Sample records for act metals total

  1. The tribology of metal-on-metal total hip replacements.

    PubMed

    Scholes, S C; Unsworth, A

    2006-02-01

    Total hip surgery is an effective way of alleviating the pain and discomfort caused by diseased or damaged joints. However, in the majority of cases, these joints have a finite life. The main reason for failure is osteolysis (bone resorption). It is well documented that an important cause of osteolysis, and therefore the subsequent loosening and failure of conventional metal- or ceramic-on-ultra-high molecular weight polyethylene joints, is the body's immunological response to the polyethylene wear particles. To avoid this, interest has been renewed in metal-on-metal joints. The intention of this paper is to review the studies that have taken place within different laboratories to determine the tribological performance of new-generation metal-on-metal total hip replacements. These types of joint offer a potential solution to enhance the longevity of prosthetic hip systems; however, problems may arise owing to the effects of metal ion release, which are, as yet, not fully understood.

  2. Bulk metal concentrations versus total suspended solids in rivers: Time-invariant & catchment-specific relationships.

    PubMed

    Nasrabadi, Touraj; Ruegner, Hermann; Schwientek, Marc; Bennett, Jeremy; Fazel Valipour, Shahin; Grathwohl, Peter

    2018-01-01

    Suspended particles in rivers can act as carriers of potentially bioavailable metal species and are thus an emerging area of interest in river system monitoring. The delineation of bulk metals concentrations in river water into dissolved and particulate components is also important for risk assessment. Linear relationships between bulk metal concentrations in water (CW,tot) and total suspended solids (TSS) in water can be used to easily evaluate dissolved (CW, intercept) and particle-bound metal fluxes (CSUS, slope) in streams (CW,tot = CW + CSUS TSS). In this study, we apply this principle to catchments in Iran (Haraz) and Germany (Ammer, Goldersbach, and Steinlach) that show differences in geology, geochemistry, land use and hydrological characteristics. For each catchment, particle-bound and dissolved concentrations for a suite of metals in water were calculated based on linear regressions of total suspended solids and total metal concentrations. Results were replicable across sampling campaigns in different years and seasons (between 2013 and 2016) and could be reproduced in a laboratory sedimentation experiment. CSUS values generally showed little variability in different catchments and agree well with soil background values for some metals (e.g. lead and nickel) while other metals (e.g. copper) indicate anthropogenic influences. CW was elevated in the Haraz (Iran) catchment, indicating higher bioavailability and potential human and ecological health concerns (where higher values of CSUS/CW are considered as a risk indicator).

  3. Bulk metal concentrations versus total suspended solids in rivers: Time-invariant & catchment-specific relationships

    PubMed Central

    Ruegner, Hermann; Schwientek, Marc; Bennett, Jeremy; Fazel Valipour, Shahin; Grathwohl, Peter

    2018-01-01

    Suspended particles in rivers can act as carriers of potentially bioavailable metal species and are thus an emerging area of interest in river system monitoring. The delineation of bulk metals concentrations in river water into dissolved and particulate components is also important for risk assessment. Linear relationships between bulk metal concentrations in water (CW,tot) and total suspended solids (TSS) in water can be used to easily evaluate dissolved (CW, intercept) and particle-bound metal fluxes (CSUS, slope) in streams (CW,tot = CW + CSUS TSS). In this study, we apply this principle to catchments in Iran (Haraz) and Germany (Ammer, Goldersbach, and Steinlach) that show differences in geology, geochemistry, land use and hydrological characteristics. For each catchment, particle-bound and dissolved concentrations for a suite of metals in water were calculated based on linear regressions of total suspended solids and total metal concentrations. Results were replicable across sampling campaigns in different years and seasons (between 2013 and 2016) and could be reproduced in a laboratory sedimentation experiment. CSUS values generally showed little variability in different catchments and agree well with soil background values for some metals (e.g. lead and nickel) while other metals (e.g. copper) indicate anthropogenic influences. CW was elevated in the Haraz (Iran) catchment, indicating higher bioavailability and potential human and ecological health concerns (where higher values of CSUS/CW are considered as a risk indicator). PMID:29342204

  4. Does bearing size influence metal ion levels in large-head metal-on-metal total hip arthroplasty? A comparison of three total hip systems

    PubMed Central

    2014-01-01

    Background The purpose of the study was twofold: first, to determine whether there is a statistically significant difference in the metal ion levels among three different large-head metal-on-metal (MOM) total hip systems. The second objective was to assess whether position of the implanted prostheses, patient demographics or factors such as activity levels influence overall blood metal ion levels and whether there is a difference in the functional outcomes between the systems. Methods In a cross-sectional cohort study, three different metal-on-metal total hip systems were assessed: two monoblock heads, the Durom socket (Zimmer, Warsaw, IN, USA) and the Birmingham socket (Smith and Nephew, Memphis, TN, USA), and one modular metal-on-metal total hip system (Pinnacle, Depuy Orthopedics, Warsaw, IN, USA). Fifty-four patients were recruited, with a mean age of 59.7 years and a mean follow-up time of 41 months (12 to 60). Patients were evaluated clinically, radiologically and biochemically. Statistical analysis was performed on all collected data to assess any differences between the three groups in terms of overall blood metal ion levels and also to identify whether there was any other factor within the group demographics and outcomes that could influence the mean levels of Co and Cr. Results Although the functional outcome scores were similar in all three groups, the blood metal ion levels in the larger monoblock large heads (Durom, Birmingham sockets) were significantly raised compared with those of the Pinnacle group. In addition, the metal ion levels were not found to have a statistically significant relationship to the anteversion or abduction angles as measured on the radiographs. Conclusions When considering a MOM THR, the use of a monoblock large-head system leads to higher elevations in whole blood metal ions and offers no advantage over a smaller head modular system. PMID:24472283

  5. Metal-on-Metal Total Hip Arthroplasty: Quality of Online Patient Information.

    PubMed

    Crozier-Shaw, Geoff; Queally, Joseph M; Quinlan, John F

    2017-03-01

    Metal-on-metal total hip arthroplasty (THA) has generated much attention in the media because of early failure of certain implant systems. This study assessed the quality, accuracy, and readability of online information on metal-on-metal THA. The search terms "metal-on-metal hip replacement" and "metal hip replacement" were entered into the 3 most popular search engines. Information quality was assessed with the DISCERN score and a specific metal-on-metal THA content score. Accuracy of information was assessed with a customized score. Readability of the websites was assessed with the Flesch-Kincaid grade level score. A total of 61 unique websites were assessed. For 56% of websites, the target audience was patients. Media or medicolegal sources accounted for 44% of websites. As assessed by DISCERN (range, 16-80) and metal-on-metal THA (range, 0-25) scores, quality of the websites was moderate at best (47.1 and 9.6, respectively). Accuracy (range, 0-8) of the information presented also was moderate, with a mean score of 6.6. Media and medicolegal websites had the lowest scores for both quality and accuracy, despite making up the greatest proportion of sites assessed. Only 1 website (2%) had a Flesch-Kincaid grade level at or less than the recommended level of 8th grade. This study found that online information on metal-on-metal THA was of poor quality, often was inaccurate, and was presented at an inappropriately high reading level, particularly for media and medicolegal websites. Health care providers should counsel patients on the quality of information available and recommend appropriate online resources. [Orthopedics. 2017; 40(2):e262-e268.]. Copyright 2016, SLACK Incorporated.

  6. Predictivity and fate of metal ion release from metal-on-metal total hip prostheses.

    PubMed

    Nicolli, Annamaria; Bisinella, Gianluca; Padovani, Giovanni; Vitella, Antonio; Chiara, Federica; Trevisan, Andrea

    2014-09-01

    Blood metal ion levels in 72 patients with large head metal-on-metal hip arthroplasty were studied to determine the correlation between the values measured in whole blood and urine. Urinary cobalt and chromium levels of 30μg and 21μg, respectively, adjusted to creatinine were found to correspond to the 7μg/l cut-off value that has been accepted in whole blood. Cobalt and chromium levels in whole blood and urine both significantly correlated with increased acetabular component inclination angle over 50 degrees and pain scores. There was no correlation with socket anteversion angle or femoral head diameter. The data support the use of urinary measurement of metal ions adjusted to creatinine to monitor patients with large head metal-on-metal total hip arthroplasty. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. TOTAL DISSOLVED AND BIOAVAILABLE METALS AT LAKE TEXOMA MARINAS

    EPA Science Inventory

    Dissolved metals in water and total metals in sediments have been measured at marina areas in Lake Texoma during June 1999 to October 2001, and October 2001, respectively. The metals most often found in the highest concentrations in marina water were Na and Ca, followed by Mg an...

  8. 76 FR 72495 - Alabama Metal Coil Securement Act; Petition for Determination of Preemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ...-0318] Alabama Metal Coil Securement Act; Petition for Determination of Preemption AGENCY: Federal Motor... the American Trucking Associations (ATA) requesting a determination that the State of Alabama's Metal..., Alabama's metal coil load securement certification requirements may have on interstate commerce. DATES...

  9. Metal Hypersensitivity and Total Knee Arthroplasty

    PubMed Central

    Lachiewicz, Paul F.; Watters, Tyler Steven; Jacobs, Joshua J.

    2015-01-01

    Metal hypersensitivity in patients with a total knee arthroplasty (TKA) is a controversial topic. The diagnosis is difficult, given the lack of robust clinical validation of the utility of cutaneous and in vitro testing. Metal hypersensitivity after TKA is quite rare and should be considered after eliminating other causes of pain and swelling, such as low-grade infection, instability, component loosening or malrotation, referred pain, and chronic regional pain syndrome. Anecdotal observations suggest that two clinical presentations of metal hypersensitivity may occur after TKA: dermatitis or a persistent painful synovitis of the knee. Patients may or may not have a history of intolerance to metal jewelry. Laboratory studies, including erythrocyte sedimentation rate, C-reactive protein level, and knee joint aspiration, are usually negative. Cutaneous and in vitro testing have been reported to be positive, but the sensitivity and specificity of such testing has not been defined. Anecdotal reports suggest that, if metal hypersensitivity is suspected and nonsurgical measures have failed, then revision to components fabricated of titanium alloy or zirconium coating can be successful in relieving symptoms. Revision should be considered as a last resort, however, and patients should be informed that no evidence-based medicine is available to guide the management of these conditions, particularly for decisions regarding revision. Given the limitations of current testing methods, the widespread screening of patients for metal allergies before TKA is not warranted. PMID:26752739

  10. Metal-on-Metal Total Hip Resurfacing Arthroplasty

    PubMed Central

    2006-01-01

    Executive Summary Objective The objective of this review was to assess the safety and effectiveness of metal on metal (MOM) hip resurfacing arthroplasty for young patients compared with that of total hip replacement (THR) in the same population. Clinical Need Total hip replacement has proved to be very effective for late middle-aged and elderly patients with severe degenerative diseases of the hips. As indications for THR began to include younger patients and those with a more active life style, the longevity of the implant became a concern. Evidence suggests that these patients experience relatively higher rates of early implant failure and the need for revision. The Swedish hip registry, for example, has demonstrated a survival rate in excess of 80% at 20 years for those aged over 65 years, whereas this figure was 33% by 16 years in those aged under 55 years. Hip resurfacing arthroplasty is a bone-conserving alternative to THR that restores normal joint biomechanics and load transfer. The technique has been used around the world for more than 10 years, specifically in the United Kingdom and other European countries. The Technology Metal-on-metal hip resurfacing arthroplasty is an alternative procedure to conventional THR in younger patients. Hip resurfacing arthroplasty is less invasive than THR and addresses the problem of preserving femoral bone stock at the initial operation. This means that future hip revisions are possible with THR if the initial MOM arthroplasty becomes less effective with time in these younger patients. The procedure involves the removal and replacement of the surface of the femoral head with a hollow metal hemisphere, which fits into a metal acetabular cup. Hip resurfacing arthroplasty is a technically more demanding procedure than is conventional THR. In hip resurfacing, the femoral head is retained, which makes it much more difficult to access the acetabular cup. However, hip resurfacing arthroplasty has several advantages over a

  11. Association Between Pseudotumor Formation and Patient Factors in Metal-on-Metal Total Hip Arthroplasty Population.

    PubMed

    Kleeman, Lindsay T; Goltz, Daniel; Seyler, Thorsten M; Mammarappallil, Joseph G; Attarian, David E; Wellman, Samuel S; Bolognesi, Michael P

    2018-07-01

    Pseudotumor formation from metal-on-metal (MoM) hip implants is associated with implant revision. The relationship between pseudotumor type and patient outcomes is unknown. We retrospectively reviewed patients with a MoM total hip arthroplasty and metal artifact reduction sequence magnetic resonance imaging. Pseudotumors were graded using a validated classification system by a fellowship-trained radiologist. Patient demographics, metal ion levels, and implant survival were analyzed. Pseudotumors were present in 49 hips (53%). Thirty-two (65%) pseudotumors were cystic thin walled, 8 (16%) were cystic thick walled, and 9 (18%) were solid masses. Patients with pseudotumors had high offset stems (P = .030) but not higher metal ion levels. Patients with thick-walled cystic or solid masses were more likely to be symptomatic (P = .025) and were at increased risk for revision (P = .004) compared to patients with cystic lesions. Pseudotumor formation is present in 53% of patients with a MoM total hip arthroplasty, of which 40% were asymptomatic. Patients with thick-walled cystic and solid lesions were more likely to be symptomatic and undergo revision. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Corrosion on the acetabular liner taper from retrieved modular metal-on-metal total hip replacements.

    PubMed

    Gascoyne, Trevor C; Dyrkacz, Richard M; Turgeon, Thomas R; Burnell, Colin D; Wyss, Urs P; Brandt, Jan-M

    2014-10-01

    Eight retrieved metal-on-metal total hip replacements displayed corrosion damage along the cobalt-chromium alloy liner taper junction with the Ti alloy acetabular shell. Scanning electron microscopy indicated the primary mechanism of corrosion to be grain boundary and associated crevice corrosion, which was likely accelerated through mechanical micromotion and galvanic corrosion resulting from dissimilar alloys. Coordinate measurements revealed up to 4.3mm(3) of the cobalt-chromium alloy taper surface was removed due to corrosion, which is comparable to previous reports of corrosion damage on head-neck tapers. The acetabular liner-shell taper appears to be an additional source of metal corrosion products in modular total hip replacements. Patients with these prostheses should be closely monitored for signs of adverse reaction towards corrosion by-products. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Long-Acting Opioid Use Independently Predicts Perioperative Complication in Total Joint Arthroplasty.

    PubMed

    Sing, David C; Barry, Jeffrey J; Cheah, Jonathan W; Vail, Thomas P; Hansen, Erik N

    2016-09-01

    Opioid therapy is an increasingly used modality for treatment of musculoskeletal pain despite multiple associated risks. The purpose of this study was to evaluate how preoperative opioid use affects early outcomes after total joint arthroplasty. A total of 174 patients undergoing total joint arthroplasty were matched by age, gender, and procedure into 3 groups stratified by preoperative opioid use (nonuser, short acting [eg, Vicodin], long acting [eg, Oxycontin]). Compared to nonusers, preoperative long-acting use was associated with increased postoperative mean opioid consumption (46 mg vs 366 mg mean morphine equivalents, P < .001) and independently predicted complications within 90 days (odds ratio: 6.15, confidence interval: [1.46, 25.95], P = .013). Preoperative opioid use should be disclosed as a risk factor for complication to patients and taken into consideration by physicians before initiating opioid management. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. TOTAL AND BIOAVAILABLE METALS AT MARINA SEDIMENTS IN LAKE TEXOMA

    EPA Science Inventory

    Total and bioavailable metals in sediments were measured at marina areas in Lake Texoma during the fall of 2001. The metals most often found in the highest concentrations in sediments were Ca (56811 mg/kg) and Al (31095 mg/kg), followed by Fe (19393 mg/kg), K (6089 mg/kg), and Mg...

  15. [Radiographic appraisal between metal and bone interosculate backfill after total hip arthroplasty with trabecular metal cup].

    PubMed

    Li, Wei; Zhou, Yi-Xin; Wu, Jian; Xu, Hui; Ji, Song-Jie

    2009-02-15

    To evaluate the bone refilling in the interface between the trabecular metal (TM) acetabular shell and the bone surface according to consecutive X film measuring after surgery. From July 2006 to July 2007, 35 patients (40 hips) accepted total hip replacement using trabecular metal monoblock acetabular cup system (TM). The cup was made of a ellipse shaped press fit Tantalum shell and high cross-linked PE liner (Longevity) with 28 mm inner diameter. The patients demography was: 16 male (20 hips), 19 female (20 hips), 5 bilateral hip replacements, age from 41 - 71 (mean 53), including 18 avascular necrosis hips, 16 osteoarthritis hips (including those secondary to a dysplasia hip), 4 avascular necrosis hips after femoral neck fracture, 2 Ankylosis Spondylitis. All the 40 total hip replacements used posterior approach, using hemispherical acetabular reamer and 2 mm press fit of final metal shell without screw fixation. The consecutive X film was taken at the end time of surgery and 2, 6, 12, 24 weeks, and 12 months. The clinical results was evaluate according to Harris scoring system, and the standard pelvis AP X film was measured at the interface between metal shell and the acetabular bone surface, witch was divided into five regions (A, B, C, D, E). Totally 32 patients (37 hips) were followed with average 8.7 months (7 - 12 months). The Harris before surgery was 50.5 (32 - 85), promoted to 91.0 (72 - 100), including 29 excellent, 6 good, 2 fair, and the total excellent and good rate was 94.6%. Complications include 4 patients leg length discrepancy from 1 - 2 cm, 3 patients moderate thigh pain and released after conservative therapy. No infection and dislocation was found. Twenty-one patients (23 hips) were found lucent line at the bone-metal interface from 1 - 5 mm, most common in B region and BC boundary than C, D, and CD boundary. All the patients followed was found the lucent line disappeared and refilled with bone at X film 24 weeks after surgery, however, no

  16. MR Imaging with Metal-suppression Sequences for Evaluation of Total Joint Arthroplasty.

    PubMed

    Talbot, Brett S; Weinberg, Eric P

    2016-01-01

    Metallic artifact at orthopedic magnetic resonance (MR) imaging continues to be an important problem, particularly in the realm of total joint arthroplasty. Complications often follow total joint arthroplasty and can be expected for a small percentage of all implanted devices. Postoperative complications involve not only osseous structures but also adjacent soft tissues-a highly problematic area at MR imaging because of artifacts from metallic prostheses. Without special considerations, susceptibility artifacts from ferromagnetic implants can unacceptably degrade image quality. Common artifacts include in-plane distortions (signal loss and signal pileup), poor or absent fat suppression, geometric distortion, and through-section distortion. Basic methods to reduce metallic artifacts include use of spin-echo or fast spin-echo sequences with long echo train lengths, short inversion time inversion-recovery (STIR) sequences for fat suppression, a high bandwidth, thin section selection, and an increased matrix. With care and attention to the alloy type (eg, titanium, cobalt-chromium, stainless steel), orientation of the implant, and magnetic field strength, as well as use of proprietary and nonproprietary metal-suppression techniques, previously nondiagnostic studies can yield key diagnostic information. Specifically, sequences such as the metal artifact reduction sequence (MARS), WARP (Siemens Healthcare, Munich, Germany), slice encoding for metal artifact correction (SEMAC), and multiacquisition with variable-resonance image combination (MAVRIC) can be optimized to reveal pathologic conditions previously hidden by periprosthetic artifacts. Complications of total joint arthroplasty that can be evaluated by using MR imaging with metal-suppression sequences include pseudotumoral conditions such as metallosis and particle disease, infection, aseptic prosthesis loosening, tendon injury, and muscle injury. ©RSNA, 2015.

  17. Mortality rates at 10 years after metal-on-metal hip resurfacing compared with total hip replacement in England: retrospective cohort analysis of hospital episode statistics

    PubMed Central

    Kendal, Adrian R; Prieto-Alhambra, Daniel; Arden, Nigel K; Judge, Andrew

    2013-01-01

    Objectives To compare 10 year mortality rates among patients undergoing metal-on-metal hip resurfacing and total hip replacement in England. Design Retrospective cohort study. Setting English hospital episode statistics database linked to mortality records from the Office for National Statistics. Population All adults who underwent primary elective hip replacement for osteoarthritis from April 1999 to March 2012. The exposure of interest was prosthesis type: cemented total hip replacement, uncemented total hip replacement, and metal-on-metal hip resurfacing. Confounding variables included age, sex, Charlson comorbidity index, rurality, area deprivation, surgical volume, and year of operation. Main outcome measures All cause mortality. Propensity score matching was used to minimise confounding by indication. Kaplan-Meier plots estimated the probability of survival up to 10 years after surgery. Multilevel Cox regression modelling, stratified on matched sets, described the association between prosthesis type and time to death, accounting for variation across hospital trusts. Results 7437 patients undergoing metal-on-metal hip resurfacing were matched to 22 311 undergoing cemented total hip replacement; 8101 patients undergoing metal-on-metal hip resurfacing were matched to 24 303 undergoing uncemented total hip replacement. 10 year rates of cumulative mortality were 271 (3.6%) for metal-on-metal hip resurfacing versus 1363 (6.1%) for cemented total hip replacement, and 239 (3.0%) for metal-on-metal hip resurfacing versus 999 (4.1%) for uncemented total hip replacement. Patients undergoing metal-on-metal hip resurfacing had an increased survival probability (hazard ratio 0.51 (95% confidence interval 0.45 to 0.59) for cemented hip replacement; 0.55 (0.47 to 0.65) for uncemented hip replacement). There was no evidence for an interaction with age or sex. Conclusions Patients with hip osteoarthritis undergoing metal-on-metal hip resurfacing have reduced mortality in

  18. Outcomes of a metal-on-metal total hip replacement system.

    PubMed

    Matharu, G S; Theivendran, K; Pynsent, P B; Jeys, L; Pearson, A M; Dunlop, D J

    2014-10-01

    High short-term failure rates have been reported for a variety of metal-on-metal (MoM) total hip replacements (THRs) owing to adverse reactions to metal debris (ARMD). This has led to the withdrawal of certain poorly performing THRs. This study analysed the outcomes of a MoM THR system. Between 2004 and 2010, 578 uncemented MoM THRs (511 patients, mean age: 60.0 years) were implanted at one specialist centre. The THR system used consisted of the Corail(®) stem, Pinnacle(®) cup, Ultamet(®) liner and Articul/eze(®) femoral head (all DePuy, Leeds, UK). All patients were recalled for clinical review with imaging performed as necessary. The mean follow-up duration was 5.0 years (range: 1.0-9.1 years). Overall, 39 hips (6.7%) in 38 patients (all 36 mm femoral head size) underwent revision at a mean time of 3.5 years (range: 0.01-8.3 years) from the index THR with 30 revisions (77%) performed in women. The cumulative eight-year survival rate for all THRs was 88.9% (95% confidence interval [CI]: 78.5-93.4%), with no difference (p=0.053) between male (95.2%, 95% CI: 84.2-98.7%) and female patients (85.3%, 95% CI: 70.2-92.1%) at eight years. Seventeen revisions (44%) were performed for ARMD. There was no significant difference in absolute postoperative Oxford hip scores between men and women (p=0.608). The mean acetabular inclination in unrevised THRs was 44.0°. Forty-seven non-revised THRs (8.7%) had blood metal ion concentrations above recommended thresholds (seven had periprosthetic effusions). Although this MoM THR system has not failed as dramatically as other similar designs, we recommend against continued use and advise regular clinical surveillance to identify ARMD early.

  19. The benefits of metal-on-metal total hip replacements.

    PubMed

    Müller, M E

    1995-02-01

    The Müller's cast prosthesis with a concentric metal-on-metal articulation and 3 sliding bearings was used in Switzerland from 1965 to 1967. During the next 10 to 15 years, a number of hips in which the metal-to-metal systems were implanted were revised. Rather than osteoporosis and cranial migration occurring, the acetabular roofs were often sclerotic and the components showed no or only minor migration. At surgery, the capsule was almost normal and without signs of inflammation. Histologically, the capsule did not show the usual masses of giant cells associated with polyethylene particles. In the mid-1980s, different designs of metal-on-metal articulations were tested. From 1987 to 1990, this author developed, together with the biomaterial division of Sulzer Medical Technology, a pure titanium shell with a polyethylene-backed 28-mm forged cobalt-chromium liner insert. This combination has been successful, with no revisions required to date. In summary, with the present metal-on-metal articulations it is now possible to stop using the polyethylene. The successful long-term results of the cast cobalt-chromium metal-on-metal articulations of 1966 hold much promise for the future of the new-forged, more-precise, metallic socket.

  20. Understanding the differences between the wear of metal-on-metal and ceramic-on-metal total hip replacements.

    PubMed

    Figueiredo-Pina, C G; Yan, Y; Neville, A; Fisher, J

    2008-04-01

    Hip simulator studies have been carried out extensively to understand and test artificial hip implants in vitro as an efficient alternative to obtaining long-term results in vivo. Recent studies have shown that a ceramic-on-metal material combination lowers the wear by up to 100 times in comparison with a typical metal-on-metal design. The reason for this reduction remains unclear and for this reason this study has undertaken simple tribometer tests to understand the fundamental material loss mechanisms in two material combinations: metal-on-metal and ceramic-on-ceramic. A simple-configuration reciprocating pin-on-plate wear study was performed under open-circuit potential (OCP) and with applied cathodic protection (CP) in a serum solution using two tribological couples: firstly, cobalt-chromium (Co-Cr) pins against Co-Cr plates; secondly, Co-Cr pins against alumina (Al2O3) plates. The pin and plate surfaces prior to and after testing were examined by profilometry and scanning electron microscopy. The results showed a marked reduction in wear when CP was applied, indicating that total material degradation under the OCP condition was attributed to corrosion processes. The substitution of the Co-Cr pin with an Al2O3 plate also resulted in a dramatic reduction in wear, probably due to the reduction in the corrosion-wear interactions between the tribological pair.

  1. Metal-on-Metal Total Hip Resurfacing Arthroplasty: An Evidence-Based Analysis.

    PubMed

    2006-01-01

    The objective of this review was to assess the safety and effectiveness of metal on metal (MOM) hip resurfacing arthroplasty for young patients compared with that of total hip replacement (THR) in the same population. Total hip replacement has proved to be very effective for late middle-aged and elderly patients with severe degenerative diseases of the hips. As indications for THR began to include younger patients and those with a more active life style, the longevity of the implant became a concern. Evidence suggests that these patients experience relatively higher rates of early implant failure and the need for revision. The Swedish hip registry, for example, has demonstrated a survival rate in excess of 80% at 20 years for those aged over 65 years, whereas this figure was 33% by 16 years in those aged under 55 years. Hip resurfacing arthroplasty is a bone-conserving alternative to THR that restores normal joint biomechanics and load transfer. The technique has been used around the world for more than 10 years, specifically in the United Kingdom and other European countries. Metal-on-metal hip resurfacing arthroplasty is an alternative procedure to conventional THR in younger patients. Hip resurfacing arthroplasty is less invasive than THR and addresses the problem of preserving femoral bone stock at the initial operation. This means that future hip revisions are possible with THR if the initial MOM arthroplasty becomes less effective with time in these younger patients. The procedure involves the removal and replacement of the surface of the femoral head with a hollow metal hemisphere, which fits into a metal acetabular cup. Hip resurfacing arthroplasty is a technically more demanding procedure than is conventional THR. In hip resurfacing, the femoral head is retained, which makes it much more difficult to access the acetabular cup. However, hip resurfacing arthroplasty has several advantages over a conventional THR with a small (28 mm) ball. First, the large

  2. Poor short term outcome with a metal-on-metal total hip arthroplasty.

    PubMed

    Levy, Yadin D; Ezzet, Kace A

    2013-08-01

    Metal-on-metal (MoM) bearings for total hip arthroplasty (THA) have come under scrutiny with reports of high failure rates. Clinical outcome studies with several commercially available MoM THA bearings remain unreported. We evaluated 78 consecutive MoM THAs from a single manufacturer in 68 patients. Sixty-six received cobalt-chrome (CoCr) monoblock and 12 received modular titanium acetabular cups with internal CoCr liners. Femoral components were titanium with modular necks. At average 2.1 years postoperatively, 12 THAs (15.4%) demonstrated aseptic failure (10 revisions, 2 revision recommended). All revised hips demonstrated capsular necrosis with positive histology reaction for aseptic lymphocytic vasculitis-associated lesions/adverse local tissue reactions. Prosthetic instability following revision surgery was relatively common. Female gender was a strong risk factor for failure, though smaller cups were not. Both monoblock and modular components fared poorly. Corrosion was frequently observed around the proximal and distal end of the modular femoral necks. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Analysis of total and dissolved heavy metals in surface water of a Mexican polluted river by total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Zarazua, G.; Ávila-Pérez, P.; Tejeda, S.; Barcelo-Quintal, I.; Martínez, T.

    2006-11-01

    The present area of study is located in the Upper Course of the Lerma River (UCLR). The Lerma is one of the most important rivers of Mexico, where it drains highly populated and industrialized regions. The aim of the present study is to determine the heavy metal concentration of Cr, Mn, Fe, Cu and Pb in dissolved and total phases of the UCLR by means of Total Reflection X-ray Fluorescence Spectrometry (TXRF). The surface water samples were collected at 8 sites distributed following the stream flow direction of the river. Four sampling campaigns were carried out in each site in a 1-year period. A sample preparation method was applied in order to obtain the total and dissolved fraction and to destroy the organic matter. The total heavy metal average concentration decrease in the following order: Fe (2566 μg/L) > Mn (300 μg/L) > Cu (66 μg/L) > Cr (21 μg/L) > Pb (15 μg/L). In general, the heavy metal concentrations in water of the UCLR are below the maximum permissible limits.

  4. A Comparison of Blood Metal Ions in Total Hip Arthroplasty Using Metal and Ceramic Heads.

    PubMed

    White, Peter B; Meftah, Morteza; Ranawat, Amar S; Ranawat, Chitranjan S

    2016-10-01

    In recent time, metal ion debris and adverse local tissue reaction have reemerged as an area of clinical concern with the use of large femoral heads after total hip arthroplasty (THA). Between June 2014 and January 2015, 60 patients with a noncemented THA using a titanium (titanium, molybdenum, zirconium, and iron alloy) femoral stem and a V40 trunnion were identified with a minimum 5-year follow-up. All THAs had a 32- or 36-mm metal (n = 30) or ceramic (n = 30) femoral head coupled with highly cross-linked polyethylene. Cobalt, chromium, and nickel ions were measured. Patients with metal heads had detectable cobalt and chromium levels. Cobalt levels were detectable in 17 (56.7%) patients with a mean of 2.0 μg/L (range: <1.0-10.8 μg/L). Chromium levels were detectable in 5 (16.7%) patients with a mean of 0.3 μg/L (range: <1.0-2.2 μg/L). All patients with a ceramic head had nondetectable cobalt and chromium levels. Cobalt and chromium levels were significantly higher with metal heads compared to ceramic heads (P < .01). Cobalt levels were significantly higher with 36-mm metal heads compared with 32-mm heads (P < .01). Seven patients with metal femoral heads had mild hip symptoms, 4 of whom had positive findings of early adverse local tissue reaction on magnetic resonance imaging. All ceramic THA was asymptomatic. The incidence and magnitude of cobalt and chromium levels is higher in metal heads compared to ceramic heads with this implant system (P < .01). Thirty-six millimeter metal femoral heads result in larger levels of cobalt compared with 32-mm metal heads. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Results of thermal test of metallic molybdenum disk target and fast-acting valve testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virgo, M.; Chemerisov, S.; Gromov, R.

    2016-12-01

    This report describes the irradiation conditions for thermal testing of helium-cooled metallic disk targets that was conducted on March 9, 2016, at the Argonne National Laboratory electron linac. The four disks in this irradiation were pressed and sintered by Oak Ridge National Laboratory from molybdenum metal powder. Two of those disks were instrumented with thermocouples. Also reported are results of testing a fast-acting-valve system, which was designed to protect the accelerator in case of a target-window failure.

  6. Do cobalt and chromium levels predict osteolysis in metal-on-metal total hip arthroplasty?

    PubMed

    Renner, Lisa; Schmidt-Braekling, Tom; Faschingbauer, Martin; Boettner, Friedrich

    2016-12-01

    Serum metal ions are part of the regular follow-up routine of patients with metal-on-metal total hip arthroplasties (MoM-THA). Increased cobalt levels have been suggested to indicate implant failure and corrosion. (1) Is there a correlation between the size of the osteolysis measured on a CT scan and metal ion levels? (2) Can metal ion levels predict the presence of osteolysis in MoM-THA? (3) Are cobalt and chromium serum levels or the cobalt-chromium-ratio diagnostic for osteolysis? CT scans of patients (n = 75) with a unilateral MoM-THA (Birmingham Hip System, Smith & Nephew, TN, USA) implanted by a single surgeon were reviewed to determine the presence of osteolysis. Statistical analysis was performed to detect its association with metal ion levels at the time of the imaging exam. The incidence of osteolysis was the same in men and women (35.6 vs 35.7 %). The cobalt-chromium-ratio correlates with the size of the osteolysis on the CT scan and the femoral component size in the overall study population (p = 0.050, p = 0.001) and in men (p = 0.002, p = 0.001) but not in women (p = 0.312, p = 0.344). The AUC for the cobalt-chromium-ratio to detect osteolysis was 0.613 (p = 0.112) for the overall population, 0.710 for men (p = 0.021) and 0.453 (p = 0.684) for women. The data suggest that a cut off level of 1.71 for the cobalt-chromium-ratio has a sensitivity of 62.5 % and specificity of 72.4 % to identify male patients with osteolysis. The disproportional increase of cobalt over chromium, especially in male patients with large component sizes can not be explained by wear alone and suggests that other processes (corrosion) might contribute to metal ion levels and might be more pronounced in patients with larger component sizes.

  7. Clean Water Act Approved Total Maximum Daily Load (TMDL) Documents

    EPA Pesticide Factsheets

    Information from Approved and Established TMDL Documents as well as TMDLs that have been Withdrawn. This includes the pollutants identified in the TMDL Document, the 303(d) Listed Water(s) that the TMDL Document addresses and the associated Cause(s) of Impairment. The National Total Maximum Daily Load (TMDL) Tracking System (NTTS) contains information on waters that are Not Supporting their designated uses. These waters are listed by the state as impaired under Section 303(d) of the Clean Water Act.

  8. Ten-Year Outcome of Serum Metal Ion Levels After Primary Total Hip Arthroplasty

    PubMed Central

    Levine, Brett R.; Hsu, Andrew R.; Skipor, Anastasia K.; Hallab, Nadim J.; Paprosky, Wayne G.; Galante, Jorge O.; Jacobs, Joshua J.

    2013-01-01

    Abstract: We previously reported on the metal ion concentrations of cobalt, chromium, and titanium that were found in the serum of patients three years after they had undergone primary total hip arthroplasty as compared with the concentrations found in the serum of control patients who did not have an implant. This study is a concise update on the serum metal levels found in a cohort of these patients ten years after the time of hip implantation. Of the original seventy-five subjects, metal ion levels were available for forty patients (53%). Ten patients (hybrid group) had received a hybrid total hip replacement that consisted of a modular cobalt-alloy femoral stem with a cobalt-alloy femoral head that had been inserted with cement and a titanium acetabular socket that had been inserted without cement. Nine patients (cobalt-chromium [CoCr] group) had received an implant with an extensively porous-coated modular cobalt-alloy femoral stem and femoral head along with a titanium acetabular socket; the femoral and acetabular components had each been inserted without cement. Eight patients (titanium group) had undergone insertion of a proximally porous-coated modular titanium-alloy femoral stem with a cobalt-alloy femoral head and a titanium acetabular socket; the femoral and acetabular components had each been inserted without cement. Thirteen patients (control group) from the original control group of patients who had not received an implant served as control subjects. Serum metal levels were measured with use of high-resolution sector field inductively coupled plasma mass spectrometry. The hybrid total hip arthroplasty group had mean cobalt levels that were 3.2 times higher at 120 months than they were at baseline, and the cobalt levels in that group were significantly higher than those in the titanium total hip arthroplasty group at thirty-six, sixty, eighty-four, ninety-six, and 120 months (p < 0.01). The hybrid group had mean chromium levels that were 3.9 times

  9. Optimization of heavy metals total emission, case study: Bor (Serbia)

    NASA Astrophysics Data System (ADS)

    Ilić, Ivana; Bogdanović, Dejan; Živković, Dragana; Milošević, Novica; Todorović, Boban

    2011-07-01

    The town of Bor (Serbia) is one of the most polluted towns in southeastern Europe. The copper smelter which is situated in the centre of the town is the main pollutant, mostly because of its old technology, which leads to environmental pollution caused by higher concentrations of SO 2 and PM 10. These facts show that the word is about a very polluted region in Europe which, apart from harming human health in the region itself, poses a particular danger for wider area of southeastern Europe. Optimization of heavy metal's total emission was undertaken because years of long contamination of the soil with heavy metals of anthropogenic origin created a danger that those heavy metals may enter the food chains of animals and people, which can lead to disastrous consequences. This work represents the usage of Geographic Information System (GIS) for establishing a multifactor assessment model to quantitatively divide polluted zones and for selecting control sites in a linear programming model, combined with PROMETHEE/GAIA method, Screen View modeling system, and linear programming model. The results show that emissions at some control sites need to be cut for about 40%. In order to control the background of heavy metal pollution in Bor, the ecological environment must be improved.

  10. Midterm results of Magnum large head metal-on-metal total hip arthroplasty.

    PubMed

    Aguado-Maestro, I; Cebrián Rodríguez, E; Paredes Herrero, E; Brunie Vegas, F; Oñate Miranda, M; Fernández García, N; García Alonso, M

    2018-06-11

    We present the results of the prospective follow up of a sample of large head metal-metal total hip arthroplasty obtained after the safety alert regarding a higher incidence of revision of these implants. All patients implanted with the Recap-M2a-Magnum cup between 2008 and 2011 were included. They were prospectively reviewed recording Harris Hip Score, clinical symptoms of chromium or cobalt intoxication. Serum levels of these ions were requested as well as X-Rays and ultrasonography. An MRI was performed in the cases of positive ultrasonography. Twenty-six males with a mean age of 48.54 years [32-62, SD: 7.18] were included. An anterolateral approach and Bi-Metric (7) and F-40 (19) stems were used. Cephalic diameters ranged 42-52 (mode: 46) and the mean cup inclination was 39.35° [21-59°, SD: 9.78]. During follow-up (7.3 years [5.9-9.4; SD: .78]), 3 patients (11.5%) underwent revision (2 cases aseptic loosening, 1 pseudotumour). Mean time until revision was 5.4 years [3.1-8.0; SD: 2.48]. The accumulated survival probability was 88.5% (95% CI 76.3-100%). Harris Hip Score was 94.47 [66.5-100; SD: 8.94] and the patients showed no metallic intoxication symptoms. The levels of chromium were 1.88 mcg/dl [0.6-3.9] and cobalt 1,74 mcg/dl [0.5-5,6]. One pseudotumour was found in an asymptomatic patient, and small amounts of periarticular liquid were found in 5 patients (19.2%) DISCUSSION AND CONCLUSIONS: High revision rates are still found when follow up is extended due to aseptic loosening and pseudotumour formation. MRI might not be the most adequate test to study the complications of these prostheses. Copyright © 2018 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. A hydrometallurgical process for recovering total metal values from waste monolithic ceramic capacitors.

    PubMed

    Prabaharan, G; Barik, S P; Kumar, B

    2016-06-01

    A hydrometallurgical process for recovering the total metal values from waste monolithic ceramic capacitors was investigated. The process parameters such as time, temperature, acid concentration, hydrogen peroxide concentration and other reagents (amount of zinc dust and sodium formate) were optimized. Base metals such as Ba, Ti, Sn, Cu and Ni are leached out in two stages using HCl in stage 1 and HCl with H2O2 in stage 2. More than 99% of leaching efficiency for base metals (Cu, Ni, Ba, Ti and Sn) was achieved. Precious metals such as Au and Pd are leached out using aquaregia and nitric acid was used for the leaching of Ag. Base metals (Ba, Ti, Sn, Cu and Ni) are recovered by selective precipitation using H2SO4 and NaOH solution. In case of precious metals, Au and Pd from the leach solution were precipitated out using sodium metabisulphite and sodium formate, respectively. Sodium chloride was used for the precipitation of Ag from leach solution. Overall recovery for base metals and precious metals are 95% and 92%, respectively. Based on the results of the present study, a process flow diagram was proposed for commercial application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Experimental validation of finite element modelling of a modular metal-on-polyethylene total hip replacement.

    PubMed

    Hua, Xijin; Wang, Ling; Al-Hajjar, Mazen; Jin, Zhongmin; Wilcox, Ruth K; Fisher, John

    2014-07-01

    Finite element models are becoming increasingly useful tools to conduct parametric analysis, design optimisation and pre-clinical testing for hip joint replacements. However, the verification of the finite element model is critically important. The purposes of this study were to develop a three-dimensional anatomic finite element model for a modular metal-on-polyethylene total hip replacement for predicting its contact mechanics and to conduct experimental validation for a simple finite element model which was simplified from the anatomic finite element model. An anatomic modular metal-on-polyethylene total hip replacement model (anatomic model) was first developed and then simplified with reasonable accuracy to a simple modular total hip replacement model (simplified model) for validation. The contact areas on the articulating surface of three polyethylene liners of modular metal-on-polyethylene total hip replacement bearings with different clearances were measured experimentally in the Leeds ProSim hip joint simulator under a series of loading conditions and different cup inclination angles. The contact areas predicted from the simplified model were then compared with that measured experimentally under the same conditions. The results showed that the simplification made for the anatomic model did not change the predictions of contact mechanics of the modular metal-on-polyethylene total hip replacement substantially (less than 12% for contact stresses and contact areas). Good agreements of contact areas between the finite element predictions from the simplified model and experimental measurements were obtained, with maximum difference of 14% across all conditions considered. This indicated that the simplification and assumptions made in the anatomic model were reasonable and the finite element predictions from the simplified model were valid. © IMechE 2014.

  13. Heavy metal, pH, and total solid content of maple sap and syrup produced in eastern Canada.

    PubMed

    Robinson, A R; MacLean, K S; MacConnell, H M

    1989-01-01

    Maple sap and syrups in eastern Canada were analyzed for pH, total solids, and the heavy metals Cu, Fe, Pb, and Zn. The levels of heavy metals found were within the range normally contained in food and water samples except for Pb. The concentration factor found in reducing sap to syrup did not reflect the same concentration change for the measured parameters. This indicates removal or conversion of heavy metals and organic acids with the sugar sands. There was no statistical difference among provinces with respect to the heavy metal, pH, and total solids content of sap. The only significant difference in syrup occurred with Cu and this appeared to be the result of the processing procedure. As the season progressed, the Cu, Pb, pH, and total solids content of the sap decreased while Zn increased and Fe showed little change. Syrups reflected a similar change. Statistical differences occurred in sap composition among sites within each province.

  14. Competition effects in cation binding to humic acid: Conditional affinity spectra for fixed total metal concentration conditions

    NASA Astrophysics Data System (ADS)

    David, Calin; Mongin, Sandrine; Rey-Castro, Carlos; Galceran, Josep; Companys, Encarnació; Garcés, José Luis; Salvador, José; Puy, Jaume; Cecilia, Joan; Lodeiro, Pablo; Mas, Francesc

    2010-09-01

    Information on the Pb and Cd binding to a purified Aldrich humic acid (HA) is obtained from the influence of different fixed total metal concentrations on the acid-base titrations of this ligand. NICA (Non-Ideal Competitive Adsorption) isotherm has been used for a global quantitative description of the binding, which has then been interpreted by plotting the Conditional Affinity Spectra of the H + binding at fixed total metal concentrations (CAScTM). This new physicochemical tool, here introduced, allows the interpretation of binding results in terms of distributions of proton binding energies. A large increase in the acidity of the phenolic sites as the total metal concentration increases, especially in presence of Pb, is revealed from the shift of the CAScTM towards lower affinities. The variance of the CAScTM distribution, which can be used as a direct measure of the heterogeneity, also shows a significant dependence on the total metal concentration. A discussion of the factors that influence the heterogeneity of the HA under the conditions of each experiment is provided, so that the smoothed pattern exhibited by the titration curves can be justified.

  15. Combined effect of smoking habits and occupational exposure to hard metal on total IgE antibodies.

    PubMed

    Shirakawa, T; Kusaka, Y; Morimoto, K

    1992-06-01

    A survey was made within a population of workers (n = 706) exposed to hard metal dust (an alloy including cobalt), an agent known to cause occupational allergy. Twenty-seven (4 percent) of 733 workers were eliminated from consideration in this study because of atopic status identified prior to starting work in the plant. Using a Phadebas PRIST, the subjects' total IgE levels were determined and related to their smoking and exposure status. Nonexposed male smokers (n = 135) had a higher geometric mean IgE level (39.7 IU/ml) than did nonexposed subjects who had never smoked (33.1 IU/ml; n = 99); those with a higher Brinkman index (greater than 300), a smoking index obtained by multiplying the number of cigarettes per day by the duration of smoking in years, had significantly (p less than 0.05) decreased IgE levels. Although ex-smokers (n = 72) had a higher geometric mean IgE level (73.3 IU/ml) than did those who had never smoked, their serum IgE level declined with age since the time they quit smoking, regardless of their hard metal exposure status. Hard metal (cobalt) exposure may play a significant role as an adjuvant in the production of total IgE. A multivariate analysis demonstrated that hard metal exposure and a smoking habit together arithmetically (p less than 0.05) increased total IgE levels. These two factors may be preventable risk factors for occupational allergy in hard metal workers.

  16. Novel bis-(−)-nor-meptazinol derivatives act as dual binding site AChE inhibitors with metal-complexing property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Wei; NPFPC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, 2140 Xietu Road, Shanghai 200032; Li, Juan

    The strategy of dual binding site acetylcholinesterase (AChE) inhibition along with metal chelation may represent a promising direction for multi-targeted interventions in the pathophysiological processes of Alzheimer's disease (AD). In the present study, two derivatives (ZLA and ZLB) of a potent dual binding site AChE inhibitor bis-(−)-nor-meptazinol (bis-MEP) were designed and synthesized by introducing metal chelating pharmacophores into the middle chain of bis-MEP. They could inhibit human AChE activity with IC{sub 50} values of 9.63 μM (for ZLA) and 8.64 μM (for ZLB), and prevent AChE-induced amyloid-β (Aβ) aggregation with IC{sub 50} values of 49.1 μM (for ZLA) and 55.3more » μM (for ZLB). In parallel, molecular docking analysis showed that they are capable of interacting with both the catalytic and peripheral anionic sites of AChE. Furthermore, they exhibited abilities to complex metal ions such as Cu(II) and Zn(II), and inhibit Aβ aggregation triggered by these metals. Collectively, these results suggest that ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency, and may be potential leads of value for further study on disease-modifying treatment of AD. -- Highlights: ► Two novel bis-(−)-nor-meptazinol derivatives are designed and synthesized. ► ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency. ► They are potential leads for disease-modifying treatment of Alzheimer's disease.« less

  17. Size of metallic and polyethylene debris particles in failed cemented total hip replacements

    NASA Technical Reports Server (NTRS)

    Lee, J. M.; Salvati, E. A.; Betts, F.; DiCarlo, E. F.; Doty, S. B.; Bullough, P. G.

    1992-01-01

    Reports of differing failure rates of total hip prostheses made of various metals prompted us to measure the size of metallic and polyethylene particulate debris around failed cemented arthroplasties. We used an isolation method, in which metallic debris was extracted from the tissues, and a non-isolation method of routine preparation for light and electron microscopy. Specimens were taken from 30 cases in which the femoral component was of titanium alloy (10), cobalt-chrome alloy (10), or stainless steel (10). The mean size of metallic particles with the isolation method was 0.8 to 1.0 microns by 1.5 to 1.8 microns. The non-isolation method gave a significantly smaller mean size of 0.3 to 0.4 microns by 0.6 to 0.7 microns. For each technique the particle sizes of the three metals were similar. The mean size of polyethylene particles was 2 to 4 microns by 8 to 13 microns. They were larger in tissue retrieved from failed titanium-alloy implants than from cobalt-chrome and stainless-steel implants. Our results suggest that factors other than the size of the metal particles, such as the constituents of the alloy, and the amount and speed of generation of debris, may be more important in the failure of hip replacements.

  18. Dynamic re-weighted total variation technique and statistic Iterative reconstruction method for x-ray CT metal artifact reduction

    NASA Astrophysics Data System (ADS)

    Peng, Chengtao; Qiu, Bensheng; Zhang, Cheng; Ma, Changyu; Yuan, Gang; Li, Ming

    2017-07-01

    Over the years, the X-ray computed tomography (CT) has been successfully used in clinical diagnosis. However, when the body of the patient to be examined contains metal objects, the image reconstructed would be polluted by severe metal artifacts, which affect the doctor's diagnosis of disease. In this work, we proposed a dynamic re-weighted total variation (DRWTV) technique combined with the statistic iterative reconstruction (SIR) method to reduce the artifacts. The DRWTV method is based on the total variation (TV) and re-weighted total variation (RWTV) techniques, but it provides a sparser representation than TV and protects the tissue details better than RWTV. Besides, the DRWTV can suppress the artifacts and noise, and the SIR convergence speed is also accelerated. The performance of the algorithm is tested on both simulated phantom dataset and clinical dataset, which are the teeth phantom with two metal implants and the skull with three metal implants, respectively. The proposed algorithm (SIR-DRWTV) is compared with two traditional iterative algorithms, which are SIR and SIR constrained by RWTV regulation (SIR-RWTV). The results show that the proposed algorithm has the best performance in reducing metal artifacts and protecting tissue details.

  19. Tailored plasmon-induced transparency in attenuated total reflection response in a metal-insulator-metal structure.

    PubMed

    Matsunaga, Kouki; Hirai, Yusuke; Neo, Yoichiro; Matsumoto, Takahiro; Tomita, Makoto

    2017-12-19

    We demonstrated tailored plasmon-induced transparency (PIT) in a metal (Au)-insulator (SiO 2 )-metal (Ag) (MIM) structure, where the Fano interference between the MIM waveguide mode and the surface plasmon polariton (SPP) resonance mode induced a transparency window in an otherwise opaque wavenumber (k) region. A series of structures with different thicknesses of the Ag layer were prepared and the attenuated total reflection (ATR) response was examined. The height and width of the transparency window, as well as the relevant k-domain dispersion, were controlled by adjusting the Ag layer thickness. To confirm the dependency of PIT on Ag layer thickness, we performed numerical calculations to determine the electric field amplitude inside the layers. The steep k-domain dispersion in the transparency window is capable of creating a lateral beam shift known as the Goos-Hänchen shift, for optical device and sensor applications. We also discuss the Fano interference profiles in a ω - k two-dimensional domain on the basis of Akaike information criteria.

  20. Can green roof act as a sink for contaminants? A methodological study to evaluate runoff quality from green roofs.

    PubMed

    Vijayaraghavan, K; Joshi, Umid Man

    2014-11-01

    The present study examines whether green roofs act as a sink or source of contaminants based on various physico-chemical parameters (pH, conductivity and total dissolved solids) and metals (Na, K, Ca, Mg, Al, Fe, Cr, Cu, Ni, Zn, Cd and Pb). The performance of green roof substrate prepared using perlite, vermiculite, sand, crushed brick, and coco-peat, was compared with local garden soil based on improvement of runoff quality. Portulaca grandiflora was used as green roof vegetation. Four different green roof configurations, with vegetated and non-vegetated systems, were examined for several artificial rain events (un-spiked and metal-spiked). In general, the vegetated green roof assemblies generated better-quality runoff with less conductivity and total metal ion concentration compared to un-vegetated assemblies. Of the different green roof configurations examined, P. grandiflora planted on green roof substrate acted as sink for various metals and showed the potential to generate better runoff. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Primary cementless total hip arthroplasty with second-generation metal-on-metal bearings: a concise follow-up, at a minimum of seventeen years, of a previous report.

    PubMed

    Lass, R; Grübl, A; Kolb, A; Domayer, S; Csuk, C; Kubista, B; Giurea, A; Windhager, R

    2014-03-05

    Second-generation, metal-on-metal bearings were introduced in 1988, to reduce wear and avoid polyethylene particle-induced osteolysis from total hip arthroplasty. In 2007, we reported the long-term results of ninety-eight patients (105 hips) who underwent primary cementless total hip arthroplasty involving the use of a prosthesis with a high-carbide-concentration, metal-on-metal articulating surface between November 1992 and May 1994. The present study gives an update on this patient cohort. At a minimum of seventeen years postoperatively, forty-nine patients (fifty-two hips) were available for follow-up examination. We retrospectively evaluated clinical and radiographic results as well as serum metal concentration. The mean patient age at the time of the index arthroplasty was fifty-six years. Three cups (6% of the hips) and one stem (2% of the hips) were revised because of aseptic loosening of the implants combined with focal osteolysis. At the time of the latest follow-up evaluation, the mean Harris hip score was 88.8 points, and the mean University of California Los Angeles (UCLA) activity score was 6.7 points. The cumulative rate of implant survival, with aseptic failure as the end point, was 93.0% at 18.8 years. The median serum cobalt concentration in patients whose hip implant was the only source of cobalt was 0.70 μg/L (range, 0.4 to 5.1 μg/L), showing no increase in the value as noted at a minimum of ten years of follow-up. The clinical and radiographic results of our study, which, to our knowledge, represent the longest duration of follow-up for a series of cementless total hip arthroplasties with use of a 28-mm metal-on-metal bearing, continue to be comparable with the results observed for other hard-on-hard bearings.

  2. Comparison of synovial fluid, urine, and serum ion levels in metal-on-metal total hip arthroplasty at a minimum follow-up of 18 years.

    PubMed

    Lass, Richard; Grübl, Alexander; Kolb, Alexander; Stelzeneder, David; Pilger, Alexander; Kubista, Bernd; Giurea, Alexander; Windhager, Reinhard

    2014-09-01

    Diagnosis of adverse reactions to metal debris in metal-on-metal hip arthroplasty is a multifactorial process. Systemic ion levels are just one factor in the evaluation and should not be relied upon solely to determine the need for revision surgery. Furthermore, the correlation between cobalt or chromium serum, urine, or synovial fluid levels and adverse local tissue reactions is still incompletely understood. The hypothesis was that elevated serum and urine metal-ion concentrations are associated with elevated local metal-ion concentrations in primary total hip arthroplasties (THA) and with failure of metal-on-metal articulations in the long-term. In our present study, we evaluated these concentrations in 105 cementless THA with metal-on-metal articulating surfaces with small head diameter at a minimum of 18 years postoperatively. Spearman correlation showed a high correlation between the joint fluid aspirate concentration of cobalt and chromium with the serum cobalt (r = 0.81) and chromium level (r = 0.77) in patients with the THA as the only source of metal-ions. In these patients serum metal-ion analysis is a valuable method for screening. In patients with more than one source of metal or renal insufficiency additional investigations, like joint aspirations are an important tool for evaluation of wear and adverse tissue reactions in metal-on-metal THA. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. What Are Normal Metal Ion Levels After Total Hip Arthroplasty? A Serologic Analysis of Four Bearing Surfaces.

    PubMed

    Barlow, Brian T; Ortiz, Philippe A; Boles, John W; Lee, Yuo-Yu; Padgett, Douglas E; Westrich, Geoffrey H

    2017-05-01

    The recent experiences with adverse local tissue reactions have highlighted the need to establish what are normal serum levels of cobalt (Co), chromium (Cr), and titanium (Ti) after hip arthroplasty. Serum Co, Cr, and Ti levels were measured in 80 nonconsecutive patients with well-functioning unilateral total hip arthroplasty and compared among 4 bearing surfaces: ceramic-on-ceramic (CoC); ceramic-on-polyethylene (CoP); metal-on-polyethylene (MoP), and dual mobility (DM). The preoperative and most recent University of California, Los Angeles (UCLA) and Western Ontario and McMaster Universities Arthritis Index (WOMAC) scores were compared among the different bearing surfaces. No significant difference was found among serum Co and Cr levels between the 4 bearing surface groups (P = .0609 and P = .1577). Secondary analysis comparing metal and ceramic femoral heads demonstrated that the metal group (MoP, modular dual mobility (Stryker Orthopedics, Mahwah, NJ) [metal]) had significant higher serum Co levels compared with the ceramic group (CoC, CoP, MDM [ceramic]) (1.05 mg/L ± 1.25 vs 0.59 mg/L ± 0.24; P = .0411). Spearman coefficient identified no correlation between metal ion levels and patient-reported outcome scores. No serum metal ion level differences were found among well-functioning total hip arthroplasty with modern bearing couples. Significantly higher serum Co levels were seen when comparing metal vs ceramic femoral heads in this study and warrants further investigation. Metal ion levels did not correlate with patient-reported outcome measures. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Assessment of the characteristic of nutrients, total metals, and fecal coliform in Sibu Laut River, Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Soo, Chen-Lin; Ling, Teck-Yee; Lee, Nyanti; Apun, Kasing

    2016-03-01

    The concentrations of nutrients (nitrogen and phosphorus), total metals, and fecal coliform (FC) coupling with chlorophyll- a (chl- a), 5-day biochemical oxygen demand (BOD5) and other general environmental parameters were evaluated at the sub-surface and near-bottom water columns of 13 stations in the Sibu Laut River during low and high slack waters. The results indicated that inorganic nitrogen (mainly nitrate) was the primary form of nitrogen whereas organic phosphorus was the major form of phosphorus. The abundance of total heavy metals in Sibu Laut River and its tributaries was in the order of Pb < Cu < Zn < Cd. Fecal coliform concentration was relatively low along Sibu Laut River. The shrimp farm effluents contributed a substantial amount of chl- a, BOD5, nutrients, and FC to the receiving creek except for total metals. Nevertheless, the influence was merely noticeable in the intake creek and amended rapidly along Selang Sibu River and brought minimal effects on the Sibu Laut River. Besides, the domestic sewage effluents from villages nearby also contributed a substantial amount of pollutants.

  5. 77 FR 18809 - Clean Water Act Section 303(d): Proposed Withdrawal of Nine Total Maximum Daily Loads (TMDLs)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... withdrawal of nine final Total Maximum Daily Loads (TMDLs) for Chloride, Sulfate, and Total Dissolved Solids... 08040202-006 Bayou de L'Outre.... Chloride, Sulfate, TDS. 08040202-007 Bayou de L'Outre.... Chloride, Sulfate, TDS. 08040202-008 Bayou de L'Outre.... Chloride, Sulfate, TDS. The 2008 Arkansas Clean Water Act...

  6. Monitoring the integrity of the cement-metal interface of total joint components in vitro using acoustic emission and ultrasound.

    PubMed

    Davies, J P; Tse, M K; Harris, W H

    1996-08-01

    Debonding of the cement-metal interface of cemented femoral components of total hip arthroplasty has been shown from clinical and autopsy material to be a common occurrence. Experimentally, debonding has been shown to increase markedly the strains in the adjacent cement mantle. Studies of autopsy-retrieved specimens demonstrate that debonding of the cement-metal interface is a key initiating event in loosening of cemented femoral components of total hip arthroplasty. However, both the radiographic and autopsy evidence of cement-metal interfacial debonding exist after the fact, that is, after debonding has occurred. The lack of prospective data showing that debonding does indeed occur under physiologic loading and occurs prior to other forms of failure of fixation leaves uncertain the issue of debonding and its role in initiating loosening of cemented femoral components. Knowing when, where, and to what extent the cement-metal interface debonds is critical information in understanding the process of loosening of cemented femoral components. Such information would contribute to improving the durability of stems and improving cementing techniques. In this study, the two nondestructive techniques of acoustic emission and ultrasonic evaluation of the cement-metal interface of cemented femoral stems of total hip arthroplasty were combined to investigate when, where, and to what extent cement-metal debonding occurred in vitro in simulated femurs loaded physiologically in fatigue in simulated single-leg stance. Debonding of the cement-metal interface of a cemented femoral component in this model was both an initiating event and a major mechanism of compromise of the cement-metal interface. Additional acoustic emission signals arose from cracks that developed in the cement.

  7. Raised levels of metal ions in the blood in patients who have undergone uncemented metal-on-polyethylene Trident-Accolade total hip replacement.

    PubMed

    Craig, P; Bancroft, G; Burton, A; Collier, S; Shaylor, P; Sinha, A

    2014-01-01

    The issues surrounding raised levels of metal ions in the blood following large head metal-on-metal total hip replacement (THR), such as cobalt and chromium, have been well documented. Despite the national popularity of uncemented metal-on-polyethylene (MoP) THR using a large-diameter femoral head, few papers have reported the levels of metal ions in the blood following this combination. Following an isolated failure of a 44 mm Trident-Accolade uncemented THR associated with severe wear between the femoral head and the trunnion in the presence of markedly elevated levels of cobalt ions in the blood, we investigated the relationship between modular femoral head diameter and the levels of cobalt and chromium ions in the blood following this THR. A total of 69 patients received an uncemented Trident-Accolade MoP THR in 2009. Of these, 43 patients (23 men and 20 women, mean age 67.0 years) were recruited and had levels of cobalt and chromium ions in the blood measured between May and June 2012. The patients were then divided into three groups according to the diameter of the femoral head used: 12 patients in the 28 mm group (controls), 18 patients in the 36 mm group and 13 patients in the 40 mm group. A total of four patients had identical bilateral prostheses in situ at phlebotomy: one each in the 28 mm and 36 mm groups and two in the 40 mm group. There was a significant increase in the mean levels of cobalt ions in the blood in those with a 36 mm diameter femoral head compared with those with a 28 mm diameter head (p = 0.013). The levels of cobalt ions in the blood were raised in those with a 40 mm diameter head but there was no statistically significant difference between this group and the control group (p = 0.152). The levels of chromium ions in the blood were normal in all patients. The clinical significance of this finding is unclear, but we have stopped using femoral heads with a diameter of ≤ 36 mm, and await further larger studies to clarify whether, for

  8. Biomaterial Hypersensitivity: Is It Real? Supportive Evidence and Approach Considerations for Metal Allergic Patients following Total Knee Arthroplasty

    PubMed Central

    Mihalko, William M.; Grupp, Thomas M.; Manning, Blaine T.; Dennis, Douglas A.; Goodman, Stuart B.; Saleh, Khaled J.

    2015-01-01

    The prospect of biomaterial hypersensitivity developing in response to joint implant materials was first presented more than 30 years ago. Many studies have established probable causation between first-generation metal-on-metal hip implants and hypersensitivity reactions. In a limited patient population, implant failure may ultimately be related to metal hypersensitivity. The examination of hypersensitivity reactions in current-generation metal-on-metal knee implants is comparatively limited. The purpose of this study is to summarize all available literature regarding biomaterial hypersensitivity after total knee arthroplasty, elucidate overall trends about this topic in the current literature, and provide a foundation for clinical approach considerations when biomaterial hypersensitivity is suspected. PMID:25883940

  9. Total and available heavy metal concentrations in soils of the Thriassio plain (Greece) and assessment of soil pollution indexes.

    PubMed

    Massas, Ioannis; Kalivas, Dionisios; Ehaliotis, Constantions; Gasparatos, Dionisios

    2013-08-01

    The Thriassio plain is located 25 km west of Athens city, the capital of Greece. Two major towns (Elefsina and Aspropyrgos), heavy industry plants, medium to large-scale manufacturing, logistics plants, and agriculture comprise the main land uses of the studied area. The aim of the present study was to measure the total and available concentrations of Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe in the top soils of the plain, and to asses soil contamination by these metals by using the geoaccumulation index (I geo), the enrichment factor (EF), and the availability ratio (AR) as soil pollution indexes. Soil samples were collected from 90 sampling sites, and aqua regia and DTPA extractions were carried out to determine total and available metal forms, respectively. Median total Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe concentrations were 78, 155, 81, 112, 24, 321, 834, 38, and 16 × 10(3) mg kg(-1), respectively. The available fractions showed much lower values with medians of 0.4, 5.6, 1.7, 6.9, 0.8, 5.7, 19.8, 2.1, and 2.9 mg kg(-1). Though median total metal concentrations are not considered as particularly high, the I geo and the EF values indicate moderate to heavy soil enrichment. For certain metals such as Cr, Ni, Cu, and Ba, the different distribution patterns between the EFs and the ARs suggest different origin of the total and the available metal forms. The evaluation of the EF and AR data sets for the soils of the two towns further supports the argument that the EFs can well demonstrate the long-term history of soil pollution and that the ARs can adequately portray the recent history of soil pollution.

  10. Determination of trace metals in spirits by total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Siviero, G.; Cinosi, A.; Monticelli, D.; Seralessandri, L.

    2018-06-01

    Eight spirituous samples were analyzed for trace metal content with Horizon Total Reflection X-Ray Fluorescence (TXRF) Spectrometer. The expected single metal amount is at the ng/g level in a mixed aqueous/organic matrix, thus requiring a sample preparation method capable of achieving suitable limits of detection. On-site enrichment and Atmospheric Pressure-Vapor Phase Decomposition allowed to detect Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Sr and Pb with detection limits ranging from 0.1 ng/g to 4.6 ng/g. These results highlight how the synergy between instrument and sample preparation strategy may foster the use of TXRF as a fast and reliable technique for the determination of trace elements in spirituous samples, either for quality control or risk assessment purposes.

  11. Size Distribution and Estimated Respiratory Deposition of Total Chromium, Hexavalent Chromium, Manganese, and Nickel in Gas Metal Arc Welding Fume Aerosols

    PubMed Central

    Cena, Lorenzo G.; Chisholm, William P.; Keane, Michael J.; Cumpston, Amy; Chen, Bean T.

    2016-01-01

    A laboratory study was conducted to determine the mass of total Cr, Cr(VI), Mn, and Ni in 15 size fractions for mild and stainless steel gas-metal arc welding (GMAW) fumes. Samples were collected using a nano multi orifice uniform deposition impactor (MOUDI) with polyvinyl chloride filters on each stage. The filters were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography. Limits of detection (LODs) and quantitation (LOQs) were experimentally calculated and percent recoveries were measured from spiked metals in solution and dry, certified welding-fume reference material. The fraction of Cr(VI) in total Cr was estimated by calculating the ratio of Cr(VI) to total Cr mass for each particle size range. Expected, regional deposition of each metal was estimated according to respiratory-deposition models. The weight percent (standard deviation) of Mn in mild steel fumes was 9.2% (6.8%). For stainless steel fumes, the weight percentages were 8.4% (5.4%) for total Cr, 12.2% (6.5%) for Mn, 2.1% (1.5%) for Ni and 0.5% (0.4%) for Cr(VI). All metals presented a fraction between 0.04 and 0.6 μm. Total Cr and Ni presented an additional fraction <0.03 μm. On average 6% of the Cr was found in the Cr(VI) valence state. There was no statistical difference between the smallest and largest mean Cr(VI) to total Cr mass ratio (p-value D 0.19), hence our analysis does not show that particle size affects the contribution of Cr(VI) to total Cr. The predicted total respiratory deposition for the metal particles was ∼25%. The sites of principal deposition were the head airways (7–10%) and the alveolar region (11–14%). Estimated Cr(VI) deposition was highest in the alveolar region (14%). PMID:26848207

  12. Size Distribution and Estimated Respiratory Deposition of Total Chromium, Hexavalent Chromium, Manganese, and Nickel in Gas Metal Arc Welding Fume Aerosols.

    PubMed

    Cena, Lorenzo G; Chisholm, William P; Keane, Michael J; Cumpston, Amy; Chen, Bean T

    A laboratory study was conducted to determine the mass of total Cr, Cr(VI), Mn, and Ni in 15 size fractions for mild and stainless steel gas-metal arc welding (GMAW) fumes. Samples were collected using a nano multi orifice uniform deposition impactor (MOUDI) with polyvinyl chloride filters on each stage. The filters were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography. Limits of detection (LODs) and quantitation (LOQs) were experimentally calculated and percent recoveries were measured from spiked metals in solution and dry, certified welding-fume reference material. The fraction of Cr(VI) in total Cr was estimated by calculating the ratio of Cr(VI) to total Cr mass for each particle size range. Expected, regional deposition of each metal was estimated according to respiratory-deposition models. The weight percent (standard deviation) of Mn in mild steel fumes was 9.2% (6.8%). For stainless steel fumes, the weight percentages were 8.4% (5.4%) for total Cr, 12.2% (6.5%) for Mn, 2.1% (1.5%) for Ni and 0.5% (0.4%) for Cr(VI). All metals presented a fraction between 0.04 and 0.6 μ m. Total Cr and Ni presented an additional fraction <0.03 μ m. On average 6% of the Cr was found in the Cr(VI) valence state. There was no statistical difference between the smallest and largest mean Cr(VI) to total Cr mass ratio ( p -value D 0.19), hence our analysis does not show that particle size affects the contribution of Cr(VI) to total Cr. The predicted total respiratory deposition for the metal particles was ∼25%. The sites of principal deposition were the head airways (7-10%) and the alveolar region (11-14%). Estimated Cr(VI) deposition was highest in the alveolar region (14%).

  13. Serial magnetic resonance imaging of metal-on-metal total hip replacements. Follow-up of a cohort of 28 mm Ultima TPS THRs.

    PubMed

    Ebreo, D; Bell, P J; Arshad, H; Donell, S T; Toms, A; Nolan, J F

    2013-08-01

    Metal artefact reduction (MAR) MRI is now widely considered to be the standard for imaging metal-on-metal (MoM) hip implants. The Medicines and Healthcare Products Regulatory Agency (MHRA) has recommended cross-sectional imaging for all patients with symptomatic MoM bearings. This paper describes the natural history of MoM disease in a 28 mm MoM total hip replacement (THR) using MAR MRI. Inclusion criteria were patients with MoM THRs who had not been revised and had at least two serial MAR MRI scans. All examinations were reported by an experienced observer and classified as A (normal), B (infection) or C1-C3 (mild, moderate, severe MoM-related abnormalities). Between 2002 and 2011 a total of 239 MRIs were performed on 80 patients (two to four scans per THR); 63 initial MRIs (61%) were normal. On subsequent MRIs, six initially normal scans (9.5%) showed progression to a disease state; 15 (15%) of 103 THRs with sequential scans demonstrated worsening disease on subsequent imaging. Most patients with a MoM THR who do not undergo early revision have normal MRI scans. Late progression (from normal to abnormal, or from mild to more severe MoM disease) is not common and takes place over several years.

  14. Assessment of marine pollution in Izmir Bay: nutrient, heavy metal and total hydrocarbon concentrations.

    PubMed

    Kucuksezgin, F; Kontas, A; Altay, O; Uluturhan, E; Darilmaz, E

    2006-01-01

    Izmir Bay (western Turkey) is one of the great natural bays of the Mediterranean. Izmir is an important industrial and commercial centre and a cultural focal point. The main industries in the region include food processing, oil, soap and paint production, chemical industries, paper and pulp factories, textile industries and metal processing. The mean concentrations showed ranges of 0.01-0.19 and 0.01-10 microM for phosphate, 0.10-1.8 and 0.12-27 microM for nitrate+nitrite, and 0.30-5.8 and 0.43-39 microM for silicate in the outer and middle-inner bays, respectively. The TNO(x)/PO(4) ratio is significantly lower than the Redfield's ratio and nitrogen is the limiting element in the middle-inner bays. Diatoms and dinoflagellates were observed all year around in the bay and are normally nitrogen limited. Metal concentrations ranged between Hg: 0.05-1.3, Cd: 0.005-0.82, Pb: 14-113 and Cr: 29-316 microg g(-1) in the sediments. The results showed significant enrichments during sampling periods from Inner Bay. Outer and middle bays show low levels of heavy metal enrichments except estuary of Gediz River. The concentrations of Hg, Cd and Pb in the outer bay were generally similar to the background levels from the Mediterranean. The levels gradually decreased over the sampling period. Total hydrocarbons concentrations range from 427 to 7800 ng g(-1) of sediments. The highest total hydrocarbon levels were found in the inner bay due to the anthropogenic activities, mainly combustion processes of traffic and industrial activities. The concentrations of heavy metals found in fish varied for Hg: 4.5-520, Cd: 0.10-10 and Pb: 0.10-491 microg kg(-1) in Izmir Bay. There was no significant seasonal variation in metal concentrations. An increase in Hg concentration with increasing length was noted for Mullus barbatus. A person can consume more than 2, 133 and 20 meals per week of fish in human diet would represent the tolerable weekly intake of mercury, cadmium and lead, respectively

  15. Increased risk of revision of cementless stemmed total hip arthroplasty with metal-on-metal bearings

    PubMed Central

    Pedersen, Alma B; Mäkelä, Keijo; Eskelinen, Antti; Havelin, Leif Ivar; Furnes, Ove; Kärrholm, Johan; Garellick, Göran; Overgaard, Søren

    2015-01-01

    Background and purpose Data from the national joint registries in Australia and England and Wales have revealed inferior medium-term survivorship for metal-on-metal (MoM) total hip arthroplasty (THA) than for metal-on-polyethylene (MoP) THA. Based on data from the Nordic Arthroplasty Register Association (NARA), we compared the revision risk of cementless stemmed THA with MoM and MoP bearings and we also compared MoM THA to each other. Patients and methods We identified 32,678 patients who were operated from 2002 through 2010 with cementless stemmed THA with either MoM bearings (11,567 patients, 35%) or MoP bearings (21,111 patients, 65%). The patients were followed until revision, death, emigration, or the end of the study period (December 31, 2011), and median follow-up was 3.6 (interquartile range (IQR): 2.4–4.8) years for MoM bearings and 3.4 (IQR: 2.0–5.8) years for MoP bearings. Multivariable regression in the presence of competing risk of death was used to assess the relative risk (RR) of revision for any reason (with 95% confidence interval (CI)). Results The cumulative incidence of revision at 8 years of follow-up was 7.0% (CI: 6.0–8.1) for MoM bearings and 5.1% (CI: 4.7–5.6) for MoP bearings. At 6 years of follow-up, the RR of revision for any reason was 1.5 (CI: 1.3–1.7) for MoM bearings compared to MoP bearings. The RR of revision for any reason was higher for the ASR (adjusted RR = 6.4, CI: 5.0–8.1), the Conserve Plus (adjusted RR = 1.7, CI: 1.1–2.5) and “other” acetabular components (adjusted RR = 2.4, CI: 1.5–3.9) than for MoP THA at 6 years of follow-up. Interpretation At medium-term follow-up, the survivorship for cementless stemmed MoM THA was inferior to that for MoP THA, and metal-related problems may cause higher revision rates for MoM bearings with longer follow-up. PMID:25715878

  16. Airborne concentrations of metals and total dust during solid catalyst loading and unloading operations at a petroleum refinery.

    PubMed

    Lewis, Ryan C; Gaffney, Shannon H; Le, Matthew H; Unice, Ken M; Paustenbach, Dennis J

    2012-09-01

    Workers handle catalysts extensively at petroleum refineries throughout the world each year; however, little information is available regarding the airborne concentrations and plausible exposures during this type of work. In this paper, we evaluated the airborne concentrations of 15 metals and total dust generated during solid catalyst loading and unloading operations at one of the largest petroleum refineries in the world using historical industrial hygiene samples collected between 1989 and 2006. The total dust and metals, which included aluminum, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, platinum, silicon, silver, vanadium, and zinc, were evaluated in relation to the handling of four different types of solid catalysts associated with three major types of catalytic processes. Consideration was given to the known components of the solid catalysts and any metals that were likely deposited onto them during use. A total of 180 analytical results were included in this analysis, representing 13 personal and 54 area samples. Of the long-term personal samples, airborne concentrations of metals ranged from <0.001 to 2.9mg/m(3), and, in all but one case, resulted in concentrations below the current U.S. Occupational Safety and Health Administration's Permissible Exposure Limits and the American Conference of Governmental Industrial Hygienists' Threshold Limit Values. The arithmetic mean total dust concentration resulting from long-term personal samples was 0.31mg/m(3). The data presented here are the most complete set of its kind in the open literature, and are useful for understanding the potential exposures during solid catalyst handling activities at this petroleum refinery and perhaps other modern refineries during the timeframe examined. Copyright © 2011 Elsevier GmbH. All rights reserved.

  17. THE RÔLE OF CERTAIN METALLIC IONS AS OXIDATION CATALYSTS

    PubMed Central

    Cook, S. F.

    1926-01-01

    1. When iron and copper are allowed to act on hydrogen peroxide and pyrogallol, enough carbon dioxide is produced to be readily measured. 2. The curve of the production of carbon dioxide may be fitted by an empirical equation, by the use of which the initial rate and the total amount of the oxidation may be determined. 3. The effect of the concentration of the reagents is different in each case, the effect varying as a fractional power of the copper and pyrogallol concentrations and as a logarithmic function of the hydrogen peroxide concentration. 4. When gold or silver is used the rate changes suddenly during the course of the reaction due to the precipitation of colloidal metal. 5. Mercury, cadmium, zinc, tin, and some other metals have no effect. 6. A theoretical set of equations is assumed to account for the action of the metals. 7. The metals are assumed to act by means of the formation of intermediate peroxides. 8. Experiments on the action of gold indicate that the metals are active in the ionic and not in the colloidal state. PMID:19872322

  18. Size distribution and source identification of total suspended particulate matter and associated heavy metals in the urban atmosphere of Delhi.

    PubMed

    Srivastava, Arun; Jain, V K

    2007-06-01

    A study of the atmospheric particulate size distribution of total suspended particulate matter (TSPM) and associated heavy metal concentrations has been carried out for the city of Delhi. Urban particles were collected using a five-stage impactor at six sites in three different seasons, viz. winter, summer and monsoon in the year 2001. Five samples from each site in each season were collected. Each sample (filter paper) was extracted with a mixture of nitric acid, hydrochloric acid and hydrofluoric acid. The acid solutions of the samples were analysed in five-particle fractions by atomic absorption spectrometry (AAS). The impactor stage fractionation of particles shows that a major portion of TSPM concentration is in the form of PM0.7 (i.e. <0.7microm). Similarly, the most of the metal mass viz. Mn, Cr, Cd, Pb, Ni, and Fe are also concentrated in the PM0.7 mode. The only exceptions are size distributions pertaining to Cu and Ca. Though, Cu is more in PM0.7 mode, its presence in size intervals 5.4-1.6microm and 1.6-0.7microm is also significant, whilst in case of Ca there is no definite pattern in its distribution with size of particles. The average PM10.9 (i.e. <10.9microm) concentrations are approximately 90.2%+/-4.5%, 81.4%+/-1.4% and 86.4%+/-9.6% of TSPM for winter, summer and monsoon seasons, respectively. Source apportionment reveals that there are two sources of TSPM and PM10.9, while three and four sources were observed for PM1.6 (i.e. <1.6microm) and PM0.7, respectively. Results of regression analyses show definite correlations between PM10.9 and other fine size fractions, suggesting PM10.9 may adequately act as a surrogate for both PM1.6 and PM0.7, while PM1.6 may adequately act as a surrogate for PM0.7.

  19. Analysis of total metals in waste molding and core sands from ferrous and non-ferrous foundries.

    PubMed

    Miguel, Roberto E; Ippolito, James A; Leytem, April B; Porta, Atilio A; Banda Noriega, Roxana B; Dungan, Robert S

    2012-11-15

    Waste molding and core sands from the foundry industry are successfully being used around the world in geotechnical and soil-related applications. Although waste foundry sands (WFSs) are generally not hazardous in nature, relevant data is currently not available in Argentina. This study aimed to quantify metals in waste molding and core sands from foundries using a variety of metal-binder combinations. Metal concentrations in WFSs were compared to those in virgin silica sands (VSSs), surface soils and soil guidance levels. A total analysis for Ag, Al, Ba, Be, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Te, Tl, V, and Zn was conducted on 96 WFSs and 14 VSSs collected from 17 small and medium-sized foundries. The majority of WFSs analyzed, regardless of metal cast and binder type, contained metal concentrations similar to those found in VSSs and native soils. In several cases where alkyd urethane binder was used, Co and Pb concentrations were elevated in the waste sands. Elevated Cr, Mo, Ni, and Tl concentrations associated with VSSs should not be an issue since these metals are bound within the silica sand matrix. Because of the naturally low metal concentrations found in most WFSs examined in this study, they should not be considered hazardous waste, thus making them available for encapsulated and unencapsulated beneficial use applications. Published by Elsevier Ltd.

  20. Is the Total Concentration of a Heavy Metal in Soil a Suitable Tool for Assessing the Environmental Risk? Considering the Case of Copper

    ERIC Educational Resources Information Center

    Fernández-Calviño, David; Pérez-Rodríguez, Paula; Nóvoa-Muñoz, Juan Carlos; Estévez, Manuel Arias

    2017-01-01

    National legislation concerning soil pollution by heavy metals in different countries is mostly based on the total heavy metal concentration levels allowed in different soils. As soil pollution is an issue of worldwide concern, here we develop a laboratory exercise for students in which they must check the suitability of a total metal…

  1. Esophagojejunal Anastomosis Fistula, Distal Esophageal Stenosis, and Metalic Stent Migration after Total Gastrectomy

    PubMed Central

    Al Hajjar, Nadim; Popa, Calin; Al-Momani, Tareg; Margarit, Simona; Graur, Florin; Tantau, Marcel

    2015-01-01

    Esophagojejunal anastomosis fistula is the main complication after a total gastrectomy. To avoid a complex procedure on friable inflamed perianastomotic tissues, a coated self-expandable stent is mounted at the site of the anastomotic leak. A complication of stenting procedure is that it might lead to distal esophageal stenosis. However, another frequently encountered complication of stenting is stent migration, which is treated nonsurgically. When the migrated stent creates life threatening complications, surgical removal is indicated. We present a case of a 67-year-old male patient who was treated at our facility for a gastric adenocarcinoma which developed, postoperatively, an esophagojejunostomy fistula, a distal esophageal stenosis, and a metallic coated self-expandable stent migration. To our knowledge, this is the first reported case of an esophagojejunostomy fistula combined with a distal esophageal stenosis as well as with a metallic coated self-expandable stent migration. PMID:25945277

  2. Increased Femoral Head Offset is Associated With Elevated Metal Ions in Asymptomatic Patients With Metal-on-Polyethylene Total Hip Arthroplasty.

    PubMed

    Martin, John R; Camp, Christopher L; Wyles, Cody C; Taunton, Michael J; Trousdale, Robert T; Lewallen, David G

    2016-12-01

    Predisposing factors for trunnionosis and elevated metal ion levels in metal-on-polyethylene (MOP) total hip arthroplasty (THA) are currently unknown. This retrospective cohort study enrolled 80 consecutive patients (43 males) with an asymptomatic MOP THA at 2- to 5-year follow-up and no other metal implants. Serum cobalt (Co) and chromium (Cr) levels were collected at the time of enrollment, and retrospective review was performed regarding demographic, implant, and surgical characteristics. Mean age at the time of surgery was 65.7 years (range 35.6-85.9 years), and mean postoperative follow-up was 28.7 months (range 24.4-58.9 months). Femoral head offset was the only evaluated factor shown to increase serum Co ion levels above baseline within the cohort. Mean difference in Co level for high and low offset implants was 0.58 ppb (95% confidence interval [CI] = 0.05-1.11 ppb; P = .03). Mean difference in Cr level for high and low offset implants was 0.19 ppb (95% CI = -0.23 to 0.60 ppb; P = .37). Mean difference in Co level for small and large femoral heads was 0.20 ppb (95% CI = -0.41 to 0.81 ppb; P = .59). Mean difference in Cr level for small and large femoral heads was 0.28 ppb (95% CI = -0.18 to 0.74 ppb; P = .06). Age, gender, Harris Hip Score, and implant duration were not associated with changes in metal ion levels. Femoral head offset appears to be an important source of elevated metal ion levels in MOP THA. Further studies will be needed to understand if increasing femoral head offset is associated with subsequent adverse local tissue reactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Comparison of metal ion concentrations and implant survival after total hip arthroplasty with metal-on-metal versus metal-on-polyethylene articulations

    PubMed Central

    Dahlstrand, Henrik; Stark, André; Wick, Marius C; Anissian, Lucas; Hailer, Nils P; Weiss, Rüdiger J

    2017-01-01

    Background and purpose Large metal-on-metal (MoM) articulations are associated with metal wear and corrosion, leading to increased metal ion concentrations and unacceptable revision rates. There are few comparative studies of 28-mm MoM articulations with conventional metal-on-polyethylene (MoP) couplings. We present a long-term follow-up of a randomized controlled trial comparing MoM versus MoP 28-mm articulations, focused on metal ions and implant survival. Patients and methods 85 patients with a mean age of 65 years at surgery were randomized to a MoM (Metasul) or a MoP (Protasul) bearing. After 16 years, 38 patients had died and 4 had undergone revision surgery. 13 patients were unavailable for clinical follow-up, leaving 30 patients (n = 14 MoM and n = 16 MoP) for analysis of metal ion concentrations and clinical outcome. Results 15-year implant survival was similar in both groups (MoM 96% [95% CI 88–100] versus MoP 97% [95% CI 91–100]). The mean serum cobalt concentration was 4-fold higher in the MoM (1.5 μg/L) compared with the MoP cohort (0.4 μg/L, p < 0.001) and the mean chromium concentration was double in the MoM (2.2 μg/L) compared with the MoP cohort (1.0 μg/L, p = 0.05). Mean creatinine levels were similar in both groups (MoM 93 μmol/L versus MoP 92 μmol/L). Harris hip scores differed only marginally between the MoM and MoP cohorts. Interpretation This is the longest follow-up of a randomized trial on 28-mm MoM articulations, and although implant survival in the 2 groups was similar, metal ion concentrations remained elevated in the MoM cohort even in the long term. PMID:28699417

  4. Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species.

    PubMed

    Gursoy, Nevcihan; Sarikurkcu, Cengiz; Cengiz, Mustafa; Solak, M Halil

    2009-09-01

    Seven Morchella species were analyzed for their antioxidant activities in different test systems namely beta-carotene/linoleic acid, DPPH, reducing power, chelating effect and scavenging effect (%) on the stable ABTS*(+), in addition to their heavy metals, total phenolic and flavonoid contents. In beta-carotene/linoleic acid system, the most active mushrooms were M. esculenta var. umbrina and M.angusticeps. In the case of DPPH, methanol extract of M. conica showed high antioxidant activity. The reducing power of the methanol extracts of mushrooms increased with concentration. Chelating capacity of the extracts was also increased with the concentration. On the other hand, in 40 microg ml(-1) concentration, methanol extract of M. conica, exhibited the highest radical scavenging activity (78.66+/-2.07%) when reacted with the ABTS*(+) radical. Amounts of seven elements (Cu, Mn, Co, Zn, Fe, Ca, and Mg) and five heavy metals (Ni, Pb, Cd, Cr, and Al) were also determined in all species. M. conica was found to have the highest phenolic content among the samples. Flavonoid content of M. rotunda was also found superior (0.59+/-0.01 microg QEs/mg extract).

  5. Gender is a significant factor for failure of metal-on-metal total hip arthroplasty.

    PubMed

    Latteier, Michael J; Berend, Keith R; Lombardi, Adolph V; Ajluni, Andrew F; Seng, Brian E; Adams, Joanne B

    2011-09-01

    Metal-on-metal (MoM) articulations offers low wear, larger head size, and increased stability. Reports of early failure are troubling and include failure of ingrowth and metal articulation problems such as metallosis, hypersensitivity, pseudotumor, and unexplained pain. This study investigates the survivorship of modern MoM articulations by gender. We reviewed 1589 primary MoM THA in 1363 patients, with minimum 2-year follow-up for 1212 hips. Follow-up averaged 60 months. There were 643 female patients and 719 male patients. The incidence of cup revision was significantly higher in women than in men (8.2% vs 2.7%; P = .0000), as was incidence of aseptic loosening (4.3% vs 1.1%; P = .0006), and failure for metal-bearing complications (2.2% vs 0.6%; P = .0126). There appear to be gender factors influencing the success of MoM THA, which may include hormonal, anatomic, or functional differences. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. [Determination of total mass and morphology analysis of heavy metal in soil with potassium biphthalate-sodium hydroxide by ICP-AES].

    PubMed

    Qu, Jiao; Yuan, Xing; Cong, Qiao; Wang, Shuang

    2008-11-01

    Blank soil was used as quality controlling samples, soil sample dealt by potassium biphthalate-sodium hydroxide buffer solution was used as check sample, mixed acid HNO3-HF-HClO4 was chosen to nitrify soil samples, and plasma emission spectrometer (ICP-AES) was used as detecting method. The authors determined the total metal mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the extracted and dealt soil samples, and determined the mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the three chemical morphologies, including acid extractable morphology, oxide associated morphology, and organics associated modality. The experimental results indicated that the different pH of potassium biphthalate-sodium hydroxide buffer solution had obvious influence on the total mass of heavy metal and morphology transformation. Except for metal element Pb and Zn, the addition of different pH potassium dihydrogen phosphate-sodium hydroxide buffer solution could accelerate the soil samples nitrification and the total mass determination of heavy metal in the soil samples. The potassium biphthalate-sodium hydroxide buffer solution could facilitate the acid extractable morphology of Cr, Cu, Hg and Pb, oxidation associated morphology of As, Hg, Pb and Zn and the organic associated morphology transforming of As and Hg. At pH 5.8, the maximum acid extractable morphology contents of Cu and Hg were 2.180 and 0.632 mg x kg(-1), respectively; at pH 6.2, the maximal oxidation associated morphology content of Pb could achieve 27.792 mg x kg(-1); at pH 6.0, the maximum organic associated morphology content of heavy metal Hg was 4.715 mg x kg(-1).

  7. Determination of the total concentration and speciation of metal ions in river, estuarine and seawater samples.

    PubMed

    Alberti, Giancarla; Biesuz, Raffaela; Pesavento, Maria

    2008-12-01

    Different natural water samples were investigated to determine the total concentration and the distribution of species for Cu(II), Pb(II), Al(III) and U(VI). The proposed method, named resin titration (RT), was developed in our laboratory to investigate the distribution of species for metal ions in complex matrices. It is a competition method, in which a complexing resin competes with natural ligands present in the sample to combine with the metal ions. In the present paper, river, estuarine and seawater samples, collected during a cruise in Adriatic Sea, were investigated. For each sample, two RTs were performed, using different complexing resins: the iminodiacetic Chelex 100 and the carboxylic Amberlite CG50. In this way, it was possible to detect different class of ligands. Satisfactory results have been obtained and are commented on critically. They were summarized by principal component analysis (PCA) and the correlations with physicochemical parameters allowed one to follow the evolution of the metals along the considered transect. It should be pointed out that, according to our findings, the ligands responsible for metal ions complexation are not the major components of the water system, since they form considerably weaker complexes.

  8. Liquid metal cold trap

    DOEpatents

    Hundal, Rolv

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal being provided with a hole between the incoming impure liquid metal and purified outgoing liquid metal which acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly.

  9. 75 FR 8682 - Sunshine Act Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... futures and options in the precious and base metals markets, and to consider Federal position limits in... precious and base metals markets and related hedge exemptions on regulated futures exchanges, derivatives... COMMODITY FUTURES TRADING COMMISSION Sunshine Act Meetings Agency Holding the Meeting: Commodity...

  10. Adverse Reactions to Metal on Metal Are Not Exclusive to Large Heads in Total Hip Arthroplasty.

    PubMed

    Lombardi, Adolph V; Berend, Keith R; Adams, Joanne B; Satterwhite, Keri L

    2016-02-01

    There is some suggestion that smaller diameter heads in metal-on-metal total hip arthroplasty (MoM THA) may be less prone to the adverse reactions to metal debris (ARMD) seen with large-diameter heads. We reviewed our population of patients with small head (≤ 32 mm) MoM THA to determine (1) the frequency of ARMD; (2) potential risk factors for ARMD in this population; and (3) the etiology of revision and Kaplan-Meier survivorship with revision for all causes. Small-diameter head MoM devices were used in 9% (347 of 3753) of primary THAs during the study period (January 1996 to March 2005). We generally used these implants in younger, more active, higher-demand patients. Three hundred hips (258 patients) had MoM THA using a titanium modular acetabular component with a cobalt-chromium tapered insert and were available for review with minimum 2-year followup (mean, 10 years; range, 2-19 years). Complete followup was available in 86% of hips (300 of 347). Clinical records and radiographs were reviewed to determine the frequency and etiology of revision. Kaplan-Meier survivorship analysis was performed. ARMD frequency was 5% (14 of 300 hips) and represented 70% (14 of 20) of revisions performed. Using multivariate analysis, no variable tested, including height, weight, body mass index, age, cup diameter, cup angle, use of screws, stem diameter, stem type, head diameter, preoperative clinical score, diagnosis, activity level, or sex, was significant as a risk factor for revision. Twenty hips have been revised: two for infection, four for aseptic loosening, and 14 for ARMD. Kaplan-Meier analysis revealed survival free of component revision for all causes was 95% at 10 years (95% confidence interval [CI], 91%-97%), 92% at 15 years (95% CI, 87%-95%), and 72% at 19 years (95% CI, 43%-90%), and survival free of component revision for aseptic causes was 96% at 10 years (95% CI, 92%-98%), 92% at 15 years (95% CI, 88%-95%), and 73% at 19 years (95% CI, 43%-90%). The late onset

  11. Understanding how cells allocate metals using metal sensors and metallochaperones.

    PubMed

    Tottey, Stephen; Harvie, Duncan R; Robinson, Nigel J

    2005-10-01

    Each metalloprotein must somehow acquire the correct metal. We review the insights into metal specificity in cells provided by studies of ArsR-SmtB DNA binding, metal-responsive transcriptional repressors, and a bacterial copper chaperone. Cyanobacteria are the one bacterial group that have known enzymatic demand for cytoplasmic copper import. The copper chaperone and ATPases that supply cyanobacterial plastocyanin and cytochrome oxidase are reviewed, along with related ATPases for cobalt and zinc. These studies highlight the contributions of protein-protein interactions to metal speciation. Metal sensors and metallochaperones, along with metal transporters and metal-storage proteins, act in concert not only to supply the correct metals but also to withhold the wrong ones.

  12. Impact of the Clean Water Act on the levels of toxic metals in urban estuaries: The Hudson River estuary revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanudo-Wilhelmy, S.A.; Gill, G.A.

    1999-10-15

    To establish the impact of the Clean Water Act on the water quality of urban estuaries, dissolved trace metals and phosphate concentrations were determined in surface waters collected along the Hudson River estuary between 1995 and 1997 and compared with samples collected in the mid-1970s by Klinkhammer and Bender. The median concentrations along the estuary have apparently declined 36--56% for Cu, 55--89% for Cd, 53--85% for Ni, and 53--90% for Zn over a period of 23 years. These reductions appear to reflect improvements in controlling discharges from municipal and industrial wastewater treatment plants since the Clean Water Act was enactedmore » in 1972. In contrast, levels of dissolved nutrients (PO{sub 4}) have remained relatively constant during the same period of time, suggesting that wastewater treatment plant improvements in the New York/New Jersey Metropolitan area have not been as effective at reducing nutrient levels within the estuary. While more advanced wastewater treatment could potentially reduce the levels of Ag and PO{sub 4} along the estuary, these improvements would have a more limited effect on the levels of other trace metals.« less

  13. Heavy metal exposure from cooked rice grain ingestion and its potential health risks to humans from total and bioavailable forms analysis.

    PubMed

    Praveena, S M; Omar, N A

    2017-11-15

    Heavy metal in rice studies has attracted a greater concern worldwide. However, there have been limited studies on marketed rice samples although it represents a vital ingestion portion for a real estimation of human health risk. This study was aimed to determine both total and bioaccessible of trace elements and heavy metals (Cd, Cr, Cu, Co, Al, Zn, As, Pb and Fe) in 22 varieties of cooked rice using an inductively coupled plasma-optical emission spectroscopy. Both total and bioaccessible of trace elements and heavy metals were digested using closed-nitric acid digestion and Rijksinstituut voor Volksgezondheid en Milieu (RIVM) in vitro digestion model, respectively. Human health risks via Health Risk Assessment (HRA) were conducted to understand exposure risks involving adults and children representing Malaysian population. Zinc was the highest while As was the lowest contents for total and in their bioavailable forms. Four clusters were identified: (1) Pb, As, Co, Cd and Cr; (2) Cu and Al; (3) Fe and (4) Zn. For HRA, there was no any risks found from single element exposure. While potential carcinogenic health risks present for both adult and children from single As exposure (Life time Cancer Risk, LCR>1×10 -4 ). Total Hazard Quotient values for adult and children were 27.0 and 18.0, respectively while total LCR values for adult and children were 0.0049 and 0.0032, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Total Life Cycle-Based Materials Selection for Polymer Metal Hybrid Body-in-White Automotive Components

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Sellappan, V.; He, T.; Seyr, Norbert; Obieglo, Andreas; Erdmann, Marc; Holzleitner, Jochen

    2009-03-01

    Over the last dozen of years, polymer metal hybrid (PMH) technologies have established themselves as viable alternatives for use in light-weight automotive body-in-white bolt-on as well as load-bearing (structural) components. Within the PMH technologies, sheet-metal stamped/formed and thermoplastic injection molding subcomponents are integrated into a singular component/module. Due to attending synergetic effects, the performance of the PMH component typically exceeds that attainable by an alternative single-material technologies. In the present work, a total life cycle (TLC) approach to the selection of metallic and thermoplastic materials (as well as the selection of structural adhesives, where appropriate) is considered. The TLC material selection approach considers the consequences and ramifications of material selection at each major stage of the vehicle manufacturing process chain (press shop, injection molding shop, body shop, paint shop, and assembly), as well as relation to the vehicle performance, durability and the end-of-the-life-of-the-vehicle considerations. The approach is next applied to the case of injection overmolding technology to identify the optimal grade of short glass-fiber reinforced nylon when used in a prototypical PMH load-bearing automotive body-in-white component.

  15. Quantifying metal artefact reduction using virtual monochromatic dual-layer detector spectral CT imaging in unilateral and bilateral total hip prostheses.

    PubMed

    Wellenberg, R H H; Boomsma, M F; van Osch, J A C; Vlassenbroek, A; Milles, J; Edens, M A; Streekstra, G J; Slump, C H; Maas, M

    2017-03-01

    To quantify the impact of prosthesis material and design on the reduction of metal artefacts in total hip arthroplasties using virtual monochromatic dual-layer detector Spectral CT imaging. The water-filled total hip arthroplasty phantom was scanned on a novel 128-slice Philips IQon dual-layer detector Spectral CT scanner at 120-kVp and 140-kVp at a standard computed tomography dose index of 20.0mGy. Several unilateral and bilateral hip prostheses consisting of different metal alloys were inserted and combined which were surrounded by 18 hydroxyapatite calcium carbonate pellets representing bone. Images were reconstructed with iterative reconstruction and analysed at monochromatic energies ranging from 40 to 200keV. CT numbers in Hounsfield Units (HU), noise measured as the standard deviation in HU, signal-to-noise-ratios (SNRs) and contrast-to-noise-ratios (CNRs) were analysed within fixed regions-of-interests placed in and around the pellets. In 70 and 74keV virtual monochromatic images the CT numbers of the pellets were similar to 120-kVp and 140-kVp polychromatic results, therefore serving as reference. A separation into three categories of metal artefacts was made (no, mild/moderate and severe) where pellets were categorized based on HU deviations. At high keV values overall image contrast was reduced. For mild/moderate artefacts, the highest average CNRs were attained with virtual monochromatic 130keV images, acquired at 140-kVp. Severe metal artefacts were not reduced. In 130keV images, only mild/moderate metal artefacts were significantly reduced compared to 70 and 74keV images. Deviations in CT numbers, noise, SNRs and CNRs due to metal artefacts were decreased with respectively 64%, 57%, 62% and 63% (p<0.001) compared to unaffected pellets. Optimal keVs, based on CNRs, for different unilateral and bilateral metal hip prostheses consisting of different metal alloys varied from 74 to 150keV. The Titanium alloy resulted in less severe artefacts and were

  16. Cross-Shear Implementation in Sliding-Distance-Coupled Finite Element Analysis of Wear in Metal-on-Polyethylene Total Joint Arthroplasty: Intervertebral Total Disc Replacement as an Illustrative Application

    PubMed Central

    Goreham-Voss, Curtis M.; Hyde, Philip J.; Hall, Richard M.; Fisher, John; Brown, Thomas D.

    2010-01-01

    Computational simulations of wear of orthopaedic total joint replacement implants have proven to valuably complement laboratory physical simulators, for pre-clinical estimation of abrasive/adhesive wear propensity. This class of numerical formulations has primarily involved implementation of the Archard/Lancaster relationship, with local wear computed as the product of (finite element) contact stress, sliding speed, and a bearing-couple-dependent wear factor. The present study introduces an augmentation, whereby the influence of interface cross-shearing motion transverse to the prevailing molecular orientation of the polyethylene articular surface is taken into account in assigning the instantaneous local wear factor. The formulation augment is implemented within a widely-utilized commercial finite element software environment (ABAQUS). Using a contemporary metal-on-polyethylene total disc replacement (ProDisc-L) as an illustrative implant, physically validated computational results are presented to document the role of cross-shearing effects in alternative laboratory consensus testing protocols. Going forward, this formulation permits systematically accounting for cross-shear effects in parametric computational wear studies of metal-on-polyethylene joint replacements, heretofore a substantial limitation of such analyses. PMID:20399432

  17. 75 FR 43160 - Clean Water Act Section 303(d): Final Agency Action on One Arkansas Total Maximum Daily Load (TMDL)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9179-3 ] Clean Water Act Section 303(d): Final Agency Action on One Arkansas Total Maximum Daily Load (TMDL) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability. SUMMARY: This notice announces the final agency action on one TMDL established by...

  18. Total Contents and Sequential Extraction of Heavy Metals in Soils Irrigated with Wastewater, Akaki, Ethiopia

    NASA Astrophysics Data System (ADS)

    Fitamo, Daniel; Itana, Fisseha; Olsson, Mats

    2007-02-01

    The Akaki River, laden with untreated wastes from domestic, industrial, and commercial sources, serves as a source of water for irrigating vegetable farms. The purpose of this study is to identify the impact of waste-water irrigation on the level of heavy metals and to predict their potential mobility and bioavailability. Zn and V had the highest, whereas Hg the lowest, concentrations observed in the soils. The average contents of As, Co, Cr, Cu, Ni, Zn, V, and Hg of both soils; and Pb and Se from Fluvisol surpassed the mean + 2 SD of the corresponding levels reported for their uncontaminated counterparts. Apparently, irrigation with waste water for the last few decades has contributed to the observed higher concentrations of the above elements in the study soils (Vertisol and Fluvisol) when compared to uncontaminated Vertisol and Fluvisol. On the other hand, Vertisol accommodated comparatively higher average levels of Cr, Cu, Ni, Zn, etc V, and Cd, whereas high contents of Pb and Se were observed in Fluvisol. Alternatively, comparable levels of Co and Hg were found in either soil. Except for Ni, Cr, and Cd in contaminated Vertisol, heavy metals in the soils were not significantly affected by the depth (0-20 and 30-50 cm). When the same element from the two soils was compared, the levels of Cr, Cu, Ni, Pb, Se, Zn, V, Cd at 0-20 cm; and Cr, Ni, Cu, Cd, and Zn at 30-50 cm were significantly different. Organic carbon (in both soils), CEC (Fluvisol), and clay (Vertisol) exhibited significant positive correspondences with the total heavy metal levels. Conversely, Se and Hg contents revealed perceptible associations with carbonate and pH. The exchangeable fraction was dominated by Hg and Cd, whereas the carbonate fraction was abounded with Cd, Pb, and Co. conversely, V and Pb displayed strong affinity to reducible fraction, where as Cr, Cu, Zn, and Ni dominated the oxidizable fraction. Cr, Hg, Se, and Zn (in both soils) showed preference to the residual fraction

  19. Complications Are Not Increased With Acetabular Revision of Metal-on-metal Total Hip Arthroplasty.

    PubMed

    Penrose, Colin T; Seyler, Thorsten M; Wellman, Samuel S; Bolognesi, Michael P; Lachiewicz, Paul F

    2016-10-01

    Isolated revision of the acetabular component in the setting of total hip arthroplasty has an increased risk of dislocation. With local soft tissue destruction frequently associated with failed metal-on-metal (MoM) bearings, it is presumed that acetabular revision of these hips will have even greater risk of complications. However, no study directly compares the complications of MoM with metal-on-polyethylene (MoP) acetabular revisions. In the context of a large database analysis, we asked the following questions: (1) Are there differences in early medical or wound complications after isolated acetabular revision of MoM and MoP bearing surfaces? (2) Are there differences in the frequency of dislocation, deep infection, and rerevision based on the bearing surface of the original implant? A review of the 100% Medicare database from 2005 to 2012 was performed using International Classification of Diseases, 9th Revision and Current Procedural Terminology codes. We identified 451 patients with a MoM bearing and 628 patients with a MoP bearing who had an isolated acetabular revision and a minimum followup of 2 years. The incidence, odds ratios, and 95% confidence intervals for early medical or wound complications were calculated using a univariate analysis at 30 days with patient sex and age group-adjusted analysis for blood transfusion. The incidence, odds ratio, and 95% confidence intervals for dislocation, deep infection, and rerevision were calculated using a univariate analysis at 30 day, 90 days, 1 year, and 2 years using a subgroup analysis with the Cochran-Mantel-Haenszel test to adjust for patient gender and age groups. There were no differences between the MoM and MoP isolated acetabular revisions in the incidence of 30-day local complications. There was a greater risk of transfusion in the MoP group than the MoM group (134 of 451 [30%] versus 230 of 628 [37%]; odds ratio [OR], 0.731; 95% confidence interval [CI], 0.565-0.948; p = 0.018). There were no

  20. Effect of metal complex formation on the potential of organic aerosols as cloud condensation nuclei

    NASA Astrophysics Data System (ADS)

    Furukawa, T.; Takahashi, Y.

    2010-12-01

    Secondary organic aerosols (SOA) play a key role on the solar radiation balance in troposphere, since SOA can act as cloud condensation nuclei (CCN) due to its high hygroscopic nature. Oxalic acid is one of the most dominant components of SOA, which has cooling effects of the earth by acting as CCN. However, it is uncertain whether the oxalic acid can exist as free oxalic acid or metal-oxalate complexes in aerosols, even if there is a largedifference in their solubilities into water. Consequently, XAFS measurement was conducted to demonstrate the presence of metal-oxalate complexes. Size fractionated aerosol samples were collected in Tsukuba (located at northeast about 60 km from Tokyo) using a low-volume Andersen-type air sampler. The sampler had eight stages and a back-up filter. The sampling was conducted during winter and summer in 2002. Calcium oxalate was observed in finer particles in each period from Ca K-edge XANES, and its fractions among total Ca were approximately 20%. Similarly,, Zn oxalate was also detected in finer particles from Zn K-edge XANES and EXAFS. The [Zn-oxalate] / [Zn]total ratio in each period clearly increased with the decrease in the particle diameter. This result revealed that Zn-oxalate was formed in the aqueous phase at particle surfaces or in cloud processing. In other words, Zn-oxalate was abundant at the particle surface, resulting from the increase in the [surface]/[bulk] ratio with decreasing particle size. Based on (i) total concentrations of oxalate, Ca, and Zn determined by ion-chromatography and ICP-AES analyses and (ii) Ca- and Zn- oxalate fractions obtained by XAFS, we determined the fraction of metal-oxalate complexes among total oxalate in aerosols. In winter, Ca- and Zn- oxalate fractions reached about 60% of total oxalate in the ranges of 1.1-2.1 μm and 0.65-1.1 μm, while the value was about 60-80% in the same particle size range in summer. On the other hand, Ca- and Zn- oxalates are highly insoluble, showing that

  1. Burn-Resistant, Strong Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Tayal, Moti J.

    2003-01-01

    Ceramic particulate fillers increase the specific strengths and burn resistances of metals: This is the conclusion drawn by researchers at Johnson Space Center's White Sands Test Facility. The researchers had theorized that the inclusion of ceramic particles in metal tools and other metal objects used in oxygen-rich atmospheres (e.g., in hyperbaric chambers and spacecraft) could reduce the risk of fire and the consequent injury or death of personnel. In such atmospheres, metal objects act as ignition sources, creating fire hazards. However, not all metals are equally hazardous: some are more burn-resistant than others are. It was the researchers purpose to identify a burn-resistant, high-specific-strength ceramic-particle/metal-matrix composite that could be used in oxygen-rich atmospheres. The researchers studied several metals. Nickel and cobalt alloys exhibit high burn resistances and are dense. The researchers next turned to ceramics, which they knew do not act as ignition sources. Unlike metals, ceramics are naturally burn-resistant. Unfortunately, they also exhibit low fracture toughnesses.

  2. Metals, Molecules, Life and Death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, Graham

    2004-08-31

    In our normal everyday lives we are exposed to an incredibly complex chemical soup consisting of an enormous variety of different chemical compounds. Many of these compounds contain metal atoms which, once inside us, can either fulfill roles that are essential to health, or act as poisons. Studies at SLAC's Stanford Synchrotron Radiation Laboratory (SSRL) reveal the molecular details of metals in living systems; how they interact with one another, how they confer beneficial properties, and how they act as poisons.

  3. Virus templated metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Aljabali, Alaa A. A.; Barclay, J. Elaine; Lomonossoff, George P.; Evans, David J.

    2010-12-01

    Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. <=35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron.Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. <=35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron. Electronic supplementary information (ESI) available: Additional experimental detail, agarose gel electrophoresis results, energy dispersive X-ray spectra, ζ-potential measurements, dynamic light scattering data, nanoparticle tracking analysis and an atomic force microscopy image of Ni-CPMV. See DOI: 10.1039/c0nr00525h

  4. Silicon metal-semiconductor-metal photodetector

    DOEpatents

    Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.

    1997-01-01

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  5. Silicon metal-semiconductor-metal photodetector

    DOEpatents

    Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.

    1995-01-01

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  6. Prediction of contact mechanics in metal-on-metal Total Hip Replacement for parametrically comprehensive designs and loads.

    PubMed

    Donaldson, Finn E; Nyman, Edward; Coburn, James C

    2015-07-16

    Manufacturers and investigators of Total Hip Replacement (THR) bearings require tools to predict the contact mechanics resulting from diverse design and loading parameters. This study provides contact mechanics solutions for metal-on-metal (MoM) bearings that encompass the current design space and could aid pre-clinical design optimization and evaluation. Stochastic finite element (FE) simulation was used to calculate the head-on-cup contact mechanics for five thousand combinations of design and loading parameters. FE results were used to train a Random Forest (RF) surrogate model to rapidly predict the contact patch dimensions, contact area, pressures and plastic deformations for arbitrary designs and loading. In addition to widely observed polar and edge contact, FE results included ring-polar, asymmetric-polar, and transitional categories which have previously received limited attention. Combinations of design and load parameters associated with each contact category were identified. Polar contact pressures were predicted in the range of 0-200 MPa with no permanent deformation. Edge loading (with subluxation) was associated with pressures greater than 500 MPa and induced permanent deformation in 83% of cases. Transitional-edge contact (with little subluxation) was associated with intermediate pressures and permanent deformation in most cases, indicating that, even with ideal anatomical alignment, bearings may face extreme wear challenges. Surrogate models were able to accurately predict contact mechanics 18,000 times faster than FE analyses. The developed surrogate models enable rapid prediction of MoM bearing contact mechanics across the most comprehensive range of loading and designs to date, and may be useful to those performing bearing design optimization or evaluation. Published by Elsevier Ltd.

  7. Total and cytosolic concentrations of twenty metals/metalloids in the liver of brown trout Salmo trutta (Linnaeus, 1758) from the karstic Croatian river Krka.

    PubMed

    Dragun, Zrinka; Filipović Marijić, Vlatka; Krasnići, Nesrete; Ivanković, Dušica; Valić, Damir; Žunić, Jakov; Kapetanović, Damir; Smrzlić, Irena Vardić; Redžović, Zuzana; Grgić, Ivana; Erk, Marijana

    2018-01-01

    Total and cytosolic concentrations of twenty metals/metalloids in the liver of brown trout Salmo trutta (Linnaeus, 1758) were studied in the period from April 2015 to May 2016 at two sampling sites on Croatian river Krka, to establish if river water contamination with metals/metalloids downstream of Knin town has influenced metal bioaccumulation in S. trutta liver. Differences were observed between two sites, with higher concentrations of several elements (Ag, As, Ca, Co, Na, Se, Sr, V) found downstream of Knin town, whereas few others (Cd, Cs, Mo, Tl) were, unexpectedly, increased at the Krka River spring. However, total metal/metalloid concentrations in the liver of S. trutta from both sites of the Krka River were still mainly below previously reported levels for pristine freshwaters worldwide. The analysis of seasonal changes of metal/metalloid concentrations in S. trutta liver and their association with fish sex and size mostly indicated their independence of fish physiology, making them good indicators of water contamination and exposure level. Metal/metalloid concentrations in the metabolically available hepatic cytosolic fractions reported in this study are the first data of that kind for S. trutta liver, and the majority of analyzed elements were present in the cytosol in the quantity higher than 50% of their total concentrations, thus indicating their possible availability for toxic effects. However, the special attention should be directed to As, Cd, Cs, and Tl, which under the conditions of increased exposure tended to accumulate more within the cytosol. Although metal/metalloid concentrations in S. trutta liver were still rather low, monitoring of the Krka River water quality and of the health status of its biota is essential due to a trend of higher metal/metalloid bioaccumulation downstream of Knin town, especially taking into consideration the proximity of National Park Krka and the need for its conservation. Copyright © 2017 Elsevier Inc. All

  8. Large Metal Heads and Vitamin E Polyethylene Increase Frictional Torque in Total Hip Arthroplasty.

    PubMed

    Meneghini, R Michael; Lovro, Luke R; Wallace, Joseph M; Ziemba-Davis, Mary

    2016-03-01

    Trunnionosis has reemerged in modern total hip arthroplasty for reasons that remain unclear. Bearing frictional torque transmits forces to the modular head-neck interface, which may contribute to taper corrosion. The purpose of this study is to compare frictional torque of modern bearing couples in total hip arthroplasty. Mechanical testing based on in vivo loading conditions was used to measure frictional torque. All bearing couples were lubricated and tested at 1 Hz for more than 2000 cycles. The bearing couples tested included conventional, highly crosslinked (XLPE) and vitamin E polyethylene, CoCr, and ceramic femoral heads and dual-mobility bearings. Statistical analysis was performed using Student t test for single-variable and analysis of variance for multivariant analysis. P ≤ .05 was considered statistically significant. Large CoCr metal heads (≥36 mm) substantially increased frictional torque against XLPE liners (P = .01), a finding not observed in ceramic heads. Vitamin E polyethylene substantially increased frictional torque compared with XLPE in CoCr and ceramic heads (P = .001), whereas a difference between conventional and XLPE was not observed (P = .69) with the numbers available. Dual-mobility bearing with ceramic inner head demonstrated the lowest mean frictional torque of all bearing couples. In this simulated in vivo model, large-diameter CoCr femoral heads and vitamin E polyethylene liners are associated with increased frictional torque compared with smaller metal heads and XLPE, respectively. The increased frictional torque of vitamin E polyethylene and larger-diameter femoral heads should be considered and further studied, along with reported benefits of these modern bearing couples. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Total Hg, methyl Hg and other toxic heavy metals in a northern Gulf of Mexico estuary: Louisiana Pontchartrain basin.

    PubMed

    Delaune, R D; Gambrell, R P; Jugsujinda, Aroon; Devai, Istavan; Hou, Aixin

    2008-07-15

    Concentration of total Hg, methyl Hg, and other heavy metals were determined in sediment collected along a salinity gradient in a Louisiana Gulf Coast estuary. Surface sediment was collected at established coordinates (n = 292) along a salinity gradient covering Lake Maurepas, Lake Pontchartrain, Lake Borgne and the Chandeleur Sound located in the 12,170 km(2) Pontchartrain basin estuary southeastern coastal Louisiana. Lake Maurepas sediment with lower salinity contained higher levels of methyl Hg (0.80 microg/kg) than Lake Pontchartrain (0.55 microg/kg). Lake Maurepas sediment also had higher levels of total Hg (98.0 microg/kg) as compared to Lake Pontchartrain (67.0 microg/kg). Average total Hg content of Lake Borgne and the Chandeleur Sound sediment was 24.0 microg/kg dry sediment and methyl Hg content averaged 0.21 microg/kg dry sediment. Methyl Hg content of sediment was positively correlated with total Hg, organic matter and clay content of sediment. Methyl Hg was inversely correlated with salinity, sediment Eh and sand content. Total Hg and methyl Hg decreased with increase in salinity in the order of Lake Maurepas > Lake Pontchartrain > Lake Borgne/ the Chandeleur Sound. Lake Maurepas containing several times higher amount of methyl Hg in sediment as compared to Lake Pontchartrain and Lake Borgne and the Chandeleur Sound is an area that could serve as potential source of mercury to the aquatic food chain. Methyl Hg content of sediment in the estuary could be predicted by the equation: Methyl Hg = 0.11670-0.0625 x Salinity + 0.05349 x O.M. + 0.00513 x Total Hg - 0.00250 x Clay. Concentrations of other toxic heavy metals (Pb, Cd, Ni, Cu and Zn) in sediment were not elevated and was statistically correlated with sediment texture and iron and aluminum content of sediment.

  10. Aerosol trace metals, particle morphology and total gaseous mercury in the atmosphere of Oxford, UK

    NASA Astrophysics Data System (ADS)

    Witt, M. L. I.; Meheran, N.; Mather, T. A.; de Hoog, J. C. M.; Pyle, D. M.

    2010-04-01

    An investigation of atmospheric trace metals was conducted in Oxford, UK, a small city ˜60 miles northwest of London, in 2007 and 2008. Concentrations of Sr, Mo, Cd, Pb, V, Cr, Mn, Fe, Co, Ni, Cu and Zn in aerosol were measured in bulk and size segregated samples. In addition, total gaseous mercury (TGM) concentrations were monitored semi-continuously by cold vapour-atomic fluorescence spectroscopy. Metal concentrations in Oxford were intermediate between previously reported levels of UK rural and urban areas for most metals studied and levels of Cd, Ni and Pb were within European guidelines. Metal concentrations appeared to be influenced by higher traffic volume on a timescale of hours. The influence of traffic on the aerosols was also suggested by the observation of carbonaceous particles via scanning electron microscopy (SEM). Air mass back trajectories suggest air masses arriving in Oxford from London and mainland Europe contained the highest metal concentrations. Aerosol samples collected over Bonfire Weekend, a period of intense firework use and lighting of bonfires in the UK, showed metal concentrations 6-46 times higher than at other times. Strontium, a tracer of firework release, was present at higher concentrations and showed a change in its size distribution from the coarse to fine mode over Bonfire Weekend. The presence of an abundance of spherical Sr particles was also confirmed in SEM images. The average TGM concentration in Oxford was 3.17 ng m -3 (st. dev. 1.59) with values recorded between 1.32 and 23.2 ng m -3. This is a higher average value than reported from nearby rural locations, although during periods when air was arriving from the west, similar concentrations to these rural areas were seen in Oxford. Comparison to meteorological data suggests that TGM in Oxford's air is highest when wind is arriving from the east/southeast. This may be due to emissions from London/mainland Europe with a possible contribution from emissions from a local

  11. Prospective study on serum metal levels in patients with metal-on-metal lumbar disc arthroplasty.

    PubMed

    Gornet, Matthew F; Burkus, J K; Harper, M L; Chan, F W; Skipor, A K; Jacobs, J J

    2013-04-01

    Metal-on-metal total disc replacement is a recent alternative treatment for degenerative disc disease. Wear and corrosion of these implants can lead to local and systemic transport of metal debris. This prospective longitudinal study examined the serum chromium and cobalt levels in 24 patients with cobalt-chromium alloy metal-on-metal lumbar disc replacements. Serum was assayed for chromium (Cr) and cobalt (Co) using high-resolution inductively-coupled plasma-mass spectrometry. Detection limits were 0.015 ng/mL for Cr and 0.04 ng/mL for Co. Median serum Co levels at pre-op, 3, 6, 12, 24, and 36-months post-op were 0.10, 1.03, 0.96, 0.98, 0.67, and 0.52 ng/mL, respectively. Median serum Cr levels were 0.06, 0.49, 0.65, 0.43, 0.52, and 0.50 ng/mL, respectively. In general, these results indicated that serum Co and Cr levels are elevated at all postoperative time points and are of the same order of magnitude as those observed in well-functioning metal-on-metal surface replacements of the hip and in metal-on-metal total hip replacements at similar postoperative time points.

  12. Alkali metal for ultraviolet band-pass filter

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)

    1993-01-01

    An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

  13. Cemented all-polyethylene and metal-backed polyethylene tibial components used for primary total knee arthroplasty: a systematic review of the literature and meta-analysis of randomized controlled trials involving 1798 primary total knee implants.

    PubMed

    Voigt, Jeffrey; Mosier, Michael

    2011-10-05

    The cost of the implant as part of a total knee arthroplasty accounts for a substantial portion of the costs for the overall procedure: all-polyethylene tibial components cost considerably less than cemented metal-backed tibial components. We performed a systematic review of the literature to determine whether the clinical results of lower-cost all-polyethylene tibial components were comparable with the results of a more expensive metal-backed tibial component. We searched The Cochrane Library, MEDLINE, EMBASE, EBSCO CINAHL, the bibliographies of identified articles, orthopaedic meeting abstracts, health technology assessment web sites, and important orthopaedic journals. This search was performed for the years 1990 to the present. No language restriction was applied. We restricted our search to Level-I studies involving participants who received either an all-polyethylene or a metal-backed tibial implant. The primary outcome measures were durability, function, and adverse events. Two reviewers independently screened the papers for inclusion, assessed trial quality, and extracted data. Effects estimates were pooled with use of fixed and random-effects models of risk ratios, calculated with 95% confidence intervals. Heterogeneity was assessed with the I2 statistic. Forest plots were also generated. Data on 1798 primary total knee implants from twelve studies were analyzed. In all studies, the median or mean age of the participants was greater than sixty-seven years, with a majority of the patients being female. There was no difference between patients managed with an all-polyethylene tibial component and those managed with a metal-backed tibial component in terms of adverse events. There was no significant difference between the two groups in terms of the durability of the implants at two, ten, and fifteen years postoperatively, regardless of the year or how durability was defined (revision or radiographic failure). Finally, with use of a variety of validated

  14. Heavy metals in urban soils of East St. Louis, IL, Part I: Total concentration of heavy metals in soils.

    PubMed

    Kaminski, M D; Landsberger, S

    2000-09-01

    The city of East St. Louis, IL, has a history of abundant industrial activities including smelters of ferrous and non-ferrous metals, a coal-fired power plant, companies that produce organic and inorganic chemicals, and petroleum refineries. A protocol for soil analysis was developed to produce sufficient information on the extent of heavy metal contamination in East St. Louis soils. Soil cores representing every borough of East St. Louis were analyzed for heavy metals--As, Cd, Cu, Cr, Hg, Ni, Pb, Sb, Sn, and Zn. The topsoil contained heavy metal concentrations as high as 12.5 ppm Cd, 14,400 ppm Cu, ppm quantities of Hg, 1860 ppm Pb, 40 ppm Sb, 1130 ppm Sn, and 10,360 ppm Zn. Concentrations of Sb, Cu, and Cd were well correlated with Zn concentrations, suggesting a similar primary industrial source. In a sandy loam soil from a vacated rail depot near the bank of the Mississippi River, the metals were evenly distributed down to a 38-cm depth. The clay soils within a half-mile downwind of the Zn smelter and Cu products company contained elevated Cd (81 ppm), Cu (340 ppm), Pb (700 ppm), and Zn (6000 ppm) and displayed a systematic drop in concentration of these metals with depth. This study demonstrates the often high concentration of heavy metals heterogeneously distributed in the soil and provides baseline data for continuing studies of heavy metal soil leachability.

  15. Polymer-based adsorbent for heavy metals removal from aqueous solution

    NASA Astrophysics Data System (ADS)

    Mahmud, H. N. M. E.; Huq, A. K. O.; Yahya, R.

    2017-06-01

    A novel conducting polymer-based adsorbent, polypyrrole (PPy) fine powder has successfully been prepared as a new adsorbent and utilized in the adsorption of heavy metal ions like arsenic, zinc and cadmium ions from aqueous solution. PPy was chemically synthesized by using FeCl3.6H2O as an oxidant. The prepared PPy adsorbent was characterized by Brunauer-Emmet-Teller (BET) surface analysis, field emission scanning electron microscopy (FESEM) and attenuated total reflectance fourier transform infrared ATR-(FTIR) spectroscopy. The adsorption was conducted by varying different parameters such as, contact time, pH and adsorbent dosage. The concentrations of metal ions were measured by inductively coupled plasma mass spectroscopy (ICP-MS). The results show that PPy acts as an effective sorbent for the removal of arsenic, zinc and cadmium ions from aqueous solution. The as-prepared PPy fine powder is easy to prepare and appeared as an effective adsorbent for heavy metal ions particularly arsenic in wastewater treatment.

  16. Work-function calculations for a symmetrical total-charge-density profile at the metallic surface

    NASA Astrophysics Data System (ADS)

    Wojciechowski, K. F.; Sobańska-Nowotnik, M.

    1983-07-01

    It is shown that, if the total-charge-density profile nT(x) at the surface of jellium satisfies the Budd-Vannimenus constraint and also is a symmetrical function of x, relative to the ordinate axis, then the work-function variation versus the Wigner-Seitz radius rs does not depend on the form of nT(x). Also the simple linear-density profile is used to calculate the work function by application of the variational principle for the energy, including the first and second density-gradient corrections to the kinetic energy and the first gradient correction to the exchange and correlation energy. The results for the work function are in good agreement with the polycrystalline values for low-density metals.

  17. Fast-acting self-healing metallic fuse.

    NASA Technical Reports Server (NTRS)

    Schwartz, F. C.; Renton, C. A.; Rabinovici, B.

    1971-01-01

    Description of a fast-acting nonmechanical self-healing mercury fuse capable of protecting a high current circuit or device from overcurrent fault damages. Basically the self-healing fuse consists of two enclosed mercury reservoirs connected by a fine capillary tube filled with mercury that serves as the fusing element. It is pointed out that a better understanding of the energy conversion process involved in the operation of the device could help explore other device configurations (such as a tapering geometry and use of magnetic field to drive the arc into the fuse wall on inductive loads, etc.) and thus extend the range of capabilities for this type of protective device.

  18. General aspects of metal toxicity.

    PubMed

    Kozlowski, H; Kolkowska, P; Watly, J; Krzywoszynska, K; Potocki, S

    2014-01-01

    This review is focused on the general mechanisms of metal toxicity in humans. The possible and mainly confirmed mechanisms of their action are discussed. The metals are divided into four groups due to their toxic effects. First group comprises of metal ions acting as Fenton reaction catalyst mainly iron and copper. These types of metal ions participate in generation of the reactive oxygen species. Metals such as nickel, cadmium and chromium are considered as carcinogenic agents. Aluminum, lead and tin are involved in neurotoxicity. The representative of the last group is mercury, which may be considered as a generally toxic metal. Fenton reaction is a naturally occurring process producing most active oxygen species, hydroxyl radical: Fe(2+) + He2O2 ↔ Fe(3+) + OH(-) + OH(•) It is able to oxidize most of the biomolecules including DNA, proteins, lipids etc. The effect of toxicity depends on the damage of molecules i.e. production site of the hydroxyl radical. Chromium toxicity depends critically on its oxidation state. The most hazardous seems to be Cr(6+) (chromates) which are one of the strongest inorganic carcinogenic agents. Cr(6+) species act also as oxidative agents damaging among other nucleic acids. Redox inactive Al(3+), Cd(2+) or Hg(2+) may interfere with biology of other metal ions e.g. by occupying metal binding sites in biomolecules. All these aspects will be discussed in the review.

  19. On the road to metallic nanoparticles by rational design: bridging the gap between atomic-level theoretical modeling and reality by total scattering experiments

    NASA Astrophysics Data System (ADS)

    Prasai, Binay; Wilson, A. R.; Wiley, B. J.; Ren, Y.; Petkov, Valeri

    2015-10-01

    The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au100-xPdx (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when ``tuned up'' against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design.The extent to which current theoretical modeling alone can

  20. Large-diameter metal-on-metal total hip arthroplasty: dislocation infrequent but survivorship poor.

    PubMed

    Lombardi, Adolph V; Berend, Keith R; Morris, Michael J; Adams, Joanne B; Sneller, Michael A

    2015-02-01

    Use of large-diameter metal-on-metal (MoM) articulations in THA increased, at least in part, because of the possibility of achieving improved joint stability and excellent wear characteristics in vitro. However, there have been subsequent concerning reports with adverse reactions to metal debris (ARMD), pseudotumors, and systemic complications related to metal ions. The purpose of this study was to determine at a minimum of 2 years' followup (1) the proportion of patients who experienced a dislocation; (2) the short-term survivorship obtained with these implants; (3) the causes of failure and the proportion of patients who developed ARMD; and (4) whether there were any identifiable risk factors for revision. We reviewed the results of 1235 patients who underwent 1440 large-diameter MoM primary THAs at our institution using two acetabular devices from a single manufacturer with minimum 2-year followup. Large-diameter MoM devices were used in 48% (1695 of 3567) of primary THAs during the study period. We generally used these implants in younger, more active, higher-demand patients, in patients considered at higher risk of instability, and in patients with adequate bone stock to achieve stable fixation without use of screws. Clinical records and radiographs were reviewed to determine the incidence and etiology of revision. Patients whose hips were revised were compared with those not revised to identify risk factors; Kaplan-Meier survivorship analysis was performed as was multivariate analysis to account for potential confounding variables when evaluating risk factors. Minimum followup was 2 years (average, 7 years; range, 2-12 years); complete followup was available in 85% of hips (1440 of 1695). Dislocation occurred in one hip overall (<1%; one of 1440). Kaplan-Meier analysis revealed survival free of component revision was 87% at 12 years (95% confidence interval, 84%-90%). The two most common indications for revision were ARMD (48%; 47 of 108 hips revised) and

  1. On the road to metallic nanoparticles by rational design: bridging the gap between atomic-level theoretical modeling and reality by total scattering experiments.

    PubMed

    Prasai, Binay; Wilson, A R; Wiley, B J; Ren, Y; Petkov, Valeri

    2015-11-14

    The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au(100-x)Pd(x) (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when "tuned up" against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design.

  2. Release of cobalt and chromium ions into the serum following implantation of the metal-on-metal Maverick-type artificial lumbar disc (Medtronic Sofamor Danek).

    PubMed

    Zeh, Alexander; Planert, Michael; Siegert, Gabriele; Lattke, Peter; Held, Andreas; Hein, Werner

    2007-02-01

    Cross-sectional study of 10 patients to measure the serum levels of cobalt and chromium after TDA. To investigate the release of cobalt and chromium ions into the serum following implantation of the metal-on-metal Maverick-type artificial lumbar disc. In total hip endoprosthetics and consequently for TDA (total disc arthroplasty), metal-on-metal combinations are used with the aim of reducing wear debris. In metal-on-metal TDA the release of metal ions has until now been secondary to the main discussion. We investigated the serum cobalt and chromium concentration following implantation of 15 Maverick TDAs (monosegmental L5-S1, n = 5; bisegmental L4-L5 and L5-S1, n = 5; average age, 36.5 years). Five healthy subjects (no metal implants) acted as a control group. The measurements of the metals were carried out using the HITACHI Z-8200 AAS polarized Zeeman atomic absorption spectrometer after an average of 14.8 months. The concentrations of cobalt and chromium ions in the serum amounted on average to 4.75 microg/L (SD, 2.71) for cobalt and 1.10 microg/L (SD, 1.24) for chromium. Compared with control group, both the chromium and cobalt levels in the serum showed significant increases (Mann-Whitney U test, P = 0.0120). At follow-up,the Oswestry Disability Score was on average significantly decreased by 24.4 points (L5-S1) (t test, P < 0.05) and by 26.8 points (L4-S1) (t test, P < 0.05). The improved clinical situation is also represented by a significant decrease of the Visual Analog Pain Scale of 42.2 points after the follow-up (t test, P < 0.05). Significant systemic release of Cr/Co was proven in the serum compared with the control group. The concentrations of Cr/Co measured in the serum are similar in terms of their level to the values measured in THA metal-on-metal combinations or exceed these values given in the literature. Long-term implication of this metal exposure is unknown and should be studied further.

  3. Structural evolution across the insulator-metal transition in oxygen-deficient BaTiO 3-δ studied using neutron total scattering and Rietveld analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, I.-K.; Lee, Seunghun; Jeong, Se-Young

    2011-08-29

    Oxygen-deficient BaTiO 3-δ exhibits an insulator-metal transition with increasing δ. We performed neutron total scattering measurements to study structural evolution across an insulator-metal transition in BaTiO 3-δ. Despite its significant impact on resistivity, slight oxygen reduction (δ=0.09) caused only a small disturbance on the local doublet splitting of Ti-O bond. This finding implies that local polarization is well preserved under marginal electric conduction. In the highly oxygen-deficient metallic state (δ=0.25), however, doublet splitting of the Ti-O bond became smeared. The smearing of the local Ti-O doublet is complemented with long-range structural analysis and demonstrates that the metallic conduction in themore » highly oxygen-reduced BaTiO 3-δ is due to the appearance of nonferroelectric cubic lattice.« less

  4. ACTS propagation terminal update

    NASA Technical Reports Server (NTRS)

    Stutzman, Warren L.; Pratt, Tim

    1992-01-01

    The activities at Virginia Polytechnic Institute and State University in preparation for the February 1993 launch of ACTS are summarized. ACTS propagation terminals (APT) are being constructed to receive the 20 and 27.5 GHz ACTS beacon signals. Total power radiometers operating at the same frequencies are integrated into the terminal for use in level setting. Recent progress and plans for APT's are reported.

  5. Total Synthesis of Avrainvilleol.

    PubMed

    Wegener, Aaron; Miller, Kenneth A

    2017-11-03

    The first total synthesis of the marine natural product avrainvilleol is reported. The total synthesis features the first application of the transition-metal-free coupling of a tosyl hydrazone and a boronic acid to the preparation of a complex natural product, and the first example of this coupling with a hindered diortho substituted hydrazone substrate.

  6. Formaldehyde and heavy metal migration from rubber and metallic packaging/utensils in Korea.

    PubMed

    Kim, Su-Un; Kim, Tae-Rang; Lee, Eun-Soon; Kim, Mi-Sun; Kim, Chang-Kyu; Kim, Li-Ra; Shin, Gi-Young

    2015-01-01

    The aim of this study was to determine the non-intentionally added substances--formaldehyde and trace metals--at 4% acetic acid conditions in rubber and metallic packaging/utensils. The temperature effect on migration in rubber and metallic packaging/utensils was monitored at 60 °C and 100 °C under acidic (pH < 3) circumstances. The concentrations were: formaldehyde--23.1 μg kg⁻¹, lead--13.41 μg kg⁻¹, cadmium--0.15 μg kg⁻¹, total arsenic--2.02 μg kg⁻¹ and nickel--2.92 μg kg⁻¹ at 60 °C and formaldehyde--148.9 μg kg⁻¹, lead--17.04 μg kg⁻¹, cadmium--0.14 μg kg⁻¹, total arsenic--7.25 μg kg⁻¹ and nickel--8.7 μg kg⁻¹ at 100 °C. A significant difference was noticed in formaldehyde and total arsenic between both temperatures (p < 0.01), which was not present in other trace metals. In conclusion, formaldehyde and total arsenic were more sensitive with cooking temperature than the other metals.

  7. Surface protected lithium-metal-oxide electrodes

    DOEpatents

    Thackeray, Michael M.; Kang, Sun-Ho

    2016-04-05

    A lithium-metal-oxide positive electrode having a layered or spinel structure for a non-aqueous lithium electrochemical cell and battery is disclosed comprising electrode particles that are protected at the surface from undesirable effects, such as electrolyte oxidation, oxygen loss or dissolution by one or more lithium-metal-polyanionic compounds, such as a lithium-metal-phosphate or a lithium-metal-silicate material that can act as a solid electrolyte at or above the operating potential of the lithium-metal-oxide electrode. The surface protection significantly enhances the surface stability, rate capability and cycling stability of the lithium-metal-oxide electrodes, particularly when charged to high potentials.

  8. Heavy metal leaching from mine tailings as affected by plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, D.; Schwab, A.P.; Banks, M.K.

    A column experiment was conducted to determine the impact of soil cover and plants on heavy metal leaching from mine tailings and heavy metal contaminated soil. Columns made of PVC were constructed with 30 cm subsoil covered by 30 cm of mine tailings followed by 0, 30, or 60 cm subsoil covered by 30 cm of mine tailings followed by 0, 30, or 60 cm of clean topsoil. Two grasses, tall fescue (Festuca arundinacea Schreb.) and big bluestem (Andropogon gerardii), were grown in the columns. The columns were leached at a slow rate for 1 yr with a 0.001 Mmore » CaCl{sub 2} solution under unsaturated conditions. The presence of both tall fescue and big bluestem increased Zn and Cd concentrations in the leachate. Lead concentrations in leachates were not affected by the presence of plants. Although plants generally reduced the total amount of water leached, total mass of Zn and Cd leached generally was not impacted by plants. Total mass of Pb leached was positively correlated with total leachate collected from each column. Covering the mine tailings with 60 cm of topsoil increased the mass of Zn and Cd leached relative to no topsoil. When the subsoil was absent, Zn and Cd leaching increased by as much as 20-fold, verifying the ability of soil to act as a sink for metals. Mine tailing remediation by establishing vegetation can reduce Pb movement but may enhance short-term Cd and Zn leaching. However, the changes were relatively small and do not outweigh the benefits of using vegetation in mine tailings reclamation.« less

  9. FCC and the Sunshine Act.

    ERIC Educational Resources Information Center

    Weiss, Kenneth

    The Sunshine Act, designed to encourage open meetings to increase public understanding of the governmental decision-making process, went into effect in March 1977. A total of 50 agencies, including the Federal Communications Commission (FCC), are subject to the provisions of the Sunshine Act. The act lists 10 exemptions, any of which can result in…

  10. Seasonal distribution and contamination levels of total PHCs, PAHs and heavy metals in coastal waters of the Alang-Sosiya ship scrapping yard, Gulf of Cambay, India.

    PubMed

    Srinivasa Reddy, M; Basha, Shaik; Joshi, H V; Ramachandraiah, G

    2005-12-01

    Alang-Sosiya situated on the Gulf of Cambay is one of the largest ship breaking yard in the world. The seasonal distribution and contamination levels of dissolved and/or dispersed total petroleum hydrocarbons (PHCs), total polycyclic aromatic hydrocarbons (PAHs) and heavy metals in seawater during high tide are investigated. The concentrations of petroleum hydrocarbons and heavy metals are higher in the winter than in the monsoon and summer. The concentrations of total PHCs and PAHs are about three times higher in the winter and two times in the monsoon or summer at Along-Sosiya and about twice in all seasons at two stations one on either side 5 km away from it as compared to the reference station at Mahuva, 60 km away towards the south. Further, the levels of PHCs are correlated with salinity and compared with those of other regions. The concentration of all metals is the highest in the winter season followed by the monsoon and summer. We carried out the quantitative analysis of the possible relationships among 13 variables such as Al, Fe, Pb, Mn, Cu, Zn, Cd, Cr, Co, pH, NO3-, NO2 and PO4(3-).

  11. Subcellular partitioning of metals in Aporrectodea caliginosa along a gradient of metal exposure in 31 field-contaminated soils.

    PubMed

    Beaumelle, Léa; Gimbert, Frédéric; Hedde, Mickaël; Guérin, Annie; Lamy, Isabelle

    2015-07-01

    Subcellular fractionation of metals in organisms was proposed as a better way to characterize metal bioaccumulation. Here we report the impact of a laboratory exposure to a wide range of field-metal contaminated soils on the subcellular partitioning of metals in the earthworm Aporrectodea caliginosa. Soils moderately contaminated were chosen to create a gradient of soil metal availability; covering ranges of both soil metal contents and of several soil parameters. Following exposure, Cd, Pb and Zn concentrations were determined both in total earthworm body and in three subcellular compartments: cytosolic, granular and debris fractions. Three distinct proxies of soil metal availability were investigated: CaCl2-extractable content dissolved content predicted by a semi-mechanistic model and free ion concentration predicted by a geochemical speciation model. Subcellular partitionings of Cd and Pb were modified along the gradient of metal exposure, while stable Zn partitioning reflected regulation processes. Cd subcellular distribution responded more strongly to increasing soil Cd concentration than the total internal content, when Pb subcellular distribution and total internal content were similarly affected. Free ion concentrations were better descriptors of Cd and Pb subcellular distribution than CaCl2 extractable and dissolved metal concentrations. However, free ion concentrations and soil total metal contents were equivalent descriptors of the subcellular partitioning of Cd and Pb because they were highly correlated. Considering lowly contaminated soils, our results raise the question of the added value of three proxies of metal availability compared to soil total metal content in the assessment of metal bioavailability to earthworm. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Metallic wear in failed titanium-alloy total hip replacements. A histological and quantitative analysis.

    PubMed

    Agins, H J; Alcock, N W; Bansal, M; Salvati, E A; Wilson, P D; Pellicci, P M; Bullough, P G

    1988-03-01

    We conducted extensive histological examination of the tissues that were adjacent to the prosthesis in nine hips that had a failed total arthroplasty. The prostheses were composed of titanium alloy (Ti-6Al-4V) and ultra-high molecular weight polyethylene. The average time that the prosthesis had been in place in the tissue was 33.5 months (range, eleven to fifty-seven months). Seven arthroplasties were revised because of aseptic loosening and two, for infection. In eight hips cement had been used and in one (that had a porous-coated implant for fifty-two months) no cement had been utilized. Intense histiocytic and plasma-cell reaction was noted in the pseudocapsular tissue. There was copious metallic staining of the lining cells. Polyethylene debris and particles of cement with concomitant giant-cell reaction were present in five hips. Atomic absorption spectrophotometry revealed values for titanium of fifty-sic to 3700 micrograms per gram of dry tissue (average, 1047 micrograms per gram; normal, zero microgram per gram), for aluminum of 2.1 to 396 micrograms per gram (average, 115 micrograms per gram; normal, zero micrograms per gram), and for vanadium of 2.9 to 220 micrograms per gram (average, sixty-seven micrograms per gram; normal, 1.2 micrograms per gram). The highest values were found in the hip in which surgical revision was performed at fifty-seven months. The concentrations of the three elements in the soft tissues were similar to those in the metal of the prostheses. The factors to which failure was attributed were: vertical orientation of the acetabular component (five hips), poor cementing technique on the femoral side (three hips), infection (two hips), and separation of a sintered pad made of pure titanium (one hip). A femoral component that is made of titanium alloy can undergo severe wear of the surface and on the stem, where it is loose, with liberation of potentially toxic local concentrations of metal debris into the surrounding tissues. It may

  13. Can plastic bag derived-microplastics act as vectors for metal exposure in terrestrial invertebrates?

    NASA Astrophysics Data System (ADS)

    E Hodson, Mark; Duffus-Hodson, Calum A.; Prendergast-Miller, Miranda; Thorpe, Karen

    2017-04-01

    Microplastics are widely reported contaminants in marine and freshwater ecosystems and studies have shown that they can be ingested by aquatic organisms and lead to potential negative effects on health. The effects can arise from the physical effects of the plastics (e.g. food displacement and blockages of the digestive tract) and from their potential to adsorb contaminants, primarily organic compounds, resulting in an increased exposure of the organism to toxic contaminants. Studies are beginning to emerge that also show a high abundance of microplastics in the terrestrial environment but there remains a lack of data on the impacts of these terrestrial microplastics or their interaction with other terrestrial pollutants. We conducted Zn adsorption experiments using HDPE microplastics, derived from plastic bags. Zinc adsorption to microplastics was similar to that observed in soils, but in the presence of both soil and microplastics, preferential adsorption onto the soil was observed. In desorption experiments, desorption of Zn from microplastics and soils was minimal (< 10 %) in 0.01 M CaCl2 solution, but in synthetic earthworm guts desorption of 40 - 60% was observed for the microplastics compared to 2 - 15 % for the soils. In earthworm exposure experiments Lumbricus terrestris earthworms cultivated in soils containing 0.35% by mass of Zn-bearing plastic (236 - 4505 mg kg-1) ingested the microplastics with no evidence for either preferential feeding or avoidance. There was no evidence for an accumulation of the microplastics in the earthworm gut or for signs of toxicity. Our experiments demonstrate that earthworms will ingest microplastics and that microplastics can adsorb metals and act as vectors for metal exposure in soil invertebrates. However, for Zn, the risk associated with this exposure appears to be minimal.

  14. Heavy Metal Poisoning and Cardiovascular Disease

    PubMed Central

    Alissa, Eman M.; Ferns, Gordon A.

    2011-01-01

    Cardiovascular disease (CVD) is an increasing world health problem. Traditional risk factors fail to account for all deaths from CVD. It is mainly the environmental, dietary and lifestyle behavioral factors that are the control keys in the progress of this disease. The potential association between chronic heavy metal exposure, like arsenic, lead, cadmium, mercury, and CVD has been less well defined. The mechanism through which heavy metals act to increase cardiovascular risk factors may act still remains unknown, although impaired antioxidants metabolism and oxidative stress may play a role. However, the exact mechanism of CVD induced by heavy metals deserves further investigation either through animal experiments or through molecular and cellular studies. Furthermore, large-scale prospective studies with follow up on general populations using appropriate biomarkers and cardiovascular endpoints might be recommended to identify the factors that predispose to heavy metals toxicity in CVD. In this review, we will give a brief summary of heavy metals homeostasis, followed by a description of the available evidence for their link with CVD and the proposed mechanisms of action by which their toxic effects might be explained. Finally, suspected interactions between genetic, nutritional and environmental factors are discussed. PMID:21912545

  15. Bioaccumulation of trace metals and total petroleum and genotoxicity responses in an edible fish population as indicators of marine pollution.

    PubMed

    D'Costa, Avelyno; Shyama, S K; Praveen Kumar, M K

    2017-08-01

    The present study reports the genetic damage and the concentrations of trace metals and total petroleum hydrocarbons prevailing in natural populations of an edible fish, Arius arius in different seasons along the coast of Goa, India as an indicator of the pollution status of coastal water. Fish were collected from a suspected polluted site and a reference site in the pre-monsoon, monsoon and post-monsoon seasons. Physico-chemical parameters as well as the concentrations of total petroleum hydrocarbons (TPH) and trace metals in the water and sediment as well as the tissues of fish collected from these sites were recorded. The genotoxicity status of the fish was assessed employing the micronucleus test and comet assay. A positive correlation (p<0.001) was observed between the tail DNA and micronuclei in all the fish collected. Multiple regression analysis revealed that tissue and environmental pollutant concentrations and genotoxicity were positively associated and higher in the tissues of the fish collected from the polluted site. Pollution indicators and genotoxicity tests, combined with other physiological or biochemical parameters represent an essential integrated approach for efficient monitoring of aquatic ecosystems in Goa. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Relationship between metal speciation in soil solution and metal adsorption at the root surface of ryegrass.

    PubMed

    Kalis, Erwin J J; Temminghoff, Erwin J M; Town, Raewyn M; Unsworth, Emily R; van Riemsdijk, Willem H

    2008-01-01

    The total metal content of the soil or total metal concentration in the soil solution is not always a good indicator for metal availability to plants. Therefore, several speciation techniques have been developed that measure a defined fraction of the total metal concentration in the soil solution. In this study the Donnan Membrane Technique (DMT) was used to measure free metal ion concentrations in CaCl(2) extractions (to mimic the soil solution, and to work under standardized conditions) of 10 different soils, whereas diffusive gradients in thin-films (DGT) and scanning chronopotentiometry (SCP) were used to measure the sum of free and labile metal concentrations in the CaCl(2) extracts. The DGT device was also exposed directly to the (wetted) soil (soil-DGT). The metal concentrations measured with the speciation techniques are related to the metal adsorption at the root surface of ryegrass (Lolium perenne L.), to be able to subsequently predict metal uptake. In most cases the metal adsorption related pH-dependently to the metal concentrations measured by DMT, SCP, and DGT in the CaCl(2) extract. However, the relationship between metal adsorption at the root surface and the metal concentrations measured by the soil-DGT was not-or only slightly-pH dependent. The correlations between metal adsorption at the root surface and metal speciation detected by different speciation techniques allow discussion about rate limiting steps in biouptake and the contribution of metal complexes to metal bioavailability.

  17. Leaching Properties of Naturally Occurring Heavy Metals from Soils

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Hoshino, M.; Yoshikawa, M.; Hara, J.; Sugita, H.

    2014-12-01

    The major threats to human health from heavy metals are associated with exposure to arsenic, lead, cadmium, chromium, mercury, as well as some other elements. The effects of such heavy metals on human health have been extensively studied and reviewed by international organizations such as WHO. Due to their toxicity, heavy metal contaminations have been regulated by national environmental standards in many countries, and/or laws such as the Soil Contamination Countermeasures Act in Japan. Leaching of naturally occurring heavy metals from the soils, especially those around abandoned metal mines into surrounding water systems, either groundwater or surface water systems, is one of the major pathways of exposure. Therefore, understanding the leaching properties of toxic heavy metals from naturally polluted soils is of fundamentally importance for effectively managing abandoned metal mines, excavated rocks discharged from infrastructure constructions such as tunneling, and/or selecting a pertinent countermeasure against pollution when it is necessary. In this study, soil samples taken from the surroundings of abandoned metal mines in different regions in Japan were collected and analyzed. The samples contained multiple heavy metals such as lead, arsenic and chromium. Standard leaching test and sequential leaching test considering different forms of contaminants, such as trivalent and pentavalent arsenics, and trivalent and hexavalent chromiums, together with standard test for evaluating total concentration, X-ray Fluorescence Analysis (XRF), X-ray diffraction analysis (XRD) and Cation Exchange Capacity (CEC) tests were performed. In addition, sequential leaching tests were performed to evaluate long-term leaching properties of lead from representative samples. This presentation introduces the details of the above experimental study, discusses the relationships among leaching properties and chemical and mineral compositions, indicates the difficulties associated with

  18. Winter-time size distribution and source apportionment of total suspended particulate matter and associated metals in Delhi

    NASA Astrophysics Data System (ADS)

    Srivastava, Arun; Gupta, Sandeep; Jain, V. K.

    2009-03-01

    A study of the winter time size distribution and source apportionment of total suspended particulate matter (TSPM) and associated heavy metal concentrations have been carried out for the city of Delhi. This study is important from the point of view of implementation of compressed natural gas (CNG) as alternate of diesel fuel in the public transport system in 2001 to reduce the pollution level. TSPM were collected using a five-stage cascade impactor at six sites in the winters of 2005-06. The results of size distribution indicate that a major portion (~ 40%) of TSPM concentration is in the form of PM0.7 (< 0.7 μm). Similar trends were observed with most of the heavy metals associated with various size fractions of TSPM. A very good correlation between coarse and fine size fraction of TSPM was observed. It was also observed that the metals associated with coarse particles have more chances of correlation with other metals; rather they are associated with fine particles. Source apportionment was carried out separately in coarse and fine size modes of TSPM by Chemical Mass Balance Receptor Model (CMB8) as well as by Principle Component Analysis (PCA) of SPSS. Source apportionment by PCA reveals that there are two major sources (possibly vehicular and crustal re-suspension) in both coarse and fine size fractions. Results obtained by CMB8 show the dominance of vehicular pollutants and crustal dust in fine and coarse size mode respectively. Noticeably the dominance of vehicular pollutants are now confined to fine size only whilst during pre CNG era it dominated both coarse and fine size mode. An increase of 42.5, 44.4, 48.2, 38.6 and 38.9% in the concentrations of TSPM, PM10.9, coarse particles, fine particles and lead respectively was observed during pre (2001) to post CNG (2005-06) period.

  19. Bearing Change to Metal-On-Polyethylene for Ceramic Bearing Fracture in Total Hip Arthroplasty; Does It Work?

    PubMed

    Lee, Soong Joon; Kwak, Hong Suk; Yoo, Jeong Joon; Kim, Hee Joong

    2016-01-01

    We evaluated the short-term to midterm results of reoperation with bearing change to metal-on-polyethylene (MoP) after ceramic bearing fracture in ceramic-on-ceramic total hip arthroplasty. Nine third-generation ceramic bearing fractures (6 heads and 3 liners) were treated with bearing change to MoP. Mean age at reoperation was 52.7 years. Mean follow-up was 4.3 years. During follow-up, 2 of 3 liner-fractured hips and 1 of 6 head-fractured hips showed radiologic signs of metallosis and elevated serum chromium levels. Re-reoperation with bearing rechange to a ceramic head was performed for the hips with metallosis. One liner-fractured hip had periprosthetic joint infection. Dislocation occurred in 3 hips. From our experience, bearing change to MoP is not a recommended treatment option for ceramic bearing fracture in total hip arthroplasty. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Spatial variability of heavy metals in estuarine, mangrove and coastal ecosystems along Parangipettai, Southeast coast of India.

    PubMed

    Sundaramanickam, Arumugam; Shanmugam, Nadanasabesan; Cholan, Shanmugam; Kumaresan, Saravanan; Madeswaran, Perumal; Balasubramanian, Thangavel

    2016-11-01

    An elaborate survey on the contamination of heavy metals was carried out in surface sediments of different ecosystems such as Vellar-Coleroon estuarine, Pichavaram mangrove and coastal region of Parangipettai, Southeast coast of India. The study was intended since, the coal based thermal power plant and oil refinery plant are proposed to set up along this coast and aquaculture industries and dredging activities are developing. The parameters such as soil texture, pH, total organic carbon (TOC) and heavy metal (Fe, Mn, Cu, Cd, Zn and Ni) concentrations were analyzed for the surface sediments during pre and postmonsoon seasons. Among the metals analyzed, Fe and Mn were found to have dominant as the levels were recorded as 11,804 μg g - 1 and 845.2 μg g - 1 respectively. A significant correlation was observed between total organic carbon (TOC) and heavy metals. In the mangrove ecosystem, the levels of heavy metals found to be maximum indicating that the rich organic matter acts as an efficient binding agent for metals. The overall finding of the present study indicated that the sediments from the entire Vellar-Coleroon estuarine and Pichavaram mangrove ecosystems were found moderately polluted with cadmium metal. The result of cluster analysis indicated disparity in accumulation of heavy metals in sediments of different ecosystems due to the variations in organic matter. The heavy metals were transported from land to coastal through flood during monsoon season reflecting the variations in their levels in different ecosystems at postmonsoon season. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Total and water-soluble trace metal content of urban background PM 10, PM 2.5 and black smoke in Edinburgh, UK

    NASA Astrophysics Data System (ADS)

    Heal, Mathew R.; Hibbs, Leon R.; Agius, Raymond M.; Beverland, Iain J.

    Toxicological studies have implicated trace metals in airborne particles as possible contributors to respiratory and/or cardiovascular inflammation. As part of an epidemiological study, co-located 24 h samples of PM 10, PM 2.5 and black smoke (BS) were collected for 1 year at an urban background site in Edinburgh, and each sample sequentially extracted with ultra-pure water, then concentrated HNO 3/HCl, and analysed for Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd and Pb. This yields a comprehensive data set for UK urban airborne trace metal. The median ( n>349) daily water-soluble metal concentration in PM 2.5 ranged from 0.05 ng m -3 for Ti to 5.1 ng m -3 for Pb; and in PM 10 from 0.18 ng m -3 for Ti to 11.7 ng m -3 for Fe. Median daily total (i.e. water+acid-extractable) metal concentration in PM 2.5 ranged from 0.3 ng m -3 for As to 27.6 ng m -3 for Fe; and in PM 10 from 0.37 ng m -3 for As to 183 ng m -3 for Fe. The PM 2.5:PM 10 ratio varied considerably with metal, from <17%, on average, for Ti and Fe, to >70% for V, As, Cd and Pb. The 11 trace metals constituted proportionally more of the PM 10-2.5 fraction than of the PM 2.5 fraction (0.9%). The proportion of water-soluble metal in each size-fraction varied considerably, from <10% water-soluble Fe and Ti in PM 10-2.5, to >50% water-soluble V, Zn, As and Cd in PM 2.5. Although Fe generally dominated the trace metal, water-soluble metal also contained significant Zn, Pb and Cu, and for all size and solubility fractions >90% of trace metal was comprised of Fe, Zn, Pb and Cu. Statistical analyses suggested three main sources: traffic; static combustion; and crustal. The association of metals with traffic (Cu, Fe, Mn, Pb, Zn) was consistent with traffic-induced non-exhaust "resuspension" rather than direct exhaust emission. Meteorology contributed to the wide variation in daily trace metal concentration. The proportion of trace metal in particles varied significantly with the air mass source and was highest on days for

  2. Metal-on-Metal Hip Retrieval Analysis: A Case Report

    PubMed Central

    Pace, Thomas B.; Rusaw, Kara A.; Minette, Lawrence J.; Shirley, Brayton R.; Snider, Rebecca G.; DesJardins, John D.

    2013-01-01

    This is a case report involving a single case with severe bone and soft tissue destruction in a young male patient with a 10-year-metal on-metal total hip arthroplasty. Following complete aseptic erosion of the affected hip greater trochanter and abductor muscles, the hip was revised for recurrent instability. Histological examination of the patient's periprosthetic tissues, serological studies, and review of recent medical reports of similar cases were used to support an explanation of the destructive process and better contribute to our understanding of human reaction to metal debris in some patients following metal-on-metal hip arthroplasty. PMID:23840999

  3. Albumin as marker for susceptibility to metal ions in metal-on-metal hip prosthesis patients.

    PubMed

    Facchin, F; Catalani, S; Bianconi, E; Pasquale, D De; Stea, S; Toni, A; Canaider, S; Beraudi, A

    2017-04-01

    Metal-on-metal (MoM) hip prostheses are known to release chromium and cobalt (Co), which negatively affect the health status, leading to prosthesis explant. Albumin (ALB) is the main serum protein-binding divalent transition metals. Its binding capacity can be affected by gene mutations or modification of the protein N-terminal region, giving the ischaemia-modified albumin (IMA). This study evaluated ALB, at gene and protein level, as marker of individual susceptibility to Co in MoM patients, to understand whether it could be responsible for the different management of this ion. Co was measured in whole blood, serum and urine of 40 MoM patients. A mutational screening of ALB was performed to detect links between mutations and metal binding. Finally, serum concentration of total ALB and IMA were measured. Serum total ALB concentration was in the normal range for all patients. None of the subjects presented mutations in the investigated gene. Whole blood, serum and urine Co did not correlate with serum total ALB or IMA, although IMA was above the normal limit in most subjects. The individual susceptibility is very important for patients' health status. Despite the limited results of this study, we provide indications on possible future investigations on the toxicological response to Co.

  4. Determination of some heavy metals (Fe, Cu, Zn and Pb) in blood by total reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Bounakhla, M.; Doukkali, A.; Lalaoui, K.; Aguenaou, H.; Mokhtar, N.; Attrassi, B.

    2003-05-01

    The main purpose of this study is the interaction between nutrition (micronutrients heavy metals: Fe, Zn, Cu) and toxic heavy metals such as Pb in blood of children living in Gharb region of Morocco. This region receives all pollution carried by the Sebou river coming mainly from industrial activities. A rapid and simple analytical procedure was used for the determination of Fe, Cu and Zn trace amounts in blood by total-reflection X-ray fluorescence technique. This method is an energy dispersive XRF technique in a special geometry of primary beam, sample and detector. The sample is deposited on a plane polished surface of a suitable reflector material. It is presented as a few drops (25 μl) from a solution of blood digested in a mixture of HNO3 and H2O2 using a microwaves accelerated reaction system. The accuracy of measurements has been investigated by using certified materials. The concentration of Cu was found to be normal in all samples (\\cong1 ppm) which ruled out any interaction between this element and the others. On the other hand, amounts of Fe and Zn are very variables, suggesting an interaction between Fe and Zn. However, amounts of Pb in blood are inferior to 50 ppb, suggesting that no interaction exist with this metal and micronutrients.

  5. Phytoremediation of metals using lemongrass (Cymbopogon citratus (D.C.) Stapf.) grown under different levels of red mud in soil amended with biowastes.

    PubMed

    Gautam, Meenu; Pandey, Divya; Agrawal, Madhoolika

    2017-06-03

    Due to hostile condition of red mud (RM), its utilization for vegetation is restricted. Therefore, RM with biowastes as soil amendment may offer suitable combination to support plant growth with reduced risk of metal toxicity. To evaluate the effects of RM on soil properties, plant growth performance, and metal accumulation in lemongrass, a study was conducted using different RM concentrations (0, 5, 10, and 15% w/w) in soil amended with biowastes [cow dung manure (CD) or sewage-sludge (SS)]. Application of RM in soil with biowastes improved organic matter and nutrient contents and caused reduction in phytoavailable metal contents. Total plant biomass was increased under all treatments, maximally at 5% RM in soil with SS (91.4%) and CD (51.7%) compared to that in control (no RM and biowastes). Lemongrass acted as a potential metal-tolerant plant as its metal tolerance index is >100%. Based on translocation and bioconcentration factors, lemongrass acted as a potential phytostabilizer of Fe, Mn, and Cu in roots and was found efficient in translocation of Al, Zn, Cd, Pb, Cr, As, and Ni from roots to shoot. The study suggests that 5% RM with biowastes preferably SS may be used to enhance phytoremediation potential of lemongrass.

  6. Total and labile metals in surface sediments of the tropical river-estuary system of Marabasco (Pacific coast of Mexico): Influence of an iron mine.

    PubMed

    Marmolejo-Rodríguez, Ana Judith; Prego, Ricardo; Meyer-Willerer, Alejandro; Shumilin, Evgueni; Cobelo-García, Antonio

    2007-01-01

    Marabasco is a tropical river-estuary system comprising the Marabasco river and the Barra de Navidad Lagoon. The river is impacted by the Peña Colorada iron mine, which produces 3.5 million tons of pellets per year. Thirteen surface sediment samples were collected in May 2005 (dry season) in order to establish background levels of Al, Cd, Co, Cu, Fe, Ni, Pb, and Zn in the system and to ascertain the potential mobility of metals in the sediments. Analyses were carried out in the fraction finer than 63 microm, and labile metals extracted according the BCR procedure. Certified reference materials were used for validation of methods. Total concentrations of Cd, Co, Cu, Ni, Pb, and Zn were in the range of 0.05-0.34, 6-95, 0.7-31, 9-26, 2-18, and 53-179 mgkg(-1), respectively; Al and Fe ranges of 24-127, and 26-69 mgg(-1) correspondingly. Cadmium was found to be significantly labile in the sediments (20-100%), followed by Co (0-35%), Ni (3-16%) and Zn (0-25%), whereas the labile fraction for Cu, Fe and Pb was almost negligible (<4%). According with the total metal concentrations, background levels and normalised enrichment factors (NEF) of the metals studied, the impact of the Peña Colorada iron mine on the Marabasco system is lower than expected when compared with other similar World systems influenced by mining activities.

  7. Does Choice of Head Size and Neck Geometry Affect Stem Migration in Modular Large-Diameter Metal-on-Metal Total Hip Arthroplasty? A Preliminary Analysis

    PubMed Central

    Georgiou, CS; Evangelou, KG; Theodorou, EG; Provatidis, CG; Megas, PD

    2012-01-01

    Due to their theoretical advantages, hip systems combining modular necks and large diameter femoral heads have gradually gained popularity. However, among others, concerns regarding changes in the load transfer patterns were raised. Recent stress analyses have indeed shown that the use of modular necks and big femoral heads causes significant changes in the strain distribution along the femur. Our original hypothesis was that these changes may affect early distal migration of a modular stem. We examined the effect of head diameter and neck geometry on migration at two years of follow-up in a case series of 116 patients (125 hips), who have undergone primary Metal-on-Metal total hip arthroplasty with the modular grit-blasted Profemur®E stem combined with large-diameter heads (>36 mm). We found that choice of neck geometry and head diameter has no effect on stem migration. A multivariate regression analysis including the potential confounding variables of the body mass index, bone quality, canal fill and stem positioning revealed only a negative correlation between subsidence and canal fill in midstem area. Statistical analysis, despite its limitations, did not confirm our hypothesis that choice of neck geometry and/or head diameter affects early distal migration of a modular stem. However, the importance of correct stem sizing was revealed. PMID:23284597

  8. Does Choice of Head Size and Neck Geometry Affect Stem Migration in Modular Large-Diameter Metal-on-Metal Total Hip Arthroplasty? A Preliminary Analysis.

    PubMed

    Georgiou, Cs; Evangelou, Kg; Theodorou, Eg; Provatidis, Cg; Megas, Pd

    2012-01-01

    Due to their theoretical advantages, hip systems combining modular necks and large diameter femoral heads have gradually gained popularity. However, among others, concerns regarding changes in the load transfer patterns were raised. Recent stress analyses have indeed shown that the use of modular necks and big femoral heads causes significant changes in the strain distribution along the femur. Our original hypothesis was that these changes may affect early distal migration of a modular stem. We examined the effect of head diameter and neck geometry on migration at two years of follow-up in a case series of 116 patients (125 hips), who have undergone primary Metal-on-Metal total hip arthroplasty with the modular grit-blasted Profemur®E stem combined with large-diameter heads (>36 mm). We found that choice of neck geometry and head diameter has no effect on stem migration. A multivariate regression analysis including the potential confounding variables of the body mass index, bone quality, canal fill and stem positioning revealed only a negative correlation between subsidence and canal fill in midstem area. Statistical analysis, despite its limitations, did not confirm our hypothesis that choice of neck geometry and/or head diameter affects early distal migration of a modular stem. However, the importance of correct stem sizing was revealed.

  9. Time-dependent release of cobalt and chromium ions into the serum following implantation of the metal-on-metal Maverick type artificial lumbar disc (Medtronic Sofamor Danek).

    PubMed

    Zeh, Alexander; Becker, Claudia; Planert, Michael; Lattke, Peter; Wohlrab, David

    2009-06-01

    In total hip endoprosthetics and consequently for TDA, metal-on-metal combinations are used with the aim of reducing wear debris. In metal-on-metal TDA the release of metal ions has until now been secondary to the main discussion. In order to investigate the ion release following the implantation of the metal-on-metal Maverick type artificial lumbar disc we measured the serum cobalt and chromium concentration following implantation of 15 Maverick TDAs (monosegmental L5/S1, n = 5; bisegmental L4/5 and L5/S1, n = 5; average age 36.5 years). Five healthy subjects (no metal implants) acted as a control group. The two measurements of the metals were carried out using the absorption spectrometry after an average of 14.8 and 36.7 months. In summary, the concentrations of cobalt and chromium ions in the serum at both follow-ups amounted on average to 3.3 microg/l (SD 2.6) for cobalt and 2.2 microg/l (SD 1.5) for chromium. These figures are similar to the figures shown in the literature following the implantation of metal-on-metal THA. After a comparison to the control group, both the chromium and cobalt levels in the serum showed visible increases regarding the first and the second follow-up. As there is still a significant release of cobalt and chromium into the serum after an average follow-up of 36.7 months a persistent release of these ions must be taken into consideration. Despite the evaluation of the systemic and local effects of the release of Cr/Co from orthopaedic implants has not yet been concluded, one should take into consideration an explanation given to patients scheduled for the implantation of a metal-on-metal TDA about these results and the benefits/risks of alternative combinations of gliding contact surfaces.

  10. Functionalized Derivatives of Benzo-Crown Ethers. Part 4. Antifungal Macrocyclic Supramolecular Complexes of Transition Metal Ions Acting as Lanosterol-14-α-Demethylase Ihibitors

    PubMed Central

    Barboiu, Mihai; Scozzafava, Andrea; Guran, Cornelia; Diaconescu, Paula; Bojin, Mihaela; Iluc, Vlad; Cot, Louis

    1999-01-01

    Poly- and mononuclear metal complexes of 2,3,11,12-bis[4-(10-aminodecylcarbonyl)]benzo-18- crown-6 (L) and Cu(II); Ni(II); Co(II) and Cr(III) have been synthesized and characterized by standard physico-chemical procedures. In the newly prepared complexes the crown moiety oxygen atoms of the macrocyclic host did not generally interact with metal ions, whereas the two amino groups of the ligand always did. Several of the newly synthesized compounds act as effective antifungal agents against Aspergillus and Candida spp., some of them showing activities comparable to ketoconazole, with minimum inhibitory concentrations in the range of 0.3−0.5 μg/mL. The mechanism of antifungal action of these coordination compounds is probably connected to an inhibition of lanosterol-14-α-demethylase, a metallo-enzyme playing a key role in sterol biosynthesis in fungi, bacteria and eukariotes. PMID:18475888

  11. Feasibility of a nickel-metal hydride battery for totally implantable artificial hearts.

    PubMed

    Okamoto, E; Yoshida, T; Fujiyoshi, M; Shimanaka, M; Takeuchi, A; Mitamura, Y; Mikami, T

    1996-01-01

    An implantable rechargeable battery is one of the key technologies for totally implantable artificial hearts. The nickel-metal hydride (Ni-MH) battery is promising for its high energy density of 1.5-2.0 times that of a nickel-cadmium battery. In this study, the effects of pulsatile discharge loads on the operating time and cycle life of Ni-MH batteries at 39 degrees C were studied. Two battery cells (TH-3M, 1,200 mAh, phi 14.5 x 49 mm; Toshiba, Tokyo, Japan) in series were charge/discharge cycled at 39 degrees C using a charge current of 1CA (1,200 mA) and then were fully discharged to 1.0 V/cell under either pulsatile discharge loads, which mimicked a systole (1 A for 0.3 sec) and a diastole (0.4 A for 0.3 sec), or a non pulsatile discharge load equivalent to the average of the pulsatile loads (0.7 A). Each cycle life test was interrupted on the 482nd cycle under pulsatile load, and on the 423rd cycle under non pulsatile load, because of malfunction of each battery charger. The tests showed that the pulsatile discharge cells had significantly (p < 0.001) less operating time (74.0 +/- 7.15 min) throughout the test period (up to 482 days) compared to the cells under equivalent non pulsatile discharge loads (93.7 +/- 7.74 min). The pulsatile-discharged Ni-MH cells provide significantly less operating time than the constantly discharged cells; the Ni-MH battery has an operating time of over 78 min and a cycle life of almost 500 cycles at 39 degrees C. In conclusion, the Ni-MH battery is feasible as an implantable back-up battery for a totally implantable artificial heart system.

  12. Characteristics of Matrix Metals in Which Fast Diffusion of Foreign Metallic Elements Occurs

    NASA Astrophysics Data System (ADS)

    Mae, Yoshiharu

    2018-04-01

    A few foreign elements are known to diffuse faster than the self-diffusion of the matrix metal. However, the characteristics of the matrix metal, which contribute to such fast diffusion remain unknown. In this study, the diffusion coefficients of various elements were plotted on a TC-YM diagram. The matrix metals that show fast diffusion are located in the low thermal conductivity range of the TC-YM diagram, while diffuser elements that undergo fast diffusion are mainly gulf elements such as Fe, Ni, Co, Cr, and Cu. The gulf elements are those that show the largest combination of thermal conductivity and Young's modulus. The great difference in the electron mobility between the matrix metal and diffuser elements generates a repulsive force between them, and the repulsive force—acting between the soft and large atoms of the matrix metal and the hard and small atoms of the diffuser elements—deforms the atoms of the matrix metal to open passageways for fast diffusion of diffuser elements.

  13. Forty-Year Anniversary of Louisiana's Medical Malpractice Act, Act 817 of 1975.

    PubMed

    Palmisano, Donald J

    2015-01-01

    Here we are at the 40th anniversary of the passage of the 1975 Medical Malpractice Act, Act 817.2 How time flies! Act 817 of 1975 lives and the Louisiana State Supreme Court has ruled the current law, a total cap on all damages with its 1984 amendment for unlimited future medical payments as incurred (La. Act 435 of 19843), constitutional in the Butler case previously cited in the 20-year anniversary article (reprinted in this issue of the Journal). Louisiana's law was voted into law prior to California's famous medical liability law.4 For another great triumph, see Texas and its success in 2003.5 Three different laws; three proven long-term successes.

  14. The risk assessment of heavy metals in Futian mangrove forest sediment in Shenzhen Bay (South China) based on SEM-AVS analysis.

    PubMed

    Chai, Minwei; Shen, Xiaoxue; Li, Ruili; Qiu, Guoyu

    2015-08-15

    The risks of heavy metal in Futian mangrove forest sediment were assessed using the acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) methods. The results indicated that AVS distributions were more variable than the SEM distributions at all 16 sampling sites. The positive correlation between AVS and SEM indicated that their similar formative and existing conditions and that AVS acted as an important carrier for SEM. The major SEM component was Zn (69.7.3-94.2%), whereas the Cd contribution (the most toxic metal present) to SEM was no more than 1%. The possible adverse effects caused by heavy metals at ten sampling sites may be due to higher levels of SEMs, rather than AVSs. The total organic carbon (TOC) was an important metal-binding phase in the sediments. Taking into account the TOC concentration, there were no adverse effects due to heavy metals in any of the Futian mangrove forest sediments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. 75 FR 8116 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Joint Venture...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... Production Act of 1993--Joint Venture Under Tip Award No. 70NANB10H009 Notice is hereby given that, on January 15, 2010, pursuant to Section 6(a) of the National Cooperative Research and Production Act of 1993... technologies for high- speed scrap sortation of mixed metals by alloy type, and for real-time, molten metal...

  16. Comparative study of material loss at the taper interface in retrieved metal-on-polyethylene and metal-on-metal femoral components from a single manufacturer.

    PubMed

    Bills, Paul; Racasan, Radu; Bhattacharya, Saugatta; Blunt, Liam; Isaac, Graham

    2017-08-01

    There have been a number of reports on the occurrence of taper corrosion and/or fretting and some have speculated on a link to the occurrence of adverse local tissue reaction specifically in relation to total hip replacement which have a metal-on-metal bearing. As such a study was carried out to compare the magnitude of material loss at the taper in a series of retrieved femoral heads used in metal-on-polyethylene bearings with that in a series of retrieved heads used in metal-on-metal bearings. A total of 36 metal-on-polyethylene and 21 metal-on-metal femoral components were included in the study all of which were received from a customer complaint database. Furthermore, a total of nine as-manufactured femoral components were included to provide a baseline for characterisation. All taper surfaces were assessed using an established corrosion scoring method and measurements were taken of the female taper surface using a contact profilometry. In the case of metal-on-metal components, the bearing wear was also assessed using coordinate metrology to determine whether or not there was a relationship between bearing and taper material loss in these cases. The study found that in this cohort the median value of metal-on-polyethylene taper loss was 1.25 mm 3 with the consequent median value for metal-on-metal taper loss being 1.75 mm 3 . This study also suggests that manufacturing form can result in an apparent loss of material from the taper surface determined to have a median value of 0.59 mm 3 . Therefore, it is clear that form variability is a significant confounding factor in the measurement of material loss from the tapers of femoral heads retrieved following revision surgery.

  17. Directly susceptible, noncarbon metal ceramic composite crucible

    DOEpatents

    Holcombe, Jr., Cressie E.; Kiggans, Jr., James O.; Morrow, S. Marvin; Rexford, Donald

    1999-01-01

    A sintered metal ceramic crucible suitable for high temperature induction melting of reactive metals without appreciable carbon or silicon contamination of the melt. The crucible comprises a cast matrix of a thermally conductive ceramic material; a perforated metal sleeve, which serves as a susceptor for induction heating of the crucible, embedded within the ceramic cast matrix; and a thermal-shock-absorber barrier interposed between the metal sleeve and the ceramic cast matrix to allow for differential thermal expansions between the matrix and the metal sleeve and to act as a thermal-shock-absorber which moderates the effects of rapid changes of sleeve temperature on the matrix.

  18. Dandelion Taraxacum linearisquameum does not reflect soil metal content in urban localities.

    PubMed

    Kováčik, Jozef; Dudáš, Matej; Hedbavny, Josef; Mártonfi, Pavol

    2016-11-01

    Accumulation of selected heavy metals (Cd, Pb, Ni, Cr, Fe, and Zn) and phenolic metabolites (total soluble phenols, cichoric and caftaric acid) in dandelion organs (leaves, roots, inflorescences/anthodia) collected from six localities within the industrial town Košice (eastern Slovakia) were studied. Localities from the vicinity of a steel factory (Cd, Fe) and heavy traffic (Pb, Ni, Cr, Zn) contained the highest amount of individual metals in the soil but a significant correlation between soil and organ metal content was found only for Cr in the leaves (r 2  = 0.7679). The amount of Cd and partially Pb differed among localities in all organs and especially in the leaves and anthodia, indicating probably the impact of atmospheric pollution. The bioaccumulation factor was <1 for almost all metals, suggesting that given dandelion species is not metal accumulator. Translocation factor did not reach values close to or over 1 only for Cd, indicating a root-to-shoot movement of Pb, Ni and Zn though the impact of air pollution on leaves cannot be excluded. A strong correlation between leaf Cd and leaf total phenols, cichoric and caftaric acids was observed (r 2  = 0.7926, 0.8682 and 0.8830, respectively), indicating that phenolic metabolites act in the protection of dandelion against Cd excess. Overall, our data indicate low pollution of urban soil by Cd (5.53-113.8 ng g -1 ) and partially by Cr and the suitability of above-ground organs of dandelion species for the monitoring of air pollution mainly by Cd. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Traversing the Links between Heavy Metal Stress and Plant Signaling

    PubMed Central

    Jalmi, Siddhi K.; Bhagat, Prakash K.; Verma, Deepanjali; Noryang, Stanzin; Tayyeba, Sumaira; Singh, Kirti; Sharma, Deepika; Sinha, Alok K.

    2018-01-01

    Plants confront multifarious environmental stresses widely divided into abiotic and biotic stresses, of which heavy metal stress represents one of the most damaging abiotic stresses. Heavy metals cause toxicity by targeting crucial molecules and vital processes in the plant cell. One of the approaches by which heavy metals act in plants is by over production of reactive oxygen species (ROS) either directly or indirectly. Plants act against such overdose of metal in the environment by boosting the defense responses like metal chelation, sequestration into vacuole, regulation of metal intake by transporters, and intensification of antioxidative mechanisms. This response shown by plants is the result of intricate signaling networks functioning in the cell in order to transmit the extracellular stimuli into an intracellular response. The crucial signaling components involved are calcium signaling, hormone signaling, and mitogen activated protein kinase (MAPK) signaling that are discussed in this review. Apart from signaling components other regulators like microRNAs and transcription factors also have a major contribution in regulating heavy metal stress. This review demonstrates the key role of MAPKs in synchronously controlling the other signaling components and regulators in metal stress. Further, attempts have been made to focus on metal transporters and chelators that are regulated by MAPK signaling. PMID:29459874

  20. 40 CFR 721.640 - Amine substituted metal salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amine substituted metal salts. 721.640 Section 721.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.640 Amine substituted metal...

  1. Resection and Resolution of Bone Marrow Lesions Associated with an Improvement of Pain after Total Knee Replacement: A Novel Case Study Using a 3-Tesla Metal Artefact Reduction MRI Sequence.

    PubMed

    Kurien, Thomas; Kerslake, Robert; Haywood, Brett; Pearson, Richard G; Scammell, Brigitte E

    2016-01-01

    We present our case report using a novel metal artefact reduction magnetic resonance imaging (MRI) sequence to observe resolution of subchondral bone marrow lesions (BMLs), which are strongly associated with pain, in a patient after total knee replacement surgery. Large BMLs were seen preoperatively on the 3-Tesla MRI scans in a patient with severe end stage OA awaiting total knee replacement surgery. Twelve months after surgery, using a novel metal artefact reduction MRI sequence, we were able to visualize the bone-prosthesis interface and found complete resection and resolution of these BMLs. This is the first reported study in the UK to use this metal artefact reduction MRI sequence at 3-Tesla showing that resection and resolution of BMLs in this patient were associated with an improvement of pain and function after total knee replacement surgery. In this case it was associated with a clinically significant improvement of pain and function after surgery. Failure to eradicate these lesions may be a cause of persistent postoperative pain that is seen in up to 20% of patients following TKR surgery.

  2. Technique for joining metal tubing

    NASA Technical Reports Server (NTRS)

    Wright, H. W.

    1976-01-01

    Uniform wall thickness and uninterrupted heat transfer is achieved by using shaped metal insert as wall material for joint. Insert acts as support during brazing, after which excess material is ground away to bring joint to original tubing size.

  3. Variations in Heavy Metals Across Urban Streams

    NASA Astrophysics Data System (ADS)

    Kaushal, S. S.; Belt, K. T.; Stack, W. P.; Pouyat, R. V.; Groffman, P. M.; F, S. E.

    2006-05-01

    Urbanization has led to increased concentrations of metals such as lead (Pb), zinc (Zn), and copper (Cu) in streams due to industrial sources, domestic activities, vehicle use, and runoff from roadways. These metals can be dangerous to aquatic organisms and humans at high concentrations. We investigated variations in concentrations of heavy metals in streams across Baltimore, Maryland and within the context of convergent increases in salinity and organic carbon (two important variables that are known to affect metal transport in surface waters) due to urbanization. Despite past reductions of lead in gasoline and paints, mean concentrations of lead in some Baltimore streams were still approximately 75 micrograms/L and exceeded the U.S. EPA recommended criteria by 50 times. Mean concentrations of zinc and copper across Baltimore streams were also elevated and ranged between 15 to 140 micrograms/L and 2 to 40 micrograms/L, and mean concentrations of these metals were considerably higher than national means reported by the National Storm Water Quality database (NSWQ), which spans 3,770 storm events across the U.S. There were substantial increases in concentrations of heavy metals in streams during storms with greater than 80 percent, 70 percent, and 20 percent of storm samples exceeding recommended U.S. EPA metals criteria for Cu, Pb, and Zn respectively. Relationships between metal concentrations and stream discharge followed different patterns than nitrate and total phosphorus, other regulated pollutants in the Chesapeake Bay watershed, suggesting differences in sources and transport mechanisms within watersheds. Environmental factors such as increasing salinity from deicer use (with chloride concentrations in streams now ranging up to 5 g/L) may contribute to elevated transport of metals through ion exchange and mobilization of metals in soils and sediments. Environmental factors such as increasing organic carbon in urban streams, with ranges of 2 - 16 times greater

  4. Effects of conversion of mangroves into gei wai ponds on sediment heavy metals accumulation in tidal flat estuary, South China

    NASA Astrophysics Data System (ADS)

    Li, R.; Qiu, G.; Chai, M.; Li, R.

    2017-12-01

    Gei wai ponds act as important component in mangrove ecosystem, but the conversion of mangroves into gei wai ponds and its ecological function on heavy metal accumulation is still not clear. The study quantified the sediment heavy metal concentration and speciation in gei wai pond, Avicennia marina marsh and mudflat in Futian mangrove wetlands, South China. The results showed that gei wai pond acidified the sediment and reduced its fertility due to reduced pH, electronic conductivity (EC) and total organic carbon (TOC) compared to A. marina marsh and mudflat. The concentrations of Cd, Cu, Zn and Pb at all depth in gei wai pond sediment were also lower than other sites, indicating reduced storage function on heavy metals. Multiple analysis implied that heavy metals in all sites could be attributed to anthropogenic sources, with Cr as natural and anthropogenic sources in gei wai pond. Gei wai pond sediment had lower heavy metal pollution based on multiple evaluation methods, including potential ecological risk coefficient (Eir), potential ecological risk index (RI), geo-accumulation index (Igeo), mean PEL quotients (m-PEL-q), pollution load index (PLI), mean ERM quotients (m-ERM-q) and total toxic unit (∑TU). Heavy metal speciation analysis indicated that gei wai pond improved the conversion from the immobilized Cd and Cr to the mobilized fraction. SEM-AVS analysis indicated no adverse toxicity occurred in all sites, and the role of TOC in relieving sediment heavy metal toxicity of gei wai pond is limited.

  5. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660 Section 721.4660 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4660 Alcohol, alkali metal sal...

  6. Assessing metal bioavailability from cytosolic metal concentrations in natural populations of aquatic insects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cain, D.J.; Luoma, S.N.; Hornberger, M.I.

    1995-12-31

    Metals occur in a variety of forms in aquatic insects. Some of these forms may be irrelevant to effects of metals on the animal, and might actually obscure links between tissue residues, metal bioavailability and toxicity (e.g. metals sorbed to external body parts, or associated with unpurged gut contents). Cytosolic metal may be a sensitive indicator of metal bioavailability and toxicity. The authors determined cytosolic metal concentrations in natural populations of the caddisfly (Trichoptera) Hydropsyche occidentalis. Cytosolic metal concentrations were compared to whole-body and sediment metal concentrations. Samples were collected along a contamination gradient over a 380 km reach ofmore » the Clark Fork River, Montana, in August of 1992 and 1993. Concentrations of cytosolic Cd, Cu, and Pb correlated with concentrations of these metals in the whole body within years. Cytosolic metals also correlated with levels of sediment contamination except at the most contaminated sites where metal concentrations in the cytosol were lower relative to sediments. The availability of Pb appeared to be low since the cytosolic Pb fraction represented less than 6% of the total Pb body burden. The cytosol contained appreciably higher proportions of the total Cd and Cu body burden than Pb. The cytosolic fraction of Cd and Cu also increased significantly between 1992 and 1993. This change reflected an increase in Cd and Cu exposure in 1993, apparently due to the mobilization of metals during higher river flows that year. The shift in cytosolic metal fractions demonstrates the dynamic nature of metal partitioning in animals in nature. These shifts can be influenced by hydrologic and geochemical conditions, as well as biological processes.« less

  7. The relationship of metals, bifenthrin, physical habitat metrics, grain size, total organic carbon, dissolved oxygen and conductivity to Hyalella sp. abundance in urban California streams.

    PubMed

    Hall, Lenwood W; Anderson, Ronald D

    2013-01-01

    The objectives of this study were to determine the relationship between Hyalella sp. abundance in four urban California streams and the following parameters: (1) 8 bulk metals (As, Cd, Cr, Cu, Pb, Hg, Ni, and Zn) and their associated sediment Threshold Effect Levels (TELs); (2) bifenthrin sediment concentrations; (3) 10 habitat metrics and total score; (4) grain size (% sand, silt and clay); (5) Total Organic Carbon (TOC); (6) dissolved oxygen; and (7) conductivity. California stream data used for this study were collected from Kirker Creek (2006 and 2007), Pleasant Grove Creek (2006, 2007 and 2008), Salinas streams (2009 and 2010) and Arcade Creek (2009 and 2010). Hyalella abundance in the four California streams generally declined when metals concentrations were elevated beyond the TELs. There was also a statistically significant negative relationship between Hyalella abundance and % silt for these 4 California streams as Hyalella were generally not present in silt areas. No statistically significant relationships were reported between Hyalella abundance and metals concentrations, bifenthrin concentrations, habitat metrics, % sand, % clay, TOC, dissolved oxygen and conductivity. The results from this study highlight the complexity of assessing which factors are responsible for determining the abundance of amphipods, such as Hyalella sp., in the natural environment.

  8. [Survey on the use and behaviour of metal-metal hip replacements in Spain].

    PubMed

    Calcerrada, N; Fernández-Vega, A; Valls-León, C; Garcia-Cimbrelo, E

    2016-01-01

    Following medical device alerts published in different countries of problems with metal-on-metal total hip replacements, the Spanish Agency of Medicines and Medical Devices (AEMPS) in collaboration with the Spanish Hip Society Surgery designed a national survey to gather information on the use and behaviour of these hip implants. The survey consisted of a questionnaire sent by e-mail to 283 clinical centre recipients of metal-on-metal hips to be filled in by surgeons with expertise in the field. A total of 257 questionnaires were completed. The response rate of the clinical centres was 36.7%. A total of 97.7% of the responses reported that clinical and radiological follow-ups are carried out, and 79.6% undertook metal ion analyses (chromium and cobalt). A large majority (83.6%) of the responders who had who used surface implants, and 70% of those with large-head implants reported peri-operative complications. The most common complication was pain (25% with surface implants and 30.8% with large-head implants). Currently 80.8% of those responding were considering abandoning implanting of these hip replacements. Despite the many limitations to this study, the survey has allowed us to obtain in a quick first view of the implant scenario of Metal on Metal hip implants in Spain, and to determine the type of patient implanted, the time of implantation, and the experience/expertise of the surgeons, and the type of follow-up carried out. Copyright © 2015 SECOT. Published by Elsevier Espana. All rights reserved.

  9. Metal carboxylates with open architectures.

    PubMed

    Rao, C N R; Natarajan, Srinivasan; Vaidhyanathan, R

    2004-03-12

    The field of inorganic open-framework materials is dominated by aluminosilicates and phosphates. The metal carboxylates have emerged as an important family in the last few years. This family includes not only mono- and dicarboxylates of transition, rare-earth, and main-group metals, but also a variety of hybrid structures. Some of the carboxylates possess novel adsorption and magnetic properties. Dicarboxylates and related species provide an effective means of designing novel hybrid structures with porous and other properties. In some of these structures, the dicarboxylate acts as a linker between two inorganic units. Hybrid nanocomposites are also of particular note, for example, cadmium oxalate host lattices that can accommodate extended alkali-metal halide structures. This Review discusses the synthesis, structure, and properties of various types of open-framework metal carboxylates.

  10. Liquid metal ion source and alloy

    DOEpatents

    Clark, Jr., William M.; Utlaut, Mark W.; Behrens, Robert G.; Szklarz, Eugene G.; Storms, Edmund K.; Santandrea, Robert P.; Swanson, Lynwood W.

    1988-10-04

    A liquid metal ion source and alloy, wherein the species to be emitted from the ion source is contained in a congruently vaporizing alloy. In one embodiment, the liquid metal ion source acts as a source of arsenic, and in a source alloy the arsenic is combined with palladium, preferably in a liquid alloy having a range of compositions from about 24 to about 33 atomic percent arsenic. Such an alloy may be readily prepared by a combustion synthesis technique. Liquid metal ion sources thus prepared produce arsenic ions for implantation, have long lifetimes, and are highly stable in operation.

  11. Time series models for prediction the total and dissolved heavy metals concentration in road runoff and soil solution of roadside embankments

    NASA Astrophysics Data System (ADS)

    Aljoumani, Basem; Kluge, Björn; sanchez, Josep; Wessolek, Gerd

    2017-04-01

    Highways and main roads are potential sources of contamination for the surrounding environment. High traffic rates result in elevated heavy metal concentrations in road runoff, soil and water seepage, which has attracted much attention in the recent past. Prediction of heavy metals transfer near the roadside into deeper soil layers are very important to prevent the groundwater pollution. This study was carried out on data of a number of lysimeters which were installed along the A115 highway (Germany) with a mean daily traffic of 90.000 vehicles per day. Three polyethylene (PE) lysimeters were installed at the A115 highway. They have the following dimensions: length 150 cm, width 100 cm, height 60 cm. The lysimeters were filled with different soil materials, which were recently used for embankment construction in Germany. With the obtained data, we will develop a time series analysis model to predict total and dissolved metal concentration in road runoff and in soil solution of the roadside embankments. The time series consisted of monthly measurements of heavy metals and was transformed to a stationary situation. Subsequently, the transformed data will be used to conduct analyses in the time domain in order to obtain the parameters of a seasonal autoregressive integrated moving average (ARIMA) model. Four phase approaches for identifying and fitting ARIMA models will be used: identification, parameter estimation, diagnostic checking, and forecasting. An automatic selection criterion, such as the Akaike information criterion, will use to enhance this flexible approach to model building

  12. Long-term observation of water-soluble chemical components and acid-digested metals in the total suspended particles collected at Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Handa, D.; Okada, K.; Kuroki, Y.; Nakama, Y.; Nakajima, H.; Somada, Y.; Ijyu, M.; Azechi, S.; Oshiro, Y.; Nakaema, F.; Miyagi, Y.; Arakaki, T.; Tanahara, A.

    2011-12-01

    The economic growth and population increase in recent Asia have been increasing air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location is ideal in observing East Asia's air quality because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background clean air and can be compared with continental air masses which have been affected by anthropogenic activities. We collected total suspended particles (TSP) on quartz filters by using a high volume air sampler at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS), Okinawa, Japan during August 2005 and August 2010. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations, water-soluble organic carbon (WSOC) and acid-digested metals in TSP samples using ion chromatography, atomic absorption spectrometry, total organic carbon analyzer and Inductively Coupled Plasma Mass spectrometry (ICP-MS), respectively. Seasonal variation of water-soluble chemical components and acid-digested metals showed that the concentrations were the lowest in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian continent, the concentrations of water-soluble chemical components and acid-digested metals were much higher compared to the other directions, suggesting long-range transport of air pollutants from Asian continent. Also, when the air mass came from Asian continent (75-100% dominant), the mean concentrations of non-sea salt sulfate and nitrate increased ca. 1.8 times and ca. 3.7 times, respectively between 2005 and 2010, and the ratio of nitrate to

  13. Effects of heavy metal pollution of highway origin on soil nematode guilds in North Shenyang, China.

    PubMed

    Han, Dechang; Zhang, Xiaoke; Tomar Vijay Vikram, Singh; Li, Qi; Wen, Dazhong; Liang, Wenju

    2009-01-01

    Soil samples were collected with distance at 5, 20, 40, 80, 160, and 320 m from the Shen-Ha (Shenyang-Harbin) Highway, Northeast China, to investigate the effect of heavy metals of highway origin on soil nematode guilds. The contents of soil Pb, Cu, Zn, and the nematode community structure were analyzed. The results showed that the contents of total and available Pb, Cu, Zn varied significantly with the different distances from the highway. Pb was the main pollutant in the soils in the vicinity of Shen-Ha Highway. The zone from 20 to 40 m away from the highway was the most polluted area. The highest abundance of soil nematodes was found at 5 m while the lowest at 20 m away from the highway. Thirty six genera of nematodes belonging to 23 families were identified. Nematode guilds having different responses to soil heavy metals were classified into four types. Soil nematode guilds may act as a prominent indicator to heavy metal pollution of highway origin.

  14. Retrieval analysis of ceramic-coated metal-on-polyethylene total hip replacements.

    PubMed

    Khatkar, Harman; Hothi, Harry; de Villiers, Danielle; Lausmann, Christian; Kendoff, Daniel; Gehrke, Thorsten; Skinner, John; Hart, Alister

    2017-06-01

    Ceramic coatings have been used in metal-on-polyethylene (MOP) hips to reduce the risk of wear and also infection; the clinical efficacy of this remains unclear. This retrieval study sought to better understand the performance of coated bearing surfaces. Forty-three coated MOP components were analysed post-retrieval for evidence of coating loss and gross polyethylene wear. Coating loss was graded using a visual semi-quantitative protocol. Evidence of gross polyethylene wear was determined by radiographic analysis and visual inspection of the retrieved implants. All components with gross polyethylene wear (n = 10) were revised due to a malfunctioning acetabular component; 35 % (n = 15) of implants exhibited visible coating loss and the incidence of polyethylene wear in samples with coating loss was 54 %, significantly (p = 0.02) elevated compared to samples with intact coatings (14 %). In this study we found evidence of coating loss on metal femoral heads which was associated with increased wear of the corresponding polyethylene acetabular cups.

  15. Half-Metallic Ferromagnetism and Stability of Transition Metal Pnictides and Chalcogenides

    NASA Astrophysics Data System (ADS)

    Liu, Bang-Gui

    It is highly desirable to explore robust half-metallic ferromagnetic materials compatible with important semiconductors for spintronic applications. A state-of-the-art full potential augmented plane wave method within the densityfunctional theory is reliable enough for this purpose. In this chapter we review theoretical research on half-metallic ferromagnetism and structural stability of transition metal pnictides and chalcogenides. We show that some zincblende transition metal pnictides are half-metallic and the half-metallic gap can be fairly wide, which is consistent with experiment. Systematic calculations reveal that zincblende phases of CrTe, CrSe, and VTe are excellent half-metallic ferromagnets. These three materials have wide half-metallic gaps, are low in total energy with respect to the corresponding ground-state phases, and, importantly, are structurally stable. Halfmetallic ferromagnetism is also found in wurtzite transition metal pnictides and chalcogenides and in transition-metal doped semiconductors as well as deformed structures. Some of these half-metallic materials could be grown epitaxially in the form of ultrathin .lms or layers suitable for real spintronic applications.

  16. Ionic Liquids as Extraction Media for Metal Ions

    NASA Astrophysics Data System (ADS)

    Hirayama, Naoki

    In solvent extraction separation of metal ions, recently, many researchers have investigated possible use of hydrophobic ionic liquids as extraction media instead of organic solvents. Ionic liquids are salts of liquid state around room temperature and can act not only as solvents but also as ion-exchangers. Therefore, the extraction mechanism of metal ions into ionic liquids is complicated. This review presents current overview and perspective on evaluation of nature of hydrophobic ionic liquids as extraction media for metal ions.

  17. The epidemiology of bearing surface usage in total hip arthroplasty in the United States.

    PubMed

    Bozic, Kevin J; Kurtz, Steven; Lau, Edmund; Ong, Kevin; Chiu, Vanessa; Vail, Thomas P; Rubash, Harry E; Berry, Daniel J

    2009-07-01

    Hard-on-hard bearings offer the potential to improve the survivorship of total hip arthroplasty implants. However, the specific indications for the use of these advanced technologies remain controversial. The purpose of this study was to characterize the epidemiology of bearing surface utilization in total hip arthroplasty in the United States with respect to patient, hospital, geographic, and payer characteristics. The Nationwide Inpatient Sample database was used to analyze bearing type and demographic characteristics associated with 112,095 primary total hip arthroplasties performed in the United States between October 1, 2005, and December 31, 2006. The prevalence of each type of total hip arthroplasty bearing was calculated for population subgroups as a function of age, sex, census region, payer class, and hospital type. The most commonly reported bearing was metal-on-polyethylene (51%) followed by metal-on-metal (35%) and ceramic-on-ceramic (14%). Metal-on-polyethylene bearings were most commonly reported in female Medicare patients who were sixty-five to seventy-four years old, while metal-on-metal and ceramic-on-ceramic bearings were most commonly reported in privately insured male patients who were less than sixty-five years old. Thirty-three percent of patients over sixty-five years old had a hard-on-hard bearing reported. There was substantial regional variation in bearing usage; the highest prevalence of metal-on-polyethylene bearings was reported in the Northeast and at nonteaching hospitals, and the highest prevalence of metal-on-metal bearings was reported in the South and at teaching hospitals. The usage of total hip arthroplasty bearings varies considerably by patient characteristics, hospital type, and geographic location throughout the United States. Despite uncertain advantages in older patients, hard-on-hard bearings are commonly used in patients over the age of sixty-five years. Further study is necessary to define the appropriate indications

  18. Metal-backed versus all-polyethylene tibial components in primary total knee arthroplasty

    PubMed Central

    2011-01-01

    Background and purpose The choice of either all-polyethylene (AP) tibial components or metal-backed (MB) tibial components in total knee arthroplasty (TKA) remains controversial. We therefore performed a meta-analysis and systematic review of randomized controlled trials that have evaluated MB and AP tibial components in primary TKA. Methods The search strategy included a computerized literature search (Medline, EMBASE, Scopus, and the Cochrane Central Register of Controlled Trials) and a manual search of major orthopedic journals. A meta-analysis and systematic review of randomized or quasi-randomized trials that compared the performance of tibial components in primary TKA was performed using a fixed or random effects model. We assessed the methodological quality of studies using Detsky quality scale. Results 9 randomized controlled trials (RCTs) published between 2000 and 2009 met the inclusion quality standards for the systematic review. The mean standardized Detsky score was 14 (SD 3). We found that the frequency of radiolucent lines in the MB group was significantly higher than that in the AP group. There were no statistically significant differences between the MB and AP tibial components regarding component positioning, knee score, knee range of motion, quality of life, and postoperative complications. Interpretation Based on evidence obtained from this study, the AP tibial component was comparable with or better than the MB tibial component in TKA. However, high-quality RCTs are required to validate the results. PMID:21895503

  19. Background concentrations of metals in soils from selected regions in the State of Washington

    USGS Publications Warehouse

    Ames, K.C.; Prych, E.A.

    1995-01-01

    Soil samples from 60 sites in the State of Washington were collected and analyzed to determine the magnitude and variability of background concen- trations of metals in soils of the State. Samples were collected in areas that were relatively undisturbed by human activity from the most pre- dominant soils in 12 different regions that are representative of large areas of Washington State. Concentrations of metals were determined by five different laboratory methods. Concentrations of mercury and nickel determined by both the total and total-recoverable methods displayed the greatest variability, followed by chromium and copper determined by the total-recoverable method. Concentrations of other metals, such as aluminum and barium determined by the total method, varied less. Most metals concentrations were found to be more nearly log-normally than normally distributed. Total metals concentrations were not significantly different among the different regions. However, total-recoverable metals concentrations were not as similar among different regions. Cluster analysis revealed that sampling sites in three regions encompassing the Puget Sound could be regrouped to form two new regions and sites in three regions in south-central and southeastern Washington State could also be regrouped into two new regions. Concentrations for 7 of 11 total-recoverable metals correlated with total metals concentrations. Concen- trations of six total metals also correlated positively with organic carbon. Total-recoverable metals concentrations did not correlate with either organic carbon or particle size. Concentrations of metals determined by the leaching methods did not correlate with total or total-recoverable metals concentrations, nor did they correlate with organic carbon or particle size.

  20. Catalytic ozonation of aqueous phenol over metal-loaded HZSM-5.

    PubMed

    Amin, Nor Aishah Saidina; Akhtar, Javaid; Rai, H K

    2011-01-01

    The performances of HZSM-5 and transition metal-loaded HZSM-5 (Mn, Cu, Fe, Ti) catalysts during catalytic ozonation of phenol have been investigated. It was observed the performance order for removal of phenol and COD was Mn/HZSM-5 > Fe/HZSM-5 > Cu/HZSM-5 > Ti/HZSM-5 > HZSM-5. The presence of metals on HZSM-5 enhanced the phenol removal capability of HZSM-5. Mn loading on HZSM-5 was optimized due to its high phenol removal capability amongst metal-loaded HZSM-5 catalysts. Experimental results suggested that low amount of Mn loading on HZSM-5 was sufficient for HZSM-5 to act as catalyst and adsorbent. A maximum of 95.8 wt% phenols and 70.2 wt% COD were removed over 2 wt% Mn/HZSM-5 in 120 min. It was supposed that transition metals mainly acted as ozone decomposers due to their multiple oxidation states that enhanced the ozonation of phenol.

  1. Fatigue evaluation of composite-reinforced, integrally stiffened metal panels

    NASA Technical Reports Server (NTRS)

    Dumesnil, C. E.

    1973-01-01

    The fatigue behavior of composite-reinforced, integrally stiffened metal panels was investigated in combined metal and composite materials subjected to fatigue loading. The systems investigated were aluminum-graphite/epoxy, and aluminum-S glass/epoxy. It was found that the composite material would support the total load at limit stress after the metal had completely failed, and the weight of the composite-metal system would be equal to that of an all metal system which would carry the same total load at limit stress.

  2. Detection and quantitative determination of heavy metals in electronic cigarette refill liquids using Total Reflection X-ray Fluorescence Spectrometry.

    PubMed

    Kamilari, Eleni; Farsalinos, Konstantinos; Poulas, Konstantinos; Kontoyannis, Christos G; Orkoula, Malvina G

    2018-06-01

    Electronic cigarettes are considered healthier alternatives to conventional cigarettes containing tobacco. They produce vapor through heating of the refill liquids (e-liquids) which consist of propylene glycol, vegetable glycerin, nicotine (in various concentrations), water and flavoring agents. Heavy metals may enter the refill liquid during the production, posing a risk for consumer's health due to their toxicity. The objective of the present study was the development of a methodology for the detection and quantitative analysis of cadmium (Cd), lead (Pb), nickel (Ni), copper (Cu), arsenic (As) and chromium (Cr), employing Total Reflection X-Ray Fluorescence Spectroscopy (TXRF) as an alternative technique to ICP-MS or ICP-OES commonly used for this type of analysis. TXRF was chosen due to its advantages, which include short analysis time, promptness, simultaneous multi-element analysis capability and minimum sample preparation, low purchase and operational cost. The proposed methodology was applied to a large number of electronic cigarette liquids commercially available, as well as their constituents, in order to evaluate their safety. TXRF may be a valuable tool for probing heavy metals in electronic cigarette refill liquids to serve for the protection of human health. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Metal-on-metal hip joint tribology.

    PubMed

    Dowson, D; Jin, Z M

    2006-02-01

    The basic tribological features of metal-on-metal total hip replacements have been reviewed to facilitate an understanding of the engineering science underpinning the renaissance of these hard-on-hard joints. Metal-on-polymer hip replacements operate in the boundary lubrication regime, thus leading to the design guidance to reduce the femoral head diameter as much as is feasible to minimize frictional torque and volumetric wear. This explains why the gold-standard implant of this form from the past half-century had a diameter of only 22.225 mm (7/8 in). Metal-on-metal implants can operate in the mild mixed lubrication regime in which much of the applied load is supported by elastohydrodynamic films. Correct tribological design leads to remarkably low steady state wear rates. Promotion of the most effective elastohydrodynamic films calls for the largest possible head diameters and the smallest clearances that can reasonably be adopted, consistent with fine surface finishes, good sphericity and minimal structural elastic deformation of the cup on its foundations. This guidance, which is opposite in form to that developed for metal-on-polymer joints, is equally valid for solid (monolithic) metallic heads on metallic femoral stems and surface replacement femoral shells. Laboratory measurements of friction and wear in metal-on-metal joints have confirmed their potential to achieve a very mild form of mixed lubrication. The key lies in the generation of effective elastohydrodynamic lubricating films of adequate thickness compared with the composite roughness of the head and cup. The calculation of the film thickness is by no means easy, but the full procedure is outlined and the use of an empirical formula that displays good agreement with calculations based upon the full numerical solutions is explained. The representation of the lambda ratio, lambda, embracing both film thickness and composite roughness, is described.

  4. A charging study of ACTS using NASCAP

    NASA Technical Reports Server (NTRS)

    Herr, Joel L.

    1991-01-01

    The NASA Charging Analyzer Program (NASCAP) computer code is a three dimensional finite element charging code designed to analyze spacecraft charging in the magnetosphere. Because of the characteristics of this problem, NASCAP can use an quasi-static approach to provide a spacecraft designer with an understanding of how a specific spacecraft will interact with a geomagnetic substorm. The results of the simulation can help designers evaluate the probability and location of arc discharges of charged surfaces on the spacecraft. A charging study of NASA's Advanced Communication Technology Satellite (ACTS) using NASCAP is reported. The results show that the ACTS metalized multilayer insulating blanket design should provide good electrostatic discharge control.

  5. Phytotoxicity of trace metals in spiked and field-contaminated soils: Linking soil-extractable metals with toxicity.

    PubMed

    Hamels, Fanny; Malevé, Jasmina; Sonnet, Philippe; Kleja, Dan Berggren; Smolders, Erik

    2014-11-01

    Soil tests have been widely developed to predict trace metal uptake by plants. The prediction of metal toxicity, however, has rarely been tested. The present study was set up to compare 8 established soil tests for diagnosing phytotoxicity in contaminated soils. Nine soils contaminated with Zn or Cu by metal mining, smelting, or processing were collected. Uncontaminated reference soils with similar soil properties were sampled, and series of increasing contamination were created by mixing each with the corresponding soil. In addition, each reference soil was spiked with either ZnCl2 or CuCl2 at several concentrations. Total metal toxicity to barley seedling growth in the field-contaminated soils was up to 30 times lower than that in corresponding spiked soils. Total metal (aqua regia-soluble) toxicity thresholds of 50% effective concentrations (EC50) varied by factors up to 260 (Zn) or 6 (Cu) among soils. For Zn, variations in EC50 thresholds decreased as aqua regia > 0.43 M HNO3  > 0.05 M ethylenediamine tetraacetic acid (EDTA) > 1 M NH4 NO3  > cobaltihexamine > diffusive gradients in thin films (DGT) > 0.001 M CaCl2 , suggesting that the last extraction is the most robust phytotoxicity index for Zn. The EDTA extraction was the most robust for Cu-contaminated soils. The isotopically exchangeable fraction of the total soil metal in the field-contaminated soils markedly explained the lower toxicity compared with spiked soils. The isotope exchange method can be used to translate soil metal limits derived from soils spiked with metal salts to site-specific soil metal limits. © 2014 SETAC.

  6. 50 CFR 648.231 - Spiny dogfish Annual Catch Target (ACT) and Total Allowable Level of Landings (TAL).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ACT and TAL recommendation process. (1) The ACT shall be identified as less than or equal to the ACL... conduct a detailed review of fishery performance relative to TALs in conjunction with any ACL performance...

  7. 50 CFR 648.231 - Spiny dogfish Annual Catch Target (ACT) and Total Allowable Level of Landings (TAL).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ACT and TAL recommendation process. (1) The ACT shall be identified as less than or equal to the ACL... conduct a detailed review of fishery performance relative to TALs in conjunction with any ACL performance...

  8. 50 CFR 648.231 - Spiny dogfish Annual Catch Target (ACT) and Total Allowable Level of Landings (TAL).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ACT and TAL recommendation process. (1) The ACT shall be identified as less than or equal to the ACL... conduct a detailed review of fishery performance relative to TALs in conjunction with any ACL performance...

  9. BIOAVAILABILITY OF METALS IN CONTAMINATED SOIL AND DUST

    EPA Science Inventory

    Due to widespread metal contamination, it is necessary to characterize soils suspected of metal contamination and determine if the metal levels in these soils pose a hazard. Metal toxicity is often not directly related to the total concentration of metals present due to a numb...

  10. Short-term changes of metal availability in soil. Part I: comparing sludge-amended with metal-spiked soils.

    PubMed

    Natal-da-Luz, T; Ojeda, G; Costa, M; Pratas, J; Lanno, R P; Van Gestel, C A M; Sousa, J P

    2012-08-01

    Sewage sludge application to soils is regulated by its total metal content. However, the real risk of metals is determined by the fraction that is biologically available. The available fraction is highly related to the strength of metal binding by the matrix, which is a dynamic process. The evaluation of the fate of metals in time can contribute increased accuracy of ecological risk assessment. Aiming to evaluate short-term changes in metal availability when metals were applied to soil directly (metal-spiked) or by way of an organic matrix (sludge-amended), a laboratory experiment was performed using open microcosms filled with agricultural soil. A concentration gradient of industrial sludge (11, 15, 55, and 75 t/ha) that was contaminated predominantly with chromium, copper, nickel, and zinc, or soil freshly spiked with the same concentrations of these metals, were applied on top of the agricultural soil. After 0, 3, 6, and 12 weeks, total (HNO(3) 69 %) and 0.01 M CaCl(2)-extractable metal concentrations in soil and metal content in the percolates were measured. Results demonstrated that comparison between sludge-amended and metal-spiked soils may give important information about the role of sludge matrix on metal mobility and availability in soil. In sludge-amended soils, extractable-metal concentrations were independent of the sludge concentration and did not change over time. In metal-spiked soils, metal extractability decreased with time due to ageing and transport of metals to deeper layers. In general, the sludge matrix increased the adsorption of metals, thus decreasing their mobility in soils.

  11. Nanodiamonds act as Trojan horse for intracellular delivery of metal ions to trigger cytotoxicity.

    PubMed

    Zhu, Ying; Zhang, Yu; Shi, Guosheng; Yang, Jinrong; Zhang, Jichao; Li, Wenxin; Li, Aiguo; Tai, Renzhong; Fang, Haiping; Fan, Chunhai; Huang, Qing

    2015-02-05

    Nanomaterials hold great promise for applications in the delivery of various molecules with poor cell penetration, yet its potential for delivery of metal ions is rarely considered. Particularly, there is limited insight about the cytotoxicity triggered by nanoparticle-ion interactions. Oxidative stress is one of the major toxicological mechanisms for nanomaterials, and we propose that it may also contribute to nanoparticle-ion complexes induced cytotoxicity. To explore the potential of nanodiamonds (NDs) as vehicles for metal ion delivery, we used a broad range of experimental techniques that aimed at getting a comprehensive assessment of cell responses after exposure of NDs, metal ions, or ND-ion mixture: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, Trypan blue exclusion text, optical microscope observation, synchrotron-based scanning transmission X-ray microscopy (STXM) and micro X-ray fluorescence (μXRF) microscopy, inductively coupled plasma-mass spectrometry (ICP-MS), reactive oxygen species (ROS) assay and transmission electron microscopy (TEM) observation. In addition, theoretical calculation and molecular dynamics (MD) computation were used to illustrate the adsorption properties of different metal ion on NDs as well as release profile of ion from ND-ion complexes at different pH values. The adsorption capacity of NDs for different metal ions was different, and the adsorption for Cu2+ was the most strong among divalent metal ions. These different ND-ion complexes then had different cytotoxicity by influencing the subsequent cellular responses. Detailed investigation of ND-Cu2+ interaction showed that the amount of released Cu2+ from ND-Cu2+ complexes at acidic lysosomal conditions was much higher than that at neutral conditions, leading to the elevation of intracellular ROS level, which triggered cytotoxicity. By theoretical approaches, we demonstrated that the functional carbon surface and cluster structures of NDs made them

  12. Survey of metal truss bridges in Virginia.

    DOT National Transportation Integrated Search

    1997-01-01

    Bridges are among the cultural resources that must be considered for historical significance under the Historic Preservation Act of 1966. The Virginia Transportation Research Council conducted a pioneering study of Virginia's pre-1932 metal truss bri...

  13. Selective Recovery of Metals from Geothermal Brines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ventura, Susanna; Bhamidi, Srinivas; Hornbostel, Marc

    The objective of this project was to determine the feasibility of developing a new generation of highly selective low-cost ion-exchange resins based on metal-ion imprinted polymers for the separation of metals from geothermal fluids. Expansion of geothermal energy production over the entire U.S. will involve exploitation of low-to-medium temperature thermal waters. Creating value streams from the recovery of critical and near-critical metals from these thermal waters will encourage geothermal expansion. Selective extraction of metals from geothermal fluids is needed to design a cost-effective process for the recovery of lithium and manganese-two near-critical metals with well-known application in the growing lithiummore » battery industry. We have prepared new lithium- and manganese-imprinted polymers in the form of beads by crosslinking polymerization of a metal polymerizable chelate, where the metal acts as a template. Upon leaching out the metal template, the crosslinked polymer is expected to leave cavities defined by the ligand functional group with enhanced selectivity for binding the template metal. We have demonstrated that lithium- and manganese-imprinted polymer beads can be used as selective solid sorbents for the extraction of lithium and manganese from brines. The polymers were tested both in batch extractions and packed bed lab-scale columns at temperatures of 45-100°C. Lithium-imprinted polymers were found to have Li + adsorption capacity as high as 2.8 mg Li +/g polymer at 45°C. Manganese-imprinted polymers were found to have a Mn 2+ adsorption capacity of more than 23 mg Mn 2+/g polymer at 75°C. The Li + extraction efficiency of the Li-imprinted polymer was found to be more that 95% when a brine containing 390 ppm Li +, 410 ppm Na +, and 390 ppm K + was passed through a packed bed of the polymer in a lab-scale column at 45°C. In brines containing 360 ppm Li +, 10,000 ppm Na +, and 3,000 ppm K +, the Li separation efficiency of the imprinted

  14. The Assessment of Sediment Heavy Metal Pollution in Begej Canal (Serbia)

    NASA Astrophysics Data System (ADS)

    Krčmar, Dejan; Trickovic, Jelena; Grba, Nenad; Becelic Tomin, Milena; Pesic, Vesna; Varga, Natasa; Dalmacija, Bozo

    2016-04-01

    Accumulation of heavy metals in aquatic systems has received huge concern due to their toxicity, persistence and subsequent accumulation in aquatic sediments. One of the most crucial properties of the metals, which differentiate them from organic pollutants, is that they are not biodegradable in the environment. Metals are part of biogeochemical cycles with aquatic sediments acting as their ultimate sinks for longer periods of time. However, when environmental conditions change (pH, redox potential, etc.) sediments act as secondary sources of metal pollution. The toxicity and mobility of metals depend strongly on the way they are associated with sediments. Therefore, information on the total concentrations of metals in sediment alone should not be used to assess the environmental impact of polluted sediments. The Begej Canal is navigation canal between Romania and Serbia and it is a part of Danube-Tisa-Danube hydrosystem in Vojvodina (Northern Province of Serbia). Approximately, 500,000 m3 of sediment is accumulated in Begej canal which currently prevents canal's primary function - navigability. The objective of the present study was to assess the chemical quality of Begej canal sediments regarding heavy metals content. The concentrations of heavy metals were as follows: Cd - 2.4-4.9 mg/kg, Cr - 125-349 mg/kg, Cu - 65-124 mg/kg, Pb - 47-113 mg/kg, Ni - 45-88 mg/kg and Zn - 362-602 mg/kg. According to Serbian legislation (Official gazette, no. 50/12), sediment of Begej canal is the third class sediment which means that special measures should be taken in case of its removal from watercourse and final disposal in order to prevent contamination of other environmental compartments (soil, ground waters, surface waters, wildlife). Therefore, determination of third class has important economic and social implications. Additional tests to assess sediment quality included determination of contamination factor (CF), pollution load index (PLI) and enrichment factor (EF). In

  15. Tribo-biological deposits on the articulating surfaces of metal-on-polyethylene total hip implants retrieved from patients

    NASA Astrophysics Data System (ADS)

    Cui, Zhiwei; Tian, Yi-Xing; Yue, Wen; Yang, Lei; Li, Qunyang

    2016-06-01

    Artificial total hip arthroplasty (THA) is one of the most effective orthopaedic surgeries that has been used for decades. However, wear of the articulating surfaces is one of the key failure causes limiting the lifetime of total hip implant. In this paper, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were employed to explore the composition and formation mechanism of the tribo-layer on the articulating surfaces of metal-on-polyethylene (MoPE) implants retrieved from patients. Results showed that, in contrast to conventional understanding, the attached tribo-layer contained not only denatured proteins but also a fraction of polymer particles. The formation of the tribo-layer was believed to relate to lubrication regime, which was supposed to be largely affected by the nature of the ultra-high-molecule-weight-polyethylene (UHMWPE). Wear and formation of tribo-layer could be minimized in elasto-hydrodynamic lubrication (EHL) regime when the UHMWPE was less stiff and have a morphology containing micro-pits; whereas the wear was more severe and tribo-layer formed in boundary lubrication. Our results and analyses suggest that enhancing interface lubrication may be more effective on reducing wear than increasing the hardness of material. This finding may shed light on the design strategy of artificial hip joints.

  16. Trends in Total Hip Arthroplasty Under the Patient Protection and Affordable Care Act: A National Database Analysis Between 2008 and 2015.

    PubMed

    Etcheson, Jennifer I; George, Nicole E; Gwam, Chukwuweike U; Nace, James; Caughran, Alexander T; Thomas, Melbin; Virani, Sana; Delanois, Ronald E

    2018-05-16

    The Patient Protection and Affordable Care Act expanded health coverage for low-earning individuals and families. With more Americans having access to care, the use of elective procedures, such as total hip arthroplasty (THA), was expected to increase. Therefore, the aim of this study was to evaluate trends in THA before and after the initiation of the Patient Protection and Affordable Care Act regarding race, age, body mass index, and sex between 2008 and 2015. The National Surgical Quality Improvement Program database was queried for all individuals who had undergone primary THA between 2008 and 2015. This yielded a total of 104,209 patients. Descriptive statistics were used to analyze patient-level data. A Cochran-Armitage test assessed trends in categorical data points over time. Analysis indicated an increased percentage of blacks or African Americans undergoing THA (7.8% vs 9.2%, P<.001), followed by Native Americans or Pacific Islanders (0.0% vs 0.4%, P<.001), American Indians or Alaskan Natives (0.3% vs 0.5%, P=.016), and Asians (1.4% vs 1.5%, P=.002). An increased percentage of patients 55 to 80 years old received THAs (68.6% vs 74.1%, P<.001). The percentage of patients with a body mass index of 25.0 to 29.9 kg/m 2 , 30.0 to 34.9 kg/m 2 , and 35.0 to 39.9 kg/m 2 increased (32.9% vs 33.1%, 24.2% vs 25.6%, 12.6% vs 13.3%, respectively, P<.001 for all). These findings may provide insight on the changing patient characteristics for orthopedic surgeons performing THA. Furthermore, these findings may inform health policy makers interested in increasing access to procedures underutilized by specific patient populations and the creation of strategies to meet increased demand. [Orthopedics. 201x; xx(x):xx-xx.]. Copyright 2018, SLACK Incorporated.

  17. Tribology of total hip arthroplasty prostheses

    PubMed Central

    Rieker, Claude B.

    2016-01-01

    Articulating components should minimise the generation of wear particles in order to optimize long-term survival of the prosthesis. A good understanding of tribological properties helps the orthopaedic surgeon to choose the most suitable bearing for each individual patient. Conventional and highly cross-linked polyethylene articulating either with metal or ceramic, ceramic-on-ceramic and metal-on-metal are the most commonly used bearing combinations. All combinations of bearing surface have their advantages and disadvantages. An appraisal of the individual patient’s objectives should be part of the assessment of the best bearing surface. Cite this article: Rieker CB. Tribology of total hip arthroplasty prostheses: what an orthopaedic surgeon should know. EFORT Open Rev 2016;1:52-57. DOI: 10.1302/2058-5241.1.000004. PMID:28461928

  18. Functionalizing the Surface of Lithium-Metal Anodes

    DOE PAGES

    Buonaiuto, Megan; Neuhold, Susanna; Schroeder, David J.; ...

    2014-09-03

    Metal-air batteries are an important aspect of many beyond lithium ion research efforts. However, as our understanding of how molecular oxygen can act as a rechargeable cathode has progressed; the problems associated with how these materials at various states of charge interact with the lithium metal anode are only beginning to come to the surface. In this study we have devised a method to coat the surface a lithium with a functional group to act as either an anchor for further derivation studies or be polymerized to create a nanometer thick polymer coating attached to the surface by silane groups.more » These stable films, formed by polymerization of vinyl substituents, lower cell impedance at the electrode and over the first 50 cycles, increase cycling efficiency and demonstrate lower capacity fade.« less

  19. Survivorship comparison of all-polyethylene and metal-backed tibial components in cruciate-substituting total knee arthroplasty--Chinese experience.

    PubMed

    Shen, Bin; Yang, Jing; Zhou, Zongke; Kang, Pengde; Wang, Liao; Pei, Fuxing

    2009-10-01

    Considering its cost saving, the all-polyethylene tibial component is of potential interest in developing countries like China. But to our knowledge, a survivorship comparison of all-polyethylene and metal-backed tibial components in posterior cruciate ligament-substituting total knee arthroplasty (PS-TKA) has not been studied in China previously. Using survivorship analysis, we have studied the midterm outcome of 34 cemented PS-TKA using an all-polyethylene tibial component and of 34 cemented PS-TKA using a metal-backed tibial component which has an identical articular surface with all-polyethylene tibial components. All operations were performed by the same group of surgeons; 58 patients underwent a unilateral operation and five patients a bilateral operation. These patients had a mean follow-up of 5.9 years (range: 5-7 years); three patients were lost to follow-up and one was revised for infection. No significant difference between the two groups was reported regarding HSS scores, ROM, clinical and radiographic parameters measured and survival rates. Although the Asian lifestyle includes more squatting and bending of the knee, the results of this series of TKA using all-polyethylene tibial components in Chinese people are comparable to the satisfactory results of other reported all-polyethylene series whose patients are mainly Western people. Considering its cost saving and excellent clinical result, the all-polyethylene tibial component is of potential interest in developing countries.

  20. Macro and micro plastics sorb and desorb metals and act as a point source of trace metals to coastal ecosystems

    PubMed Central

    2018-01-01

    Nine urban intertidal regions in Burrard Inlet, Vancouver, British Columbia, Canada, were sampled for plastic debris. Debris included macro and micro plastics and originated from a wide diversity of uses ranging from personal hygiene to solar cells. Debris was characterized for its polymer through standard physiochemical characteristics, then subject to a weak acid extraction to remove the metals, zinc, copper, cadmium and lead from the polymer. Recently manufactured low density polyethylene (LDPE), nylon, polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS) and polyvinyl chloride (PVC) were subject to the same extraction. Data was statistically analyzed by appropriate parametric and non-parametric tests when needed with significance set at P < 0.05. Polymers identified in field samples in order of abundance were; PVC (39), LDPE (28), PS (18), polyethylene (PE, 9), PP (8), nylon (8), high density polyethylene (HDPE, 7), polycarbonate (PC, 6), PET (6), polyurethane (PUR, 3) and polyoxymethylene (POM, 2). PVC and LDPE accounted for 46% of all samples. Field samples of PVC, HDPE and LDPE had significantly greater amounts of acid extracted copper and HDPE, LDPE and PUR significantly greater amounts of acid extracted zinc. PVC and LDPE had significantly greater amounts of acid extracted cadmium and PVC tended to have greater levels of acid extracted lead, significantly so for HDPE. Five of the collected items demonstrated extreme levels of acid extracted metal; greatest concentrations were 188, 6667, 698,000 and 930 μgg-1 of copper, zinc, lead and cadmium respectively recovered from an unidentified object comprised of PVC. Comparison of recently manufactured versus field samples indicated that recently manufactured samples had significantly greater amounts of acid extracted cadmium and zinc and field samples significantly greater amounts of acid extracted copper and lead which was primarily attributed to metal extracted from field samples of PVC

  1. Macro and micro plastics sorb and desorb metals and act as a point source of trace metals to coastal ecosystems.

    PubMed

    Munier, B; Bendell, L I

    2018-01-01

    Nine urban intertidal regions in Burrard Inlet, Vancouver, British Columbia, Canada, were sampled for plastic debris. Debris included macro and micro plastics and originated from a wide diversity of uses ranging from personal hygiene to solar cells. Debris was characterized for its polymer through standard physiochemical characteristics, then subject to a weak acid extraction to remove the metals, zinc, copper, cadmium and lead from the polymer. Recently manufactured low density polyethylene (LDPE), nylon, polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS) and polyvinyl chloride (PVC) were subject to the same extraction. Data was statistically analyzed by appropriate parametric and non-parametric tests when needed with significance set at P < 0.05. Polymers identified in field samples in order of abundance were; PVC (39), LDPE (28), PS (18), polyethylene (PE, 9), PP (8), nylon (8), high density polyethylene (HDPE, 7), polycarbonate (PC, 6), PET (6), polyurethane (PUR, 3) and polyoxymethylene (POM, 2). PVC and LDPE accounted for 46% of all samples. Field samples of PVC, HDPE and LDPE had significantly greater amounts of acid extracted copper and HDPE, LDPE and PUR significantly greater amounts of acid extracted zinc. PVC and LDPE had significantly greater amounts of acid extracted cadmium and PVC tended to have greater levels of acid extracted lead, significantly so for HDPE. Five of the collected items demonstrated extreme levels of acid extracted metal; greatest concentrations were 188, 6667, 698,000 and 930 μgg-1 of copper, zinc, lead and cadmium respectively recovered from an unidentified object comprised of PVC. Comparison of recently manufactured versus field samples indicated that recently manufactured samples had significantly greater amounts of acid extracted cadmium and zinc and field samples significantly greater amounts of acid extracted copper and lead which was primarily attributed to metal extracted from field samples of PVC

  2. Trace metals in upland headwater lakes in Ireland.

    PubMed

    Burton, Andrew; Aherne, Julian; Hassan, Nouri

    2013-10-01

    Trace elements (n = 23) in Irish headwater lakes (n = 126) were investigated to determine their ambient concentrations, fractionation (total, dissolved, and non-labile), and geochemical controls. Lakes were generally located in remote upland, acid-sensitive regions along the coastal margins of the country. Total trace metal concentrations were low, within the range of natural pristine surface waters; however, some lakes (~20 %) had inorganic labile aluminum and manganese at levels potentially harmful to aquatic organisms. Redundancy analysis indicated that geochemical weathering was the dominant controlling factor for total metals, compared with acidity for dissolved metals. In addition, many metals were positively correlated with dissolved organic carbon indicating their affinity (or complexation) with humic substances (e.g., aluminum, iron, mercury, lead). However, a number of trace metals (e.g., aluminum, mercury, zinc) were correlated with anthropogenic acidic deposition (i.e., non-marine sulfate), suggesting atmospheric sources or elevated leaching owing to acidic deposition. As transboundary air pollution continues to decline, significant changes in the cycling of trace metals is anticipated.

  3. Chemodynamics of heavy metals in long-term contaminated soils: metal speciation in soil solution.

    PubMed

    Kim, Kwon-Rae; Owens, Gary

    2009-01-01

    The concentration and speciation of heavy metals in soil solution isolated from long-term contaminated soils were investigated. The soil solution was extracted at 70% maximum water holding capacity (MWHC) after equilibration for 24 h. The free metal concentrations (Cd2+, CU2+, Pb2+, and Zn2+) in soil solution were determined using the Donnan membrane technique (DMT). Initially the DMT was validated using artificial solutions where the percentage of free metal ions were significantly correlated with the percentages predicted using MINTEQA2. However, there was a significant difference between the absolute free ion concentrations predicted by MINTEQA2 and the values determined by the DMT. This was due to the significant metal adsorption onto the cation exchange membrane used in the DMT with 20%, 28%, 44%, and 8% mass loss of the initial total concentration of Cd, Cu, Pb, and Zn in solution, respectively. This could result in a significant error in the determination of free metal ions when using DMT if no allowance for membrane cation adsorption was made. Relative to the total soluble metal concentrations the amounts of free Cd2+ (3%-52%) and Zn2+ (11%-72%) in soil solutions were generally higher than those of Cu2+ (0.2%-30%) and Pb2+ (0.6%-10%). Among the key soil solution properties, dissolved heavy metal concentrations were the most significant factor governing free metal ion concentrations. Soil solution pH showed only a weak relationship with free metal ion partitioning coefficients (K(p)) and dissolved organic carbon did not show any significant influence on K(p).

  4. Radioactive materials in recycled metals.

    PubMed

    Lubenau, J O; Yusko, J G

    1995-04-01

    In recent years, the metal recycling industry has become increasingly aware of an unwanted component in metal scrap--radioactive material. Worldwide, there have been 35 instances where radioactive sources were unintentionally smelted in the course of recycling metal scrap. In some cases contaminated metal consumer products were distributed internationally. In at least one case, serious radiation exposures of workers and the public occurred. Radioactive material appearing in metal scrap includes sources subject to licensing under the Atomic Energy Act and also naturally occurring radioactive material. U.S. mills that have smelted a radioactive source face costs resulting from decontamination, waste disposal, and lost profits that range from 7 to 23 million U.S. dollars for each event. To solve the problem, industry and the government have jointly undertaken initiatives to increase awareness of the problem within the metal recycling industry. Radiation monitoring of recycled metal scrap is being performed increasingly by mills and, to a lesser extent, by scrap processors. The monitoring does not, however, provide 100% protection. Improvements in regulatory oversight by the government could stimulate improved accounting and control of licensed sources. However, additional government effort in this area must be reconciled with competing priorities in radiation safety and budgetary constraints. The threat of radioactive material in recycled metal scrap will continue for the foreseeable future and, thus, poses regulatory policy challenges for both developed and developing nations.

  5. Trace metal geochemistry in mangrove sediments and their transfer to mangrove plants (New Caledonia).

    PubMed

    Marchand, C; Fernandez, J-M; Moreton, B

    2016-08-15

    Because of their physico-chemical inherent properties, mangrove sediments may act as a sink for pollutants coming from catchments. The main objective of this study was to assess the distribution of some trace metals in the tissues of various mangrove plants developing downstream highly weathered ferralsols, taking into account metals partitioning in the sediment. In New Caledonia, mangroves act as a buffer between open-cast mines and the world's largest lagoon. As a result of the erosion of lateritic soils, Ni and Fe concentrations in the sediment were substantially higher than the world average. Whatever the mangrove stand and despite low bioaccumulation and translocations factors, Fe and Ni were also the most abundant metals in the different plant tissues. This low bioaccumulation may be explained by: i) the low availability of metals, which were mainly present in the form of oxides or sulfur minerals, and ii) the root systems acting as barriers towards the transfer of metals to the plant. Conversely, Cu and Zn metals had a greater mobility in the plant, and were characterized by high bioconcentration and translocation factors compared to the other metals. Cu and Zn were also more mobile in the sediment as a result of their association with organic matter. Whatever the metal, a strong decrease of trace metal stock was observed from the landside to the seaside of the mangrove, probably as a result of the increased reactivity of the sediment due to OM enrichment. This reactivity lead to higher dissolution of bearing phases, and thus to the export of dissolved trace metals trough the tidal action. Cu and Zn were the less concerned by the phenomenon probably as a result of higher plant uptake and their restitution to the sediment with litter fall in stands where tidal flushing is limited. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE--COMPENDIUM OF METHODS FOR ANALYSIS OF TRACE METALS AND PESTICIDES IN DIETARY SAMPLES USING TOTAL DIET STUDY PROCEDURES (FDA-COMPENDIUM)

    EPA Science Inventory

    This compendium contains seven SOPs developed by Food and Drug Administration (FDA) laboratories for methods of analyzing trace metals in dietary samples collected using Total Diet study procedures. The SOPs include the following: (1) Quality Control for Analysis of NHEXAS Food o...

  7. Influence of head size on the development of metallic wear and on the characteristics of carbon layers in metal-on-metal hip joints

    PubMed Central

    Sprecher, Christoph M; Wimmer, Markus A; Milz, Stefan; Taeger, Georg

    2009-01-01

    Background and purpose Particles originating from the articulating surfaces of hip endoprostheses often induce an inflammatory response, which can be related to implant failure. We therefore analyzed the metal content in capsular tissue from 44 McKee-Farrar metal-on-metal hip prostheses (with 3 different head sizes) and we also analyzed the morphological structure of layers located on articulating surfaces. Methods Atomic absorption spectrometry (AAS) was used to analyze the metal content in capsular tissue. Visually detectable carbon layers located on the articulating surfaces were evaluated using scanning electron microscopy (SEM), energy-dispersive Xray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). Results Metallic debris was detected in all capsular tissue samples but no statistically significant differences in metal content were found in relation to implant head size. The morphological characteristics of the different layer zones allowed an exact analysis of contact and non-contact areas. Furthermore, surface layers appear to have a protective function because they can prevent sharp-edged particles from damaging the prostheses surface. Interpretation The implant head size does not appear to influence the amount of metallic debris. The layers obviously act like a lubricating agent because the protection function does not occur in regions without layers where the metal surface often shows numerous scratches. As layers are not generated immediately after the implantation of hip prostheses, these findings may at least partially explain the high amount of wear early after implantation. PMID:19421914

  8. Metal Ion Concentrations in Body Fluids after Implantation of Hip Replacements with Metal-on-Metal Bearing – Systematic Review of Clinical and Epidemiological Studies

    PubMed Central

    Hartmann, Albrecht; Hannemann, Franziska; Lützner, Jörg; Seidler, Andreas; Drexler, Hans; Günther, Klaus-Peter; Schmitt, Jochen

    2013-01-01

    Introduction The use of metal-on-metal (MoM) total hip arthroplasty (THA) increased in the last decades. A release of metal products (i.e. particles, ions, metallo-organic compounds) in these implants may cause local and/or systemic adverse reactions. Metal ion concentrations in body fluids are surrogate measures of metal exposure. Objective To systematically summarize and critically appraise published studies concerning metal ion concentrations after MoM THA. Methods Systematic review of clinical trials (RCTs) and epidemiological studies with assessment of metal ion levels (cobalt, chromium, titanium, nickel, molybdenum) in body fluids after implantation of metalliferous hip replacements. Systematic search in PubMed and Embase in January 2012 supplemented by hand search. Standardized abstraction of pre- and postoperative metal ion concentrations stratified by type of bearing (primary explanatory factor), patient characteristics as well as study quality characteristics (secondary explanatory factors). Results Overall, 104 studies (11 RCTs, 93 epidemiological studies) totaling 9.957 patients with measurement of metal ions in body fluids were identified and analyzed. Consistently, median metal ion concentrations were persistently elevated after implantation of MoM-bearings in all investigated mediums (whole blood, serum, plasma, erythrocytes, urine) irrespective of patient characteristics and study characteristics. In several studies very high serum cobalt concentrations above 50 µg/L were measured (detection limit typically 0.3 µg/L). Highest metal ion concentrations were observed after treatment with stemmed large-head MoM-implants and hip resurfacing arthroplasty. Discussion Due to the risk of local and systemic accumulation of metallic products after treatment with MoM-bearing, risk and benefits should be carefully balanced preoperatively. The authors support a proposed „time out“ for stemmed large-head MoM-THA and recommend a restricted indication for hip

  9. Asymmetric metal-insulator-metal (MIM) structure formed by pulsed Nd:YAG laser deposition with titanium nitride (TiN) and aluminum nitride (AlN)

    NASA Astrophysics Data System (ADS)

    Oshikane, Yasushi

    2017-08-01

    A novel nanostructured end cap for a truncated conical apex of optical fiber has been studied experimental and numerically. The peculiar cap is composed of asymmetric metal-insulator-metal (MIM) structure coupled with subwavelength holes. The MIM structure may act as reflective band cut filter or generator of surface plasmon polariton (SPP). And nano holes in the thicker metal layer could extract the SPP from the MIM structure and lead it to outer surface of the metal layer. For the purpose, the author has started to create the asymmetric MIM structure with TiN and AlN by pulsed laser deposition (PLD). The resultant structure was diagnosed by spectroscopic analyses.

  10. Sorption of Molecular Oxygen by Metal-Ion Exchanger Nanocomposites

    NASA Astrophysics Data System (ADS)

    Krysanov, V. A.; Plotnikova, N. V.; Kravchenko, T. A.

    2018-03-01

    Kinetic features are studied of the chemisorption and reduction of molecular oxygen from water by metal-ion exchanger nanocomposites that differ in the nature of the dispersed metal and state of oxidation. In the Pd < Ag < Cu series, the increasing chemical activity of metal nanoparticles raises the degree of oxygen sorption due to its chemisorption and subsequent reduction, while the role of the molecular chemisorption stage increases in the Cu < Ag < Pd series. Metal particles or their oxides are shown to act as adsorption sites on the surface and in the pores of the ion-exchanger matrix; the equilibrium sorption coefficient for oxygen dissolved in water ranges from 20 to 50, depending on the nature and oxidation state of the metal component.

  11. Assessment of Welders Exposure to Carcinogen Metals from Manual Metal Arc Welding in Gas Transmission Pipelines, Iran

    PubMed Central

    Golbabaei, F; Seyedsomea, M; Ghahri, A; Shirkhanloo, H; Khadem, M; Hassani, H; Sadeghi, N; Dinari, B

    2012-01-01

    Background: Welding can produce dangerous fumes containing various metals especially carcinogenic ones. Occupational exposure to welding fumes is associated with lung cancer. Therefore, welders in Gas Transmission Pipelines are known as a high-risk group. This study was designed to determinate the amounts of metals Cr, Ni, and Cd in breathing zone and urine of welders and to assess the possibility of introducing urinary metals as a biomarker due to occupational exposure. Methods: In this cross sectional study, 94 individuals from Gas Transmission Pipelines welders, Iran, Borujen in 2011 were selected and classified into 3 groups including Welders, Back Welders and Assistances. The sampling procedures were performed according to NIOSH 7300 for total chromium, nickel, and cadmium and NIOSH 7600 for Cr+6. For all participants urine samples were collected during the entire work shift and metals in urine were determined according to NIOSH 8310. Results: Back Welders and Assistances groups had maximum and minimum exposure to total fume and its elements, respectively. In addition, results showed that there are significant differences (P<0.05) between Welders and Back Welders with Assistances group in exposure with total fume and elements except Ni. Urinary concentrations of three metals including Cr, Cd and Ni among all welders were about 4.5, 12 and 14-fold greater than those detected in controls, respectively. Weak correlations were found between airborne and urinary metals concentrations (R2: Cr=0.45, Cd=0.298, Ni=0.362). Conclusion: Urinary metals concentrations could not be considerate as a biomarker for welders’ exposure assessment. PMID:23113226

  12. Assessment of welders exposure to carcinogen metals from manual metal arc welding in gas transmission pipelines, iran.

    PubMed

    Golbabaei, F; Seyedsomea, M; Ghahri, A; Shirkhanloo, H; Khadem, M; Hassani, H; Sadeghi, N; Dinari, B

    2012-01-01

    Welding can produce dangerous fumes containing various metals especially carcinogenic ones. Occupational exposure to welding fumes is associated with lung cancer. Therefore, welders in Gas Transmission Pipelines are known as a high-risk group. This study was designed to determinate the amounts of metals Cr, Ni, and Cd in breathing zone and urine of welders and to assess the possibility of introducing urinary metals as a biomarker due to occupational exposure. In this cross sectional study, 94 individuals from Gas Transmission Pipelines welders, Iran, Borujen in 2011 were selected and classified into 3 groups including Welders, Back Welders and Assistances. The sampling procedures were performed according to NIOSH 7300 for total chromium, nickel, and cadmium and NIOSH 7600 for Cr+6. For all participants urine samples were collected during the entire work shift and metals in urine were determined according to NIOSH 8310. Back Welders and Assistances groups had maximum and minimum exposure to total fume and its elements, respectively. In addition, results showed that there are significant differences (P<0.05) between Welders and Back Welders with Assistances group in exposure with total fume and elements except Ni. Urinary concentrations of three metals including Cr, Cd and Ni among all welders were about 4.5, 12 and 14-fold greater than those detected in controls, respectively. Weak correlations were found between airborne and urinary metals concentrations (R2: Cr=0.45, Cd=0.298, Ni=0.362). Urinary metals concentrations could not be considerate as a biomarker for welders' exposure assessment.

  13. Tribo-biological deposits on the articulating surfaces of metal-on-polyethylene total hip implants retrieved from patients

    PubMed Central

    Cui, Zhiwei; Tian, Yi-Xing; Yue, Wen; Yang, Lei; Li, Qunyang

    2016-01-01

    Artificial total hip arthroplasty (THA) is one of the most effective orthopaedic surgeries that has been used for decades. However, wear of the articulating surfaces is one of the key failure causes limiting the lifetime of total hip implant. In this paper, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were employed to explore the composition and formation mechanism of the tribo-layer on the articulating surfaces of metal-on-polyethylene (MoPE) implants retrieved from patients. Results showed that, in contrast to conventional understanding, the attached tribo-layer contained not only denatured proteins but also a fraction of polymer particles. The formation of the tribo-layer was believed to relate to lubrication regime, which was supposed to be largely affected by the nature of the ultra-high-molecule-weight-polyethylene (UHMWPE). Wear and formation of tribo-layer could be minimized in elasto-hydrodynamic lubrication (EHL) regime when the UHMWPE was less stiff and have a morphology containing micro-pits; whereas the wear was more severe and tribo-layer formed in boundary lubrication. Our results and analyses suggest that enhancing interface lubrication may be more effective on reducing wear than increasing the hardness of material. This finding may shed light on the design strategy of artificial hip joints. PMID:27345704

  14. Cost Analysis of Ceramic Heads in Primary Total Hip Arthroplasty.

    PubMed

    Carnes, Keith J; Odum, Susan M; Troyer, Jennifer L; Fehring, Thomas K

    2016-11-02

    The advent of adverse local tissue reactions seen in metal-on-metal bearings, and the recent recognition of trunnionosis, have led many surgeons to recommend ceramic-on-polyethylene articulations for primary total hip arthroplasty. However, to our knowledge, there has been little research that has considered whether the increased cost of ceramic provides enough benefit over cobalt-chromium to justify its use. The primary purpose of this study was to compare the cost-effectiveness of ceramic-on-polyethylene implants and metal-on-polyethylene implants in patients undergoing total hip arthroplasty. Markov decision modeling was used to determine the ceramic-on-polyethylene implant revision rate necessary to be cost-effective compared with the revision rate of metal-on-polyethylene implants across a range of patient ages and implant costs. A different set of Markov models was used to estimate the national cost burden of choosing ceramic-on-polyethylene implants over metal-on-polyethylene implants for primary total hip arthroplasties. The Premier Research Database was used to identify 20,398 patients who in 2012 were ≥45 years of age and underwent a total hip arthroplasty with either a ceramic-on-polyethylene implant or a metal-on-polyethylene implant. The cost-effectiveness of ceramic heads is highly dependent on the cost differential between ceramic and metal femoral heads and the age of the patient. At a cost differential of $325, ceramic-on-polyethylene bearings are cost-effective for patients <85 years of age. At a cost differential of $600, it is cost-effective to utilize ceramic-on-polyethylene bearings in patients <65 years of age, and, at a differential of $1,003, ceramic-on-polyethylene bearings are not cost-effective at any age. The ability to recoup the initial increased expenditure of ceramic heads through a diminished lifetime revision cost is dependent on the price premium for ceramic and the age of the patient. A wholesale switch to ceramic bearings

  15. Vibration arthrometry in the patients with failed total knee replacement.

    PubMed

    Jiang, C C; Lee, J H; Yuan, T T

    2000-02-01

    This is a preliminary research on the vibration arthrometry of artificial knee joint in vivo. Analyzing the vibration signals measured from the accelerometer on patella, there are two speed protocols in knee kinematics: 1) 2 degrees/s, the signal is called "physiological patellofemoral crepitus (PPC)", and 2) 67 degrees/s, the signal is called "vibration signal in rapid knee motion". The study has collected 14 patients who had revision total knee arthroplasty due to prosthetic wear or malalignment represent the failed total knee replacement (FTKR), and 12 patients who had just undergone the primary total knee arthroplasty in the past two to six months and have currently no knee pain represent the normal total knee replacement (NTKR). FTKR is clinically divided into three categories: metal wear, polyethylene wear of the patellar component, and no wear but with prosthesis malalignment. In PPC, the value of root mean square (rms) is used as a parameter; in vibration signals in rapid knee motion, autoregressive modeling is used for adaptive segmentation and extracting the dominant pole of each signal segment to calculate the spectral power ratios in f < 100 Hz and f > 500 Hz. It was found that in the case of metal wear, the rms value of PPC signal is far greater than a knee joint with polyethylene wear and without wear, i.e., PPC signal appears only in metal wear. As for vibration signals in rapid knee motion, prominent time-domain vibration signals could be found in the FTKR patients with either polyethylene or metal wear of the patellar component. We also found that for normal knee joint, the spectral power ratio of dominant poles has nearly 80% distribution in f < 100 Hz, is between 50% and 70% for knee with polyethylene wear and below 30% for metal wear, whereas in f > 500 Hz, spectral power ratio of dominant poles has over 30% distribution in metal wear but only nonsignificant distribution in polyethylene wear, no wear, and normal knee. The results show that

  16. Metal-Free Photocatalyst with Visible-Light-Driven Post-Illumination Catalytic Memory.

    PubMed

    Zhang, Qi; Wang, Hua; Li, Zhangliang; Geng, Cong; Leng, Jinhui

    2017-07-05

    A novel metal-free photocatalyst with post-illumination catalytic memory was fabricated by the graphitic carbon nitride (g-C 3 N 4 ), carbon nanotubes (CNTs), and graphene (Gr), in which g-C 3 N 4 acts as an efficient photocatalyst and the CNTs and Gr act as supercapacitors. The removal of phenol was achieved in the dark by post-illumination catalytic memory because the photocatalyst could store a portion of its photoactivity via photogenerated electrons in the CNTs and Gr under visible-light illumination and then release the electrons again in the dark. Therefore, this metal-free photocatalyst is capable of operation in the dark for a broad range of applications.

  17. Modular Neck vs Nonmodular Femoral Stems in Total Hip Arthroplasty-Clinical Outcome, Metal Ion Levels, and Radiologic Findings.

    PubMed

    Mikkelsen, Rasmus T; Fløjstrup, Marianne; Lund, Christian; Kjærsgaard-Andersen, Per; Skjødt, Thomas; Varnum, Claus

    2017-09-01

    Modular neck femoral stem (MNFS) for total hip arthroplasty (THA) was introduced to optimize the outcome, but created concerns about pain, elevated blood metal ion levels, and adverse reaction to metal debris such as pseudotumors (PTs), related to corrosion between femoral neck and stem. We compared these outcomes in patients with MNFS or nonmodular femoral stem (NFS) THA. Thirty-three patients with unilateral MNFS THA were compared with 30 patients with unilateral NFS THA. Levels of pain, serum cobalt, serum chromium were determined. Magnetic resonance imaging was performed to describe PT and fatty atrophy of muscles. The MNFS and NFS group had a mean follow-up of 2.3 and 3.1 years, respectively. Four and 13 patients in the MNFS and NFS group had pain, respectively (P = .005). The MNFS group had higher levels of serum cobalt (P < .0001) and chromium (P = .006). PTs were present in both the MNFS (n = 15) and NFS (n = 7) groups (P = .066). PTs were related to serum cobalt (P = .04) but not to pain or serum chromium. Fatty atrophy prevalence in the piriformis and gluteal muscles were higher in patients with MNFS (P = .009 and P = .032, respectively). More patients in the NFS group had pain. Serum cobalt and chromium levels were higher in the MNFS group. Prevalence of PTs was twice as high in the MNFS group, but the difference was insignificant. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Survivorship comparison of all-polyethylene and metal-backed tibial components in cruciate-substituting total knee arthroplasty—Chinese experience

    PubMed Central

    Shen, Bin; Yang, Jing; Zhou, Zongke; Kang, Pengde; Wang, Liao

    2008-01-01

    Considering its cost saving, the all-polyethylene tibial component is of potential interest in developing countries like China. But to our knowledge, a survivorship comparison of all-polyethylene and metal-backed tibial components in posterior cruciate ligament-substituting total knee arthroplasty (PS-TKA) has not been studied in China previously. Using survivorship analysis, we have studied the midterm outcome of 34 cemented PS-TKA using an all-polyethylene tibial component and of 34 cemented PS-TKA using a metal-backed tibial component which has an identical articular surface with all-polyethylene tibial components. All operations were performed by the same group of surgeons; 58 patients underwent a unilateral operation and five patients a bilateral operation. These patients had a mean follow-up of 5.9 years (range: 5–7 years); three patients were lost to follow-up and one was revised for infection. No significant difference between the two groups was reported regarding HSS scores, ROM, clinical and radiographic parameters measured and survival rates. Although the Asian lifestyle includes more squatting and bending of the knee, the results of this series of TKA using all-polyethylene tibial components in Chinese people are comparable to the satisfactory results of other reported all-polyethylene series whose patients are mainly Western people. Considering its cost saving and excellent clinical result, the all-polyethylene tibial component is of potential interest in developing countries. PMID:18688613

  19. Does a titanium sleeve reduce the frequency of pseudotumors in metal-on-metal total hip arthroplasty at 5-7years follow-up?

    PubMed

    Hjorth, M H; Egund, N; Mechlenburg, I; Gelineck, J; Jakobsen, S S; Soballe, K; Stilling, M

    2016-12-01

    Little is known about pseudotumor frequency and risk factors for pseudotumor formation among different types of metal-on-metal (MoM) hip arthroplasties. A lower release of chromium and cobalt have been reported in MoM hip arthroplasties with a titanium sleeve compared to MoM designs without a titanium sleeve, but yet it is unknown whether a titanium sleeve reduces the pseudotumor frequency. We conducted a cross-sectional study to investigate: 1) pseudotumor frequency, 2) risk factors of pseudotumor formation 3) and correlations between pseudotumors, serum metal-ions, implant position, and clinical symptoms. We expected a lower pseudotumor frequency in MoM hip articulation with a titanium sleeve than reported in MoM hip articulation designs using chromium-cobalt sleeve. A consecutive series of 41 patients/49 hips (31 males), mean age 52 (28-68) years, participated in a 5.5±0.5 (4-6.5) year follow-up study of their M2a_Magnum hip articulation (Biomet Inc., Warsaw, Indiana, USA). Patients were evaluated with magnetic resonance imaging (MRI), measurements of serum metal-ions, plain radiographs, and clinical outcome measures of Harris Hip Score (HHS) and Oxford Hip Score (OHS). Eighteen of 47 hips (38%) had MRI-verified pseudotumors, all cystic, with a mean dimension of 10.6×25.6×41mm. Digital measurements on plain radiographs revealed a higher cup anteversion in patients with a pseudotumor of mean 28.4°±5.05° compared to mean 23.5°±6.5° in patients without a pseudotumor (P=0.009). Serum metal-ion concentrations, acetabular cup inclination and measures of HHS and OHS were similar between patients with and without a pseudotumor (P>0.46). At 5.5±0.5years after surgery, MRI-verified cystic pseudotumors were frequently observed in M2a_Magnum hip articulations despite the use of titanium sleeves. The pseudotumors were related to high cup anteversion angles but not related to high serum metal-ions or clinical symptoms. IV: cross-sectional study. Copyright © 2016

  20. Fabrication of Metal and Metal Oxide Nanoparticles by Algae and their Toxic Effects

    NASA Astrophysics Data System (ADS)

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-08-01

    Of all the aquatic organisms, algae are a good source of biomolecules. Since algae contain pigments, proteins, carbohydrates, fats, nucleic acids and secondary metabolites such as alkaloids, some aromatic compounds, macrolides, peptides and terpenes, they act as reducing agents to produce nanoparticles from metal salts without producing any toxic by-product. Once the algal biomolecules are identified, the nanoparticles of desired shape or size may be fabricated. The metal and metal oxide nanoparticles thus synthesized have been investigated for their antimicrobial activity against several gram-positive and gram-negative bacterial strains and fungi. Their dimension is controlled by temperature, incubation time, pH and concentration of the solution. In this review, we have attempted to update the procedure of nanoparticle synthesis from algae, their characterization by UV-vis, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, x-ray diffraction, energy-dispersive x-ray spectroscopy, dynamic light scattering and application in cutting-edge areas.

  1. Molecular-Scale Investigation of Heavy Metal Ions at a Charged Langmuir Monolayer

    NASA Astrophysics Data System (ADS)

    Rock, William; Qiao, Baofu; Uysal, Ahmet; Bu, Wei; Lin, Binhua

    Solvent extraction - the surfactant-aided preferential transfer of a species from an aqueous to an organic phase - is an important technique used in heavy and precious metal refining and reprocessing. Solvent extraction requires transfer through an oil/water interface, and interfacial interactions are expected to control transfer kinetics and phase stability, yet these key interactions are poorly understood. Langmuir monolayers with charged headgroups atop concentrated salt solutions containing heavy metal ions act as a model of solvent extraction interfaces; studies of ions at a charged surface are also fundamentally important to many other phenomena including protein solvation, mineral surface chemistry, and electrochemistry. We probe these charged interfaces using a variety of surface-sensitive techniques - vibrational sum frequency generation (VSFG) spectroscopy, x-ray reflectivity (XRR), x-ray fluorescence near total reflection (XFNTR), and grazing incidence diffraction (GID). We integrate experiments with Molecular Dynamics (MD) simulations to uncover the molecular-level interfacial structure. This work is supported by the U.S. DOE, BES, Contract DE-AC02-06CH11357. ChemMatCARS is supported by NSF/CHE-1346572.

  2. Compacted Sewage Sludge as a Barrier for Tailings: The Heavy Metal Speciation and Total Organic Carbon Content in the Compacted Sludge Specimen

    PubMed Central

    Zhang, Huyuan; Zhang, Qing; Yang, Bo; Wang, Jinfang

    2014-01-01

    Acid mine drainage (AMD) was the main environmental problem facing the mining industry. For AMD had high heavy metals content and low pH, the compacted sewage sludge might be a barrier for tailings whose oxidation and weathering produced AMD, with its own carbon source, microorganism reduction ability and impermeability. To study the heavy metals environmental risk, under the simulate AMD, the deionized water (DW), and the pH 2.1 sulfuric acid water (SA) seepage conditions, respectively, the changes of the chemical speciation of heavy metals Cd, Cu, Fe, Ni, Zn and total organic carbon (TOC) content in the compacted sewage sludge were assessed in the different periods. The results indicated according to the distribution of heavy metals, the potential mobility was for Cd: 6.08 under AMD, 7.48 under SA, ∞ under DW; for Cu: 0.08 under AMD, 0.17 under SA, 0.59 under DW; for Fe: 0.15 under AMD, 0.22 under SA, 0.22 under DW; for Ni: 2.60 under AMD, 1.69 under SA, 1.67 under DW; and for Zn: 0.15 under AMD, 0.23 under SA and 0.21 under DW at the second checking time. TOC content firstly decreased from 67.62±0% to 66.29±0.35%, then increased to 67.74±0.65% under the AMD seepage while TOC decreased to 63.30±0.53%, then to 61.33±0.37% under the DW seepage, decreased to 63.86±0.41%, then to 63.28±0.49% under SA seepage. That indicated under the AMD seepage, the suitable microorganisms communities in the compacted sewage sludge were activated. And the heavy metals environmental risk of compacted sewage sludge was lower with AMD condition than with other two. So the compacted sewage sludge as a barrier for tailings was feasible as the aspect of environmental risk assessment. PMID:24979755

  3. Selected heavy metals speciation in chemically stabilised sewage sludge

    NASA Astrophysics Data System (ADS)

    Wiśniowska, Ewa; Włodarczyk-Makuła, Marła

    2017-11-01

    Selected heavy metals (Pb, Ni, Cd) were analysed in soil, digested sewage sludge as well as in the sludge stabilised with CaO or Fenton's reagent. The dose of Fenton's reagent was as follows: Fe2+ = 1g.L-1, Fe2+/H2O2=1:100; stabilisation lasted for 2 h. Dose of CaO was equal to 1 g CaO.g d.m.-1 Total concentration of all metals in the digested sewage sludge was higher than in the soil. Chemical stabilisation of sludge with Fenton's reagent increased total metal content in the sludge as a result of total solids removal. Opposite effect was stated when the sludge was mixed with CaO. Also chemical fractions of heavy metals were identified (exchangeable, carbonate bound, iron oxides bound, organic and residual). The results indicate that stabilisation of the sludge with Fenton's reagent increased mobility of heavy metals compared to the digested sludge. Amendment of CaO increased percent share of examined metals in residual fraction, thus immobilised them and decreased their bioavailability.

  4. Microfluidic paper-based device for colorimetric determination of glucose based on a metal-organic framework acting as peroxidase mimetic.

    PubMed

    Ortiz-Gómez, Inmaculada; Salinas-Castillo, Alfonso; García, Amalia García; Álvarez-Bermejo, José Antonio; de Orbe-Payá, Ignacio; Rodríguez-Diéguez, Antonio; Capitán-Vallvey, Luis Fermín

    2017-12-13

    This work presents a microfluidic paper-based analytical device (μPAD) for glucose determination using a supported metal-organic framework (MOF) acting as a peroxidase mimic. The catalytic action of glucose oxidase (GOx) on glucose causes the formation of H 2 O 2 , and the MOF causes the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H 2 O 2 to form a blue-green product with an absorption peak at 650 nm in the detection zone. A digital camera and the iOS feature of a smartphone are used for the quantitation of glucose with the S coordinate of the HSV color space as the analytical parameter. Different factors such as the concentration of TMB, GOx and MOF, pH and buffer, sample volume, reaction time and reagent position in the μPAD were optimized. Under optimal conditions, the value for the S coordinate increases linearly up to 150 μmol·L -1 glucose concentrations, with a 2.5 μmol·L -1 detection limit. The μPAD remains stable for 21 days under conventional storage conditions. Such an enzyme mimetic-based assay to glucose determination using Fe-MIL-101 MOF implemented in a microfluidic paper-based device possesses advantages over enzyme-based assays in terms of costs, durability and stability compared to other existing glucose determination methods. The procedure was applied to the determination of glucose in (spiked) serum and urine. Graphical abstract Schematic representation of microfluidic paper-based analytical device using metal-organic framework as a peroxidase mimic for colorimetric glucose detection with digital camera or smartphone and iOS app readout.

  5. Do constructed wetlands remove metals or increase metal bioavailability?

    PubMed

    Xu, Xiaoyu; Mills, Gary L

    2018-07-15

    The H-02 wetland was constructed to treat building process water and storm runoff water from the Tritium Processing Facility on the Department of Energy's Savannah River Site (Aiken, SC). Monthly monitoring of copper (Cu) and zinc (Zn) concentrations and water quality parameters in surface waters continued from 2014 to 2016. Metal speciation was modeled at each sampling occasion. Total Cu and Zn concentrations released to the effluent stream were below the NPDES limit, and the average removal efficiency was 65.9% for Cu and 71.1% for Zn. The metal-removal processes were found out to be seasonally regulated by sulfur cycling indicated by laboratory and model results. High temperature, adequate labile organic matter, and anaerobic conditions during the warm months (February to August) favored sulfate reduction that produced sulfide minerals to significantly remove metals. However, the dominant reaction in sulfur cycling shifted to sulfide oxidation during the cool months (September to next March). High concentrations of metal-organic complexes were observed, especially colloidal complexes of metal and fulvic acid (FA), demonstrating adsorption to organic matter became the primary process for metal removal. Meanwhile, the accumulation of metal-FA complexes in the wetland system will cause negative effects to the surrounding environment as they are biologically reactive, highly bioavailable, and can be easily taken up and transferred to ecosystems by trophic exchange. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-21

    Robert Lightfoot, acting NASA administrator and Thomas Zurbuchen NASA AA for the science mission directorate view a partial eclipse solar eclipse Monday, August 21, 2017, from onboard a NASA Armstrong Flight Research Center’s Gulfstream III 35,000 feet above the Oregon Coast. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. Photo Credit: (NASA/Carla Thomas)

  7. Measuring hypoxia induced metal release from highly contaminated estuarine sediments during a 40 day laboratory incubation experiment.

    PubMed

    Banks, Joanne L; Ross, D Jeff; Keough, Michael J; Eyre, Bradley D; Macleod, Catriona K

    2012-03-15

    Nutrient inputs to estuarine and coastal waters worldwide are increasing and this in turn is increasing the prevalence of eutrophication and hypoxic and anoxic episodes in these systems. Many urbanised estuaries are also subject to high levels of anthropogenic metal contamination. Environmental O(2) levels may influence whether sediments act as sinks or sources of metals. In this study we investigated the effect of an extended O(2) depletion event (40 days) on fluxes of trace metals (and the metalloid As) across the sediment-water interface in sediments from a highly metal contaminated estuary in S.E. Tasmania, Australia. We collected sediments from three sites that spanned a range of contamination and measured total metal concentration in the overlying water using sealed core incubations. Manganese and iron, which are known to regulate the release of other divalent cations from sub-oxic sediments, were released from sediments at all sites as hypoxia developed. In contrast, the release of arsenic, cadmium, copper and zinc was comparatively low, most likely due to inherent stability of these elements within the sediments, perhaps as a result of their refractory origin, their association with fine-grained sediments or their being bound in stable sulphide complexes. Metal release was not sustained due to the powerful effect of metal-sulphide precipitation of dissolved metals back into sediments. The limited mobilisation of sediment bound metals during hypoxia is encouraging, nevertheless the results highlight particular problems for management in areas where hypoxia might occur, such as the release of metals exacerbating already high loads or resulting in localised toxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. The Infection Rate of Metal-on-Metal Total Hip Replacement Is Higher When Compared to Other Bearing Surfaces as Documented by the Australian Orthopaedic Association National Joint Replacement Registry.

    PubMed

    Huang, Phil; Lyons, Matt; O'Sullivan, Michael

    2018-02-01

    Despite the well-documented decline in the use of metal-on-metal (MoM) implants over the last decade, there are still controversies regarding whether all MoM implants are created equally. Complications such as elevated serum metal ion levels, aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) and pseudotumours have all been well documented, but recent studies suggest increased risk of infection with MoM bearing surfaces. Most of these studies however have small patient numbers. The purpose of this study was to examine the cumulative incidence of revision for infection of MoM bearing surfaces in primary hip arthroplasty at a national and single-surgeon level. Data was collected from the Australian Orthopaedic Association National Joint Replacement Registry, which contains over 98% of all arthroplasties performed in Australia since 2001. The cumulative incidence of revision for infection was extracted at a national level and single-surgeon level. Two hundred seventy-six thousand eight hundred seventy-eight subjects were documented in the Australian registry. The 10-year cumulative percent revision for infection of MoM bearing surfaces in primary total hip replacement (THR) was 2.5% at a national level, compared to 0.8% for other bearing surfaces. The senior author contributed 1755 subjects with 7-year follow-up and a cumulative percent revision for infection of MoM bearing surfaces in primary THR of 36.9%, compared to 2.0% for other bearing surfaces. The cumulative percent of revision of MoM bearing surfaces is higher compared to other bearing surfaces; this is especially pronounced in cumulative percent of revision for infection. There was a higher cumulative percent of revision for infection in MoM bearings surfaces (in particular, large-head MoM) compared to other bearing surfaces at both the national and individual-surgeon level.

  9. Evolutionary patterns in trace metal (cd and zn) efflux capacity in aquatic organisms.

    PubMed

    Poteat, Monica D; Garland, Theodore; Fisher, Nicholas S; Wang, Wen-Xiong; Buchwalter, David B

    2013-07-16

    The ability to eliminate (efflux) metals is a physiological trait that acts as a major driver of bioaccumulation differences among species. This species-specific trait plays a large role in determining the metal loads that species will need to detoxify to persist in chronically contaminated environments and, therefore, contributes significantly to differences in environmental sensitivity among species. To develop a better understanding of how efflux varies within and among taxonomic groupings, we compared Cd and Zn efflux rate constants (ke values) among members of two species-rich aquatic insect families, Ephemerellidae and Hydropsychidae, and discovered that ke values strongly covaried across species. This relationship allowed us to successfully predict Zn efflux from Cd data gathered from aquatic species belonging to other insect orders and families. We then performed a broader, comparative analysis of Cd and Zn ke values from existing data for arthropods, mollusks, annelids, and chordates (77 species total) and found significant phylogenetic patterns. Taxonomic groups exhibited marked variability in ke magnitudes and ranges, suggesting that some groups are more constrained than others in their abilities to eliminate metals. Understanding broader patterns of variability can lead to more rational extrapolations across species and improved protectiveness in water-quality criteria and ecological assessment.

  10. Tiny surface plasmon resonance sensor integrated on silicon waveguide based on vertical coupling into finite metal-insulator-metal plasmonic waveguide.

    PubMed

    Lee, Dong-Jin; Yim, Hae-Dong; Lee, Seung-Gol; O, Beom-Hoan

    2011-10-10

    We propose a tiny surface plasmon resonance (SPR) sensor integrated on a silicon waveguide based on vertical coupling into a finite thickness metal-insulator-metal (f-MIM) plasmonic waveguide structure acting as a Fabry-Perot resonator. The resonant characteristics of vertically coupled f-MIM plasmonic waveguides are theoretically investigated and optimized. Numerical results show that the SPR sensor with a footprint of ~0.0375 μm2 and a sensitivity of ~635 nm/RIU can be designed at a 1.55 μm transmission wavelength.

  11. Characterization of buried metal-molecule-metal junctions using Fourier transform infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    Babayco, Christopher B.; Land, Donald P.; Parikh, Atul N.; Kiehl, Richard A.

    2014-09-01

    We have devised an infrared spectromicroscopy based experimental configuration to enable structural characterization of buried molecular junctions. Our design utilizes a small mercury drop at the focal point of an infrared microscope to act as a mirror in studying metal-molecule-metal (MmM) junctions. An organic molecular monolayer is formed either directly on the mercury drop or on a thin, infrared (IR) semi-transparent layer of Au deposited onto an IR transparent, undoped silicon substrate. Following the formation of the monolayer, films on either metal can be examined independently using specular reflection spectroscopy. Furthermore, by bringing together the two monolayers, a buried molecular bilayer within the MmM junction can be characterized. Independent examination of each half of the junction prior to junction formation also allows probing any structural and/or conformational changes that occur as a result of forming the bilayer. Because our approach allows assembling and disassembling microscopic junctions by forming and withdrawing Hg drops onto the monolayer covered metal, spatial mapping of junctions can be performed simply by translating the location of the derivatized silicon wafer. Finally, the applicability of this technique for the longer-term studies of changes in molecular structure in the presence of electrical bias is discussed.

  12. The John Charnley Award Paper. The role of joint fluid in the tribology of total joint arthroplasty.

    PubMed

    Mazzucco, Daniel; Spector, Myron

    2004-12-01

    The effect of joint fluid on the tribology (ie, lubrication, friction, and wear) of total hip arthroplasty has not yet been investigated adequately. In the current study, a friction assay was used to assess four hypotheses relating to the effect of human joint fluid and its principal components on the articulation of metal-on-polyethylene. First, joint fluid was found to produce a widely varying amount of friction between cobalt-chromium and polyethylene; this range exceeded the range produced when the articulation was lubricated by water or bovine serum. Second, it was shown that hyaluronic acid, phospholipid, albumin, and gamma-globulin were not acting as boundary lubricants, but that one or more other proteins (as yet unidentified) were responsible for reducing friction in this couple. Third, lower friction was found when oxidized zirconium alloy replaced cobalt-chromium as a bearing surface on polyethylene. Finally, a pilot study suggested that lubricin, which contributes to cartilage-on-cartilage lubrication, is not a protein responsible for the tribological variabiation found among joint fluid samples. The current study showed that joint fluid is a patient factor that influences the tribology of metal-on-polyethylene arthroplasty.

  13. Plasmonic enhancement of second-harmonic generation of dielectric layer embedded in metal-dielectric-metal structure

    NASA Astrophysics Data System (ADS)

    Kang, Byungjun; Imakita, Kenji; Fujii, Minoru; Hayashi, Shinji

    2018-03-01

    The enhancement of second-harmonic generation from a dielectric layer embedded in a metal-dielectric-metal structure upon excitation of surface plasmon polaritons is demonstrated experimentally. The metal-dielectric-metal structure consisting of a Gex(SiO2)1-x layer sandwiched by two Ag layers was prepared, and the surface plasmon polaritons were excited in an attenuated total reflection geometry. The measured attenuated total reflection spectra exhibited two reflection dips corresponding to the excitation of two different surface plasmon polariton modes. Strong second-harmonic signals were observed under the excitation of these surface plasmon polariton modes. The results demonstrate that the second-harmonic intensity of the Gex(SiO2)1-x layer is highly enhanced relative to that of the single layer deposited on a substrate. Under the excitation of one of the two surface plasmon polariton modes, the estimated enhancement factor falls in a range between 39.9 and 171, while under the excitation of the other surface plasmon polariton mode, it falls in a range between 3.96 and 84.6.

  14. ELECTROLYTIC PROCESS FOR PRODUCING METALS

    DOEpatents

    Kopelman, B.; Holden, R.B.

    1961-06-01

    A method is described for reducing beryllium halides to beryllium. The beryllfum halide fs placed in an eutectic mixture of alkali halides and alkaline earth halides. The constituents of this eutectic bath are so chosen that it has a melting point less than the boiling point of mercury, which acts as a cathode for the system. The beryllium metal is then deposited in the mercury upon electrolysis.

  15. Selective enrichment of metal-binding proteins based on magnetic core/shell microspheres functionalized with metal cations.

    PubMed

    Fang, Caiyun; Zhang, Lei; Zhang, Xiaoqin; Lu, Haojie

    2015-06-21

    Metal binding proteins play many important roles in a broad range of biological processes. Characterization of metal binding proteins is important for understanding their structure and biological functions, thus leading to a clear understanding of metal associated diseases. The present study is the first to investigate the effectiveness of magnetic microspheres functionalized with metal cations (Ca(2+), Cu(2+), Zn(2+) and Fe(3+)) as the absorbent matrix in IMAC technology to enrich metal containing/binding proteins. The putative metal binding proteins in rat liver were then globally characterized by using this strategy which is very easy to handle and can capture a number of metal binding proteins effectively. In total, 185 putative metal binding proteins were identified from rat liver including some known less abundant and membrane-bound metal binding proteins such as Plcg1, Acsl5, etc. The identified proteins are involved in many important processes including binding, catalytic activity, translation elongation factor activity, electron carrier activity, and so on.

  16. Treatment of suspended solids and heavy metals from urban stormwater runoff by a tree box filter.

    PubMed

    Geronimo, F K F; Maniquiz-Redillas, M C; Tobio, J A S; Kim, L H

    2014-01-01

    Particulates, inorganic and toxic constituents are the most common pollutants associated with urban stormwater runoff. Heavy metals such as chromium, nickel, copper, zinc, cadmium and lead are found to be in high concentration on paved roads or parking lots due to vehicle emissions. In order to control the rapid increase of pollutant loads in stormwater runoff, the Korean Ministry of Environment proposed the utilization of low impact developments. One of these was the application of tree box filters that act as a bioretention treatment system which executes filtration and sorption processes. In this study, a tree box filter located adjacent to an impervious parking lot was developed to treat suspended solids and heavy metal concentrations from urban stormwater runoff. In total, 11 storm events were monitored from July 2010 to August 2012. The results showed that the tree box filter was highly effective in removing particulates (up to 95%) and heavy metals (at least 70%) from the urban stormwater runoff. Furthermore, the tree box filter was capable of reducing the volume runoff by 40% at a hydraulic loading rate of 1 m/day and below.

  17. Leachability of Arsenic and Heavy Metals from Mine Tailings of Abandoned Metal Mines

    PubMed Central

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk; Kim, Hyung-Seok

    2009-01-01

    Mine tailings from an abandoned metal mine in Korea contained high concentrations of arsenic (As) and heavy metals [e.g., As: 67,336, Fe: 137,180, Cu: 764, Pb: 3,572, and Zn: 12,420 (mg/kg)]. US EPA method 6010 was an effective method for analyzing total arsenic and heavy metals concentrations. Arsenic in the mine tailings showed a high residual fraction of 89% by a sequential extraction. In Toxicity Characteristic Leaching Procedure (TCLP) and Korean Standard Leaching Test (KSLT), leaching concentrations of arsenic and heavy metals were very low [e.g., As (mg/L): 0.4 for TCLP and 0.2 for KSLT; cf. As criteria (mg/L): 5.0 for TCLP and 1.5 for KSLT]. PMID:20049231

  18. Distribution of heavy metals in riverine soils and sediments of the Turia River basin.

    NASA Astrophysics Data System (ADS)

    Andreu, Vicente; Gimeno-García, Eugenia; Pascual, Juan Antonio

    2014-05-01

    Water is a scarce and contested good, and a primary need for the population all over. Rivers are one of the mainsources of freshwater to people but, in the same way, receive both point source and difuse pollution, usually frorm wastewaters and agriculture. However, they are not independent bodies but they influence different associated ecosystems that compound the catchment. Soils of the river banks often acts as the last phase of the diffuse contamination pathways, favouring the contaminants input to the river waters. In this sense, the fluvial sedimentary phase usually acts as a sink of pollutants. Sediments can work as resevoirs that accumulate contaminants fixing them or allowing their decomposition or metabolization. However, environmental or human induced, such as variations in water pH, increases in the turbulence or intensity of the water flow, etc.could favour their release to the environment. In this work, the incidence and distribution of seven heavy metals was monitored in riverine soils and sediments of the Turia River. Along the river course, 22 zones were selected for sampling according different lithologies, land uses, size of populations and the proximity to waste waters treatment plants (WWTPs), from the headwaters to the mouth. The selected metals (Cd, Co, Cr, Cu, Pb, Ni and Zn) were analysed to determine its total and extractable contents in the sediments. Total content of metals was extracted by microwave acid digestion and the extractable fraction by treatment with EDTA. Atomic Absorption Spectrometry, using graphite furnace when necessary, was used for the determination of all metals. Highest values for sediments were mainly observed in zones 10 and 22, close to urban areas, reaching values of 172.86 mg/kg for Pb, or 58.34 mg/kg for Cr. However, zone 2 near in the headwaters of the Alfambra River and supposedly of reference for the River authorities shows the highest values of zinc with 96.96 mg/kg. Regarding the available

  19. Catalytic total hydrodeoxygenation of biomass-derived polyfunctionalized substrates to alkanes.

    PubMed

    Nakagawa, Yoshinao; Liu, Sibao; Tamura, Masazumi; Tomishige, Keiichi

    2015-04-13

    The total hydrodeoxygenation of carbohydrate-derived molecules to alkanes, a key reaction in the production of biofuel, was reviewed from the aspect of catalysis. Noble metals (or Ni) and acid are the main components of the catalysts, and group 6 or 7 metals such as Re are sometimes added as modifiers of the noble metal. The main reaction route is acid-catalyzed dehydration plus metal-catalyzed hydrogenation, and in some systems metal-catalyzed direct CO dissociation is involved. The appropriate active metal, acid strength, and reaction conditions depend strongly on the reactivity of the substrate. Reactions that use Pt or Pd catalysts supported on Nb-based acids or relatively weak acids are suitable for furanic substrates. Carbohydrates themselves and sugar alcohols undergo CC dissociation easily. The systems that use metal-catalyzed direct CO dissociations can give a higher yield of the corresponding alkane from carbohydrates and sugar alcohols. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quasi-ballistic Electronic Thermal Conduction in Metal Inverse Opals.

    PubMed

    Barako, Michael T; Sood, Aditya; Zhang, Chi; Wang, Junjie; Kodama, Takashi; Asheghi, Mehdi; Zheng, Xiaolin; Braun, Paul V; Goodson, Kenneth E

    2016-04-13

    Porous metals are used in interfacial transport applications that leverage the combination of electrical and/or thermal conductivity and the large available surface area. As nanomaterials push toward smaller pore sizes to increase the total surface area and reduce diffusion length scales, electron conduction within the metal scaffold becomes suppressed due to increased surface scattering. Here we observe the transition from diffusive to quasi-ballistic thermal conduction using metal inverse opals (IOs), which are metal films that contain a periodic arrangement of interconnected spherical pores. As the material dimensions are reduced from ∼230 nm to ∼23 nm, the thermal conductivity of copper IOs is reduced by more than 57% due to the increase in surface scattering. In contrast, nickel IOs exhibit diffusive-like conduction and have a constant thermal conductivity over this size regime. The quasi-ballistic nature of electron transport at these length scales is modeled considering the inverse opal geometry, surface scattering, and grain boundaries. Understanding the characteristics of electron conduction at the nanoscale is essential to minimizing the total resistance of porous metals for interfacial transport applications, such as the total electrical resistance of battery electrodes and the total thermal resistance of microscale heat exchangers.

  1. Trace metal dynamics in floodplain soils of the river Elbe: a review.

    PubMed

    Schulz-Zunkel, Christiane; Krueger, Frank

    2009-01-01

    This paper reviews trace metal dynamics in floodplain soils using the Elbe floodplains in Germany as an example of extraordinary importance because of the pollution level of its sediments and soils. Trace metal dynamics are determined by processes of retention and release, which are influenced by a number of soil properties including pH value, redox potential, organic matter, type and amount of clay minerals, iron-, manganese- and aluminum-oxides. Today floodplains act as important sinks for contaminants but under changing hydraulic and geochemical conditions they may also act as sources for pollutants. In floodplains such changes may be extremes in flooding or dry periods that particularly lead to altered redox potentials and that in turn influence the pH value, the mineralization of organic matter as well as the charge of the pedogenic oxides. Such reactions may affect the bioavailability of trace metals in soils and it can be clearly seen that the bioavailability of metals is an important factor for estimating trace metal remobilization in floodplain soils. However as bioavailability is not a constant factor, there is still a lack of quantification of metal mobilization particularly on the basis of changing geochemical conditions. Moreover, mobile amounts of metals in the soil solution do not indicate to which extent remobilized metals will be transported to water bodies or plants and therefore potentially have toxicological effects. Consequently, floodplain areas still need to be taken into consideration when studying the role and behavior of sediments and soils for transporting pollutants within river systems, particularly concerning the Water Framework Directive.

  2. Metal flows of the circumgalactic medium, and the metal budget in galactic haloes

    NASA Astrophysics Data System (ADS)

    Muratov, Alexander L.; Kereš, Dušan; Faucher-Giguère, Claude-André; Hopkins, Philip F.; Ma, Xiangcheng; Anglés-Alcázar, Daniel; Chan, T. K.; Torrey, Paul; Hafen, Zachary H.; Quataert, Eliot; Murray, Norman

    2017-07-01

    We present an analysis of the flow of metals through the circumgalactic medium (CGM) in the Feedback in Realistic Environments (FIRE) simulations of galaxy formation, ranging from isolated dwarfs to L* galaxies. We find that nearly all metals produced in high-redshift galaxies are carried out in winds that reach 0.25Rvir. When measured at 0.25Rvir the metallicity of outflows is slightly higher than the interstellar medium (ISM) metallicity. Many metals thus reside in the CGM. Cooling and recycling from this reservoir determine the metal budget in the ISM. The outflowing metal flux decreases by a factor of ˜2-5 between 0.25Rvir and Rvir. Furthermore, outflow metallicity is typically lower at Rvir owing to dilution of the remaining outflow by metal-poor material swept up from the CGM. The inflow metallicity at Rvir is generally low, but outflow and inflow metallicities are similar in the inner halo. At low redshift, massive galaxies no longer generate outflows that reach the CGM, causing a divergence in CGM and ISM metallicity. Dwarf galaxies continue to generate outflows, although they preferentially retain metal ejecta. In all but the least massive galaxy considered, a majority of the metals are within the halo at z = 0. We measure the fraction of metals in CGM, ISM and stars, and quantify the thermal state of CGM metals in each halo. The total amount of metals in the low-redshift CGM of two simulated L* galaxies is consistent with estimates from the Cosmic Origin Spectrograph haloes survey, while for the other two it appears to be lower.

  3. Metal-on-metal surface replacement: a triumph of hope over reason: opposes.

    PubMed

    Su, Edwin P; Su, Sherwin L

    2011-09-09

    Hip resurfacing has been performed for over a decade but still raises controversy as an alternative to traditional total hip arthroplasty (THA). Concerns exist about the potential complications of hip resurfacing, including femoral neck fracture and osteonecrosis of the femoral head. Recently, attention has been given to the metal-on-metal bearing of hip resurfacing with regard to production of metal ions, possible tissue necrosis, and rare instances of metal hypersensitivity. Given the success of the gold-standard THA, it is understandable why some surgeons believe metal-on-metal surface replacement to be "a triumph of hope over reason." However, this article opposes that viewpoint, demonstrating that data exist to justify the practice of preserving bone in younger patients. Hip resurfacing can maintain femoral bone without the expense of removing additional acetabular bone by using modern implants with incremental sizing. Furthermore, many of the problems cited with the bearing couple (such as excess metal production) have been due to poor implant designs, which have now been removed from the market. Finally, we now realize that the metal-on-metal articulation is more sensitive to malposition; thus, good surgical technique and experience can solve many of the problems that have been cited in the past. National registry results confirm that in a select population, hip resurfacing performs comparably to THA, while fulfilling the goal of bone preservation. Copyright 2011, SLACK Incorporated.

  4. 75 FR 20002 - Notice Pursuant to the National Cooperative Research and Production Act of 1993 Joint Venture...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... demonstrate the production of low-cost, high-quality metallic and semiconducting single wall carbon nanotube... Production Act of 1993 Joint Venture Under Tip Award Number: 7ONANB1OHOO1 Notice is hereby given that, on February 3, 2010, pursuant to Section 6(a) of the National Cooperative Research and Production Act of 1993...

  5. Impact of an urban multi-metal contamination gradient: metal bioaccumulation and tolerance of river biofilms collected in different seasons.

    PubMed

    Faburé, Juliette; Dufour, Marine; Autret, Armelle; Uher, Emmanuelle; Fechner, Lise C

    2015-02-01

    The aim of this study was to investigate the repeatability and seasonal variability of the biological response of river biofilms chronically exposed to a multi-metal pressure in an urban contamination gradient. Biofilms were grown on immersed plastic membranes at three sites on the Seine river upstream (site 1) and downstream (sites 2 and 3) from Paris (France). They were collected in four different seasons (autumn, spring, summer and winter). Biofilm tolerance to Cu, Ni, Pb and Zn was measured using a PICT (Pollution-Induced Community Tolerance) approach with a previously developed short-term toxicity test based on β-glucosidase (heterotrophic) activity. Metal concentrations in the river and also in the biofilm samples (total and non-exchangeable bioaccumulated metals) were also monitored. Biofilm-accumulated metal concentrations reflected the increase of the multi-metal exposure along the urban gradient. These concentrations were strongly correlated with dissolved and particulate organic carbon and with the total metal fraction in the river water, which recalls the significant influence of the environmental parameters on metal uptake processes in river biofilms. Overall, natural biofilms allow monitoring water quality by integrating the variations of a diffuse metal contamination overtime. Tolerance levels globally increased from site 1 to site 3 reflecting the metal pollution gradient measured in the river water collected at the three sites. Cu tolerance tended to increase during warm seasons but no clear seasonal tendency could be found for Ni, Pb and Zn. Furthermore, principal component analysis clearly discriminated samples collected upstream (site 1) from samples collected downstream (sites 2 and 3) along the first principal component which was correlated to the metal gradient. Samples collected in winter were also separated from the others along the second principal component correlated to parameters like water temperature and Total Suspended Solids

  6. Heavy metals concentration and availability of different soils in Sabzevar area, NE of Iran

    NASA Astrophysics Data System (ADS)

    Mazhari, Seyed Ali; Sharifiyan Attar, Reza; Haghighi, Faezeh

    2017-10-01

    Soils developed in the Sabzevar ophiolitic area originate from different bedrocks. All samples display similar physico-chemical properties, but heavy metal concentrations vary extremely in different soil samples. Serpentine soils have the highest total concentration of Cr, Ni and Co; while soils derived from mafic rocks (olivine basalts and hornblende gabbros) show the highest Cu (85.29-109.11 ppm) and Zn (46.88-86.60 ppm). The DTPA-extraction of soil samples indicates that the order of metal bioavailability was Crmetal availabilities of studied soils are not quite similar to total concentrations. The bedrock properties and minerals involved during soil formations have a significant effect on the metals availability. The soils derived from volcanic rocks have, in general, higher metal bioavailability than those derived from plutonic rocks. Serpentine soils with high concentration of Co and Cr, exhibit low availability of these elements (<1% of total Cr and <10% of total Co), whereas olivine basalt samples release high values (>3% of total Cr; >12% of total Co and >17% of total Zn). Oxide minerals (such as chromite and magnetite) in Sabzevar soils play as resistant minerals and impede the heavy metal availability; while forsterite, pyroxene, serpentine and talc are more labile and show higher DTPA-extractable of heavy metals.

  7. Photochemical Hydrogen Doping Induced Embedded Two-Dimensional Metallic Channel Formation in InGaZnO at Room Temperature.

    PubMed

    Kim, Myeong-Ho; Lee, Young-Ahn; Kim, Jinseo; Park, Jucheol; Ahn, Seungbae; Jeon, Ki-Joon; Kim, Jeong Won; Choi, Duck-Kyun; Seo, Hyungtak

    2015-10-27

    The photochemical tunability of the charge-transport mechanism in metal-oxide semiconductors is of great interest since it may offer a facile but effective semiconductor-to-metal transition, which results from photochemically modified electronic structures for various oxide-based device applications. This might provide a feasible hydrogen (H)-radical doping to realize the effectively H-doped metal oxides, which has not been achieved by thermal and ion-implantation technique in a reliable and controllable way. In this study, we report a photochemical conversion of InGaZnO (IGZO) semiconductor to a transparent conductor via hydrogen doping to the local nanocrystallites formed at the IGZO/glass interface at room temperature. In contrast to thermal or ionic hydrogen doping, ultraviolet exposure of the IGZO surface promotes a photochemical reaction with H radical incorporation to surface metal-OH layer formation and bulk H-doping which acts as a tunable and stable highly doped n-type doping channel and turns IGZO to a transparent conductor. This results in the total conversion of carrier conduction property to the level of metallic conduction with sheet resistance of ∼16 Ω/□, room temperature Hall mobility of 11.8 cm(2) V(-1) sec(-1), the carrier concentration at ∼10(20) cm(-3) without any loss of optical transparency. We demonstrated successful applications of photochemically highly n-doped metal oxide via optical dose control to transparent conductor with excellent chemical and optical doping stability.

  8. Normal metal - insulator - superconductor thermometers and coolers with titanium-gold bilayer as the normal metal

    NASA Astrophysics Data System (ADS)

    Räisänen, I. M. W.; Geng, Z.; Kinnunen, K. M.; Maasilta, I. J.

    2018-03-01

    We have fabricated superconductor - insulator - normal metal - insulator - superconductor (SINIS) tunnel junctions in which Al acts as the superconductor, AlOx is the insulator, and the normal metal consists of a thin Ti layer (5 nm) covered with a thicker Au layer (40 nm). We have characterized the junctions by measuring their current-voltage curves between 60 mK and 750 mK. For comparison, the same measurements have been performed for a SINIS junction pair whose normal metal is Cu. The Ti-Au bilayer decreases the SINIS tunneling resistance by an order of magnitude compared to junctions where Cu is used as normal metal, made with the same oxidation parameters. The Ti-Au devices are much more robust against chemical attacks, and their lower tunneling resistance makes them more robust against static charge. More significantly, they exhibit significantly stronger electron cooling than Cu devices with identical fabrication steps, when biased close to the energy gap of the superconducting Al. By using a self-consistent thermal model, we can fit the current-voltage characteristics well, and show an electron cooling from 200 mK to 110 mK, with a non-optimized device.

  9. Assessment of soil-gas and soil contamination at the Old Metal Workshop Hog Farm Area, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Caldwell, Andral W.; Falls, W. Fred; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    Soil gas and soil were assessed for contaminants at the Old Metal Workshop Hog Farm Area at Fort Gordon, Georgia, from October 2009 to September 2010. The assessment included delineating organic contaminants present in soil-gas and inorganic contaminants present in soil samples collected from the area estimated to be the Old Metal Workshop Hog Farm Area. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements for the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. All soil-gas samplers contained total petroleum hydrocarbons above the method detection level. The highest total petroleum hydrocarbon mass detected was 121.32 micrograms in a soil-gas sampler from the western corner of the Old Metal Workshop Hog Farm Area along Sawmill Road. The highest undecane mass detected was 73.28 micrograms at the same location as the highest total petroleum hydrocarbon mass. Some soil-gas samplers detected toluene mass greater than the method detection level of 0.02 microgram; the highest detection of toluene mass was 0.07 microgram. Some soil-gas samplers were installed in areas of high-contaminant mass to assess for explosives and chemical agents. Explosives or chemical agents were not detected above their respective method detection levels for all soil-gas samplers installed. Inorganic concentrations in five soil samples collected did not exceed regional screening levels established by the U.S. Environmental Protection Agency. Barium concentrations, however, were up to eight times higher than the background concentrations reported in similar Coastal Plain sediments of South Carolina.

  10. 78 FR 20912 - Clean Water Act: Availability of List Decisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9798-8] Clean Water Act: Availability of List Decisions.... SUMMARY: The Clean Water Act requires that States periodically submit, and EPA approve or disapprove... are not stringent enough to attain or maintain State water quality standards and for which total...

  11. Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors.

    PubMed

    Fu, Jie; Zhao, Changpo; Luo, Yupeng; Liu, Chunsheng; Kyzas, George Z; Luo, Yin; Zhao, Dongye; An, Shuqing; Zhu, Hailiang

    2014-04-15

    This work investigated heavy metal pollution in surface sediments of the Jialu River, China. Sediment samples were collected at 19 sites along the river in connection with field surveys and the total concentrations were determined using atomic fluorescence spectrometer and inductively coupled plasma optical emission spectrometer. Sediment samples with higher metal concentrations were collected from the upper reach of the river, while sediments in the middle and lower reaches had relatively lower metal concentrations. Multivariate techniques including Pearson correlation, hierarchical cluster and principal components analysis were used to evaluate the metal sources. The ecological risk associated with the heavy metals in sediments was rated as moderate based on the assessments using methods of consensus-based Sediment Quality Guidelines, Potential Ecological Risk Index and Geo-accumulation Index. The relations between heavy metals and various environmental factors (i.e., chemical properties of sediments, water quality indices and aquatic organism indices) were also studied. Nitrate nitrogen, total nitrogen, and total polycyclic aromatic hydrocarbons concentrations in sediments showed a co-release behavior with heavy metals. Ammonia nitrogen, total nitrogen, orthophosphate, total phosphate and permanganate index in water were found to be related to metal sedimentation. Heavy metals in sediments posed a potential impact on the benthos community. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. 40 CFR 721.2093 - Alkenyl carboxylate, metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2093 Alkenyl carboxylate, metal salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  13. Towards nanoprinting with metals on graphene.

    PubMed

    Melinte, G; Moldovan, S; Hirlimann, C; Liu, X; Bégin-Colin, S; Bégin, D; Banhart, F; Pham-Huu, C; Ersen, O

    2015-08-28

    Graphene and carbon nanotubes are envisaged as suitable materials for the fabrication of the new generation of nanoelectronics. The controlled patterning of such nanostructures with metal nanoparticles is conditioned by the transfer between a recipient and the surface to pattern. Electromigration under the impact of an applied voltage stands at the base of printing discrete digits at the nanoscale. Here we report the use of carbon nanotubes as nanoreservoirs for iron nanoparticles transfer on few-layer graphene. An initial Joule-induced annealing is required to ensure the control of the mass transfer with the nanotube acting as a 'pen' for the writing process. By applying a voltage, the tube filled with metal nanoparticles can deposit metal on the surface of the graphene sheet at precise locations. The reverse transfer of nanoparticles from the graphene surface to the nanotube when changing the voltage polarity opens the way for error corrections.

  14. Towards nanoprinting with metals on graphene

    NASA Astrophysics Data System (ADS)

    Melinte, G.; Moldovan, S.; Hirlimann, C.; Liu, X.; Bégin-Colin, S.; Bégin, D.; Banhart, F.; Pham-Huu, C.; Ersen, O.

    2015-08-01

    Graphene and carbon nanotubes are envisaged as suitable materials for the fabrication of the new generation of nanoelectronics. The controlled patterning of such nanostructures with metal nanoparticles is conditioned by the transfer between a recipient and the surface to pattern. Electromigration under the impact of an applied voltage stands at the base of printing discrete digits at the nanoscale. Here we report the use of carbon nanotubes as nanoreservoirs for iron nanoparticles transfer on few-layer graphene. An initial Joule-induced annealing is required to ensure the control of the mass transfer with the nanotube acting as a `pen' for the writing process. By applying a voltage, the tube filled with metal nanoparticles can deposit metal on the surface of the graphene sheet at precise locations. The reverse transfer of nanoparticles from the graphene surface to the nanotube when changing the voltage polarity opens the way for error corrections.

  15. Contact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions

    PubMed Central

    Hua, Xijin; Li, Junyan; Wang, Ling; Jin, Zhongmin; Wilcox, Ruth; Fisher, John

    2014-01-01

    Edge loading can negatively impact the biomechanics and long-term performance of hip replacements. Although edge loading has been widely investigated for hard-on-hard articulations, limited work has been conducted for hard-on-soft combinations. The aim of the present study was to investigate edge loading and its effect on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR). A three-dimensional finite element model was developed based on a modular MoP bearing. Different cup inclination angles and head lateral microseparation were modelled and their effect on the contact mechanics of the modular MoP hip replacement were examined. The results showed that lateral microseparation caused loading of the head on the rim of the cup, which produced substantial increases in the maximum von Mises stress in the polyethylene liner and the maximum contact pressure on both the articulating surface and backside surface of the liner. Plastic deformation of the liner was observed under both standard conditions and microseparation conditions, however, the maximum equivalent plastic strain in the liner under microseparation conditions of 2000 µm was predicted to be approximately six times that under standard conditions. The study has indicated that correct positioning the components to avoid edge loading is likely to be important clinically even for hard-on-soft bearings for THR. PMID:25218504

  16. A review of heavy metals in indoor dust and its human health-risk implications.

    PubMed

    Tan, Sock Yin; Praveena, Sarva Mangala; Abidin, Emilia Zainal; Cheema, Manraj Singh

    2016-12-01

    Indoor dust acts as a media for heavy metal deposition. Past studies have shown that heavy metal concentration in indoor dust is affected by local human activities and atmospheric transport can have harmful effects on human health. Additionally, children are more sensitive to heavy metals due to their hand-to-mouth behaviour and rapid body development. However, limited information on health risks were found in past dust studies as these studies aimed to identify heavy metal concentrations and sources of indoor dust. The objective of this review is to discuss heavy metal concentration and sources influencing its concentration in indoor dust. Accordingly, high lead (Pb) concentration (639.10 μg/g) has been reported in heavy traffic areas. In addition, this review paper aims to estimate the health risk to children from heavy metals in indoor dust via multiple exposure pathways using the health-risk assessment (HRA). Urban areas and industrial sites have revealed high heavy metal concentration in comparison to rural areas. Hazard index (HI) values found in arsenic (As), chromium (Cr) and Pb were 21.30, 1.10 and 2.40, respectively, indicate that non-carcinogenic elements are found in children. Furthermore, most of the past studies have found that carcinogenic risks for As, cadmium (Cd), Cr and Pb were below the acceptable total lifetime cancer risk (TLCR) range (1×10-6-1×10-4). The results of health risk assessment in this review show that carcinogenic risk exists among children. Hence, this proves that future studies need to focus on children's carcinogenic risk in indoor dust studies in order to find out the sources of heavy metals in indoor dust. This review highlights the importance of having the HRA application using bioavailable heavy metal concentration as it provides more accurate health-risk estimation. Moreover, this review is also useful as a reference for policy decision making in protecting children's health.

  17. Levels and speciation of heavy metals in soils of industrial Southern Nigeria.

    PubMed

    Olajire, A A; Ayodele, E T; Oyedirdan, G O; Oluyemi, E A

    2003-06-01

    A knowledge of the total content of trace metals is not enough to fully assess the environmental impact of polluted soils. For this reason, the determination of metal species in solution is important to evaluate their behaviour in the environment and their mobilization capacity. Sequential extraction procedure was used to speciate five heavy metals (Cd, Pb, Cu, Ni and Zn) from four contaminated soils of Southern Nigeria into six operationally defined geochemical species: water soluble, enchangeable, carbonates, Fe-Mn oxide, organic and residual. Metal recoveries were within +/- 10% of the independently determined total Cd, Pb, Cu, Ni and Zn concentrations. The highest amount of Cd (avg. 30%) in the nonresidual fractions was found in the exchangeable fraction, while Cu and Zn were significantly associated with the organic fraction. The carbonate fraction contained on average 14, 18.6, 12.6, 13 and 11% and the residual fraction contained on average 47, 18, 33, 50 and 25% of Cd, Pb, Cu, Ni and Zn respectively. Assuming that mobility and bioavailability of these metals are related to the solubility of the geochemical form of the metals, and that they decrease in the order of extraction sequence, the apparent mobility and potential bioavailability for these five metals in the soil were: Pb > Zn > Cu > Ni > Cd. The mobility indexes of copper and nickel correlated positively and significantly with the total content of metals, while mobility indexes of cadmium and zinc correlated negatively and significantly with the total content of metals.

  18. Patch testers' opinions regarding diagnostic criteria for metal hypersensitivity reactions to metallic implants.

    PubMed

    Schalock, Peter C; Thyssen, Jacob P

    2013-01-01

    Metal hypersensitivity reactions to implanted devices remain a challenging and controversial topic. Diagnostic criteria and methods are not well delineated. Diagnostic criteria for hypersensitivity reactions after metallic device implantation are evaluated in this study by a multinational group of patch testers using Thyssen's previously published criteria. A total of 119 dermatologists at the 2012 European Contact Dermatitis Society and 2013 American Contact Dermatitis Society meetings answered a survey regarding their opinions on topics relating to metal hypersensitivity. Four major and 5 minor diagnostic criteria emerged. Approximately 80% of respondents found the following criteria useful (major criteria): chronic dermatitis beginning weeks to months after metallic implantation, eruption overlying the metal implant, positive patch test to a metal component of the implant, and complete clearing after removal of the potentially allergenic implant. Minor criteria (<61% of respondents) were as follows: systemic allergic dermatitis reaction, therapy-resistant dermatitis, morphology consistent with dermatitis, histology consistent with allergic contact dermatitis, and a positive in vitro test to metals (eg, lymphocyte transformation test). In the challenging situation such as a symptomatic or failing orthopedic device, applying these 4 major criteria and the 5 supportive minor criteria may be useful for guiding decision making.

  19. 2 CFR 170.330 - Total compensation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 2 Grants and Agreements 1 2011-01-01 2011-01-01 false Total compensation. 170.330 Section 170.330... section 1512(a)(2) of the American Recovery and Reinvestment Act of 2009, Pub. L. 111-5) for a subaward to an entity (see definitions in paragraph e. of this award term). 2. Where and when to report. i. You...

  20. 20 CFR 410.424 - Determining total disability: Medical criteria only.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Determining total disability: Medical criteria only. 410.424 Section 410.424 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Total Disability or Death Due to...

  1. 20 CFR 410.424 - Determining total disability: Medical criteria only.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Determining total disability: Medical criteria only. 410.424 Section 410.424 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Total Disability or Death Due to...

  2. Co-percolation to tune conductive behaviour in dynamical metallic nanowire networks.

    PubMed

    Fairfield, J A; Rocha, C G; O'Callaghan, C; Ferreira, M S; Boland, J J

    2016-11-03

    Nanowire networks act as self-healing smart materials, whose sheet resistance can be tuned via an externally applied voltage stimulus. This memristive response occurs due to modification of junction resistances to form a connectivity path across the lowest barrier junctions in the network. While most network studies have been performed on expensive noble metal nanowires like silver, networks of inexpensive nickel nanowires with a nickel oxide coating can also demonstrate resistive switching, a common feature of metal oxides with filamentary conduction. However, networks made from solely nickel nanowires have high operation voltages which prohibit large-scale material applications. Here we show, using both experiment and simulation, that a heterogeneous network of nickel and silver nanowires allows optimization of the activation voltage, as well as tuning of the conduction behavior to be either resistive switching, memristive, or a combination of both. Small percentages of silver nanowires, below the percolation threshold, induce these changes in electrical behaviour, even for low area coverage and hence very transparent films. Silver nanowires act as current concentrators, amplifying conductivity locally as shown in our computational dynamical activation framework for networks of junctions. These results demonstrate that a heterogeneous nanowire network can act as a cost-effective adaptive material with minimal use of noble metal nanowires, without losing memristive behaviour that is essential for smart sensing and neuromorphic applications.

  3. 75 FR 26956 - Clean Water Act Section 303(d): Availability of Los Angeles Area Lakes Total Maximum Daily Loads...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-13

    ... included on the State of California's Section 303(d) list of polluted waters due to water quality impacts... ENVIRONMENTAL PROTECTION AGENCY [FRL-9146-6] Clean Water Act Section 303(d): Availability of Los... nutrient, mercury, chlordane, dieldrin, DDT, PCB, and trash impairments pursuant to Clean Water Act Section...

  4. 75 FR 20351 - Clean Water Act Section 303(d): Availability of One Total Maximum Daily Load (TMDL) in Arkansas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9139-5] Clean Water Act Section 303(d): Availability of One...: Notice of availability. SUMMARY: This notice announces the availability of the administrative record file... in the State of Arkansas under Section 303(d) of the Clean Water Act (CWA). This TMDL was completed...

  5. Synthesis of noble metal/carbon nanotube composites in supercritical methanol.

    PubMed

    Sun, Zhenyu; Fu, Lei; Liu, Zhimin; Han, Buxing; Liu, Yunqi; Du, Jimin

    2006-03-01

    A simple and efficient route has been employed to deposit noble metal nanoparticles (Pt, Ru, Pt-Ru, Rh, Ru-Sn) onto carbon nanotubes (CNTs) in supercritical methanol solution. In this method, the inorganic metallic salts acted as metal precursors, and methanol as solvent as well as reductant for the precursors. The as-prepared nanocomposites were structurally and morphologically characterized by X-ray diffraction spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy, and X-ray photoelectron spectroscopy analyses. It was demonstrated that the CNTs were decorated by crystalline metal nanoparticles with uniform sizes and a narrow particle size distribution. The size and loading content of the nanoparticles on CNTs could be tuned by manipulating reaction parameters. Furthermore, the formation mechanism of the composites was also discussed.

  6. Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt-Ru nanoalloy catalysts

    NASA Astrophysics Data System (ADS)

    Prasai, Binay; Ren, Yang; Shan, Shiyao; Zhao, Yinguang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian; Petkov, Valeri

    2015-04-01

    An approach to determining the 3D atomic structure of metallic nanoparticles (NPs) in fine detail and using the unique knowledge obtained for rationalizing their synthesis and properties targeted for optimization is described and exemplified on Pt-Ru alloy NPs of importance to the development of devices for clean energy conversion such as fuel cells. In particular, PtxRu100-x alloy NPs, where x = 31, 49 and 75, are synthesized by wet chemistry and activated catalytically by a post-synthesis treatment involving heating under controlled N2-H2 atmosphere. So-activated NPs are evaluated as catalysts for gas-phase CO oxidation and ethanol electro-oxidation reactions taking place in fuel cells. Both as-synthesized and activated NPs are characterized structurally by total scattering experiments involving high-energy synchrotron X-ray diffraction coupled to atomic pair distribution functions (PDFs) analysis. 3D structure models both for as-synthesized and activated NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modelling Sutton-Chen method. Models are refined against the experimental PDF data by reverse Monte Carlo simulations and analysed in terms of prime structural characteristics such as metal-to-metal bond lengths, bond angles and first coordination numbers for Pt and Ru atoms. Analysis indicates that, though of a similar type, the atomic structure of as-synthesized and respective activated NPs differ in several details of importance to NP catalytic properties. Structural characteristics of activated NPs and data for their catalytic activity are compared side by side and strong evidence found that electronic effects, indicated by significant changes in Pt-Pt and Ru-Ru metal bond lengths at NP surface, and practically unrecognized so far atomic ensemble effects, indicated by distinct stacking of atomic layers near NP surface and prevalence of particular configurations of Pt and Ru atoms in these layers, contribute to the

  7. Metals, toxicity and oxidative stress.

    PubMed

    Valko, M; Morris, H; Cronin, M T D

    2005-01-01

    . Antioxidants (both enzymatic and non-enzymatic) provide protection against deleterious metal-mediated free radical attacks. Vitamin E and melatonin can prevent the majority of metal-mediated (iron, copper, cadmium) damage both in vitro systems and in metal-loaded animals. Toxicity studies involving chromium have shown that the protective effect of vitamin E against lipid peroxidation may be associated rather with the level of non-enzymatic antioxidants than the activity of enzymatic antioxidants. However, a very recent epidemiological study has shown that a daily intake of vitamin E of more than 400 IU increases the risk of death and should be avoided. While previous studies have proposed a deleterious pro-oxidant effect of vitamin C (ascorbate) in the presence of iron (or copper), recent results have shown that even in the presence of redox-active iron (or copper) and hydrogen peroxide, ascorbate acts as an antioxidant that prevents lipid peroxidation and does not promote protein oxidation in humans in vitro. Experimental results have also shown a link between vanadium and oxidative stress in the etiology of diabetes. The impact of zinc (Zn) on the immune system, the ability of zinc to act as an antioxidant in order to reduce oxidative stress and the neuroprotective and neurodegenerative role of zinc (and copper) in the etiology of Alzheimer's disease is also discussed. This review summarizes recent findings in the metal-induced formation of free radicals and the role of oxidative stress in the carcinogenicity and toxicity of metals.

  8. Detection of total knee prostheses at airport security checkpoints.

    PubMed

    Naziri, Qais; Johnson, Aaron J; Hooper, Hasan A; Sana, Said H; Mont, Michael A

    2012-06-01

    Airport security screening measures have changed substantially during the past decade, but few reports have examined how this affects patients who have undergone knee arthroplasties. The purpose of this study was to characterize the efficacy of airport metal detection of total knee prostheses, the delays faced, any inconvenience this may have caused, and the role of implant identification cards. Ninety-seven total knee arthroplasty recipients reported passing through an airport metal detector, with 70 triggering the alarm a mean of 3 times (range, 1-36). The presence of a single-knee prosthesis triggered airport security alarms more than 83% of the time and increased patient inconvenience. Patients should be informed about this chance and be prepared to present documentation of their prosthesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. TOTAL Act of 2013

    THOMAS, 113th Congress

    Sen. Menendez, Robert [D-NJ

    2013-12-16

    Senate - 12/16/2013 Read twice and referred to the Committee on Commerce, Science, and Transportation. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  10. Low resistance barrier layer for isolating, adhering, and passivating copper metal in semiconductor fabrication

    DOEpatents

    Weihs, Timothy P.; Barbee, Jr., Troy W.

    2002-01-01

    Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).

  11. Risk factors for total hip arthroplasty aseptic revision.

    PubMed

    Khatod, Monti; Cafri, Guy; Namba, Robert S; Inacio, Maria C S; Paxton, Elizabeth W

    2014-07-01

    The purpose of this study was to evaluate patient, operative, implant, surgeon, and hospital factors associated with aseptic revision after primary THA in patients registered in a large US Total Joint Replacement Registry. A total of 35,960 THAs registered from 4/2001-12/2010 were evaluated. The 8-year survival rate was 96.7% (95% CI 96.4%-97.0%). Females had a higher risk of aseptic revision than males. Hispanic and Asian patients had a lower risk of revision than white patients. Ceramic-on-ceramic, ceramic-on-conventional polyethylene, and metal-on-conventional polyethylene bearing surfaces had a higher risk of revision than metal-on-highly cross-linked polyethylene. Body mass index, health status, diabetes, diagnosis, fixation, approach, bilateral procedures, head size, surgeon fellowship training, surgeon and hospital volume were not revision risk factors. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Total body irradiation, toward optimal individual delivery: dose evaluation with metal oxide field effect transistors, thermoluminescence detectors, and a treatment planning system.

    PubMed

    Bloemen-van Gurp, Esther J; Mijnheer, Ben J; Verschueren, Tom A M; Lambin, Philippe

    2007-11-15

    To predict the three-dimensional dose distribution of our total body irradiation technique, using a commercial treatment planning system (TPS). In vivo dosimetry, using metal oxide field effect transistors (MOSFETs) and thermoluminescence detectors (TLDs), was used to verify the calculated dose distributions. A total body computed tomography scan was performed and loaded into our TPS, and a three-dimensional-dose distribution was generated. In vivo dosimetry was performed at five locations on the patient. Entrance and exit dose values were converted to midline doses using conversion factors, previously determined with phantom measurements. The TPS-predicted dose values were compared with the MOSFET and TLD in vivo dose values. The MOSFET and TLD dose values agreed within 3.0% and the MOSFET and TPS data within 0.5%. The convolution algorithm of the TPS, which is routinely applied in the clinic, overestimated the dose in the lung region. Using a superposition algorithm reduced the calculated lung dose by approximately 3%. The dose inhomogeneity, as predicted by the TPS, can be reduced using a simple intensity-modulated radiotherapy technique. The use of a TPS to calculate the dose distributions in individual patients during total body irradiation is strongly recommended. Using a TPS gives good insight of the over- and underdosage in a patient and the influence of patient positioning on dose homogeneity. MOSFETs are suitable for in vivo dosimetry purposes during total body irradiation, when using appropriate conversion factors. The MOSFET, TLD, and TPS results agreed within acceptable margins.

  13. Site Specific Metal Criteria Developed Using Kentucky Division of Water Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kszos, L.A.; Phipps, T.L.

    1999-10-09

    Alternative limits for Cu, Ni, Pb, and Zn were developed for treated wastewater from four outfalls at a Gaseous Diffusion Plant. Guidance from the Kentucky Division of Water (KDOW) was used to (1) estimate the toxicity of the effluents using water fleas (Ceriodaphnia dubia) and fathead minnow (Pimephales promelas) larvae; (2) determine total recoverable and dissolved concentrations of Cu, Pb, Ni, and Zn ; (3) calculate ratios of dissolved metal (DM) to total recoverable metal (TRM); and (4) assess chemical characteristics of the effluents. Three effluent samples from each outfall were collected during each of six test periods; thus, amore » total of 18 samples from each outfall were evaluated for toxicity, DM and TRM. Subsamples were analyzed for alkalinity, hardness, pH, conductivity, and total suspended solids. Short-term (6 or 7 d), static renewal toxicity tests were conducted according to EPA methodology. Ceriodaphnia reproduction was reduced in one test of effluent from Outfall A , and effluent from Outfall B was acutely toxic to both test species during one test. However, the toxicity was not related to the metals present in the effluents. Of the 18 samples from each outfall, more than 65% of the metal concentrations were estimated quantities. With the exception of two total recoverable Cu values in Outfall C, all metal concentrations were below the permit limits and the federal water quality criteria. Ranges of TR for all outfalls were: Cd, ,0.1-0.4 {micro}g/L; Cr,1.07-3.93 {micro}g/L; Cu, 1.59-7.24 {micro}g/L; Pb, <0.1-3.20 {micro}g/L; Ni, 0.82-10.7 {micro}g/L, Zn, 4.75-67.3 {micro}g/L. DM:TRM ratios were developed for each outfall. The proportion of dissolved Cu in the effluents ranged from 67 to 82%; the proportion of dissolved Ni ranged from 84 to 91%; and the proportion of dissolved Zn ranged from 74 to 94%. The proportion of dissolved Pb in the effluents was considerably lower (37-51%). TRM and/or DM concentrations of Cu, Ni, Pb, or Zn differed

  14. Metal and alloy nanoparticles by amine-borane reduction of metal salts by solid-phase synthesis: atom economy and green process.

    PubMed

    Sanyal, Udishnu; Jagirdar, Balaji R

    2012-12-03

    A new solid state synthetic route has been developed toward metal and bimetallic alloy nanoparticles from metal salts employing amine-boranes as the reducing agent. During the reduction, amine-borane plays a dual role: acts as a reducing agent and reduces the metal salts to their elemental form and simultaneously generates a stabilizing agent in situ which controls the growth of the particles and stabilizes them in the nanosize regime. Employing different amine-boranes with differing reducing ability (ammonia borane (AB), dimethylamine borane (DMAB), and triethylamine borane (TMAB)) was found to have a profound effect on the particle size and the size distribution. Usage of AB as the reducing agent provided the smallest possible size with best size distribution. Employment of TMAB also afforded similar results; however, when DMAB was used as the reducing agent it resulted in larger sized nanoparticles that are polydisperse too. In the AB mediated reduction, BNH(x) polymer generated in situ acts as a capping agent whereas, the complexing amine of the other amine-boranes (DMAB and TMAB) play the same role. Employing the solid state route described herein, monometallic Au, Ag, Cu, Pd, and Ir and bimetallic CuAg and CuAu alloy nanoparticles of <10 nm were successfully prepared. Nucleation and growth processes that control the size and the size distribution of the resulting nanoparticles have been elucidated in these systems.

  15. A new metalation complex for organic synthesis and polymerization reactions

    NASA Technical Reports Server (NTRS)

    Hirshfield, S. M.

    1971-01-01

    Organometallic complex of N,N,N',N' tetramethyl ethylene diamine /TMEDA/ and lithium acts as metalation intermediate for controlled systhesis of aromatic organic compounds and polymer formation. Complex of TMEDA and lithium aids in preparation of various organic lithium compounds.

  16. Assessment of Corrosion, Fretting, and Material Loss of Retrieved Modular Total Knee Arthroplasties.

    PubMed

    Martin, Audrey J; Seagers, Kirsten A; Van Citters, Douglas W

    2017-07-01

    Modular junctions in total hip arthroplasties have been associated with fretting, corrosion, and debris release. The purpose of this study is to analyze damage severity in total knee arthroplasties of a single design by qualitative visual assessment and quantitative material loss measurements to evaluate implant performance and patient impact via material loss. Twenty-two modular knee retrievals of the same manufacturer were identified from an institutional review board-approved database. Junction designs included tapers with an axial screw and tapers with a radial screw. Constructs consisted of 2 metal alloys: CoCr and Ti6Al4V. Components were qualitatively scored and quantitatively measured for corrosion and fretting. Negative values represent adhered material. Statistical differences were analyzed using sign tests. Correlations were tested with a Spearman rank order test (P < .05). The median volumetric material loss and the maximum linear depth for the total population were -0.23 mm 3 and 5.84 μm, respectively. CoCr components in mixed metal junctions had higher maximum linear depth (P = .007) than corresponding Ti components. Fretting scores of Ti6Al4V alloy components in mixed metal junctions were statistically higher than the remaining groups. Taper angle did not correlate with material loss. Results suggest that CoCr components in mixed metal junctions are more vulnerable to corrosion than other components, suggesting preferential corrosion when interfacing with Ti6Al4V. Overall, although corrosion was noted in this series, material loss was low, and none were revised for clinical metal-related reaction. This suggests the clinical impact from corrosion in total knee arthroplasty is low. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Metallic copper in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    1994-01-01

    Metallic Cu of moderately high purity (approximately 985 mg/g Cu, approximately 15 mg/g Ni) occurs in at least 66% of ordinary chondrites (OC) as heterogeneously distributed, small (typically less than or equal to 20 micrometers) rounded to irregular grains. The mean modal abundance of metallic Cu in H, L and LL chondrites is low: 1.0 to 1.4 x 10(exp -4) vol%, corresponding to only 4 - 5 % of the total Cu in OC whole rocks. In more than 75% of the metallic-Cu-bearing OC, at least some metallic Cu occurs at metallic-Fe-Ni-troilite grain boundaries. In some cases it also occurs within troilite, within metallic Fe-Ni, or at the boundaries these phases form with silicates or chromite. Ordinary chondrites that contain a relatively large number of occurrences of metallic Cu/sq mm have a tendency to have experienced moderately high degrees of shock. Shock processes can cause local melting and transportation of metallic Fe-Ni and troilte; because metallic Cu is mainly associated with these phases, it also gets redistributed during shock events. In the most common petrographic assemblage containing metallic Cu, the Cu is adjacent to small irregular troilite grains surrounded by taenite plus tetrataenite; this assemblage resembles fizzed troilite and may have formed by localized shock melting or remelting of a metal-troilite assemblage.

  18. Total petroleum hydrocarbons and heavy metals in the surface sediments of Bohai Bay, China: long-term variations in pollution status and adverse biological risk.

    PubMed

    Zhou, Ran; Qin, Xuebo; Peng, Shitao; Deng, Shihuai

    2014-06-15

    Surface sediments collected from 2001 to 2011 were analyzed for total petroleum hydrocarbons (TPH) and five heavy metals. The sediment concentration ranges of TPH, Zn, Cu, Pb, Cd and Hg were 6.3-535 μg/g, 58-332 μg/g, 7.2-63 μg/g, 4.3-138 μg/g, 0-0.98μg/g, and 0.10-0.68 μg/g, respectively. These results met the highest marine sediment quality standards in China, indicating that the sediment was fairly clean. However, based on the effects range-median (ERM) quotient method, the calculated values for all of the sampling sites were higher than 0.10, suggesting that there was a potential adverse biological risk in Bohai Bay. According to the calculated results, the biological risk decreased from 2001 to 2007 and increased afterwards. High-risk sites were mainly distributed along the coast. This study suggests that anthropogenic influences might be responsible for the potential risk of adverse biological effects from TPH and heavy metals in Bohai Bay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Gain and losses in THz quantum cascade laser with metal-metal waveguide.

    PubMed

    Martl, Michael; Darmo, Juraj; Deutsch, Christoph; Brandstetter, Martin; Andrews, Aaron Maxwell; Klang, Pavel; Strasser, Gottfried; Unterrainer, Karl

    2011-01-17

    Coupling of broadband terahertz pulses into metal-metal terahertz quantum cascade lasers is presented. Mode matched terahertz transients are generated on the quantum cascade laser facet of subwavelength dimension. This method provides a full overlap of optical mode and active laser medium. A longitudinal optical-phonon depletion based active region design is investigated in a coupled cavity configuration. Modulation experiments reveal spectral gain and (broadband) losses. The observed gain shows high dynamic behavior when switching from loss to gain around threshold and is clamped at total laser losses.

  20. Bioaccessibility of micron-sized powder particles of molybdenum metal, iron metal, molybdenum oxides and ferromolybdenum--Importance of surface oxides.

    PubMed

    Mörsdorf, Alexander; Odnevall Wallinder, Inger; Hedberg, Yolanda

    2015-08-01

    The European chemical framework REACH requires that hazards and risks posed by chemicals, including alloys and metals, that are manufactured, imported or used in different products (substances or articles) are identified and proven safe for humans and the environment. Metals and alloys need hence to be investigated on their extent of released metals (bioaccessibility) in biologically relevant environments. Read-across from available studies may be used for similar materials. This study investigates the release of molybdenum and iron from powder particles of molybdenum metal (Mo), a ferromolybdenum alloy (FeMo), an iron metal powder (Fe), MoO2, and MoO3 in different synthetic body fluids of pH ranging from 1.5 to 7.4 and of different composition. Spectroscopic tools and cyclic voltammetry have been employed to characterize surface oxides, microscopy, light scattering and nitrogen absorption for particle characterization, and atomic absorption spectroscopy to quantify released amounts of metals. The release of molybdenum from the Mo powder generally increased with pH and was influenced by the fluid composition. The mixed iron and molybdenum surface oxide of the FeMo powder acted as a barrier both at acidic and weakly alkaline conditions. These findings underline the importance of the surface oxide characteristics for the bioaccessibility of metal alloys. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Metal-Containing Polystyrene Beads as Standards for Mass Cytometry

    PubMed Central

    Abdelrahman, Ahmed I.; Ornatsky, Olga; Bandura, Dmitry; Kinach, Robert; Dai, Sheng; Thickett, Stuart C.; Tanner, Scott

    2010-01-01

    We examine the suitability of metal-containing polystyrene beads for the calibration of a mass cytometer instrument, a single particle analyser based on an inductively coupled plasma ion source and a time of flight mass spectrometer. These metal-containing beads are also verified for their use as internal standards for this instrument. These beads were synthesized by multiple-stage dispersion polymerization with acrylic acid as a comonomer. Acrylic acid acts as a ligand to anchor the metal ions within the interior of the beads. Mass cytometry enabled the bead-by-bead measurement of the metal-content and determination of the metal-content distribution. Beads synthesized by dispersion polymerization that involved three stages were shown to have narrower bead-to-bead variation in their lanthanide content than beads synthesized by 2-stage dispersion polymerization. The beads exhibited insignificant release of their lanthanide content to aqueous solutions of different pHs over a period of six months. When mixed with KG1a or U937 cell lines, metal-containing polymer beads were shown not to affect the mass cytometry response to the metal content of element-tagged antibodies specifically attached to these cells. PMID:20390041

  2. Metal-Containing Polystyrene Beads as Standards for Mass Cytometry.

    PubMed

    Abdelrahman, Ahmed I; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Kinach, Robert; Dai, Sheng; Thickett, Stuart C; Tanner, Scott; Winnik, Mitchell A

    2010-01-01

    We examine the suitability of metal-containing polystyrene beads for the calibration of a mass cytometer instrument, a single particle analyser based on an inductively coupled plasma ion source and a time of flight mass spectrometer. These metal-containing beads are also verified for their use as internal standards for this instrument. These beads were synthesized by multiple-stage dispersion polymerization with acrylic acid as a comonomer. Acrylic acid acts as a ligand to anchor the metal ions within the interior of the beads. Mass cytometry enabled the bead-by-bead measurement of the metal-content and determination of the metal-content distribution. Beads synthesized by dispersion polymerization that involved three stages were shown to have narrower bead-to-bead variation in their lanthanide content than beads synthesized by 2-stage dispersion polymerization. The beads exhibited insignificant release of their lanthanide content to aqueous solutions of different pHs over a period of six months. When mixed with KG1a or U937 cell lines, metal-containing polymer beads were shown not to affect the mass cytometry response to the metal content of element-tagged antibodies specifically attached to these cells.

  3. Toxicity, mechanism and health effects of some heavy metals

    PubMed Central

    Jaishankar, Monisha; Tseten, Tenzin; Anbalagan, Naresh; Beeregowda, Krishnamurthy N.

    2014-01-01

    Heavy metal toxicity has proven to be a major threat and there are several health risks associated with it. The toxic effects of these metals, even though they do not have any biological role, remain present in some or the other form harmful for the human body and its proper functioning. They sometimes act as a pseudo element of the body while at certain times they may even interfere with metabolic processes. Few metals, such as aluminium, can be removed through elimination activities, while some metals get accumulated in the body and food chain, exhibiting a chronic nature. Various public health measures have been undertaken to control, prevent and treat metal toxicity occurring at various levels, such as occupational exposure, accidents and environmental factors. Metal toxicity depends upon the absorbed dose, the route of exposure and duration of exposure, i.e. acute or chronic. This can lead to various disorders and can also result in excessive damage due to oxidative stress induced by free radical formation. This review gives details about some heavy metals and their toxicity mechanisms, along with their health effects. PMID:26109881

  4. Do ion levels in metal-on-metal hip resurfacing differ from those in metal-on-metal THA at long-term followup?

    PubMed

    Savarino, Lucia; Cadossi, Matteo; Chiarello, Eugenio; Baldini, Nicola; Giannini, Sandro

    2013-09-01

    Metal-on-metal hip resurfacing arthroplasty (MOM HR) has become an established alternative to traditional metal-on-metal total hip arthroplasty (MOM THA) for younger, more active patients. Nevertheless, concerns remain regarding wear and corrosion of the bearing surfaces and the resulting systemic metal ion distribution. We therefore asked whether (1) serum ion concentrations in patients with MOM HR at the time of long-term followup were higher than concentrations in a control population with no hip implants; (2) the ion concentrations in patients with MOM HR were different from those in patients with MOM THA; and (3) sex would influence ion levels with regard to implant type. The MOM HR and MOM THA groups consisted of 25 patients (evaluated at a minimum of 96 months) and 16 patients (evaluated at a minimum of 106 months), respectively. Forty-eight healthy donors were recruited for reference values. Cobalt, chromium, nickel, and molybdenum were measured by furnace graphite atomic absorption spectrophotometry. Ion concentrations of cobalt, chromium, and molybdenum in MOM HR were higher than in controls. Chromium and cobalt release were higher in MOM HR than in MOM THA. The sex-based analysis showed the difference was because women had higher concentrations in the MOM HR group than in the MOM THA group, whereas there was no difference between the men in the two groups. In MOM HR, high metal ion release persists for the long term. Consequently, it is important to implement strict biomonitoring for patients who have received these implants. The sustained high levels of chromium in females within the MOM HR group are concerning and merits strong consideration when choosing implants in this patient group.

  5. Three-dimensional metal-intercalated covalent organic frameworks for near-ambient energy storage

    PubMed Central

    Gao, Fei; Ding, Zijing; Meng, Sheng

    2013-01-01

    A new form of nanoporous material, metal intercalated covalent organic framework (MCOF) is proposed and its energy storage property revealed. Employing density functional and thermodynamical analysis, we find that stable, chemically active, porous materials could form by stacking covalent organic framework (COF) layers with metals as a gluing agent. Metal acts as active sites, while its aggregation is suppressed by a binding energy significantly larger than the corresponding cohesive energy of bulk metals. Two important parameters, metal binding and metal-metal separation, are tuned by selecting suitable building blocks and linkers when constructing COF layers. Systematic searches among a variety of elements and organic molecules identify Ca-intercalated COF with diphenylethyne units as optimal material for H2 storage, reaching a striking gravimetric density ~ 5 wt% at near-ambient conditions (300 K, 20 bar), in comparison to < 0.1 wt% for bare COF-1 under the same condition. PMID:23698018

  6. Synaptic behaviors of a single metal-oxide-metal resistive device

    NASA Astrophysics Data System (ADS)

    Choi, Sang-Jun; Kim, Guk-Bae; Lee, Kyoobin; Kim, Ki-Hong; Yang, Woo-Young; Cho, Soohaeng; Bae, Hyung-Jin; Seo, Dong-Seok; Kim, Sang-Il; Lee, Kyung-Jin

    2011-03-01

    The mammalian brain is far superior to today's electronic circuits in intelligence and efficiency. Its functions are realized by the network of neurons connected via synapses. Much effort has been extended in finding satisfactory electronic neural networks that act like brains, i.e., especially the electronic version of synapse that is capable of the weight control and is independent of the external data storage. We demonstrate experimentally that a single metal-oxide-metal structure successfully stores the biological synaptic weight variations (synaptic plasticity) without any external storage node or circuit. Our device also demonstrates the reliability of plasticity experimentally with the model considering the time dependence of spikes. All these properties are embodied by the change of resistance level corresponding to the history of injected voltage-pulse signals. Moreover, we prove the capability of second-order learning of the multi-resistive device by applying it to the circuit composed of transistors. We anticipate our demonstration will invigorate the study of electronic neural networks using non-volatile multi-resistive device, which is simpler and superior compared to other storage devices.

  7. UV-light assisted patterned metallization of textile fabrics

    NASA Astrophysics Data System (ADS)

    Bahners, Thomas; Gebert, Beate; Prager, Andrea; Hartmann, Nils; Hagemann, Ulrich; Gutmann, Jochen S.

    2018-04-01

    A UV-assisted process allows full-faced or local deposition of silver domains on textiles made of natural as well as synthetic fibers, which act as nuclei for subsequent galvanic metallization. SEM and XPS analyses indicate that the process generates particulate depositions - particles, aggregates - of elementary silver. Masking the UV irradiation confines silver deposition strictly to the exposed areas thus allowing patterning. Adhesion of the deposited silver is high on the studied natural fiber cotton and polyamide fibers. Adhesion on smooth and chemically inert synthethic fibers such as, e.g., poly(ethylene terephthalate) or para- and meta-aramids could be enhanced by finishing with poly(vinylamine) thus providing complex-forming amino groups. Although the process does not deposit a closed, electrically conducting layer, all studied samples could be metallized by galvanization. The resulting metal coatings exhibit high conductivity and wash stability. Following a patterned silver deposition, the subsequent galvanic metallization produced conductive patterns of identical geometry thus opening an avenue towards printed circuits on textile fabrics.

  8. Dissimilar metals joint evaluation

    NASA Technical Reports Server (NTRS)

    Wakefield, M. E.; Apodaca, L. E.

    1974-01-01

    Dissimilar metals tubular joints between 2219-T851 aluminum alloy and 304L stainless steel were fabricated and tested to evaluate bonding processes. Joints were fabricated by four processes: (1) inertia (friction) weldings, where the metals are spun and forced together to create the weld; (2) explosive welding, where the metals are impacted together at high velocity; (3) co-extrusion, where the metals are extruded in contact at high temperature to promote diffusion; and (4) swaging, where residual stresses in the metals after a stretching operation maintain forced contact in mutual shear areas. Fifteen joints of each type were prepared and evaluated in a 6.35 cm (2.50 in.) O.D. size, with 0.32 cm (0.13 in.) wall thickness, and 7.6 cm (3.0 in) total length. The joints were tested to evaluate their ability to withstand pressure cycle, thermal cycle, galvanic corrosion and burst tests. Leakage tests and other non-destructive test techniques were used to evaluate the behavior of the joints, and the microstructure of the bond areas was analyzed.

  9. Magnetic susceptibility as an indicator of heavy metal contamination in compost.

    PubMed

    Paradelo, Remigio; Moldes, Ana Belén; Barral, María Teresa

    2009-02-01

    One of the main restrictions to the agronomic use of compost is the excess of heavy metals, which are often present due to inadequate separation of biodegradable fractions from non-degradable or inert materials. Magnetic susceptibility (MS) measurements are a simple technique that has been reported as a useful tool for assessing anthropogenic pollution, especially heavy metal pollution on soil and sediment samples. The close relationship of MS with heavy metal contamination has been proved by combined analyses of chemical and magnetic data. In this study, the MS and total heavy metal concentrations of eight composts from different origins were determined; all composts were passed under a magnet to remove the magnetic material, and total heavy metals were determined again. In our work, high correlations were found between magnetic susceptibility and total Cd, Zn, Pb, Cr and Ni, thus confirming the applicability of MS measurement as a proxy for heavy metal contamination in compost quality assessments. The application of a magnet over the composts reduced the MS as well as the heavy metal content, the reduction of Fe and MS being the most significantly correlated. Thus, the inclusion of an additional magnetic separation step in the post-process compost finishing could be envisaged.

  10. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...

  11. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  12. Unanticipated potential cancer risk near metal recycling facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raun, Loren, E-mail: raun@rice.edu; Pepple, Karl, E-mail: pepple.karl@epa.gov; Hoyt, Daniel, E-mail: hoyt.daniel@epa.gov

    2013-07-15

    Metal recycling is an important growing industry. Prior to this study, area sources consisting of metal recycling facilities fell in a category of limited regulatory scrutiny because of assumed low levels of annual emissions. Initiating with community complaints of nuisance from smoke, dust and odor, the Houston Department of Health and Human Services (HDHHS) began a monitoring program outside metal recycler facilities and found metal particulates in outdoor ambient air at levels which could pose a carcinogenic human health risk. In a study of five similar metal recycler facilities which used a torch cutting process, air downwind and outside themore » facility was sampled for eight hours between 6 and 10 times each over 18 months using a mobile laboratory. Ten background locations were also sampled. Iron, manganese, copper, chromium, nickel, lead, cobalt, cadmium and mercury were detected downwind of the metal recyclers at frequencies ranging from 100% of the time for iron to 2% of the time for mercury. Of these metals, chromium, nickel, lead, cobalt, cadmium and mercury were not detected in any sample in the background. Two pairs of samples were analyzed for total chromium and hexavalent chromium to establish a ratio of the fraction of hexavalent chromium in total chromium. This fraction was used to estimate hexavalent chromium at all locations. The carcinogenic risk posed to a residential receptor from metal particulate matter concentrations in the ambient air attributed to the metal recyclers was estimated from each of the five facilities in an effort to rank the importance of this source and inform the need for further investigation. The total risk from these area sources ranged from an increased cancer risk of 1 in 1,000,000 to 6 in 10,000 using the 95th upper confidence limit of the mean of the carcinogenic metal particulate matter concentration, assuming the point of the exposure is the sample location for a residential receptor after accounting for wind

  13. Behavior as a sentry of metal toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, B.

    1978-01-01

    Many of the toxic properties of metals are expressed as behavioral aberrations. Some of these arise from direct actions on the central nervous system. Others arise from primary events elsewhere, but still influence behavior. Toxicity may be expressed either as objectively measurable phenomena, such as ataxia, or as subjective complaints, such as depression. In neither instance is clinical medicine equipped to provide assessments of subtle, early indices of toxicity. Reviewers of visual disturbances, paresthesia, and mental retardation exemplify the potential contribution of psychology to the toxicology of metals. Behavior and nervous system functions act as sensitive mirrors of metal toxicity.more » Sensitivity is the prime aim in environmental health assessments. Early detection of adverse effects, before they progress to irreversibility, underlies the strategy for optimal health protection. Some of the toxic actions of metals originate in direct nervous system dysfunction. Others may reflect disturbances of systems less directly linked to behavior than the central nervous system. But behavior, because it expresses the integrated functioning of the organism, can indicate flaws in states and processes outside the nervous system.« less

  14. 20 CFR 410.426 - Determining total disability: Age, education, and work experience criteria.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Total Disability or Death Due to Pneumoconiosis § 410.426 Determining total disability: Age, education, and work...

  15. Sources of metal loads to the Alamosa River and estimation of seasonal and annual metal loads for the Alamosa River basin, Colorado, 1995-97

    USGS Publications Warehouse

    Ortiz, Roderick F.; Edelmann, Patrick; Ferguson, Sheryl; Stogner, Robert

    2002-01-01

    Metal contamination in the upper Alamosa River Basin has occurred for decades from the Summitville Mine site, from other smaller mines, and from natural, metal-enriched acidic drainage in the basin. In 1995, the need to quantify contamination from various source areas in the basin and to quantify the spatial, seasonal, and annual metal loads in the basin was identified. Data collection occurred from 1995 through 1997 at numerous sites to address data gaps. Metal loads were calculated and the percentages of metal load contributions from tributaries to three risk exposure areas were determined. Additionally, a modified time-interval method was used to estimate seasonal and annual metal loads in the Alamosa River and Wightman Fork. Sources of dissolved and total-recoverable aluminum, copper, iron, and zinc loads were determined for Exposure Areas 3a, 3b, and 3c. Alum Creek is the predominant contributor of aluminum, copper, iron, and zinc loads to Exposure Area 3a. In general, Wightman Fork was the predominant source of metals to Exposure Area 3b, particularly during the snowmelt and summer-flow periods. During the base-flow period, however, aluminum and iron loads from Exposure Area 3a were the dominant source of these metals to Exposure Area 3b. Jasper and Burnt Creeks generally contributed less than 10 percent of the metal loads to Exposure Area 3b. On a few occasions, however, Jasper and Burnt Creeks contributed a substantial percentage of the loads to the Alamosa River. The metal loads calculated for Exposure Area 3c result from upstream sources; the primary upstream sources are Wightman Fork, Alum Creek, and Iron Creek. Tributaries in Exposure Area 3c did not contribute substantially to the metal load in the Alamosa River. In many instances, the percentage of dissolved and/or total-recoverable metal load contribution from a tributary or the combined percentage of metal load contribution was greater than 100 percent of the metal load at the nearest downstream

  16. 75 FR 17917 - Clean Water Act Section 303(d): Final Agency Action on Seven Total Maximum Daily Loads (TMDLs) in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9135-1] Clean Water Act Section 303(d): Final Agency Action... the Clean Water Act (CWA). Documents from the administrative record file for the seven TMDLs... Oxygen. 010401 East Atchafalaya Mercury. Basin and Morganza Floodway South to Interstate 10 Canal. 010501...

  17. Transition Metal Transport in Plants and Associated Endosymbionts: Arbuscular Mycorrhizal Fungi and Rhizobia

    PubMed Central

    González-Guerrero, Manuel; Escudero, Viviana; Saéz, Ángela; Tejada-Jiménez, Manuel

    2016-01-01

    Transition metals such as iron, copper, zinc, or molybdenum are essential nutrients for plants. These elements are involved in almost every biological process, including photosynthesis, tolerance to biotic and abiotic stress, or symbiotic nitrogen fixation. However, plants often grow in soils with limiting metallic oligonutrient bioavailability. Consequently, to ensure the proper metal levels, plants have developed a complex metal uptake and distribution system, that not only involves the plant itself, but also its associated microorganisms. These microorganisms can simply increase metal solubility in soils and making them more accessible to the host plant, as well as induce the plant metal deficiency response, or directly deliver transition elements to cortical cells. Other, instead of providing metals, can act as metal sinks, such as endosymbiotic rhizobia in legume nodules that requires relatively large amounts to carry out nitrogen fixation. In this review, we propose to do an overview of metal transport mechanisms in the plant–microbe system, emphasizing the role of arbuscular mycorrhizal fungi and endosymbiotic rhizobia. PMID:27524990

  18. Total fume and metal concentrations during welding in selected factories in Jeddah, Saudi Arabia.

    PubMed

    Balkhyour, Mansour Ahmed; Goknil, Mohammad Khalid

    2010-07-01

    Welding is a major industrial process used for joining metals. Occupational exposure to welding fumes is a serious occupational health problem all over the world. The degree of risk to welder's health from fumes depends on composition, concentration, and the length of exposure. The aim of this study was to investigate workers' welding fume exposure levels in some industries in Jeddah, Saudi Arabia. In each factory, the air in the breathing zone within 0.5 m from welders was sampled during 8-hour shifts. Total particulates, manganese, copper, and molybdenum concentrations of welding fumes were determined. Mean values of eight-hour average particulate concentrations measured during welding at the welders breathing zone were 6.3 mg/m(3) (Factory 1), 5.3 mg/m(3) (Factory 2), 11.3 mg/m(3) (Factory 3), 6.8 mg/m(3) (Factory 4), 4.7 mg/m(3) (Factory 5), and 3.0 mg/m(3) (Factory 6). Mean values of airborne manganese, copper, and molybdenum levels measured during welding were in the range of 0.010 mg/m(3)-0.477 mg/m(3), 0.001 mg/m(3)-0.080 mg/m(3) and 0.001 mg/m(3)-0.058 mg/m(3) respectively. Mean values of calculated equivalent exposure values were: 1.50 (Factory 1), 1.56 (Factory 2), 5.14 (Factory 3), 2.21 (Factory 4), 2.89 (Factory 5), and 1.20 (Factory 6). The welders in factories 1, 2, 3, and 4 were exposed to welding fume concentration above the SASO limit value, which may increase the risk of respiratory health problems.

  19. Defect-mediated, thermally-activated encapsulation of metals at the surface of graphite

    DOE PAGES

    Zhou, Yinghui; Lii-Rosales, Ann; Kim, Minsung; ...

    2017-11-04

    Here, we show that 3 metals – Dy, Ru, and Cu – can form multilayer intercalated (encapsulated) islands at the graphite (0001) surface if 2 specific conditions are met: Defects are introduced on the graphite terraces to act as entry portals, and the metal deposition temperature is well above ambient. Focusing on Dy as a prototype, we show that surface encapsulation is much different than bulk intercalation, because the encapsulated metal takes the form of bulk-like rafts of multilayer Dy, rather than the dilute, single-layer structure known for the bulk compound. Carbon-covered metallic rafts even form for relatively unreactive metalsmore » (Ru and Cu) which have no known bulk intercalation compound.« less

  20. Revision surgery of metal-on-metal hip arthroplasties for adverse reactions to metal debris.

    PubMed

    Matharu, Gulraj S; Eskelinen, Antti; Judge, Andrew; Pandit, Hemant G; Murray, David W

    2018-06-01

    Background and purpose - The initial outcomes following metal-on-metal hip arthroplasty (MoMHA) revision surgery performed for adverse reactions to metal debris (ARMD) were poor. Furthermore, robust thresholds for performing ARMD revision are lacking. This article is the second of 2. The first article considered the various investigative modalities used during MoMHA patient surveillance (Matharu et al. 2018a ). The present article aims to provide a clinical update regarding ARMD revision surgery in MoMHA patients (hip resurfacing and large-diameter MoM total hip arthroplasty), with specific focus on the threshold for performing ARMD revision, the surgical strategy, and the outcomes following revision. Results and interpretation - The outcomes following ARMD revision surgery appear to have improved with time for several reasons, among them the introduction of regular patient surveillance and lowering of the threshold for performing revision. Furthermore, registry data suggest that outcomes following ARMD revision are influenced by modifiable factors (type of revision procedure and bearing surface implanted), meaning surgeons could potentially reduce failure rates. However, additional large multi-center studies are needed to develop robust thresholds for performing ARMD revision surgery, which will guide surgeons' treatment of MoMHA patients. The long-term systemic effects of metal ion exposure in patients with these implants must also be investigated, which will help establish whether there are any systemic reasons to recommend revision of MoMHAs.

  1. Immunological Responses to Total Hip Arthroplasty.

    PubMed

    Man, Kenny; Jiang, Lin-Hua; Foster, Richard; Yang, Xuebin B

    2017-08-01

    The use of total hip arthroplasties (THA) has been continuously rising to meet the demands of the increasingly ageing population. To date, this procedure has been highly successful in relieving pain and restoring the functionality of patients' joints, and has significantly improved their quality of life. However, these implants are expected to eventually fail after 15-25 years in situ due to slow progressive inflammatory responses at the bone-implant interface. Such inflammatory responses are primarily mediated by immune cells such as macrophages, triggered by implant wear particles. As a result, aseptic loosening is the main cause for revision surgery over the mid and long-term and is responsible for more than 70% of hip revisions. In some patients with a metal-on-metal (MoM) implant, metallic implant wear particles can give rise to metal sensitivity. Therefore, engineering biomaterials, which are immunologically inert or support the healing process, require an in-depth understanding of the host inflammatory and wound-healing response to implanted materials. This review discusses the immunological response initiated by biomaterials extensively used in THA, ultra-high-molecular-weight polyethylene (UHMWPE), cobalt chromium (CoCr), and alumina ceramics. The biological responses of these biomaterials in bulk and particulate forms are also discussed. In conclusion, the immunological responses to bulk and particulate biomaterials vary greatly depending on the implant material types, the size of particulate and its volume, and where the response to bulk forms of differing biomaterials are relatively acute and similar, while wear particles can initiate a variety of responses such as osteolysis, metal sensitivity, and so on.

  2. 40 CFR 63.7507 - What are the health-based compliance alternatives for the hydrogen chloride (HCl) and total...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 14 2012-07-01 2011-07-01 true What are the health-based compliance alternatives for the hydrogen chloride (HCl) and total selected metals (TSM) standards? 63.7507 Section 63.7507... the hydrogen chloride (HCl) and total selected metals (TSM) standards? (a) As an alternative to the...

  3. 40 CFR 63.7507 - What are the health-based compliance alternatives for the hydrogen chloride (HCl) and total...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false What are the health-based compliance alternatives for the hydrogen chloride (HCl) and total selected metals (TSM) standards? 63.7507 Section 63.7507... the hydrogen chloride (HCl) and total selected metals (TSM) standards? (a) As an alternative to the...

  4. 40 CFR 63.7507 - What are the health-based compliance alternatives for the hydrogen chloride (HCl) and total...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 13 2011-07-01 2011-07-01 false What are the health-based compliance alternatives for the hydrogen chloride (HCl) and total selected metals (TSM) standards? 63.7507 Section 63.7507... the hydrogen chloride (HCl) and total selected metals (TSM) standards? (a) As an alternative to the...

  5. Analytical results for total-digestions, EPA-1312 leach, and net acid production for twenty-three abandoned metal-mining related wastes in the Boulder River watershed, northern Jefferson County, Montana

    USGS Publications Warehouse

    Fey, David L.; Desborough, George A.; Finney, Christopher J.

    2000-01-01

    IntroductionMetal-mining related wastes in the Boulder River basin study area in northern Jefferson County, Montana, have been implicated in their detrimental effects on water quality with regard to acid generation and toxic-metal solubilization during snow melt and storm water runoff events. This degradation of water quality is defined chiefly by the “Class 1 Aquatic Life Standards” that give limits for certain dissolved metal concentrations according to water alkalinity.Veins enriched in base- and precious metals were explored and mined in the Basin, Cataract Creek, and High Ore Creek drainages over a period of more than 70 years. Extracted minerals included galena, sphalerite, pyrite, chalcopyrite, tetrahedrite and arsenopyrite. Most of the metal-mining wastes in the study area were identified and described by the Montana Bureau of Mines and Geology. In 1997, the U.S. Geological Survey collected 20 composite samples of mine-dump or tailings waste from ten sites in the Basin and Cataract Creek drainages, and two samples from one site in the High Ore Creek drainage. Desborough and Fey presented data concerning acid generation potential, mineralogy, concentrations of certain metals by energy-dispersive X-ray fluorescence (EDXRF), and trace-element leachability of mine and exploration wastes from the ten sites of the Basin and Cataract Creek drainages. The present report presents total-digestion major- and trace-element analyses, net acid production (NAP), and results from the EPA-1312 synthetic precipitation leach procedure (SPLP) performed on the same composite samples from the ten sites from the Basin and Cataract Creek drainages, and two composite samples from the site in the High Ore Creek drainage.

  6. Metal ion-dependent DNAzymes and their applications as biosensors.

    PubMed

    Lan, Tian; Lu, Yi

    2012-01-01

    Long considered to serve solely as the genetic information carrier, DNA has been shown in 1994 to be able to act as DNA catalysts capable of catalyzing a trans-esterification reaction similar to the action of ribozymes and protein enzymes. Although not yet found in nature, numerous DNAzymes have been isolated through in vitro selection for catalyzing many different types of reactions in the presence of different metal ions and thus become a new class of metalloenzymes. What remains unclear is how DNA can carry out catalysis with simpler building blocks and fewer functional groups than ribozymes and protein enzymes and how DNA can bind metal ions specifically to perform these functions. In the past two decades, many biochemical and biophysical studies have been carried out on DNAzymes, especially RNA-cleaving DNAzymes. Important insights have been gained regarding their metal-dependent activity, global folding, metal binding sites, and catalytic mechanisms for these DNAzymes. Because of their high metal ion selectivity, one of the most important practical applications for DNAzymes is metal ion detection, resulting in highly sensitive and selective fluorescent, colorimetric, and electrochemical sensors for a wide range of metal ions such as Pb(2+), UO2 2 +,[Formula: see text] including paramagnetic metal ions such as Cu(2+). This chapter summarizes recent progresses in in vitro selection of metal ion-selective DNAzymes, their biochemical and biophysical studies and sensing applications.

  7. Spin-on metal oxide materials for N7 and beyond patterning applications

    NASA Astrophysics Data System (ADS)

    Mannaert, G.; Altamirano-Sanchez, E.; Hopf, T.; Sebaai, F.; Lorant, C.; Petermann, C.; Hong, S.-E.; Mullen, S.; Wolfer, E.; Mckenzie, D.; Yao, H.; Rahman, D.; Cho, J.-Y.; Padmanaban, M.; Piumi, D.

    2017-04-01

    There is a growing interest in new spin on metal oxide hard mask materials for advanced patterning solutions both in BEOL and FEOL processing. Understanding how these materials respond to plasma conditions may create a competitive advantage. In this study patterning development was done for two challenging FEOL applications where the traditional Si based films were replaced by EMD spin on metal oxides, which acted as highly selective hard masks. The biggest advantage of metal oxide hard masks for advanced patterning lays in the process window improvement at lower or similar cost compared to other existing solutions.

  8. Liquid-metal dip seal with pneumatic spring

    DOEpatents

    Poindexter, Allan M.

    1977-01-01

    An improved liquid-metal dip seal for sealing the annulus between rotating plugs in the reactor vessel head of a liquid-metal fast-breeder nuclear reactor has two legs of differing widths communicating under a seal blade; the wide leg is also in communication with cover gas of the reactor and the narrow leg is also in communication with an isolated plug annulus above the seal. The annulus contains inert gas which acts as a pneumatic spring. Upon increasing cover gas pressure which depresses the level in the wide leg and greatly increases the level in the narrow leg, the pneumatic spring is compressed, and resists further level changes, thus preventing radioactive cover gas from bubbling through the seal.

  9. 20 CFR 410.422 - Determining total disability: General criteria.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Total Disability or Death Due to... of his death), under the provisions of § 410.418. In addition, when a miner has (or had) a chronic...

  10. 20 CFR 410.422 - Determining total disability: General criteria.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Total Disability or Death Due to... of his death), under the provisions of § 410.418. In addition, when a miner has (or had) a chronic...

  11. 29 CFR 4.181 - Overtime pay provisions of other Acts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 4.180. (b) Contract Work Hours and Safety Standards Act. (1) The Contract Work Hours and Safety... the work performed for the employer is subject to such Act and if, in such workweek, the total hours... not less than 11/2 times their regular rate of pay for all hours worked in excess of the applicable...

  12. Implementing the Workforce Investment Act of 1998. A White Paper.

    ERIC Educational Resources Information Center

    Employment and Training Administration (DOL), Washington, DC.

    The Workforce Investment Act represents a total customer-driven overhaul of the U.S. job training system that will help employers obtain needed workers and empower job seekers to obtain the training needed for the jobs they want. The Department of Labor will implement the Workforce Investment Act in cooperation with the Department of Education.…

  13. 20 CFR 234.11 - 1974 Act lump-sum death payment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false 1974 Act lump-sum death payment. 234.11... LUMP-SUM PAYMENTS Lump-Sum Death Payment § 234.11 1974 Act lump-sum death payment. (a) The total amount... household” as the employee at the time of the employee's death. (Refer to § 234.21 for an explanation of...

  14. 20 CFR 234.11 - 1974 Act lump-sum death payment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true 1974 Act lump-sum death payment. 234.11... LUMP-SUM PAYMENTS Lump-Sum Death Payment § 234.11 1974 Act lump-sum death payment. (a) The total amount... household” as the employee at the time of the employee's death. (Refer to § 234.21 for an explanation of...

  15. 20 CFR 234.11 - 1974 Act lump-sum death payment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false 1974 Act lump-sum death payment. 234.11... LUMP-SUM PAYMENTS Lump-Sum Death Payment § 234.11 1974 Act lump-sum death payment. (a) The total amount... household” as the employee at the time of the employee's death. (Refer to § 234.21 for an explanation of...

  16. 20 CFR 234.11 - 1974 Act lump-sum death payment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false 1974 Act lump-sum death payment. 234.11... LUMP-SUM PAYMENTS Lump-Sum Death Payment § 234.11 1974 Act lump-sum death payment. (a) The total amount... household” as the employee at the time of the employee's death. (Refer to § 234.21 for an explanation of...

  17. 20 CFR 234.11 - 1974 Act lump-sum death payment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true 1974 Act lump-sum death payment. 234.11... LUMP-SUM PAYMENTS Lump-Sum Death Payment § 234.11 1974 Act lump-sum death payment. (a) The total amount... household” as the employee at the time of the employee's death. (Refer to § 234.21 for an explanation of...

  18. Influence of heavy metal stress on antioxidant status and DNA damage in Urtica dioica.

    PubMed

    Gjorgieva, Darinka; Kadifkova Panovska, Tatjana; Ruskovska, Tatjana; Bačeva, Katerina; Stafilov, Trajče

    2013-01-01

    Heavy metals have the potential to interact and induce several stress responses in the plants; thus, effects of heavy metal stress on DNA damages and total antioxidants level in Urtica dioica leaves and stems were investigated. The samples are sampled from areas with different metal exposition. Metal content was analyzed by Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), for total antioxidants level assessment the Ferric-Reducing Antioxidant Power (FRAP) assay was used, and genomic DNA isolation from frozen plant samples was performed to obtain DNA fingerprints of investigated plant. It was found that heavy metal contents in stems generally changed synchronously with those in leaves of the plant, and extraneous metals led to imbalance of mineral nutrient elements. DNA damages were investigated by Random Amplified Polymorphic DNA (RAPD) technique, and the results demonstrated that the samples exposed to metals yielded a large number of new fragments (total 12) in comparison with the control sample. This study showed that DNA stability is highly affected by metal pollution which was identified by RAPD markers. Results suggested that heavy metal stress influences antioxidant status and also induces DNA damages in U. dioica which may help to understand the mechanisms of metals genotoxicity.

  19. Influence of Heavy Metal Stress on Antioxidant Status and DNA Damage in Urtica dioica

    PubMed Central

    Kadifkova Panovska, Tatjana; Bačeva, Katerina; Stafilov, Trajče

    2013-01-01

    Heavy metals have the potential to interact and induce several stress responses in the plants; thus, effects of heavy metal stress on DNA damages and total antioxidants level in Urtica dioica leaves and stems were investigated. The samples are sampled from areas with different metal exposition. Metal content was analyzed by Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), for total antioxidants level assessment the Ferric-Reducing Antioxidant Power (FRAP) assay was used, and genomic DNA isolation from frozen plant samples was performed to obtain DNA fingerprints of investigated plant. It was found that heavy metal contents in stems generally changed synchronously with those in leaves of the plant, and extraneous metals led to imbalance of mineral nutrient elements. DNA damages were investigated by Random Amplified Polymorphic DNA (RAPD) technique, and the results demonstrated that the samples exposed to metals yielded a large number of new fragments (total 12) in comparison with the control sample. This study showed that DNA stability is highly affected by metal pollution which was identified by RAPD markers. Results suggested that heavy metal stress influences antioxidant status and also induces DNA damages in U. dioica which may help to understand the mechanisms of metals genotoxicity. PMID:23862140

  20. Thermodynamics of impurity-enhanced vacancy formation in metals

    NASA Astrophysics Data System (ADS)

    Bukonte, Laura; Ahlgren, Tommy; Heinola, Kalle

    2017-01-01

    Hydrogen induced vacancy formation in metals and metal alloys has been of great interest during the past couple of decades. The main reason for this phenomenon, often referred to as the superabundant vacancy formation, is the lowering of vacancy formation energy due to the trapping of hydrogen. By means of thermodynamics, we study the equilibrium vacancy formation in fcc metals (Pd, Ni, Co, and Fe) in correlation with the H amounts. The results of this study are compared and found to be in good agreement with experiments. For the accurate description of the total energy of the metal-hydrogen system, we take into account the binding energies of each trapped impurity, the vibrational entropy of defects, and the thermodynamics of divacancy formation. We demonstrate the effect of vacancy formation energy, the hydrogen binding, and the divacancy binding energy on the total equilibrium vacancy concentration. We show that the divacancy fraction gives the major contribution to the total vacancy fraction at high H fractions and cannot be neglected when studying superabundant vacancies. Our results lead to a novel conclusion that at high hydrogen fractions, superabundant vacancy formation takes place regardless of the binding energy between vacancies and hydrogen. We also propose the reason of superabundant vacancy formation mainly in the fcc phase. The equations obtained within this work can be used for any metal-impurity system, if the impurity occupies an interstitial site in the lattice.

  1. THE STRATEGY OF THE TOTAL PHYSICAL RESPONSE--AN APPLICATION TO LEARNING RUSSIAN.

    ERIC Educational Resources Information Center

    ASHER, JAMES J.

    THE ESSENCE OF THE TOTAL PHYSICAL RESPONSE IS THAT LEARNERS ARE SILENT, LISTEN TO A COMMAND IN THE LANGUAGE BEING TAUGHT, THEN, OBEY THE COMMAND BY ACTING IT OUT WITH THE INSTRUCTOR AS A MODEL. THE METHOD WAS APPLIED TO TEACHING RUSSIAN AFTER AN INITIAL EXPERIMENT HAD BEEN TRIED WITH JAPANESE. THE EXPERIMENTAL GROUP ACTED OUT THE COMMANDS. THE…

  2. Handheld colorimeter for determination of heavy metal concentrations

    NASA Astrophysics Data System (ADS)

    López Ruiz, N.; Ariza, M.; Martínez Olmos, A.; Vukovic, J.; Palma, A. J.; Capitan-Vallvey, L. F.

    2011-08-01

    A portable instrument that measures heavy metal concentration from a colorimetric sensor array is presented. The use of eight sensing membranes, placed on a plastic support, allows to obtain the hue component of the HSV colour space of each one in order to determinate the concentration of metals present in a solution. The developed microcontroller-based system captures, in an ambient light environment, an image of the sensor array using an integrated micro-camera and shows the picture in a touch micro-LCD screen which acts as user interface. After image-processing of the regions of interest selected by the user, colour and concentration information are displayed on the screen.

  3. Method for improved decomposition of metal nitrate solutions

    DOEpatents

    Haas, Paul A.; Stines, William B.

    1983-10-11

    A method for co-conversion of aqueous solutions of one or more heavy metal nitrates wherein thermal decomposition within a temperature range of about 300.degree. to 800.degree. C. is carried out in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal.

  4. Corrosion processes of physical vapor deposition-coated metallic implants.

    PubMed

    Antunes, Renato Altobelli; de Oliveira, Mara Cristina Lopes

    2009-01-01

    Protecting metallic implants from the harsh environment of physiological fluids is essential to guaranteeing successful long-term use in a patient's body. Chemical degradation may lead to the failure of an implant device in two different ways. First, metal ions may cause inflammatory reactions in the tissues surrounding the implant and, in extreme cases, these reactions may inflict acute pain on the patient and lead to loosening of the device. Therefore, increasing wear strength is beneficial to the performance of the metallic implant. Second, localized corrosion processes contribute to the nucleation of fatigue cracks, and corrosion fatigue is the main reason for the mechanical failure of metallic implants. Common biomedical alloys such as stainless steel, cobalt-chrome alloys, and titanium alloys are prone to at least one of these problems. Vapor-deposited hard coatings act directly to improve corrosion, wear, and fatigue resistances of metallic materials. The effectiveness of the corrosion protection is strongly related to the structure of the physical vapor deposition layer. The aim of this paper is to present a comprehensive review of the correlation between the structure of physical vapor deposition layers and the corrosion properties of metallic implants.

  5. Shock melting and vaporization of metals.

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.

    1972-01-01

    The effect of initial porosity on shock induction of melting and vaporization is investigated for Ba, Sr, Li, Fe, Al, U, and Th. For the less compressible of these metals, it is found that for a given strong shock-generation system (explosive in contact, or flyer-plate impact) an optimum initial specific volume exists such that the total entropy production, and hence the amount of metal liquid or vapor, is a maximum. Initial volumes from 1.4 to 2.0 times crystal volumes, depending on the metal sample and shock-inducing system, will result in optimum post-shock entropies.

  6. Metal-assisted etch combined with regularizing etch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yim, Joanne; Miller, Jeff; Jura, Michael

    In an aspect of the disclosure, a process for forming nanostructuring on a silicon-containing substrate is provided. The process comprises (a) performing metal-assisted chemical etching on the substrate, (b) performing a clean, including partial or total removal of the metal used to assist the chemical etch, and (c) performing an isotropic or substantially isotropic chemical etch subsequently to the metal-assisted chemical etch of step (a). In an alternative aspect of the disclosure, the process comprises (a) performing metal-assisted chemical etching on the substrate, (b) cleaning the substrate, including removal of some or all of the assisting metal, and (c) performingmore » a chemical etch which results in regularized openings in the silicon substrate.« less

  7. [Effect analysis on the two total load control methods for poisonous heavy metals].

    PubMed

    Fu, Guo-Wei

    2012-12-01

    Firstly it should be made clear that implementation of source total load control for the first type of pollutants is necessary for environmental pollution control legislation and economic structure regulation. This kind of surveillance method has been more practical to be implemented since the Manual of the Industry Discharge Coefficient of First National Pollution Sources Investigation was published. The source total load control and water environment total load control are independent of each other and none of them is redundant, on the other side they can be complementary to each other. In the present, some local planning managers are blurring and confusing the contents and styles of the two surveillance methods. They just use the water total load control to manage all the pollutants, and source total load control is discarded, which results in the loss of control for the first type of pollutants especially for the drinking water source surveillance. There is a big difference between the water quality standards and the water environmental background concentration values for the first type of pollutants in the Environmental quality standard for surface water (GB 3838-88), which means that there are problems such as "relaxing the pollutant discharge permit" and "risk induced by valence state change". Taking an enterprise with 10t electrolytic lead production capacity as an example, there is a big difference between the allowable lead discharged loads by the two total load surveillance methods. In summary, it will bring a lot of harmful effects if the water total load control is implemented for the two types of pollutants, so the source total load control and water environmental total load control should be implemented strictly at the same time.

  8. Complete Transmetalation in a Metal-Organic Framework by Metal Ion Metathesis in a Single Crystal for Selective Sensing of Phosphate Ions in Aqueous Media.

    PubMed

    Asha, K S; Bhattacharjee, Rameswar; Mandal, Sukhendu

    2016-09-12

    A complete transmetalation has been achieved on a barium metal-organic framework (MOF), leading to the isolation of a new Tb-MOF in a single-crystal (SC) to single-crystal (SC) fashion. It leads to the transformation of an anionic framework with cations in the pore to one that is neutral. The mechanistic studies proposed a core-shell metal exchange through dissociation of metal-ligand bonds. This Tb-MOF exhibits enhanced photoluminescence and acts as a selective sensor for phosphate anion in aqueous medium. Thus, this work not only provides a method to functionalize a MOF that can have potential application in sensing but also elucidates the formation mechanism of the resulting MOF. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Metal-on-Metal Hip Resurfacing Arthroplasty

    PubMed Central

    Sehatzadeh, S; Kaulback, K; Levin, L

    2012-01-01

    Background Metal-on-metal (MOM) hip resurfacing arthroplasty (HRA) is in clinical use as an appropriate alternative to total hip arthroplasty in young patients. In this technique, a metal cap is placed on the femoral head to cover the damaged surface of the bone and a metal cup is placed in the acetabulum. Objectives The primary objective of this analysis was to compare the revision rates of MOM HRA using different implants with the benchmark set by the National Institute of Clinical Excellence (NICE). The secondary objective of this analysis was to review the literature regarding adverse biological effects associated with implant material. Review Methods A literature search was performed on February 13, 2012, to identify studies published from January 1, 2009, to February 13, 2012. Results The revision rates for MOM HRA using 6 different implants were reviewed. The revision rates for MOM HRA with 3 implants met the NICE criteria, i.e., a revision rate of 10% or less at 10 years. Two implants had short-term follow-ups and MOM HRA with one of the implants failed to meet the NICE criteria. Adverse tissue reactions resulting in failure of the implants have been reported by several studies. With a better understanding of the factors that influence the wear rate of the implants, adverse tissue reactions and subsequent implant failure can be minimized. Many authors have suggested that patient selection and surgical technique affect the wear rate and the risk of tissue reactions. The biological effects of high metal ion levels in the blood and urine of patients with MOM HRA implants are not known. Studies have shown an increase in chromosomal aberrations in patients with MOM articulations, but the clinical implications and long-term consequences of this increase are still unknown. Epidemiological studies have shown that patients with MOM HRA implants did not have an overall increase in mortality or risk of cancer. There is insufficient clinical data to confirm the

  10. Existence of efficient divalent metal ion-catalyzed and inefficient divalent metal ion-independent channels in reactions catalyzed by a hammerhead ribozyme

    PubMed Central

    Zhou, Jing-Min; Zhou, De-Min; Takagi, Yasuomi; Kasai, Yasuhiro; Inoue, Atsushi; Baba, Tadashi; Taira, Kazunari

    2002-01-01

    The hammerhead ribozyme is generally accepted as a well characterized metalloenzyme. However, the precise nature of the interactions of the RNA with metal ions remains to be fully defined. Examination of metal ion-catalyzed hammerhead reactions at limited concentrations of metal ions is useful for evaluation of the role of metal ions, as demonstrated in this study. At concentrations of Mn2+ ions from 0.3 to 3 mM, addition of the ribozyme to the reaction mixture under single-turnover conditions enhances the reaction with the product reaching a fixed maximum level. Further addition of the ribozyme inhibits the reaction, demonstrating that a certain number of divalent metal ions is required for proper folding and also for catalysis. At extremely high concentrations, monovalent ions, such as Na+ ions, can also serve as cofactors in hammerhead ribozyme-catalyzed reactions. However, the catalytic efficiency of monovalent ions is extremely low and, thus, high concentrations are required. Furthermore, addition of monovalent ions to divalent metal ion-catalyzed hammerhead reactions inhibits the divalent metal ion-catalyzed reactions, suggesting that the more desirable divalent metal ion–ribozyme complexes are converted to less desirable monovalent metal ion–ribozyme complexes via removal of divalent metal ions, which serve as a structural support in the ribozyme complex. Even though two channels appear to exist, namely an efficient divalent metal ion-catalyzed channel and an inefficient monovalent metal ion-catalyzed channel, it is clear that, under physiological conditions, hammerhead ribozymes are metalloenzymes that act via the significantly more efficient divalent metal ion-dependent channel. Moreover, the observed kinetic data are consistent with Lilley’s and DeRose’s two-phase folding model that was based on ground state structure analyses. PMID:12034824

  11. Compatibility of the totally replaced hip. Reduction of wear by amorphous diamond coating.

    PubMed

    Santavirta, Seppo

    2003-12-01

    Particulate wear debris in totally replaced hips causes adverse local host reactions. The extreme form of such a reaction, aggressive granulomatosis, was found to be a distinct condition and different from simple aseptic loosening. Reactive and adaptive tissues around the totally replaced hip were made of proliferation of local fibroblast like cells and activated macrophages. Methylmethacrylate and high-molecular-weight polyethylene were shown to be essentially immunologically inert implant materials, but in small particulate form functioned as cellular irritants initiating local biological reactions leading to loosening of the implants. Chromium-cobalt-molybdenum is the most popular metallic implant material; it is hard and tough, and the bearings of this metal are partially self-polishing. In total hip implants, prerequisites for longevity of the replaced hip are good biocompatibility of the materials and sufficient tribological properties of the bearings. The third key issue is that the bearing must minimize frictional shear at the prosthetic bone-implant interface to be compatible with long-term survival. Some of the approaches to meet these demands are alumina-on-alumina and metal-on-metal designs, as well as the use of highly crosslinked polyethylene for the acetabular component. In order to avoid the wear-based deleterious properties of the conventional total hip prosthesis materials or coatings, the present work included biological and tribological testing of amorphous diamond. Previous experiments had demonstrated that a high adhesion of tetrahedral amorphous carbon coatings to a substrate can be achieved by using mixing layers or interlayers. Amorphous diamond was found to be biologically inert, and simulator testing indicated excellent wear properties for conventional total hip prostheses, in which either the ball or both bearing surfaces were coated with hydrogen-free tetrahedral amorphous diamond films. Simulator testing with such total hip prostheses

  12. Metals transport in the Sacramento River, California, 1996-1997; Volume 2: Interpretation of metal loads

    USGS Publications Warehouse

    Alpers, Charles N.; Antweiler, Ronald C.; Taylor, Howard E.; Dileanis, Peter D.; Domagalski, Joseph L.

    2000-01-01

    Metals transport in the Sacramento River, northern California, from July 1996 to June 1997 was evaluated in terms of metal loads from samples of water and suspended colloids that were collected on up to six occasions at 13 sites in the Sacramento River Basin. Four of the sampling periods (July, September, and November 1996; and May-June 1997) took place during relatively low-flow conditions and two sampling periods (December 1996 and January 1997) took place during high-flow and flooding conditions, respectively. This study focused primarily on loads of cadmium, copper, lead, and zinc, with secondary emphasis on loads of aluminum, iron, and mercury.Trace metals in acid mine drainage from abandoned and inactive base-metal mines, in the East and West Shasta mining districts, enter the Sacramento River system in predominantly dissolved form into both Shasta Lake and Keswick Reservoir. The proportion of trace metals that was dissolved (as opposed to colloidal) in samples collected at Shasta and Keswick dams decreased in the order zinc ≈ cadmium > copper > lead. At four sampling sites on the Sacramento River--71, 256, 360, and 412 kilometers downstream of Keswick Dam--trace-metal loads were predominantly colloidal during both high- and low-flow conditions. The proportion of total cadmium, copper, lead, and zinc loads transported to San Francisco Bay and the Sacramento-San Joaquin Delta estuary (referred to as the Bay-Delta) that is associated with mineralized areas was estimated by dividing loads at Keswick Dam by loads 412 kilometers downstream at Freeport and the Yolo Bypass. During moderately high flows in December 1996, mineralization-related total (dissolved + colloidal) trace-metal loads to the Bay-Delta (as a percentage of total loads measured downstream) were cadmium, 87 percent; copper, 35 percent; lead, 10 percent; and zinc, 51 percent. During flood conditions in January 1997 loads were cadmium, 22 percent; copper, 11 percent; lead, 2 percent; and zinc, 15

  13. Metal Preferences and Metallation*

    PubMed Central

    Foster, Andrew W.; Osman, Deenah; Robinson, Nigel J.

    2014-01-01

    The metal binding preferences of most metalloproteins do not match their metal requirements. Thus, metallation of an estimated 30% of metalloenzymes is aided by metal delivery systems, with ∼25% acquiring preassembled metal cofactors. The remaining ∼70% are presumed to compete for metals from buffered metal pools. Metallation is further aided by maintaining the relative concentrations of these pools as an inverse function of the stabilities of the respective metal complexes. For example, magnesium enzymes always prefer to bind zinc, and these metals dominate the metalloenzymes without metal delivery systems. Therefore, the buffered concentration of zinc is held at least a million-fold below magnesium inside most cells. PMID:25160626

  14. Method for improved decomposition of metal nitrate solutions

    DOEpatents

    Haas, P.A.; Stines, W.B.

    1981-01-21

    A method for co-conversion of aqueous solutions of one or more heavy metal nitrates is described, wherein thermal decomposition within a temperature range of about 300 to 800/sup 0/C is carried out in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal.

  15. METAL SPECIATION IN SOIL, SEDIMENT, AND WATER SYSTEMS VIA SYNCHROTRON RADIATION RESEARCH

    EPA Science Inventory

    Metal contaminated environmental systems (soils, sediments, and water) have challenged researchers for many years. Traditional methods of analysis have employed extraction methods to determine total metal content and define risk based on the premise that as metal concentration in...

  16. Corrosion Damage and Wear Mechanisms in Long-Term Retrieved CoCr Femoral Components for Total Knee Arthroplasty.

    PubMed

    Arnholt, Christina M; MacDonald, Daniel W; Malkani, Arthur L; Klein, Gregg R; Rimnac, Clare M; Kurtz, Steven M; Kocagoz, Sevi B; Gilbert, Jeremy L

    2016-12-01

    Metal debris and ion release has raised concerns in joint arthroplasty. The purpose of this study was to characterize the sources of metallic ions and particulate debris released from long-term (in vivo >15 years) total knee arthroplasty femoral components. A total of 52 CoCr femoral condyles were identified as having been implanted for more than 15 years. The femoral components were examined for incidence of 5 types of damage (metal-on-metal wear due to historical polyethylene insert failure, mechanically assisted crevice corrosion at taper interfaces, cement interface corrosion, third-body abrasive wear, and inflammatory cell-induced corrosion [ICIC]). Third-body abrasive wear was evaluated using the Hood method for polyethylene components and a similar method quantifying surface damage of the femoral condyle was used. The total area damaged by ICIC was quantified using digital photogrammetry. Surface damage associated with corrosion and/or CoCr debris release was identified in 51 (98%) CoCr femoral components. Five types of damage were identified: 98% of femoral components exhibited third-body abrasive wear (mostly observed as scratching, n = 51/52), 29% of femoral components exhibited ICIC damage (n = 15/52), 41% exhibited cement interface damage (n = 11/27), 17% exhibited metal-on-metal wear after wear-through of the polyethylene insert (n = 9/52), and 50% of the modular femoral components exhibited mechanically assisted crevice corrosion taper damage (n = 2/4). The total ICIC-damaged area was an average of 0.11 ± 0.12 mm 2 (range: 0.01-0.46 mm 2 ). Although implant damage in total knee arthroplasty is typically reported with regard to the polyethylene insert, the results of this study demonstrate that abrasive and corrosive damage occurs on the CoCr femoral condyle in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Assessment of metal retention in newly constructed highway embankments.

    PubMed

    Werkenthin, Moritz; Kluge, Björn; Wessolek, Gerd

    2016-12-01

    Newly constructed embankments should provide both a specific bearing capacity to enable trafficability in emergency cases and a sufficient pollutant retention capacity to protect the groundwater. A number of lysimeters were installed along the A115 highway to determine total and dissolved metal concentrations in road runoff and in the soil solution of newly constructed embankments. Dissolved concentrations in soil solution of the embankments did not exceed the trigger values of the German legislation. Depending on the metal, total concentrations in soil solution were more than twice as high as dissolved concentrations. The high infiltration rates lead to increased groundwater recharge beneath the embankments (up to 4100 mm a -1 ). Although metal concentrations were not problematic from the legislators' point of view, the elevated infiltration rates beside the road facilitated the transfer of high metal loads into deeper soil layers and potentially into the groundwater as well.

  18. Understanding interaction of curcumin and metal ions on electrode surfaces using EDXRF

    NASA Astrophysics Data System (ADS)

    Joseph, Daisy; Kumar, K. Krishna; Narayanan, S. Sriman

    2018-04-01

    A chemically modified electrode was developed for determination of metal ions (Cd, Pb, Zn, Co, Hg). The modifier used for the study was Curcumin. Curcumin acts as a complexing agent at the surface of the electrode for preconcentration of metal ions from electrolyte to electrode surface and stripped back to electrolyte during analysis. EDXRF was used to analyze these electrodes and it was concluded that the PCR modified electrode favored effective chelation for lead and mercury.

  19. Total phenolic, total flavonoid content, and antioxidant capacity of the leaves of Meyna spinosa Roxb., an Indian medicinal plant.

    PubMed

    Sen, Saikat; De, Biplab; Devanna, N; Chakraborty, Raja

    2013-03-01

    The objective of the present study was to determine the total phenolic and total flavonoid contents, and to evaluate the antioxidant potential of different leaf extracts of Meyna spinosa Roxb. ex Link, a traditional medicinal plant of India. Free radical scavenging and antioxidant potential of the methanol, ethyl acetate, and petroleum ether extracts of Meyna spinosa leaves were investigated using several in vitro and ex vivo assays, including the 2, 2-diphenyl-picrylhydrazyl radical scavenging, superoxide anion scavenging, hydroxyl radical scavenging, nitric oxide radical scavenging, hydrogen peroxide scavenging activity, metal chelating assay, and reducing power ability method. Total antioxidant activity of the extracts was estimated by the ferric thiocyanate method. Inhibition assay of lipid peroxidation and oxidative hemolysis were also performed to confirm the protective effect of the extracts. Total phenolic and total flavonoid contents of the extracts were estimated using standard chemical assay procedures. Methanol extracts showed the highest polyphenolic content and possessed the better antioxidant activity than the other two extracts. Total phenolic and total flavonoid contents in the methanol extract were (90.08 ± 0.44) mg gallic acid equivalents/g and (58.50 ± 0.09) mg quercetin equivalents/g, respectively. The IC50 of the methanol extract in the DPPH(·), superoxide anion, hydroxyl radical, nitric oxide radical, hydrogen peroxide scavenging activity and metal chelating assays were (16.4 ± 0.41), (35.9 ± 0.19), (24.1 ± 0.33), (23.7 ± 0.09), (126.8 ± 2.92), and (117.2 ± 1.01) μg·mL(-1), respectively. The methanol extract showed potent reducing power ability, total antioxidant activity, and significantly inhibit lipid peroxidation and oxidative hemolysis which was similar to that of standards. The results indicated a direct correlation between the antioxidant activity and the polyphenolic content of the extracts, which may the foremost

  20. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India.

    PubMed

    Mukhopadhyay, Suchita; Rana, Vivek; Kumar, Adarsh; Maiti, Subodh Kumar

    2017-10-01

    Out of 29 plant species taken into consideration for biodiversity investigations, the present study screened out Cyperus rotundus L., Calotropis procera (Aiton) W.T. Aiton, Croton bonplandianus Baill., Eclipta prostrata (L.) L., and Vernonia cinerea (L.) Less. as the most suitable metal-tolerant plant species (high relative density and frequency) which can grow on metal-laden fly ash (FA) lagoon. Total (aqua-regia), residual (HNO 3 ) and plant available (CaCl 2 ) metal concentrations were assessed for the clean-up of metal-contaminated FA disposal site using naturally colonized plants. The total metal concentration (in mg kg -1 ) in FA followed an order of Mn (229.8) > Ni (228.4) > Zn (89.4) > Cr (61.2) > Pb (56.6) > Cu (51.5) > Co (41.9) > Cd (9.7). The HNO 3 - and CaCl 2 -extracted metals were 0.57-15.68% and 0.03-7.82% of the total metal concentration, respectively. The concentration of Ni and Cr in FA in the present study was highest among the previously studied Indian and average world power plants and Cd, Ni, and Cr were above soil toxicity limit. The variation in total, residual, and plant-available metal (single extraction) concentration indicated the presence of different proportions of metals in FA lagoon which affects the metal uptake potential of the vegetation growing on it. It has been reported that plant-available metal extractant (CaCl 2 ) is the most suitable extractant for assessment of metal transfer from soil to plant. However in the present study, Spearman's correlation showed best significant correlation between total metal concentration in FA and shoot metal concentration (r = 0.840; p < 0.01) which suggest aqua-regia as the best extractant for understanding the bioavailability and transfer of metal, and in calculation of BCF for moderately contaminated site. It can be stated that plant-available extractant is not always suitable for understanding the availability of metal, but total metal concentration can provide a better

  1. Toxic metals in children's toys and jewelry: coupling bioaccessibility with risk assessment.

    PubMed

    Cui, Xin-Yi; Li, Shi-Wei; Zhang, Shu-Jun; Fan, Ying-Ying; Ma, Lena Q

    2015-05-01

    A total of 45 children's toys and jewelry were tested for total and bioaccessible metal concentrations. Total As, Cd, Sb, Cr, Ni, and Pb concentrations were 0.22-19, 0.01-139, 0.1-189, 0.06-846, 0.14-2894 and 0.08-860,000 mg kg(-1). Metallic products had the highest concentrations, with 3-7 out of 13 samples exceeding the European Union safety limit for Cd, Pb, Cr, or Ni. However, assessment based on hazard index >1 and bioaccessible metal showed different trends. Under saliva mobilization or gastric ingestion, 11 out of 45 samples showed HI >1 for As, Cd, Sb, Cr, or Ni. Pb with the highest total concentration showed HI <1 for all samples while Ni showed the most hazard with HI up to 113. Our data suggest the importance of using bioaccessibility to evaluate health hazard of metals in children's toys and jewelry, and besides Pb and Cd, As, Ni, Cr, and Sb in children's products also deserve attention. Published by Elsevier Ltd.

  2. Effect of heavy-metal on synthesis of siderophores by Pseudomonas aeruginosa ZGKD3

    NASA Astrophysics Data System (ADS)

    Shi, Peili; Xing, Zhukang; Zhang, Yuxiu; Chai, Tuanyao

    2017-01-01

    Most siderophore-producing bacteria could improve the plant growth. Here, the effect of heavy-metal on the growth, total siderophore and pyoverdine production of the Cd tolerance Pseudomonas aeruginosa ZGKD3 were investigated. The results showed that ZGKD3 exhibited tolerance to heavy metals, and the metal tolerance decreased in the order Mn2+>Pb2+>Ni2+>Cu2+>Zn2+>Cd2+. The total siderophore and pyoverdine production of ZGKD3 induced by metals of Cd2+, Cu2+, Zn2+, Ni2+, Pb2+ and Mn2+ were different, the total siderophore and pyoverdine production reduced in the order Cd2+>Pb2+>Mn2+>Ni2+>Zn2+ >Cu2+ and Zn2+>Cd2+>Mn2+>Pb2+>Ni2+>Cu2+, respectively. These results suggested that ZGKD3 could grow in heavy-metal contaminated soil and had the potential of improving phytoremediation efficiency in Cd and Zn contaminated soils.

  3. Ecotoxicological assessment of metal-polluted urban soils using bioassays with three soil invertebrates.

    PubMed

    Santorufo, Lucia; Van Gestel, Cornelis A M; Maisto, Giulia

    2012-07-01

    This study aimed at assessing the quality of urban soils by integrating chemical and ecotoxicological approaches. Soils from five sites in downtown Naples, Italy, were sampled and characterized for physical-chemical properties and total and water-extractable metal concentrations. Bioassays with Eisenia andrei, Enchytraeus crypticus and Folsomia candida were performed to assess toxicity of the soils, using survival, reproduction and growth as the endpoints. Metal bioaccumulation in the animals was also measured. The properties and metal concentrations of the soils strongly differed. Metal bioaccumulation was related with total metal concentrations in soil and was highest in E. crypticus, which was more sensitive than E. andrei and F. candida. Responses of the three species to the investigated soils seemed due to both metal contamination and soil properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. 20 CFR 410.410 - Total disability due to pneumoconiosis, including statutory presumption.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Total Disability or Death Due to Pneumoconiosis § 410.410 Total disability due to pneumoconiosis, including statutory... their death. (For benefits to the eligible survivors of miners whose deaths are determined to have been...

  5. 20 CFR 410.410 - Total disability due to pneumoconiosis, including statutory presumption.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Total Disability or Death Due to Pneumoconiosis § 410.410 Total disability due to pneumoconiosis, including statutory... their death. (For benefits to the eligible survivors of miners whose deaths are determined to have been...

  6. Phytotoxicity of floodplain soils contaminated with trace metals along the Clark Fork River, Grant-Kohrs Ranch National Historic Site, Deer Lodge, Montana, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rader, B.R.; Nimmo, D.W.R.; Chapman, P.L.

    1997-07-01

    Concentrations of metals in sediments and soils deposited along the floodplain of the Clark Fork River, within the Grant-Kohrs Ranch National Historic Site, Deer Lodge, Montana, USA, have exceeded maximum background concentrations in the United States for most metals tested. As a result of mining and smelting activities, portions of the Deer Lodge Valley, including the Grant-Kohrs Ranch, have received National Priority List Designation under the Comprehensive Environmental Response, Compensation and Liability Act. Using a series of plant germination tests, pH measurements, and metal analyses, this study investigated the toxicity of soils from floodplain slicken areas, bare spots devoid ofmore » vegetation, along the Clark Fork River. The slicken soils collected from the Grant-Kohrs Ranch were toxic to all four plant species tested. The most sensitive endpoint in the germination tests was root length and the least sensitive was emergence. Considering emergence, the most sensitive species was the resident grass species Agrostis gigantea. The sensitivities were reversed when root lengths were examined, with Echinochloa crusgalli showing the greatest sensitivity. Both elevated concentrations of metals and low pH were necessary to produce an acutely phytotoxic response in laboratory seed germination tests using slicken soils. Moreover, pH values on the Grant-Kohrs Ranch appear to be a better predictor of acutely phytotoxic conditions than total metal levels.« less

  7. Metals in cosmetics: implications for human health.

    PubMed

    Borowska, Sylwia; Brzóska, Malgorzata M

    2015-06-01

    Cosmetics, preparations repeatedly applied directly to the human skin, mucous membranes, hair and nails, should be safe for health, however, recently there has been increasing concern about their safety. Unfortunately, using these products in some cases is related to the occurrence of unfavourable effects resulting from intentional or the accidental presence of chemical substances, including toxic metals. Heavy metals such as lead, mercury, cadmium, arsenic and nickel, as well as aluminium, classified as a light metal, are detected in various types of cosmetics (colour cosmetics, face and body care products, hair cosmetics, herbal cosmetics, etc.). In addition, necessary, but harmful when they occur in excessive amounts, elements such as copper, iron, chromium and cobalt are also present in cosmetic products. Metals occurring in cosmetics may undergo retention and act directly in the skin or be absorbed through the skin into the blood, accumulate in the body and exert toxic effects in various organs. Some cases of topical (mainly allergic contact dermatitis) and systemic effects owing to exposure to metals present in cosmetics have been reported. Literature data show that in commercially available cosmetics toxic metals may be present in amounts creating a danger to human health. Thus, the present review article focused on the problems related to the presence of heavy metals and aluminium in cosmetics, including their sources, concentrations and law regulations as well as danger for the health of these products users. Owing to the growing usage of cosmetics it is necessary to pay special attention to these problems. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Electric field-triggered metal-insulator transition resistive switching of bilayered multiphasic VOx

    NASA Astrophysics Data System (ADS)

    Won, Seokjae; Lee, Sang Yeon; Hwang, Jungyeon; Park, Jucheol; Seo, Hyungtak

    2018-01-01

    Electric field-triggered Mott transition of VO2 for next-generation memory devices with sharp and fast resistance-switching response is considered to be ideal but the formation of single-phase VO2 by common deposition techniques is very challenging. Here, VOx films with a VO2-dominant phase for a Mott transition-based metal-insulator transition (MIT) switching device were successfully fabricated by the combined process of RF magnetron sputtering of V metal and subsequent O2 annealing to form. By performing various material characterizations, including scanning transmission electron microscopy-electron energy loss spectroscopy, the film is determined to have a bilayer structure consisting of a VO2-rich bottom layer acting as the Mott transition switching layer and a V2O5/V2O3 mixed top layer acting as a control layer that suppresses any stray leakage current and improves cyclic performance. This bilayer structure enables excellent electric field-triggered Mott transition-based resistive switching of Pt-VOx-Pt metal-insulator-metal devices with a set/reset current ratio reaching 200, set/reset voltage of less than 2.5 V, and very stable DC cyclic switching upto 120 cycles with a great set/reset current and voltage distribution less than 5% of standard deviation at room temperature, which are specifications applicable for neuromorphic or memory device applications. [Figure not available: see fulltext.

  9. Fungal inoculation and elevated CO2 mediate growth of Lolium mutiforum and Phytolacca americana, metal uptake, and metal bioavailability in metal-contaminated soil: evidence from DGT measurement.

    PubMed

    Song, Ningning; Wang, Fangli; Zhang, Changbo; Tang, Shirong; Guo, Junkang; Ju, Xuehai; Smith, Donald L

    2013-01-01

    Fungal inoculation and elevated CO2 may mediate plant growth and uptake of heavy metals, but little evidence from Diffusive Gradients in Thin-films (DGT) measurement has been obtained to characterize the process. Lolium mutiforum and Phytolacca americana were grown at ambient and elevated CO2 on naturally Cd and Pb contaminated soils inoculated with and without Trichoderma asperellum strain C3 or Penicillium chrysogenum strain D4, to investigate plant growth, metal uptake, and metal bioavailability responses. Fungal inoculation increased plant biomass and shoot/root Cd and Pb concentrations. Elevated CO2 significantly increased plants biomass, but decreased Cd and Pb concentrations in shoot/root to various extents, leading to a metal dilution phenomenon. Total Cd and Pb uptake by plants, and DGT-measured Cd and Pb concentrations in rhizosphere soils, were higher in all fungal inoculation and elevated CO2 treatments than control treatments, with the combined treatments having more influence than either treatment alone. Metal dilution phenomenon occurred because the increase in DGT-measured bioavailable metal pools in plant rhizosphere due to elevated CO2 was unable to match the increase in requirement for plant uptake of metals due to plant biomass increase.

  10. Self assembly of nano metric metallic particles for realization of photonic and electronic nano transistors.

    PubMed

    Shahmoon, Asaf; Limon, Ofer; Girshevitz, Olga; Zalevsky, Zeev

    2010-05-25

    In this paper, we present the self assembly procedure as well as experimental results of a novel method for constructing well defined arrangements of self assembly metallic nano particles into sophisticated nano structures. The self assembly concept is based on focused ion beam (FIB) technology, where metallic nano particles are self assembled due to implantation of positive gallium ions into the insulating material (e.g., silica as in silicon on insulator wafers) that acts as intermediary layer between the substrate and the negatively charge metallic nanoparticles.

  11. Evaluation of various isotherm models, and metal sorption potential of cyanobacterial mats in single and multi-metal systems.

    PubMed

    Kumar, Dhananjay; Pandey, Lalit K; Gaur, J P

    2010-12-01

    Isotherm curves for the biosorption of Cu(II), Cd(II) and Pb(II) by the biomass of five different cyanobacterial mats (Mat # 1-5) showed concave shape and plateau. Suitability of ten different isotherm models was evaluated for the equilibrium modeling of these isotherm curves, however, only the Toth model was found appropriate. Mat # 2, dominated by Phormidium sp., was identified as an excellent metal biosorbent because: (i) the Toth estimated maximum biosorption capacity (mmol g(-1)) of Mat # 2 for Pb(II) (1.028), Cu(II) (0.696) and Cd(II) (0.549) was the highest among the tested mats and compares favourably with Langmuir estimated metal sorption capacity of many seaweeds, regarded as the best metal biosorbents, (ii) Na+, K+ and Ca2+ did not substantially inhibit the biosorption of the test metals, (iii) and total metal sorption ability of Mat # 2 increased or remained unaffected in binary and ternary metal systems. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. New metal phthalocyanines/metal simple hydroxide multilayers: experimental evidence of dipolar field-driven magnetic behavior.

    PubMed

    Bourzami, Riadh; Eyele-Mezui, Séraphin; Delahaye, Emilie; Drillon, Marc; Rabu, Pierre; Parizel, Nathalie; Choua, Sylvie; Turek, Philippe; Rogez, Guillaume

    2014-01-21

    A series of new hybrid multilayers has been synthesized by insertion-grafting of transition metal (Cu(II), Co(II), Ni(II), and Zn(II)) tetrasulfonato phthalocyanines between layers of Cu(II) and Co(II) simple hydroxides. The structural and spectroscopic investigations confirm the formation of new layered hybrid materials in which the phthalocyanines act as pillars between the inorganic layers. The magnetic investigations show that all copper hydroxide-based compounds behave similarly, presenting an overall antiferromagnetic behavior with no ordering down to 1.8 K. On the contrary, the cobalt hydroxide-based compounds present a ferrimagnetic ordering around 6 K, regardless of the nature of the metal phthalocyanine between the inorganic layers. The latter observation points to strictly dipolar interactions between the inorganic layers. The amplitude of the dipolar field has been evaluated from X-band and Q-band EPR spectroscopy investigation (Bdipolar ≈ 30 mT).

  13. 40 CFR 721.4685 - Substituted purine metal salt (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted purine metal salt (generic name). 721.4685 Section 721.4685 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4685...

  14. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated carboxylic acid alkali metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4663...

  15. JSC Metal Finishing Waste Minimization Methods

    NASA Technical Reports Server (NTRS)

    Sullivan, Erica

    2003-01-01

    THe paper discusses the following: Johnson Space Center (JSC) has achieved VPP Star status and is ISO 9001 compliant. The Structural Engineering Division in the Engineering Directorate is responsible for operating the metal finishing facility at JSC. The Engineering Directorate is responsible for $71.4 million of space flight hardware design, fabrication and testing. The JSC Metal Finishing Facility processes flight hardware to support the programs in particular schedule and mission critical flight hardware. The JSC Metal Finishing Facility is operated by Rothe Joint Venture. The Facility provides following processes: anodizing, alodining, passivation, and pickling. JSC Metal Finishing Facility completely rebuilt in 1998. Total cost of $366,000. All new tanks, electrical, plumbing, and ventilation installed. Designed to meet modern safety, environmental, and quality requirements. Designed to minimize contamination and provide the highest quality finishes.

  16. Metal-organometallic polymers and frameworks derived from facially metalated arylcarboxylates

    NASA Astrophysics Data System (ADS)

    Kumalah Robinson, Sayon A.

    The interest in coordination polymers, also known as metal-organic frameworks, has risen drastically over the past 2 decades. In this time, the field has matured and given rise to a diverse range of crystalline structures possessing various functionalities. Coordination polymers are typically formed from the self assembly of metal ions which serve as nodes and organic ligands which act as bridges. By the careful selection of the organic ligand and the metal ion, the overall physical properties of the material may be tuned. In this work, the use of organometallic bridging ligands are explored using facially metalated aryl carboxylates ligands to synthesize metal-organometallic frameworks (MOMFs). Therefore, with the aim of synthesizing [CpM]+-functionalized (M = FeII, RuII; Cp = cyclopentadienyl) coordination polymers and metal organic frameworks, various [CpFe]+and [CpRu] + functionalized aryl carboxylates were synthesized and characterized. In particular, the [CpFe]+-functionalized benzoic, terephthalic and trimesic acids as well as the [CpRu]+-functionalized terephthalic acid were made. Using the [CpFe]+ complexes of the benzoic and terephthalic acid as bridging ligands, a number of 1D and 2D coordination polymers were synthesized. For instance, the reaction of [CpFe]+-functionalized benzoic acid with CdCl2 yielded the 1D chain of [Cd(benzoate)Cl 2]˙H2O whilst the reaction of [CpFe]+-functionalized terephthalic acid with Cu(NO3)2˙6H2O yielded a 2D square grid sheet. Using the [CpFe]+-functionalized terephthalic acid, a series of polymorphic, 3D metal-organometallic frameworks of the general formula [M3(terephthalate)4(mu-H2O)2(H 2O)2][NO3]2˙xsolvent (M = Co II, NiII ; solvent = EtOH, DMF, H2O) were synthesized and fully characterized. The polymorphic nature of these frameworks may be attributed to the different orientations that the [CpFe]+ moiety may adapt within the cavities in the 3D frameworks. The selectivity of the desolvated forms of the polymorphs for

  17. Metal nanostructures: from clusters to nanocatalysis and sensors

    NASA Astrophysics Data System (ADS)

    Smirnov, B. M.

    2017-12-01

    The properties of metal clusters and nanostructures composed of them are reviewed. Various existing methods for the generation of intense beams of metal clusters and their subsequent conversion into nanostructures are compared. Processes of the flow of a buffer gas with active molecules through a nanostructure are analyzed as a basis of using nanostructures for catalytic applications. The propagation of an electric signal through a nanostructure is studied by analogy with a macroscopic metal. An analysis is given of how a nanostructure changes its resistance as active molecules attach to its surface and are converted into negative ions. These negative ions induce the formation of positively charged vacancies inside the metal conductor and attract the vacancies to together change the resistance of the metal nanostructure. The physical basis is considered for using metal clusters and nanostructures composed of them to create new materials in the form of a porous metal film on the surface of an object. The fundamentals of nanocatalysis are reviewed. Semiconductor conductometric sensors consisting of bound nanoscale grains or fibers acting as a conductor are compared with metal sensors conducting via a percolation cluster, a fractal fiber, or a bunch of interwoven nanofibers formed in superfluid helium. It is shown that sensors on the basis of metal nanostructures are characterized by a higher sensitivity than semiconductor ones, but are not selective. Measurements using metal sensors involve two stages, one of which measures to high precision the attachment rate of active molecules to the sensor conductor, and in the other one the surface of metal nanostructures is cleaned from the attached molecules using a gas discharge plasma (in particular, capillary discharge) with a subsequent chromatography analysis for products of cleaning.

  18. Polymer thin film as coating layer to prevent corrosion of metal/metal oxide film

    NASA Astrophysics Data System (ADS)

    Sarkar, Suman; Kundu, Sarathi

    2018-04-01

    Thin film of polymer is used as coating layer and the corrosion of metal/metal oxide layer is studied with the variation of the thickness of the coating layer. The thin layer of polystyrene is fabricated using spin coating method on copper oxide (CuO) film which is deposited on glass substrate using DC magnetron sputtering technique. Thickness of the polystyrene and the CuO layers are determined using X-ray reflectivity (XRR) technique. CuO thin films coated with the polystyrene layer are exposed to acetic acid (2.5 v/v% aqueous CH3COOH solution) environments and are subsequently analyzed using UV-Vis spectroscopy and atomic force microscopy (AFM). Surface morphology of the film before and after interaction with the acidic environment is determined using AFM. Results obtained from the XRR and UV-Vis spectroscopy confirm that the thin film of polystyrene acts as an anticorrosion coating layer and the strength of the coating depends upon the polymer layer thickness at a constant acid concentration.

  19. Optical Relaxation Time Enhancement in Graphene-Passivated Metal Films

    NASA Astrophysics Data System (ADS)

    Chugh, Sunny; Mehta, Ruchit; Man, Mengren; Chen, Zhihong

    2016-07-01

    Due to the small skin depth in metals at optical frequencies, their plasmonic response is strongly dictated by their surface properties. Copper (Cu) is one of the standard materials of choice for plasmonic applications, because of its high conductivity and CMOS compatibility. However, being a chemically active material, it gets easily oxidized when left in ambient environment, causing an inevitable degradation in its plasmonic resonance. Here, for the first time, we report a strong enhancement in the optical relaxation time in Cu by direct growth of few-layer graphene that is shown to act as an excellent passivation layer protecting Cu surface from any deterioration. Spectroscopic ellipsometry measurements reveal a 40-50% reduction in the total scattering rate in Cu itself, which is attributed to an improvement in its surface properties. We also study the impact of graphene quality and show that high quality graphene leads to an even larger improvement in electron scattering rate. These findings are expected to provide a big push towards graphene-protected Cu plasmonics.

  20. Trace Metals in Urban Stormwater Runoff and their Management

    NASA Astrophysics Data System (ADS)

    Li, T.; Hall, K.; Li, L. Y.; Schreier, H.

    2009-04-01

    In past decades, due to the rapid urbanization, land development has replaced forests, fields and meadows with impervious surfaces such as roofs, parking lots and roads, significantly affecting watershed quality and having an impact on aquatic systems. In this study, non-point source pollution from a diesel bus loop was assessed for the extent of trace metal contamination of Cu, Mn, Fe, and Zn in the storm water runoff. The study was carried out at the University of British Columbia (UBC) in the Greater Vancouver Regional District (GVRD) of British Columbia, Canada. Fifteen storm events were monitored at 3 sites from the diesel bus loop to determine spatial and temporal variations of dissolved and total metal concentrations in the storm water runoff. The dissolved metal concentrations were compared with the provincial government discharge criteria and the bus loop storm water quality was also compared with previous studies conducted across the GVRD urban area. To prevent storm water with hazardous levels of contaminants from being discharged into the urban drainage system, a storm water catch basin filter was installed and evaluated for its efficiency of contaminants removal. The perlite filter media adsorption capacities for the trace metals, oil and grease were studied for better maintenance of the catch basin filter. Dissolved copper exceeded the discharge criteria limit in 2 out of 15 cases, whereas dissolved zinc exceeded the criteria in 4 out of 15 cases, and dissolved manganese was below the criteria in all of the events sampled. Dissolved Cu and Zn accounted for 36 and 45% of the total concentration, whereas Mn and Fe only accounted for 20 and 4% of their total concentration, respectively. Since they are more mobile and have higher bioaccumulation potentials, Zn and Cu are considered to be more hazardous to the aquatic environment than Fe and Mn. With high imperviousness (100%) and intensive traffic at the UBC diesel bus loop, trace metal concentrations

  1. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola.

    PubMed

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Zhang, Hao; Christie, Peter

    2014-06-01

    A cadmium/zinc hyperaccumulator extracted metals from four contaminated soils over three years in a glasshouse experiment. Changes in plant metal uptake and soil total (aqua regia-extractable) and available metals were investigated. Plant Cd concentrations in a high-Cd acid soil and plant Zn concentrations in two acid soils decreased during repeated phytoextraction and were predicted by soil available metal concentrations. However, on repeated phytoextraction, plant Cd concentrations remained constant in lightly Cd-polluted acid soils, as did plant Cd and Zn in alkaline soils, although soil available metal concentrations decreased markedly. After phytoextraction acid soils showed much higher total metal removal efficiencies, indicating possible suitability of phytoextraction for acid soils. However, DGT-testing, which takes soil metal re-supply into consideration, showed substantial removal of available metal and distinct decreases in metal supply capacity in alkaline soils after phytoextraction, suggesting that a strategy based on lowering the bioavailable contaminant might be feasible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A 100-kW metal wind turbine blade basic data, loads and stress analysis

    NASA Technical Reports Server (NTRS)

    Cherritt, A. W.; Gaidelis, J. A.

    1975-01-01

    A rotor loads computer program was used to define the steady state and cyclic loads acting on 60 ft long metal blades designed for the ERDA/NASA 100 kW wind turbine. Blade load and stress analysis used to support the structural design are presented. For the loading conditions examined, the metal blades are structurally adequate for use, within the normal operating range, as part of the wind turbine system.

  3. Wafer-scale metasurface for total power absorption, local field enhancement and single molecule Raman spectroscopy

    PubMed Central

    Wang, Dongxing; Zhu, Wenqi; Best, Michael D.; Camden, Jon P.; Crozier, Kenneth B.

    2013-01-01

    The ability to detect molecules at low concentrations is highly desired for applications that range from basic science to healthcare. Considerable interest also exists for ultrathin materials with high optical absorption, e.g. for microbolometers and thermal emitters. Metal nanostructures present opportunities to achieve both purposes. Metal nanoparticles can generate gigantic field enhancements, sufficient for the Raman spectroscopy of single molecules. Thin layers containing metal nanostructures (“metasurfaces”) can achieve near-total power absorption at visible and near-infrared wavelengths. Thus far, however, both aims (i.e. single molecule Raman and total power absorption) have only been achieved using metal nanostructures produced by techniques (high resolution lithography or colloidal synthesis) that are complex and/or difficult to implement over large areas. Here, we demonstrate a metasurface that achieves the near-perfect absorption of visible-wavelength light and enables the Raman spectroscopy of single molecules. Our metasurface is fabricated using thin film depositions, and is of unprecedented (wafer-scale) extent. PMID:24091825

  4. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores

    PubMed Central

    Zhang, Huacheng; Hou, Jue; Hu, Yaoxin; Wang, Peiyao; Ou, Ranwen; Jiang, Lei; Liu, Jefferson Zhe; Freeman, Benny D.; Hill, Anita J.; Wang, Huanting

    2018-01-01

    Porous membranes with ultrafast ion permeation and high ion selectivity are highly desirable for efficient mineral separation, water purification, and energy conversion, but it is still a huge challenge to efficiently separate monatomic ions of the same valence and similar sizes using synthetic membranes. We report metal organic framework (MOF) membranes, including ZIF-8 and UiO-66 membranes with uniform subnanometer pores consisting of angstrom-sized windows and nanometer-sized cavities for ultrafast selective transport of alkali metal ions. The angstrom-sized windows acted as ion selectivity filters for selection of alkali metal ions, whereas the nanometer-sized cavities functioned as ion conductive pores for ultrafast ion transport. The ZIF-8 and UiO-66 membranes showed a LiCl/RbCl selectivity of ~4.6 and ~1.8, respectively, which are much greater than the LiCl/RbCl selectivity of 0.6 to 0.8 measured in traditional porous membranes. Molecular dynamics simulations suggested that ultrafast and selective ion transport in ZIF-8 was associated with partial dehydration effects. This study reveals ultrafast and selective transport of monovalent ions in subnanometer MOF pores and opens up a new avenue to develop unique MOF platforms for efficient ion separations in the future. PMID:29487910

  5. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores.

    PubMed

    Zhang, Huacheng; Hou, Jue; Hu, Yaoxin; Wang, Peiyao; Ou, Ranwen; Jiang, Lei; Liu, Jefferson Zhe; Freeman, Benny D; Hill, Anita J; Wang, Huanting

    2018-02-01

    Porous membranes with ultrafast ion permeation and high ion selectivity are highly desirable for efficient mineral separation, water purification, and energy conversion, but it is still a huge challenge to efficiently separate monatomic ions of the same valence and similar sizes using synthetic membranes. We report metal organic framework (MOF) membranes, including ZIF-8 and UiO-66 membranes with uniform subnanometer pores consisting of angstrom-sized windows and nanometer-sized cavities for ultrafast selective transport of alkali metal ions. The angstrom-sized windows acted as ion selectivity filters for selection of alkali metal ions, whereas the nanometer-sized cavities functioned as ion conductive pores for ultrafast ion transport. The ZIF-8 and UiO-66 membranes showed a LiCl/RbCl selectivity of ~4.6 and ~1.8, respectively, which are much greater than the LiCl/RbCl selectivity of 0.6 to 0.8 measured in traditional porous membranes. Molecular dynamics simulations suggested that ultrafast and selective ion transport in ZIF-8 was associated with partial dehydration effects. This study reveals ultrafast and selective transport of monovalent ions in subnanometer MOF pores and opens up a new avenue to develop unique MOF platforms for efficient ion separations in the future.

  6. Phytotoxicity of floodplain soils contaminated with trace metals along the clark fork river, Grant-Kohrs Ranch National Historic Site, Deer Lodge, Montana, United States

    USGS Publications Warehouse

    Rader, B.R.; Nimmo, D.W.R.; Chapman, P.L.

    1997-01-01

    Concentrations of metals in sediments and soils deposited along the floodplain of the Clark Fork River, within the Grant-Kohrs Ranch National Historic Site, Deer Lodge, Montana, USA, have exceeded maximum background concentrations in the United States for most metals tested. As a result of mining and smelting activities, portions of the Deer Lodge Valley, including the Grant-Kohrs Ranch, have received National Priority List Designation under the Comprehensive Environmental Response, Compensation and Liability Act. Using a series of plant germination tests, pH measurements, and metal analyses, this study investigated the toxicity of soils from floodplain 'slicken' areas, bare spots devoid of vegetation, along the Clark Fork River. The slicken soils collected from the Grant-Kohrs Ranch were toxic to all four plant species tested. The most sensitive endpoint in the germination tests was root length and the least sensitive was emergence. Considering emergence, the most sensitive species was the resident grass species Agrostis gigantea. The sensitivities were reversed when root lengths were examined, with Echinochloa crusgalli showing the greatest sensitivity. Both elevated concentrations of metals and low pH were necessary to produce an acutely phytotoxic response in laboratory seed germination tests using slicken soils. Moreover, pH values on the Grant-Kohrs Ranch appear to be a better predictor of acutely phytotoxic conditions than total metal levels.

  7. Combining cross flow ultrafiltration and diffusion gradients in thin-films approaches to determine trace metal speciation in freshwaters

    NASA Astrophysics Data System (ADS)

    Liu, Ruixia; Lead, Jamie R.; Zhang, Hao

    2013-05-01

    Cross flow ultrafiltration (CFUF) and diffusive gradients in thin films (DGT) with open pore gel (OP) and restricted pore gel (RP) were used to measure trace metal speciation in selected UK freshwaters. The proportions of metals present in particulate forms (>1 μm) varied widely between 40-85% Pb, 60-80% Al, 7-56% Mn, 10-49% Cu, 0-55% Zn, 20-38% Cr, 20-30% Fe, 6-25% Co, 5-22% Cd and <7% Ni. In the colloidal fraction (2 kDa-1 μm) values varied between 53-91% Pb, 33-55% Al, 21-55% Cu, 20-44% Fe, 34-36% Cr, 20-40% Cd, 7-28% Co and Ni, 2-32% Zn and <8% Mn. Wide variations were also observed in the ultrafiltered fraction (<2 kDa). These results indicated that colloids indeed influenced the occurrence and transport of Al, Fe, Cr, Co, Ni, Cu, Zn, Cr and Pb metals in rivers, while inorganic or organic colloids did not exert an important control on Mn transport in the selected freshwaters. Of total species, total labile metal measured by DGT-OP accounted for 1.4-50% for Al, Fe, Co, Ni, Cu, Cd and Pb in all selected waters. Of these metals total labile Pb concentration was the lowest with value less than 1.4% although this value slightly increased after deducting particulate fractions. In some waters, a majority of total Mn, Zn and Cr is DGT labile, in which the DGT labile Mn fraction accounted for 98-118% of the total dissolved phase. In most cases, the inorganic labile concentration measured by DGT-RP was lower than the total labile metal concentration. By the combination of CFUF and DGT techniques, the concentrations of total labile and inorganic labile metal species in CFUF-derived truly dissolved phase were measured in four water samples. 100% of ultrafiltered Mn species was found to be total DGT labile. The proportions of total labile metal species were lower than those of ultrafiltered fraction for Al, Fe, Co, Ni, Cu, Cd and Pb in all selected waters, and Cr and Zn in some cases, indicating a large amount of natural complexing ligands with smaller size for the

  8. Total Hip Joint Replacement Biotelemetry System

    NASA Technical Reports Server (NTRS)

    Boreham, J. F.; Postal, R. B.; Luntz, R. A.

    1981-01-01

    The development of a biotelemetry system that is hermetically sealed within a total hip replacement implant is reported. The telemetry system transmits six channels of stress data to reconstruct the major forces acting on the neck of the prosthesis and uses an induction power coupling technique to eliminate the need for internal batteries. The activities associated with the telemetry microminiaturization, data recovery console, hardware fabrications, power induction systems, electrical and mechanical testing and hermetic sealing test results are discussed.

  9. Inorganic dust pneumonias: the metal-related parenchymal disorders.

    PubMed Central

    Kelleher, P; Pacheco, K; Newman, L S

    2000-01-01

    In recent years the greatest progress in our understanding of pneumoconioses, other than those produced by asbestos, silica, and coal, has been in the arena of metal-induced parenchymal lung disorders. Inhalation of metal dusts and fumes can induce a wide range of lung pathology, including airways disorders, cancer, and parenchymal diseases. The emphasis of this update is on parenchymal diseases caused by metal inhalation, including granulomatous disease, giant cell interstitial pneumonitis, chemical pneumonitis, and interstitial fibrosis, among others. The clinical characteristics, epidemiology, and pathogenesis of disorders arising from exposure to aluminum, beryllium, cadmium, cobalt, copper, iron, mercury, and nickel are presented in detail. Metal fume fever, an inhalation fever syndrome attributed to exposure to a number of metals, is also discussed. Advances in our knowledge of antigen-specific immunologic reactions in the lung are particularly evident in disorders secondary to beryllium and nickel exposure, where immunologic mechanisms have been well characterized. For example, current evidence suggests that beryllium acts as an antigen, or hapten, and is presented by antigen-presenting cells to CD4+ T cells, which possess specific surface antigen receptors. Other metals such as cadmium and mercury induce nonspecific damage, probably by initiating production of reactive oxygen species. Additionally, genetic susceptibility markers associated with increased risk have been identified in some metal-related diseases such as chronic beryllium disease and hard metal disease. Future research needs include development of biologic markers of metal-induced immunologic disease, detailed characterization of human exposure, examination of gene alleles that might confer risk, and association of exposure data with that of genetic susceptibility. PMID:10931787

  10. 29 CFR 779.253 - What is included in computing the total annual inflow volume.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FAIR LABOR STANDARDS ACT AS APPLIED TO RETAILERS OF GOODS OR SERVICES Employment to Which the Act May... taxes and other charges which the enterprise must pay for such goods. Generally, all charges will be... computing the total annual inflow volume. The goods which the establishment purchases or receives for resale...

  11. Oxalate metal complexes in aerosol particles: implications for the hygroscopicity of oxalate-containing particles

    NASA Astrophysics Data System (ADS)

    Furukawa, T.; Takahashi, Y.

    2011-05-01

    Atmospheric aerosols have both a direct and an indirect cooling effect that influences the radiative balance at the Earth's surface. It has been estimated that the degree of cooling is large enough to weaken the warming effect of carbon dioxide. Among the cooling factors, secondary organic aerosols (SOA) play an important role in the solar radiation balance in the troposphere as SOA can act as cloud condensation nuclei (CCN) and extend the lifespan of clouds because of their high hygroscopic and water soluble nature. Oxalic acid is an important component of SOA, and is produced via several formation pathways in the atmosphere. However, it is not certain whether oxalic acid exists as free oxalic acid or as metal oxalate complexes in aerosols, although there is a marked difference in their solubility in water and their hygroscopicity. We employed X-ray absorption fine structure spectroscopy to characterize the calcium (Ca) and zinc (Zn) in aerosols collected at Tsukuba in Japan. Size-fractionated aerosol samples were collected for this purpose using an impactor aerosol sampler. It was shown that 10-60% and 20-100% of the total Ca and Zn in the finer particles (<2.1 μm) were present as Ca and Zn oxalate complexes, respectively. Oxalic acid is hygroscopic and can thus increase the CCN activity of aerosol particles, while complexes with various polyvalent metal ions such as Ca and Zn are not hygroscopic, which cannot contribute to the increase of the CCN activity of aerosols. Based on the concentrations of noncomplexed and metal-complexed oxalate species, we found that most of the oxalic acid is present as metal oxalate complexes in the aerosols, suggesting that oxalic acid does not always increase the hygroscopicity of aerosols in the atmosphere. Similar results are expected for other dicarboxylic acids, such as malonic and succinic acids. Thus, it is advisable that the cooling effect of organic aerosols should be estimated by including the information on metal

  12. Trophic transfer of trace metals: Subcellular compartmentalization in a polychaete and assimilation by a decapod crustacean

    USGS Publications Warehouse

    Rainbow, P.S.; Poirier, L.; Smith, B.D.; Brix, K.V.; Luoma, S.N.

    2006-01-01

    The chemical form of accumulated trace metal in prey is important in controlling the bioavailataility of dietary metal to a predator. This study investigated the trophic transfer of radiolabelled Ag, Cd and Zn from the polychaete worm Nereis diversicolor to the decapod crustacean Palaemonetes varians. We used 2 populations of worms with different proportions of accumulated metals in different subcellular fractions as prey, and loaded the worms with radiolabelled metals either from sediment or from solution. Accumulated radiolabelled metals were fractionated into 5 components : metal-rich granules (MRG), cellular debris, organelles, metallothionein-like proteins (MTLP), and other (heat-sensitive) proteins (HSP). Assimilation efficiencies (AE) of the metals by P. varians were measured from the 4 categories of prey (i.e. 2 populations, radiolabelled from sediment or solution). There were significant differences for each metal between the AEs from the different prey categories, confirming that origin of prey and route of uptake of accumulated trace metal will cause intraspecific differences in subsequent metal assimilation. Correlations were sought between AEs and selected fractions or combinations of fractions of metals in the prey-MRG, Trophically Available Metal (TAM = MTLP + HSP + organelles) and total protein (MTLP + HSP). TAM explained 28% of the variance in AEs for Ag, but no consistent relationships emerged between AEs and TAM or total protein when the metals were considered separately. AEs did, however, show significant positive regressions with both TAM and total protein when the 3 metals were considered together, explaining only about 21 % of the variance in each case. A significant negative relationship was observed between MRG and AE for all metals combined. The predator (P. varians) can assimilate dietary metal from a range of the fractions binding metals in the prey (N. diversicolor), with different assimilation efficiencies summated across these

  13. Metal complexes of quinolone antibiotics and their applications: an update.

    PubMed

    Uivarosi, Valentina

    2013-09-11

    Quinolones are synthetic broad-spectrum antibiotics with good oral absorption and excellent bioavailability. Due to the chemical functions found on their nucleus (a carboxylic acid function at the 3-position, and in most cases a basic piperazinyl ring (or another N-heterocycle) at the 7-position, and a carbonyl oxygen atom at the 4-position) quinolones bind metal ions forming complexes in which they can act as bidentate, as unidentate and as bridging ligand, respectively. In the polymeric complexes in solid state, multiple modes of coordination are simultaneously possible. In strongly acidic conditions, quinolone molecules possessing a basic side nucleus are protonated and appear as cations in the ionic complexes. Interaction with metal ions has some important consequences for the solubility, pharmacokinetics and bioavailability of quinolones, and is also involved in the mechanism of action of these bactericidal agents. Many metal complexes with equal or enhanced antimicrobial activity compared to the parent quinolones were obtained. New strategies in the design of metal complexes of quinolones have led to compounds with anticancer activity. Analytical applications of complexation with metal ions were oriented toward two main directions: determination of quinolones based on complexation with metal ions or, reversely, determination of metal ions based on complexation with quinolones.

  14. Spectroscopic detection of metals ions using a novel selective sensor

    NASA Astrophysics Data System (ADS)

    Peralta-Domínguez, D.; Ramos-Ortiz, G.; Maldonado, J. L.; Rodriguez, M.; Meneses-Nava, M. A.; Barbosa-Garcia, O.; Santillan, R.; Farfan, N.

    2011-09-01

    Colorimetric chemosensors are simple, economical and practical optical approach for detecting toxic metal ions (Hg2+, Pb2+, Ni2+, etc.) in the environment. In this work, we present a simple but highly specific organic compound 4-chloro-2-((E)-((E)-3-(4-(dimethylamino)phenyl)allylidene)amino)phenol (L1) that acts as a colorimetric sensor for divalent metal ions in H2O. The mechanism of the interaction between L1 and various metal-ions has been established by UV-vis absorption and emission spectroscopic experiments that indicate favorable coordination of metal ions with L1 in different solvents. Experimental results indicate that the shape of the electronic transition band of L1 (receptor compound) changed after the interaction with divalent metal-ions, such as Hg2+, Pb2+, Mn2+, Co2+, Cu2+, and Ni2+ in aqueous solution. We found that L1 have a considerable selectivity for Ni2+ ions, even in presence of other metals ions when mixtures of DMSO/H2O as are used as solvents. L1, which has been targeted for sensing transition metal ions, exhibits binding-induced color changes from yellow to pink observed even by the naked eye in presence of Ni2+ ions.

  15. Characterisation of heavy metal discharge into the Ria of Huelva.

    PubMed

    Sainz, A; Grande, J A; de la Torre, M L

    2004-06-01

    The Ria of Huelva estuary, in SW Spain, is known to be one of the most heavy metal contaminated estuaries in the world. River contribution to the estuary of dissolved Cu, Zn, Mn, Cr, Ni, Cd, and As were analysed for the period 1988-2001. The obtained mean values show that this contribution, both because of the magnitude of total metals (895.1 kg/h), composition, toxicity (8.7 kg/h of As+Cd+Pb) and persistence, is an incomparable case in heavy metal contamination of estuaries. The amount and typology of heavy metal discharge to the Ria of Huelva are related to freshwater flow (and, consequently, to rainfall); as a result, two different types of heavy metal discharge can be distinguished in the estuary: during low water (50% of the days), with only 19.3 kg/h of heavy metals, and during high water or flood (17% of the days), where daily maximum discharge of 72,475 kg of heavy metals were recorded, from which 1481 kg were of As, 470 kg of Pb, and 170 kg of Cd. In the most frequent situation (77% of the days), the Odiel River discharges from 90% to 100% of the freshwater received by the estuary. Despite this, the high concentration of heavy metals in the Tinto River water causes this river to discharge into the Ria of Huelva 12.5% of fluvial total dissolved metal load received by the estuary.

  16. Description of Latvian Metal Production and Processing Enterprises' Air Emissions

    NASA Astrophysics Data System (ADS)

    Pubule, Jelena; Zahare, Dace; Blumberga, Dagnija

    2010-01-01

    The metal production and processing sector in Latvia has acquired a stable position in the national economy. Smelting of ferrous and nonferrous metals, production of metalware, galvanisation, etc. are developed in Latvia. The metal production and processing sector has an impact on air quality due to polluting substances which are released in the air from metal treatment processes. Therefore it is necessary to determine the total volume of emissions produced by the metal production and processing sector in Latvia. This article deals with the air polluting emissions of the Latvian metal production and processing industry, and sets the optimum sector emission volumes using the emissions benchmark methodology.

  17. Self Assembly of Nano Metric Metallic Particles for Realization of Photonic and Electronic Nano Transistors

    PubMed Central

    Shahmoon, Asaf; Limon, Ofer; Girshevitz, Olga; Zalevsky, Zeev

    2010-01-01

    In this paper, we present the self assembly procedure as well as experimental results of a novel method for constructing well defined arrangements of self assembly metallic nano particles into sophisticated nano structures. The self assembly concept is based on focused ion beam (FIB) technology, where metallic nano particles are self assembled due to implantation of positive gallium ions into the insulating material (e.g., silica as in silicon on insulator wafers) that acts as intermediary layer between the substrate and the negatively charge metallic nanoparticles. PMID:20559513

  18. Bioavailability of cyanide and metal-cyanide mixtures to aquatic life.

    PubMed

    Redman, Aaron; Santore, Robert

    2012-08-01

    Cyanide can be toxic to aquatic organisms, and the U.S. Environmental Protection Agency has developed ambient water-quality criteria to protect aquatic life. Recent work suggests that considering free, rather than total, cyanide provides a more accurate measure of the biological effects of cyanides and provides a basis for water-quality criteria. Aquatic organisms are sensitive to free cyanide, although certain metals can form stable complexes and reduce the amount of free cyanide. As a result, total cyanide is less toxic when complexing metals are present. Cyanide is often present in complex effluents, which requires understanding how other components within these complex effluents can affect cyanide speciation and bioavailability. The authors have developed a model to predict the aqueous speciation of cyanide and have shown that this model can predict the toxicity of metal-cyanide complexes in terms of free cyanide in solutions with varying water chemistry. Toxicity endpoints based on total cyanide ranged over several orders of magnitude for various metal-cyanide mixtures. However, predicted free cyanide concentrations among these same tests described the observed toxicity data to within a factor of 2. Aquatic toxicity can be well-described using free cyanide, and under certain conditions the toxicity was jointly described by free cyanide and elevated levels of bioavailable metals. Copyright © 2012 SETAC.

  19. Molten Metal Treatment by Salt Fluxing with Low Environmental Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yogeshwar Sahai

    2007-07-31

    Abstract: Chlorine gas is traditionally used for fluxing of aluminum melt for removal of alkali and alkaline earth elements. However this results in undesirable emissions of particulate matter and gases such as HCl and chlorine, which are often at unacceptable levels. Additionally, chlorine gas is highly toxic and its handling, storage, and use pose risks to employees and the local community. Holding of even minimal amounts of chlorine necessitates extensive training for all plant employees. Fugitive emissions from chlorine usage within the plant cause accelerated corrosion of plant equipment. The Secondary Aluminum Maximum Achievable Control Technology (MACT) under the Cleanmore » Air Act, finalized in March 2000 has set very tough new limits on particulate matter (PM) and total hydrogen chloride emissions from aluminum melting and holding furnaces. These limits are 0.4 and 0.1 lbs per ton of aluminum for hydrogen chloride and particulate emissions, respectively. Assuming new technologies for meeting these limits can be found, additional requirements under the Clean Air Act (Prevention of Significant Deterioration and New Source Review) trigger Best Available Control Technology (BACT) for new sources with annual emissions (net emissions not expressed per ton of production) over specified amounts. BACT currently is lime coated bag-houses for control of particulate and HCl emissions. These controls are expensive, difficult to operate and maintain, and result in reduced American competitiveness in the global economy. Solid salt fluxing is emerging as a viable option for the replacement of chlorine gas fluxing, provided emissions can be consistently maintained below the required levels. This project was a cooperative effort between the Ohio State University and Alcoa to investigate and optimize the effects of solid chloride flux addition in molten metal for alkali impurity and non-metallic inclusion removal minimizing dust and toxic emissions and maximizing energy

  20. Heavy Metal Uptake by Novel Miscanthus Seed-Based Hybrids Cultivated in Heavy Metal Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Krzyżak, Jacek; Pogrzeba, Marta; Rusinowski, Szymon; Clifton-Brown, John; McCalmont, Jon Paul; Kiesel, Andreas; Mangold, Anja; Mos, Michal

    2017-09-01

    When heavy metal contaminated soils are excluded from food production, biomass crops offer an alternative commercial opportunity. Perennial crops have potential for phytoremediation. Whilst the conditions at heavy metal contaminated sites are challenging, successful phytoremediation would bring significant economic and social benefits. Seed-based Miscanthus hybrids were tested alongside the commercial clone Miscanthus × giganteus on arable land, contaminated with Pb, Cd and Zn near Katowice. Before the randomized experimental plots were established (25m2 plots with plant density 2/m2) `time-zero' soil samples were taken to determine initial levels of total (aqua regia) and bioavailable (CaCl2 extraction) concentration of Pb, Cd and Zn. After the growing season plant material was sampled during autumn (October, green harvest) and winter (March, brown harvest) to determine differences in heavy metal uptake. Results after the first growing season are presented, including the plot establishment success, biomass yield and heavy metal uptake.

  1. Speciation and transformation of heavy metals during vermicomposting of animal manure.

    PubMed

    Lv, Baoyi; Xing, Meiyan; Yang, Jian

    2016-06-01

    This work was conducted to evaluate the effects of vermicomposting on the speciation and mobility of heavy metals (Zn, Pb, Cr, and Cu) in cattle dung (CD) and pig manure (PM) using tessier sequential extraction method. Results showed that the pH, total organic carbon and C/N ratio were reduced, while the electric conductivity and humic acid increased after 90days vermicomposting. Moreover, the addition of earthworm could accelerate organic stabilization in vermicomposting. The total heavy metals in final vermicompost from CD and PM were higher than the initial values and the control without worms. Sequential extraction indicated that vermicomposting decreased the migration and availability of heavy metals, and the earthworm could reduce the mobile fraction, while increase the stable fraction of heavy metals. Furthermore, these results indicated that vermicomposting played a positive role in stabilizing heavy metals in the treatment of animal manure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis.

    PubMed

    Hao, X; Taghavi, S; Xie, P; Orbach, M J; Alwathnani, H A; Rensing, C; Wei, G

    2014-01-01

    Legumes are important for nitrogen cycling in the environment and agriculture due to the ability of nitrogen fixation by rhizobia. In this review, we introduce an important and potential role of legume-rhizobia symbiosis in aiding phytoremediation of some metal contaminated soils as various legumes have been found to be the dominant plant species in metal contaminated areas. Resistant rhizobia used for phytoremediation could act on metals directly by chelation, precipitation, transformation, biosorption and accumulation. Moreover, the plant growth promoting (PGP) traits of rhizobia including nitrogen fixation, phosphorus solubilization, phytohormone synthesis, siderophore release, and production of ACC deaminase and the volatile compounds of acetoin and 2, 3-butanediol may facilitate legume growth while lessening metal toxicity. The benefits of using legumes inoculated with naturally resistant rhizobia or recombinant rhizobia with enhanced resistance, as well as co-inoculation with other plant growth promoting bacteria (PGPB) are discussed. However, the legume-rhizobia symbiosis appears to be sensitive to metals, and the effect of metal toxicity on the interaction between legumes and rhizobia is not clear. Therefore, to obtain the maximum benefits from legumes assisted by rhizobia for phytoremediation of metals, it is critical to have a good understanding of interactions between PGP traits, the symbiotic plant-rhizobia relationship and metals.

  3. Exotic species with explicit noble metal-noble gas-noble metal linkages.

    PubMed

    Moreno, Norberto; Restrepo, Albeiro; Hadad, C Z

    2018-02-14

    We present a study of the isoelectronic Pt 2 Ng 2 F 4 and [Au 2 Ng 2 F 4 ] 2+ species with noble gas atoms (Ng = Kr, Xe, Rn) acting as links bridging the two noble metal atoms. The stability of the species is investigated using several thermodynamic, kinetic and reactivity indicators. The results are compared against [AuXe 4 ] 2+ , which is thermodynamically unstable in the gas phase but is stabilized in the solid state to the point that it has been experimentally detected as [AuXe 4 ](Sb 2 F 11 ) 2 (S. Seidel and K. Seppelt, Science, 2000, 290, 117-118). Our results indicate that improving upon [AuXe 4 ] 2+ , these exotic combinations between the a priori non-reactive noble metals and noble gases lead to metastable species, and, therefore, they have the possibility of existing in the solid state under adequate conditions. Our calculations include accurate energies and geometries at both the CCSD/SDDALL and MP2/SDDALL levels. We offer a detailed description of the nature of the bonding interactions using orbital and density-based analyses. The computational evidence suggests partially covalent and ionic interactions as the stabilization factors.

  4. The mechanism of metal nanoparticle formation in plants: limits on accumulation

    NASA Astrophysics Data System (ADS)

    Haverkamp, R. G.; Marshall, A. T.

    2009-08-01

    Metal nanoparticles have many potential technological applications. Biological routes to the synthesis of these particles have been proposed including production by vascular plants, known as phytoextraction. While many studies have looked at metal uptake by plants, particularly with regard to phytoremediation and hyperaccumulation, few have distinguished between metal deposition and metal salt accumulation. This work describes the uptake of AgNO3, Na3Ag(S2O3)2, and Ag(NH3)2NO3 solutions by hydroponically grown Brassica juncea and the quantitative measurement of the conversion of these salts to silver metal nanoparticles. Using X-ray absorption near edge spectroscopy (XANES) to determine the metal speciation within the plants, combined with atomic absorption spectroscopy (AAS) for total Ag, the quantity of reduction of AgI to Ag0 is reported. Transmission electron microscopy (TEM) showed Ag particles of 2-35 nm. The factors controlling the amount of silver accumulated are revealed. It is found that there is a limit on the amount of metal nanoparticles that may be deposited, of about 0.35 wt.% Ag on a dry plant basis, and that higher levels of silver are obtained only by the concentration of metal salts within the plant, not by deposition of metal. The limit on metal nanoparticle accumulation, across a range of metals, is proposed to be controlled by the total reducing capacity of the plant for the reduction potential of the metal species and limited to reactions occurring at an electrochemical potential greater than 0 V (verses the standard hydrogen electrode).

  5. Spatial variability of heavy metals in the coastal soils under long-term reclamation

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Coles, Neil A.; Wu, Chunfa; Wu, Jiaping

    2014-12-01

    The coastal plain of Cixi City, China, has experienced over 1000 years of reclamation. With the rapid development of agriculture and industry after reclamation, successive inputs into agricultural soils have drastically modified the soil environment. To determine the spatial distribution of heavy metals and to evaluate the influence of anthropogenic activities, a total of 329 top soil samples were taken along a transect on the coastal plain. The samples collected across 11 sea dikes, were selected by a nested sampling methodology. Total Cu, Fe, Mn, Ni, Pb, and Zn concentrations, as well as their diethylenetriamine penta-acetic acid (DTPA) extractable (available) concentrations were determined. Results indicated that except for Zn concentrations, there was neither heavy metals pollution nor mineral deficiency in the soils. Heavy metals exhibited considerable spatial variability, obvious spatial dependence, and close relationships on the reclaimed land. For most metals, the reclamation history was the main influencing factor. Metals concentrations generally showed discontinuities around the position of sea dikes, and the longer reclamation histories tended to have higher metals concentrations than the recently reclaimed sectors. As for Cu and Zn total concentrations, stochastic factors, like industrial waste discharge, fertilization and pesticide application, probably led to the high nugget effect and altered this relationship. The 6th and 10th zones generally had the highest total metals concentrations, due to the concentration of household appliance manufacturers in these reclaimed areas. The first two zones were characterized by high available metals concentrations, probably due to the alternant flooding and emergence, low pH values and high organic matter contents in these paddy field soils. From the 3rd to 7th zones with the same land use history and soil type, metals concentrations, especially available concentrations, showed homogeneity. The nested sampling

  6. Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant.

    PubMed

    Stolpe, Clemens; Giehren, Franziska; Krämer, Ute; Müller, Caroline

    2017-07-01

    Plants that are able to hyperaccumulate heavy metals show increased concentrations of these metals in their leaf tissue. However, little is known about the concentrations of heavy metals and of organic defence metabolites in the phloem sap of these plants in response to either heavy metal-amendment of the soil or biotic challenges such as aphid-infestation. In this study, we investigated the effects of heavy metal-exposure and of aphid-infestation on phloem exudate composition of the metal hyperaccumulator species Arabidopsis halleri L. O'Kane & Al-Shehbaz (Brassicaceae). The concentrations of elements and of organic defence compounds, namely glucosinolates, were measured in phloem exudates of young and old (mature) leaves of plants challenged either by amendment of the soil with cadmium and zinc and/or by an infestation with the generalist aphid Myzus persicae. Metal-amendment of the soil led to increased concentrations of Cd and Zn, but also of two other elements and one indole glucosinolate, in phloem exudates. This enhanced defence in the phloem sap of heavy metal-hyperaccumulating plants can thus potentially act as effective protection against aphids, as predicted by the elemental defence hypothesis. Aphid-infestation also caused enhanced Cd and Zn concentrations in phloem exudates. This result provides first evidence that metal-hyperaccumulating plants can increase heavy metal concentrations tissue-specifically in response to an attack by phloem-sucking herbivores. Overall, the concentrations of most elements, including the heavy metals, and glucosinolates were higher in phloem exudates of young leaves than in those of old leaves. This defence distribution highlights that the optimal defence theory, which predicts more valuable tissue to be better defended, is applicable for both inorganic and organic defences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Bioaccumulation of heavy metals in plant leaves from Yan׳an city of the Loess Plateau, China.

    PubMed

    Hu, Youning; Wang, Dexiang; Wei, Lijing; Zhang, Xinping; Song, Bin

    2014-12-01

    Urban plants are capable of reducing environmental pollutions through bioaccumulation contaminants in their tissues. The accumulation of heavy metals (Pb, Cu, Cd, Cr, and Zn) in leaves of nine tree species and five shrub species from Yan׳an city of China were investigated, and total metal accumulation capacities of different plants were evaluated using the metal accumulation index (MAI). The results indicated that plants in polluted environments are enriched in heavy metals relative to those in pristine environments, this is mainly caused by traffic emissions and coal combustion. Species with the highest accumulation of a single metal did not have the highest total metal accumulation capacity, the MAI should be an important indicator for tree species selection in phytoextraction and urban greening. Considering total accumulation capacities, Sabina chinensis, Juniperus formosana, Ailanthus altissima and Salix matsudana var. matsudana could be widely used in the Loess Plateau. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Effect of metal surface topography on mechanical bonding at simulated total hip stem-cement interfaces.

    PubMed

    Chen, C Q; Scott, W; Barker, T M

    1999-01-01

    Bonding and loosening mechanisms between bone cement and joint prostheses have not been well identified. In this study, the effects of simulated hip stem surface topography on the interfacial shear strength were examined. Six different surface topographies were used. They were described by several surface characterization parameters that may directly relate to the interfacial bonding strength: average surface roughness R(a), root mean square slope R(Deltaq), correlation length beta, and fluid retention index R(ri). The shear strengths between Palacos E bone cement and stainless steel rods were measured using an Instron materials testing machine. We found that cement can "flow" into the surface microtopography and establish good contact with the metal surface. The results show that the interfacial strength increases monotonically with the increase of R(Deltaq) instead of with R(a). The relationship between interfacial strength and surface parameters shows that a metal stem with an isotropic surface texture, higher R(Deltaq), and greater R(ri) gives a higher interfacial strength. Copyright 1999 John Wiley & Sons, Inc.

  9. Barrier Coatings for Refractory Metals and Superalloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SM Sabol; BT Randall; JD Edington

    2006-02-23

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements.more » Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life.« less

  10. Tribo-electrochemical characterization of metallic biomaterials for total joint replacement.

    PubMed

    Diomidis, N; Mischler, S; More, N S; Roy, Manish

    2012-02-01

    Knee and hip joint replacement implants involve a sliding contact between the femoral component and the tibial or acetabular component immersed in body fluids, thus making the metallic parts susceptible to tribocorrosion. Micro-motions occur at points of fixation leading to debris and ion release by fretting corrosion. β-Titanium alloys are potential biomaterials for joint prostheses due to their biocompatibility and compatibility with the mechanical properties of bone. The biotribocorrosion behavior of Ti-29Nb-13Ta-4.6Zr was studied in Hank's balanced salt solution at open circuit potential and at an applied potential in the passive region. Reciprocating sliding tribocorrosion tests were carried out against technical grade ultra high molecular weight polyethylene, while fretting corrosion tests were carried out against alumina. The wear of the alloy is insignificant when sliding against polyethylene. However, depassivation does take place, but the tested alloy showed an ability to recover its passive state during sliding. The abrasivity of the alloy depends on the electrochemical conditions of the contact, while the wear of polyethylene proceeds through third body formation and material transfer. Under fretting corrosion conditions recovery of the passive state was also achieved. In a fretting contact wear of the alloy proceeds through plastic deformation of the bulk material and wear resistance depends on the electrochemical conditions. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Wideband plasmonic beam steering in metal gratings.

    PubMed

    de Ceglia, Domenico; Vincenti, Maria Antonietta; Scalora, Michael

    2012-01-15

    We demonstrate controllable light deflection in thick metal gratings with periodic subwavelength slits filled with an active material. Under specific illumination conditions, the grating becomes nearly transparent and acts as a uniform optical phased-array antenna where the phase of the radiating elements is controlled by modifying the index of refraction of the material that fills each slit. The beam-steering operational regime occurs in a wide wavelength band, and it is relatively insensitive to the input angle.

  12. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position.

    PubMed

    Ju, Hong; Yang, Yuan-Feng; Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo; Li, Yan

    2018-02-28

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current-density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles.

  13. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position

    PubMed Central

    Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo

    2018-01-01

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current–density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles. PMID:29495617

  14. Specific features of implosion of metallized fiber arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrofanov, K. N., E-mail: mitrofan@triniti.ru; Aleksandrov, V. V.; Gritsuk, A. N.

    2017-02-15

    Implosion of metallized fiber arrays was studied experimentally at the Angara-5-1 facility. The use of such arrays makes it possible to investigate the production and implosion dynamics of plasmas of various metals (such as tin, indium, and bismuth) that were previously unavailable for such studies. The plasma production rates m-dot (in μg/(cm{sup 2} ns)) for different metals were determined and quantitatively compared. Varying the thickness of the metal layer deposited on kapron fibers (the total linear mass of the metal coating being maintained at the level of 220 μg/cm), the current and velocity of the plasma precursor were studied asmore » functions of the thickness of the metal coating. The strong difference in the rates of plasma production from the metal coating and kapron fibers results in the redistribution of the discharge current between the Z-pinch and the trailing fiber plasma. The outer boundary of the plasma produced from the metal coating is found to be stable against instabilities typical of the final stage of implosion of conventional wire arrays.« less

  15. Mercury mobilization in a flooded soil by incorporation into metallic copper and metal sulfide nanoparticles.

    PubMed

    Hofacker, Anke F; Voegelin, Andreas; Kaegi, Ralf; Kretzschmar, Ruben

    2013-07-16

    Mercury is a highly toxic priority pollutant that can be released from wetlands as a result of biogeochemical redox processes. To investigate the temperature-dependent release of colloidal and dissolved Hg induced by flooding of a contaminated riparian soil, we performed laboratory microcosm experiments at 5, 14, and 23 °C. Our results demonstrate substantial colloidal Hg mobilization concomitant with Cu prior to the main period of sulfate reduction. For Cu, we previously showed that this mobilization was due to biomineralization of metallic Cu nanoparticles associated with suspended bacteria. X-ray absorption spectroscopy at the Hg LIII-edge showed that colloidal Hg corresponded to Hg substituting for Cu in the metallic Cu nanoparticles. Over the course of microbial sulfate reduction, colloidal Hg concentrations decreased but continued to dominate total Hg in the pore water for up to 5 weeks of flooding at all temperatures. Transmission electron microscopy (TEM) suggested that Hg became associated with Cu-rich mixed metal sulfide nanoparticles. The formation of Hg-containing metallic Cu and metal sulfide nanoparticles in contaminated riparian soils may influence the availability of Hg for methylation or volatilization processes and has substantial potential to drive Hg release into adjacent water bodies.

  16. Structural basis for expanding the application of bioligand in metal bioremediation: A review.

    PubMed

    Sharma, Virbala; Pant, Deepak

    2018-03-01

    Bioligands (BL) present in plant and microbes are primarily responsible for their use in metal decontamination. Both primary (proteins and amino acid) and secondary (proliferated) response in the form of BL is possible in plants and microbes toward metal bioremediation. Structure of these BL have specific requirement for preferential binding towards a particular metal in biomass. The aim of this review is to explore various templates from BL (as metal host) for the metal detoxification/decontamination and associated bioremediation. Mechanistic explanation for bioremediation may involve the various processes like: (i) electron transfer; (ii) translocation; and (iii) coordination number variation. HSAB (hard and soft acid and base) concept can act as guiding principle for many such processes. It is possible to investigate various structural homolog of BL (similar to secondary response in living stage) for the possible improvement in bioremediation process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Metal accumulation strategies in plants spontaneously inhabiting Zn-Pb waste deposits.

    PubMed

    Wójcik, Małgorzata; Sugier, Piotr; Siebielec, Grzegorz

    2014-07-15

    Metal (Zn, Pb, Cd, Cu, Ni, Cr) accumulation in shoots of 38 plant species spontaneously colonizing three Zn-Pb waste deposits in southern Poland was studied in order to find out if the age of the waste (30-130 years) or its type (slag or flotation residues) influence metal content in plants and to identify species potentially suitable for biomonitoring and phytoremediation. The total metal concentrations in the waste upper layers ranged from 7300 to 171,790 mg kg(-1) for Zn, from 1390 to 22,265 mg kg(-1) for Pb, and from 66 to 1,464 mg kg(-1) for Cd, whereas CaCl2-extracted fractions accounted for 0.034-0.11 %, 0.005-0.03 %, and 0.28-0.62 % of total Zn, Pb and Cd concentrations, respectively. The concentrations of Cu, Ni, and Cr in substrates and in plants were low and ranged within the background values. Metal accumulation in plant shoots was poorly correlated with both total and CaCl2-extracted forms of metals in the substrate and was highly variable among species and also specimens of the same species. The highest mean concentrations of Zn, Pb and Cd were found in Anthyllis vulneraria L. (901.5 mg kg(-1)), Echium vulgare L. (116.92 mg kg(-1)), and Hieracium piloselloides Vill. (26.86 mg kg(-1)), respectively. Besides Reseda lutea L., no species appeared to be a good indicator of polymetallic environment pollution based on chemical analysis of shoots; however, metal accumulation in the whole plant communities of a particular contaminated area might be an accurate tool for assessment of metal transfer to vegetation irrespective of the type or age of the waste. All the species studied developed a metal exclusion strategy, thus exhibiting potential for phytostabilization of metalliferous wastelands. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Metallated metal-organic frameworks

    DOEpatents

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-02-07

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  19. Metallated metal-organic frameworks

    DOEpatents

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  20. Gas Metal Arc Welding. Welding Module 5. Instructor's Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching an eight-unit module in gas metal arc welding. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The following topics are covered in the module: safety and testing, gas metal arc…

  1. Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH

    NASA Astrophysics Data System (ADS)

    Mayanna, Sathish; Peacock, Caroline L.; Schäffner, Franziska; Grawunder, Anja; Merten, Dirk; Kothe, Erika; Büchel, Georg

    2014-05-01

    The precipitation of biogenic Mn oxides at acidic pH is rarely reported and poorly understood, compared to biogenic Mn oxide precipitation at near neutral conditions. Here we identified and investigated the precipitation of biogenic Mn oxides in acidic soil, and studied their role in the retention of heavy metals, at the former uranium mining site of Ronneburg, Germany. The site is characterized by acidic pH, low carbon content and high heavy metal loads including rare earth elements. Specifically, the Mn oxides were present in layers identified by detailed soil profiling and within these layers pH varied from 4.7 to 5.1, Eh varied from 640 to 660 mV and there were enriched total metal contents for Ba, Ni, Co, Cd and Zn in addition to high Mn levels. Using electron microprobe analysis, synchrotron X-ray diffraction and X-ray absorption spectroscopy, we identified poorly crystalline birnessite (δ-MnO2) as the dominant Mn oxide in the Mn layers, present as coatings covering and cementing quartz grains. With geochemical modelling we found that the environmental conditions at the site were not favourable for chemical oxidation of Mn(II), and thus we performed 16S rDNA sequencing to isolate the bacterial strains present in the Mn layers. Bacterial phyla present in the Mn layers belonged to Firmicutes, Actinobacteria and Proteobacteria, and from these phyla we isolated six strains of Mn(II) oxidizing bacteria and confirmed their ability to oxidise Mn(II) in the laboratory. The biogenic Mn oxide layers act as a sink for metals and the bioavailability of these metals was much lower in the Mn layers than in adjacent layers, reflecting their preferential sorption to the biogenic Mn oxide. In this presentation we will report our findings, concluding that the formation of natural biogenic poorly crystalline birnessite can occur at acidic pH, resulting in the formation of a biogeochemical barrier which, in turn, can control the mobility and bioavailability of heavy metals in

  2. Trace metals accumulation in Bacopa monnieri and their bioaccessibility.

    PubMed

    Srikanth Lavu, Rama Venkata; Prasad, Majeti Narasimha Vara; Pratti, Varalakshmi Lalithya; Meißner, Ralph; Rinklebe, Jörg; Van De Wiele, Tom; Tack, Filip; Du Laing, Gijs

    2013-08-01

    Bacopa monnieri is commonly known as "Brahmi" or "Water hyssop" and is a source of nootropic drugs. Aboveground parts of plant samples collected from peri-urban Indian areas were analysed for total trace metal concentrations. Subsequently, three samples with high concentrations of Cd and Pb were subjected to in vitro gastrointestinal digestion to assess the bioaccessibility of the trace metals in these plants. The total concentrations of trace metals on a dry weight basis were 1.3 to 6.7 mg·kg⁻¹ Cd, 1.5 to 22 mg·kg⁻¹ Pb, 36 to 237 mg·kg⁻¹ Cu, and 78 to 186 mg·kg⁻¹ Zn. The majority of Bacopa monnieri samples exceeded threshold limits of Cd, Pb, Cu, and Zn for use as raw medicinal plant material or direct consumption. Therefore, it is necessary to evaluate Bacopa monnieri collected in nature for their trace metal content prior to human consumption and preparation of herbal formulations. Georg Thieme Verlag KG Stuttgart · New York.

  3. Determination of heavy metal toxicity of finished leather solid waste.

    PubMed

    Aslan, Ahmet

    2009-05-01

    This paper investigates the toxicity in leather products of heavy metals known to be detrimental to the ecosystem. Heavy metal concentrations in leather samples were identified with ICP-OES, and toxicity was determined using a MetPLATE bioassay. Chromium and aluminium were found to constitute 98% of the total concentration of heavy metals in finished leather tanned with chromium and aluminium salts, while in some vegetable-tanned leather, zirconium was the only heavy metal identified. The average inhibition values for chromium, aluminium and vegetable tanned leather were 98.08%, 97.04% and 62.36%, respectively.

  4. Reconstructing Early Industrial Contributions to Legacy Trace Metal Contamination in Southwestern Pennsylvania.

    PubMed

    Rossi, Robert J; Bain, Daniel J; Hillman, Aubrey L; Pompeani, David P; Finkenbinder, Matthew S; Abbott, Mark B

    2017-04-18

    Early industrial trace metal loadings are poorly characterized but potentially substantial sources of trace metals to the landscape. The magnitude of legacy contamination in southwestern Pennsylvania, the cradle of North American fossil fuel industrialization, is reconstructed from trace metal concentrations in a sediment core with proxies including major and trace metal chemistry, bulk density, and magnetic susceptibility. Trace metal chemistry in this sediment record reflects 19th and 20th century land use and industry. In particular, early 19th century arsenic loadings to the lake are elevated from pesticides used by early European settlers at a lakeside tannery. Later, sediment barium concentrations rise, likely reflecting the onset of acidic mine drainage from coal operations. Twentieth century zinc, cadmium, and lead concentrations are dominated by emissions from the nearby, infamous Donora Zinc Works yet record both the opening of a nearby coal-fired power plant and amendments to the Clean Air Act. The impact of early industry is substantial and rivals more recent metal fluxes, resulting in a significant potential source of contaminated sediments. Thus, modern assessments of trace metal contamination cannot ignore early industrial inputs, as the potential remobilization of legacy contamination would impact ecosystem and human health.

  5. Antireflection coating on metallic substrates for solar energy and display applications

    NASA Astrophysics Data System (ADS)

    Hsiao, Wei-Yuan; Tang, Chien-Jen; Lee, Kun-Hsien; Jaing, Cheng-Chung; Kuo, Chien-Cheng; Chen, Hsi-Chao; Chang, Hsing-Hua; Lee, Cheng-Chung

    2010-08-01

    Normally metallic films are required for solar energy and display related coatings. To increase the absorbing efficiency or contrast, it is necessary to apply an antireflection coating (ARC) on the metal substrate. However, the design of a metal substrate is very different from the design of a dielectric substrate, since the optical constant of metallic thin film is very dependent on its thickness and microstructure. In this study, we design and fabricate ARCs on Al substrates using SiO2 and Nb2O5 as the dielectric materials and Nb for the metal films. The ARC successfully deposited on the Al substrate had the following structure: air/SiO2/Nb2O5/Metal/Nb2O5/Al. The measured average reflectance of the ARC is less than 1% in the visible region. We found that it is better to use a highly refractive material than a low refractive material. The thickness of the metallic film can be thicker with the result that it is easier to control and has a lesser total thickness. The total thickness of the ARC is less than 200 nm. We successfully fabricated a solar absorber and OLED device with the ARC structure were successfully fabricated.

  6. Investigation of total phenolic, total flavonoid, antioxidant and allyl isothiocyanate content in the different organs of Wasabi japonica grown in an organic system.

    PubMed

    Shin, Seong Woo; Ghimeray, Amal Kumar; Park, Cheol Ho

    2014-01-01

    This study was carried out to investigate the total polyphenol (TP), total flavonoid (TF), antioxidative effect and allyl isothyocyanate (ITC) content in different organs of wasabi plant grown in an organic system. Invitro study of methanol and boiled water extracts of wasabi were conducted by analyzing the 1-1-diphenyl-2-picryl hydrozyl (DPPH) radial scavenging activity, metal chelating activity and total antioxidant capacity in a comparative manner. The result revealed that methanol extract showed higher TP in flower (3644 mg TAE/100 g dw), leaf (3201 mg TAE/100 g dw) and fruit (3025 mg TAE/100 g dw) as compared to the boiled water extract. Similarly, TF content was also higher in methanol extracts of flower (1152 mg QE/100 g dw) and leaf (325 mg QE/100 g dw), however, the other parts showed ignorable value. Results of antioxidant activity were found at different magnitude of potency. The methanol extract of different parts of wasabi exhibited higher activity in total antioxidant capacity and DPPH radical scavenging assay as compared to water extract. In metal chelating assay, the boiled water extracts of leaf showed higher (76.9%) activity, followed by fruit (68.8%) and flower (62.8%). Ally ITC detected by gas chromatography was present in all of the tissues of wasabi plant but the content was found to be varied in different tissues. Overall, this study will allow consumers and processors to understand the possibility for medical application of wasabi plant by knowing the level of total polyphenol distribution, Ally ITC content and antioxidant property distributed in different parts and tissues.Key words: Allyl ITC, antioxidant, flavonoid, polyphenol, Wasabi japonica.

  7. Metallomics of two microorganisms relevant to heavy metal bioremediation reveal fundamental differences in metal assimilation and utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lancaster, Andrew; Menon, Angeli; Scott, Israel

    2014-03-26

    Although as many as half of all proteins are thought to require a metal cofactor, the metalloproteomes of microorganisms remain relatively unexplored. Microorganisms from different environments are likely to vary greatly in the metals that they assimilate, not just among the metals with well-characterized roles but also those lacking any known function. Herein we investigated the metal utilization of two microorganisms that were isolated from very similar environments and are of interest because of potential roles in the immobilization of heavy metals, such as uranium and chromium. The metals assimilated and their concentrations in the cytoplasm of Desulfovibrio vulgaris strainmore » Hildenborough (DvH) and Enterobacter cloacae strain Hanford (EcH) varied dramatically, with a larger number of metals present in Enterobacter. For example, a total of 9 and 19 metals were assimilated into their cytoplasmic fractions, respectively, and DvH did not assimilate significant amounts of zinc or copper whereas EcH assimilated both. However, bioinformatic analysis of their genome sequences revealed a comparable number of predicted metalloproteins, 813 in DvH and 953 in EcH. These allowed some rationalization of the types of metal assimilated in some cases (Fe, Cu, Mo, W, V) but not in others (Zn, Nd, Ce, Pr, Dy, Hf and Th). It was also shown that U binds an unknown soluble protein in EcH but this incorporation was the result of extracellular U binding to cytoplasmic components after cell lysis.« less

  8. [Eleven-Year Experience with Total Ankle Arthroplasty].

    PubMed

    Popelka, S; Sosna, A; Vavřík, P; Jahoda, D; Barták, V; Landor, I

    2016-01-01

    PURPOSE OF THE STUDY Total joint replacement is one of the options in surgical treatment of advanced ankle arthritis. It allows the ankle to remain mobile but, unfortunately, it does not provide the same longevity as total knee or hip replacements. Therefore, decisions concerning the kind of treatment are very individual and depend on the clinical status and opinion of each patient. MATERIAL AND METHODS A total of 132 total ankle replacements were carried out in the period from 2004 to 2015. The prostheses used included the Ankle Evolutive System (AES) in 52 patients, Mobility Total Ankle System (DePuy) in 24 patients and, recently, Rebalance Total Ankle Replacement implant in 53 patients. Three patients allergic to metal received the Taric prosthesis. Revision arthroplasty using the Hintegra prosthesis was carried out in four patients. The outcome of arthroplasty was evaluated on the American Orthopaedic Foot and Ankle Society (AOFAS) scoring scale. Indications for total ankle arthroplasty included post-traumatic arthritis in 83 patients, rheumatoid arthritis in 37 and primary arthritis in 12 patients. There were 78 women and 54 men, with an average age of 55.6 years at the time of surgery. RESULTS The average follow-up was 6.1 years (1-11 years). The average AOFAS score of the whole group increased from 33.2 before surgery to 82.5 after it. The primary indication had an important role. Arthroplasty outcomes were poorer in patients with post-traumatic arthritis than in those with rheumatoid arthritis or primary arthritis. In patients with post-traumatic arthritis, the average AOFAS score rose to 78.6 due to restricted motion of the ankle, and some patients continued to have pain when walking. The average AOFAS score in a total of 49 patients who had rheumatoid arthritis or primary arthritis reached a value of 86.4. Post-operative complications were recorded in ten patients (7.6%) in whom part of the wound was healing by second intention. Ossification was also a

  9. Electrospun cellulose acetate composites containing supported metal nanoparticles for antifungal membranes.

    PubMed

    Quirós, Jennifer; Gonzalo, Soledad; Jalvo, Blanca; Boltes, Karina; Perdigón-Melón, José Antonio; Rosal, Roberto

    2016-09-01

    Electrospun cellulose acetate composites containing silver and copper nanoparticles supported in sepiolite and mesoporous silica were prepared and tested as fungistatic membranes against the fungus Aspergillus niger. The nanoparticles were in the 3-50nm range for sepiolite supported materials and limited by the size of mesopores (5-8nm) in the case of mesoporous silica. Sepiolite and silica were well dispersed within the fibers, with larger aggregates in the micrometer range, and allowed a controlled release of metals to create a fungistatic environment. The effect was assessed using digital image analysis to evaluate fungal growth rate and fluorescence readings using a viability stain. The results showed that silver and copper nanomaterials significantly impaired the growth of fungi when the spores were incubated either in direct contact with particles or included in cellulose acetate composite membranes. The fungistatic effect took place on germinating spores before hyphae growth conidiophore formation. After 24h the cultures were separated from fungistatic materials and showed growth impairment only due to the prior exposure. Growth reduction was important for all the particles and membranes with respect to non-exposed controls. The effect of copper and silver loaded materials was not significantly different from each other with average reductions around 70% for bare particles and 50% for membranes. Copper on sepiolite was particularly efficient with a decrease of metabolic activity of up to 80% with respect to controls. Copper materials induced rapid maturation and conidiation with fungi splitting in sets of subcolonies. Metal-loaded nanomaterials acted as reservoirs for the controlled release of metals. The amount of silver or copper released daily by composite membranes represented roughly 1% of their total load of metals. Supported nanomaterials encapsulated in nanofibers allow formulating active membranes with high antifungal performance at the same time

  10. Ligational behavior of Schiff bases towards transition metal ion and metalation effect on their antibacterial activity

    NASA Astrophysics Data System (ADS)

    Devi, Jai; Batra, Nisha; Malhotra, Rajesh

    2012-11-01

    New Schiff bases pyrazine-2-carboxylicacid (phenyl-pyridin-2-yl-methylene)-hydrazide (Hpch-bp) HL1 and pyrazine-2-carboxylicacid (pyridin-2-ylmethylene)-hydrazide (Hpch-pc) HL2 derived from condensation of pyrazine carboxylic hydrazide (Hpch) with 2-benzoyl pyridine (bp) or pyridine 2-carbaldehyde (pc) and their transition metal complexes of type ML(1-2)2 have been synthesized, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). Characterization of ligands and their metal complexes was carried out by elemental analysis, conductimetric studies, magnetic susceptibility, spectroscopic techniques (IR, UV-VIS, NMR, ESR, Mass) and thermogravimetric analysis. The physico-chemical studies revealed octahedral geometry or distorted octahedral geometry around metal ion. These azomethine Schiff base ligands acted as tridentate ? coordinating through carbonyl, azomethine and pyridine nitrogen present in the ligand. The thermodynamic and thermal properties of the complexes have been investigated and it was observed on the basis of these studies that thermal stability of complexes follows the order Mn < Zn < Cu < Co < Ni. The ligands and their complexes were tested for in vitro antibacterial activity at different concentrations against bacteria viz. Gram positive Bacillus subtilis, Micrococcus luteus and Gram negative Pseudomonas aeruginosa, Pseudomonas mendocina. A marked enhancement in biocidal activity of the ligands under similar experimental conditions was observed as a consequence of coordination with metal ions. The trend of growth inhibition in the complexes was found to be in the order: Cu > Mn > Ni > Co > Zn.

  11. What's in a name: the Vermont Genetically Engineered Food Labeling Act

    PubMed Central

    McPherson, Malia J.

    2014-01-01

    On May 8, 2014, Vermont passed the Vermont Genetically Engineered Food Labeling Act (Act) requiring labels on certain genetically engineered foods. Once the bill takes effect July 1, 2016, all Vermont-retailed foods with more than 0.9% of their total weight in genetically modified ingredients must be labeled with language stating, “may be partially produced with genetic engineering.” As genetically engineered food are considered scientifically equivalent to their traditional counterparts and are not subject to federal labeling by the FDA, the Act presents several legal questions. Several of the legal questions have been raised in a recent lawsuit filed by the Grocery Manufactures Association that claims the Act violates the First Amendment, Supremacy Clause, and Commerce Clause. This paper will discuss why the Second Circuit could strike down the Act as unconstitutional as to each claim. PMID:27774175

  12. Process Stability of Ultrasonic-Wave-Assisted Gas Metal Arc Welding

    NASA Astrophysics Data System (ADS)

    Fan, Chenglei; Xie, Weifeng; Yang, Chunli; Lin, Sanbao; Fan, Yangyang

    2017-10-01

    As a newly developed arc welding method, ultrasonic-wave-assisted arc welding successfully introduced power ultrasound into the arc and weld pool, during which the ultrasonic acts on the top of the arc in the coaxial alignment direction. The advanced process for molten metals can be realized by using an additional ultrasonic field. Compared with the conventional gas metal arc welding (GMAW), the welding arc is compressed, the droplet size is decreased, and the droplet transfer frequency is increased significantly in ultrasonic-wave-assisted GMAW (U-GMAW). However, the stability of the metal transfer has deep influence on the welding quality equally, and the ultrasonic wave effect on the stability of the metal transfer is a phenomenon that is not completely understood. In this article, the stabilities of the short-circuiting transfer process and globular transfer process are studied systematically, and the effect of ultrasonic wave on the metal transfer is analyzed further. The transfer frequency and process stability of the U-GMAW process are much higher than those of the conventional GMAW. Analytical results show that the additional ultrasonic wave is helpful for improving welding stability.

  13. Biologics formulation factors affecting metal leachables from stainless steel.

    PubMed

    Zhou, Shuxia; Schöneich, Christian; Singh, Satish K

    2011-03-01

    An area of increasing concern and scientific scrutiny is the potential contamination of drug products by leachables entering the product during manufacturing and storage. These contaminants may either have a direct safety impact on the patients or act indirectly through the alteration of the physicochemical properties of the product. In the case of biotherapeutics, trace amounts of metal contaminants can arise from various sources, but mainly from contact with stainless steel (ss). The effect of the various factors, buffer species, solution fill volume per unit contact surface area, metal chelators, and pH, on metal leachables from contact with ss over time were investigated individually. Three major metal leachables, iron, chromium, and nickel, were monitored by inductively coupled plasma-mass spectrometry because they are the major components of 316L ss. Iron was primarily used to evaluate the effect of each factor since it is the most abundant. It was observed that each studied factor exhibited its own effect on metal leachables from contact with ss. The effect of buffer species and pH exhibited temperature dependence over the studied temperature range. The metal leachables decreased with the increased fill volume (mL) per unit contact ss surface area (cm(2)) but a plateau was achieved at approximately 3 mL/cm(2). Metal chelators produced the strongest effect in facilitating metal leaching. In order to minimize the metal leachables and optimize biological product stability, each formulation factor must be evaluated for its impact, to balance its risk and benefit in achieving the target drug product shelf life. © 2011 American Association of Pharmaceutical Scientists

  14. Heavy Metal Concentrations in Soils and Factors Affecting Metal Uptake by Plants in the Vicinity of a Korean Cu-W Mine.

    PubMed

    Jung, Myung Chae

    2008-04-04

    Heavy metal concentrations were measured in soils and plants in and around a copper-tungsten mine in southeast Korea to investigate the influence of past base metal mining on the surface environment. The results of chemical analysis indicate that the heavy metals in soils decreased with distance from the source, controlled mainly by water movement and topography. The metal concentrations measured in plant species generally decreased in the order; spring onions > soybean leaves > perilla leaves » red pepper > corn grains » jujube grains, although this pattern varied moderately between different elements. The results agree with other reports that metal concentrations in leaves are usually much higher than those in grain. Factors influencing the bioavailability of metals and their occurrences in crops were found as soil pH, cation exchange capacity, organic matter content, soil texture, and interaction among the target elements. It is concluded that total metal concentrations in soils are the main controls on their contents in plants. Soil pH was also an important factor. A stepwise linear multiple regression analysis was also conducted to identify the dominant factors influencing metal uptake by plants. Metal concentrations in plants were also estimated by computer-aided statistical methods.

  15. Comparison of SP-LIBS and DP-LIBS on metal and non-metal testing based on LIBS

    NASA Astrophysics Data System (ADS)

    Lin, Xiaomei; Sun, Haoran; Lin, Jingjun

    2017-10-01

    Laser-induced breakdown spectroscopy (LIBS) technology for metal and nonmetallic detection accuracy is the key technology to be solved in LIBS measurement, Due to metal elements and non-metallic elements in the lively, atomic structure and the degree of excitation of the laser are totally different, so the laser induced plasma evolution and spectral intensity are absolutely different. Among the many factors that affect measurement accuracy, the single and double pulse of the laser has a great influence on the measurement accuracy of metal and non-metal, they both have their own advantages, but also have their own shortcomings. In order to compare the effect of SP-LIBS and DP-LIBS on the measurement results of different elements, in this experiment, we put the metal element aluminum and non-metallic element carbon as the sample, the laser energy as a variable, using the high-speed camera shooting SP- LIBS and DP- LIBS plasma images. Using the spectral analyzer to record the spectral intensity of the elements, by calculating the relative RSD of the signal intensity and comparing the spectral intensity and the signal stability for different elements, develop an optimized experimental program. The experimental results show that under the same energy condition, the metal aluminum ion image under the DP- LIBS and the non-metallic carbon ion image under the SP- LIBS are the most suitable images. By considering the stability of the line intensity and the signal stability, we find that the sensitivity and stability of the signal strength of the metal elements under the double pulse are better than that of the single pulse, and for the non-metallic element, the single pulse laser is better than the double pulse.

  16. Development of a field test method for total suspended solids analysis.

    DOT National Transportation Integrated Search

    2013-11-01

    Total suspended solids (TSS) are all particles in water that will not pass through a glass fiber filter with a pore size less : than 2 m, including sediments, algae, nutrients, and metals. TSS is an important water quality parameter because of its ...

  17. Assessment of biotic response to heavy metal contamination in Avicennia marina mangrove ecosystems in Sydney Estuary, Australia.

    PubMed

    Nath, Bibhash; Chaudhuri, Punarbasu; Birch, Gavin

    2014-09-01

    Mangrove forests act as a natural filter of land-derived wastewaters along industrialized tropical and sub-tropical coastlines and assist in maintaining a healthy living condition for marine ecosystems. Currently, these intertidal communities are under serious threat from heavy metal contamination induced by human activity associated with rapid urbanization and industrialization. Studies on the biotic responses of these plants to heavy metal contamination are of great significance in estuary management and maintaining coastal ecosystem health. The main objective of the present investigation was to assess the biotic response in Avicennia marina ecosystems to heavy metal contamination through the determination of metal concentrations in leaves, fine nutritive roots and underlying sediments collected in fifteen locations across Sydney Estuary (Australia). Metal concentrations (especially Cu, Pb and Zn) in the underlying sediments of A. marina were enriched to a level (based on Interim Sediment Quality Guidelines) at which adverse biological effects to flora could occasionally occur. Metals accumulated in fine nutritive roots greater than underlying sediments, however, only minor translocation of these metals to A. marina leaves was observed (mean translocation factors, TFs, for all elements <0.13, except for Mn). Translocation factors of essential elements (i.e., common plant micro-nutrients, Cu, Ni, Mn and Zn) were greater than non-essential elements (As, Cd, Co, Cr and Pb), suggesting that A. marina mangroves of this estuary selectively excluded non-essential elements, while regulating essential elements and limiting toxicity to plants. This study supports the notion that A. marina mangroves act as a phytostabilizer in this highly modified estuary thereby protecting the aquatic ecosystem from point or non-point sources of heavy metal contamination. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Trentepohlia algae biofilms as bioindicator of atmospheric metal pollution.

    PubMed

    García-Florentino, Cristina; Maguregui, Maite; Morillas, Héctor; Marcaida, Iker; Salcedo, Isabel; Madariaga, Juan Manuel

    2018-06-01

    In this work, a reddish biocolonization composed mainly by Trentepohlia algae affecting a synthetic building material from a modern building from the 90s located in the Bizkaia Science and Technology Park (Zamudio, North of Spain) was characterized and its ability to accumulate metals coming from the surrounding atmosphere was evaluated. To asses if these biofilms can act as bioindicators of the surrounding metal pollution, a fast non-invasive in situ methodology based on the use of hand-held energy dispersive X-ray fluorescence (HH-ED-XRF) was used. In order to corroborate the in situ obtained conclusions, some fragments from the affected material were taken to analyze the metal distribution by means of micro-energy dispersive X-ray fluorescence spectroscopy (μ-ED-XRF) and to confirm the presence of metal particles deposited on it using Scanning Electron Microscopy coupled to an Energy Dispersive Spectrometer (SEM-EDS). In order to confirm if Trentepohlia algae biofilms growing on the surface of building materials could be a fast way to in situ provide information about the surrounding metal pollution, a second Trentepohlia algae biofilm growing on a different kind of material (sandstone) was analyzed from an older historical building, La Galea Fortress (Getxo, North of Spain). Copyright © 2018. Published by Elsevier B.V.

  19. Metal pollution loading, Manzalah lagoon, Nile delta, Egypt: Implications for aquaculture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegel, F.R.; Slaboda, M.L.; Stanley, D.J.

    1994-03-01

    High cultural enrichment factors are found for Hg (13 x), Pb (22.1 x), and other potentially toxic metals (e.g., Sn, Zn, Cu, Ag) in the upper 20 cm of sediment cores from the southeastern Ginka subbasin of Manzalah lagoon, Nile delta, Egypt. Cores from other areas of the lagoon show little metal loading. Metal loading followed the closure of the Aswan High Dam, the availability of abundant cheap electricity, and the development of major power-based industries. Industrial wastes containing potentially toxic metals are dumped into the Nile delta drain system. The load carried by Bahr El-Baqar drain discharges into themore » Ginka subbasin, which acts as a sink and results in metal loading of the sediment deposited there. Further development of aquaculture in this subbasin, of food-stuff agriculture on recently reclaimed lagoon bottom, or where irrigation waters come from Bahr El-Baqar drain or its discharge should be halted or strictly limited until potentially toxic metals in the drain waters and sediment are removed and polluted input drastically reduced. This environmental assessment of heavy metals in aquaculture or agriculture development should extend to other waterbodies in the northern Nile delta, particularly Idku lagoon and Lake Mariut, where industrial metal-bearing wastes discharge into the waterbodies. 21 refs., 7 figs., 3 tabs.« less

  20. Synthesis, spectroscopic, biological activity and thermal characterization of ceftazidime with transition metals

    NASA Astrophysics Data System (ADS)

    Masoud, Mamdouh S.; Ali, Alaa E.; Elasala, Gehan S.; Kolkaila, Sherif A.

    2018-03-01

    Synthesis, physicochemical characterization and thermal analysis of ceftazidime complexes with transition metals (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)) were discussed. It's obtained that ceftazidime act as bidentate ligand. From magnetic measurement and spectral data, octahedral structures were proposed for all complexes except for cobalt, nickel and mercury had tetrahedral structural. Hyper chemistry program confirmed binding sites of ceftazidime. Ceftazidime complexes show higher activity than ceftazidime for some strains. From TG and DTA curves the thermal decomposition mechanisms of ceftazidime and their metal complexes were suggested. The thermal decomposition of the complexes ended with the formation of metal oxides as a final product except in case of Hg complex.

  1. Heavy metals in edible seaweeds commercialised for human consumption

    NASA Astrophysics Data System (ADS)

    Besada, Victoria; Andrade, José Manuel; Schultze, Fernando; González, Juan José

    2009-01-01

    Though seaweed consumption is growing steadily across Europe, relatively few studies have reported on the quantities of heavy metals they contain and/or their potential effects on the population's health. This study focuses on the first topic and analyses the concentrations of six typical heavy metals (Cd, Pb, Hg, Cu, Zn, total As and inorganic As) in 52 samples from 11 algae-based products commercialised in Spain for direct human consumption ( Gelidium spp.; Eisenia bicyclis; Himanthalia elongata; Hizikia fusiforme; Laminaria spp.; Ulva rigida; Chondrus crispus; Porphyra umbilicales and Undaria pinnatifida). Samples were ground, homogenised and quantified by atomic absorption spectrometry (Cu and Zn by flame AAS; Cd, Pb and total As by electrothermal AAS; total mercury by the cold vapour technique; and inorganic As by flame-hydride generation). Accuracy was assessed by participation in periodic QUASIMEME (Quality Assurance of Information in Marine Environmental Monitoring in Europe) and IAEA (International Atomic Energy Agency) intercalibration exercises. To detect any objective differences existing between the seaweeds' metal concentrations, univariate and multivariate studies (principal component analysis, cluster analysis and linear discriminant analysis) were performed. It is concluded that the Hizikia fusiforme samples contained the highest values of total and inorganic As and that most Cd concentrations exceeded the French Legislation. The two harvesting areas (Atlantic and Pacific oceans) were differentiated using both univariate studies (for Cu, total As, Hg and Zn) and a multivariate discriminant function (which includes Zn, Cu and Pb).

  2. Robust half-metallicity of hexagonal SrNiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Gao-Yuan; Ma, Chun-Lan, E-mail: machunlan@126.com; Chen, Da

    In the rich panorama of the electronic and magnetic properties of 3d transition metal oxides SrMO{sub 3} (M=Ti, V, Cr, Mn, Fe, Co, Ni, Cu), one member (SrNiO{sub 3}) is missing. In this paper we use GGA+U method based on density functional theory to examine its properties. It is found that SrNiO{sub 3} is a ferromagnetic half-metal. The charge density map shows a high degree of ionic bonding between Sr and other atoms. Meanwhile, a covalent-bonding Ni–O–Ni–O–Ni chain is observed. The spin density contour of SrNiO{sub 3} further indicates that the magnetic interaction between Ni atoms mediated by O ismore » semicovalent exchange. The density of states are examined to explore the unusual indirect magnetic-exchange mechanism. Corresponding to the total energies results, a robust half-metallic character is observed, suggesting a promising giant magneto-optical Kerr property of the material. The partial density of states are further examined to explore the origin of ferromagnetic half-metallicity. The O atoms are observed to have larger contribution at fermi level than Ni atoms to the spin-polarized states, demonstrating that O atoms play a critical role in ferromagnetic half-metallicity of SrNiO{sub 3}. Hydrostatic pressure effect is examined to evaluate how robust the half-metallic ferromagnetism is. - Graphical abstract: (a) The total energy as a function of the lattice constant a for hexagonal SrNiO3 with various magnetic phases. (b) The total electronic density of states for hexagonal SrNiO{sub 3} with FM configuration from GGA+U calculations. (c) Total electron-density distribution in the (110) plane. The colors gradually change from cyan (through pink) to yellow corresponding to charge density value from 0 to 4.0. (d) The magnetization density map in the (110) plane. The colors range from blue (through green) to red corresponding to magnetization density value from −0.15 to 0.45. Black and white contours stand for positive and negative values

  3. Feasibility study of total reflection X-ray fluorescence analysis using a liquid metal jet X-ray tube

    NASA Astrophysics Data System (ADS)

    Maderitsch, A.; Smolek, S.; Wobrauschek, P.; Streli, C.; Takman, P.

    2014-09-01

    Total reflection X-ray spectroscopy (TXRF) is a powerful analytical technique for qualitative and quantitative analysis of trace and ultratrace elements in a sample with lower limits of detection (LLDs) of pg/g to ng/g in concentration and absolute high fg levels are attainable. Several X-ray sources, from low power (few W), 18 kW rotating anodes to synchrotron radiation, are in use for the excitation and lead accordingly to their photon flux delivered on the sample the detection limits specified. Not only the power, but also the brilliance and focal shape are of importance for TXRF. A microfocus of 50-100 μm spot size or the line focus of diffraction tubes is best suited. Excillum developed a new approach in the design of a source: the liquid metal jet anode. In this paper the results achieved with this source are described. A versatile TXRF spectrometer with vacuum chamber designed at Atominstitut was used for the experiments. A multilayer monochromator selecting the intensive Ga-Kα radiation was taken and the beam was collimated by 50 μm slits. Excellent results regarding geometric beam stability, high fluorescence intensities and low background were achieved leading to detection limits in the high fg range for Ni. A 100 mm2 silicon drift detector (SDD) collimated to 80 mm2 was used to collect the fluorescence radiation. The results from measurements on single element samples are presented.

  4. Decontamination of metals and polycyclic aromatic hydrocarbons from slag-polluted soil.

    PubMed

    Bisone, Sara; Mercier, Guy; Blais, Jean-François

    2013-01-01

    Metallurgy is an industrial activity that is one of the largest contributors to soil contamination by metals. This contamination is often associated with organic compound contamination; however, little research has been aimed at the development of simultaneous processes for decontamination as opposed to treatments to heavy metals or organic compounds alone. This paper presents an efficient process to decontaminate the soils polluted with smelting by-products rich in Cu, Zn and polycyclic aromatic hydrocarbons (PAHs). A simultaneous treatment for metals and PAHs was also tested. The process is mainly based on physical techniques, such as crushing, gravimetric separation and attrition. For the finest particle size fractions, an acid extraction with H2SO4 was used to remove metals. The PAH removal was enhanced by adding surfactant during attrition. The total metal removals varied from 49% to 73% for Cu and from 43% to 63% for Zn, whereas a removal yield of 92% was measured for total PAHs. Finally, a technical-economic evaluation was done for the two processes tested.

  5. 17 CFR 240.12g5-2 - Definition of “total assets”.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) GENERAL RULES AND REGULATIONS, SECURITIES EXCHANGE ACT OF 1934 Rules and Regulations Under the... total assets as shown on the issuer's balance sheet or the balance sheet of the issuer and its...

  6. Metal emissions from Kilauea, and a suggested revision of the estimated worldwide metal output by quiescent degassing of volcanoes

    USGS Publications Warehouse

    Hinkley, T.K.; Lamothe, P.J.; Wilson, S.A.; Finnegan, David L.; Gerlach, T.M.

    1999-01-01

    Measurements of a large suite of metals (Pb, Cd, Cu, Zn and several others) and sulfur at Kilauea volcano over an extended period of time has yielded a detailed record of the atmospheric injection of ordinarily-rare metals from this quiescently degassing volcano, representative of an important type. We have combined the Kilauea data with data of recent studies by others (emissions from volcanoes in the Indonesian arc; the large Laki eruption of two centuries ago; Etna: estimates of total volcanic emissions of sulfur) to form the basis for a new working estimate of the rate of worldwide injection of metals to the atmosphere by volcanoes. The new estimate is that volcanoes inject a substantially smaller mass of ordinarily-rare metals into the atmosphere than was stated in a widely cited previous estimate [J.O. Nriagu, A global assessment of natural sources of atmospheric trace metals, Nature 338 (1989) 47-49]. Our estimate, which is an upper limit, is an annual injection mass of about 10,000 tons of the metals considered, versus the earlier estimate of about 23,000 tons. Also, the proportions of the metals are substantially different in our new estimate.

  7. Characterization of heavy metal desorption from road-deposited sediment under acid rain scenarios.

    PubMed

    Zhao, Bo; Liu, An; Wu, Guangxue; Li, Dunzhu; Guan, Yuntao

    2017-01-01

    Road-deposited sediments (RDS) on urban impervious surfaces are important carriers of heavy metals. Dissolved heavy metals that come from RDS influenced by acid rain, are more harmful to urban receiving water than particulate parts. RDS and its associated heavy metals were investigated at typical functional areas, including industrial, commercial and residential sites, in Guangdong, Southern China, which was an acid rain sensitive area. Total and dissolved heavy metals in five particle size fractions were analyzed using a shaking method under acid rain scenarios. Investigated heavy metals showed no difference in the proportion of dissolved fraction in the solution under different acid rain pHs above 3.0, regardless of land use. Dissolved loading of heavy metals related to organic carbon content were different in runoff from main traffic roads of three land use types. Coarse particles (>150μm) that could be efficiently removed by conventional street sweepers, accounted for 55.1%-47.1% of the total dissolved metal loading in runoff with pH3.0-5.6. The obtained findings provided a significant scientific basis to understand heavy metal release and influence of RDS grain-size distribution and land use in dissolved heavy metal pollution affected by acid rain. Copyright © 2016. Published by Elsevier B.V.

  8. Molecular and ionic mimicry and the transport of toxic metals

    PubMed Central

    Bridges, Christy C.; Zalups, Rudolfs K.

    2008-01-01

    Despite many scientific advances, human exposure to, and intoxication by, toxic metal species continues to occur. Surprisingly, little is understood about the mechanisms by which certain metals and metal-containing species gain entry into target cells. Since there do not appear to be transporters designed specifically for the entry of most toxic metal species into mammalian cells, it has been postulated that some of these metals gain entry into target cells, through the mechanisms of ionic and/or molecular mimicry, at the site of transporters of essential elements and/or molecules. The primary purpose of this review is to discuss the transport of selective toxic metals in target organs and provide evidence supporting a role of ionic and/or molecular mimicry. In the context of this review, molecular mimicry refers to the ability of a metal ion to bond to an endogenous organic molecule to form an organic metal species that acts as a functional or structural mimic of essential molecules at the sites of transporters of those molecules. Ionic mimicry refers to the ability of a cationic form of a toxic metal to mimic an essential element or cationic species of an element at the site of a transporter of that element. Molecular and ionic mimics can also be sub-classified as structural or functional mimics. This review will present the established and putative roles of molecular and ionic mimicry in the transport of mercury, cadmium, lead, arsenic, selenium, and selected oxyanions in target organs and tissues. PMID:15845419

  9. Molecular and ionic mimicry and the transport of toxic metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bridges, Christy C.; Zalups, Rudolfs K.

    Despite many scientific advances, human exposure to, and intoxication by, toxic metal species continues to occur. Surprisingly, little is understood about the mechanisms by which certain metals and metal-containing species gain entry into target cells. Since there do not appear to be transporters designed specifically for the entry of most toxic metal species into mammalian cells, it has been postulated that some of these metals gain entry into target cells, through the mechanisms of ionic and/or molecular mimicry, at the site of transporters of essential elements and/or molecules. The primary purpose of this review is to discuss the transport ofmore » selective toxic metals in target organs and provide evidence supporting a role of ionic and/or molecular mimicry. In the context of this review, molecular mimicry refers to the ability of a metal ion to bond to an endogenous organic molecule to form an organic metal species that acts as a functional or structural mimic of essential molecules at the sites of transporters of those molecules. Ionic mimicry refers to the ability of a cationic form of a toxic metal to mimic an essential element or cationic species of an element at the site of a transporter of that element. Molecular and ionic mimics can also be sub-classified as structural or functional mimics. This review will present the established and putative roles of molecular and ionic mimicry in the transport of mercury, cadmium, lead, arsenic, selenium, and selected oxyanions in target organs and tissues.« less

  10. Potential presence of metals in patients treated with metal-metal coupling prostheses for hip arthroplasty at 7 and 10 years of follow-up.

    PubMed

    Sessa, Giuseppe; Testa, Gianluca; Gioitta Iachino, Salvatore; Costarella, Luciano; Puma Pagliarello, Calogero; Ferrante, Margherita; Grasso, Alfina; Pavone, Vito

    2018-05-01

    Beginning in 2008, metal-on-metal prostheses have been in the spotlight owing to much higher revision rates than expected. Adverse local tissue reactions have been well described in the literature as potential complications. Between 2012 and 2013, 13 patients with metal-on-metal total hip replacements were evaluated clinically and radiologically and with laboratory samples. The same tests were repeated between 2015 and 2016 on eight patients to assess any changes. In the laboratory assessment, we searched for chromium, cobalt, molybdenum, and nickel in blood and urine samples over 24 h. Clinical assessment has shown good score in all patients except one. On a second examination, between 2015 and 2016, all patients obtained results similar to those obtained in the first assessment, except a patient, who reported a recent fall. In the radiological assessment between 2012 and 2013, results were optimal, apart from a case of aseptic mobilization. The patients reassessed 3 years after the first examination showed radiological results similar to those previously obtained, apart from a patient, who showed signals of mobilization. Metal levels found in their blood decreased in most cases after 3 years. Urine levels of nickel increased in five subjects, and chromium levels increased in four, but levels of cobalt and molybdenum decreased in four patients. It could be hypothesized that the decreasing trend of metal ion levels is associated with a stable wear status. On the contrary, a progressive increase in metal ion levels must be considered as early proof of implant loosening.

  11. Differentially Fed Metal Frame Antenna With Common Mode Suppression for Biomedical Smartband Applications

    NASA Astrophysics Data System (ADS)

    Xu, Li-Jie; Duan, Zhu

    2018-04-01

    This paper proposes a differentially fed metal frame antenna for biomedical smartband applications. It occupies a planar area of 40 × 20 mm, operating at 2.45-GHz industrial, scientific, and medical band. The proposed antenna is composed of an external metal frame and an internal metal box acting as ground for electronics. Through a differential feeding to two copper strips located between the metal frame and the metal box, a rectangular ring slot is excited with common mode suppression capability. The antenna prototype is designed in free space, and then adapted to on-body scenario for both repeater and transmitter cases. Additionally, the proposed differential feeding is modified to the traditional single port, demonstrating the half-size miniaturization technique. Finally, the simulated results are verified by measurement. The proposed antenna's simple structure and satisfactory performance makes it a perfect candidate for future medical smartband applications, monitoring the physiological parameters of humans for health-care purposes.

  12. EFFECT OF SOIL MODIFYING FACTORS ON THE BIOAVAILABILITY AND TOXICITY OF METAL CONTAMINATED SOILS

    EPA Science Inventory

    Heavy metal and organic chemical contamination of soils is a worldwide problem posing a risk to humans and more directly, soil organisms. Metal toxicity is often not directly related to the total concentration of metals present due to a number of modifying factors that depend,...

  13. Globally sustainable manganese metal production and use.

    PubMed

    Hagelstein, Karen

    2009-09-01

    The "cradle to grave" concept of managing chemicals and wastes has been a descriptive analogy of proper environmental stewardship since the 1970s. The concept incorporates environmentally sustainable product choices-such as metal alloys utilized steel products which civilization is dependent upon. Manganese consumption is related to the increasing production of raw steel and upgrading ferroalloys. Nonferrous applications of manganese include production of dry-cell batteries, plant fertilizer components, animal feed and colorant for bricks. The manganese ore (high grade 35% manganese) production world wide is about 6 million ton/year and electrolytic manganese metal demand is about 0.7 million ton/year. The total manganese demand is consumed globally by industries including construction (23%), machinery (14%), and transportation (11%). Manganese is recycled within scrap of iron and steel, a small amount is recycled within aluminum used beverage cans. Recycling rate is 37% and efficiency is estimated as 53% [Roskill Metals and Minerals Reports, January 13, 2005. Manganese Report: rapid rise in output caused by Chinese crude steel production. Available from: http://www.roskill.com/reports/manganese.]. Environmentally sustainable management choices include identifying raw material chemistry, utilizing clean production processes, minimizing waste generation, recycling materials, controlling occupational exposures, and collecting representative environmental data. This paper will discuss two electrolytically produced manganese metals, the metal production differences, and environmental impacts cited to date. The two electrolytic manganese processes differ due to the addition of sulfur dioxide or selenium dioxide. Adverse environmental impacts due to use of selenium dioxide methodology include increased water consumption and order of magnitude greater solid waste generation per ton of metal processed. The use of high grade manganese ores in the electrolytic process also

  14. Ultrasound screening of periarticular soft tissue abnormality around metal-on-metal bearings.

    PubMed

    Nishii, Takashi; Sakai, Takashi; Takao, Masaki; Yoshikawa, Hideki; Sugano, Nobuhiko

    2012-06-01

    Although metal hypersensitivity or pseudotumors are concerns for metal-on-metal (MoM) bearings, detailed pathologies of patterns, severity, and incidence of periprosthetic soft tissue lesions are incompletely understood. We examined the potential of ultrasound for screening of periarticular soft tissue lesions around MoM bearings. Ultrasound examinations were conducted in 88 hips (79 patients) with MoM hip resurfacings or MoM total hip arthroplasties with a large femoral head. Four qualitative ultrasound patterns were shown, including normal pattern in 69 hips, joint-expansion pattern in 11 hips, cystic pattern in 5 hips, and mass pattern in 3 hips. Hips with the latter 3 abnormal patterns showed significantly higher frequency of clinical symptoms, without significant differences of sex, duration of implantation, head sizes, and cup abduction/anteversion angles, compared with hips with normal pattern. Ultrasound examination provides sensitive screening of soft tissue reactions around MoM bearings and may be useful in monitoring progression and defining treatment for periarticular soft tissue abnormalities. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Small mammal-heavy metal concentrations from mined and control sites

    USGS Publications Warehouse

    Smith, G.J.; Rongstad, O.J.

    1982-01-01

    Total body concentrations of zinc, copper, cadmium, lead, nickel, mercury and arsenic were determined for Peromyscus maniculatus and Microtus pennsylvanicus from an active zinc-copper mine near Timmins, Ontario, Canada, and a proposed zinc-copper mine near Crandon, Wisconsin, USA. Metal concentrations were evaluated with respect to area, species, sex and age groups. Metal concentrations in Peromyscus from the proposed mine site were not different from those collected in a third area where no mine or deposit exists. This is probably due to the 30 m of glacial material over the proposed mine site deposit. A statistical interaction between area, species, sex and age was observed for zinc and copper concentrations in small mammals we examined. Peromyscus from the mine site had consistently higher metal concentrations than Peromyscus from the control site. Greater total body cadmium and lead concentrations in adult?compared with juvenile?Peromyscus collected at the mine site suggests age-dependent accumulation of these toxic metals. Microtus did not exhibit this age-related response, and responded to other environmental metals more erratically and to a lesser degree. Differences in the response of these two species to environmental metal exposure may be due to differences in food habits. Nickel, mercury and arsenic concentrations in small mammals from the mine site were not different from controls. Heavy metal concentrations are also presented for Sorex cinereus, Blarina brevicauda and Zapus hudsonicus without respect to age and sex cohorts. Peromyscus may be a potentially important species for the monitoring of heavy metal pollution.

  16. Effective High-Frequency Permeability of Compacted Metal Powders

    NASA Astrophysics Data System (ADS)

    Volkovskaya, I. I.; Semenov, V. E.; Rybakov, K. I.

    2018-03-01

    We propose a model for determination of the effective complex permeability of compacted metal-powder media. It is based on the equality of the magnetic moment in a given volume of the media with the desired effective permeability to the total magnetic moment of metal particles in the external high-frequency magnetic field, which arises due to excitation of electric eddy currents in the particles. Calculations within the framework of the proposed model allow us to refine the values of the real and imaginary components of the permeability of metal powder compacts in the microwave band. The conditions of applicability of the proposed model are formulated, and their fulfillment is verified for metal powder compacts in the microwave and millimeter wavelength bands.

  17. Revision total hip arthoplasty: factors associated with re-revision surgery.

    PubMed

    Khatod, Monti; Cafri, Guy; Inacio, Maria C S; Schepps, Alan L; Paxton, Elizabeth W; Bini, Stefano A

    2015-03-04

    .86 to 0.99). At the time of revision, a new or retained cemented femoral implant or all-cemented hip implant increases the risk of revision by a factor of 3.19 (95% confidence interval, 1.22 to 8.38) relative to a retained or new uncemented hip implant. A ceramic on a highly cross-linked polyethylene bearing articulation decreases the hazard relative to metal on highly cross-linked polyethylene by a factor of 0.32 (95% confidence interval, 0.11 to 0.95). Metal on constrained bearing increases the hazard relative to metal on highly cross-linked polyethylene by a factor of 3.32 (95% confidence interval, 1.16 to 9.48). When evaluating patient, implant, and surgical factors at the time of revision total hip arthroplasty, age, surgeon experience, implant fixation, and bearing surfaces had significant impacts on the risk of re-revision. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.

  18. Awareness of Consumer Protection Act among dental health professionals in dental schools of Ghaziabad, India.

    PubMed

    Prasad, Sumanth; Menon, Ipseeta; Dhingra, Chandan; Anand, Richa

    2013-12-01

    The study aimed to assess the awareness of the Consumer Protection Act among dental health professionals in dental schools of Ghaziabad, India. A cross-sectional questionnaire survey was carried out on dental health professionals in dental schools of Ghaziabad, India. A total of 348 dental health professionals (170 males and 178 females) were surveyed, out of which 116 were MDS faculty, 45 were BDS faculty and 187 were pursuing post graduation. The questionnaire comprised of 24 questions about the awareness of consumer protection act. Statistical analysis was done using Chi-square test, student's t test and ANOVA. A total of 84.8% (n=295) reported to be aware of consumer protection act. Amongst them, MDS faculty showed more awareness as compared to BDS faculty and those pursuing post-graduation. Considering the present scenario, MDS faculty dental professionals have more awareness of consumer protection act compared to other dental professionals. So, we must upgrade our knowledge on consumer protection act at all levels of our profession and change our attitude by inculcating a practice to spread the message of consumer protection act for delivering quality dental care.

  19. 40 CFR 721.4680 - Metal salts of complex inorganic oxyacids (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Metal salts of complex inorganic oxyacids (generic name). 721.4680 Section 721.4680 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances §...

  20. Biodegradation of petroleum hydrocarbons in estuarine sediments: metal influence.

    PubMed

    Almeida, Raquel; Mucha, Ana P; Teixeira, Catarina; Bordalo, Adriano A; Almeida, C Marisa R

    2013-02-01

    In this work, the potential effect of metals, such as Cd, Cu and Pb, on the biodegradation of petroleum hydrocarbons in estuarine sediments was investigated under laboratory conditions. Sandy and muddy non-vegetated sediments were collected in the Lima River estuary (NW Portugal) and spiked with crude oil and each of the metals. Spiked sediments were left in the dark under constant shaking for 15 days, after which crude oil biodegradation was evaluated. To estimate microbial abundance, total cell counts were obtained by DAPI staining and microbial community structure was characterized by ARISA. Culturable hydrocarbon degraders were determined using a modified most probable number protocol. Total petroleum hydrocarbons concentrations were analysed by Fourier Transform Infrared Spectroscopy after their extraction by sonication, and metal contents were determined by atomic absorption spectrometry. The results obtained showed that microbial communities had the potential to degrade petroleum hydrocarbons, with a maximum of 32 % degradation obtained for sandy sediments. Both crude oil and metals changed the microbial community structure, being the higher effect observed for Cu. Also, among the studied metals, only Cu displayed measurable deleterious effect on the hydrocarbons degradation process, as shown by a decrease in the hydrocarbon degrading microorganisms abundance and in the hydrocarbon degradation rates. Both degradation potential and metal influence varied with sediment characteristics probably due to differences in contaminant bioavailability, a feature that should be taken into account in developing bioremediation strategies for co-contaminated estuarine sites.

  1. Stabilization of metallic catalyst microstructures against high-temperature thermal coarsening

    NASA Astrophysics Data System (ADS)

    Driscoll, David Robert

    The size and shape of metal particulate at high temperature is dictated by surface energy. In systems containing very small metal particles, smaller particles shrink and disappear as they grow into larger particles in a process referred to as coarsening. Coarsening causes irreversible degradation in a number of important systems including automotive catalytic converters and solid oxide fuel cells (SOFC) through a loss of catalyst (metal) surface area. This phenomenon is exemplified by nickel metal catalyst that is supported on ytrria-stabilized zirconia (YSZ) which represents a materials system critical to the function of SOFCs. It has been demonstrated that additions of aluminum titanate (ALT) to the Ni-YSZ system with subsequent thermal treatment can act to stabilize the geometry of Ni on YSZ. In demonstration SOFCs, ALT has increased the time required for the first 10% of degradation by a factor of 115. This work has sought to elucidate the mechanisms by which ALT imparts increased stability. The work contained here demonstrates that ALT easily decomposes to Al 2O3 and TiO2. During thermal treatment, the alumina reacts with NiO to form nickel aluminate and the titania interacts with the YSZ where it can form Zr5Ti7O24--a mixed ion electron conducting phase. In this way, the Al and Ti components of ALT have been determined to act independently where alumina appears to be dominant in microstructural stabilization. During cell operation, the nickel aluminate decomposes to nickel metal decorated with alumina nano-particulate. This geometry forms the basis of "diffusion caging" as a stabilization mechanism which is the subject of Chapter 8. The role of titania appears to be less important except when processing occurs in a way that facilitates formation of the MIEC phase. However, Ni-YSZ cermets have also shown a strength enhancement when doped with ALT. This strength enhancement is likely due to the influence of titania (Chapter 7). Future work has the potential to

  2. Metal accumulation and evaluation of effects in a freshwater turtle.

    PubMed

    Yu, Shuangying; Halbrook, Richard S; Sparling, Donald W; Colombo, Robert

    2011-11-01

    A variety of contaminants have been detected in aquatic and terrestrial environments around the Paducah Gaseous Diffusion Plant (PGDP), Kentucky. The presence of these contaminants at the PGDP may pose a risk to biota, yet little is known about the bioaccumulation of contaminants and associated effects in wildlife, especially in aquatic turtles. The current study was initiated to evaluate: (1) the accumulation of heavy metals (Cd, Cr, Cu, Pb, and Hg) in aquatic ecosystems associated with the PGDP using red-eared slider turtle (Trachemys scripta elegans) as biomonitors; (2) maternal transfer of heavy metals; and (3) potential hematological and immunological effects resulting from metal accumulation. A total of 26 turtles were collected from 7 ponds located south, adjacent, and north of the PGDP. Liver Cu concentrations were significantly different among ponds and Cu concentrations in eggs were positively correlated with female Cu concentrations in kidney. The concentrations of heavy metals measured in turtle tissues and eggs were low and, based on previous studies of reptiles and established avian threshold levels of heavy metals, did not appear to have adverse effects on aquatic turtles inhabiting ponds near the PGDP. However, total white blood cell counts, heterophil to lymphocyte ratio, and phytohemagglutinin stimulation index were correlated with metal concentrations. Because other factors may affect the hematological and immunological indices, further investigation is needed to determine if these effects are associated with metal exposure, other contaminants, or disease.

  3. Statistical evaluation of biogeochemical variables affecting spatiotemporal distributions of multiple free metal ion concentrationsin an urban estuary

    EPA Science Inventory

    Free metal ion concentrations have been recognized as a better indicator of metal bioavailability in aquatic environments than total dissolved metal concentrations. However, our understanding of the determinants of free ion concentrations, especially in a metal mixture, is limite...

  4. Direct in Situ Conversion of Metals into Metal-Organic Frameworks: A Strategy for the Rapid Growth of MOF Films on Metal Substrates.

    PubMed

    Ji, Hoon; Hwang, Sunhyun; Kim, Keonmok; Kim, CheolGi; Jeong, Nak Cheon

    2016-11-30

    The fabrication of metal-organic framework (MOF) films on conducting substrates has demonstrated great potential in applications such as electronic conduction and sensing. For these applications, direct contact of the film to the conducting substrate without a self-assembled monolayer (SAM) is a desired step that must be achieved prior to the use of MOF films. In this report, we propose an in situ strategy for the rapid one-step conversion of Cu metal into HKUST-1 films on conducting Cu substrates. The Cu substrate acts both as a conducting substrate and a source of Cu 2+ ions during the synthesis of HKUST-1. This synthesis is possible because of the simultaneous reaction of an oxidizing agent and a deprotonating agent, in which the former agent dissolves the metal substrate to form Cu 2+ ions while the latter agent deprotonates the ligand. Using this strategy, the HKUST-1 film could not only be rapidly synthesized within 5 min but also be directly attached to the Cu substrate. Based on microscopic studies, we propose a plausible mechanism for the growth reaction. Furthermore, we show the versatility of this in situ conversion methodology, applying it to ZIF-8, which comprises Zn 2+ ions and imidazole-based ligands. Using an I 2 -filled HKUST-1 film, we further demonstrate that the direct contact of the MOF film to the conducting substrate makes the material more suitable for use as a sensor or electronic conductor.

  5. A preliminary categorization of end-of-life electrical and electronic equipment as secondary metal resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oguchi, Masahiro, E-mail: oguchi.masahiro@nies.go.jp; Murakami, Shinsuke; Sakanakura, Hirofumi

    2011-09-15

    Highlights: > End-of-life electrical and electronic equipment (EEE) as secondary metal resources. > The content and the total amount of metals in specific equipment are both important. > We categorized 21 EEE types from contents and total amounts of various metals. > Important equipment types as secondary resources were listed for each metal kind. > Collectability and possible collection systems of various EEE types were discussed. - Abstract: End-of-life electrical and electronic equipment (EEE) has recently received attention as a secondary source of metals. This study examined characteristics of end-of-life EEE as secondary metal resources to consider efficient collection andmore » metal recovery systems according to the specific metals and types of EEE. We constructed an analogy between natural resource development and metal recovery from end-of-life EEE and found that metal content and total annual amount of metal contained in each type of end-of-life EEE should be considered in secondary resource development, as well as the collectability of the end-of-life products. We then categorized 21 EEE types into five groups and discussed their potential as secondary metal resources. Refrigerators, washing machines, air conditioners, and CRT TVs were evaluated as the most important sources of common metals, and personal computers, mobile phones, and video games were evaluated as the most important sources of precious metals. Several types of small digital equipment were also identified as important sources of precious metals; however, mid-size information and communication technology (ICT) equipment (e.g., printers and fax machines) and audio/video equipment were shown to be more important as a source of a variety of less common metals. The physical collectability of each type of EEE was roughly characterized by unit size and number of end-of-life products generated annually. Current collection systems in Japan were examined and potentially appropriate collection

  6. "Rocking-Chair"-Type Metal Hybrid Supercapacitors.

    PubMed

    Yoo, Hyun Deog; Han, Sang-Don; Bayliss, Ryan D; Gewirth, Andrew A; Genorio, Bostjan; Rajput, Nav Nidhi; Persson, Kristin A; Burrell, Anthony K; Cabana, Jordi

    2016-11-16

    Hybrid supercapacitors that follow a "rocking-chair"-type mechanism were developed by coupling divalent metal and activated carbon electrodes in nonaqueous electrolytes. Conventional supercapacitors require a large amount of electrolyte to provide a sufficient quantity of ions to the electrodes, due to their Daniell-type mechanism that depletes the ions from the electrolyte while charging. The alternative "rocking-chair"-type mechanism effectively enhances the energy density of supercapacitors by minimizing the necessary amount of electrolyte, because the ion is replenished from the metal anode while it is adsorbed to the cathode. Newly developed nonaqueous electrolytes for Mg and Zn electrochemistry, based on bis(trifluoromethylsulfonyl)imide (TFSI) salts, made the metal hybrid supercapacitors possible by enabling reversible deposition on the metal anodes and reversible adsorption on an activated carbon cathode. Factoring in gains through the cell design, the energy density of the metal hybrid supercapacitors is projected to be a factor of 7 higher than conventional devices thanks to both the "rocking-chair"-type mechanism that minimizes total electrolyte volume and the use of metal anodes, which have substantial merits in capacity and voltage. Self-discharge was also substantially alleviated compared to conventional supercapacitors. This concept offers a route to build supercapacitors that meet dual criteria of power and energy densities with a simple cell design.

  7. Baseline sediment trace metals investigation: Steinhatchee River estuary, Florida, Northeast Gulf of Mexico

    USGS Publications Warehouse

    Trimble, C.A.; Hoenstine, R.W.; Highley, A.B.; Donoghue, J.F.; Ragland, P.C.

    1999-01-01

    This Florida Geological Survey/U.S. Department of the Interior, Minerals Management Service Cooperative Study provides baseline data for major and trace metal concentrations in the sediments of the Steinhatchee River estuary. These data are intended to provide a benchmark for comparison with future metal concentration data measurements. The Steinhatchee River estuary is a relatively pristine bay located within the Big Bend Wildlife Management Area on the North Central Florida Gulf of Mexico coastline. The river flows 55 km through woodlands and planted pines before emptying into the Gulf at Deadman Harbor. Water quality in the estuary is excellent at present. There is minimal development within the watershed. The estuary is part of an extensive system of marshes that formed along the Florida Gulf coast during the Holocene marine transgression. Sediment accretion rate measurements range from 1.4 to 4.1 mm/yr on the basis of lead-210 measurements. Seventy-nine short cores were collected from 66 sample locations, representing four lithofacies: clay- and organic-rich sands, organic-rich sands, clean quartz sands, and oyster bioherms. Samples were analyzed for texture, total organic matter, total carbon, total nitrogen, clay mineralogy, and major and trace-metal content. Following these analyses, metal concentrations were normalized against geochemical reference elements (aluminum and iron) and against total weight percent organic matter. Metals were also normalized granulometrically against total weight percent fines (<0.062 mm). Concentrations were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES) for all metals except mercury. Mercury concentrations were determined by cold-flameless atomic absorption spectrometry (AAS). Granulometric measurements were made by sieve and pipette analyses. Organic matter was determined by two methods: weight loss upon ignition and elemental analysis (by Carlo-Erba Furnace) of carbon and nitrogen. X

  8. Applications of Metals for Bone Regeneration.

    PubMed

    Glenske, Kristina; Donkiewicz, Phil; Köwitsch, Alexander; Milosevic-Oljaca, Nada; Rider, Patrick; Rofall, Sven; Franke, Jörg; Jung, Ole; Smeets, Ralf; Schnettler, Reinhard; Wenisch, Sabine; Barbeck, Mike

    2018-03-12

    The regeneration of bone tissue is the main purpose of most therapies in dental medicine. For bone regeneration, calcium phosphate (CaP)-based substitute materials based on natural (allo- and xenografts) and synthetic origins (alloplastic materials) are applied for guiding the regeneration processes. The optimal bone substitute has to act as a substrate for bone ingrowth into a defect, as well as resorb in the time frame needed for complete regeneration up to the condition of restitution ad integrum . In this context, the modes of action of CaP-based substitute materials have been frequently investigated, where it has been shown that such materials strongly influence regenerative processes such as osteoblast growth or differentiation and also osteoclastic resorption due to different physicochemical properties of the materials. However, the material characteristics needed for the required ratio between new bone tissue formation and material degradation has not been found, until now. The addition of different substances such as collagen or growth factors and also of different cell types has already been tested but did not allow for sufficient or prompt application. Moreover, metals or metal ions are used differently as a basis or as supplement for different materials in the field of bone regeneration. Moreover, it has already been shown that different metal ions are integral components of bone tissue, playing functional roles in the physiological cellular environment as well as in the course of bone healing. The present review focuses on frequently used metals as integral parts of materials designed for bone regeneration, with the aim to provide an overview of currently existing knowledge about the effects of metals in the field of bone regeneration.

  9. Applications of Metals for Bone Regeneration

    PubMed Central

    Glenske, Kristina; Donkiewicz, Phil; Köwitsch, Alexander; Milosevic-Oljaca, Nada; Rider, Patrick; Rofall, Sven; Franke, Jörg; Jung, Ole; Smeets, Ralf; Schnettler, Reinhard; Wenisch, Sabine

    2018-01-01

    The regeneration of bone tissue is the main purpose of most therapies in dental medicine. For bone regeneration, calcium phosphate (CaP)-based substitute materials based on natural (allo- and xenografts) and synthetic origins (alloplastic materials) are applied for guiding the regeneration processes. The optimal bone substitute has to act as a substrate for bone ingrowth into a defect, as well as resorb in the time frame needed for complete regeneration up to the condition of restitution ad integrum. In this context, the modes of action of CaP-based substitute materials have been frequently investigated, where it has been shown that such materials strongly influence regenerative processes such as osteoblast growth or differentiation and also osteoclastic resorption due to different physicochemical properties of the materials. However, the material characteristics needed for the required ratio between new bone tissue formation and material degradation has not been found, until now. The addition of different substances such as collagen or growth factors and also of different cell types has already been tested but did not allow for sufficient or prompt application. Moreover, metals or metal ions are used differently as a basis or as supplement for different materials in the field of bone regeneration. Moreover, it has already been shown that different metal ions are integral components of bone tissue, playing functional roles in the physiological cellular environment as well as in the course of bone healing. The present review focuses on frequently used metals as integral parts of materials designed for bone regeneration, with the aim to provide an overview of currently existing knowledge about the effects of metals in the field of bone regeneration. PMID:29534546

  10. Temporal and spatial trends of total petroleum hydrocarbons and heavy metals in the surface sediment of Caofeidian Sea Area, China from 2011 to 2016

    NASA Astrophysics Data System (ADS)

    Huang, Wei

    2018-05-01

    The temporal and spatial distribution of total petroleum hydrocarbons (TPH) and four heavy metals in the surface sediments of Caofeidian Sea Area during 2011–2016 was investigated. The sediment concentration of TPH, Cu, Zn, Pb and Cd were 10.07-186.4 mg/L, 16.5-84.9 mg/L, 11.1-135 mg/L, 6.8-24.6 mg/L, and 0.07-0.199 mg/L, respectively. The pollution level in Caofeidian sea area is lower than those in other area in China. These results reached the highest marine sediment quality standards in China, indicating that the sediment was fairly clean. In addition, TPH at all stations decreased during 2011-2016. The highest values obtained were at stations near the port areas and estuary region.

  11. Innovative application of metal-organic frameworks for encapsulation and controlled release of allyl isothiocyanate

    USDA-ARS?s Scientific Manuscript database

    This research investigated the technical feasibility of metal-organic frameworks (MOFs) as novel delivery systems for encapsulation and controlled release of volatile allyl isothiocyanate (AITC) molecules. We hypothesized that water vapor molecules could act as an external stimulus to trigger the re...

  12. Influence of the clearance on in-vitro tribology of large diameter metal-on-metal articulations pertaining to resurfacing hip implants.

    PubMed

    Rieker, Claude B; Schön, Rolf; Konrad, Reto; Liebentritt, Gernot; Gnepf, Patric; Shen, Ming; Roberts, Paul; Grigoris, Peter

    2005-04-01

    Large-diameter metal-on-metal articulations may provide an opportunity for wear reduction in total hip implants because earlier studies have shown that the formation of a fluid film that completely separates the bearing surfaces is theoretically possible. In such a lubrication mode and under ideal conditions, there is theoretically no amount of wear. Studies have suggested that the two primary parameters controlling the lubrication mode are the diameter and the clearance of the articulation. The goal of the present study was to experimentally investigate the influence of these two parameters on the wear behavior of large-diameter metal-on-metal articulations pertaining to resurfacing hip implants. The results of this in vitro investigation showed that longer running-in periods and higher amounts of running-in wear were associated with larger clearances.

  13. Penile strangulation by iron metal ring: A novel and effective method of management

    PubMed Central

    Paonam, Somorendro; Kshetrimayum, Nillachandra; Rana, Indrajit

    2017-01-01

    Penile strangulation by metal ring is a rare urological emergency situation which requires urgent decompression of the penis to avoid adverse effect. It is usually associated with an attempt to improve sexual act and/or to prolong erection. But sometimes, cutting of the ring to decompress the penis safely is a very difficult task particularly when the strangulating object is a hard metal object as in our case. Here, we present a case which was managed by cutting in a novel way with the help of dental micromotor with wheel shape bur. PMID:28216935

  14. Ten-Year Cross-Sectional Study of Mechanically Assisted Crevice Corrosion in 1352 Consecutive Patients With Metal-on-Polyethylene Total Hip Arthroplasty.

    PubMed

    Hussey, Daniel K; McGrory, Brian J

    2017-08-01

    Mechanically assisted crevice corrosion (MACC) in metal-on-polyethylene total hip arthroplasty (THA) is of concern, but its prevalence, etiology, and natural history are incompletely understood. From January 2003 to December 2012, 1352 consecutive THA surgeries using a titanium stem, cobalt-chromium alloy femoral head, and highly cross-linked polyethylene liner from a single manufacturer were performed. Patients were followed at 1-year and 5-year intervals for surveillance, but also seen earlier if they had symptoms. Any patient with osteolysis >1 cm (n = 3) or unexplained pain (n = 85) underwent examination, radiographs, complete blood count, erythrocyte sedimentation rate, and C-reactive protein, as well as tests for serum cobalt and chromium levels. Symptomatic MACC was present in 43 of 1352 patients (3.2%). Prevalence of MACC by year of implant ranged from 0% (0 of 61, 2003; 0 of 138, 2005) to 10.5% (17 of 162; 2009). The M/L Taper stem had a greater prevalence (4.9%) of MACC than all other Zimmer (Zimmer, Inc, Warsaw, IN) 12/14 trunnion stem types combined (1.2%; P < .001). Twenty-seven of 43 (62.8%) patients have undergone revision surgery, and 16 of 43 (37.2%) patients have opted for ongoing surveillance. Comparing symptomatic THA patients with and without MACC, no demographic, clinical, or radiographic differences were found. MACC was significantly more common in 0 length femoral heads (compared with both -3.5 mm and +3.5 mm heads). The prevalence of MACC in metal-on-polyethylene hips is higher in this cross-sectional study than previously reported. A significantly higher prevalence was found in patients with M/L Taper style stem and THA performed both in 2009 and also between 2009 and 2012 with this manufacturer. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Combined in situ effects of metals and nutrients on marine biofilms: Shifts in the diatom assemblage structure and biological traits.

    PubMed

    Belando, M D; Marín, A; Aboal, M; García-Fernández, A J; Marín-Guirao, L

    2017-01-01

    The effects of multiple stressors on marine diatom assemblages are still poorly understood. The interactive effects of metals and nutrients were assessed in two coastal biofilms grown at a reference site and a historically contaminated site. The biofilms were exposed in situ to pulse exposures of metals (Zn and Pb) and nutrients (N and P) individually and in combination to mimic patterns of discharge in the study area. The reference community's structure (composition and abundance of taxa) was modified after metals and/or nutrients exposure, but each stressor acted in different way. Irrespective of the stressors or scenario, the abundance of the dominant species Opephora krumbeinii declined, and it is proposed as sensitive species. Nutrient supply favoured the proliferation of certain species with high nutrient tolerances (Fragilaria famelica, Tabularia ktenoeides), whereas metals promoted the colonisation of metal-tolerant species, e.g., Berkeleya fennica, Opephora marina. Simultaneous exposure induced an amplification of levels of accumulated metals, chlorophyll a and EPS contents and triggered the succession of species towards tolerant species with specific growth. Metals seemed to act as a selective factor of metal-tolerant species, and nutrients favoured the proliferation of those species forming zig-zag colonies (Neosynedra provincialis), mucous tubes (Berkeleya spp.) and motile diatoms (Navicula salinicola, Nitzschia incognita), resulting in biofilms with a more complex architecture. The diatom communities from the historically contaminated site were more resistant to pulse exposure, but metals or nutrients loads induced overproduction of mucilage. We propose that growth forms may complement taxonomic approaches and provide a quick and easy way to detect community changes related to metal and nutrient pollution. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Total Physical Response Storytelling: A Communicative Approach to Language Learning.

    ERIC Educational Resources Information Center

    Marsh, Valeri

    1998-01-01

    Describes total physical response storytelling, which provides the critical vehicle--storytelling--for utilizing and expanding vocabulary. High-interest stories contextualize the vocabulary, enabling students to hear and see a story and then to act out, revise, and rewrite. A brief outline of the sequence of steps for using TPR storytelling in…

  17. Modeling the plant-soil interaction in presence of heavy metal pollution and acidity variations.

    PubMed

    Guala, Sebastián; Vega, Flora A; Covelo, Emma F

    2013-01-01

    On a mathematical interaction model, developed to model metal uptake by plants and the effects on their growth, we introduce a modification which considers also effects on variations of acidity in soil. The model relates the dynamics of the uptake of metals from soil to plants and also variations of uptake according to the acidity level. Two types of relationships are considered: total and available metal content. We suppose simple mathematical assumptions in order to get as simple as possible expressions with the aim of being easily tested in experimental problems. This work introduces modifications to two versions of the model: on the one hand, the expression of the relationship between the metal in soil and the concentration of the metal in plants and, on the other hand, the relationship between the metal in the soil and total amount of the metal in plants. The fine difference of both versions is fundamental at the moment to consider the tolerance and capacity of accumulation of pollutants in the biomass from the soil.

  18. Heavy metals in the volcanic environment and thyroid cancer.

    PubMed

    Vigneri, R; Malandrino, P; Gianì, F; Russo, M; Vigneri, P

    2017-12-05

    In the last two decades thyroid cancer incidence has increased worldwide more than any other cancer. Overdiagnosis of subclinical microcarcinomas has certainly contributed to this increase but many evidences indicate that a true increase, possibly due to environmental factors, has also occurred. Thyroid cancer incidence is markedly increased in volcanic areas. Thus, the volcanic environment is a good model to investigate the possible factors favoring thyroid cancer. In the volcanic area of Mt. Etna in Sicily, as well as in other volcanic areas, a non-anthropogenic pollution with heavy metals has been documented, a consequence of gas, ash and lava emission. Soil, water and atmosphere contamination, via the food chain, biocontaminate the residents as documented by high levels in the urines and the scalp hair compared to individuals living in adjacent non-volcanic areas. Trace amounts of metals are essential nutrients but, at higher concentrations, can be toxic for living cells. Metals can behave both as endocrine disruptors, perturbing the hormonal system, and as carcinogens, promoting malignant transformation. Similarly to other carcinogens, the transforming effect of heavy metals is higher in developing organisms as the fetus (contaminated via the mother) and individuals in early childhood. In the last decades environment metal pollution has greatly increased in industrialized countries. Although still within the "normal" limits for each single metal the hormesis effect (heavy metal activity at very low concentration because of biphasic, non linear cell response) and the possible potentiation effect resulting from the mixture of different metals acting synergistically can explain cell damage at very low concentrations. The effect of metals on the human thyroid is poorly studied: for some heavy metals no data are available. The scarce studies that have been performed mainly focus on metal effect as thyroid endocrine disruptors. The metal concentration in tissues has

  19. Alternative materials to improve total hip replacement tribology.

    PubMed

    Santavirta, Seppo; Böhler, Max; Harris, William H; Konttinen, Yrjö T; Lappalainen, Reijo; Muratoglu, Orhun; Rieker, Claude; Salzer, Martin

    2003-08-01

    An improvement in tribology of bearing surfaces is an effective means of increasing the longevity of total hip replacement (THR). Currently, 3 approaches are available to achieve this aim: first, use of highly cross-linked UHMWPE; second, aluminum oxide ceramic bearings, and third, metal-on-metal bearings. Cross-linking reduces the wear resistance of UHMWPE markedly without impairment of other significant properties of the material. Simulator studies and some clinical long-term (10-22 years) follow-up surveys suggest an almost immeasurable wear of the highly cross-linked UHMWPE-based acetabular components during an expected clinical life span. Bioinert alumina ceramic (aluminum oxide) was introduced 3 decades ago for THR-bearing surfaces to improve performance and longevity. Alumina ceramic is entirely biostable and bioinert and has good mechanical properties. For correctly positioned alumina-on-alumina bearings, the annual linear wear rate has been reported to be 3.9 microm. Alumina heads have been successfully used in combination with polyethylene sockets, but as regards wear, the best results have been obtained with alumina-on-alumina bearings. In ceramic THR bearings, precise manufacture and contact surface geometry, including optimal clearance, are most important. For the currently available products, the component fracture risk is almost nonexistent (less than 1 per 1000). Metal-on-metal bearings were used in the early stage of THR surgery, although not all old designs were successful. More recent analyses of the early series have shown the advantages of metal-on-metal to be better and have led to a renaissance of this articulation. Initially, stainless steel was used because it was easy to manufacture and polish. Current metal-on-metal bearings are based on cobalt-chromium-molybdenum alloys with varying carbon contents. Such bearings are self-polishing. Linear wear rates remain at the level of a few microm a year. An improvement in technology has increased

  20. Speciation of heavy metals in landfill leachate: a review.

    PubMed

    Baun, Dorthe L; Christensen, Thomas H

    2004-02-01

    The literature was reviewed with respect to metal speciation methods in aquatic samples specifically emphasizing speciation of heavy metals in landfill leachate. Speciation here refers to physical fractionation (particulate, colloidal, dissolved), chemical fractionation (organic complexes, inorganic complexes, free metal ions), as well as computer-based thermodynamic models. Relatively few landfill leachate samples have been speciated in detail (less than 30) representing only a few landfills (less than 15). This suggests that our knowledge about metal species in landfill leachate still is indicative. In spite of the limited database and the different definitions of the dissolved fraction (< 0.45 microm or < 0.001 microm) the studies consistently show that colloids as well as organic and inorganic complexes are important for all heavy metals in landfill leachate. The free metal ion constitutes less than 30%, typically less than 10%, of the total metal concentration. This has significant implications for sampling, since no standardized procedures exist, and for assessing the content of metals in leachate in the context of its treatment, toxicity and migration in aquifers.

  1. A unified picture of the crystal structures of metals

    NASA Astrophysics Data System (ADS)

    Söderlind, Per; Eriksson, Olle; Johansson, Börje; Wills, J. M.; Boring, A. M.

    1995-04-01

    THE crystal structures of the light actinides have intrigued physicists and chemists for several decades1. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic and hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry-tetragonal, orthorhombic and monoclinic. To understand these differences, we have performed total-energy calculations, as a function of volume, for both high-and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all of these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression.

  2. Privacy Act

    EPA Pesticide Factsheets

    Learn about the Privacy Act of 1974, the Electronic Government Act of 2002, the Federal Information Security Management Act, and other information about the Environmental Protection Agency maintains its records.

  3. Regional investigations of soil and overburden analysis and plant uptake of metals

    USGS Publications Warehouse

    Gough, L.P.

    1984-01-01

    Regional studies on the bioavailability of metals at native and disturbed sites were conducted over the past seven years by the USGS. The work was concentrated in the Fort Union, Powder River, and Green River coal resource regions where measures of extractable metals in soils were found to have limited use in predicting metal levels in plants. Correlations between Cu, Fe, and Zn in plants and extractable (DTPA, EDTA, and oxalate) or total levels in native A- and C-horizons of soil were occasionally significant. A simple linear model is generally not adequate, however, in estimating element uptake by plants. Prediction capabilities were improved when a number of soil chemical and physical parameters were included as independent variables in a stepwise linear multiple regression analysis; however, never more than 54% of the total variability in the data was explained by the equations for these metals. Soil pH was the most important variable relating soil chemistry to plant chemistry. This relation was always positive and apparently a response to soil levels of metal carbonates and not Fe and Mn oxides. Studies that compared the metal uptake by rehabilitation species to extractable (DTPA) metal levels in mice soils produced similar results. ?? 1984 Science and Technology Letters.

  4. Tribology of total hip arthroplasty prostheses: What an orthopaedic surgeon should know.

    PubMed

    Rieker, Claude B

    2016-02-01

    Articulating components should minimise the generation of wear particles in order to optimize long-term survival of the prosthesis.A good understanding of tribological properties helps the orthopaedic surgeon to choose the most suitable bearing for each individual patient.Conventional and highly cross-linked polyethylene articulating either with metal or ceramic, ceramic-on-ceramic and metal-on-metal are the most commonly used bearing combinations.All combinations of bearing surface have their advantages and disadvantages. An appraisal of the individual patient's objectives should be part of the assessment of the best bearing surface. Cite this article: Rieker CB. Tribology of total hip arthroplasty prostheses: what an orthopaedic surgeon should know. EFORT Open Rev 2016;1:52-57. DOI: 10.1302/2058-5241.1.000004.

  5. THA Using Metal-on-Metal Articulation in Active Patients Younger Than 50 Years

    PubMed Central

    Bonnomet, François; Clavert, Philippe; Laffargue, Philippe; Migaud, Henri

    2008-01-01

    The main concern of patients with longer life expectancies and of patients who are younger and more active is the longevity of their total hip arthroplasty. We retrospectively reviewed 83 cementless total hip arthroplasties in 73 patients implanted with metal-on-metal articulation. All patients were younger than 50 years old (average age, 41 years) at the time of the index procedure, and 80% of the patients had an activity level graded 4 or 5 when measured with the system of Devane et al. A 28-mm Metasul articulation was used with three different cementless titanium acetabular components. At the most recent followup (average, 7.3 years), the average Merle d’Aubigné-Postel score improved from a preoperative 11.1 points to 17.4 points. We observed no radiographic evidence of component loosening. Ten acetabular components had lucency limited to one zone. The 10-year survivorship with the end point of revision (ie, exchange of at least one prosthetic or bearing component) was 100% (95% confidence interval, 90%–100%). Metasul bearings with cementless acetabular components remain promising in this high-risk younger patient population. However, additional followup strategies are recommended to determine any possible long-term deleterious effects associated with the dissemination of metallic ions. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18196415

  6. Method of producing homogeneous mixed metal oxides and metal-metal oxide mixtures

    DOEpatents

    Quinby, Thomas C.

    1978-01-01

    Metal powders, metal oxide powders, and mixtures thereof of controlled particle size are provided by reacting an aqueous solution containing dissolved metal values with excess urea. Upon heating, urea reacts with water from the solution leaving a molten urea solution containing the metal values. The molten urea solution is heated to above about 180.degree. C. whereupon metal values precipitate homogeneously as a powder. The powder is reduced to metal or calcined to form oxide particles. One or more metal oxides in a mixture can be selectively reduced to produce metal particles or a mixture of metal and metal oxide particles.

  7. Polyethylene Wear in Retrieved Reverse Total Shoulder Components

    PubMed Central

    Day, Judd S; MacDonald, Daniel W; Olsen, Madeline; Getz, Charles; Williams, Gerald R; Kurtz, Steven M

    2011-01-01

    Background Reverse total shoulder arthroplasty has been used to treat rotator cuff tear arthropathy, proximal humeral fractures and for failed conventional total shoulder prostheses. It has been suggested that polyethylene wear is potentially higher in reverse shoulder replacements than in conventional shoulder replacements. The modes and degree of polyethylene wear have not been completely elucidated. The purpose of this study was to evaluate polyethylene wear patterns in seven specimens retrieved at revision arthroplasty and identify factors that may be associated with increased wear. Methods Reverse total shoulder components were retrieved from 7 patients during revision arthroplasty for loosening and/or pain. Pre-operative glenoid tilt and placement, and scapular notching were evaluated using pre-operative radiographs. Polyethylene wear was evaluated using microCT and optical microscopy. Results Wear on the rim of the polyethylene humeral cup, was identified on all retrieved components. The extent of rim wear varied from a penetration depth of 0.1 to 4.7 mm. We could not demonstrate a correlation between scapular notching and rim wear. However, rim wear was more extensive when the inferior screw had made contact with the liner. Metal on metal wear between the humeral component and the inferior screw of one component was also observed. Wear of the intended bearing surface was minimal. Discussion Rim damage was the predominant cause of polyethylene wear in our retrieved specimens. Direct contact between the humeral component and inferior metaglene screws is concerning because this could lead to accelerated UHMWPE wear and also induce mechanical loosening of the glenoid component. PMID:21724419

  8. Heavy metal contamination of agricultural soils affected by mining activities around the Ganxi River in Chenzhou, Southern China.

    PubMed

    Ma, Li; Sun, Jing; Yang, Zhaoguang; Wang, Lin

    2015-12-01

    Heavy metal contamination attracted a wide spread attention due to their strong toxicity and persistence. The Ganxi River, located in Chenzhou City, Southern China, has been severely polluted by lead/zinc ore mining activities. This work investigated the heavy metal pollution in agricultural soils around the Ganxi River. The total concentrations of heavy metals were determined by inductively coupled plasma-mass spectrometry. The potential risk associated with the heavy metals in soil was assessed by Nemerow comprehensive index and potential ecological risk index. In both methods, the study area was rated as very high risk. Multivariate statistical methods including Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis were employed to evaluate the relationships between heavy metals, as well as the correlation between heavy metals and pH, to identify the metal sources. Three distinct clusters have been observed by hierarchical cluster analysis. In principal component analysis, a total of two components were extracted to explain over 90% of the total variance, both of which were associated with anthropogenic sources.

  9. Watershed and land use-based sources of trace metals in urban storm water.

    PubMed

    Tiefenthaler, Liesl L; Stein, Eric D; Schiff, Kenneth C

    2008-02-01

    Trace metal contributions in urban storm water are of concern to environmental managers because of their potential impacts on ambient receiving waters. The mechanisms and processes that influence temporal and spatial patterns of trace metal loading in urban storm water, however, are not well understood. The goals of the present study were to quantify trace metal event mean concentration (EMC), flux, and mass loading associated with storm water runoff from representative land uses; to compare EMC, flux, and mass loading associated with storm water runoff from urban (developed) and nonurban (undeveloped) watersheds; and to investigate within-storm and within-season factors that affect trace metal concentration and flux. To achieve these goals, trace metal concentrations were measured in 315 samples over 11 storm events in five southern California, USA, watersheds representing eight different land use types during the 2000 through 2005 storm seasons. In addition, 377 runoff samples were collected from 12 mass emission sites (end of watershed) during 15 different storm events. Mean flux at land use sites ranged from 24 to 1,238, 0.1 to 1,272, and 6 to 33,189 g/km(2) for total copper, total lead, and total zinc, respectively. Storm water runoff from industrial land use sites contained higher EMCs and generated greater flux of trace metals than other land use types. For all storms sampled, the highest metal concentrations occurred during the early phases of storm water runoff, with peak concentrations usually preceding peak flow. Early season storms produced significantly higher metal flux compared with late season storms at both mass emission and land use sites.

  10. Electronic structure and magnetism in transition metals doped 8-hydroxy-quinoline aluminum.

    PubMed

    Baik, Jeong Min; Shon, Yoon; Lee, Seung Joo; Jeong, Yoon Hee; Kang, Tae Won; Lee, Jong-Lam

    2008-10-15

    We report the room-temperature ferromagnetism in transition metals (Co, Ni)-doped 8-hydroxy-quinoline aluminum (Alq3) by thermal coevaporation of high purity metal and Alq3 powders. For 5% Co-doped Alq3, a maximum magnetization of approximately 0.33 microB/Co at 10 K was obtained and ferromagnetic behavior was observed up to 300 K. The Co atoms interact chemically with O atoms and provide electrons to Alq3, forming new states acting as electron trap sites. From this, it is suggested that ferromagnetism may be associated with the strong chemical interaction of Co atoms and Alq3 molecules.

  11. New Approach for Fractioning Metal Compounds Studies in Soils

    NASA Astrophysics Data System (ADS)

    Minkina, Tatiana; Motuzova, Galina; Mandzhieva, Saglara; Bauer, Tatiana; Burachevskaya, Marina; Sushkova, Svetlana; Nevidomskaya, Dina; Kalinitchenko, Valeriy

    2016-04-01

    A combined approach for fractioning metal compounds in soils on the basis of sequential (Tessier, 1979) and parallel extractions (1 N NH4Ac, pH 8; 1% EDTA in NH4Ac; and 1N HCl) is proposed. Metal compounds in sequential and parallel extracts are grouped according to the strength of their bonds with soil components. A given group includes metal compounds with similar strengths of bonds and, hence, with similar migration capacities. The groups of firmly and loosely bound metal compounds can be distinguished. This approach has been used to assess the group composition of Zn, Cu, and Pb compounds in an ordinary chernozem and its changes upon the soil contamination with metals. Contamination of an ordinary chernozem from Rostov oblast with heavy metals caused a disturbance of the natural ratios between the metal compounds. In the natural soil, firmly bound metals predominate (88-95%of the total content), which is mainly caused by the fixation of metals in lattices of silicate minerals (56-83%of the total content). The mobility of the metals in the natural soil is low (5-12%) and is mainly related to metal compounds loosely bound with the soil carbonates. Upon the soil contamination with metals (application rates of 100-300 mg/kg), the content of all the metal compounds increases, but the ratio between them shifts towards a higher portion of the potentially mobile metal compounds (up to 30-40% of the bulk contents of the metals). Organic substances and non-silicate Fe, Al, and Mn minerals become the main carriers of the firmly and loosely bound metals. The strengths of their bonds with Cu, Pb, and Zn differ. Lead in the studied chernozems is mainly fixed in a loosely bound form with organic matter, whereas copper and zinc are fixed both by the organic matter and by the non-silicate Fe, Al, and Mn compounds. Firm fixation of the applied Cu and Pb is mainly ensured by the soil organic matter and non-silicate minerals, whereas firm fixation of Zn is mainly due to non

  12. Characterizing toxicity of metal-contaminated sediments from mining areas

    USGS Publications Warehouse

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.

    2015-01-01

    This paper reviews methods for testing the toxicity of metals associated with freshwater sediments, linking toxic effects with metal exposure and bioavailability, and developing sediment quality guidelines. The most broadly applicable approach for characterizing metal toxicity is whole-sediment toxicity testing, which attempts to simulate natural exposure conditions in the laboratory. Standard methods for whole-sediment testing can be adapted to test a wide variety of taxa. Chronic sediment tests that characterize effects on multiple endpoints (e.g., survival, growth, and reproduction) can be highly sensitive indicators of adverse effects on resident invertebrate taxa. Methods for testing of aqueous phases (pore water, overlying water, or elutriates) are used less frequently. Analysis of sediment toxicity data focuses on statistical comparisons between responses in sediments from the study area and responses in one or more uncontaminated reference sediments. For large or complex study areas, a greater number of reference sediments is recommended to reliably define the normal range of responses in uncontaminated sediments – the ‘reference envelope’. Data on metal concentrations and effects on test organisms across a gradient of contamination may allow development of concentration-response models, which estimate metal concentrations associated with specified levels of toxic effects (e.g. 20% effect concentration or EC20). Comparisons of toxic effects in laboratory tests with measures of impacts on resident benthic invertebrate communities can help document causal relationships between metal contamination and biological effects. Total or total-recoverable metal concentrations in sediments are the most common measure of metal contamination in sediments, but metal concentrations in labile sediment fractions (e.g., determined as part of selective sediment extraction protocols) may better represent metal bioavailability. Metals released by the weak-acid extraction

  13. Moving belt metal detector

    NASA Astrophysics Data System (ADS)

    Nelson, Carl V.; Mendat, Deborah P.; Huynh, Toan B.

    2006-05-01

    The Johns Hopkins University Applied Physics Laboratory (APL) has developed a prototype metal detection survey system that will increase the search speed of conventional technology while maintaining high sensitivity. Higher search speeds will reduce the time to clear roads of landmines and improvised explosive devices (IED) and to locate unexploded ordnance (UXO) at Base Realignment and Closure (BRAC) sites, thus reducing remediation costs. The new survey sensor system is called the moving belt metal detector (MBMD) and operates by both increasing sensor speed over the ground while maintaining adequate sensor dwell time over the target for good signal-to-noise ratio (SNR) and reducing motion-induced sensor noise. The MBMD uses an array of metal detection sensors mounted on a flexible belt similar to a tank track. The belt motion is synchronized with the forward survey speed so individual sensor elements remain stationary relative to the ground. A single pulsed transmitter coil is configured to provide a uniform magnetic field along the length of the receivers in ground contact. Individual time-domain electromagnetic induction (EMI) receivers are designed to sense a single time-gate measurement of the total metal content. Each sensor module consists of a receiver coil, amplifier, digitizing electronics and a low power UHF wireless transmitter. This paper presents the survey system design concepts and metal detection data from various targets at several survey speeds. Although the laboratory prototype is designed to demonstrate metal detection survey speeds up to 10 m/s, higher speeds are achievable with a larger sensor array. In addition, the concept can be adapted to work with other sensor technologies not previously considered for moving platforms.

  14. The Measurement Of Total Joint Loosening By X-Ray Photogrammetry

    NASA Astrophysics Data System (ADS)

    Lippert, Frederick G.; Veress, Sandor A.; Tiwari, Rama S.; Harrington, Richard M.

    1980-07-01

    Failure of total joint replacement due to loosening of the composents either between the implant and cement or between the cement and bone is emerging as a late complication with an incidence as high as 20 percent. Loosening may not only cause pain but progressive loss of support for the prosthesis with eventual structural failure. Early diagnosis is important so that revision may be carried when deterioration or pain occurs. No method is currently available which clearly establishes loosening at an early stage except surgical exploration. We have devised a method based on our in vivo photogrammetry studies of patellar tracking patterns using metallic markers placed in bone near both components of the total joint. Stereo x-rays taken with the joint loaded and unloaded are measured for relative motion between the implant and the metallic markers. Laboratory studies using prosthetic hip components mounted in plastic bone have revealed the ability of this method to detect pistoning movements as small as 80 microns. These findings were confirmed by physical measurements.

  15. Determination of the Content of Heavy Metals in Pyrite Contaminated Soil and Plants

    PubMed Central

    Antonijević, Milan M.; Marić, Miroslava

    2008-01-01

    Determination of a pyrite contaminated soil texture, content of heavy metals in the soil and soil pH, was the aim in the investigation. Acidification of damaged soil was corrected by calcium carbonate. Mineral nutrients and organic matter (NPK, dung, earthworm cast, straw and coal dust) were added to damaged soil. Afterwards, the soil was used for oat production. Determination of total heavy metal contents (Cu, Pb, Zn, Fe) in soil was performed by atomic absorption spectrofotometry. Plant material (stems, seeds) was analysed, too. Total concentration of the heavy metals in the plant material were greater than in crop obtained in unaffected soil. PMID:27873845

  16. Microfluidic paper-based analytical device for particulate metals.

    PubMed

    Mentele, Mallory M; Cunningham, Josephine; Koehler, Kirsten; Volckens, John; Henry, Charles S

    2012-05-15

    A microfluidic paper-based analytical device (μPAD) fabricated by wax printing was designed to assess occupational exposure to metal-containing aerosols. This method employs rapid digestion of particulate metals using microliters of acid added directly to a punch taken from an air sampling filter. Punches were then placed on a μPAD, and digested metals were transported to detection reservoirs upon addition of water. These reservoirs contained reagents for colorimetric detection of Fe, Cu, and Ni. Dried buffer components were used to set the optimal pH in each detection reservoir, while precomplexation agents were deposited in the channels between the sample and detection zones to minimize interferences from competing metals. Metal concentrations were quantified from color intensity images using a scanner in conjunction with image processing software. Reproducible, log-linear calibration curves were generated for each metal, with method detection limits ranging from 1.0 to 1.5 μg for each metal (i.e., total mass present on the μPAD). Finally, a standard incineration ash sample was aerosolized, collected on filters, and analyzed for the three metals of interest. Analysis of this collected aerosol sample using a μPAD showed good correlation with known amounts of the metals present in the sample. This technology can provide rapid assessment of particulate metal concentrations at or below current regulatory limits and at dramatically reduced cost.

  17. Concentrations and Exposure Evaluation of Metals in Diverse Food Items from Chengdu, China.

    PubMed

    Wang, Rong; Zhong, Bifeng; Pi, Lu; Xie, Fuyu; Chen, Mengqin; Ding, Sanglan; Su, Shijun; Li, Zhi; Gan, Zhiwei

    2018-01-01

    A total of 520 food samples belonging to 29 food types and 63 drinking water were collected in Chengdu market of China in 2014 to investigate the concentrations of 11 metals, and to assess the related exposure to the local consumers by estimating the hazard quotient and carcinogenic risk (CR). The results showed that metals concentrations in drinking water were below the limit values suggested by the Ministry of Health of the People's Republic of China, and FAO/WHO (Food and Agriculture Organization of the United Nations/World Health Organization). While As, Cd, and Cr were found at concentrations higher than the limit values in some of the foodstuffs. Children in Chengdu intake more metals compared to adults, with the same order of Mn > Zn > Cu > Sr > Cr > Ni > As > Cd > Pb > Co > Sb. Among all of the diverse food, rice, flour, and fish and seafood were the primary sources to intake metals for Chengdu residents. Residents in Chengdu are subjected to both carcinogenic and non-carcinogenic risks based on the calculated HI and CR values, especially for children. Finally, total daily metals intakes for both children and adults were calculated based on the current study and our previous studies, including consumption of food and drinking water and intake of outdoor and indoor dust. Dietary exposure is the predominant exposure route to metals for Chengdu residents, accounting for more than 75.8% of the total daily metals intakes for both children and adults.

  18. Heavy metal transport in large river systems: heavy metal emissions and loads in the Rhine and Elbe river basins

    NASA Astrophysics Data System (ADS)

    Vink, Rona; Behrendt, Horst

    2002-11-01

    Pollutant transport and management in the Rhine and Elbe basins is still of international concern, since certain target levels set by the international committees for protection of both rivers have not been reached. The analysis of the chain of emissions of point and diffuse sources to river loads will provide policy makers with a tool for effective management of river basins. The analysis of large river basins such as the Elbe and Rhine requires information on the spatial and temporal characteristics of both emissions and physical information of the entire river basin. In this paper, an analysis has been made of heavy metal emissions from various point and diffuse sources in the Rhine and Elbe drainage areas. Different point and diffuse pathways are considered in the model, such as inputs from industry, wastewater treatment plants, urban areas, erosion, groundwater, atmospheric deposition, tile drainage, and runoff. In most cases the measured heavy metal loads at monitoring stations are lower than the sum of the heavy metal emissions. This behaviour in large river systems can largely be explained by retention processes (e.g. sedimentation) and is dependent on the specific runoff of a catchment. Independent of the method used to estimate emissions, the source apportionment analysis of observed loads was used to determine the share of point and diffuse sources in the heavy metal load at a monitoring station by establishing a discharge dependency. The results from both the emission analysis and the source apportionment analysis of observed loads were compared and gave similar results. Between 51% (for Hg) and 74% (for Pb) of the total transport in the Elbe basin is supplied by inputs from diffuse sources. In the Rhine basin diffuse source inputs dominate the total transport and deliver more than 70% of the total transport. The diffuse hydrological pathways with the highest share are erosion and urban areas.

  19. Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora.

    PubMed

    Moreno-Jiménez, Eduardo; Peñalosa, Jesús M; Manzano, Rebeca; Carpena-Ruiz, Ramón O; Gamarra, Roberto; Esteban, Elvira

    2009-03-15

    The present work concerns the distribution and mobility of heavy metals (Fe, Mn, Cu, Zn and Cd) in the surrounding soils of a mine site and their transfer to wild flora. Thus, soils and plants were sampled from a mining valley in NW Madrid (Spain), and total and extractable heavy metals were analysed. Soils affected by mining activities presented total Cd, Cu and Zn concentrations above toxic thresholds. The percentage of extractable element was highest for Cd and lowest for Cu. A highly significant correlation was observed between the total and extractable concentrations of metals in soils, indicating that, among the factors studied, total metals concentration is the most relevant for heavy metals extractability in these soils. (NH(4))(2)SO(4)-extractable metal concentrations in soils are correlated better with metal concentrations in several plant species than total metals in soils, and thus can be used as a suitable and robust method for the estimation of the phytoavailable fraction present in soils. Twenty-five vascular plant species (3 ferns and 22 flowering plants) were analysed, in order to identify exceptional characteristics that would be interesting for soil phytoremediation and/or reclamation. High Cd and Zn concentrations have been found in the aerial parts of Hypericum perforatum (Cd), Salix atrocinerea (Cd, Zn) and Digitalis thapsi (Cd, Zn). The present paper is, to the best of our knowledge, the first report of the metal accumulation ability of the two latter plant species. The phytoremediation ability of S. atrocinerea for Cd and Zn was estimated, obtaining intervals of time that could be considered suitable for the phytoextraction of polluted soils.

  20. Gluteal muscle fatty atrophy is not associated with elevated blood metal ions or pseudotumors in patients with a unilateral metal-on-metal hip replacement.

    PubMed

    Reito, Aleksi; Elo, Petra; Nieminen, Jyrki; Puolakka, Timo; Eskelinen, Antti

    2016-02-01

    There are no international guidelines to define adverse reaction to metal debris (ARMD). Muscle fatty atrophy has been reported to be common in patients with failing metal-on-metal (MoM) hip replacements. We assessed whether gluteal muscle fatty atrophy is associated with elevated blood metal ion levels and pseudotumors. 263 consecutive patients with unilateral ASR XL total hip replacement using a posterior approach and with an unoperated contralateral hip were included in the study. All patients had undergone a standard screening program at our institution, including MRI and blood metal ion measurement. Muscle fatty atrophy was graded as being absent, mild, moderate, or severe in each of the gluteal muscles. The prevalence of moderate-to-severe gluteal muscle atrophy was low (12% for gluteus minimus, 10% for gluteus medius, and 2% for gluteus maximus). Muscle atrophy was neither associated with elevated blood metal ion levels (> 5 ppb) nor with the presence of a clear (solid- or mixed-type) pseudotumor seen in MRI. A combination of moderate-to-severe atrophy in MRI, elevated blood metal ion levels, and MRI-confirmed mixed or solid pseudotumor was rare. Multivariable regression revealed that "preoperative diagnosis other than osteoarthrosis" was the strongest predictor of the presence of fatty atrophy. Gluteal muscle atrophy may be a clinically significant finding with influence on hip muscle strength in patients with MoM hip replacement. However, our results suggest that gluteal muscle atrophy seen in MRI is not associated with either the presence or severity of ARMD, at least not in patients who have been operated on using the posterior approach.

  1. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOEpatents

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  2. Posterior approach and dislocation rate: a 213 total hip replacements case-control study comparing the dual mobility cup with a conventional 28-mm metal head/polyethylene prosthesis.

    PubMed

    Bouchet, R; Mercier, N; Saragaglia, D

    2011-02-01

    Dislocation is a frequent complication of total hip arthroplasties (THA) especially in older patients, especially when using a posterior approach. In these cases, dual mobility (DM) cups developed by Gilles Bousquet in 1975 can be indicated to reduce this complication risk. Dual mobility cups reduce the rate of dislocation in primary total hip arthroplasty using posterior approach in a single-surgeon series. Test this hypothesis in a controlled study to compare the rate of dislocation in primary total hip arthroplasties done in patients over 50 years old either with a dual mobility cup or a conventional metal-on-polyethylene 28-mm diameter head. Two consecutive series of primary total hip replacements were performed by a single surgeon using a posterolateral approach. The piriformis tendon was left intact. The DM series included 105 patients who underwent arthroplasty between January 2005 and June 2007 with a dual mobility cup (60 women and 45 men, mean age 76.6±5.65 years old [53-93]). The control series (S series) included 108 patients who underwent arthroplasty (56 women and 52 men, mean age 74.2±5.9 years old [53-87]) with a conventional 28-mm polyethylene cup between January 2003 and June 2005. All hip replacements included a 28-mm metal-polyethylene cup and a 12-14-mm Morse taper. Both groups were comparable for gender, diagnosis, body mass index, type of anesthesia and ASA score distribution. All patients included in this series had a minimum follow-up of 1 year. There were no dislocations in the DM series and five early dislocations (before the third month) in the S series for a rate of 4.63%. Although the rate of dislocation was higher in the S series (4.63% vs 0%), the difference was barely significant (P=0.0597). This study comparing the incidence of dislocations after THA with conventional or dual mobility cups, shows that even using a posterior approach and in older patients, dual mobility cups increase stability with no postoperative dislocations

  3. Heavy metals in soils from Baia Mare mining impacted area (Romania) and their bioavailability

    NASA Astrophysics Data System (ADS)

    Roba, Carmen; Baciu, Calin; Rosu, Cristina; Pistea, Ioana; Ozunu, Alexandru

    2015-04-01

    Keywords: heavy metals, soil contamination, bioavailability, Romania The fate of various metals, including chromium, nickel, copper, manganese, mercury, cadmium, and lead, and metalloids, like arsenic, antimony, and selenium, in the natural environment is of great concern, particularly in the vicinity of former mining sites, dumps, tailings piles, and impoundments, but also in urban areas and industrial centres. Most of the studies focused on the heavy metal pollution in mining areas present only the total amounts of metals in soils. The bioavailable concentration of metals in soil may be a better predictor for environmental impact of historical and current dispersion of metals. Assessment of the metal bioavailability and bioaccessibility is critical in understanding the possible effects on soil biota. The bioavailability of metals in soil and their retention in the solid phase of soil is affected by different parameters like pH, metal amount, cation-exchange capacity, content of organic matter, or soil mineralogy. The main objectives of the present study were to determine the total fraction and the bioavailable fraction of Cu, Cd, Pb and Zn from soil in a well-known mining region in Romania, and to evaluate the influence of soil pH on the metal bioavailability in soil. The heavy metal contents and their bioavailability were monitored in a total of 50 soil samples, collected during June and July 2014 from private gardens of the inhabitants from Baia-Mare area. The main mining activities developed in the area consisted of non-ferrous sulphidic ores extraction and processing, aiming to obtain concentrates of lead, copper, zinc and precious metals. After 2006, the metallurgical industry has considerably reduced its activity by closing or diminishing its production capacity. The analysed soil samples proved to have high levels of Pb (50 - 830 mg/kg), Cu (40 - 600 mg/kg), Zn (100 - 700 mg/kg) and Cd (up to 10 mg/kg). The metal abundance in the total fraction is

  4. Role of different salt marsh plants on metal retention in an urban estuary (Lima estuary, NW Portugal)

    NASA Astrophysics Data System (ADS)

    Almeida, C. M. R.; Mucha, Ana P.; Teresa Vasconcelos, M.

    2011-01-01

    The aim of the present work was to understand the role different salt marsh plants on metal distribution and retention in the Lima River estuary (NW Portugal), which to our knowledge have not been ascertained in this area yet. The knowledge of these differences is an important requirement for the development of appropriate management strategies, and is poorly described for Eurosiberian estuaries, like the one selected. In addition it is important to understand the difference among introduced and native salt marsh plants. In this work, metal levels (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) were surveyed (by atomic absorption spectrometry) in sediments from sites vegetated with Juncus maritimus, Spartina patens, Phragmites australis and Triglochin striata (rhizo-sediments), in non-vegetated sediments and in the different tissues of the plants (roots, rhizomes and aerial shoots). In general, rhizo-sediments had higher metal concentrations than non-vegetated sediments, a feature that seems common to sediments colonized by salt marsh plants of different estuarine areas. All plants concentrated metals, at least Cd, Cu and Zn (and Pb for T. striata) in their belowground structures ([ M] belowground tissues/[ M] non-vegetated sediment > 1). However, when considered per unit of salt marsh area, the different selected plants played a different role on sediment metal distribution and retention. Triglochin striata retained a significant metal burden in it belowground structures (root plus rhizomes) acting like a possible phyto-stabilizer, whereas P. australis had an higher metal burden in aboveground tissues acting as a possible phyto-extractor. As for J. maritimus and S. patens, metal burden distribution between above and belowground structures depended on the metal, with J. maritimus retaining, for instance, much more Cd and Cu in the aboveground than in the belowground structures. Therefore, the presence of invasive and exotic plants in some areas of the salt marsh may

  5. Total mercury, methyl mercury, and heavy metal concentrations in Hyeongsan River and its tributaries in Pohang city, South Korea.

    PubMed

    Bailon, Mark Xavier; David, Anneschel Sheehan; Park, Yeongeon; Kim, Eunhee; Hong, Yongseok

    2018-04-11

    Heavy metal contamination in aquatic systems is a big problem in many areas around the world. In 2016, high mercury concentrations were reported in bivalves (Corbicula leana) and sediments near the confluence of the Hyeongsan River and Chilseong Creek located in Pohang, a steel industrial city in the south-east coast of the Korean peninsula. Given that both the Chilseong and Gumu creeks run through the Pohang industrial complex and ultimately flow to the Hyeongsan River, it is imperative to determine if the industrial effluents have any impact on the mercury contamination in these two streams and the Hyeongsan River. In this work, we investigated the concentration levels of different heavy metals using cold vapor atomic fluorescence spectroscopy and inductively coupled plasma-mass spectroscopy. The metal concentration in the water samples from the Hyeongsan River, Gumu Creek, and Chilseong Creek did not exceed the limits for drinking water quality set by the US EPA and World Health Organization. However, the sediment samples were found to be heavily contaminated by Hg with levels exceeding the toxic effect threshold. Gumu Creek was found to be heavily contaminated. The concentrations of the different heavy metals increased downstream, and the samples collected from the sites in the Hyeongsan River near the Gumu Creek, an open channel for wastewater discharge of companies in the Pohang Industrial Complex, showed higher contamination levels, indicating that the effluents from the industrial complex are a possible source of contamination in the river.

  6. Total maximum daily loads, sediment budgets, and tracking restoration progress of the north coast watersheds

    Treesearch

    Matthew S. Buffleben

    2012-01-01

    One of the predominate water quality problems for northern coastal California watersheds is the impairment of salmonid habitat. Most of the North Coast watersheds are listed as “impaired” under section 303(d) of Clean Water Act. The Clean Water Act requires states to address impaired waters by developing Total Maximum Daily Loads (TMDLs) or implementing...

  7. Metal diffusion barriers for GaAs solar cells.

    PubMed

    van Leest, R H; Mulder, P; Bauhuis, G J; Cheun, H; Lee, H; Yoon, W; van der Heijden, R; Bongers, E; Vlieg, E; Schermer, J J

    2017-03-15

    In this study accelerated ageing testing (AAT), J-V characterization and TEM imaging in combination with phase diagram data from literature are used to assess the potential of Ti, Ni, Pd and Pt as diffusion barriers for Au/Cu-based metallization of III-V solar cells. Ni barriers show the largest potential as at an AAT temperature of 250 °C both cells with 10 and 100 nm thick Ni barriers show significantly better performance compared to Au/Cu cells, with the cells with 10 nm Ni barriers even showing virtually no degradation after 7.5 days at 250 °C (equivalent to 10 years at 100 °C at an E a of 0.70 eV). Detailed investigation shows that Ni does not act as a barrier in the classical sense, i.e. preventing diffusion of Cu and Au across the barrier. Instead Ni modifies or slows down the interactions taking place during device degradation and thus effectively acts as an 'interaction' barrier. Different interactions occur at temperatures below and above 250 °C and for thin (10 nm) and thick (100 nm) barriers. The results of this study indicate that 10-100 nm thick Ni intermediate layers in the Cu/Au based metallization of III-V solar cells may be beneficial to improve the device stability upon exposure to elevated temperatures.

  8. What Happened to Leo P's Metals?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-12-01

    Measurements of metal abundances in galaxies present a conundrum: compared to expectations, there are not nearly enough metals observed within galaxies. New observations of a nearby dwarf galaxy may help us understand where this enriched material went.Removal ProcessesStar formation is responsible for the build-up of metals (elements heavier than helium) in a galaxy. But when we use a galaxys star-formation history to estimate the amount of enriched material it should contain, our predictions are inconsistent with measured abundances: large galaxies contain only about 2025% of the expected metals, and small dwarf galaxies contain as little as 1%!So what happens to galaxies metals after they have been formed? The favored explanation is that metals are removed from galaxies via stellar feedback: stars that explode in violent supernovae can drive high-speed winds, expelling the enriched material from a galaxy. This process should be more efficient in low-mass galaxies due to their smaller gravitational wells, which would explain why low-mass galaxies have especially low metallicities.But external processes may also contribute to the removal of metals, such as tidal stripping during interactions between galaxies. To determine the role of stellar feedback alone, an ideal test would be to observe an isolated low-mass, star-forming galaxy i.e., one that is not affected by external processes.Luckily, such an isolated, low-mass galaxy has recently been discovered just outside of the Local Group: Leo P, a gas-rich dwarf galaxy with a total stellar mass of 5.6 x 105 solar masses.Isolated ResultsPercentage of oxygen lost in Leo P compared to the percentage of metals lost in three other, similar-size dwarfs that are not isolated. If the gas-phase oxygen in Leo P were removed, Leo Ps measurements would be consistent with those of the other dwarfs. [McQuinn et al. 2015]Led by Kristen McQuinn (University of Minnesota, University of Texas at Austin), a team of researchers has used

  9. A Modern Approach to Total Wellbeing

    NASA Astrophysics Data System (ADS)

    Hadzic, Maja; Chen, Meifania; Brouwer, Rick; Dillon, Tharam

    The events of the last decades have impacted our lives and our health significantly. We expected that the technology boom will improve our lives. While this may be true in a specific context, generally speaking our societies are suffering from moral decays, terrorism fears, wars, financial crisis and unpredictable acts of nature that are increasing in frequency and in intensity. The complex nature of the world we live is impacting our health and wellbeing considerably. Our health is not only determined by our physical health but is the end product of the interplay of the physical, mental, emotional, financial, relational and spiritual events of a lifetime. In this paper we develop a framework that will help us define and measure total wellbeing of individuals in our volatile societies. This framework will help us better understand the complex nature of total wellbeing and develop effective prevention and intervention strategies.

  10. Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar wetland, Punjab, India and its environs.

    PubMed

    Sharma, Sakshi; Nagpal, Avinash Kaur; Kaur, Inderpreet

    2018-07-30

    In the present study, an assessment of heavy metal content in soil and food crops (wheat, rice, maize grains and mustard seeds) and associated health risks was carried out for residents of Ropar wetland and its environs. All the soil samples had high cadmium and cobalt contents, whereas, all crop samples had high contents of cobalt and lead. Bioconcentration factor (BCF) analysis indicated that rice grains act as hyper-accumulators of chromium (BCF = 17.98) and copper (BCF = 10.91), whereas, maize grains act as hyper-accumulators of copper (BCF = 30.43). One-way ANOVA suggested that heavy metal content in food crops varied significantly at p ≤ 0.05 for different sites, indicating anthropogenic contribution of heavy metals in agricultural fields. Dietary intake of cobalt via all food crops posed higher non-cancer health risk to residents in comparison to other heavy metals. Chromium posed highest cancer risk through consumption of wheat grains, being staple diet in study area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Allergy in total knee arthroplasty: a review of the facts.

    PubMed

    Middleton, S; Toms, A

    2016-04-01

    We explored the literature surrounding whether allergy and hypersensitivity has a clinical basis for implant selection in total knee arthroplasty (TKA). In error, the terms hypersensitivity and allergy are often used synonymously. Although a relationship is present, we could not find any evidence of implant failure due to allergy. There is however increasing basic science that suggests a link between loosening and metal ion production. This is not an allergic response but is a potential problem. With a lack of evidence logically there can be no justification to use 'hypoallergenic' implants in patients who have pre-existing skin sensitivity to the metals used in TKA. ©2016 The British Editorial Society of Bone & Joint Surgery.

  12. Metallic Winds in Dwarf Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robles-Valdez, F.; Rodríguez-González, A.; Hernández-Martínez, L.

    2017-02-01

    We present results from models of galactic winds driven by energy injected from nuclear (at the galactic center) and non-nuclear starbursts. The total energy of the starburst is provided by very massive young stellar clusters, which can push the galactic interstellar medium and produce an important outflow. Such outflow can be a well or partially mixed wind, or a highly metallic wind. We have performed adiabatic 3D N -Body/Smooth Particle Hydrodynamics simulations of galactic winds using the gadget-2 code. The numerical models cover a wide range of parameters, varying the galaxy concentration index, gas fraction of the galactic disk, andmore » radial distance of the starburst. We show that an off-center starburst in dwarf galaxies is the most effective mechanism to produce a significant loss of metals (material from the starburst itself). At the same time, a non-nuclear starburst produces a high efficiency of metal loss, in spite of having a moderate to low mass loss rate.« less

  13. Higher Education Cooperation Act: Fiscal Year 1998 Grant Allocations.

    ERIC Educational Resources Information Center

    Illinois State Board of Higher Education, Springfield.

    This report describes fiscal year 1998 grant allocations made under the Illinois Higher Education Cooperation Act (HECA) to support programs and projects involving cooperation among higher education institutions. A total of $16.59 million was allocated. Projects recommended for grant funds include 3 new and 12 continuing interinstitutional…

  14. The influence of bioavailable heavy metals and microbial parameters of soil on the metal accumulation in rice grain.

    PubMed

    Xiao, Ling; Guan, Dongsheng; Peart, M R; Chen, Yujuan; Li, Qiqi; Dai, Jun

    2017-10-01

    A field-based study was undertaken to analyze the effects of soil bioavailable heavy metals determined by a sequential extraction procedure, and soil microbial parameters on the heavy metal accumulation in rice grain. The results showed that Cd, Cr, Cu, Ni, Pb and Zn concentrations in rice grain decreases by 65.9%, 78.9%, 32.6%, 80.5%, 61.0% and 15.7%, respectively in the sites 3 (far-away), compared with those in sites 1 (close-to). Redundancy analysis (RDA) indicated that soil catalase activity, the MBC/MBN ratio, along with bioavailable Cd, Cr and Ni could explain 68.9% of the total eigenvalue, indicating that these parameters have a great impact on the heavy metal accumulation in rice grain. The soil bioavailable heavy metals have a dominant impact on their accumulation in rice grain, with a variance contribution of 60.1%, while the MBC/MBN has a regulatory effect, with a variance contribution of 4.1%. Stepwise regression analysis showed that the MBC/MBN, urease and catalase activities are the key microbial parameters that affect the heavy metal accumulation in rice by influencing the soil bioavailable heavy metals or the translocation of heavy metals in rice. RDA showed an interactive effect between Cu, Pb and Zn in rice grain and the soil bioavailable Cd, Cr and Ni. The heavy metals in rice grain, with the exception of Pb, could be predicted by their respective soil bioavailable heavy metals. The results suggested that Pb accumulation in rice grain was mainly influenced by the multi-metal interactive effects, and less affected by soil bioavailable Pb. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Scandinavian Total Ankle Replacement: 15-Year Follow-up.

    PubMed

    Palanca, Ariel; Mann, Roger A; Mann, Jeffrey A; Haskell, Andrew

    2018-02-01

    Over the past decade, total ankle arthroplasty (TAA) has become a mainstay in the treatment of end-stage ankle arthritis. Currently in its fourth generation, the Scandanavian Total Ankle Replacement (STAR) is the only 3-piece mobile bearing ankle prosthesis available in the United States. Our current study reports implant survivorship at 15 years and patient outcomes for a subset of these survivors available for study. Eighty-four TAAs were performed between 1998 and 2000. Metal component survivorship at 15 years was calculated with a Kaplan-Meier curve. Twenty-four (29%) of 84 patients were available for participation with a minimum 15-year follow-up. Any radiographic changes were documented. All additional procedures and complications were recorded. Clinical findings, self-reported performance and pain evaluations, and AOFAS ankle/hindfoot scores were noted. Metal implant survival was 73% at 15 years. Of the 24 patients available for clinical evaluation, 18 of 24 patients (70.7%) had no change in prosthetic alignment from the immediate postoperative radiograph. Only 1 subtalar fusion was required for symptomatic adjacent joint arthritis. Three patients sustained a broken polyethylene component. AOFAS scores improved from an average of 39.6 points preoperatively, to an average of 71.6. More than half (52.4%) of patients with retained implants required an additional surgical procedure; 3 required 2 additional procedures. The average time to subsequent procedure was 10.2 years. Our small cohort demonstrated STAR ankles with retention at 9 years were highly likely to survive to 15 years, and patients continued to have significant improvement in pain relief and minimal decrease in function. At 15 years from TAA, metal survivorship was 73%. As with all ankle replacements, supplementary procedures were common. Level IV, case series.

  16. [Pollution Characteristics and Potential Ecological Risk of Heavy Metals in Urban Surface Water Sediments from Yongkang].

    PubMed

    Qi, Peng; Yu, Shu-quan; Zhang, Chao; Liang, Li-cheng; Che, Ji-lu

    2015-12-01

    In order to understand the pollution characteristics of heavy metals in surface water sediments of Yongkang, we analyzed the concentrations of 10 heavy metals including Ti, Cr, Mn, Co, Ni, Cu, Zn, As, Pb and Fe in 122 sediment samples, explored the underlying source of heavy metals and then assessed the potential ecological risks of those metals by methods of the index of geo-accumulation and the potential ecological risk. The study results showed that: 10 heavy metal contents followed the order: Fe > Ti > Mn > Zn > Cr > Cu > Ph > Ni > As > Co, all heavy metals except for Ti were 1. 17 to 3.78 times higher than those of Zhejiang Jinhua- Quzhou basin natural soils background values; The concentrations of all heavy metals had a significantly correlation between each other, indicating that those heavy metals had similar sources of pollution, and it mainly came from industrial and vehicle pollutions; The pollution extent of heavy metals in sediments by geo-accumulation index (Igeo) followed the order: Cr > Zn > Ni > Cu > Fe > As > Pb >Mn > Ti, thereinto, Cr, Zn, Cu and Ni were moderately polluted or heavily polluted at some sampling sites; The potential ecological risk of 9 heavy metals in sediments were in the following order: Cu > As > Ni > Cr > Pb > Co > Zn > Mn > Ti, Cu and As contributed the most to the total potential ecological risk, accounting for 22.84% and 21. 62% , others had a total of 55.54% , through the ecological risk assessment, 89. 34% of the potential ecological risk indexes ( RI) were low and 10. 66% were higher. The contamination level of heavy metals in Yongkang was slight in total, but was heavy in local areas.

  17. The Learning Strategy of the Total Physical Response: A Review.

    ERIC Educational Resources Information Center

    Asher, James J.

    1966-01-01

    Described in this article are five pilot studies that explored the effects of the learning strategy of the total physical response under a variety of conditions using Japanese and Russian with adults and children. Some general conclusions suggest that dramatic facilitation in learning listening skills for a second language is related to acting out…

  18. Assessment of different methods to estimate heavy metal bioavailability in 30 contrasting Spanish and New Zealand soils

    NASA Astrophysics Data System (ADS)

    Soriano-Disla, J. M.; Speir, T. W.; Gómez, I.; Clucas, L. M.; McLaren, R. G.; Navarro-Pedreño, J.

    2009-04-01

    The accumulation of heavy metals in soil from different sources (atmospheric deposition, agricultural practices, urban-industrial activities, etc.) is of a great environmental concern because of metal persistence and toxicity. In this sense, there is a consensus in the literature that the estimation of the bioavailable heavy metals in soil is a preferable tool to determine potential risks from soil contamination than the total contents. However, controversy exists around the definition of an accurate and universal bioavailability estimator that is useful for soils with different properties, since many factors control this parameter. Thus, the main objective of this work was to compare the effectiveness of different methods to predict heavy metals plant uptake from soils with different properties and heavy metal contents. For the development of the present work, 30 contrasting soils from New Zealand and Spain were selected. Apart from the analysis of the basic soil properties, different methods to estimate heavy metal bioavailability were performed: total heavy metals, DTPA-extractable soil metals, diffusive gradient technique (DGT), and total heavy metals in soil solution. In these soils, a bioassay using wheat (Triticum aestivum) was carried out in a constant environment room for 25 days (12 hours photoperiod, day and night temperature of 20°C and 15°C respectively). After this time, the plants were divided in roots and shoots and heavy metal content was analysed in each part. Simple correlations were performed comparing the phytoavailable contents with the bioavailability estimated by the different methods. As expected, higher heavy metal concentrations were found in roots compared with shoots. Comparing the theoretical available heavy metals estimated by the different methods with the root and shoot uptake, better correlations were found with the root contents, thus, the discussion is based in the comparisons with the uptake by this part of the plant

  19. Heavy metals in marine fish meat and consumer health: a review.

    PubMed

    Bosch, Adina C; O'Neill, Bernadette; Sigge, Gunnar O; Kerwath, Sven E; Hoffman, Louwrens C

    2016-01-15

    The numerous health benefits provided by fish consumption may be compromised by the presence of toxic metals and metalloids such as lead, cadmium, arsenic and mercury, which can have harmful effects on the human body if consumed in toxic quantities. The monitoring of metal concentrations in fish meat is therefore important to ensure compliance with food safety regulations and consequent consumer protection. The toxicity of these metals may be dependent on their chemical forms, which requires metal speciation processes for direct measurement of toxic metal species or the identification of prediction models in order to determine toxic metal forms from measured total metal concentrations. This review addresses various shortcomings in current knowledge and research on the accumulation of metal contaminants in commercially consumed marine fish globally and particularly in South Africa, affecting both the fishing industry as well as fish consumers. © 2015 Society of Chemical Industry.

  20. A versatile MOF-based trap for heavy metal ion capture and dispersion.

    PubMed

    Peng, Yaguang; Huang, Hongliang; Zhang, Yuxi; Kang, Chufan; Chen, Shuangming; Song, Li; Liu, Dahuan; Zhong, Chongli

    2018-01-15

    Current technologies for removing heavy metal ions are typically metal ion specific. Herein we report the development of a broad-spectrum heavy metal ion trap by incorporation of ethylenediaminetetraacetic acid into a robust metal-organic framework. The capture experiments for a total of 22 heavy metal ions, covering hard, soft, and borderline Lewis metal ions, show that the trap is very effective, with removal efficiencies of >99% for single-component adsorption, multi-component adsorption, or in breakthrough processes. The material can also serve as a host for metal ion loading with arbitrary selections of metal ion amounts/types with a controllable uptake ratio to prepare well-dispersed single or multiple metal catalysts. This is supported by the excellent performance of the prepared Pd 2+ -loaded composite toward the Suzuki coupling reaction. This work proposes a versatile heavy metal ion trap that may find applications in the fields of separation and catalysis.

  1. 75 FR 8698 - Clean Water Act Section 303(d): Availability of Ten Total Maximum Daily Loads (TMDLs) in Louisiana

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9118-5] Clean Water Act Section 303(d): Availability of Ten...: Notice of availability. SUMMARY: This notice announces the availability for comment on the administrative... Smith, Environmental Protection Specialist, Water Quality Protection Division, U.S. Environmental...

  2. 76 FR 80366 - Clean Water Act Section 303(d): Availability of One Total Maximum Daily Load (TMDL) in Louisiana

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9610-6] Clean Water Act Section 303(d): Availability of One...: Notice of availability. SUMMARY: This notice announces the availability for comment on the administrative..., Environmental Protection Specialist, Water Quality Protection Division, U.S. Environmental Protection Agency...

  3. Advanced Communication Technology Satellite (ACTS) Multibeam Antenna On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The NASA Lewis Research Center's Advanced Communication Technology Satellite (ACTS) was launched in September 1993. ACTS introduced several new technologies, including a multibeam antenna (MBA) operating at extremely short wavelengths never before used in communications. This antenna, which has both fixed and rapidly reconfigurable high-energy spot beams (150 miles in diameter), serves users equipped with small antenna terminals. Extensive structural and thermal analyses have been performed for simulating the ACTS MBA on-orbit performance. The results show that the reflector surfaces (mainly the front subreflector), antenna support assembly, and metallic surfaces on the spacecraft body will be distorted because of the thermal effects of varying solar heating, which degrade the ACTS MBA performance. Since ACTS was launched, a number of evaluations have been performed to assess MBA performance in the space environment. For example, the on-orbit performance measurements found systematic environmental disturbances to the MBA beam pointing. These disturbances were found to be imposed by the attitude control system, antenna and spacecraft mechanical alignments, and on-orbit thermal effects. As a result, the MBA may not always exactly cover the intended service area. In addition, the on-orbit measurements showed that antenna pointing accuracy is the performance parameter most sensitive to thermal distortions on the front subreflector surface and antenna support assemblies. Several compensation approaches were tested and evaluated to restore on-orbit pointing stability. A combination of autotrack (75 percent of the time) and Earth sensor control (25 percent of the time) was found to be the best way to compensate for antenna pointing error during orbit. This approach greatly minimizes the effects of thermal distortions on antenna beam pointing.

  4. 21 CFR 888.3640 - Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Shoulder joint metal/metal or metal/polymer... § 888.3640 Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis. (a) Identification. A shoulder joint metal/metal or metal/polymer constrained cemented prosthesis is a device...

  5. 21 CFR 888.3640 - Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Shoulder joint metal/metal or metal/polymer... § 888.3640 Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis. (a) Identification. A shoulder joint metal/metal or metal/polymer constrained cemented prosthesis is a device...

  6. 21 CFR 888.3640 - Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Shoulder joint metal/metal or metal/polymer... § 888.3640 Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis. (a) Identification. A shoulder joint metal/metal or metal/polymer constrained cemented prosthesis is a device...

  7. 21 CFR 888.3640 - Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Shoulder joint metal/metal or metal/polymer... § 888.3640 Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis. (a) Identification. A shoulder joint metal/metal or metal/polymer constrained cemented prosthesis is a device...

  8. 21 CFR 888.3640 - Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Shoulder joint metal/metal or metal/polymer... § 888.3640 Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis. (a) Identification. A shoulder joint metal/metal or metal/polymer constrained cemented prosthesis is a device...

  9. Study of aluminum content in a welding metal by thermoelectric measurements

    NASA Astrophysics Data System (ADS)

    Carreón, H.; Ramirez, S.; Coronado, C.; Salazar, M.

    2018-03-01

    This work investigates the effect caused by the aluminum content in a welding metal and its variation in mechanical properties through the use of a non-destructive thermoelectric technique. It is known that aluminum has positive effects as deoxidizer in low percentages and alloying element together with Niobium and Vanadium. Aluminum has a positive and negative effect, initially improves the mechanical properties of the metal, as it acts as a grain refiner, increasing the yield strength, but in larger quantities, important mechanical properties such as hardness and toughness are seriously affected. For this purpose, HSLA ASTM 572 Gr. 50 steel was used as the base metal, where the weld metal was deposited, after which the specimens were fabricated and the mechanical tests and non-destructive tests were carried out. The sensitivity of the thermoelectric potential technique to microstructural and chemical composition changes was confirmed. The evolution of absolute thermoelectric potential (TEP) values with respect to the percentage of aluminum added to the weld was observed, being also quite sensitive to defects such as micro-cracks.

  10. Groundwater quality in an abandoned metal extraction site: the case study of Campello Monti (NW Italy)

    NASA Astrophysics Data System (ADS)

    Mehta, Neha; Lasagna, Manuela; Antonella Dino, Giovanna; De Luca, Domenico Antonio

    2017-04-01

    passing through it. The groundwater circulation takes place in fractured rocks, in waste dumps and tunnels used for extracting metal. Thus the abandoned site may contaminate local water sources. To study the impacts on local water sources, water sampling and analysis were performed. Three sampling campaigns in June, July and October 2016 resulted in 16 groundwater samples (4 tap water samples, 3 samples from tunnels and 9 from springs) and 6 surface water samples. The samples were analyzed to measure alkalinity, electrolytic conductivity, pH , temperature, metals such as- Hg, Tl, Cd, Cr (total), Cr (VI), Ag, As ,Pb , Se, Ni, Co, Mn, Al, Fe, Cu, Zn, B and metal ions -CN-, Fl-, Mg2+, Na+, SO42-, NO3- ,Cl-. The water samples collected from tunnels showed nickel concentration ranging from 31.9 µg/ l to as high as 304 µg/ l (permissible limit for Ni in Italy according to DLgs. 152/06 is 20 µg/l ). These groundwaters, being in close association with minerals containing heavy metals tend to dissolve such elements. The springs in mountains also contained Ni higher than 20 µg/l. These all groundwater systems act as source to Strona creek which showed Ni concentration of 512 µg/l.

  11. Antarctic snow: metals bound to high molecular weight dissolved organic matter.

    PubMed

    Calace, Nicoletta; Nardi, Elisa; Pietroletti, Marco; Bartolucci, Eugenia; Pietrantonio, Massimiliana; Cremisini, Carlo

    2017-05-01

    In this paper we studied some heavy metals (Cu, Zn, Cd, Pb, As, U) probably associated to high molecular weight organic compounds present in the Antarctic snow. Snow-pit samples were collected and analysed for high molecular weight fraction and heavy metals bound to them by means of ultrafiltration treatment. High molecular weight dissolved organic matter (HMW-DOM) recovered by ultrafiltration showed a dissolved organic carbon concentration (HMW-DOC) of about 18-83% of the total dissolved organic carbon measured in Antarctic snow. The characterisation of HMW-DOM fraction evidenced an ageing of organic compounds going from surface layers to the deepest ones with a shift from aliphatic compounds and proteins/amino sugars to more high unsaturated character and less nitrogen content. The heavy metals associated to HMW-DOM fraction follows the order: Zn > Cu > Pb > Cd ∼ As ∼ U. The percentage fraction of metals bound to HMW-DOM respect to total metal content follows the order: Cu > Pb > Zn, Cd in agreement with humic substance binding ability (Irwing-William series). Going down to depth of trench, all metals except arsenic, showed a high concentration peak corresponding to 2.0-2.5 m layer. This result was attributed to particular structural characteristic of organic matter able to form different type of complexes (1:1, 1:2, 1:n) with metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The effects of low-tide rainfall on metal content of suspended sediment in the Sacramento-San Joaquin Delta

    NASA Astrophysics Data System (ADS)

    Moskalski, S. M.; Torres, R.; Bizimis, M.; Bergamaschi, B. A.; Fleck, J.; Goni, M. A.

    2012-12-01

    Rain falling near low tide is capable of eroding and transporting cohesive sediment from marsh and mudflat surfaces. Given that metals adsorb strongly to silt- and clay-sized particles, it is conceivable that lowtide rainfall may also liberate previously-deposited metals from storage in intertidal sediment. To investigate the potential for rainfall as an agent of remobilization of metals, this study tested the hypothesis of sediment, and therefore metals and nutrients, mobilization during these punctuated low-tide rainfall events. Water samples were collected during low-tide rain events in winter and wind resuspension events in summer from a marsh in central California. The concentrations of suspended sediment, particulate organic carbon and nitrogen, and total adsorbed concentration (mass of metal per volume of filtered water) of most metals were higher during a low tide rainfall event than during wind-only and fair-weather events. Metal contents (mass of metal per mass of sediment) were also greater during the rain event for most metals. Principle components analysis and the relationships between total adsorbed metals and SSC suggest rainfall during low tide can mobilize a different source of sediment than the background sediment available for tidal and wind-wave resuspension. The metal content of bulk sediment samples from around the study area could not be matched satisfactorily to the suspended sediment in any of the events, implying that bulk sediment should not be used to extrapolate to suspended sediment in terms of adsorbed metal content. Some of the adsorbed metals were present during the rain event in amounts that could be toxic, depending on the actual bioavailability of the metals.; Summary plots of measured organic parameters. (A) POC (B) PN (C) C:N (D) total leachable metal concentration, sum of all measured metals. The solid line inside box is the median and the dashed line is the mean.

  13. Outstanding resistance and passivation behaviour of new Fe-Co metal-metal glassy alloys in alkaline media

    PubMed Central

    Al-Harbi, Albandaree K.

    2018-01-01

    The electrochemical behavior of the oxide layers on two metal-metal glassy alloys, Fe78Co9Cr10Mo2Al1 (VX9)and Fe49Co49V2 (VX50) (at.%), were studied using electrochemical techniques including electrochemical frequency modulation (EFM), electrochemical impedance spectroscopy (EIS) and cyclic polarization (CP) measurements. The morphology and composition of the alloy surfaces were investigated using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The corrosion rate and surface roughness of both alloys increased as the concentration of NaOH in aqueous solution was raised. The presence of some protective elements in the composition of the alloys led to the formation of a spontaneous passive layer on the alloy surface. The higher resistance values of both alloys were associated with the magnitude of the dielectric properties of the passive films formed on their surfaces. Both alloys are classified as having outstanding resistance to corrosion, which results from the formation of a passive film that acts as an efficient barrier to corrosion in alkaline solution. PMID:29337992

  14. Outstanding resistance and passivation behaviour of new Fe-Co metal-metal glassy alloys in alkaline media.

    PubMed

    Emran, Khadijah M; Al-Harbi, Albandaree K

    2018-01-01

    The electrochemical behavior of the oxide layers on two metal-metal glassy alloys, Fe78Co9Cr10Mo2Al1 (VX9)and Fe49Co49V2 (VX50) (at.%), were studied using electrochemical techniques including electrochemical frequency modulation (EFM), electrochemical impedance spectroscopy (EIS) and cyclic polarization (CP) measurements. The morphology and composition of the alloy surfaces were investigated using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The corrosion rate and surface roughness of both alloys increased as the concentration of NaOH in aqueous solution was raised. The presence of some protective elements in the composition of the alloys led to the formation of a spontaneous passive layer on the alloy surface. The higher resistance values of both alloys were associated with the magnitude of the dielectric properties of the passive films formed on their surfaces. Both alloys are classified as having outstanding resistance to corrosion, which results from the formation of a passive film that acts as an efficient barrier to corrosion in alkaline solution.

  15. ACTS Battery and Solar Array Assembly On-Orbit Measured Performance

    NASA Technical Reports Server (NTRS)

    Hilderman, Don R.

    2005-01-01

    The Advanced Communications Technology Satellite (ACTS) is a NASA experimental communications satellite system designed to demonstrate on-orbit Ka-band communications and switching technologies that will be used by NASA and the commercial sector in the 21st century. The ACTS was launched on September 12, 1993, and has performed over 10 years of successful experimental operations. The purpose of this report is to describe the ACTS power subsystem and the ACTS solar array and battery assemblies located within the power subsystem and then to document on-orbit measured performance from launch to mission end on April 28, 2004. Solar array and battery performance data is presented, and respective conclusions are drawn. The total solar array power available to the spacecraft was measured each year at the same time, and battery voltage performance was measured twice per year at the same times during peak solar eclipse. At the highest spacecraft power demand, the ACTS uses approximately 1113 W of electrical power during the low-burstrate experiment to operate all six satellite subsystems. After 10 years of on-orbit operation, solar array available output power normal to the Sun measured 1508 W, which represents 395 W of excess margin. The ACTS batteries have successfully supported the ACTS experiment program for over 10 years and operated in excess of 900 charge and discharge cycles through 21 eclipse seasons.

  16. Numerical taxonomy of heavy metal tolerant bacteria isolated from the estuarine environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, D.A.; Austin, B.; Mills, A.L.

    1977-01-01

    Metal tolerant bacteria, totalling 301 strains, were isolated from water and sediment samples collected from Chesapeake Bay. Growth in the presence of 100 ppm cadmium, chromium, cobalt, lead, mercury and molybdenum was tested. In addition, the strains were examined for 118 biochemical, cultural, morphological, nutritional and physiological, characters and the data were analyzed by computer, using the simple matching and Jaccard coefficients. From sorted similarity matrices, 293 strains, 97% of the total, were removed in 12 clusters defined at the 80 to 85% similarity level. The clusters included Bacillus and Pseudomonas spp. and genera and species of Enterobacteriaceae. Three clusters,more » containing gram negative rods, were not identified. Several of the clusters were composed of strains exhibiting tolerance to a wide range of heavy metals, whereas three of the clusters contained bacteria that were capable of growth in the presence of only a few of the metals examined in this study. Antibiotic resistance of the metal resistant strains has also been examined.« less

  17. ADSORPTION OF CADMIUM ONTO ORGANIC, TOTAL INORGANIC, AND METAL OXIDE FRACTIONS IN BIOSOLIDS AND BIOSOLID-AMENDED SOILS

    EPA Science Inventory

    The environmental impact and potential hazards of metals in biosolids to plants, animals and the human food chain from biosolids application on soils has been studied for decades. The early hypothesis known as "Time Bomb" has been questioned by recent research results which tend ...

  18. 13 CFR 107.115 - 1940 Act and 1980 Act Companies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false 1940 Act and 1980 Act Companies. 107.115 Section 107.115 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES Qualifying for an SBIC License Organizing An Sbic § 107.115 1940 Act and 1980 Act...

  19. Identification and topographic localization of metallic foreign bodies by metal detector.

    PubMed

    Muensterer, Oliver J; Joppich, Ingolf

    2004-08-01

    Exact localization of ingested metal objects is necessary to guide therapy. This study prospectively evaluates the accuracy of foreign body (FB) identification and localization by metal detector (MTD) in a systematic topographic fashion. Patients who presented after an alleged or witnessed metal FB ingestion were scanned with an MTD. In case of a positive signal, the location was recorded in a topographic diagram, and radiographs were obtained. The diagnostic accuracy of the MTD scan for FB identification and topographic localization was determined by chi(2) analysis, and concordance was calculated by the McNemar test and expressed as kappa. A total of 70 MTD examinations were performed on 65 patients (age 6 months to 16 years); 5 patients were scanned twice on different days. The majority had swallowed coins and button batteries (n = 41). Of these, 29 items were correctly identified, and 11 of 12 were correctly ruled out (coins and button batteries: sensitivity, 100% [95% Confidence Interval 95% to 100%]; specificity, 91.7% [95% CI 76% to 100%], kappa = 0.94). When all metallic objects were included, 41 of 46 were correctly identified, and 22 of 24 were correctly ruled out (sensitivity, 89.1% [95% CI 80% to 98%]; specificity, 91.7% [95% CI 81% to 100%], kappa = 0.78). Five miscellaneous objects were not identified (sensitivity for items other than coins and button batteries 71% [95% CI 49% to 92%], kappa = 0.56). Localization by MTD was correct in 30 of 41 identified objects (73%). The error rates of junior and senior pediatric surgery residents did not differ significantly (P =.82). Ingested coins and button batteries can be safely and accurately found by metal detector. For these indications, the MTD is a radiation-free diagnostic alternative to conventional radiographs. Other items, however, cannot be ruled out reliably by MTD. In these cases, radiographic imaging is still indicated.

  20. Hydrogen Abundances in Metal Grains from the Hammadah Al Hamra (HaH) 237 Metal-rich Chondrite: A Test of the Nebular-Formation Theory

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.; Guan, Y.; Leshin, L. A.

    2005-01-01

    The Bencubbin-like (CB) chondrites are metal-rich, primitive meteorites [1,2]. Some of these chondrites (HaH 237, QUE 94411) contain compositionally zoned metal grains with near-chondritic bulk compositions. Thermodynamic modeling of the zoning patterns in these grains suggests that they were formed by condensation in a region of the solar nebula with enhanced dust/gas ratios and a total pressure of 10(exp -4) bars at temperatures between 1400 - 1500 K [3]. If these predictions are correct than the metal grains would have been exposed to abundant H2 gas, which comprises the bulk of nebular systems. Since Fe-based alloys can absorb significant quantities of H, metal grains formed in the solar nebula should contain measurable abundances of H.