Science.gov

Sample records for act instrument concepts

  1. Instrument Concept for the Proposed DESDynI SAR instrument

    NASA Technical Reports Server (NTRS)

    Perkovic-Martin, Dragana; Hoffman, James P.; Veilleux, Louise

    2012-01-01

    The proposed DESDynI (Solid Earth Deformation, Ecosystems Structure and Dynamics of Ice) SAR (synthetic aperture radar) Instrument would expand the trade-space of radar instrument concepts and push the boundaries of high-level integration of digital and RF subsystems in order to achieve very precise assessments of system's behavior; DESDynI mission concept would provide continuous science measurements that would greatly enhance understanding of geophysical and anthropological effects in three science disciplines; Trades in instrument architecture implementations and partnership discussions are producing a set of options for science community and NASA to evaluate and consider implementing late in the decade.

  2. Advanced instrumentation concepts for environmental control subsystems

    NASA Technical Reports Server (NTRS)

    Yang, P. Y.; Schubert, F. H.; Gyorki, J. R.; Wynveen, R. A.

    1978-01-01

    Design, evaluation and demonstration of advanced instrumentation concepts for improving performance of manned spacecraft environmental control and life support systems were successfully completed. Concepts to aid maintenance following fault detection and isolation were defined. A computer-guided fault correction instruction program was developed and demonstrated in a packaged unit which also contains the operator/system interface.

  3. Monitoring Earth's Shortwave Reflectance: GEO Instrument Concept

    NASA Technical Reports Server (NTRS)

    Brageot, Emily; Mercury, Michael; Green, Robert; Mouroulis, Pantazis; Gerwe, David

    2015-01-01

    In this paper we present a GEO instrument concept dedicated to monitoring the Earth's global spectral reflectance with a high revisit rate. Based on our measurement goals, the ideal instrument needs to be highly sensitive (SNR greater than 100) and to achieve global coverage with spectral sampling (less than or equal to 10nm) and spatial sampling (less than or equal to 1km) over a large bandwidth (380-2510 nm) with a revisit time (greater than or equal to greater than or equal to 3x/day) sufficient to fully measure the spectral-radiometric-spatial evolution of clouds and confounding factor during daytime. After a brief study of existing instruments and their capabilities, we choose to use a GEO constellation of up to 6 satellites as a platform for this instrument concept in order to achieve the revisit time requirement with a single launch. We derive the main parameters of the instrument and show the above requirements can be fulfilled while retaining an instrument architecture as compact as possible by controlling the telescope aperture size and using a passively cooled detector.

  4. The 4MOST instrument concept overview

    NASA Astrophysics Data System (ADS)

    Haynes, Roger; Barden, Samuel; de Jong, Roelof; Schnurr, Olivier; Bellido, Olga; Walcher, Jakob; Haynes, Dionne; Winkler, Roland; Bauer, Svend-Marian; Dionies, Frank; Saviauk, Allar; Chiappini, Cristina; Schwope, Axel; Brynnel, Joar; Steinmetz, Matthias; McMahon, Richard; Feltzing, Sofia; Francois, Patrick; Trager, Scott; Parry, Ian; Irwin, Mike; Walton, Nicholas; King, David; Sun, David; Gonzalez-Solares, Eduaro; Tosh, Ian; Dalton, Gavin; Middleton, Kevin; Bonifacio, Piercarlo; Jagourel, Pascal; Mignot, Shan; Cohen, Mathieu; Amans, Jean-Philippe; Royer, Frederic; Sartoretti, Paola; Pragt, Johan; Gerlofsma, Gerrit; Roelfsema, Ronald; Navarro, Ramon; Thimm, Guido; Seifert, Walter; Christlieb, Norbert; Mandel, Holger; Trifonov, Trifon; Xu, Wenli; Lang-Bardl, Florian; Muschielok, Bernard; Schlichter, Jörg; Hess, Hans-Joachim; Grupp, Frank; Boehringer, Hans; Boller, Thomas; Dwelly, Tom; Bender, Ralf; Rosati, Piero; Iwert, Olaf; Finger, Gert; Lizon L'Allemand, Jean-Louis; Saunders, Will; Sheinis, Andrew; Frost, Gabriella; Farrell, Tony; Waller, Lewis; Depagne, Eric; Laurent, Florence; Caillier, Patrick; Kosmalski, Johan; Richard, Johan; Bacon, Roland; Ansorge, Wolfgang

    2014-07-01

    The 4MOST[1] instrument is a concept for a wide-field, fibre-fed high multiplex spectroscopic instrument facility on the ESO VISTA telescope designed to perform a massive (initially >25x106 spectra in 5 years) combined all-sky public survey. The main science drivers are: Gaia follow up of chemo-dynamical structure of the Milky Way, stellar radial velocities, parameters and abundances, chemical tagging; eROSITA follow up of cosmology with x-ray clusters of galaxies, X-ray AGN/galaxy evolution to z~5, Galactic X-ray sources and resolving the Galactic edge; Euclid/LSST/SKA and other survey follow up of Dark Energy, Galaxy evolution and transients. The surveys will be undertaken simultaneously requiring: highly advanced targeting and scheduling software, also comprehensive data reduction and analysis tools to produce high-level data products. The instrument will allow simultaneous observations of ~1600 targets at R~5,000 from 390-900nm and ~800 targets at R<18,000 in three channels between ~395-675nm (channel bandwidth: 45nm blue, 57nm green and 69nm red) over a hexagonal field of view of ~ 4.1 degrees. The initial 5-year 4MOST survey is currently expect to start in 2020. We provide and overview of the 4MOST systems: optomechanical, control, data management and operations concepts; and initial performance estimates.

  5. SPICE: An innovative, flexible instrument concept

    NASA Technical Reports Server (NTRS)

    Nishioka, Kenji; Cauffman, D. P.; Jurcevich, B.; Mendez, David J.; Ryder, James T.

    1994-01-01

    Studies and plans for orbital capture of cosmic dust and interplanetary dust particles (IDP's) looked very bright with the advent of space station Freedom (SSF) and formal selection of Cosmic Dust Collection Facility (CDCF) as an attached payload in 1990. Unfortunately it has been downhill since its selection, culminating in CDCF being dropped as attached payload in the SSF redesign process this year. This action was without any input from the science or cosmic dust communities. The Exobiology Intact Capture Experiment (Exo-ICE) as an experiment on CDCF was also lost. Without CDCF, no facility-class instrument for cosmic dust studies is available or planned. When CDCF (and Exo-ICE) was selected as a SSF attached payload, an exercise called the small particle intact capture experiment (SPICE) was started for Exo-ICE to develop an understanding and early testing of the necessary expertise and technology for intact capture of cosmic dust and IDP's. This SPICE activity looks to fly small, meter square or less, collection area experiments on early orbital platforms of opportunity such as EURECA, MIR, WESTAR, and others, including the shuttle. The SPICE activity has focused on developing techniques and instrument concepts to capture particles intact and without inadvertent contamination. It began with a survey and screening of available capture media concepts and then focused on the development of a capture medium that can meet these requirements. Evaluation and development of the chosen capture medium, aerogel (a silicon oxide gel), has so far lived up to the expectations of meeting the requirements and is highlighted in a companion paper at this workshop. Others such as McDonnell's Timeband Capture Cell Experiment (TICCE) on EuReCa and Tsuo's GAS-CAN lid experiments on STS 47 and 57 have flown aerogel, but without addressing the contamination issue/requirement, especially regarding organics. Horz, Zolenskym and others have studied and have also been advocates for its

  6. Concept Teaching in Instrumental Music Education: A Literature Review

    ERIC Educational Resources Information Center

    Tan, Leonard

    2017-01-01

    This article is a review of research literature on the teaching of concepts in instrumental music education. It is organized in four parts (a) the value of concept teaching in large instrumental ensembles, (b) time spent teaching concepts during rehearsals, (c) approaches to concept teaching, and (d) implications for music education. Research has…

  7. New Worlds Observer Telescope and Instrument Optical Design Concepts

    NASA Technical Reports Server (NTRS)

    Howard, Joseph M.; Noecker, Charlie; Kendrick, Steve; Woodgate, Bruce; Kilstron, Steve; Cash, Webster

    2008-01-01

    Optical design concepts for the telescope and instrumentation for NASA s New Worlds Observer program are presented. A four-meter multiple channel telescope is discussed, as well as a suite of science instrument concepts. Wide field instrumentation (imager and spectrograph) would be accommodated by a three-mirror-anastigmat telescope design. Planet finding and characterization, and a UV instrument would use a separate channel that is picked off after the first two mirrors (primary and secondary). Guiding concepts are also discussed.

  8. New Worlds Observer Telescope and Instrument Optical Design Concepts

    NASA Technical Reports Server (NTRS)

    Howard, Joseph; Kilston, Steve; Kendrick, Steve

    2008-01-01

    Optical design concepts for the telescope and instrumentation for NASA's New Worlds Observer program are presented. First order parameters are derived from the science requirements, and estimated performance metrics are shown using optical models. A four meter multiple channel telescope is discussed, as well as a suite of science instrument concepts. Wide field instrumentation (imager and spectrograph) would be accommodated by a three-mirror anastigmat telescope design. Planet finding and characterization would use a separate channel which is picked off after the first two mirrors (primary and secondary). Guiding concepts are also discussed.

  9. Remote Chemical Analysis at Enceladus: An Astrobiology Science Instrument Concept

    NASA Astrophysics Data System (ADS)

    Kirby, J. P.; Price, K.; Willis, P.; Jones, S.

    2013-12-01

    An instrument concept is being developed for the future exploration of Enceladus where remote chemical analysis would be performed onboard a spacecraft while in flight. The instrument will look for evidence for the presence of life in a subsurface ocean habitat by examining nascent ice grains collected by flying the spacecraft directly through the plume or jets of Enceladus. This astrobiology science instrument concept is compatible with an Enceladus sample return mission or a Saturn system orbiter mission. Described are 5 science tiers supported by the instrument system with a mass spectrometer at its core. Results for automation of sample pre-concentration and optical detection of free amino acids will also be presented and discussed as a pathway for assessing the inventory of organic molecules in a potentially inhabited ice covered Enceladus ocean. Concept for the Enceladus Amino Acid Sampler, an astrobiology science instrument system with 5 distinct science tiers for exploring the Enceladus subsurface composition.

  10. Concept for a Micro Autonomous Ultrasonic Instrument (MAUI)

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2002-01-01

    We investigate a concept for the construction a mobile Micro Optical ElectroMechanical Systems (MOEMS) based laser ultrasonic instrument to serve as a Micro Autonomous Ultrasonic Instrument (MAUI). The system will consist of a laser ultrasonic instrument fabricated using Micro Electro-Mechanical Systems (MEMS) technology, and a MEMS based walking platform like those developed by Pister et al. at Berkeley. This small system will allow for automated remote Non-Destructive Evaluation (NDE) of aerospace vehicles.

  11. Autonomous-Control Concept For Instrument Pointing System

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Milman, Mark H.; Bayard, David S.

    1990-01-01

    Integrated payload articulation and identification system (IPAIDS) is conceptual system to control aiming of instruments aboard spacecraft of proposed Earth Observation System (EOS). Principal features of concept include advanced control strategies intended to assure robustness of performance over wide range of uncertainties in characteristics of spacecraft and instrument system. Intended originally for application to spacecraft system, has potential utility on Earth for automatic control of autonomous (robotic) vehicles or of remote sensing systems.

  12. Yardstick integrated science instrument module concept for NGST

    NASA Astrophysics Data System (ADS)

    Burg, Richard; Bely, Pierre Y.; Woodruff, Robert A.; MacKenty, John W.; Stiavelli, Massimo; Casertano, Stefano; McCreight, Craig R.; Hoffman, Alan W.

    1998-08-01

    We describe the instrument package concept that we have investigated as part of the Goddard Space Flight Center study for NGST. It is composed of highly integrated, high performance cameras and spectrometers covering the spectral region from 0.6 to 30 microns and with a large field of view.the suite has been configured to reduce cost and complexity with no sacrifice in scientific merit. A common optical bench minimizes interfaces, a guiding system integrated in the science module makes use of the science cameras with minimal penalty to science, and all near IR instruments are built around the same detector module.

  13. Solid state instrumentation concepts for earth resource observation

    NASA Technical Reports Server (NTRS)

    Richard, H. L.

    1982-01-01

    Late in 1980, specifications were prepared for detail design definition of a six band solid state multispectral instrument having three visible (VIS), one near infrared (NIR), and two short wave infrared (SWIR) bands. This instrument concept, known as the Multispectral Linear Array (MLA), also offered increased spatial resolution, on board gain and offset correction, and additional operational modes which would allow for cross track and stereoscopic viewing as well as a multialtitude operational capability. A description is presented of a summary of some of the salient features of four different MLA design concepts, as developed by four American companies. The designs ranged from the use of multiple refractive telescopes utilizing three groups of focal plane detectors electronic correlation processing for achieving spatial registration, and incorporating palladium silicide (PdSi) SWIR detectors, to a four-mirror all-reflective telecentric system utilizing a beam splitter for spatial registration.

  14. XMM instrument on-board software maintenance concept

    NASA Technical Reports Server (NTRS)

    Peccia, N.; Giannini, F.

    1994-01-01

    While the pre-launch responsibility for the production, validation and maintenance of instrument on-board software traditionally lies with the experimenter, the post-launch maintenance has been the subject of ad hoc arrangements with the responsibility shared to different extent between the experimenter, ESTEC and ESOC. This paper summarizes the overall design and development of the instruments on-board software for the XMM satellite, and describes the concept adopted for the maintenance of such software post-launch. The paper will also outline the on-board software maintenance and validation facilities and the expected advantages to be gained by the proposed strategy. Conclusions with respect to adequacy of this approach will be presented as well as recommendations for future instrument on-board software developments.

  15. Mental Capacity Act 2005: statutory principles and key concepts.

    PubMed

    Griffith, Richard; Tengnah, Cassam

    2008-05-01

    The Mental Capacity Act 2005 represents the most significant development in the law relating to people who lack decision making capacity since the Mental Health Act 1959 removed the states parens patriae jurisdiction preventing relatives, courts and government bodies consenting on behalf of incapable adults (F vs West Berkshire HA [1990]). The Mental Capacity Act 2005 impacts on the care and treatment provided by district nurses and it is essential that you have a sound working knowledge of its provisions and code of practice. In the first article of a series focusing on how the Mental Capacity Act 2005 applies to district nurse practice, Richard Griffith and Cassam Tengnah consider the principles and key concepts underpinning the Act.

  16. Investigating the Act of Design in Discharge Concept Using PMRI

    ERIC Educational Resources Information Center

    Lestariningsih; Anwar, Muhammad; Setiawan, Agus Mulyanto

    2015-01-01

    The goal of this research is to investigate the act of design in discharge concept using Pendidikan Matematika Realistik Indonesia (PMRI) approach with Lapindo's Mud phenomenon as a context. Design research was chosen as the method used in this research that consists of three phases, namely preparing for the experiment, teaching experiment, and…

  17. [Foucault's concept of gouvernmentality: an instrument to analyse nursing science].

    PubMed

    Friesacher, Heiner

    2004-12-01

    The following article will present the concept of gouvernmentality by the French philosopher Michel Foucault (1926-1984). I will point out in which way his idea could be applied to nursing science. The notion gouvernmentality goes back to the late works of Michel Foucault. The idea of gouvernmentality continues, broadens and shifts the stress of his influential work on the analysis of power. The strategic concept of power is not sufficient to investigate from a consistent analytical perspective into the complex problems of the state and subjectivity. Only Foucault's findings of the notion and the concept of gouvernmentality has come up to an adequate analytical method. Relations of power are investigated from the point of view and hereby social technologies and self-technologies can be analysed in relation to each other The analysis of neo-liberal gouvernmentality finally succeeds by using this broadening of perspective. A new definition of state and economy can be revealed: the market turns into a regulating principle and economics grasps all kinds of human actions and proceedings. Apart from a few exceptions the hitherto Foucault-reception in nursing science does not follow the late works of Foucault and limits its research possibilities. In this article I will analyse examples of the quality discourse and the problems of an interpretation of needs. It will be shown how both areas might shape patients as well as nurses in the sense of neo-liberal subject formation and how finally the act and art of nursing will be transformed into an act of economics.

  18. Lunar Riometry: Proof-of-Concept Instrument Package

    NASA Astrophysics Data System (ADS)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Stewart, K.; Giersch, L.; Burns, J. O.; Farrell, W. M.; Kasper, J. C.; O'Dwyer, I.; Hartman, J.

    2012-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent, the extent of contributions from volatile outgassing from the Moon, and its behavior over time, including response to the solar wind and modification by landers. Relative ionospheric measurements (riometry) is based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, in situ, the vertical extent of the lunar exosphere over time. We describe a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report. The instrument concept is simple, consisting of an antenna implemented as a metal deposited on polyimide film and receiver. We illustrate various deployment mechanisms and performance of a prototype in increasing lunar analog conditions. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of dust impactors. The Lunar University Network for Astrophysical Research consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

  19. Exploration of Instruments Measuring Concepts of Graduateness in a Research University Context

    ERIC Educational Resources Information Center

    Steur, J. M.; Jansen, E. P. W. A.; Hofman, W. H. A.

    2011-01-01

    This article considers the appropriateness of international instruments to measure the separate concepts of graduateness for a research university context. The four concepts of graduateness--reflective thinking, scholarship, moral citizenship and lifelong learning--are operationalized using five existing instruments. These instruments were…

  20. ReACT Methodology Proof of Concept Final Report

    SciTech Connect

    Bri Rolston; Sarah Freeman

    2014-03-01

    The Department of Energy’s Office of Electricity Delivery and Energy Reliability (DOE-OE) funded INL Researchers to evaluate a novel process for assessing and mitigating cyber security risks. The proof of concept level of the method was tested in an industry environment. This case study, plus additional case studies will support the further development of the method into a tool to assist industry in securing their critical networks. This report provides an understanding of the process developed in the Response Analysis and Characterization Tool (ReACT) project. This report concludes with lessons learned and a roadmap for final development of these tools for use by industry.

  1. Teaching Instrumentation Concepts by the Examination of Thermal Properties of Elastomers

    NASA Astrophysics Data System (ADS)

    Vierheller, Timothy

    2012-04-01

    Fundamental instrumentation concepts were taught using two important thermal techniques in characterizing elastomeric materials: Differential Scanning Calorimetry (DSC) and Thermal Gravimetric Analysis (TGA). Instrumentation concepts included the following: calibration, resolution, accuracy, and precision. Basic thermal properties (such as specific heat capacity, glass transition temperature, melting temperature, melting enthalpy, and decomposition temperature) of elastomeric materials were reviewed, as was how DSC and TGA measure these properties. Using this background, instrumentation concepts were examined using collected data and related statistical information. Materials examined included polyethylene, nitrile rubber, and a natural rubber-butadiene blend.

  2. Learning the Concept of Researcher as Instrument in Qualitative Research

    ERIC Educational Resources Information Center

    Xu, Mengxuan Annie; Storr, Gail Blair

    2012-01-01

    The authors describe the process whereby a student with a background in economics was guided to understand the central role in qualitative research of the researcher as instrument. The instructor designed a three-part mock research project designed to provide experiential knowledge of the enterprise of qualitative research. Students, as neophyte…

  3. A New Concept of Synthetic Aperture Instrument for High Resolution Earth Observation from High Orbits

    DTIC Science & Technology

    2005-07-13

    ces composantes en adoptant une redécomposition des concepts d’interféromètres de type Fizeau ou Michelson . Concept qui autorise, en outre, de rendre le...considering monolithic concepts. It is necessary, to circumvent this problem, to consider a segmented instrument, turning it into a feasible concept...adopting a re-decomposition of the basic Michelson or Fizeau interferometer schemes. In addition to providing variable resolution power and field of

  4. a Problem Solving Diagnostic Instrument for Physics Thermodynamics Concepts.

    NASA Astrophysics Data System (ADS)

    Iona, Steven

    Changes in conceptual representations of physics thermodynamics concepts by high school physics students was examined throughout an instructional sequence. The knowledge structures identified were characterized and also compared to problem-solving strategies used by the students on physics problems. Over sixty students from four intact classes completed seven measures including three computer-administered concept relatedness tasks, a test of logical thinking, identification of demographic information, and two problem-solving sessions. Ten teacher/experts also completed the relatedness rating task and problem -solving sessions. For each rating by the students and teacher/experts, the data were transformed into a network using the Pathfinder algorithm, where each node in the network represented one of the physics concepts. Two statistical comparisons were made between the students' and teacher/experts' data: Pearson-r comparison of relatedness data and a Pearson -r comparison of the Pathfinder graphs. The results indicated that there was: (1) A structure to the thermodynamics concepts held by both the students and the teacher/experts. (2) A significant statistical difference in the Pathfinder networks among the teacher/experts. The differences were primarily localized to concepts dealing with gas laws. (3) No increase in the statistical similarity (comparing teacher/experts and students) in the networks during the instructional period. (4) A change in the students' conceptual networks indicating: (a) an acceptance by the students of certain "deep structures," (b) a time-delayed acceptance of some organizing ideas, and/or (c) gaps in the students' understanding of key ideas. (5) A "weak" rather than "strong" restructuring of the concepts by students. (6) Statistically significant similarities in local networks involving pairs of physics concepts and the problem-solving strategies used by the students. Overall this study corroborated much of the research dealing with

  5. Development and Analysis of an Instrument to Assess Student Understanding of Foundational Concepts before Biochemistry Coursework

    ERIC Educational Resources Information Center

    Villafane, Sachel M.; Bailey, Cheryl P.; Loertscher, Jennifer; Minderhout, Vicky; Lewis, Jennifer E.

    2011-01-01

    Biochemistry is a challenging subject because student learning depends on the application of previously learned concepts from general chemistry and biology to new, biological contexts. This article describes the development of a multiple-choice instrument intended to measure five concepts from general chemistry and three from biology that are…

  6. How is a trumpet known? The "basic object level" concept and perception of musical instruments.

    PubMed

    Palmer, C F; Jones, R K; Hennessy, B L; Unze, M G; Pick, A D

    1989-01-01

    What are the object properties that serve as a basis for the musical instrument classification system, and how do general and specific experience affect knowledge of these properties? In the first study, the multimodal quality of properties underlying children's and adults' perception was investigated. Subjects listened to solos and identified instruments producing the sounds. Even children who did not have experience with all the instruments correctly identified the family of instruments they were listening to. The hypothesis of the second study, that musical instrument families function as a "basic level" in the instrument taxonomy, was confirmed. Variation in the basic level with varying expertise was documented in the third study with musicians. In the fourth study, children and adults identified the source of sounds from unfamiliar objects, Chinese musical instruments. It is suggested that the concept of affordances may be relevant for understanding the importance for behavior of different levels of abstraction of category systems.

  7. Instrument concept of a single channel dust trajectory detector

    NASA Astrophysics Data System (ADS)

    Li, Yanwei; Kempf, Sascha; Simolka, Jonas; Strack, Heiko; Grün, Eberhard; Srama, Ralf

    2017-03-01

    Charged dust particles in space can be detected by in situ sensors using charge induction. Such trajectory sensors are normally based on many grid or wire electrodes connected to individual charge sensitive amplifiers. In this article we describe a new approach to measure the trajectory of a charged dust particle by a single charge sensitive amplifier. The signal shape is used to calculate particle speed, mass and trajectory. The detector employs two half-circular grid electrodes, and the electrodes are connected to the differential input stage of an amplifier. Simulations using the Coulomb 9.0 software package were performed in order to determine the expected signal shapes depending on the particle parameters (entry location and incident angles). The simulated charge signals show, that the chosen measurement concept is an efficient method for low-power and low-mass dust trajectory sensors.

  8. Remote sensing space science enabled by the multiple instrument distributed aperture sensor (MIDAS) concept

    NASA Astrophysics Data System (ADS)

    Pitman, Joseph T.; Duncan, Alan; Stubbs, David; Sigler, Robert D.; Kendrick, Richard L.; Smith, Eric H.; Mason, James E.; Delory, Gregory; Lipps, Jere H.; Manga, Michael; Graham, James R.; de Pater, Imke; Reiboldt, Sarah; Bierhaus, Edward; Dalton, James B.; Fienup, James R.; Yu, Jeffrey W.

    2004-11-01

    The science capabilities and features of an innovative and revolutionary approach to remote sensing imaging systems aimed at increasing the return on future planetary science missions many fold are described. Our concept, called Multiple Instrument Distributed Aperture Sensor (MIDAS), provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional space telescopes, by integrating advanced optical imaging interferometer technologies into a multi-functional remote sensing science payload. MIDAS acts as a single front-end actively controlled telescope array for use on common missions, reducing the cost, resources, complexity, and risks of developing a set of back-end science instruments (SIs) tailored to each specific mission. By interfacing to multiple science instruments, MIDAS enables either sequential or concurrent SI operations in all functional modes. Passive imaging modes enable remote sensing at diffraction-limited resolution sequentially by each SI, as well as at somewhat lower resolution by multiple SIs acting concurrently on the image, such as in different wavebands. MIDAS inherently provides nanometer-resolution hyperspectral passive imaging without the need for any moving parts in the SI's. Our optical design features high-resolution imaging for long dwell times at high altitudes, <1m GSD from the 5000km extent of spiral orbits, thereby enabling regional remote sensing of dynamic planet surface processes, as well as ultra-high resolution of 2cm GSD from a 100km science orbit that enable orbital searches for signs of life processes on the planet surface. In its active remote sensing modes, using an integrated solid-state laser source, MIDAS enables LIDAR, vibrometry, surface illumination, ablation, laser spectroscopy and optical laser communications. The powerful combination of MIDAS passive and active modes, each with sequential or concurrent SI operations, increases potential science return

  9. Novel instrument concepts for characterizing directly imaged exoplanets

    NASA Astrophysics Data System (ADS)

    Keller, Christoph U.

    2016-08-01

    Current high-contrast exoplanet imagers are optimized to find new exoplanets; they minimize diffracted starlight in a large area around a star. I present four novel instrumental approaches that are optimized to characterize these discoveries by minimizing starlight in a small area around the known location of an exoplanet: 1) coronagraphs that remove virtually all starlight over an octave in wavelength while transmitting more than 90% of the exoplanet signal; 2) holographic wavefront sensors that measure aberrations in the science focal plane; 3) ultra-fast adaptive optics systems that minimize these aberrations; and 4) direct minimization of the remaining starlight. By integrating these technologies with a high spectral- resolution, integral-field spectrograph that can resolve the Doppler shift and the polarization difference between the starlight and the reflected light from the exoplanet, it will be possible to determine the atmospheric composition, temperature and velocity structures of exoplanets and their spin rotation rate and orbital velocity. This will ultimately allow the upcoming extremely large telescopes to characterize rocky exoplanets in the habitable zone to look for signatures of life.

  10. A passive low frequency instrument for radio wave sounding the subsurface oceans of the Jovian icy moons: An instrument concept

    NASA Astrophysics Data System (ADS)

    Hartogh, P.; Ilyushin, Ya. A.

    2016-10-01

    Exploration of subsurface oceans on Jovian icy moons is a key issue of the icy moons' geology. Electromagnetic wave propagation is the only way to probe their icy mantles from the orbit. In the present paper, a principal concept of a passive interferometric instrument for deep sounding of the icy moons' crust is proposed. Its working principle is measuring and correlating Jupiter's radio wave emissions with reflections from the deep sub-surface of the icy moons. A number of the functional aspects of the proposed experiment are studied, in particular, impact of the wave scattering on the surface terrain on the instrument performance and digital sampling of the noisy signal. Results of the test of the laboratory prototype of the instrument are also presented in the paper.

  11. Dual purpose optical instrument capable of simultaneously acting as spectrometer and diffractometer

    NASA Technical Reports Server (NTRS)

    Dasgupta, K.; Schnopper, H. W.; Metzger, A. E. (Inventor)

    1969-01-01

    A dual purpose optical instrument is described capable of simultaneously acting as a spectrometer and diffractometer to respectively perform elemental and structural analysis of an unknown sample. The diffractometer portion of the instrument employs a modified form of Seeman-Bohlin focusing which involves providing a line source of X-rays, a sample, and a detector, all on the same focal circle. The spectrometer portion of the instrument employs a fixedly mounted X-ray energy detector mounted outside of the plane of the focal circle.

  12. Concept, simulation, and instrumentation for radiometric inflight icing detection

    NASA Astrophysics Data System (ADS)

    Ryerson, Charles C.; Koenig, George G.; Reehorst, Andrew L.; Scott, Forrest R.

    2008-08-01

    The multi-agency Flight in Icing Remote Sensing Team (FIRST), a consortium of the National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), the National Center for Atmospheric Research (NCAR), the National Oceanographic and Atmospheric Administration (NOAA), and the Army Corps of Engineers (USACE), has developed technologies for remotely detecting hazardous inflight icing conditions. The USACE Cold Regions Research and Engineering Laboratory (CRREL) assessed the potential of onboard passive microwave radiometers for remotely detecting icing conditions ahead of aircraft. The dual wavelength system differences the brightness temperature of Space and clouds, with greater differences potentially indicating closer and higher magnitude Cloud Liquid Water Content (CLWC). The Air Force RADiative TRANsfer model (RADTRAN) was enhanced to assess the flight track sensing concept, and a "flying" RADTRAN was developed to simulate a radiometer system flying through simulated clouds. Neural network techniques were developed to invert brightness temperatures and obtain integrated cloud liquid water. In addition, a dual wavelength Direct-Detection Polarimeter Radiometer (DDPR) system was built for detecting hazardous drizzle drops. This paper reviews technology development to date and addresses initial polarimeter performance.

  13. Concept, Simulation, and Instrumentation for Radiometric Inflight Icing Detection

    NASA Technical Reports Server (NTRS)

    Ryerson, Charles; Koenig, George G.; Reehorst, Andrew L.; Scott, Forrest R.

    2009-01-01

    The multi-agency Flight in Icing Remote Sensing Team (FIRST), a consortium of the National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), the National Center for Atmospheric Research (NCAR), the National Oceanographic and Atmospheric Administration (NOAA), and the Army Corps of Engineers (USACE), has developed technologies for remotely detecting hazardous inflight icing conditions. The USACE Cold Regions Research and Engineering Laboratory (CRREL) assessed the potential of onboard passive microwave radiometers for remotely detecting icing conditions ahead of aircraft. The dual wavelength system differences the brightness temperature of Space and clouds, with greater differences potentially indicating closer and higher magnitude cloud liquid water content (LWC). The Air Force RADiative TRANsfer model (RADTRAN) was enhanced to assess the flight track sensing concept, and a 'flying' RADTRAN was developed to simulate a radiometer system flying through simulated clouds. Neural network techniques were developed to invert brightness temperatures and obtain integrated cloud liquid water. In addition, a dual wavelength Direct-Detection Polarimeter Radiometer (DDPR) system was built for detecting hazardous drizzle drops. This paper reviews technology development to date and addresses initial polarimeter performance.

  14. PowerPoint and Concept Maps: A Great Double Act

    ERIC Educational Resources Information Center

    Simon, Jon

    2015-01-01

    This article explores how concept maps can provide a useful addition to PowerPoint slides to convey interconnections of knowledge and help students see how knowledge is often non-linear. While most accounting educators are familiar with PowerPoint, they are likely to be less familiar with concept maps and this article shows how the tool can be…

  15. Developing a Teacher Evaluation Instrument to Provide Formative Feedback Using Student Ratings of Teaching Acts

    ERIC Educational Resources Information Center

    van der Lans, Rikkert M.; van de Grift, Wim J. C. M.; van Veen, Klaas

    2015-01-01

    This study reports on the development of a teacher evaluation instrument, based on students' observations, which exhibits cumulative ordering in terms of the complexity of teaching acts. The study integrates theory on teacher development with theory on teacher effectiveness and applies a cross-validation procedure to verify whether teaching acts…

  16. Understanding Teachers' Conceptions of Classroom Inquiry With a Teaching Scenario Survey Instrument

    NASA Astrophysics Data System (ADS)

    Kang, Nam-Hwa; Orgill, Marykay; Crippen, Kent J.

    2008-08-01

    A survey instrument using everyday teaching scenarios was developed to measure teacher conceptions of inquiry. Validity of the instrument was established by comparing responses for a group of secondary teachers to narrative writing and group discussion. Participating teachers used only three of the five essential features of inquiry detailed in the standards documents (NRC 2000) when expressing their ideas of classroom inquiry. The features of ‘evaluating explanations in connection with scientific knowledge’ and ‘communicating explanations’ were rarely mentioned. These missing components indicate a gap between the teachers’ conceptions of inquiry and the ideals of the reform movement.

  17. A photophonic instrument concept to measure atmospheric aerosol absorption. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Engle, C. D.

    1982-01-01

    A laboratory model of an instrument to measure the absorption of atmospheric aerosols was designed, built, and tested. The design was based on the photophonic phenomenon discovered by Bell and an acoustic resonator developed by Helmholtz. Experiments were done to show ways the signal amplitude could be improved and the noise reduced and to confirm the instrument was sensitive enough to be practical. The research was undertaken to develop concepts which show promise of being improvements on the instruments that are presently used to measure the absorption of the Sun's radiation by the Earth's atmospheric aerosols.

  18. Developing an instrument for assessing students' concepts of the nature of technology

    NASA Astrophysics Data System (ADS)

    Liou, Pey-Yan

    2015-05-01

    Background:The nature of technology has been rarely discussed despite the fact that technology plays an essential role in modern society. It is important to discuss students' concepts of the nature of technology, and further to advance their technological literacy and adaptation to modern society. There is a need to assess high school students' concepts of the nature of technology. Purpose:This study aims to engage in discourse on students' concepts of the nature of technology based on a proposed theoretical framework. Moreover, another goal is to develop an instrument for measuring students' concepts of the nature of technology. Sample:Four hundred and fifty-five high school students' perceptions of technology were qualitatively analyzed. Furthermore, 530 students' responses to a newly developed questionnaire were quantitatively analyzed in the final test. Design and method:First, content analysis was utilized to discuss and categorize students' statements regarding technology and its related issues. The Student Concepts of the Nature of Technology Questionnaire was developed based on the proposed theoretical framework and was supported by the students' qualitative data. Finally, exploratory factor analysis and reliability analysis were applied to determine the structure of the items and the internal consistency of each scale. Results:Through a process of instrument development, the Student Concepts of the Nature of Technology Questionnaire was shown to be a valid and reliable tool for measuring students' concepts of the nature of technology. This newly developed questionnaire is composed of 29 items in six scales, namely 'technology as artifacts,' 'technology as an innovation change,' 'the current role of technology in society,' 'technology as a double-edged sword,' 'technology as a science-based form,' and 'history of technology.' Conclusions:The Student Concepts of the Nature of Technology Questionnaire has been confirmed as a reasonably valid and reliable

  19. 43 CFR 3742.3-1 - Request for publication of notice of Leasing Act filing; supporting instruments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Request for publication of notice of Leasing Act filing; supporting instruments. 3742.3-1 Section 3742.3-1 Public Lands: Interior Regulations... for publication of notice of Leasing Act filing; supporting instruments. (a) Having complied with...

  20. ACT Payload Shroud Structural Concept Analysis and Optimization

    NASA Technical Reports Server (NTRS)

    Zalewski, Bart B.; Bednarcyk, Brett A.

    2010-01-01

    Aerospace structural applications demand a weight efficient design to perform in a cost effective manner. This is particularly true for launch vehicle structures, where weight is the dominant design driver. The design process typically requires many iterations to ensure that a satisfactory minimum weight has been obtained. Although metallic structures can be weight efficient, composite structures can provide additional weight savings due to their lower density and additional design flexibility. This work presents structural analysis and weight optimization of a composite payload shroud for NASA s Ares V heavy lift vehicle. Two concepts, which were previously determined to be efficient for such a structure are evaluated: a hat stiffened/corrugated panel and a fiber reinforced foam sandwich panel. A composite structural optimization code, HyperSizer, is used to optimize the panel geometry, composite material ply orientations, and sandwich core material. HyperSizer enables an efficient evaluation of thousands of potential designs versus multiple strength and stability-based failure criteria across multiple load cases. HyperSizer sizing process uses a global finite element model to obtain element forces, which are statistically processed to arrive at panel-level design-to loads. These loads are then used to analyze each candidate panel design. A near optimum design is selected as the one with the lowest weight that also provides all positive margins of safety. The stiffness of each newly sized panel or beam component is taken into account in the subsequent finite element analysis. Iteration of analysis/optimization is performed to ensure a converged design. Sizing results for the hat stiffened panel concept and the fiber reinforced foam sandwich concept are presented.

  1. Intelligent surgical instrument system ISIS. Concept and preliminary experimental application of components and prototypes.

    PubMed

    Melzer, A; Schurr, M O; Kunert, W; Buess, G; Voges, U; Meyer, J U

    1993-06-01

    The recent progress in endoscopic surgery, which is highlighted by the complexity of fundoplication, stomach surgery and colorectal surgery, has revealed major restrictions with difficult surgical manipulations. Mobilisation, dissection and suturing techniques are hampered mainly by the limited degrees of freedom of the conventional rigid instruments (translation along and rotation around the longitudinal axis and the limited play in the access channel). The frequent interchange of instruments such as coagulation forceps, scissors and suction-irrigation probe is time-consuming. We have established an interdisciplinary development model with the aim of improving surgical technology, instrument systems, the operation theatre and its environment. Concepts of electronic instrument control and sensoric feedback, and the features of the surgical man-machine-interface are described. The first prototypes of an intelligent steerable instrument system, ISIS, and its optional effectors, e.g. semiautomatic sewing device and multifunctional coagulation instrument, were tested in phantom and animal experiments. System analysis will lead to specially designed operating theatres (minimal invasive surgical operating system MINOS).

  2. Nuclear Safety Functions of ITER Gas Injection System Instrumentation and Control and the Concept Design

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Maruyama, S.; Fossen, A.; Villers, F.; Kiss, G.; Zhang, Bo; Li, Bo; Jiang, Tao; Huang, Xiangmei

    2016-08-01

    The ITER Gas Injection System (GIS) plays an important role on fueling, wall conditioning and distribution for plasma operation. Besides that, to support the safety function of ITER, GIS needs to implement three nuclear safety Instrumentation and Control (I&C) functions. In this paper, these three functions are introduced with the emphasis on their latest safety classifications. The nuclear I&C design concept is briefly discussed at the end.

  3. SPICA Mid-infrared Instrument (SMI): technical concepts and scientific capabilities

    NASA Astrophysics Data System (ADS)

    Kaneda, Hidehiro; Ishihara, Daisuke; Oyabu, Shinki; Yamagishi, Mitsuyoshi; Wada, Takehiko; Kawada, Mitsunobu; Isobe, Naoki; Asano, Kentaroh; Suzuki, Toyoaki; Nakagawa, Takao; Matsuhara, Hideo; Sakon, Itsuki; Tsumura, Kohji; Shibai, Hiroshi; Matsuo, Taro

    2016-07-01

    SMI (SPICA Mid-infrared Instrument) is one of the two focal-plane scientific instruments planned for new SPICA, and the Japanese instrument proposed and managed by a university consortium in Japan. SMI covers the wavelength range of 12 to 36 μm, using the following three spectroscopic channels with unprecedentedly high sensitivities: low-resolution spectroscopy (LRS; R = 50 - 120, 17 - 36 μm), mid-resolution spectroscopy (MRS; R = 1300 - 2300, 18 - 36 μm), and high-resolution spectroscopy (HRS; R = 28000, 12 - 18 μm). The key functions of these channels are high-speed dustband mapping with LRS, high-sensitivity multi-purpose spectral mapping with MRS, and high-resolution molecular-gas spectroscopy with HRS. This paper describes the technical concept and scientific capabilities of SMI.

  4. Cosmic microwave background polarimetry with ABS and ACT: Instrumental design, characterization, and analysis

    NASA Astrophysics Data System (ADS)

    Simon, Sara Michelle

    The LCDM model of the universe is supported by an abundance of astronomical observations, but it does not confirm a period of inflation in the early universe or explain the nature of dark energy and dark matter. The polarization of the cosmic microwave background (CMB) may hold the key to addressing these profound questions. If a period of inflation occurred in the early universe, it could have left a detectable odd-parity pattern called B-modes in the polarization of the CMB on large angular scales. Additionally, the CMB can be used to probe the structure of the universe on small angular scales through lensing and the detection of galaxy clusters and their motions via the Sunyaev-Zel'dovich effect, which can improve our understanding of neutrinos, dark matter, and dark energy. The Atacama B-mode Search (ABS) instrument was a cryogenic crossed-Dragone telescope located at an elevation of 5190m in the Atacama Desert in Chile that observed from February 2012 until October 2014. ABS searched on degree-angular scales for inflationary B-modes in the CMB and pioneered the use of a rapidly-rotating half-wave plate (HWP), which modulates the polarization of incoming light to permit the measurement of celestial polarization on large angular scales that would otherwise be obscured by 1/f noise from the atmosphere. Located next to ABS in the Atacama is the Atacama Cosmology Telescope (ACT), which is an off-axis Gregorian telescope. Its large 6m primary mirror facilitates measurements of the CMB on small angular scales. HWPs are baselined for use with the upgraded polarization-sensitive camera for ACT, called Advanced ACTPol, to extend observations of the polarized CMB to larger angular scales while also retaining sensitivity to small angular scales. The B-mode signal is extremely faint, and measuring it poses an instrumental challenge that requires the development of new technologies and well-characterized instruments. I will discuss the use of novel instrumentation and

  5. Advanced life support control/monitor instrumentation concepts for flight application

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dahlhausen, M. J.; Fell, R. B.

    1986-01-01

    Development of regenerative Environmental Control/Life Support Systems requires instrumentation characteristics which evolve with successive development phases. As the development phase moves toward flight hardware, the system availability becomes an important design aspect which requires high reliability and maintainability. This program was directed toward instrumentation designs which incorporate features compatible with anticipated flight requirements. The first task consisted of the design, fabrication and test of a Performance Diagnostic Unit. In interfacing with a subsystem's instrumentation, the Performance Diagnostic Unit is capable of determining faulty operation and components within a subsystem, perform on-line diagnostics of what maintenance is needed and accept historical status on subsystem performance as such information is retained in the memory of a subsystem's computerized controller. The second focus was development and demonstration of analog signal conditioning concepts which reduce the weight, power, volume, cost and maintenance and improve the reliability of this key assembly of advanced life support instrumentation. The approach was to develop a generic set of signal conditioning elements or cards which can be configured to fit various subsystems. Four generic sensor signal conditioning cards were identified as being required to handle more than 90 percent of the sensors encountered in life support systems. Under company funding, these were detail designed, built and successfully tested.

  6. An Instrument Concept for Atmospheric Infrared Sounding from Medium Earth Orbit

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Baron, Richard l.

    2004-01-01

    Medium Earth Orbit (MEO) offers a unique vantage point for atmospheric infrared sounding. The orbit allows the entire globe to be covered each day with one satellite. The orbit is slow enough to allow multiple views of a single target to be made on each pass. this paper discusses the advantages in coverage and revisit rate from MEO for a particular concept for a Medium Earth Orbit Infrared Atmospheric Sounder (MIRIS). The requirements for this instrument in terms of spectral range, spatial resolution, field of view, and calibration are presented as well as the radiometric performance expectations.

  7. The Application and Evaluation of a Two-Concept Diagnostic Instrument with Students Entering College General Chemistry

    ERIC Educational Resources Information Center

    Heredia, Keily; Xu, Xiaoying; Lewis, Jennifer E.

    2012-01-01

    The Particulate Nature of Matter and Chemical Bonding Diagnostic Instrument (Othman J., Treagust D. F. and Chandrasegaran A. L., (2008), "Int. J. Sci. Educ.," 30(11), 1531-1550) is used to investigate college students' understanding of two chemistry concepts: particulate nature of matter and chemical bonding. The instrument, originally…

  8. Proof-of-concept study of a marine ion-selective optical sensing instrument

    NASA Astrophysics Data System (ADS)

    Sobron, P.; Thompson, C.; Bamsey, M.

    2013-12-01

    We have developed a proof-of-concept instrument for real-time in-situ characterization of the ion chemistry of the ocean. Our instrument uses optical sensors equipped with ion-selective membranes which exhibit a change in an optical property that can be correlated with the concentration of a specific ion. We have implemented a system for multi-ion sensing that includes the use of a single spectrometer in tandem with a fiber optic multiplexer that is capable of reading a suite of attached optrodes, each of them dedicated to a unique ion. In this abstract we report the experimental characterization of calcium and potassium optrodes as a template for ion-selective optrodes and their application to the characterization of the oceans. The tests were performed at the Controlled Environment Systems Research Facility of the University of Guelph. Guelph's optrode housing was tested by immersing it in a 1/2 strength Hoagland's hydroponic solution to test functionality of the K+ and Ca2+ optrodes in this environment. Our results demonstrate the feasibility of recording spectral information in sub-minute times from more than one optrode simultaneously in a given aqueous system. This proof-of-concept study has allowed us to measure parameters of interest and comparison to analytical predictions for critical subsystems of a deployable system, and demonstrates maturity of the multi-ion sensing optrode technology. Critical advantages of our optrode system are that it: (1) enables concurrent measurements of multiple ionic species relevant in ocean sciences; (2) has high time and spatial resolution; (3) has low limits of detection; (4) uses low-cost, low-mass, energy efficient optoelectronics. Our system has the potential for facilitating new observational, experimental, and analytic capabilities in ocean sciences, including: (a) health and environment monitoring; (b) aquaculture; (c) global change, e.g. ocean acidification; and (d) origin of life research. Proof-of-concept setup at

  9. The Development and Validation of a Two-Tiered Multiple-Choice Instrument to Identify Alternative Conceptions in Earth Science

    ERIC Educational Resources Information Center

    Mangione, Katherine Anna

    2010-01-01

    This study was to determine reliability and validity for a two-tiered, multiple- choice instrument designed to identify alternative conceptions in earth science. Additionally, this study sought to identify alternative conceptions in earth science held by preservice teachers, to investigate relationships between self-reported confidence scores and…

  10. Labview Interface Concepts Used in NASA Scientific Investigations and Virtual Instruments

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Parker, Bradford H.; Rapchun, David A.; Jones, Hollis H.; Cao, Wei

    2001-01-01

    This article provides an overview of several software control applications developed for NASA using LabVIEW. The applications covered here include (1) an Ultrasonic Measurement System for nondestructive evaluation of advanced structural materials, an Xray Spectral Mapping System for characterizing the quality and uniformity of developing photon detector materials, (2) a Life Testing System for these same materials, (3) and the instrument panel for an aircraft mounted Cloud Absorption Radiometer that measures the light scattered by clouds in multiple spectral bands. Many of the software interface concepts employed are explained. Panel layout and block diagram (code) strategies for each application are described. In particular, some of the more unique features of the applications' interfaces and source code are highlighted. This article assumes that the reader has a beginner-to-intermediate understanding of LabVIEW methods.

  11. Concepts, Instruments, and Model Systems that Enabled the Rapid Evolution of Surface Science

    SciTech Connect

    Somorjai, Gabor A.; Park, Jeong Y.

    2009-01-10

    Over the past forty years, surface science has evolved to become both an atomic scale and a molecular scale science. Gerhard Ertl's group has made major contributions in the field of molecular scale surface science, focusing on vacuum studies of adsorption chemistry on single crystal surfaces. In this review, we outline three important aspects which have led to recent advances in surface chemistry: the development of new concepts, in situ instruments for molecular scale surface studies at buried interfaces (solid-gas and solid-liquid), and new model nanoparticle surface systems, in addition to single crystals. Combined molecular beam surface scattering and low energy electron diffraction (LEED)- surface structure studies on metal single crystal surfaces revealed concepts, including adsorbate-induced surface restructuring and the unique activity of defects, atomic steps, and kinks on metal surfaces. We have combined high pressure catalytic reaction studies with ultra high vacuum (UHV) surface characterization techniques using a UHV chamber equipped with a high pressure reaction cell. New instruments, such as high pressure sum frequency generation (SFG) vibrational spectroscopy and scanning tunneling microscopy (STM) which permit molecular-level surface studies have been developed. Tools that access broad ranges of pressures can be used for both the in situ characterization of solid-gas and solid-liquid buried interfaces and the study of catalytic reaction intermediates. The model systems for the study of molecular surface chemistry have evolved from single crystals to nanoparticles in the 1-10 nm size range, which are currently the preferred media in catalytic reaction studies.

  12. Acoustic Cluster Therapy (ACT)--A novel concept for ultrasound mediated, targeted drug delivery.

    PubMed

    Sontum, Per; Kvåle, Svein; Healey, Andrew John; Skurtveit, Roald; Watanabe, Rira; Matsumura, Manabu; Østensen, Jonny

    2015-11-30

    A novel approach for ultrasound (US) mediated drug delivery - Acoustic Cluster Therapy (ACT) - is proposed, and basic characteristics of the ACT formulation are elucidated. The concept comprises administration of free flowing clusters of negatively charged microbubbles and positively charged microdroplets. The clusters are activated within the target pathology by diagnostic US, undergo an ensuing liquid-to-gas phase shift and transiently deposit 20-30 μm large bubbles in the microvasculature, occluding blood flow for ∼5-10 min. Further application of US will induce biomechanical effects that increases the vascular permeability, leading to a locally enhanced extravasation of components from the vascular compartment (e.g. released or co-administered drugs). Methodologies are detailed for determination of vital in-vitro characteristics of the ACT compound; cluster concentration and size distribution. It is shown how these attributes can be engineered through various formulation parameters, and their significance as predictors of biological behaviour, such as deposit characteristics, is demonstrated by US imaging in a dog model. Furthermore, in-vivo properties of the activated ACT bubbles are studied by intravital microscopy in a rat model, confirming the postulated behaviour of the concept.

  13. Integration of a Micro-Chip Amino Acid Chirality Detector into the MOD Instrument Concept

    NASA Technical Reports Server (NTRS)

    Bada, Jeffrey L.; Grunthaner, Frank; Mathies, Richard

    2004-01-01

    The MOD (Mars Organic Detector) instrument concept consists of a sublimation apparatus for organic compound isolation connected to a microfabricated microfluidic analyzer containing a sipper, pumps and a separation channel for organic compound characterization. The target organic compounds are amino acids and polycyclic aromatic hydrocarbons (PAHs). Solid samples are placed within the sublimation apparatus and heated to release organic compounds which sublime onto a cold finger. Half of the cold finger is coated with fluorescamine. which reacts with amino acids and other primary amines to generate an intense fluorescent derivative while the other half is uncoated and is used to directly detect PAH fluorescence, A capillary sipper is then used to dissolve and sample the labeled amino acids and integrated microfabricated pumps transport the labeled amino acids to the chip for analysis. The sample is separated using capillary zone electrophoresis (CZE) together with chiral dextrins to determine amino acid composition and chirality. During the grant period, the following steps have been completed toward the development of a robust instrument and chemistry.

  14. Getting the GeoSTAR Instrument Concept Ready for a Space Mission

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, B.; Gaier, T.; Kangaslahti, P.; Lim, B.; Tanner, A.; Ruf, C.

    2011-01-01

    The Geostationary Synthetic Thinned Array Radiometer - GeoSTAR - is a microwave sounder intended for geostationary satellites. First proposed for the EO-3 New Millennium mission in 1999, the technology has since been developed under the Instrument Incubator Program. Under IIP-03 a proof-of-concept demonstrator operating in the temperature sounding 50 GHz band was developed to show that the aperture synthesis concept results in a realizable, stable and accurate imaging-sounding radiometer. Some of the most challenging technology, such as miniature low-power 183- GHz receivers used for water vapor sounding, was developed under IIP-07. The first such receiver has recently been adapted for use in the High Altitude MMIC Sounding Radiometer (HAMSR), which was previously developed under IIP-98. This receiver represents a new state of the art and outperforms the previous benchmark by an order of magnitude in radiometric sensitivity. It was first used in the GRIP hurricane field campaign in 2010, where HAMSR became the first microwave sounder to fly on the Global Hawk UAV. Now, under IIP-10, we will develop flight-like subsystems and a brassboard testing system, which will facilitate rapid implementation of a space mission. GeoSTAR is the baseline payload for the Precipitation and All-weather Temperature and Humidity (PATH) mission - one of NASA's 15 "decadal-survey" missions. Although PATH is currently in the third tier of those missions, the IIP efforts have advanced the required technology to a point where a space mission can be initiated in a time frame commensurate with second-tier missions. An even earlier Venture mission is also being considered.

  15. A Study on Development of an Instrument to Determine Turkish Kindergarten Students' Understandings of Scientific Concepts and Scientific Inquiry Processes

    ERIC Educational Resources Information Center

    Senocak, Erdal; Samarapungavan, Ala; Aksoy, Pinar; Tosun, Cemal

    2013-01-01

    The aim of this study was to develop a valid and reliable instrument to measure Turkish kindergarten students' understandings of some science concepts and scientific inquiry processes which are grounded in the Turkish Preschool Curriculum. The sample of the study was 371 kindergarten students, 12 Subject Area Experts (SAE), and 7 Turkish Language…

  16. Examination of the Structure and Grade-Related Differentiation of Multidimensional Self-Concept Instruments for Children Using ESEM

    ERIC Educational Resources Information Center

    Arens, A. Katrin; Morin, Alexandre J. S.

    2016-01-01

    This study is a substantive-methodological synergy in which exploratory structural equation modeling is applied to investigate the factor structure of multidimensional self-concept instruments. On the basis of a sample of German students (N = 1958) who completed the Self-Description Questionnaire I and the Self-Perception Profile for Children, the…

  17. New altimeter concept for next-generation global Earth topography microwave instruments

    NASA Astrophysics Data System (ADS)

    Zelli, Carlo; Sorge, S.; Croci, R.; Mavrocordatos, Constantin E.

    1999-12-01

    Pulse limited radar altimeters (Geosat, ERS1/2, Topex/Poseidon) have demonstrated excellent ability in performing measurements of the ocean topography from space with a high degree of accuracy. Data continuity will be ensured through follow on missions like TOPEX-POSEIDON Follow- on and ENVISAT RA2 (developed by ALENIA AEROSPAZIO under ESA contract) in this case providing also the chance for a global Earth topography mapping not more limited to ocean but extended to land and ice regions thanks to innovative design features like resolution adaptivity and robust on board tracking. Earth sciences are now demanding for systems with extensive capability to get topographic measurements over non- ocean surfaces (ice and land regions) but with improved spatial resolution, in the order of 100 - 300 meters respect to the several hundreds of meters provided by nadir looking pulse limited systems. A real step forward in high resolution topography with microwave instrumentation is represented by the application of synthetic aperture and interferometric techniques to the conventional pulse limited altimeter concept, a solution proposed in the literature and extensively exploited by ALENIA AEROSPAZIO in the frame of the ESA studies TOS (Topography Observing Systems) and HSRRA (High Spatial Resolution Radar Altimeter) and proposed in late 1998 for the Earth Explorer Opportunity Mission CRYOSAT. In the high spatial resolution altimeter synthetic aperture processing applied along the direction of motion will allow to improve the resolution in the along track while dual antenna observation geometry will enable reconstruction of surface topography within each synthesized Doppler filter from the phase difference between the radar returns at the two antennas. Thanks to a proper baseline selection, a unique interference fringe can be generated within the observed swath thus avoiding the troubles of phase unwrapping otherwise required in conventional interferometric processing. Aim of

  18. Developing a two-tiered instrument with confidence levels for assessing students' conceptions of Direct Current circuits

    NASA Astrophysics Data System (ADS)

    Sabah, Saed Ahmad

    The purpose of this study is to develop and validate a two-tier revised instrument (DIRECT-TTC) for measuring students understanding of Direct Current (DC) circuits and identifying their alternative conceptions. Another main purpose of this study is to investigate the relationship between students' understanding of DC circuits and their confidence in their answers. The revised instrument consists of 15 two-tier items with a confidence scale. Both the Rasch analysis and students' interviews were used in validating the instrument and obtaining evidences for the validity of inferences. Through a two-stage quantitative and qualitative validation process using both conventional statistics and Rasch modeling, the results indicate that the instrument is both valid and reliable. The results show a statistically significant association between students' answers to the first- tier questions and explanations, r = .65 (p< .01, N = 214). The second-tier questions provided substantial information about students' conceptions of DC circuits beyond that provided by the first-tier questions. This research shows that the more able students with regard to the construct of understanding DC circuits are more likely to be confident in their answers, r = +.39 (p< .01). Several Rasch calibrations and correlation analyses indicate that the more difficult items are associated with less confidence in the correct answers. On the other hand, the results show no statistically significant relationship between item difficulty and students' confidence specifically in their incorrect answers. The difficult items with high confidence on incorrect answers exhibit the stronger alternative conceptions of DC circuits. The alternative conceptions of voltage and resistance are among the very strong alternative conceptions of DC circuits. Implications for researchers and teachers as well as recommendations for future research are presented.

  19. A Survey Instrument for the Assessment of Popular Conceptions of Mental Illness

    ERIC Educational Resources Information Center

    Cox, Gary; And Others

    1976-01-01

    A 190-item survey instrument, designed to assess subgroup differences in the behavioral criteria for mental illness labeling, was administered to 241 adults from two populations. The 190 items comprised 25 content homogeneous scales. The instrument was found to compress into 13 separate areas of attributed psychopathology. (Author)

  20. Develop real-time dosimetry concepts and instrumentation for long term missions

    NASA Technical Reports Server (NTRS)

    Braby, L. A.

    1982-01-01

    The development of a rugged portable instrument to evaluate dose and dose equivalent is described. A tissue-equivalent proportional counter simulating a 2 micrometer spherical tissue volume was operated satisfactorily for over a year. The basic elements of the electronic system were designed and tested. And finally, the most suitable mathematical technique for evaluating dose equivalent with a portable instrument was selected. Design and fabrication of a portable prototype, based on the previously tested circuits, is underway.

  1. Evaluation of the Pressing Characteristics of Commercially Pure Titanium Using an Instrumented Double Acting Die

    SciTech Connect

    Hovanski, Yuri; Lavender, Curt A.; Weil, K. Scott

    2008-06-19

    With recent advances in synthesizing titanium powder by low-cost routes, there has been growing interest in identifying process/material conditions that overcome the powder compaction problems typically found with this reactive metal. The use of instrumented dies in studying the cold pressing process for commercial iron and steel powders has provided greater insight into the complex phenomena that occur and may be used to evaluate constitutive relations that describe the compaction process. Nevertheless, little work has been conducted on the special, more problematic case of reactive metal powders such as titanium. An instrumented die was developed that allows die wall friction to be characterized and the radial stress distribution along the die wall and throughout the compact to be monitored. As will be presented, this tool has been used to investigate titanium compaction and to draw comparisons with results obtained on a baseline commercial iron powder. Both sets of data were systematically collected using various powder/die lubrication combinations.

  2. [Instrumentation for blood pressure measurements: historical aspects, concepts and sources of error].

    PubMed

    de Araujo, T L; Arcuri, E A; Martins, E

    1998-04-01

    According to the International Council of Nurses the measurement of blood pressure is the procedure most performed by nurses in all the world. The aim of this study is to analyse the polemical aspects of instruments used in blood pressure measurement. Considering the analyses of the literature and the American Heart Association Recommendations, the main source of errors when measuring blood pressure are discussed.

  3. Euclid near infrared spectrophotometer instrument concept and first test results at the end of phase B

    NASA Astrophysics Data System (ADS)

    Maciaszek, Thierry; Ealet, Anne; Jahnke, Knud; Prieto, Eric; Barbier, Rémi; Mellier, Yannick; Costille, Anne; Ducret, Franck; Fabron, Christophe; Gimenez, Jean-Luc; Grange, Robert; Martin, Laurent; Rossin, Christelle; Pamplona, Tony; Vola, Pascal; Clémens, Jean Claude; Smadja, Gérard; Amiaux, Jérome; Barrière, Jean Christophe; Berthe, Michel; De Rosa, Adriano; Franceschi, Enrico; Morgante, Gianluca; Trifoglio, Massimo; Valenziano, Luca; Bonoli, Carlotta; Bortoletto, Favio; D'Alessandro, Maurizio; Corcione, Leonardo; Ligori, Sebastiano; Garilli, Bianca; Riva, Marco; Grupp, Frank; Vogel, Carolin; Hormuth, Felix; Seidel, Gregor; Wachter, Stefanie; Diaz, Jose Javier; Grañena, Ferran; Padilla, Cristobal; Toledo, Rafael; Lilje, Per B.; Solheim, Bjarte G. B.; Toulouse-Aastrup, Corinne; Andersen, Michael; Holmes, Warren; Israelsson, Ulf; Seiffert, Michael; Weber, Carissa; Waczynski, Augustyn; Laureijs, René J.; Racca, Giuseppe; Salvignol, Jean-Christophe; Strada, Paolo

    2014-08-01

    The Euclid mission objective is to understand why the expansion of the Universe is accelerating by mapping the geometry of the dark Universe by investigating the distance-redshift relationship and tracing the evolution of cosmic structures. The Euclid project is part of ESA's Cosmic Vision program with its launch planned for 2020. The NISP (Near Infrared Spectro-Photometer) is one of the two Euclid instruments and is operating in the near-IR spectral region (0.9-2μm) as a photometer and spectrometer. The instrument is composed of: - a cold (135K) optomechanical subsystem consisting of a SiC structure, an optical assembly (corrector and camera lens), a filter wheel mechanism, a grism wheel mechanism, a calibration unit and a thermal control system - a detection subsystem based on a mosaic of 16 Teledyne HAWAII2RG cooled to 95K with their front-end readout electronic cooled to 140K, integrated on a mechanical focal plane structure made with Molybdenum and Aluminum. The detection subsystem is mounted on the optomechanical subsystem structure - a warm electronic subsystem (280K) composed of a data processing / detector control unit and of an instrument control unit that interfaces with the spacecraft via a 1553 bus for command and control and via Spacewire links for science data This presentation describes the architecture of the instrument at the end of the phase B (Preliminary Design Review), the expected performance, the technological key challenges and preliminary test results obtained on a detection system demonstration model.

  4. Optimization of Instrument Requirements for NASAs GEO-CAPE Coastal Mission Concept Based On Sensor Capability And Cost Studies

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio

    2015-01-01

    NASA's GEOstationary Coastal and Air Pollution Events (GEOCAPE) mission concept recommended by the U.S. National Research Council (2007) focuses on measurements of atmospheric trace gases and aerosols and aquatic coastal ecology and biogeochemistry from geostationary orbit (35,786 km altitude). GEO-CAPE is currently in pre-formulation (pre- Phase) A with no established launch date. NASA continues to support science and engineering studies to reduce mission risk. Instrument design lab (IDL) studies were commissioned in 2014 to design and cost two implementations for geostationary ocean color instruments (1) Wide-Angle Spectrometer (WAS) and (2) Filter Radiometer (FR) and (3) a cost scaling study to compare the costs for implementing different science performance requirements.

  5. The thirty gigahertz instrument receiver for the Q-U-I Joint Tenerife experiment: concept and experimental results.

    PubMed

    Villa, Enrique; Cano, Juan L; Cagigas, Jaime; Ortiz, David; Casas, Francisco J; Pérez, Ana R; Aja, Beatriz; Terán, J Vicente; de la Fuente, Luisa; Artal, Eduardo; Hoyland, Roger; Mediavilla, Ángel

    2015-02-01

    This paper presents the analysis, design, and characterization of the thirty gigahertz instrument receiver developed for the Q-U-I Joint Tenerife experiment. The receiver is aimed to obtain polarization data of the cosmic microwave background radiation from the sky, obtaining the Q, U, and I Stokes parameters of the incoming signal simultaneously. A comprehensive analysis of the theory behind the proposed receiver is presented for a linearly polarized input signal, and the functionality tests have demonstrated adequate results in terms of Stokes parameters, which validate the concept of the receiver based on electronic phase switching.

  6. The thirty gigahertz instrument receiver for the Q-U-I Joint Tenerife experiment: Concept and experimental results

    SciTech Connect

    Villa, Enrique Cano, Juan L.; Cagigas, Jaime; Pérez, Ana R.; Aja, Beatriz; Terán, J. Vicente; Fuente, Luisa de la; Artal, Eduardo; Mediavilla, Ángel

    2015-02-15

    This paper presents the analysis, design, and characterization of the thirty gigahertz instrument receiver developed for the Q-U-I Joint Tenerife experiment. The receiver is aimed to obtain polarization data of the cosmic microwave background radiation from the sky, obtaining the Q, U, and I Stokes parameters of the incoming signal simultaneously. A comprehensive analysis of the theory behind the proposed receiver is presented for a linearly polarized input signal, and the functionality tests have demonstrated adequate results in terms of Stokes parameters, which validate the concept of the receiver based on electronic phase switching.

  7. Berimbau: A simple instrument for teaching basic concepts in the physics and psychoacoustics of music

    NASA Astrophysics Data System (ADS)

    Vilão, Rui C.; Melo, Santino L. S.

    2014-12-01

    We address the production of musical tones by a simple musical instrument of the Brazilian tradition: the berimbau-de-barriga. The vibration physics of the string and of the air mass inside the gourd are reviewed. Straightforward measurements of an actual berimbau, which illustrate the basic physical phenomena, are performed using a PC-based "soundcard oscilloscope." The inharmonicity of the string and the role of the gourd are discussed in the context of known results in the psychoacoustics of pitch definition.

  8. Instrumentation concepts and requirements for a space vacuum research facility. [molecular shield for spaceborne experiments

    NASA Technical Reports Server (NTRS)

    Norton, H. N.

    1979-01-01

    An earth-orbiting molecular shield that offers a unique opportunity for conducting physics, chemistry, and material processing experiments under a combination of environmental conditions that are not available in terrestrial laboratories is equipped with apparatus for forming a molecular beam from the freestream. Experiments are carried out using a moderate energy, high flux density, high purity atomic oxygen beam in the very low density environment within the molecular shield. As a minimum, the following instruments are required for the molecular shield: (1) a mass spectrometer; (2) a multifunction material analysis instrumentation system; and (3) optical spectrometry equipment. The design is given of a furlable molecular shield that allows deployment and retrieval of the system (including instrumentation and experiments) to be performed without contamination. Interfaces between the molecular shield system and the associated spacecraft are given. An in-flight deployment sequence is discussed that minimizes the spacecraft-induced contamination in the vicinity of the shield. Design approaches toward a precursor molecular shield system are shown.

  9. Developing an Instrument for Assessing Students' Concepts of the Nature of Technology

    ERIC Educational Resources Information Center

    Liou, Pey-Yan

    2015-01-01

    Background: The nature of technology has been rarely discussed despite the fact that technology plays an essential role in modern society. It is important to discuss students' concepts of the nature of technology, and further to advance their technological literacy and adaptation to modern society. There is a need to assess high school students'…

  10. Developing an Instrument for Assessing Students' Understanding of the Energy Concept across Science Disciplines

    ERIC Educational Resources Information Center

    Park, Mihwa

    2013-01-01

    Energy is a core and unifying concept in all science disciplines and across all grade levels. Although energy is one of the most central and richly connected ideas in all of science disciplines, students often have a great deal of difficulty understanding it. Numerous studies have been conducted on this topic finding that many students held…

  11. Engineering Design in the Primary School: Applying STEM Concepts to Build an Optical Instrument

    ERIC Educational Resources Information Center

    King, Donna; English, Lyn D.

    2016-01-01

    Internationally there is a need for research that focuses on STEM (Science, Technology, Engineering and Mathematics) education to equip students with the skills needed for a rapidly changing future. One way to do this is through designing engineering activities that reflect real-world problems and contextualise students' learning of STEM concepts.…

  12. Evaluation of two cockpit display concepts for civil tiltrotor instrument operations on steep approaches

    NASA Technical Reports Server (NTRS)

    Decker, William A.; Bray, Richard S.; Simmons, Rickey C.; Tucker, George E.

    1993-01-01

    A piloted simulation experiment was conducted using the NASA Ames Research Center Vertical Motion Simulator to evaluate two cockpit display formats designed for manual control on steep instrument approaches for a civil transport tiltrotor aircraft. The first display included a four-cue (pitch, roll, power lever position, and nacelle angle movement prompt) flight director. The second display format provided instantaneous flight path angle information together with other symbols for terminal area guidance. Pilots evaluated these display formats for an instrument approach task which required a level flight conversion from airplane-mode flight to helicopter-mode flight while decelerating to the nominal approach airspeed. Pilots tracked glide slopes of 6, 9, 15 and 25 degrees, terminating in a hover for a vertical landing on a 150 feet square vertipad. Approaches were conducted with low visibility and ceilings and with crosswinds and turbulence, with all aircraft systems functioning normally and were carried through to a landing. Desired approach and tracking performance was achieved with generally satisfactory handling qualities using either display format on glide slopes up through 15 degrees. Evaluations with both display formats for a 25 degree glide slope revealed serious problems with glide slope tracking at low airspeeds in crosswinds and the loss of the intended landing spot from the cockpit field of view.

  13. Transabdominal wall deployment for instruments, lights, and micromotors using the concept of secured independent tools.

    PubMed

    Tsin, Daniel A; Davila, Fausto; Dominguez, Guillermo; Tinelli, Andrea; Davila, Martha R

    2012-05-01

    Use of secured independent tools (SIT) is changing the laparoscopy paradigm, which involves the use of instruments inside the abdominal cavity that are operated via a port that is larger in diameter than the instrument itself. However, in SIT instead of ports we used filaments or cables. Here we describe a modified SIT for use in the introduction of sutures or cables inside the peritoneum. Cables or sutures are passed through a tunnel made by an intravenous catheter and then exteriorized via a 12-mm port for tying, plugging (attaching), or connecting to different types of devices such as an endoscopic bulldog, alligator clamps, lights, and micromotors. These devices are introduced inside the abdomen and remotely operated with cables or filaments. The use of SIT is not limited to laparoscopy; it was successfully used in clinical experiences of single-port and single-incision laparoscopy and could facilitate natural orifice surgery. The technique offers a good force for traction, retraction, and mobilization. In addition, it has transmission capabilities for cameras and may facilitate the placement of wired microrobotics.

  14. Concept Doped-Silicon Thermopile Detectors for Future Planetary Thermal Imaging Instruments

    NASA Astrophysics Data System (ADS)

    Lakew, Brook; Barrentine, Emily M.; Aslam, Shahid; Brown, Ari D.

    2016-10-01

    Presently, uncooled thermopiles are the detectors of choice for thermal mapping in the 4.6-100 μm spectral range. Although cooled detectors like Ge or Si thermistor bolometers, and MgB2 or YBCO superconducting bolometers, have much higher sensitivity, the required active or passive cooling mechanisms add prohibitive cost and mass for long duration missions. Other uncooled detectors, likepyroelectrics, require a motor mechanism to chop against a known reference temperature, which adds unnecessary mission risk. Uncooled vanadium oxide or amorphous Si microbolometer arrays with integrated CMOS readout circuits, not only have lower sensitivity, but also have not been proven to be radiation hard >100 krad (Si) total ionizing dose, and barring additional materials and readout development, their performance has reached a plateau.Uncooled and radiation hard thermopiles with D* ~1x109 cm√Hz/W and time constant τ ~100 ms have been integrated into thermal imaging instruments on several past missions and have extensive flight heritage (Mariner, Voyager, Cassini, LRO, MRO). Thermopile arrays are also on the MERTIS instrument payload on-board the soon to be launched BepiColombo Mission.To date, thermopiles used for spaceflight instrumentation have consisted of either hand assembled "one-off" single thermopile pixels or COTS thermopile pixel arrays both using Bi-Sb or Bi-Te thermoelectric materials. For future high performance imagers, thermal detector arrays with higher D*, lower τ, and high efficiency delineated absorbers are desirable. Existing COTS and other flight thermopile designs require highly specialized and nonstandard processing techniques to fabricate both the Bi-Sb or Bi-Te thermocouples and the gold or silver black absorbers, which put limitations on further development.Our detector arrays will have a D* ≥ 3x109 cm√Hz/W and a thermal time constant ≤ 30 ms at 170 K. They will be produced using proven, standard semiconductor and MEMS fabrication techniques

  15. The optical design of GMOX: a next-generation instrument concept for Gemini

    NASA Astrophysics Data System (ADS)

    Barkhouser, Robert; Robberto, Massimo; Smee, Stephen A.; Ninkov, Zoran; Gennaro, Mario; Heckman, Timothy

    2016-08-01

    We present the optical design of GMOX, the Gemini Multi-Object eXtra-wide-band spectrograph. GMOX was selected as part of the Gemini Instrument Feasibility Study to develop capabilities and requirements for the next facility instrument (Gen4#3) for the observatory. We envision GMOX covering the entire optical/near-IR wavelength range accessible from the ground, from 3500 Å in the U band up to 2.4 μm in the K band, with nominal resolving power R≃5,000. To maximize efficiency, the bandpass is split into three spectrograph arms - blue, red, and near-infrared - with the near-infrared arm further split into three channels covering the Y+J, H, and K bands. At the heart of each arm is a Digital Micromirror Device (DMD) serving as a programmable slit array. This technology will enable GMOX to simultaneously acquire hundreds of spectra of faint sources in crowded fields with unparalleled spatial resolution, optimally adapting to both seeing-limited and diffraction limited conditions provided by ALTAIR and GeMS at Gemini North and South, respectively. Fed by GeMS at f/33, GMOX can synthesize slits as small as 40 mas (corresponding to a single HST/WFC3 CCD pixel) over its entire 85"x45" field of view. With either ALTAIR or the native telescope focal ratio of f/16, both the slit and field sizes double. In this paper we discuss the conceptual optical design of GMOX including, for each arm: the pre-slit optics, DMD slit array, off-axis Schmidt collimator, VPH grating, and refractive spectrograph and slit-viewing cameras.

  16. Mass spectrometry detection in comprehensive liquid chromatography: basic concepts, instrumental aspects, applications and trends.

    PubMed

    Donato, Paola; Cacciola, Francesco; Tranchida, Peter Quinto; Dugo, Paola; Mondello, Luigi

    2012-01-01

    The review, as can be deduced from the title, focuses on both theoretical and practical aspects of the use of mass spectrometry as a third, added dimension to a comprehensive LC (LC × LC) system, generating the most powerful analytical tool today for non-volatile analytes. The first part deals with the technical requirements for linkage of an LC × LC system to an MS one, including the choice of the mobile phase (buffer and salts), flow rate (splitting), type of ionization (interface); advantages and disadvantages of off-line and on-line methods are discussed, as well. A discussion of the various aspects of instrumentation is provided, both from a chromatographic and mass spectrometry standpoint, with particular emphasis directed to the choice of column sets, spatial resolution, mass resolving power, mass accuracy, and tandem-MS capabilities. The extent to which mass spectrometry may be of aid in unraveling column-outlet multicompound bands is highlighted, along with its effectiveness as a chromatographic detector of excellent sensitivity, universality yet with potential in terms of selectivity and amenability to quantitative analysis over a wide dynamic range. The following section of the review contains significant applications of comprehensive two-dimensional LC coupled to MS in different areas of research, with details on interfaces, column stationary phases, modulation and MS parameters. It is not the intention of the authors to provide a comprehensive description of the techniques, but merely to discuss only those aspects which are essential for successful applications of the LC-MS combination. The reader will be acquainted with the enormous potential of this hyphenated technique, and the factors and instrumental developments that have concurred to make it emerge to a central role in specialized fields, such as proteomics.

  17. The opto-mechanical design for GMOX: a next-generation instrument concept for Gemini

    NASA Astrophysics Data System (ADS)

    Smee, Stephen A.; Barkhouser, Robert; Robberto, Massimo; Ninkov, Zoran; Gennaro, Mario; Heckman, Timothy M.

    2016-08-01

    We present the opto-mechanical design of GMOX, the Gemini Multi-Object eXtra-wide-band spectrograph, a potential next-generation (Gen-4 #3) facility-class instrument for Gemini. GMOX is a wide-band, multi-object, spectrograph with spectral coverage spanning 350 nm to 2.4 um with a nominal resolving power of R 5000. Through the use of Digital Micromirror Device (DMD) technology, GMOX will be able to acquire spectra from hundreds of sources simultaneously, offering unparalleled flexibility in target selection. Utilizing this technology, GMOX can rapidly adapt individual slits to either seeing-limited or diffraction-limited conditions. The optical design splits the bandpass into three arms, blue, red, and near infrared, with the near-infrared arm being split into three channels covering the Y+J band, H band, and K band. A slit viewing camera in each arm provides imaging capability for target acquisition and fast-feedback for adaptive optics control with either ALTAIR (Gemini North) or GeMS (Gemini South). Mounted at the Cassegrain focus, GMOX is a large (1.3 m x 2.8 m x 2.0 m) complex instrument, with six dichroics, three DMDs (one per arm), five science cameras, and three acquisition cameras. Roughly half of these optics, including one DMD, operate at cryogenic temperature. To maximize stiffness and simplify assembly and alignment, the opto-mechanics are divided into three main sub-assemblies, including a near-infrared cryostat, each having sub-benches to facilitate ease of alignment and testing of the optics. In this paper we present the conceptual opto-mechanical design of GMOX, with an emphasis on the mounting strategy for the optics and the thermal design details related to the near-infrared cryostat.

  18. Quality of care from the patients' perspective: from theoretical concept to a new measuring instrument

    PubMed Central

    Sixma, Herman J.; Kerssens, Jan J.; van Campen, Crétien; Peters, Loe

    2002-01-01

    Introduction Patient views on quality of care are of paramount importance with respect to the implementation of quality assurance (QA) and improvement (QI) programmes. However, the relevance of patient satisfaction studies is often questioned because of conceptual and methodological problems. Here, it is our belief that a different strategy is necessary. Objective To develop a conceptual framework for measuring quality of care seen through the patients' eyes, based on the existing literature on consumer satisfaction in health care and business research. Results Patient or consumer satisfaction is regarded as a multidimensional concept, based on a relationship between experiences and expectations. However, where most health care researchers tend to concentrate on the result, patient (dis)satisfaction, a more fruitful approach is to look at the basic components of the concept: expectations (or `needs') and experiences. A conceptual framework – based on the sequence performance, importance, impact – and quality judgements of different categories of patients derived from importance and performance scores of different health care aspects, is elaborated upon and illustrated with empirical evidence. Conclusions The new conceptual model, with quality of care indices derived from importance and performance scores, can serve as a framework for QA and QI programmes from the patients' perspective. For selecting quality of care aspects, a category‐specific approach is recommended including the use of focus group discussions. PMID:11281863

  19. The SPICE concept - An approach to providing geometric and other ancillary information needed for interpretation of data returned from space science instruments

    NASA Technical Reports Server (NTRS)

    Acton, Charles H., Jr.

    1990-01-01

    The Navigation Ancillary Information Facility (NAIF), acting under the direction of NASA's Office of Space Science and Applications, and with substantial participation of the planetary science community, is designing and implementing an ancillary data system - called SPICE - to assist scientists in planning and interpreting scientific observations taken from spaceborne instruments. The principal objective of the implemented SPICE system is that it will hold the essential geometric and related ancillary information needed to recover the full value of science instrument data, and that it will facilitate correlations of individual instrument datasets with data obtained from other instruments on the same or other spacecraft.

  20. Novel tradable instruments in the conservation of coral reefs, based on the coral gardening concept for reef restoration.

    PubMed

    Rinkevich, Baruch

    2015-10-01

    Nearly all coral reefs bordering nations have experienced net losses in reef biodiversity, goods and services, even without considering the ever-developing global change impacts. In response, this overview wishes to reveal through prospects of active reef-restoration, the currently non-marketed or poorly marketed reef services, focusing on a single coral species (Stylophora pistillata). It is implied that the integration of equity capitals and other commodification with reef-restoration practices will improve total reef services. Two tiers of market-related activities are defined, the traditional first-tier instruments (valuating costs/gains for extracting tradable goods and services) and novel second-tier instruments (new/expanded monetary tools developed as by-products of reef restoration measures). The emerging new suite of economic mechanisms based on restoration methodologies could be served as an incentive for ecosystem conservation, enhancing the sum values of all services generated by coral reefs, where the same stocks of farmed/transplanted coral colonies will be used as market instruments. I found that active restoration measures disclose 12 classes of second-tier goods and services, which may partly/wholly finance restoration acts, bringing to light reef capitalizations that allow the expansion of markets with products that have not been considered before. The degree to which the second tier of market-related services could buffer coral-reef degradation is still unclear and would vary with different reef types and in various reef restoration scenarios; however, reducing the uncertainty associated with restoration. It is expected that the expansion of markets with the new products and the enhancement of those already existing will be materialized even if reef ecosystems will recover into different statuses.

  1. Ionospheric Cubeswarm Concept Study: using low-resource instrumentation for truly multipoint in situ ionospheric observations

    NASA Astrophysics Data System (ADS)

    Hampton, D.; Lynch, K. A.; Earle, G. D.; Mannucci, A. J.; Clayton, R.; Fisher, L. E.; Fernandes, P. A.; Roberts, M.; Zettergren, M. D.

    2015-12-01

    -level structure of the ionosphere, including in particular the question of current closure. The Ionospheric Cubeswarm Pathfinder concept explores the possibilities of using a short-lived (several months) localized (several hundred km) ionospheric swarm of cubesats to address these questions.

  2. New circumferential seal design concept using self-acting lift geometries

    NASA Technical Reports Server (NTRS)

    Hady, W. F.; Ludwig, L. P.

    1972-01-01

    Seal operating temperatures, leakage (pressurizing gas flow), torque, and wear of a conventional circumferential shaft seal were measured and compared to those of a conventional seal modified to have self-acting lift geometries. Both seal types had a 2.625-in diameter bore and were operated at a sliding velocity of 150 ft/sec with differential pressures ranging from 0 to 100 psi. Results of this investigation show that the self-acting seal operated at lower bulk carbon temperatures with half the torque and approximately one-tenth the wear of the conventional seal. Seal leakage of the self-acting seal was of order of 0.04 scfm for pressures above 60 psi which is well within the accepted range for gas turbine engine applications.

  3. [Nursing care as an ethical problem: concepts and principles applied to the act of caring].

    PubMed

    Miranda, Alejandro; Contreras, Sebastián

    2014-01-01

    In this paper the authors study the nature of the act of care, emphasize the importance of ethics in the professions related to the health of people and develop, in the light of the central tradition of Western moral philosophy, a set of principles that should guide nursing activity.

  4. A Concept-Based Approach to Teaching Speech Acts in the EFL Classroom

    ERIC Educational Resources Information Center

    Nicholas, Allan

    2015-01-01

    While concept-based instruction (CBI), grounded in sociocultural theory, has been the subject of increased attention in recent years, it is still a relatively unknown methodology in language teaching contexts. In this approach, the emphasis is on helping learners develop a deep, conceptual understanding of a skill or knowledge area, so that this…

  5. Conception, instrumentation, modelisation et analyse d'un element de stockage d'energie par chaleur latente

    NASA Astrophysics Data System (ADS)

    Millette, Jocelyn

    Des elements de stockage de chaleur utilisant l'electricite comme source d'energie sont utilises presentement en Europe ou la tarification de l'electricite varie en fonction du temps. Dans un contexte ou la dereglementation du marche de l'electricite s'opere massivement en Amerique du Nord, ce type d'appareil est susceptible d'etre beaucoup plus utilise afin de faire une gestion efficace de la consommation electrique. En assurant un meilleur facteur d'utilisation des installations de production, transport et distribution, les utilites pourront etre plus competitives. Les appareils disponibles sur le marche stockent l'energie sous forme sensible (ESECS), ce qui amene differents inconvenients: poids considerable, temperature elevee. Un nouveau type d'appareil est propose dans cette etude: un element de stockage d'energie par chaleur latente (ESECL). Cette etude traite donc de la conception de tels appareils. La demarche de conception proposee dans cette etude s'articule autour du choix des materiaux, du choix du concept de l'echangeur de chaleur. A ce sujet, les materiaux a changement de phase (MCP) etant generalement de mauvais conducteur thermique sous forme solide, la surface d'echange doit etre grande afin d'obtenir une puissance de destockage convenable. Le concept retenu est un element multicouches. D'apres la revue de litterature, la conception d'un element de stockage multicouches par chaleur latente n'a jamais ete abordee. Afin de pouvoir calculer les performances d'un ESECL a construire, un modele NTU-epsilon a ete developpe a cette fin. Contrairement. a ce qui est reporte dans la litterature, le modele developpe tient compte de la surchauffe et de la chaleur sensible dans le MCP solide. Afin d'etablir le modele, la convection naturelle dans le MCP liquide est negligee et un regime quasi permanent est considere dans le MCP. Un prototype d'ESECL a ete construit et instrumente dans le but d'eprouver la demarche de conception et de valider le modele developpe

  6. The Developing and Field Testing of an Instrument Using the Planetarium to Evaluate the Attainment of the Concept of Annual Motion.

    ERIC Educational Resources Information Center

    Hayward, Robert R.

    The major problem of this study was the development of an instrument, the Planetarium Test on Annual Motion (PTAM), that would use an observational format in the planetarium as a reasonable substitute for the real sky to evaluate the attainment of instructional objectives related to selected concepts on the annual motions of the sun, moon, and…

  7. Like Teacher, Like Student? Conceptions of Children from Traditional and Constructive Teachers Regarding the Teaching and Learning of String Instruments

    ERIC Educational Resources Information Center

    López-Íñiguez, Guadalupe; Pozo, Juan Ignacio

    2014-01-01

    While many studies have considered the association between teachers' and students' conceptions of teaching and learning and classroom practices, few studies have researched the influence of teachers' conceptions on students' conceptions. Our objective was to analyze the influence of music teachers' conceptions on student…

  8. The SOLID (Signs Of LIfe Detector) instrument concept: an antibody microarray-based biosensor for life detection in astrobiology

    NASA Astrophysics Data System (ADS)

    Parro, V.; Rivas, L. A.; Rodríguez-Manfredi, J. A.; Blanco, Y.; de Diego-Castilla, G.; Cruz-Gil, P.; Moreno-Paz, M.; García-Villadangos, M.; Compostizo, C.; Herrero, P. L.

    2009-04-01

    Immunosensors have been extensively used since many years for environmental monitoring. Different technological platforms allow new biosensor designs and implementations. We have reported (Rivas et al., 2008) a shotgun approach for antibody production for biomarker detection in astrobiology and environmental monitoring, the production of 150 new polyclonal antibodies against microbial strains and environmental extracts, and the construction and validation of an antibody microarray (LDCHIP200, for "Life Detector Chip") containing 200 different antibodies. We have successfully used the LDCHIP200 for the detection of biological polymers in extreme environments in different parts of the world (e.g., a deep South African mine, Antarctica's Dry valleys, Yellowstone, Iceland, and Rio Tinto). Clustering analysis associated similar immunopatterns to samples from apparently very different environments, indicating that they indeed share similar universal biomarkers. A redundancy in the number of antibodies against different target biomarkers apart of revealing the presence of certain biomolecules, it renders a sample-specific immuno-profile, an "immnuno-fingerprint", which may constitute by itself an indirect biosignature. We will present a case study of immunoprofiling different iron-sulfur as well as phylosilicates rich samples along the Rio Tinto river banks. Based on protein microarray technology, we designed and built the concept instrument called SOLID (for "Signs Of LIfe Detector"; Parro et al., 2005; 2008a, b; http://cab.inta.es/solid) for automatic in situ analysis of soil samples and molecular biomarkers detection. A field prototype, SOLID2, was successfully tested for the analysis of grinded core samples during the 2005 "MARTE" campaign of a Mars drilling simulation experiment by a sandwich microarray immunoassay (Parro et al., 2008b). We will show the new version of the instrument (SOLID3) which is able to perform both sandwich and competitive immunoassays. SOLID3

  9. 76 FR 81945 - Request for Measures and Domains To Use in Development of a Standardized Instrument for Use in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... Act of 2009 (CHIPRA), Public Law 111-3, amended the Social Security Act (the Act) to enact section... soliciting the submission of instruments or domains (for example, key concepts) measuring aspects of families... Principles and will develop implementation instructions based on those for CAHPS instruments (...

  10. Austria-Ukraine cooperation in the planetary science and instrumentation development as contribution to E-LOFAR concept

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.; Rucker, H. O.; Melnik, V. N.; Litvinenko, G. V.; Karlsson, R.; Panchenko, M.; Zarka, Ph.; Falkovich, I. S.; Gridin, A. A.; Koshovy, V. V.

    2008-09-01

    Abstract Almost 20 years cooperation between Austria (SRI AAS) and Ukraine (IRA NASU) in the field of lowfrequency radio astronomy and corresponding instrumentation development gave many new results in the Solar system study. The good perspectives are connected with the creation of new joint instruments as complimentary parts to the LOFAR system.

  11. Concept for a time-of-flight Small Angle Neutron Scattering instrument at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Jaksch, S.; Martin-Rodriguez, D.; Ostermann, A.; Jestin, J.; Duarte Pinto, S.; Bouwman, W. G.; Uher, J.; Engels, R.; Frielinghaus, H.

    2014-10-01

    A new Small Angle Neutron Scattering instrument is proposed for the European Spallation Source. The pulsed source requires a time-of-flight analysis of the gathered neutrons at the detector. The optimal instrument length is found to be rather large, which allows for a polarizer and a versatile collimation. The polarizer allows for studying magnetic samples and incoherent background subtraction. The wide collimation will host VSANS and SESANS options that increase the resolution of the instrument towards μm and tens of μm, respectively. Two 1 m2 area detectors will cover a large solid angle simultaneously. The expected gains for this new instrument will lie in the range between 20 and 36, depending on the assessment criteria, when compared to up-to-date reactor based instruments. This will open new perspectives for fast kinetics, weakly scattering samples, and multi-dimensional contrast variation studies.

  12. Content Validity and Inter-Rater Reliability of the Halliwick-Concept-Based Instrument "Swimming with Independent Measure"

    ERIC Educational Resources Information Center

    Srsen, Katja Groleger; Vidmar, Gaj; Pikl, Masa; Vrecar, Irena; Burja, Cirila; Krusec, Klavdija

    2012-01-01

    The Halliwick concept is widely used in different settings to promote joyful movement in water and swimming. To assess the swimming skills and progression of an individual swimmer, a valid and reliable measure should be used. The Halliwick-concept-based Swimming with Independent Measure (SWIM) was introduced for this purpose. We aimed to determine…

  13. Assessing State Models of Value-Added Teacher Evaluations: Alignment of Policy, Instruments, and Literature-Based Concepts

    ERIC Educational Resources Information Center

    Hutchison-Lupardus, Tammy R.; Hatfield, Timothy E.; Snyder, Jennifer E.

    2012-01-01

    This problem-based learning project addressed the need to improve the construction and implementation of value-added teacher evaluation policies and instruments. State officials are constructing value-added teacher evaluation models due to accountability initiatives, while ignoring the holes and problems in its implementation. The team's…

  14. The Relationship Between Responses to Science Concepts on a Semantic Differential Instrument and Achievement in Freshman Physics and Chemistry.

    ERIC Educational Resources Information Center

    Rothman, Arthur Israel

    Students taking freshman physics and freshman chemistry at The State University of New York at Buffalo (SUNYAB) were administered a science-related semantic differential instrument. This same test was administered to physics and chemistry graduate students from SUNYAB and the University of Rochester. A scoring procedure was developed which…

  15. Why do we take drugs? From the drug-reinforcement theory to a novel concept of drug instrumentalization.

    PubMed

    Spanagel, Rainer

    2011-12-01

    The drug-reinforcement theory explains why humans get engaged in drug taking behavior. This theory posits that drugs of abuse serve as biological rewards by activating the reinforcement system. Although from a psychological and neurobiological perspective this theory is extremely helpful, it does not tell us about the drug-taking motives and motivation of an individual. The definition of drug instrumentalization goals will improve our understanding of individual drug-taking profiles.

  16. Hyperspectral imaging—An advanced instrument concept for the EnMAP mission (Environmental Mapping and Analysis Programme)

    NASA Astrophysics Data System (ADS)

    Stuffler, Timo; Förster, Klaus; Hofer, Stefan; Leipold, Manfred; Sang, Bernhard; Kaufmann, Hermann; Penné, Boris; Mueller, Andreas; Chlebek, Christian

    2009-10-01

    In the upcoming generation of satellite sensors, hyperspectral instruments will play a significant role. This payload type is considered world-wide within different future planning. Our team has now successfully finalized the Phase B study for the advanced hyperspectral mission EnMAP (Environmental Mapping and Analysis Programme), Germans next optical satellite being scheduled for launch in 2012. GFZ in Potsdam has the scientific lead on EnMAP, Kayser-Threde in Munich is the industrial prime. The EnMAP instrument provides over 240 continuous spectral bands in the wavelength range between 420 and 2450 nm with a ground resolution of 30 m×30 m. Thus, the broad science and application community can draw from an extensive and highly resolved pool of information supporting the modeling and optimization process on their results. The performance of the hyperspectral instrument allows for a detailed monitoring, characterization and parameter extraction of rock/soil targets, vegetation, and inland and coastal waters on a global scale supporting a wide variety of applications in agriculture, forestry, water management and geology. The operation of an airborne system (ARES) as an element in the HGF hyperspectral network and the ongoing evolution concerning data handling and extraction procedures, will support the later inclusion process of EnMAP into the growing scientist and user communities.

  17. Elastic Scattering Spectroscopy (ESS): an Instrument-Concept for Dynamics of Complex (Bio-) Systems From Elastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Benedetto, Antonio; Kearley, Gordon J.

    2016-10-01

    A new type of neutron-scattering spectroscopy is presented that is designed specifically to measure dynamics in bio-systems that are difficult to obtain in any other way. The temporal information is largely model-free and is analogous to relaxation processes measured with dielectric spectroscopy, but provides additional spacial and geometric aspects of the underlying dynamics. Numerical simulations of the basic instrument design show the neutron beam can be highly focussed, giving efficiency gains that enable the use of small samples. Although we concentrate on continuous neutron sources, the extension to pulsed neutron sources is proposed, both requiring minimal data-treatment and being broadly analogous with dielectric spectroscopy, they will open the study of dynamics to new areas of biophysics.

  18. Elastic Scattering Spectroscopy (ESS): an Instrument-Concept for Dynamics of Complex (Bio-) Systems From Elastic Neutron Scattering.

    PubMed

    Benedetto, Antonio; Kearley, Gordon J

    2016-10-05

    A new type of neutron-scattering spectroscopy is presented that is designed specifically to measure dynamics in bio-systems that are difficult to obtain in any other way. The temporal information is largely model-free and is analogous to relaxation processes measured with dielectric spectroscopy, but provides additional spacial and geometric aspects of the underlying dynamics. Numerical simulations of the basic instrument design show the neutron beam can be highly focussed, giving efficiency gains that enable the use of small samples. Although we concentrate on continuous neutron sources, the extension to pulsed neutron sources is proposed, both requiring minimal data-treatment and being broadly analogous with dielectric spectroscopy, they will open the study of dynamics to new areas of biophysics.

  19. Elastic Scattering Spectroscopy (ESS): an Instrument-Concept for Dynamics of Complex (Bio-) Systems From Elastic Neutron Scattering

    PubMed Central

    Benedetto, Antonio; Kearley, Gordon J.

    2016-01-01

    A new type of neutron-scattering spectroscopy is presented that is designed specifically to measure dynamics in bio-systems that are difficult to obtain in any other way. The temporal information is largely model-free and is analogous to relaxation processes measured with dielectric spectroscopy, but provides additional spacial and geometric aspects of the underlying dynamics. Numerical simulations of the basic instrument design show the neutron beam can be highly focussed, giving efficiency gains that enable the use of small samples. Although we concentrate on continuous neutron sources, the extension to pulsed neutron sources is proposed, both requiring minimal data-treatment and being broadly analogous with dielectric spectroscopy, they will open the study of dynamics to new areas of biophysics. PMID:27703184

  20. Content validity and inter-rater reliability of the Halliwick-concept-based instrument 'Swimming with Independent Measure'.

    PubMed

    Sršen, Katja Groleger; Vidmar, Gaj; Pikl, Maša; Vrečar, Irena; Burja, Cirila; Krušec, Klavdija

    2012-06-01

    The Halliwick concept is widely used in different settings to promote joyful movement in water and swimming. To assess the swimming skills and progression of an individual swimmer, a valid and reliable measure should be used. The Halliwick-concept-based Swimming with Independent Measure (SWIM) was introduced for this purpose. We aimed to determine its content validity and inter-rater reliability. Fifty-four healthy children, 3.5-11 years old, from a mainstream swimming program participated in a content validity study. They were evaluated with SWIM and the national evaluation system of swimming abilities (classifying children into seven categories). To study the inter-rater reliability of SWIM, we included 37 children and youth from a Halliwick swimming program, aged 7-22 years, who were evaluated by two Halliwick instructors independently. The average SWIM score differed between national evaluation system categories and followed the expected order (P<0.001), whereby a ceiling effect was observed in the higher categories. High inter-rater reliability was found for all 11 SWIM items. The lowest reliability was observed for item G (sagittal rotation), although the estimates were still above 0.9. As expected, the highest reliability was observed for the total score (intraclass correlation 0.996). The validity of SWIM with respect to the national evaluation system of swimming abilities is high until the point where a swimmer is well adapted to water and already able to learn some swimming techniques. The inter-rater reliability of SWIM is very high; thus, we believe that SWIM can be used in further research and practice to follow the progress of swimmers.

  1. The PanCam instrument on the 2018 Exomars rover: Science Implementation Strategy and Integrated Surface Operations Concept

    NASA Astrophysics Data System (ADS)

    Schmitz, Nicole; Jaumann, Ralf; Coates, Andrew; Griffiths, Andrew; Hauber, Ernst; Trauthan, Frank; Paar, Gerhard; Barnes, Dave; Bauer, Arnold; Cousins, Claire

    2010-05-01

    Geologic context as a combination of orbital imaging and surface vision, including range, resolution, stereo, and multispectral imaging, is commonly regarded as basic requirement for remote robotic geology and forms the first tier of any multi-instrument strategy for investigating and eventually understanding the geology of a region from a robotic platform. Missions with objectives beyond a pure geologic survey, e.g. exobiology objectives, require goal-oriented operational procedures, where the iterative process of scientific observation, hypothesis, testing, and synthesis, performed via a sol-by-sol data exchange with a remote robot, is supported by a powerful vision system. Beyond allowing a thorough geological mapping of the surface (soil, rocks and outcrops) in 3D, using wide angle stereo imagery, such a system needs to be able to provide detailed visual information on targets of interest in high resolution, thereby enabling the selection of science targets and samples for further analysis with a specialized in-situ instrument suite. Surface vision for ESA's upcoming ExoMars rover will come from a dedicated Panoramic Camera System (PanCam). As integral part of the Pasteur payload package, the PanCam is designed to support the search for evidence of biological processes by obtaining wide angle multispectral stereoscopic panoramic images and high resolution RGB images from the mast of the rover [1]. The camera system will consist of two identical wide-angle cameras (WACs), which are arranged on a common pan-tilt mechanism, with a fixed stereo base length of 50 cm. The WACs are being complemented by a High Resolution Camera (HRC), mounted between the WACs, which allows a magnification of selected targets by a factor of ~8 with respect to the wide-angle optics. The high-resolution images together with the multispectral and stereo capabilities of the camera will be of unprecedented quality for the identification of water-related surface features (such as sedimentary

  2. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study

    PubMed Central

    Vegh, Viktor; Reutens, David C.

    2016-01-01

    Object We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. Materials and Methods The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. Results A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20–50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. Conclusions A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably. PMID:27271886

  3. WISDOM: the WIYN spectrograph for Doppler monitoring: a NASA-NSF concept for an extreme precision radial velocity instrument in support of TESS

    NASA Astrophysics Data System (ADS)

    Fżrész, Gábor; Simcoe, Robert; Barnes, Stuart I.; Buchhave, Lars A.; Egan, Mark; Foster, Rick; Hellickson, Tim; Malonis, Andrew; Phillips, David; Shectman, Stephen; Walsworth, Ronald; Winn, Josh; Woods, Deborah

    2016-08-01

    The Kepler mission highlighted that precision radial velocity (PRV) follow-up is a real bottleneck in supporting transiting exoplanet surveys. The limited availability of PRV instruments, and the desire to break the "1 m/s" precision barrier, prompted the formation of a NASA-NSF collaboration `NN-EXPLORE' to call for proposals designing a new Extreme Precision Doppler Spectrograph (EPDS). By securing a significant fraction of telescope time on the 3.5m WIYN at Kitt Peak, and aiming for unprecedented long-term precision, the EPDS instrument will provide a unique tool for U.S. astronomers in characterizing exoplanet candidates identified by TESS. One of the two funded instrument concept studies is led by the Massachusetts Institute of Technology, in consortium with Lincoln Laboratories, Harvard-Smithsonian Center for Astrophysics and the Carnegie Observatories. This paper describes the instrument concept WISDOM (WIYN Spectrograph for DOppler Monitoring) prepared by this team. WISDOM is a fiber fed, environmentally controlled, high resolution (R=110k), asymmetric white-pupil echelle spectrograph, covering a wide 380-1300nm wavelength region. Its R4 and R6 echelle gratings provide the main dispersion, symmetrically mounted on either side of a vertically aligned, vacuum-enclosed carbon fiber optical bench. Each grating feeds two cameras and thus the resulting wavelength range per camera is narrow enough that the VPHG cross-dispersers and employed anti-reflection coatings are highly efficient. The instrument operates near room temperature, and so thermal background for the near-infrared arm is mitigated by thermal blocking filters and a short (1.7μm) cutoff HgCdTe detector. To achieve high resolution while maintaining small overall instrument size (100/125mm beam diameter), imposed by the limited available space within the observatory building, we chose to slice the telescope pupil 6 ways before coupling light into fibers. An atmospheric dispersion corrector and fast

  4. Acting Atoms.

    ERIC Educational Resources Information Center

    Farin, Susan Archie

    1997-01-01

    Describes a fun game in which students act as electrons, protons, and neutrons. This activity is designed to help students develop a concrete understanding of the abstract concept of atomic structure. (DKM)

  5. Development and evaluation of a case group concept for inpatients with mental disorders in Germany: using self-report and expert-rated instruments.

    PubMed

    Andreas, Sylke; Dirmaier, Jörg; Harfst, Timo; Kawski, Stephan; Koch, Uwe; Schulz, Holger

    2009-03-01

    The aim of this study was to evaluate a case-mix system to classify inpatients with mental disorders in Germany by means of self-report and expert-rated instruments. The use of case-mix systems enhances the transparency of performance and cost structure and can thus improve the quality of mental health care. We analysed a consecutive sample of 1677 inpatients with mental disorders from 11 hospitals using regression tree analysis. The model assigns patients to 17 groups, accounting for 17% of the variance for duration of stay. Patients with eating disorders had a longer duration of stay than patients with anxiety disorder, duration of mental illness of less than 3-5 years, lower levels of interpersonal problems and higher occupational position. The results showed that besides diagnosis, variables such as duration of illness and interpersonal problems are important for classifying inpatients with mental disorders. The results of the study should be critically reviewed regarding the empirical results of other studies and the appropriateness of case group concepts for inpatients with mental disorders.

  6. Examining the Relationships among Academic Self-Concept, Instrumental Motivation, and TIMSS 2007 Science Scores: A Cross-Cultural Comparison of Five East Asian Countries/Regions and the United States

    ERIC Educational Resources Information Center

    Yu, Chong Ho

    2012-01-01

    Many American authors expressed their concern that US competitiveness in science, technology, engineering, and mathematics (STEM) is losing ground. Using the Trends in International Mathematics and Science Study (TIMSS) 2007 data, this study investigated how academic self-concept and instrumental motivation influence science test performance among…

  7. [Thyroid hormone action beyond classical concepts. The priority programme "Thyroid Trans Act" (SPP 1629) of the German Research Foundation].

    PubMed

    Führer, D; Brix, K; Biebermann, H

    2014-03-01

    Thyroid hormones are of crucial importance for the function of nearly all organ systems. In case of dysfunction of thyroid hormone production and function many organ systems may be affected. The estimation of normal thyroid function is based on determination of TSH and the thyroid hormones T3 and T4. However, international conventions about the normal TSH range are still lacking which bears consequences for patient`s treatment. Hence not unexpected, many patients complain although their thyroid hormone status is in the normal range by clinical estimation. Here, more precise parameters are needed for a better definition of the healthy thyroid status of an individual. Recently, new key players in the system of thyroid hormone action were detected, like specific transporters for uptake of thyroid hormones and thyroid hormone derivatives. DFG, the German Research Foundation supports the priority program Thyroid Trans Act to find answers to the main question: what defines the healthy thyroid status of an individual. The overall aim of this interdisciplinary research consortium is to specify physiological and pathophysiological functions of thyroid hormone transporters and thyroid hormone derivative as new players in thyroid regulation in order to better evaluate, treat, and prevent thyroid-related disease.

  8. Californium interrogation prompt neutron (CIPN) instrument for non-destructive assay of spent nuclear fuel – design concept and experimental demonstration

    DOE PAGES

    Henzlova, Daniela; Menlove, Howard Olsen; Rael, Carlos D.; ...

    2015-10-09

    Our paper presents results of the first experimental demonstration of the Californium Interrogation Prompt Neutron (CIPN) instrument developed within a multi-year effort launched by the Next Generation Safeguards Initiative Spent Fuel Project of the United States Department of Energy. The goals of this project focused on developing viable non-destructive assay techniques with capabilities to improve an independent verification of spent fuel assembly characteristics. For this purpose, the CIPN instrument combines active and passive neutron interrogation, along with passive gamma-ray measurements, to provide three independent observables. We describe the initial feasibility demonstration of the CIPN instrument, which involved measurements of fourmore » pressurized-water-reactor spent fuel assemblies with different levels of burnup and two initial enrichments. The measurements were performed at the Post-Irradiation Examination Facility at the Korea Atomic Energy Institute in the Republic of Korea. The key aim of the demonstration was to evaluate CIPN instrument performance under realistic deployment conditions, with the focus on a detailed assessment of systematic uncertainties that are best evaluated experimentally. The measurements revealed good positioning reproducibility, as well as a high degree of insensitivity of the CIPN instrument's response to irregularities in a radial burnup profile. Systematic uncertainty of individual CIPN instrument signals due to assembly rotation was found to be <4.5%, even for assemblies with fairly extreme gradients in the radial burnup profile. Lastly, these features suggest that the CIPN instrument is capable of providing a good representation of assembly average characteristics, independent of assembly orientation in the instrument.« less

  9. Californium interrogation prompt neutron (CIPN) instrument for non-destructive assay of spent nuclear fuel-Design concept and experimental demonstration

    NASA Astrophysics Data System (ADS)

    Henzlova, D.; Menlove, H. O.; Rael, C. D.; Trellue, H. R.; Tobin, S. J.; Park, Se-Hwan; Oh, Jong-Myeong; Lee, Seung-Kyu; Ahn, Seong-Kyu; Kwon, In-Chan; Kim, Ho-Dong

    2016-01-01

    This paper presents results of the first experimental demonstration of the Californium Interrogation Prompt Neutron (CIPN) instrument developed within a multi-year effort launched by the Next Generation Safeguards Initiative Spent Fuel Project of the United States Department of Energy. The goals of this project focused on developing viable non-destructive assay techniques with capabilities to improve an independent verification of spent fuel assembly characteristics. For this purpose, the CIPN instrument combines active and passive neutron interrogation, along with passive gamma-ray measurements, to provide three independent observables. This paper describes the initial feasibility demonstration of the CIPN instrument, which involved measurements of four pressurized-water-reactor spent fuel assemblies with different levels of burnup and two initial enrichments. The measurements were performed at the Post-Irradiation Examination Facility at the Korea Atomic Energy Institute in the Republic of Korea. The key aim of the demonstration was to evaluate CIPN instrument performance under realistic deployment conditions, with the focus on a detailed assessment of systematic uncertainties that are best evaluated experimentally. The measurements revealed good positioning reproducibility, as well as a high degree of insensitivity of the CIPN instrument's response to irregularities in a radial burnup profile. Systematic uncertainty of individual CIPN instrument signals due to assembly rotation was found to be <4.5%, even for assemblies with fairly extreme gradients in the radial burnup profile. These features suggest that the CIPN instrument is capable of providing a good representation of assembly average characteristics, independent of assembly orientation in the instrument.

  10. Californium interrogation prompt neutron (CIPN) instrument for non-destructive assay of spent nuclear fuel – design concept and experimental demonstration

    SciTech Connect

    Henzlova, Daniela; Menlove, Howard Olsen; Rael, Carlos D.; Trellue, Holly Renee; Tobin, Stephen Joseph; Park, Se-Hwan; Oh, Jong-Myeong; Lee, Seung-Kyu; Ahn, Seong-Kyu; Kwon, In-Chan; Kim, Ho-Dong

    2015-10-09

    Our paper presents results of the first experimental demonstration of the Californium Interrogation Prompt Neutron (CIPN) instrument developed within a multi-year effort launched by the Next Generation Safeguards Initiative Spent Fuel Project of the United States Department of Energy. The goals of this project focused on developing viable non-destructive assay techniques with capabilities to improve an independent verification of spent fuel assembly characteristics. For this purpose, the CIPN instrument combines active and passive neutron interrogation, along with passive gamma-ray measurements, to provide three independent observables. We describe the initial feasibility demonstration of the CIPN instrument, which involved measurements of four pressurized-water-reactor spent fuel assemblies with different levels of burnup and two initial enrichments. The measurements were performed at the Post-Irradiation Examination Facility at the Korea Atomic Energy Institute in the Republic of Korea. The key aim of the demonstration was to evaluate CIPN instrument performance under realistic deployment conditions, with the focus on a detailed assessment of systematic uncertainties that are best evaluated experimentally. The measurements revealed good positioning reproducibility, as well as a high degree of insensitivity of the CIPN instrument's response to irregularities in a radial burnup profile. Systematic uncertainty of individual CIPN instrument signals due to assembly rotation was found to be <4.5%, even for assemblies with fairly extreme gradients in the radial burnup profile. Lastly, these features suggest that the CIPN instrument is capable of providing a good representation of assembly average characteristics, independent of assembly orientation in the instrument.

  11. The use of astronomy questions as an instrument to detect student's misconceptions regarding physics concepts at high school level by using CRI (Certainty of Response Index) as identification methods

    NASA Astrophysics Data System (ADS)

    Utami, D. N.; Wulandari, H. R. T.

    2016-11-01

    The aim of this research is to detect misconceptions in the concept of physics at high school level by using astronomy questions as a testing instrument. Misconception is defined as a thought or an idea that is different from what has been agreed by experts who are reliable in the field, and it is believed to interfere with the acquisition of new understanding and integration of new knowledge or skills. While lack of concept or knowledge can be corrected with the next instruction and learning, students who have misconceptions have to “unlearn” their misconception before learning a correct one. Therefore, the ability to differentiate between these two things becomes crucial. CRI is one of the methods that can identify efficiently, between misconceptions and lack of knowledge that occur in the students. This research used quantitative- descriptive method with ex-post-facto research approach. An instrument used for the test is astronomy questions that require an understanding of physics concepts to solve the problem. By using astronomy questions, it is expected to raise a better understanding such that a concept can be viewed from various fields of science. Based on test results, misconceptions are found on several topics of physics. This test also revealed that student's ability to analyse a problem is still quite low.

  12. IXO: The Instrument Complement

    NASA Astrophysics Data System (ADS)

    Nousek, John A.; IWG, IXO

    2009-01-01

    The International X-ray Observatory (IXO) has recently been created as a mission concept by a joint team of NASA, ESA and JAXA scientists, based on the previous Constellation-X and XEUS concepts. Definition of the IXO instruments is still under evolution, but the core instrument complement will include a Wide Field X-ray Imager, an X-ray Calorimeter / Narrow Field X-ray Imager, and an X-ray Grating Spectrometer. Other, modest additional instruments (such as a hard X-ray capability, a polarimeter, and a high time resolution detector) will also be considered. We present the current status of the IXO instrument complement and offer the opportunity for discussion of ideas relevant to the IXO mission concept process.

  13. Instruments and techniques for the analysis of wheelchair propulsion and upper extremity involvement in patients with spinal cord injuries: current concept review

    PubMed Central

    Dellabiancia, Fabio; Porcellini, Giuseppe; Merolla, Giovanni

    2013-01-01

    Summary The correct functionality of the upper limbs is an essential condition for the autonomy of people with disabilities, especially for those in wheelchair. In this review we focused on the biomechanics of wheelchair propulsion and we described the instrumental analysis of techniques for the acquisition of wheelchair propulsion. PMID:24367774

  14. [Controlling instruments in radiology].

    PubMed

    Maurer, M

    2013-10-01

    Due to the rising costs and competitive pressures radiological clinics and practices are now facing, controlling instruments are gaining importance in the optimization of structures and processes of the various diagnostic examinations and interventional procedures. It will be shown how the use of selected controlling instruments can secure and improve the performance of radiological facilities. A definition of the concept of controlling will be provided. It will be shown which controlling instruments can be applied in radiological departments and practices. As an example, two of the controlling instruments, material cost analysis and benchmarking, will be illustrated.

  15. AXTAR: Mission Design Concept

    NASA Technical Reports Server (NTRS)

    Ray, Paul S.; Chakrabarty, Deepto; Wilson-Hodge, Colleen A.; Philips, Bernard F.; Remillard, Ronald A.; Levine, Alan M.; Wood, Kent S.; Wolff, Michael T.; Gwon, Chul S.; Strohmayer, Tod E.; Briggs, Michael S.; Capizzo, Peter; Fabisinski, Leo; Hopkins, Randall C.; Hornsby, Linda S.; Johnson, Les; Maples, C. Dauphne; Miernik, Janie H.; Thomas, Dan; DeGeronimo, Gianluigi

    2010-01-01

    The Advanced X-ray Timing Array (AXTAR) is a mission concept for X-ray timing of compact objects that combines very large collecting area, broadband spectral coverage, high time resolution, highly flexible scheduling, and an ability to respond promptly to time-critical targets of opportunity. It is optimized for sub-millisecond timing of bright Galactic X-ray sources in order to study phenomena at the natural time scales of neutron star surfaces and black hole event horizons, thus probing the physics of ultra-dense matter, strongly curved spacetimes, and intense magnetic fields. AXTAR s main instrument, the Large Area Timing Array (LATA) is a collimated instrument with 2 50 keV coverage and over 3 square meters effective area. The LATA is made up of an array of super-modules that house 2-mm thick silicon pixel detectors. AXTAR will provide a significant improvement in effective area (a factor of 7 at 4 keV and a factor of 36 at 30 keV) over the RXTE PCA. AXTAR will also carry a sensitive Sky Monitor (SM) that acts as a trigger for pointed observations of X-ray transients in addition to providing high duty cycle monitoring of the X-ray sky. We review the science goals and technical concept for AXTAR and present results from a preliminary mission design study

  16. Euclid Near Infrared Spectrometer and Photometer instrument concept and first test results obtained for different breadboards models at the end of phase C

    NASA Astrophysics Data System (ADS)

    Maciaszek, Thierry; Ealet, Anne; Jahnke, Knud; Prieto, Eric; Barbier, Rémi; Mellier, Yannick; Beaumont, Florent; Bon, William; Bonnefoi, Anne; Carle, Michael; Caillat, Amandine; Costille, Anne; Dormoy, Doriane; Ducret, Franck; Fabron, Christophe; Febvre, Aurélien; Foulon, Benjamin; Garcia, Jose; Gimenez, Jean-Luc; Grassi, Emmanuel; Laurent, Philippe; Le Mignant, David; Martin, Laurent; Rossin, Christelle; Pamplona, Tony; Sanchez, Patrice; Vives, Sébastien; Clémens, Jean Claude; Gillard, William; Niclas, Mathieu; Secroun, Aurélia; Serra, Benoit; Kubik, Bogna; Ferriol, Sylvain; Amiaux, Jérôme; Barrière, Jean Christophe; Berthe, Michel; Rosset, Cyrille; Macias-Perez, Juan Francisco; Auricchio, Natalia; De Rosa, Adriano; Franceschi, Enrico; Guizzo, Gian Paolo; Morgante, Gianluca; Sortino, Francesca; Trifoglio, Massimo; Valenziano, Luca; Patrizii, Laura; Chiarusi, T.; Fornari, F.; Giacomini, F.; Margiotta, A.; Mauri, N.; Pasqualini, L.; Sirri, G.; Spurio, M.; Tenti, M.; Travaglini, R.; Dusini, Stefano; Dal Corso, F.; Laudisio, F.; Sirignano, C.; Stanco, L.; Ventura, S.; Borsato, E.; Bonoli, Carlotta; Bortoletto, Favio; Balestra, Andrea; D'Alessandro, Maurizio; Medinaceli, Eduardo; Farinelli, Ruben; Corcione, Leonardo; Ligori, Sebastiano; Grupp, Frank; Wimmer, Carolin; Hormuth, Felix; Seidel, Gregor; Wachter, Stefanie; Padilla, Cristóbal; Lamensans, Mikel; Casas, Ricard; Lloro, Ivan; Toledo-Moreo, Rafael; Gomez, Jaime; Colodro-Conde, Carlos; Lizán, David; Diaz, Jose Javier; Lilje, Per B.; Toulouse-Aastrup, Corinne; Andersen, Michael I.; Sørensen, Anton N.; Jakobsen, Peter; Hornstrup, Allan; Jessen, Niels-Christian; Thizy, Cédric; Holmes, Warren; Israelsson, Ulf; Seiffert, Michael; Waczynski, Augustyn; Laureijs, René J.; Racca, Giuseppe; Salvignol, Jean-Christophe; Boenke, Tobias; Strada, Paolo

    2016-07-01

    The Euclid mission objective is to understand why the expansion of the Universe is accelerating through by mapping the geometry of the dark Universe by investigating the distance-redshift relationship and tracing the evolution of cosmic structures. The Euclid project is part of ESA's Cosmic Vision program with its launch planned for 2020 (ref [1]). The NISP (Near Infrared Spectrometer and Photometer) is one of the two Euclid instruments and is operating in the near-IR spectral region (900- 2000nm) as a photometer and spectrometer. The instrument is composed of: - a cold (135K) optomechanical subsystem consisting of a Silicon carbide structure, an optical assembly (corrector and camera lens), a filter wheel mechanism, a grism wheel mechanism, a calibration unit and a thermal control system - a detection subsystem based on a mosaic of 16 HAWAII2RG cooled to 95K with their front-end readout electronic cooled to 140K, integrated on a mechanical focal plane structure made with molybdenum and aluminum. The detection subsystem is mounted on the optomechanical subsystem structure - a warm electronic subsystem (280K) composed of a data processing / detector control unit and of an instrument control unit that interfaces with the spacecraft via a 1553 bus for command and control and via Spacewire links for science data This presentation describes the architecture of the instrument at the end of the phase C (Detailed Design Review), the expected performance, the technological key challenges and preliminary test results obtained for different NISP subsystem breadboards and for the NISP Structural and Thermal model (STM).

  17. Mallet Instruments Challenge Beginning Percussionists.

    ERIC Educational Resources Information Center

    Grumley, Fred

    1983-01-01

    Orff mallet instruments should be used in beginning band classes. Adding mallet instruments would expand a beginner's concept of percussion instruments. Just as important, the percussion section would provide a solid melodic and harmonic foundation to assist beginning wind instrumentalists with their insecurities about pitch. (RM)

  18. New concept for long-acting insulin: spontaneous conversion of an inactive modified insulin to the active hormone in circulation: 9-fluorenylmethoxycarbonyl derivative of insulin.

    PubMed

    Gershonov, E; Shechter, Y; Fridkin, M

    1999-07-01

    Insulin is a short-lived species in the circulatory system. After binding to its receptor sites and transmission of its biological signals, bound insulin undergoes receptor-mediated endocytosis and consequent degradation. An inactive insulin derivative that is not recognized by the receptor has a longer circulation life, but obviously is biologically impotent. (Fmoc)2 insulin is an insulin derivative purified through high-performance liquid chromatography in which two 9-fluorenylmethoxycarbonyl (Fmoc) moieties are covalently linked to the (alpha-amino group of phenylalanine B1 and the epsilon-amino group of lysine B29. It has 1-2% of the biological potency and receptor binding capacity of the native hormone. After incubation, (Fmoc)2 insulin undergoes a time-dependent spontaneous conversion to fully active insulin in aqueous solution at 37 degrees C and a pH range of 7-8.5. At pH 7.4, the conversion proceeds slowly (t1/2 = 12 +/- 1 days) and biological activity is generated gradually. A single subcutaneous administration of (Fmoc)2 insulin to streptozocin-treated diabetic rats normalized their blood glucose levels and maintained the animals in an anabolic state over 2-3 days. A broad shallow peak of immunoreactive insulin was found to persist in circulation over this period. To confirm further that the long-acting effect of (Fmoc)2 insulin proceeds via slow release in the blood circulation itself, we administered native insulin, NPH insulin, or the (Fmoc)2 derivative intraperitoneally. The rats recovered from hypoglycemia at t1/2 = 8.0 +/- 0.3 and 10 +/- 0.4 h after administration of native and NPH insulin, respectively. In contrast, (Fmoc)2 insulin was active for a significantly longer time, with an extended onset of t1/2 = 26 +/- 1h, and a glucose-lowering effect even 40 h after administration. (Fmoc)2 insulin was also found to be more resistant to proteolysis. Finally, we found that (Fmoc)2 insulin does not induce antigenic effects. In summary, we present here a

  19. Calibration of quasi-static aberrations in exoplanet direct-imaging instruments with a Zernike phase-mask sensor. II. Concept validation with ZELDA on VLT/SPHERE

    NASA Astrophysics Data System (ADS)

    N'Diaye, M.; Vigan, A.; Dohlen, K.; Sauvage, J.-F.; Caillat, A.; Costille, A.; Girard, J. H. V.; Beuzit, J.-L.; Fusco, T.; Blanchard, P.; Le Merrer, J.; Le Mignant, D.; Madec, F.; Moreaux, G.; Mouillet, D.; Puget, P.; Zins, G.

    2016-08-01

    Warm or massive gas giant planets, brown dwarfs, and debris disks around nearby stars are now routinely observed by dedicated high-contrast imaging instruments that are mounted on large, ground-based observatories. These facilities include extreme adaptive optics (ExAO) and state-of-the-art coronagraphy to achieve unprecedented sensitivities for exoplanet detection and their spectral characterization. However, low spatial frequency differential aberrations between the ExAO sensing path and the science path represent critical limitations for the detection of giant planets with a contrast lower than a few 10-6 at very small separations (<0.3'') from their host star. In our previous work, we proposed a wavefront sensor based on Zernike phase-contrast methods to circumvent this problem and measure these quasi-static aberrations at a nanometric level. We present the design, manufacturing, and testing of ZELDA, a prototype that was installed on VLT/SPHERE during its reintegration in Chile. Using the internal light source of the instrument, we first performed measurements in the presence of Zernike or Fourier modes introduced with the deformable mirror. Our experimental results are consistent with the results in simulations, confirming the ability of our sensor to measure small aberrations (<50 nm rms) with nanometric accuracy. Following these results, we corrected the long-lived non-common path aberrations in SPHERE based on ZELDA measurements and estimated a contrast gain of 10 in the coronagraphic image at 0.2'', reaching the raw contrast limit set by the coronagraph in the instrument. In addition to this encouraging result, the simplicity of the design and its phase reconstruction algorithm makes ZELDA an excellent candidate for the online measurements of quasi-static aberrations during the observations. The implementation of a ZELDA-based sensing path on the current and future facilities (ELTs, future space missions) could facilitate the observation of cold gaseous

  20. New isostatic mounting concept for a space born Three Mirror Anastigmat (TMA) on the Meteosat Third Generation Infrared Sounder Instrument (MTG-IRS)

    NASA Astrophysics Data System (ADS)

    Freudling, Maximilian; Klammer, Jesko; Lousberg, Gregory; Schumacher, Jean-Marc; Körner, Christian

    2016-07-01

    A novel isostatic mounting concept for a space born TMA of the Meteosat Third Generation Infrared Sounder is presented. The telescope is based on a light-weight all-aluminium design. The mounting concept accommodates the telescope onto a Carbon-Fiber-Reinforced Polymer (CRFP) structure. This design copes with the high CTE mismatch without introducing high stresses into the telescope structure. Furthermore a Line of Sight stability of a few microrads under geostationary orbit conditions is provided. The design operates with full performance at a temperature 20K below the temperature of the CFRP structure and 20K below the integration temperature. The mounting will sustain launch loads of 47g. This paper will provide the design of the Back Telescope Assembly (BTA) isostatic mounting and will summarise the consolidated technical baseline reached following a successful Preliminary Design Review (PDR).

  1. Aeronautic instruments

    NASA Technical Reports Server (NTRS)

    Everling, E; Koppe, H

    1924-01-01

    The development of aeronautic instruments. Vibrations, rapid changes of the conditions of flight and of atmospheric conditions, influence of the air stream all call for particular design and construction of the individual instruments. This is shown by certain examples of individual instruments and of various classes of instruments for measuring pressure, change of altitude, temperature, velocity, inclination and turning or combinations of these.

  2. Advanced optical instruments technology

    NASA Technical Reports Server (NTRS)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-01-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  3. Gyroscopic Instruments for Instrument Flying

    NASA Technical Reports Server (NTRS)

    Brombacher, W G; Trent, W C

    1938-01-01

    The gyroscopic instruments commonly used in instrument flying in the United States are the turn indicator, the directional gyro, the gyromagnetic compass, the gyroscopic horizon, and the automatic pilot. These instruments are described. Performance data and the method of testing in the laboratory are given for the turn indicator, the directional gyro, and the gyroscopic horizon. Apparatus for driving the instruments is discussed.

  4. Instrument Attitude Precision Control

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    2004-01-01

    A novel approach is presented in this paper to analyze attitude precision and control for an instrument gimbaled to a spacecraft subject to an internal disturbance caused by a moving component inside the instrument. Nonlinear differential equations of motion for some sample cases are derived and solved analytically to gain insight into the influence of the disturbance on the attitude pointing error. A simple control law is developed to eliminate the instrument pointing error caused by the internal disturbance. Several cases are presented to demonstrate and verify the concept presented in this paper.

  5. Evolution of the VLT instrument control system toward industry standards

    NASA Astrophysics Data System (ADS)

    Kiekebusch, Mario J.; Chiozzi, Gianluca; Knudstrup, Jens; Popovic, Dan; Zins, Gerard

    2010-07-01

    The VLT control system is a large distributed system consisting of Linux Workstations providing the high level coordination and interfaces to the users, and VME-based Local Control Units (LCU's) running the VxWorks real-time operating system with commercial and proprietary boards acting as the interface to the instrument functions. After more than 10 years of VLT operations, some of the applied technologies used by the astronomical instruments are being discontinued making it difficult to find adequate hardware for future projects. In order to deal with this obsolescence, the VLT Instrumentation Framework is being extended to adopt well established Commercial Off The Shelf (COTS) components connected through industry standard fieldbuses. This ensures a flexible state of the art hardware configuration for the next generation VLT instruments allowing the access to instrument devices via more compact and simpler control units like PC-based Programmable Logical Controllers (PLC's). It also makes it possible to control devices directly from the Instrument Workstation through a normal Ethernet connection. This paper outlines the requirements that motivated this work, as well as the architecture and the design of the framework extension. In addition, it describes the preliminary results on a use case which is a VLTI visitor instrument used as a pilot project to validate the concepts and the suitability of some COTS products like a PC-based PLCs, EtherCAT8 and OPC UA6 as solutions for instrument control.

  6. Earl Wood--a research career noted for development of novel instruments driven by the power of the indicator dilution concept.

    PubMed

    Ritman, Erik L

    2014-11-01

    During World War 2, Earl Wood was charged with elucidating the biomedical factors in acceleration-induced loss of consciousness experienced by pilots in high-performance aircraft. For this, he developed devices for measurement and recording of blood pressure and tissue blood content. Those data lead to the design and fabrication of successful countermeasures to acceleration-induced loss of consciousness with an inflatable "G-suit" and "M1" breath-holding maneuver. After World War 2, he utilized and modified these instruments and made use of indicator dilution techniques by continuous intracardiac blood sampling to greatly increase the specificity and sensitivity of diagnosis of intracardiac anatomic and functional abnormalities in patients with congenital heart disease. This contributed to the greatly increased success rate of open-heart surgery in the 1950s. In the 1960s, he built on the then recently available video-coupled electronic X-ray image intensifier to develop X-ray fluoroscopy-based recording of indicator dilution signals in all cardiac chambers and surrounding great vessels without the need for placing catheter tips at those locations for blood sampling. However, these blood flow-related data were of limited value, as they were not measured concurrent with myocardial functional demand for perfusion. In the 1970s, he overcame this limitation by developing a high-speed multislice X-ray imaging scanner to provide tomographic images of concurrent dynamic cardiac anatomy and the indicator dilution-based estimates of blood flow distributions. On his retirement at age 70 in 1982, he had accomplished his 2 decade-old goal of the ability to make accurate concurrent, minimally invasive, and indicator dilution-based measurement of cardiovascular structure to function relationships.

  7. Music: Instrumental Techniques, Percussion.

    ERIC Educational Resources Information Center

    Pearl, Jesse

    A course in introduction to music emphasizing harmony is presented. The approach used is a laboratory approach in which pupils will develop skill in playing percussion instruments, sing, listen to, read and compose music with emphasis on elementary concepts of harmony. Course objectives include: (1) The student will recognize duple, triple,…

  8. Music: Instrumental Techniques, Strings.

    ERIC Educational Resources Information Center

    Ryan, Philip

    A course in music which emphasizes harmony is presented. The approach used is a laboratory one in which pupils will develop skill in playing orchestral string instruments, sing, listen to, read and compose music with emphasis on elementary concepts of harmony. Course objectives include: (1) The student will select the title of a familiar melody…

  9. Music: Instrumental Techniques, Woodwinds.

    ERIC Educational Resources Information Center

    Baker, Melvin

    A course in introduction to music emphasizing modes and forms is presented. The approach used is a laboratory approach in which pupils will develop skill in playing wood-wind instruments, sing, listen to, read and compose music with emphasis on identification of elementary concepts of mode and form. Course objectives include: (1) pupil will select…

  10. Ontology Based Vocabulary Matching for Oceanographic Instruments

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Shepherd, Adam; Chandler, Cyndy; Arko, Robert; Leadbetter, Adam

    2014-05-01

    Data integration act as the preliminary entry point as we enter the era of big data in many scientific domains. However the reusefulness of various dataset has met the hurdle due to different initial of interests of different parties, therefore different vocabularies in describing similar or semantically related concepts. In this scenario it is vital to devise an automatic or semi-supervised algorithm to facilitate the convergence of different vocabularies. The Ocean Data Interoperability Platform (ODIP) seeks to increase data sharing across scientific domains and international boundaries by providing a forum to harmonize diverse regional data systems. ODIP participants from the US include the Rolling Deck to Repository (R2R) program, whose mission is to capture, catalog, and describe the underway/environmental sensor data from US oceanographic research vessels and submit the data to public long-term archives. In an attempt to harmonize these regional data systems, especially vocabularies, R2R recognizes the value of the SeaDataNet vocabularies served by the NERC Vocabulary Server (NVS) hosted at the British Oceanographic Data Centre as a trusted, authoritative source for describing many oceanographic research concepts such as instrumentation. In this work, we make use of the semantic relations in the vocabularies served by NVS to build a Bayesian network and take advantage of the idea of entropy in evaluating the correlation between different concepts and keywords. The performance of the model is evaluated against matching instruments from R2R against the SeaDataNet instrument vocabularies based on calculated confidence scores in the instrument pairings. These pairings with their scores can then be analyzed for assertion growing the interoperability of the R2R vocabulary through its links to the SeaDataNet entities.

  11. Cordless Instruments

    NASA Astrophysics Data System (ADS)

    1981-01-01

    Black & Decker's new cordless lightweight battery powered precision instruments, adapted from NASA's Apollo Lunar Landing program, have been designed to give surgeons optimum freedom and versatility in the operating room. Orthopedic instrument line includes a drill, a driver/reamer and a sagittal saw. All provide up to 20 minutes on a single charge. Power pack is the instrument's handle which is removable for recharging. Microprocessor controlled recharging unit can recharge two power packs together in 30 minutes. Instruments can be gas sterilized, steam-sterilized in an autoclave or immersed for easy cleaning.

  12. SURVEY INSTRUMENT

    DOEpatents

    Borkowski, C J

    1954-01-19

    This pulse-type survey instrument is suitable for readily detecting {alpha} particles in the presence of high {beta} and {gamma} backgrounds. The instruments may also be used to survey for neutrons, {beta} particles and {gamma} rays by employing suitably designed interchangeable probes and selecting an operating potential to correspond to the particular probe.

  13. Robotic servicing of EOS instruments

    NASA Technical Reports Server (NTRS)

    Razzaghi, Andrea I.; Juberts, Maris

    1990-01-01

    This paper addresses robotic servicing of the Earth Observing Satellite (EOS) instruments. The goals of implementing a robotic servicing system on EOS would be to maintain the instruments throughout the required mission life and minimize life-cycle costs. To address robot servicing, an initial design concept has been developed which will be applied to a representative EOS instrument. This instrument will be used as a model for determining the most practical level of servicing of its parts, and how to design these parts for robot servicing. Using this representative EOS instrument as a model, a generic design scheme will be developed that can be applied to all EOS instruments. The first task is to determine how to identify which parts must be designed for robot servicing. Next, the requirements imposed on the instruments and the servicing robot when designing for robot serviceability must be examined.

  14. Instrumentation '79.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Surveys the state of commerical development of analytical instrumentation as reflected by the Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy. Includes optical spectroscopy, liquid chromatography, magnetic spectrometers, and x-ray. (Author/MA)

  15. Mass spectrometers: instrumentation

    NASA Astrophysics Data System (ADS)

    Cooks, R. G.; Hoke, S. H., II; Morand, K. L.; Lammert, S. A.

    1992-09-01

    Developments in mass spectrometry instrumentation over the past three years are reviewed. The subject is characterized by an enormous diversity of designs, a high degree of competition between different laboratories working with either different or similar techniques and by extremely rapid progress in improving analytical performance. Instruments can be grouped into genealogical charts based on their physical and conceptual interrelationships. This is illustrated using mass analyzers of different types. The time course of development of particular instrumental concepts is illustrated in terms of the s-curves typical of cell growth. Examples are given of instruments which are at the exponential, linear and mature growth stages. The prime examples used are respectively: (i) hybrid instruments designed to study reactive collisions of ions with surfaces: (ii) the Paul ion trap; and (iii) the triple quadrupole mass spectrometer. In the area of ion/surface collisions, reactive collisions such as hydrogen radical abstraction from the surface by the impinging ion are studied. They are shown to depend upon the chemical nature of the surface through the use of experiments which utilize self-assembled monolayers as surfaces. The internal energy deposited during surface-induced dissociation upon collision with different surfaces in a BEEQ instrument is also discussed. Attention is also given to a second area of emerging instrumentation, namely technology which allows mass spectrometers to be used for on-line monitoring of fluid streams. A summary of recent improvements in the performance of the rapidly developing quadrupole ion trap instrument illustrates this stage of instrument development. Improvements in resolution and mass range and their application to the characterization of biomolecules are described. The interaction of theory with experiment is illustrated through the role of simulations of ion motion in the ion trap. It is emphasized that mature instruments play a

  16. The AFTA coronagraph instrument

    NASA Astrophysics Data System (ADS)

    Shaklan, Stuart; Levine, Marie; Foote, Marc; Rodgers, Michael; Underhill, Michael; Marchen, Luis; Klein, Dan

    2013-09-01

    The Astrophysics Focused Telescope Assets (AFTA) study in 2012-2013 included a high-contrast stellar coronagraph to complement the wide-field infrared survey (WFIRST) instrument. The idea of flying a coronagraph on this telescope was met with some skepticism because the AFTA pupil has a large central obscuration with six secondary mirror struts that impact the coronagraph sensitivity. However, several promising coronagraph concepts have emerged, and a corresponding initial instrument design has been completed. Requirements on the design include observations centered 0.6 deg off-axis, on-orbit robotic serviceability, operation in a geosynchronous orbit, and room-temperature operation (driven by the coronagraph's deformable mirrors). We describe the instrument performance requirements, the optical design, an observational scenario, and integration times for typical detection and characterization observations.

  17. Instrument Remote Control via the Astronomical Instrument Markup Language

    NASA Technical Reports Server (NTRS)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  18. MMIC Phased Array Demonstrations with ACTS

    NASA Technical Reports Server (NTRS)

    Raquet, Charles A. (Compiler); Martzaklis, Konstantinos (Compiler); Zakrajsek, Robert J. (Compiler); Andro, Monty (Compiler); Turtle, John P.

    1996-01-01

    Over a one year period from May 1994 to May 1995, a number of demonstrations were conducted by the NASA Lewis Research Center (LeRC) in which voice, data, and/or video links were established via NASA's advanced communications technology satellite (ACTS) between the ACTS link evaluation terminal (LET) in Cleveland, OH, and aeronautical and mobile or fixed Earth terminals having monolithic microwave integrated circuit (MMIC) phased array antenna systems. This paper describes four of these. In one, a duplex voice link between an aeronautical terminal on the LeRC Learjet and the ACTS was achieved. Two others demonstrated duplex voice (and in one case video as well) links between the ACTS and an Army vehicle. The fourth demonstrated a high data rate downlink from ACTS to a fixed terminal. Array antenna systems used in these demonstrations were developed by LeRC and featured LeRC and Air Force experimental arrays using gallium arsenide MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The single 30 GHz transmit array was developed by NASA/LeRC and Texas Instruments. The three 20 GHz receive arrays were developed in a cooperative effort with the Air Force Rome Laboratory, taking advantage of existing Air Force array development contracts with Boeing and Lockheed Martin. The paper describes the four proof-of-concept arrays and the array control system. The system configured for each of the demonstrations is described, and results are discussed.

  19. Research Instruments

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The GENETI-SCANNER, newest product of Perceptive Scientific Instruments, Inc. (PSI), rapidly scans slides, locates, digitizes, measures and classifies specific objects and events in research and diagnostic applications. Founded by former NASA employees, PSI's primary product line is based on NASA image processing technology. The instruments karyotype - a process employed in analysis and classification of chromosomes - using a video camera mounted on a microscope. Images are digitized, enabling chromosome image enhancement. The system enables karyotyping to be done significantly faster, increasing productivity and lowering costs. Product is no longer being manufactured.

  20. Geoscience instrumentation

    NASA Technical Reports Server (NTRS)

    Wolff, E. A. (Editor); Mercanti, E. P.

    1974-01-01

    Geoscience instrumentation systems are considered along with questions of geoscience environment, signal processing, data processing, and design problems. Instrument platforms are examined, taking into account ground platforms, airborne platforms, ocean platforms, and space platforms. In situ and laboratory sensors described include acoustic wave sensors, age sensors, atmospheric constituent sensors, biological sensors, cloud particle sensors, electric field sensors, electromagnetic field sensors, precision geodetic sensors, gravity sensors, ground constituent sensors, horizon sensors, humidity sensors, ion and electron sensors, magnetic field sensors, tide sensors, and wind sensors. Remote sensors are discussed, giving attention to sensing techniques, acoustic echo-sounders, gamma ray sensors, optical sensors, radar sensors, and microwave radiometric sensors.

  1. Instrumented SSH

    SciTech Connect

    Campbell, Scott; Campbell, Scott

    2009-05-27

    NERSC recently undertook a project to access and analyze Secure Shell (SSH) related data. This includes authentication data such as user names and key fingerprints, interactive session data such as keystrokes and responses, and information about noninteractive sessions such as commands executed and files transferred. Historically, this data has been inaccessible with traditional network monitoring techniques, but with a modification to the SSH daemon, this data can be passed directly to intrusion detection systems for analysis. The instrumented version of SSH is now running on all NERSC production systems. This paper describes the project, details about how SSH was instrumented, and the initial results of putting this in production.

  2. Privacy Act

    EPA Pesticide Factsheets

    Learn about the Privacy Act of 1974, the Electronic Government Act of 2002, the Federal Information Security Management Act, and other information about the Environmental Protection Agency maintains its records.

  3. Prevention of allograft HCV recurrence with peri-transplant human monoclonal antibody MBL-HCV1 combined with a single oral direct-acting antiviral: A proof-of-concept study.

    PubMed

    Smith, H L; Chung, R T; Mantry, P; Chapman, W; Curry, M P; Schiano, T D; Boucher, E; Cheslock, P; Wang, Y; Molrine, D C

    2017-03-01

    Patients with active hepatitis C virus (HCV) infection at transplantation experience rapid allograft infection, increased risk of graft failure and accelerated fibrosis. MBL-HCV1, a neutralizing human monoclonal antibody (mAb) targeting the HCV envelope, was combined with a licensed oral direct-acting antiviral (DAA) to prevent HCV recurrence post-transplant in an open-label exploratory efficacy trial. Eight subjects received MBL-HCV1 beginning on the day of transplant with telaprevir initiated between days 3 and 7 post-transplantation. Following FDA approval of sofosbuvir, two subjects received MBL-HCV1 starting on the day of transplant with sofosbuvir initiated on day 3. Combination treatment was administered for 8-12 weeks or until the stopping rule for viral rebound was met. The primary endpoint was undetectable HCV RNA at day 56 with exploratory endpoints of sustained virologic response (SVR) at 12 and 24 weeks post-treatment. Both subjects receiving mAb and sofosbuvir achieved SVR24. Four of eight subjects in the mAb and telaprevir group met the primary endpoint; one subject achieved SVR24 and three subjects relapsed 2-12 weeks post-treatment. The other four subjects experienced viral breakthrough. There were no serious adverse events related to study treatment. This proof-of-concept study demonstrates that peri-transplant immunoprophylaxis combined with a single oral direct-acting antiviral in the immediate post-transplant period can prevent HCV recurrence.

  4. Weather Instruments.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  5. RHIC instrumentation

    NASA Astrophysics Data System (ADS)

    Shea, T. J.; Witkover, R. L.

    1998-12-01

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 1011 protons to 250 GeV, or 109 fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test.

  6. RHIC instrumentation

    SciTech Connect

    Shea, T. J.; Witkover, R. L.

    1998-12-10

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 10{sup 11} protons to 250 GeV, or 10{sup 9} fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test.

  7. RHIC instrumentation

    SciTech Connect

    Shea, T.J.; Witkover, R.L.

    1998-12-01

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 10{sup 11} protons to 250 GeV, or 10{sup 9} fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test. {copyright} {ital 1998 American Institute of Physics.}

  8. Mariner Jupiter/Saturn infrared instrument study

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Mariner Jupiter/Saturn infrared instrumentation conceptual design study was conducted to determine the physical and operational characteristics of the instruments needed to satisfy the experiment science requirements. The design of the instruments is based on using as many proven concepts as possible. Many design features are taken from current developments such as the Mariner, Pioneer 10, Viking Orbiter radiometers, and Nimbus D spectrometer. Calibration techniques and error analysis for the instrument system are discussed.

  9. Virtual Sensor Test Instrumentation

    NASA Technical Reports Server (NTRS)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  10. Rain radar instrument definition

    NASA Astrophysics Data System (ADS)

    Vincent, Nicolas; Chenebault, J.; Suinot, Noel; Mancini, Paolo L.

    1996-12-01

    As a result of a pre-phase a study, founded by ESA, this paper presents the definition of a spaceborne Rain Radar, candidate instrument for earth explorer precipitation mission. Based upon the description of user requirements for such a dedicated mission, a mission analysis defines the most suitable space segment. At system level, a parametric analysis compares pros and cons of instrument concepts associated with rain rate retrieval algorithms in order to select the most performing one. Several trade-off analysis at subsystem level leads then to the definition of the proposed design. In particular, as pulse compression is implemented in order to increase the radar sensitivity, the selected method to achieve a pulse response with a side-lobe level below--60 dB is presented. Antenna is another critical rain radar subsystem and several designs are com pared: direct radiating array, single or dual reflector illuminated by single or dual feed arrays. At least, feasibility of centralized amplification using TWTA is compared with criticality of Tx/Rx modules for distributed amplification. Mass and power budgets of the designed instrument are summarized as well as standard deviations and bias of simulated rain rate retrieval profiles. The feasibility of a compliant rain radar instrument is therefore demonstrated.

  11. Small Cold Temperature Instrument Packages

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Millar, P. S.; Yeh, P. S.; Feng, S.; Brigham, D.; Beaman, B.

    We are developing a small cold temperature instrument package concept that integrates a cold temperature power system with ultra low temperature ultra low power electronics components and power supplies now under development into a 'cold temperature surface operational' version of a planetary surface instrument package. We are already in the process of developing a lower power lower temperature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package. We build on our previous work to develop strategies for incorporating Ultra Low Temperature/Ultra Low Power (ULT/ULP) electronics, lower voltage power supplies, as well as innovative thermal design concepts for instrument packages. Cryotesting has indicated that our small Si RHBD CMOS chips can deliver >80% of room temperature performance at 40K (nominal minimum lunar surface temperature). We leverage collaborations, past and current, with the JPL battery development program to increase power system efficiency in extreme environments. We harness advances in MOSFET technology that provide lower voltage thresholds for power switching circuits incorporated into our low voltage power supply concept. Conventional power conversion has a lower efficiency. Our low power circuit concept based on 'synchronous rectification' could produce stable voltages as low as 0.6 V with 85% efficiency. Our distributed micro-battery-based power supply concept incorporates cold temperature power supplies operating with a 4 V or 8 V battery. This work will allow us to provide guidelines for applying the low temperature, low power system approaches generically to the widest range of surface instruments.

  12. Life at Conception Act of 2013

    THOMAS, 113th Congress

    Sen. Paul, Rand [R-KY

    2013-03-14

    03/18/2013 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 30. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  13. Life at Conception Act of 2013

    THOMAS, 113th Congress

    03/18/2013 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 30. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  14. 22 CFR 92.34 - Fastening certificate to instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Fastening certificate to instrument. 92.34... SERVICES Specific Notarial Acts § 92.34 Fastening certificate to instrument. The proper place for the certificate of acknowledgment is after the signature of the parties to the instrument. If the instrument is...

  15. Mass Producing Concept Inventories

    NASA Astrophysics Data System (ADS)

    Garvin-Doxas, K.; Klymkowsky, M.; Doxas, I.

    2005-12-01

    Concept Inventories are research based assessment instruments which derive their validity and reliability from well researched distracters that represent students' dominant misconceptions in the field. They have formed the backbone of research based reform efforts in Physics by providing valid, reliable common assessment instruments with which to evaluate different teaching approaches and materials, and many disciplines are in the process of developing large numbers of Concept Inventories for their own subject areas. Unfortunately, Concept Inventories are labour and time intensive, with instruments taking anywhere from 2-8 years to develop, and correspondingly high price tags. The time and cost is directly related to the fact that valid, reliable instruments require mapping the dominant misconceptions in a field, which is usually a time consuming and labour intensive task. This paper will describe how we use Latent Semantic Analysis (LSA) with unsupervised clustering of the LSA vectors to identify and classify misconceptions in various science disciplines, considerably speeding up the process of misconception discovery and classification. The paper will present results from Astronomy and Biology, and will describe current efforts to develop a Concept Inventory for Space Physics.

  16. Vocational Maturity and Self Concepts.

    ERIC Educational Resources Information Center

    Helbing, Hans

    The relationship between separate dimensions of vocational maturity and different self-concept and identity variables were examined. Subjects were Dutch students, age 14-18 years. The vocational maturity dimensions were measured by Dutch adaptations of American vocational maturity scales. Instruments for self-concept and identity measurement were…

  17. Optical Instruments

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Precision Lapping and Optical Co. has developed a wide variety of hollow retroreflector systems for applications involving the entire optical spectrum; they are, according to company literature, cheaper, more accurate, lighter and capable of greater size than solid prisms. Precision Lapping's major customers are aerospace and defense companies, government organizations, R&D and commercial instrument companies. For example, Precision Lapping supplies hollow retroreflectors for the laser fire control system of the Army's Abrams tank, and retroreflectors have been and are being used in a number of space tests relative to the Air Force's Strategic Defense Initiative research program. An example of a customer/user is Chesapeake Laser Systems, producer of the Laser Tracker System CMS-2000, which has applications in SDI research and industrial robotics. Another customer is MDA Scientific, Inc., manufacturer of a line of toxic gas detection systems used to monitor hazardous gases present in oil fields, refineries, offshore platforms, chemical plants, waste storage sites and other locations where gases are released into the environment.

  18. The Effectiveness of Concept Maps in Teaching Physics Concepts Applied to Engineering Education: Experimental Comparison of the Amount of Learning Achieved With and Without Concept Maps

    NASA Astrophysics Data System (ADS)

    Martínez, Guadalupe; Pérez, Ángel Luis; Suero, María Isabel; Pardo, Pedro J.

    2013-04-01

    A study was conducted to quantify the effectiveness of concept maps in learning physics in engineering degrees. The following research question was posed: What was the difference in learning results from the use of concept maps to study a particular topic in an engineering course? The study design was quasi-experimental and used a post-test as a measuring instrument. The sample included 114 university students from the School of Industrial Engineering who were divided into two equivalent homogeneous groups of 57 students each. The amount of learning attained by the students in each group was compared, with the independent variable being the teaching method; the experimental group (E.G.) used concept maps, while the control group (C.G.) did not. We performed a crossover study with the two groups of students, with one group acting as the E.G. for the topic of optical fibers and as the C.G. for the topic of the fundamental particles of matter and vice versa for the other group. For each of the two topics studied, the evaluation instrument was a test of 100 dichotomous items. The resulting data were subjected to a comparative statistical analysis, which revealed a significant difference in the amount of learning attained by the E.G. students as compared with the C.G. students. The results allow us to state that for the use of concept maps, the average increment in the E.G. students' learning was greater than 19 percentage points.

  19. The Effectiveness of the Washington Occupation Information Service (WOIS) as a Career Guidance Instrument for Youth Employment Training Program (YETP) Clients: An Evaluation of Training and Implementation in 21 Washington State Comprehensive Employment Training Act (CETA) Sites.

    ERIC Educational Resources Information Center

    Lutz, Larry L.; And Others

    An evaluation was conducted to determine the usefulness and effectiveness of the Washington Occupation Information Service (WOIS) materials and training workshops. Eighty-five Youth Employment and Training Project (YETP) counselors and administrators from twenty-one Comprehensive Employment Training Act (CETA) sites throughout Washington…

  20. Using Concept Cartoons

    ERIC Educational Resources Information Center

    Dabell, John

    2008-01-01

    Concept cartoons are cognitive drawings or "visual disagreements" that use a cartoon-style design to present mathematical conversations inside speech bubbles. The viewpoints portrayed are all different and it is this difference that acts as a catalyst for further conversations, as learners talk together to discuss their thinking. They make…

  1. NASA Planetary Science Division's Instrument Development Programs, PICASSO and MatISSE

    NASA Astrophysics Data System (ADS)

    Gaier, J. R.

    2016-10-01

    The NASA Planetary Science Division's instrument development programs, Planetary Instrument Concept Advancing Solar System Observations (PICASSO), and Maturation of Instruments for Solar System Exploration Program (MatISSE), are described.

  2. Behaviorist stochastic modeling of instrumental learning.

    PubMed

    Hausken, Kjell; Moxnes, John F.

    2001-11-01

    A mathematical model is presented descriptive of instrumental learning, i.e. operant conditioning. An agent learns to commit a certain number of acts per time unit, distributed as a non-stationary Poisson process. The derivative of the agent's expected utility per time unit, where utility is expected benefit minus expected cost, is interpreted as his drive to reach a local maximum of his expected utility. This drive multiplied with his act intensity are proportional to the change of the agent's act intensity per time unit, which is an ordinary first order differential equation for instrumental learning.

  3. Students' Alternative Conceptions and Scientifically Acceptable Conceptions about Gravity.

    ERIC Educational Resources Information Center

    Palmer, David

    2001-01-01

    Identifies students' conceptions that could be categorized as scientifically acceptable and investigates the nature of any possible relationship between these concepts. Investigates 6th and 10th grade students' ideas on whether gravity acted upon a series of moving or non-moving objects in everyday situations. (Contains 41 references.) (Author/YDS)

  4. Space science instrumentation

    NASA Astrophysics Data System (ADS)

    Holzworth, R. H.

    1989-03-01

    This grant was intended to be used for the purchase of high quality laboratory and data analysis instrumentation for the pursuit of space plasma physics research. Two of the first purchases were a 6250 BPI magnetic tape drive and a large, fast disk drive. These improved the satellite data analysis capability greatly and reduced the system backup time. With the big disk drive it became possible to dump entire magnetic tapes to disk for faster, more efficient processing. Several microcomputers improve both personnel computing as well as general connectivity within the group and on campus in general. Other microcomputers function in the laboratory setting by acting as hosts for several instrument interfaces for communication with satellite and balloon payloads as well as laboratory VLF signal processing equipment. Perhaps the single most expensive item purchased was an analog tape drive for reading and writing 16 in. analog magnetic tapes. This analog tape drive is used for the direct processing of FM and directly recorded telemetry data from the balloon and rocket payloads.

  5. ZBLAN Viscosity Instrumentation

    NASA Technical Reports Server (NTRS)

    Kaukler, William

    2001-01-01

    The past year's contribution from Dr. Kaukler's experimental effort consists of these 5 parts: a) Construction and proof-of-concept testing of a novel shearing plate viscometer designed to produce small shear rates and operate at elevated temperatures; b) Preparing nonlinear polymeric materials to serve as standards of nonlinear Theological behavior; c) Measurements and evaluation of above materials for nonlinear rheometric behavior at room temperature using commercial spinning cone and plate viscometers available in the lab; d) Preparing specimens from various forms of pitch for quantitative comparative testing in a Dynamic Mechanical Analyzer, Thermal Mechanical Analyzer; and Archeological Analyzer; e) Arranging to have sets of pitch specimens tested using the various instruments listed above, from different manufacturers, to form a baseline of the viscosity variation with temperature using the different test modes offered by these instruments by compiling the data collected from the various test results. Our focus in this project is the shear thinning behavior of ZBLAN glass over a wide range of temperature. Experimentally, there are no standard techniques to perform such measurements on glasses, particularly at elevated temperatures. Literature reviews to date have shown that shear thinning in certain glasses appears to occur, but no data is available for ZBLAN glass. The best techniques to find shear thinning behavior require the application of very low rates of shear. In addition, because the onset of the thinning behavior occurs at an unknown elevated temperature, the instruments used in this study must provide controlled low rates of shear and do so for temperatures approaching 600 C. In this regard, a novel shearing parallel plate viscometer was designed and a prototype built and tested.

  6. A Modular and Configurable Instrument Electronics Architecture for "MiniSAR"- An Advanced Smallsat SAR Instrument

    NASA Astrophysics Data System (ADS)

    Gomez, Jaime; Pastena, Max; Bierens, Laurens

    2013-08-01

    MiniSAR is a Dutch program focused on the development of a commercial smallsat featuring a SAR instrument, led by SSBV as prime contractor. In this paper an Instrument Electronics (IEL) system concept to meet the MiniSAR demands is presented. This system has several specificities wrt similar initiatives in the European space industry, driven by our main requirement: keep it small.

  7. Low activated incore instrument

    DOEpatents

    Ekeroth, D.E.

    1994-04-19

    Instrumentation is described for nuclear reactor head-mounted incore instrumentation systems fabricated of low nuclear cross section materials (i.e., zirconium or titanium). The instrumentation emits less radiation than that fabricated of conventional materials. 9 figures.

  8. Low activated incore instrument

    DOEpatents

    Ekeroth, Douglas E.

    1994-01-01

    Instrumentation for nuclear reactor head-mounted incore instrumentation systems fabricated of low nuclear cross section materials (i.e., zirconium or titanium). The instrumentation emits less radiation than that fabricated of conventional materials.

  9. Instrumentation at the Anglo-Australian Observatory

    NASA Astrophysics Data System (ADS)

    Barden, Samuel C.

    2004-09-01

    The Anglo-Australian Observatory (AAO) has an instrumentation group for engineering, design, and fabrication that integrates tightly with an energetic group of instrument scientists1 to develop complex astronomical instruments. This instrumentation group puts ideas for innovative technical solutions generated by the instrument scientist group into reality. One demonstration of past achievement is the highly ambitious and successful 2dF instrument that yielded invaluable scientific insight into the cosmological structure of the universe. The more recent successes of the instrumentation group include the OzPoz fiber positioner for the FLAMES facility on the VLT and the award-winning, imaging and multi-object IRIS-2 infrared spectrograph for the AAT. VPH gratings were first put into action in LDSS++ on the AAT and numerous VPH gratings are now in routine use on the 6dF spectrograph for the UKST. Under development are a completely new and unique fiber positioning scheme (Echidna) for use in the FMOS instrument for Subaru; a double-beamed, VPH-based, bench-mounted spectrograph for 2dF; new IR and optical detector controllers; a renovation of the telescope and instrument control systems for the AAT; and a feasibility study for an Echidna-style positioner for the Gemini telescopes. Several other design studies are underway for new instrument technologies using leading edge and innovative concepts in robotics and fibers. The synergy between our scientists and engineers establishes a sound basis for solving the instrumentation challenges facing us.

  10. New Developments at NASA's Instrument Synthesis & Analysis Laboratory (ISAL)

    NASA Technical Reports Server (NTRS)

    Wood, H. John; Brown, Tammy L.; Herring, Ellen L.

    2006-01-01

    This viewgraph document reviews the work of NASA's Instrument Synthesis and Analysis Laboratory (ISAL). The work of the ISAL has substantially reduced the time required to develop an instrument concept. The document reviews the design process in detail and planned interaction with the end user of the instrument.

  11. 76 FR 29267 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Interchangeable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ...--Interchangeable Virtual Instruments Foundation, Inc. Notice is hereby given that, on April 21, 2011, pursuant to.... (``the Act''), Interchangeable Virtual Instruments Foundation, Inc. has filed written notifications... research project remains open, and Interchangeable Virtual Instruments Foundation, Inc. intends to...

  12. 75 FR 28294 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Interchangeable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ...--Interchangeable Virtual Instruments Foundation, Inc. Notice is hereby given that, on April 15, 2010, pursuant to.... (``the Act''), Interchangeable Virtual Instruments Foundation, Inc. has filed written notifications... Interchangeable Virtual Instruments Foundation, Inc. intends to file additional written notifications...

  13. 75 FR 54652 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Interchangeable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ...--Interchangeable Virtual Instruments Foundation, Inc. Notice is hereby given that, on July 8, 2010, pursuant to.... (``the Act''), Interchangeable Virtual Instruments Foundation, Inc. has filed written notifications... research project remains open, and Interchangeable Virtual Instruments Foundation, Inc. intends to...

  14. 78 FR 117 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Interchangeable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-02

    ...--Interchangeable Virtual Instruments Foundation, Inc. Notice is hereby given that, on December 6, 2012, pursuant to.... (``the Act''), Interchangeable Virtual Instruments Foundation, Inc. has filed written notifications.... Membership in this group research project remains open, and Interchangeable Virtual Instruments...

  15. The concept behind sugammadex.

    PubMed

    Epemolu, O; Bom, A

    2014-05-01

    Sugammadex is the first selective relaxant binding agent. It allows rapid reversal of any degree of neuromuscular blockade induced by steroidal neuromuscular blocking agents. Sugammadex acts by encapsulation of the neuromuscular blocking agent. This prevents the drug from acting on prejunctional and postjunctional nicotinic receptors, allowing acetylcholine to activate these receptors, and resulting in reversal of the neuromuscular blockade. Objective monitoring of the degree of neuromuscular blockade is strongly recommended to determine the optimal dose of sugammadex. A good understanding of the concept behind sugammadex is essential in order to use this reversal agent in clinical practice.

  16. Evaluating musical instruments

    SciTech Connect

    Campbell, D. Murray

    2014-04-01

    Scientific measurements of sound generation and radiation by musical instruments are surprisingly hard to correlate with the subtle and complex judgments of instrumental quality made by expert musicians.

  17. Balancing Act

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2007-01-01

    For some administrators and planners, designing and building education facilities may sometimes seem like a circus act--trying to project a persona of competence and confidence while juggling dozens of issues. Meanwhile, the audience--students, staff members and taxpayers--watch and wait with anticipation in hopes of getting what they paid for and…

  18. The Idea Bank: Teaching Harmonic Concepts at the Elementary Level.

    ERIC Educational Resources Information Center

    Music Educators Journal, 1979

    1979-01-01

    Briefly described are ways of teaching the concept of harmony to young children through the use of keyboard instruments, resonator bells, diatonic and chromatic bells, and Orff melody instruments. (KC)

  19. Evolutionary programming for neutron instrument optimisation

    NASA Astrophysics Data System (ADS)

    Bentley, Phillip M.; Pappas, Catherine; Habicht, Klaus; Lelièvre-Berna, Eddy

    2006-11-01

    Virtual instruments based on Monte-Carlo techniques are now integral part of novel instrumentation development and the existing codes (McSTAS and Vitess) are extensively used to define and optimise novel instrumental concepts. Neutron spectrometers, however, involve a large number of parameters and their optimisation is often a complex and tedious procedure. Artificial intelligence algorithms are proving increasingly useful in such situations. Here, we present an automatic, reliable and scalable numerical optimisation concept based on the canonical genetic algorithm (GA). The algorithm was used to optimise the 3D magnetic field profile of the NSE spectrometer SPAN, at the HMI. We discuss the potential of the GA which combined with the existing Monte-Carlo codes (Vitess, McSTAS, etc.) leads to a very powerful tool for automated global optimisation of a general neutron scattering instrument, avoiding local optimum configurations.

  20. Astronomical Instruments in India

    NASA Astrophysics Data System (ADS)

    Sarma, Sreeramula Rajeswara

    The earliest astronomical instruments used in India were the gnomon and the water clock. In the early seventh century, Brahmagupta described ten types of instruments, which were adopted by all subsequent writers with minor modifications. Contact with Islamic astronomy in the second millennium AD led to a radical change. Sanskrit texts began to lay emphasis on the importance of observational instruments. Exclusive texts on instruments were composed. Islamic instruments like the astrolabe were adopted and some new types of instruments were developed. Production and use of these traditional instruments continued, along with the cultivation of traditional astronomy, up to the end of the nineteenth century.

  1. Concept Mapping

    ERIC Educational Resources Information Center

    Technology & Learning, 2005

    2005-01-01

    Concept maps are graphical ways of working with ideas and presenting information. They reveal patterns and relationships and help students to clarify their thinking, and to process, organize and prioritize. Displaying information visually--in concept maps, word webs, or diagrams--stimulates creativity. Being able to think logically teaches…

  2. On Representative Spaceflight Instrument and Associated Instrument Sensor Web Framework

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Patel, Umeshkumar; Vootukuru, Meg

    2007-01-01

    Sensor Web-based adaptation and sharing of space flight mission resources, including those of the Space-Ground and Control-User communication segment, could greatly benefit from utilization of heritage Internet Protocols and devices applied for Spaceflight (SpaceIP). This had been successfully demonstrated by a few recent spaceflight experiments. However, while terrestrial applications of Internet protocols are well developed and understood (mostly due to billions of dollars in investments by the military and industry), the spaceflight application of Internet protocols is still in its infancy. Progress in the developments of SpaceIP-enabled instrument components will largely determine the SpaceIP utilization of those investments and acceptance in years to come. Likewise SpaceIP, the development of commercial real-time and instrument colocated computational resources, data compression and storage, can be enabled on-board a spacecraft and, in turn, support a powerful application to Sensor Web-based design of a spaceflight instrument. Sensor Web-enabled reconfiguration and adaptation of structures for hardware resources and information systems will commence application of Field Programmable Arrays (FPGA) and other aerospace programmable logic devices for what this technology was intended. These are a few obvious potential benefits of Sensor Web technologies for spaceflight applications. However, they are still waiting to be explored. This is because there is a need for a new approach to spaceflight instrumentation in order to make these mature sensor web technologies applicable for spaceflight. In this paper we present an approach in developing related and enabling spaceflight instrument-level technologies based on the new concept of a representative spaceflight Instrument Sensor Web (ISW).

  3. Mars Miniature Science Instruments

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Hayati, Samad; Lavery, David; McBrid, Karen

    2006-01-01

    For robotic Mars missions, all the science information is gathered through on-board miniature instruments that have been developed through many years of R&D. Compared to laboratory counterparts, the rover instruments require miniaturization, such as low mass (1-2 kg), low power (> 10 W) and compact (1-2 liter), yet with comparable sensitivity. Since early 1990's, NASA recognized the need for the miniature instruments and launched several instrument R&D programs, e.g., PIDDP (Planetary Instrument Definition and Development). However, until 1998, most of the instrument R&D programs supported only up to a breadboard level (TRL 3, 4) and there is a need to carry such instruments to flight qualifiable status (TU 5, 6) to respond to flight AOs (Announcement of Opportunity). Most of flight AOs have only limited time and financial resources, and can not afford such instrument development processes. To bridge the gap between instrument R&D programs and the flight instrument needs, NASA's Mars Technology Program (MTP) created advanced instrumentation program, Mars Instrument Development Project (MIDP). MIDP candidate instruments are selected through NASA Research Announcement (NRA) process [l]. For example, MIDP 161998-2000) selected and developed 10 instruments, MIDP II (2003-2005) 16 instruments, and MIDP III (2004-2006) II instruments.Working with PIs, JPL has been managing the MIDP tasks since September 1998. All the instruments being developed under MIDP have been selected through a highly competitive NRA process, and employ state-of-the-art technology. So far, four MIDP funded instruments have been selected by two Mars missions (these instruments have further been discussed in this paper).

  4. Nomadic concepts in the history of biology.

    PubMed

    Surman, Jan; Stráner, Katalin; Haslinger, Peter

    2014-12-01

    The history of scientific concepts has firmly settled among the instruments of historical inquiry. In our section we approach concepts from the perspective of nomadic concepts (Isabelle Stengers). Instead of following the evolution of concepts within one disciplinary network, we see them as subject to constant reification and change while crossing and turning across disciplines and non-scientific domains. This introduction argues that understanding modern biology is not possible without taking into account the constant transfers and translations that affected concepts. We argue that this approach does not only engage with nomadism between disciplines and non-scientific domains, but reflects on and involves the metaphoric value of concepts as well.

  5. A method for automating calibration and records management for instrumentation and dosimetry

    SciTech Connect

    O`Brien, J.M. Jr.; Rushton, R.O.; Burns, R.E. Jr.

    1993-12-31

    Current industry requirements are becoming more stringent on quality assurance records and documentation for calibration of instruments and dosimetry. A novel method is presented here that will allow a progressive automation scheme to be used in pursuit of that goal. This concept is based on computer-controlled irradiators that can act as stand-alone devices or be interfaced to other components via a computer local area network. In this way, complete systems can be built with modules to create a records management system to meet the needs of small laboratories or large multi-building calibration groups. Different database engines or formats can be used simply by replacing a module. Modules for temperature and pressure monitoring or shipping and receiving can be added, as well as equipment modules for direct IEEE-488 interface to electrometers and other instrumentation.

  6. Instrument science at the Anglo-Australian Observatory

    NASA Astrophysics Data System (ADS)

    Bland-Hawthorn, Joss

    2004-09-01

    The Anglo-Australian Observatory (AAO) has two groups which work closely to develop the next generation of astronomical instruments: the Instrumentation group, headed by Sam Barden, and the Instrument Science group. The Instrument Science group plays a key role in identifying and prototyping new technologies and concepts, and in establishing links with universities and industrial partners. Recent developments include the following: "echidna" fibre positioning technology, "starbug" robotic positioners; designer optical fibres and photonics; inertial drives and new concepts for large telescopes; new designs for gratings, tunable filters and interference coatings; a programmable "honeycomb" integral field spectrograph; a compact spectrograph for a Mars rover; and a new scheme for an optical laser receiver.

  7. Woodwind Instrument Maintenance.

    ERIC Educational Resources Information Center

    Sperl, Gary

    1980-01-01

    The author presents a simple maintenance program for woodwind instruments which includes the care of tendon corks, the need for oiling keys, and methods of preventing cracks in woodwind instruments. (KC)

  8. Regional Instrumentation Centers.

    ERIC Educational Resources Information Center

    Cromie, William J.

    1980-01-01

    Focuses on the activities of regional instrumentation centers that utilize the state-of-the-art instruments and methodology in basic scientific research. The emphasis is on the centers involved in mass spectroscopy, magnetic resonance spectroscopy, lasers, and accelerators. (SA)

  9. The Instrumental Model

    ERIC Educational Resources Information Center

    Yeates, Devin Rodney

    2011-01-01

    The goal of this dissertation is to enable better predictive models by engaging raw experimental data through the Instrumental Model. The Instrumental Model captures the protocols and procedures of experimental data analysis. The approach is formalized by encoding the Instrumental Model in an XML record. Decoupling the raw experimental data from…

  10. Aeronautic Instruments. Section VI : Oxygen Instruments

    NASA Technical Reports Server (NTRS)

    Hunt, F L

    1923-01-01

    This report contains statements as to amount of oxygen required at different altitudes and the methods of storing oxygen. The two types of control apparatus - the compressed oxygen type and the liquid oxygen type - are described. Ten different instruments of the compressed type are described, as well as the foreign instruments of the liquid types. The performance and specifications and the results of laboratory tests on all representative types conclude this report.

  11. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Monitoring instruments. 12.41 Section 12.41 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT...

  12. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Monitoring instruments. 12.41 Section 12.41 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT...

  13. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Monitoring instruments. 12.41 Section 12.41 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT...

  14. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Monitoring instruments. 12.41 Section 12.41 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT...

  15. Validity and Reliability Issues in Measurement Instrumentation.

    ERIC Educational Resources Information Center

    Talmage, Harriet; Rasher, Sue Pinzur

    1981-01-01

    Provides a brief overview of validity and reliability as concepts related to the overall quality of test instruments. Describes the nature and interpretation of content, face, criterion, and construct validity and identifies several approaches for measurement and improvement of reliability. (Author/CS)

  16. Early modern mathematical instruments.

    PubMed

    Bennett, Jim

    2011-12-01

    In considering the appropriate use of the terms "science" and "scientific instrument," tracing the history of "mathematical instruments" in the early modern period is offered as an illuminating alternative to the historian's natural instinct to follow the guiding lights of originality and innovation, even if the trail transgresses contemporary boundaries. The mathematical instrument was a well-defined category, shared across the academic, artisanal, and commercial aspects of instrumentation, and its narrative from the sixteenth to the eighteenth century was largely independent from other classes of device, in a period when a "scientific" instrument was unheard of.

  17. Laparoscopic dissecting instruments.

    PubMed

    Park, A E; Mastrangelo, M J; Gandsas, A; Chu, U; Quick, N E

    2001-03-01

    The authors provide an overview of laparoscopic dissecting instruments and discuss early development, surgical options, and special features. End effectors of different shapes and functions are described. A comparison of available energy sources for laparoscopic instruments includes discussion of thermal dissection, ultrasonic dissection, and water-jet dissection. The ergonomic risks and challenges inherent in the use of current laparoscopic instruments are outlined, as well as ergonomic issues for the design of future instruments. New directions that laparoscopic instrumentation may take are considered in connection with developing technology in robotics, haptic feedback, and MicroElectroMechanical Systems.

  18. High temperature geophysical instrumentation

    SciTech Connect

    Hardee, H.C.

    1988-06-01

    The instrumentation development program was to proceed in parallel with scientific research and was driven by the needs of researchers. The development of these instruments has therefore included numerous geophysical field tests, many of which have resulted in the publication of scientific articles. This paper is a brief summary of some of the major geophysical instruments that have been developed and tested under the High Temperature Geophysics Program. These instruments are briefly described and references are given for further detailed information and for scientific papers that have resulted from the use of these instruments. 9 refs., 14 figs.

  19. Seismic instrumentation of buildings

    USGS Publications Warehouse

    Çelebi, Mehmet

    2000-01-01

    The purpose of this report is to provide information on how and why we deploy seismic instruments in and around building structures. The recorded response data from buildings and other instrumented structures can be and are being primarily used to facilitate necessary studies to improve building codes and therefore reduce losses of life and property during damaging earthquakes. Other uses of such data can be in emergency response situations in large urban environments. The report discusses typical instrumentation schemes, existing instrumentation programs, the steps generally followed in instrumenting a structure, selection and type of instruments, installation and maintenance requirements and data retrieval and processing issues. In addition, a summary section on how recorded response data have been utilized is included. The benefits from instrumentation of structural systems are discussed.

  20. Language and Legal Speech Acts: Decisions.

    ERIC Educational Resources Information Center

    Kevelson, Roberta

    The first part of this essay argues specifically that legal speech acts are not statements but question/answer constructions. The focus in this section is on the underlying interrogative structure of the legal decision. The second part of the paper touches on significant topics related to the concept of legal speech acts, including the philosophic…

  1. Concept Overview.

    ERIC Educational Resources Information Center

    Sandmann, B. J.

    1988-01-01

    Four teaching techniques were used to enhance conceptual learning and to increase student performance in a course in physical-chemical principles at the School of Pharmacy of the University of Missouri-Kansas City. One of the techniques, "concept overview," is described. (MLW)

  2. Present status of aircraft instruments

    NASA Technical Reports Server (NTRS)

    1932-01-01

    This report gives a brief description of the present state of development and of the performance characteristics of instruments included in the following group: speed instruments, altitude instruments, navigation instruments, power-plant instruments, oxygen instruments, instruments for aerial photography, fog-flying instruments, general problems, summary of instrument and research problems. The items considered under performance include sensitivity, scale errors, effects of temperature and pressure, effects of acceleration and vibration, time lag, damping, leaks, elastic defects, and friction.

  3. Geotechnical instrumentation for repository shafts

    SciTech Connect

    Lentell, R.L.; Byrne, J.

    1993-09-01

    The US Congress passed the Nuclear Waste Policy Act in 1980, which required that three distinctly different geologic media be investigated as potential candidate sites for the permanent disposal of high-level nuclear waste. The three media that were selected for study were basalt (WA), salt (TX, LA, MS, UT), and tuff (NV). Preliminary Exploratory Shaft Facilities (ESF) designs were prepared for seven candidate salt sites, including bedded and domal salt environments. A bedded-salt site was selected in Deaf Smith County, TX for detailed site characterization studies and ESF Final Design. Although Congress terminated the Salt Repository Program in 1988, Final Design for the Deaf Smith ESF was completed, and much of the design rationale can be applied to subsequent deep repository shafts. This paper presents the rationale for the geotechnical instrumentation that was designed for construction and operational performance monitoring of the deep shafts of the in-situ test facility. The instrumentation design described herein can be used as a general framework in designing subsequent instrumentation programs for future high-level nuclear waste repository shafts.

  4. Carbon foils for space plasma instrumentation

    NASA Astrophysics Data System (ADS)

    Allegrini, F.; Ebert, R. W.; Funsten, H. O.

    2016-05-01

    Carbon foils have been successfully used for several decades in space plasma instruments to detect ions and neutral atoms. These instruments take advantage of two properties of the particle-foil interaction: charge conversion of neutral atoms and/or secondary electron emission. This interaction also creates several adverse effects for the projectile exiting the foil, such as angular scattering and energy straggling, which usually act to reduce the sensitivity and overall performance of an instrument. The magnitude of these effects mainly varies with the incident angle, energy, and mass of the incoming projectile and the foil thickness. In this paper, we describe these effects and the properties of the interaction. We also summarize results from recent studies with graphene foils, which can be made thinner than carbon foils due to their superior strength. Graphene foils may soon replace carbon foils in space plasma instruments and open new opportunities for space research in the future.

  5. 18 CFR 367.1750 - Account 175, Derivative instrument assets.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Account 175, Derivative... GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367.1750 Account 175, Derivative instrument assets. This account must include the amounts paid for derivative instruments, and the change...

  6. 18 CFR 367.1750 - Account 175, Derivative instrument assets.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Account 175, Derivative... GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367.1750 Account 175, Derivative instrument assets. This account must include the amounts paid for derivative instruments, and the change...

  7. 18 CFR 367.1750 - Account 175, Derivative instrument assets.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Account 175, Derivative... GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367.1750 Account 175, Derivative instrument assets. This account must include the amounts paid for derivative instruments, and the change...

  8. Long-acting reversible contraception.

    PubMed

    Peck, Susan A

    2013-10-01

    Although short-acting reversible hormonal contraceptives, such as oral contraceptives and the contraceptive patch and vaginal ring, remain the most commonly used contraceptive methods in the United States, they are also associated with the highest failure rates. Long-acting reversible contraception (LARC) methods, such as intrauterine devices and contraceptive implants, offer high continuation rates and very low failure rates, and are safe for use in most women. The provision of LARC methods to adolescent, young adult and nulliparous women is a relatively new concept that offers an innovative option for these populations.

  9. VIRUS instrument enclosures

    NASA Astrophysics Data System (ADS)

    Prochaska, T.; Allen, R.; Mondrik, N.; Rheault, J. P.; Sauseda, M.; Boster, E.; James, M.; Rodriguez-Patino, M.; Torres, G.; Ham, J.; Cook, E.; Baker, D.; DePoy, Darren L.; Marshall, Jennifer L.; Hill, G. J.; Perry, D.; Savage, R. D.; Good, J. M.; Vattiat, Brian L.

    2014-08-01

    The Visible Integral-Field Replicable Unit Spectrograph (VIRUS) instrument will be installed at the Hobby-Eberly Telescope† in the near future. The instrument will be housed in two enclosures that are mounted adjacent to the telescope, via the VIRUS Support Structure (VSS). We have designed the enclosures to support and protect the instrument, to enable servicing of the instrument, and to cool the instrument appropriately while not adversely affecting the dome environment. The system uses simple HVAC air handling techniques in conjunction with thermoelectric and standard glycol heat exchangers to provide efficient heat removal. The enclosures also provide power and data transfer to and from each VIRUS unit, liquid nitrogen cooling to the detectors, and environmental monitoring of the instrument and dome environments. In this paper, we describe the design and fabrication of the VIRUS enclosures and their subsystems.

  10. Review of Instrumented Indentation

    PubMed Central

    VanLandingham, Mark R.

    2003-01-01

    Instrumented indentation, also known as depth-sensing indentation or nanoindentation, is increasingly being used to probe the mechanical response of materials from metals and ceramics to polymeric and biological materials. The additional levels of control, sensitivity, and data acquisition offered by instrumented indentation systems have resulted in numerous advances in materials science, particularly regarding fundamental mechanisms of mechanical behavior at micrometer and even sub-micrometer length scales. Continued improvements of instrumented indentation testing towards absolute quantification of a wide range of material properties and behavior will require advances in instrument calibration, measurement protocols, and analysis tools and techniques. In this paper, an overview of instrumented indentation is given with regard to current instrument technology and analysis methods. Research efforts at the National Institute of Standards and Technology (NIST) aimed at improving the related measurement science are discussed. PMID:27413609

  11. Gemini Instrument Upgrade Program

    NASA Astrophysics Data System (ADS)

    Diaz, Ruben; Goodsell, Stephen; Kleinman, Scot

    2016-08-01

    The Gemini Observatory* remains committed to keeping its operational instrumentation competitive and serving the needs of its user community. Currently the observatory operates a 4 instruments + 1 AO system at each site. At Gemini North the GMOS-N, GNIRS, NIFS and NIRI instruments are offered supported by the ALTAIR AO system. In the south, GMOS-S, F-2, GPI and GSAOI are offered instrumentation and GeMS is the provided AO System. This paper reviews our strategy to keep our instrumentation suite competitive, examines both our current funded upgrade projects and our potential future enhancements. We summarize the work done and the results so far obtained within the instrument upgrade program.

  12. Wet chemistry instrument prototype

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A wet chemistry instrument prototype for detecting amino acids in planetary soil samples was developed. The importance of amino acids and their condensation products to the development of life forms is explained. The characteristics of the instrument and the tests which were conducted to determine the materials compatibility are described. Diagrams are provided to show the construction of the instrument. Data obtained from the performance tests are reported.

  13. Aircrew Screening Instruments Review

    DTIC Science & Technology

    2007-09-01

    available tools . Several vendors indicated that they will have new selection instruments available within a few months. These are not listed. As noted...AFCAPS-FR-2011-0012 AIRCREW SCREENING INSTRUMENTS REVIEW Diane L. Damos Damos Aviation Services, Inc...June 2007 – August 2007 4. TITLE AND SUBTITLE Aircrew Screening Instruments Review 5a. CONTRACT NUMBER FA3089-06-F-0385 5b. GRANT NUMBER 5c

  14. Sterilization of Medical Instruments

    DTIC Science & Technology

    2007-05-06

    possible use with medical instruments and skin catheters. To address this challenge, MicroStructure Technologies (MicroST) is developing an...Project: DARPA - Sterilization of Medical Instruments Contract: # FA9550-06-C-0054 Principal Investigator: Joseph Birmingham Report: FINAL Report 1...as medical instruments and skin catheters. To address this challenge, MicroStructure Technologies (MicroST) is proposing a compact, low maintenance

  15. Alternative Policy Instruments

    DTIC Science & Technology

    1987-11-01

    CpRE CENTER FOR POLICY RESEARCH IN EDUCATION Alternative Policy o Instruments I Lorraine M. McDonnell Richard F. Elmore November 1987 DTICELECTE...03 Alternative Policy Instruments Lorraine M. McDonnell The RAND Corporation Richard F. Elmore Michigan State University November 1987 THRAND...range of policy instruments available or on the political and organizational conditions needed for each to work as intended. Policy decisions would

  16. Review of biological mechanisms for application to instrument design

    NASA Technical Reports Server (NTRS)

    Healer, J.

    1967-01-01

    Biological sensors are the mechanisms which enable a living organism to monitor its environment. Ways in which the functional mechanism of biosensors can be applied to develop new concepts of instrumentation, enhance and extend the human senses, and improve the sensitivity of existing instrumentation are described in a review of these mechanisms.

  17. Holographic instrumentation for monitoring crystal growth in space

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.; Lal, Ravindra B.; Batra, Ashok K.

    1990-01-01

    Measurement requirements and candidates for measuring crystal growth in space are described, emphasizing holographic instrumentation. Existing instrumentation planned for the IML-1 Spaceflight is described along with advanced concepts for future application which incorporate diode lasers, fiber optics, and holographic optical elements. Particle image displacement velocimetry in crystal growth chambers is described.

  18. Efficient Swath Mapping Laser Altimetry Demonstration Instrument Incubator Program

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A,; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan

    2010-01-01

    In this paper we will discuss our eighteen-month progress of a three-year Instrument Incubator Program (IIP) funded by NASA Earth Science Technology Office (ESTO) on swath mapping laser altimetry system. This paper will discuss the system approach, enabling technologies and instrument concept for the swath mapping laser altimetry.

  19. Instrument validation project

    SciTech Connect

    Reynolds, B.A.; Daymo, E.A.; Geeting, J.G.H.; Zhang, J.

    1996-06-01

    Westinghouse Hanford Company Project W-211 is responsible for providing the system capabilities to remove radioactive waste from ten double-shell tanks used to store radioactive wastes on the Hanford Site in Richland, Washington. The project is also responsible for measuring tank waste slurry properties prior to injection into pipeline systems, including the Replacement of Cross-Site Transfer System. This report summarizes studies of the appropriateness of the instrumentation specified for use in Project W-211. The instruments were evaluated in a test loop with simulated slurries that covered the range of properties specified in the functional design criteria. The results of the study indicate that the compact nature of the baseline Project W-211 loop does not result in reduced instrumental accuracy resulting from poor flow profile development. Of the baseline instrumentation, the Micromotion densimeter, the Moore Industries thermocouple, the Fischer and Porter magnetic flow meter, and the Red Valve Pressure transducer meet the desired instrumental accuracy. An alternate magnetic flow meter (Yokagawa) gave nearly identical results as the baseline fischer and Porter. The Micromotion flow meter did not meet the desired instrument accuracy but could potentially be calibrated so that it would meet the criteria. The Nametre on-line viscometer did not meet the desired instrumental accuracy and is not recommended as a quantitative instrument although it does provide qualitative information. The recommended minimum set of instrumentation necessary to ensure the slurry meets the Project W-058 acceptance criteria is the Micromotion mass flow meter and delta pressure cells.

  20. Instrument performance evaluation

    SciTech Connect

    Swinth, K.L.

    1993-03-01

    Deficiencies exist in both the performance and the quality of health physics instruments. Recognizing the implications of such deficiencies for the protection of workers and the public, in the early 1980s the DOE and the NRC encouraged the development of a performance standard and established a program to test a series of instruments against criteria in the standard. The purpose of the testing was to establish the practicality of the criteria in the standard, to determine the performance of a cross section of available instruments, and to establish a testing capability. Over 100 instruments were tested, resulting in a practical standard and an understanding of the deficiencies in available instruments. In parallel with the instrument testing, a value-impact study clearly established the benefits of implementing a formal testing program. An ad hoc committee also met several times to establish recommendations for the voluntary implementation of a testing program based on the studies and the performance standard. For several reasons, a formal program did not materialize. Ongoing tests and studies have supported the development of specific instruments and have helped specific clients understand the performance of their instruments. The purpose of this presentation is to trace the history of instrument testing to date and suggest the benefits of a centralized formal program.

  1. Space applications instrumentation systems

    NASA Technical Reports Server (NTRS)

    Minzner, R. A.; Oberholtzer, J. D.

    1972-01-01

    A compendium of resumes of 158 instrument systems or experiments, of particular interest to space applications, is presented. Each resume exists in a standardized format, permitting entries for 26 administrative items and 39 scientific or engineering items. The resumes are organized into forty groups determined by the forty spacecraft with which the instruments are associated. The resumes are followed by six different cross indexes, each organized alphabetically according to one of the following catagories: instrument name, acronym, name of principal investigator, name of organization employing the principal investigator, assigned experiment number, and spacecraft name. The resumes are associated with a computerized instrument resume search and retrieval system.

  2. SMAP Instrument Mechanical System Engineering

    NASA Technical Reports Server (NTRS)

    Slimko, Eric; French, Richard; Riggs, Benjamin

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

  3. 76 FR 80405 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Interchangeable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... Cooperative Research and Production Act of 1993--Interchangeable Virtual Instruments Foundation, Inc. Notice... Research and Production Act of 1993, 15 U.S.C. 4301 et seq. (``the Act''), Interchangeable Virtual... Interchangeable Virtual Instruments Foundation, Inc. intends to file additional written notifications...

  4. JBI instrumentation services

    NASA Astrophysics Data System (ADS)

    Muccio, M.; Lopez, E.; McKeel, R.

    2005-05-01

    The Joint Battlespace Infosphere (JBI) is an information management infrastructure that provides a basic set of flexible core services: publish, subscribe, and query. Managed Information Objects (MIOs) are published by JBI clients and are subsequently managed and disseminated to other subscribing JBI Clients by the JBI Core Services. MIOs can also be archived into a repository managed by the JBI Core Services upon publication and can later be queried for by JBI Clients. A reference implementation (RI) of the JBI Core Services using Java 2 Enterprise Edition (J2EE) technology is currently being developed at the Air Force Research Laboratory Information Directorate (AFRL/IF) in Rome, NY. JBI Instrumentation Services will allow users to gain insight into what activity is occurring inside the JBI Core Services. The phase 1 Instrumentation Services implementation has been developed as a standalone system that interacts with the JBI Core Services through a set of interfaces that provide a low impact, multi-implementation compatible connection. The Instrumentation Services Architecture makes use of the Instrumentation Entity Model to create entities that describe the real elements of the JBI Core Services: platforms, connections, users, nodes, and sequences. These entities populate the Instrumentation Space and are accessed by clients through the Instrumentation Client API (ICAPI). A web-based client that makes use of this ICAPI has been developed to visualize instrumentation information and demonstrate the capabilities of the Instrumentation Services. This client utilizes numerical rate graphs and dynamic graph trees to visualize JBI activity. This paper describes the phase 1 Instrumentation Services Architecture and development efforts involved in creating the JBI Instrumentation Services and prototype instrumentation client.

  5. Current Concepts in Conception Control

    PubMed Central

    Ringrose, C. A. Douglas

    1963-01-01

    The progressive increase in world population has become a most urgent global problem in recent years. Man has, however, been interested in controlling his reproductivity at the family level for many centuries. Historical aspects of this saga are reviewed. The modern era of conception control was ushered in by Makepeace et al. in 1937 when ovulation inhibition by progesterone was demonstrated. Confirmation of this by Pincus and associates, and development of the potent oral progestational agents, the 19-norsteroids, have made efficient reliable contraception a reality. Experience with one of these agents (Ortho-Novum, 2 mg.) in 115 patients through 805 cycles is presented. Conception control was 100% effective at this dosage. Side effects were minimal. Only three of the women discontinued the tablets because of these effects. All but five in this group of 115 preferred the oral contraceptives to methods previously employed. PMID:13973987

  6. 18 CFR 367.2440 - Account 244, Derivative instrument liabilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Account 244, Derivative instrument liabilities. 367.2440 Section 367.2440 Conservation of Power and Water Resources FEDERAL ENERGY..., FEDERAL POWER ACT AND NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED SERVICE COMPANIES...

  7. 18 CFR 367.2440 - Account 244, Derivative instrument liabilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 244, Derivative instrument liabilities. 367.2440 Section 367.2440 Conservation of Power and Water Resources FEDERAL ENERGY..., FEDERAL POWER ACT AND NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED SERVICE COMPANIES...

  8. 18 CFR 367.1750 - Account 175, Derivative instrument assets.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Account 175, Derivative instrument assets. 367.1750 Section 367.1750 Conservation of Power and Water Resources FEDERAL ENERGY..., FEDERAL POWER ACT AND NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED SERVICE COMPANIES...

  9. 18 CFR 367.1750 - Account 175, Derivative instrument assets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 175, Derivative instrument assets. 367.1750 Section 367.1750 Conservation of Power and Water Resources FEDERAL ENERGY..., FEDERAL POWER ACT AND NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED SERVICE COMPANIES...

  10. Instrumentation Working Group Summary

    NASA Technical Reports Server (NTRS)

    Zaller, Michelle; Miake-Lye, Richard

    1999-01-01

    The Instrumentation Working Group compiled a summary of measurement techniques applicable to gas turbine engine aerosol precursors and particulates. An assessment was made of the limits, accuracy, applicability, and technology readiness of the various techniques. Despite advances made in emissions characterization of aircraft engines, uncertainties still exist in the mechanisms by which aerosols and particulates are produced in the near-field engine exhaust. To adequately assess current understanding of the formation of sulfuric acid aerosols in the exhaust plumes of gas turbine engines, measurements are required to determine the degree and importance of sulfur oxidation in the turbine and at the engine exit. Ideally, concentrations of all sulfur species would be acquired, with emphasis on SO2 and SO3. Numerous options exist for extractive and non-extractive measurement of SO2 at the engine exit, most of which are well developed. SO2 measurements should be performed first to place an upper bound on the percentage of SO2 oxidation. If extractive and non-extractive techniques indicate that a large amount of the fuel sulfur is not detected as SO2, then efforts are needed to improve techniques for SO3 measurements. Additional work will be required to account for the fuel sulfur in the engine exhaust. Chemical Ionization Mass Spectrometry (CI-MS) measurements need to be pursued, although a careful assessment needs to be made of the sampling line impact on the extracted sample composition. Efforts should also be placed on implementing non-intrusive techniques and extending their capabilities by maximizing exhaust coverage for line-of-sight measurements, as well as development of 2-D techniques, where feasible. Recommendations were made to continue engine exit and combustor measurements of particulates. Particulate measurements should include particle size distribution, mass fraction, hydration properties, and volatile fraction. However, methods to ensure that unaltered

  11. User interfaces in space science instrumentation

    NASA Astrophysics Data System (ADS)

    McCalden, Alec John

    This thesis examines user interaction with instrumentation in the specific context of space science. It gathers together existing practice in machine interfaces with a look at potential future usage and recommends a new approach to space science projects with the intention of maximising their science return. It first takes a historical perspective on user interfaces and ways of defining and measuring the science return of a space instrument. Choices of research methodology are considered. Implementation details such as the concepts of usability, mental models, affordance and presentation of information are described, and examples of existing interfaces in space science are given. A set of parameters for use in analysing and synthesizing a user interface is derived by using a set of case studies of diverse failures and from previous work. A general space science user analysis is made by looking at typical practice, and an interview plus persona technique is used to group users with interface designs. An examination is made of designs in the field of astronomical instrumentation interfaces, showing the evolution of current concepts and including ideas capable of sustaining progress in the future. The parameters developed earlier are then tested against several established interfaces in the space science context to give a degree of confidence in their use. The concept of a simulator that is used to guide the development of an instrument over the whole lifecycle is described, and the idea is proposed that better instrumentation would result from more efficient use of the resources available. The previous ideas in this thesis are then brought together to describe a proposed new approach to a typical development programme, with an emphasis on user interaction. The conclusion shows that there is significant room for improvement in the science return from space instrumentation by attention to the user interface.

  12. Instrumentation in endourology

    PubMed Central

    Khanna, Rakesh; Monga, Manoj

    2011-01-01

    Success with endourological procedures requires expertise and instrumentation. This review focuses on the instrumentation required for ureteroscopy and percutaneous nephrolithotomy, and provides a critical assessment of in vitro and clinical studies that have evaluated the comparative effectiveness of these medical devices. PMID:21904568

  13. Instrument for Curriculum Evaluation.

    ERIC Educational Resources Information Center

    Huetteman, Julie Doidge; Benson, RoseAnn

    A comprehensive Instrument for Curriculum Evaluation (ICE) was developed to qualitatively and quantitatively evaluate curriculum materials. The instrument contains 115 statements for assessing 11 aspects of curriculum: philosophy, needs assessment, theme, goals, learning objectives and standards, scope and sequence, field testing, instructor…

  14. Advanced Instrumentation Concepts and Their Application to Nuclear Power Plants

    DTIC Science & Technology

    1991-05-01

    Flow Transitions .... .............. . 74 4.5.1 Taitel and Dukler ... .......... 75 4.5.2 Drift Flux Model ... ........... . 77 Chapter 5 Smart... Dukler Taitel and Dukler (reference T2) developed a theoretical model for predicting the onset of flow regime transitions in near-horizontal piping that...annulus with some entrainment if the vapor velocity is high enough. Taitel and Dukler found that the criterion for tne transition from stratified to

  15. New Concepts in Instrumentation Development to Measure the Perry Scheme.

    ERIC Educational Resources Information Center

    Taylor, Marcia

    The Perry scheme of intellectual and ethical development has become widely used in a range of academic disciplines and such areas as career training and faculty consultation. However, current measurement techniques for the scheme, whether interview format or paper and pencil measures, do not adequately address issues related to assessing cognitive…

  16. Concept And Development Of Instruments For ITER Thermography

    SciTech Connect

    Reichle, R.; Balorin, C.; Carpentier, S.; Corre, Y.; Davi, M.; Delchambre, E.; Desgrange, C.; Escourbiac, F.; Fougerolle, S.; Gardarein, J. L.; Gauthier, E.; Guilhem, D.; Jouve, M.; Loarer, Th.; Martins, J. P.; Patterlini, J. C.; Pocheau, C.; Roche, H.; Salasca, S.; Travere, J. M.

    2008-03-12

    We give here a short overview of the status of the development for ITER thermography as performed by the CEA-Cadarache and some of its collaboration partners. The topics that have been included in this synthesis are the status of the optical design, the role of multi-wavelength mesurements, multicolour pyroreflectometry, photothermal methods, and reflection simulations and measurements.

  17. Visual Range: Concepts, Instrumental Determination, and Aviation Applications

    DTIC Science & Technology

    1977-03-01

    runway visual -ange values,. Notte a -- The term "decision height" is defined in the T-A0 PANS-OPS and the torm "runway visual range" is defined in Annex...photoelectric inte- grator at slow pulse rates by Nott ~lighamtlO15J .and by Kuperp Brackett, and Eicher (801, but not at the low photoelectric...ote that "oi wthe mille is the uniit of distancte, S. its equal ’to Swnd 0.0 d/km X 1.&I kM/Md 0.084 etildelu/d~ 𔃾) 17.4.1 Ritlonale for: Chtu e 0_

  18. An Instrument to Measure Chickering's Vector of Identity.

    ERIC Educational Resources Information Center

    Erwin, T. Dary; Delworth, Ursula

    1980-01-01

    Describes the construction of an instrument to measure identity, primarily based on Chickering's approach, i.e., the Erwin Identity Scale (EIS), designed to measure the three main concepts comprising identity: confidence, sexual identity, and conceptions about body and appearance. (Author)

  19. Aeronautic Instruments. Section II : Altitude Instruments

    NASA Technical Reports Server (NTRS)

    Mears, A H; Henrickson, H B; Brombacher, W G

    1923-01-01

    This report is Section two of a series of reports on aeronautic instruments (Technical Report nos. 125 to 132, inclusive). This section discusses briefly barometric altitude determinations, and describes in detail the principal types of altimeters and barographs used in aeronautics during the recent war. This is followed by a discussion of performance requirements for such instruments and an account of the methods of testing developed by the Bureau of Standards. The report concludes with a brief account of the results of recent investigations. For accurate measurements of altitude, reference must also be made to thermometer readings of atmospheric temperature, since the altitude is not fixed by atmospheric pressure alone. This matter is discussed in connection with barometric altitude determination.

  20. 76 FR 16820 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Interchangeable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ...--Interchangeable Virtual Instruments Foundation, Inc. Notice is hereby given that, on February 24, 2011, pursuant... seq. (``the Act''), Interchangeable Virtual Instruments Foundation, Inc. has filed written... research project. Membership in this group research project remains open, and Interchangeable...

  1. 77 FR 9266 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Interchangeable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ...--Interchangeable Virtual Instruments Foundation, Inc. Notice is hereby given that, on January 26, 2012, pursuant to.... (``the Act''), Interchangeable Virtual Instruments Foundation, Inc. has filed written notifications... research project. Membership in this group research project remains open, and Interchangeable...

  2. The DKIST Instrumentation Suite

    NASA Astrophysics Data System (ADS)

    Woeger, Friedrich

    2016-05-01

    The Daniel K. Inouye Solar Telescope with its four meter diameter aperture will be the largest telescope in the world for solar observations when it is commissioned in the year 2019. In order to harness its scientific potential immediately, DKIST will integrate five instruments that each will provide unique functionality to measure properties of the solar atmosphere at unprecedented spatial resolution.In this paper we discuss the unique capabilities in the DKIST instrument suite that consists of the Visible Broadband Imager (VBI), the Visible Spectro-Polarimeter (ViSP), the Visible Tunable Filter (VTF), the Diffraction-Limited Near-Infrared Spectro-Polarimeter (DL-NIRSP), and the Cryogenic Near-Infrared Spectro-Polarimeter (Cryo-NIRSP).In addition, we will explain the facility's approach to supporting high spatial resolution data acquisition with multiple instruments simultaneously by means of the Facility Instrument Distribution Optics. This system of wavelength separating and interchangeable beamsplitters will enable a variety of different ways to optically configure the light beam to the instruments. This approach ensures that the DKIST instruments can use their individual advantages in a multitude of different observing scenarios. The DKIST instrumentation suite will enable crucial new insights into complex physical processes that occur on spatial scales that are smaller than any solar structure observed in the past.

  3. Robotic-surgical instrument wrist pose estimation.

    PubMed

    Fabel, Stephan; Baek, Kyungim; Berkelman, Peter

    2010-01-01

    The Compact Lightweight Surgery Robot from the University of Hawaii includes two teleoperated instruments and one endoscope manipulator which act in accord to perform assisted interventional medicine. The relative positions and orientations of the robotic instruments and endoscope must be known to the teleoperation system so that the directions of the instrument motions can be controlled to correspond closely to the directions of the motions of the master manipulators, as seen by the the endoscope and displayed to the surgeon. If the manipulator bases are mounted in known locations and all manipulator joint variables are known, then the necessary coordinate transformations between the master and slave manipulators can be easily computed. The versatility and ease of use of the system can be increased, however, by allowing the endoscope or instrument manipulator bases to be moved to arbitrary positions and orientations without reinitializing each manipulator or remeasuring their relative positions. The aim of this work is to find the pose of the instrument end effectors using the video image from the endoscope camera. The P3P pose estimation algorithm is used with a Levenberg-Marquardt optimization to ensure convergence. The correct transformations between the master and slave coordinate frames can then be calculated and updated when the bases of the endoscope or instrument manipulators are moved to new, unknown, positions at any time before or during surgical procedures.

  4. Concept Mapping

    PubMed Central

    Brennan, Laura K.; Brownson, Ross C.; Kelly, Cheryl; Ivey, Melissa K.; Leviton, Laura C.

    2016-01-01

    Background From 2003 to 2008, 25 cross-sector, multidisciplinary community partnerships funded through the Active Living by Design (ALbD) national program designed, planned, and implemented policy and environmental changes, with complementary programs and promotions. This paper describes the use of concept-mapping methods to gain insights into promising active living intervention strategies based on the collective experience of community representatives implementing ALbD initiatives. Methods Using Concept Systems software, community representatives (n=43) anonymously generated actions and changes in their communities to support active living (183 original statements, 79 condensed statements). Next, respondents (n=26, from 23 partnerships) sorted the 79 statements into self-created categories, or active living intervention approaches. Respondents then rated statements based on their perceptions of the most important strategies for creating community changes (n=25, from 22 partnerships) and increasing community rates of physical activity (n=23, from 20 partnerships). Cluster analysis and multidimensional scaling were used to describe data patterns. Results ALbD community partnerships identified three active living intervention approaches with the greatest perceived importance to create community change and increase population levels of physical activity: changes to the built and natural environment, partnership and collaboration efforts, and land-use and transportation policies. The relative importance of intervention approaches varied according to subgroups of partnerships working with different populations. Conclusions Decision makers, practitioners, and community residents can incorporate what has been learned from the 25 community partnerships to prioritize active living policy, physical project, promotional, and programmatic strategies for work in different populations and settings. PMID:23079266

  5. Wind instruments and headaches.

    PubMed

    Martínez-Lage, Juan F; Galarza, Marcelo; Pérez-Espejo, Miguel-Angel; López-Guerrero, Antonio L; Felipe-Murcia, Matías

    2013-03-01

    The authors illustrate the cases of two children with headaches, one diagnosed with Chiari type 1 malformation and the other with hydrocephalus, who played wind instruments. Both patients manifested that their headaches worsened with the efforts made during playing their musical instruments. We briefly comment on the probable role played by this activity on the patients' intracranial pressure and hypothesize that the headaches might be influenced by increases in their intracranial pressure related to Valsalva maneuvers. We had serious doubts on if we should advise our young patients about giving up playing their music instruments.

  6. Aircraft Speed Instruments

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1933-01-01

    This report presents a concise survey of the measurement of air speed and ground speed on board aircraft. Special attention is paid to the pitot-static air-speed meter which is the standard in the United States for airplanes. Air-speed meters of the rotating vane type are also discussed in considerable detail on account of their value as flight test instruments and as service instruments for airships. Methods of ground-speed measurement are treated briefly, with reference to the more important instruments. A bibliography on air-speed measurement concludes the report.

  7. Testing Aircraft Instruments.

    DTIC Science & Technology

    1981-02-11

    AD-A095 680 ARMY TEST AND EVALUATION COMMAND ABERDEEN PROVING GRO--ETC F/S 1/4 TESTING AIRCRAFT INSTRUMENTS .(U) FEB 81 CLASSIFIED TOP-6-3-013 ML I...Test and Evaluation Command -?Final 7, Ts .to .. eg----- ( -4_ Fia - / + I ORG REPORT STesting Aircraft Instruments , j P I- I. AUTHOR(es) S. CONTRACT...Identify by block number) This document presents information and procedures for testing aircraft flight and systems performance instruments in the functional

  8. Inner Magnetosphere Imager (IMI) instrument heritage

    NASA Technical Reports Server (NTRS)

    Wilson, G. R.

    1993-01-01

    This report documents the heritage of instrument concepts under consideration for the Inner Magnetosphere Imager (IMI) mission. The proposed IMI will obtain the first simultaneous images of the component regions of the inner magnetosphere and will enable scientists to relate these global images to internal and external influences as well as local observations. To obtain simultaneous images of component regions of the inner magnetosphere, measurements will be made of: (1) the ring current and inner plasma sheet using energetic neutral atoms; (2) the plasmasphere using extreme ultraviolet; (3) the electron and proton auroras using far ultraviolet and x rays; and (4) the geocorona using FUV. Instrument concepts that show heritage and traceability to those that will be required to meet the IMI measurement objectives are described.

  9. Inner Magnetosphere Imager (IMI) instrument heritage

    SciTech Connect

    Wilson, G.R.

    1993-03-01

    This report documents the heritage of instrument concepts under consideration for the Inner Magnetosphere Imager (IMI) mission. The proposed IMI will obtain the first simultaneous images of the component regions of the inner magnetosphere and will enable scientists to relate these global images to internal and external influences as well as local observations. To obtain simultaneous images of component regions of the inner magnetosphere, measurements will be made of: (1) the ring current and inner plasma sheet using energetic neutral atoms; (2) the plasmasphere using extreme ultraviolet; (3) the electron and proton auroras using far ultraviolet and x rays; and (4) the geocorona using FUV. Instrument concepts that show heritage and traceability to those that will be required to meet the IMI measurement objectives are described.

  10. Quantifying the information measured by neutron scattering instruments

    SciTech Connect

    Johnson, M.W.

    1997-09-01

    The concept of the information content of a scientific measurement is introduced, and a theory is presented which enables the information that may be obtained by a neutron scattering instrument to be calculated. When combined with the time taken to perform the measurement the bandwidth of the instrument is obtained. This bandwidth is effectively a figure of merit which is of use in three respects: in the design of neutron instrumentation, the optimisation of measurements, and in the comparison of one instrument with another.

  11. Instrument Packages for the Cold, Dark, High Radiation Environments

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Millar, P. S.; Yeh, P. S.; Beamna, B.; Brigham, D.; Feng, S.

    2011-01-01

    We are developing a small cold temperature instrument package concept that integrates a cold temperature power system and radhard ultra low temperature ultra low power electronics components and power supplies now under development into a cold temperature surface operational version of a planetary surface instrument package. We are already in the process of developing a lower power lower tem-perature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package.

  12. The FIELDS Instrument Suite for Solar Probe Plus

    NASA Technical Reports Server (NTRS)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T. A.; Burgess, D.; Cattell, C. A.; Chandran, B. D. G.; Chaston, C. C.; Chen, C. H. K.; Choi, M. K.; Connerney, J. E.; Cranmer, S.; Farrell, W. M.; Klimchuk, J. A.; Odom, J.; Oliverson, R.; Sheppard, D. A.; Szabo, A.

    2016-01-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  13. CALIPSO Instrument Operational

    Atmospheric Science Data Center

    2014-09-18

    CALIPSO Instrument Operational Thursday, September 11, 2014 The CALIPSO payload is back in data acquisition mode as of Wednesday, September 17, 2014.  CALIPSO data processing has returned to a nominal state, and...

  14. AIR Instrument Array

    NASA Technical Reports Server (NTRS)

    Jones, I. W.; Wilson, J. W.; Maiden, D. L.; Goldhagen, P.; Shinn, J. L.

    2003-01-01

    The large number of radiation types composing the atmospheric radiation requires a complicated combination of instrument types to fully characterize the environment. A completely satisfactory combination has not as yet been flown and would require a large capital outlay to develop. In that the funds of the current project were limited to essential integration costs, an international collaboration was formed with partners from six countries and fourteen different institutions with their own financial support for their participation. Instruments were chosen to cover sensitivity to all radiation types with enough differential sensitivity to separate individual components. Some instruments were chosen as important to specify the physical field component and other instruments were chosen on the basis that they could be useful in dosimetric evaluation. In the present paper we will discuss the final experimental flight package for the ER-2 flight campaign.

  15. Fiber Optics Instrumentation Development

    NASA Technical Reports Server (NTRS)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  16. Low cost instrumentation amplifier

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.

    1974-01-01

    Amplifier can be used for many applications requiring high input impedance and common mode rejection, low drift, and gain accuracy on order of one percent. Performance of inexpensive amplifier approaches that of some commercial instrumentation amplifiers in many specifications.

  17. NPP: The Five Instruments

    NASA Video Gallery

    The NPP satellite has 5 instruments on board: VIIRS, CERES, CrIS, ATMS, and OMPS. Each one will deliver a specific set of data helping weather prediction and climate studies. This video is a quick ...

  18. Instrumentation for Materials Research

    ERIC Educational Resources Information Center

    Claassen, Richard S.

    1976-01-01

    Discusses how sophisticated instrumentation techniques yield practical results in three typical materials problems: fracture analysis, joining, and compatibility. Describes techniques such as scanning and transmission electron microscopy, and Auger spectroscopy. (MLH)

  19. Cardiovascular instrumentation for spaceflight

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Polhemus, J. T.; Ganiaris, N. J.

    1976-01-01

    The observation mechanisms dealing with pressure, flow, morphology, temperature, etc. are discussed. The approach taken in the performance of this study was to (1) review ground and space-flight data on cardiovascular function, including earlier related ground-based and space-flight animal studies, Mercury, Gemini, Apollo, Skylab, and recent bed-rest studies, (2) review cardiovascular measurement parameters required to assess individual performance and physiological alternations during space flight, (3) perform an instrumentation survey including a literature search as well as personal contact with the applicable investigators, (4) assess instrumentation applicability with respect to the established criteria, and (5) recommend future research and development activity. It is concluded that, for the most part, the required instrumentation technology is available but that mission-peculiar criteria will require modifications to adapt the applicable instrumentation to a space-flight configuration.

  20. Carbon Footprint Reduction Instruments

    EPA Pesticide Factsheets

    This page outlines the major differences between Renewable Energy Certificates (REC) and Project Offsets and what types of claims each instrument allows the organization to make in regards to environmental emissions claims.

  1. Mars Observer instrument complement

    NASA Astrophysics Data System (ADS)

    Komro, Fred G.; Hujber, Frank N.

    1991-10-01

    The mechanical and electrical characteristics and the functional designs of the eight scientific instruments of the Mars Observer's instrument complex are described, and their respective principal investigators and sponsoring institutions are listed. These instruments include a gamma-ray spectrometer, a magnetometer/electron reflectometer, the Mars balloon relay, the Mars Observer camera, the Mars Observer laser altimeter, a pressure modulator infrared radiometer, a thermal emission spectrometer, and an ultrastable oscillator. With these instruments, the Mars Observer will be able to determine the elemental and mineralogical character of Martial surface material; to define globally the topography and the gravitational field; to establish the nature of the magnetic field; to determine the spatial and temporal distribution abundances, sources, and sinks of volatile material and dust over a seasonal cycle; and to explore the structure and circulation of Martian atmosphere.

  2. Hetdex: Virus Instrument

    NASA Astrophysics Data System (ADS)

    Lee, Hanshin; Hill, G. J.; DePoy, D. L.; Tuttle, S.; Marshall, J. L.; Vattiat, B. L.; Prochaska, T.; Chonis, T. S.; Allen, R.; HETDEX Collaboration

    2012-01-01

    The Visible Integral-field-unit Replicable Unit Spectrograph (VIRUS) instrument is made up of 150+ individually compact and identical spectrographs, each fed by a fiber integral-field unit. The instrument provides integral field spectroscopy at wavelengths between 350nm and 550nm of over 33,600 spatial elements per observation, each 1.8 sq. arcsec on the sky, at R 700. The instrument will be fed by a new wide-field corrector (WFC) of the Hobby-Eberly Telescope (HET) with increased science field of view as large as 22arcmin diameter and telescope aperture of 10m. This will enable the HETDEX, a large area blind survey of Lyman-alpha emitting galaxies at redshift z < 3.5. The status of VIRUS instrument construction is summarized.

  3. TES Instrument Operational Status

    Atmospheric Science Data Center

    2017-02-26

    ... UPDATE: (1/24/2017)  The TES instrument metrology laser end of life testing that resumed on January 11, 2017 provided a gradual increase in the laser diode current. This increase has resulted in the restoration of the ...

  4. VIRUS instrument collimator assembly

    NASA Astrophysics Data System (ADS)

    Marshall, Jennifer L.; DePoy, Darren L.; Prochaska, Travis; Allen, Richard D.; Williams, Patrick; Rheault, Jean-Philippe; Li, Ting; Nagasawa, Daniel Q.; Akers, Christopher; Baker, David; Boster, Emily; Campbell, Caitlin; Cook, Erika; Elder, Alison; Gary, Alex; Glover, Joseph; James, Michael; Martin, Emily; Meador, Will; Mondrik, Nicholas; Rodriguez-Patino, Marisela; Villanueva, Steven; Hill, Gary J.; Tuttle, Sarah; Vattiat, Brian; Lee, Hanshin; Chonis, Taylor S.; Dalton, Gavin B.; Tacon, Mike

    2014-07-01

    The Visual Integral-Field Replicable Unit Spectrograph (VIRUS) instrument is a baseline array 150 identical fiber fed optical spectrographs designed to support observations for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). The collimator subassemblies of the instrument have been assembled in a production line and are now complete. Here we review the design choices and assembly practices used to produce a suite of identical low-cost spectrographs in a timely fashion using primarily unskilled labor.

  5. Medical instrument data exchange.

    PubMed

    Gumudavelli, Suman; McKneely, Paul K; Thongpithoonrat, Pongnarin; Gurkan, D; Chapman, Frank M

    2008-01-01

    Advances in medical devices and health care has been phenomenal during the recent years. Although medical device manufacturers have been improving their instruments, network connection of these instruments still rely on proprietary technologies. Even if the interface has been provided by the manufacturer (e.g., RS-232, USB, or Ethernet coupled with a proprietary API), there is no widely-accepted uniform data model to access data of various bedside instruments. There is a need for a common standard which allows for internetworking with the medical devices from different manufacturers. ISO/IEEE 11073 (X73) is a standard attempting to unify the interfaces of all medical devices. X73 defines a client access mechanism that would be implemented into the communication controllers (residing between an instrument and the network) in order to access/network patient data. On the other hand, MediCAN technology suite has been demonstrated with various medical instruments to achieve interfacing and networking with a similar goal in its open standardization approach. However, it provides a more generic definition for medical data to achieve flexibility for networking and client access mechanisms. In this paper, a comparison between the data model of X73 and MediCAN will be presented to encourage interoperability demonstrations of medical instruments.

  6. [The instrument for thermography].

    PubMed

    Hamaguchi, Shinsuke

    2014-07-01

    Thermography is an imaging method using the instrument to detect infrared rays emitted from the body surface, and to plot them as a distribution diagram of the temperature information. Therefore, a thermographic instrument can be assumed to measure the skin temperature of the diseased region. Such an instrument is a useful device for noninvasive and objective assessment of various diseases. Examination using a thermographic instrument can assess the autonomic dysfunction by measuring the skin blood flow involved with the sympathetic innervation. Thermography is useful in assisting the determination of the therapeutic effect. However, autonomic dysfunction should be confirmed correctly with the assessment of thermatome that shows abnormal thermal distribution in the region of the disease. Thermography should make noticeable the difference between the body temperature of abnormal and normal sites, and show the alteration of temperature. Monitoring using thermography is useful to determine the effect of sympathetic nerve block. If a thermographic instrument is used, it is important that examiners should understand the function of the instrument, as well as its advantages and disadvantages.

  7. Intelligence Base: Strategic Instrument of an Organisation

    DTIC Science & Technology

    2006-12-01

    RTO-MP-IST-055 1 - 1 Intelligence Base: Strategic Instrument of an Organisation Major Marc Rabaey and Colonel Jean-Marie Leclercq, Ir...in the fight against international terrorism a nation has to share intelligence and exchange information with other nations. This requires a secure...and performing communication system. This paper introduces the concept of the Intelligence Base, which meets the needs of an efficient and effective

  8. Diagnostic instruments for behavioural addiction: an overview

    PubMed Central

    Albrecht, Ulrike; Kirschner, Nina Ellen; Grüsser, Sabine M.

    2007-01-01

    In non-substance-related addiction, the so-called behavioural addiction, no external psychotropic substances are consumed. The psychotropic effect consists of the body’s own biochemical processes induced only by excessive activities. Until recently, knowledge was limited with respect to clinically relevant excessive reward-seeking behaviour, such as pathological gambling, excessive shopping and working which meet diagnostic criteria of dependent behaviour. To date, there is no consistent concept for diagnosis and treatment of excessive reward-seeking behaviour, and its classification is uncertain. Therefore, a clear conceptualization of the so-called behavioural addictions is of great importance. The use of adequate diagnostic instruments is necessary for successful therapeutical implications. This article provides an overview of the current popular diagnostic instruments assessing the different forms of behavioural addiction. Especially in certain areas there are only few valid and reliable instruments available to assess excessive rewarding behaviours that fulfill the criteria of addiction. PMID:19742294

  9. Monolithic Microwave Integrated Circuit (MMIC) Phased Array Demonstrated With ACTS

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Monolithic Microwave Integrated Circuit (MMIC) arrays developed by the NASA Lewis Research Center and the Air Force Rome Laboratory were demonstrated in aeronautical terminals and in mobile or fixed Earth terminals linked with NASA's Advanced Communications Technology Satellite (ACTS). Four K/Ka-band experimental arrays were demonstrated between May 1994 and May 1995. Each array had GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The 30-GHz transmit array used in uplinks to ACTS was developed by Lewis and Texas Instruments. The three 20-GHz receive arrays used in downlinks from ACTS were developed in cooperation with the Air Force Rome Laboratory, taking advantage of existing Air Force integrated-circuit, active-phased-array development contracts with the Boeing Company and Lockheed Martin Corporation. Four demonstrations, each related to an application of high interest to both commercial and Department of Defense organizations, were conducted. The location, type of link, and the data rate achieved for each of the applications is shown. In one demonstration-- an aeronautical terminal experiment called AERO-X--a duplex voice link between an aeronautical terminal on the Lewis Learjet and ACTS was achieved. Two others demonstrated duplex voice links (and in one case, interactive video links as well) between ACTS and an Army high-mobility, multipurpose wheeled vehicle (HMMWV, or "humvee"). In the fourth demonstration, the array was on a fixed mount and was electronically steered toward ACTS. Lewis served as project manager for all demonstrations and as overall system integrator. Lewis engineers developed the array system including a controller for open-loop tracking of ACTS during flight and HMMWV motion, as well as a laptop data display and recording system used in all demonstrations. The Jet Propulsion Laboratory supported the AERO-X program, providing elements of the ACTS Mobile Terminal. The successful

  10. Development of a Student-Centered Instrument to Assess Middle School Students' Conceptual Understanding of Sound

    ERIC Educational Resources Information Center

    Eshach, Haim

    2014-01-01

    This article describes the development and field test of the Sound Concept Inventory Instrument (SCII), designed to measure middle school students' concepts of sound. The instrument was designed based on known students' difficulties in understanding sound and the history of science related to sound and focuses on two main aspects of sound: sound…

  11. Aeronautic Instruments. Section V : Power Plant Instruments

    NASA Technical Reports Server (NTRS)

    Washburn, G E; Sylvander, R C; Mueller, E F; Wilhelm, R M; Eaton, H N; Warner, John A C

    1923-01-01

    Part 1 gives a general discussion of the uses, principles, construction, and operation of airplane tachometers. Detailed description of all available instruments, both foreign and domestic, are given. Part 2 describes methods of tests and effect of various conditions encountered in airplane flight such as change of temperature, vibration, tilting, and reduced air pressure. Part 3 describes the principal types of distance reading thermometers for aircraft engines, including an explanation of the physical principles involved in the functioning of the instruments and proper filling of the bulbs. Performance requirements and testing methods are given and a discussion of the source of error and results of tests. Part 4 gives methods of tests and calibration, also requirements of gauges of this type for the pressure measurement of the air pressure in gasoline tanks and the engine oil pressure on airplanes. Part 5 describes two types of gasoline gauges, the float type and the pressure type. Methods of testing and calibrating gasoline depth gauges are given. The Schroeder, R. A. E., and the Mark II flowmeters are described.

  12. 76 FR 47148 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ... International Trade Administration Application(s) for Duty-Free Entry of Scientific Instruments Pursuant to Section 6(c) of the Educational, Scientific and Cultural Materials Importation Act of 1966 (Pub. L. 89-651... whether instruments of equivalent scientific value, for the purposes for which the instruments shown...

  13. Optical development system lab alignment solutions for the ICESat-2 ATLAS instrument

    NASA Astrophysics Data System (ADS)

    Evans, T.

    The ATLAS Instrument for the ICESat-2 mission at NASA's Goddard Space Flight Center requires an alignment test-bed to prove out new concepts. The Optical Development System (ODS) lab was created to test prototype models of individual instrument components to simulate how they will act as a system. The main ICESat-2 instrument is the Advanced Topographic Laser Altimeter System (ATLAS). It measures ice elevation by transmitting laser pulses, and collecting the reflection in a telescope. Because the round trip time is used to calculate distance, alignment between the outgoing transmitter beam and the incoming receiver beams are critical. An automated closed loop monitoring control system is currently being tested at the prototype level to prove out implementation for the final spacecraft. To achieve an error of less than 2 micro-radians, an active deformable mirror was used to correct the lab wave front from the collimated “ ground reflection” beam. The lab includes a focal plane assembly set up, a one meter diameter collimator optic, and a 0.8 meter flight spare telescope for alignment. ATLAS prototypes and engineering models of transmitter and receiver optics and sub-systems are brought in to develop and integrate systems as well as write procedures to be used in integration and testing. By having a fully integrated system with prototypes and engineering units, lessons can be learned before flight designs are finalized.

  14. Technium concept

    NASA Astrophysics Data System (ADS)

    Clement, Marc; Davies, Stephen

    2002-05-01

    Traditionally the economy of Wales has been based on the coal and steel industries. Recently, Wales has elected its own National Assembly and together with the Welsh Development Agency (WDA) and through a Regional Technology Plan, has prioritized the creation and development of a knowledge based economy. The culture of Wales has always placed emphasis on education and for a small nation, has a University sector with an excellent reputation for advanced research. The WDA and the University of Wales Swansea came together to establish Technium, which is an unique concept designed to bridge the gap between advanced University research and commercial exploitation. Technium was co-funded by the WDA and the European Regional Development Fund. The project is seen as the first phase of creating a network of sector specific Techniums across the country, all linked via state of the art telecomm-infrastructure to University centers of research excellence. This paper will describe two case studies, both in the Optics/Photonics field, of research centers being established in Technium by blue chip international companies. Those companies having located in Technium specifically because of the links to high quality university research. One company is Agilent Technologies Inc., USA) a global leader in Optoelectronic components. The second company, ICN Pharmaceuticals Inc, design and develop optical devices to be used in conjunction with pharmaceuticals for the treatment of a range of diseases. Working closely with the WDA and the University of Wales Swansea, these and other companies will pursue product development, sponsor postgraduate research and generate intellectual capital that will benefit the company, students and the region alike.

  15. Instrumentation at Gemini Observatory

    NASA Astrophysics Data System (ADS)

    Kleinman, S. J.; Boccas, Maxime; Goodsell, Stephen J.; Gomez, Percy; Murowinski, Rick; Chené, André-Nicolas; Henderson, David

    2014-07-01

    Gemini South's instrument suite has been completely transformed since our last biennial update. We commissioned the Gemini Multi-Conjugate Adaptive Optics System (GeMS) and its associated Gemini South Adaptive Optics Imager (GSAOI) as well as Flamingos-2, our long-slit and multi-object infrared imager and spectrograph, and the Gemini Planet Imager (GPI). We upgraded the CCDs in GMOS-S, our multi-object optical imager and spectrograph, with the GMOS-N CCD upgrade scheduled for 2015. Our next instrument, the Gemini High-resolution Optical SpecTrograph (GHOST) is in its preliminary design stage and we are making plans for the instrument to follow:Gen4#3.

  16. Nonmetallic Diaphragms for Instruments

    NASA Technical Reports Server (NTRS)

    Eaton, H N; Buckingham, C T

    1925-01-01

    This report, the second of a series of reports relating to the general subject of instrument diaphragms. The first report of the series was published as Technical Report no. 165, "diaphragms for aeronautic instruments," and comprised an outline of historical developments and theoretical principles. The present report relates entirely to nonmetallic diaphragms, the use of which in certain types of pressure elements has been increasing for some time. Little, if any, information has been available to aid the designer of instruments using this form of pressure element. It was to attempt to meet the need for such information that the investigation reported in this paper was undertaken. The report describes the various materials which have been used as nonmetallic diaphragms, discusses the factors which affect the performance of the diaphragms and gives the results of tests made for the purpose of investigating the effect produced by these factors.

  17. Micro mushroom instrumentation system

    NASA Astrophysics Data System (ADS)

    Davidson, W. F.

    1986-01-01

    An electronics circuit which provides for the recording of instrumentation data on an optical disk is disclosed. The optical disk is formatted in a spiral format instead of concentric tracks. The spiral format allows data to be recorded without the gaps that would be associated with concentric tracks. The instrumentation system provides each channel with a program instrumentation amplifier, a six pole lowpass switched capacitor filter, a sample and hold amplifier, and a digital to analog converter to provide automatic offset capability. Since each channel has its own components, simultaneous samples of every channel can be captured. All of the input signal's channel variables can be captured. All of the input signal's channel variables can be changed under software control without hardware changes. A single board computer is used for a system controller.

  18. Software Framework for Controlling Unsupervised Scientific Instruments

    PubMed Central

    Schmid, Benjamin; Jahr, Wiebke; Weber, Michael; Huisken, Jan

    2016-01-01

    Science outreach and communication are gaining more and more importance for conveying the meaning of today’s research to the general public. Public exhibitions of scientific instruments can provide hands-on experience with technical advances and their applications in the life sciences. The software of such devices, however, is oftentimes not appropriate for this purpose. In this study, we describe a software framework and the necessary computer configuration that is well suited for exposing a complex self-built and software-controlled instrument such as a microscope to laymen under limited supervision, e.g. in museums or schools. We identify several aspects that must be met by such software, and we describe a design that can simultaneously be used to control either (i) a fully functional instrument in a robust and fail-safe manner, (ii) an instrument that has low-cost or only partially working hardware attached for illustration purposes or (iii) a completely virtual instrument without hardware attached. We describe how to assess the educational success of such a device, how to monitor its operation and how to facilitate its maintenance. The introduced concepts are illustrated using our software to control eduSPIM, a fluorescent light sheet microscope that we are currently exhibiting in a technical museum. PMID:27570966

  19. Instrumentation Cables Test Plan

    SciTech Connect

    Muna, Alice Baca; LaFleur, Chris Bensdotter

    2016-10-01

    A fire at a nuclear power plant (NPP) has the potential to damage structures, systems, and components important to safety, if not promptly detected and suppressed. At Browns Ferry Nuclear Power Plant on March 22, 1975, a fire in the reactor building damaged electrical power and control systems. Damage to instrumentation cables impeded the function of both normal and standby reactor coolant systems, and degraded the operators’ plant monitoring capability. This event resulted in additional NRC involvement with utilities to ensure that NPPs are properly protected from fire as intended by the NRC principle design criteria (i.e., general design criteria 3, Fire Protection). Current guidance and methods for both deterministic and performance based approaches typically make conservative (bounding) assumptions regarding the fire-induced failure modes of instrumentation cables and those failure modes effects on component and system response. Numerous fire testing programs have been conducted in the past to evaluate the failure modes and effects of electrical cables exposed to severe thermal conditions. However, that testing has primarily focused on control circuits with only a limited number of tests performed on instrumentation circuits. In 2001, the Nuclear Energy Institute (NEI) and the Electric Power Research Institute (EPRI) conducted a series of cable fire tests designed to address specific aspects of the cable failure and circuit fault issues of concern1. The NRC was invited to observe and participate in that program. The NRC sponsored Sandia National Laboratories to support this participation, whom among other things, added a 4-20 mA instrumentation circuit and instrumentation cabling to six of the tests. Although limited, one insight drawn from those instrumentation circuits tests was that the failure characteristics appeared to depend on the cable insulation material. The results showed that for thermoset insulated cables, the instrument reading tended to drift

  20. Animation of MARDI Instrument

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image to view the animation

    This animation shows a zoom into the Mars Descent Imager (MARDI) instrument onboard NASA's Phoenix Mars Lander. The Phoenix team will soon attempt to use a microphone on the MARDI instrument to capture sounds of Mars.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Instrumentation in medical systems

    SciTech Connect

    Chu, W.T.

    1995-05-01

    The demand for clinical use of accelerated heavy charged-particle (proton and light-ion) beams for cancer treatment is now burgeoning worldwide. Clinical trials are underway at more than a dozen accelerators. Several hospital-based accelerator facilities dedicated to radiation treatment of human cancer have been constructed, and their number is growing. Many instruments in medical systems have been developed for modifying extracted particle beams for clinical application, monitoring the delivery of the treatment beams, and controlling the treatment processes to ensure patient safety. These in turn demand new developments of instruments in controlling beam extraction, beam tuning, and beam transportation at the medical systems.

  2. Microtechnology for instrumentation

    SciTech Connect

    Mariella, R.

    1998-01-01

    For the last two decades, the majority of research and development at LLNL in microtechnology has focused on photonics devices and bulk micromachining, including miccroelectro-mechanical systems and associated areas. For the last ten years, we have used these capabilities to address our analytical instrumentation needs. Just as the miniature photonics have enable the fabrication of analytical instruments that are either higher performance, smaller, more portable, or are combinations of these. Examples of these are our portable thermal cyclers for DNA analysis, our hand-held gas chromatograph, our flow-stream-waveguide-based flow cytometer, and our etched-microchannel electrophoresis systems. This presentation will describe these and related developments.

  3. Spectroelectrochemical Instrument Measures TOC

    NASA Technical Reports Server (NTRS)

    Kounaves, Sam

    2011-01-01

    A spectroelectrochemical instrument has been developed for measuring the total organic carbon (TOC) content of an aqueous solution. Measurements of TOC are frequently performed in environmental, clinical, and industrial settings. Until now, techniques for performing such measurements have included, various ly, the use of hazardous reagents, ultraviolet light, or ovens, to promote reactions in which the carbon contents are oxidized. The instrument now being developed is intended to be a safer, more economical means of oxidizing organic carbon and determining the TOC levels of aqueous solutions and for providing a low power/mass unit for use in planetary missions.

  4. Instrumentation in wind tunnels

    NASA Technical Reports Server (NTRS)

    Takashima, K.

    1986-01-01

    Requirements in designing instrumentation systems and measurements of various physical quantities in wind tunnels are surveyed. Emphasis is given to sensors used for measuring pressure, temperature, and angle, and the measurements of air turbulence and boundary layers. Instrumentation in wind tunnels require accuracy, fast response, diversity and operational simplicity. Measurements of force, pressure, attitude angle, free flow, pressure distribution, and temperature are illustrated by a table, and a block diagram. The LDV (laser Doppler velocimeter) method for measuring air turbulence and flow velocity and measurement of skin friction and flow fields using laser holograms are discussed. The future potential of these techniques is studied.

  5. Instrumental carbon monoxide dosimetry.

    PubMed

    Stetter, J R; Rutt, D R

    1980-10-01

    Modern technology for the ambient monitoring of carbon monoxide has been developed to produce a portable electrochemical instrument capable of the personal exposure to carbon monoxide. The performance characteristics of this device have been studied so that the unambiguous interpretation of field data could be performed. A study of the carbon monoxide exposure in a light manufacturing facility illustrate that effective dosimetry can be performed with expectations of accuracy typically better than +/- 15%, and that voluntary carbon monoxide exposures such as smoking were a significant contribution to the individual's exposure. Significant definition of the carbon monoxide exposure profile can be achieved with an instrument approach to the collection of the dosimetric data.

  6. Acting to gain information

    NASA Technical Reports Server (NTRS)

    Rosenchein, Stanley J.; Burns, J. Brian; Chapman, David; Kaelbling, Leslie P.; Kahn, Philip; Nishihara, H. Keith; Turk, Matthew

    1993-01-01

    This report is concerned with agents that act to gain information. In previous work, we developed agent models combining qualitative modeling with real-time control. That work, however, focused primarily on actions that affect physical states of the environment. The current study extends that work by explicitly considering problems of active information-gathering and by exploring specialized aspects of information-gathering in computational perception, learning, and language. In our theoretical investigations, we analyzed agents into their perceptual and action components and identified these with elements of a state-machine model of control. The mathematical properties of each was developed in isolation and interactions were then studied. We considered the complexity dimension and the uncertainty dimension and related these to intelligent-agent design issues. We also explored active information gathering in visual processing. Working within the active vision paradigm, we developed a concept of 'minimal meaningful measurements' suitable for demand-driven vision. We then developed and tested an architecture for ongoing recognition and interpretation of visual information. In the area of information gathering through learning, we explored techniques for coping with combinatorial complexity. We also explored information gathering through explicit linguistic action by considering the nature of conversational rules, coordination, and situated communication behavior.

  7. Brief communication "Snow profile associated measurements (SPAM) - a new instrument for quick snow profile measurements"

    NASA Astrophysics Data System (ADS)

    Lahtinen, P.

    2011-06-01

    A new instrument concept (SPAM) for snow profile associated measurements is presented. The potential of the concept is demonstrated by presenting preliminary results obtained with the prototype instrument. With this concept it is possible to retrieve rapid snow profiles of e.g. light extinction, reflectance, temperature and snow layer structure with high vertical resolution. As a side-product, also snow depth is retrieved.

  8. 78 FR 19244 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... patent or a patent by means of a written instrument recorded in the USPTO; intellectual property owners... United States Patent and Trademark Office Privacy Act of 1974; System of Records AGENCY: United States Patent and Trademark Office, Commerce. ACTION: Notice of amendment of Privacy Act system of...

  9. Integrating Nephelometer Instrument Handbook

    SciTech Connect

    Uin, J.

    2016-03-01

    The Integrating Nephelometer (Figure 1) is an instrument that measures aerosol light scattering. It measures aerosol optical scattering properties by detecting (with a wide angular integration – from 7 to 170°) the light scattered by the aerosol and subtracting the light scattered by the carrier gas, the instrument walls and the background noise in the detector (zeroing). Zeroing is typically performed for 5 minutes every day at midnight UTC. The scattered light is split into red (700 nm), green (550 nm), and blue (450 nm) wavelengths and captured by three photomultiplier tubes. The instrument can measure total scatter as well as backscatter only (from 90 to 170°) (Heintzenberg and Charlson 1996; Anderson et al. 1996; Anderson and Ogren 1998; TSI 3563 2015) At ARM (Atmospheric Radiation Measurement), two identical Nephelometers are usually run in series with a sample relative humidity (RH) conditioner between them. This is possible because Nephelometer sampling is non-destructive and the sample can be passed on to another instrument. The sample RH conditioner scans through multiple RH values in cycles, treating the sample. This kind of setup allows to study how aerosol particles’ light scattering properties are affected by humidification (Anderson et al. 1996). For historical reasons, the two Nephelometers in this setup are labeled “wet” and “dry”, with the “dry” Nephelometer usually being the one before the conditioner and sampling ambient air (the names are switched for the MAOS measurement site due to the high RH of the ambient air).

  10. Portable dynamic fundus instrument

    NASA Technical Reports Server (NTRS)

    Taylor, Gerald R. (Inventor); Meehan, Richard T. (Inventor); Hunter, Norwood R. (Inventor); Caputo, Michael P. (Inventor); Gibson, C. Robert (Inventor)

    1992-01-01

    A portable diagnostic image analysis instrument is disclosed for retinal funduscopy in which an eye fundus image is optically processed by a lens system to a charge coupled device (CCD) which produces recordable and viewable output data and is simultaneously viewable on an electronic view finder. The fundus image is processed to develop a representation of the vessel or vessels from the output data.

  11. Instrumentation Control Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document contains 22 units to consider for use in a tech prep competency profile for the occupation of instrumentation control technician. All the units listed will not necessarily apply to every situation or tech prep consortium, nor will all the competencies within each unit be appropriate. Several units appear within each specific…

  12. Neutron instrumentation for biology

    SciTech Connect

    Mason, S.A.

    1994-12-31

    In the October 1994 round of proposals at the ILL, the external biology review sub- committee was asked to allocate neutron beam time to a wide range of experiments, on almost half the total number of scheduled neutron instruments: on 3 diffractometers, on 3 small angle scattering instruments, and on some 6 inelastic scattering spectrometers. In the 3.5 years since the temporary reactor shutdown, the ILL`s management structure has been optimized, budgets and staff have been trimmed, the ILL reactor has been re-built, and many of the instruments up-graded, many powerful (mainly Unix) workstations have been introduced, and the neighboring European Synchrotron Radiation Facility has established itself as the leading synchrotron radiation source and has started its official user program. The ILL reactor remains the world`s most intense dedicated neutron source. In this challenging context, it is of interest to review briefly the park of ILL instruments used to study the structure and energetics of small and large biological systems. A brief summary will be made of each class of experiments actually proposed in the latest ILL proposal round.

  13. Process Instrumentation. Teacher Edition.

    ERIC Educational Resources Information Center

    Brown, A. O., III; Fowler, Malcolm

    This module provides instructional materials that are designed to help teachers train students in job skills for entry-level jobs as instrumentation technicians. This text addresses the basics of troubleshooting control loops, and the transducers, transmitters, signal conditioners, control valves, and controllers that enable process systems to…

  14. Instrument for assaying radiation

    DOEpatents

    Coleman, Jody Rustyn; Farfan, Eduardo B.

    2016-03-22

    An instrument for assaying radiation includes a flat panel detector having a first side opposed to a second side. A collimated aperture covers at least a portion of the first side of the flat panel detector. At least one of a display screen or a radiation shield may cover at least a portion of the second side of the flat panel detector.

  15. Instrument for Textbook Assessment.

    ERIC Educational Resources Information Center

    Huetteman, Julie Doidge

    An instrument to assist in assessing textbooks was created to provide a concise format for comparison and evaluation. Textbook characteristics were selected to illustrate content and proportion of characteristics of textbooks. Nine textbook characteristics were selected for quantifying the content areas of textbooks: (1) number of pages in the…

  16. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  17. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  18. HARMONI instrument control electronics

    NASA Astrophysics Data System (ADS)

    Gigante, José V.; Rodríguez Ramos, Luis F.; Zins, Gerard; Schnetler, Hermine; Pecontal, Arlette; Herreros, José Miguel; Clarke, Fraser; Bryson, Ian; Thatte, Niranjan

    2014-07-01

    HARMONI is an integral field spectrograph working at visible and near-infrared wavelengths over a range of spatial scales from ground layer corrected to fully diffraction-limited. The instrument has been chosen to be part of the first-light complement at the European Extremely Large Telescope (E-ELT). This paper describes the instrument control electronics to be developed at IAC. The large size of the HARMONI instrument, its cryogenic operation, and the fact that it must operate with enhanced reliability is a challenge from the point of view of the control electronics design. The present paper describes a design proposal based on the current instrument requirements and intended to be fully compliant with the ESO E-ELT standards, as well as with the European EMC and safety standards. The modularity of the design and the use of COTS standard hardware will benefit the project in several aspects, as reduced costs, shorter schedule by the use of commercially available components, and improved quality by the use of well proven solutions.

  19. Elementary Instrumental Music Program.

    ERIC Educational Resources Information Center

    Smith, Dolores A.

    THE FOLLOWING IS THE FULL TEXT OF THIS DOCUMENT: Our former Elementary Instrumental Music Program for 4th-6th graders was costly and ineffective. Students were bused to a high school in the middle of the instructional day--costs (time and transportation) were not compensatory with the program, which was experiencing a significant drop-out rate.…

  20. Ozone monitoring instrument (OMI)

    NASA Astrophysics Data System (ADS)

    de Vries, Johan; van den Oord, Gijsbertus H. J.; Hilsenrath, Ernest; te Plate, Maurice B.; Levelt, Pieternel F.; Dirksen, Ruud

    2002-01-01

    The Ozone Monitoring Instrument (OMI) is an UV-Visible imaging spectrograph using two dimensional CCD detectors to register both the spectrum and the swath perpendicular to the flight direction. This allows having a wide swath (114 degrees) combined with a small ground pixel (nominally 13 x 24 km). The instrument is planned for launch on NASA's EOS-AURA satellite in June 2003. Currently the OMI Flight Model is being build. This shortly follows the Instrument Development Model (DM) which was built to, next to engineering purposes, verify the instrument performance. The paper presents measured results from this DM for optical parameters such as distortion, optical efficiency, stray light and polarization sensitivity. Distortion in the spatial direction is shown to be on sub-pixel level and the stray light levels are very low and almost free from ghost peaks. The polarization sensitivity is presently demonstrated to be below 10-3 but we aim to lower the detection limit by an order of magnitude to make sure that spectral residuals do not mix with trace gas absorption spectra. Critical detector parameters are presented such as the very high UV quantum efficiency (60 % at 270 nm), dark current behavior and the sensitivity to radiation.

  1. 18 CFR 367.2450 - Account 245, Derivative instrument liabilities-Hedges

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 245, Derivative instrument liabilities-Hedges 367.2450 Section 367.2450 Conservation of Power and Water Resources FEDERAL... ACT OF 2005, FEDERAL POWER ACT AND NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED...

  2. 18 CFR 367.2450 - Account 245, Derivative instrument liabilities-Hedges

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Account 245, Derivative instrument liabilities-Hedges 367.2450 Section 367.2450 Conservation of Power and Water Resources FEDERAL... ACT OF 2005, FEDERAL POWER ACT AND NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED...

  3. CIRCE: a new approach to performance management of optical instruments

    NASA Astrophysics Data System (ADS)

    Philoreau, Sandrine; Simeoni, Denis; Miras, Didier; Papegay, Y.; De Sousa, J.

    1996-10-01

    This paper introduces the 'complex instruments ranking with a new computational environment' or CIRCE software tool for aiding elaboration and exploitation of analytic models for performance management of optical instruments. CIRCE is currently developed by the optical instrument preliminary design team at the Aerospatiale Company's Cannes, France, Center, in cooperation with the Institut National de Recherche en Informatique et Automatique' or INRIA at the nearby Science Park of Sophia Antipolis. As a multiprogram tool, CIRCE incorporates the requirements at all stages of optical instrument development, from conception through manufacturing. It affords an original approach to creation and operation of performance models that facilitates know- how conservation through introduction of the notions of concepts (relations bases) and models (computation tree). It eases out the everyday tasks of engineers owing to generating capabilities for performance budgets or parametric analyses and to automatic numeric code generation.

  4. Acting Out Immunity: A Simulation of a Complicated Concept.

    ERIC Educational Resources Information Center

    Bealer, Jonathan; Bealer, Virginia

    1996-01-01

    Presents a lecture and play in which the students themselves become the elements of the immune system. Aims at facilitating student comprehension and retention of the complicated processes associated with the immune system. Includes objectives, outline, background information sources, instructor guide, student narrator guide, extension, and topics…

  5. All Adjunct Galilean Satellite Orbiter Concept Using a Small Nuclear Power Source

    NASA Astrophysics Data System (ADS)

    Randolph, James E.; Abelson, Robert D.; Alkalai, Leon; Collins, David H.; Moore, William V.

    2005-02-01

    An adjunct spacecraft concept known as the Galilean Satellite Orbiter (GSO) could gather and return significant science data using a payload consisting of plasma science and other instruments in orbit around each of three Galilean satellites using many advanced technology elements. The key to the viability of this concept is the existence of a small Radioisotope Power System (RPS) (single GPHS) and a mother spacecraft that could deliver the GSO to its final orbit and act as a relay communications path back to the Earth. Thus, the GSO would be dependant at Jupiter on the proposed Jupiter Icy Moons Orbiter (JIMO) or similar spacecraft for orbit insertion, propulsion to its target, and communications while at its target. Because of this highly capable supporting vehicle, the energy requirements for daily operations of GSO could be easily met with a small RPS system, which is now being studied by NASA and DOE, joined with a secondary battery system. The science payload would consist of a plasma instrument set (magnetometer, plasma spectrometer, plasma wave detector, and high energy particle detector), a wide angle camera, and a Doppler extractor for gravity field measurements. A small RPS now under study that would have a cylindrical shape and reject its internal heat through an end of the cylinder could enable this concept. This topology lends itself to a unique configuration concept for the GSO spacecraft using a long cylinder as the heat rejection (radiator) system for the RPS. This long cylinder has another application - it creates a long thin configuration that would enable gravity gradient attitude control of the spacecraft. This architecture would place the instruments at one end of the spacecraft and the RPS at the other allowing the maximum separation between them. Another technology element used in this design would be the Low Cost Adjunct Microspacecraft (LCAM), originally intended as a free-flying Earth orbiting inspector spacecraft. The LCAM is configured

  6. Time-of-flight diffractometer with multiple pulse overlap - an example for the application of modern tools for instrument design

    SciTech Connect

    Stuhr, U.; Bauer, G.S.; Wagner, W.

    1997-09-01

    A Time-of-Flight Diffractometer with high pulse rates, allowing multiple frame overlap, is a completely novel design of an instrument dedicated for high resolution strain-field mapping. We elaborated a detailed concept of this instrument applying analytical calculations and Monte Carlo computer simulations. Having established the instrument concept, the computer simulations will now be extended to optimize the total performance of the instrument. To illustrate the necessity and possibilities of applying modem tools for instrument design, we describe, as an example, the different steps towards the development of the detailed design of this instrument, which we intend to build at the Swiss spallation. source SINQ in the near future.

  7. Development of the Newtonian Gravity Concept Inventory

    ERIC Educational Resources Information Center

    Williamson, Kathryn E.; Willoughby, Shannon; Prather, Edward E.

    2013-01-01

    We introduce the Newtonian Gravity Concept Inventory (NGCI), a 26-item multiple-choice instrument to assess introductory general education college astronomy ("Astro 101") student understanding of Newtonian gravity. This paper describes the development of the NGCI through four phases: Planning, Construction, Quantitative Analysis, and…

  8. Optical Science: Deploying Technical Concepts and Engaging Participation through Digital Storytelling

    NASA Astrophysics Data System (ADS)

    Thomas, R. G.; Berry, K.; Arrigo, J.; Hooper, R. P.

    2013-12-01

    Technical 'hands-on' training workshops are designed to bring together scientists, technicians, and program managers from universities, government agencies, and the private sector to discuss methods used and advances made in instrumentation and data analysis. Through classroom lectures and discussions combined with a field-day component, hands-on workshop participants get a 'full life cycle' perspective from instrumentation concepts and deployment to data analysis. Using film to document this process is becoming increasingly more popular, allowing scientists to add a story-telling component to their research. With the availability of high-quality and low priced professional video equipment and editing software, scientists are becoming digital storytellers. The science video developed from the 'hands-on' workshop, Optical Water Quality Sensors for Nutrients: Concepts, Deployment, and Analysis, encapsulates the objectives of technical training workshops for participants. Through the use of still photography, video, interviews, and sound, the short video, An Introduction to CUAHSI's Hands-on Workshops, produced by a co-instructor of the workshop acts as a multi-purpose tool. The 10-minute piece provides an overview of workshop field day activities and works to bridge the gap between classroom learning, instrumentation application and data analysis. CUAHSI 'hands-on' technical workshops have been collaboratively executed with faculty from several universities and with the U.S. Geological Survey. The video developed was designed to attract new participants to these professional development workshops, to stimulate a connection with the environment, to act as a workshop legacy resource, and also serve as a guide for prospective hands-on workshop organizers. The effective use of film and short videos in marketing scientific programs, such as technical trainings, allows scientists to visually demonstrate the technologies currently being employed and to provide a more

  9. 77 FR 43806 - Sunshine Act Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... From the Federal Register Online via the Government Publishing Office ] COMMISSION ON CIVIL RIGHTS Sunshine Act Meeting AGENCY: United States Commission on Civil Rights. ACTION: Notice of meeting. DATE AND... report; and (c) The topic of the civil rights of veterans, as set forth in the concept paper prepared...

  10. 77 FR 472 - Sunshine Act Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ... From the Federal Register Online via the Government Publishing Office COMMISSION ON CIVIL RIGHTS Sunshine Act Notice AGENCY: United States Commission on Civil Rights. ACTION: Notice of meeting. DATE AND... Immigration Briefing Review of Concept Papers/Approval IV. Management and Operations Staff Director's...

  11. Lidar instruments for ESA Earth observation missions

    NASA Astrophysics Data System (ADS)

    Hélière, Arnaud; Armandillo, Errico; Durand, Yannig; Culoma, Alain; Meynart, Roland

    2004-06-01

    The idea of deploying a lidar system on an Earth-orbiting satellite stems from the need for continuously providing profiles of our atmospheric structure with high accuracy and resolution and global coverage. Interest in this information for climatology, meteorology and the atmospheric sciences in general is huge. Areas of application range from the determination of global warming and greenhouse effects, to monitoring the transport and accumulation of pollutants in the different atmospheric regions (such as the recent fires in Southeast Asia), to the assessment of the largely unknown microphysical properties and the structural dynamics of the atmosphere itself. Spaceborne lidar systems have been the subject of extensive investigations by the European Space Agency since mid 1970's, resulting in mission and instrument concepts, such as ATLID, the cloud backscatter lidar payload of the EarthCARE mission, ALADIN, the Doppler wind lidar of the Atmospheric Dynamics Mission (ADM) and more recently a water vapour Differential Absorption Lidar considered for the WALES mission. These studies have shown the basic scientific and technical feasibility of spaceborne lidars, but they have also demonstrated their complexity from the instrument viewpoint. As a result, the Agency undertook technology development in order to strengthen the instrument maturity. This is the case for ATLID, which benefited from a decade of technology development and supporting studies and is now studied in the frame of the EarthCARE mission. ALADIN, a Direct Detection Doppler Wind Lidar operating in the Ultra-Violet, will be the 1st European lidar to fly in 2007 as payload of the Earth Explorer Core Mission ADM. WALES currently studied at the level of a phase A, is based upon a lidar operating at 4 wavelengths in near infrared and aims to profile the water vapour in the lower part of the atmosphere with high accuracy and low bias. Lastly, the European Space Agency is extending the lidar instrument field

  12. Analytical instrument qualification in capillary electrophoresis.

    PubMed

    Cianciulli, Claudia; Wätzig, Hermann

    2012-06-01

    Capillary electrophoresis (CE) is a well-established and frequently used technique in the pharmaceutical industry. Therefore an appropriate analytical instrument qualification (AIQ) is required for quality assurance. AIQ forms the basis of a quality management followed by analytical method validation, system suitability tests (SSTs) and quality control checks. Two parts of the AIQ, namely the operational qualification (OQ) and the performance qualification (PQ) are of particular interest in the daily routine of the laboratory. A new concept for OQ and PQ was developed to assure the correct function of a CE system. The significance of each parameter, possible test methods as well as acceptance criteria will be presented and discussed in detail. Especially temperature adjustment by the cooling system and the voltage supply must be tested for accurate and precise operation. The detector noise, wavelength accuracy and detector linearity have to be checked as well. Finally, the injection linearity, accuracy and precision need to be qualified. The proposed set of qualification procedures is easy to implement and was already tested on five CE instruments from three different manufacturers. A time- and cost-saving continuous PQ was derived, using results from method-specific SSTs and some additional experiments. This holistic concept continuously surveys the most relevant parameters, hence assuring the suitability of the used instruments and decreasing their downtimes.

  13. netherland hydrological modeling instrument

    NASA Astrophysics Data System (ADS)

    Hoogewoud, J. C.; de Lange, W. J.; Veldhuizen, A.; Prinsen, G.

    2012-04-01

    Netherlands Hydrological Modeling Instrument A decision support system for water basin management. J.C. Hoogewoud , W.J. de Lange ,A. Veldhuizen , G. Prinsen , The Netherlands Hydrological modeling Instrument (NHI) is the center point of a framework of models, to coherently model the hydrological system and the multitude of functions it supports. Dutch hydrological institutes Deltares, Alterra, Netherlands Environmental Assessment Agency, RWS Waterdienst, STOWA and Vewin are cooperating in enhancing the NHI for adequate decision support. The instrument is used by three different ministries involved in national water policy matters, for instance the WFD, drought management, manure policy and climate change issues. The basis of the modeling instrument is a state-of-the-art on-line coupling of the groundwater system (MODFLOW), the unsaturated zone (metaSWAP) and the surface water system (MOZART-DM). It brings together hydro(geo)logical processes from the column to the basin scale, ranging from 250x250m plots to the river Rhine and includes salt water flow. The NHI is validated with an eight year run (1998-2006) with dry and wet periods. For this run different parts of the hydrology have been compared with measurements. For instance, water demands in dry periods (e.g. for irrigation), discharges at outlets, groundwater levels and evaporation. A validation alone is not enough to get support from stakeholders. Involvement from stakeholders in the modeling process is needed. There fore to gain sufficient support and trust in the instrument on different (policy) levels a couple of actions have been taken: 1. a transparent evaluation of modeling-results has been set up 2. an extensive program is running to cooperate with regional waterboards and suppliers of drinking water in improving the NHI 3. sharing (hydrological) data via newly setup Modeling Database for local and national models 4. Enhancing the NHI with "local" information. The NHI is and has been used for many

  14. 76 FR 55300 - Companies Engaged in the Business of Acquiring Mortgages and Mortgage-Related Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... Mortgage-Related Instruments AGENCY: Securities and Exchange Commission. ACTION: Concept release; request... Comments Use the Commission's Internet comment form http://www.sec.gov/rules/concept.shtml ); or send an e... comments on the Commission's Internet Web site ( http://www.sec.gov/rules/concept.shtml ). Comments...

  15. Instrument techniques for rheometry

    NASA Astrophysics Data System (ADS)

    Hou, Ying Y.; Kassim, Hamida O.

    2005-10-01

    This article presents a review of some latest advances in rheology measuring techniques. Consideration is given to the modification and approaches in conventional measuring techniques and also to the development of specialty instruments. A number of sensing technologies such as nuclear-magnetic-resonance imaging and ultrasonic pulse Doppler mapping have recently been adopted to produce viscoelastic measurements for both Newtonian and non-Newtonian materials. The working principles of these technologies and their applications are described. Other recent developments in modifications of conventional rheometers for performance enhancement and for complex material characterizations have been thoroughly discussed. Some instrument designs and their special applications, such as interfacial rheometers, extensional rheometers, and high-pressure rheometers, have also been evaluated in detail.

  16. Data acquisition instruments: Psychopharmacology

    SciTech Connect

    Hartley, D.S. III

    1998-01-01

    This report contains the results of a Direct Assistance Project performed by Lockheed Martin Energy Systems, Inc., for Dr. K. O. Jobson. The purpose of the project was to perform preliminary analysis of the data acquisition instruments used in the field of psychiatry, with the goal of identifying commonalities of data and strategies for handling and using the data in the most advantageous fashion. Data acquisition instruments from 12 sources were provided by Dr. Jobson. Several commonalities were identified and a potentially useful data strategy is reported here. Analysis of the information collected for utility in performing diagnoses is recommended. In addition, further work is recommended to refine the commonalities into a directly useful computer systems structure.

  17. A Scale To Measure the Development of Children's Concepts of Death.

    ERIC Educational Resources Information Center

    Cuddy-Casey, Maria; Orvaschel, Helen; Sellers, Alfred H.

    The sporadic investigations regarding children's concepts of death have lacked standard methods or instruments for evaluating these conceptions. Whether or not research on children's concepts of death can be gauged by a standard set of questions is explored in this paper. It reports on the evaluation of a new questionnaire's (Concept of Life and…

  18. Inservice Elementary and Middle School Teachers' Conceptions of Photosynthesis and Respiration

    ERIC Educational Resources Information Center

    Krall, Rebecca McNall; Lott, Kimberly H.; Wymer, Carol L.

    2009-01-01

    The purpose of this descriptive study was to investigate inservice elementary and middle school teachers' conceptions of photosynthesis and respiration, basic concepts they are expected to teach. A forced-choice instrument assessing selected standards-based life science concepts with non-scientific conceptions embedded in distracter options was…

  19. Is codependency a meaningful concept?

    PubMed

    Stafford, L L

    2001-01-01

    The concept of condependency has achieved a prominent place in the psychiatric, psychological, and addiction literature in a remarkably short period of time. Although the term was first developed in the substance abuse treatment arena, specifically referring to the wives of men who abuse alcohol, codependency has more recently been used almost generically to describe a dysfunctional style of relating to others (Irwin, 1995). The manner in which definitions of codependency have become increasingly inclusive are probably related to continuing input from the both the fashionable self-help movement and from some psychiatric perspectives. The purpose of this article is to review proposed definitions of codependency, discuss issues related to the validity of the codependency construct, and summarize efforts aimed at producing instruments to measure codependency. Additionally, I will address implications of this concept as related to psychiatric nursing education, practice, and research.

  20. Instrumentation for Mars Environments

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1997-01-01

    The main portion of the project was to support the "MAE" experiment on the Mars Pathfinder mission and to design instrumentation for future space missions to measure dust deposition on Mars and to characterize the properties of the dust. A second task was to analyze applications for photovoltaics in new space environments, and a final task was analysis of advanced applications for solar power, including planetary probes, photovoltaic system operation on Mars, and satellite solar power systems.

  1. Computers in Scientific Instrumentation.

    DTIC Science & Technology

    1982-01-13

    The CPU bus Attachment. In the first applications or d 4ata are connected to the central ues parallel digital lines for data an computers to...simple function se- Mg on ae results of its previous opera- designing instruments that can provide hotios by being directly labeled for the ties. In...that the signal from the sensor is with an operating system is powerful , that might be found in appropriately pro- interpretable to give the sought- for

  2. Frontiers of accelerator instrumentation

    SciTech Connect

    Ross, M.

    1992-08-01

    New technology has permitted significant performance improvements of established instrumentation techniques including beam position and profile monitoring. Fundamentally new profile monitor strategies are required for the next generation of accelerators, especially linear colliders (LC). Beams in these machines may be three orders of magnitude smaller than typical beams in present colliders. In this paper we review both the present performance levels achieved by conventional systems and present some new ideas for future colliders.

  3. Toward instrumentation for ELTs: the OWL case

    NASA Astrophysics Data System (ADS)

    Monnet, Guy; D'Odorico, Sandro

    2004-09-01

    Based on expected Science Drivers for a 60 to 100-m diameter OWL-class telescope, we derive the basic instrumental capabilities that are needed to address them effectively. They come in three flavors -viz. an extremely high-contrast fully diffraction-limited spectro-imager, a cryogenic AO-assisted imager and multi-integral field spectrometer. Their highest priority wavelength range lies in the near-IR. In terms of size and technical requirements, these instruments belong to a quite similar class than instruments currently being developed for the 8-10 m telescopes. This places them hopefully in the feasible category, even if already rather challenging. A big caveat however is that enlarging the imaging field or the spectrometer multiplex would require large clusters of these basic "bricks". The requirements on the adaptive optics correction are stringent and call for a close and careful integration between the telescope adaptive optics systems and the instruments. We also introduce here, as a relevant example of a new observational strategy, an instrument focused on a specific scientific program - the direct measurement of the acceleration of the Universe at different epochs via the Lyα forest in QSO spectra. Being able to host dedicated facilities of this type, used for a specific observing programs in a CERN experiment-like fashion, is deemed essential to ensure that the giant telescopes of the future get and stay at the cutting edge of research in the next decade and beyond. Finally, we comment briefly on the articulation between the development of generic instrument concepts for ELTs in the frame of the European ELT Design Study and their adaptation to the OWL case.

  4. Privacy Act Statement

    EPA Pesticide Factsheets

    Any information you provide to the Environmental Protection Agency’s (EPA) Suspension and Debarment Program will be governed by the Privacy Act and will be included in the EPA Debarment and Suspension Files, a Privacy Act system of records.

  5. ACTS data center

    NASA Technical Reports Server (NTRS)

    Syed, Ali; Vogel, Wolfhard J.

    1993-01-01

    Viewgraphs on ACTS Data Center status report are included. Topics covered include: ACTS Data Center Functions; data flow overview; PPD flow; RAW data flow; data compression; PPD distribution; RAW Data Archival; PPD Audit; and data analysis.

  6. Recovery Act Milestones

    ScienceCinema

    Rogers, Matt

    2016-07-12

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  7. Autism: Why Act Early?

    MedlinePlus

    ... What's this? Submit Button Past Emails CDC Features Autism: Why Act Early? Language: English Español (Spanish) Recommend ... helped the world make sense." Florida teenager with Autism Spectrum Disorder "Because my parents acted early, I ...

  8. Recovery Act Milestones

    SciTech Connect

    Rogers, Matt

    2009-01-01

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  9. Mandolin Family Instruments

    NASA Astrophysics Data System (ADS)

    Cohen, David J.; Rossing, Thomas D.

    The mandolin family of instruments consists of plucked chordophones, each having eight strings in four double courses. With the exception of the mandobass, the courses are tuned in intervals of fifths, as are the strings in violin family instruments. The soprano member of the family is the mandolin, tuned G3-D4-A4-E5. The alto member of the family is the mandola, tuned C3-G3-D4-A4. The mandola is usually referred to simply as the mandola in the USA, but is called the tenor mandola in Europe. The tenor member of the family is the octave mandolin, tuned G2-D3-A3-E4. It is referred to as the octave mandolin in the USA, and as the octave mandola in Europe. The baritone member of the family is the mandocello, or mandoloncello, tuned C2-G2-D3-A3. A variant of the mandocello not common in the USA is the five-course liuto moderno, or simply liuto, designed for solo repertoire. Its courses are tuned C2-G2-D3-A3-E4. A mandobass was also made by more than one manufacturer during the early twentieth century, though none are manufactured today. They were fretted instruments with single string courses tuned E1-A1-D2-G2. There are currently a few luthiers making piccolo mandolins, tuned C4-G4-D5-A5.

  10. An ice lithography instrument.

    PubMed

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J A

    2011-06-01

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  11. An ice lithography instrument

    SciTech Connect

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J. A.

    2011-06-15

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  12. Instrumentation and diagnostics

    SciTech Connect

    Nakaishi, C.V.; Bedick, R.C.

    1990-12-01

    This Technology Status Report describes research and accomplishments for the Instrumentation and Diagnostics (I D) Projects within the Advanced Research and Technology Development (AR TD) Program of the United States Department of Energy (DOE) Office of Fossil Energy (FE). Process understanding and control can be improved through the development of advanced instrumentation and diagnostics. The thrust of the I D Projects is to further develop existing measurement and control techniques for application to advanced coal-based technologies. Project highlights are: an inductively coupled plasma (ICP) instrument has been developed to analyze trace elements in gasification and combustion process streams. An in situ two-color Mie scattering technique with LSS can simultaneously measure the size, velocity, and elemental composition of coal particles during combustion. A high-temperature, fluorescence thermometry technique has accurately measured gas temperatures during field testing in combustion and gasification environments. Expert systems have been developed to improve the control of advanced coal-based processes. Capacitance flowmeters were developed to determine the mass flowrate, solid volume fraction, and particle velocities of coal slurries. 32 refs., 9 figs.

  13. The dermatology acting internship.

    PubMed

    Stephens, John B; Raimer, Sharon S; Wagner, Richard F

    2011-07-15

    Acting internships are an important component of modern day medical school curriculum. Several specialties outside of internal medicine now offer acting internship experiences to fourth year medical students. We have found that a dermatology acting internship is a valuable experience for fourth year medical students who are interested in pursuing a residency in dermatology. Our experience with the dermatology acting internship over the 2010-2011 academic year is described.

  14. SCIENCE BRIEF: ADVANCED CONCEPTS

    EPA Science Inventory

    Research on advanced concepts will evaluate and demonstrate the application of innovative infrastructure designs, management procedures and operational approaches. Advanced concepts go beyond simple asset management. The infusion of these advanced concepts into established wastew...

  15. Comet coma sample return instrument

    NASA Technical Reports Server (NTRS)

    Albee, A. L.; Brownlee, Don E.; Burnett, Donald S.; Tsou, Peter; Uesugi, K. T.

    1994-01-01

    The sample collection technology and instrument concept for the Sample of Comet Coma Earth Return Mission (SOCCER) are described. The scientific goals of this Flyby Sample Return are to return to coma dust and volatile samples from a known comet source, which will permit accurate elemental and isotopic measurements for thousands of individual solid particles and volatiles, detailed analysis of the dust structure, morphology, and mineralogy of the intact samples, and identification of the biogenic elements or compounds in the solid and volatile samples. Having these intact samples, morphologic, petrographic, and phase structural features can be determined. Information on dust particle size, shape, and density can be ascertained by analyzing penetration holes and tracks in the capture medium. Time and spatial data of dust capture will provide understanding of the flux dynamics of the coma and the jets. Additional information will include the identification of cosmic ray tracks in the cometary grains, which can provide a particle's process history and perhaps even the age of the comet. The measurements will be made with the same equipment used for studying micrometeorites for decades past; hence, the results can be directly compared without extrapolation or modification. The data will provide a powerful and direct technique for comparing the cometary samples with all known types of meteorites and interplanetary dust. This sample collection system will provide the first sample return from a specifically identified primitive body and will allow, for the first time, a direct method of matching meteoritic materials captured on Earth with known parent bodies.

  16. Comet coma sample return instrument

    NASA Astrophysics Data System (ADS)

    Albee, A. L.; Brownlee, Don E.; Burnett, Donald S.; Tsou, Peter; Uesugi, K. T.

    The sample collection technology and instrument concept for the Sample of Comet Coma Earth Return Mission (SOCCER) are described. The scientific goals of this Flyby Sample Return are to return to coma dust and volatile samples from a known comet source, which will permit accurate elemental and isotopic measurements for thousands of individual solid particles and volatiles, detailed analysis of the dust structure, morphology, and mineralogy of the intact samples, and identification of the biogenic elements or compounds in the solid and volatile samples. Having these intact samples, morphologic, petrographic, and phase structural features can be determined. Information on dust particle size, shape, and density can be ascertained by analyzing penetration holes and tracks in the capture medium. Time and spatial data of dust capture will provide understanding of the flux dynamics of the coma and the jets. Additional information will include the identification of cosmic ray tracks in the cometary grains, which can provide a particle's process history and perhaps even the age of the comet. The measurements will be made with the same equipment used for studying micrometeorites for decades past; hence, the results can be directly compared without extrapolation or modification. The data will provide a powerful and direct technique for comparing the cometary samples with all known types of meteorites and interplanetary dust. This sample collection system will provide the first sample return from a specifically identified primitive body and will allow, for the first time, a direct method of matching meteoritic materials captured on Earth with known parent bodies.

  17. Electronic instrumentation for smart structures

    NASA Astrophysics Data System (ADS)

    Blanar, George J.

    1995-04-01

    The requirements of electronic instrumentation for smart structures are similar to those of data acquisition systems at our national particle physics laboratories. Modern high energy and heavy ion physics experiments may have tens of thousands of channels of data sources producing data that must be converted to digital form, compacted, stored and interpreted. In parallel, multiple sensors distributed in and around smart structures generate either binary or analog signals that are voltage, charge, or time like in their information content. In all cases, they must be transmitted, converted and preserved into a unified digital format for real-time processing. This paper will review the current status of practical large scale electronic measurement systems with special attention to architectures and physical organization. Brief surveys of the current state of the art will include preamplifiers and amplifiers, comparators and discriminators, voltage or charge analog-to-digital converters, time internal meters or time-to-digital converters, and finally, counting or scalar systems. The paper will conclude by integrating all of these ideas in a concept for an all-digital readout of a smart structure using the latest techniques used in physics research today.

  18. FHR Process Instruments

    SciTech Connect

    Holcomb, David Eugene

    2015-01-01

    Fluoride salt-cooled High temperature Reactors (FHRs) are entering into early phase engineering development. Initial candidate technologies have been identified to measure all of the required process variables. The purpose of this paper is to describe the proposed measurement techniques in sufficient detail to enable assessment of the proposed instrumentation suite and to support development of the component technologies. This paper builds upon the instrumentation chapter of the recently published FHR technology development roadmap. Locating instruments outside of the intense core radiation and high-temperature fluoride salt environment significantly decreases their environmental tolerance requirements. Under operating conditions, FHR primary coolant salt is a transparent, low-vapor-pressure liquid. Consequently, FHRs can employ standoff optical measurements from above the salt pool to assess in-vessel conditions. For example, the core outlet temperature can be measured by observing the fuel s blackbody emission. Similarly, the intensity of the core s Cerenkov glow indicates the fission power level. Short-lived activation of the primary coolant provides another means for standoff measurements of process variables. The primary coolant flow and neutron flux can be measured using gamma spectroscopy along the primary coolant piping. FHR operation entails a number of process measurements. Reactor thermal power and core reactivity are the most significant variables for process control. Thermal power can be determined by measuring the primary coolant mass flow rate and temperature rise across the core. The leading candidate technologies for primary coolant temperature measurement are Au-Pt thermocouples and Johnson noise thermometry. Clamp-on ultrasonic flow measurement, that includes high-temperature tolerant standoffs, is a potential coolant flow measurement technique. Also, the salt redox condition will be monitored as an indicator of its corrosiveness. Both

  19. Autonomous Instrument Placement for Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Leger, P. Chris; Maimone, Mark

    2009-01-01

    Autonomous Instrument Placement (AutoPlace) is onboard software that enables a Mars Exploration Rover to act autonomously in using its manipulator to place scientific instruments on or near designated rock and soil targets. Prior to the development of AutoPlace, it was necessary for human operators on Earth to plan every motion of the manipulator arm in a time-consuming process that included downlinking of images from the rover, analysis of images and creation of commands, and uplinking of commands to the rover. AutoPlace incorporates image analysis and planning algorithms into the onboard rover software, eliminating the need for the downlink/uplink command cycle. Many of these algorithms are derived from the existing groundbased image analysis and planning algorithms, with modifications and augmentations for onboard use.

  20. Adaptation of Conceptions of Learning Science Questionnaire into Turkish and Science Teacher Candidates' Conceptions of Learning Science

    ERIC Educational Resources Information Center

    Bahçivan, Eralp; Kapucu, Serkan

    2014-01-01

    The purposes of this study were to (1) adapt an instrument "The Conceptions of Learning Science (COLS) questionnaire" into Turkish, and (2) to determine Turkish science teacher candidates' COLS. Adapting the instrument four steps were followed. Firstly, COLS questionnaire was translated into Turkish. Secondly, COLS questionnaire was…

  1. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review.

    PubMed

    Li, Haitao; Liu, Xiaowen; Li, Lin; Mu, Xiaoyi; Genov, Roman; Mason, Andrew J

    2016-12-31

    Modern biosensors play a critical role in healthcare and have a quickly growing commercial market. Compared to traditional optical-based sensing, electrochemical biosensors are attractive due to superior performance in response time, cost, complexity and potential for miniaturization. To address the shortcomings of traditional benchtop electrochemical instruments, in recent years, many complementary metal oxide semiconductor (CMOS) instrumentation circuits have been reported for electrochemical biosensors. This paper provides a review and analysis of CMOS electrochemical instrumentation circuits. First, important concepts in electrochemical sensing are presented from an instrumentation point of view. Then, electrochemical instrumentation circuits are organized into functional classes, and reported CMOS circuits are reviewed and analyzed to illuminate design options and performance tradeoffs. Finally, recent trends and challenges toward on-CMOS sensor integration that could enable highly miniaturized electrochemical biosensor microsystems are discussed. The information in the paper can guide next generation electrochemical sensor design.

  2. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review

    PubMed Central

    Li, Haitao; Liu, Xiaowen; Li, Lin; Mu, Xiaoyi; Genov, Roman; Mason, Andrew J.

    2016-01-01

    Modern biosensors play a critical role in healthcare and have a quickly growing commercial market. Compared to traditional optical-based sensing, electrochemical biosensors are attractive due to superior performance in response time, cost, complexity and potential for miniaturization. To address the shortcomings of traditional benchtop electrochemical instruments, in recent years, many complementary metal oxide semiconductor (CMOS) instrumentation circuits have been reported for electrochemical biosensors. This paper provides a review and analysis of CMOS electrochemical instrumentation circuits. First, important concepts in electrochemical sensing are presented from an instrumentation point of view. Then, electrochemical instrumentation circuits are organized into functional classes, and reported CMOS circuits are reviewed and analyzed to illuminate design options and performance tradeoffs. Finally, recent trends and challenges toward on-CMOS sensor integration that could enable highly miniaturized electrochemical biosensor microsystems are discussed. The information in the paper can guide next generation electrochemical sensor design. PMID:28042860

  3. Topics in Chemical Instrumentation, Cl. Thermoluminescence: Part II. Instrumentation.

    ERIC Educational Resources Information Center

    Manche, Emanuel P.

    1979-01-01

    Presents part two on the use of the detection of thermoluminescence as an analytical tool for the chemistry laboratory and allied science. This part discusses instrumentation used and investigates recent developments in instrumentation for thermoluminescence. (HM)

  4. CARMENES instrument overview

    NASA Astrophysics Data System (ADS)

    Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Mundt, R.; Reiners, A.; Ribas, I.; Seifert, W.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona Jiménez, R.; Anwand-Heerwart, H.; Azzaro, M.; Bauer, F.; Barrado, D.; Becerril, S.; Béjar, V. J. S.; Benítez, D.; Berdiñas, Z. M.; Cárdenas, M. C.; Casal, E.; Claret, A.; Colomé, J.; Cortés-Contreras, M.; Czesla, S.; Doellinger, M.; Dreizler, S.; Feiz, C.; Fernández, M.; Galadí, D.; Gálvez-Ortiz, M. C.; García-Piquer, A.; García-Vargas, M. L.; Garrido, R.; Gesa, L.; Gómez Galera, V.; González Álvarez, E.; González Hernández, J. I.; Grözinger, U.; Guàrdia, J.; Guenther, E. W.; de Guindos, E.; Gutiérrez-Soto, J.; Hagen, H.-J.; Hatzes, A. P.; Hauschildt, P. H.; Helmling, J.; Henning, T.; Hermann, D.; Hernández Castaño, L.; Herrero, E.; Hidalgo, D.; Holgado, G.; Huber, A.; Huber, K. F.; Jeffers, S.; Joergens, V.; de Juan, E.; Kehr, M.; Klein, R.; Kürster, M.; Lamert, A.; Lalitha, S.; Laun, W.; Lemke, U.; Lenzen, R.; López del Fresno, Mauro; López Martí, B.; López-Santiago, J.; Mall, U.; Mandel, H.; Martín, E. L.; Martín-Ruiz, S.; Martínez-Rodríguez, H.; Marvin, C. J.; Mathar, R. J.; Mirabet, E.; Montes, D.; Morales Muñoz, R.; Moya, A.; Naranjo, V.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro, J.; Passegger, V.-M.; Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Pluto, M.; Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhardt, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodríguez, E.; Rodríguez-López, C.; Rodríguez-Pérez, E.; Rohloff, R.-R.; Rosich, A.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sanz-Forcada, J.; Sarmiento, L. F.; Schäfer, S.; Schiller, J.; Schmidt, C.; Schmitt, J. H. M. M.; Solano, E.; Stahl, O.; Storz, C.; Stürmer, J.; Suárez, J. C.; Ulbrich, R. G.; Veredas, G.; Wagner, K.; Winkler, J.; Zapatero Osorio, M. R.; Zechmeister, M.; Abellán de Paco, F. J.; Anglada-Escudé, G.; del Burgo, C.; Klutsch, A.; Lizon, J. L.; López-Morales, M.; Morales, J. C.; Perryman, M. A. C.; Tulloch, S. M.; Xu, W.

    2014-07-01

    This paper gives an overview of the CARMENES instrument and of the survey that will be carried out with it during the first years of operation. CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs) is a next-generation radial-velocity instrument under construction for the 3.5m telescope at the Calar Alto Observatory by a consortium of eleven Spanish and German institutions. The scientific goal of the project is conducting a 600-night exoplanet survey targeting ~ 300 M dwarfs with the completed instrument. The CARMENES instrument consists of two separate echelle spectrographs covering the wavelength range from 0.55 to 1.7 μm at a spectral resolution of R = 82,000, fed by fibers from the Cassegrain focus of the telescope. The spectrographs are housed in vacuum tanks providing the temperature-stabilized environments necessary to enable a 1 m/s radial velocity precision employing a simultaneous calibration with an emission-line lamp or with a Fabry-Perot etalon. For mid-M to late-M spectral types, the wavelength range around 1.0 μm (Y band) is the most important wavelength region for radial velocity work. Therefore, the efficiency of CARMENES has been optimized in this range. The CARMENES instrument consists of two spectrographs, one equipped with a 4k x 4k pixel CCD for the range 0.55 - 1.05 μm, and one with two 2k x 2k pixel HgCdTe detectors for the range from 0.95 - 1.7μm. Each spectrograph will be coupled to the 3.5m telescope with two optical fibers, one for the target, and one for calibration light. The front end contains a dichroic beam splitter and an atmospheric dispersion corrector, to feed the light into the fibers leading to the spectrographs. Guiding is performed with a separate camera; on-axis as well as off-axis guiding modes are implemented. Fibers with octagonal cross-section are employed to ensure good stability of the output in the presence of residual guiding errors. The

  5. Instrumentation challenges in multi-modality imaging

    NASA Astrophysics Data System (ADS)

    Brasse, D.; Boisson, F.

    2016-02-01

    Based on different physical principles, imaging procedures currently used in both clinical and preclinical applications present different performance that allow researchers to achieve a large number of studies. However, the relevance of obtaining a maximum of information relating to the same subject is undeniable. The last two decades have thus seen the advent of a full-fledged research axis, the multimodal in vivo imaging. Whether from an instrumentation point of view, for medical research or the development of new probes, all these research works illustrate the growing interest of the scientific community for multimodal imaging, which can be approached with different backgrounds and perspectives from engineers to end-users point of views. In the present review, we discuss the multimodal imaging concept, which focuses not only on PET/CT and PET/MRI instrumentation but also on recent investigations of what could become a possible future in the field.

  6. Design of a Parachute Canopy Instrumentation Platform

    NASA Technical Reports Server (NTRS)

    Alshahin, Wahab M.; Daum, Jared S.; Holley, James J.; Litteken, Douglas A.; Vandewalle, Michael T.

    2015-01-01

    This paper discusses the current technology available to design and develop a reliable and compact instrumentation platform for parachute system data collection and command actuation. Wireless communication with a parachute canopy will be an advancement to the state of the art of parachute design, development, and testing. Embedded instrumentation of the parachute canopy will provide reefing line tension, skirt position data, parachute health monitoring, and other telemetry, further validating computer models and giving engineering insight into parachute dynamics for both Earth and Mars entry that is currently unavailable. This will allow for more robust designs which are more optimally designed in terms of structural loading, less susceptible to adverse dynamics, and may eventually pave the way to currently unattainable advanced concepts of operations. The development of this technology has dual use potential for a variety of other applications including inflatable habitats, aerodynamic decelerators, heat shields, and other high stress environments.

  7. VINCI: the VLT Interferometer commissioning instrument

    NASA Astrophysics Data System (ADS)

    Kervella, Pierre; Coudé du Foresto, Vincent; Glindemann, Andreas; Hofmann, Reiner

    2000-07-01

    The Very Large Telescope Interferometer (VLTI) is a complex system, made of a large number of separated elements. To prepare an early successful operation, it will require a period of extensive testing and verification to ensure that the many devices involved work properly together, and can produce meaningful data. This paper describes the concept chosen for the VLTI commissioning instrument, LEONARDO da VINCI, and details its functionalities. It is a fiber based two-way beam combiner, associated with an artificial star and an alignment verification unit. The technical commissioning of the VLTI is foreseen as a stepwise process: fringes will first be obtained with the commissioning instrument in an autonomous mode (no other parts of the VLTI involved); then the VLTI telescopes and optical trains will be tested in autocollimation; finally fringes will be observed on the sky.

  8. Clamp on ultrasonic instruments in subsea applications

    SciTech Connect

    Haugen, S.; Hodgson, S.; Upchurch, J.; McMahan, J.; Hazelrigg, K.; Mundorff, J.

    1995-12-01

    Monitoring of solids flow in pipelines has until recently required pipework intervention in order to insert probes and switches. Both sand particles and cleaning pigs are by nature destructive to these directly exposed detectors due to erosion and inertia. The instruments presented in this paper provide a superior alternative in ultrasonic clamp-on technology requiring only superficial pipework installation. Wells can now be operated efficiently in a way that minimizes the risk of erosion and collapse. Pigging operations can be monitored both by on-line pig detection and debris monitoring thereby allowing a safe and optimized survey to take place. The non-intrusive clamp-on concept raises standards in instrument reliability, durability and measurement performance.

  9. Robotic instrumentation: Evolution and microsurgical applications

    PubMed Central

    Parekattil, Sijo J.; Moran, Michael E.

    2010-01-01

    This article presents a review of the history and evolution of robotic instrumentation and its applications in urology. A timeline for the evolution of robotic instrumentation is presented to better facilitate an understanding of our current-day applications. Some new directions including robotic microsurgical applications (robotic assisted denervation of the spermatic cord for chronic orchialgia and robotic assisted vasectomy reversal) are presented. There is a paucity of prospective comparative effectiveness studies for a number of robotic applications. However, right or wrong, human nature has always led to our infatuation with the concept of using tools to meet our needs. This chapter is a brief tribute to where we have come from and where we may be potentially heading in the field of robotic assisted urologic surgery. PMID:21116362

  10. Overview of the ACT program

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr.

    1992-01-01

    NASA's Advanced Composites Program (ACT) was initiated in 1988. A National Research Announcement was issued to solicit innovative ideas that could significantly contribute to development and demonstration of an integrated technology data base and confidence level that permits cost-effective use of composite primary structures in transport aircraft. Fifteen contracts were awarded by the Spring of 1989 and the participants include commercial and military airframe manufacturers, materials developers and suppliers, universities, and government laboratories. The program approach is to develop materials, structural mechanics methodology, design concepts, and fabrication procedures that offer the potential to make composite structures cost-effective compared to aluminum structure. Goals for the ACT program included 30-50 percent weight reduction, 20-25 percent acquisition cost reduction, and provided the scientific basis for predicting materials and structures performance. This paper provides an overview of the ACT program status, plans, and selected technical accomplishments. Sixteen additional papers, which provide more detailed information on the research and development accomplishments, are contained in this publication.

  11. OBSIP Instrumentation and Operations for the Cascadia Initiative

    NASA Astrophysics Data System (ADS)

    Lodewyk, J. A.; Evers, B.

    2014-12-01

    The Ocean Bottom Seismograph Instrument Pool (OBSIP) is providing instrumentation and operations support for the Cascadia Initiative (Cascadia), an American Recovery and Reinvestment Act funded community experiment focused on investigating the unique geophysical processes through a combined onshore and offshore array of seismometers. Currently, OBSIP has deployed and recovered the instruments for years 1, 2, and 3 of the experiment. Year 4 instrumentation is currently collecting data on the ocean floor until fall 2015. Three OBSIP Institutional Instrument Contributors (IIC's) designed and built 60 new Ocean Bottom Seismometers (OBSs) specifically for the unique requirements of the Cascadia region, including shallow water deployments and heavy fishing activity. Lamont-Doherty Earth Observatory (LDEO) and Scripps Institute of Oceanography (SIO) both designed new trawl-resistant frames for the OBS instruments. Woods Hole Oceanographic Institute (WHOI) built 15 new deep-water instruments. To aid in the recovery of the heavy trawl resistant enclosures, OBSIP uses a Remotely Operated Vehicle (ROV). Cascadia OBS instruments include a seismometer, either a differential pressure gauge (DPG) or an absolute pressure sensor (APG), and extensive supporting electronics. One of the goals of the Cascadia Initiative is to encourage the joint use of onshore and offshore data. To support this goal, OBSIP has assembled a Horizontal Orientations report and an ARRA white paper summarizing the Cascadia Initiative performance. In both of these reports, OBSIP investigated the noise characteristics of the Cascadia OBS stations and the overall performance. With new instrumentation packages, the Cascadia instruments can be deployed in shallow water. OBSIP has investigated instrument performance to determine if water depth, instrument shielding, and recording season influence data quality.

  12. Development and Validation of the Star Properties Concept Inventory

    ERIC Educational Resources Information Center

    Bailey, Janelle M.; Johnson, Bruce; Prather, Edward E.; Slater, Timothy F.

    2012-01-01

    Concept inventories (CIs)--typically multiple-choice instruments that focus on a single or small subset of closely related topics--have been used in science education for more than a decade. This paper describes the development and validation of a new CI for astronomy, the "Star Properties Concept Inventory" (SPCI). Questions cover the areas of…

  13. Evaluation of Students' Understanding of Thermal Concepts in Everyday Contexts

    ERIC Educational Resources Information Center

    Chu, Hye-Eun; Treagust, David F.; Yeo, Shelley; Zadnik, Marjan

    2012-01-01

    The aims of this study were to determine the underlying conceptual structure of the thermal concept evaluation (TCE) questionnaire, a pencil-and-paper instrument about everyday contexts of heat, temperature, and heat transfer, to investigate students' conceptual understanding of thermal concepts in everyday contexts across several school years and…

  14. Assessing Understanding of the Energy Concept in Different Science Disciplines

    ERIC Educational Resources Information Center

    Park, Mihwa; Liu, Xiufeng

    2016-01-01

    Energy is one of the most central and richly connected ideas across all science disciplines. The purpose of this study was to develop a measurement instrument for assessing students' understanding of the energy concept within and across different science disciplines. To achieve this goal, the Inter-Disciplinary Energy concept Assessment (IDEA) was…

  15. Flow cytometry: retrospective, fundamentals and recent instrumentation.

    PubMed

    Picot, Julien; Guerin, Coralie L; Le Van Kim, Caroline; Boulanger, Chantal M

    2012-03-01

    Flow cytometry is a complete technology given to biologists to study cellular populations with high precision. This technology elegantly combines sample dimension, data acquisition speed, precision and measurement multiplicity. Beyond the statistical aspect, flow cytometry offers the possibility to physically separate sub-populations. These performances come from the common endeavor of physicists, biophysicists, biologists and computer engineers, who succeeded, by providing new concepts, to bring flow cytometry to current maturity. The aim of this paper is to present a complete retrospective of the technique and remind flow cytometry fundamentals before focusing on recent commercial instrumentation.

  16. On the Concept of Culture Goods Sales

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Rong

    The article on the consumer psychology, consumer behavior, cultural concepts of the market so their products relating to the concept of corporate culture and business aspects of the image was further explained that the merchandise sold is a commercial act, a cultural transmission consumers to make consumption choices in the same time, he believed that the use of such products with their values and way of life is consistent, for the maintenance of their social status and self-recognition of the need for a sales role in the cultural concept of human group psychology, and affect people's consumption behavior.

  17. Instrument Synthesis and Analysis Laboratory

    NASA Technical Reports Server (NTRS)

    Wood, H. John

    2004-01-01

    The topics addressed in this viewgraph presentation include information on 1) Historic instruments at Goddard; 2) Integrated Design Capability at Goddard; 3) The Instrument Synthesis and Analysis Laboratory (ISAL).

  18. LBL's Pollution Instrumentation Comparability Program.

    ERIC Educational Resources Information Center

    McLaughlin, R. D.; And Others

    1979-01-01

    Contained are condensed excerpts from the Lawrence Berkeley Laboratory Survey of Instrumentation for Environmental Monitoring. The survey describes instrumentation used to analyze air and water quality, radiation emissions, and biomedical impacts. (BB)

  19. Precision Instrument and Equipment Repairers.

    ERIC Educational Resources Information Center

    Wyatt, Ian

    2001-01-01

    Explains the job of precision instrument and equipment repairers, who work on cameras, medical equipment, musical instruments, watches and clocks, and industrial measuring devices. Discusses duties, working conditions, employment and earnings, job outlook, and skills and training. (JOW)

  20. Instrumental musicians' hazards.

    PubMed

    Hoppmann, R A

    2001-01-01

    In the last two decades, injuries to instrumental musicians have been well documented. Major categories of performance-related injuries include musculoskeletal overuse, nerve entrapment/thoracic outlet syndrome, and focal dystonia. Other areas of concern to instrumentalists include hypermobility, osteoarthritis, fibromyalgia, and hearing loss. This chapter reviews the epidemiology, risk factors, physical exam, treatment, and prevention of common problems of instrumentalists. Emphasis is placed on the team approach of treatment and prevention and the need for close collaboration of the various health professionals, music educators, and performers. Additional resources are presented for those interested in pursuing performing arts medicine in greater detail.

  1. Biomagnetic instrumentation and measurement

    NASA Technical Reports Server (NTRS)

    Iufer, E. J.

    1978-01-01

    The instruments and techniques of biomagnetic measurement have progressed greatly in the past 15 years and are now of a quality appropriate to clinical applications. The paper reports on recent developments in the design and application of SQUID (Superconducting Quantum Interference Device) magnetometers to biomagnetic measurement. The discussion covers biomagnetic field levels, magnetocardiography, magnetic susceptibility plethysmography, ambient noise and sensor types, principles of operation of a SQUID magnetometer, and laboratory techniques. Of the many promising applications of noninvasive biomagnetic measurement, magnetocardiography is the most advanced and the most likely to find clinical application in the near future.

  2. Beam Instrument Development System

    SciTech Connect

    DOOLITTLE, LAWRENCE; HUANG, GANG; DU, QIANG; SERRANO, CARLOS

    2016-01-08

    Beam Instrumentation Development System (BIDS) is a collection of common support libraries and modules developed during a series of Low-Level Radio Frequency (LLRF) control and timing/synchronization projects. BIDS includes a collection of Hardware Description Language (HDL) libraries and software libraries. The BIDS can be used for the development of any FPGA-based system, such as LLRF controllers. HDL code in this library is generic and supports common Digital Signal Processing (DSP) functions, FPGA-specific drivers (high-speed serial link wrappers, clock generation, etc.), ADC/DAC drivers, Ethernet MAC implementation, etc.

  3. Diamonds for beam instrumentation

    SciTech Connect

    Griesmayer, Erich

    2013-04-19

    Diamond is perhaps the most versatile, efficient and radiation tolerant material available for use in beam detectors with a correspondingly wide range of applications in beam instrumentation. Numerous practical applications have demonstrated and exploited the sensitivity of diamond to charged particles, photons and neutrons. In this paper, a brief description of a generic diamond detector is given and the interaction of the CVD diamond detector material with protons, electrons, photons and neutrons is presented. Latest results of the interaction of sCVD diamond with 14 MeV mono-energetic neutrons are shown.

  4. Instrument Quality Control.

    PubMed

    Jayakody, Chatura; Hull-Ryde, Emily A

    2016-01-01

    Well-defined quality control (QC) processes are used to determine whether a certain procedure or action conforms to a widely accepted standard and/or set of guidelines, and are important components of any laboratory quality assurance program (Popa-Burke et al., J Biomol Screen 14: 1017-1030, 2009). In this chapter, we describe QC procedures useful for monitoring the accuracy and precision of laboratory instrumentation, most notably automated liquid dispensers. Two techniques, gravimetric QC and photometric QC, are highlighted in this chapter. When used together, these simple techniques provide a robust process for evaluating liquid handler accuracy and precision, and critically underpin high-quality research programs.

  5. Diaphragms for Aeronautic Instruments

    NASA Technical Reports Server (NTRS)

    Hersey, M D

    1924-01-01

    This investigation was carried out at the request of the National Advisory Committee for Aeronautics and comprises an outline of historical developments and theoretical principles, together with a discussion of expedients for making the most effective use of existing diaphragms actuated by the hydrostatic pressure form an essential element of a great variety instruments for aeronautic and other technical purposes. The various physical data needed as a foundation for rational methods of diaphragm design have not, however, been available hitherto except in the most fragmentary form.

  6. Tactile Instrument for Aviation

    DTIC Science & Technology

    2000-07-30

    of cat sensory development (from Turner and Bateson , 1988).............................14 Figure 12: Helmet mounted tactile display (from Morag, 1987...Matthews and Gregory , 1999; Braithwaite, Groh, and Alvarez, 1997). The cost of spatial disorientation mishaps also includes mission failure, the...3 4 5 6 7 8 9 10 11 12 Conception Gestation Birth Figure 11: Ontology of cat sensory development (from Turner and Bateson , 1988). 3

  7. A new innovative instrument for space plasma instrumentation

    NASA Technical Reports Server (NTRS)

    Torbert, Roy B.

    1993-01-01

    The Faraday Ring Ammeter was the subject of this grant for a new innovative instrument for space plasma instrumentation. This report summarizes our progress in this work. Briefly, we have conducted an intensive series of experiments and trials over three years, testing some five configurations of the instrument to measure currents, resulting in two Ph.D. theses, supported by this grant, and two flight configurations of the instrument. The first flight would have been on a NASA-Air Force collaborative sounding rocket, but was not flown because of instrumental difficulties. The second has been successfully integrated on the NASA Auroral Turbulence payload which is to be launched in February, 1994.

  8. SAFARI optical system architecture and design concept

    NASA Astrophysics Data System (ADS)

    Pastor, Carmen; Jellema, Willem; Zuluaga-Ramírez, Pablo; Arrazola, David; Fernández-Rodriguez, M.; Belenguer, Tomás.; González Fernández, Luis M.; Audley, Michael D.; Evers, Jaap; Eggens, Martin; Torres Redondo, Josefina; Najarro, Francisco; Roelfsema, Peter

    2016-07-01

    SpicA FAR infrared Instrument, SAFARI, is one of the instruments planned for the SPICA mission. The SPICA mission is the next great leap forward in space-based far-infrared astronomy and will study the evolution of galaxies, stars and planetary systems. SPICA will utilize a deeply cooled 2.5m-class telescope, provided by European industry, to realize zodiacal background limited performance, and high spatial resolution. The instrument SAFARI is a cryogenic grating-based point source spectrometer working in the wavelength domain 34 to 230 μm, providing spectral resolving power from 300 to at least 2000. The instrument shall provide low and high resolution spectroscopy in four spectral bands. Low Resolution mode is the native instrument mode, while the high Resolution mode is achieved by means of a Martin-Pupplet interferometer. The optical system is all-reflective and consists of three main modules; an input optics module, followed by the Band and Mode Distributing Optics and the grating Modules. The instrument utilizes Nyquist sampled filled linear arrays of very sensitive TES detectors. The work presented in this paper describes the optical design architecture and design concept compatible with the current instrument performance and volume design drivers.

  9. Workshop on advanced technologies for planetary instruments

    NASA Technical Reports Server (NTRS)

    Appleby, J. (Editor)

    1993-01-01

    NASA's robotic solar system exploration program requires a new generation of science instruments. Design concepts are now judged against stringent mass, power, and size constraints--yet future instruments must be highly capable, reliable, and, in some applications, they must operate for many years. The most important single constraint, however, is cost: new instruments must be developed in a tightly controlled design-to-cost environment. Technical innovation is the key to success and will enable the sophisticated measurements needed for future scientific exploration. As a fundamental benefit, the incorporation of breakthrough technologies in planetary flight hardware will contribute to U.S. industrial competitiveness and will strengthen the U.S. technology base. The Workshop on Advanced Technologies for Planetary Instruments was conceived to address these challenges, to provide an open forum in which the NASA and DoD space communities could become better acquainted at the working level, and to assess future collaborative efforts. Over 300 space scientists and engineers participated in the two-and-a-half-day meeting held April 28-30, 1993, in Fairfax, Virginia. It was jointly sponsored by NASA's Solar System Exploration Division (SSED), within the Office of Space Science (OSS); NASA's Office of Advanced Concepts and Technology (OACT); DoD's Strategic Defense Initiative Organization (SDIO), now called the Ballistic Missile Defense Organization (BMDO); and the Lunar and Planetary Institute (LPI). The meeting included invited oral and contributed poster presentations, working group sessions in four sub-disciplines, and a wrap-up panel discussion. On the first day, the planetary science community described instrumentation needed for missions that may go into development during the next 5 to 10 years. Most of the second day was set aside for the DoD community to inform their counterparts in planetary science about their interests and capabilities, and to describe the

  10. Instruments for Water Quality Measurements

    ERIC Educational Resources Information Center

    Phillips, Sidney L.; Mack, Dick A.

    1975-01-01

    This discussion gives a general picture of the instrumentation available or being developed for measuring the four major categories of water pollutants: metals, nutrients, pesticides and oxygen demand. The instruments are classified as follows: manually operated laboratory analyzers, automated laboratory instrumentation, manual field monitors, and…

  11. Electronic Instruments -- Played or Used?

    ERIC Educational Resources Information Center

    Ulveland, Randall Dana

    1998-01-01

    Compares the experience of playing an acoustic instrument to an electronic instrument by analyzing the constant structures and relationships between the experiences. Concludes that students' understanding of the physical experience of making music increases when experiences with acoustic instruments precede their exposure to electronic…

  12. Spacecraft instrument calibration and stability

    NASA Technical Reports Server (NTRS)

    Gille, J. C.; Feldman, P.; Hudson, R.; Lean, J.; Madden, R.; Mcmaster, L.; Mount, G.; Rottman, G.; Simon, P. C.

    1989-01-01

    The following topics are covered: instrument degradation; the Solar Backscatter Ultraviolet (SBUV) Experiment; the Total Ozone Mapping Spectrometer (TOMS); the Stratospheric Aerosol and Gas Experiment 1 (SAGE-1) and SAGE-2 instruments; the Solar Mesosphere Explorer (SME) UV ozone and near infrared airglow instruments; and the Limb Infrared Monitor of the Stratosphere (LIMS).

  13. 14 CFR 1260.12 - Choice of award instrument.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... international scientific collaboration. NASA policy on performing research with foreign organizations on a no... grant or cooperative agreement. (ii) The Space Act Agreement(s) or underlying international agreement... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Choice of award instrument. 1260.12...

  14. 14 CFR 1260.12 - Choice of award instrument.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... international scientific collaboration. NASA policy on performing research with foreign organizations on a no... grant or cooperative agreement. (ii) The Space Act Agreement(s) or underlying international agreement... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Choice of award instrument. 1260.12...

  15. 78 FR 52974 - Keithley Instruments; Solon, Ohio; Notice of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... Employment and Training Administration Keithley Instruments; Solon, Ohio; Notice of Investigation Pursuant to Section 221 of the Trade Act of 1974, as amended, an investigation was initiated on June 25, 2013 in... of Investigation on the basis that the subject worker group was eligible to apply for TAA under...

  16. 10 CFR 600.5 - Selection of award instrument.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... cooperative agreements, DOE has the right to intervene in the conduct or performance of project activities for... assistance shall be made pursuant to the Federal Grant and Cooperative Agreement Act as codified at 31 U.S.C. 6301-6306. A grant or cooperative agreement shall be the appropriate instrument, in accordance...

  17. 10 CFR 600.5 - Selection of award instrument.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... cooperative agreements, DOE has the right to intervene in the conduct or performance of project activities for... assistance shall be made pursuant to the Federal Grant and Cooperative Agreement Act as codified at 31 U.S.C. 6301-6306. A grant or cooperative agreement shall be the appropriate instrument, in accordance...

  18. 10 CFR 600.5 - Selection of award instrument.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... cooperative agreements, DOE has the right to intervene in the conduct or performance of project activities for... assistance shall be made pursuant to the Federal Grant and Cooperative Agreement Act as codified at 31 U.S.C. 6301-6306. A grant or cooperative agreement shall be the appropriate instrument, in accordance...

  19. 10 CFR 600.5 - Selection of award instrument.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... cooperative agreements, DOE has the right to intervene in the conduct or performance of project activities for... assistance shall be made pursuant to the Federal Grant and Cooperative Agreement Act as codified at 31 U.S.C. 6301-6306. A grant or cooperative agreement shall be the appropriate instrument, in accordance...

  20. Safety Signals as Instrumental Reinforcers during Free-Operant Avoidance

    ERIC Educational Resources Information Center

    Fernando, Anushka B. P.; Urcelay, Gonzalo P.; Mar, Adam C.; Dickinson, Anthony; Robbins, Trevor W.

    2014-01-01

    Safety signals provide "relief" through predicting the absence of an aversive event. At issue is whether these signals also act as instrumental reinforcers. Four experiments were conducted using a free-operant lever-press avoidance paradigm in which each press avoided shock and was followed by the presentation of a 5-sec auditory safety…

  1. Concepts in Change

    ERIC Educational Resources Information Center

    Rusanen, Anna-Mari; Poyhonen, Samuli

    2013-01-01

    In this article we focus on the concept of concept in conceptual change. We argue that (1) theories of higher learning must often employ two different notions of concept that should not be conflated: psychological and scientific concepts. The usages for these two notions are partly distinct and thus straightforward identification between them is…

  2. Concepts in Communication.

    ERIC Educational Resources Information Center

    Trent, Jimmie D.; And Others

    This book is a collection of ideas and information, gathered from various sources, which should aid college students in formulating their own methods of improving communication. The four main sections of the book are "Concepts of Communication,""Concepts of Source and Message,""Concepts of Communication Criticism," and "Concepts of Interpersonal…

  3. An Instrumental Innovation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Think of guitars and you think of rock and country music, or the vigorous rhythms of the gypsy flamenco, or perhaps the classical strumming of a Segovia. About the last thing you would associate with guitars is aerospace technology. Yet there is a connection. A whole family of quality guitars is an outgrowth of helicopter rotor research conducted for the military services and NASA by an aerospace contractor. These musical spinoffs, commercially available and rapidly gaining in popularity, are the Ovation guitar line, manufactured by Ovation Instruments, Inc., Bloomfield, Connecticut. Ovation Instruments is a subsidiary of Kaman Corporation, a diversified company originally formed to develop and build helicopters. A helicopter's rotor system, with thousands of moving parts, is highly susceptible to vibration. For rotor efficiency, vibration must be "dampened," or reduced. Like other helicopter builders, Kaman Corporation spent years of research toward that end. The technology thus developed, together with the availability of staff experts in vibration engineering, sparked an idea in the mind of the company's president and founder, Charles H. Karnan. A guitarist of professional caliber, Kaman reasoned that vibration-dampening technology could be turned around to enhance vibration and thereby produce a guitar with superior sound.

  4. The QUIET Instrument

    NASA Technical Reports Server (NTRS)

    Gaier, T.; Kangaslahti, P.; Lawrence, C. R.; Leitch, E. M.; Wollack, E. J.

    2012-01-01

    The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales ( approx 1 deg.) . Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4 m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 micro Ks(exp 1/2)) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0.1. The 84-element W-band polarimeter array has a sensitivity of 87 micro Ks(exp 1/2) at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0.01 (QUIET Collaboration 2012) The two arrays together cover multipoles in the range l approximately equals 25-975 . These are the largest HEMT-ba.sed arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument,

  5. Optomechanical medical devices (instruments)

    NASA Astrophysics Data System (ADS)

    Reiss, Roger S.

    2004-03-01

    Optomechanical Medical Devices (Instruments) use lightwaves (UV, Visible, IR) for one or more of the following functions; to observe, to measure, to record, to test (align) and or to cut/repair. The evolution of Optomechanical Medical Devices probably started when the first torch or candle or petrochemical lamp used a polished reflector (possibly with a concave configuration) to examine a part of a patient's body (possibly a wound).Once the glass lens was invented, light sources of any type could be forcussed to increase illuminating power on a selected area. Medical Devices have come a great distance since these early items. Skipping across time to three rather significant inventions and advancements, we are well into the era of Laser and Fiber Optics and Advanced Photodetectors, all being integrated into Medical Devices. The most notable fields have been Ophthalmology, Dermatology, and Surgery. All three fields have been able to incorporate both the use of the Laser and the use of Fiber Optics (and at times the use of Photodetectors), into a single device (instrument). Historical: Philipp Bozzini (a Doctor, maybe) in the early 1800's used a hollow tube (tube material not identified) to project the light of a candle through the tube to view a patient's 'what ever'. Only Philipp, the patient and G-d knows what was being viewed. This ws the first recorded information on what could be considered the very first 'Endoscope examination'

  6. Far ultraviolet instrument technology

    NASA Astrophysics Data System (ADS)

    Paxton, Larry J.; Schaefer, Robert K.; Zhang, Yongliang; Kil, Hyosub

    2017-02-01

    The far ultraviolet (FUV) spectral range (from about 115 nm to 180 nm) is one of the most useful spectral regions for characterizing the upper atmosphere (thermosphere and ionosphere). The principal advantages are that there are FUV signatures of the major constituents of the upper atmosphere as well as the signatures of the high-latitude energy inputs. Because of the absorption by thermospheric O2, the FUV signatures are seen against a "black" background, i.e., one that is not affected by ground albedo or clouds and, as a consequence, can make useful observations of the aurora during the day or when the Moon is above the horizon. In this paper we discuss the uses of FUV remote sensing, summarize the various techniques, and discuss the technological challenges. Our focus is on a particular type of FUV instrument, the scanning imaging spectrograph or SIS: an instrument exemplified by the Defense Meteorological Satellite Program Special Sensor Ultraviolet Imager and Thermosphere Ionosphere Mesosphere Energetics and Dynamics Global Ultraviolet Imager. The SIS combines spatial imaging of the disk with limb profiles as well as spectral information at each point in the scan.

  7. The QUIET Instrument

    SciTech Connect

    Bischoff, C.; et al.

    2012-07-01

    The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales ({approx}1{sup o}). Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 {mu}Ks{sup 1/2}) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0:1. The 84-element W-band polarimeter array has a sensitivity of 87 {mu}Ks{sup 1/2} at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0:01. The two arrays together cover multipoles in the range {ell} {approx} 25 -- 975. These are the largest HEMT-based arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument.

  8. Evaluating the Content and Response Process Validity of Data from the Chemical Concepts Inventory

    ERIC Educational Resources Information Center

    Schwartz, Paul; Barbera, Jack

    2014-01-01

    Data produced by psychometric instruments are often used to inform understanding about a certain population's knowledge of ideas or perspectives about specific topics. Concept inventories are an example of psychometric instruments used to probe students' content knowledge within a defined framework. Concept inventories have been used as…

  9. A PILOT STUDY IN ADVANCED INSTRUMENTATION FOR TECHNICAL INSTRUCTORS.

    ERIC Educational Resources Information Center

    LARSON, MILTON E.; O'NEILL, JOHN J.

    A 2-WEEK SUMMER INSTITUTE TO PROVIDE INSERVICE TEACHERS WITH CURRENT INFORMATION ON THE PRACTICES AND CONCEPTS OF INDUSTRIAL INSTRUMENTATION WAS CONDUCTED AT RUTGERS UNIVERSITY. THE CURRICULUM WAS FOCUSED ON POST-HIGH SCHOOL, 2-YEAR INSTITUTIONAL NEEDS, WITH ADAPTATIONS DRAWN FOR THE HIGH SCHOOL LEVEL. A LEARNING EVALUATION OF PARTICIPATING…

  10. HEAO-A Observatory Description. [experimental design and instrumentation

    NASA Technical Reports Server (NTRS)

    Dailey, C.; Parnell, T. A.

    1977-01-01

    The High Energy Astronomy Observatory Program is briefly described to introduce guest observers to the HEAO-A mission. Topics discussed include spacecraft subsystems, scientific instrumentation, and the mission operations concept. Scientific participants such as principal investigators and co-investigators are listed.

  11. SHIM-Free Breadboard Instrument Design, Integration, and First Measurements

    DTIC Science & Technology

    2005-11-23

    The concept is similar to a Michelson interferometer with the return mirrors replaced by fixed, tilted diffraction gratings. Figure 1 shows the basic...Cardon, R.R. Conway, C.M. Brown, J. Wimperis, "Robust monolithic ultraviolet interferometer for the SHIMMER instrument on STPSat-l," Applied Optics, 42

  12. Incorporating Basic Optical Microscopy in the Instrumental Analysis Laboratory

    ERIC Educational Resources Information Center

    Flowers, Paul A.

    2011-01-01

    A simple and versatile approach to incorporating basic optical microscopy in the undergraduate instrumental analysis laboratory is described. Attaching a miniature CCD spectrometer to the video port of a standard compound microscope yields a visible microspectrophotometer suitable for student investigations of fundamental spectrometry concepts,…

  13. Instrumentation for Reflectance Spectroscopy and Microspectroscopy with Application to Astrobiology

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; Blaney, Diana L.; Green, Robert O.

    2008-01-01

    We present instrument concepts for in-situ reflectance spectroscopy over a spatial resolution range from several meters to tens of micrometers. These have been adapted to the low mass and power requirements of rover or similar platforms. Described are a miniaturized imaging spectrometer for rover mast, a combined mast and arm point spectrometer, and an imaging microspectrometer for the rover arm.

  14. Information as An Instrument and a Source of National Power

    DTIC Science & Technology

    2003-01-01

    events. Information’s History The concept of information as a source or instrument of power is not new. Leaders have used information as a tool since...economic prowess and advantages from our lVad in information technology. However, these advantages alone will not elevate information to equal status with

  15. Conceptualizing Conceptual Teaching: Practical Strategies for Large Instrumental Ensembles

    ERIC Educational Resources Information Center

    Tan, Leonard

    2016-01-01

    Half a century ago, calls had already been made for instrumental ensemble directors to move beyond performance to include the teaching of musical concepts in the rehearsal hall. Relatively recent research, however, suggests that conceptual teaching remains relatively infrequent during rehearsals. Given the importance of teaching for long-term…

  16. Quantum Measurement Act as a Speech Act

    NASA Astrophysics Data System (ADS)

    Schneider, Jean

    2005-10-01

    I show that the quantum measurement problem can be understood if the measurement is seen as a "speech act" in the sense of modern language theory. The reduction of the state vector is in this perspective an intersubjective -- or, better, a-subjective -- symbolic process. I then give some perspectives on applications to the "Mind-Body Problem".

  17. Instrument specificity in experienced musicians.

    PubMed

    Drost, Ulrich C; Rieger, Martina; Prinz, Wolfgang

    2007-04-01

    Previous studies have shown that experienced pianists have acquired integrated action-effect (A-E) associations. In the present study, we were interested in how specific these associations are for the own instrument by investigating pianists and guitarists. A-E associations were examined by testing whether the perception of a "potential" action-effect has an influence on actions. Participants played chords on their instrument in response to visual stimuli, while they were presented task-irrelevant auditory distractors (congruent or incongruent) in varying instrument timbre. In Experiment 1, pianists exhibited an interference effect with timbres of their own instrument category (keyboard instruments: piano and organ). In Experiment 2 guitarists showed an interference effect only with guitar timbre. Thus, integrated A-E associations primarily seem to consist of a specific component on a sensory-motor level involving the own instrument. Additionally, categorical knowledge about how an instrument is played seems to be involved.

  18. Astronomical Instrumentation System Markup Language

    NASA Astrophysics Data System (ADS)

    Goldbaum, Jesse M.

    2016-05-01

    The Astronomical Instrumentation System Markup Language (AISML) is an Extensible Markup Language (XML) based file format for maintaining and exchanging information about astronomical instrumentation. The factors behind the need for an AISML are first discussed followed by the reasons why XML was chosen as the format. Next it's shown how XML also provides the framework for a more precise definition of an astronomical instrument and how these instruments can be combined to form an Astronomical Instrumentation System (AIS). AISML files for several instruments as well as one for a sample AIS are provided. The files demonstrate how AISML can be utilized for various tasks from web page generation and programming interface to instrument maintenance and quality management. The advantages of widespread adoption of AISML are discussed.

  19. 75 FR 12175 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... instrument will be used to investigate material and biological, micro and nano-sized phenomena from a variety... Section 6(c) of the Educational, Scientific and Cultural Materials Importation Act of 1966 (Pub. L....

  20. Acting green elicits a literal warm glow

    NASA Astrophysics Data System (ADS)

    Taufik, Danny; Bolderdijk, Jan Willem; Steg, Linda

    2015-01-01

    Environmental policies are often based on the assumption that people only act environmentally friendly if some extrinsic reward is implicated, usually money. We argue that people might also be motivated by intrinsic rewards: doing the right thing (such as acting environmentally friendly) elicits psychological rewards in the form of positive feelings, a phenomenon known as warm glow. Given the fact that people's psychological state may affect their thermal state, we expected that this warm glow could express itself quite literally: people who act environmentally friendly may perceive the temperature to be higher. In two studies, we found that people who learned they acted environmentally friendly perceived a higher temperature than people who learned they acted environmentally unfriendly. The underlying psychological mechanism pertains to the self-concept: learning you acted environmentally friendly signals to yourself that you are a good person. Together, our studies show that acting environmentally friendly can be psychologically rewarding, suggesting that appealing to intrinsic rewards can be an alternative way to encourage pro-environmental actions.

  1. Concepts and approaches to in situ luminescence dating of Martian sediments.

    PubMed

    McKeever, S W S; Banerjee, D; Blair, M; Clifford, S M; Clowdsley, M S; Kim, S S; Lamothe, M; Lepper, K; Leuschen, M; McKeever, K J; Prather, M; Rowland, A; Reust, D; Sears, D W G; Wilson, J W

    2003-01-01

    In this paper we present the concept of a robotic instrument for in situ luminescence dating of near-surface sediments on Mars. The scientific objectives and advantages to be gained from the development of such an instrument are described, and the challenges presented by the Mars surface environment to the design and operation of the instrument are outlined.

  2. Instrumentation for measuring speech privacy in rooms

    NASA Astrophysics Data System (ADS)

    Horrall, Thomas; Pirn, Rein; Markham, Ben

    2003-10-01

    Federal legislation pertaining to oral privacy in healthcare and financial services industries has increased the need for a convenient and economical way to document speech privacy conditions in offices, medical examination rooms, and certain other workspaces. This legislation is embodied in the Health Insurance Portability and Accountability Act (HIPAA) and Gramm-Leach-Bliley Act (GLBA). Both laws require that reasonable measures be put in place to safeguard the oral privacy of patients and clients. While techniques for privacy documentation are known within the acoustical consulting community, it is unlikely that community alone has the capacity to provide the surveys needed to evaluate acoustical conditions and demonstrate compliance with the legislation. A portable computer with integrated soundboard and a suitable amplified loudspeaker and test microphone are all that are needed to perform in situ measurements of articulation index or other accepted indices of speech privacy. Along with modest training, such instrumentation allows technicians to survey a large number of sites economically. Cost-effective components are shown that can meet the requirements for testing in most common environments where oral privacy is likely to be required. Example cases are presented to demonstrate the feasibility of such instrumentation.

  3. Trusting in the New NHS: instrumental versus communicative action.

    PubMed

    Brown, Patrick R

    2008-04-01

    Recent reforms within the UK National Health Service, particularly the introduction of clinical governance, have been enacted with the apparent aim of rebuilding patient trust. This paper analyses the approach taken by policy makers, arguing that it is based very much on an instrumental conception of trust. The assumptions and limitations of this model are discussed and in so doing, a communicative understanding of trust is proposed as an alternative. It is argued that the instrumental rationality and institutional focus inherent to instrumental trust neglect the importance of the communication between patient and medical professional and its affective dimensions. Communicative trust goes beyond a mere cognitive appreciation of the system and rather is dependent on the qualitative interaction at the access point, where the patient comes to believe that the communicative rationality of their best interests is mirrored by the professional's instrumental rationality. Whilst recent challenges to the confidence of patients in professionals and medical knowledge make some approximation of an ideal speech situation more imperative than previously, the application of an instrumental concept of trust in the NHS makes such interactions less likely, as well as facilitating a divergence between instrumental and communicative rationality in healthcare provision.

  4. Instrumented Pipeline Initiative

    SciTech Connect

    Thomas Piro; Michael Ream

    2010-07-31

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  5. NEUTRONIC REACTOR CORE INSTRUMENT

    DOEpatents

    Mims, L.S.

    1961-08-22

    A multi-purpose instrument for measuring neutron flux, coolant flow rate, and coolant temperature in a nuclear reactor is described. The device consists essentially of a hollow thimble containing a heat conducting element protruding from the inner wall, the element containing on its innermost end an amount of fissionsble materinl to function as a heat source when subjected to neutron flux irradiation. Thermocouple type temperature sensing means are placed on the heat conducting element adjacent the fissionable material and at a point spaced therefrom, and at a point on the thimble which is in contact with the coolant fluid. The temperature differentials measured between the thermocouples are determinative of the neutron flux, coolant flow, and temperature being measured. The device may be utilized as a probe or may be incorporated in a reactor core. (AE C)

  6. Sentinel-1 Instrument Overview

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Torres, Ramon; Geudtner, Dirk; Brown, Michael; Deghaye, Patrick; Navas-Traver, Ignacio; Ostergaard, Allan; Rommen, Bjorn; Floury, Nicolas; Davidson, Malcolm

    2013-03-01

    The forthcoming European Space Agency (ESA) Sentinel-1 (S-1) C-band SAR constellation will provide continuous all-weather day/night global coverage, with six days exact repetition time (near daily coverage over Europe and Canada) and with radar data delivery within 3 to 24 hours. These features open new possibilities for operational maritime services. The Sentinel-1 space segment has been designed and is being built by an industrial consortium with Thales Alenia Space Italia as prime contractor and EADS Astrium GmbH as C-SAR instrument responsible. It is expected that Sentinel-1A be launched in 2013. This paper will provide an overview of the Sentinel-1 system, the status and characteristics of the technical implementation. The key elements of the system supporting the maritime user community will be highlighted.

  7. Instrumented Architectural Simulation System

    NASA Technical Reports Server (NTRS)

    Delagi, B. A.; Saraiya, N.; Nishimura, S.; Byrd, G.

    1987-01-01

    Simulation of systems at an architectural level can offer an effective way to study critical design choices if (1) the performance of the simulator is adequate to examine designs executing significant code bodies, not just toy problems or small application fragements, (2) the details of the simulation include the critical details of the design, (3) the view of the design presented by the simulator instrumentation leads to useful insights on the problems with the design, and (4) there is enough flexibility in the simulation system so that the asking of unplanned questions is not suppressed by the weight of the mechanics involved in making changes either in the design or its measurement. A simulation system with these goals is described together with the approach to its implementation. Its application to the study of a particular class of multiprocessor hardware system architectures is illustrated.

  8. Portable musical instrument amplifier

    SciTech Connect

    Christian, David E.

    1990-07-24

    The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.

  9. TRU VU rig instrumentation

    SciTech Connect

    Boone, S.G.

    1993-02-15

    TRU VU was developed in response to the growing need for real time rig instrumentation that interface various rig systems into a common database. TRU VU is a WITS compatible (Wellsite Information Transfer Standard) system that logs drilling data and MWD data into a common database. Real time data as well as historical data can be viewed from up to eight locations on the rig or from numerous locations in communication with the rig. The TRU VU well monitoring package can be configured to operate manned or unmanned depending on the specific requirements of the operator or drilling contractor. TRU VU does not require a drilling recorder and is totally independent of all rig systems. For example, depth is monitored directly from the draw works and can monitor pipe movement while drilling or tripping. Weight on bit is zeroed automatically on each connection and does not require manual input.

  10. Ka-band MMIC array system for ACTS aeronautical terminal experiment (Aero-X)

    NASA Technical Reports Server (NTRS)

    Raquet, Charles A.; Zakrajsek, Robert J.; Lee, Richard Q.; Andro, Monty; Turtle, John P.

    1995-01-01

    During the summer of 1994, the Advanced Communication Technology Satellite (ACTS) Aeronautical Terminal Experiment (Aero-X) was successfully completed by the NASA Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL). 4.8 and 9.6 Kbps duplex voice links were established between the LeRC Learjet and the ACTS Link Evaluation Terminal (LET) in Cleveland, Ohio, via the ACTS. The antenna system used in this demonstration was developed by LeRC and featured LeRC and US Air Force experimental arrays using GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The antenna system consisted of three arrays mounted inside the LeRC Learjet, pointing out through the windows. An open loop tracking controller developed by LeRC used information from the aircraft position and attitude sensors to automatically steer the arrays toward ACTS during flight JPL ACTS Mobile Terminal (AMT) system hardware was used as transceivers both on the aircraft and at the LET. The single 32 element MMIC transmit array developed by NASA/LeRC and Texas Instruments has an EIRP of 23.4 dBW at boresight. The two 20 GHz MMIC receive arrays were developed in a cooperative effort with the USAF Rome Laboratory/Electronic System Center, taking advantage of existing USAF array development contracts with Boeing and Martin Marietta. The Boeing array has 23 elements and a G/T of 16/6 db/degK at boresight. The Martin Marietta array has 16 elements and a G/T of 16.1 db/degK at boresight. The three proof-of-concept arrays, the array control system and their integration and operation in the Learjet for Aero-X are described.

  11. Incidence of instrument separation using LightSpeed rotary instruments.

    PubMed

    Knowles, Kenneth I; Hammond, Nathan B; Biggs, Stephen G; Ibarrola, Jose L

    2006-01-01

    The use of nickel-titanium rotary instrument systems has gained popularity over the past 10 years. One of these instrument systems is the LightSpeed (LightSpeed Technology, Inc, San Antonio, TX). One drawback for all nickel-titanium rotary instruments is the incidence of instrument separation. The purpose of this study was to evaluate the incidence of nonretrievable instrument separation using the LightSpeed system in a clinical setting. A total of 3543 canals were treated over a 24 month period and during that time, 46 LightSpeed instruments were separated and found to be nonretrievable, resulting in a separation rate of 1.30%. This rate was lower than previous reported studies.

  12. Instrumentation and robotic image processing using top-down model control

    NASA Technical Reports Server (NTRS)

    Stark, Lawrence; Mills, Barbara; Nguyen, An H.; Ngo, Huy X.

    1990-01-01

    A top-down image processing scheme is described. A three-dimensional model of a robotic working environment, with robot manipulators, workpieces, cameras, and on-the-scene visual enhancements is employed to control and direct the image processing, so that rapid, robust algorithms act in an efficient manner to continually update the model. Only the model parameters are communicated, so that savings in bandwidth are achieved. This image compression by modeling is especially important for control of space telerobotics. The background for this scheme lies in an hypothesis of human vision put forward by the senior author and colleagues almost 20 years ago - the Scanpath Theory. Evidence was obtained that repetitive sequences of saccadic eye movements, the scanpath, acted as the checking phase of visual pattern recognition. Further evidence was obtained that the scanpaths were apparently generated by a cognitive model and not directly by the visual image. This top-down theory of human vision was generalized in some sense to the frame in artificial intelligence. Another source of the concept arose from bioengineering instrumentation for measuring the pupil and eye movements with infrared video cameras and special-purpose hardware.

  13. Gran Telescopio Canarias Commissioning Instrument Optomechanics

    NASA Astrophysics Data System (ADS)

    Espejo, Carlos; Cuevas, Salvador; Sanchez, Beatriz; Flores, Ruben; Lara, Gerardo; Farah, Alejandro; Godoy, Javier; Bringas, Vicente; Chavoya, Armando; Dorantes, Ariel; Manuel Montoya, Juan; Rangel, Juan Carlos; Devaney, Nicholas; Castro, Javier; Cavaller, Luis

    2003-02-01

    Under a contract with the GRANTECAN, the Commissioning Instrument is a project developed by a team of Mexican scientists and engineers from the Instrumentation Department of the Astronomy Institute at the UNAM and the CIDESI Engineering Center. This paper will discuss in some detail the final Commissioning Instrument (CI) mechanical design and fabrication. We will also explain the error budget and the barrels design as well as their thermal compensation. The optical design and the control system are discussed in other papers. The CI will just act as a diagnostic tool for image quality verification during the GTC Commissioning Phase. This phase is a quality control process for achieving, verifying, and documenting the performance of each GTC sub-systems. This is a very important step for the telescope life. It will begin on starting day and will last for a year. The CI project started in December 2000. The critical design phase was reviewed in July 2001. The CI manufacturing is currently in progress and most parts are finished. We are now approaching the factory acceptance stage.

  14. 21 CFR 882.4525 - Microsurgical instrument.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4525 Microsurgical instrument. (a) Identification. A microsurgical instrument is a nonpowered surgical instrument used in neurological...

  15. 21 CFR 882.4525 - Microsurgical instrument.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4525 Microsurgical instrument. (a) Identification. A microsurgical instrument is a nonpowered surgical instrument used in neurological...

  16. 21 CFR 882.4525 - Microsurgical instrument.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4525 Microsurgical instrument. (a) Identification. A microsurgical instrument is a nonpowered surgical instrument used in neurological...

  17. Instrumentation and control systems, equipment location; instrumentation and control building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Instrumentation and control systems, equipment location; instrumentation and control building, instrumentation room, bays and console plan. Specifications No. Eng-04-353-55-72; drawing no. 60-09-12; sheet 110 of 148; file no. 1321/61. Stamped: Record drawing - as constructed. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA

  18. Pavlovian to instrumental transfer: a neurobehavioural perspective.

    PubMed

    Holmes, Nathan M; Marchand, Alain R; Coutureau, Etienne

    2010-07-01

    Pavlovian-to-instrumental transfer (PIT) is a key concept in developing our understanding of cue-controlled behaviours. Here we have reviewed the literature on behavioural and neurobiological factors that influence PIT. Meta-analyses of the data for individual groups in PIT studies revealed that PIT is related to both the order and amounts of instrumental and Pavlovian training, and that it is critically determined by competition between instrumental and Pavlovian responses. We directly addressed the role of response competition in PIT in two experiments which showed that extensive Pavlovian conditioning produced more Pavlovian magazine visits and weaker PIT than moderate Pavlovian conditioning (Experiment 1); and that PIT lost after extensive Pavlovian conditioning was restored by Pavlovian extinction training (Experiment 2). These findings confirm that response competition is indeed an important determinant of PIT. This has significant implications for lesion and inactivation studies that assess the neurobiological substrates of PIT, as well as attempts to demonstrate PIT in the drug self-administration paradigm where the effect is yet to be reliably shown.

  19. Analytic Method for Computing Instrument Pointing Jitter

    NASA Technical Reports Server (NTRS)

    Bayard, David

    2003-01-01

    A new method of calculating the root-mean-square (rms) pointing jitter of a scientific instrument (e.g., a camera, radar antenna, or telescope) is introduced based on a state-space concept. In comparison with the prior method of calculating the rms pointing jitter, the present method involves significantly less computation. The rms pointing jitter of an instrument (the square root of the jitter variance shown in the figure) is an important physical quantity which impacts the design of the instrument, its actuators, controls, sensory components, and sensor- output-sampling circuitry. Using the Sirlin, San Martin, and Lucke definition of pointing jitter, the prior method of computing the rms pointing jitter involves a frequency-domain integral of a rational polynomial multiplied by a transcendental weighting function, necessitating the use of numerical-integration techniques. In practice, numerical integration complicates the problem of calculating the rms pointing error. In contrast, the state-space method provides exact analytic expressions that can be evaluated without numerical integration.

  20. ACT and College Success

    ERIC Educational Resources Information Center

    Bleyaert, Barbara

    2010-01-01

    What is the relationship between ACT scores and success in college? For decades, admissions policies in colleges and universities across the country have required applicants to submit scores from a college entrance exam, most typically the ACT (American College Testing) or SAT (Scholastic Aptitude Test). This requirement suggests that high school…

  1. Clean Air Act Text

    EPA Pesticide Factsheets

    The Clean Air Act is the law that defines EPA's responsibilities for protecting and improving the nation's air quality and the stratospheric ozone layer. The last major change in the law, the Clean Air Act Amendments of 1990, enacted in 1990 by Congress.

  2. The use of two-dimensional correlation spectroscopy to characterize instrumental differences

    NASA Astrophysics Data System (ADS)

    Barton, F. E.; de Haseth, James A.; Himmelsbach, D. S.

    2006-11-01

    In looking for a way to examine the utility of commercial instrumentation capable of performing the measurement of stickiness in cotton, a means of evaluating the way these nine instruments performed against the research grade spectrometer was required. While all of the instruments had the potential analytical capability of measuring sticky cotton, some were more expensive than the industry would afford and would require even more costly hardening to be used in a cotton gin or spinning plant and some were concept commercial instruments without published performance data. Regardless, the calibration would need to be transferred to any of these new instruments. While there are existing algorithms to do this, it is imperative to understand the differences between instrument platforms. Two-dimensional correlation spectroscopy (2DCOS) has been used to characterize instrumental differences which will affect performance, stability and reliability. The 2DCOS programs were re-written in MATLAB ver. 6.51 to get on a common format with the newer instruments and the special purpose instruments which utilize MATLAB for data functions. The instruments used in the complete calibration studies of sticky cotton and those that we examined as possible rugged small instruments were evaluated for their instrument function parameters. The possibilities for using 2DCOS for instrument characterization will be explored for the small instruments.

  3. Americans With Disabilities Act.

    PubMed

    Walk, E E; Ahn, H C; Lampkin, P M; Nabizadeh, S A; Edlich, R F

    1993-01-01

    The Americans with Disabilities Act gives all Americans with disabilities a chance to achieve the same quality of life that individuals without disabilities enjoy. This act prohibits discrimination on the basis of disabilities in employment, public services, privately operated public accommodations, services, and telecommunications. The Americans with Disabilities Act is divided into five titles. Title I of the act pertains to discrimination against the disabled in the workplace. Title II prevents discrimination against persons with a disability in state and local government services. Title III prohibits discrimination against persons with disabilities in places of public accommodations and commercial facilities. Title IV ensures that companies offering telephone services to the general public provide special services for individuals with hearing and speech impairments. Under the enforcement provisions of the Americans with Disabilities Act, stringent penalties will be implemented for failure to comply with its provisions.

  4. Practical considerations in developing an instrument-maintenance plan--

    SciTech Connect

    Guth, M.A.S. )

    1989-06-01

    The author develops a general set of considerations to explain how a consistent, well-organized, prioritized, and adequate time-allowance program plan for routine maintenance can be constructed. The analysis is supplemented with experience from the high flux isotope reactor (HFIR) at US Oak Ridge National Laboratory (ORNL). After the preventive maintenance (PM) problem was defined, the instruments on the schedule were selected based on the manufacturer's design specifications, quality-assurance requirements, prior classifications, experiences with the incidence of breakdowns or calibration, and dependencies among instruments. The effects of repair error in PM should be also studied. The HFIR requires three full-time technicians to perform both PM and unscheduled maintenance. A review is presented of concepts from queuing theory to determine anticipated breakdown patterns. In practice, the pneumatic instruments have a much longer lifetime than the electric/electronic instruments on various reactors at ORNL. Some special considerations and risk aversion in choosing a maintenance schedule.

  5. MSL-RAD Cruise Operations Concept

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Zeitlin, Cary; Hassler, Donald; Weigle, Gerald E.; Boettcher, Stephan; Martin, Cesar; Wimmer-Schweingrubber, Robert

    2012-01-01

    The Mars Science Laboratory (MSL) payload includes the Radiation Assessment Detector (RAD) instrument, intended to fully characterize the radiation environment for the MSL mission. The RAD instrument operations concept is intended to reduce impact to spacecraft resources and effort for the MSL operations team. By design, RAD autonomously performs regular science observations without the need for frequent commanding from the Rover Compute Element (RCE). RAD operates with pre-defined "sleep" and "observe" periods, with an adjustable duty cycle for meeting power and data volume constraints during the mission. At the start of a new science observation, RAD performs a pre-observation activity to assess count rates for selected RAD detector elements. Based on this assessment, RAD can enter "solar event" mode, in which instrument parameters (including observation duration) are selected to more effectively characterize the environment. At the end of each observation period, RAD stores a time-tagged, fixed length science data packet in its non-volatile mass memory storage. The operating cadence is defined by adjustable parameters, also stored in non-volatile memory within the instrument. Periodically, the RCE executes an on-board sequence to transfer RAD science data packets from the instrument mass storage to the MSL downlink buffer. Infrequently, the RAD instrument operating configuration is modified by updating internal parameter tables and configuration entries.

  6. 17 CFR 240.3b-13 - Definition of eligible OTC derivative instrument.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... derivative instrument. 240.3b-13 Section 240.3b-13 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... Under the Securities Exchange Act of 1934 Definitions § 240.3b-13 Definition of eligible OTC derivative... derivative instrument means any contract, agreement, or transaction that: (1) Provides, in whole or in...

  7. 17 CFR 240.3b-13 - Definition of eligible OTC derivative instrument.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... derivative instrument. 240.3b-13 Section 240.3b-13 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... Under the Securities Exchange Act of 1934 Definitions § 240.3b-13 Definition of eligible OTC derivative... derivative instrument means any contract, agreement, or transaction that: (1) Provides, in whole or in...

  8. 18 CFR 367.1760 - Account 176, Derivative instrument assets-Hedges.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Account 176, Derivative... GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367.1760 Account 176, Derivative instrument assets—Hedges. (a) This account must include the amounts paid for derivative instruments, and...

  9. 18 CFR 367.1760 - Account 176, Derivative instrument assets-Hedges.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Account 176, Derivative... GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367.1760 Account 176, Derivative instrument assets—Hedges. (a) This account must include the amounts paid for derivative instruments, and...

  10. 18 CFR 367.1760 - Account 176, Derivative instrument assets-Hedges.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Account 176, Derivative... GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367.1760 Account 176, Derivative instrument assets—Hedges. (a) This account must include the amounts paid for derivative instruments, and...

  11. 17 CFR 240.3b-13 - Definition of eligible OTC derivative instrument.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... derivative instrument. 240.3b-13 Section 240.3b-13 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... Under the Securities Exchange Act of 1934 Definitions § 240.3b-13 Definition of eligible OTC derivative... derivative instrument means any contract, agreement, or transaction that: (1) Provides, in whole or in...

  12. 17 CFR 240.3b-13 - Definition of eligible OTC derivative instrument.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... derivative instrument. 240.3b-13 Section 240.3b-13 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... Under the Securities Exchange Act of 1934 Definitions § 240.3b-13 Definition of eligible OTC derivative... derivative instrument means any contract, agreement, or transaction that: (1) Provides, in whole or in...

  13. Woelter Instrument-Optical Design

    SciTech Connect

    Nederbragt, W W

    2002-10-11

    Hundreds of target assemblies will be constructed annually for use on NIF or OMEGA in the near future. Currently, we do not have the capability to tomographically characterize the target assemblies at the desired resolution. Hence, we cannot verify if an assembly has been assembled correctly. The Engineering Directorate, through the LDRD program, is currently funding an x-ray instruments that could solve this problem. This instrument is based on a Woelter [1] Type-I design. We will refer to this design as the Woelter instrument in the remainder of the report. Ideally, the Woelter instrument will create images with sub-micrometer resolution. Moreover, the instrument will have a field-of-view large enough to cover an entire target assembly (up to a 2 mm square), which would eliminate the need to take multiple radiographs to get one complete target image. This report describes the optical design of the Woelter instrument.

  14. Generic concepts in Nectriaceae

    PubMed Central

    Lombard, L.; van der Merwe, N.A.; Groenewald, J.Z.; Crous, P.W.

    2015-01-01

    The ascomycete family Nectriaceae (Hypocreales) includes numerous important plant and human pathogens, as well as several species used extensively in industrial and commercial applications as biodegraders and biocontrol agents. Members of the family are unified by phenotypic characters such as uniloculate ascomata that are yellow, orange-red to purple, and with phialidic asexual morphs. The generic concepts in Nectriaceae are poorly defined, since DNA sequence data have not been available for many of these genera. To address this issue we performed a multi-gene phylogenetic analysis using partial sequences for the 28S large subunit (LSU) nrDNA, the internal transcribed spacer region and intervening 5.8S nrRNA gene (ITS), the large subunit of the ATP citrate lyase (acl1), the RNA polymerase II largest subunit (rpb1), RNA polymerase II second largest subunit (rpb2), α-actin (act), β-tubulin (tub2), calmodulin (cmdA), histone H3 (his3), and translation elongation factor 1-alpha (tef1) gene regions for available type and authentic strains representing known genera in Nectriaceae, including several genera for which no sequence data were previously available. Supported by morphological observations, the data resolved 47 genera in the Nectriaceae. We re-evaluated the status of several genera, which resulted in the introduction of six new genera to accommodate species that were initially classified based solely on morphological characters. Several generic names are proposed for synonymy based on the abolishment of dual nomenclature. Additionally, a new family is introduced for two genera that were previously accommodated in the Nectriaceae. PMID:26955195

  15. Creative Concept Mapping.

    ERIC Educational Resources Information Center

    Brown, David S.

    2002-01-01

    Recommends the use of concept mapping in science teaching and proposes that it be presented as a creative activity. Includes a sample lesson plan of a potato stamp concept mapping activity for astronomy. (DDR)

  16. Experimenting with string musical instruments

    NASA Astrophysics Data System (ADS)

    LoPresto, Michael C.

    2012-03-01

    What follows are several investigations involving string musical instruments developed for and used in a Science of Sound & Light course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when used in physics, represent reality that can actually be observed, in this case, the operation of string musical instruments.

  17. Radiometric and Spectral Measurement Instruments

    DTIC Science & Technology

    1992-03-18

    NSWCCR/RDTN-92/0003 AD-A250 771LI~ llliii11l li l l iillt111 RADIOMETRIC AND SPECTRAL MEASUREMENT INSTRUMENTS CRANE DIVISION NAVAL SURFACE WARFARE... INSTRUMENTS 6. AUTHOR(S) B. E. DOUDA H. A. WEBSTER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) a. PERFORMING ORGANIZATION REPORT NIJMBER...Maxiry-um 200 w ords) THIS IS A DESCRIPTION OF AN ASSORTMENT OF RADIOMETRIC AND SPECTRAL INSTRUMENTATION USED FOR MEASUREMENT OF THE RADIATIVE OUTPUT OF

  18. "Variation in Student Learning" as a Threshold Concept

    ERIC Educational Resources Information Center

    Meyer, Jan H. F.

    2012-01-01

    The Threshold Concepts Framework acts as a catalyst in faculty development activities, energising and provoking discussion by faculty about their own courses in their own disciplines, and often leading to the discovery of transformational concepts that occasion epistemic and ontological shifts in their students. The present study focuses on…

  19. 76 FR 55237 - Use of Derivatives by Investment Companies Under the Investment Company Act of 1940

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... Company Act of 1940 AGENCY: Securities and Exchange Commission. ACTION: Concept release; request for... the use of derivatives by management investment companies registered under the Investment Company Act..., the Commission is issuing this concept release and request for comments on a wide range of...

  20. Detectors for Tomorrow's Instruments

    NASA Technical Reports Server (NTRS)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  1. Optical distance measuring instrument

    NASA Technical Reports Server (NTRS)

    Abshire, J. B. (Inventor)

    1986-01-01

    An optical instrument, such as a stability monitor or a target range finder, uses an unstabilized laser to project a composite optical signal of coherent light having two naturally occurring longitudinal mode components. A beamsplitter divides the signal into a reference beam which is directed toward one photodetector and a transmitted beam which illuminates and is reflected from a distant target onto a second photodetector optically isolated from the first photodetector. Both photodetectors are operated on the square law principle to provide electrical signals modulated at a frequency equal to the separation between the frequencies of the two longitudinal mode components of the optical signal projected by the laser. Slight movement of the target may be detected and measured by electrically monitoring the phase difference between the two signals provided by the photodetectors and the range of the target measured with the aid of a microprocessor by changing the separation between the longitudinal modes by shifting the length of the resonator cavity in an iterative series of increments.

  2. The tissue diagnostic instrument

    NASA Astrophysics Data System (ADS)

    Hansma, Paul; Yu, Hongmei; Schultz, David; Rodriguez, Azucena; Yurtsev, Eugene A.; Orr, Jessica; Tang, Simon; Miller, Jon; Wallace, Joseph; Zok, Frank; Li, Cheng; Souza, Richard; Proctor, Alexander; Brimer, Davis; Nogues-Solan, Xavier; Mellbovsky, Leonardo; Peña, M. Jesus; Diez-Ferrer, Oriol; Mathews, Phillip; Randall, Connor; Kuo, Alfred; Chen, Carol; Peters, Mathilde; Kohn, David; Buckley, Jenni; Li, Xiaojuan; Pruitt, Lisa; Diez-Perez, Adolfo; Alliston, Tamara; Weaver, Valerie; Lotz, Jeffrey

    2009-05-01

    Tissue mechanical properties reflect extracellular matrix composition and organization, and as such, their changes can be a signature of disease. Examples of such diseases include intervertebral disk degeneration, cancer, atherosclerosis, osteoarthritis, osteoporosis, and tooth decay. Here we introduce the tissue diagnostic instrument (TDI), a device designed to probe the mechanical properties of normal and diseased soft and hard tissues not only in the laboratory but also in patients. The TDI can distinguish between the nucleus and the annulus of spinal disks, between young and degenerated cartilage, and between normal and cancerous mammary glands. It can quantify the elastic modulus and hardness of the wet dentin left in a cavity after excavation. It can perform an indentation test of bone tissue, quantifying the indentation depth increase and other mechanical parameters. With local anesthesia and disposable, sterile, probe assemblies, there has been neither pain nor complications in tests on patients. We anticipate that this unique device will facilitate research on many tissue systems in living organisms, including plants, leading to new insights into disease mechanisms and methods for their early detection.

  3. Ultrasonics and space instrumentation

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The design topic selected was an outgrowth of the experimental design work done in the Fluid Behavior in Space experiment, which relies on the measurement of minute changes of the pressure and temperature to obtain reasonably accurate volume determinations. An alternative method of volume determination is the use of ultrasonic imaging. An ultrasonic wave system is generated by wall mounted transducer arrays. The interior liquid configuration causes reflection and refraction of the pattern so that analysis of the received wave system provides a description of the configuration and hence volume. Both continuous and chirp probe beams were used in a laboratory experiment simulating a surface wetting propellant. The hardware included a simulated tank with gaseous voids, transmitting and receiving transducers, transmitters, receivers, computer interface, and computer. Analysis software was developed for image generation and interpretation of results. Space instrumentation was pursued in support of a number of experiments under development for GAS flights. The program included thirty undergraduate students pursuing major qualifying project work under the guidance of eight faculty supported by a teaching assistant. Both mechanical and electrical engineering students designed and built several microprocessor systems to measure parameters such as temperature, acceleration, pressure, velocity, and circulation in order to determine combustion products, vortex formation, gas entrainment, EMR emissions from thunderstorms, and milli-g-accelerations due to crew motions.

  4. Halo vest instrumentation

    NASA Astrophysics Data System (ADS)

    Huston, Dryver R.; Krag, Martin

    1996-05-01

    The halo vest is a head and neck immobilization system that is often used on patients that are recovering from cervical trauma or surgery. The halo vest system consists of a rigid halo that is firmly attached to the skull, an upright support structure for stabilization and immobilization, and a torso-enveloping vest. The main purpose of this study was to measure the forces that are carried by the halo-vest structure as the subject undergoes various activities of daily living and external loading for different vest designs. A tethered strain gage load cell based instrumentation system was used to take these load measurements on ten different subjects. Three different halo-vest systems were evaluated. The primary difference between the vests was the amount of torso coverage and the use of shoulder straps. The loads were measured, analyzed and used to compare the vests and to create a model of halo-vest-neck mechanics. Future applications of this technology to standalone data logging, pin-load measuring and biofeedback applications are discussed.

  5. Development of a Measurement Instrument to Assess Students' Electrolyte Conceptual Understanding

    ERIC Educational Resources Information Center

    Lu, Shanshan; Bi, Hualin

    2016-01-01

    To assess students' conceptual understanding levels and diagnose alternative frameworks of the electrolyte concept, a measurement instrument was developed using the Rasch model. This paper reports the use of the measurement instrument to assess 559 students from grade 10 to grade 12 in two cities. The results provided both diagnostic and summative…

  6. Relations among Motivation, Performance Achievement, and Music Experience Variables in Secondary Instrumental Music Students

    ERIC Educational Resources Information Center

    Schmidt, Charles P.

    2005-01-01

    The purpose of this study was to (1) reexamine academic achievement motivation orientations within the context of instrumental music, and (2) examine relations among achievement motivation orientations, self-concept in instrumental music, and attitude to band in relation to teachers' ratings of performance achievement and effort, and students'…

  7. Assessing the Application of the Neighborhood Cohesion Instrument to Community Research in East Asia

    ERIC Educational Resources Information Center

    Li, Chun-Hao; Hsu, Ping-Hsiang; Hsu, Shu-Yao

    2011-01-01

    Buckner (1988) extensively reviewed theoretical concepts proposed by a variety of scholars and developed the Neighborhood Cohesion Instrument (NCI) to measure three latent constructs (attraction to neighborhood, neighboring, and psychological sense of community). This instrument has been applied in most Western countries. The purpose of this…

  8. A Review and Comparison of Diagnostic Instruments to Identify Students' Misconceptions in Science

    ERIC Educational Resources Information Center

    Gurel, Derya Kaltakci; Eryilmaz, Ali; McDermott, Lillian Christie

    2015-01-01

    Different diagnostic tools have been developed and used by researchers to identify students' conceptions. The present study aimed to provide an overview of the common diagnostic instruments in science to assess students' misconceptions. Also the study provides a brief comparison of these common diagnostic instruments with their strengths and…

  9. Adaptive Fraunhofer diffraction particle sizing instrument using a spatial light modulator.

    PubMed

    Hirleman, E D; Dellenback, P A

    1989-11-15

    Integration of a magnetooptic spatial light modulator into a Fraunhofer diffraction particle sizing instrument is proposed and demonstrated theoretically and experimentally. The concept gives the instrument the ability to reconfigure a detector array on-line and thereby adapt to the measurement context.

  10. Teacher Educators' Visions of Pedagogical Training within Instrumental Higher Music Education. A Case in Finland

    ERIC Educational Resources Information Center

    Juntunen, Marja-Leena

    2014-01-01

    The purpose of this study was to examine the visions of teacher educators of instrumental pedagogy (n = 12) in higher music education regarding "good" teaching and instrumental student teacher preparation. The theoretical basis for the study was research on teachers' visions (Hammerness, 2006): teachers' own conceptions of ideal teaching…

  11. An Instrument to Determine the Technological Literacy Levels of Upper Secondary School Students

    ERIC Educational Resources Information Center

    Luckay, Melanie B.; Collier-Reed, Brandon I.

    2014-01-01

    In this article, an instrument for assessing upper secondary school students' levels of technological literacy is presented. The items making up the instrument emerged from a previous study that employed a phenomenographic research approach to explore students' conceptions of technology in terms of their understanding of the "nature…

  12. Development of the Levey-Nowak Embedded Librarian Presence Instrument: A Preliminary Study

    ERIC Educational Resources Information Center

    Levey, Janet A.; Nowak, Karen L.

    2015-01-01

    A cross-sectional descriptive design was used to examine the initial psychometric properties and feasibility of the newly developed Levey-Nowak Embedded Librarian Presence Instrument. The instrument was structured by a literature review identifying reoccurring concepts of presence, helpfulness, confidence, and collaboration within the embedded…

  13. Subnational variations in conceptions.

    PubMed

    Wood, R

    1996-01-01

    Conception statistics are derived from information collected at the registration of live births, still births, and legal abortions. This article looks at how conception rates vary across England and Wales using the 1991 ONS area classification of DHAs (Population Trends 79). A comparison is made between age-specific conception rates for different area classification groups in 1993, and changes between 1983 and 1993 are examined. Correlations between certain social and economic factors and conception rates are also analysed.

  14. Development and validation of the conceptions of scientific theories test

    NASA Astrophysics Data System (ADS)

    Cotham, Joseph C.; Smith, Edward L.

    The purpose of this study was to develop a reliable and valid instrument for use with elementary and secondary teachers of science that would have the following characteristics: 1) sensitivity to alternative conceptions of particular philosophic aspects of scientific theories, and 2) applicability in inferring understanding of the tentative and revisionary conception of the nature of science. This conception, which has educational and social importance, may be a significant influence in the teaching of science as inquiry. Thus, concern with teachers' conceptions of the nature of science and their teaching served as justification for this study. The instrument, which was applied to samples of preservice elementary teachers, college philosophy of science students, and college chemistry students, consisted of items that were adapted to the contexts of particular scientific theories by prefacing them with a brief description of a theory and episodes drawn from its history. Items were written to discriminate between alternative conceptions of the following philosophic aspects of scientific theories: testing, generation, ontological implications, and choice. Evidence in support of the validity of the instrument constructs was obtained using two approaches: discrimination between contrasting groups and the multi-trait and multi-method matrix of Campbell and Fiske. Cronbach alpha reliability coefficients and standard errors of measurement were computed for the instrument and its subtests. Reliability data indicates that an adequate degree of accuracy may be attributed to instrument scores.

  15. NASA's Gravitational - Wave Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin; Jennrich, Oliver; McNamara, Paul

    2012-01-01

    With the conclusion of the NASA/ESA partnership on the Laser Interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons. the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines. and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility. to define a conceptual design evaluate kt,y performance parameters. assess risk and estimate cost and schedule. The Study results are summarized.

  16. Guideline implementation: surgical instrument cleaning.

    PubMed

    Cowperthwaite, Liz; Holm, Rebecca L

    2015-05-01

    Cleaning, decontaminating, and handling instructions for instruments vary widely based on the type of instrument and the manufacturer. Processing instruments in accordance with the manufacturer's instructions can help prevent damage and keep devices in good working order. Most importantly, proper cleaning and disinfection may prevent transmission of pathogenic organisms from a contaminated device to a patient or health care worker. The updated AORN "Guideline for cleaning and care of surgical instruments" provides guidance on cleaning, decontaminating, transporting, inspecting, and storing instruments. This article focuses on key points of the guideline to help perioperative personnel implement appropriate instrument care protocols in their practice settings. The key points address timely cleaning and decontamination of instruments after use; appropriate heating, ventilation, and air conditioning parameters for the decontamination area; processing of ophthalmic instruments and laryngoscopes; and precautions to take with instruments used in cases of suspected prion disease. Perioperative RNs should review the complete guideline for additional information and for guidance when writing and updating policies and procedures.

  17. Spacecraft instrument technology and cosmochemistry.

    PubMed

    McSween, Harry Y; McNutt, Ralph L; Prettyman, Thomas H

    2011-11-29

    Measurements by instruments on spacecraft have significantly advanced cosmochemistry. Spacecraft missions impose serious limitations on instrument volume, mass, and power, so adaptation of laboratory instruments drives technology. We describe three examples of flight instruments that collected cosmochemical data. Element analyses by Alpha Particle X-ray Spectrometers on the Mars Exploration Rovers have revealed the nature of volcanic rocks and sedimentary deposits on Mars. The Gamma Ray Spectrometer on the Lunar Prospector orbiter provided a global database of element abundances that resulted in a new understanding of the Moon's crust. The Ion and Neutral Mass Spectrometer on Cassini has analyzed the chemical compositions of the atmosphere of Titan and active plumes on Enceladus.

  18. Acts of kindness and acts of novelty affect life satisfaction.

    PubMed

    Buchanan, Kathryn E; Bardi, Anat

    2010-01-01

    The present experiment was designed to establish the effects of acts of kindness and acts of novelty on life satisfaction. Participants aged 18-60 took part on a voluntary basis. They were randomly assigned to perform either acts of kindness, acts of novelty, or no acts on a daily basis for 10 days. Their life satisfaction was measured before and after the 10-day experiment. As expected, performing acts of kindness or acts of novelty resulted in an increase in life satisfaction.

  19. Conceptions of Ability.

    ERIC Educational Resources Information Center

    Jagacinski, Carolyn M.; Nicholls, John G.

    Two different conceptions of ability are proposed. The first conception of ability is more differentiated and generally employed by adults and older children. Here ability level is defined with reference to the performance of others assuming that optimum effort was employed. High ability means higher than others. The second conception of ability…

  20. Threshold Concepts in Biochemistry

    ERIC Educational Resources Information Center

    Loertscher, Jennifer

    2011-01-01

    Threshold concepts can be identified for any discipline and provide a framework for linking student learning to curricular design. Threshold concepts represent a transformed understanding of a discipline, without which the learner cannot progress and are therefore pivotal in learning in a discipline. Although threshold concepts have been…

  1. Concept Image Revisited

    ERIC Educational Resources Information Center

    Bingolbali, Erhan; Monaghan, John

    2008-01-01

    Concept image and concept definition is an important construct in mathematics education. Its use, however, has been limited to cognitive studies. This article revisits concept image in the context of research on undergraduate students' understanding of the derivative which regards the context of learning as paramount. The literature, mainly on…

  2. Draconian dress act repealed.

    PubMed

    Mhone, C

    1994-01-01

    The Dress Act was put into place in Malawi by the government of President Kamuzu Banda after the long period of direct colonialism. The act made it illegal for women in Malawi to be seen publicly wearing dresses which did not completely cover their knees or wearing pants; men had to wear their hair short. Police officers even scrutinized women's attire at private house parties and in homes. The autocratic political structure established by Banda, however, was voted out in a referendum June 14, 1993. Pressure by opposition forces such as the United Democratic Front forced a repeal of the act on November 16 of the same year. The repeal was vigorously attacked by female Parliament members as a move which would result in moral degradation and an increase in the level of sexual harassment against women. Other citizens and tourists have generally detested the act. The act has most certainly kept many potential visitors from vacationing in Malawi. Some expert observers think that repeals of the Dress Act, the Forfeiture Act, and legislation which allowed the government to detain opposition figures without trial were done to garner support from the Paris Club for the resumption of balance of payments support suspended due to the country's poor human rights record.

  3. Marine geodesy - Problem areas and solution concepts

    NASA Technical Reports Server (NTRS)

    Saxena, N.

    1974-01-01

    This paper deals with a conceptional geodetic approach to solve various oceanic problems, such as submersible navigation under iced seas, demarcation/determination of boundaries in open ocean, resolving sea-level slope discrepancy, improving tsunami warning system, ecology, etc., etc. The required instrumentation is not described here. The achieved as well as desired positional accuracy estimates in open ocean for various tasks are also given.

  4. Radiometric instrumentation and measurements guide for photovoltaic performance testing

    SciTech Connect

    Myers, D.

    1997-04-01

    The Photovoltaic Module and Systems Performance and Engineering Project at the National Renewable Energy Laboratory performs indoor and outdoor standardization, testing, and monitoring of the performance of a wide range of photovoltaic (PV) energy conversion devices and systems. The PV Radiometric Measurements and Evaluation Team (PVSRME) within that project is responsible for measurement and characterization of natural and artificial optical radiation which stimulates the PV effect. The PV manufacturing and research and development community often approaches project members for technical information and guidance. A great area of interest is radiometric instrumentation, measurement techniques, and data analysis applied to understanding and improving PV cell, module, and system performance. At the Photovoltaic Radiometric Measurements Workshop conducted by the PVSRME team in July 1995, the need to communicate knowledge of solar and optical radiometric measurements and instrumentation, gained as a result of NREL`s long-term experiences, was identified as an activity that would promote improved measurement processes and measurement quality in the PV research and manufacturing community. The purpose of this document is to address the practical and engineering need to understand optical and solar radiometric instrument performance, selection, calibration, installation, and maintenance applicable to indoor and outdoor radiometric measurements for PV calibration, performance, and testing applications. An introductory section addresses radiometric concepts and definitions. Next, concepts essential to spectral radiometric measurements are discussed. Broadband radiometric instrumentation and measurement concepts are then discussed. Each type of measurement serves as an important component of the PV cell, module, and system performance measurement and characterization process.

  5. MISR Instrument Data Visualization

    NASA Technical Reports Server (NTRS)

    Nelson, David; Garay, Michael; Diner, David; Thompson, Charles; Hall, Jeffrey; Rheingans, Brian; Mazzoni, Dominic

    2008-01-01

    The MISR Interactive eXplorer (MINX) software functions both as a general-purpose tool to visualize Multiangle Imaging SpectroRadiometer (MISR) instrument data, and as a specialized tool to analyze properties of smoke, dust, and volcanic plumes. It includes high-level options to create map views of MISR orbit locations; scrollable, single-camera RGB (red-greenblue) images of MISR level 1B2 (L1B2) radiance data; and animations of the nine MISR camera images that provide a 3D perspective of the scenes that MISR has acquired. NASA Tech Briefs, September 2008 55 The plume height capability provides an accurate estimate of the injection height of plumes that is needed by air quality and climate modelers. MISR provides global high-quality stereo height information, and this program uses that information to perform detailed height retrievals of aerosol plumes. Users can interactively digitize smoke, dust, or volcanic plumes and automatically retrieve heights and winds, and can also archive MISR albedos and aerosol properties, as well as fire power and brightness temperatures associated with smoke plumes derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Some of the specialized options in MINX enable the user to do other tasks. Users can display plots of top-of-atmosphere bidirectional reflectance factors (BRFs) versus camera-angle for selected pixels. Images and animations can be saved to disk in various formats. Also, users can apply a geometric registration correction to warp camera images when the standard processing correction is inadequate. It is possible to difference the images of two MISR orbits that share a path (identical ground track), as well as to construct pseudo-color images by assigning different combinations of MISR channels (angle or spectral band) to the RGB display channels. This software is an interactive application written in IDL and compiled into an IDL Virtual Machine (VM) ".sav" file.

  6. Ratio imaging instrumentation.

    PubMed

    Dunn, Kenneth; Maxfield, Frederick R

    2003-01-01

    Using ratio imaging to obtain quantitative information from microscope images is a powerful tool that has been used successfully in numerous studies. Although ratio imaging reduces the effects of many parameters that can interfere with accurate measurements, it is not a panacea. In designing a ratio imaging experiment, all of the potential problems discussed in this chapter must be considered. Undoubtedly, other problems that were not discussed can also interfere with accurate and meaningful measurements. Many of the problems discussed here were observed in the authors' laboratories. In our experience there are no standard routines or methods that can foresee every problem before it has been encountered. Good experimental design can minimize problems, but the investigator must continue to be alert. Progress in instrumentation continues to overcome some of the difficulties encountered in ratio imaging. CCD cameras with 12- to 14-bit pixel depth are being used more frequently, and several confocal microscope manufacturers are now also using 12-bit digitization. The dramatic increase in the use of confocal microscopes over the past decade is now causing microscope manufacturers to more critically evaluate the effect of axial chromatic aberration in objectives, and recent designs to minimize this problem are being implemented. Other developments such as the use of AOTFs to attenuate laser lines extend the applicability of ratio imaging. Ratio imaging is clearly applicable to a wide range of cell biological problems beyond its widespread use for measuring ion concentrations. Imaginative but careful use of this technique should continue to provide novel insights into the properties of cells.

  7. 18 CFR 367.1760 - Account 176, Derivative instrument assets-Hedges.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 176, Derivative instrument assets-Hedges. 367.1760 Section 367.1760 Conservation of Power and Water Resources FEDERAL ENERGY..., FEDERAL POWER ACT AND NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED SERVICE COMPANIES...

  8. 18 CFR 367.1760 - Account 176, Derivative instrument assets-Hedges.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Account 176, Derivative instrument assets-Hedges. 367.1760 Section 367.1760 Conservation of Power and Water Resources FEDERAL ENERGY..., FEDERAL POWER ACT AND NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED SERVICE COMPANIES...

  9. Impact Damage to Instruments

    NASA Astrophysics Data System (ADS)

    Maag, C. R.; Hansen, P. A.

    2002-05-01

    Today measured impacts of orbiting manmade debris on spacecraft presents one of the more serious space environmental threats to space missions. Post-flight data from recently returned hardware have provided very interesting and alarming results. The data suggests that mathematical models are conservative for predicting the number of impacts (flux) a spacecraft will receive from small particles (less than 0.8 mm diameter), while the models predict a flux nearly a factor of 10 less than that measured for particles above 1.0 mm. The data observed at the larger sizes is well above the predicted values. In the future, as the population of debris grows with increasing space traffic, the likelihood of debris impacts will become a critical problem. Data on population growth of larger sized particles have implications concerning the constellations of satellites that will support the information super highway. It is clear that the solutions to the exacerbation of the space debris environment in constellation orbits are a combination of operations and design. For those spacecraft not in constellation orbits, it is imperative that they prevent penetrations into their interior volumes. This paper presents the problems and solutions associated with surviving the debris environment, and eliminating the penetration potential to subsystems for three (3) current NASA science missions. These innovative concepts, while simplistic in nature, of stopping hypervelocity particles have unique applications for all space systems.

  10. Learning style preference and student aptitude for concept maps.

    PubMed

    Kostovich, Carol T; Poradzisz, Michele; Wood, Karen; O'Brien, Karen L

    2007-05-01

    Acknowledging that individuals' preferences for learning vary, faculty in an undergraduate nursing program questioned whether a student's learning style is an indicator of aptitude in developing concept maps. The purpose of this research was to describe the relationship between nursing students' learning style preference and aptitude for concept maps. The sample included 120 undergraduate students enrolled in the adult health nursing course. Students created one concept map and completed two instruments: the Learning Style Survey and the Concept Map Survey. Data included Learning Style Survey scores, grade for the concept map, and grade for the adult health course. No significant difference was found between learning style preference and concept map grades. Thematic analysis of the qualitative survey data yielded further insight into students' preferences for creating concept maps.

  11. A Comparison of Self-Concept Between EMR and Non-EMR Students.

    ERIC Educational Resources Information Center

    Crockett, Darlene; Guthrie, Larry F.

    The self-concept of 20 educable mentally retarded (EMR) junior high school boys in special classes was compared to that of 20 non-EMR junior high school boys in regular classes. Two self-concept scales (the Piers-Harris Children's Self Concept Scale and the "How I See Myself" Scale by I. Gordon) were used as measurement instruments. Also collected…

  12. A Primary Self-Concept Scale for Spanish-Surnamed Children, Grades K-4.

    ERIC Educational Resources Information Center

    Leonetti, Robert

    The purpose of this study was to develop a group test of self-concept which is especially applicable to the Spanish-surnamed primary school student. The pilot version of this instrument, the Primary Self-Concept Scale (PSCS), was designed to measure 5 aspects of self-concept which were felt to be relevant to school success: behavior, intellectual,…

  13. ACTS mobile SATCOM experiments

    NASA Technical Reports Server (NTRS)

    Abbe, Brian S.; Frye, Robert E.; Jedrey, Thomas C.

    1993-01-01

    Over the last decade, the demand for reliable mobile satellite communications (satcom) for voice, data, and video applications has increased dramatically. As consumer demand grows, the current spectrum allocation at L-band could become saturated. For this reason, NASA and the Jet Propulsion Laboratory are developing the Advanced Communications Technology Satellites (ACTS) mobile terminal (AMT) and are evaluating the feasibility of K/Ka-band (20/30 GHz) mobile satcom to meet these growing needs. U.S. industry and government, acting as co-partners, will evaluate K/Ka-band mobile satcom and develop new technologies by conducting a series of applications-oriented experiments. The ACTS and the AMT testbed will be used to conduct these mobile satcom experiments. The goals of the ACTS Mobile Experiments Program and the individual experiment configurations and objectives are further presented.

  14. Disabilities Act in Action.

    ERIC Educational Resources Information Center

    Daynes, Kristine S.

    1990-01-01

    Eight true or false questions explore implications of the Americans with Disabilities Act of 1990. Topics include AIDS, drug abuse, undue hardship, reasonable accommodation, and company size affected by the law. (SK)

  15. Kodaly Strategies for Instrumental Teachers.

    ERIC Educational Resources Information Center

    Howard, Priscella M.

    1996-01-01

    Advocates using the singing voice and the study of folk music in instrumental instruction. Recommends instrumental teachers confer with voice teachers to coordinate ideas and terminology. Includes several excerpts of scores and musical exercises, as well as a list of selected resources. (MJP)

  16. Science Process Instrument. Experimental Edition.

    ERIC Educational Resources Information Center

    American Association for the Advancement of Science, Washington, DC. Commission on Science Education.

    This instrument contains activities by which one can determine a child's intellectual development in: (1) observing, (2) classifying, (3) measuring, (4) using numbers, (5) using space/time relationships, (6) inferring, and (7) communicating and predicting. The seven sections of the instrument correspond to those processes defined in Science - A…

  17. Technician Program Uses Advanced Instruments.

    ERIC Educational Resources Information Center

    Stinson, Stephen

    1981-01-01

    Describes various aspects of a newly-developed computer-assisted drafting/computer-assisted manufacture (CAD/CAM) facility in the chemical engineering technology department at Broome Community College, Binghamton, New York. Stresses the use of new instruments such as microcomputers and microprocessor-equipped instruments. (CS)

  18. Rating Scale Instruments and Measurement

    ERIC Educational Resources Information Center

    Cavanagh, Robert F.; Romanoski, Joseph T.

    2006-01-01

    The article examines theoretical issues associated with measurement in the human sciences and ensuring data from rating scale instruments are measures. An argument is made that using raw scores from rating scale instruments for subsequent arithmetic operations and applying linear statistics is less preferable than using measures. These theoretical…

  19. Zach's instruments and their characteristics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    The astronomically interested Duke Ernst II von Sachsen-Gotha-Altenburg (1745-1804) hired Baron Franz Xaver von Zach (1754-1832) as court astronomer in 1786. Immediatedly Zach started to make plans for instrumentation for a new observatory. But first they travelled with their instruments (a 2-foot Ramsden transit instrument, the Sisson quadrant, three Hadley sextants, two achromatic refractors and chronometers) to southern France. In Hyàres a tower of the wall around the town was converted into an observatory in 1787. For the building of the new observatory Zach had chosen a place outside of Gotha on the top of the Seeberg. The three main instruments were an 8-foot transit instrument made by Ramsden, a northern and southern mural quadrant made by Sisson and a zenith sector made by Cary, in addition an 8-foot circle made by Ramsden. By analysing the whole instrumentation of Gotha observatory, we can see a change around 1800 in the kind of instruments, from quadrants and sextants to the full circles and from the transit instrument to the meridian circle. The decline of the Gotha observatory started with the early death of the Duke in 1804 and the subsequent departure of Zach in 1806.

  20. Experimenting with String Musical Instruments

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2012-01-01

    What follows are several investigations involving string musical instruments developed for and used in a "Science of Sound & Light" course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when…

  1. Associations in Human Instrumental Conditioning

    ERIC Educational Resources Information Center

    Gamez, A. Matias; Rosas, Juan M.

    2007-01-01

    Four experiments were conducted to study the contents of human instrumental conditioning. Experiment 1 found positive transfer between a discriminative stimulus (S[superscript D] and an instrumental response (R) that shared the outcome (O) with the response that was originally trained with the S[superscript D], showing the formation of an…

  2. Introduction to Instrumentation. Teacher Edition.

    ERIC Educational Resources Information Center

    Brown, A. O., III

    This module contains instructional materials on instrumentation to help teachers train students in the job skills they will need as beginning instrumentation technicians. The module addresses the nature of accessing, measuring, and controlling phenomena such as level, flow, pressure, and temperature. Students are introduced to the devices and…

  3. Neutron Scattering Collimation Wheel Instrument for Imaging Research

    NASA Astrophysics Data System (ADS)

    Van Every, E.; Deyhim, A.

    2016-09-01

    The design of a state-of-the-art selector wheel instrument to support the area of neutron imaging research (neutron radiography/ tomography) is discussed. The selector wheel is installed on the DINGO Radiography instrument at the Bragg Institute HB2 beamline at ANSTO in Sidney Aus. The selector wheel consists of a single axis drum filled with a wax/steel shielding mixture and six square cutouts for neutron optics and a larger solid shielding sector to act as a shutter. This paper focuses on the details of design and shielding of the selector wheel.

  4. Instrument Remote Control Application Framework

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Hostetter, Carl F.

    2006-01-01

    The Instrument Remote Control (IRC) architecture is a flexible, platform-independent application framework that is well suited for the control and monitoring of remote devices and sensors. IRC enables significant savings in development costs by utilizing extensible Markup Language (XML) descriptions to configure the framework for a specific application. The Instrument Markup Language (IML) is used to describe the commands used by an instrument, the data streams produced, the rules for formatting commands and parsing the data, and the method of communication. Often no custom code is needed to communicate with a new instrument or device. An IRC instance can advertise and publish a description about a device or subscribe to another device's description on a network. This simple capability of dynamically publishing and subscribing to interfaces enables a very flexible, self-adapting architecture for monitoring and control of complex instruments in diverse environments.

  5. Remote sensing technology research and instrumentation platform design

    NASA Technical Reports Server (NTRS)

    1992-01-01

    An instrumented pallet concept and definition of an aircraft with performance and payload capability to meet NASA's airborne turbulent flux measurement needs for advanced multiple global climate research and field experiments is presented. The report addresses airborne measurement requirements for general circulation model sub-scale parameterization research, specifies instrumentation capable of making these measurements, and describes a preliminary support pallet design. Also, a review of aircraft types and a recommendation of a manned and an unmanned aircraft capable of meeting flux parameterization research needs is given.

  6. Instrumental variables and Mendelian randomization with invalid instruments

    NASA Astrophysics Data System (ADS)

    Kang, Hyunseung

    Instrumental variables (IV) methods have been widely used to determine the causal effect of a treatment, exposure, policy, or an intervention on an outcome of interest. The IV method relies on having a valid instrument, a variable that is (A1) associated with the exposure, (A2) has no direct effect on the outcome, and (A3) is unrelated to the unmeasured confounders associated with the exposure and the outcome. However, in practice, finding a valid instrument, especially those that satisfy (A2) and (A3), can be challenging. For example, in Mendelian randomization studies where genetic markers are used as instruments, complete knowledge about instruments' validity is equivalent to complete knowledge about the involved genes' functions. The dissertation explores the theory, methods, and application of IV methods when invalid instruments are present. First, when we have multiple candidate instruments, we establish a theoretical bound whereby causal effects are only identified as long as less than 50% of instruments are invalid, without knowing which of the instruments are invalid. We also propose a fast penalized method, called sisVIVE, to estimate the causal effect. We find that sisVIVE outperforms traditional IV methods when invalid instruments are present both in simulation studies as well as in real data analysis. Second, we propose a robust confidence interval under the multiple invalid IV setting. This work is an extension of our work on sisVIVE. However, unlike sisVIVE which is robust to violations of (A2) and (A3), our confidence interval procedure provides honest coverage even if all three assumptions, (A1)-(A3), are violated. Third, we study the single IV setting where the one IV we have may actually be invalid. We propose a nonparametric IV estimation method based on full matching, a technique popular in causal inference for observational data, that leverages observed covariates to make the instrument more valid. We propose an estimator along with

  7. Transportation System Concept of Operations

    SciTech Connect

    N. Slater-Thompson

    2006-08-16

    The Nuclear Waste Policy Act of 1982 (NWPA), as amended, authorized the DOE to develop and manage a Federal system for the disposal of SNF and HLW. OCRWM was created to manage acceptance and disposal of SNF and HLW in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. This responsibility includes managing the transportation of SNF and HLW from origin sites to the Repository for disposal. The Transportation System Concept of Operations is the core high-level OCRWM document written to describe the Transportation System integrated design and present the vision, mission, and goals for Transportation System operations. By defining the functions, processes, and critical interfaces of this system early in the system development phase, programmatic risks are minimized, system costs are contained, and system operations are better managed, safer, and more secure. This document also facilitates discussions and understanding among parties responsible for the design, development, and operation of the Transportation System. Such understanding is important for the timely development of system requirements and identification of system interfaces. Information provided in the Transportation System Concept of Operations includes: the functions and key components of the Transportation System; system component interactions; flows of information within the system; the general operating sequences; and the internal and external factors affecting transportation operations. The Transportation System Concept of Operations reflects OCRWM's overall waste management system policies and mission objectives, and as such provides a description of the preferred state of system operation. The description of general Transportation System operating functions in the Transportation System Concept of Operations is the first step in the OCRWM systems engineering process, establishing the starting point for the lower level

  8. A Physics of Semiconductors Concept Inventory

    NASA Astrophysics Data System (ADS)

    Ene, Emanuela; Bruce J. Ackerson Collaboration; Alan Cheville Collaboration

    2011-03-01

    Following the trend in science and engineering education generated by the visible impact that the Force Concept Inventory (FCI) has created, a Physics of Semiconductors Concept Inventory (PSCI) has been developed. Whereas most classroom tests measure how many facts students can remember, or if they can manipulate equations, PSCI measures how well students interpret concepts and how well they can infer new knowledge from already learned knowledge. Operationalized in accordance with the revised Bloom's taxonomy, the multiple--choice items of the PSCI address the ``understand'', ``apply'', ``analyze'' and ``evaluate'' levels of cognition. Once standardized, PSCI may be used as a predictor for students' academic performance in the field of semiconductors and as an assessment instrument for instructional strategies.

  9. Learning computer science concepts with Scratch

    NASA Astrophysics Data System (ADS)

    Meerbaum-Salant, Orni; Armoni, Michal; (Moti) Ben-Ari, Mordechai

    2013-09-01

    Scratch is a visual programming environment that is widely used by young people. We investigated if Scratch can be used to teach concepts of computer science (CS). We developed learning materials for middle-school students that were designed according to the constructionist philosophy of Scratch and evaluated them in a few schools during two years. Tests were constructed based upon a novel combination of the revised Bloom taxonomy and the Structure of the Observed Learning Outcome taxonomy. These instruments were augmented with qualitative tools, such as observations and interviews. The results showed that students could successfully learn important concepts of CS, although there were problems with some concepts such as repeated execution, variables, and concurrency. We believe that these problems can be overcome by modifications to the teaching process that we suggest.

  10. [Health Technology Dependency: A Concept Analysis].

    PubMed

    Chen, Miao-Yi; Chen, Ting-Yu; Kao, Chi-Wen

    2016-02-01

    Health technology dependence is a widely recognized concept that refers to the utilization of technology, including drugs, equipment, instruments, and related devices, to compensate for a physical disability or to prevent the progression of a disability. Although technology may significantly prolong the life of a patient, technology may also increase the psychological pressure of these patients and the burdens of their caregivers. There is a current dearth of related research and discussions related to the concept of "health technology dependency". Therefore, the present paper uses the strategies of concept analysis described by Walker & Avant (2010) to analyze this concept. The characteristic definition of health technology dependence addresses individuals who: (1) currently live with health technology, (2) may perceive physical or psychological burdens due to health technology, and (3) feel physical and psychological well-being when coping positively with their health technology dependency and, further, regard health technology as a part of their body. Further, the present paper uses case examples to help analyze the general concept. It is hoped that nurses may better understand the concept of "health technology dependency", consider the concerns of health-technology-dependent patients and their families, and develop relevant interventions to promote the well-being of these patients and their families.

  11. Solid motor diagnostic instrumentation. [design of self-contained instrumentation

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Arens, W. E.; Wuest, W. S.

    1973-01-01

    A review of typical surveillance and monitoring practices followed during the flight phases of representative solid-propellant upper stages and apogee motors was conducted to evaluate the need for improved flight diagnostic instrumentation on future spacecraft. The capabilities of the flight instrumentation package were limited to the detection of whether or not the solid motor was the cause of failure and to the identification of probable primary failure modes. Conceptual designs of self-contained flight instrumentation packages capable of meeting these reqirements were generated and their performance, typical cost, and unit characteristics determined. Comparisons of a continuous real time and a thresholded hybrid design were made on the basis of performance, mass, power, cost, and expected life. The results of this analysis substantiated the feasibility of a self-contained independent flight instrumentation module as well as the existence of performance margins by which to exploit growth option applications.

  12. 75 FR 5346 - Comment Request for Information Collection for Workforce Investment Act National Emergency Grant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... and financial resources) is minimized, collection instruments are clearly understood, and the impact... Globalization Adjustment Assistance Act (TGAAA) of 2009; and 20 CFR 671.140. Applications are accepted on...

  13. GEO Sounding Using Microwave Instruments

    NASA Technical Reports Server (NTRS)

    Shiue, James; Krimchansky, Sergey; Susskind, Joel; Krimchansky, Alexander; Chu, Donald; Davis, Martin

    2004-01-01

    There are several microwave instruments in low Earth orbit (LEO) that are used for atmospheric temperature and humidity sounding in conjunction with companion IR sounders as well as by themselves. These instruments have achieved a certain degree of maturity and undergoing a redesign to minimize their size, mass, and power from the previous generation instruments. An example of these instruments is the AMSU-A series, now flying on POES and AQUA spacecraft with the IR sounders HIRS and AIRS. These older microwave instruments are going to be replaced by the ATMS instruments that will fly on NPP and NPOESS satellites with the CrIS sounder. A number of techniques learned from the ATMS project in instrument hardware design and data processing are directly applicable to a similar microwave sounder on a geosynchronous platform. These techniques can significantly simplify the design of a Geostationary orbit (GEO) microwave instrument, avoiding costly development and minimizing the risk of not being able to meet the scientific requirements. In fact, some of the 'enabling' technology, such as the use of MMIC microwave components (which is the basis for the ATMS' much reduced volume) can be directly applied to a GEO sounder. The benefits of microwave sounders are well known; for example, they penetrate non-precipitating cloud cover and allow for use of colocated IR observations in up to 80% cloud cover. The key advantages of a microwave instrument in GEO will be the ability to provide high temporal resolution as well as uniform spatial resolution and extend the utility of a colocated advanced IR sounder to cases in which partial cloud cover exists. A footprint of the order of 100 km by 100 km resolution with hemispherical coverage within one hour can be easily achieved for sounding channels in the 50 to 59 GHz range. A GEO microwave sounder will also allow mesoscale sampling of select regions.

  14. Instruments for Imaging from Far to Near

    NASA Technical Reports Server (NTRS)

    Mungas, Greg; Boynton, John; Sepulveda, Cesar

    2009-01-01

    The acronym CHAMP (signifying camera, hand lens, and microscope ) denotes any of several proposed optoelectronic instruments that would be capable of color imaging at working distances that could be varied continuously through a range from infinity down to several millimeters. As in any optical instrument, the magnification, depth of field, and spatial resolution would vary with the working distance. For example, in one CHAMP version, at a working distance of 2.5 m, the instrument would function as an electronic camera with a magnification of 1/100, whereas at a working distance of 7 mm, the instrument would function as a microscope/electronic camera with a magnification of 4.4. Moreover, as described below, when operating at or near the shortest-working-distance/highest-magnification combination, a CHAMP could be made to perform one or more spectral imaging functions. CHAMPs were originally intended to be used in robotic geological exploration of the Moon and Mars. The CHAMP concept also has potential for diverse terrestrial applications that could include remotely controlled or robotic geological exploration, prospecting, field microbiology, environmental surveying, and assembly- line inspection. A CHAMP (see figure) would include two lens cells: (1) a distal cell corresponding to the objective lens assembly of a conventional telescope or microscope and (2) a proximal cell that would contain the focusing camera lens assembly and the camera electronic image-detector chip, which would be of the active-pixel-sensor (APS) type. The distal lens cell would face outward from a housing, while the proximal lens cell would lie in a clean environment inside the housing. The proximal lens cell would contain a beam splitter that would enable simultaneous use of the imaging optics (that is, proximal and distal lens assemblies) for imaging and illumination of the field of view. The APS chip would be mounted on a focal plane on a side face of the beam splitter, while light for

  15. Resilience - A Concept

    DTIC Science & Technology

    2016-04-05

    Image designed by Diane Fleischer Resilience—A CONCEPT Col Dennis J. Rensel, USAF (Ret.) Resilience takes on many definitions and ideas depending...2015, Vol. 22 No. 3 : 294–324 A Publication of the Defense Acquisition University http://www.dau.mil Resilience as a term has as many definitions as...people who talk about it. What if resiliency is treated as a concept? How do you measure a concept? In reviewing many definitions , “each [ definition

  16. The JCMT future instrumentation project

    NASA Astrophysics Data System (ADS)

    Dempsey, Jessica T.; Ho, Paul T. P.; Walther, Craig; Friberg, Per; Bintley, Dan; Chen, Ming-Tang

    2016-08-01

    Under the new operational purview of the East Asian Observatory, the JCMT continues to produce premier wide-field submillimetre science. Now the Observatory looks to embark on an ambitious series of instrumentation upgrades and opportunities to keep the telescope at the bleeding edge of its performance capabilities, whilst harnessing the collaborative expertise of the participating EAO regions and its JCMT partners. New heterodyne instruments include a new receiver at 230 GHz, a super array (90 pixels) at 345 GHz and the upgrade possibilities for the continuum camera SCUBA-2. In addition, the opportunities for PI and visiting instruments, including TimePilot and Gismo-2 will be described.

  17. Commissioning Instrument for the GTC

    NASA Astrophysics Data System (ADS)

    Cuevas, S.; Sánchez, B.; Bringas, V.; Espejo, C.; Flores, R.; Chapa, O.; Lara, G.; Chavolla, A.; Anguiano, G.; Arciniega, S.; Dorantes, A.; González, J. L.; Montoya, J. M.; Toral, R.; Hernández, H.; Nava, R.; Devaney, N.; Castro, J.; Cavaller-Marqués, L.

    2005-12-01

    During the GTC integration phase, the Commissioning Instrument (CI) will be a diagnostic tool for performance verification. The CI features four operation modes: imaging, pupil imaging, Curvature WFS, and high resolution Shack-Hartmann WFS. This instrument was built by the Instituto de Astronomía UNAM and the Centro de Ingeniería y Desarrollo Industrial (CIDESI) under GRANTECAN contract after a public bid. In this paper we made a general instrument overview and we show some of the performance final results obtained when the Factory Acceptance tests previous to its transport to La Palma.

  18. Burried broken extraction instrument fragment

    PubMed Central

    Balaji, S. M.

    2013-01-01

    Despite adequate effort to perform tooth removal carefully, some accidents may happen when defective instruments are unknowingly used. This article reports of a non-symptomatic case of a retained fractured dental elevator tip during an uneventful extraction a decade earlier. Patient was not aware till routine radiographic examination revealed its presence. Use of three dimensional imaging techniques in this case is highlighted. Rarely, instruments breakage may occur during surgical procedures. It is duty of the dentists to check the surgical instrument for signs of breakage and be prepared to solve a possible emergency. Retained fragments should be carefully studied prior to attempt of removal. PMID:23662269

  19. Foundations of measurement and instrumentation

    NASA Technical Reports Server (NTRS)

    Warshawsky, Isidore

    1990-01-01

    The user of instrumentation has provided an understanding of the factors that influence instrument performance, selection, and application, and of the methods of interpreting and presenting the results of measurements. Such understanding is prerequisite to the successful attainment of the best compromise among reliability, accuracy, speed, cost, and importance of the measurement operation in achieving the ultimate goal of a project. Some subjects covered are dimensions; units; sources of measurement error; methods of describing and estimating accuracy; deduction and presentation of results through empirical equations, including the method of least squares; experimental and analytical methods of determining the static and dynamic behavior of instrumentation systems, including the use of analogs.

  20. Adjustable extender for instrument module

    DOEpatents

    Sevec, J.B.; Stein, A.D.

    1975-11-01

    A blank extender module used to mount an instrument module in front of its console for repair or test purposes has been equipped with a rotatable mount and means for locking the mount at various angles of rotation for easy accessibility. The rotatable mount includes a horizontal conduit supported by bearings within the blank module. The conduit is spring-biased in a retracted position within the blank module and in this position a small gear mounted on the conduit periphery is locked by a fixed pawl. The conduit and instrument mount can be pulled into an extended position with the gear clearing the pawl to permit rotation and adjustment of the instrument.