of this approach will be presented as well as recommendations for future instrument on-board software developments.

  17. AIRS-Light Instrument Concept and Critical Technology Development

    NASA Technical Reports Server (NTRS)

    Maschhoff, Kevin

    2001-01-01

    Understanding Earth's climate, atmospheric transport mechanisms, and the hydrologic cycle requires a precise knowledge of global atmospheric circulation, temperature profiles, and water vapor distribution. The accuracy of advanced sounders such as AIRS/AMSU/HSB on NASA's Aqua spacecraft can match radiosonde accuracy. It is essential to fold those capabilities fully into the NPOESS, enabling soundings of radiosonde accuracy, every 6 hours around the globe on an operational basis. However, the size, mass, power demands, and thermal characteristics of the Aqua sounding instrument suite cannot be accommodated on the NPOESS spacecraft. AIRS-Light is an instrument concept, developed under the Instrument Incubator Program, which provides IR sounding performance identical to the AIRS instrument, but uses advances in HgCdTe FPA technology and pulse tube cooler technology, as well as design changes to dramatically reduce the size, mass, and power demand, allowing AIRS-Light to meet all NPOESS spacecraft interface requirements. The instrument concept includes substantial re-use of AIRS component designs, including the complex AIRS FPA, to reduce development risk and cost. The AIRS-Light Instrument Incubator program fostered the development of photovoltaic-mode HgCdTe detector array technology for the 13.5-15.4 micron band covered by photoconductive-mode HgCdTe arrays in AIRS, achieved state of the art results in this band, and substantially reduced the development risk for this last new technology needed for AIRS-Light implementation, A demonstration of a prototype 14.5-15.4 micron band IRFPA in a reduced heat-load dewar together with the IMAS pulse tube cryocooler is in progress.

  18. AIRS-Light instrument concept and critical technology development

    NASA Astrophysics Data System (ADS)

    Maschhoff, Kevin R.

    2002-12-01

    Understanding Earth's climate, atmospheric transport mechanisms, and the hydrologic cycle requires a precise knowledge of global atmospheric circulation, temperature profiles, and water vapor distribution. The accuracy of advanced sounders such as AIRS/AMSU/HSB on NASA's Aqua spacecraft can match radiosonde accuracy. It is essential to fold those capabilities fully into the NPOESS, enabling soundings of radiosonde accuracy every 6 hours around the globe on an operational basis. However, the size, mass, power demands, and thermal characteristics of the Aqua sounding instrument suite cannot be accommodated on the NPOESS spacecraft. AIRS-Light is an instrument concept, developed under the Instrument Incubator Program, which provides IR sounding performance identical to the AIRS instrument but uses advances in HgCdTe FPA technology and pulse tube cooler technology, as well as design changes, to dramatically reduce the size, mass, and power demand, allowing AIRS-Light to meet all NPOESS spacecraft interface requirements. The AIRS-Light Instrument Incubator program fostered the development of photovoltaic-mode HgCdTe detector array technology for the 13.5-15.4 μm band covered by photoconductive-mode HgCdTe arrays in AIRS, achieved state of the art results in this band, and substantially reduced the development risk for this last new technology needed for AIRS-Light implementation.

  19. Mental Capacity Act 2005: statutory principles and key concepts.

    PubMed

    Griffith, Richard; Tengnah, Cassam

    2008-05-01

    The Mental Capacity Act 2005 represents the most significant development in the law relating to people who lack decision making capacity since the Mental Health Act 1959 removed the states parens patriae jurisdiction preventing relatives, courts and government bodies consenting on behalf of incapable adults (F vs West Berkshire HA [1990]). The Mental Capacity Act 2005 impacts on the care and treatment provided by district nurses and it is essential that you have a sound working knowledge of its provisions and code of practice. In the first article of a series focusing on how the Mental Capacity Act 2005 applies to district nurse practice, Richard Griffith and Cassam Tengnah consider the principles and key concepts underpinning the Act. PMID:18771187

  20. Astronomical Polarimetry : new concepts, new instruments, new measurements & observations

    NASA Astrophysics Data System (ADS)

    Snik, F.

    2009-10-01

    All astronomical sources are polarized to some degree. Polarimetry is therefore a powerful astronomical technique. It furnishes unique diagnostics of e.g. magnetic fields and scattering media. This thesis presents new polarimetric concepts, instruments, and measurements targeting astronomical science questions. The first part of the thesis describes three novel polarimetric concepts. -A dedicated passive liquid crystal device known as a theta cell is introduced to enable one-shot observations of astronomical targets exhibiting a centrosymmetric polarization pattern. -A new passive measurement concept for broad-band linear polarization is introduced. It is based on a sinusoidal modulation of the spectrum, and is particularly suitable for instruments for which classical spatial and/or temporal polarization modulation is unfavorable. -Calibration of polarimetric instruments is usually limited by non-ideal effects of the calibration optics themselves. A mathematical frame-work based on Fourier analysis is introduced to tackle various non-ideal effects in polarimetric calibration. The second part of the thesis presents the designs and first results of three very different astronomical polarimeters. -The ultra-stable high-resolution HARPS spectrograph is successfully upgraded with a dual-beam polarimetric module. It furnishes direct observations of magnetic fields on stars. -The Small Synoptic Second Solar Spectrum Telescope (S5T) is designed to accurately monitor the variation of weak, turbulent magnetic fields on the Sun during a solar cycle. Such measurements are crucial for the understanding of local dynamo action in the solar photosphere. The prototype shows the feasibility of the instrument concept. -The Spectropolarimeter for Planetary EXpolaration (SPEX) is designed to study a planet's or moon's atmosphere from orbit. The additional information from the polarization measurement of scattered sunlight allows for determination of microphysical properties of

  1. Investigating the Act of Design in Discharge Concept Using PMRI

    ERIC Educational Resources Information Center

    Lestariningsih; Anwar, Muhammad; Setiawan, Agus Mulyanto

    2015-01-01

    The goal of this research is to investigate the act of design in discharge concept using Pendidikan Matematika Realistik Indonesia (PMRI) approach with Lapindo's Mud phenomenon as a context. Design research was chosen as the method used in this research that consists of three phases, namely preparing for the experiment, teaching experiment, and…

  2. Mission and instrumentation concept for the baryonic structure probe

    NASA Astrophysics Data System (ADS)

    Ebbets, Dennis; DeCino, James; Turner-Valle, Jennifer; Sembach, Kenneth

    2006-06-01

    There is a growing consensus that a substantial fraction of the matter in the universe, especially what we think of as normal baryonic matter, exists in a tenuous, hot filamentary intergalactic medium often referred to as the Cosmic Web. Improving our understanding of the web has been a high priority scientific goal in NASA's planning and roadmapping activities. NASA recently supported an Origins Probe study that explored the observable phenomenology of the web in detail and developed concepts for the instrumentation and mission. The Baryonic Structure Probe operates in the ultraviolet spectral region, using primarily O VI (λλ 1032, 1038 angstrom) and HI Ly α (λ 1216 angstrom) as tracers of the web. A productive investigation requires both moderate resolution (R = λ/Δλ ~ 30000) absorption line spectroscopy using faint background quasars as continuum sources, and imaging of the diffuse filaments in emission lines of the same ions. Spectroscopic sensitivity to quasars as faint as V ~ 19 will probe a large number of sight lines to derive physical diagnostics over the redshift range 0 < z < 1. Spectral imaging with a wide field of view and sensitivity to a redshift range 0 < z < 0.3 will map the filaments in a large volume of the universe after the web had evolved to near its modern structure. This paper summarizes the scientific goals, identifies the measurement requirements derived from them, and describes the instrument concepts and overall mission architecture developed by the BSP study team.

  3. Lunar Riometry: Proof-of-Concept Instrument Package

    NASA Astrophysics Data System (ADS)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Stewart, K.; Giersch, L.; Burns, J. O.; Farrell, W. M.; Kasper, J. C.; O'Dwyer, I.; Hartman, J.

    2012-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent, the extent of contributions from volatile outgassing from the Moon, and its behavior over time, including response to the solar wind and modification by landers. Relative ionospheric measurements (riometry) is based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, in situ, the vertical extent of the lunar exosphere over time. We describe a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report. The instrument concept is simple, consisting of an antenna implemented as a metal deposited on polyimide film and receiver. We illustrate various deployment mechanisms and performance of a prototype in increasing lunar analog conditions. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of dust impactors. The Lunar University Network for Astrophysical Research consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

  4. Mars Science Laboratory Using Laser Instrument, Artist's Concept

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This artist's conception of NASA's Mars Science Laboratory portrays use of the rover's ChemCam instrument to identify the chemical composition of a rock sample on the surface of Mars.

    ChemCam is innovative for planetary exploration in using a technique referred to as laser breakdown spectroscopy to determine the chemical composition of samples from distances of up to about 8 meters (25 feet) away. ChemCam is led by a team at the Los Alamos National Laboratory and the Centre d'Etude Spatiale des Rayonnements in Toulouse, France.

    Mars Science Laboratory, a mobile robot for investigating Mars' past or present ability to sustain microbial life, is in development at NASA's Jet Propulsion Laboratory for a launch opportunity in 2009. The mission is managed by JPL, a division of the California Institute of Technology, Pasadena, Calif., for the NASA Science Mission Directorate, Washington.

  5. Exploration of Instruments Measuring Concepts of Graduateness in a Research University Context

    ERIC Educational Resources Information Center

    Steur, J. M.; Jansen, E. P. W. A.; Hofman, W. H. A.

    2011-01-01

    This article considers the appropriateness of international instruments to measure the separate concepts of graduateness for a research university context. The four concepts of graduateness--reflective thinking, scholarship, moral citizenship and lifelong learning--are operationalized using five existing instruments. These instruments were…

  6. ReACT Methodology Proof of Concept Final Report

    SciTech Connect

    Bri Rolston; Sarah Freeman

    2014-03-01

    The Department of Energy’s Office of Electricity Delivery and Energy Reliability (DOE-OE) funded INL Researchers to evaluate a novel process for assessing and mitigating cyber security risks. The proof of concept level of the method was tested in an industry environment. This case study, plus additional case studies will support the further development of the method into a tool to assist industry in securing their critical networks. This report provides an understanding of the process developed in the Response Analysis and Characterization Tool (ReACT) project. This report concludes with lessons learned and a roadmap for final development of these tools for use by industry.

  7. Concept for modifying drafting instruments to minimize smearing

    NASA Technical Reports Server (NTRS)

    Rennie, T. A.

    1967-01-01

    Ball bearing standoffs added to drafting instruments enable the instruments to be moved about, with their surfaces out of contact with the drawing paper. This provides a safeguard against smearing of the lines.

  8. Instrument concept of the imaging Fourier transform spectrometer GLORIA

    NASA Astrophysics Data System (ADS)

    Friedl-Vallon, F.; Gulde, T.; Hase, F.; Kleinert, A.; Kulessa, T.; Maucher, G.; Neubert, T.; Olschewski, F.; Piesch, C.; Preusse, P.; Rongen, H.; Sartorius, C.; Schneider, H.; Schönfeld, A.; Tan, V.; Bayer, N.; Blank, J.; Dapp, R.; Ebersoldt, A.; Fischer, H.; Graf, F.; Guggenmoser, T.; Höpfner, M.; Kaufmann, M.; Kretschmer, E.; Latzko, T.; Nordmeyer, H.; Oelhaf, H.; Orphal, J.; Riese, M.; Schardt, G.; Schillings, J.; Sha, M. K.; Suminska-Ebersoldt, O.; Ungermann, J.

    2014-03-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an imaging limb emission sounder operating in the thermal infrared region. It is designed to provide measurements of the Upper Troposphere/Lower Stratosphere with high spatial and high spectral resolution. The instrument consists of an imaging Fourier transform spectrometer integrated in a gimbal. The assembly can be mounted in the belly pod of the German high altitude and long range research aircraft HALO and in instrument bays of the Russian M55 Geophysica. Measurements are made predominantly in two distinct modes: the chemistry mode emphasises chemical analysis with high spectral resolution, the dynamics mode focuses on dynamical processes of the atmosphere with very high spatial resolution. In addition the instrument allows tomographic analyses of air volumes. The first measurement campaigns have shown compliance with key performance and operational requirements.

  9. Instrument concept of the imaging Fourier transform spectrometer GLORIA

    NASA Astrophysics Data System (ADS)

    Friedl-Vallon, F.; Gulde, T.; Hase, F.; Kleinert, A.; Kulessa, T.; Maucher, G.; Neubert, T.; Olschewski, F.; Piesch, C.; Preusse, P.; Rongen, H.; Sartorius, C.; Schneider, H.; Schönfeld, A.; Tan, V.; Bayer, N.; Blank, J.; Dapp, R.; Ebersoldt, A.; Fischer, H.; Graf, F.; Guggenmoser, T.; Höpfner, M.; Kaufmann, M.; Kretschmer, E.; Latzko, T.; Nordmeyer, H.; Oelhaf, H.; Orphal, J.; Riese, M.; Schardt, G.; Schillings, J.; Sha, M. K.; Suminska-Ebersoldt, O.; Ungermann, J.

    2014-10-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an imaging limb emission sounder operating in the thermal infrared region. It is designed to provide measurements of the upper troposphere/lower stratosphere with high spatial and high spectral resolution. The instrument consists of an imaging Fourier transform spectrometer integrated into a gimbal. The assembly can be mounted in the belly pod of the German High Altitude and Long Range research aircraft (HALO) and in instrument bays of the Russian M55 Geophysica. Measurements are made in two distinct modes: the chemistry mode emphasises chemical analysis with high spectral resolution, and the dynamics mode focuses on dynamical processes of the atmosphere with very high spatial resolution. In addition, the instrument allows tomographic analyses of air volumes. The first measurement campaigns have shown compliance with key performance and operational requirements.

  10. Learning the Concept of Researcher as Instrument in Qualitative Research

    ERIC Educational Resources Information Center

    Xu, Mengxuan Annie; Storr, Gail Blair

    2012-01-01

    The authors describe the process whereby a student with a background in economics was guided to understand the central role in qualitative research of the researcher as instrument. The instructor designed a three-part mock research project designed to provide experiential knowledge of the enterprise of qualitative research. Students, as neophyte…

  11. Remote Sensing Space Science With The Multiple Instrument Distributed Aperture Sensor (MIDAS) Concept

    NASA Astrophysics Data System (ADS)

    Pitman, J.; Duncan, A.; Stubbs, D.; Sigler, R.; Kendrick, R.; Smith, E.; Mason, J.; Delory, G.; Lipps, J. H.; Manga, M.; Graham, J.; dePater, I.; Rieboldt, S.; Bierhaus, E.; Dalton, J. B.; Fienup, J.; Yu, J.

    2004-11-01

    The science capabilities and features of an innovative and revolutionary approach to remote sensing imaging systems aimed at increasing the return on future planetary science missions like JIMO many fold are described. Our concept, called Multiple Instrument Distributed Aperture Sensor (MIDAS), provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional space telescopes, by integrating advanced optical imaging interferometer technologies into a multi-functional remote sensing science payload. MIDAS acts as a single front-end actively controlled telescope array for use on common missions, reducing the cost and resources needed for back-end science instruments (SIs) tailored to a specific mission. MIDAS enables either sequential or concurrent SI operations in all functional modes. Passive imaging remote sensing is at diffraction-limited resolution sequentially by each SI, or at somewhat lower resolution by multiple SIs acting concurrently on the image. MIDAS inherently provides nanometer-resolution hyperspectral passive imaging without the need for any moving parts in the SI's. Our optical design features high-resolution imaging for long dwell times at high altitudes, 1m GSD from the 5000km extent of spiral orbits on JIMO, thereby enabling regional remote sensing of dynamic planet surface processes, as well as ultra-high resolution of 2cm GSD from a 100km JIMO science orbit that enables orbital searches for signs of life processes on the planet surface. In its active remote sensing modes, using an integrated solid-state laser source, MIDAS enables LIDAR, vibrometry, surface illumination, and active spectroscopy. The combination of MIDAS passive and active modes, as sequential or concurrent SI operations, increases potential return on space science missions many fold. For example, on a mission to the icy moons of Jupiter, MIDAS enhances detailed imaging of the geology and glaciology of the surface

  12. Understanding Teachers' Conceptions of Classroom Inquiry with a Teaching Scenario Survey Instrument

    ERIC Educational Resources Information Center

    Kang, Nam-Hwa; Orgill, MaryKay; Crippen, Kent J.

    2008-01-01

    A survey instrument using everyday teaching scenarios was developed to measure teacher conceptions of inquiry. Validity of the instrument was established by comparing responses for a group of secondary teachers to narrative writing and group discussion. Participating teachers used only three of the five essential features of inquiry detailed in…

  13. PowerPoint and Concept Maps: A Great Double Act

    ERIC Educational Resources Information Center

    Simon, Jon

    2015-01-01

    This article explores how concept maps can provide a useful addition to PowerPoint slides to convey interconnections of knowledge and help students see how knowledge is often non-linear. While most accounting educators are familiar with PowerPoint, they are likely to be less familiar with concept maps and this article shows how the tool can be…

  14. Development and Analysis of an Instrument to Assess Student Understanding of Foundational Concepts before Biochemistry Coursework

    ERIC Educational Resources Information Center

    Villafane, Sachel M.; Bailey, Cheryl P.; Loertscher, Jennifer; Minderhout, Vicky; Lewis, Jennifer E.

    2011-01-01

    Biochemistry is a challenging subject because student learning depends on the application of previously learned concepts from general chemistry and biology to new, biological contexts. This article describes the development of a multiple-choice instrument intended to measure five concepts from general chemistry and three from biology that are…

  15. Advanced concepts for gamma ray isotopic analysis and instrumentation

    NASA Astrophysics Data System (ADS)

    Buckley, W. M.; Carlson, J. B.

    1994-07-01

    The Safeguards Technology Program at the Lawrence Livermore National Laboratory is developing actinide isotopic analysis technologies in response to needs that address issues of flexibility of analysis, robustness of analysis, ease-of-use, automation and portability. Recent developments such as the Intelligent Actinide Analysis System (IAAS), begin to address these issues. We are continuing to develop enhancements on this and other instruments that improve ease-of-use, automation and portability. Requests to analyze samples with unusual isotopics, contamination, or containers have made us aware of the need for more flexible and robust analysis. We have modified the MGA program to extend its plutonium isotopic analysis capability to samples with greater Am-241 content or U isotopics. We are looking at methods for dealing with tantalum or lead contamination and contamination with high-energy gamma emitters, such as U-233. We are looking at ways to allow the program to use additional information about the sample to further extend the domain of analyzable samples. These unusual analyses will come from the domain of samples that need to be measured because of complex reconfiguration or environmental cleanup.

  16. KPAF (K-band phased array feed) instrument concept

    NASA Astrophysics Data System (ADS)

    Locke, Lisa; Claude, Stéphane; Bornemann, Jens; Henke, Doug; Di Francesco, James; Jiang, Frank; Garcia, Dominic; Wevers, Ivan; Niranjanan, Pat

    2014-07-01

    Astronomical surveys are demanding more throughput from telescope receivers. Currently, microwave/millimeter telescopes with mature cryogenic single pixel receivers are upgrading to multi-pixel receivers by replacing the conventional feed horns with phased array feeds (PAFs) to increase the field of view and, thus, imaging speeds. This step in astronomy instrumentation has been taken by only a few research laboratories world-wide and primarily in Lband (0.7-1.5 GHz). We present a K-band (18-26 GHz) 5x5 modular PAF to demonstrate the feasibility of higher frequency receiving arrays. The KPAF system includes a tapered slot antenna array, a cryogenic commercial GaAs MMIC amplifier block, and a mixing stage to down-convert to L band for an existing beamformer. The noise temperature and power budget are outlined. Full antenna S-parameters and far-field beam patterns are simulated and measured using both planar near-field and far-field techniques. Cryogenic and room temperature amplifier noise measurements with varying bias levels are presented.

  17. Remote sensing space science enabled by the multiple instrument distributed aperture sensor (MIDAS) concept

    NASA Astrophysics Data System (ADS)

    Pitman, Joseph T.; Duncan, Alan; Stubbs, David; Sigler, Robert D.; Kendrick, Richard L.; Smith, Eric H.; Mason, James E.; Delory, Gregory; Lipps, Jere H.; Manga, Michael; Graham, James R.; de Pater, Imke; Reiboldt, Sarah; Bierhaus, Edward; Dalton, James B.; Fienup, James R.; Yu, Jeffrey W.

    2004-11-01

    The science capabilities and features of an innovative and revolutionary approach to remote sensing imaging systems aimed at increasing the return on future planetary science missions many fold are described. Our concept, called Multiple Instrument Distributed Aperture Sensor (MIDAS), provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional space telescopes, by integrating advanced optical imaging interferometer technologies into a multi-functional remote sensing science payload. MIDAS acts as a single front-end actively controlled telescope array for use on common missions, reducing the cost, resources, complexity, and risks of developing a set of back-end science instruments (SIs) tailored to each specific mission. By interfacing to multiple science instruments, MIDAS enables either sequential or concurrent SI operations in all functional modes. Passive imaging modes enable remote sensing at diffraction-limited resolution sequentially by each SI, as well as at somewhat lower resolution by multiple SIs acting concurrently on the image, such as in different wavebands. MIDAS inherently provides nanometer-resolution hyperspectral passive imaging without the need for any moving parts in the SI's. Our optical design features high-resolution imaging for long dwell times at high altitudes, <1m GSD from the 5000km extent of spiral orbits, thereby enabling regional remote sensing of dynamic planet surface processes, as well as ultra-high resolution of 2cm GSD from a 100km science orbit that enable orbital searches for signs of life processes on the planet surface. In its active remote sensing modes, using an integrated solid-state laser source, MIDAS enables LIDAR, vibrometry, surface illumination, ablation, laser spectroscopy and optical laser communications. The powerful combination of MIDAS passive and active modes, each with sequential or concurrent SI operations, increases potential science return

  18. Dual purpose optical instrument capable of simultaneously acting as spectrometer and diffractometer

    NASA Technical Reports Server (NTRS)

    Dasgupta, K.; Schnopper, H. W.; Metzger, A. E. (Inventor)

    1969-01-01

    A dual purpose optical instrument is described capable of simultaneously acting as a spectrometer and diffractometer to respectively perform elemental and structural analysis of an unknown sample. The diffractometer portion of the instrument employs a modified form of Seeman-Bohlin focusing which involves providing a line source of X-rays, a sample, and a detector, all on the same focal circle. The spectrometer portion of the instrument employs a fixedly mounted X-ray energy detector mounted outside of the plane of the focal circle.

  19. Concept, simulation, and instrumentation for radiometric inflight icing detection

    NASA Astrophysics Data System (ADS)

    Ryerson, Charles C.; Koenig, George G.; Reehorst, Andrew L.; Scott, Forrest R.

    2008-08-01

    The multi-agency Flight in Icing Remote Sensing Team (FIRST), a consortium of the National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), the National Center for Atmospheric Research (NCAR), the National Oceanographic and Atmospheric Administration (NOAA), and the Army Corps of Engineers (USACE), has developed technologies for remotely detecting hazardous inflight icing conditions. The USACE Cold Regions Research and Engineering Laboratory (CRREL) assessed the potential of onboard passive microwave radiometers for remotely detecting icing conditions ahead of aircraft. The dual wavelength system differences the brightness temperature of Space and clouds, with greater differences potentially indicating closer and higher magnitude Cloud Liquid Water Content (CLWC). The Air Force RADiative TRANsfer model (RADTRAN) was enhanced to assess the flight track sensing concept, and a "flying" RADTRAN was developed to simulate a radiometer system flying through simulated clouds. Neural network techniques were developed to invert brightness temperatures and obtain integrated cloud liquid water. In addition, a dual wavelength Direct-Detection Polarimeter Radiometer (DDPR) system was built for detecting hazardous drizzle drops. This paper reviews technology development to date and addresses initial polarimeter performance.

  20. Concept, Simulation, and Instrumentation for Radiometric Inflight Icing Detection

    NASA Technical Reports Server (NTRS)

    Ryerson, Charles; Koenig, George G.; Reehorst, Andrew L.; Scott, Forrest R.

    2009-01-01

    The multi-agency Flight in Icing Remote Sensing Team (FIRST), a consortium of the National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), the National Center for Atmospheric Research (NCAR), the National Oceanographic and Atmospheric Administration (NOAA), and the Army Corps of Engineers (USACE), has developed technologies for remotely detecting hazardous inflight icing conditions. The USACE Cold Regions Research and Engineering Laboratory (CRREL) assessed the potential of onboard passive microwave radiometers for remotely detecting icing conditions ahead of aircraft. The dual wavelength system differences the brightness temperature of Space and clouds, with greater differences potentially indicating closer and higher magnitude cloud liquid water content (LWC). The Air Force RADiative TRANsfer model (RADTRAN) was enhanced to assess the flight track sensing concept, and a 'flying' RADTRAN was developed to simulate a radiometer system flying through simulated clouds. Neural network techniques were developed to invert brightness temperatures and obtain integrated cloud liquid water. In addition, a dual wavelength Direct-Detection Polarimeter Radiometer (DDPR) system was built for detecting hazardous drizzle drops. This paper reviews technology development to date and addresses initial polarimeter performance.

  1. Acting Is Learning: Focus on the Construction of Mathematical Concepts

    ERIC Educational Resources Information Center

    Arzarello, Ferdinando; Robutti, Ornella; Bazzini, Luciana

    2005-01-01

    The purpose of this paper is to focus on the nature of the thinking processes supporting pupils' construction and understanding of mathematical concepts. We assume that interaction with reality plays a crucial role in learning. In particular, human perception and action and, more generally, interaction with artefacts, are very important for…

  2. Developing a Teacher Evaluation Instrument to Provide Formative Feedback Using Student Ratings of Teaching Acts

    ERIC Educational Resources Information Center

    van der Lans, Rikkert M.; van de Grift, Wim J. C. M.; van Veen, Klaas

    2015-01-01

    This study reports on the development of a teacher evaluation instrument, based on students' observations, which exhibits cumulative ordering in terms of the complexity of teaching acts. The study integrates theory on teacher development with theory on teacher effectiveness and applies a cross-validation procedure to verify whether teaching acts…

  3. ACT Payload Shroud Structural Concept Analysis and Optimization

    NASA Technical Reports Server (NTRS)

    Zalewski, Bart B.; Bednarcyk, Brett A.

    2010-01-01

    Aerospace structural applications demand a weight efficient design to perform in a cost effective manner. This is particularly true for launch vehicle structures, where weight is the dominant design driver. The design process typically requires many iterations to ensure that a satisfactory minimum weight has been obtained. Although metallic structures can be weight efficient, composite structures can provide additional weight savings due to their lower density and additional design flexibility. This work presents structural analysis and weight optimization of a composite payload shroud for NASA s Ares V heavy lift vehicle. Two concepts, which were previously determined to be efficient for such a structure are evaluated: a hat stiffened/corrugated panel and a fiber reinforced foam sandwich panel. A composite structural optimization code, HyperSizer, is used to optimize the panel geometry, composite material ply orientations, and sandwich core material. HyperSizer enables an efficient evaluation of thousands of potential designs versus multiple strength and stability-based failure criteria across multiple load cases. HyperSizer sizing process uses a global finite element model to obtain element forces, which are statistically processed to arrive at panel-level design-to loads. These loads are then used to analyze each candidate panel design. A near optimum design is selected as the one with the lowest weight that also provides all positive margins of safety. The stiffness of each newly sized panel or beam component is taken into account in the subsequent finite element analysis. Iteration of analysis/optimization is performed to ensure a converged design. Sizing results for the hat stiffened panel concept and the fiber reinforced foam sandwich concept are presented.

  4. A photophonic instrument concept to measure atmospheric aerosol absorption. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Engle, C. D.

    1982-01-01

    A laboratory model of an instrument to measure the absorption of atmospheric aerosols was designed, built, and tested. The design was based on the photophonic phenomenon discovered by Bell and an acoustic resonator developed by Helmholtz. Experiments were done to show ways the signal amplitude could be improved and the noise reduced and to confirm the instrument was sensitive enough to be practical. The research was undertaken to develop concepts which show promise of being improvements on the instruments that are presently used to measure the absorption of the Sun's radiation by the Earth's atmospheric aerosols.

  5. Developing an instrument for assessing students' concepts of the nature of technology

    NASA Astrophysics Data System (ADS)

    Liou, Pey-Yan

    2015-05-01

    Background:The nature of technology has been rarely discussed despite the fact that technology plays an essential role in modern society. It is important to discuss students' concepts of the nature of technology, and further to advance their technological literacy and adaptation to modern society. There is a need to assess high school students' concepts of the nature of technology. Purpose:This study aims to engage in discourse on students' concepts of the nature of technology based on a proposed theoretical framework. Moreover, another goal is to develop an instrument for measuring students' concepts of the nature of technology. Sample:Four hundred and fifty-five high school students' perceptions of technology were qualitatively analyzed. Furthermore, 530 students' responses to a newly developed questionnaire were quantitatively analyzed in the final test. Design and method:First, content analysis was utilized to discuss and categorize students' statements regarding technology and its related issues. The Student Concepts of the Nature of Technology Questionnaire was developed based on the proposed theoretical framework and was supported by the students' qualitative data. Finally, exploratory factor analysis and reliability analysis were applied to determine the structure of the items and the internal consistency of each scale. Results:Through a process of instrument development, the Student Concepts of the Nature of Technology Questionnaire was shown to be a valid and reliable tool for measuring students' concepts of the nature of technology. This newly developed questionnaire is composed of 29 items in six scales, namely 'technology as artifacts,' 'technology as an innovation change,' 'the current role of technology in society,' 'technology as a double-edged sword,' 'technology as a science-based form,' and 'history of technology.' Conclusions:The Student Concepts of the Nature of Technology Questionnaire has been confirmed as a reasonably valid and reliable

  6. The GEMS X-Ray Polarimeter: Instrument Concept and Calibration Requirements

    NASA Technical Reports Server (NTRS)

    Jahoda, Keith

    2010-01-01

    The instrument and detector concepts for the Gravity and Extreme Magnetism Small Explorer (GEMS) X-ray polarimetry mission will be presente d. The calibration requirements for astrophysical X-ray polarimeters in general and GEMS in particular will be discussed.

  7. A Multi-Color Simultaneous Imager Instrument Concept for the IRTF

    NASA Astrophysics Data System (ADS)

    Connelley, Michael; Tokunaga, A.; Bus, S.

    2013-10-01

    We present a concept for a multi-channel imaging camera optimized for the rapid characterization of small planetary bodies. This instrument will be a seeing limited imager with a 2' field of view that will simultaneously observe in 8 color channels from Sloan g’ through K band. This very broad simultaneous wavelength coverage enables several key science goals, with a strong emphasis on time critical and variable observations. First among these is the taxonomic classification of solar system minor bodies, such as main belt and near-Earth asteroids, as well as trans-Neptunian objects. Asteroid taxonomy is key to understanding the history of the asteroid belt, characterizing the NEA population, and connecting the NEA population to its origins in the Main Belt. Giant planet monitoring will be made significantly more efficient with this instrument by doing simultaneously what observers now do in series. This instrument will be a powerful tool for the characterization of the atmospheres of transiting exo-planets by providing relative photometry in several optical and near-IR bands simultaneously. The multicolor imaging of this instrument will also have broad astrophysical applications. These include disentangling newly discovered brown dwarf candidates from quasars, monitoring color variability of young stars, and the rapid follow-up of gamma ray bursts. Although this instrument has the potential to be very powerful, it will also be very simple. Similar instruments use a separate detector for each channel requiring a ‘dichroic tree’. Although we will observe in 8 color channels simultaneously, this concept will only use two detectors. We will project four color channels onto each detector; 4 visible light images onto a CCD and 4 near-IR images onto an IR-array. Narrowband imaging is possible by placing a filter array in the color channels. Optically mapping multiple color channels onto a single detector reduces instrument size, cost and risk.

  8. Nuclear Safety Functions of ITER Gas Injection System Instrumentation and Control and the Concept Design

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Maruyama, S.; Fossen, A.; Villers, F.; Kiss, G.; Zhang, Bo; Li, Bo; Jiang, Tao; Huang, Xiangmei

    2016-08-01

    The ITER Gas Injection System (GIS) plays an important role on fueling, wall conditioning and distribution for plasma operation. Besides that, to support the safety function of ITER, GIS needs to implement three nuclear safety Instrumentation and Control (I&C) functions. In this paper, these three functions are introduced with the emphasis on their latest safety classifications. The nuclear I&C design concept is briefly discussed at the end.

  9. An Overview of the MATISSE Instrument — Science, Concept and Current Status

    NASA Astrophysics Data System (ADS)

    Lopez, B.; Lagarde, S.; Jaffe, W.; Petrov, R.; Schöller, M.; Antonelli, P.; Beckmann, U.; Berio, P.; Bettonvil, F.; Glindemann, A.; Gonzalez, J.-C.; Graser, U.; Hofmann, K.-H.; Millour, F.; Robbe-Dubois, S.; Venema, L.; Wolf, S.; Henning, T.; Lanz, T.; Weigelt, G.; Agocs, T.; Bailet, C.; Bresson, Y.; Bristow, P.; Dugué, M.; Heininger, M.; Kroes, G.; Laun, W.; Lehmitz, M.; Neumann, U.; Augereau, J.-C.; Avila, G.; Behrend, J.; van Belle, G.; Berger, J.-P.; van Boekel, R.; Bonhomme, S.; Bourget, P.; Brast, R.; Clausse, J.-M.; Connot, C.; Conzelmann, R.; Cruzalèbes, P.; Csepany, G.; Danchi, W.; Delbo, M.; Delplancke, F.; Dominik, C.; van Duin, A.; Elswijk, E.; Fantei, Y.; Finger, G.; Gabasch, A.; Gay, J.; Girard, P.; Girault, V.; Gitton, P.; Glazenborg, A.; Gonté, F.; Guitton, F.; Guniat, S.; De Haan, M.; Haguenauer, P.; Hanenburg, H.; Hogerheijde, M.; ter Horst, R.; Hron, J.; Hugues, Y.; Hummel, C.; Idserda, J.; Ives, D.; Jakob, G.; Jasko, A.; Jolley, P.; Kiraly, S.; Köhler, R.; Kragt, J.; Kroener, T.; Kuindersma, S.; Labadie, L.; Leinert, C.; Le Poole, R.; Lizon, J.-L.; Lucuix, C.; Marcotto, A.; Martinache, F.; Martinot-Lagarde, G.; Mathar, R.; Matter, A.; Mauclert, N.; Mehrgan, L.; Meilland, A.; Meisenheimer, K.; Meisner, J.; Mellein, M.; Menardi, S.; Menut, J.-L.; Merand, A.; Morel, S.; Mosoni, L.; Navarro, R.; Nussbaum, E.; Ottogalli, S.; Palsa, R.; Panduro, J.; Pantin, E.; Parra, T.; Percheron, I.; Duc, T. P.; Pott, J.-U.; Pozna, E.; Przygodda, F.; Rabbia, Y.; Richichi, A.; Rigal, F.; Roelfsema, R.; Rupprecht, G.; Schertl, D.; Schmidt, C.; Schuhler, N.; Schuil, M.; Spang, A.; Stegmeier, J.; Thiam, L.; Tromp, N.; Vakili, F.; Vannier, M.; Wagner, K.; Woillez, J.

    2014-09-01

    MATISSE, a second generation Very Large Telescope Interferometer (VLTI) instrument, is a combined imager and spectrograph for interferometry in the 3-5 μm region (L- and M-bands) and the 8-13 μm window (N-band). MATISSE builds on the experience gained with the VLTI's first generation instruments. It employs multi-axial beam combination while also providing wavelength differential visibility and phase, and closure-phase aperture-synthesis imaging at a range of spectral resolutions. MATISSE is designed for a broad range of science goals, and its potential for studies of the discs around young stars and active galactic nuclei are highlighted. The instrument concept and operating modes are described; construction is in progress towards installation at the VLTI in 2016.

  10. 76 FR 36919 - Proof of Concept Demonstration for Electronic Reporting of Clean Water Act Compliance Monitoring...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ...The U.S. Environmental Protection Agency (EPA) will conduct a public webinar in order to inform interested parties about an opportunity to participate in a technical proof of concept demonstration for electronic reporting of Clean Water Act (CWA) National Pollutant Discharge Elimination System (NPDES) Discharge Monitoring Report (DMR) compliance monitoring data. This webinar will be held on......

  11. Advanced life support control/monitor instrumentation concepts for flight application

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dahlhausen, M. J.; Fell, R. B.

    1986-01-01

    Development of regenerative Environmental Control/Life Support Systems requires instrumentation characteristics which evolve with successive development phases. As the development phase moves toward flight hardware, the system availability becomes an important design aspect which requires high reliability and maintainability. This program was directed toward instrumentation designs which incorporate features compatible with anticipated flight requirements. The first task consisted of the design, fabrication and test of a Performance Diagnostic Unit. In interfacing with a subsystem's instrumentation, the Performance Diagnostic Unit is capable of determining faulty operation and components within a subsystem, perform on-line diagnostics of what maintenance is needed and accept historical status on subsystem performance as such information is retained in the memory of a subsystem's computerized controller. The second focus was development and demonstration of analog signal conditioning concepts which reduce the weight, power, volume, cost and maintenance and improve the reliability of this key assembly of advanced life support instrumentation. The approach was to develop a generic set of signal conditioning elements or cards which can be configured to fit various subsystems. Four generic sensor signal conditioning cards were identified as being required to handle more than 90 percent of the sensors encountered in life support systems. Under company funding, these were detail designed, built and successfully tested.

  12. An Instrument Concept for Atmospheric Infrared Sounding from Medium Earth Orbit

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Baron, Richard l.

    2004-01-01

    Medium Earth Orbit (MEO) offers a unique vantage point for atmospheric infrared sounding. The orbit allows the entire globe to be covered each day with one satellite. The orbit is slow enough to allow multiple views of a single target to be made on each pass. this paper discusses the advantages in coverage and revisit rate from MEO for a particular concept for a Medium Earth Orbit Infrared Atmospheric Sounder (MIRIS). The requirements for this instrument in terms of spectral range, spatial resolution, field of view, and calibration are presented as well as the radiometric performance expectations.

  13. A spectrograph instrument concept for the Prime Focus Spectrograph (PFS) on Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Vivès, Sébastien; Le Mignant, David; Madec, Fabrice; Jaquet, Marc; Prieto, Eric; Martin, Laurent; Le Fèvre, Olivier; Gunn, James; Carr, Michael; Smee, Stephen; Barkhouser, Robert; Sugai, Hajime; Tamura, Naoyuki

    2012-09-01

    We describe the conceptual design of the spectrograph opto-mechanical concept for the SuMIRe Prime Focus Spectrograph (PFS) being developed for the SUBARU telescope. The SuMIRe PFS will consist of four identical spectrographs, each receiving 600 fibers from a 2400 fiber robotic positioner at the prime focus. Each spectrograph will have three channels covering in total, a wavelength range from 380 nm to 1300 nm. The requirements for the instrument are summarized in Section 1. We present the optical design and the optical performance and analysis in Section 2. Section 3 introduces the mechanical design, its requirements and the proposed concepts. Finally, the AIT phases for the Spectrograph System are described in Section 5.

  14. The Application and Evaluation of a Two-Concept Diagnostic Instrument with Students Entering College General Chemistry

    ERIC Educational Resources Information Center

    Heredia, Keily; Xu, Xiaoying; Lewis, Jennifer E.

    2012-01-01

    The Particulate Nature of Matter and Chemical Bonding Diagnostic Instrument (Othman J., Treagust D. F. and Chandrasegaran A. L., (2008), "Int. J. Sci. Educ.," 30(11), 1531-1550) is used to investigate college students' understanding of two chemistry concepts: particulate nature of matter and chemical bonding. The instrument, originally developed…

  15. The beam combiners of Gravity VLTI instrument: concept, development, and performance in laboratory

    NASA Astrophysics Data System (ADS)

    Jocou, L.; Perraut, K.; Moulin, T.; Magnard, Y.; Labeye, P.; Lapras, V.; Nolot, A.; Perrin, G.; Eisenhauer, F.; Holmes, C.; Amorim, A.; Brandner, W.; Straubmeier, C.

    2014-07-01

    Gravity is one of the second-generation instruments of the Very Large Telescope Interferometer that operates in the near infrared range and that is designed for precision narrow-angle astrometry and interferometric imaging. With its infrared wavefront sensors, pupil stabilization, fringe tracker, and metrology, the instrument is tailored to provide a high sensitivity, imaging with 4-millisecond resolution, and astrometry with a 10μarcsec precision. It will probe physics close to the event horizon of the Galactic Centre black hole, and allow to study mass accretion and jets in young stellar objects and active galactic nuclei, planet formation in circumstellar discs, or detect and measure the masses of black holes in massive star clusters throughout the Milky Way. As the instrument required an outstanding level of precision and stability, integrated optics has been chosen to collect and combine the four VLTI beams in the K band. A dedicated integrated optics chip glued to a fiber array has been developed. Technology breakthroughs have been mandatory to fulfill all the specifications. This paper is focused on the interferometric beam combination system of Gravity. Once the combiner concept described, the paper details the developments that have been led, the integration and the performance of the assemblies.

  16. Proof-of-concept study of a marine ion-selective optical sensing instrument

    NASA Astrophysics Data System (ADS)

    Sobron, P.; Thompson, C.; Bamsey, M.

    2013-12-01

    We have developed a proof-of-concept instrument for real-time in-situ characterization of the ion chemistry of the ocean. Our instrument uses optical sensors equipped with ion-selective membranes which exhibit a change in an optical property that can be correlated with the concentration of a specific ion. We have implemented a system for multi-ion sensing that includes the use of a single spectrometer in tandem with a fiber optic multiplexer that is capable of reading a suite of attached optrodes, each of them dedicated to a unique ion. In this abstract we report the experimental characterization of calcium and potassium optrodes as a template for ion-selective optrodes and their application to the characterization of the oceans. The tests were performed at the Controlled Environment Systems Research Facility of the University of Guelph. Guelph's optrode housing was tested by immersing it in a 1/2 strength Hoagland's hydroponic solution to test functionality of the K+ and Ca2+ optrodes in this environment. Our results demonstrate the feasibility of recording spectral information in sub-minute times from more than one optrode simultaneously in a given aqueous system. This proof-of-concept study has allowed us to measure parameters of interest and comparison to analytical predictions for critical subsystems of a deployable system, and demonstrates maturity of the multi-ion sensing optrode technology. Critical advantages of our optrode system are that it: (1) enables concurrent measurements of multiple ionic species relevant in ocean sciences; (2) has high time and spatial resolution; (3) has low limits of detection; (4) uses low-cost, low-mass, energy efficient optoelectronics. Our system has the potential for facilitating new observational, experimental, and analytic capabilities in ocean sciences, including: (a) health and environment monitoring; (b) aquaculture; (c) global change, e.g. ocean acidification; and (d) origin of life research. Proof-of-concept setup at

  17. The Development and Validation of a Two-Tiered Multiple-Choice Instrument to Identify Alternative Conceptions in Earth Science

    ERIC Educational Resources Information Center

    Mangione, Katherine Anna

    2010-01-01

    This study was to determine reliability and validity for a two-tiered, multiple- choice instrument designed to identify alternative conceptions in earth science. Additionally, this study sought to identify alternative conceptions in earth science held by preservice teachers, to investigate relationships between self-reported confidence scores and…

  18. Lunar Atmosphere Probe Station: A Proof-of-Concept Instrument Package for Monitoring the Lunar Atmosphere

    NASA Astrophysics Data System (ADS)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Stewart, K. P.; Burns, J. O.; Farrell, W. M.; Giersch, L.; O'Dwyer, I. J.; Hicks, B. C.; Polisensky, E. J.; Hartman, J. M.; Nesnas, I.; Weiler, K.; Kasper, J. C.

    2013-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent, the extent of contributions from volatile outgassing from the Moon, and its behavior over time, including response to the solar wind and modification by landers. Relative ionospheric measurements (riometry) are based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, *in situ*, the vertical extent of the lunar exosphere over time. We provide an update on a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report or commercial ventures. The instrument concept is simple, consisting of an antenna implemented as a metal deposited on polyimide film and receiver. We illustrate various deployment mechanisms and performance of a prototype in increasing lunar analog conditions. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of dust impactors. The Lunar University Network for Astrophysical Research consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Artist's impression of the Lunar Atmosphere Probe Station.

  19. Labview Interface Concepts Used in NASA Scientific Investigations and Virtual Instruments

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Parker, Bradford H.; Rapchun, David A.; Jones, Hollis H.; Cao, Wei

    2001-01-01

    This article provides an overview of several software control applications developed for NASA using LabVIEW. The applications covered here include (1) an Ultrasonic Measurement System for nondestructive evaluation of advanced structural materials, an Xray Spectral Mapping System for characterizing the quality and uniformity of developing photon detector materials, (2) a Life Testing System for these same materials, (3) and the instrument panel for an aircraft mounted Cloud Absorption Radiometer that measures the light scattered by clouds in multiple spectral bands. Many of the software interface concepts employed are explained. Panel layout and block diagram (code) strategies for each application are described. In particular, some of the more unique features of the applications' interfaces and source code are highlighted. This article assumes that the reader has a beginner-to-intermediate understanding of LabVIEW methods.

  20. Expected SOFIA sensitivity, characteristics, US science instrument complement and operations concept.

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Davidson, J. A.

    The joint US and German SOFIA project to develop and operate a 2.5 meter infrared airborne telescope in a Boeing 747-SP began earlier this year. Universities Space Research Association (USRA), teamed with Raytheon E-Systems and United Airlines, was selected by NASA to develop and operate SOFIA. The 2.5 meter telescope will be designed and built by a consortium of German companies lead by MAN-GHH. Work on the aircraft and the primary mirror has started. First science flights will begin in 2001 with 20% of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics, US science instrument complement, and operations concept for the SOFIA observatory, with an emphasis on the science community's participation, are discussed.

  1. Concepts, Instruments, and Model Systems that Enabled the Rapid Evolution of Surface Science

    SciTech Connect

    Somorjai, Gabor A.; Park, Jeong Y.

    2009-01-10

    Over the past forty years, surface science has evolved to become both an atomic scale and a molecular scale science. Gerhard Ertl's group has made major contributions in the field of molecular scale surface science, focusing on vacuum studies of adsorption chemistry on single crystal surfaces. In this review, we outline three important aspects which have led to recent advances in surface chemistry: the development of new concepts, in situ instruments for molecular scale surface studies at buried interfaces (solid-gas and solid-liquid), and new model nanoparticle surface systems, in addition to single crystals. Combined molecular beam surface scattering and low energy electron diffraction (LEED)- surface structure studies on metal single crystal surfaces revealed concepts, including adsorbate-induced surface restructuring and the unique activity of defects, atomic steps, and kinks on metal surfaces. We have combined high pressure catalytic reaction studies with ultra high vacuum (UHV) surface characterization techniques using a UHV chamber equipped with a high pressure reaction cell. New instruments, such as high pressure sum frequency generation (SFG) vibrational spectroscopy and scanning tunneling microscopy (STM) which permit molecular-level surface studies have been developed. Tools that access broad ranges of pressures can be used for both the in situ characterization of solid-gas and solid-liquid buried interfaces and the study of catalytic reaction intermediates. The model systems for the study of molecular surface chemistry have evolved from single crystals to nanoparticles in the 1-10 nm size range, which are currently the preferred media in catalytic reaction studies.

  2. Integration of a Micro-Chip Amino Acid Chirality Detector into the MOD Instrument Concept

    NASA Technical Reports Server (NTRS)

    Bada, Jeffrey L.; Grunthaner, Frank; Mathies, Richard

    2004-01-01

    The MOD (Mars Organic Detector) instrument concept consists of a sublimation apparatus for organic compound isolation connected to a microfabricated microfluidic analyzer containing a sipper, pumps and a separation channel for organic compound characterization. The target organic compounds are amino acids and polycyclic aromatic hydrocarbons (PAHs). Solid samples are placed within the sublimation apparatus and heated to release organic compounds which sublime onto a cold finger. Half of the cold finger is coated with fluorescamine. which reacts with amino acids and other primary amines to generate an intense fluorescent derivative while the other half is uncoated and is used to directly detect PAH fluorescence, A capillary sipper is then used to dissolve and sample the labeled amino acids and integrated microfabricated pumps transport the labeled amino acids to the chip for analysis. The sample is separated using capillary zone electrophoresis (CZE) together with chiral dextrins to determine amino acid composition and chirality. During the grant period, the following steps have been completed toward the development of a robust instrument and chemistry.

  3. The nurses' self-concept instrument (NSCI): a comparison of domestic and international student nurses' professional self-concepts from a large Australian University.

    PubMed

    Angel, Elizabeth; Craven, Rhonda; Denson, Nida

    2012-08-01

    Professional self-concept is a critical driver of job satisfaction. In Australia, as international nursing enrolments rise, nursing is increasingly characterised by a professional body of international nurses who may differ from domestic Australian nurses in their nursing self-concept. At present, little is known about the extent to which domestic and international students nurses' self-concepts may differ. The present study aimed to elucidate and contrast domestic and international nursing students' self-concepts from one large Australian university. A total of 253 domestic (n=218) and international (n=35) undergraduate nursing students from a large public university in Sydney, Australia completed the Nurses' Self-Concept Instrument (NSCI). Multiple-Indicator-Multiple-Indicator-Cause (MIMIC) modelling was used to assess the effects of student group (domestic and international) on the latent self-concept factors of the NSCI. Domestic and international students' professional self-concepts were similarly high. MIMIC modelling demonstrated that domestic students had a higher patient care self-concept in comparison to international students. Results imply that it may be useful for Australian universities to foster strategies that enhance specific domains of self-concepts (e.g., care) which may be underdeveloped for at least some cultural groups within the international nursing student population compared with domestic nursing students. PMID:22000976

  4. The Statistics Concept Inventory: Development and analysis of a cognitive assessment instrument in statistics

    NASA Astrophysics Data System (ADS)

    Allen, Kirk

    The Statistics Concept Inventory (SCI) is a multiple choice test designed to assess students' conceptual understanding of topics typically encountered in an introductory statistics course. This dissertation documents the development of the SCI from Fall 2002 up to Spring 2006. The first phase of the project essentially sought to answer the question: "Can you write a test to assess topics typically encountered in introductory statistics?" Book One presents the results utilized in answering this question in the affirmative. The bulk of the results present the development and evolution of the items, primarily relying on objective metrics to gauge effectiveness but also incorporating student feedback. The second phase boils down to: "Now that you have the test, what else can you do with it?" This includes an exploration of Cronbach's alpha, the most commonly-used measure of test reliability in the literature. An online version of the SCI was designed, and its equivalency to the paper version is assessed. Adding an extra wrinkle to the online SCI, subjects rated their answer confidence. These results show a general positive trend between confidence and correct responses. However, some items buck this trend, revealing potential sources of misunderstandings, with comparisons offered to the extant statistics and probability educational research. The third phase is a re-assessment of the SCI: "Are you sure?" A factor analytic study favored a uni-dimensional structure for the SCI, although maintaining the likelihood of a deeper structure if more items can be written to tap similar topics. A shortened version of the instrument is proposed, demonstrated to be able to maintain a reliability nearly identical to that of the full instrument. Incorporating student feedback and a faculty topics survey, improvements to the items and recommendations for further research are proposed. The state of the concept inventory movement is assessed, to offer a comparison to the work presented

  5. Getting the GeoSTAR Instrument Concept Ready for a Space Mission

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, B.; Gaier, T.; Kangaslahti, P.; Lim, B.; Tanner, A.; Ruf, C.

    2011-01-01

    The Geostationary Synthetic Thinned Array Radiometer - GeoSTAR - is a microwave sounder intended for geostationary satellites. First proposed for the EO-3 New Millennium mission in 1999, the technology has since been developed under the Instrument Incubator Program. Under IIP-03 a proof-of-concept demonstrator operating in the temperature sounding 50 GHz band was developed to show that the aperture synthesis concept results in a realizable, stable and accurate imaging-sounding radiometer. Some of the most challenging technology, such as miniature low-power 183- GHz receivers used for water vapor sounding, was developed under IIP-07. The first such receiver has recently been adapted for use in the High Altitude MMIC Sounding Radiometer (HAMSR), which was previously developed under IIP-98. This receiver represents a new state of the art and outperforms the previous benchmark by an order of magnitude in radiometric sensitivity. It was first used in the GRIP hurricane field campaign in 2010, where HAMSR became the first microwave sounder to fly on the Global Hawk UAV. Now, under IIP-10, we will develop flight-like subsystems and a brassboard testing system, which will facilitate rapid implementation of a space mission. GeoSTAR is the baseline payload for the Precipitation and All-weather Temperature and Humidity (PATH) mission - one of NASA's 15 "decadal-survey" missions. Although PATH is currently in the third tier of those missions, the IIP efforts have advanced the required technology to a point where a space mission can be initiated in a time frame commensurate with second-tier missions. An even earlier Venture mission is also being considered.

  6. Examination of the Structure and Grade-Related Differentiation of Multidimensional Self-Concept Instruments for Children Using ESEM

    ERIC Educational Resources Information Center

    Arens, A. Katrin; Morin, Alexandre J. S.

    2016-01-01

    This study is a substantive-methodological synergy in which exploratory structural equation modeling is applied to investigate the factor structure of multidimensional self-concept instruments. On the basis of a sample of German students (N = 1958) who completed the Self-Description Questionnaire I and the Self-Perception Profile for Children, the…

  7. The development and validation of a two-tiered multiple-choice instrument to identify alternative conceptions in earth science

    NASA Astrophysics Data System (ADS)

    Mangione, Katherine Anna

    This study was to determine reliability and validity for a two-tiered, multiple- choice instrument designed to identify alternative conceptions in earth science. Additionally, this study sought to identify alternative conceptions in earth science held by preservice teachers, to investigate relationships between self-reported confidence scores and understanding of earth science concepts, and to describe relationships between content knowledge and alternative conceptions and planning instruction in the science classroom. Eighty-seven preservice teachers enrolled in the MAT program participated in this study. Sixty-eight participants were female, twelve were male, and seven chose not to answer. Forty-seven participants were in the elementary certification program, five were in the middle school certification program, and twenty-nine were pursuing secondary certification. Results indicate that the two-tiered, multiple-choice format can be a reliable and valid method for identifying alternative conceptions. Preservice teachers in all certification areas who participated in this study may possess common alternative conceptions previously identified in the literature. Alternative conceptions included: all rivers flow north to south, the shadow of the Earth covers the Moon causing lunar phases, the Sun is always directly overhead at noon, weather can be predicted by animal coverings, and seasons are caused by the Earth's proximity to the Sun. Statistical analyses indicated differences, however not all of them significant, among all subgroups according to gender and certification area. Generally males outperformed females and preservice teachers pursuing middle school certification had higher scores on the questionnaire followed by those obtaining secondary certification. Elementary preservice teachers scored the lowest. Additionally, self-reported scores of confidence in one's answers and understanding of the earth science concept in question were analyzed. There was a

  8. TOPLEX: Teleoperated Lunar Explorer. Instruments and Operational Concepts for an Unmanned Lunar Rover

    NASA Technical Reports Server (NTRS)

    Blacic, James D.

    1992-01-01

    A Teleoperated Lunar Explorer, or TOPLEX, consisting of a lunar lander payload in which a small, instrument-carrying lunar surface rover is robotically landed and teleoperated from Earth to perform extended lunar geoscience and resource evaluation traverses is proposed. The rover vehicle would mass about 100 kg and carry approximately 100 kg of analytic instruments. Four instruments are envisioned: (1) a Laser-Induced Breakdown Spectrometer (LIBS) for geochemical analysis at ranges up to 100 m, capable of operating in three different modes; (2) a combined x-ray fluorescence and x-ray diffraction (XRF/XRD) instrument for elemental and mineralogic analysis of acquired samples; (3) a mass spectrometer system for stepwise heating analysis of gases released from acquired samples; and (4) a geophysical instrument package for subsurface mapping of structures such as lava tubes.

  9. Evaluation of the Pressing Characteristics of Commercially Pure Titanium Using an Instrumented Double Acting Die

    SciTech Connect

    Hovanski, Yuri; Lavender, Curt A.; Weil, K. Scott

    2008-06-19

    With recent advances in synthesizing titanium powder by low-cost routes, there has been growing interest in identifying process/material conditions that overcome the powder compaction problems typically found with this reactive metal. The use of instrumented dies in studying the cold pressing process for commercial iron and steel powders has provided greater insight into the complex phenomena that occur and may be used to evaluate constitutive relations that describe the compaction process. Nevertheless, little work has been conducted on the special, more problematic case of reactive metal powders such as titanium. An instrumented die was developed that allows die wall friction to be characterized and the radial stress distribution along the die wall and throughout the compact to be monitored. As will be presented, this tool has been used to investigate titanium compaction and to draw comparisons with results obtained on a baseline commercial iron powder. Both sets of data were systematically collected using various powder/die lubrication combinations.

  10. Develop real-time dosimetry concepts and instrumentation for long term missions

    NASA Technical Reports Server (NTRS)

    Braby, L. A.

    1982-01-01

    The development of a rugged portable instrument to evaluate dose and dose equivalent is described. A tissue-equivalent proportional counter simulating a 2 micrometer spherical tissue volume was operated satisfactorily for over a year. The basic elements of the electronic system were designed and tested. And finally, the most suitable mathematical technique for evaluating dose equivalent with a portable instrument was selected. Design and fabrication of a portable prototype, based on the previously tested circuits, is underway.

  11. Euclid near infrared spectrophotometer instrument concept and first test results at the end of phase B

    NASA Astrophysics Data System (ADS)

    Maciaszek, Thierry; Ealet, Anne; Jahnke, Knud; Prieto, Eric; Barbier, Rémi; Mellier, Yannick; Costille, Anne; Ducret, Franck; Fabron, Christophe; Gimenez, Jean-Luc; Grange, Robert; Martin, Laurent; Rossin, Christelle; Pamplona, Tony; Vola, Pascal; Clémens, Jean Claude; Smadja, Gérard; Amiaux, Jérome; Barrière, Jean Christophe; Berthe, Michel; De Rosa, Adriano; Franceschi, Enrico; Morgante, Gianluca; Trifoglio, Massimo; Valenziano, Luca; Bonoli, Carlotta; Bortoletto, Favio; D'Alessandro, Maurizio; Corcione, Leonardo; Ligori, Sebastiano; Garilli, Bianca; Riva, Marco; Grupp, Frank; Vogel, Carolin; Hormuth, Felix; Seidel, Gregor; Wachter, Stefanie; Diaz, Jose Javier; Grañena, Ferran; Padilla, Cristobal; Toledo, Rafael; Lilje, Per B.; Solheim, Bjarte G. B.; Toulouse-Aastrup, Corinne; Andersen, Michael; Holmes, Warren; Israelsson, Ulf; Seiffert, Michael; Weber, Carissa; Waczynski, Augustyn; Laureijs, René J.; Racca, Giuseppe; Salvignol, Jean-Christophe; Strada, Paolo

    2014-08-01

    The Euclid mission objective is to understand why the expansion of the Universe is accelerating by mapping the geometry of the dark Universe by investigating the distance-redshift relationship and tracing the evolution of cosmic structures. The Euclid project is part of ESA's Cosmic Vision program with its launch planned for 2020. The NISP (Near Infrared Spectro-Photometer) is one of the two Euclid instruments and is operating in the near-IR spectral region (0.9-2μm) as a photometer and spectrometer. The instrument is composed of: - a cold (135K) optomechanical subsystem consisting of a SiC structure, an optical assembly (corrector and camera lens), a filter wheel mechanism, a grism wheel mechanism, a calibration unit and a thermal control system - a detection subsystem based on a mosaic of 16 Teledyne HAWAII2RG cooled to 95K with their front-end readout electronic cooled to 140K, integrated on a mechanical focal plane structure made with Molybdenum and Aluminum. The detection subsystem is mounted on the optomechanical subsystem structure - a warm electronic subsystem (280K) composed of a data processing / detector control unit and of an instrument control unit that interfaces with the spacecraft via a 1553 bus for command and control and via Spacewire links for science data This presentation describes the architecture of the instrument at the end of the phase B (Preliminary Design Review), the expected performance, the technological key challenges and preliminary test results obtained on a detection system demonstration model.

  12. Optimization of Instrument Requirements for NASAs GEO-CAPE Coastal Mission Concept Based On Sensor Capability And Cost Studies

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio

    2015-01-01

    NASA's GEOstationary Coastal and Air Pollution Events (GEOCAPE) mission concept recommended by the U.S. National Research Council (2007) focuses on measurements of atmospheric trace gases and aerosols and aquatic coastal ecology and biogeochemistry from geostationary orbit (35,786 km altitude). GEO-CAPE is currently in pre-formulation (pre- Phase) A with no established launch date. NASA continues to support science and engineering studies to reduce mission risk. Instrument design lab (IDL) studies were commissioned in 2014 to design and cost two implementations for geostationary ocean color instruments (1) Wide-Angle Spectrometer (WAS) and (2) Filter Radiometer (FR) and (3) a cost scaling study to compare the costs for implementing different science performance requirements.

  13. The thirty gigahertz instrument receiver for the Q-U-I Joint Tenerife experiment: Concept and experimental results

    SciTech Connect

    Villa, Enrique Cano, Juan L.; Cagigas, Jaime; Pérez, Ana R.; Aja, Beatriz; Terán, J. Vicente; Fuente, Luisa de la; Artal, Eduardo; Mediavilla, Ángel

    2015-02-15

    This paper presents the analysis, design, and characterization of the thirty gigahertz instrument receiver developed for the Q-U-I Joint Tenerife experiment. The receiver is aimed to obtain polarization data of the cosmic microwave background radiation from the sky, obtaining the Q, U, and I Stokes parameters of the incoming signal simultaneously. A comprehensive analysis of the theory behind the proposed receiver is presented for a linearly polarized input signal, and the functionality tests have demonstrated adequate results in terms of Stokes parameters, which validate the concept of the receiver based on electronic phase switching.

  14. The thirty gigahertz instrument receiver for the Q-U-I Joint Tenerife experiment: concept and experimental results.

    PubMed

    Villa, Enrique; Cano, Juan L; Cagigas, Jaime; Ortiz, David; Casas, Francisco J; Pérez, Ana R; Aja, Beatriz; Terán, J Vicente; de la Fuente, Luisa; Artal, Eduardo; Hoyland, Roger; Mediavilla, Ángel

    2015-02-01

    This paper presents the analysis, design, and characterization of the thirty gigahertz instrument receiver developed for the Q-U-I Joint Tenerife experiment. The receiver is aimed to obtain polarization data of the cosmic microwave background radiation from the sky, obtaining the Q, U, and I Stokes parameters of the incoming signal simultaneously. A comprehensive analysis of the theory behind the proposed receiver is presented for a linearly polarized input signal, and the functionality tests have demonstrated adequate results in terms of Stokes parameters, which validate the concept of the receiver based on electronic phase switching. PMID:25725865

  15. Berimbau: A simple instrument for teaching basic concepts in the physics and psychoacoustics of music

    NASA Astrophysics Data System (ADS)

    Vilão, Rui C.; Melo, Santino L. S.

    2014-12-01

    We address the production of musical tones by a simple musical instrument of the Brazilian tradition: the berimbau-de-barriga. The vibration physics of the string and of the air mass inside the gourd are reviewed. Straightforward measurements of an actual berimbau, which illustrate the basic physical phenomena, are performed using a PC-based "soundcard oscilloscope." The inharmonicity of the string and the role of the gourd are discussed in the context of known results in the psychoacoustics of pitch definition.

  16. Instrument concept for geophysical fluid flow experiments on the first spacelab mission

    NASA Technical Reports Server (NTRS)

    Rodkin, R. S.; Fichtl, G. H.

    1977-01-01

    A concept is provided for a geophysical fluid flow cell (GFFC) and sufficient detail is given to allow the start of a design effort. A brief background of the scientific studies to be conducted with the GFFC and its theoretical basis for operation are also included.

  17. Developing an Instrument for Assessing Students' Concepts of the Nature of Technology

    ERIC Educational Resources Information Center

    Liou, Pey-Yan

    2015-01-01

    Background: The nature of technology has been rarely discussed despite the fact that technology plays an essential role in modern society. It is important to discuss students' concepts of the nature of technology, and further to advance their technological literacy and adaptation to modern society. There is a need to assess high school students'…

  18. Developing an Instrument for Assessing Students' Understanding of the Energy Concept across Science Disciplines

    ERIC Educational Resources Information Center

    Park, Mihwa

    2013-01-01

    Energy is a core and unifying concept in all science disciplines and across all grade levels. Although energy is one of the most central and richly connected ideas in all of science disciplines, students often have a great deal of difficulty understanding it. Numerous studies have been conducted on this topic finding that many students held…

  19. Instrumentation concepts and requirements for a space vacuum research facility. [molecular shield for spaceborne experiments

    NASA Technical Reports Server (NTRS)

    Norton, H. N.

    1979-01-01

    An earth-orbiting molecular shield that offers a unique opportunity for conducting physics, chemistry, and material processing experiments under a combination of environmental conditions that are not available in terrestrial laboratories is equipped with apparatus for forming a molecular beam from the freestream. Experiments are carried out using a moderate energy, high flux density, high purity atomic oxygen beam in the very low density environment within the molecular shield. As a minimum, the following instruments are required for the molecular shield: (1) a mass spectrometer; (2) a multifunction material analysis instrumentation system; and (3) optical spectrometry equipment. The design is given of a furlable molecular shield that allows deployment and retrieval of the system (including instrumentation and experiments) to be performed without contamination. Interfaces between the molecular shield system and the associated spacecraft are given. An in-flight deployment sequence is discussed that minimizes the spacecraft-induced contamination in the vicinity of the shield. Design approaches toward a precursor molecular shield system are shown.

  20. A Mars orbital laser altimeter for rover trafficability: Instrument concept and science potential

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Zuber, M. T.

    1988-01-01

    Limited information on the types of geologic hazards (boulders, troughs, craters etc.) that will affect rover trafficability on Mars are available for the two Viking Lander sites, and there are no prospects for increasing this knowledge base in the near future. None of the instrument payloads on the upcoming Mars Observer or Soviet PHOBOS missions can directly measure surface obstacles on the scales of concern for rover safety (a few meters). Candidate instruments for the Soviet Mars 92 orbiter/balloon/rover mission such as balloon-borne stereo imaging, rover panoramic imaging, and orbital synthetic aperature imaging (SAR) are under discussion, but data from this mission may not be available for target areas of interest for the U.S. Mars Rover Sample Return (MRSR) mission. In an effort to determine how to directly measure the topography of surface obstacles that could affect rover trafficability on Mars, we are studying how to design a laser altimeter with extremely high spatial and vertical resolution that would be suitable for a future Mars Orbiter spacecraft (MRSR precursor or MRSR orbiter). This report discusses some of the design issues associated with such an instrument, gives examples of laser altimeter data collected for Mars analog terrains on Earth, and outlines the scientific potential of data that could be obtained with the system.

  1. Evaluation of two cockpit display concepts for civil tiltrotor instrument operations on steep approaches

    NASA Technical Reports Server (NTRS)

    Decker, William A.; Bray, Richard S.; Simmons, Rickey C.; Tucker, George E.

    1993-01-01

    A piloted simulation experiment was conducted using the NASA Ames Research Center Vertical Motion Simulator to evaluate two cockpit display formats designed for manual control on steep instrument approaches for a civil transport tiltrotor aircraft. The first display included a four-cue (pitch, roll, power lever position, and nacelle angle movement prompt) flight director. The second display format provided instantaneous flight path angle information together with other symbols for terminal area guidance. Pilots evaluated these display formats for an instrument approach task which required a level flight conversion from airplane-mode flight to helicopter-mode flight while decelerating to the nominal approach airspeed. Pilots tracked glide slopes of 6, 9, 15 and 25 degrees, terminating in a hover for a vertical landing on a 150 feet square vertipad. Approaches were conducted with low visibility and ceilings and with crosswinds and turbulence, with all aircraft systems functioning normally and were carried through to a landing. Desired approach and tracking performance was achieved with generally satisfactory handling qualities using either display format on glide slopes up through 15 degrees. Evaluations with both display formats for a 25 degree glide slope revealed serious problems with glide slope tracking at low airspeeds in crosswinds and the loss of the intended landing spot from the cockpit field of view.

  2. Design concept of the electrical ground support equipment for the AIV and calibration of the Euclid NISP instrument

    NASA Astrophysics Data System (ADS)

    Trifoglio, Massimo; Bonoli, Carlotta; Bortoletto, Favio; Bulgarelli, Andrea; Butler, Chris. R.; Colodro-Conde, Carlos; Conforti, Vito; Corcione, Leonardo; Franceschi, Enrico; Gianotti, Fulvio; Ligori, Sebastiano; Maciaszek, Thierry; Morgante, Gianluca; Muñoz, Jacinto; Nicastro, Luciano; Prieto, Eric; Rebolo-López, Rafael; Riva, Mario; Spano, Paolo; Toledo-Moreo, Rafael; Valenziano, Luca; Villó, Isidro; Zerbi, Filippo Maria

    2012-09-01

    The Near Infrared Spectro-Photometer (NISP) on board the Euclid ESA mission will be developed and tested at various levels of integration using various test equipment which shall be designed and procured through a collaborative and coordinated effort. In this paper we describe the Electrical Ground Support Equipment (EGSE) which shall be required to support the assembly, integration, verification and testing (AIV/AIT) and calibration activities at instrument level before delivery to ESA, and at satellite level, when the NISP instrument is mounted on the spacecraft. We present the EGSE conceptual design as defined in order to be compliant with the AIV/AIT and calibration requirements. The proposed concept is aimed at maximizing the re-use in the EGSE configuration of the Test Equipment developed for subsystem level activities, as well as, at allowing a smooth transition from instrument level to satellite level, and, possibly, at Ground Segment level. This paper mainly reports the technical status at the end of the Definition phase and it is presented on behalf of the Euclid Consortium.

  3. A concept for the modernization of a SANS instrument at the IBR-2M pulsed reactor

    NASA Astrophysics Data System (ADS)

    Erhan, R. V.; Manoshin, S.; Pepy, G.; Kuklin, A. I.; Belushkin, A. V.; Zamfir, N. V.

    2011-04-01

    We consider a new configuration for a neutron small angle scattering instrument at the pulsed IBR-2M reactor with a mixed (cold and thermal) moderator system. This system provides added-up spectra from the cold and thermal parts of the moderator. We have installed the spectrometer using a special collimation system formed by two parts: primary with neutron optics element (divergent neutron guide) and secondary (installed after the divergent neutron guide) with a multiple pinhole collimation system. Our efforts have the goal to obtain smaller Qmin values (as well as higher resolution) with the possibilities to take advantage of an increased neutron flux compared with the present SANS spectrometer in the limited beam hall size. The Monte Carlo simulations will be used to choose and optimize the spectrometer and extraction system using VITESS software package.

  4. Operational concept of the VLT's adaptive optics facility and its instruments

    NASA Astrophysics Data System (ADS)

    Kuntschner, H.; Amico, P.; Kolb, J.; Madec, P. Y.; Arsenault, R.; Sarazin, M.; Summers, D.

    2012-09-01

    The ESO Adaptive Optics Facility (AOF) will transform UT4 of the VLT into a laser driven adaptive telescope in which the corrective optics, specifically the deformable secondary mirror, and the four Laser Guide Star units are integrated. Three instruments, with their own AO modules to provide field selection capabilities and wavefront sensing, will make use of this system to provide a variety of observing modes that span from large field IR imaging with GLAO, to integral field visible spectroscopy with both GLAO and LTAO, to SCAO high Strehl imaging and spectroscopy. Each of these observing modes carries its specific demands on observing conditions. Optimal use of telescope night-time, with such a high in demand and versatile instruments suite, is mandatory to maintain and even improve upon the scientific output of the facility. This implies that the standard VLT model for operations must be updated to cover these partly new demands. In particular, we discuss three key aspects: (1) the need for an upgrade of the site monitoring facilities to provide the operators with real-time information on the environmental conditions, including the ground layer strength, and their evolution throughout the night; (2) a set of tools and procedures to effectively use these data to optimize the short-term scheduling (i.e. with granularity of one night) of the telescope and (3) the upgrade of the current laser beam avoidance software to better cope with the AOF operational scheme, where the four laser units are continuously operated as long as the atmospheric conditions allow.

  5. The SPICE concept - An approach to providing geometric and other ancillary information needed for interpretation of data returned from space science instruments

    NASA Technical Reports Server (NTRS)

    Acton, Charles H., Jr.

    1990-01-01

    The Navigation Ancillary Information Facility (NAIF), acting under the direction of NASA's Office of Space Science and Applications, and with substantial participation of the planetary science community, is designing and implementing an ancillary data system - called SPICE - to assist scientists in planning and interpreting scientific observations taken from spaceborne instruments. The principal objective of the implemented SPICE system is that it will hold the essential geometric and related ancillary information needed to recover the full value of science instrument data, and that it will facilitate correlations of individual instrument datasets with data obtained from other instruments on the same or other spacecraft.

  6. [Nursing care as an ethical problem: concepts and principles applied to the act of caring].

    PubMed

    Miranda, Alejandro; Contreras, Sebastián

    2014-01-01

    In this paper the authors study the nature of the act of care, emphasize the importance of ethics in the professions related to the health of people and develop, in the light of the central tradition of Western moral philosophy, a set of principles that should guide nursing activity. PMID:25590875

  7. A Concept-Based Approach to Teaching Speech Acts in the EFL Classroom

    ERIC Educational Resources Information Center

    Nicholas, Allan

    2015-01-01

    While concept-based instruction (CBI), grounded in sociocultural theory, has been the subject of increased attention in recent years, it is still a relatively unknown methodology in language teaching contexts. In this approach, the emphasis is on helping learners develop a deep, conceptual understanding of a skill or knowledge area, so that this…

  8. Novel tradable instruments in the conservation of coral reefs, based on the coral gardening concept for reef restoration.

    PubMed

    Rinkevich, Baruch

    2015-10-01

    Nearly all coral reefs bordering nations have experienced net losses in reef biodiversity, goods and services, even without considering the ever-developing global change impacts. In response, this overview wishes to reveal through prospects of active reef-restoration, the currently non-marketed or poorly marketed reef services, focusing on a single coral species (Stylophora pistillata). It is implied that the integration of equity capitals and other commodification with reef-restoration practices will improve total reef services. Two tiers of market-related activities are defined, the traditional first-tier instruments (valuating costs/gains for extracting tradable goods and services) and novel second-tier instruments (new/expanded monetary tools developed as by-products of reef restoration measures). The emerging new suite of economic mechanisms based on restoration methodologies could be served as an incentive for ecosystem conservation, enhancing the sum values of all services generated by coral reefs, where the same stocks of farmed/transplanted coral colonies will be used as market instruments. I found that active restoration measures disclose 12 classes of second-tier goods and services, which may partly/wholly finance restoration acts, bringing to light reef capitalizations that allow the expansion of markets with products that have not been considered before. The degree to which the second tier of market-related services could buffer coral-reef degradation is still unclear and would vary with different reef types and in various reef restoration scenarios; however, reducing the uncertainty associated with restoration. It is expected that the expansion of markets with the new products and the enhancement of those already existing will be materialized even if reef ecosystems will recover into different statuses. PMID:26241935

  9. A Study on Development of an Instrument to Determine Turkish Kindergarten Students' Understandings of Scientific Concepts and Scientific Inquiry Processes

    ERIC Educational Resources Information Center

    Senocak, Erdal; Samarapungavan, Ala; Aksoy, Pinar; Tosun, Cemal

    2013-01-01

    The aim of this study was to develop a valid and reliable instrument to measure Turkish kindergarten students' understandings of some science concepts and scientific inquiry processes which are grounded in the Turkish Preschool Curriculum. The sample of the study was 371 kindergarten students, 12 Subject Area Experts (SAE), and 7 Turkish…

  10. Like Teacher, Like Student? Conceptions of Children from Traditional and Constructive Teachers Regarding the Teaching and Learning of String Instruments

    ERIC Educational Resources Information Center

    López-Íñiguez, Guadalupe; Pozo, Juan Ignacio

    2014-01-01

    While many studies have considered the association between teachers' and students' conceptions of teaching and learning and classroom practices, few studies have researched the influence of teachers' conceptions on students' conceptions. Our objective was to analyze the influence of music teachers' conceptions on student…

  11. The SOLID (Signs Of LIfe Detector) instrument concept: an antibody microarray-based biosensor for life detection in astrobiology

    NASA Astrophysics Data System (ADS)

    Parro, V.; Rivas, L. A.; Rodríguez-Manfredi, J. A.; Blanco, Y.; de Diego-Castilla, G.; Cruz-Gil, P.; Moreno-Paz, M.; García-Villadangos, M.; Compostizo, C.; Herrero, P. L.

    2009-04-01

    Immunosensors have been extensively used since many years for environmental monitoring. Different technological platforms allow new biosensor designs and implementations. We have reported (Rivas et al., 2008) a shotgun approach for antibody production for biomarker detection in astrobiology and environmental monitoring, the production of 150 new polyclonal antibodies against microbial strains and environmental extracts, and the construction and validation of an antibody microarray (LDCHIP200, for "Life Detector Chip") containing 200 different antibodies. We have successfully used the LDCHIP200 for the detection of biological polymers in extreme environments in different parts of the world (e.g., a deep South African mine, Antarctica's Dry valleys, Yellowstone, Iceland, and Rio Tinto). Clustering analysis associated similar immunopatterns to samples from apparently very different environments, indicating that they indeed share similar universal biomarkers. A redundancy in the number of antibodies against different target biomarkers apart of revealing the presence of certain biomolecules, it renders a sample-specific immuno-profile, an "immnuno-fingerprint", which may constitute by itself an indirect biosignature. We will present a case study of immunoprofiling different iron-sulfur as well as phylosilicates rich samples along the Rio Tinto river banks. Based on protein microarray technology, we designed and built the concept instrument called SOLID (for "Signs Of LIfe Detector"; Parro et al., 2005; 2008a, b; http://cab.inta.es/solid) for automatic in situ analysis of soil samples and molecular biomarkers detection. A field prototype, SOLID2, was successfully tested for the analysis of grinded core samples during the 2005 "MARTE" campaign of a Mars drilling simulation experiment by a sandwich microarray immunoassay (Parro et al., 2008b). We will show the new version of the instrument (SOLID3) which is able to perform both sandwich and competitive immunoassays. SOLID3

  12. Concept for a time-of-flight Small Angle Neutron Scattering instrument at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Jaksch, S.; Martin-Rodriguez, D.; Ostermann, A.; Jestin, J.; Duarte Pinto, S.; Bouwman, W. G.; Uher, J.; Engels, R.; Frielinghaus, H.

    2014-10-01

    A new Small Angle Neutron Scattering instrument is proposed for the European Spallation Source. The pulsed source requires a time-of-flight analysis of the gathered neutrons at the detector. The optimal instrument length is found to be rather large, which allows for a polarizer and a versatile collimation. The polarizer allows for studying magnetic samples and incoherent background subtraction. The wide collimation will host VSANS and SESANS options that increase the resolution of the instrument towards μm and tens of μm, respectively. Two 1 m2 area detectors will cover a large solid angle simultaneously. The expected gains for this new instrument will lie in the range between 20 and 36, depending on the assessment criteria, when compared to up-to-date reactor based instruments. This will open new perspectives for fast kinetics, weakly scattering samples, and multi-dimensional contrast variation studies.

  13. An analysis of 16-17-year-old students' understanding of solution chemistry concepts using a two-tier diagnostic instrument

    NASA Astrophysics Data System (ADS)

    Adadan, Emine; Savasci, Funda

    2012-03-01

    This study focused on the development of a two-tier multiple-choice diagnostic instrument, which was designed and then progressively modified, and implemented to assess students' understanding of solution chemistry concepts. The results of the study are derived from the responses of 756 Grade 11 students (age 16-17) from 14 different high schools who participated in the study. The final version of the instrument included a total of 13 items that addressed the six aspects of solution chemistry, and students' understandings in the test were challenged in multiple contexts with multiple modes and levels of representation. Cronbach alpha reliability coefficients for the content tier and both tiers of the test were found to be 0.697 and 0.748, respectively. Results indicated that a substantial number of students held an inadequate understanding of solution chemistry concepts. In addition, 21 alternative conceptions observed in more than 10% of the students were reported, along with discussion on possible sources of such conceptions.

  14. Content Validity and Inter-Rater Reliability of the Halliwick-Concept-Based Instrument "Swimming with Independent Measure"

    ERIC Educational Resources Information Center

    Srsen, Katja Groleger; Vidmar, Gaj; Pikl, Masa; Vrecar, Irena; Burja, Cirila; Krusec, Klavdija

    2012-01-01

    The Halliwick concept is widely used in different settings to promote joyful movement in water and swimming. To assess the swimming skills and progression of an individual swimmer, a valid and reliable measure should be used. The Halliwick-concept-based Swimming with Independent Measure (SWIM) was introduced for this purpose. We aimed to determine…

  15. Low earth orbiting Nadir Etalon Sounding Spectrometer instrument concept for temperature, moisture and trace species, LeoNESS

    NASA Technical Reports Server (NTRS)

    Kumer, J. B.; Sterritt, L. W.; Roche, A. E.; Rosenberg, W. J.; Morrow, H. E.; Shenk, W. E.; Susskind, J.

    1992-01-01

    A concept for a low earth orbiting nadir etalon spectrometer sounder (LeoNESS) is described which can achieve retrieval of temperature, H2O, surface, boundary conditions, cloudiness, and trace species with an accuracy that meets or exceeds the AIRS specifications. Options employing 65-K and 30-K detectors are examined; the former may be implemented via passive radiative cooling. The concept, which is derived from the Cryogenic Limb Array Etalon Spectrometer, has the potential for improving the horizontal and vertical resolution.

  16. Development and application of a diagnostic instrument to evaluate grade-11 and -12 students' concepts of covalent bonding and structure following a course of instruction

    NASA Astrophysics Data System (ADS)

    Peterson, Raymond F.; Treagust, David F.; Garnett, Patrick

    This article initially outlines a procedure used to develop a written diagnostic instrument to identify grade-11 and -12 students' misconceptions and misunderstandings of the chemistry topic covalent bonding and structure. The content to be taught was carefully defined through a concept map and propositional statements. Following instruction, student understanding of the topic was identified from interviews, student-drawn concept maps, and free-response questions. These data were used to produce 15 two-tier multiple-choice items where the first tier examined content knowledge and the second examined understanding of that knowledge in six conceptual areas, namely, bond polarity, molecular shape, polarity of molecules, lattices, intermolecular forces, and the octet rule. The diagnostic instrument was administered to a total of 243 grade-11 and -12 chemistry students and has a Cronbach alpha reliability of 0.73. Item difficulties ranged from 0.13 to 0.60; discrimination values ranged from 0.32 to 0.65. Each item was analyzed to ascertain student understanding of and identify misconceptions related to the concepts and propositional statements underlying covalent bonding and structure.

  17. Assessing State Models of Value-Added Teacher Evaluations: Alignment of Policy, Instruments, and Literature-Based Concepts

    ERIC Educational Resources Information Center

    Hutchison-Lupardus, Tammy R.; Hatfield, Timothy E.; Snyder, Jennifer E.

    2012-01-01

    This problem-based learning project addressed the need to improve the construction and implementation of value-added teacher evaluation policies and instruments. State officials are constructing value-added teacher evaluation models due to accountability initiatives, while ignoring the holes and problems in its implementation. The team's…

  18. The Relationship Between Responses to Science Concepts on a Semantic Differential Instrument and Achievement in Freshman Physics and Chemistry.

    ERIC Educational Resources Information Center

    Rothman, Arthur Israel

    Students taking freshman physics and freshman chemistry at The State University of New York at Buffalo (SUNYAB) were administered a science-related semantic differential instrument. This same test was administered to physics and chemistry graduate students from SUNYAB and the University of Rochester. A scoring procedure was developed which…

  19. Development and validation of an instrument to measure the impact of genetic testing on self-concept in Lynch syndrome.

    PubMed

    Esplen, M J; Stuckless, N; Gallinger, S; Aronson, M; Rothenmund, H; Semotiuk, K; Stokes, J; Way, C; Green, J; Butler, K; Petersen, H V; Wong, J

    2011-11-01

    A positive genetic test result may impact on a person's self-concept and affect quality of life. The purpose of the study was to develop a self-concept scale to measure such impact for individuals carrying mutations for a heritable colorectal cancer Lynch syndrome (LS). Two distinct phases were involved: Phase 1 generated specific colorectal self-concept candidate scale items from interviews with eight LS carriers and five genetic counselors, which were added to a previously developed self-concept scale for BRCA1/2 mutation carriers, Phase II had 115 LS carriers complete the candidate scale and a battery of validating measures. A 20-item scale was developed with two dimensions identified through factor analysis: stigma/vulnerability and bowel symptom-related anxiety. The scale showed excellent reliability (Cronbach's α = 0.93), good convergent validity by a high correlation with impact of event scale (r(102) = 0.55, p < 0.001) and Rosenberg self-esteem scale (r(108) = -0.59, p < 0.001), and a low correlation with the Fear questionnaire (r(108) = 0.37, p < 0.001). The scale's performance was stable across participant characteristics. This new scale for measuring self-concept has potential to be used as a clinical tool and as a measure for future studies. PMID:21883167

  20. MAUVE/SWIPE: an imaging instrument concept with multi-angular, -spectral, and -polarized capability for remote sensing of aerosols, ocean color, clouds, and vegetation from space

    NASA Astrophysics Data System (ADS)

    Frouin, Robert; Deschamps, Pierre-Yves; Rothschild, Richard; Stephan, Edward; Leblanc, Philippe; Duttweiler, Fred; Ghaemi, Tony; Riedi, Jérôme

    2006-12-01

    The Monitoring Aerosols in the Ultraviolet Experiment (MAUVE) and the Short-Wave Infrared Polarimeter Experiment (SWIPE) instruments have been designed to collect, from a typical sun-synchronous polar orbit at 800 km altitude, global observations of the spectral, polarized, and directional radiance reflected by the earth-atmosphere system for a wide range of applications. Based on the heritage of the POLDER radiometer, the MAUVE/SWIPE instrument concept combines the merits of TOMS for observing in the ultra-violet, MISR for wide field-of-view range, MODIS, for multi-spectral aspects in the visible and near infrared, and the POLDER instrument for polarization. The instruments are camera systems with 2-dimensional detector arrays, allowing a 120-degree field-of-view with adequate ground resolution (i.e., 0.4 or 0.8 km at nadir) from satellite altitude. Multi-angle viewing is achieved by the along-track migration at spacecraft velocity of the 2-dimensional field-of-view. Between the cameras' optical assembly and detector array are two filter wheels, one carrying spectral filters, the other polarizing filters, allowing measurements of the first three Stokes parameters, I. Q, and V, of the incident radiation in 16 spectral bands optimally placed in the interval 350-2200 nm. The spectral range is 350-1050 nm for the MAUVE instrument and 1050-2200 nm for the SWIPE instrument. The radiometric requirements are defined to fully exploit the multi-angular, multi-spectral, and multi-polarized capability of the instruments. These include a wide dynamic range, a signal-to-noise ratio above 500 in all channels at maximum radiance level, i.e., when viewing a surface target of albedo equal to 1, and a noise-equivalent-differential reflectance better than 0.0005 at low signal level for a sun at zenith. To achieve daily global coverage, a pair of MAUVE and SWIPE instruments would be carried by each of two mini-satellites placed on interlaced orbits. The equator crossing time of the

  1. The PanCam instrument on the 2018 Exomars rover: Science Implementation Strategy and Integrated Surface Operations Concept

    NASA Astrophysics Data System (ADS)

    Schmitz, Nicole; Jaumann, Ralf; Coates, Andrew; Griffiths, Andrew; Hauber, Ernst; Trauthan, Frank; Paar, Gerhard; Barnes, Dave; Bauer, Arnold; Cousins, Claire

    2010-05-01

    Geologic context as a combination of orbital imaging and surface vision, including range, resolution, stereo, and multispectral imaging, is commonly regarded as basic requirement for remote robotic geology and forms the first tier of any multi-instrument strategy for investigating and eventually understanding the geology of a region from a robotic platform. Missions with objectives beyond a pure geologic survey, e.g. exobiology objectives, require goal-oriented operational procedures, where the iterative process of scientific observation, hypothesis, testing, and synthesis, performed via a sol-by-sol data exchange with a remote robot, is supported by a powerful vision system. Beyond allowing a thorough geological mapping of the surface (soil, rocks and outcrops) in 3D, using wide angle stereo imagery, such a system needs to be able to provide detailed visual information on targets of interest in high resolution, thereby enabling the selection of science targets and samples for further analysis with a specialized in-situ instrument suite. Surface vision for ESA's upcoming ExoMars rover will come from a dedicated Panoramic Camera System (PanCam). As integral part of the Pasteur payload package, the PanCam is designed to support the search for evidence of biological processes by obtaining wide angle multispectral stereoscopic panoramic images and high resolution RGB images from the mast of the rover [1]. The camera system will consist of two identical wide-angle cameras (WACs), which are arranged on a common pan-tilt mechanism, with a fixed stereo base length of 50 cm. The WACs are being complemented by a High Resolution Camera (HRC), mounted between the WACs, which allows a magnification of selected targets by a factor of ~8 with respect to the wide-angle optics. The high-resolution images together with the multispectral and stereo capabilities of the camera will be of unprecedented quality for the identification of water-related surface features (such as sedimentary

  2. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study

    PubMed Central

    Vegh, Viktor; Reutens, David C.

    2016-01-01

    Object We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. Materials and Methods The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. Results A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20–50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. Conclusions A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably. PMID:27271886

  3. Acting Atoms.

    ERIC Educational Resources Information Center

    Farin, Susan Archie

    1997-01-01

    Describes a fun game in which students act as electrons, protons, and neutrons. This activity is designed to help students develop a concrete understanding of the abstract concept of atomic structure. (DKM)

  4. The PanCam instrument on the 2018 Exomars rover: Science Implementation Strategy and Integrated Surface Operations Concept

    NASA Astrophysics Data System (ADS)

    Schmitz, Nicole; Jaumann, Ralf; Coates, Andrew; Griffiths, Andrew; Hauber, Ernst; Trauthan, Frank; Paar, Gerhard; Barnes, Dave; Bauer, Arnold; Cousins, Claire

    2010-05-01

    Geologic context as a combination of orbital imaging and surface vision, including range, resolution, stereo, and multispectral imaging, is commonly regarded as basic requirement for remote robotic geology and forms the first tier of any multi-instrument strategy for investigating and eventually understanding the geology of a region from a robotic platform. Missions with objectives beyond a pure geologic survey, e.g. exobiology objectives, require goal-oriented operational procedures, where the iterative process of scientific observation, hypothesis, testing, and synthesis, performed via a sol-by-sol data exchange with a remote robot, is supported by a powerful vision system. Beyond allowing a thorough geological mapping of the surface (soil, rocks and outcrops) in 3D, using wide angle stereo imagery, such a system needs to be able to provide detailed visual information on targets of interest in high resolution, thereby enabling the selection of science targets and samples for further analysis with a specialized in-situ instrument suite. Surface vision for ESA's upcoming ExoMars rover will come from a dedicated Panoramic Camera System (PanCam). As integral part of the Pasteur payload package, the PanCam is designed to support the search for evidence of biological processes by obtaining wide angle multispectral stereoscopic panoramic images and high resolution RGB images from the mast of the rover [1]. The camera system will consist of two identical wide-angle cameras (WACs), which are arranged on a common pan-tilt mechanism, with a fixed stereo base length of 50 cm. The WACs are being complemented by a High Resolution Camera (HRC), mounted between the WACs, which allows a magnification of selected targets by a factor of ~8 with respect to the wide-angle optics. The high-resolution images together with the multispectral and stereo capabilities of the camera will be of unprecedented quality for the identification of water-related surface features (such as sedimentary

  5. Development and evaluation of a case group concept for inpatients with mental disorders in Germany: using self-report and expert-rated instruments.

    PubMed

    Andreas, Sylke; Dirmaier, Jörg; Harfst, Timo; Kawski, Stephan; Koch, Uwe; Schulz, Holger

    2009-03-01

    The aim of this study was to evaluate a case-mix system to classify inpatients with mental disorders in Germany by means of self-report and expert-rated instruments. The use of case-mix systems enhances the transparency of performance and cost structure and can thus improve the quality of mental health care. We analysed a consecutive sample of 1677 inpatients with mental disorders from 11 hospitals using regression tree analysis. The model assigns patients to 17 groups, accounting for 17% of the variance for duration of stay. Patients with eating disorders had a longer duration of stay than patients with anxiety disorder, duration of mental illness of less than 3-5 years, lower levels of interpersonal problems and higher occupational position. The results showed that besides diagnosis, variables such as duration of illness and interpersonal problems are important for classifying inpatients with mental disorders. The results of the study should be critically reviewed regarding the empirical results of other studies and the appropriateness of case group concepts for inpatients with mental disorders. PMID:18774277

  6. Examining the Relationships among Academic Self-Concept, Instrumental Motivation, and TIMSS 2007 Science Scores: A Cross-Cultural Comparison of Five East Asian Countries/Regions and the United States

    ERIC Educational Resources Information Center

    Yu, Chong Ho

    2012-01-01

    Many American authors expressed their concern that US competitiveness in science, technology, engineering, and mathematics (STEM) is losing ground. Using the Trends in International Mathematics and Science Study (TIMSS) 2007 data, this study investigated how academic self-concept and instrumental motivation influence science test performance among…

  7. Development and Application of a Diagnostic Instrument to Evaluate Grade-11 and -12 Students' Concepts of Covalent Bonding and Structure Following a Course of Instruction.

    ERIC Educational Resources Information Center

    Peterson, Raymond F.; And Others

    1989-01-01

    Outlines a procedure used to develop a written diagnostic instrument to identify misconceptions and misunderstandings of the chemistry topic. Reports the characteristic data for the instrument, and student understanding of covalent bonding and structure. (Author/YP)

  8. Californium interrogation prompt neutron (CIPN) instrument for non-destructive assay of spent nuclear fuel-Design concept and experimental demonstration

    NASA Astrophysics Data System (ADS)

    Henzlova, D.; Menlove, H. O.; Rael, C. D.; Trellue, H. R.; Tobin, S. J.; Park, Se-Hwan; Oh, Jong-Myeong; Lee, Seung-Kyu; Ahn, Seong-Kyu; Kwon, In-Chan; Kim, Ho-Dong

    2016-01-01

    This paper presents results of the first experimental demonstration of the Californium Interrogation Prompt Neutron (CIPN) instrument developed within a multi-year effort launched by the Next Generation Safeguards Initiative Spent Fuel Project of the United States Department of Energy. The goals of this project focused on developing viable non-destructive assay techniques with capabilities to improve an independent verification of spent fuel assembly characteristics. For this purpose, the CIPN instrument combines active and passive neutron interrogation, along with passive gamma-ray measurements, to provide three independent observables. This paper describes the initial feasibility demonstration of the CIPN instrument, which involved measurements of four pressurized-water-reactor spent fuel assemblies with different levels of burnup and two initial enrichments. The measurements were performed at the Post-Irradiation Examination Facility at the Korea Atomic Energy Institute in the Republic of Korea. The key aim of the demonstration was to evaluate CIPN instrument performance under realistic deployment conditions, with the focus on a detailed assessment of systematic uncertainties that are best evaluated experimentally. The measurements revealed good positioning reproducibility, as well as a high degree of insensitivity of the CIPN instrument's response to irregularities in a radial burnup profile. Systematic uncertainty of individual CIPN instrument signals due to assembly rotation was found to be <4.5%, even for assemblies with fairly extreme gradients in the radial burnup profile. These features suggest that the CIPN instrument is capable of providing a good representation of assembly average characteristics, independent of assembly orientation in the instrument.

  9. The Content Analysis of ACT ASSET: The Validation of an Instrument To Assess the Cognitive Entry Characteristics of College Students in View of Promoting Persistence and Transfer.

    ERIC Educational Resources Information Center

    Talbot, Gilles L.

    The Assessment of Skills for Successful Entry and Transfer (ASSET)--a student advisement and placement service published by American College Testing (ACT) of Iowa City, Iowa--is evaluated. Focus is on determining whether the ASSET is suitable for assessing the cognitive entry characteristics of students entering the College of General and…

  10. Develop real-time dosimetry concepts and instrumentation for long-term missions. Technical progress report, February 1981 to February 1982

    SciTech Connect

    Braby, L.A.

    1982-05-01

    Major objectives in the process of developing a rugged portable instrument to evaluate dose and dose equivalent have been achieved. A tissue-equivalent proportional counter simulating a 2 micrometer spherical tissue volume has operated satisfactorily for over a year. The basic elements of the electronic system have been designed and tested. And finally, the most suitable mathematical technique for evaluating dose equivalent with a portable instrument has been selected. Design and fabrication of a portable prototype, based on the previously tested circuits, is underway.

  11. AXTAR: Mission Design Concept

    NASA Technical Reports Server (NTRS)

    Ray, Paul S.; Chakrabarty, Deepto; Wilson-Hodge, Colleen A.; Philips, Bernard F.; Remillard, Ronald A.; Levine, Alan M.; Wood, Kent S.; Wolff, Michael T.; Gwon, Chul S.; Strohmayer, Tod E.; Briggs, Michael S.; Capizzo, Peter; Fabisinski, Leo; Hopkins, Randall C.; Hornsby, Linda S.; Johnson, Les; Maples, C. Dauphne; Miernik, Janie H.; Thomas, Dan; DeGeronimo, Gianluigi

    2010-01-01

    The Advanced X-ray Timing Array (AXTAR) is a mission concept for X-ray timing of compact objects that combines very large collecting area, broadband spectral coverage, high time resolution, highly flexible scheduling, and an ability to respond promptly to time-critical targets of opportunity. It is optimized for sub-millisecond timing of bright Galactic X-ray sources in order to study phenomena at the natural time scales of neutron star surfaces and black hole event horizons, thus probing the physics of ultra-dense matter, strongly curved spacetimes, and intense magnetic fields. AXTAR s main instrument, the Large Area Timing Array (LATA) is a collimated instrument with 2 50 keV coverage and over 3 square meters effective area. The LATA is made up of an array of super-modules that house 2-mm thick silicon pixel detectors. AXTAR will provide a significant improvement in effective area (a factor of 7 at 4 keV and a factor of 36 at 30 keV) over the RXTE PCA. AXTAR will also carry a sensitive Sky Monitor (SM) that acts as a trigger for pointed observations of X-ray transients in addition to providing high duty cycle monitoring of the X-ray sky. We review the science goals and technical concept for AXTAR and present results from a preliminary mission design study

  12. Instruments and techniques for the analysis of wheelchair propulsion and upper extremity involvement in patients with spinal cord injuries: current concept review

    PubMed Central

    Dellabiancia, Fabio; Porcellini, Giuseppe; Merolla, Giovanni

    2013-01-01

    Summary The correct functionality of the upper limbs is an essential condition for the autonomy of people with disabilities, especially for those in wheelchair. In this review we focused on the biomechanics of wheelchair propulsion and we described the instrumental analysis of techniques for the acquisition of wheelchair propulsion. PMID:24367774

  13. Assessing the information content of the Tropospheric Infrared Mapping Spectrometers (TIMS) GEO-CAPE instrument concept when applied for several infrared ozone bands

    NASA Astrophysics Data System (ADS)

    Kumer, J. B.; Roche, A. E.; Rairden, R. L.; Desouza-Machado, S. G.; Chatfield, R. B.

    2009-12-01

    With support of NASA ESTO Instrument Incubator Program (IIP) Tropospheric Infrared Mapping Spectrometers (TIMS) have been demonstrated for multi-layer retrieval of Atmospheric CO. Two TIMS units operating in spectral regions centered at 2.33 and 4.68 µm were developed for this demonstration. Here we scale the characteristics of the demonstration measurements including spectral range, sample spacing and resolution, and noise per sample to the scenario of GEO-CAPE mission and to several additional wave length regions. A method for estimating vertical information content that is based on these scaled instrument characteristics is reviewed. The method is applied and estimated vertical information content of measurements in ozone bands near 9.4, 4.7, 3.6 and 3.3 µm, and in various combinations of these bands is presented.

  14. Bracken Basic Concept Scale.

    ERIC Educational Resources Information Center

    Naglieri, Jack A.; Bardos, Achilles N.

    1990-01-01

    The Bracken Basic Concept Scale, for use with preschool and primary-aged children, determines a child's school readiness and knowledge of English-language verbal concepts. The instrument measures 258 basic concepts in such categories as comparisons, time, quantity, and letter identification. This paper describes test administration, scoring and…

  15. Calibration of quasi-static aberrations in exoplanet direct-imaging instruments with a Zernike phase-mask sensor. II. Concept validation with ZELDA on VLT/SPHERE

    NASA Astrophysics Data System (ADS)

    N'Diaye, M.; Vigan, A.; Dohlen, K.; Sauvage, J.-F.; Caillat, A.; Costille, A.; Girard, J. H. V.; Beuzit, J.-L.; Fusco, T.; Blanchard, P.; Le Merrer, J.; Le Mignant, D.; Madec, F.; Moreaux, G.; Mouillet, D.; Puget, P.; Zins, G.

    2016-08-01

    Warm or massive gas giant planets, brown dwarfs, and debris disks around nearby stars are now routinely observed by dedicated high-contrast imaging instruments that are mounted on large, ground-based observatories. These facilities include extreme adaptive optics (ExAO) and state-of-the-art coronagraphy to achieve unprecedented sensitivities for exoplanet detection and their spectral characterization. However, low spatial frequency differential aberrations between the ExAO sensing path and the science path represent critical limitations for the detection of giant planets with a contrast lower than a few 10-6 at very small separations (<0.3'') from their host star. In our previous work, we proposed a wavefront sensor based on Zernike phase-contrast methods to circumvent this problem and measure these quasi-static aberrations at a nanometric level. We present the design, manufacturing, and testing of ZELDA, a prototype that was installed on VLT/SPHERE during its reintegration in Chile. Using the internal light source of the instrument, we first performed measurements in the presence of Zernike or Fourier modes introduced with the deformable mirror. Our experimental results are consistent with the results in simulations, confirming the ability of our sensor to measure small aberrations (<50 nm rms) with nanometric accuracy. Following these results, we corrected the long-lived non-common path aberrations in SPHERE based on ZELDA measurements and estimated a contrast gain of 10 in the coronagraphic image at 0.2'', reaching the raw contrast limit set by the coronagraph in the instrument. In addition to this encouraging result, the simplicity of the design and its phase reconstruction algorithm makes ZELDA an excellent candidate for the online measurements of quasi-static aberrations during the observations. The implementation of a ZELDA-based sensing path on the current and future facilities (ELTs, future space missions) could facilitate the observation of cold gaseous

  16. Autonomous in situ analysis and real-time chemical detection using a backpack miniature mass spectrometer: concept, instrumentation development, and performance.

    PubMed

    Hendricks, Paul I; Dalgleish, Jon K; Shelley, Jacob T; Kirleis, Matthew A; McNicholas, Matthew T; Li, Linfan; Chen, Tsung-Chi; Chen, Chien-Hsun; Duncan, Jason S; Boudreau, Frank; Noll, Robert J; Denton, John P; Roach, Timothy A; Ouyang, Zheng; Cooks, R Graham

    2014-03-18

    A major design objective of portable mass spectrometers is the ability to perform in situ chemical analysis on target samples in their native states in the undisturbed environment. The miniature instrument described here is fully contained in a wearable backpack (10 kg) with a geometry-independent low-temperature plasma (LTP) ion source integrated into a hand-held head unit (2 kg) to allow direct surface sampling and analysis. Detection of chemical warfare agent (CWA) simulants, illicit drugs, and explosives is demonstrated at nanogram levels directly from surfaces in near real time including those that have complex geometries, those that are heat-sensitive, and those bearing complex sample matrices. The instrument consumes an average of 65 W of power and can be operated autonomously under battery power for ca. 1.5 h, including the initial pump-down of the manifold. The maximum mass-to-charge ratio is 925 Th with mass resolution of 1-2 amu full width at half-maximun (fwhm) across the mass range. Multiple stages of tandem analysis can be performed to identify individual compounds in complex mixtures. Both positive and negative ion modes are available. A graphical user interface (GUI) is available for novice users to facilitate data acquisition and real-time spectral matching. PMID:24521448

  17. Preliminary analysis of a flexible instrument mount for large instruments on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A flexible instrument mount for large instruments on the space shuttle is analyzed. Concepts for pointing instruments while in orbit, with weights up to 2000 Kg and dimensions of 2 to 3 m were identified and analyzed. A mechanical concept was selected that can accommodate a set class of scientific instruments such as the LAMAR X-ray experiment with 24 LAMAR telescopes.

  18. [Current concept of insulin therapy intensification, and the role of human regular insulin and rapid-acting insulin analogs in insulin treatment].

    PubMed

    Hamaguchi, Tomoya; Sadahiro, Katsuhiko; Satoh, Tomomi

    2015-03-01

    The evolution of insulin therapy from animal insulin to recombinant human regular insulin has improved diabetes treatment. Generating of rapid-acting insulin analogs, mimicking physiologic insulin action enables us to provide better control of post-prandial glucose level and lower incidence of hypoglycemia compared with human regular insulin. These rapid-acting insulin analogs show lower susceptibility of insulin precipitation and catheter occlusions, and are suitable for insulin pump therapy of continuous subcutaneous insulin infusion. Insulin lispro and insulin aspart are also applicable for diabetic patients with pregnancy, requiring excellent glycemic control. In some studies, stepwise addition of prandial insulin, as well as full basal-bolus regimen can improve glycemic control with less hypoglycemia. Treatment intensification with rapid-acting insulin analogs may offer a proper method to reach glycemic goals. PMID:25812371

  19. Details of assessing information content of the Tropospheric Infrared Mapping Spectrometers (TIMS) GEO-CAPE instrument concept when applied for several infrared ozone bands

    NASA Astrophysics Data System (ADS)

    Rairden, R. L.; Kumer, J. B.; Roche, A. E.; Desouza-Machado, S. G.; Chatfield, R. B.; Blatherwick, R.

    2009-12-01

    With support of NASA ESTO Instrument Incubator Program (IIP) Tropospheric Infrared Mapping Spectrometers (TIMS) have been demonstrated for multi-layer retrieval of Atmospheric CO. Two TIMS units operating in spectral regions centered at 2.33 and 4.68 µm were developed for this demonstration. Here we present the details of scaling the characteristics of the demonstration measurements including spectral range, sample spacing and resolution, and noise per sample to the scenario of GEO-CAPE mission and to several additional wave length regions. This includes the detail of expanding to more than two spectral regions. It includes an example of scaling the noise as demonstrated by the demonstration measurements to the space case, and to other spectral regions. Common with our oral presentation, methods based on these scaled instrument characteristics for estimating vertical information content are reviewed. The methods are applied and estimated vertical information content of measurements in ozone bands near 9.4, 4.7, 3.6 and 3.3 µm and in various combinations of these bands is presented. A simple simultaneous retrieval of humidity and ozone from atmospheric spectral absorption data in the 3.3 and 3.6 µm regions that was obtained by a solar viewing FTS is briefly presented. This is partially analogous to the retrieval of ozone from the earth’s surface diffuse reflection of sunlight as viewed from space. It supports the premise that these space borne measurements can contribute to the quality of the GEO-CAPE ozone measurements.

  20. Long-acting somatostatin analogues provide significant beneficial effect in patients with refractory small bowel angiodysplasia: Results from a proof of concept open label mono-centre trial

    PubMed Central

    Hall, Barry; Breslin, Niall; McNamara, Deirdre

    2015-01-01

    Introduction Small bowel angiodysplasias account for over 50% of causes of small bowel bleeding and carry a worse prognosis than lesions located elsewhere in the gastrointestinal tract. Re-bleeding rates are high even after first-line endoscopic therapy and are associated with high levels of morbidity for affected patients. Small trials of long-acting somatostatin analogues have shown promising results but have not yet been assessed in patients with refractory small bowel disease. Aim The purpose of this study was to assess the effect of long-acting somatostatin analogues in reducing re-bleeding rates and transfusion requirements, and improving haemoglobin levels in patients with refractory small bowel angiodysplasia. Methods Patients with refractory small bowel angiodysplasia were treated with 20 mg of long-acting octreotide for a minimum of three months. Response was assessed according to: rates of re-bleeding, haemoglobin levels, transfusion requirements, and side effects. Results A total of 24 patients were initially treated and 20 received at least three doses. Rates of complete, partial and non-response were 70%, 20% and 10% respectively. Average haemoglobin rates increased from 9.19 g/dl to 11.35 g/dl (p = 0.0027, 95% confidence interval (CI) −3.5 to −1.1) in the group overall and 70% remained transfusion-free after a mean treatment duration of 8.8 months. The rate of adverse events was higher than previously reported at 30%. Conclusion Long-acting somatostatin analogues offer a therapeutic advantage in a significant proportion of patients with small bowel angiodysplasia. With careful patient selection and close observation, a long-acting somatostatin analogue should be considered in all patients with persistent anaemia attributable to refractory disease in conjunction with other standard treatments. PMID:26966525

  1. Advanced optical instruments technology

    NASA Technical Reports Server (NTRS)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-01-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  2. Gyroscopic Instruments for Instrument Flying

    NASA Technical Reports Server (NTRS)

    Brombacher, W G; Trent, W C

    1938-01-01

    The gyroscopic instruments commonly used in instrument flying in the United States are the turn indicator, the directional gyro, the gyromagnetic compass, the gyroscopic horizon, and the automatic pilot. These instruments are described. Performance data and the method of testing in the laboratory are given for the turn indicator, the directional gyro, and the gyroscopic horizon. Apparatus for driving the instruments is discussed.

  3. Instrument Attitude Precision Control

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    2004-01-01

    A novel approach is presented in this paper to analyze attitude precision and control for an instrument gimbaled to a spacecraft subject to an internal disturbance caused by a moving component inside the instrument. Nonlinear differential equations of motion for some sample cases are derived and solved analytically to gain insight into the influence of the disturbance on the attitude pointing error. A simple control law is developed to eliminate the instrument pointing error caused by the internal disturbance. Several cases are presented to demonstrate and verify the concept presented in this paper.

  4. Earl Wood--a research career noted for development of novel instruments driven by the power of the indicator dilution concept.

    PubMed

    Ritman, Erik L

    2014-11-01

    During World War 2, Earl Wood was charged with elucidating the biomedical factors in acceleration-induced loss of consciousness experienced by pilots in high-performance aircraft. For this, he developed devices for measurement and recording of blood pressure and tissue blood content. Those data lead to the design and fabrication of successful countermeasures to acceleration-induced loss of consciousness with an inflatable "G-suit" and "M1" breath-holding maneuver. After World War 2, he utilized and modified these instruments and made use of indicator dilution techniques by continuous intracardiac blood sampling to greatly increase the specificity and sensitivity of diagnosis of intracardiac anatomic and functional abnormalities in patients with congenital heart disease. This contributed to the greatly increased success rate of open-heart surgery in the 1950s. In the 1960s, he built on the then recently available video-coupled electronic X-ray image intensifier to develop X-ray fluoroscopy-based recording of indicator dilution signals in all cardiac chambers and surrounding great vessels without the need for placing catheter tips at those locations for blood sampling. However, these blood flow-related data were of limited value, as they were not measured concurrent with myocardial functional demand for perfusion. In the 1970s, he overcame this limitation by developing a high-speed multislice X-ray imaging scanner to provide tomographic images of concurrent dynamic cardiac anatomy and the indicator dilution-based estimates of blood flow distributions. On his retirement at age 70 in 1982, he had accomplished his 2 decade-old goal of the ability to make accurate concurrent, minimally invasive, and indicator dilution-based measurement of cardiovascular structure to function relationships. PMID:25190740

  5. How do patients expect the mental health service system to act? Testing the WHO responsiveness concept for its appropriateness in mental health care.

    PubMed

    Bramesfeld, Anke; Klippel, Ulrike; Seidel, Gabriele; Schwartz, Friedrich W; Dierks, Marie-Luise

    2007-09-01

    The World Health Organisation (WHO) concept of responsiveness has been defined as a measure of how well the health system responds to the population's legitimate expectations of non-health aspects of health care provision. It comprises eight domains: dignity, prompt attention, autonomy, choice of health care provider, clear communication, confidentiality, quality of basic amenities, and access to social support networks. The concept is of particular relevance to mental health care systems because of the specific dependency and vulnerability of their users. We tested its applicability to mental health care with five focus groups of experienced mental health care users in Hannover, Germany. The focus groups revealed 492 statements about users' expectations in mental health care. Most concerned attention (115), dignity (108) and autonomy (86). The quotations were assigned to the eight responsiveness domains. In addition, the domain of prompt attention was extended and renamed attention, and the new domain continuity was created. The findings correspond with the literature on health care expectations of non-mental health patients, but differ slightly from the results of a WHO study on overall health care responsiveness. The need for widening the concept of continuity and extending the attention domain reflects the nature of mental health care of providing predominately long-term care. Our analysis indicates the feasibility of the responsiveness concept (if altered as proposed) as a tool for assessing the quality of mental health service from the users' point of view. It should also be further developed to quantitatively evaluate mental health care systems and to benchmark system performance. PMID:17493723

  6. Evolution of the VLT instrument control system toward industry standards

    NASA Astrophysics Data System (ADS)

    Kiekebusch, Mario J.; Chiozzi, Gianluca; Knudstrup, Jens; Popovic, Dan; Zins, Gerard

    2010-07-01

    The VLT control system is a large distributed system consisting of Linux Workstations providing the high level coordination and interfaces to the users, and VME-based Local Control Units (LCU's) running the VxWorks real-time operating system with commercial and proprietary boards acting as the interface to the instrument functions. After more than 10 years of VLT operations, some of the applied technologies used by the astronomical instruments are being discontinued making it difficult to find adequate hardware for future projects. In order to deal with this obsolescence, the VLT Instrumentation Framework is being extended to adopt well established Commercial Off The Shelf (COTS) components connected through industry standard fieldbuses. This ensures a flexible state of the art hardware configuration for the next generation VLT instruments allowing the access to instrument devices via more compact and simpler control units like PC-based Programmable Logical Controllers (PLC's). It also makes it possible to control devices directly from the Instrument Workstation through a normal Ethernet connection. This paper outlines the requirements that motivated this work, as well as the architecture and the design of the framework extension. In addition, it describes the preliminary results on a use case which is a VLTI visitor instrument used as a pilot project to validate the concepts and the suitability of some COTS products like a PC-based PLCs, EtherCAT8 and OPC UA6 as solutions for instrument control.

  7. Force Concept Inventory.

    ERIC Educational Resources Information Center

    Hestenes, David; And Others

    1992-01-01

    Reports the rationale, design, validation, and uses of the "Force Concept Inventory," an instrument to assess the students' beliefs on force. Includes results and implications of two studies that compared the inventory with the "Mechanics Baseline." Includes a copy of the instrument. (MDH)

  8. Music: Instrumental Techniques, Percussion.

    ERIC Educational Resources Information Center

    Pearl, Jesse

    A course in introduction to music emphasizing harmony is presented. The approach used is a laboratory approach in which pupils will develop skill in playing percussion instruments, sing, listen to, read and compose music with emphasis on elementary concepts of harmony. Course objectives include: (1) The student will recognize duple, triple,…

  9. Music: Instrumental Techniques, Strings.

    ERIC Educational Resources Information Center

    Ryan, Philip

    A course in music which emphasizes harmony is presented. The approach used is a laboratory one in which pupils will develop skill in playing orchestral string instruments, sing, listen to, read and compose music with emphasis on elementary concepts of harmony. Course objectives include: (1) The student will select the title of a familiar melody…

  10. Flaws of drug instrumentalization.

    PubMed

    Swendsen, Joel; Le Moal, Michel

    2011-12-01

    The adaptive use of drugs, or "drug instrumentalization," is presented as a reality that the scientific literature has largely ignored. In this commentary, we demonstrate why this concept has limited value from the standpoint of nosology, why it should not be viewed as "adaptive," and why it has dangerous implications for policy and public health efforts. PMID:22074977

  11. Music: Instrumental Techniques, Woodwinds.

    ERIC Educational Resources Information Center

    Baker, Melvin

    A course in introduction to music emphasizing modes and forms is presented. The approach used is a laboratory approach in which pupils will develop skill in playing wood-wind instruments, sing, listen to, read and compose music with emphasis on identification of elementary concepts of mode and form. Course objectives include: (1) pupil will select…

  12. Ontology Based Vocabulary Matching for Oceanographic Instruments

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Shepherd, Adam; Chandler, Cyndy; Arko, Robert; Leadbetter, Adam

    2014-05-01

    Data integration act as the preliminary entry point as we enter the era of big data in many scientific domains. However the reusefulness of various dataset has met the hurdle due to different initial of interests of different parties, therefore different vocabularies in describing similar or semantically related concepts. In this scenario it is vital to devise an automatic or semi-supervised algorithm to facilitate the convergence of different vocabularies. The Ocean Data Interoperability Platform (ODIP) seeks to increase data sharing across scientific domains and international boundaries by providing a forum to harmonize diverse regional data systems. ODIP participants from the US include the Rolling Deck to Repository (R2R) program, whose mission is to capture, catalog, and describe the underway/environmental sensor data from US oceanographic research vessels and submit the data to public long-term archives. In an attempt to harmonize these regional data systems, especially vocabularies, R2R recognizes the value of the SeaDataNet vocabularies served by the NERC Vocabulary Server (NVS) hosted at the British Oceanographic Data Centre as a trusted, authoritative source for describing many oceanographic research concepts such as instrumentation. In this work, we make use of the semantic relations in the vocabularies served by NVS to build a Bayesian network and take advantage of the idea of entropy in evaluating the correlation between different concepts and keywords. The performance of the model is evaluated against matching instruments from R2R against the SeaDataNet instrument vocabularies based on calculated confidence scores in the instrument pairings. These pairings with their scores can then be analyzed for assertion growing the interoperability of the R2R vocabulary through its links to the SeaDataNet entities.

  13. Cordless Instruments

    NASA Astrophysics Data System (ADS)

    1981-01-01

    Black & Decker's new cordless lightweight battery powered precision instruments, adapted from NASA's Apollo Lunar Landing program, have been designed to give surgeons optimum freedom and versatility in the operating room. Orthopedic instrument line includes a drill, a driver/reamer and a sagittal saw. All provide up to 20 minutes on a single charge. Power pack is the instrument's handle which is removable for recharging. Microprocessor controlled recharging unit can recharge two power packs together in 30 minutes. Instruments can be gas sterilized, steam-sterilized in an autoclave or immersed for easy cleaning.

  14. Monitoring Instruments

    ERIC Educational Resources Information Center

    Environmental Science and Technology (Environmental Control Issue), 1977

    1977-01-01

    This section contains a listing of the manufacturers of environmental monitoring instruments. The manufacturers are listed alphabetically under product headings. Addresses are included in a different section. (MA)

  15. Multiple instrument distributed aperture sensor (MIDAS) for remote sensing

    NASA Astrophysics Data System (ADS)

    Pitman, Joseph T.; Duncan, Alan; Stubbs, David; Sigler, Robert; Kendrick, Rick; Smith, Eric; Mason, James; Delory, Greg; Lipps, Jere H.; Manga, Michael; Graham, James R.; de Pater, Imke; Reiboldt, Sarah; Bierhaus, Edward; Dalton, James B.; Fienup, James; Yu, Jeffrey W.

    2004-11-01

    An innovative approach that enables greatly increased return from earth and planetary science remote sensing missions is described. Our concept, called Multiple Instrument Distributed Aperture Sensor (MIDAS), provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional space telescopes, by integrating advanced optical interferometry technologies. All optical assemblies are integrated into MIDAS as the primary remote sensing science payload, thereby reducing the cost, resources, complexity, integration and risks of a set of back-end science instruments (SI's) tailored to a specific mission, such as advanced SI's now in development for earth and planetary remote sensing missions. MIDAS interfaces to multiple SI's for redundancy and to enable synchronized concurrent science investigations, such as with multiple highly sensitive spectrometers. Passive imaging modes with MIDAS enable remote sensing at diffraction-limited resolution sequentially by each science instrument, as well as in somewhat lower resolution by multiple science instruments acting concurrently on the image, such as in different wavebands. Our MIDAS concept inherently provides nanometer-resolution hyperspectral passive imaging without the need for any moving parts in the science instruments. In its active remote sensing modes using an integrated laser source, MIDAS enables LIDAR, vibrometry, illumination, various active laser spectroscopies such as ablative, breakdown or time-resolved spectroscopy. The MIDAS optical design also provides high-resolution imaging for long dwell times at high altitudes, thereby enabling real-time, wide-area remote sensing of dynamic changes in planet surface processes.

  16. SURVEY INSTRUMENT

    DOEpatents

    Borkowski, C J

    1954-01-19

    This pulse-type survey instrument is suitable for readily detecting {alpha} particles in the presence of high {beta} and {gamma} backgrounds. The instruments may also be used to survey for neutrons, {beta} particles and {gamma} rays by employing suitably designed interchangeable probes and selecting an operating potential to correspond to the particular probe.

  17. Transition: Terms and Concepts.

    ERIC Educational Resources Information Center

    O'Leary, Ed

    This paper provides explanations and case examples of some terms and concepts related to transition of students with disabilities under 1997 amendments to the Individuals with Disabilities Education Act. Explanations and examples focus on the concepts of "statement of transition service needs" and "statement of needed transition services". The…

  18. MMIC Phased Array Demonstrations with ACTS

    NASA Technical Reports Server (NTRS)

    Raquet, Charles A. (Compiler); Martzaklis, Konstantinos (Compiler); Zakrajsek, Robert J. (Compiler); Andro, Monty (Compiler); Turtle, John P.

    1996-01-01

    Over a one year period from May 1994 to May 1995, a number of demonstrations were conducted by the NASA Lewis Research Center (LeRC) in which voice, data, and/or video links were established via NASA's advanced communications technology satellite (ACTS) between the ACTS link evaluation terminal (LET) in Cleveland, OH, and aeronautical and mobile or fixed Earth terminals having monolithic microwave integrated circuit (MMIC) phased array antenna systems. This paper describes four of these. In one, a duplex voice link between an aeronautical terminal on the LeRC Learjet and the ACTS was achieved. Two others demonstrated duplex voice (and in one case video as well) links between the ACTS and an Army vehicle. The fourth demonstrated a high data rate downlink from ACTS to a fixed terminal. Array antenna systems used in these demonstrations were developed by LeRC and featured LeRC and Air Force experimental arrays using gallium arsenide MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The single 30 GHz transmit array was developed by NASA/LeRC and Texas Instruments. The three 20 GHz receive arrays were developed in a cooperative effort with the Air Force Rome Laboratory, taking advantage of existing Air Force array development contracts with Boeing and Lockheed Martin. The paper describes the four proof-of-concept arrays and the array control system. The system configured for each of the demonstrations is described, and results are discussed.

  19. Robotic servicing of EOS instruments

    NASA Technical Reports Server (NTRS)

    Razzaghi, Andrea I.; Juberts, Maris

    1990-01-01

    This paper addresses robotic servicing of the Earth Observing Satellite (EOS) instruments. The goals of implementing a robotic servicing system on EOS would be to maintain the instruments throughout the required mission life and minimize life-cycle costs. To address robot servicing, an initial design concept has been developed which will be applied to a representative EOS instrument. This instrument will be used as a model for determining the most practical level of servicing of its parts, and how to design these parts for robot servicing. Using this representative EOS instrument as a model, a generic design scheme will be developed that can be applied to all EOS instruments. The first task is to determine how to identify which parts must be designed for robot servicing. Next, the requirements imposed on the instruments and the servicing robot when designing for robot serviceability must be examined.

  20. Instrumentation '79.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Surveys the state of commerical development of analytical instrumentation as reflected by the Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy. Includes optical spectroscopy, liquid chromatography, magnetic spectrometers, and x-ray. (Author/MA)

  1. Astronomical instruments.

    NASA Astrophysics Data System (ADS)

    Rai, R. N.

    Indian astronomers have devised a number of instruments and the most important of these is the armillary sphere. The earliest armillary spheres were very simple instruments. Ptolemy in his Almagest enumerates at least three. The simplest of all was the equinoctial armilla. They had also the solstitial armilla which was a double ring, erected in the plane of the meridian with a rotating inner circle. This was used to measure the solar altitude.

  2. Oceanographic Instrument

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Developed under NASA contract, the Fast Repetition Rate (FRR) fluorometer is a computer-controlled instrument for measuring the fluorescence of phytoplankton, microscopic plant forms that provide sustenance for animal life in the oceans. The fluorometer sensor is towed by ship through the water and the resulting printouts are compared with satellite data. The instrument is non-destructive and can be used in situ, providing scientific information on ocean activity and productivity.

  3. Mass spectrometers: instrumentation

    NASA Astrophysics Data System (ADS)

    Cooks, R. G.; Hoke, S. H., II; Morand, K. L.; Lammert, S. A.

    1992-09-01

    Developments in mass spectrometry instrumentation over the past three years are reviewed. The subject is characterized by an enormous diversity of designs, a high degree of competition between different laboratories working with either different or similar techniques and by extremely rapid progress in improving analytical performance. Instruments can be grouped into genealogical charts based on their physical and conceptual interrelationships. This is illustrated using mass analyzers of different types. The time course of development of particular instrumental concepts is illustrated in terms of the s-curves typical of cell growth. Examples are given of instruments which are at the exponential, linear and mature growth stages. The prime examples used are respectively: (i) hybrid instruments designed to study reactive collisions of ions with surfaces: (ii) the Paul ion trap; and (iii) the triple quadrupole mass spectrometer. In the area of ion/surface collisions, reactive collisions such as hydrogen radical abstraction from the surface by the impinging ion are studied. They are shown to depend upon the chemical nature of the surface through the use of experiments which utilize self-assembled monolayers as surfaces. The internal energy deposited during surface-induced dissociation upon collision with different surfaces in a BEEQ instrument is also discussed. Attention is also given to a second area of emerging instrumentation, namely technology which allows mass spectrometers to be used for on-line monitoring of fluid streams. A summary of recent improvements in the performance of the rapidly developing quadrupole ion trap instrument illustrates this stage of instrument development. Improvements in resolution and mass range and their application to the characterization of biomolecules are described. The interaction of theory with experiment is illustrated through the role of simulations of ion motion in the ion trap. It is emphasized that mature instruments play a

  4. Instrument Remote Control via the Astronomical Instrument Markup Language

    NASA Technical Reports Server (NTRS)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  5. Designing Intelligent Instruments

    NASA Astrophysics Data System (ADS)

    Knuth, Kevin H.; Erner, Philip M.; Frasso, Scott

    2007-11-01

    Remote science operations require automated systems that can both act and react with minimal human intervention. One such vision is that of an intelligent instrument that collects data in an automated fashion, and based on what it learns, decides which new measurements to take. This innovation implements experimental design and unites it with data analysis in such a way that it completes the cycle of learning. This cycle is the basis of the Scientific Method. The three basic steps of this cycle are hypothesis generation, inquiry, and inference. Hypothesis generation is implemented by artificially supplying the instrument with a parameterized set of possible hypotheses that might be used to describe the physical system. The act of inquiry is handled by an inquiry engine that relies on Bayesian adaptive exploration where the optimal experiment is chosen as the one which maximizes the expected information gain. The inference engine is implemented using the nested sampling algorithm, which provides the inquiry engine with a set of posterior samples from which the expected information gain can be estimated. With these computational structures in place, the instrument will refine its hypotheses, and repeat the learning cycle by taking measurements until the system under study is described within a pre-specified tolerance. We will demonstrate our first attempts toward achieving this goal with an intelligent instrument constructed using the LEGO MINDSTORMS NXT robotics platform.

  6. An Instrumental Perspective on CSCL Systems

    ERIC Educational Resources Information Center

    Lonchamp, Jacques

    2012-01-01

    The theory of instrumental genesis of Rabardel relates the social and the technical through the concept of instrument. An instrument is defined as a mixed entity made up by an artifact, the technical/material part, and a set of utilization schemes, the social/behavioural part, which both result from users' constructive activities. This theory is…

  7. Instrument for measuring the mass of an astronaut

    NASA Astrophysics Data System (ADS)

    Fujii, Yusaku; Shimada, Kazuhito

    2006-10-01

    A practical and lightweight instrument for measuring the mass of astronauts under microgravity conditions is proposed. The principle of our 'space balance' is as follows. Connect the subject astronaut to the base with a rubber cord. Use a force transducer to measure the force acting on the subject and an optical interferometer to measure the acceleration of the subject. The subject's mass is calculated as the force divided by the acceleration, i.e. M = F/a. For the proof-of-concept ground model developed for this paper, linear motion of the mass with a negligible external force was achieved using an aerostatic linear bearing.

  8. Research Instruments

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The GENETI-SCANNER, newest product of Perceptive Scientific Instruments, Inc. (PSI), rapidly scans slides, locates, digitizes, measures and classifies specific objects and events in research and diagnostic applications. Founded by former NASA employees, PSI's primary product line is based on NASA image processing technology. The instruments karyotype - a process employed in analysis and classification of chromosomes - using a video camera mounted on a microscope. Images are digitized, enabling chromosome image enhancement. The system enables karyotyping to be done significantly faster, increasing productivity and lowering costs. Product is no longer being manufactured.

  9. Instrumented SSH

    SciTech Connect

    Campbell, Scott; Campbell, Scott

    2009-05-27

    NERSC recently undertook a project to access and analyze Secure Shell (SSH) related data. This includes authentication data such as user names and key fingerprints, interactive session data such as keystrokes and responses, and information about noninteractive sessions such as commands executed and files transferred. Historically, this data has been inaccessible with traditional network monitoring techniques, but with a modification to the SSH daemon, this data can be passed directly to intrusion detection systems for analysis. The instrumented version of SSH is now running on all NERSC production systems. This paper describes the project, details about how SSH was instrumented, and the initial results of putting this in production.

  10. Geoscience instrumentation

    NASA Technical Reports Server (NTRS)

    Wolff, E. A. (Editor); Mercanti, E. P.

    1974-01-01

    Geoscience instrumentation systems are considered along with questions of geoscience environment, signal processing, data processing, and design problems. Instrument platforms are examined, taking into account ground platforms, airborne platforms, ocean platforms, and space platforms. In situ and laboratory sensors described include acoustic wave sensors, age sensors, atmospheric constituent sensors, biological sensors, cloud particle sensors, electric field sensors, electromagnetic field sensors, precision geodetic sensors, gravity sensors, ground constituent sensors, horizon sensors, humidity sensors, ion and electron sensors, magnetic field sensors, tide sensors, and wind sensors. Remote sensors are discussed, giving attention to sensing techniques, acoustic echo-sounders, gamma ray sensors, optical sensors, radar sensors, and microwave radiometric sensors.

  11. Respect for Acting.

    ERIC Educational Resources Information Center

    Hagen, Uta

    This book, based on the author's experience as a professional actress, is divided into three sections. The first part, "The Actor," deals with techniques the actor uses to function physically, verbally, and emotionally and discusses the actor's concept of himself and the art of acting. The second part, "The Object Exercises," consists of a series…

  12. Weather Instruments.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  13. Mariner Jupiter/Saturn infrared instrument study

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Mariner Jupiter/Saturn infrared instrumentation conceptual design study was conducted to determine the physical and operational characteristics of the instruments needed to satisfy the experiment science requirements. The design of the instruments is based on using as many proven concepts as possible. Many design features are taken from current developments such as the Mariner, Pioneer 10, Viking Orbiter radiometers, and Nimbus D spectrometer. Calibration techniques and error analysis for the instrument system are discussed.

  14. Optoelectronic Instruments For Analysis Of Surface Defects

    NASA Technical Reports Server (NTRS)

    Collins, J. David; Mueller, Robert P.; Davis, Richard M.; Gleman, Stuart M.; Hallberg, Carl G.; Thayer, Stephen W.; Thompson, David L.; Thompson, James E.

    1995-01-01

    Family of portable optoelectronic instruments developed to facilitate inspection of surface flaws like gouges, scratches, raised metal, and dents on large metal workpieces subject to surface-finish requirements. Instrument brought to workpiece and semiautomatically makes electronic record of three-dimensional shape of flaw. Entire inspection process takes only minutes. Prototype instrument includes structured-light microscope. Concept involves projection of known pattern of light onto surface inspected. Topography of surface determined from distortion of pattern as viewed through instrument.

  15. RHIC instrumentation

    SciTech Connect

    Shea, T. J.; Witkover, R. L.

    1998-12-10

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 10{sup 11} protons to 250 GeV, or 10{sup 9} fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test.

  16. RHIC instrumentation

    NASA Astrophysics Data System (ADS)

    Shea, T. J.; Witkover, R. L.

    1998-12-01

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 1011 protons to 250 GeV, or 109 fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test.

  17. RHIC instrumentation

    SciTech Connect

    Shea, T.J.; Witkover, R.L.

    1998-12-01

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 10{sup 11} protons to 250 GeV, or 10{sup 9} fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test. {copyright} {ital 1998 American Institute of Physics.}

  18. Concept Formation.

    ERIC Educational Resources Information Center

    Vaidya, Narendera

    This document, published in India by the Regional College of Education, deals with 13 subjects: the tough context (thinking), definitions of concept, functions of concept, the process of concept formation, discriminant learning, mediation process, second signalling system, factors affecting concept formation, studies in concept formation, the…

  19. Virtual Instrument Simulator for CERES

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    1997-01-01

    A benchtop virtual instrument simulator for CERES (Clouds and the Earth's Radiant Energy System) has been built at NASA, Langley Research Center in Hampton, VA. The CERES instruments will fly on several earth orbiting platforms notably NASDA's Tropical Rainfall Measurement Mission (TRMM) and NASA's Earth Observing System (EOS) satellites. CERES measures top of the atmosphere radiative fluxes using microprocessor controlled scanning radiometers. The CERES Virtual Instrument Simulator consists of electronic circuitry identical to the flight unit's twin microprocessors and telemetry interface to the supporting spacecraft electronics and two personal computers (PC) connected to the I/O ports that control azimuth and elevation gimbals. Software consists of the unmodified TRW developed Flight Code and Ground Support Software which serves as the instrument monitor and NASA/TRW developed engineering models of the scanners. The CERES Instrument Simulator will serve as a testbed for testing of custom instrument commands intended to solve in-flight anomalies of the instruments which could arise during the CERES mission. One of the supporting computers supports the telemetry display which monitors the simulator microprocessors during the development and testing of custom instrument commands. The CERES engineering development software models have been modified to provide a virtual instrument running on a second supporting computer linked in real time to the instrument flight microprocessor control ports. The CERES Instrument Simulator will be used to verify memory uploads by the CERES Flight Operations TEAM at NASA. Plots of the virtual scanner models match the actual instrument scan plots. A high speed logic analyzer has been used to track the performance of the flight microprocessor. The concept of using an identical but non-flight qualified microprocessor and electronics ensemble linked to a virtual instrument with identical system software affords a relatively inexpensive

  20. Virtual instrument simulator for CERES

    NASA Astrophysics Data System (ADS)

    Chapman, John J.

    1997-12-01

    A benchtop virtual instrument simulator for CERES (clouds and the Earth's radiant energy system) has been built at NASA, Langley Research Center in Hampton, Virginia. The CERES instruments will fly on several earth orbiting platforms notably NASDA's tropical rainfall measurement mission (TRMM) and NASA's Earth observing system (EOS) satellites. CERES measures top of the atmosphere radiative fluxes using microprocessor controlled scanning radiometers. The CERES virtual instrument simulator consists of electronic circuitry identical to the flight unit's twin microprocessors and telemetry interface to the supporting spacecraft electronics and two personal computers (PC) connected to the I/O ports that control azimuth and elevation gimbals. Software consists of the unmodified TRW developed flight code and ground support software which serves as the instrument monitor and NASA/TRW developed engineering models of the scanners. The CERES instrument simulator will serve as a testbed for testing of custom instrument commands intended to solve in-flight anomalies of the instruments which could arise during the CERES mission. One of the supporting computers supports the telemetry display which monitors the simulator microprocessors during the development and testing of custom instrument commands. The CERES engineering development software models have been modified to provide a virtual instrument running on a second supporting computer linked in real time to the instrument flight microprocessor control ports. The CERES instrument simulator will be used to verify memory uploads by the CERES flight operations TEAM at NASA. Plots of the virtual scanner models match the actual instrument scan plots. A high speed logic analyzer has been used to track the performance of the flight microprocessor. The concept of using an identical but non-flight qualified microprocessor and electronics ensemble linked to a virtual instrument with identical system software affords a relatively

  1. Virtual Sensor Test Instrumentation

    NASA Technical Reports Server (NTRS)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  2. Rain radar instrument definition

    NASA Astrophysics Data System (ADS)

    Vincent, Nicolas; Chenebault, J.; Suinot, Noel; Mancini, Paolo L.

    1996-12-01

    As a result of a pre-phase a study, founded by ESA, this paper presents the definition of a spaceborne Rain Radar, candidate instrument for earth explorer precipitation mission. Based upon the description of user requirements for such a dedicated mission, a mission analysis defines the most suitable space segment. At system level, a parametric analysis compares pros and cons of instrument concepts associated with rain rate retrieval algorithms in order to select the most performing one. Several trade-off analysis at subsystem level leads then to the definition of the proposed design. In particular, as pulse compression is implemented in order to increase the radar sensitivity, the selected method to achieve a pulse response with a side-lobe level below--60 dB is presented. Antenna is another critical rain radar subsystem and several designs are com pared: direct radiating array, single or dual reflector illuminated by single or dual feed arrays. At least, feasibility of centralized amplification using TWTA is compared with criticality of Tx/Rx modules for distributed amplification. Mass and power budgets of the designed instrument are summarized as well as standard deviations and bias of simulated rain rate retrieval profiles. The feasibility of a compliant rain radar instrument is therefore demonstrated.

  3. Vocational Maturity and Self Concepts.

    ERIC Educational Resources Information Center

    Helbing, Hans

    The relationship between separate dimensions of vocational maturity and different self-concept and identity variables were examined. Subjects were Dutch students, age 14-18 years. The vocational maturity dimensions were measured by Dutch adaptations of American vocational maturity scales. Instruments for self-concept and identity measurement were…

  4. Instrumentation for interstellar exploration

    NASA Astrophysics Data System (ADS)

    Gruntman, M.

    The time has arrived for designing, building, and instrumenting a spacecraft for a dedicated foray into interstellar space surrounding our star, the Sun. This region was probed in the past by remote techniques and it will be explored in situ by the Interstellar Probe mission. The mission will significantly advance our understanding of the nature of the local interstellar medium and explore the distant frontier of the solar system by revealing the details of the interaction between the Sun and Galaxy. This mission will also be an important practical step toward interstellar flight of the future. Reaching interstellar space in reasonable time requires high escape velocities and will likely be enabled by non-chemical propulsion such as nuclear-powered electric propulsion or solar sailing. Unusually high spacecraft velocities, enormous distances from the Sun, and non-chemical propulsion will significantly influence the design of the mission, spacecraft and scientific instrumentation. We will review measurement objectives of the first mission into interstellar space and outline constrains on the instrumentation. Measurement of particles, fields, and dust in the interstellar medium will be complemented by search for complex molecules and remote sensing capabilities in various spectral bands. A "look" back at our solar system will also be a glimpse of wh at a flyby mission of the distant future would encounter in approaching another star. The instrumentation for interstellar exploration presents numerous challenges. Mass, telemetry, and power constraints would place a premium on miniaturization and autonom . There are, however,y physical limits on how small the sensors could be. New instrument concepts may be required to achieve the desired measurement capabilities under the stringent constraints of a realistic interstellar mission.

  5. Instrumentation for interstellar exploration

    NASA Astrophysics Data System (ADS)

    Gruntman, Mike

    2004-01-01

    The time has arrived for designing, building, and instrumenting a spacecraft for a dedicated foray into the galactic environment surrounding our star, the sun. This region was probed in the past by remote techniques and it will be explored in situ by the NASA's planned Interstellar Probe mission. The mission will significantly advance our understanding of the nature of the local interstellar medium and explore the distant frontier of the solar system by revealing the details of the interaction between the sun and the Galaxy. This mission will also be an important practical step toward interstellar flight of the future. Reaching interstellar space in reasonable time requires high escape velocities and will likely be enabled by non-chemical propulsion such as nuclear-powered electric propulsion or solar sailing. Unusually high spacecraft velocities, enormous distances from the Sun, and non-chemical propulsion will significantly influence design of the mission, spacecraft, and scientific instrumentation. We will review measurement objectives of the first dedicated mission into interstellar space and outline constraints on the instrumentation. Measurement of particles, fields, and dust in the interstellar medium will be complemented by search for complex organic molecules and remote sensing capabilities in various spectral bands. A "look" back at our solar system will also be a glimpse of what a truly-interstellar mission of the distant future would encounter in approaching a target star. The instrumentation for interstellar exploration presents numerous challenges. Mass, telemetry, and power constraints would place a premium on miniaturization and autonomy. There are, however, physical limits on how small the sensors could be. New instrument concepts may be required to achieve the desired measurement capabilities under the stringent constraints of a realistic interstellar mission.

  6. Using Concept Cartoons

    ERIC Educational Resources Information Center

    Dabell, John

    2008-01-01

    Concept cartoons are cognitive drawings or "visual disagreements" that use a cartoon-style design to present mathematical conversations inside speech bubbles. The viewpoints portrayed are all different and it is this difference that acts as a catalyst for further conversations, as learners talk together to discuss their thinking. They make…

  7. The Effectiveness of Concept Maps in Teaching Physics Concepts Applied to Engineering Education: Experimental Comparison of the Amount of Learning Achieved With and Without Concept Maps

    NASA Astrophysics Data System (ADS)

    Martínez, Guadalupe; Pérez, Ángel Luis; Suero, María Isabel; Pardo, Pedro J.

    2013-04-01

    A study was conducted to quantify the effectiveness of concept maps in learning physics in engineering degrees. The following research question was posed: What was the difference in learning results from the use of concept maps to study a particular topic in an engineering course? The study design was quasi-experimental and used a post-test as a measuring instrument. The sample included 114 university students from the School of Industrial Engineering who were divided into two equivalent homogeneous groups of 57 students each. The amount of learning attained by the students in each group was compared, with the independent variable being the teaching method; the experimental group (E.G.) used concept maps, while the control group (C.G.) did not. We performed a crossover study with the two groups of students, with one group acting as the E.G. for the topic of optical fibers and as the C.G. for the topic of the fundamental particles of matter and vice versa for the other group. For each of the two topics studied, the evaluation instrument was a test of 100 dichotomous items. The resulting data were subjected to a comparative statistical analysis, which revealed a significant difference in the amount of learning attained by the E.G. students as compared with the C.G. students. The results allow us to state that for the use of concept maps, the average increment in the E.G. students' learning was greater than 19 percentage points.

  8. Instrument Packages for Cold, Dark, High Radiation Environments

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Millar, P. S.; Yeh, P. S.; Beaman, B.; Brigham, D.; Feng, S.

    2011-03-01

    We are developing a small cold temperature in-strument package concept that integrates cold tempera-ture power system and radhard ULT ULP electronics into a ‘cold temperature surface operational’ version of a planetary surface instrument package.

  9. Multiple Instrument Distributed Aperture Sensor (MIDAS) for planetary remote sensing

    NASA Astrophysics Data System (ADS)

    Pitman, Joseph T.; Duncan, Alan; Stubbs, David; Sigler, Robert D.; Kendrick, Richard L.; Smith, Eric H.; Mason, James E.; Delory, Gregory; Lipps, Jere H.; Manga, Michael; Graham, James R.; de Pater, Imke; Reiboldt, Sarah; Marcus, Philip; Bierhaus, Edward; Dalton, James B.; Fienup, James R.; Yu, Jeffrey W.

    2004-12-01

    An innovative approach that enables greatly increased return from planetary science remote sensing missions is described. Our concept, called Multiple Instrument Distributed Aperture Sensor (MIDAS), provides a large-aperture, wide-field telescope at a fraction of the cost, mass and volume of conventional space telescopes, by integrating advanced optical interferometry technologies. All optical assemblies are integrated into MIDAS as the primary remote sensing science payload, thereby reducing the cost, resources, complexity, integration and risks of a set of back-end science instruments (SI"s) tailored to a specific mission, such as advanced SI"s now in development for future planetary remote sensing missions. MIDAS interfaces to multiple SI"s for redundancy and to enable synchronized concurrent science investigations, such as with multiple highly sensitive spectrometers. Passive imaging modes with MIDAS enable high resolution remote sensing at the diffraction limit of the overall synthetic aperture, sequentially by each science instrument as well as in somewhat lower resolution by multiple science instruments acting concurrently on the image, such as in different wavebands. Our MIDAS concept inherently provides nanometer-resolution hyperspectral passive imaging without the need for any moving parts in the science instruments. In its active remote sensing modes using an integrated laser subsystem, MIDAS enables LIDAR, vibrometry, illumination, various active laser spectroscopies such as ablative, breakdown, fluorescence, Raman and time-resolved spectroscopy. The MIDAS optical design also provides high-resolution imaging for long dwell times at high altitudes, thereby enabling real-time, wide-area remote sensing of dynamic changes in planet surface processes. These remote sensing capabilities significantly enhance astrobiologic, geologic, atmospheric, and similar scientific objectives for planetary exploration missions.

  10. Embedded instrumentation systems architecture

    NASA Astrophysics Data System (ADS)

    Visnevski, Nikita A.

    2007-04-01

    This paper describes the operational concept of the Embedded Instrumentation Systems Architecture (EISA) that is being developed for Test and Evaluation (T&E) applications. The architecture addresses such future T&E requirements as interoperability, flexibility, and non-intrusiveness. These are the ultimate requirements that support continuous T&E objectives. In this paper, we demonstrate that these objectives can be met by decoupling the Embedded Instrumentation (EI) system into an on-board and an off-board component. An on-board component is responsible for sampling, pre-processing, buffering, and transmitting data to the off-board component. The latter is responsible for aggregating, post-processing, and storing test data as well as providing access to the data via a clearly defined interface including such aspects as security, user authentication and access control. The power of the EISA architecture approach is in its inherent ability to support virtual instrumentation as well as enabling interoperability with such important T&E systems as Integrated Network-Enhanced Telemetry (iNET), Test and Training Enabling Architecture (TENA) and other relevant Department of Defense initiatives.

  11. Balancing Acts

    MedlinePlus

    ... Current Issue Past Issues Special Section: Focus on Communication Balancing Acts Past Issues / Fall 2008 Table of ... from the National Institute on Deafness and Other Communication Disorders (NIDCD). It involves simulated trips down the ...

  12. ACT Test

    MedlinePlus

    ... this page helpful? Also known as: ACT; Activated Coagulation Time Formal name: Activated Clotting Time Related tests: ... in the blood called platelets and proteins called coagulation factors are activated in a sequence of steps ...

  13. Optical Instruments

    NASA Astrophysics Data System (ADS)

    1990-01-01

    Precision Lapping and Optical Co. has developed a wide variety of hollow retroreflector systems for applications involving the entire optical spectrum; they are, according to company literature, cheaper, more accurate, lighter and capable of greater size than solid prisms. Precision Lapping's major customers are aerospace and defense companies, government organizations, R&D and commercial instrument companies. For example, Precision Lapping supplies hollow retroreflectors for the laser fire control system of the Army's Abrams tank, and retroreflectors have been and are being used in a number of space tests relative to the Air Force's Strategic Defense Initiative research program. An example of a customer/user is Chesapeake Laser Systems, producer of the Laser Tracker System CMS-2000, which has applications in SDI research and industrial robotics. Another customer is MDA Scientific, Inc., manufacturer of a line of toxic gas detection systems used to monitor hazardous gases present in oil fields, refineries, offshore platforms, chemical plants, waste storage sites and other locations where gases are released into the environment.

  14. Radiological instrument

    SciTech Connect

    Kronenberg, S.; McLaughlin, W.L.; Seibentritt, C.R. Jr.

    1986-12-23

    An instrument is described for measuring radiation, particularly nuclear radiation, comprising: a radiation sensitive structure pivoted toward one end and including a pair of elongated solid members contiguously joined together along their length dimensions and having a common planar interface therebetween. One of the pairs of members is comprised of radiochromic material whose index of refraction changes due to anomolous dispersion as a result of being exposed to nuclear radiation. The pair of members further has mutually different indices of refraction with the member having the larger index of refraction further being transparent for the passage of light and of energy therethrough; means located toward the other end of the structure for varying the angle of longitudinal elevation of the pair of members; means for generating and projecting a beam of light into one end of the member having the larger index of refraction. The beam of light is projected toward the planar interface where it is reflected out of the other end of the same member as a first output beam; means projecting a portion of the beam of light into one end of the member having the larger index of refraction where it traverses therethrough without reflection and out of the other end of the same member as a second output beam; and means adjacent the structure for receiving the first and second output beams, whereby a calibrated change in the angle of elevation of the structure between positions of equal intensity of the first and second output beams prior to and following exposure provides a measure of the radiation sensed due to a change of refraction of the radiochromic material.

  15. Spectroscopic Instruments

    NASA Astrophysics Data System (ADS)

    Kunze, Hans-Joachim

    The selection of a spectrographic system including the detector is governed by several aspects: - Wavelength region of interest - Low or high-resolution studies, survey spectra, line intensities only or detailed line profiles - Weak or strong emitter, which usually is equivalent to having a plasma of low or high density - Low or high time resolution, which basically determines the detector and only to a lesser degree the throughput of the system - Stigmatic or astigmatic image of the plasma in the exit plane Spectrometers with the exception of instruments for the X-ray region typically consist of: - An entrance slit (width w en, area A E) - A dispersive element - An optical system, which forms a spectrally dispersed image of the entrance slit in the exit plane - A detector in the exit plane Figure 3.1 illustrates a schematic layout. Dispersing elements are prisms, gratings, interferometers, and crystals. The imaging system consists usually of a lens L1 (or mirror M1) collimating the radiation from the entrance slit, and a lens L2 (or mirror M2) focusing the radiation in the exit (image) plane. Mirrors have the advantage of no chromatic aberration and can also be used at shorter wavelengths where glasses, quartz, and crystals absorb the radiation. Unfortunately, their reflectivity decreases at short wavelengths; this can be remedied to some degree by reducing the number of reflecting surfaces and employing spherical or even toroidal gratings which combine focusing and dispersing properties. The optical system (L1, L2) or (M1, M2) becomes unnecessary.

  16. Ideology as instrument.

    PubMed

    Glassman, Michael; Karno, Donna

    2007-12-01

    Comments on the article by J. T. Jost, which argued that the end-of-ideology claims that emerged in the aftermath of World War II were both incorrect and detrimental to the field of political psychology. M. Glassman and D. Karno make three critical points. First, Jost objectified ideology as a grand strategy implemented at the individual level, rather than as an instrument used for a specific purpose in activity. In doing so, he set ideology up as an "object" that guides human behavior rather than as a rational part of human experience. Second, they take issue with the idea that, because somebody acts in a manner that can be categorized as ideological, there actually is such a thing as ideology separate from that event and/or political experience and that psychologists ought to understand the meaning of ideology in order to understand future human activities as outside observers. Third, Jost seems to see this objective ideology as a unidirectional, causal mechanism for activity, a mechanism that assumes individuals act according to ideology, which eclipses the possibility that immediate ideological positions are the residue of purposeful activity. Glassman and Karno suggest that it may be better to take a pluralistic view of ideology in human action. Where ideology does exist, it is as a purposeful instrument--part of a logically based action to meet some ends-in-view--a mixture of immediate goals tied to secondary belief systems (which have been integrated to serve the material purposes of the purveyors of these ideologies). So if we are to understand ideology, we can only understand it through its use in human activity. PMID:18085858

  17. Holy Trinity of Instrumentation Development

    NASA Astrophysics Data System (ADS)

    Uršič, Rok; Šolar, Borut

    2004-11-01

    Being user friendly should be the main guidance, beside the self-understood high performance, in today's instrumentation development. Here we identify three components of the user-friendly policy: the all-in-one concept, customization, and connectivity. All-in-one is the concept of unification of various building blocks and thus various functionalities in one product. The customization is enabled by the product's reconfigurability that allows a product to grow and support new requirements and applications without changing hardware. The consequence of the two is the capacity of the single instrument to perform a variety of tasks that before were split among different devices. The last of the three is connectivity that improves the relationship between controls and beam diagnostics, brings out-of-the-crate freedom, and opens unforeseen possibilities for intra-accelerator cooperation and remote technical support.

  18. ZBLAN Viscosity Instrumentation

    NASA Technical Reports Server (NTRS)

    Kaukler, William

    2001-01-01

    The past year's contribution from Dr. Kaukler's experimental effort consists of these 5 parts: a) Construction and proof-of-concept testing of a novel shearing plate viscometer designed to produce small shear rates and operate at elevated temperatures; b) Preparing nonlinear polymeric materials to serve as standards of nonlinear Theological behavior; c) Measurements and evaluation of above materials for nonlinear rheometric behavior at room temperature using commercial spinning cone and plate viscometers available in the lab; d) Preparing specimens from various forms of pitch for quantitative comparative testing in a Dynamic Mechanical Analyzer, Thermal Mechanical Analyzer; and Archeological Analyzer; e) Arranging to have sets of pitch specimens tested using the various instruments listed above, from different manufacturers, to form a baseline of the viscosity variation with temperature using the different test modes offered by these instruments by compiling the data collected from the various test results. Our focus in this project is the shear thinning behavior of ZBLAN glass over a wide range of temperature. Experimentally, there are no standard techniques to perform such measurements on glasses, particularly at elevated temperatures. Literature reviews to date have shown that shear thinning in certain glasses appears to occur, but no data is available for ZBLAN glass. The best techniques to find shear thinning behavior require the application of very low rates of shear. In addition, because the onset of the thinning behavior occurs at an unknown elevated temperature, the instruments used in this study must provide controlled low rates of shear and do so for temperatures approaching 600 C. In this regard, a novel shearing parallel plate viscometer was designed and a prototype built and tested.

  19. ACTS TDMA network control

    NASA Astrophysics Data System (ADS)

    Inukai, T.; Campanella, S. J.

    This paper presents basic network control concepts for the Advanced Communications Technology Satellite (ACTS) System. Two experimental systems, called the low-burst-rate and high-burst-rate systems, along with ACTS ground system features, are described. The network control issues addressed include frame structures, acquisition and synchronization procedures, coordinated station burst-time plan and satellite-time plan changes, on-board clock control based on ground drift measurements, rain fade control by means of adaptive forward-error-correction (FEC) coding and transmit power augmentation, and reassignment of channel capacities on demand. The NASA ground system, which includes a primary station, diversity station, and master control station, is also described.

  20. A Modular and Configurable Instrument Electronics Architecture for "MiniSAR"- An Advanced Smallsat SAR Instrument

    NASA Astrophysics Data System (ADS)

    Gomez, Jaime; Pastena, Max; Bierens, Laurens

    2013-08-01

    MiniSAR is a Dutch program focused on the development of a commercial smallsat featuring a SAR instrument, led by SSBV as prime contractor. In this paper an Instrument Electronics (IEL) system concept to meet the MiniSAR demands is presented. This system has several specificities wrt similar initiatives in the European space industry, driven by our main requirement: keep it small.

  1. A Self-Evaluation Instrument for Support Plans

    ERIC Educational Resources Information Center

    Schippers, A. P.

    2005-01-01

    Background: Actual practice in the Netherlands has shown the need of an instrument to evaluate the quality of support plans. This article describes the development of an instrument for such evaluation. Method: The concept of quality of life (QOL) domains were used to develop an instrument to evaluate the quality of support plans within a QOL…

  2. New Developments at NASA's Instrument Synthesis & Analysis Laboratory (ISAL)

    NASA Technical Reports Server (NTRS)

    Wood, H. John; Brown, Tammy L.; Herring, Ellen L.

    2006-01-01

    This viewgraph document reviews the work of NASA's Instrument Synthesis and Analysis Laboratory (ISAL). The work of the ISAL has substantially reduced the time required to develop an instrument concept. The document reviews the design process in detail and planned interaction with the end user of the instrument.

  3. Instrumentation at the Anglo-Australian Observatory

    NASA Astrophysics Data System (ADS)

    Barden, Samuel C.

    2004-09-01

    The Anglo-Australian Observatory (AAO) has an instrumentation group for engineering, design, and fabrication that integrates tightly with an energetic group of instrument scientists1 to develop complex astronomical instruments. This instrumentation group puts ideas for innovative technical solutions generated by the instrument scientist group into reality. One demonstration of past achievement is the highly ambitious and successful 2dF instrument that yielded invaluable scientific insight into the cosmological structure of the universe. The more recent successes of the instrumentation group include the OzPoz fiber positioner for the FLAMES facility on the VLT and the award-winning, imaging and multi-object IRIS-2 infrared spectrograph for the AAT. VPH gratings were first put into action in LDSS++ on the AAT and numerous VPH gratings are now in routine use on the 6dF spectrograph for the UKST. Under development are a completely new and unique fiber positioning scheme (Echidna) for use in the FMOS instrument for Subaru; a double-beamed, VPH-based, bench-mounted spectrograph for 2dF; new IR and optical detector controllers; a renovation of the telescope and instrument control systems for the AAT; and a feasibility study for an Echidna-style positioner for the Gemini telescopes. Several other design studies are underway for new instrument technologies using leading edge and innovative concepts in robotics and fibers. The synergy between our scientists and engineers establishes a sound basis for solving the instrumentation challenges facing us.

  4. Low activated incore instrument

    DOEpatents

    Ekeroth, D.E.

    1994-04-19

    Instrumentation is described for nuclear reactor head-mounted incore instrumentation systems fabricated of low nuclear cross section materials (i.e., zirconium or titanium). The instrumentation emits less radiation than that fabricated of conventional materials. 9 figures.

  5. Handbook for the ACT Career Planning Program.

    ERIC Educational Resources Information Center

    American Coll. Testing Program, Iowa City, IA. Research and Development Div.

    Prepared by the Research and Development Division of the American College Testing (ACT) Program, this handbook contains information pertaining to the ACT Career Planning Program, a guidance program for students considering and entering post-high school career education programs. The primary instrument of the Career Planning Program is a Career…

  6. Evaluating musical instruments

    SciTech Connect

    Campbell, D. Murray

    2014-04-01

    Scientific measurements of sound generation and radiation by musical instruments are surprisingly hard to correlate with the subtle and complex judgments of instrumental quality made by expert musicians.

  7. Geostationary earth science platform concepts

    NASA Technical Reports Server (NTRS)

    Herardian, M. M.

    1989-01-01

    The new concepts are presented for the Geostationary Earth Science Platform. Bus and payload arrangements, with instrument locations on the payload module and basic payload dimensions, are depicted and compared for each concept. The Titan 4 SRMU (with solid rocket motor upgrage) launch vehicle is described and compared to the standard Titan 4. The upgraded Titan 4 is capable of launching a 13,500 lb payload to GEO. The launch configuration showing each concept packaged within the 16 ft diameter payload envelope is presented. This presentation is represented by viewgraph only.

  8. IOT Overview: IR Instruments

    NASA Astrophysics Data System (ADS)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  9. Astronomical Instruments in India

    NASA Astrophysics Data System (ADS)

    Sarma, Sreeramula Rajeswara

    The earliest astronomical instruments used in India were the gnomon and the water clock. In the early seventh century, Brahmagupta described ten types of instruments, which were adopted by all subsequent writers with minor modifications. Contact with Islamic astronomy in the second millennium AD led to a radical change. Sanskrit texts began to lay emphasis on the importance of observational instruments. Exclusive texts on instruments were composed. Islamic instruments like the astrolabe were adopted and some new types of instruments were developed. Production and use of these traditional instruments continued, along with the cultivation of traditional astronomy, up to the end of the nineteenth century.

  10. On Representative Spaceflight Instrument and Associated Instrument Sensor Web Framework

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Patel, Umeshkumar; Vootukuru, Meg

    2007-01-01

    Sensor Web-based adaptation and sharing of space flight mission resources, including those of the Space-Ground and Control-User communication segment, could greatly benefit from utilization of heritage Internet Protocols and devices applied for Spaceflight (SpaceIP). This had been successfully demonstrated by a few recent spaceflight experiments. However, while terrestrial applications of Internet protocols are well developed and understood (mostly due to billions of dollars in investments by the military and industry), the spaceflight application of Internet protocols is still in its infancy. Progress in the developments of SpaceIP-enabled instrument components will largely determine the SpaceIP utilization of those investments and acceptance in years to come. Likewise SpaceIP, the development of commercial real-time and instrument colocated computational resources, data compression and storage, can be enabled on-board a spacecraft and, in turn, support a powerful application to Sensor Web-based design of a spaceflight instrument. Sensor Web-enabled reconfiguration and adaptation of structures for hardware resources and information systems will commence application of Field Programmable Arrays (FPGA) and other aerospace programmable logic devices for what this technology was intended. These are a few obvious potential benefits of Sensor Web technologies for spaceflight applications. However, they are still waiting to be explored. This is because there is a need for a new approach to spaceflight instrumentation in order to make these mature sensor web technologies applicable for spaceflight. In this paper we present an approach in developing related and enabling spaceflight instrument-level technologies based on the new concept of a representative spaceflight Instrument Sensor Web (ISW).

  11. Space Physics Instruments for Nano-Spacecraft

    NASA Astrophysics Data System (ADS)

    Murphy, N.; Jefferies, S.; Raymond, C. A.; Pierce, D. R.; Dawson, O.

    2015-12-01

    Recent advances in CubeSat capabilities have prompted the development of increasingly ambitious mission concepts. These address significant science goals that were previously assumed to be addressable only by larger missions, and often include distributed measurements from multiple platforms. In parallel, space physics instruments are being developed that can meet the packaging requirements of CubeSats, and yet deliver high fidelity measurements. We will describe the development of two such instruments, a vector helium magnetometer and Doppler-magnetograph, and discuss several mission concepts that address outstanding problems in heliophysics.

  12. A Selection of Self Concept Measures.

    ERIC Educational Resources Information Center

    Knapp, Joan, Comp.

    This compilation is comprised of descriptions of instruments for measuring self-concept. The instruments were chosen on the basis of the following criteria: they should be suitable for and reflect the full age range of children in school; each of the categories in Coller's model--self report, projective, behavior trace, and direct…

  13. Mars Miniature Science Instruments

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Hayati, Samad; Lavery, David; McBrid, Karen

    2006-01-01

    For robotic Mars missions, all the science information is gathered through on-board miniature instruments that have been developed through many years of R&D. Compared to laboratory counterparts, the rover instruments require miniaturization, such as low mass (1-2 kg), low power (> 10 W) and compact (1-2 liter), yet with comparable sensitivity. Since early 1990's, NASA recognized the need for the miniature instruments and launched several instrument R&D programs, e.g., PIDDP (Planetary Instrument Definition and Development). However, until 1998, most of the instrument R&D programs supported only up to a breadboard level (TRL 3, 4) and there is a need to carry such instruments to flight qualifiable status (TU 5, 6) to respond to flight AOs (Announcement of Opportunity). Most of flight AOs have only limited time and financial resources, and can not afford such instrument development processes. To bridge the gap between instrument R&D programs and the flight instrument needs, NASA's Mars Technology Program (MTP) created advanced instrumentation program, Mars Instrument Development Project (MIDP). MIDP candidate instruments are selected through NASA Research Announcement (NRA) process [l]. For example, MIDP 161998-2000) selected and developed 10 instruments, MIDP II (2003-2005) 16 instruments, and MIDP III (2004-2006) II instruments.Working with PIs, JPL has been managing the MIDP tasks since September 1998. All the instruments being developed under MIDP have been selected through a highly competitive NRA process, and employ state-of-the-art technology. So far, four MIDP funded instruments have been selected by two Mars missions (these instruments have further been discussed in this paper).

  14. Act resilient.

    PubMed

    Joseph, Genie; Bice-Stephens, Wynona

    2014-01-01

    Attendees have reported changing from being fearful to serene, from listless to energized, from disengaged to connected, and becoming markedly less anxious in a few weeks. Anecdotally, self-reported stress levels have been reduced by over 50% after just one class. Attendees learn not to be afraid of their feelings by working with emotions in a playful manner. When a person can act angry, but separate himself from his personal story, the emotional energy exists in a separate form that is not attached to specific events, and can be more easily dealt with and neutralized. Attendees are taught to "take out the emotional trash" through expressive comedy. They become less intimated by their own emotional intensity and triggers as they learn how even metaphorical buckets of anger, shame, guilt and hurt can be emotionally emptied. The added benefit is that this is accomplished without the disclosure of personal information of the requirement to reexperience past pain which can trigger its own cascade of stress. PMID:24706248

  15. Afterword: Instruments as media, media as instruments.

    PubMed

    Rheinberger, Hans-Jörg

    2016-06-01

    The collection of essays comes under the heading of two catchwords: instruments and media. This Afterword looks at their interaction and roles in exploring the characteristics of living beings throughout history, especially their melding and gliding into each other. Before turning to the papers, I will make some more general remarks on instruments and media in scientific, and in particular, biological research. PMID:27053536

  16. A method for automating calibration and records management for instrumentation and dosimetry

    SciTech Connect

    O`Brien, J.M. Jr.; Rushton, R.O.; Burns, R.E. Jr.

    1993-12-31

    Current industry requirements are becoming more stringent on quality assurance records and documentation for calibration of instruments and dosimetry. A novel method is presented here that will allow a progressive automation scheme to be used in pursuit of that goal. This concept is based on computer-controlled irradiators that can act as stand-alone devices or be interfaced to other components via a computer local area network. In this way, complete systems can be built with modules to create a records management system to meet the needs of small laboratories or large multi-building calibration groups. Different database engines or formats can be used simply by replacing a module. Modules for temperature and pressure monitoring or shipping and receiving can be added, as well as equipment modules for direct IEEE-488 interface to electrometers and other instrumentation.

  17. Concept Mapping.

    ERIC Educational Resources Information Center

    Callison, Daniel

    2001-01-01

    Explains concept mapping as a heuristic device that is helpful in visualizing the relationships between and among ideas. Highlights include how to begin a map; brainstorming; map applications, including document or information summaries and writing composition; and mind mapping to strengthen note-taking. (LRW)

  18. Language and Legal Speech Acts: Decisions.

    ERIC Educational Resources Information Center

    Kevelson, Roberta

    The first part of this essay argues specifically that legal speech acts are not statements but question/answer constructions. The focus in this section is on the underlying interrogative structure of the legal decision. The second part of the paper touches on significant topics related to the concept of legal speech acts, including the philosophic…

  19. Psychopathy and instrumental violence: facet level relationships.

    PubMed

    Walsh, Zach; Swogger, Marc T; Kosson, David S

    2009-08-01

    The relationship between psychopathy and violence is well established. However, the extent to which psychopathy is related to different types of violent behavior warrants further study. We examined the relationship between instrumental violence, psychopathy, and psychopathic traits among 248 European American and African American adult male county jail inmates. We assessed instrumentality based on subjective motivations for respondent-identified acts of violence. Psychopathy was assessed using the PCL-R based on interview and file review. We controlled for potentially important covariates, namely IQ and prior violence. Results were in part consistent with findings from studies with adolescents, in that we identified a positive relationship between instrumentality of violence and manipulative interpersonal style. Results differed from youth studies with regard to relationships between instrumentality and other facets of psychopathy. The implications of our study are discussed with regard to treatment and the developmental stability of the relationship between psychopathic traits and instrumental violence. PMID:19663661

  20. Piping inspection instrument carriage

    SciTech Connect

    Zollinger, W.T.; Treanor, R.C.

    1993-09-20

    This invention is comprised of a pipe inspection instrument carriage for use with a pipe crawler or other locomotion means for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has means mounted distally thereon for axially aligning the inspection instrumentation and means for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has means for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure.

  1. Optimization of Teaching and Learning of Concepts.

    ERIC Educational Resources Information Center

    Kotter, Ludwig; And Others

    1990-01-01

    Discussion of the optimization of the instruction of concepts emphasizes theories of cognitive psychology. The development of instruments to record the mastery of concepts by fifth graders is described, variables of both instruction and learning are discussed, and a field experiment that compared the effectiveness of video directed instruction and…

  2. Instrument science at the Anglo-Australian Observatory

    NASA Astrophysics Data System (ADS)

    Bland-Hawthorn, Joss

    2004-09-01

    The Anglo-Australian Observatory (AAO) has two groups which work closely to develop the next generation of astronomical instruments: the Instrumentation group, headed by Sam Barden, and the Instrument Science group. The Instrument Science group plays a key role in identifying and prototyping new technologies and concepts, and in establishing links with universities and industrial partners. Recent developments include the following: "echidna" fibre positioning technology, "starbug" robotic positioners; designer optical fibres and photonics; inertial drives and new concepts for large telescopes; new designs for gratings, tunable filters and interference coatings; a programmable "honeycomb" integral field spectrograph; a compact spectrograph for a Mars rover; and a new scheme for an optical laser receiver.

  3. pH Optrode Instrumentation

    NASA Technical Reports Server (NTRS)

    Tabacco, Mary Beth; Zhou, Quan

    1995-01-01

    pH-sensitive chromophoric reagents immobilized in porous optical fibers. Optoelectronic instrumentation system measures acidity or alkalinity of aqueous nutrient solution. Includes one or more optrodes, which are optical-fiber chemical sensors, in sense, analogous to electrodes but not subject to some of spurious effects distorting readings taken by pH electrodes. Concept of optrodes also described in "Ethylene-Vapor Optrodes" (KSC-11579). pH optrode sensor head, with lead-in and lead-out optical fibers, convenient for monitoring solutions located away from supporting electronic equipment.

  4. Regional Instrumentation Centers.

    ERIC Educational Resources Information Center

    Cromie, William J.

    1980-01-01

    Focuses on the activities of regional instrumentation centers that utilize the state-of-the-art instruments and methodology in basic scientific research. The emphasis is on the centers involved in mass spectroscopy, magnetic resonance spectroscopy, lasers, and accelerators. (SA)

  5. Woodwind Instrument Maintenance.

    ERIC Educational Resources Information Center

    Sperl, Gary

    1980-01-01

    The author presents a simple maintenance program for woodwind instruments which includes the care of tendon corks, the need for oiling keys, and methods of preventing cracks in woodwind instruments. (KC)

  6. Planetary Exploration Capabilities Enabled by the MIDAS Concept

    NASA Astrophysics Data System (ADS)

    Pitman, J.; Duncan, A.; Stubbs, D.; Sigler, R.; Kendrick, R.; Chilese, J.; Smith, E.; Bierhaus, E.; Delory, G.; Lipps, J.; Manga, M.; Graham, J.; Depater, I.; Rieboldt, S.; Dalton, B.; Fienup, J.; Yu, J.

    2004-05-01

    The Multiple Instrument Distributed Aperture Sensor (MIDAS) concept provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of traditional space telescopes. By integrating optical interferometry technologies into a mature multiple aperture array concept, MIDAS capabilities fulfil the need for advancing future planetary science remote sensing on missions such as the Jupiter Icy Moons Orbiter (JIMO). MIDAS acts as a single front-end remote sensing science payload for multiple missions, reducing the cost, resources, complexity, and risks with a set of back-end science instruments (SI's) tailored to each specific mission. MIDAS enables either sequential or concurrent SI operations in all functional modes, such as passive imaging by any one SI or multispectral imaging by all SI's concurrently. In its active remote sensing modes using an integrated laser source, MIDAS enables LIDAR, vibrometry, illumination, ablation, and various laser spectroscopies. MIDAS inherently provides nanometer-resolution hyperspectral imaging to help determine the geochemistry of planetary surface materials without the need for any moving parts in the SI's. The MIDAS optical design enables high-resolution spectral imaging at high-altitude with long dwell times, enabling real-time wide-area long-duration remote sensing of active processes on the planet surface. The powerful combination of MIDAS passive and active imaging capabilities, each with sequential or concurrent SI operational modes, significantly increases the potential return for future planetary science missions.

  7. Instrument Modeling and Synthesis

    NASA Astrophysics Data System (ADS)

    Horner, Andrew B.; Beauchamp, James W.

    During the 1970s and 1980s, before synthesizers based on direct sampling of musical sounds became popular, replicating musical instruments using frequency modulation (FM) or wavetable synthesis was one of the “holy grails” of music synthesis. Synthesizers such as the Yamaha DX7 allowed users great flexibility in mixing and matching sounds, but were notoriously difficult to coerce into producing sounds like those of a given instrument. Instrument design wizards practiced the mysteries of FM instrument design.

  8. The Instrumental Model

    ERIC Educational Resources Information Center

    Yeates, Devin Rodney

    2011-01-01

    The goal of this dissertation is to enable better predictive models by engaging raw experimental data through the Instrumental Model. The Instrumental Model captures the protocols and procedures of experimental data analysis. The approach is formalized by encoding the Instrumental Model in an XML record. Decoupling the raw experimental data from…

  9. On Feuerstein's Instrumental Enrichment: A Collection.

    ERIC Educational Resources Information Center

    Ben-Hur, Meir, Ed.

    On the premise that all children can learn, Reuven Feuerstein developed a classroom curriculum designed to build the cognitive functions of students diagnosed by others as incapable of learning. His program, Instrumental Enrichment (IE), provides students with the concepts, skills, strategies, operations, and techniques necessary to become…

  10. Apollo experience report: Lunar module instrumentation subsystem

    NASA Technical Reports Server (NTRS)

    Obrien, D. E., III; Woodfill, J. R., IV

    1972-01-01

    The design concepts and philosophies of the lunar module instrumentation subsystem are discussed along with manufacturing and systems integration. The experience gained from the program is discussed, and recommendations are made for making the subsystem more compatible and flexible in system usage. Characteristics of lunar module caution and warning circuits are presented.

  11. [Insomnia: concept analysis].

    PubMed

    Sun, Jia-Ling; Lin, Chia-Clin; Tsai, Pei-Shan; Chou, Kuei-Ru

    2008-10-01

    Sleep performs an essential function in humans. Insomnia is one of the common phenomena in a poor sleep pattern. Long-term suffering can result in somatic symptoms and the development of diseases. It can even induce diseases with a mental dimension. Insomnia causes indications of poor health. No systematic analysis of insomnia has been performed, however. The purpose of this study, therefore, was to describe the concept of insomnia. In accordance with Walker and Avant's (2005) methodology of concept analysis, this paper presents a review of the conceptual definitions, characteristics, antecedents and consequences, constructing examples, and empirical references of insomnia. The results indicate that: (1) Insomnia's defining attributes are recognized as an insufficient of quality and quantity for sleep for more than one month. (2) Antecedents of insomnia include changes in life habits, physiological demands caused by sleep time changes, and the experience of uncomfortable sensations. (3) Consequences of insomnia include a poor condition, with physical, psychological, social, and global dimensions. (4) There are many instruments that can be used to inspect insomnia, including questionnaires and tools for physiological measurement. Insomnia is a serious problem with various facets. An understanding of the concept of insomnia will help nurses to perceive this problem in caring for subjects. PMID:18836979

  12. 17 CFR 1.28 - Appraisal of instruments purchased with customer funds.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... TRADING COMMISSION GENERAL REGULATIONS UNDER THE COMMODITY EXCHANGE ACT Customers' Money, Securities, and... invest customer funds in instruments described in § 1.25 of this part shall include such instruments...

  13. 17 CFR 1.28 - Appraisal of instruments purchased with customer funds.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... TRADING COMMISSION GENERAL REGULATIONS UNDER THE COMMODITY EXCHANGE ACT Customers' Money, Securities, and... invest customer funds in instruments described in § 1.25 of this part shall include such instruments...

  14. 17 CFR 1.28 - Appraisal of instruments purchased with customer funds.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... TRADING COMMISSION GENERAL REGULATIONS UNDER THE COMMODITY EXCHANGE ACT Customers' Money, Securities, and... invest customer funds in instruments described in § 1.25 of this part shall include such instruments...

  15. 17 CFR 1.28 - Appraisal of instruments purchased with customer funds.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... TRADING COMMISSION GENERAL REGULATIONS UNDER THE COMMODITY EXCHANGE ACT Customers' Money, Securities, and... invest customer funds in instruments described in § 1.25 of this part shall include such instruments...

  16. Current Concepts in Conception Control

    PubMed Central

    Ringrose, C. A. Douglas

    1963-01-01

    The progressive increase in world population has become a most urgent global problem in recent years. Man has, however, been interested in controlling his reproductivity at the family level for many centuries. Historical aspects of this saga are reviewed. The modern era of conception control was ushered in by Makepeace et al. in 1937 when ovulation inhibition by progesterone was demonstrated. Confirmation of this by Pincus and associates, and development of the potent oral progestational agents, the 19-norsteroids, have made efficient reliable contraception a reality. Experience with one of these agents (Ortho-Novum, 2 mg.) in 115 patients through 805 cycles is presented. Conception control was 100% effective at this dosage. Side effects were minimal. Only three of the women discontinued the tablets because of these effects. All but five in this group of 115 preferred the oral contraceptives to methods previously employed. PMID:13973987

  17. Difficult Concepts

    NASA Astrophysics Data System (ADS)

    Fosbury, R.

    2005-12-01

    Beautiful colour images of the sky are both a blessing and a curse for the communication of astronomy to the public. While undoubtedly attractive, they can obscure the fact that discoveries are often made in astrophysics using techniques and measurements that are much more difficult to grasp and certainly less appealing to view. Should we try to explain such concepts as spectroscopy, polarimetry and interferometry, or is it a lost cause? The most effective approach to this problem may be to lead the audience to ask the question themselves: "But how do you know that?"

  18. Measurement of Mars Atmosphere Using an Orbiting Lidar Instrument

    NASA Astrophysics Data System (ADS)

    Amzajerdian, F.; Busch, G. E.; Edwards, W. C.; Cianciolo, A. D.; Munk, M. M.

    2012-10-01

    This paper describes an orbiting lidar instrument concept capable of providing Mars atmospheric parameters critical to design of future robotic and manned missions requiring advanced aerocapture, precision landing, and launch from Mars surface.

  19. Present status of aircraft instruments

    NASA Technical Reports Server (NTRS)

    1932-01-01

    This report gives a brief description of the present state of development and of the performance characteristics of instruments included in the following group: speed instruments, altitude instruments, navigation instruments, power-plant instruments, oxygen instruments, instruments for aerial photography, fog-flying instruments, general problems, summary of instrument and research problems. The items considered under performance include sensitivity, scale errors, effects of temperature and pressure, effects of acceleration and vibration, time lag, damping, leaks, elastic defects, and friction.

  20. Geotechnical instrumentation for repository shafts

    SciTech Connect

    Lentell, R.L.; Byrne, J.

    1993-09-01

    The US Congress passed the Nuclear Waste Policy Act in 1980, which required that three distinctly different geologic media be investigated as potential candidate sites for the permanent disposal of high-level nuclear waste. The three media that were selected for study were basalt (WA), salt (TX, LA, MS, UT), and tuff (NV). Preliminary Exploratory Shaft Facilities (ESF) designs were prepared for seven candidate salt sites, including bedded and domal salt environments. A bedded-salt site was selected in Deaf Smith County, TX for detailed site characterization studies and ESF Final Design. Although Congress terminated the Salt Repository Program in 1988, Final Design for the Deaf Smith ESF was completed, and much of the design rationale can be applied to subsequent deep repository shafts. This paper presents the rationale for the geotechnical instrumentation that was designed for construction and operational performance monitoring of the deep shafts of the in-situ test facility. The instrumentation design described herein can be used as a general framework in designing subsequent instrumentation programs for future high-level nuclear waste repository shafts.

  1. Hermes thermal control concept

    NASA Astrophysics Data System (ADS)

    Moscatelli, Antonio; Bottaccini, Massimiliano; Ferro, Claudio

    1991-12-01

    The Hermes Space Vehicle is made up of the reusable Hermes Spaceplane (HSP) itself and an expendable rear Hermes Resource Module (HRM). Both the HSP and HRM contain pressurized (habitable) compartments and unpressurized compartments. The complex configuration of the space vehicle and the mission profile require the adoption of a particularly flexible thermal control system which can satisfy the different requirements of the HSP and the HRM together with stringent safety and reliability requirements. All these aspects led to a thermal control design concept which uses active and passive means distributed through all compartments of the space vehicle. The ACTS (Active Thermal Control Section) is dedicated to the control of very high and concentrated thermal loads. It is based on a dual loop concept for heat collection (water and Freon R114 cooling loops), transportation and rejection through dedicated devicers. The PTCS (Passive Thermal Control Section) controls low heat fluxes spread on large surfaces. It relies on different concepts of insulation together with a system of temperature sensors and heaters, to control the thermal excursions of the space plane components and internal structural parts.

  2. Carbon foils for space plasma instrumentation

    NASA Astrophysics Data System (ADS)

    Allegrini, F.; Ebert, R. W.; Funsten, H. O.

    2016-05-01

    Carbon foils have been successfully used for several decades in space plasma instruments to detect ions and neutral atoms. These instruments take advantage of two properties of the particle-foil interaction: charge conversion of neutral atoms and/or secondary electron emission. This interaction also creates several adverse effects for the projectile exiting the foil, such as angular scattering and energy straggling, which usually act to reduce the sensitivity and overall performance of an instrument. The magnitude of these effects mainly varies with the incident angle, energy, and mass of the incoming projectile and the foil thickness. In this paper, we describe these effects and the properties of the interaction. We also summarize results from recent studies with graphene foils, which can be made thinner than carbon foils due to their superior strength. Graphene foils may soon replace carbon foils in space plasma instruments and open new opportunities for space research in the future.

  3. Concept Mapping

    PubMed Central

    Brennan, Laura K.; Brownson, Ross C.; Kelly, Cheryl; Ivey, Melissa K.; Leviton, Laura C.

    2016-01-01

    Background From 2003 to 2008, 25 cross-sector, multidisciplinary community partnerships funded through the Active Living by Design (ALbD) national program designed, planned, and implemented policy and environmental changes, with complementary programs and promotions. This paper describes the use of concept-mapping methods to gain insights into promising active living intervention strategies based on the collective experience of community representatives implementing ALbD initiatives. Methods Using Concept Systems software, community representatives (n=43) anonymously generated actions and changes in their communities to support active living (183 original statements, 79 condensed statements). Next, respondents (n=26, from 23 partnerships) sorted the 79 statements into self-created categories, or active living intervention approaches. Respondents then rated statements based on their perceptions of the most important strategies for creating community changes (n=25, from 22 partnerships) and increasing community rates of physical activity (n=23, from 20 partnerships). Cluster analysis and multidimensional scaling were used to describe data patterns. Results ALbD community partnerships identified three active living intervention approaches with the greatest perceived importance to create community change and increase population levels of physical activity: changes to the built and natural environment, partnership and collaboration efforts, and land-use and transportation policies. The relative importance of intervention approaches varied according to subgroups of partnerships working with different populations. Conclusions Decision makers, practitioners, and community residents can incorporate what has been learned from the 25 community partnerships to prioritize active living policy, physical project, promotional, and programmatic strategies for work in different populations and settings. PMID:23079266

  4. Review of biological mechanisms for application to instrument design

    NASA Technical Reports Server (NTRS)

    Healer, J.

    1967-01-01

    Biological sensors are the mechanisms which enable a living organism to monitor its environment. Ways in which the functional mechanism of biosensors can be applied to develop new concepts of instrumentation, enhance and extend the human senses, and improve the sensitivity of existing instrumentation are described in a review of these mechanisms.

  5. Efficient Swath Mapping Laser Altimetry Demonstration Instrument Incubator Program

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A,; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan

    2010-01-01

    In this paper we will discuss our eighteen-month progress of a three-year Instrument Incubator Program (IIP) funded by NASA Earth Science Technology Office (ESTO) on swath mapping laser altimetry system. This paper will discuss the system approach, enabling technologies and instrument concept for the swath mapping laser altimetry.

  6. Review of Instrumented Indentation

    PubMed Central

    VanLandingham, Mark R.

    2003-01-01

    Instrumented indentation, also known as depth-sensing indentation or nanoindentation, is increasingly being used to probe the mechanical response of materials from metals and ceramics to polymeric and biological materials. The additional levels of control, sensitivity, and data acquisition offered by instrumented indentation systems have resulted in numerous advances in materials science, particularly regarding fundamental mechanisms of mechanical behavior at micrometer and even sub-micrometer length scales. Continued improvements of instrumented indentation testing towards absolute quantification of a wide range of material properties and behavior will require advances in instrument calibration, measurement protocols, and analysis tools and techniques. In this paper, an overview of instrumented indentation is given with regard to current instrument technology and analysis methods. Research efforts at the National Institute of Standards and Technology (NIST) aimed at improving the related measurement science are discussed.

  7. VIRUS instrument enclosures

    NASA Astrophysics Data System (ADS)

    Prochaska, T.; Allen, R.; Mondrik, N.; Rheault, J. P.; Sauseda, M.; Boster, E.; James, M.; Rodriguez-Patino, M.; Torres, G.; Ham, J.; Cook, E.; Baker, D.; DePoy, Darren L.; Marshall, Jennifer L.; Hill, G. J.; Perry, D.; Savage, R. D.; Good, J. M.; Vattiat, Brian L.

    2014-08-01

    The Visible Integral-Field Replicable Unit Spectrograph (VIRUS) instrument will be installed at the Hobby-Eberly Telescope† in the near future. The instrument will be housed in two enclosures that are mounted adjacent to the telescope, via the VIRUS Support Structure (VSS). We have designed the enclosures to support and protect the instrument, to enable servicing of the instrument, and to cool the instrument appropriately while not adversely affecting the dome environment. The system uses simple HVAC air handling techniques in conjunction with thermoelectric and standard glycol heat exchangers to provide efficient heat removal. The enclosures also provide power and data transfer to and from each VIRUS unit, liquid nitrogen cooling to the detectors, and environmental monitoring of the instrument and dome environments. In this paper, we describe the design and fabrication of the VIRUS enclosures and their subsystems.

  8. New Concepts in Instrumentation Development to Measure the Perry Scheme.

    ERIC Educational Resources Information Center

    Taylor, Marcia

    The Perry scheme of intellectual and ethical development has become widely used in a range of academic disciplines and such areas as career training and faculty consultation. However, current measurement techniques for the scheme, whether interview format or paper and pencil measures, do not adequately address issues related to assessing cognitive…

  9. Concept And Development Of Instruments For ITER Thermography

    SciTech Connect

    Reichle, R.; Balorin, C.; Carpentier, S.; Corre, Y.; Davi, M.; Delchambre, E.; Desgrange, C.; Escourbiac, F.; Fougerolle, S.; Gardarein, J. L.; Gauthier, E.; Guilhem, D.; Jouve, M.; Loarer, Th.; Martins, J. P.; Patterlini, J. C.; Pocheau, C.; Roche, H.; Salasca, S.; Travere, J. M.

    2008-03-12

    We give here a short overview of the status of the development for ITER thermography as performed by the CEA-Cadarache and some of its collaboration partners. The topics that have been included in this synthesis are the status of the optical design, the role of multi-wavelength mesurements, multicolour pyroreflectometry, photothermal methods, and reflection simulations and measurements.

  10. Wet chemistry instrument prototype

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A wet chemistry instrument prototype for detecting amino acids in planetary soil samples was developed. The importance of amino acids and their condensation products to the development of life forms is explained. The characteristics of the instrument and the tests which were conducted to determine the materials compatibility are described. Diagrams are provided to show the construction of the instrument. Data obtained from the performance tests are reported.

  11. SMAP Instrument Mechanical System Engineering

    NASA Technical Reports Server (NTRS)

    Slimko, Eric; French, Richard; Riggs, Benjamin

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

  12. Instrument performance evaluation

    SciTech Connect

    Swinth, K.L.

    1993-03-01

    Deficiencies exist in both the performance and the quality of health physics instruments. Recognizing the implications of such deficiencies for the protection of workers and the public, in the early 1980s the DOE and the NRC encouraged the development of a performance standard and established a program to test a series of instruments against criteria in the standard. The purpose of the testing was to establish the practicality of the criteria in the standard, to determine the performance of a cross section of available instruments, and to establish a testing capability. Over 100 instruments were tested, resulting in a practical standard and an understanding of the deficiencies in available instruments. In parallel with the instrument testing, a value-impact study clearly established the benefits of implementing a formal testing program. An ad hoc committee also met several times to establish recommendations for the voluntary implementation of a testing program based on the studies and the performance standard. For several reasons, a formal program did not materialize. Ongoing tests and studies have supported the development of specific instruments and have helped specific clients understand the performance of their instruments. The purpose of this presentation is to trace the history of instrument testing to date and suggest the benefits of a centralized formal program.

  13. Satellite oceanography - The instruments

    NASA Technical Reports Server (NTRS)

    Stewart, R. H.

    1981-01-01

    It is pointed out that no instrument is sensitive to only one oceanographic variable; rather, each responds to a combination of atmospheric and oceanic phenomena. This complicates data interpretation and usually requires that a number of observations, each sensitive to somewhat different phenomena, be combined to provide unambiguous information. The distinction between active and passive instruments is described. A block diagram illustrating the steps necessary to convert data from satellite instruments into oceanographic information is included, as is a diagram illustrating the operation of a radio-frequency radiometer. Attention is also given to the satellites that carry the various oceanographic instruments.

  14. Instrument validation project

    SciTech Connect

    Reynolds, B.A.; Daymo, E.A.; Geeting, J.G.H.; Zhang, J.

    1996-06-01

    Westinghouse Hanford Company Project W-211 is responsible for providing the system capabilities to remove radioactive waste from ten double-shell tanks used to store radioactive wastes on the Hanford Site in Richland, Washington. The project is also responsible for measuring tank waste slurry properties prior to injection into pipeline systems, including the Replacement of Cross-Site Transfer System. This report summarizes studies of the appropriateness of the instrumentation specified for use in Project W-211. The instruments were evaluated in a test loop with simulated slurries that covered the range of properties specified in the functional design criteria. The results of the study indicate that the compact nature of the baseline Project W-211 loop does not result in reduced instrumental accuracy resulting from poor flow profile development. Of the baseline instrumentation, the Micromotion densimeter, the Moore Industries thermocouple, the Fischer and Porter magnetic flow meter, and the Red Valve Pressure transducer meet the desired instrumental accuracy. An alternate magnetic flow meter (Yokagawa) gave nearly identical results as the baseline fischer and Porter. The Micromotion flow meter did not meet the desired instrument accuracy but could potentially be calibrated so that it would meet the criteria. The Nametre on-line viscometer did not meet the desired instrumental accuracy and is not recommended as a quantitative instrument although it does provide qualitative information. The recommended minimum set of instrumentation necessary to ensure the slurry meets the Project W-058 acceptance criteria is the Micromotion mass flow meter and delta pressure cells.

  15. Space applications instrumentation systems

    NASA Technical Reports Server (NTRS)

    Minzner, R. A.; Oberholtzer, J. D.

    1972-01-01

    A compendium of resumes of 158 instrument systems or experiments, of particular interest to space applications, is presented. Each resume exists in a standardized format, permitting entries for 26 administrative items and 39 scientific or engineering items. The resumes are organized into forty groups determined by the forty spacecraft with which the instruments are associated. The resumes are followed by six different cross indexes, each organized alphabetically according to one of the following catagories: instrument name, acronym, name of principal investigator, name of organization employing the principal investigator, assigned experiment number, and spacecraft name. The resumes are associated with a computerized instrument resume search and retrieval system.

  16. 76 FR 55300 - Companies Engaged in the Business of Acquiring Mortgages and Mortgage-Related Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ...The Securities and Exchange Commission (``Commission'') and its staff (``Commission staff'' or ``staff'') are reviewing interpretive issues under the Investment Company Act of 1940 (``Investment Company Act'' or ``Act'') relating to the status under the Act of companies that are engaged in the business of acquiring mortgages and mortgage-related instruments and that rely on the exclusion from......

  17. 18 CFR 367.1750 - Account 175, Derivative instrument assets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... instrument assets. 367.1750 Section 367.1750 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005... GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367.1750 Account 175,...

  18. 18 CFR 367.2440 - Account 244, Derivative instrument liabilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... instrument liabilities. 367.2440 Section 367.2440 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005... GAS ACT Balance Sheet Chart of Accounts Current and Accrued Liabilities § 367.2440 Account...

  19. 18 CFR 367.1750 - Account 175, Derivative instrument assets.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... instrument assets. 367.1750 Section 367.1750 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005... GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367.1750 Account 175,...

  20. 18 CFR 367.2440 - Account 244, Derivative instrument liabilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... instrument liabilities. 367.2440 Section 367.2440 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005... GAS ACT Balance Sheet Chart of Accounts Current and Accrued Liabilities § 367.2440 Account...

  1. 18 CFR 367.1750 - Account 175, Derivative instrument assets.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... instrument assets. 367.1750 Section 367.1750 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005... GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367.1750 Account 175,...

  2. 18 CFR 367.2440 - Account 244, Derivative instrument liabilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... instrument liabilities. 367.2440 Section 367.2440 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005... GAS ACT Balance Sheet Chart of Accounts Current and Accrued Liabilities § 367.2440 Account...

  3. 18 CFR 367.1750 - Account 175, Derivative instrument assets.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... instrument assets. 367.1750 Section 367.1750 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005... GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367.1750 Account 175,...

  4. 18 CFR 367.1750 - Account 175, Derivative instrument assets.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Account 175, Derivative instrument assets. 367.1750 Section 367.1750 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005, FEDERAL POWER ACT AND NATURAL GAS...

  5. Instrumentation Working Group Summary

    NASA Technical Reports Server (NTRS)

    Zaller, Michelle; Miake-Lye, Richard

    1999-01-01

    The Instrumentation Working Group compiled a summary of measurement techniques applicable to gas turbine engine aerosol precursors and particulates. An assessment was made of the limits, accuracy, applicability, and technology readiness of the various techniques. Despite advances made in emissions characterization of aircraft engines, uncertainties still exist in the mechanisms by which aerosols and particulates are produced in the near-field engine exhaust. To adequately assess current understanding of the formation of sulfuric acid aerosols in the exhaust plumes of gas turbine engines, measurements are required to determine the degree and importance of sulfur oxidation in the turbine and at the engine exit. Ideally, concentrations of all sulfur species would be acquired, with emphasis on SO2 and SO3. Numerous options exist for extractive and non-extractive measurement of SO2 at the engine exit, most of which are well developed. SO2 measurements should be performed first to place an upper bound on the percentage of SO2 oxidation. If extractive and non-extractive techniques indicate that a large amount of the fuel sulfur is not detected as SO2, then efforts are needed to improve techniques for SO3 measurements. Additional work will be required to account for the fuel sulfur in the engine exhaust. Chemical Ionization Mass Spectrometry (CI-MS) measurements need to be pursued, although a careful assessment needs to be made of the sampling line impact on the extracted sample composition. Efforts should also be placed on implementing non-intrusive techniques and extending their capabilities by maximizing exhaust coverage for line-of-sight measurements, as well as development of 2-D techniques, where feasible. Recommendations were made to continue engine exit and combustor measurements of particulates. Particulate measurements should include particle size distribution, mass fraction, hydration properties, and volatile fraction. However, methods to ensure that unaltered

  6. User interfaces in space science instrumentation

    NASA Astrophysics Data System (ADS)

    McCalden, Alec John

    This thesis examines user interaction with instrumentation in the specific context of space science. It gathers together existing practice in machine interfaces with a look at potential future usage and recommends a new approach to space science projects with the intention of maximising their science return. It first takes a historical perspective on user interfaces and ways of defining and measuring the science return of a space instrument. Choices of research methodology are considered. Implementation details such as the concepts of usability, mental models, affordance and presentation of information are described, and examples of existing interfaces in space science are given. A set of parameters for use in analysing and synthesizing a user interface is derived by using a set of case studies of diverse failures and from previous work. A general space science user analysis is made by looking at typical practice, and an interview plus persona technique is used to group users with interface designs. An examination is made of designs in the field of astronomical instrumentation interfaces, showing the evolution of current concepts and including ideas capable of sustaining progress in the future. The parameters developed earlier are then tested against several established interfaces in the space science context to give a degree of confidence in their use. The concept of a simulator that is used to guide the development of an instrument over the whole lifecycle is described, and the idea is proposed that better instrumentation would result from more efficient use of the resources available. The previous ideas in this thesis are then brought together to describe a proposed new approach to a typical development programme, with an emphasis on user interaction. The conclusion shows that there is significant room for improvement in the science return from space instrumentation by attention to the user interface.

  7. Inclusion Practice Priorities Instrument.

    ERIC Educational Resources Information Center

    Montie, Jo; And Others

    This instrument was developed to assist individuals or teams to review best practice indicators regarding the development of inclusive school communities and to establish priority targets for improvement. The instrument covers three areas: (1) school community issues, (2) team issues, and (3) classroom issues. For each area, there is a review…

  8. Affective Involvement Instrument.

    ERIC Educational Resources Information Center

    Lemlech, Johanna K.

    1970-01-01

    The Affective Involvement Instrument (AII) describes and classifies affective involvement in the process of decision-making as it occurs during classroom activities such as role-playing or group discussions. The thirty-celled instrument behaviorizes the six processes involved in decision-making and combines them with the taxonomic levels of the…

  9. Developments in Electrochemical Instrumentation.

    ERIC Educational Resources Information Center

    Osteryoung, Janet

    1982-01-01

    Discusses developments in electrochemical instrumentation, including the role of computers, measurement/control instruments, present needs and future prospects. Indicates that microprocessors are used primarily for data processing, and that progress depends on noninstrumental factors such as electrode materials. (Author/JN)

  10. Geothermal instrumentation development activities at Sandia

    SciTech Connect

    Carson, C.C.

    1985-03-01

    A major element of Sandia's Geothermal Technology Development Program is the effort directed toward development of instrumentation. This effort has two aspects, the development of high temperature components and prototype tools and the investigation of new concepts and capabilities. The focus of these activities is the acquisition of information to make geothermal drilling and resource development more efficient. Several projects of varying nature and scope make up the instrumentation development element, and this element will expand as the program emphasis on development of an advanced geothermal drilling system and the need for improved information grow. 13 refs.

  11. Thermally isolated well instruments

    SciTech Connect

    Engelder, P.D.

    1984-04-03

    A well instrument is isolated from the high temperatures of a surrounding earth formation by enclosing the instrument within a heat insulative jacket structure, preferably a dewar having spaced walls with a vacuum therebetween, with a heat sink contained in the jacket above the instrument assembly, and with a heat pipe extending upwardly from the instrument assembly to the heat sink and containing a fluid which by evaporation at a lower point and condensation at a higher point will conduct heat upwardly from the instrument assembly to the heat sink but not downwardly therebetween. The heat pipe preferably projects upwardly beyond a top portion of the insulating jacket to the location of a convector element which is exposed to the temperature of fluid or air at the outside of the insulating jacket to transmit heat from within the jacket to its exterior but not in a reverse direction.

  12. Monolithic Microwave Integrated Circuit (MMIC) Phased Array Demonstrated With ACTS

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Monolithic Microwave Integrated Circuit (MMIC) arrays developed by the NASA Lewis Research Center and the Air Force Rome Laboratory were demonstrated in aeronautical terminals and in mobile or fixed Earth terminals linked with NASA's Advanced Communications Technology Satellite (ACTS). Four K/Ka-band experimental arrays were demonstrated between May 1994 and May 1995. Each array had GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The 30-GHz transmit array used in uplinks to ACTS was developed by Lewis and Texas Instruments. The three 20-GHz receive arrays used in downlinks from ACTS were developed in cooperation with the Air Force Rome Laboratory, taking advantage of existing Air Force integrated-circuit, active-phased-array development contracts with the Boeing Company and Lockheed Martin Corporation. Four demonstrations, each related to an application of high interest to both commercial and Department of Defense organizations, were conducted. The location, type of link, and the data rate achieved for each of the applications is shown. In one demonstration-- an aeronautical terminal experiment called AERO-X--a duplex voice link between an aeronautical terminal on the Lewis Learjet and ACTS was achieved. Two others demonstrated duplex voice links (and in one case, interactive video links as well) between ACTS and an Army high-mobility, multipurpose wheeled vehicle (HMMWV, or "humvee"). In the fourth demonstration, the array was on a fixed mount and was electronically steered toward ACTS. Lewis served as project manager for all demonstrations and as overall system integrator. Lewis engineers developed the array system including a controller for open-loop tracking of ACTS during flight and HMMWV motion, as well as a laptop data display and recording system used in all demonstrations. The Jet Propulsion Laboratory supported the AERO-X program, providing elements of the ACTS Mobile Terminal. The successful

  13. Technium concept

    NASA Astrophysics Data System (ADS)

    Clement, Marc; Davies, Stephen

    2002-05-01

    Traditionally the economy of Wales has been based on the coal and steel industries. Recently, Wales has elected its own National Assembly and together with the Welsh Development Agency (WDA) and through a Regional Technology Plan, has prioritized the creation and development of a knowledge based economy. The culture of Wales has always placed emphasis on education and for a small nation, has a University sector with an excellent reputation for advanced research. The WDA and the University of Wales Swansea came together to establish Technium, which is an unique concept designed to bridge the gap between advanced University research and commercial exploitation. Technium was co-funded by the WDA and the European Regional Development Fund. The project is seen as the first phase of creating a network of sector specific Techniums across the country, all linked via state of the art telecomm-infrastructure to University centers of research excellence. This paper will describe two case studies, both in the Optics/Photonics field, of research centers being established in Technium by blue chip international companies. Those companies having located in Technium specifically because of the links to high quality university research. One company is Agilent Technologies Inc., USA) a global leader in Optoelectronic components. The second company, ICN Pharmaceuticals Inc, design and develop optical devices to be used in conjunction with pharmaceuticals for the treatment of a range of diseases. Working closely with the WDA and the University of Wales Swansea, these and other companies will pursue product development, sponsor postgraduate research and generate intellectual capital that will benefit the company, students and the region alike.

  14. Aeronautic Instruments. Section II : Altitude Instruments

    NASA Technical Reports Server (NTRS)

    Mears, A H; Henrickson, H B; Brombacher, W G

    1923-01-01

    This report is Section two of a series of reports on aeronautic instruments (Technical Report nos. 125 to 132, inclusive). This section discusses briefly barometric altitude determinations, and describes in detail the principal types of altimeters and barographs used in aeronautics during the recent war. This is followed by a discussion of performance requirements for such instruments and an account of the methods of testing developed by the Bureau of Standards. The report concludes with a brief account of the results of recent investigations. For accurate measurements of altitude, reference must also be made to thermometer readings of atmospheric temperature, since the altitude is not fixed by atmospheric pressure alone. This matter is discussed in connection with barometric altitude determination.

  15. Status and plans for ground instruments at Esrange

    NASA Astrophysics Data System (ADS)

    Widell, Ola

    2003-08-01

    Scientific ground based instruments are used for long-term measurements, and also as a part of co-ordinated measurements with sounding rockets and stratospheric balloons. Real time data from ground based instruments are often used for final launch decision. Use of ground based instruments from recent campaigns will be shown. Temporary installation of ground based instruments for dedicated unique campaign is also possible. The ground based instruments at Esrange and quick looks of interesting data will be presented. Kiruna Esrange Optical Platform System, KEOPS, a site located 1.5 km west of Esrange is since 1999 used for scientific ground based instrumentation. An optically non-disturbed environment, full field of view and high latitude are important parts of the KEOPS concept. Instruments installed in small huts are operated remotely via Internet. A permanent building with observation domes is planned to be constructed at KEOPS this year. The KEOPS site, status and plans will be presented.

  16. Advocacy: exploring the concept.

    PubMed

    Mardell, A

    1996-10-01

    The concept of the nurse as the patient's advocate is one that has become popular in the last fifteen years or so in both North America and the United Kingdom, having its basis in nursing theory. The UKCC first embraced the concept, stating in the Code of Professional Conduct that nurses must; 'act always in such a manner so as to promote and safeguard the interests and well being of patients and clients'. This is a laudable principle and one that nurses cannot dispute as there are many members of our society who are weak and vulnerable and may be unable to speak up for themselves. But are nurses always in a position to be an advocate for their patients? As the nature of nursing is so diverse then the nature of advocacy will be different in the multifarious settings in which nurses practise. Can theatre nurses ever be in a position to act as an advocate for a patient who is often anaesthetised? What precisely is advocacy and is the Concise Oxford Dictionary definition of 'one who pleads for another' appropriate in the nursing context? Then there is the position of nurses in the healthcare organisation in which they practise. In advocating for their patients, nurses may find they are pleading a case for a patient, or a group of patients, that could bring the nurse into conflict with their medical colleagues or with the management of the organisation by whom they are employed. Additionally, they may not posses the skills and knowledge to advocate effectively under such circumstances. Nursing is littered with the casualties of such conflicts over the years, the most publicised of whom, in the UK, was probably Graham Pink who lost his job as a charge nurse after drawing public attention to what he considered to be an unacceptable standard of care in the hospital in which he worked. PMID:8974516

  17. The DKIST Instrumentation Suite

    NASA Astrophysics Data System (ADS)

    Woeger, Friedrich

    2016-05-01

    The Daniel K. Inouye Solar Telescope with its four meter diameter aperture will be the largest telescope in the world for solar observations when it is commissioned in the year 2019. In order to harness its scientific potential immediately, DKIST will integrate five instruments that each will provide unique functionality to measure properties of the solar atmosphere at unprecedented spatial resolution.In this paper we discuss the unique capabilities in the DKIST instrument suite that consists of the Visible Broadband Imager (VBI), the Visible Spectro-Polarimeter (ViSP), the Visible Tunable Filter (VTF), the Diffraction-Limited Near-Infrared Spectro-Polarimeter (DL-NIRSP), and the Cryogenic Near-Infrared Spectro-Polarimeter (Cryo-NIRSP).In addition, we will explain the facility's approach to supporting high spatial resolution data acquisition with multiple instruments simultaneously by means of the Facility Instrument Distribution Optics. This system of wavelength separating and interchangeable beamsplitters will enable a variety of different ways to optically configure the light beam to the instruments. This approach ensures that the DKIST instruments can use their individual advantages in a multitude of different observing scenarios. The DKIST instrumentation suite will enable crucial new insights into complex physical processes that occur on spatial scales that are smaller than any solar structure observed in the past.

  18. Acting to gain information

    NASA Technical Reports Server (NTRS)

    Rosenchein, Stanley J.; Burns, J. Brian; Chapman, David; Kaelbling, Leslie P.; Kahn, Philip; Nishihara, H. Keith; Turk, Matthew

    1993-01-01

    This report is concerned with agents that act to gain information. In previous work, we developed agent models combining qualitative modeling with real-time control. That work, however, focused primarily on actions that affect physical states of the environment. The current study extends that work by explicitly considering problems of active information-gathering and by exploring specialized aspects of information-gathering in computational perception, learning, and language. In our theoretical investigations, we analyzed agents into their perceptual and action components and identified these with elements of a state-machine model of control. The mathematical properties of each was developed in isolation and interactions were then studied. We considered the complexity dimension and the uncertainty dimension and related these to intelligent-agent design issues. We also explored active information gathering in visual processing. Working within the active vision paradigm, we developed a concept of 'minimal meaningful measurements' suitable for demand-driven vision. We then developed and tested an architecture for ongoing recognition and interpretation of visual information. In the area of information gathering through learning, we explored techniques for coping with combinatorial complexity. We also explored information gathering through explicit linguistic action by considering the nature of conversational rules, coordination, and situated communication behavior.

  19. Aircraft Speed Instruments

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1933-01-01

    This report presents a concise survey of the measurement of air speed and ground speed on board aircraft. Special attention is paid to the pitot-static air-speed meter which is the standard in the United States for airplanes. Air-speed meters of the rotating vane type are also discussed in considerable detail on account of their value as flight test instruments and as service instruments for airships. Methods of ground-speed measurement are treated briefly, with reference to the more important instruments. A bibliography on air-speed measurement concludes the report.

  20. Instrument intercomparisons and assessments

    NASA Astrophysics Data System (ADS)

    Albritton, D. L.; Zander, R. J.; Farmer, C. B.; Hilsenrath, E.; Mankin, W. G.; Murcray, D. G.; Pollitt, S.; Robbins, D. E.; Roscoe, H.

    Over the past few years, several field campaigns were devoted to the goal of assessing instrument reliability, as opposed to solely obtaining data to answer a geophysical question. Some examples of the formal instrument intercomparisons that have occurred in the past decade and those that are planned for the very near future are listed chronologically. Balloon-borne techniques and instruments that address the height profiles of the trace species in the lower stratosphere are emphasized. Beginning with the most extensively studied trace constituent, the approach taken and the results obtained, are described. The current status of the measurement capabilities are summarized, and the needs for future intercomparisons and assessments are listed.

  1. Writing Instrument Profiles for Mastery of Instrumental Analysis

    ERIC Educational Resources Information Center

    King, Daniel; Fernandez, Jorge; Nalliah, Ruth

    2012-01-01

    Because of the rapidly changing nature of chemical instrumentation, students must be trained in how to learn and understand new instruments. Toward this end, students are asked to create small instrument manuals, or instrument profiles, for the major pieces of equipment studied during an instrumental analysis course. This writing-intensive process…

  2. Inner Magnetosphere Imager (IMI) instrument heritage

    SciTech Connect

    Wilson, G.R.

    1993-03-01

    This report documents the heritage of instrument concepts under consideration for the Inner Magnetosphere Imager (IMI) mission. The proposed IMI will obtain the first simultaneous images of the component regions of the inner magnetosphere and will enable scientists to relate these global images to internal and external influences as well as local observations. To obtain simultaneous images of component regions of the inner magnetosphere, measurements will be made of: (1) the ring current and inner plasma sheet using energetic neutral atoms; (2) the plasmasphere using extreme ultraviolet; (3) the electron and proton auroras using far ultraviolet and x rays; and (4) the geocorona using FUV. Instrument concepts that show heritage and traceability to those that will be required to meet the IMI measurement objectives are described.

  3. Inner Magnetosphere Imager (IMI) instrument heritage

    NASA Technical Reports Server (NTRS)

    Wilson, G. R.

    1993-01-01

    This report documents the heritage of instrument concepts under consideration for the Inner Magnetosphere Imager (IMI) mission. The proposed IMI will obtain the first simultaneous images of the component regions of the inner magnetosphere and will enable scientists to relate these global images to internal and external influences as well as local observations. To obtain simultaneous images of component regions of the inner magnetosphere, measurements will be made of: (1) the ring current and inner plasma sheet using energetic neutral atoms; (2) the plasmasphere using extreme ultraviolet; (3) the electron and proton auroras using far ultraviolet and x rays; and (4) the geocorona using FUV. Instrument concepts that show heritage and traceability to those that will be required to meet the IMI measurement objectives are described.

  4. Quantifying the information measured by neutron scattering instruments

    SciTech Connect

    Johnson, M.W.

    1997-09-01

    The concept of the information content of a scientific measurement is introduced, and a theory is presented which enables the information that may be obtained by a neutron scattering instrument to be calculated. When combined with the time taken to perform the measurement the bandwidth of the instrument is obtained. This bandwidth is effectively a figure of merit which is of use in three respects: in the design of neutron instrumentation, the optimisation of measurements, and in the comparison of one instrument with another.

  5. Instrument Packages for the Cold, Dark, High Radiation Environments

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Millar, P. S.; Yeh, P. S.; Beamna, B.; Brigham, D.; Feng, S.

    2011-01-01

    We are developing a small cold temperature instrument package concept that integrates a cold temperature power system and radhard ultra low temperature ultra low power electronics components and power supplies now under development into a cold temperature surface operational version of a planetary surface instrument package. We are already in the process of developing a lower power lower tem-perature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package.

  6. Low cost instrumentation amplifier

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.

    1974-01-01

    Amplifier can be used for many applications requiring high input impedance and common mode rejection, low drift, and gain accuracy on order of one percent. Performance of inexpensive amplifier approaches that of some commercial instrumentation amplifiers in many specifications.

  7. NPP: The Five Instruments

    NASA Video Gallery

    The NPP satellite has 5 instruments on board: VIIRS, CERES, CrIS, ATMS, and OMPS. Each one will deliver a specific set of data helping weather prediction and climate studies. This video is a quick ...

  8. Fiber Optics Instrumentation Development

    NASA Technical Reports Server (NTRS)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  9. AIR Instrument Array

    NASA Technical Reports Server (NTRS)

    Jones, I. W.; Wilson, J. W.; Maiden, D. L.; Goldhagen, P.; Shinn, J. L.

    2003-01-01

    The large number of radiation types composing the atmospheric radiation requires a complicated combination of instrument types to fully characterize the environment. A completely satisfactory combination has not as yet been flown and would require a large capital outlay to develop. In that the funds of the current project were limited to essential integration costs, an international collaboration was formed with partners from six countries and fourteen different institutions with their own financial support for their participation. Instruments were chosen to cover sensitivity to all radiation types with enough differential sensitivity to separate individual components. Some instruments were chosen as important to specify the physical field component and other instruments were chosen on the basis that they could be useful in dosimetric evaluation. In the present paper we will discuss the final experimental flight package for the ER-2 flight campaign.

  10. CALIPSO Instrument Operational

    Atmospheric Science Data Center

    2014-09-18

    CALIPSO Instrument Operational Thursday, September 11, 2014 The CALIPSO payload is back in data acquisition mode as of Wednesday, September 17, 2014.  CALIPSO data processing has returned to a nominal state, and...

  11. Cardiovascular instrumentation for spaceflight

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Polhemus, J. T.; Ganiaris, N. J.

    1976-01-01

    The observation mechanisms dealing with pressure, flow, morphology, temperature, etc. are discussed. The approach taken in the performance of this study was to (1) review ground and space-flight data on cardiovascular function, including earlier related ground-based and space-flight animal studies, Mercury, Gemini, Apollo, Skylab, and recent bed-rest studies, (2) review cardiovascular measurement parameters required to assess individual performance and physiological alternations during space flight, (3) perform an instrumentation survey including a literature search as well as personal contact with the applicable investigators, (4) assess instrumentation applicability with respect to the established criteria, and (5) recommend future research and development activity. It is concluded that, for the most part, the required instrumentation technology is available but that mission-peculiar criteria will require modifications to adapt the applicable instrumentation to a space-flight configuration.

  12. Aeronautic Instruments. Section III : Aircraft Speed Instruments

    NASA Technical Reports Server (NTRS)

    Hunt, Franklin L; Stearns, H O

    1923-01-01

    Part 1 contains a discussion and description of the various types of air speed measuring instruments. The authors then give general specifications and performance requirements with the results of tests on air speed indicators at the Bureau of Standards. Part 2 reports methods and laboratory apparatus used at the Bureau of Standards to make static tests. Methods are also given of combining wind tunnel tests with static tests. Consideration is also given to free flight tests. Part 3 discusses the problem of finding suitable methods for the purpose of measuring the speed of aircraft relative to the ground.

  13. Acting Out Immunity: A Simulation of a Complicated Concept.

    ERIC Educational Resources Information Center

    Bealer, Jonathan; Bealer, Virginia

    1996-01-01

    Presents a lecture and play in which the students themselves become the elements of the immune system. Aims at facilitating student comprehension and retention of the complicated processes associated with the immune system. Includes objectives, outline, background information sources, instructor guide, student narrator guide, extension, and topics…

  14. Experimenting with woodwind instruments

    NASA Astrophysics Data System (ADS)

    Lo Presto, Michael C.

    2007-05-01

    Simple experiments involving musical instruments of the woodwind family can be used to demonstrate the basic physics of vibrating air columns in resonance tubes using nothing more than straightforward measurements and data collection hardware and software. More involved experimentation with the same equipment can provide insight into the effects of holes in the tubing and other factors that make simple tubes useful as musical instruments.

  15. Modeling of Musical Instruments

    NASA Astrophysics Data System (ADS)

    Bader, Rolf; Hansen, Uwe

    Signal processing techniques in acoustics address many concerns. Included are such things as wave propagation variables, amplitude considerations, spectral content, wavelength, and phase. Phase is primarily of concern when waves interact with each other, as well as with a medium, and the imposition of boundary conditions leads to normal mode vibrations. Such conditions are prevalent in all musical instruments, and thus relevant signal processing techniques are essential to both understanding and modeling the structure of musical instruments and the sound radiated.

  16. Instrumentation in Arthroscopy.

    PubMed

    Barp, Eric A; Erickson, John G; Reese, Eric R

    2016-10-01

    In recent years, arthroscopic procedures of the foot and ankle have seen a significant increase in both indications and popularity. Furthermore, technological advances in video quality, fluid management, and other arthroscopy-specific instruments continue to make arthroscopic procedures more effective with reproducible outcomes. As surgeons continue to use this approach, it is important that they have a complete understanding of the instrumentation available to them, including their indications and limitations. PMID:27599434

  17. Diagnostic instruments for behavioural addiction: an overview

    PubMed Central

    Albrecht, Ulrike; Kirschner, Nina Ellen; Grüsser, Sabine M.

    2007-01-01

    In non-substance-related addiction, the so-called behavioural addiction, no external psychotropic substances are consumed. The psychotropic effect consists of the body’s own biochemical processes induced only by excessive activities. Until recently, knowledge was limited with respect to clinically relevant excessive reward-seeking behaviour, such as pathological gambling, excessive shopping and working which meet diagnostic criteria of dependent behaviour. To date, there is no consistent concept for diagnosis and treatment of excessive reward-seeking behaviour, and its classification is uncertain. Therefore, a clear conceptualization of the so-called behavioural addictions is of great importance. The use of adequate diagnostic instruments is necessary for successful therapeutical implications. This article provides an overview of the current popular diagnostic instruments assessing the different forms of behavioural addiction. Especially in certain areas there are only few valid and reliable instruments available to assess excessive rewarding behaviours that fulfill the criteria of addiction. PMID:19742294

  18. [The instrument for thermography].

    PubMed

    Hamaguchi, Shinsuke

    2014-07-01

    Thermography is an imaging method using the instrument to detect infrared rays emitted from the body surface, and to plot them as a distribution diagram of the temperature information. Therefore, a thermographic instrument can be assumed to measure the skin temperature of the diseased region. Such an instrument is a useful device for noninvasive and objective assessment of various diseases. Examination using a thermographic instrument can assess the autonomic dysfunction by measuring the skin blood flow involved with the sympathetic innervation. Thermography is useful in assisting the determination of the therapeutic effect. However, autonomic dysfunction should be confirmed correctly with the assessment of thermatome that shows abnormal thermal distribution in the region of the disease. Thermography should make noticeable the difference between the body temperature of abnormal and normal sites, and show the alteration of temperature. Monitoring using thermography is useful to determine the effect of sympathetic nerve block. If a thermographic instrument is used, it is important that examiners should understand the function of the instrument, as well as its advantages and disadvantages. PMID:25098130

  19. Aeronautic Instruments. Section V : Power Plant Instruments

    NASA Technical Reports Server (NTRS)

    Washburn, G E; Sylvander, R C; Mueller, E F; Wilhelm, R M; Eaton, H N; Warner, John A C

    1923-01-01

    Part 1 gives a general discussion of the uses, principles, construction, and operation of airplane tachometers. Detailed description of all available instruments, both foreign and domestic, are given. Part 2 describes methods of tests and effect of various conditions encountered in airplane flight such as change of temperature, vibration, tilting, and reduced air pressure. Part 3 describes the principal types of distance reading thermometers for aircraft engines, including an explanation of the physical principles involved in the functioning of the instruments and proper filling of the bulbs. Performance requirements and testing methods are given and a discussion of the source of error and results of tests. Part 4 gives methods of tests and calibration, also requirements of gauges of this type for the pressure measurement of the air pressure in gasoline tanks and the engine oil pressure on airplanes. Part 5 describes two types of gasoline gauges, the float type and the pressure type. Methods of testing and calibrating gasoline depth gauges are given. The Schroeder, R. A. E., and the Mark II flowmeters are described.

  20. 75 FR 34095 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... International Trade Administration Application(s) for Duty-Free Entry of Scientific Instruments Pursuant to Section 6(c) of the Educational, Scientific and Cultural Materials Importation Act of 1966 (Pub. L. 89-651... whether instruments of equivalent scientific value, for the purposes for which the instruments shown...

  1. 76 FR 20952 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... International Trade Administration Application(s) for Duty-Free Entry of Scientific Instruments Pursuant to Section 6(c) of the Educational, Scientific and Cultural Materials Importation Act of 1966 (Pub. L. 89-651... whether instruments of equivalent scientific value, for the purposes for which the instruments shown...

  2. 76 FR 74045 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-30

    ... International Trade Administration Application(s) for Duty-Free Entry of Scientific Instruments Pursuant to Section 6(c) of the Educational, Scientific and Cultural Materials Importation Act of 1966 (Pub. L. 89-651... whether instruments of equivalent scientific value, for the purposes for which the instruments shown...

  3. 75 FR 34096 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... International Trade Administration Application(s) for Duty-Free Entry of Scientific Instruments Pursuant to Section 6(c) of the Educational, Scientific and Cultural Materials Importation Act of 1966 (Pub. L. 89-651... whether instruments of equivalent scientific value, for the purposes for which the instruments shown...

  4. Optical development system lab alignment solutions for the ICESat-2 ATLAS instrument

    NASA Astrophysics Data System (ADS)

    Evans, T.

    The ATLAS Instrument for the ICESat-2 mission at NASA's Goddard Space Flight Center requires an alignment test-bed to prove out new concepts. The Optical Development System (ODS) lab was created to test prototype models of individual instrument components to simulate how they will act as a system. The main ICESat-2 instrument is the Advanced Topographic Laser Altimeter System (ATLAS). It measures ice elevation by transmitting laser pulses, and collecting the reflection in a telescope. Because the round trip time is used to calculate distance, alignment between the outgoing transmitter beam and the incoming receiver beams are critical. An automated closed loop monitoring control system is currently being tested at the prototype level to prove out implementation for the final spacecraft. To achieve an error of less than 2 micro-radians, an active deformable mirror was used to correct the lab wave front from the collimated “ ground reflection” beam. The lab includes a focal plane assembly set up, a one meter diameter collimator optic, and a 0.8 meter flight spare telescope for alignment. ATLAS prototypes and engineering models of transmitter and receiver optics and sub-systems are brought in to develop and integrate systems as well as write procedures to be used in integration and testing. By having a fully integrated system with prototypes and engineering units, lessons can be learned before flight designs are finalized.

  5. Instrumental colonisation in modern medicine.

    PubMed

    Fredriksen, Ståle

    2003-01-01

    Stethoscopes, x-rays and other medical technologies are two-edged swords. They make medical treatment and diagnosis more accurate and effective, but do at the same time reveal our perceptual inadequacy. By transcending our senses, these technologies reveal that we can be seriously diseased without experiencing any symptoms at all. This situation has changed our attitude towards our relations and ourselves. The situation can be analysed using Jürgen Habermas' conception of "systems colonisation of the lifeworld." Medical technologies colonise our lifeworld. They change the way we think and act. They make us all accept that we can become patients almost any minute, even if we feel perfectly healthy. Sense transcending technologies turn us all into proto-patient. PMID:14620465

  6. Optical MEMS in space instruments for Earth observation and astronomy

    NASA Astrophysics Data System (ADS)

    Zamkotsian, F.; Liotard, A.; Lanzoni, P.; Viard, T.

    2013-03-01

    Optical MEMS could be major candidates for designing future generation of space instruments. In addition to their compactness, scalability, and specific task customization, they could generate new functions not available with current technologies. We have listed new functions associated with several types of MEMS. Instrumental applications are derived and we propose two promising concepts using object selection and spectral tailoring techniques. In Earth Observation instruments, observation of scenes including bright sources leads to an important degradation of the recorded signal. We propose a new concept to remove dynamically the bright sources and obtain a field of view (FOV) with an optically enhanced SNR. Our concept consists in replacing the plain slit in classical designs by an active row of MOEMS. Experimental demonstration of this concept has been conducted on a dedicated bench: a scene with a contiguous bright area has been focused on a micromirror array and imaged on a CCD detector. After the programmable slit, the straylight issued from the bright zone is polluting the scene; the micromirrors located on the bright area are switched off, removing almost completely the straylight in the instrument. In Astronomy and Earth Observation, we propose an innovative reconfigurable instrument: a programmable wide-field spectrograph where both the FOV and the spectrum could be tailored thanks to a 2D micromirror array. The FOV is linear and each point spectrum could be modified dynamically along the second direction. A demonstrator has been designed and its realization is under way for testing the unique performances of this instrument.

  7. 77 FR 43806 - Sunshine Act Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... From the Federal Register Online via the Government Publishing Office ] COMMISSION ON CIVIL RIGHTS Sunshine Act Meeting AGENCY: United States Commission on Civil Rights. ACTION: Notice of meeting. DATE AND... report; and (c) The topic of the civil rights of veterans, as set forth in the concept paper prepared...

  8. Concept of ASTER calibration requirement

    NASA Technical Reports Server (NTRS)

    Ono, A.

    1992-01-01

    The document of ASTER Calibration Requirement specifies the following items related to spectral and radiometric characteristics of the ASTER instrument: (1) characteristics whose knowledge is specified, (2) requirement for knowledge of the characteristics, (3) methodology for characteristics evaluation, and (4) supplementary information and data related with characteristics evaluation. This document is applicable to the document of the ASTER Instrument Specification on Observational Performances, and will be a part of the ASTER Calibration Plan. ASTER Calibration Requirement is scheduled to establish the concept and framework by March 1992 when the 5th Calibration and Data Validation Panel Meeting is held, and to determine details including requirement values and evaluation methodologies by October 1992 around which the Calibration Peer Review may be held. The ASTER Calibration Plan is planned to finish by the same time.

  9. Geostationary orbit Earth science platform concepts for global change monitoring

    NASA Technical Reports Server (NTRS)

    Farmer, Jeffery T.; Campbell, Thomas G.; Davis, William T.; Garn, Paul A.; King, Charles B.; Jackson, Cheryl C.

    1991-01-01

    Functionality of a geostationary spacecraft to support Earth science regional process research is identified. Most regional process studies require high spatial and temporal resolution. These high temporal resolutions are on the order of 30 minutes and may be achievable with instruments positioned in a geostationary orbit. A complement of typical existing or near term instruments are identified to take advantage of this altitude. This set of instruments is listed, and the requirements these instruments impose on a spacecraft are discussed. A brief description of the geostationary spacecraft concepts which support these instruments is presented.

  10. The keyboard instruments.

    PubMed

    Manchester, Ralph A

    2014-06-01

    Now that the field of performing arts medicine has been in existence for over three decades, we are approaching a key point: we should start to see more articles that bring together the data that have been collected from several studies in order to draw more robust conclusions. Review articles and their more structured relative, the meta-analysis, can help to improve our understanding of a particular topic, comparing and synthesizing the results of previous research that has been done on that subject area. One way this could be done would be to review the research that has been carried out on the performance-related problems associated with playing a particular instrument or group of instruments. While I am not going to do that myself, I hope that others will. In this editorial, I will do a very selective review of the playing-related musculoskeletal disorders (PRMDs) associated with one instrument group (the keyboard instruments), focusing on the most played instrument in that group (the piano;). PMID:24925170

  11. Compact version of the Atmospheric Lidar Instrument (ATLID)

    NASA Astrophysics Data System (ADS)

    Morancais, D.

    1994-12-01

    ATLID is a spaceborne backscatter LIDAR using a solid-state Nd-YAG laser (1.06 micrometers wavelength) and a 0.6 m diameter telescope. It is intended to fly on-board a polar platform satellite. The selected concept consists in a lightweight scanning telescope associated to a contra-rotative flywheel. A linear scanning (+/- 23 degree(s)) is used in order to achieve the required swathwidth (700 Km). The detector is a silicon Avalanche Photodiode. The instrument has been compacted to a similar volume as for currently developed ENVISAT-1 instruments. The thermal control is designed to be independent of the neighbor instruments, thus allowing ATLID to be mounted on a multi-instrument payload. A breadboarding program has been initiated for critical parts of the instrument. This paper describes the overall instrument architecture, as well as first breadboard results.

  12. ACTS data center

    NASA Technical Reports Server (NTRS)

    Syed, Ali; Vogel, Wolfhard J.

    1993-01-01

    Viewgraphs on ACTS Data Center status report are included. Topics covered include: ACTS Data Center Functions; data flow overview; PPD flow; RAW data flow; data compression; PPD distribution; RAW Data Archival; PPD Audit; and data analysis.

  13. ACTS data center

    NASA Astrophysics Data System (ADS)

    Syed, Ali; Vogel, Wolfhard J.

    1993-08-01

    Viewgraphs on ACTS Data Center status report are included. Topics covered include: ACTS Data Center Functions; data flow overview; PPD flow; RAW data flow; data compression; PPD distribution; RAW Data Archival; PPD Audit; and data analysis.

  14. Recovery Act Milestones

    SciTech Connect

    Rogers, Matt

    2009-01-01

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  15. Recovery Act Milestones

    ScienceCinema

    Rogers, Matt

    2013-05-29

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  16. Development of the Newtonian Gravity Concept Inventory

    ERIC Educational Resources Information Center

    Williamson, Kathryn E.; Willoughby, Shannon; Prather, Edward E.

    2013-01-01

    We introduce the Newtonian Gravity Concept Inventory (NGCI), a 26-item multiple-choice instrument to assess introductory general education college astronomy ("Astro 101") student understanding of Newtonian gravity. This paper describes the development of the NGCI through four phases: Planning, Construction, Quantitative Analysis, and…

  17. Issues in Shuttle System Instrumentation

    NASA Technical Reports Server (NTRS)

    James, George

    2004-01-01

    The purose: a) Customer's perspective on Space Shuttle Return to Flight instrumentation; b) Focus on the difficult instrumentation issues; and c) Enable a discussion of new technologies (i.e.- NANO/MEMS/Small Tech) that could enhance Shuttle instrumentation posture. The T-10 Umbilical allows the vehicle instruments to be monitored and recorded prior to each launch and retract during launch.Launch Complex Instrumentation are instruments needed for assessment of Launch Commit Criteria (LCC) Salt-air and launch environments are issues. Instrumentation (Drag-On Instrumentation) can be added as needed to the vehicle for non-flight use. The current Roll-out Fatigue Testing is a primary example.

  18. All Adjunct Galilean Satellite Orbiter Concept Using a Small Nuclear Power Source

    NASA Astrophysics Data System (ADS)

    Randolph, James E.; Abelson, Robert D.; Alkalai, Leon; Collins, David H.; Moore, William V.

    2005-02-01

    An adjunct spacecraft concept known as the Galilean Satellite Orbiter (GSO) could gather and return significant science data using a payload consisting of plasma science and other instruments in orbit around each of three Galilean satellites using many advanced technology elements. The key to the viability of this concept is the existence of a small Radioisotope Power System (RPS) (single GPHS) and a mother spacecraft that could deliver the GSO to its final orbit and act as a relay communications path back to the Earth. Thus, the GSO would be dependant at Jupiter on the proposed Jupiter Icy Moons Orbiter (JIMO) or similar spacecraft for orbit insertion, propulsion to its target, and communications while at its target. Because of this highly capable supporting vehicle, the energy requirements for daily operations of GSO could be easily met with a small RPS system, which is now being studied by NASA and DOE, joined with a secondary battery system. The science payload would consist of a plasma instrument set (magnetometer, plasma spectrometer, plasma wave detector, and high energy particle detector), a wide angle camera, and a Doppler extractor for gravity field measurements. A small RPS now under study that would have a cylindrical shape and reject its internal heat through an end of the cylinder could enable this concept. This topology lends itself to a unique configuration concept for the GSO spacecraft using a long cylinder as the heat rejection (radiator) system for the RPS. This long cylinder has another application - it creates a long thin configuration that would enable gravity gradient attitude control of the spacecraft. This architecture would place the instruments at one end of the spacecraft and the RPS at the other allowing the maximum separation between them. Another technology element used in this design would be the Low Cost Adjunct Microspacecraft (LCAM), originally intended as a free-flying Earth orbiting inspector spacecraft. The LCAM is configured

  19. Software Framework for Controlling Unsupervised Scientific Instruments

    PubMed Central

    Schmid, Benjamin; Jahr, Wiebke; Weber, Michael; Huisken, Jan

    2016-01-01

    Science outreach and communication are gaining more and more importance for conveying the meaning of today’s research to the general public. Public exhibitions of scientific instruments can provide hands-on experience with technical advances and their applications in the life sciences. The software of such devices, however, is oftentimes not appropriate for this purpose. In this study, we describe a software framework and the necessary computer configuration that is well suited for exposing a complex self-built and software-controlled instrument such as a microscope to laymen under limited supervision, e.g. in museums or schools. We identify several aspects that must be met by such software, and we describe a design that can simultaneously be used to control either (i) a fully functional instrument in a robust and fail-safe manner, (ii) an instrument that has low-cost or only partially working hardware attached for illustration purposes or (iii) a completely virtual instrument without hardware attached. We describe how to assess the educational success of such a device, how to monitor its operation and how to facilitate its maintenance. The introduced concepts are illustrated using our software to control eduSPIM, a fluorescent light sheet microscope that we are currently exhibiting in a technical museum. PMID:27570966

  20. Software Framework for Controlling Unsupervised Scientific Instruments.

    PubMed

    Schmid, Benjamin; Jahr, Wiebke; Weber, Michael; Huisken, Jan

    2016-01-01

    Science outreach and communication are gaining more and more importance for conveying the meaning of today's research to the general public. Public exhibitions of scientific instruments can provide hands-on experience with technical advances and their applications in the life sciences. The software of such devices, however, is oftentimes not appropriate for this purpose. In this study, we describe a software framework and the necessary computer configuration that is well suited for exposing a complex self-built and software-controlled instrument such as a microscope to laymen under limited supervision, e.g. in museums or schools. We identify several aspects that must be met by such software, and we describe a design that can simultaneously be used to control either (i) a fully functional instrument in a robust and fail-safe manner, (ii) an instrument that has low-cost or only partially working hardware attached for illustration purposes or (iii) a completely virtual instrument without hardware attached. We describe how to assess the educational success of such a device, how to monitor its operation and how to facilitate its maintenance. The introduced concepts are illustrated using our software to control eduSPIM, a fluorescent light sheet microscope that we are currently exhibiting in a technical museum. PMID:27570966

  1. Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    de Vries, Johan

    The Ozone Monitoring Instrument is a trace gas monitoring instrument in the line of GOME (ERS-2) and Sciamachy (ENVISAT). Following these instruments, OMI provides UV-visible spectroscopy with a resolution sufficient to separate out the various absorbing trace gases (using DOAS or `Full' retrieval), but shaped as an imaging spectrometer. This means that a two dimensional detector is used where one dimension records the spectrum and the other images the swath. The scanning mechanism from the GOME and Sciamachy is not required anymore and there are considerable advantages with respect to simultaneous measurement of swath pixels, polarisation and obtainable swath width. The OMI consortium for a phase B is formed by Fokker Space & Systems and TPD in the Netherlands and VTT in Finland. In the presentation UV-visible atmospheric remote sensing will be placed in perspective and the OMI will be explaned.

  2. Nonmetallic Diaphragms for Instruments

    NASA Technical Reports Server (NTRS)

    Eaton, H N; Buckingham, C T

    1925-01-01

    This report, the second of a series of reports relating to the general subject of instrument diaphragms. The first report of the series was published as Technical Report no. 165, "diaphragms for aeronautic instruments," and comprised an outline of historical developments and theoretical principles. The present report relates entirely to nonmetallic diaphragms, the use of which in certain types of pressure elements has been increasing for some time. Little, if any, information has been available to aid the designer of instruments using this form of pressure element. It was to attempt to meet the need for such information that the investigation reported in this paper was undertaken. The report describes the various materials which have been used as nonmetallic diaphragms, discusses the factors which affect the performance of the diaphragms and gives the results of tests made for the purpose of investigating the effect produced by these factors.

  3. Eigenvalues and musical instruments

    NASA Astrophysics Data System (ADS)

    Howle, V. E.; Trefethen, Lloyd N.

    2001-10-01

    Most musical instruments are built from physical systems that oscillate at certain natural frequencies. The frequencies are the imaginary parts of the eigenvalues of a linear operator, and the decay rates are the negatives of the real parts, so it ought to be possible to give an approximate idea of the sound of a musical instrument by a single plot of points in the complex plane. Nevertheless, the authors are unaware of any such picture that has ever appeared in print. This paper attempts to fill that gap by plotting eigenvalues for simple models of a guitar string, a flute, a clarinet, a kettledrum, and a musical bell. For the drum and the bell, simple idealized models have eigenvalues that are irrationally related, but as the actual instruments have evolved over the generations, the leading five or six eigenvalues have moved around the complex plane so that their relative positions are musically pleasing.

  4. Forgetting ACT UP

    ERIC Educational Resources Information Center

    Juhasz, Alexandra

    2012-01-01

    When ACT UP is remembered as the pinnacle of postmodern activism, other forms and forums of activism that were taking place during that time--practices that were linked, related, just modern, in dialogue or even opposition to ACT UP's "confrontational activism"--are forgotten. In its time, ACT UP was embedded in New York City, and a larger world,…

  5. Optical Science: Deploying Technical Concepts and Engaging Participation through Digital Storytelling

    NASA Astrophysics Data System (ADS)

    Thomas, R. G.; Berry, K.; Arrigo, J.; Hooper, R. P.

    2013-12-01

    Technical 'hands-on' training workshops are designed to bring together scientists, technicians, and program managers from universities, government agencies, and the private sector to discuss methods used and advances made in instrumentation and data analysis. Through classroom lectures and discussions combined with a field-day component, hands-on workshop participants get a 'full life cycle' perspective from instrumentation concepts and deployment to data analysis. Using film to document this process is becoming increasingly more popular, allowing scientists to add a story-telling component to their research. With the availability of high-quality and low priced professional video equipment and editing software, scientists are becoming digital storytellers. The science video developed from the 'hands-on' workshop, Optical Water Quality Sensors for Nutrients: Concepts, Deployment, and Analysis, encapsulates the objectives of technical training workshops for participants. Through the use of still photography, video, interviews, and sound, the short video, An Introduction to CUAHSI's Hands-on Workshops, produced by a co-instructor of the workshop acts as a multi-purpose tool. The 10-minute piece provides an overview of workshop field day activities and works to bridge the gap between classroom learning, instrumentation application and data analysis. CUAHSI 'hands-on' technical workshops have been collaboratively executed with faculty from several universities and with the U.S. Geological Survey. The video developed was designed to attract new participants to these professional development workshops, to stimulate a connection with the environment, to act as a workshop legacy resource, and also serve as a guide for prospective hands-on workshop organizers. The effective use of film and short videos in marketing scientific programs, such as technical trainings, allows scientists to visually demonstrate the technologies currently being employed and to provide a more

  6. SCIENCE BRIEF: ADVANCED CONCEPTS

    EPA Science Inventory

    Research on advanced concepts will evaluate and demonstrate the application of innovative infrastructure designs, management procedures and operational approaches. Advanced concepts go beyond simple asset management. The infusion of these advanced concepts into established wastew...

  7. Brief communication "Snow profile associated measurements (SPAM) - a new instrument for quick snow profile measurements"

    NASA Astrophysics Data System (ADS)

    Lahtinen, P.

    2011-06-01

    A new instrument concept (SPAM) for snow profile associated measurements is presented. The potential of the concept is demonstrated by presenting preliminary results obtained with the prototype instrument. With this concept it is possible to retrieve rapid snow profiles of e.g. light extinction, reflectance, temperature and snow layer structure with high vertical resolution. As a side-product, also snow depth is retrieved.

  8. Interfacing to accelerator instrumentation

    SciTech Connect

    Shea, T.J.

    1995-12-31

    As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed.

  9. [Hardening of dental instruments].

    PubMed

    Gerasev, G P

    1981-01-01

    The possibility of prolonging the service life of stomatological instruments by the local hardening of their working parts is discussed. Such hardening should be achieved by using hard and wear-resistant materials. The examples of hardening dental elevators and hard-alloy dental drills are given. New trends in the local hardening of instruments are the treatment of their working parts with laser beams, the application of coating on their surface by the gas-detonation method. The results of research work and trials are presented. PMID:7300627

  10. Advanced sensors and instrumentation

    NASA Technical Reports Server (NTRS)

    Calloway, Raymond S.; Zimmerman, Joe E.; Douglas, Kevin R.; Morrison, Rusty

    1990-01-01

    NASA is currently investigating the readiness of Advanced Sensors and Instrumentation to meet the requirements of new initiatives in space. The following technical objectives and technologies are briefly discussed: smart and nonintrusive sensors; onboard signal and data processing; high capacity and rate adaptive data acquisition systems; onboard computing; high capacity and rate onboard storage; efficient onboard data distribution; high capacity telemetry; ground and flight test support instrumentation; power distribution; and workstations, video/lighting. The requirements for high fidelity data (accuracy, frequency, quantity, spatial resolution) in hostile environments will continue to push the technology developers and users to extend the performance of their products and to develop new generations.

  11. Instrumentation in medical systems

    SciTech Connect

    Chu, W.T.

    1995-05-01

    The demand for clinical use of accelerated heavy charged-particle (proton and light-ion) beams for cancer treatment is now burgeoning worldwide. Clinical trials are underway at more than a dozen accelerators. Several hospital-based accelerator facilities dedicated to radiation treatment of human cancer have been constructed, and their number is growing. Many instruments in medical systems have been developed for modifying extracted particle beams for clinical application, monitoring the delivery of the treatment beams, and controlling the treatment processes to ensure patient safety. These in turn demand new developments of instruments in controlling beam extraction, beam tuning, and beam transportation at the medical systems.

  12. Lightning Instrumentation at KSC

    NASA Technical Reports Server (NTRS)

    Colon, Jose L.; Eng, D.

    2003-01-01

    This report summarizes lightning phenomena with a brief explanation of lightning generation and lightning activity as related to KSC. An analysis of the instrumentation used at launching Pads 39 A&B for measurements of lightning effects is included with alternatives and recommendations to improve the protection system and upgrade the actual instrumentation system. An architecture for a new data collection system to replace the present one is also included. A novel architecture to obtain lightning current information from several sensors using only one high speed recording channel while monitoring all sensors to replace the actual manual lightning current recorders and a novel device for the protection system are described.

  13. Ocean Observation Instrument

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Airborne Ocean Color Imager (AOCI) was developed by Daedalus Enterprises, Inc. for Ames Research Center under a Small Business Innovation Research (SBIR) contract as a simulator for an advanced oceanographic satellite instrument. The instrument measures water temperature and detects water color in nine wavelengths. Water color indicates chlorophyll content or phytoplankton. After EOCAP assistance and technical improvements, the AOCI was successfully commercialized by Daedalus Enterprises, Inc. One version provides commercial fishing fleets with information about fish locations, and the other is used for oceanographic research.

  14. Standard NIM instrumentation system

    SciTech Connect

    Not Available

    1990-05-01

    NIM is a standard modular instrumentation system that is in wide use throughout the world. As the NIM system developed and accommodations were made to a dynamic instrumentation field and a rapidly advancing technology, additions, revisions and clarifications were made. These were incorporated into the standard in the form of addenda and errata. This standard is a revision of the NIM document, AEC Report TID-20893 (Rev. 4) dated July 1974. It includes all the addenda and errata items that were previously issued as well as numerous additional items to make the standard current with modern technology and manufacturing practice.

  15. Spectroelectrochemical Instrument Measures TOC

    NASA Technical Reports Server (NTRS)

    Kounaves, Sam

    2011-01-01

    A spectroelectrochemical instrument has been developed for measuring the total organic carbon (TOC) content of an aqueous solution. Measurements of TOC are frequently performed in environmental, clinical, and industrial settings. Until now, techniques for performing such measurements have included, various ly, the use of hazardous reagents, ultraviolet light, or ovens, to promote reactions in which the carbon contents are oxidized. The instrument now being developed is intended to be a safer, more economical means of oxidizing organic carbon and determining the TOC levels of aqueous solutions and for providing a low power/mass unit for use in planetary missions.

  16. Microtechnology for instrumentation

    SciTech Connect

    Mariella, R.

    1998-01-01

    For the last two decades, the majority of research and development at LLNL in microtechnology has focused on photonics devices and bulk micromachining, including miccroelectro-mechanical systems and associated areas. For the last ten years, we have used these capabilities to address our analytical instrumentation needs. Just as the miniature photonics have enable the fabrication of analytical instruments that are either higher performance, smaller, more portable, or are combinations of these. Examples of these are our portable thermal cyclers for DNA analysis, our hand-held gas chromatograph, our flow-stream-waveguide-based flow cytometer, and our etched-microchannel electrophoresis systems. This presentation will describe these and related developments.

  17. Instrumentation in wind tunnels

    NASA Technical Reports Server (NTRS)

    Takashima, K.

    1986-01-01

    Requirements in designing instrumentation systems and measurements of various physical quantities in wind tunnels are surveyed. Emphasis is given to sensors used for measuring pressure, temperature, and angle, and the measurements of air turbulence and boundary layers. Instrumentation in wind tunnels require accuracy, fast response, diversity and operational simplicity. Measurements of force, pressure, attitude angle, free flow, pressure distribution, and temperature are illustrated by a table, and a block diagram. The LDV (laser Doppler velocimeter) method for measuring air turbulence and flow velocity and measurement of skin friction and flow fields using laser holograms are discussed. The future potential of these techniques is studied.

  18. Inspector-instrument interface in portable NDA instrumentation

    SciTech Connect

    Halbig, J.K.; Klosterbuer, S.F.

    1981-01-01

    Recent electronics technology advances make it possible to design sophisticated instruments in small packages for convenient field implementation. This report describes an inspector-instrument interface design which allows communication of procedures, responses, and results between the instrument and user. The interface has been incorporated into new spent-fuel instrumentation and a battery-powered multichannel analyzer.

  19. Inspector-instrument interface in portable NDA instrumentation

    SciTech Connect

    Halbig, J.K.; Klosterbuer, S.F.

    1981-01-01

    Recent electronics technology advances make it possible to design sophisticated instruments in small packages for convenient field implementation. An inspector-instrument interface design that allows communication of procedures, responses, and results between the instrument and user is presented. This capability has been incorporated into new spent-fuel instrumentation and a battery-powered multichannel analyzer.

  20. Inservice Elementary and Middle School Teachers' Conceptions of Photosynthesis and Respiration

    ERIC Educational Resources Information Center

    Krall, Rebecca McNall; Lott, Kimberly H.; Wymer, Carol L.

    2009-01-01

    The purpose of this descriptive study was to investigate inservice elementary and middle school teachers' conceptions of photosynthesis and respiration, basic concepts they are expected to teach. A forced-choice instrument assessing selected standards-based life science concepts with non-scientific conceptions embedded in distracter options was…

  1. Conceptions of Parents, Conceptions of Self, and Conceptions of God.

    ERIC Educational Resources Information Center

    Buri, John R.; Mueller, Rebecca A.

    Different theorists have suggested that an individual's view of God may be related to one's view of one's father, one's mother, or one's self. A study was conducted to examine the relationship of college students' conceptions of the wrathfulness-kindliness of God to their conceptions of their father's and mother's permissiveness, authoritarianism,…

  2. Compliance of Postsecondary Institutions with Provisions for Disabled Students Mandated by the Architectural Barriers Act of 1968 and the Rehabilitation Act of 1973.

    ERIC Educational Resources Information Center

    Williams, Joan M.; Hodinko, Bernard A.

    Perceptions were obtained from 480 college student services officers concerning compliance of their employing institutions with selected provisions of the Architectural Barriers Act of 1968 and the Rehabilitation Act of 1973 (specifically Section 504). The survey instrument presented a statement from each of 24 provisions of the two Acts.…

  3. CIRCE: a new approach to performance management of optical instruments

    NASA Astrophysics Data System (ADS)

    Philoreau, Sandrine; Simeoni, Denis; Miras, Didier; Papegay, Y.; De Sousa, J.

    1996-10-01

    This paper introduces the 'complex instruments ranking with a new computational environment' or CIRCE software tool for aiding elaboration and exploitation of analytic models for performance management of optical instruments. CIRCE is currently developed by the optical instrument preliminary design team at the Aerospatiale Company's Cannes, France, Center, in cooperation with the Institut National de Recherche en Informatique et Automatique' or INRIA at the nearby Science Park of Sophia Antipolis. As a multiprogram tool, CIRCE incorporates the requirements at all stages of optical instrument development, from conception through manufacturing. It affords an original approach to creation and operation of performance models that facilitates know- how conservation through introduction of the notions of concepts (relations bases) and models (computation tree). It eases out the everyday tasks of engineers owing to generating capabilities for performance budgets or parametric analyses and to automatic numeric code generation.

  4. Neutron instrumentation for biology

    SciTech Connect

    Mason, S.A.

    1994-12-31

    In the October 1994 round of proposals at the ILL, the external biology review sub- committee was asked to allocate neutron beam time to a wide range of experiments, on almost half the total number of scheduled neutron instruments: on 3 diffractometers, on 3 small angle scattering instruments, and on some 6 inelastic scattering spectrometers. In the 3.5 years since the temporary reactor shutdown, the ILL`s management structure has been optimized, budgets and staff have been trimmed, the ILL reactor has been re-built, and many of the instruments up-graded, many powerful (mainly Unix) workstations have been introduced, and the neighboring European Synchrotron Radiation Facility has established itself as the leading synchrotron radiation source and has started its official user program. The ILL reactor remains the world`s most intense dedicated neutron source. In this challenging context, it is of interest to review briefly the park of ILL instruments used to study the structure and energetics of small and large biological systems. A brief summary will be made of each class of experiments actually proposed in the latest ILL proposal round.

  5. Instrument for Textbook Assessment.

    ERIC Educational Resources Information Center

    Huetteman, Julie Doidge

    An instrument to assist in assessing textbooks was created to provide a concise format for comparison and evaluation. Textbook characteristics were selected to illustrate content and proportion of characteristics of textbooks. Nine textbook characteristics were selected for quantifying the content areas of textbooks: (1) number of pages in the…

  6. Portable dynamic fundus instrument

    NASA Technical Reports Server (NTRS)

    Taylor, Gerald R. (Inventor); Meehan, Richard T. (Inventor); Hunter, Norwood R. (Inventor); Caputo, Michael P. (Inventor); Gibson, C. Robert (Inventor)

    1992-01-01

    A portable diagnostic image analysis instrument is disclosed for retinal funduscopy in which an eye fundus image is optically processed by a lens system to a charge coupled device (CCD) which produces recordable and viewable output data and is simultaneously viewable on an electronic view finder. The fundus image is processed to develop a representation of the vessel or vessels from the output data.

  7. Instrument for assaying radiation

    DOEpatents

    Coleman, Jody Rustyn; Farfan, Eduardo B.

    2016-03-22

    An instrument for assaying radiation includes a flat panel detector having a first side opposed to a second side. A collimated aperture covers at least a portion of the first side of the flat panel detector. At least one of a display screen or a radiation shield may cover at least a portion of the second side of the flat panel detector.

  8. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  9. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  10. Instrument Measures Ocular Counterrolling

    NASA Technical Reports Server (NTRS)

    Levitan, Barry M.; Reschke, Millard F.; Spector, Lawrence N.

    1991-01-01

    Compact, battery-powered, noninvasive unit replaces several pieces of equipment and operator. Instrument that looks like pair of goggles with small extension box measures ocular counterrotation. Called "otolith tilt-translation reinterpretation" (OTTR) goggles, used in studies of space motion sickness. Also adapted to use on Earth and determine extent of impairment in patients who have impaired otolith functions.

  11. Elementary Instrumental Music Program.

    ERIC Educational Resources Information Center

    Smith, Dolores A.

    THE FOLLOWING IS THE FULL TEXT OF THIS DOCUMENT: Our former Elementary Instrumental Music Program for 4th-6th graders was costly and ineffective. Students were bused to a high school in the middle of the instructional day--costs (time and transportation) were not compensatory with the program, which was experiencing a significant drop-out rate.…

  12. HARMONI instrument control electronics

    NASA Astrophysics Data System (ADS)

    Gigante, José V.; Rodríguez Ramos, Luis F.; Zins, Gerard; Schnetler, Hermine; Pecontal, Arlette; Herreros, José Miguel; Clarke, Fraser; Bryson, Ian; Thatte, Niranjan

    2014-07-01

    HARMONI is an integral field spectrograph working at visible and near-infrared wavelengths over a range of spatial scales from ground layer corrected to fully diffraction-limited. The instrument has been chosen to be part of the first-light complement at the European Extremely Large Telescope (E-ELT). This paper describes the instrument control electronics to be developed at IAC. The large size of the HARMONI instrument, its cryogenic operation, and the fact that it must operate with enhanced reliability is a challenge from the point of view of the control electronics design. The present paper describes a design proposal based on the current instrument requirements and intended to be fully compliant with the ESO E-ELT standards, as well as with the European EMC and safety standards. The modularity of the design and the use of COTS standard hardware will benefit the project in several aspects, as reduced costs, shorter schedule by the use of commercially available components, and improved quality by the use of well proven solutions.

  13. University Reactor Instrumentation Grant

    SciTech Connect

    S. M. Bajorek

    2000-02-01

    A noble gas air monitoring system was purchased through the University Reactor Instrumentation Grant Program. This monitor was installed in the Kansas State TRIGA reactor bay at a location near the top surface of the reactor pool according to recommendation by the supplier. This system is now functional and has been incorporated into the facility license.

  14. Experimenting with Woodwind Instruments

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2007-01-01

    Simple experiments involving musical instruments of the woodwind family can be used to demonstrate the basic physics of vibrating air columns in resonance tubes using nothing more than straightforward measurements and data collection hardware and software. More involved experimentation with the same equipment can provide insight into the effects…

  15. University Reactor Instrumentation Program

    SciTech Connect

    Vernetson, W.G.

    1992-11-01

    Recognizing that the University Reactor Instrumentation Program was developed in response to widespread needs in the academic community for modernization and improvement of research and training reactors at institutions such as the University of Florida, the items proposed to be supported by this grant over its two year period have been selected as those most likely to reduce foreed outages, to meet regulatory concerns that had been expressed in recent years by Nuclear Regulatory Commission inspectors or to correct other facility problems and limitations. Department of Energy Grant Number DE-FG07-90ER129969 was provided to the University of Florida Training Reactor(UFTR) facility through the US Department of Energy's University Reactor Instrumentation Program. The original proposal submitted in February, 1990 requested support for UFTR facility instrumentation and equipment upgrades for seven items in the amount of $107,530 with $13,800 of this amount to be the subject of cost sharing by the University of Florida and $93,730 requested as support from the Department of Energy. A breakdown of the items requested and total cost for the proposed UFTR facility instrumentation and equipment improvements is presented.

  16. Instrument measures cloud cover

    NASA Technical Reports Server (NTRS)

    Laue, E. G.

    1981-01-01

    Eight solar sensing cells comprise inexpensive monitoring instrument. Four cells always track Sun while other four face sky and clouds. On overcast day, cloud-irradiance sensors generate as much short-circuit current as Sun sensor cells. As clouds disappear, output of cloud sensors decreases. Ratio of two sensor type outputs determines fractional cloud cover.

  17. Process Instrumentation. Teacher Edition.

    ERIC Educational Resources Information Center

    Brown, A. O., III; Fowler, Malcolm

    This module provides instructional materials that are designed to help teachers train students in job skills for entry-level jobs as instrumentation technicians. This text addresses the basics of troubleshooting control loops, and the transducers, transmitters, signal conditioners, control valves, and controllers that enable process systems to…

  18. Analytical Instrument Obsolescence Examined.

    ERIC Educational Resources Information Center

    Haggin, Joseph

    1982-01-01

    The threat of instrument obsolescence and tight federal budgets have conspired to threaten the existence of research analytical laboratories. Despite these and other handicaps most existing laboratories expect to keep operating in support of basic research, though there may be serious penalties in the future unless funds are forthcoming. (Author)

  19. Overview of the ACT program

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr.

    1992-01-01

    NASA's Advanced Composites Program (ACT) was initiated in 1988. A National Research Announcement was issued to solicit innovative ideas that could significantly contribute to development and demonstration of an integrated technology data base and confidence level that permits cost-effective use of composite primary structures in transport aircraft. Fifteen contracts were awarded by the Spring of 1989 and the participants include commercial and military airframe manufacturers, materials developers and suppliers, universities, and government laboratories. The program approach is to develop materials, structural mechanics methodology, design concepts, and fabrication procedures that offer the potential to make composite structures cost-effective compared to aluminum structure. Goals for the ACT program included 30-50 percent weight reduction, 20-25 percent acquisition cost reduction, and provided the scientific basis for predicting materials and structures performance. This paper provides an overview of the ACT program status, plans, and selected technical accomplishments. Sixteen additional papers, which provide more detailed information on the research and development accomplishments, are contained in this publication.

  20. Time-of-flight diffractometer with multiple pulse overlap - an example for the application of modern tools for instrument design

    SciTech Connect

    Stuhr, U.; Bauer, G.S.; Wagner, W.

    1997-09-01

    A Time-of-Flight Diffractometer with high pulse rates, allowing multiple frame overlap, is a completely novel design of an instrument dedicated for high resolution strain-field mapping. We elaborated a detailed concept of this instrument applying analytical calculations and Monte Carlo computer simulations. Having established the instrument concept, the computer simulations will now be extended to optimize the total performance of the instrument. To illustrate the necessity and possibilities of applying modem tools for instrument design, we describe, as an example, the different steps towards the development of the detailed design of this instrument, which we intend to build at the Swiss spallation. source SINQ in the near future.

  1. Serial concept maps: tools for concept analysis.

    PubMed

    All, Anita C; Huycke, LaRae I

    2007-05-01

    Nursing theory challenges students to think abstractly and is often a difficult introduction to graduate study. Traditionally, concept analysis is useful in facilitating this abstract thinking. Concept maps are a way to visualize an individual's knowledge about a specific topic. Serial concept maps express the sequential evolution of a student's perceptions of a selected concept. Maps reveal individual differences in learning and perceptions, as well as progress in understanding the concept. Relationships are assessed and suggestions are made during serial mapping, which actively engages the students and faculty in dialogue that leads to increased understanding of the link between nursing theory and practice. Serial concept mapping lends itself well to both online and traditional classroom environments. PMID:17547345

  2. Spaceborne Gravity Gradiometers. Part 3: Instrument status and prospects

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Various technologies incorporated in the development of gravity gradiometers are demonstrated through descriptions of specific instruments. Concepts covered include: rotating, spherical, cryogenic, and superconducting gravity gradiometers with and without accelerometers. The application of superconducting cavity oscillators to mass-spring gradiometers, and cooperation of Italy's Piano Spaziale Nazionale with the Smithsonian Astrophysics Observatory in the design and development of a high sensitivity gradiometer are described. Schematics are provided for each instrument.

  3. On the Concept of Culture Goods Sales

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Rong

    The article on the consumer psychology, consumer behavior, cultural concepts of the market so their products relating to the concept of corporate culture and business aspects of the image was further explained that the merchandise sold is a commercial act, a cultural transmission consumers to make consumption choices in the same time, he believed that the use of such products with their values and way of life is consistent, for the maintenance of their social status and self-recognition of the need for a sales role in the cultural concept of human group psychology, and affect people's consumption behavior.

  4. NMR Imaging: Instrumentation and Techniques

    NASA Astrophysics Data System (ADS)

    Tingle, Jeremy Mark

    Available from UMI in association with The British Library. This thesis presents three original contributions to the field of Nuclear Magnetic Resonance (NMR): the experimental framework and analysis for the measurement of a new imaging parameter to describe perfusion; the measurement and analysis of magnetic field inhomogeneity and a practical correction system for their reduction; a novel system for the synchronous control of NMR experiments based on the microprogrammed concept. The thesis begins with an introduction to the theory of NMR. The application of NMR to imaging is also introduced with emphasis on the techniques which developed into those in common use today. Inaccurate determination of the traditional NMR parameters (T_1 and T_2 and the molecular diffusion coefficient) can be caused by non-diffusive fluid movement within the sample. The experimental basis for determining a new imaging parameter --the Perfusion coefficient--is presented. This provides a measure of forced isotropic fluid motion through an organ or tissue. The instrumentation required for conducting NMR experiments is described in order to introduce the contribution made in this area during this research: A sequence controller. The controller is based on the concept of microprogramming and enables completely synchronous output of 128 bits of data. The software for the generation and storage of control data and the regulation of the data to provide experimental control is microcomputer based. It affords precise and accurate regulation of the magnetic field gradients, the rf synthesizer and the spectrometer for spectroscopic and imaging applications. Fundamental to the science of NMR is the presence of a magnetic field. A detailed study of the analysis of magnetic field inhomogeneity in terms of spherical harmonics is presented. The field of a whole body imaging system with poor inhomogeneity was measured and analyzed to determine and describe the components of the inhomogeneity. Finally a

  5. Digital signal processing using virtual instruments

    NASA Astrophysics Data System (ADS)

    Anderson, James A.; Korrapati, Raghu; Swain, Nikunja K.

    2000-08-01

    The area of test and measurement is changing rapidly because of the recent developments in software and hardware. The test and measurement systems are increasingly becoming PC based. Most of these PC based systems use graphical programming language to design test and measurement modules called virtual instruments (Vis). These Vis provide visual representation of dat or models, and make understanding of abstract concepts and algorithms easier. This allows users to express their ideas in a concise manner. One such virtual instruments package is LabVIEW from National Instruments Corporation at Austin, Texas. This software package is one of the first graphical programming products and is currently used in number of academic institutions, industries, Department of Defense graphical programming products and is currently sued in number of academic institutions, industries, Department of Defense, Department of Energy, and National Aeronautics and Space Administration for various test, measurement, and control applications. LabVIEW has an extensive built-in VI library that can be used to design and develop solutions for different applications. Besides using the built-in VI library that can be used to design and develop solutions for different applications. Besides using the built-in VI modules in LabVIEW, the user can design new VI modules easily. This paper discusses the use of LabVIEW to design and develop digital signal processing VI modules such as Fourier Analysis and Windowing. Instructors can use these modules to teach some of the signal processing concepts effectively.

  6. Concepts in Change

    ERIC Educational Resources Information Center

    Rusanen, Anna-Mari; Poyhonen, Samuli

    2013-01-01

    In this article we focus on the concept of concept in conceptual change. We argue that (1) theories of higher learning must often employ two different notions of concept that should not be conflated: psychological and scientific concepts. The usages for these two notions are partly distinct and thus straightforward identification between them is…

  7. Implications of the Telecommunications Act of 1996 for Community Colleges.

    ERIC Educational Resources Information Center

    Salomon, Kenneth D.; Gray, Todd D.

    The enactment of the Telecommunications Act of 1996 contains a number of provisions that clearly affect community college and university use of telecommunications and information services. The Telecommunications Act expands the concept of universal service, or the idea that all Americans should have access to basic telephone service; requires…

  8. Academic Self-Concept: Modeling and Measuring for Science

    ERIC Educational Resources Information Center

    Hardy, Graham

    2014-01-01

    In this study, the author developed a model to describe academic self-concept (ASC) in science and validated an instrument for its measurement. Unlike previous models of science ASC, which envisage science as a homogenous single global construct, this model took a multidimensional view by conceiving science self-concept as possessing distinctive…

  9. Development and Validation of the Star Properties Concept Inventory

    ERIC Educational Resources Information Center

    Bailey, Janelle M.; Johnson, Bruce; Prather, Edward E.; Slater, Timothy F.

    2012-01-01

    Concept inventories (CIs)--typically multiple-choice instruments that focus on a single or small subset of closely related topics--have been used in science education for more than a decade. This paper describes the development and validation of a new CI for astronomy, the "Star Properties Concept Inventory" (SPCI). Questions cover the areas of…

  10. Evaluation of Students' Understanding of Thermal Concepts in Everyday Contexts

    ERIC Educational Resources Information Center

    Chu, Hye-Eun; Treagust, David F.; Yeo, Shelley; Zadnik, Marjan

    2012-01-01

    The aims of this study were to determine the underlying conceptual structure of the thermal concept evaluation (TCE) questionnaire, a pencil-and-paper instrument about everyday contexts of heat, temperature, and heat transfer, to investigate students' conceptual understanding of thermal concepts in everyday contexts across several school years and…

  11. Assessing Understanding of the Energy Concept in Different Science Disciplines

    ERIC Educational Resources Information Center

    Park, Mihwa; Liu, Xiufeng

    2016-01-01

    Energy is one of the most central and richly connected ideas across all science disciplines. The purpose of this study was to develop a measurement instrument for assessing students' understanding of the energy concept within and across different science disciplines. To achieve this goal, the Inter-Disciplinary Energy concept Assessment (IDEA) was…

  12. Act II of the Sunshine Act.

    PubMed

    Pham-Kanter, Genevieve

    2014-11-01

    To coincide with the introduction in the United States of the Sunshine Act, Genevieve Pham-Kanter discusses what we need to look for to fight hidden bias and deliberate or unconscious corruption. Please see later in the article for the Editors' Summary. PMID:25369363

  13. Data acquisition instruments: Psychopharmacology

    SciTech Connect

    Hartley, D.S. III

    1998-01-01

    This report contains the results of a Direct Assistance Project performed by Lockheed Martin Energy Systems, Inc., for Dr. K. O. Jobson. The purpose of the project was to perform preliminary analysis of the data acquisition instruments used in the field of psychiatry, with the goal of identifying commonalities of data and strategies for handling and using the data in the most advantageous fashion. Data acquisition instruments from 12 sources were provided by Dr. Jobson. Several commonalities were identified and a potentially useful data strategy is reported here. Analysis of the information collected for utility in performing diagnoses is recommended. In addition, further work is recommended to refine the commonalities into a directly useful computer systems structure.

  14. THE ARCADE 2 INSTRUMENT

    SciTech Connect

    Singal, J.; Fixsen, D. J.; Kogut, A.; Mirel, P.; Wollack, E.; Levin, S.; Seiffert, M.; Limon, M.; Lubin, P.; Villela, T.; Wuensche, C. A.

    2011-04-01

    The second generation Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE 2) instrument is a balloon-borne experiment to measure the radiometric temperature of the cosmic microwave background and Galactic and extragalactic emission at six frequencies from 3 to 90 GHz. ARCADE 2 utilizes a double-nulled design where emission from the sky is compared to that from an external cryogenic full-aperture blackbody calibrator by cryogenic switching radiometers containing internal blackbody reference loads. In order to further minimize sources of systematic error, ARCADE 2 features a cold fully open aperture with all radiometrically active components maintained at near 2.7 K without windows or other warm objects, achieved through a novel thermal design. We discuss the design and performance of the ARCADE 2 instrument in its 2005 and 2006 flights.

  15. THERMOCOUPLE READOUT INSTRUMENT

    EPA Science Inventory

    An electronic circuit has been developed which acts as an electronic ice bath for chromel-constantan thermocouples. The electronic ice bath is accurate to within plus or minus 0.2C from -25C to +50C. Simultaneously, the thermocouple output is scaled and linearized such that the t...

  16. Professionalism in Further Education: A Changing Concept

    ERIC Educational Resources Information Center

    Briggs, Ann R. J.

    2005-01-01

    Changes in the concepts of professionalism in English Further Education (FE) colleges can be traced back to the Further Education Reform Act 1988 and the incorporation of colleges in 1992. Incorporation--essentially a decentralising of control over colleges--entailed new forms of governance, and the transfer of functions such as finance, estates…

  17. Executive Leadership Concepts for Higher Education.

    ERIC Educational Resources Information Center

    Satterlee, Brian

    Several key concepts shed light on the traits and processes of leadership in educational settings. First, the term leadership can be understood as the act of persuading others to set aside individual concerns and pursue a common goal, with communication representing a key ability of leaders. The Communication Model provides a useful, open systems…

  18. VITESS 3 - Virtual Instrumentation Tool for the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Zendler, C.; Lieutenant, K.; Nekrassov, D.; Fromme, M.

    2014-07-01

    VITESS is a software widely used for simulation of neutron scattering experiments. Although originally motivated by instrument design for the European Spallation Source, all major neutron sources are available. Existing as well as future instruments on reactor or spallation sources can be designed and optimized, or simulated in a virtual experiment to prepare a measurement, including basic data evaluation. This note gives an overview of the VITESS software concept and usage. New developments are presented, including a 3D visualization of instruments and neutron trajectories, a numerical optimization routine and a parallelization tool allowing to split VITESS simulations on a computer cluster.

  19. The Eastern Space and Missile Center - Jonathan Dickinson Instrumentation Facility

    NASA Astrophysics Data System (ADS)

    Beckner, H. E.; Clark, S. R.; Bonner, J. R.; Thomas, C. G.

    The Jonathan Dickinson Instrumentation Facility (JDIF) is an instrumentation station at the Eastern Test Range designed to provide space diversity tracking of all launches from the Eastern Space and Missile Center or Kennedy Space Center. The JDIF includes tracking radar, telemetry, command/control systems, timing, and communication systems and the Navy's Flight Test Support System in one integrated building. Since virtually all of the instrumentation at JDIF is critical to the success of launches, a concept was established to make it possible to run the Eastern Test Range site during mission support from a bank of diesel generators, and to use commercial power for normal day-to-day operations.

  20. An ice lithography instrument

    NASA Astrophysics Data System (ADS)

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J. A.

    2011-06-01

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  1. Impact dynamics instrumentation

    NASA Astrophysics Data System (ADS)

    McCormck, R. F.

    1986-01-01

    One of the tasks specified in the NASA Langley controlled impact demonstration (CID) work package was to furnish dynamic instrumentation sensors. The types of instrumentation sensors required were accelerometers for aircraft structural loads measurements, seat belt load cells to measure anthropomorphic dummy responses to the aircraft impact, and strain gage bending bridges to measure the aircraft fuselage and wing bending during impact. The objective in the selection of dynamic instrumentation for the CID was to provide 352 of the highest quality transducers and remain within budget allocation. The transducers that were selected for the CID evaluation process were each subjected to rigorous laboratory acceptance tests and to aircraft fuselage section drop tests at the LaRC Impact Dynamics Research Facility. Data compiled from this series of tests showed the selected transducers to be best suited for the CID mission requirement. The transducers installation technique on the airframe proved successful. The transducer quality assurance was guaranteed through rigorous acceptance testing. Data acquired was 97.0%.

  2. Mandolin Family Instruments

    NASA Astrophysics Data System (ADS)

    Cohen, David J.; Rossing, Thomas D.

    The mandolin family of instruments consists of plucked chordophones, each having eight strings in four double courses. With the exception of the mandobass, the courses are tuned in intervals of fifths, as are the strings in violin family instruments. The soprano member of the family is the mandolin, tuned G3-D4-A4-E5. The alto member of the family is the mandola, tuned C3-G3-D4-A4. The mandola is usually referred to simply as the mandola in the USA, but is called the tenor mandola in Europe. The tenor member of the family is the octave mandolin, tuned G2-D3-A3-E4. It is referred to as the octave mandolin in the USA, and as the octave mandola in Europe. The baritone member of the family is the mandocello, or mandoloncello, tuned C2-G2-D3-A3. A variant of the mandocello not common in the USA is the five-course liuto moderno, or simply liuto, designed for solo repertoire. Its courses are tuned C2-G2-D3-A3-E4. A mandobass was also made by more than one manufacturer during the early twentieth century, though none are manufactured today. They were fretted instruments with single string courses tuned E1-A1-D2-G2. There are currently a few luthiers making piccolo mandolins, tuned C4-G4-D5-A5.

  3. Instrumentation and diagnostics

    SciTech Connect

    Nakaishi, C.V.; Bedick, R.C.

    1990-12-01

    This Technology Status Report describes research and accomplishments for the Instrumentation and Diagnostics (I D) Projects within the Advanced Research and Technology Development (AR TD) Program of the United States Department of Energy (DOE) Office of Fossil Energy (FE). Process understanding and control can be improved through the development of advanced instrumentation and diagnostics. The thrust of the I D Projects is to further develop existing measurement and control techniques for application to advanced coal-based technologies. Project highlights are: an inductively coupled plasma (ICP) instrument has been developed to analyze trace elements in gasification and combustion process streams. An in situ two-color Mie scattering technique with LSS can simultaneously measure the size, velocity, and elemental composition of coal particles during combustion. A high-temperature, fluorescence thermometry technique has accurately measured gas temperatures during field testing in combustion and gasification environments. Expert systems have been developed to improve the control of advanced coal-based processes. Capacitance flowmeters were developed to determine the mass flowrate, solid volume fraction, and particle velocities of coal slurries. 32 refs., 9 figs.

  4. An ice lithography instrument

    SciTech Connect

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J. A.

    2011-06-15

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  5. An ice lithography instrument.

    PubMed

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J A

    2011-06-01

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines. PMID:21721733

  6. An ice lithography instrument

    PubMed Central

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J. A.

    2011-01-01

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines. PMID:21721733

  7. Borehole survey instrument

    SciTech Connect

    Sharp, H.E.; Lin, J.W. III; Macha, E.S.; Smither, M.A.

    1984-12-04

    A borehole survey instrument is provided having a meniscus type floating compass member with indicia thereon for indicating azimuth and inclination. A light source is disposed below the indicia for illuminating the indicia upward through the liquid through which the meniscus type floating compass member floats. A lens system is provided for focusing the image of the illuminated compass member upon a film disposed below the compass member. This arrangement permits the centering post for the compass member to be of minimum diameter consistent with rigidity requirements and permits a high angle compass member to indicate angles of inclination approaching ninety degrees. A multiple light bulb light source is utilized and each light bulb is mounted in a manner which permits a single light bulb to illuminate the entire compass member. A hand-held programming and diagnostic unit is provided which may be momentarily electrically mated with the borehole survey tool to input a programmed timed delay and diagnostically test both the condition of the light bulbs utilized as the illumination source and the state of the batteries within the instrument. This hand-held programmable unit eliminates all the mechanical programming switches and permits the instrument to be completely sealed from the pressure, fluids and contaminants normally found in a well bore.

  8. SABER instrument design update

    NASA Astrophysics Data System (ADS)

    Esplin, Roy W.; Zollinger, Lorin; Batty, J. Clair; Folkman, Steve; Roosta, Mehrdad; Tansock, Joseph J.; Jensen, Mark; Stauder, John; Miller, Jim; Vanek, Michael; Robinson, Don

    1995-09-01

    This paper describes the design of a 10-channel infrared (1.27 to 16.9 micrometers ) radiometer instrument known as SABER (sounding of the atmosphere using broadband emission radiometry) that will measure earth-limb emissions from the TIMED (thermosphere- ionosphere-mesosphere energetics and dynamics) satellite. The instrument telescope, designed to reject stray light from the earth and the atmosphere, is an on-axis Cassegrain design with a clam shell reimager and a one-axis scan mirror. The telescope is cooled below 210 K by a dedicated radiator. The focal plane assembly (consisting of a filter array, a detector array, a Lyot stop, and a window) is cooled to 75 K by a miniature cryogenic refrigerator. The conductive heat load on the refrigerator is minimized by a Kevlar support system that thermally isolates the focal plane assembly from the telescope. Kevlar is also used to thermally isolate the telescope from the spacecraft. Instrument responsivity drifts due to changes in telescope and focal plane temperatures as well as other causes are neutralized by an in-flight calibration system. The detector array consists of discrete HgCdTe, InSb, and InGaAs detectors. Two InGaAs detectors are a new long wavelength type, made by EG&G, that have a long wavelength cutoff of 2.33 micrometers at 77 K.

  9. Simulation visualization through dynamic instrumentation

    SciTech Connect

    Bisset, K.R.

    1998-09-01

    The goal of the instrument composition system is to allow a simulation user to dynamically create instruments as a simulation executes. Instruments can include graphical displays, data collectors, and debugging aides. Instruments are made up of small building blocks which can be easily combined into larger, more complex instruments. Through the sue of an Attribute Server (a distributed publication/subscription mechanism), the actors and instruments in a simulation can interact without direct knowledge of each other. Instead, each actor publishes the attributes which it has available. An instrument subscribes to the attributes in which it is interested, and is notified whenever the value of one of these attribute changes. An instrument can also publish attributes for use by other instruments. Since the Attribute Server is distributed, the publisher of an attribute need not execute on the same machine as the subscriber. This allows CPU intensive data visualization to execute on separate machines from the simulation, minimizing the impact on the simulation.

  10. Comet coma sample return instrument

    NASA Technical Reports Server (NTRS)

    Albee, A. L.; Brownlee, Don E.; Burnett, Donald S.; Tsou, Peter; Uesugi, K. T.

    1994-01-01

    The sample collection technology and instrument concept for the Sample of Comet Coma Earth Return Mission (SOCCER) are described. The scientific goals of this Flyby Sample Return are to return to coma dust and volatile samples from a known comet source, which will permit accurate elemental and isotopic measurements for thousands of individual solid particles and volatiles, detailed analysis of the dust structure, morphology, and mineralogy of the intact samples, and identification of the biogenic elements or compounds in the solid and volatile samples. Having these intact samples, morphologic, petrographic, and phase structural features can be determined. Information on dust particle size, shape, and density can be ascertained by analyzing penetration holes and tracks in the capture medium. Time and spatial data of dust capture will provide understanding of the flux dynamics of the coma and the jets. Additional information will include the identification of cosmic ray tracks in the cometary grains, which can provide a particle's process history and perhaps even the age of the comet. The measurements will be made with the same equipment used for studying micrometeorites for decades past; hence, the results can be directly compared without extrapolation or modification. The data will provide a powerful and direct technique for comparing the cometary samples with all known types of meteorites and interplanetary dust. This sample collection system will provide the first sample return from a specifically identified primitive body and will allow, for the first time, a direct method of matching meteoritic materials captured on Earth with known parent bodies.

  11. Electronic instrumentation for smart structures

    NASA Astrophysics Data System (ADS)

    Blanar, George J.

    1995-04-01

    The requirements of electronic instrumentation for smart structures are similar to those of data acquisition systems at our national particle physics laboratories. Modern high energy and heavy ion physics experiments may have tens of thousands of channels of data sources producing data that must be converted to digital form, compacted, stored and interpreted. In parallel, multiple sensors distributed in and around smart structures generate either binary or analog signals that are voltage, charge, or time like in their information content. In all cases, they must be transmitted, converted and preserved into a unified digital format for real-time processing. This paper will review the current status of practical large scale electronic measurement systems with special attention to architectures and physical organization. Brief surveys of the current state of the art will include preamplifiers and amplifiers, comparators and discriminators, voltage or charge analog-to-digital converters, time internal meters or time-to-digital converters, and finally, counting or scalar systems. The paper will conclude by integrating all of these ideas in a concept for an all-digital readout of a smart structure using the latest techniques used in physics research today.

  12. Acting green elicits a literal warm glow

    NASA Astrophysics Data System (ADS)

    Taufik, Danny; Bolderdijk, Jan Willem; Steg, Linda

    2015-01-01

    Environmental policies are often based on the assumption that people only act environmentally friendly if some extrinsic reward is implicated, usually money. We argue that people might also be motivated by intrinsic rewards: doing the right thing (such as acting environmentally friendly) elicits psychological rewards in the form of positive feelings, a phenomenon known as warm glow. Given the fact that people's psychological state may affect their thermal state, we expected that this warm glow could express itself quite literally: people who act environmentally friendly may perceive the temperature to be higher. In two studies, we found that people who learned they acted environmentally friendly perceived a higher temperature than people who learned they acted environmentally unfriendly. The underlying psychological mechanism pertains to the self-concept: learning you acted environmentally friendly signals to yourself that you are a good person. Together, our studies show that acting environmentally friendly can be psychologically rewarding, suggesting that appealing to intrinsic rewards can be an alternative way to encourage pro-environmental actions.

  13. Modern endodontic surgery concepts and practice: a review.

    PubMed

    Kim, Syngcuk; Kratchman, Samuel

    2006-07-01

    Endodontic surgery has now evolved into endodontic microsurgery. By using state-of-the-art equipment, instruments and materials that match biological concepts with clinical practice, we believe that microsurgical approaches produce predictable outcomes in the healing of lesions of endodontic origin. In this review we attempted to provide the most current concepts, techniques, instruments and materials with the aim of demonstrating how far we have come. Our ultimate goal is to assertively teach the future generation of graduate students and also train our colleagues to incorporate these techniques and concepts into everyday practice. PMID:16793466

  14. Evaluating the Content and Response Process Validity of Data from the Chemical Concepts Inventory

    ERIC Educational Resources Information Center

    Schwartz, Paul; Barbera, Jack

    2014-01-01

    Data produced by psychometric instruments are often used to inform understanding about a certain population's knowledge of ideas or perspectives about specific topics. Concept inventories are an example of psychometric instruments used to probe students' content knowledge within a defined framework. Concept inventories have been used as…

  15. FHR Process Instruments

    SciTech Connect

    Holcomb, David Eugene

    2015-01-01

    Fluoride salt-cooled High temperature Reactors (FHRs) are entering into early phase engineering development. Initial candidate technologies have been identified to measure all of the required process variables. The purpose of this paper is to describe the proposed measurement techniques in sufficient detail to enable assessment of the proposed instrumentation suite and to support development of the component technologies. This paper builds upon the instrumentation chapter of the recently published FHR technology development roadmap. Locating instruments outside of the intense core radiation and high-temperature fluoride salt environment significantly decreases their environmental tolerance requirements. Under operating conditions, FHR primary coolant salt is a transparent, low-vapor-pressure liquid. Consequently, FHRs can employ standoff optical measurements from above the salt pool to assess in-vessel conditions. For example, the core outlet temperature can be measured by observing the fuel s blackbody emission. Similarly, the intensity of the core s Cerenkov glow indicates the fission power level. Short-lived activation of the primary coolant provides another means for standoff measurements of process variables. The primary coolant flow and neutron flux can be measured using gamma spectroscopy along the primary coolant piping. FHR operation entails a number of process measurements. Reactor thermal power and core reactivity are the most significant variables for process control. Thermal power can be determined by measuring the primary coolant mass flow rate and temperature rise across the core. The leading candidate technologies for primary coolant temperature measurement are Au-Pt thermocouples and Johnson noise thermometry. Clamp-on ultrasonic flow measurement, that includes high-temperature tolerant standoffs, is a potential coolant flow measurement technique. Also, the salt redox condition will be monitored as an indicator of its corrosiveness. Both

  16. Robotic instrumentation: Evolution and microsurgical applications

    PubMed Central

    Parekattil, Sijo J.; Moran, Michael E.

    2010-01-01

    This article presents a review of the history and evolution of robotic instrumentation and its applications in urology. A timeline for the evolution of robotic instrumentation is presented to better facilitate an understanding of our current-day applications. Some new directions including robotic microsurgical applications (robotic assisted denervation of the spermatic cord for chronic orchialgia and robotic assisted vasectomy reversal) are presented. There is a paucity of prospective comparative effectiveness studies for a number of robotic applications. However, right or wrong, human nature has always led to our infatuation with the concept of using tools to meet our needs. This chapter is a brief tribute to where we have come from and where we may be potentially heading in the field of robotic assisted urologic surgery. PMID:21116362

  17. VINCI: the VLT Interferometer commissioning instrument

    NASA Astrophysics Data System (ADS)

    Kervella, Pierre; Coudé du Foresto, Vincent; Glindemann, Andreas; Hofmann, Reiner

    2000-07-01

    The Very Large Telescope Interferometer (VLTI) is a complex system, made of a large number of separated elements. To prepare an early successful operation, it will require a period of extensive testing and verification to ensure that the many devices involved work properly together, and can produce meaningful data. This paper describes the concept chosen for the VLTI commissioning instrument, LEONARDO da VINCI, and details its functionalities. It is a fiber based two-way beam combiner, associated with an artificial star and an alignment verification unit. The technical commissioning of the VLTI is foreseen as a stepwise process: fringes will first be obtained with the commissioning instrument in an autonomous mode (no other parts of the VLTI involved); then the VLTI telescopes and optical trains will be tested in autocollimation; finally fringes will be observed on the sky.

  18. Topics in Chemical Instrumentation, Cl. Thermoluminescence: Part II. Instrumentation.

    ERIC Educational Resources Information Center

    Manche, Emanuel P.

    1979-01-01

    Presents part two on the use of the detection of thermoluminescence as an analytical tool for the chemistry laboratory and allied science. This part discusses instrumentation used and investigates recent developments in instrumentation for thermoluminescence. (HM)

  19. CARMENES instrument overview

    NASA Astrophysics Data System (ADS)

    Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Mundt, R.; Reiners, A.; Ribas, I.; Seifert, W.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona Jiménez, R.; Anwand-Heerwart, H.; Azzaro, M.; Bauer, F.; Barrado, D.; Becerril, S.; Béjar, V. J. S.; Benítez, D.; Berdiñas, Z. M.; Cárdenas, M. C.; Casal, E.; Claret, A.; Colomé, J.; Cortés-Contreras, M.; Czesla, S.; Doellinger, M.; Dreizler, S.; Feiz, C.; Fernández, M.; Galadí, D.; Gálvez-Ortiz, M. C.; García-Piquer, A.; García-Vargas, M. L.; Garrido, R.; Gesa, L.; Gómez Galera, V.; González Álvarez, E.; González Hernández, J. I.; Grözinger, U.; Guàrdia, J.; Guenther, E. W.; de Guindos, E.; Gutiérrez-Soto, J.; Hagen, H.-J.; Hatzes, A. P.; Hauschildt, P. H.; Helmling, J.; Henning, T.; Hermann, D.; Hernández Castaño, L.; Herrero, E.; Hidalgo, D.; Holgado, G.; Huber, A.; Huber, K. F.; Jeffers, S.; Joergens, V.; de Juan, E.; Kehr, M.; Klein, R.; Kürster, M.; Lamert, A.; Lalitha, S.; Laun, W.; Lemke, U.; Lenzen, R.; López del Fresno, Mauro; López Martí, B.; López-Santiago, J.; Mall, U.; Mandel, H.; Martín, E. L.; Martín-Ruiz, S.; Martínez-Rodríguez, H.; Marvin, C. J.; Mathar, R. J.; Mirabet, E.; Montes, D.; Morales Muñoz, R.; Moya, A.; Naranjo, V.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro, J.; Passegger, V.-M.; Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Pluto, M.; Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhardt, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodríguez, E.; Rodríguez-López, C.; Rodríguez-Pérez, E.; Rohloff, R.-R.; Rosich, A.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sanz-Forcada, J.; Sarmiento, L. F.; Schäfer, S.; Schiller, J.; Schmidt, C.; Schmitt, J. H. M. M.; Solano, E.; Stahl, O.; Storz, C.; Stürmer, J.; Suárez, J. C.; Ulbrich, R. G.; Veredas, G.; Wagner, K.; Winkler, J.; Zapatero Osorio, M. R.; Zechmeister, M.; Abellán de Paco, F. J.; Anglada-Escudé, G.; del Burgo, C.; Klutsch, A.; Lizon, J. L.; López-Morales, M.; Morales, J. C.; Perryman, M. A. C.; Tulloch, S. M.; Xu, W.

    2014-07-01

    This paper gives an overview of the CARMENES instrument and of the survey that will be carried out with it during the first years of operation. CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs) is a next-generation radial-velocity instrument under construction for the 3.5m telescope at the Calar Alto Observatory by a consortium of eleven Spanish and German institutions. The scientific goal of the project is conducting a 600-night exoplanet survey targeting ~ 300 M dwarfs with the completed instrument. The CARMENES instrument consists of two separate echelle spectrographs covering the wavelength range from 0.55 to 1.7 μm at a spectral resolution of R = 82,000, fed by fibers from the Cassegrain focus of the telescope. The spectrographs are housed in vacuum tanks providing the temperature-stabilized environments necessary to enable a 1 m/s radial velocity precision employing a simultaneous calibration with an emission-line lamp or with a Fabry-Perot etalon. For mid-M to late-M spectral types, the wavelength range around 1.0 μm (Y band) is the most important wavelength region for radial velocity work. Therefore, the efficiency of CARMENES has been optimized in this range. The CARMENES instrument consists of two spectrographs, one equipped with a 4k x 4k pixel CCD for the range 0.55 - 1.05 μm, and one with two 2k x 2k pixel HgCdTe detectors for the range from 0.95 - 1.7μm. Each spectrograph will be coupled to the 3.5m telescope with two optical fibers, one for the target, and one for calibration light. The front end contains a dichroic beam splitter and an atmospheric dispersion corrector, to feed the light into the fibers leading to the spectrographs. Guiding is performed with a separate camera; on-axis as well as off-axis guiding modes are implemented. Fibers with octagonal cross-section are employed to ensure good stability of the output in the presence of residual guiding errors. The

  20. ACT and College Success

    ERIC Educational Resources Information Center

    Bleyaert, Barbara

    2010-01-01

    What is the relationship between ACT scores and success in college? For decades, admissions policies in colleges and universities across the country have required applicants to submit scores from a college entrance exam, most typically the ACT (American College Testing) or SAT (Scholastic Aptitude Test). This requirement suggests that high school…

  1. Mars Science Laboratory at Work, Artist's Concept

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA's Mars Science Laboratory, a mobile robot for investigating Mars' past or present ability to sustain microbial life, is in development for a launch opportunity in 2009. This picture is an artist's concept portraying what the advanced rover would look like when examining a rock outcrop on Mars. The arm extending from the front of the rover is designed both to position some of the rover's instruments close to selected targets and also to collect samples for onboard analysis by other instruments.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington.

  2. Instrumentation: Software-Driven Instrumentation: The New Wave.

    ERIC Educational Resources Information Center

    Salit, M. L.; Parsons, M. L.

    1985-01-01

    Software-driven instrumentation makes measurements that demand a computer as an integral part of either control, data acquisition, or data reduction. The structure of such instrumentation, hardware requirements, and software requirements are discussed. Examples of software-driven instrumentation (such as wavelength-modulated continuum source…

  3. Multiple instrument distributed aperture sensor (MIDAS) testbed

    NASA Astrophysics Data System (ADS)

    Smith, Eric H.; de Leon, Erich; Dean, Peter; Deloumi, Jake; Duncan, Alan; Hoskins, Warren; Kendrick, Richard; Mason, James; Page, Jeff; Phenis, Adam; Pitman, Joe; Pope, Christine; Privari, Bela; Ratto, Doug; Romero, Enrique; Shu, Ker-Li; Sigler, Robert; Stubbs, David; Tapos, Francisc; Yee, Albert

    2005-08-01

    Lockheed Martin is developing an innovative and adaptable optical telescope comprised of an array of nine identical afocal sub-telescopes. Inherent in the array design is the ability to perform high-resolution broadband imaging, Fizeau Fourier transform spectroscopy (FTS) imaging, and single exposure multi-spectral and polarimetric imaging. Additionally, the sensor suite's modular design integrates multiple science packages for active and passive sensing from 0.4 to 14 microns. We describe the opto-mechanical design of our concept, the Multiple Instrument Distributed Aperture Sensor (MIDAS), and a selection of passive and active remote sensing missions it fulfills.

  4. Ka-band MMIC array system for ACTS aeronautical terminal experiment (Aero-X)

    NASA Technical Reports Server (NTRS)

    Raquet, Charles A.; Zakrajsek, Robert J.; Lee, Richard Q.; Andro, Monty; Turtle, John P.

    1995-01-01

    During the summer of 1994, the Advanced Communication Technology Satellite (ACTS) Aeronautical Terminal Experiment (Aero-X) was successfully completed by the NASA Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL). 4.8 and 9.6 Kbps duplex voice links were established between the LeRC Learjet and the ACTS Link Evaluation Terminal (LET) in Cleveland, Ohio, via the ACTS. The antenna system used in this demonstration was developed by LeRC and featured LeRC and US Air Force experimental arrays using GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The antenna system consisted of three arrays mounted inside the LeRC Learjet, pointing out through the windows. An open loop tracking controller developed by LeRC used information from the aircraft position and attitude sensors to automatically steer the arrays toward ACTS during flight JPL ACTS Mobile Terminal (AMT) system hardware was used as transceivers both on the aircraft and at the LET. The single 32 element MMIC transmit array developed by NASA/LeRC and Texas Instruments has an EIRP of 23.4 dBW at boresight. The two 20 GHz MMIC receive arrays were developed in a cooperative effort with the USAF Rome Laboratory/Electronic System Center, taking advantage of existing USAF array development contracts with Boeing and Martin Marietta. The Boeing array has 23 elements and a G/T of 16/6 db/degK at boresight. The Martin Marietta array has 16 elements and a G/T of 16.1 db/degK at boresight. The three proof-of-concept arrays, the array control system and their integration and operation in the Learjet for Aero-X are described.

  5. OBSIP Instrumentation and Operations for the Cascadia Initiative

    NASA Astrophysics Data System (ADS)

    Lodewyk, J. A.; Evers, B.

    2014-12-01

    The Ocean Bottom Seismograph Instrument Pool (OBSIP) is providing instrumentation and operations support for the Cascadia Initiative (Cascadia), an American Recovery and Reinvestment Act funded community experiment focused on investigating the unique geophysical processes through a combined onshore and offshore array of seismometers. Currently, OBSIP has deployed and recovered the instruments for years 1, 2, and 3 of the experiment. Year 4 instrumentation is currently collecting data on the ocean floor until fall 2015. Three OBSIP Institutional Instrument Contributors (IIC's) designed and built 60 new Ocean Bottom Seismometers (OBSs) specifically for the unique requirements of the Cascadia region, including shallow water deployments and heavy fishing activity. Lamont-Doherty Earth Observatory (LDEO) and Scripps Institute of Oceanography (SIO) both designed new trawl-resistant frames for the OBS instruments. Woods Hole Oceanographic Institute (WHOI) built 15 new deep-water instruments. To aid in the recovery of the heavy trawl resistant enclosures, OBSIP uses a Remotely Operated Vehicle (ROV). Cascadia OBS instruments include a seismometer, either a differential pressure gauge (DPG) or an absolute pressure sensor (APG), and extensive supporting electronics. One of the goals of the Cascadia Initiative is to encourage the joint use of onshore and offshore data. To support this goal, OBSIP has assembled a Horizontal Orientations report and an ARRA white paper summarizing the Cascadia Initiative performance. In both of these reports, OBSIP investigated the noise characteristics of the Cascadia OBS stations and the overall performance. With new instrumentation packages, the Cascadia instruments can be deployed in shallow water. OBSIP has investigated instrument performance to determine if water depth, instrument shielding, and recording season influence data quality.

  6. Concept Innateness, Concept Continuity, and Bootstrapping

    PubMed Central

    Carey, Susan

    2011-01-01

    The commentators raised issues relevant to all three important theses of The Origin of Concepts (TOOC). Some questioned the very existence of innate representational primitives, and others questioned my claims about their richness and whether they should be thought of as concepts. Some questioned the existence of conceptual discontinuity in the course of knowledge acquisition and others argued that discontinuity is much more common than portrayed in TOOC. Some raised issues with my characterization of Quinian bootstrapping, and others questioned the dual factor theory of concepts motivated by my picture of conceptual development. PMID:23264705

  7. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  8. Concepts and approaches to in situ luminescence dating of Martian sediments.

    PubMed

    McKeever, S W S; Banerjee, D; Blair, M; Clifford, S M; Clowdsley, M S; Kim, S S; Lamothe, M; Lepper, K; Leuschen, M; McKeever, K J; Prather, M; Rowland, A; Reust, D; Sears, D W G; Wilson, J W

    2003-01-01

    In this paper we present the concept of a robotic instrument for in situ luminescence dating of near-surface sediments on Mars. The scientific objectives and advantages to be gained from the development of such an instrument are described, and the challenges presented by the Mars surface environment to the design and operation of the instrument are outlined. PMID:12856693

  9. LBL's Pollution Instrumentation Comparability Program.

    ERIC Educational Resources Information Center

    McLaughlin, R. D.; And Others

    1979-01-01

    Contained are condensed excerpts from the Lawrence Berkeley Laboratory Survey of Instrumentation for Environmental Monitoring. The survey describes instrumentation used to analyze air and water quality, radiation emissions, and biomedical impacts. (BB)

  10. Instruments for Water Quality Monitoring

    ERIC Educational Resources Information Center

    Ballinger, Dwight G.

    1972-01-01

    Presents information regarding available instruments for industries and agencies who must monitor numerous aquatic parameters. Charts denote examples of parameters sampled, testing methods, range and accuracy of test methods, cost analysis, and reliability of instruments. (BL)

  11. Precision Instrument and Equipment Repairers.

    ERIC Educational Resources Information Center

    Wyatt, Ian

    2001-01-01

    Explains the job of precision instrument and equipment repairers, who work on cameras, medical equipment, musical instruments, watches and clocks, and industrial measuring devices. Discusses duties, working conditions, employment and earnings, job outlook, and skills and training. (JOW)

  12. Instrument Synthesis and Analysis Laboratory

    NASA Technical Reports Server (NTRS)

    Wood, H. John

    2004-01-01

    The topics addressed in this viewgraph presentation include information on 1) Historic instruments at Goddard; 2) Integrated Design Capability at Goddard; 3) The Instrument Synthesis and Analysis Laboratory (ISAL).

  13. Instrumental musicians' hazards.

    PubMed

    Hoppmann, R A

    2001-01-01

    In the last two decades, injuries to instrumental musicians have been well documented. Major categories of performance-related injuries include musculoskeletal overuse, nerve entrapment/thoracic outlet syndrome, and focal dystonia. Other areas of concern to instrumentalists include hypermobility, osteoarthritis, fibromyalgia, and hearing loss. This chapter reviews the epidemiology, risk factors, physical exam, treatment, and prevention of common problems of instrumentalists. Emphasis is placed on the team approach of treatment and prevention and the need for close collaboration of the various health professionals, music educators, and performers. Additional resources are presented for those interested in pursuing performing arts medicine in greater detail. PMID:11567922

  14. Diamonds for beam instrumentation

    SciTech Connect

    Griesmayer, Erich

    2013-04-19

    Diamond is perhaps the most versatile, efficient and radiation tolerant material available for use in beam detectors with a correspondingly wide range of applications in beam instrumentation. Numerous practical applications have demonstrated and exploited the sensitivity of diamond to charged particles, photons and neutrons. In this paper, a brief description of a generic diamond detector is given and the interaction of the CVD diamond detector material with protons, electrons, photons and neutrons is presented. Latest results of the interaction of sCVD diamond with 14 MeV mono-energetic neutrons are shown.

  15. Diaphragms for Aeronautic Instruments

    NASA Technical Reports Server (NTRS)

    Hersey, M D

    1924-01-01

    This investigation was carried out at the request of the National Advisory Committee for Aeronautics and comprises an outline of historical developments and theoretical principles, together with a discussion of expedients for making the most effective use of existing diaphragms actuated by the hydrostatic pressure form an essential element of a great variety instruments for aeronautic and other technical purposes. The various physical data needed as a foundation for rational methods of diaphragm design have not, however, been available hitherto except in the most fragmentary form.

  16. Biomagnetic instrumentation and measurement

    NASA Technical Reports Server (NTRS)

    Iufer, E. J.

    1978-01-01

    The instruments and techniques of biomagnetic measurement have progressed greatly in the past 15 years and are now of a quality appropriate to clinical applications. The paper reports on recent developments in the design and application of SQUID (Superconducting Quantum Interference Device) magnetometers to biomagnetic measurement. The discussion covers biomagnetic field levels, magnetocardiography, magnetic susceptibility plethysmography, ambient noise and sensor types, principles of operation of a SQUID magnetometer, and laboratory techniques. Of the many promising applications of noninvasive biomagnetic measurement, magnetocardiography is the most advanced and the most likely to find clinical application in the near future.

  17. Instrument Quality Control.

    PubMed

    Jayakody, Chatura; Hull-Ryde, Emily A

    2016-01-01

    Well-defined quality control (QC) processes are used to determine whether a certain procedure or action conforms to a widely accepted standard and/or set of guidelines, and are important components of any laboratory quality assurance program (Popa-Burke et al., J Biomol Screen 14: 1017-1030, 2009). In this chapter, we describe QC procedures useful for monitoring the accuracy and precision of laboratory instrumentation, most notably automated liquid dispensers. Two techniques, gravimetric QC and photometric QC, are highlighted in this chapter. When used together, these simple techniques provide a robust process for evaluating liquid handler accuracy and precision, and critically underpin high-quality research programs. PMID:27316990

  18. Development of a Student-Centered Instrument to Assess Middle School Students' Conceptual Understanding of Sound

    ERIC Educational Resources Information Center

    Eshach, Haim

    2014-01-01

    This article describes the development and field test of the Sound Concept Inventory Instrument (SCII), designed to measure middle school students' concepts of sound. The instrument was designed based on known students' difficulties in understanding sound and the history of science related to sound and focuses on two main aspects of…

  19. Keyboard Emulation For Computerized Instrumentation

    NASA Technical Reports Server (NTRS)

    Wiegand, P. M.; Crouch, S. R.

    1989-01-01

    Keyboard emulator has interface at same level as manual keyboard entry. Since communication and control take place at high intelligence level in instrument, all instrument circuitry fully utilized. Little knowledge of instrument circuitry necessary, since only task interface performs is key closure. All existing logic and error checking still performed by instrument, minimizing workload of laboratory microcomputer. Timing constraints for interface operation minimal at keyboard entry level.

  20. Surface composition mapping radiometer instrument

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design, development, and fabrication of a three-channel scanning radiometer are discussed. The instrument was flown on Nimbus 5 satellite and measured infrared energy in the 8.3 to 9.3, 10.2 to 11.2, and 0.8 to 1.1 micron spectral regions. The instrument parameters are presented. Theoretical discussions of the instrument subassemblies are provided. Operational details of the mechanical and electrical portions of the instrument are included.

  1. Workshop on advanced technologies for planetary instruments

    NASA Technical Reports Server (NTRS)

    Appleby, J. (Editor)

    1993-01-01

    NASA's robotic solar system exploration program requires a new generation of science instruments. Design concepts are now judged against stringent mass, power, and size constraints--yet future instruments must be highly capable, reliable, and, in some applications, they must operate for many years. The most important single constraint, however, is cost: new instruments must be developed in a tightly controlled design-to-cost environment. Technical innovation is the key to success and will enable the sophisticated measurements needed for future scientific exploration. As a fundamental benefit, the incorporation of breakthrough technologies in planetary flight hardware will contribute to U.S. industrial competitiveness and will strengthen the U.S. technology base. The Workshop on Advanced Technologies for Planetary Instruments was conceived to address these challenges, to provide an open forum in which the NASA and DoD space communities could become better acquainted at the working level, and to assess future collaborative efforts. Over 300 space scientists and engineers participated in the two-and-a-half-day meeting held April 28-30, 1993, in Fairfax, Virginia. It was jointly sponsored by NASA's Solar System Exploration Division (SSED), within the Office of Space Science (OSS); NASA's Office of Advanced Concepts and Technology (OACT); DoD's Strategic Defense Initiative Organization (SDIO), now called the Ballistic Missile Defense Organization (BMDO); and the Lunar and Planetary Institute (LPI). The meeting included invited oral and contributed poster presentations, working group sessions in four sub-disciplines, and a wrap-up panel discussion. On the first day, the planetary science community described instrumentation needed for missions that may go into development during the next 5 to 10 years. Most of the second day was set aside for the DoD community to inform their counterparts in planetary science about their interests and capabilities, and to describe the

  2. A new innovative instrument for space plasma instrumentation

    NASA Technical Reports Server (NTRS)

    Torbert, Roy B.

    1993-01-01

    The Faraday Ring Ammeter was the subject of this grant for a new innovative instrument for space plasma instrumentation. This report summarizes our progress in this work. Briefly, we have conducted an intensive series of experiments and trials over three years, testing some five configurations of the instrument to measure currents, resulting in two Ph.D. theses, supported by this grant, and two flight configurations of the instrument. The first flight would have been on a NASA-Air Force collaborative sounding rocket, but was not flown because of instrumental difficulties. The second has been successfully integrated on the NASA Auroral Turbulence payload which is to be launched in February, 1994.

  3. Safety Signals as Instrumental Reinforcers during Free-Operant Avoidance

    ERIC Educational Resources Information Center

    Fernando, Anushka B. P.; Urcelay, Gonzalo P.; Mar, Adam C.; Dickinson, Anthony; Robbins, Trevor W.

    2014-01-01

    Safety signals provide "relief" through predicting the absence of an aversive event. At issue is whether these signals also act as instrumental reinforcers. Four experiments were conducted using a free-operant lever-press avoidance paradigm in which each press avoided shock and was followed by the presentation of a 5-sec auditory safety…

  4. 24 CFR 232.555 - Security instrument and lien.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Security instrument and lien. 232.555 Section 232.555 Housing and Urban Development Regulations Relating to Housing and Urban... HOUSING AND URBAN DEVELOPMENT MORTGAGE AND LOAN INSURANCE PROGRAMS UNDER NATIONAL HOUSING ACT AND...

  5. 24 CFR 232.570 - Endorsement of credit instrument.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Endorsement of credit instrument. 232.570 Section 232.570 Housing and Urban Development Regulations Relating to Housing and Urban... HOUSING AND URBAN DEVELOPMENT MORTGAGE AND LOAN INSURANCE PROGRAMS UNDER NATIONAL HOUSING ACT AND...

  6. 78 FR 52974 - Keithley Instruments; Solon, Ohio; Notice of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... Employment and Training Administration Keithley Instruments; Solon, Ohio; Notice of Investigation Pursuant to Section 221 of the Trade Act of 1974, as amended, an investigation was initiated on June 25, 2013 in... of Investigation on the basis that the subject worker group was eligible to apply for TAA under...

  7. Space Mission Operations Concept

    NASA Technical Reports Server (NTRS)

    Squibb, Gael F.

    1996-01-01

    This paper will discuss the concept of developing a space mission operations concept; the benefits of starting this system engineering task early; the neccessary inputs to the process; and the products that are generated.

  8. Creative Concept Mapping.

    ERIC Educational Resources Information Center

    Brown, David S.

    2002-01-01

    Recommends the use of concept mapping in science teaching and proposes that it be presented as a creative activity. Includes a sample lesson plan of a potato stamp concept mapping activity for astronomy. (DDR)

  9. Race concepts in medicine.

    PubMed

    Hardimon, Michael O

    2013-02-01

    Confusions about the place of race in medicine result in part from a failure to recognize the plurality of race concepts. Recognition that the ordinary concept of race is not identical to the racialist concept of race makes it possible to ask whether there might be a legitimate place for the deployment of concepts of race in medical contexts. Two technical race concepts are considered. The concept of social race is the concept of a social group that is taken to be a racialist race. It is apt for use in examining and addressing the medical effects of discrimination. The populationist concept of race represents race as a kind of biological population. It makes it possible to frame the question whether biological race is a factor in disease susceptibility and drug responsiveness. It is apt for use in determining whether biological race is a medically significant category. PMID:23300217

  10. Generic concepts in Nectriaceae

    PubMed Central

    Lombard, L.; van der Merwe, N.A.; Groenewald, J.Z.; Crous, P.W.

    2015-01-01

    The ascomycete family Nectriaceae (Hypocreales) includes numerous important plant and human pathogens, as well as several species used extensively in industrial and commercial applications as biodegraders and biocontrol agents. Members of the family are unified by phenotypic characters such as uniloculate ascomata that are yellow, orange-red to purple, and with phialidic asexual morphs. The generic concepts in Nectriaceae are poorly defined, since DNA sequence data have not been available for many of these genera. To address this issue we performed a multi-gene phylogenetic analysis using partial sequences for the 28S large subunit (LSU) nrDNA, the internal transcribed spacer region and intervening 5.8S nrRNA gene (ITS), the large subunit of the ATP citrate lyase (acl1), the RNA polymerase II largest subunit (rpb1), RNA polymerase II second largest subunit (rpb2), α-actin (act), β-tubulin (tub2), calmodulin (cmdA), histone H3 (his3), and translation elongation factor 1-alpha (tef1) gene regions for available type and authentic strains representing known genera in Nectriaceae, including several genera for which no sequence data were previously available. Supported by morphological observations, the data resolved 47 genera in the Nectriaceae. We re-evaluated the status of several genera, which resulted in the introduction of six new genera to accommodate species that were initially classified based solely on morphological characters. Several generic names are proposed for synonymy based on the abolishment of dual nomenclature. Additionally, a new family is introduced for two genera that were previously accommodated in the Nectriaceae. PMID:26955195

  11. Generic concepts in Nectriaceae.

    PubMed

    Lombard, L; van der Merwe, N A; Groenewald, J Z; Crous, P W

    2015-03-01

    The ascomycete family Nectriaceae (Hypocreales) includes numerous important plant and human pathogens, as well as several species used extensively in industrial and commercial applications as biodegraders and biocontrol agents. Members of the family are unified by phenotypic characters such as uniloculate ascomata that are yellow, orange-red to purple, and with phialidic asexual morphs. The generic concepts in Nectriaceae are poorly defined, since DNA sequence data have not been available for many of these genera. To address this issue we performed a multi-gene phylogenetic analysis using partial sequences for the 28S large subunit (LSU) nrDNA, the internal transcribed spacer region and intervening 5.8S nrRNA gene (ITS), the large subunit of the ATP citrate lyase (acl1), the RNA polymerase II largest subunit (rpb1), RNA polymerase II second largest subunit (rpb2), α-actin (act), β-tubulin (tub2), calmodulin (cmdA), histone H3 (his3), and translation elongation factor 1-alpha (tef1) gene regions for available type and authentic strains representing known genera in Nectriaceae, including several genera for which no sequence data were previously available. Supported by morphological observations, the data resolved 47 genera in the Nectriaceae. We re-evaluated the status of several genera, which resulted in the introduction of six new genera to accommodate species that were initially classified based solely on morphological characters. Several generic names are proposed for synonymy based on the abolishment of dual nomenclature. Additionally, a new family is introduced for two genera that were previously accommodated in the Nectriaceae. PMID:26955195

  12. Spacecraft instrument calibration and stability

    NASA Technical Reports Server (NTRS)

    Gille, J. C.; Feldman, P.; Hudson, R.; Lean, J.; Madden, R.; Mcmaster, L.; Mount, G.; Rottman, G.; Simon, P. C.

    1989-01-01

    The following topics are covered: instrument degradation; the Solar Backscatter Ultraviolet (SBUV) Experiment; the Total Ozone Mapping Spectrometer (TOMS); the Stratospheric Aerosol and Gas Experiment 1 (SAGE-1) and SAGE-2 instruments; the Solar Mesosphere Explorer (SME) UV ozone and near infrared airglow instruments; and the Limb Infrared Monitor of the Stratosphere (LIMS).

  13. Instruments for Water Quality Measurements

    ERIC Educational Resources Information Center

    Phillips, Sidney L.; Mack, Dick A.

    1975-01-01

    This discussion gives a general picture of the instrumentation available or being developed for measuring the four major categories of water pollutants: metals, nutrients, pesticides and oxygen demand. The instruments are classified as follows: manually operated laboratory analyzers, automated laboratory instrumentation, manual field monitors, and…

  14. Anhedonia: A Concept Analysis

    PubMed Central

    Ho, Nancy; Sommers, Marilyn

    2013-01-01

    Anhedonia presents itself in a myriad of disease processes. To further develop our understanding of anhedonia and effective ways to manage it, the concept requires clear boundaries. This paper critically examined the current scientific literature and conducted a concept analysis of anhedonia to provide a more accurate and lucid understanding the concept. As part of the concept analysis, this paper also provides model, borderline, related, and contrary examples of anhedonia. PMID:23706888

  15. Advanced propulsion concepts

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1991-01-01

    A variety of Advanced Propulsion Concepts (APC) is discussed. The focus is on those concepts that are sufficiently near-term that they could be developed for the Space Exploration Initiative. High-power (multi-megawatt) electric propulsion, solar sails, tethers, and extraterrestrial resource utilization concepts are discussed. A summary of these concepts and some general conclusions on their technology development needs are presented.

  16. HEAO-A Observatory Description. [experimental design and instrumentation

    NASA Technical Reports Server (NTRS)

    Dailey, C.; Parnell, T. A.

    1977-01-01

    The High Energy Astronomy Observatory Program is briefly described to introduce guest observers to the HEAO-A mission. Topics discussed include spacecraft subsystems, scientific instrumentation, and the mission operations concept. Scientific participants such as principal investigators and co-investigators are listed.

  17. Conceptualizing Conceptual Teaching: Practical Strategies for Large Instrumental Ensembles

    ERIC Educational Resources Information Center

    Tan, Leonard

    2016-01-01

    Half a century ago, calls had already been made for instrumental ensemble directors to move beyond performance to include the teaching of musical concepts in the rehearsal hall. Relatively recent research, however, suggests that conceptual teaching remains relatively infrequent during rehearsals. Given the importance of teaching for long-term…

  18. Incorporating Basic Optical Microscopy in the Instrumental Analysis Laboratory

    ERIC Educational Resources Information Center

    Flowers, Paul A.

    2011-01-01

    A simple and versatile approach to incorporating basic optical microscopy in the undergraduate instrumental analysis laboratory is described. Attaching a miniature CCD spectrometer to the video port of a standard compound microscope yields a visible microspectrophotometer suitable for student investigations of fundamental spectrometry concepts,…

  19. Instrumentation for Reflectance Spectroscopy and Microspectroscopy with Application to Astrobiology

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; Blaney, Diana L.; Green, Robert O.

    2008-01-01

    We present instrument concepts for in-situ reflectance spectroscopy over a spatial resolution range from several meters to tens of micrometers. These have been adapted to the low mass and power requirements of rover or similar platforms. Described are a miniaturized imaging spectrometer for rover mast, a combined mast and arm point spectrometer, and an imaging microspectrometer for the rover arm.

  20. The QUIET Instrument

    NASA Technical Reports Server (NTRS)

    Gaier, T.; Kangaslahti, P.; Lawrence, C. R.; Leitch, E. M.; Wollack, E. J.

    2012-01-01

    The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales ( approx 1 deg.) . Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4 m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 micro Ks(exp 1/2)) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0.1. The 84-element W-band polarimeter array has a sensitivity of 87 micro Ks(exp 1/2) at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0.01 (QUIET Collaboration 2012) The two arrays together cover multipoles in the range l approximately equals 25-975 . These are the largest HEMT-ba.sed arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument,

  1. Instrumentation for Submillimeter Polarimetry

    NASA Technical Reports Server (NTRS)

    Dragovan, M.; Novak, G.

    1984-01-01

    During the last two years three instruments were built and operated for detection of polarization in the submillimeter to millimeter wavelength bands. In principle, simply rotating a polarizing grid in front of the detector would be sufficient to determine the state of linear polarization. In practice severe systematic problems are found with this approach. Everything in the light path has potential for inducing polarization. The telescope, apertures in the lightpath, and the Winston light collectors all introduce systematic errors. (The polarization/depolarization induced by these devices is due to diffraction and the finite conductivity of the metals used). Two of the polarimeters are for use on the KAO; the third is for the IRTF on Mauna Kea. The airplane polarimeters, M1 and M2, were specifically designed to minimize the systematic errors. The ground based polarimeter uses our f/35 photometer with an external polarizing grid as the analyzer. With all three instruments the key to success is the data collector and analysis scheme.

  2. An Instrumental Innovation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Think of guitars and you think of rock and country music, or the vigorous rhythms of the gypsy flamenco, or perhaps the classical strumming of a Segovia. About the last thing you would associate with guitars is aerospace technology. Yet there is a connection. A whole family of quality guitars is an outgrowth of helicopter rotor research conducted for the military services and NASA by an aerospace contractor. These musical spinoffs, commercially available and rapidly gaining in popularity, are the Ovation guitar line, manufactured by Ovation Instruments, Inc., Bloomfield, Connecticut. Ovation Instruments is a subsidiary of Kaman Corporation, a diversified company originally formed to develop and build helicopters. A helicopter's rotor system, with thousands of moving parts, is highly susceptible to vibration. For rotor efficiency, vibration must be "dampened," or reduced. Like other helicopter builders, Kaman Corporation spent years of research toward that end. The technology thus developed, together with the availability of staff experts in vibration engineering, sparked an idea in the mind of the company's president and founder, Charles H. Karnan. A guitarist of professional caliber, Kaman reasoned that vibration-dampening technology could be turned around to enhance vibration and thereby produce a guitar with superior sound.

  3. The QUIET Instrument

    SciTech Connect

    Bischoff, C.; et al.

    2012-07-01

    The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales ({approx}1{sup o}). Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 {mu}Ks{sup 1/2}) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0:1. The 84-element W-band polarimeter array has a sensitivity of 87 {mu}Ks{sup 1/2} at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0:01. The two arrays together cover multipoles in the range {ell} {approx} 25 -- 975. These are the largest HEMT-based arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument.

  4. E-Concept Mapping

    ERIC Educational Resources Information Center

    Shmaefsky, Brian R.

    2007-01-01

    Not all demonstrations involve using exciting visual displays of one or a series of scientific principles. Demonstrations can be as simple as showing the interrelationship between scientific concepts or principles using concept maps. Concepts maps are tools that help people conceptualize and remember a conglomeration of facts making up complex…

  5. Threshold Concepts in Biochemistry

    ERIC Educational Resources Information Center

    Loertscher, Jennifer

    2011-01-01

    Threshold concepts can be identified for any discipline and provide a framework for linking student learning to curricular design. Threshold concepts represent a transformed understanding of a discipline, without which the learner cannot progress and are therefore pivotal in learning in a discipline. Although threshold concepts have been…

  6. Applications of Concept Mapping

    ERIC Educational Resources Information Center

    De Simone, Christina

    2007-01-01

    This article reviews three major uses of the concept-mapping strategies for postsecondary learning: the external representation of concept maps as an external scratch pad to represent major ideas and their organization, the mental construction of concept maps when students are seeking a time-efficient tool, and the electronic construction and…

  7. Concepts: a potboiler.

    PubMed

    Fodor, J

    1994-01-01

    An informal, but revisionist, discussion of the role that the concept of a concept plays in recent theories of the cognitive mind. It is argued that the practically universal assumption that concepts are (at least partially) individuated by their roles in inferences is probably mistaken. A revival of conceptual atomism appears to be the indicated alternative. PMID:8039378

  8. MSL-RAD Cruise Operations Concept

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Zeitlin, Cary; Hassler, Donald; Weigle, Gerald E.; Boettcher, Stephan; Martin, Cesar; Wimmer-Schweingrubber, Robert

    2012-01-01

    The Mars Science Laboratory (MSL) payload includes the Radiation Assessment Detector (RAD) instrument, intended to fully characterize the radiation environment for the MSL mission. The RAD instrument operations concept is intended to reduce impact to spacecraft resources and effort for the MSL operations team. By design, RAD autonomously performs regular science observations without the need for frequent commanding from the Rover Compute Element (RCE). RAD operates with pre-defined "sleep" and "observe" periods, with an adjustable duty cycle for meeting power and data volume constraints during the mission. At the start of a new science observation, RAD performs a pre-observation activity to assess count rates for selected RAD detector elements. Based on this assessment, RAD can enter "solar event" mode, in which instrument parameters (including observation duration) are selected to more effectively characterize the environment. At the end of each observation period, RAD stores a time-tagged, fixed length science data packet in its non-volatile mass memory storage. The operating cadence is defined by adjustable parameters, also stored in non-volatile memory within the instrument. Periodically, the RCE executes an on-board sequence to transfer RAD science data packets from the instrument mass storage to the MSL downlink buffer. Infrequently, the RAD instrument operating configuration is modified by updating internal parameter tables and configuration entries.

  9. NASA's Gravitational-Wave Mission Concept Study

    NASA Astrophysics Data System (ADS)

    Stebbins, Robin; Jennrich, Oliver; McNamara, Paul

    2012-07-01

    With the conclusion of the NASA/ESA partnership on the Laser interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons, the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines, and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility, to define a conceptual design, evaluate key performance parameters, assess risk and estimate cost and schedule. The Study results are summarized.

  10. NASA's Gravitational - Wave Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin; Jennrich, Oliver; McNamara, Paul

    2012-01-01

    With the conclusion of the NASA/ESA partnership on the Laser Interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons. the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines. and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility. to define a conceptual design evaluate kt,y performance parameters. assess risk and estimate cost and schedule. The Study results are summarized.

  11. Laparoscopic Multifunctional Instruments: Design and Testing of Initial Prototypes

    PubMed Central

    Schadler, Jeremy; Haluck, Randy S.; Culkar, Kristin; Dziedzic, Ryan

    2005-01-01

    Background: Advances in minimally invasive surgical techniques will require new types of instrument end-effectors for smaller, longer, and flexible instruments. These include a new class of multifunctional instruments capable of performing more than 1 task with a single set of working jaws. Furthermore, it is desired that multifunctional instruments be designed to provide improved dexterity compared with that in currently commercially available instruments. Methods: Three prototypes of multifunctional laparoscopic surgical instruments are described: (1) a mechanical scissors-grasper, (2) a mechanical scissors-grasper-articulator, and (3) a compliant mechanism scissors-grasper. Methods of baseline analysis, design methods and considerations, and subjective evaluations of interim prototypes are presented. Results: The 3 prototypes demonstrate promising early results. However, based on subjective evaluation, these prototypes do not perform individual functions as well as basic disposable single-function laparoscopic instruments do. Conclusions: The concept of multifunctionality and increased end-effector dexterity is achievable as demonstrated by the prototypes presented. Further work is required to refine, simplify, and improve the multifunctional instruments to a point where they may be useful as surgical tools. PMID:15791983

  12. Assertive Community Treatment (ACT)

    MedlinePlus

    ... community treatment? Assertive community treatment (ACT) is a model of psychiatric care that can be very effective ... it the most. Similar to the “treatment team” model of an inpatient psychiatric unit, which includes nurses, ...

  13. The ACTS propagation program

    NASA Technical Reports Server (NTRS)

    Chakraborty, Dayamoy; Davarian, Faramaz

    1991-01-01

    The purpose of the Advanced Communications Technology Satellite (ACTS) is to demonstrate the feasibility of the Ka-band (20 and 30 GHz) spectrum for satellite communications, as well as to help maintain U.S. leadership in satellite communications. ACTS incorporates such innovative schemes as time division multiple access (TDMA), microwave and baseband switching, onboard regeneration, and adaptive application of coding during rain-fade conditions. The success or failure of the ACTS experiment will depend on how accurately the rain-fade statistics and fade dynamics can be predicted in order to derive an appropriate algorithm that will combat weather vagaries, specifically for links with small terminals, such as very small aperture terminals (VSAT's) where the power margin is a premium. This article describes the planning process and hardware development program that will comply with the recommendations of the ACTS propagation study groups.

  14. ACTS mobile SATCOM experiments

    NASA Technical Reports Server (NTRS)

    Abbe, Brian S.; Frye, Robert E.; Jedrey, Thomas C.

    1993-01-01

    Over the last decade, the demand for reliable mobile satellite communications (satcom) for voice, data, and video applications has increased dramatically. As consumer demand grows, the current spectrum allocation at L-band could become saturated. For this reason, NASA and the Jet Propulsion Laboratory are developing the Advanced Communications Technology Satellites (ACTS) mobile terminal (AMT) and are evaluating the feasibility of K/Ka-band (20/30 GHz) mobile satcom to meet these growing needs. U.S. industry and government, acting as co-partners, will evaluate K/Ka-band mobile satcom and develop new technologies by conducting a series of applications-oriented experiments. The ACTS and the AMT testbed will be used to conduct these mobile satcom experiments. The goals of the ACTS Mobile Experiments Program and the individual experiment configurations and objectives are further presented.

  15. Visitor instruments in the ESO Very Large Telescope Observatory in Paranal

    NASA Astrophysics Data System (ADS)

    Robert, Pascal

    2008-07-01

    This paper is presenting the implementation of the concept of a Visitor Instrument at the Very Large Telescope observatory of ESO at Paranal. The focus on the Nasmyth A of Melipal UT#3 (8m telescope) is dedicated to receive these Visitor Instruments. This concept consists in the installation of an Instrument at the Visitor focus for an observation run for a limited period of time, and then to remove the instrument. The selection of the instrument is done according to its scientific and innovative outcome compared to the other ESO instruments already existing in the observatory. Once granted an observation run of several nights, the visitor Instrument has to show its compliance with the requirements of Paranal Observatory. Then the implementation and integration of the Visitor Instrument are scheduled according to the needs of the Institute who developed the instrument. The instrument is installed at Paranal with the support of ESO staff. The Visitor Instrument can be operated in 2 different modes according to its level of compliance to the ESO specifications. Immediately after the observation run is finished, the instrument is removed from the Visitor Focus.

  16. XEUS mission and instruments

    NASA Astrophysics Data System (ADS)

    Bavdaz, Marcos; Peacock, Anthony J.; Parmar, Arvind N.; Beijersbergen, Marco W.

    2002-01-01

    The X-ray Evolving Universe Spectroscopy mission (XEUS) is an ambitious project under study by the European Space Agency (ESA), which aims to probe the distant hot universe with comparable sensitivity to NGST and ALMA. The effective optical area and angular resolution required to perform this task is 30 m2 effective area and <5 inch angular resolution respectively at 1 keV. The single Wolter-I X-ray telescope having these characteristics will be equipped with large area semiconductor detectors and high-resolution cryogenic imaging spectrometers with 2 eV resolution at 1 keV. A novel approach to mission design has been developed, placing the detector instruments on one dedicated spacecraft and the optics on another. The International Space Station (ISS) with the best ever-available infrastructure in space will be used to expand the mirror diameter from 4.5 m to 10 m, by using the European Robotic Arm on the ISS. The detector spacecraft (DSC) uses solar-electric propulsion to maintain its position while flying in formation with the mirror spacecraft. The detector instruments are protected from straylight and contamination by sophisticated baffles and filters, and employing the Earth as a shield to make the most sensitive low energy X-ray observations of the heavily red-shifted universe. After completion of an initial observation phase lasting 5 years, the mirror spacecraft will be upgraded (basically expanded to a full 10 m diameter mirror) at the ISS, while the DSC is replaced by a new spacecraft with a new suite of detector instruments optimised to the full area XEUS mirror. An industrial feasibility study was successfully completed and identified no major problem area. Current activities focus on a full system level study and the necessary technology developments. XEUS is likely to become a truly global mission, involving many of the partners that have teamed up to build the ISS. Japan is already a major partner int the study of XEUS, with ISAS having its main

  17. The ACTS propagation program

    NASA Technical Reports Server (NTRS)

    Chakraborty, D.; Davarian, Faramaz

    1992-01-01

    The success or failure of the ACTS experiment will depend on how accurately the rain-fade statistics and fade dynamics can be predicted in order to derive an appropriate algorithm that will combat weather vagaries, specifically for links with small terminals, such as very small aperture terminals (VSAT's) where the power margin is a premium. The planning process and hardware development program that will comply with the recommendations of the ACTS propagation study groups are described.

  18. Marine geodesy - Problem areas and solution concepts

    NASA Technical Reports Server (NTRS)

    Saxena, N.

    1974-01-01

    This paper deals with a conceptional geodetic approach to solve various oceanic problems, such as submersible navigation under iced seas, demarcation/determination of boundaries in open ocean, resolving sea-level slope discrepancy, improving tsunami warning system, ecology, etc., etc. The required instrumentation is not described here. The achieved as well as desired positional accuracy estimates in open ocean for various tasks are also given.

  19. Development and validation of the conceptions of scientific theories test

    NASA Astrophysics Data System (ADS)

    Cotham, Joseph C.; Smith, Edward L.

    The purpose of this study was to develop a reliable and valid instrument for use with elementary and secondary teachers of science that would have the following characteristics: 1) sensitivity to alternative conceptions of particular philosophic aspects of scientific theories, and 2) applicability in inferring understanding of the tentative and revisionary conception of the nature of science. This conception, which has educational and social importance, may be a significant influence in the teaching of science as inquiry. Thus, concern with teachers' conceptions of the nature of science and their teaching served as justification for this study. The instrument, which was applied to samples of preservice elementary teachers, college philosophy of science students, and college chemistry students, consisted of items that were adapted to the contexts of particular scientific theories by prefacing them with a brief description of a theory and episodes drawn from its history. Items were written to discriminate between alternative conceptions of the following philosophic aspects of scientific theories: testing, generation, ontological implications, and choice. Evidence in support of the validity of the instrument constructs was obtained using two approaches: discrimination between contrasting groups and the multi-trait and multi-method matrix of Campbell and Fiske. Cronbach alpha reliability coefficients and standard errors of measurement were computed for the instrument and its subtests. Reliability data indicates that an adequate degree of accuracy may be attributed to instrument scores.

  20. The NASA Advanced Communications Technology Satellite (ACTS)

    NASA Astrophysics Data System (ADS)

    Beck, G. A.

    1984-10-01

    Forecasts indicate that a saturation of the capacity of the satellite communications service will occur in the U.S. domestic market by the early 1990s. In order to prevent this from happening, advanced technologies must be developed. NASA has been concerned with such a development. One key is the exploitation of the Ka-band (30/20 GHz), which is much wider than C- and Ku-bands together. Another is the use of multiple narrow antenna beams in the satellite to achieve large frequency reuse factors with very high antenna gains. NASA has developed proof-of-concept hardware components which form the basis for a flight demonstration. The Advanced Communications Technology Satellite (ACTS) system will provide this demonstration. Attention is given to the ACTS Program definition, the ACTS Flight System, the Multibeam Communications Package, and the spacecraft bus.

  1. Instrumentation for measuring speech privacy in rooms

    NASA Astrophysics Data System (ADS)

    Horrall, Thomas; Pirn, Rein; Markham, Ben

    2003-10-01

    Federal legislation pertaining to oral privacy in healthcare and financial services industries has increased the need for a convenient and economical way to document speech privacy conditions in offices, medical examination rooms, and certain other workspaces. This legislation is embodied in the Health Insurance Portability and Accountability Act (HIPAA) and Gramm-Leach-Bliley Act (GLBA). Both laws require that reasonable measures be put in place to safeguard the oral privacy of patients and clients. While techniques for privacy documentation are known within the acoustical consulting community, it is unlikely that community alone has the capacity to provide the surveys needed to evaluate acoustical conditions and demonstrate compliance with the legislation. A portable computer with integrated soundboard and a suitable amplified loudspeaker and test microphone are all that are needed to perform in situ measurements of articulation index or other accepted indices of speech privacy. Along with modest training, such instrumentation allows technicians to survey a large number of sites economically. Cost-effective components are shown that can meet the requirements for testing in most common environments where oral privacy is likely to be required. Example cases are presented to demonstrate the feasibility of such instrumentation.

  2. Instrumentation and robotic image processing using top-down model control

    NASA Technical Reports Server (NTRS)

    Stark, Lawrence; Mills, Barbara; Nguyen, An H.; Ngo, Huy X.

    1990-01-01

    A top-down image processing scheme is described. A three-dimensional model of a robotic working environment, with robot manipulators, workpieces, cameras, and on-the-scene visual enhancements is employed to control and direct the image processing, so that rapid, robust algorithms act in an efficient manner to continually update the model. Only the model parameters are communicated, so that savings in bandwidth are achieved. This image compression by modeling is especially important for control of space telerobotics. The background for this scheme lies in an hypothesis of human vision put forward by the senior author and colleagues almost 20 years ago - the Scanpath Theory. Evidence was obtained that repetitive sequences of saccadic eye movements, the scanpath, acted as the checking phase of visual pattern recognition. Further evidence was obtained that the scanpaths were apparently generated by a cognitive model and not directly by the visual image. This top-down theory of human vision was generalized in some sense to the frame in artificial intelligence. Another source of the concept arose from bioengineering instrumentation for measuring the pupil and eye movements with infrared video cameras and special-purpose hardware.

  3. The GEMS X-Ray Polarlimeter: Instrument Concpet and Calibration Requirements

    NASA Technical Reports Server (NTRS)

    Jahoda, Keith

    2010-01-01

    The instrument and detector concepts for the Gravity and Extreme Magnetism Small Explorer (GEMS) X-ray polarimetry mission will be presented. The calibration requirements for astrophysical X-ray polarimeters in general and GEMS in particular will be discussed.

  4. Multi-Functional Lidar Instrument for Global Measurement of Mars Atmosphere

    NASA Astrophysics Data System (ADS)

    Amzajerdian, F.; Busch, G. E.; Edwards, W. C.; Dwyer Cianciolo, A. M.; Munk, M. M.

    2012-06-01

    This paper describes an orbiting lidar instrument concept capable of providing Mars atmospheric parameters critical to design of future robotic and manned missions requiring advanced aerocapture, precision landing, and launch from Mars surface.

  5. Concept analysis of mentoring.

    PubMed

    2013-10-01

    The purpose of a concept analysis is to examine the structure and function of a concept by defining its attributes and internal structure. Concept analysis can clarify an overused or vague concept and promote mutual understanding by providing a precise operational definition. Mentoring is a concept more fully used by other fields, such as business, than in nursing and may not always translate well for use in nursing. Therefore, clarifying the meaning of the existing concept of mentoring and developing an operational definition for use in nursing are aims of this concept analysis. Mentoring is broadly based and concentrates on developing areas such as career progression, scholarly achievements, and personal development. Mentoring relationships are based around developing reciprocity and accountability between each partner. Mentoring is seen related to transition in practice, role acquisition, and socialization, as a way to support new colleagues. Mentorship is related to nurses' success in nursing practice linked to professionalism, nursing quality improvement, and self-confidence. PMID:24042140

  6. Instrumented Pipeline Initiative

    SciTech Connect

    Thomas Piro; Michael Ream

    2010-07-31

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  7. Sentinel-1 Instrument Overview

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Torres, Ramon; Geudtner, Dirk; Brown, Michael; Deghaye, Patrick; Navas-Traver, Ignacio; Ostergaard, Allan; Rommen, Bjorn; Floury, Nicolas; Davidson, Malcolm

    2013-03-01

    The forthcoming European Space Agency (ESA) Sentinel-1 (S-1) C-band SAR constellation will provide continuous all-weather day/night global coverage, with six days exact repetition time (near daily coverage over Europe and Canada) and with radar data delivery within 3 to 24 hours. These features open new possibilities for operational maritime services. The Sentinel-1 space segment has been designed and is being built by an industrial consortium with Thales Alenia Space Italia as prime contractor and EADS Astrium GmbH as C-SAR instrument responsible. It is expected that Sentinel-1A be launched in 2013. This paper will provide an overview of the Sentinel-1 system, the status and characteristics of the technical implementation. The key elements of the system supporting the maritime user community will be highlighted.

  8. Instrumentation and radiopharmaceutical validation.

    PubMed

    Zigler, S S

    2009-08-01

    Although the promise of new positron emission tomography (PET) imaging agents is great, the process of bringing these agents to commercialization remains in its infancy. There are no PET products today that have gone through the full clinical and chemistry development process required to gain marketing approval by the US Food and Drug Administration (FDA). The purpose of this paper was to review validation from the perspective of the chemistry, manufacturing and controls (CMC) section of an FDA filing, as well as the validation requirements described in FDA good manufacturing practice (GMP) regulations, guidance documents and general chapters of the US Pharmacopeia (USP). The review includes discussion of validation from development to commercial production of PET radiopharmaceuticals with a special emphasis on equipment and instrumentation used in production and testing. The goal is to stimulate a dialog that leads to the standardization of industry practices and regulatory requirements for validation practices in PET. PMID:19834450

  9. Well surveying instrument sensor

    SciTech Connect

    Poquette, R.S.

    1981-01-20

    A surveying instrument sensor which includes a gimbal supported for rotation within a casing, a torquer coupled to rotate the gimbal with a first two-axis flexure suspended gyro supported on the gimbal with its spin axis perpendicular to the axis of the gimbal and one of its sensitive axes aligned with the axis of the gimbal, a second two-axis flexure suspended gyro disposed on the gimbal with its spin axis alinged with the axis of the gimbal and having two sensitive axes outputs orthogonal thereto. The output of the first gyro is coupled to the torquer to form a gimbal stabilized loop and the outputs and torquing inputs of the second gimbal coupled into rate capture loops with output signals obtained from the rate captured loops permitting fast and accurate surveying of a well pipe.

  10. NEUTRONIC REACTOR CORE INSTRUMENT

    DOEpatents

    Mims, L.S.

    1961-08-22

    A multi-purpose instrument for measuring neutron flux, coolant flow rate, and coolant temperature in a nuclear reactor is described. The device consists essentially of a hollow thimble containing a heat conducting element protruding from the inner wall, the element containing on its innermost end an amount of fissionsble materinl to function as a heat source when subjected to neutron flux irradiation. Thermocouple type temperature sensing means are placed on the heat conducting element adjacent the fissionable material and at a point spaced therefrom, and at a point on the thimble which is in contact with the coolant fluid. The temperature differentials measured between the thermocouples are determinative of the neutron flux, coolant flow, and temperature being measured. The device may be utilized as a probe or may be incorporated in a reactor core. (AE C)

  11. Portable musical instrument amplifier

    DOEpatents

    Christian, David E.

    1990-07-24

    The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.

  12. Instrumentation Working Group Summary

    NASA Technical Reports Server (NTRS)

    Zaller, Michelle; Miake-Lye, Richard

    1999-01-01

    The Instrumentation Working Group compiled a summary of measurement techniques applicable to gas turbine engine aerosol precursors and particulates. An assessment was made of the limits, accuracy, applicability, and technology readiness of the various techniques. Despite advances made in emissions characterization of aircraft engines, uncertainties still exist in the mechanisms by which aerosols and particulates are produced in the near-field engine exhaust. To adequately assess current understanding of the formation of sulfuric acid aerosols in the exhaust plumes of gas turbine engines, measurements are required to determine the degree and importance of sulfur oxidation in the turbine and at the engine exit. Ideally, concentrations of all sulfur species would be acquired, with emphasis on SO2 and SO3. Numerous options exist for extractive and non-extractive measurement of SO2 at the engine exit, most of which are well developed. SO2 measurements should be performed first to place an upper bound on the percentage of SO2 oxidation. If extractive and non-extractive techniques indicate that a large amount of the fuel sulfur is not detected as SO2, then efforts are needed to improve techniques for SO3 measurements. Additional work will be required to account for the fuel sulfur in the engine exhaust. Chemical Ionization Mass Spectrometry (CI-MS) measurements need to be pursued, although a careful assessment needs to be made of the sampling line impact on the extracted sample composition. Efforts should also be placed on implementing non-intrusive techniques and extending their capabilities by maximizing exhaust coverage for line-of-sight measurements, as well as development of 2-D techniques, where feasible. Recommendations were made to continue engine exit and combustor measurements of particulates. Particulate measurements should include particle size distribution, mass fraction, hydration properties, and volatile fraction. However, methods to ensure that unaltered

  13. LANDSAT instruments characterization

    NASA Technical Reports Server (NTRS)

    Lee, Y. (Principal Investigator)

    1984-01-01

    Work performed for the LANDSAT instrument characterization task in the areas of absolute radiometry, coherent noise analysis, and between-date smoothing is reported. Absolute radiometric calibration for LANDSAT-5 TM under ambient conditions was performed. The TM Radiometric Algorithms and Performance Program (TRAPP) was modified to create optional midscan data files and to match the TM Image Processing System (TIPS) algorithm for pulse determination. Several data reduction programs were developed, including a linear regression and its plotted result. A fast Fourier transformation study was conducted on the resequenced TM data. Subscenes of homogeneous water within scenes over Pensacola, Florida were used for testing the FFT on the resequenced data. Finally, a gain and pulse height stability study of LANDSAT 5 TM spectral bands was performed.

  14. Instrumented Architectural Simulation System

    NASA Technical Reports Server (NTRS)

    Delagi, B. A.; Saraiya, N.; Nishimura, S.; Byrd, G.

    1987-01-01

    Simulation of systems at an architectural level can offer an effective way to study critical design choices if (1) the performance of the simulator is adequate to examine designs executing significant code bodies, not just toy problems or small application fragements, (2) the details of the simulation include the critical details of the design, (3) the view of the design presented by the simulator instrumentation leads to useful insights on the problems with the design, and (4) there is enough flexibility in the simulation system so that the asking of unplanned questions is not suppressed by the weight of the mechanics involved in making changes either in the design or its measurement. A simulation system with these goals is described together with the approach to its implementation. Its application to the study of a particular class of multiprocessor hardware system architectures is illustrated.

  15. Assessment of student conceptions of evolutionary trees

    NASA Astrophysics Data System (ADS)

    Blacquiere, Luke

    Biologists use evolutionary trees to depict hypotheses about the relationships among taxa. Trees possess lines that represent lineages, internal nodes that represent where lineages become evolutionarily isolated from one another and terminal nodes that represent the taxa under consideration. Interpreting a tree (i.e., "tree-thinking") is an important skill for biologists yet many students struggle when reading evolutionary trees. Common documented misconceptions include using morphological similarity, internal node counting or terminal node proximity, instead of identifying the internal node that represents a most recent common ancestor (MRCA), to determine relationships among taxa. I developed an instrument to assess whether students were using common ancestry or another, non-scientific, strategy to determine relationships among taxa. The study is the first to explicitly test hypotheses about how students approach reading evolutionary trees. To test the hypotheses an instrument was developed. The instrument is the first reliable and valid assessment testing student understanding of how to use most recent common ancestor to interpret evolutionary relationships in tree diagrams. Instructors can use the instrument as a diagnostic tool enabling them to help students learn this challenging concept. This study shows that, contrary to the assertion that students hold misconceptions about evolutionary trees made in the literature, students do not consistently use erroneous strategies when interpreting trees. This study suggests that a constructivist perspective of cognitive structure describes students' conception of evolutionary trees more closely than a misconception perspective.

  16. Learning style preference and student aptitude for concept maps.

    PubMed

    Kostovich, Carol T; Poradzisz, Michele; Wood, Karen; O'Brien, Karen L

    2007-05-01

    Acknowledging that individuals' preferences for learning vary, faculty in an undergraduate nursing program questioned whether a student's learning style is an indicator of aptitude in developing concept maps. The purpose of this research was to describe the relationship between nursing students' learning style preference and aptitude for concept maps. The sample included 120 undergraduate students enrolled in the adult health nursing course. Students created one concept map and completed two instruments: the Learning Style Survey and the Concept Map Survey. Data included Learning Style Survey scores, grade for the concept map, and grade for the adult health course. No significant difference was found between learning style preference and concept map grades. Thematic analysis of the qualitative survey data yielded further insight into students' preferences for creating concept maps. PMID:17547346

  17. Unified chromatography: Fundamentals, instrumentation and applications.

    PubMed

    Silva, Meire R; Andrade, Felipe N; Fumes, Bruno H; Lanças, Fernando M

    2015-09-01

    The concept of unified chromatography has been in existence for 50 years after the work of Giddings proposing that all modes of chromatography (gas chromatography, liquid chromatography, supercritical fluid chromatography and so on) may be treated together under a single unified theory. His idea was partially fulfilled 23 years later by Ishii, Takeuchi and colleagues, who demonstrated for the first time the possibility to analyze a complex sample containing substances with a wide range of boiling points and polarities in the same instrument and column, just by varying the mobile phase pressure and temperature to change from one chromatographic mode to another. This approach has been demonstrated through application to the separation of complex mixtures in several areas including crude oil, edible oils and polymers. Still, unified chromatography has not yet been fully developed. In the present work, we will review the fundamentals, instrumentation and several applications of the technique. Also discussed are the drawbacks that still hinder development, as well as the recent developments and trends in instrumentation and columns that suggest the most feasible ways forward to the full development of unified chromatography. PMID:26105757

  18. Analytic Method for Computing Instrument Pointing Jitter

    NASA Technical Reports Server (NTRS)

    Bayard, David

    2003-01-01

    A new method of calculating the root-mean-square (rms) pointing jitter of a scientific instrument (e.g., a camera, radar antenna, or telescope) is introduced based on a state-space concept. In comparison with the prior method of calculating the rms pointing jitter, the present method involves significantly less computation. The rms pointing jitter of an instrument (the square root of the jitter variance shown in the figure) is an important physical quantity which impacts the design of the instrument, its actuators, controls, sensory components, and sensor- output-sampling circuitry. Using the Sirlin, San Martin, and Lucke definition of pointing jitter, the prior method of computing the rms pointing jitter involves a frequency-domain integral of a rational polynomial multiplied by a transcendental weighting function, necessitating the use of numerical-integration techniques. In practice, numerical integration complicates the problem of calculating the rms pointing error. In contrast, the state-space method provides exact analytic expressions that can be evaluated without numerical integration.

  19. Instrumentation and control systems, equipment location; instrumentation and control building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Instrumentation and control systems, equipment location; instrumentation and control building, instrumentation room, bays and console plan. Specifications No. Eng-04-353-55-72; drawing no. 60-09-12; sheet 110 of 148; file no. 1321/61. Stamped: Record drawing - as constructed. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA

  20. The CEO's second act.

    PubMed

    Nadler, David A

    2007-01-01

    When a CEO leaves because of performance problems, the company typically recruits someone thought to be better equipped to fix what the departing executive couldn't--or wouldn't. The board places its confidence in the new person because of the present dilemma's similarity to some previous challenge that he or she dealt with successfully. But familiar problems are inevitably succeeded by less familiar ones, for which the specially selected CEO is not quite so qualified. More often than not, the experiences, skills, and temperament that yielded triumph in Act I turn out to be unequal to Act II's difficulties. In fact, the approaches that worked so brilliantly in Act I may be the very opposite of what is needed in Act II. The CEO has four choices: refuse to change, in which case he or she will be replaced; realize that the next act requires new skills and learn them; downsize or circumscribe his or her role to compensate for deficiencies; or line up a successor who is qualified to fill a role to which the incumbent's skills and interests are no longer suited. Hewlett-Packard's Carly Fiorina exemplifies the first alternative; Merrill Lynch's Stanley O'Neal the second; Google's Sergey Brin and Larry Page the third; and Quest Diagnostics' Ken Freeman the fourth. All but the first option are reasonable responses to the challenges presented in the second acts of most CEOs' tenures. And all but the first require a power of observation, a propensity for introspection, and a strain of humility that are rare in the ranks of the very people who need those qualities most. There are four essential steps executives can take to discern that they have entered new territory and to respond accordingly: recognition that their leadership style and approach are no longer working; acceptance of others' advice on why performance is faltering; analysis and understanding of the nature of the Act II shift; and, finally, decision and action. PMID:17286076

  1. Realism, positivism, instrumentalism, and quantum geometry

    NASA Astrophysics Data System (ADS)

    Prugovečki, Eduard

    1992-02-01

    The roles of classical realism, logical positivism, and pragmatic instrumentalism in the shaping of fundamental ideas in quantum physics are examined in the light of some recent historical and sociological studies of the factors that influenced their development. It is shown that those studies indicate that the conventionalistic form of instrumentalism that has dominated all the major post-World War II developments in quantum physics is not an outgrowth of the Copenhagen school, and that despite the “schism” in twentieth century physics created by the Bohr-Einstein “disagreements” on foundational issues in quantum theory, both their philosophical stands were very much opposed to those of conventionalistic instrumentalism. Quotations from the writings of Dirac, Heisenberg, Popper, Russell, and other influential thinkers, are provided, illustrating the fact that, despite the various divergencies in their opinions, they all either opposed the instrumentalist concept of “truth” in general, or its conventionalistic version in post-World War II quantum physics in particular. The basic epistemic ideas of a quantum geometry approach to quantum physics are reviewed and discussed from the point of view of a quantum realism that seeks to reconcile Bohr's “positivism” with Einstein's “realism” by emphasizing the existence of an underlying quantum reality, in which they both believed. This quantum geometry framework seeks to introduce geometro-stochastic concepts that are specifically designed for the systematic description of that underlying quantum reality, by developing the conceptual and mathematical tools that are most appropriate for such a use.

  2. The Relationship Between Self-Concept and Marital Adjustment for Commuter College Students

    ERIC Educational Resources Information Center

    Hall, William M.; Valine, Warren J.

    1977-01-01

    An investigation was made of the relationship between self-concept and the adjustment of commuter college students. Instruments used were the Tennessee Self Concept Scale and the Locke-Wallace Marital Adjustment Test. There was a significant relationship between self-concept and marital adjustment. (Author)

  3. Pancreatitis Quality of Life Instrument: Development of a new instrument

    PubMed Central

    Bova, Carol; Barton, Bruce; Hartigan, Celia

    2014-01-01

    Objectives: The goal of this project was to develop the first disease-specific instrument for the evaluation of quality of life in chronic pancreatitis. Methods: Focus groups and interview sessions were conducted, with chronic pancreatitis patients, to identify items felt to impact quality of life which were subsequently formatted into a paper-and-pencil instrument. This instrument was used to conduct an online survey by an expert panel of pancreatologists to evaluate its content validity. Finally, the modified instrument was presented to patients during precognitive testing interviews to evaluate its clarity and appropriateness. Results: In total, 10 patients were enrolled in the focus groups and interview sessions where they identified 50 items. Once redundant items were removed, the 40 remaining items were made into a paper-and-pencil instrument referred to as the Pancreatitis Quality of Life Instrument. Through the processes of content validation and precognitive testing, the number of items in the instrument was reduced to 24. Conclusions: This marks the development of the first disease-specific instrument to evaluate quality of life in chronic pancreatitis. It includes unique features not found in generic instruments (economic factors, stigma, and spiritual factors). Although this marks a giant step forward, psychometric evaluation is still needed prior to its clinical use. PMID:26770703

  4. Practical considerations in developing an instrument-maintenance plan--

    SciTech Connect

    Guth, M.A.S. )

    1989-06-01

    The author develops a general set of considerations to explain how a consistent, well-organized, prioritized, and adequate time-allowance program plan for routine maintenance can be constructed. The analysis is supplemented with experience from the high flux isotope reactor (HFIR) at US Oak Ridge National Laboratory (ORNL). After the preventive maintenance (PM) problem was defined, the instruments on the schedule were selected based on the manufacturer's design specifications, quality-assurance requirements, prior classifications, experiences with the incidence of breakdowns or calibration, and dependencies among instruments. The effects of repair error in PM should be also studied. The HFIR requires three full-time technicians to perform both PM and unscheduled maintenance. A review is presented of concepts from queuing theory to determine anticipated breakdown patterns. In practice, the pneumatic instruments have a much longer lifetime than the electric/electronic instruments on various reactors at ORNL. Some special considerations and risk aversion in choosing a maintenance schedule.

  5. Microfluidic Apps for off-the-shelf instruments.

    PubMed

    Mark, Daniel; von Stetten, Felix; Zengerle, Roland

    2012-07-21

    Within the last decade a huge increase in research activity in microfluidics could be observed. However, despite several commercial success stories, microfluidic chips are still not sold in high numbers in mass markets so far. Here we promote a new concept that could be an alternative approach to commercialization: designing microfluidic chips for existing off-the-shelf instruments. Such "Microfluidic Apps" could significantly lower market entry barriers and provide many advantages: developers of microfluidic chips make use of existing equipment or platforms and do not have to develop instruments from scratch; end-users can profit from microfluidics without the need to invest in new equipment; instrument manufacturers benefit from an expanded customer base due to the new applications that can be implemented in their instruments. Microfluidic Apps could be considered as low-cost disposables which can easily be distributed globally via web-shops. Therefore they could be a door-opener for high-volume mass markets. PMID:22555343

  6. Transportation System Concept of Operations

    SciTech Connect

    N. Slater-Thompson

    2006-08-16

    The Nuclear Waste Policy Act of 1982 (NWPA), as amended, authorized the DOE to develop and manage a Federal system for the disposal of SNF and HLW. OCRWM was created to manage acceptance and disposal of SNF and HLW in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. This responsibility includes managing the transportation of SNF and HLW from origin sites to the Repository for disposal. The Transportation System Concept of Operations is the core high-level OCRWM document written to describe the Transportation System integrated design and present the vision, mission, and goals for Transportation System operations. By defining the functions, processes, and critical interfaces of this system early in the system development phase, programmatic risks are minimized, system costs are contained, and system operations are better managed, safer, and more secure. This document also facilitates discussions and understanding among parties responsible for the design, development, and operation of the Transportation System. Such understanding is important for the timely development of system requirements and identification of system interfaces. Information provided in the Transportation System Concept of Operations includes: the functions and key components of the Transportation System; system component interactions; flows of information within the system; the general operating sequences; and the internal and external factors affecting transportation operations. The Transportation System Concept of Operations reflects OCRWM's overall waste management system policies and mission objectives, and as such provides a description of the preferred state of system operation. The description of general Transportation System operating functions in the Transportation System Concept of Operations is the first step in the OCRWM systems engineering process, establishing the starting point for the lower level

  7. Development of the Levey-Nowak Embedded Librarian Presence Instrument: A Preliminary Study

    ERIC Educational Resources Information Center

    Levey, Janet A.; Nowak, Karen L.

    2015-01-01

    A cross-sectional descriptive design was used to examine the initial psychometric properties and feasibility of the newly developed Levey-Nowak Embedded Librarian Presence Instrument. The instrument was structured by a literature review identifying reoccurring concepts of presence, helpfulness, confidence, and collaboration within the embedded…

  8. Measuring Stakeholder Participation in Evaluation: An Empirical Validation of the Participatory Evaluation Measurement Instrument (PEMI)

    ERIC Educational Resources Information Center

    Daigneault, Pierre-Marc; Jacob, Steve; Tremblay, Joel

    2012-01-01

    Background: Stakeholder participation is an important trend in the field of program evaluation. Although a few measurement instruments have been proposed, they either have not been empirically validated or do not cover the full content of the concept. Objectives: This study consists of a first empirical validation of a measurement instrument that…

  9. Assessing the Application of the Neighborhood Cohesion Instrument to Community Research in East Asia

    ERIC Educational Resources Information Center

    Li, Chun-Hao; Hsu, Ping-Hsiang; Hsu, Shu-Yao

    2011-01-01

    Buckner (1988) extensively reviewed theoretical concepts proposed by a variety of scholars and developed the Neighborhood Cohesion Instrument (NCI) to measure three latent constructs (attraction to neighborhood, neighboring, and psychological sense of community). This instrument has been applied in most Western countries. The purpose of this…

  10. Relations among Motivation, Performance Achievement, and Music Experience Variables in Secondary Instrumental Music Students

    ERIC Educational Resources Information Center

    Schmidt, Charles P.

    2005-01-01

    The purpose of this study was to (1) reexamine academic achievement motivation orientations within the context of instrumental music, and (2) examine relations among achievement motivation orientations, self-concept in instrumental music, and attitude to band in relation to teachers' ratings of performance achievement and effort, and students'…

  11. A Review and Comparison of Diagnostic Instruments to Identify Students' Misconceptions in Science

    ERIC Educational Resources Information Center

    Gurel, Derya Kaltakci; Eryilmaz, Ali; McDermott, Lillian Christie

    2015-01-01

    Different diagnostic tools have been developed and used by researchers to identify students' conceptions. The present study aimed to provide an overview of the common diagnostic instruments in science to assess students' misconceptions. Also the study provides a brief comparison of these common diagnostic instruments with their strengths and…

  12. An Instrument to Determine the Technological Literacy Levels of Upper Secondary School Students

    ERIC Educational Resources Information Center

    Luckay, Melanie B.; Collier-Reed, Brandon I.

    2014-01-01

    In this article, an instrument for assessing upper secondary school students' levels of technological literacy is presented. The items making up the instrument emerged from a previous study that employed a phenomenographic research approach to explore students' conceptions of technology in terms of their understanding of the "nature…

  13. The ACTS multibeam antenna

    NASA Astrophysics Data System (ADS)

    Regier, Frank A.

    1992-06-01

    The Advanced Communications Technology Satellite (ACTS) to be launched in 1993 is briefly introduced. Its multibeam antenna, consisting of electrically similar 30 GHz receive and 20 GHz transmit offset Cassegrain systems, both utilizing orthogonal polarizations, is described. Dual polarization is achieved by using one feed assembly for each polarization in conjunction with nested front and back subreflectors, the gridded front subreflector acting as a window for one polarization and a reflector for the other. The antennas produce spot beams with approximately 0.3 degree beamwidth and gains of approximately 50 dbi. High surface accuracy and high edge taper produce low sidelobe levels and high cross-polarization isolation. A brief description is given of several Ka-band components fabricated for ACTS. These include multiflare antenna feedhorns, beam-forming networks utilizing latching ferrite waveguide switches, a 30 GHz HEMT low-noise amplifier and a 20 GHz TWT power amplifier.

  14. The ACTS multibeam antenna

    NASA Technical Reports Server (NTRS)

    Regier, Frank A.

    1992-01-01

    The Advanced Communications Technology Satellite (ACTS) to be launched in 1993 is briefly introduced. Its multibeam antenna, consisting of electrically similar 30 GHz receive and 20 GHz transmit offset Cassegrain systems, both utilizing orthogonal polarizations, is described. Dual polarization is achieved by using one feed assembly for each polarization in conjunction with nested front and back subreflectors, the gridded front subreflector acting as a window for one polarization and a reflector for the other. The antennas produce spot beams with approximately 0.3 degree beamwidth and gains of approximately 50 dbi. High surface accuracy and high edge taper produce low sidelobe levels and high cross-polarization isolation. A brief description is given of several Ka-band components fabricated for ACTS. These include multiflare antenna feedhorns, beam-forming networks utilizing latching ferrite waveguide switches, a 30 GHz HEMT low-noise amplifier and a 20 GHz TWT power amplifier.

  15. Comparing the content of participation instruments using the International Classification of Functioning, Disability and Health

    PubMed Central

    2009-01-01

    Background The concept of participation is recognized as an important rehabilitation outcome and instruments have been developed to measure participation using the International Classification of Functioning, Disability and Health (ICF). To date, few studies have examined the content of these instruments to determine how participation has been operationalized. The purpose of this study was to compare the content of participation instruments using the ICF classification. Methods A systematic literature search was conducted to identify instruments that assess participation according to the ICF. Instruments were considered to assess participation and were included if the domains contain content from a minimum of three ICF chapters ranging from Chapter 3 Communication to Chapter 9 Community, social and civic life in the activities and participation component. The instrument content was examined by first identifying the meaningful concepts in each question and then linking these concepts to ICF categories. The content analysis included reporting the 1) ICF chapters (domains) covered in the activities and participation component, 2) relevance of the meaningful concepts to the activities and participation component and 3) context in which the activities and participation component categories are evaluated. Results Eight instruments were included: Impact on Participation and Autonomy, Keele Assessment of Participation, Participation Survey/Mobility, Participation Measure-Post Acute Care, Participation Objective Participation Subjective, Participation Scale (P-Scale), Rating of Perceived Participation and World Health Organization Disability Assessment Schedule II (WHODAS II). 1351 meaningful concepts were identified in the eight instruments. There are differences among the instruments regarding how participation is operationalized. All the instruments cover six to eight of the nine chapters in the activities and participation component. The P-Scale and WHODAS II have

  16. A Physics of Semiconductors Concept Inventory

    NASA Astrophysics Data System (ADS)

    Ene, Emanuela; Bruce J. Ackerson Collaboration; Alan Cheville Collaboration

    2011-03-01

    Following the trend in science and engineering education generated by the visible impact that the Force Concept Inventory (FCI) has created, a Physics of Semiconductors Concept Inventory (PSCI) has been developed. Whereas most classroom tests measure how many facts students can remember, or if they can manipulate equations, PSCI measures how well students interpret concepts and how well they can infer new knowledge from already learned knowledge. Operationalized in accordance with the revised Bloom's taxonomy, the multiple--choice items of the PSCI address the ``understand'', ``apply'', ``analyze'' and ``evaluate'' levels of cognition. Once standardized, PSCI may be used as a predictor for students' academic performance in the field of semiconductors and as an assessment instrument for instructional strategies.

  17. Learning computer science concepts with Scratch

    NASA Astrophysics Data System (ADS)

    Meerbaum-Salant, Orni; Armoni, Michal; (Moti) Ben-Ari, Mordechai

    2013-09-01

    Scratch is a visual programming environment that is widely used by young people. We investigated if Scratch can be used to teach concepts of computer science (CS). We developed learning materials for middle-school students that were designed according to the constructionist philosophy of Scratch and evaluated them in a few schools during two years. Tests were constructed based upon a novel combination of the revised Bloom taxonomy and the Structure of the Observed Learning Outcome taxonomy. These instruments were augmented with qualitative tools, such as observations and interviews. The results showed that students could successfully learn important concepts of CS, although there were problems with some concepts such as repeated execution, variables, and concurrency. We believe that these problems can be overcome by modifications to the teaching process that we suggest.

  18. [Health Technology Dependency: A Concept Analysis].

    PubMed

    Chen, Miao-Yi; Chen, Ting-Yu; Kao, Chi-Wen

    2016-02-01

    Health technology dependence is a widely recognized concept that refers to the utilization of technology, including drugs, equipment, instruments, and related devices, to compensate for a physical disability or to prevent the progression of a disability. Although technology may significantly prolong the life of a patient, technology may also increase the psychological pressure of these patients and the burdens of their caregivers. There is a current dearth of related research and discussions related to the concept of "health technology dependency". Therefore, the present paper uses the strategies of concept analysis described by Walker & Avant (2010) to analyze this concept. The characteristic definition of health technology dependence addresses individuals who: (1) currently live with health technology, (2) may perceive physical or psychological burdens due to health technology, and (3) feel physical and psychological well-being when coping positively with their health technology dependency and, further, regard health technology as a part of their body. Further, the present paper uses case examples to help analyze the general concept. It is hoped that nurses may better understand the concept of "health technology dependency", consider the concerns of health-technology-dependent patients and their families, and develop relevant interventions to promote the well-being of these patients and their families. PMID:26813069

  19. Two Radiative/Thermochemical Instruments

    NASA Technical Reports Server (NTRS)

    Tapphorn, Ralph M.; Janoff, Dwight D.; Shelley, Richard M.

    1990-01-01

    Measurements of absorption and emission complement thermal measurements. Two laboratory instruments for research in combustion and pyrolysis equipped for radiative as well as thermal measurements. One instrument essentially differential scanning calorimeter (DSC) modified to detect radiation emitted by flames. Provides means to evaluate limits of flammability of materials exhibiting exothermic reactions in DSC's. Other instrument used to determine pyrolysis properties of specimens exposed to various gases by measurement of infrared absorption spectra of pyrolysis products.

  20. Instrumentation in Frontal Sinus Surgery.

    PubMed

    Tajudeen, Bobby A; Adappa, Nithin D

    2016-08-01

    Frontal recess dissection proposes many challenges to the surgeon. These challenges stem from its highly variable nature, small caliber, difficult visualization, and proximity to vital structures such as the skull base and orbit. As such, delicate mucosal-sparing dissection of the frontal recess with proper instrumentation is paramount to minimize scar formation and ensure patency. Here, the article explores key instrumentation in frontal recess surgery with an emphasis on hand instruments and adjunctive technologies. PMID:27329980

  1. Experimenting with string musical instruments

    NASA Astrophysics Data System (ADS)

    LoPresto, Michael C.

    2012-03-01

    What follows are several investigations involving string musical instruments developed for and used in a Science of Sound & Light course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when used in physics, represent reality that can actually be observed, in this case, the operation of string musical instruments.

  2. Detectors for Tomorrow's Instruments

    NASA Technical Reports Server (NTRS)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  3. Radiological instrument. Patent Application

    SciTech Connect

    Kronenberg, S.; McLaughlin, W.L.; Siebentritt, C.R.

    1985-10-10

    This patent application discloses a radiological measuring instrument including an angularly variable radiation-sensitive structure comprised of two blocks of material having a different index of refraction with one of the materials comprising a radiochromic substance whose refractive index changes through anomolous dispersion as a result of being exposed to radiation. The ratio of the two indices of refraction is selected to be close to unity, with the radiation-sensitive structure being pivotally adjusted so that light is directed into one end of the block comprising the material having the greater index of refraction. This element, moreover, is selected to be clear and transparent with the incident angle being close to the critical angle where total reflection of all incident light occurs. A portion of the incident light is furthermore projected through the clear transparent block without reflection, with the two beams emerging from the other end of the block, where they are detected. Exposure to radiation changes the index of refraction of the radiochromic block and accordingly the reflected energy emerging therefrom. Calibrated readjustment of the angle of incidence provides a measure of the sensed radiation.

  4. Halo vest instrumentation

    NASA Astrophysics Data System (ADS)

    Huston, Dryver R.; Krag, Martin

    1996-05-01

    The halo vest is a head and neck immobilization system that is often used on patients that are recovering from cervical trauma or surgery. The halo vest system consists of a rigid halo that is firmly attached to the skull, an upright support structure for stabilization and immobilization, and a torso-enveloping vest. The main purpose of this study was to measure the forces that are carried by the halo-vest structure as the subject undergoes various activities of daily living and external loading for different vest designs. A tethered strain gage load cell based instrumentation system was used to take these load measurements on ten different subjects. Three different halo-vest systems were evaluated. The primary difference between the vests was the amount of torso coverage and the use of shoulder straps. The loads were measured, analyzed and used to compare the vests and to create a model of halo-vest-neck mechanics. Future applications of this technology to standalone data logging, pin-load measuring and biofeedback applications are discussed.

  5. The Clementine instrument complement

    NASA Technical Reports Server (NTRS)

    Lucey, Paul G.

    1993-01-01

    The recent successes of the Galileo solid-state imaging (SSI) experiment at the Moon and Gaspra show the utility of multispectral imaging of planetary objects. 'Clementine' is the planetary community's 'code name' for the SDIO (Space Defense Initiative Organization), mission to the Moon and the asteroid Geographos. This mission is designed as a long term stressing test on sensors and space systems developed for SDIO. In the course of this test Clementine will obtain science data using a varied and powerful array of remote sensing instruments which were developed by or for Lawrence Livermore National Laboratory in Livermore, California. Clementine carries five cameras, one for navigation and four for science experiments. In addition, a laser ranger is included which will serve as a laser altimeter. The Clementine cameras cover a wider range of spatial resolutions and wavelength range than did Galileo and are almost ideally suited to mapping of mafic rock types as are present on the Moon and expected at Geographos. Calibration of the cameras will occur at the sensor calibration laboratory at LLNL. In flight calibrations, using standard stars and other standards should improve the stated accuracies. Signal-to-noise ratios (SNRs) include the following noise sources: shot noise, calibration error, digitization noise, readout noise, and frame transfer noise (where applicable). The achieved SNRs are a balance between detector saturation and acceptable image smear. The 'worst' case uses the longest possible integration times.

  6. The tissue diagnostic instrument

    PubMed Central

    Hansma, Paul; Yu, Hongmei; Schultz, David; Rodriguez, Azucena; Yurtsev, Eugene A.; Orr, Jessica; Tang, Simon; Miller, Jon; Wallace, Joseph; Zok, Frank; Li, Cheng; Souza, Richard; Proctor, Alexander; Brimer, Davis; Nogues-Solan, Xavier; Mellbovsky, Leonardo; Peña, M. Jesus; Diez-Ferrer, Oriol; Mathews, Phillip; Randall, Connor; Kuo, Alfred; Chen, Carol; Peters, Mathilde; Kohn, David; Buckley, Jenni; Li, Xiaojuan; Pruitt, Lisa; Diez-Perez, Adolfo; Alliston, Tamara; Weaver, Valerie; Lotz, Jeffrey

    2009-01-01

    Tissue mechanical properties reflect extracellular matrix composition and organization, and as such, their changes can be a signature of disease. Examples of such diseases include intervertebral disk degeneration, cancer, atherosclerosis, osteoarthritis, osteoporosis, and tooth decay. Here we introduce the tissue diagnostic instrument (TDI), a device designed to probe the mechanical properties of normal and diseased soft and hard tissues not only in the laboratory but also in patients. The TDI can distinguish between the nucleus and the annulus of spinal disks, between young and degenerated cartilage, and between normal and cancerous mammary glands. It can quantify the elastic modulus and hardness of the wet dentin left in a cavity after excavation. It can perform an indentation test of bone tissue, quantifying the indentation depth increase and other mechanical parameters. With local anesthesia and disposable, sterile, probe assemblies, there has been neither pain nor complications in tests on patients. We anticipate that this unique device will facilitate research on many tissue systems in living organisms, including plants, leading to new insights into disease mechanisms and methods for their early detection. PMID:19485522

  7. Optical distance measuring instrument

    NASA Technical Reports Server (NTRS)

    Abshire, J. B. (Inventor)

    1986-01-01

    An optical instrument, such as a stability monitor or a target range finder, uses an unstabilized laser to project a composite optical signal of coherent light having two naturally occurring longitudinal mode components. A beamsplitter divides the signal into a reference beam which is directed toward one photodetector and a transmitted beam which illuminates and is reflected from a distant target onto a second photodetector optically isolated from the first photodetector. Both photodetectors are operated on the square law principle to provide electrical signals modulated at a frequency equal to the separation between the frequencies of the two longitudinal mode components of the optical signal projected by the laser. Slight movement of the target may be detected and measured by electrically monitoring the phase difference between the two signals provided by the photodetectors and the range of the target measured with the aid of a microprocessor by changing the separation between the longitudinal modes by shifting the length of the resonator cavity in an iterative series of increments.

  8. The tissue diagnostic instrument

    NASA Astrophysics Data System (ADS)

    Hansma, Paul; Yu, Hongmei; Schultz, David; Rodriguez, Azucena; Yurtsev, Eugene A.; Orr, Jessica; Tang, Simon; Miller, Jon; Wallace, Joseph; Zok, Frank; Li, Cheng; Souza, Richard; Proctor, Alexander; Brimer, Davis; Nogues-Solan, Xavier; Mellbovsky, Leonardo; Peña, M. Jesus; Diez-Ferrer, Oriol; Mathews, Phillip; Randall, Connor; Kuo, Alfred; Chen, Carol; Peters, Mathilde; Kohn, David; Buckley, Jenni; Li, Xiaojuan; Pruitt, Lisa; Diez-Perez, Adolfo; Alliston, Tamara; Weaver, Valerie; Lotz, Jeffrey

    2009-05-01

    Tissue mechanical properties reflect extracellular matrix composition and organization, and as such, their changes can be a signature of disease. Examples of such diseases include intervertebral disk degeneration, cancer, atherosclerosis, osteoarthritis, osteoporosis, and tooth decay. Here we introduce the tissue diagnostic instrument (TDI), a device designed to probe the mechanical properties of normal and diseased soft and hard tissues not only in the laboratory but also in patients. The TDI can distinguish between the nucleus and the annulus of spinal disks, between young and degenerated cartilage, and between normal and cancerous mammary glands. It can quantify the elastic modulus and hardness of the wet dentin left in a cavity after excavation. It can perform an indentation test of bone tissue, quantifying the indentation depth increase and other mechanical parameters. With local anesthesia and disposable, sterile, probe assemblies, there has been neither pain nor complications in tests on patients. We anticipate that this unique device will facilitate research on many tissue systems in living organisms, including plants, leading to new insights into disease mechanisms and methods for their early detection.

  9. Ultrasonics and space instrumentation

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The design topic selected was an outgrowth of the experimental design work done in the Fluid Behavior in Space experiment, which relies on the measurement of minute changes of the pressure and temperature to obtain reasonably accurate volume determinations. An alternative method of volume determination is the use of ultrasonic imaging. An ultrasonic wave system is generated by wall mounted transducer arrays. The interior liquid configuration causes reflection and refraction of the pattern so that analysis of the received wave system provides a description of the configuration and hence volume. Both continuous and chirp probe beams were used in a laboratory experiment simulating a surface wetting propellant. The hardware included a simulated tank with gaseous voids, transmitting and receiving transducers, transmitters, receivers, computer interface, and computer. Analysis software was developed for image generation and interpretation of results. Space instrumentation was pursued in support of a number of experiments under development for GAS flights. The program included thirty undergraduate students pursuing major qualifying project work under the guidance of eight faculty supported by a teaching assistant. Both mechanical and electrical engineering students designed and built several microprocessor systems to measure parameters such as temperature, acceleration, pressure, velocity, and circulation in order to determine combustion products, vortex formation, gas entrainment, EMR emissions from thunderstorms, and milli-g-accelerations due to crew motions.

  10. Evolving Ethical Concepts

    ERIC Educational Resources Information Center

    Potter, Van Rensselaer

    1977-01-01

    Discusses the role of the scientist in changing ethical concepts from simple interpersonal and theological imperatives towards "survival imperatives that must form the core of environmental bioethics." (CS)

  11. Affordable Care Act.

    PubMed

    Rak, Sofija; Coffin, Janis

    2013-01-01

    The Patient Protection and Affordable Care Act of 2010 (PPACA), although a subject of much debate in the Unites States, was enacted on March 23, 2010, and upheld by the Supreme Court on June 28, 2012. This act advocates that "healthcare is a right, not a privilege." The main goals of PPACA are to minimize the number of uninsured Americans and make healthcare available to everyone at an affordable price. The Congressional Budget Office has determined that 94% of Americans will have healthcare coverage while staying under the $900 billion limit that President Barack Obama established by bending the healthcare cost curve and reducing the deficit over the next 10 years. PMID:23767130

  12. Guideline implementation: surgical instrument cleaning.

    PubMed

    Cowperthwaite, Liz; Holm, Rebecca L

    2015-05-01

    Cleaning, decontaminating, and handling instructions for instruments vary widely based on the type of instrument and the manufacturer. Processing instruments in accordance with the manufacturer's instructions can help prevent damage and keep devices in good working order. Most importantly, proper cleaning and disinfection may prevent transmission of pathogenic organisms from a contaminated device to a patient or health care worker. The updated AORN "Guideline for cleaning and care of surgical instruments" provides guidance on cleaning, decontaminating, transporting, inspecting, and storing instruments. This article focuses on key points of the guideline to help perioperative personnel implement appropriate instrument care protocols in their practice settings. The key points address timely cleaning and decontamination of instruments after use; appropriate heating, ventilation, and air conditioning parameters for the decontamination area; processing of ophthalmic instruments and laryngoscopes; and precautions to take with instruments used in cases of suspected prion disease. Perioperative RNs should review the complete guideline for additional information and for guidance when writing and updating policies and procedures. PMID:25946180

  13. Instrumentation advances for transonic testing

    NASA Technical Reports Server (NTRS)

    Bobbitt, Percy J.

    1989-01-01

    New and improved instrumentation, like new and improved wind tunnels, provide capabilities which stimulate innovative research and discovery. During the past few years there have been a number of instrumentation developments which have aided and abetted the acquisition of more accurate aerodynamic data and have led to new physical insights as well. Some of these advances are reviewed, particularly in the area of thin film gages, hot wire anemometry, and laser instrumentation. A description is given of the instruments and/or techniques and some sample results are shown.

  14. Comparison of SANS instruments at reactors and pulsed sources

    SciTech Connect

    Thiyagarajan, P.; Epperson, J.E.; Crawford, R.K.; Carpenter, J.M.; Hjelm, R.P. Jr.

    1992-09-01

    Small angle neutron scattering is a general purpose technique to study long range fluctuations and hence has been applied in almost every field of science for material characterization. SANS instruments can be built at steady state reactors and at the pulsed neutron sources where time-of-flight (TOF) techniques are used. The steady state instruments usually give data over small q ranges and in order to cover a large q range these instruments have to be reconfigured several times and SANS measurements have to be made. These instruments have provided better resolution and higher data rates within their restricted q ranges until now, but the TOF instruments are now developing to comparable performance. The TOF-SANS instruments, by using a wide band of wavelengths, can cover a wide dynamic q range in a single measurement. This is a big advantage for studying systems that are changing and those which cannot be exactly reproduced. This paper compares the design concepts and performances of these two types of instruments.

  15. Radiometric instrumentation and measurements guide for photovoltaic performance testing

    SciTech Connect

    Myers, D.

    1997-04-01

    The Photovoltaic Module and Systems Performance and Engineering Project at the National Renewable Energy Laboratory performs indoor and outdoor standardization, testing, and monitoring of the performance of a wide range of photovoltaic (PV) energy conversion devices and systems. The PV Radiometric Measurements and Evaluation Team (PVSRME) within that project is responsible for measurement and characterization of natural and artificial optical radiation which stimulates the PV effect. The PV manufacturing and research and development community often approaches project members for technical information and guidance. A great area of interest is radiometric instrumentation, measurement techniques, and data analysis applied to understanding and improving PV cell, module, and system performance. At the Photovoltaic Radiometric Measurements Workshop conducted by the PVSRME team in July 1995, the need to communicate knowledge of solar and optical radiometric measurements and instrumentation, gained as a result of NREL`s long-term experiences, was identified as an activity that would promote improved measurement processes and measurement quality in the PV research and manufacturing community. The purpose of this document is to address the practical and engineering need to understand optical and solar radiometric instrument performance, selection, calibration, installation, and maintenance applicable to indoor and outdoor radiometric measurements for PV calibration, performance, and testing applications. An introductory section addresses radiometric concepts and definitions. Next, concepts essential to spectral radiometric measurements are discussed. Broadband radiometric instrumentation and measurement concepts are then discussed. Each type of measurement serves as an important component of the PV cell, module, and system performance measurement and characterization process.

  16. The Europa Clipper Mission Concept

    NASA Astrophysics Data System (ADS)

    Pappalardo, Robert; Goldstein, Barry; Magner, Thomas; Prockter, Louise; Senske, David; Paczkowski, Brian; Cooke, Brian; Vance, Steve; Wes Patterson, G.; Craft, Kate

    2014-05-01

    , with the Reconnaissance goal: Characterize safe and scientifically compelling sites for a future lander mission to Europa. To accomplish these reconnaissance objectives and the investigations that flow from them, principally to address issues of landing site safety, two additional instruments would be included in the notional payload: a Reconnaissance Camera (for high-resolution imaging) and a Thermal Imager (to characterize the surface through its thermal properties). These instruments, in tandem with the notional payload for science, could assess the science value of potential landing sites. This notional payload serves as a proof-of-concept for the Europa Clipper during its formulation stage. The actual payload would be chosen through a NASA Announcement of Opportunity. If NASA were to proceed with the mission, it could be possible to launch early in the coming decade, on an Atlas V or the Space Launch System (SLS).

  17. 18 CFR 367.1760 - Account 176, Derivative instrument assets-Hedges.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... instrument assets-Hedges. 367.1760 Section 367.1760 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005... GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367.1760 Account 176,...

  18. 18 CFR 367.1760 - Account 176, Derivative instrument assets-Hedges.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... instrument assets-Hedges. 367.1760 Section 367.1760 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005... GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367.1760 Account 176,...

  19. 18 CFR 367.1760 - Account 176, Derivative instrument assets-Hedges.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... instrument assets-Hedges. 367.1760 Section 367.1760 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005... GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367.1760 Account 176,...

  20. 18 CFR 367.1760 - Account 176, Derivative instrument assets-Hedges.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Account 176, Derivative instrument assets-Hedges. 367.1760 Section 367.1760 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005, FEDERAL POWER ACT AND...