Science.gov

Sample records for act rcra waste

  1. Guidance on the Management of Remediation Waste Under the Resource Conservation and Recovery Act (RCRA)

    EPA Pesticide Factsheets

    To assist regulators in successfully implementing RCRA requirements for remediation waste, this memorandum consolidates existing guidance on the RCRA regulations and policies that most often affect remediation waste management.

  2. Resource Conservation and Recovery Act (RCRA) and Federal Facilities

    EPA Pesticide Factsheets

    Federal facilities have responsibilities with hazardous waste under RCRA, including the generation, transportation, treatment, storage, and disposal under the Resource Conservation and Recovery Act (RCRA). .

  3. Small-quantity generator's handbook for managing RCRA (Resource Conservation and Recovery Act) wastes. Pesticide application

    SciTech Connect

    Not Available

    1988-06-01

    This RCRA Handbook was developed for pesticide applicators to provide assistance in complying with pertinent sections of the RCRA requirements. Section 2 summarizes operations of pesticide users and describes potential waste types that could be generated from these operations. Section 3 provides a guide for determining if a particular pesticide waste is subject to these regulations. Section 4 discusses the RCRA generator requirements, while Section 5 describes waste-management strategies for minimizing the amount of hazardous waste generated by the pesticide applicators. Appendix A lists hazardous wastes. Appendix B summarizes RCRA characteristic wastes. Appendix C contains a list of references and contacts for obtaining more information about hazardous wastes and their regulation.

  4. The implications of RCRA (Resource Conservation and Recovery Act) regulation for the disposal of transuranic and high-level waste

    SciTech Connect

    Sigmon, C.F.; Sharples, F.E.; Smith, E.D.

    1988-01-01

    In May of 1987 the Department of Energy (DOE) published a rule interpreting the definition of ''byproduct'' under the Atomic Energy Act. This byproduct rule clarified the role of the Resource Conservation and Recovery Act (RCRA) in the regulation of DOE's radioactive waste management activities. According to the rule, only the radioactive portion of DOE's mixed radioactive and hazardous waste (mixed waste), including mixed transuranic (TRU) and high-level waste (HLW), is exempt from RCRA under the byproduct exemption. The portion of a waste that is hazardous as defined by RCRA is subject to full regulation under RCRA. Because the radioactive and hazardous portions of m any, if not most, DOE wastes are likely to be inseparable, the rule in effect makes most mixed wastes subject to dual regulation. The potential application of RCRA to facilities such as the Waste Isolation Pilot Plant (WIPP) and the HLW repository creates unique challenges for both the DOE and regulatory authorities. Strategies must be developed to assure compliance with RCRA without either causing excessive administrative burdens or abandoning the goal of minimizing radiation exposure. This paper will explore some of the potential regulatory options for and recent trends in the regulation of TRU and HLW under RCRA.

  5. Information for Importers and Receiving Facilities of Resource Conservation and Recovery Act (RCRA) Hazardous Waste

    EPA Pesticide Factsheets

    Information for importers of hazardous waste from Canada, Chile, Mexico, or non-OECD countries who are subject to the hazardous waste generator and importer requirements described in 40 CFR Part 262 Subpart A – D and F, under RCRA

  6. Information for Exporters of Resource Conservation and Recovery Act (RCRA) Hazardous Waste

    EPA Pesticide Factsheets

    Information for exporters of hazardous waste to OECD countries for recycling who are subject to the hazardous waste generator and importer requirements described in 40 CFR Part 262 Subpart H, under RCRA

  7. Resource Conservation and Recovery Act (RCRA) in Focus: Hazardous Waste Generator Guidance by Industry

    EPA Pesticide Factsheets

    Publications providing an overview of the RCRA regulations affecting specific industry sectors. These documents present the lifecycle of a typical waste for each industry and focuses on recycling and pollution prevention.

  8. Resource Conservation and Recovery Act (RCRA) Closure Plan Summary for Interim reasctive Waste Treatment Area (IRWTA)

    SciTech Connect

    Collins, E.T.

    1997-07-01

    This closure plan has been prepared for the interim Reactive Waste Treatment Area (IRWT'A) located at the Y-12 Pkmt in oak Ridge, Tennessee (Environmental Protection Agency [EPA] Identification TN 389-009-0001). The actions required to achieve closure of the IRWTA are outlined in this plan, which is being submitted in accordance with Tennessee Ruie 1200- 1-1 1-.0S(7) and Title 40, Code of Federal Regulations (CFR), Part 265, Subpart G. The IRWTA was used to treat waste sodium and potassium (NaK) that are regulated by the Resource Conservation and Recovery Act (RCRA). The location of the IRWT'A is shown in Figures 1 and 2, and a diagram is shown in Figure 3. This pkm details all steps that wdi be petiormed to close the IRWTA. Note that this is a fmai ciosure.and a diagram is shown in Figure 3. This pkm details all steps that wdi be petiormed to close the IRWTA. Note that this is a fmai ciosure.

  9. Closure of municipal solid waste landfills (MSWLFs). RCRA Information Brief

    SciTech Connect

    Petts, M.

    1993-07-01

    This RCRA (Resource Conservation and Recovery Act) information brief answers some questions regarding the 40 CFR 258 and 40 CFR 257 regulations on solid waste disposal facilities and their closure/cover. Section 405 of the Clean Water Act is covered as well as the RCRA.

  10. Special Focus Areas for Hazardous Waste Cleanups under the Resource Conservation and Recovery Act (RCRA)

    EPA Pesticide Factsheets

    In order to manage the new and changing needs of the RCRA Corrective Action Program, EPA is constantly exploring program enhancements, alternate exposure pathways, and new technologies available to protect human health and environment.

  11. Resource Conservation and Recovery Act (RCRA) Orientation Manual

    EPA Pesticide Factsheets

    This manual provides introductory information on the solid and hazardous waste management programs under the Resource Conservation and Recovery Act (RCRA). Designed for EPA and state staff, members of the regulated community, and the general public.

  12. RCRA special study on waste definitions: Sites that require additional consideration prior to NPL proposal under the Superfund Amendments and Reauthorization Act. Directive

    SciTech Connect

    Not Available

    1987-03-10

    The purposes of this memo are to discuss Sections 105(g) and 125 of the Superfund Amendments and Reauthorization Act of 1986 (SARA) and, to the extent now possible, to outline the scope of these provisions by providing appropriate definitions. Both of these sections require that, until the Hazard Ranking System (HRS) is revised, the Agency evaluate additional data for sites at which 'special wastes,' as defined under the Resource Conservation and Recovery Act (RCRA), are present in significant quantities before these sites are proposed for the NPL.

  13. Refinery uses bioslurry process to treat RCRA wastes

    SciTech Connect

    Oolman, T.; Baker, R.R.; Renfro, N.L.; Marshall, G.E.

    1996-04-01

    Restrictions on land disposal of oily refinery wastes have forced the refining industry to develop cost-effective methods to treat these wastes before disposal. Valero Refining Company is using an onsite, tank-based biological treatment process to treat oily wastes at its Corpus Christi, Texas, refinery. This system consistently treats these wastes to RCRA universal treatment standards (UTS), thereby allowing direct disposal of the treated residue in a Resource Conservation and Recovery Act (RCRA) permitted landfill. In selecting the biotreatment process, Valero used several criteria including environmental performance, equipment reliability and ability to be integrated into refinery operations and process safety. Capital investment, maintenance and operating costs also were important considerations. This case history shows how Valero successfully used the bioslurry process to treat oily wastes such as API separator sludge and slop-oil emulsion before landfill disposal.

  14. Abbreviated Version Resource Conservation and Recovery Act (RCRA) Statutory Checklist

    EPA Pesticide Factsheets

    The RCRA Statutory Checklist is provided to aid attorneys and others in reviewing and documenting statutory provisions required for authorization under Section 3006(b) of the Resource Conservation and Recovery Act (RCRA), as amended.

  15. Hazardous waste enforcement. [RCRA and Superfund regulatory programs

    SciTech Connect

    Not Available

    1982-07-01

    A change is taking place in the enforcement of the Resource Conservation and Recovery Act (RCRA) and Superfund, a change described by the terms ''environmental results'' and ''cooperation, no confrontation''. Examples are given of environmental results achieved through criminal enforcement. In June 1981, a New York businessman received a two and one-half year prison sentence for dumping PCB-laced oil along North Carolina roads; a second defendant received an 18-month jail term. Other important measures of environmental results achieved by enforcement are 1) commitment of private money and effort for hazardous waste management and 2) the number of facility inspections conducted under RCRA's regulatory program's compliance monitoring system. A new strategy of cooperation between U.S. EPA and the parties affected by RCRA and Superfund should change the pattern which produced the confrontational conflicts of the past. (JMT)

  16. Resource Conservation and Recovery Act (RCRA) contingency plan for hazardous waste treatment, storage, and disposal units at the Oak Ridge Y-12 Plant

    SciTech Connect

    Not Available

    1994-08-01

    The Y-12 RCRA Contingency Plan will be continually reviewed and revised if any of the following occur: the facility permit is revised, the plan is inadequate in an emergency, the procedures can be improved, the operations of the facility change in a way that alters the plan, the emergency coordinator changes, or the emergency equipment list changes. Copies of the Y-12 Emergency Management Plan are available at the Plant Shift Superintendent`s Office and the Emergency Management Office. This document serves to supplement the Y-12 Emergency Management Plan to be appropriate for all RCRA hazardous waste treatment, storage, or disposal units. The 90-day accumulation areas at the Y-12 Plant have a separate contingency supplement as required by RCRA and are separate from this supplement.

  17. Establishing a regulatory framework for a RCRA (Resource, Conservation, and Recovery Act) corrective action program

    SciTech Connect

    Krueger, J.W.

    1989-01-01

    Recently, the environmental community has become keenly aware of problems associated with integration of the demanding regulations that apply to environmental restoration activities. One can not attend an EPA-sponsored conference on Superfund without distracting questions concerning the Resource, Conservation, and Recovery Act (RCRA) and the applicability of the National Contingency Plan (NCP) to sites that do not qualify for the National Priorities List (NPL). In particular, the US Department of Energy (DOE) has been greatly criticized for its inability to define a comprehensive approach for cleaning up its hazardous waste sites. This article presents two decision flowcharts designed to resolve some of this confusion for DOE. The RCRA/CERCLA Integration Diagram can help the environmental manager determine which law applies and under what conditions, and the RCRA Corrective Action Decision Flowchart can guide the manager in determining which specific sections of RCRA apply to a RCRA-lead environmental restoration program. 13 refs.

  18. RCRA Groundwater Monitoring Plan for Single-Shell Tank Waste Management Area C at the Hanford Site

    SciTech Connect

    Horton, Duane G.; Narbutovskih, Susan M.

    2001-01-01

    This document describes the groundwater monitoring plan for Waste Management Area C located in the 200 East Area of the DOE Hanford Site. This plan is required under Resource Conservation and Recovery Act of 1976 (RCRA).

  19. Decontamination Study for Mixed Waste Storage Tanks RCRA Closure

    SciTech Connect

    Leaphart, D.M.; Reed, S.R.; Rankin, W.N.

    1995-03-01

    The Savannah River Site (SRS) plans to close six underground tanks storing mixed waste under RCRA regulations. In support of this closure effort, a study was performed to determine the optimal method of decontaminating these tanks to meet the closure requirements. Items consaidered in the evaluation of the decontamination methods included effectiveness, compatibility with existing waste residues, possible cleaning solution disposal methods, and cost.

  20. RCRA closure of mixed waste impoundments

    SciTech Connect

    Blaha, F.J.; Greengard, T.C.; Arndt, M.B.

    1989-11-01

    A case study of a RCRA closure action at the Rocky Flats Plant is presented. Closure of the solar evaporation ponds involves removal and immobilization of a mixed hazardous/radioactive sludge, treatment of impounded water, groundwater monitoring, plume delineation, and collection and treatment of contaminated groundwater. The site closure is described within the context of regulatory negotiations, project schedules, risk assessment, clean versus dirty closure, cleanup levels, and approval of closure plans and reports. Lessons learned at Rocky Flats are summarized.

  1. 32 CFR 32.16 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Resource Conservation and Recovery Act (RCRA... Resource Conservation and Recovery Act (RCRA). Recipients' procurements shall comply with applicable requirements of the Resource Conservation and Recovery Act (RCRA), as described at § 32.49....

  2. 32 CFR 32.16 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Resource Conservation and Recovery Act (RCRA... Resource Conservation and Recovery Act (RCRA). Recipients' procurements shall comply with applicable requirements of the Resource Conservation and Recovery Act (RCRA), as described at § 32.49....

  3. 40 CFR 30.16 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Resource Conservation and Recovery Act (RCRA). 30.16 Section 30.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER... Conservation and Recovery Act (RCRA). Resource Conservation and Recovery Act (RCRA) (Public Law 94-580...

  4. 32 CFR 32.16 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Resource Conservation and Recovery Act (RCRA... Resource Conservation and Recovery Act (RCRA). Recipients' procurements shall comply with applicable requirements of the Resource Conservation and Recovery Act (RCRA), as described at § 32.49....

  5. 40 CFR 30.16 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Conservation and Recovery Act (RCRA). Resource Conservation and Recovery Act (RCRA) (Public Law 94-580 codified... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Resource Conservation and Recovery Act (RCRA). 30.16 Section 30.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND...

  6. 40 CFR 30.16 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Conservation and Recovery Act (RCRA). Resource Conservation and Recovery Act (RCRA) (Public Law 94-580 codified... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Resource Conservation and Recovery Act (RCRA). 30.16 Section 30.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND...

  7. 40 CFR 30.16 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Conservation and Recovery Act (RCRA). Resource Conservation and Recovery Act (RCRA) (Public Law 94-580 codified... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Resource Conservation and Recovery Act (RCRA). 30.16 Section 30.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND...

  8. 32 CFR 32.16 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false Resource Conservation and Recovery Act (RCRA... Resource Conservation and Recovery Act (RCRA). Recipients' procurements shall comply with applicable requirements of the Resource Conservation and Recovery Act (RCRA), as described at § 32.49....

  9. 32 CFR 32.16 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Resource Conservation and Recovery Act (RCRA... Resource Conservation and Recovery Act (RCRA). Recipients' procurements shall comply with applicable requirements of the Resource Conservation and Recovery Act (RCRA), as described at § 32.49....

  10. General requirements for RCRA regulated hazardous waste tanks

    SciTech Connect

    1995-11-01

    The Resource Conservation and Recovery Act (RCRA), as amended, requires that tanks used for the storage or treatment of hazardous waste (HazW) be permitted, and comply with the requirements contained within the Code of Federal Regulations (CFR) TItle 40 in Subpart J of Part 264/265, unless those tanks have been exempted. Subpart J specifies requirements for the design, construction, installation, operation, inspection, maintenance, repair, release, response, and closure of HazW tanks. Also, the regulations make a distinction between new and existing tanks. Effective December 6, 1995, standards for controlling volatile organic air emissions will apply to non-exempt HazW tanks. HazW tanks will have to be equipped with a cover or floating roof, or be designed to operate as a closed system, to be in compliance with the air emission control requirements. This information brief describes those tanks that are subject to the Subpart J requirements, and will also discuss secondary containment, inspection, restrictions on waste storage, release response, and closure requirements associated with regulated HazW tanks.

  11. 38 CFR 49.16 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Resource Conservation and Recovery Act (RCRA). 49.16 Section 49.16 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS... Conservation and Recovery Act (RCRA). Under the RCRA (Pub. L. 94-580, codified at 42 U.S.C. 6962), any...

  12. 14 CFR 1260.116 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Resource Conservation and Recovery Act (RCRA). 1260.116 Section 1260.116 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION... Requirements § 1260.116 Resource Conservation and Recovery Act (RCRA). Under the RCRA (Pub. L. 94-580...

  13. 14 CFR § 1260.116 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Resource Conservation and Recovery Act (RCRA). § 1260.116 Section § 1260.116 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE... Requirements § 1260.116 Resource Conservation and Recovery Act (RCRA). Under the RCRA (Pub. L. 94-580...

  14. 14 CFR 1260.116 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Resource Conservation and Recovery Act (RCRA). 1260.116 Section 1260.116 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION... Requirements § 1260.116 Resource Conservation and Recovery Act (RCRA). Under the RCRA (Pub. L. 94-580...

  15. 14 CFR 1260.116 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Resource Conservation and Recovery Act (RCRA). 1260.116 Section 1260.116 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION... Requirements § 1260.116 Resource Conservation and Recovery Act (RCRA). Under the RCRA (Pub. L. 94-580...

  16. 14 CFR 1260.116 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Resource Conservation and Recovery Act (RCRA). 1260.116 Section 1260.116 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS... Requirements § 1260.116 Resource Conservation and Recovery Act (RCRA). Under the RCRA (Pub. L. 94-580...

  17. Potential Applicability of Assembled Chemical Weapons Assessment Technologies to RCRA Waste Streams and Contaminated Media (PDF)

    EPA Pesticide Factsheets

    This report provides an evaluation of the potential applicability of Assembled Chemical Weapons Assessment (ACWA) technologies to RCRA waste streams and contaminated media found at RCRA and Superfund sites.

  18. Analysis of TRU waste for RCRA-listed elements

    SciTech Connect

    Mahan, C.; Gerth, D.; Yoshida, T.

    1996-07-01

    Analytical methods for RCRA listed elements on Portland cement type waste have been employed using both microwave and open hot plate digestions with subsequent analysis by inductively coupled plasma atomic emission spectroscopy (ICP-AES), inductively coupled plasma mass spectrometry (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS), graphite furnace atomic absorption (GFAA) and cold vapor atomic absorption and fluorescence (CVAA/CVAFS). Four different digestion procedures were evaluated including an open hot plate nitric acid digestion, EPA SW-846 Method 3051, and 2 methods using modifications to Method 3051. The open hot plate and the modified Method 3051, which used aqua regia for dissolution, were the only methods which resulted in acceptable data quality for all 14 RCRA-listed elements. Results for the nitric acid open hot plate digestion were used to qualify the analytical methods for TRU waste characterization, and resulted in a 99% passing score. Direct chemical analysis of TRU waste is being developed at Los Alamos National Laboratory in an attempt to circumvent the problems associated with strong acid digestion methods. Technology development includes laser induced breakdown spectroscopy (LIBS), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), dc arc CID atomic emission spectroscopy (DC-AES), and glow discharge mass spectrometry (GDMS). Analytical methods using the Portland cement matrix are currently being developed for each of the listed techniques. Upon completion of the development stage, blind samples will be distributed to each of the technology developers for RCRA metals characterization.

  19. RCRA COVER SYSTEMS FOR WASTE MANAGEMENT FACILITIES

    EPA Science Inventory

    The closure of waste management facilities, whether Subtitle C, Subtitle D or CERCLA, requires consideration of site-specific information, the Federal regulations and applicability of state regulations and the liquids management strategy. This paper will present the current EPA ...

  20. Transportable Vitrification System RCRA Closure Practical Waste Disposition Saves Time And Money

    SciTech Connect

    Brill, Angie; Boles, Roger; Byars, Woody

    2003-02-26

    The Transportable Vitrification System (TVS) was a large-scale vitrification system for the treatment of mixed wastes. The wastes contained both hazardous and radioactive materials in the form of sludge, soil, and ash. The TVS was developed to be moved to various United States Department of Energy (DOE) facilities to vitrify mixed waste as needed. The TVS consists of four primary modules: (1) Waste and Additive Materials Processing Module; (2) Melter Module; (3) Emissions Control Module; and (4) Control and Services Module. The TVS was demonstrated at the East Tennessee Technology Park (ETTP) during September and October of 1997. During this period, approximately 16,000 pounds of actual mixed waste was processed, producing over 17,000 pounds of glass. After the demonstration was complete it was determined that it was more expensive to use the TVS unit to treat and dispose of mixed waste than to direct bury this waste in Utah permitted facility. Thus, DOE had to perform a Resource Conservation and Recovery Act (RCRA) closure of the facility and find a reuse for as much of the equipment as possible. This paper will focus on the following items associated with this successful RCRA closure project: TVS site closure design and implementation; characterization activities focused on waste disposition; pollution prevention through reuse; waste minimization efforts to reduce mixed waste to be disposed; and lessons learned that would be integrated in future projects of this magnitude.

  1. RCRA (Resource Conservation and Recovery Act) ground-water monitoring projects for Hanford facilities: Annual progress report for 1988

    SciTech Connect

    Fruland, R.M.; Lundgren, R.E.

    1989-04-01

    This report describes the progress during 1988 of 14 Hanford Site ground-water monitoring projects covering 16 hazardous waste facilities and 1 nonhazardous waste facility (the Solid Waste Landfill). Each of the projects is being conducted according to federal regulations based on the Resource Conservation and Recovery Act (RCRA) of 1976 and the State of Washington Administrative Code. 21 refs., 23 figs., 8 tabs.

  2. 40 CFR 30.16 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Resource Conservation and Recovery Act... HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Pre-Award Requirements § 30.16 Resource Conservation and Recovery Act (RCRA). Resource Conservation and Recovery Act (RCRA) (Public Law 94-580...

  3. ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY

    SciTech Connect

    Romano, Stephen; Welling, Steven; Bell, Simon

    2003-02-27

    The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information.

  4. Phase 1 RCRA Facility Investigation and Corrective Measures Study Work Plan for Single Shell Tank Waste Management Areas

    SciTech Connect

    ROGERS, P.M.

    2000-06-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) for single-shell tank (SST) farms at the Hanford Site. Evidence indicates that releases at four of the seven SST waste management areas have impacted.

  5. Detonation Ground Soils, & Explosive-Contaminated Metal Have No Reactivity Characteristics Under RCRA Hazardous Waste Regulations

    DTIC Science & Technology

    1994-08-01

    DETONATION GROUND SOILS, & EXPLOSIVE-CONTAMINATED METAL HAVE NO REACTIVITY CHARACTERISTIC UNDER RCRA HAZARDOUS WASTE REGULATIONS Jay L. Bishop, PhD...Metal Have No Reactivity Characteristics Under RCRA Hazardous Waste Regulations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  6. DOSE ASSESSMENTS FROM THE DISPOSAL OF LOW-ACTIVITY WASTES IN RCRA-C DISPOSAL CELLS

    EPA Science Inventory

    Modeling the long-term performance of the RCRA-C disposal cell and potential doses to off-site receptors is used to derive maximum radionuclide specific concentrations in the wastes that would enable these wastes to be disposed of safely using the RCRA-C disposal cell technology....

  7. 10 CFR 600.149 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Resource Conservation and Recovery Act (RCRA). 600.149 Section 600.149 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS FINANCIAL ASSISTANCE RULES... Conservation and Recovery Act (RCRA). Recipients' procurements shall comply with applicable requirements...

  8. 10 CFR 600.149 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Resource Conservation and Recovery Act (RCRA). 600.149 Section 600.149 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS FINANCIAL ASSISTANCE RULES... Conservation and Recovery Act (RCRA). Recipients' procurements shall comply with applicable requirements...

  9. 10 CFR 600.149 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Resource Conservation and Recovery Act (RCRA). 600.149 Section 600.149 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS FINANCIAL ASSISTANCE RULES... Conservation and Recovery Act (RCRA). Recipients' procurements shall comply with applicable requirements...

  10. 10 CFR 600.149 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Resource Conservation and Recovery Act (RCRA). 600.149... Education, Hospitals, and Other Nonprofit Organizations Post-Award Requirements § 600.149 Resource Conservation and Recovery Act (RCRA). Recipients' procurements shall comply with applicable requirements...

  11. 10 CFR 600.149 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Resource Conservation and Recovery Act (RCRA). 600.149... Education, Hospitals, and Other Nonprofit Organizations Post-Award Requirements § 600.149 Resource Conservation and Recovery Act (RCRA). Recipients' procurements shall comply with applicable requirements...

  12. Selective removal/recovery of RCRA metals from waste and process solutions using polymer filtration{trademark} technology

    SciTech Connect

    Smith, B.F.

    1997-10-01

    Resource Conservation and Recovery Act (RCRA) metals are found in a number of process and waste streams at many DOE, U.S. Department of Defense, and industrial facilities. RCRA metals consist principally of chromium, mercury, cadmium, lead, and silver. Arsenic and selenium, which form oxyanions, are also considered RCRA elements. Discharge limits for each of these metals are based on toxicity and dictated by state and federal regulations (e.g., drinking water, RCRA, etc.). RCRA metals are used in many current operations, are generated in decontamination and decommissioning (D&D) operations, and are also present in old process wastes that require treatment and stabilization. These metals can exist in solutions, as part of sludges, or as contaminants on soils or solid surfaces, as individual metals or as mixtures with other metals, mixtures with radioactive metals such as actinides (defined as mixed waste), or as mixtures with a variety of inert metals such as calcium and sodium. The authors have successfully completed a preliminary proof-of-principle evaluation of Polymer Filtration{trademark} (PF) technology for the dissolution of metallic mercury and have also shown that they can remove and concentrate RCRA metals from dilute solutions for a variety of aqueous solution types using PF technology. Another application successfully demonstrated is the dilute metal removal of americium and plutonium from process streams. This application was used to remove the total alpha contamination to below 30 pCi/L for the wastewater treatment plant at TA-50 at Los Alamos National Laboratory (LANL) and from nitric acid distillate in the acid recovery process at TA-55, the Plutonium Facility at LANL (ESP-CP TTP AL16C322). This project will develop and optimize the PF technology for specific DOE process streams containing RCRA metals and coordinate it with the needs of the commercial sector to ensure that technology transfer occurs.

  13. RCRA delisting of agent-decontaminated waste at Dugway Proving Ground

    SciTech Connect

    Kimmell, T.A.; Anderson, A.W.; Green, D.R.; Lopez, J.D.

    1995-04-01

    The State of Utah has declared residues resulting from the demilitarization, treatment, cleanup, testing of military chemical agents to be hazardous wastes. These residues are listed as hazardous waste in Utah and several other States, but are not listed under regulations established by the US Environmental Protection Agency (EPA) pursuant to the Federal Resource Conservation and Recovery Act (RCRA), the primary law governing management of hazardous waste in the US These residues are identified as hazardous waste due to corrosivity, reactivity, chronic toxicity, and acute toxicity, and are designated as Hazardous Waste No. F999. The RCRA regulations (40 CFR 260-280), the Utah Administrative Code (R-315), and other State hazardous waste programs list specific wastes as hazardous, but allow generators to petition the regulator to ``delist`` if it can be demonstrated that such wastes are not hazardous. The US Army Test and Evaluation Command (TECOM) has initiated a project with the Argonne National Laboratory to demonstrate that certain categories of F999 residues are not hazardous waste and to achieve delisting. The initial focus is on delisting specific residues from decontamination of wastes generated during materials testing activities and contaminated soil at the US Army Dugway Proving Ground (DPG), Utah. This activity is referred to as Phase I of the delisting program. Subsequent phases of the delisting program will address additional waste streams at DPG and other Army installations. The purpose of this paper is to outline the Phase I TECOM delisting effort at DPG, identify some of the important technical issues associated with the delisting, and to discuss overall progress to date.

  14. Resource Conservation and Recovery Act (RCRA) General Contingency Plan for Hazardous Waste Treatment, Storage, and Disposal Units at the Oak Ridge Y-12 Plant

    SciTech Connect

    1999-04-01

    This contingency plan provides a description of the Y-12 plant and its waste units and prescribes control procedures and emergency response procedures. It lists emergency and spill response equipment, provides information on coordination agreements with local agencies, and describes the evacuation plan and reporting requirements.

  15. RCRA Part B Permit Application for the Idaho National Engineering Laboratory - Volume 5 Radioactive Waste Management Complex

    SciTech Connect

    Pamela R. Cunningham

    1992-07-01

    This section of the Radioactive Waste Management Complex (RWMC) Part B permit application describes the waste characteristics Of the transuranic (TRU) mixed wastes at the RWMC waste management units to be permitted: the Intermediate-Level Transuranic Storage Facility (ILTSF) and the Waste Storage Facility (WSF). The ILTSF is used to store radioactive remote-handled (RH) wastes. The WSF will be used to store radioactive contact-handled (CH) wastes. The Transuranic Storage Area (TSA) was established at the RWMC to provide interim storage of TRU waste. Department of Energy (DOE) Order 5820.2A defines TRU waste as waste contaminated with alpha-emitting transuranium radionuclides with half-lives greater than 20 years in concentrations greater than 100 nanocuries per gram (nCi/g) o f waste material. The TSA serves generators both on and off the Idaho National Engineering Laboratory (INEL). The ILTSF is located at the TSA, and the WSF will be located there also. Most of the wastes managed at the TSA are mixed wastes, which are radioactive wastes regulated under the Atomic Energy Act (AEA) that also contain hazardous materials regulated under the Resource Conservation and Recovery Act (RCRA) and the Idaho Hazardous Waste Management Regulations. These wastes include TRU mixed wastes and some low-level mixed wastes. Accordingly, the TSA is subject to the permitting requirements of RCRA and the Idaho Administrative Procedures Act (IDAPA). Prior to 1982, DOE orders defined TRU wastes as having transuranium radionuclides in concentrations greater than 10 nCi/g, The low-level mixed wastes managed at the TSA are those wastes with 10 to 100 nCi/g of TRU radionuclides that prior to 1982 were considered TRU waste.

  16. RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY

    SciTech Connect

    Horton, Duane G.

    2007-03-26

    WMA TX-TY contains underground, single-shell tanks that were used to store liquid waste that contained chemicals and radionuclides. Most of the liquid has been removed, and the remaining waste is regulated under the RCRA as modi¬fied in 40 CFR Part 265, Subpart F and Washington State’s Hazardous Waste Management Act . WMA TX-TY was placed in assessment monitoring in 1993 because of elevated specific conductance. A groundwater quality assessment plan was written in 1993 describing the monitoring activities to be used in deciding whether WMA TX-TY had affected groundwater. That plan was updated in 2001 for continued RCRA groundwater quality assessment as required by 40 CFR 265.93 (d)(7). This document further updates the assessment plan for WMA TX-TY by including (1) information obtained from ten new wells installed at the WMA after 1999 and (2) information from routine quarterly groundwater monitoring during the last five years. Also, this plan describes activities for continuing the groundwater assessment at WMA TX TY.

  17. Resource Conservation and Recovery Act (RCRA) Area of Contamination Policy

    EPA Pesticide Factsheets

    Memorandum confirming that certain broad AOCs may be considered to be RCRA landfills, and also describing the distinctions between the final CAMU regulations and the AOC approach and encourages appropriate use of both options to expedite remedial actions.

  18. Resource Conservation and Recovery Act (RCRA) Statutory Checklist

    EPA Pesticide Factsheets

    The RCRA Statutory Checklist which follows includes the statutory provisions listed on the original State Legislation Checklist, which States completed as part of the Base Program authorization, and the HSWA Statutory Checklist.

  19. WASTE ANALYSIS PLAN REVIEW ADVISOR - AN INTELLIGENT DATABASE TO ASSIST RCRA PERMIT REVIEWERS

    EPA Science Inventory

    The Waste Analysis Plan Review Advisor (WAPRA) system assists in the review of the Waste Analysis Plan Section of RCRA Part B facility permit applications. Specifically, this program automates two functions of the waste analysis plan review. First, the system checks all wastes wh...

  20. Report for the HWMA/RCRA Post Closure Permit for the INTEC Waste Calcining Facility at the INL Site

    SciTech Connect

    Idaho Cleanup Project

    2006-06-01

    The Waste Calcining Facility (WCF) is located at the Idaho Nuclear Technology and Engineering Center. In 1998, the WCF was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit on September 15, 2003, with an effective date of October 16, 2003. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the WCF to ensure continued protection of human health and the environment. The post-closure permit also includes semiannual reporting requirements under Permit Conditions III.H. and I.U. These reporting requirements have been combined into this single semiannual report.

  1. Performance Demonstration Program Plan for RCRA Constituent Analysis of Solidified Wastes

    SciTech Connect

    Carlsbad Field Office

    2006-09-21

    The Performance Demonstration Program (PDP) for Resource Conservation and Recovery Act (RCRA) constituents distributes test samples for analysis of volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and metals in solid matrices. Each distribution of test samples is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD; DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department. The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the RCRA PDP. Participating laboratories demonstrate acceptable performance by successfully analyzing single- blind performance evaluation samples (subsequently referred to as PDP samples) according to the criteria established in this plan. PDP samples are used as an independent means to assess laboratory performance regarding compliance with the WAP quality assurance objectives (QAOs). The concentrations of analytes in the PDP samples address levels of regulatory concern and encompass the range of concentrations anticipated in waste characterization samples. The WIPP requires analyses of homogeneous solid wastes to demonstrate compliance with regulatory requirements. These analyses must be performed by laboratories that demonstrate acceptable performance in this PDP. These analyses are referred to as WIPP analyses, and the samples on which they are performed are referred to as WIPP samples. Participating laboratories must analyze PDP samples using the same procedures used for WIPP samples.

  2. Fall Semiannual Report for the HWMA/RCRA Post Closure Permit for the INTEC Waste Calcining Facility at the INL Site

    SciTech Connect

    D. F. Gianotto N. C. Hutten

    2007-01-12

    The Waste Calcining Facility (WCF) is located at the Idaho Nuclear Technology and Engineering Center. In 1998, the WCF was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit on September 15, 2003, with an effective date of October 16, 2003. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the WCF to ensure continued protection of human health and the environment.

  3. STABILIZATION/SOLIDIFICATION OF CERCLA AND RCRA WASTES

    EPA Science Inventory

    This Handbook provides U.S. EPA regional staff responsible for reviewing CERCLA remedial action plans and RCRA permit applications with a tool for interpreting information on stabilization/solidification treatment. As a practical day-to-day reference guide, it will also provide t...

  4. HANDBOOK: STABILIZATION TECHNOLOGIES FOR RCRA CORRECTIVE ACTIONS

    EPA Science Inventory

    On November 1984, Congress enacted the Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA). RCRA requires a corrective action program that prevents hazardous constituents from exceeding concentration limits at the compliance point (i.e...

  5. 15 CFR 14.16 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Resource Conservation and Recovery Act (RCRA). 14.16 Section 14.16 Commerce and Foreign Trade Office of the Secretary of Commerce UNIFORM...-PROFIT, AND COMMERCIAL ORGANIZATIONS Pre-Award Requirements § 14.16 Resource Conservation and...

  6. 15 CFR 14.16 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Resource Conservation and Recovery Act (RCRA). 14.16 Section 14.16 Commerce and Foreign Trade Office of the Secretary of Commerce UNIFORM...-PROFIT, AND COMMERCIAL ORGANIZATIONS Pre-Award Requirements § 14.16 Resource Conservation and...

  7. 38 CFR 49.16 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2013-07-01 2013-07-01 false Resource Conservation and Recovery Act (RCRA). 49.16 Section 49.16 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS... HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Pre-Award Requirements § 49.16...

  8. 38 CFR 49.16 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2014-07-01 2014-07-01 false Resource Conservation and Recovery Act (RCRA). 49.16 Section 49.16 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS... HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Pre-Award Requirements § 49.16...

  9. 38 CFR 49.16 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2011-07-01 2011-07-01 false Resource Conservation and Recovery Act (RCRA). 49.16 Section 49.16 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS... HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Pre-Award Requirements § 49.16...

  10. 15 CFR 14.16 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Resource Conservation and Recovery Act (RCRA). 14.16 Section 14.16 Commerce and Foreign Trade Office of the Secretary of Commerce UNIFORM...-PROFIT, AND COMMERCIAL ORGANIZATIONS Pre-Award Requirements § 14.16 Resource Conservation and...

  11. 38 CFR 49.16 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2012-07-01 2012-07-01 false Resource Conservation and Recovery Act (RCRA). 49.16 Section 49.16 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS... HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Pre-Award Requirements § 49.16...

  12. 15 CFR 14.16 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Resource Conservation and Recovery Act (RCRA). 14.16 Section 14.16 Commerce and Foreign Trade Office of the Secretary of Commerce UNIFORM...-PROFIT, AND COMMERCIAL ORGANIZATIONS Pre-Award Requirements § 14.16 Resource Conservation and...

  13. 15 CFR 14.16 - Resource Conservation and Recovery Act (RCRA).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Resource Conservation and Recovery Act (RCRA). 14.16 Section 14.16 Commerce and Foreign Trade Office of the Secretary of Commerce UNIFORM...-PROFIT, AND COMMERCIAL ORGANIZATIONS Pre-Award Requirements § 14.16 Resource Conservation and...

  14. Criteria for municipal solid-waste landfills (40 CFR Part 258). Subtitle D of Resource Conservation and Recovery Act (RCRA). Summary of data on municipal solid-waste-landfill leachate characteristics. Draft report

    SciTech Connect

    Not Available

    1988-07-01

    In August 1988, the U.S. Environmental Protection Agency proposed Solid Waste Disposal Facilities Criteria (40 CFR Part 258) for municipal solid-waste landfills. This background document is the basis for the development of a portion of the Subtitle D criteria. The document presents information on the character of leachate from municipal solid-waste landfills based on a study of existing leachate data. The purpose of the document was to: (1) investigate municipal solid-waste-landfill leachate; (2) determine the constituents present; (3) determine the concentrations of the constituents present relative to human health and environmental regulatory standards; and (4) evaluate the effects of Subtitle C hazardous waste regulations on constituent concentrations in municipal solid-waste-landfill leachate. The document describes the sources of the data and its quality and presents the results of the study.

  15. Resource Conservation and Recovery Act (RCRA) Part B permit application for tank storage units at the Oak Ridge Y-12 Plant

    SciTech Connect

    Not Available

    1994-05-01

    In compliance with the Resource Conservation and Recovery Act (RCRA), this report discusses information relating to permit applications for three tank storage units at Y-12. The storage units are: Building 9811-1 RCRA Tank Storage Unit (OD-7); Waste Oil/Solvent Storage Unit (OD-9); and Liquid Organic Solvent Storage Unit (OD-10). Numerous sections discuss the following: Facility description; waste characteristics; process information; groundwater monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plan, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification. Sixteen appendices contain such items as maps, waste analyses and forms, inspection logs, equipment identification, etc.

  16. RCRA SUBTITLE D (258): SEISMIC DESIGN GUIDANCE FOR MUNICIPAL SOLID WASTE LANDFILL FACILITIES

    EPA Science Inventory

    On October 9, 1993, the new RCRA Subtitle D regulations (40 CFR Part 258) went into effect. These regulations are applicable to landfills receiving municipal solid waste (MSW) and establish minimum Federal criteria for the siting, design, operation, and closure of MSW landfills....

  17. RCRA delisting of agent-decontaminated waste and remediation waste at Dugway Proving Ground: A program update

    SciTech Connect

    Kimmell, T.A.; Anderson, A.W.; O`Neill, H.J.

    1996-03-01

    In July 1988, the state of Utah issued regulations that declared residues resulting from the demilitarization, treatment, and testing of military chemical agents to be hazardous wastes. These residues were designated as corrosive, reactive, toxic, and acute hazardous (Hazardous Waste No. F999). These residues are not listed by the U.S. Environmental Protection Agency (EPA) as hazardous waste under the Resource Conservation and Recovery Act (RCRA), which is the primary law governing management of hazardous waste in the United States. The RCRAI regulations (40 CFR 260-280), the Utah Administrative Code (R-315), and other state hazardous waste programs list specific wastes as hazardous but allow generators to petition the regulator to {open_quotes}delist{close_quotes} if it can be demonstrated that such wastes are not hazardous. In 1994, the U.S. Army Test and Evaluation Command FECOM initiated a project with the Argonne National Laboratory (Argonne) to demonstrate that certain categories of F999 residues are not hazardous waste and to achieve delisting. The initial focus is on delisting agent-decontaminated residues and soil with a history of contamination at the U.S. Army Dugway Proving Ground (DPG), Utah. An overview of the DPG delisting program was presented at the 1995 American Defense Preparedness Association Environmental Symposium. Since that time, much progress has been made. The purpose of this paper is to review the DPG delisting program and discuss overall progress. Emphasis is placed on progress with regard to analytical methods that will be used to demonstrate that the target residues do not contain hazardous amounts of chemical agent.

  18. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site: Proposed Mixed Waste Disposal Unit (MWSU)

    SciTech Connect

    NSTec Environmental Management

    2010-07-19

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When the proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.

  19. Phase 1 RCRA Facility Investigation & Corrective Measures Study Work Plan for Single Shell Tank (SST) Waste Management Areas

    SciTech Connect

    MCCARTHY, M.M.

    1999-08-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) Corrective Action Program (RCAP) for single-shell tank (SST) farms at the US. Department of Energy's (DOE'S) Hanford Site. The DOE Office of River Protection (ORP) initiated the RCAP to address the impacts of past and potential future tank waste releases to the environment. This work plan defines RCAP activities for the four SST waste management areas (WMAs) at which releases have contaminated groundwater. Recognizing the potential need for future RCAP activities beyond those specified in this master work plan, DOE has designated the currently planned activities as ''Phase 1.'' If a second phase of activities is needed for the WMAs addressed in Phase 1, or if releases are detected at other SST WMAs, this master work plan will be updated accordingly.

  20. NGLW RCRA Storage Study

    SciTech Connect

    R. J. Waters; R. Ochoa; K. D. Fritz; D. W. Craig

    2000-06-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory contains radioactive liquid waste in underground storage tanks at the INTEC Tank Farm Facility (TFF). INTEC is currently treating the waste by evaporation to reduce the liquid volume for continued storage, and by calcination to reduce and convert the liquid to a dry waste form for long-term storage in calcine bins. Both treatment methods and activities in support of those treatment operations result in Newly Generated Liquid Waste (NGLW) being sent to TFF. The storage tanks in the TFF are underground, contained in concrete vaults with instrumentation, piping, transfer jets, and managed sumps in case of any liquid accumulation in the vault. The configuration of these tanks is such that Resource Conservation and Recovery Act (RCRA) regulations apply. The TFF tanks were assessed several years ago with respect to the RCRA regulations and they were found to be deficient. This study considers the configuration of the current tanks and the RCRA deficiencies identified for each. The study identifies four potential methods and proposes a means of correcting the deficiencies. The cost estimates included in the study account for construction cost; construction methods to minimize work exposure to chemical hazards, radioactive contamination, and ionizing radiation hazards; project logistics; and project schedule. The study also estimates the tank volumes benefit associated with each corrective action to support TFF liquid waste management planning.

  1. THE INTEGRATION OF THE 241-Z BUILDING DECONTAMINATION & DECOMMISSIONING (D&D) UNDER COMPREHENSIVE ENVIRONMENTAL RESPONSE COMPENSATION & LIABILITY ACT (CERCLA) WITH RESOURCE CONSERVATION & RECOVERY ACT (RCRA) CLOSURE AT THE PLUTONIUM FINISHING PLANT (PFP)

    SciTech Connect

    HOPKINS, A.M.

    2007-02-20

    The 241-Z treatment and storage tanks, a hazardous waste Treatment, Storage and Disposal (TSD) unit permitted pursuant to the ''Resource Conservation and Recovery Act of 1976'' (RCRA) and Washington State ''Hazardous Waste Management Act, RCW 70.105'', have been deactivated and are being actively decommissioned. The 241-Z TSD unit managed non-listed radioactive contaminated waste water, containing trace RCRA characteristic constituents. The 241-Z TSD unit consists of below grade tanks (D-4, D-5, D-7, D-8, and an overflow tank) located in a concrete containment vault, sample glovebox GB-2-241-ZA, and associated ancillary piping and equipment. The tank system is located beneath the 241-Z building. The 241-Z building is not a portion of the TSD unit. The sample glovebox is housed in the above-grade building. Waste managed at the TSD unit was received via underground mining from Plutonium Finishing Plant (PFP) sources. Tank D-6, located in the D-6 vault cell, is a past-practice tank that was taken out of service in 1972 and has never operated as a portion of the RCRA TSD unit. CERCLA actions address Tank D-6, its containment vault cell, and soil beneath the cell that was potentially contaminated during past-practice operations and any other potential past-practice contamination identified during 241-Z closure, while outside the scope of the ''Hanford Facility Dangerous Waste Closure Plant, 241-Z Treatment and Storage Tanks''.

  2. RCRA corrective action program guide (Interim)

    SciTech Connect

    Not Available

    1993-05-01

    The US Department of Energy (DOE) is responsible for compliance with an increasingly complex spectrum of environmental regulations. One of the most complex programs is the corrective action program proposed by the US Environmental Protection Agency (EPA) under the authority of the Resource Conservation and Recovery Act (RCRA) as amended by the Hazardous and Solid Waste Amendments (HSWA). The proposed regulations were published on July 27, 1990. The proposed Subpart S rule creates a comprehensive program for investigating and remediating releases of hazardous wastes and hazardous waste constituents from solid waste management units (SWMUs) at facilities permitted to treat, store, or dispose of hazardous wastes. This proposed rule directly impacts many DOE facilities which conduct such activities. This guidance document explains the entire RCRA Corrective Action process as outlined by the proposed Subpart S rule, and provides guidance intended to assist those persons responsible for implementing RCRA Corrective Action at DOE facilities.

  3. 45 CFR 74.16 - Resource Conservation and Recovery Act (RCRA, Section 6002 of Pub. L. No. 94-580 (Codified at 42...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Resource Conservation and Recovery Act (RCRA, Section 6002 of Pub. L. No. 94-580 (Codified at 42 U.S.C. 6962)). 74.16 Section 74.16 Public Welfare... COMMERCIAL ORGANIZATIONS Pre-Award Requirements § 74.16 Resource Conservation and Recovery Act (RCRA,...

  4. 45 CFR 74.16 - Resource Conservation and Recovery Act (RCRA, Section 6002 of Pub. L. No. 94-580 (Codified at 42...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Resource Conservation and Recovery Act (RCRA, Section 6002 of Pub. L. No. 94-580 (Codified at 42 U.S.C. 6962)). 74.16 Section 74.16 Public Welfare... COMMERCIAL ORGANIZATIONS Pre-Award Requirements § 74.16 Resource Conservation and Recovery Act (RCRA,...

  5. 28 CFR 70.16 - Resource Conservation and Recovery Act (RCRA) (Pub. L. 94-580 codified at 42 U.S.C. 6962).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Resource Conservation and Recovery Act (RCRA) (Pub. L. 94-580 codified at 42 U.S.C. 6962). 70.16 Section 70.16 Judicial Administration... Requirements § 70.16 Resource Conservation and Recovery Act (RCRA) (Pub. L. 94-580 codified at 42 U.S.C....

  6. 45 CFR 74.16 - Resource Conservation and Recovery Act (RCRA, Section 6002 of Pub. L. No. 94-580 (Codified at 42...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Resource Conservation and Recovery Act (RCRA, Section 6002 of Pub. L. No. 94-580 (Codified at 42 U.S.C. 6962)). 74.16 Section 74.16 Public Welfare... COMMERCIAL ORGANIZATIONS Pre-Award Requirements § 74.16 Resource Conservation and Recovery Act (RCRA,...

  7. 28 CFR 70.16 - Resource Conservation and Recovery Act (RCRA) (Pub. L. 94-580 codified at 42 U.S.C. 6962).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Resource Conservation and Recovery Act (RCRA) (Pub. L. 94-580 codified at 42 U.S.C. 6962). 70.16 Section 70.16 Judicial Administration... Requirements § 70.16 Resource Conservation and Recovery Act (RCRA) (Pub. L. 94-580 codified at 42 U.S.C....

  8. 45 CFR 74.16 - Resource Conservation and Recovery Act (RCRA, Section 6002 of Pub. L. No. 94-580 (Codified at 42...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Resource Conservation and Recovery Act (RCRA, Section 6002 of Pub. L. No. 94-580 (Codified at 42 U.S.C. 6962)). 74.16 Section 74.16 Public Welfare... COMMERCIAL ORGANIZATIONS Pre-Award Requirements § 74.16 Resource Conservation and Recovery Act (RCRA,...

  9. 28 CFR 70.16 - Resource Conservation and Recovery Act (RCRA) (Pub. L. 94-580 codified at 42 U.S.C. 6962).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Resource Conservation and Recovery Act (RCRA) (Pub. L. 94-580 codified at 42 U.S.C. 6962). 70.16 Section 70.16 Judicial Administration... Requirements § 70.16 Resource Conservation and Recovery Act (RCRA) (Pub. L. 94-580 codified at 42 U.S.C....

  10. 45 CFR 74.16 - Resource Conservation and Recovery Act (RCRA, Section 6002 of Pub. L. No. 94-580 (Codified at 42...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Resource Conservation and Recovery Act (RCRA, Section 6002 of Pub. L. No. 94-580 (Codified at 42 U.S.C. 6962)). 74.16 Section 74.16 Public Welfare... COMMERCIAL ORGANIZATIONS Pre-Award Requirements § 74.16 Resource Conservation and Recovery Act (RCRA,...

  11. 28 CFR 70.16 - Resource Conservation and Recovery Act (RCRA) (Pub. L. 94-580 codified at 42 U.S.C. 6962).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Resource Conservation and Recovery Act (RCRA) (Pub. L. 94-580 codified at 42 U.S.C. 6962). 70.16 Section 70.16 Judicial Administration... Requirements § 70.16 Resource Conservation and Recovery Act (RCRA) (Pub. L. 94-580 codified at 42 U.S.C....

  12. 28 CFR 70.16 - Resource Conservation and Recovery Act (RCRA) (Pub. L. 94-580 codified at 42 U.S.C. 6962).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Resource Conservation and Recovery Act (RCRA) (Pub. L. 94-580 codified at 42 U.S.C. 6962). 70.16 Section 70.16 Judicial Administration... Requirements § 70.16 Resource Conservation and Recovery Act (RCRA) (Pub. L. 94-580 codified at 42 U.S.C....

  13. Addendum to the RCRA Assessment Report for Single-Shell Tank Waste Management Area S-SX at the Hanford Site

    SciTech Connect

    Chou, C.J.; Johnson, V.G.

    1999-10-07

    The initial Resource Conservation and Recovery Act (RCRA) groundwater quality assessment report for Waste Management Area S-SX (PNNL-11810) was issued in January 1998. The report stated a plan for conducting continued assessment would be developed after addressing Washington State Department of Ecology (Ecology) comments on initial findings in PNNL-11810. Comments from Ecology were received by US Department of Energy, Richland Operations Office (DOE-RL) on September 24, 1998. Shortly thereafter, Ecology and DOE began dispute resolution and related negotiations about tank farm vadose issues. This led to proposed new Tri-Party Agreement milestones covering a RCRA Facility Investigation-Corrective Measures Study (RFI/CMS) of the four single-shell tank farm waste management areas that were in assessment status (Waste Management Areas B-BX-BY, S-SX, T and TX-TY). The RCRA Facility Investigation includes both subsurface (vadose zone and groundwater) and surface (waste handling facilities and grounds) characterization. Many of the Ecology comments on PNNL-11810 are more appropriate for, and in many cases are superseded by, the RFI/CMS at Waste Management Area S-SX. The proposed Tri-Party Agreement milestone changes that specify the scope and schedule for the RFI/CMS work plans (Tri-Party Agreement change number M-45-98-0) were issued for public comment in February 1999. The Tri-Party Agreement narrative indicates the ongoing groundwater assessments will be integrated with the RFI/CMS work plans. This addendum documents the disposition of the Ecology comments on PNNL-11810 and identifies which comments were more appropriate for the RFI/CMS work plan.

  14. Non-Delegability of Section 3004(t) of the Resource Conservation and Recovery Act (RCRA) and Authorization Status of Several Non-Checklist Authorities

    EPA Pesticide Factsheets

    Memo announcing the PSPD, Office of Solid Waste and the Office of the General Counsel have reexamined the requirement for States to adopt and become authorized for counterparts to certain provisions in RCRA 3004(t).

  15. Calendar Year 2007 Resource Conservation and Recovery Act Annual Monitoring Report for the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee - RCRA Post-Closure Permit Nos. TNHW-113, TNHW-116, and TNHW-128

    SciTech Connect

    Elvado Environmental

    2008-02-01

    This report contains groundwater quality monitoring data obtained during calendar year (CY) 2007 at the following hazardous waste treatment, storage, and disposal (TSD) units located at the US Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) in Oak Ridge, Tennessee; this S-3 Site, Oil Landfarm, Bear Creek Burial Grounds/Walk-In Pits (BCBG/WIP), Eastern S-3 Site Plume, Chestnut Ridge Security Pits (CRSP), Chestnut Ridge Sediment Disposal Baste (CRSDB), few Hollow Quarry (KHQ), and East Chestnut Ridge Waste Pile (ECRWP). Hit monitoring data were obtained in accordance with the applicable Resource Conservation and Recovery Act of 1976 (RCRA) hazardous waste post-closure permit (PCP). The Tennessee Department of Environment and Conservation (TDEC) - Division of Solid Waste Management issued the PCPs to define the requirements for RCRA post-closure inspection, maintenance, and groundwater monitoring at the specified TSD units located within the Bear Creek Hydrogeologic Regime (PCP no. TNHW-116), Upper East Fork Poplar Creek Hydrogeologic Regime (PCP no. TNHW-113), and Chestnut Ridge Hydrogeologic Regime (PCP no. TNHW-128). Each PCP requires the Submittal of an annual RCRA groundwater monitoring report containing the groundwater sampling information and analytical results obtained at each applicable TSD unit during the preceding CY, along with an evaluation of groundwater low rates and directions and the analytical results for specified RCRA groundwater target compounds; this report is the RCRA annual groundwater monitoring report for CY 2007. The RCRA post-closure groundwater monitoring requirements specified in the above-referenced PCP for the Chestnut Ridge Regime replace those defined in the previous PCP (permit no. TNHW-088), which expired on September 18, 2005, but remained effective until the TDEC issued the new PCP in September 2006. The new PCP defines site-specific groundwater sampling and analysis requirements for the

  16. An integration strategy for the NEPA and RCRA/CERCLA programs at the Savannah River Site

    SciTech Connect

    Shedrow, C.B.; Gaughan, B.W.; Moore-Shedrow, D.B.

    1993-10-01

    Savannah River Site (SRS) environmental remediation activities are conducted according to applicable environmental laws and regulations, including the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the National Environmental Policy Act (NEPA). Waste unit cleanups are accomplished by evaluating RCRA and CERCLA requirements at the sites, then selecting and implementing the appropriate cleanup measures. All State and Federal regulations, including the NEPA, are considered for applicability to each waste site. This strategy is discussed.

  17. Fact Sheet on the History of the Resource Conservation and Recovery Act (RCRA) Corrective Action Program

    EPA Pesticide Factsheets

    This fact sheet provides an overview of the main events that have shaped the current RCRA Corrective Action Program. It also provides a brief history of the statutory authorities, regulations, and policy that form the framework for the program.

  18. Summary of Resource Conservation and Recovery Act (RCRA) State Authorization Rule Checklist 3006(f)

    EPA Pesticide Factsheets

    This checklist is an electronic version of the original document found in the 1986 State Consolidated RCRA Authorization Manual (SCRAM). The checklist has not undergone any formal legal review since publication in the SCRAM.

  19. Resource Conservation and Recovery Act (RCRA) Corrective Action Training: Strategies for Meeting the 2020 Vision

    EPA Pesticide Factsheets

    RCRA Corrective Action training to develop and enhance the skills of qualified personnel who will implement corrective actions for their sites by the year 2020 that are protective of human health and the environment while encouraging revitalization.

  20. Management of hazardous waste at RCRA facilities during the flood of `93 -- Methods used and lessons learned

    SciTech Connect

    Martin, T.; Jacko, R.B.

    1996-11-01

    During the summer of 1993, the state of Iowa experienced severe flooding that caused the release of many hazardous materials into the environment. Six months after the flood, the Iowa section of the RCRA branch, US EPA Region 7, sent inspectors to survey every RCRA facility in Iowa. Information was gathered through questionnaires to determine the flood`s impact and to learn potential lessons that could be beneficial in future flood disasters. The objective of this project was to use the information gathered to determine effective storage methods and emergency procedures for handling hazardous material during flood disasters. Additional data were obtained through record searches, phone interviews, and site visits. Data files and statistics were analyzed, then the evident trends and specific insights observed were utilized to create recommendations for RCRA facilities in the flood plain and for the federal EPA and state regulatory agencies. The recommendations suggest that RCRA regulated facilities in the flood plain should: employ the safest storage methods possible; have a flood emergency plan that includes the most effective release prevention available; and take advantage of several general suggestions for flood protection. The recommendations suggest that the federal EPA and state regulatory agencies consider: including a provision requiring large quantity generators of hazardous waste in the flood plain to include flood procedures in the contingency plans; establishing remote emergency storage areas during the flood disasters; encouraging small quantity generators (SQGs) within the flood plain to establish flood contingency plans; and promoting sound flood protection engineering practices for all RCRA facilities in the flood plain.

  1. NEPA/CERCLA/RCRA integration: Policy vs. practice

    SciTech Connect

    Hansen, R.P. ); Wolff, T.A. )

    1993-01-01

    Overwhelmed with environmental protection documentation requirements, a number of Federal agencies are grappling with the complexities of attempting to integrate'' the documentation requirements of the National Environmental Policy Act (NEPA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and the Resource Conservation and Recovery Act (RCRA). While there is some overlap between the general environmental policy objectives of NEPA, and the much more specific waste cleanup objectives of CERCLA and RCRA, there are also major differences and outright conflicts. This paper identifies both problems and opportunities associated with implementing emerging and evolving Federal agency policy regarding integration of the procedural and documentation requirements of NEPA, CERCLA, and RCRA. The emphasis is on NEPA/CERCLA/RCRA integration policy and practice at US Department of Energy (DOE) facilities. The paper provides a comparative analysis of NEPA, CERCLA, and RCRA processes and discusses special integration issues including scoping, development and analysis of alternatives, risk assessment, tiering, scheduling, and the controversy surrounding applicability of NEPA to CERCLA or RCRA cleanup activities. Several NEPA/CERCLA/RCRA integration strategy options are evaluated and an annotated outline of an integrated NEPA/CERCLA document is included.

  2. 43 CFR 12.916 - Resource Conservation and Recovery Act (RCRA) (Pub. L. 94-580 codified at 42 U.S.C. 6962).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Resource Conservation and Recovery Act... Education, Hospitals, and Other Non-Profit Organizations Pre-Award Requirements § 12.916 Resource Conservation and Recovery Act (RCRA) (Pub. L. 94-580 codified at 42 U.S.C. 6962). Under the Act, any...

  3. 43 CFR 12.916 - Resource Conservation and Recovery Act (RCRA) (Pub. L. 94-580 codified at 42 U.S.C. 6962).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Resource Conservation and Recovery Act... Education, Hospitals, and Other Non-Profit Organizations Pre-Award Requirements § 12.916 Resource Conservation and Recovery Act (RCRA) (Pub. L. 94-580 codified at 42 U.S.C. 6962). Under the Act, any...

  4. 43 CFR 12.916 - Resource Conservation and Recovery Act (RCRA) (Pub. L. 94-580 codified at 42 U.S.C. 6962).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Resource Conservation and Recovery Act... Education, Hospitals, and Other Non-Profit Organizations Pre-Award Requirements § 12.916 Resource Conservation and Recovery Act (RCRA) (Pub. L. 94-580 codified at 42 U.S.C. 6962). Under the Act, any...

  5. 43 CFR 12.916 - Resource Conservation and Recovery Act (RCRA) (Pub. L. 94-580 codified at 42 U.S.C. 6962).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Resource Conservation and Recovery Act... Education, Hospitals, and Other Non-Profit Organizations Pre-Award Requirements § 12.916 Resource Conservation and Recovery Act (RCRA) (Pub. L. 94-580 codified at 42 U.S.C. 6962). Under the Act, any...

  6. 43 CFR 12.916 - Resource Conservation and Recovery Act (RCRA) (Pub. L. 94-580 codified at 42 U.S.C. 6962).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Resource Conservation and Recovery Act... Education, Hospitals, and Other Non-Profit Organizations Pre-Award Requirements § 12.916 Resource Conservation and Recovery Act (RCRA) (Pub. L. 94-580 codified at 42 U.S.C. 6962). Under the Act, any...

  7. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    SciTech Connect

    NSTec Environmental Programs

    2010-06-17

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  8. Resource Conservation and Recovery Act (RCRA) closure sumamry for the Uranium Treatment Unit

    SciTech Connect

    1996-05-01

    This closure summary has been prepared for the Uranium Treatment Unit (UTU) located at the Y-12 Plant in Oak Ridge, Tennessee. The actions required to achieve closure of the UTU area are outlined in the Closure Plan, submitted to and approved by the Tennessee Department of Environmental and Conservation staff, respectively. The UTU was used to store and treat waste materials that are regulated by the Resource Conservation and Recovery Act. This closure summary details all steps that were performed to close the UTU in accordance with the approved plan.

  9. Regulatory framework for the thermal treatment of various waste streams.

    PubMed

    Lee, C C; Huffman, G L; Mao, Y L

    2000-08-28

    Since 1990, regulations and standards have changed considerably. This article is an update of the regulatory requirements for the thermal treatment of various waste streams. The waste categories covered, along with the laws they are governed under, include: Hazardous waste under Subtitle C of the Resource Conservation and Recovery Act (RCRA) and under the Clean Air Act; municipal solid waste under Subtitle D of the RCRA; medical waste under Subtitle J of the RCRA; Superfund waste under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA); toxic waste under the Toxic Substances Control Act (TSCA); and sludge waste under the Clean Water Act (CWA).

  10. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1. Sections 1 through 3

    SciTech Connect

    1991-09-01

    WAG 6 comprises a shallow land burial facility used for disposal of low-level radioactive wastes (LLW) and, until recently, chemical wastes. As such, the site is subject to regulation under RCRA and the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). To comply with these regulations, DOE, in conjunction with the Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC), developed a strategy for closure and remediation of WAG 6 by 1997. A key component of this strategy was to complete an RFI by September 1991. The primary objectives of the RFI were to evaluate the site's potential human health and environmental impacts and to develop a preliminary list of alternatives to mitigate these impacts. The WAG 6 one of three solid waste management units evaluated Oak Ridge National Laboratory (ORNL) existing waste disposal records and sampling data and performed the additional sampling and analysis necessary to: describe the nature and extent of contamination; characterize key contaminant transport pathways; and assess potential risks to human health and the environment by developing and evaluating hypothetical receptor scenarios. Estimated excess lifetime cancer risks as a result for exposure to radionuclides and chemicals were quantified for each hypothetical human receptor. For environmental receptors, potential impacts were qualitatively assessed. Taking into account regulatory requirements and base line risk assessment results, preliminary site closure and remediation objectives were identified, and a preliminary list of alternatives for site closure and remediation was developed.

  11. Resource Conservation and Recovery Act (RCRA) Part B Permit Application for Production Associated Units at the Oak Ridge Y-12 Plant

    SciTech Connect

    Not Available

    1994-09-01

    This is the RCRA required permit application for Radioactive and Hazardous Waste Management at the Oak Ridge Y-12 Plant for the following units: Building 9206 Container Storage Unit; Building 9212 Container Storage Unit; Building 9720-12 Container Storage Unit; Cyanide Treatment Unit. All four of these units are associated with the recovery of enriched uranium and other metals from wastes generated during the processing of nuclear materials.

  12. Costs of RCRA corrective action: Interim report

    SciTech Connect

    Tonn, B.; Russell, M.; Hwang Ho-Ling; Goeltz, R. ); Warren, J. )

    1991-09-01

    This report estimates the cost of the corrective action provisions of the Resource Conservation and Recovery Act (RCRA) for all non-federal facilities in the United States. RCRA is the federal law which regulates the treatment, storage, disposal, and recovery of hazardous waste. The 1984 amendment to RCRA, known as the Hazardous and Solid Waste Amendments, stipulates that facilities that treat, store or dispose of hazardous wastes (TSDs) must remediate situations where hazardous wastes have escaped into the environment from their solid waste management units (SWMUs). The US Environmental Protection Agency (USEPA 1990a), among others, believes that the costs of RCRA corrective action could rival the costs of SUPERFUND. Evaluated herein are costs associated with actual remedial actions. The remedial action cost estimating program developed by CH2M Hill is known as the Cost of Remedial Action Model (CORA). It provides cost estimates, in 1987 dollars, by technology used to remediate hazardous waste sites. Rules were developed to categorize each SWMU in the RTI databases by the kinds of technologies that would be used to remediate them. Results were then run through CORA using various assumptions for variable values that could not be drawn from the RTI databases and that did not have CORA supplied default values. Cost estimates were developed under several scenarios. The base case assumes a TSD and SWMU universe equal to that captured in the RTI databases, a point of compliance at the SWMU boundary with no ability to shift wastes from SWMU to SWMU, and a best-as-practical clean-up to health-based standards. 11 refs., 12 figs., 12 tabs.

  13. Fall 2010 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post Closure Permit for the INTEC Waste Calcining Facility and the CPP 601/627/640 Facility at the INL Site

    SciTech Connect

    Boehmer, Ann

    2010-11-01

    The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit on September 15, 2003, with an effective date of October 16, 2003. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment. The post closure permit also includes semiannual reporting requirements under Permit Conditions III.H. and I.U. These reporting requirements have been combined into this single semiannual report, as agreed between the Idaho Cleanup Project and Idaho Department of Environmental Quality. The Permit Condition III.H. portion of this report includes a description and the results of field methods associated with groundwater monitoring of the Waste Calcining Facility. Analytical results from groundwater sampling, results of inspections and maintenance of monitoring wells in the Waste Calcining Facility groundwater monitoring network, and results of inspections of the concrete cap are summarized. The Permit Condition I.U. portion of this report includes noncompliances not otherwise required to be reported under Permit Condition I.R. (advance notice of planned changes to facility activity which may result in a noncompliance) or Permit Condition I.T. (reporting of noncompliances which may endanger human health or the environment). This report also provides groundwater sampling results for wells that were installed and monitored as part of the Phase 1 post-closure period of the landfill closure components in accordance with HWMA/RCRA Landfill Closure Plan for the CPP-601 Deep

  14. A Guidance Manual: Waste Analysis at Facilities that Generate, Treat, Store, and Dispose of Hazardous Wastes

    EPA Pesticide Factsheets

    Discusses how a person can perform waste analyses and develop waste analysis plans (WAPs) in accordance with the federal hazardous waste regulations of the Resource Conservation and Recovery Act (RCRA)

  15. Federal Register Notice: State Authorization To Regulate the Hazardous Components of Radioactive Mixed Wastes Under the Resource Conservation and Recovery Act

    EPA Pesticide Factsheets

    The Environmental Protection Agency (EPA) is today publishing a notice that in order to obtain and maintain authorization to administer and enforce a hazardous waste program pursuant to Subtitle C of the Resource Conservation and Recovery Act (RCRA), States must have authority to regulate the hazardous components of 'radioactive mixed wastes.

  16. RCRA (Resource Conservation and Recovery Act of 1976) ground-water monitoring projects for Hanford facilities: Progress report, October 1--December 31, 1988: Volume 1, Text

    SciTech Connect

    Fruland, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-04-01

    This report describes the progress of 13 Hanford ground-water monitoring projects for the period October 1 to December 31, 1988. There are 16 individual hazardous waste facilities covered by the 13 ground-water monitoring projects. The Grout Treatment Facility is included in this series of quarterly reports for the first time. The 13 projects discussed in this report were designed according to applicable interim-status ground-water monitoring requirements specified in the Resource Conservation and Recovery Act of 1976 (RCRA). During this quarter, field activities primarily consisted of sampling and analyses, and water-level monitoring. The 200 Areas Low-Level Burial Grounds section includes sediment analyses in addition to ground-water monitoring results. Twelve new wells were installed during the previous quarter: two at the 216-A-29 Ditch, six at the 216-A-10 Crib, and four at the 216-B-3 Pond. Preliminary characterization data for these new wells include drillers' logs and other drilling and site characterization data, and are provided in Volume 2 or on microfiche in the back of Volume 1. 26 refs., 28 figs., 74 tabs.

  17. Annual Report RCRA Post-Closure Monitoring and Inspections for CAU 112: Area 23 Hazardous Waste Trenches, Nevada Test Site, Nevada, for the Period October 1999-October 2000

    SciTech Connect

    D. F. Emer

    2001-03-01

    This annual Neutron Soil Moisture Monitoring report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the Area 23 Hazardous Waste Trenches Resource Conservation and Recovery Act (RCRA) unit, located in Area 23 of the Nevada Test Site, Nye County, Nevada, during the October 1999-October 2000 period. Inspections of the Area 23 Hazardous Waste Trenches RCRA unit are conducted to determine and document the physical condition of the covers, facilities, and any unusual conditions that could impact the proper operation of the waste unit closure. Physical inspections of the closure were completed quarterly and indicated that the site is in good condition with no significant findings noted. An annual subsidence survey of the elevation markers was conducted in August 2000. There has been no subsidence at any of the markers since monitoring began seven years ago. The objective of the neutron logging program is to monitor the soil moisture conditions along 30 neutron access tubes and detect changes that maybe indicative of moisture movement at a point located directly beneath each trench. Precipitation for the period October 1999 through October 2000 was 10.44 centimeters (cm) (4.11 inches [in.]) (U.S. National Weather Service, 2000). The prior year annual rainfall (January 1999 through December 1999) was 10.13cm (3.99 in.). The highest 30-day cumulative rainfall occurred on March 8, 2000, with a total of 6.63 cm (2.61 in.). The heaviest daily precipitation occurred on February 23,2000, with a total of 1.70 cm (0.67 in.) falling in that 24-hour period. The recorded average annual rainfall for this site, from 1972 to January 1999, is 15.06 cm (5.93 in.). All monitored access tubes are within the compliance criteria of less than 5 percent residual volumetric moisture content at the compliance point directly beneath each respective trench. Soil conditions remain dry and stable underneath the

  18. Issuance of final revised guidance on the use and issuance of administrative orders under Section 7003 of the Resource Conservation and Recovery Act (RCRA). Final report

    SciTech Connect

    Not Available

    1984-09-26

    The directive discusses guidance on the use and issuance of Administrative Orders under Section 7003 of RCRA where there is an emiminent and substantial endangerment to public health and the environment. In order to issue a Section 7003 order, the Administrator must possess evidence that the handling, storage, treatment, transportation or disposal of any solid waste or hazardous waste may present an imminent and substantial endangerment to health or the environment (42 U.S.C. Section 6973). Additionally, Section 7003 requires that the Administrator provide notice to the affected State prior to issuance of the order. Each of these requirements is discussed in the directive.

  19. Calendar Year 2002 RCRA & CERCLA Groundwater Monitoring Well summary report

    SciTech Connect

    MARTINEZ, C.R.

    2003-01-01

    This report describes the calendar year 2002 field activities associated with installing four new groundwater monitoring wells in the 200 West Area of the Hanford Site. Two groundwater monitoring wells are located around waste management area (WMA) TX-TY to support the ''Resource Conservation and Recovery Act of 1976'' (RCRA) and two groundwater monitoring wells are located in the 200-UP-1 and 200-ZP-1 operable units (OU) to support the ''Comprehensive Environmental Response, Compensation, and Liability Act of 1980'' (CERCLA).

  20. Solid waste landfills under the Resource Conservation and Recovery Act Subtitle D

    SciTech Connect

    1995-11-01

    This document provides guidance for meeting: (1) Guidelines for the Land Disposal of Solid Waste (40 CFR 241); (2) Criteria for Classification of Solid Waste Disposal Facilities and Practices (40 CFR 257); and (3) Criteria for Municipal Solid Waste Landfills (MSWLFs) (40 CFR Part 258). Revisions to 40 CFR 257 and a new Part 258 were published in the Federal Register (56 FR 50978, 10/9/91). The Guidelines for the Land Disposal of Solid Waste set requirements and recommended procedures to ensure that the design, construction, and operation of land disposal sites is done in a manner that will protect human health and the environment. These regulations are applicable to MSWLFs and non-MSWLFs (e.g., landfills used only for the disposal of demolition debris, commercial waste, and/or industrial waste). These guidelines are not applicable to the, land disposal of hazardous, agricultural, and/or mining wastes. These criteria are to be used under the Resource Conservation and Recovery Act (RCRA) in determining which solid waste disposal facilities pose a reasonable possibility of adversely affecting human health or the environment. Facilities failing to satisfy these criteria will be considered to be open dumps which are prohibited under Section 4005 of RCRA. The Criteria for MSWLFs are applicable only to MSWLFs, including those MSWLFs in which sewage sludge is co-disposed with household waste. Based on specific criteria, certain MSWLFs are exempt from some, or all, of the regulations of 40 CFR 258. MSWLFs that fail to satisfy the criteria specified in 40 CFR 258 are also considered open dumps for the purposes of Section 4005 of RCRA. Through the use of a series of interrelated flow diagrams, this guidance document directs the reader to each design, operation, maintenance, and closure activity that must be performed for MSWLFs and non-MSWLFs.

  1. RCRA Facility investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 5, Technical Memorandums 06-09A, 06-10A, and 06-12A

    SciTech Connect

    1991-09-01

    This report provides a detailed summary of the activities carried out to sample groundwater at Waste Area Grouping (WAG) 6. The analytical results for samples collected during Phase 1, Activity 2 of the WAG 6 Resource Conservation and Recovery Act Facility Investigation (RFI) are also presented. In addition, analytical results for Phase 1, activity sampling events for which data were not previously reported are included in this TM. A summary of the groundwater sampling activities of WAG 6, to date, are given in the Introduction. The Methodology section describes the sampling procedures and analytical parameters. Six attachments are included. Attachments 1 and 2 provide analytical results for selected RFI groundwater samples and ORNL sampling event. Attachment 3 provides a summary of the contaminants detected in each well sampled for all sampling events conducted at WAG 6. Bechtel National Inc. (BNI)/IT Corporation Contract Laboratory (IT) RFI analytical methods and detection limits are given in Attachment 4. Attachment 5 provides the Oak Ridge National Laboratory (ORNL)/Analytical Chemistry Division (ACD) analytical methods and detection limits and Resource Conservation and Recovery Act (RCRA) quarterly compliance monitoring (1988--1989). Attachment 6 provides ORNL/ACD groundwater analytical methods and detection limits (for the 1990 RCRA semi-annual compliance monitoring).

  2. RCRA Permit for a Hazardous Waste Management Facility, Permit Number NEV HW0101, Annual Summary/Waste Minimization Report

    SciTech Connect

    Arnold, Patrick

    2014-02-14

    This report summarizes the EPA identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

  3. Federal Agency Hazardous Waste Compliance Docket

    EPA Pesticide Factsheets

    List of the Federal Agency Hazardous Waste Compliance Docket Facilities comprised of four lists: National Priorities List (NPL), Non-National Priorities List, Base Realignment and Closure Act (BRAC), and Resource Conservation and Recovery Act (RCRA).

  4. 77 FR 12228 - Idaho: Proposed Authorization of State Hazardous Waste Management Program; Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... AGENCY 40 CFR Part 271 Idaho: Proposed Authorization of State Hazardous Waste Management Program... Conservation and Recovery Act, as amended (RCRA). RCRA allows EPA to authorize State hazardous waste management... hazardous ] waste management program with the changes described in the authorization application. Idaho...

  5. HWMA/RCRA Closure Plan for the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System

    SciTech Connect

    K. Winterholler

    2007-01-31

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex (RTC), Idaho National Laboratory Site, to meet a further milestone established under the Voluntary Consent Order SITE-TANK-005 Action Plan for Tank System TRA-009. The tank system to be closed is identified as VCO-SITE-TANK-005 Tank System TRA-009. This closure plan presents the closure performance standards and methods for achieving those standards.

  6. Memorandum about Regional Certifications Made During the Resource Conservation and Recovery Act (RCRA) Subtitle C State Program Revision Authorization Process

    EPA Pesticide Factsheets

    During last year’s RCRA Senior Policy Managers Meeting in Kansas City, there was a discussion regarding the certifications that are made by the Regions during the State Authorization Revision process. The result of this discussion was a general agreement.

  7. RCRA corrective action -- A practical guide

    SciTech Connect

    Abbasi, R.A.

    1995-10-01

    Under the 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act, the Environmental Protection Agency requires treatment, storage and disposal facilities to investigate and remediate sites on which a release from solid waste management units has occurred. SWMUs include landfills, surface impoundments, waste piles, land treatment facilities, injection wells and container storage areas. HSWA requires corrective action for RCRA-permitted facilities and those with an interim status designation. Corrective actions can be implemented with relative ease at smaller facilities with a few SWMUs. However, larger facilities can be a regulatory nightmare, requiring a more comprehensive approach to corrective action. In such cases, facility managers must be more creative in analyzing the implementation process and ensuring that consistency among SWMUs is not jeopardized.

  8. RCRA corrective action permit requirements and modifications under Subpart F regulations. RCRA Information Brief

    SciTech Connect

    Coalgate, J.

    1993-07-01

    The ground water protection requirements under the Resource Conservation and Recovery Act (RCRA), 40 CFR 264, Subpart F, apply to surface impoundments, waste plies, land treatment units, and landfills that received hazardous waste after July 26,1982 (i.e., regulated units). There are three phases to the Subpart F ground water protection requirements: detection monitoring, compliance monitoring, and corrective action. Subpart F corrective action applies to remediation of ground water contamination resulting from releases from regulated units at a treatment, storage, or disposal facility (TSDF). The TSDF owner or operator is responsible for complying with these requirements. This Information Brief provides information on the permit requirements under Subpart F. This Information Brief is one of a series on RCRA corrective action. The first step in the permitting process is for the facility to determine the need for ground-water monitoring. The regulations found in 40 CFR 264 Sections 264.90 to 264.100 (Subpart F) apply to all regulated units. A ``regulated unit`` is defined as a surface impoundment, waste pile, landfill, or land treatment unit that received hazardous waste after July 26, 1982. Such units require a permit under RCRA. Subpart F entails a three-phased program designed to detect, evaluate, and, if necessary, respond to ground water contamination. The ground-water protection standard, including identification of maximum contaminant levels (MCLs) under the Safe Drinking Water Act (SDWA) and alternate concentration limits (ACLs), is established with the permit application. Where MCLs and ACLs cannot be established, the standard may be established at background levels.

  9. Mixed Waste Integrated Program: Demonstrating technologies to meet the requirements of the Federal Facility Compliance Act

    SciTech Connect

    Berry, J.B.

    1994-07-01

    Mixed waste is defined as ``waste contaminated with chemically hazardous [governed by the Resource Conservation and Recovery Act (RCRA)] and radioactive species [governed by US Department of energy (DOE) orders].`` The Mixed Waste Integrated Program (MWIP) is responding to the need for DOE mixed-waste treatment technologies tat meet these dual regulatory requirements. MWIP is developing emerging and innovative treatment technologies to determine process feasibility. Technology demonstrations of fixed-hearth plasma arc and vitrification systems will be used to determine whether these processes are superior to existing technologies in reducing risk, minimizing life-cycle cost, and improving process performance. MWIP also provides a forum for stakeholder and customer involvement in the technology development process.

  10. Resource Conservation and Recovery Act, Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 1, Revision 3

    SciTech Connect

    Not Available

    1993-03-01

    This volume includes the following chapters: Waste Isolation Pilot Plant RCRA A permit application; facility description; waste analysis plan; groundwater monitoring; procedures to prevent hazards; RCRA contingency plan; personnel training; corrective action for solid waste management units; and other Federal laws.

  11. Documents Related to the Decision Not to List Fourteen Solvents as Hazardous Waste

    EPA Pesticide Factsheets

    Links to federal register notices and fact sheets about the decision to not list wastes generated from the use of 14 solvents as hazardous wastes under the Resource Conservation and Recovery Act (RCRA).

  12. Ground Water Monitoring Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    EPA Pesticide Factsheets

    The groundwater monitoring requirements for hazardous waste treatment, storage and disposal facilities (TSDFs) are just one aspect of the Resource Conservation and Recovery Act (RCRA) hazardous waste management strategy for protecting human health and the

  13. Online Hazardous Waste Cleanup Technical Resources

    EPA Pesticide Factsheets

    This issue paper is intended to give the reader examples of some online technical resources that can assist with hazardous waste cleanups in the Superfund, Resource Conservation and Recovery Act (RCRA), and Brownfields programs.

  14. RCRA and operational monitoring 1994 fiscal year work plan, WBS 1.5.3

    SciTech Connect

    Not Available

    1993-12-01

    RCRA & Operational Monitoring (ROM) Program Office manages the direct funded Resource Conservation Recovery Act (RCRA) and Operational Monitoring under Work Breakdown Structure (WBS) 1.5.3. The ROM Program Office is a Branch of liquid Waste Disposal, a part of Restoration and Remediation of Westinghouse Hanford Company (WHC). The Fiscal Year Work Plan (FYWP) takes it direction from the Multi-Year Program Plan (MYPP). The FYWP provides the near term, enhanced details for the Program Office to use as baseline Cost, Scope and Schedule. Changs Control administered during the fiscal year is against the baseline provided by the FYWP.

  15. Liners and Leak Detection Systems for Hazardous Waste Land Disposal Units - Federal Register Notice, January 29, 1992

    EPA Pesticide Factsheets

    The EPA is amending its current regulations under the Resource Conservation and Recovery Act (RCRA) concerning liner and leachate collection and removal systems for hazardous waste surface impoundments, landfills, and waste piles.

  16. 78 FR 77493 - Notice of Lodging of Proposed Consent Decree Under the Resource Conservation and Recovery Act...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... of Lodging of Proposed Consent Decree Under the Resource Conservation and Recovery Act (``RCRA'') On... disposal of hazardous wastes in violation of the Resource Conservation and Recovery Act (``RCRA''), which... the Assistant Attorney General, Environment and Natural Resources Division and should refer to...

  17. Successful completion of a RCRA closure for the Fernald Environmental Management Project

    SciTech Connect

    Lippitt, J.M.; Kolthoff, K.

    1995-02-01

    This paper discusses the successful completion of a RCRA (Resource Conservation and Recovery Act) closure of a HF (hydrofluoric acid) tank car at FEMP, which is on the national priorities list of hazardous waste sites and is undergoing CERCLA remediation. The HF tank car closure was conducted by FERMCO. Through a combination of sound planning and team work, the HF tank car was closed safely and ahead of schedule. During > 22,000 hr field work required for construction modifications and neutralization of 9,600 gallons of HF and decontamination rinseates, there were no OSHA recordable incidents. The system design avoided additional costs by maximizing use of existing equipment and facilities. This successful closure of the HF tank car demonstrates FEMP`s commitment to reducing risks and cleaning up the facility in a manner consistent with objectives of RCRA regulations and the Ohio EPA hazardous waste rules. This in turn facilitated ongoing negotiations with Ohio EPA to integrate RCRA closure and the ongoing CERCLA remediation activities. This paper addresses why the unit was clean closed under an approved RCRA Closure Plan. Integration of EPA regulations for RCRA and CERCLA programs and the DOE-Orders impacting design, construction and operation of an acid neutralization system is also reviewed. The paper concludes with a discussion of lessons learned in the process in preparing the closure plant and through final project close out.

  18. Characterization of Vadose Zone Sediment: RCRA Borehole 299-E33-338 Located Near the B-BX-BY Waste Management Area

    SciTech Connect

    Lindenmeier, Clark W.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Gee, Glendon W.; Schaef, Herbert T.; Lanigan, David C.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Brown, Christopher F.; Valenta, Michelle M.; Vickerman, Tanya S.; Royack, Lisa J.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.8. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in June 2003. The overall goals of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., are: 1) to define risks from past and future single-shell tank farm activities, 2) to identify and evaluate the efficacy of interim measures, and 3) to aid via collection of geotechnical information and data, future decisions that must be made by the U.S. Department of Energy (DOE) regarding the near-term operations, future waste retrieval, and final closure activities for the single-shell tank waste management areas. For a more complete discussion of the goals of the Tank Farm Vadose Zone Project, see the overall work plan, Phase 1 RCRA Facility Investigation/Corrective Measures Study Work Plan for the Single-Shell Tank Waste Management Areas (DOE 1999). Specific details on the rationale for activities performed at the B-BX-BY tank farm waste management area are found in CH2M HILL (2000).

  19. Federal facilities compliance act waste management

    SciTech Connect

    Bowers, J; Gates-Anderson, D; Hollister, R; Painter, S

    1999-07-06

    Site Treatment Plans (STPs) developed through the Federal Facilities Compliance Act pose many technical and administrative challenges. Legacy wastes managed under these plans require Land Disposal Restriction (LDR) compliance through treatment and ultimate disposal. Although capacity has been defined for most of the Department of Energy wastes, many waste streams require further characterization and many need additional treatment and handling beyond LDR criteria to be able to dispose of the waste. At Lawrence Livermore National Laboratory (LLNL), the Hazardous Waste Management Division has developed a comprehensive Legacy Waste Program. The program directs work to manage low level and mixed wastes to ensure compliance with nuclear facility rules and its STP. This paper provides a survey of work conducted on these wastes at LLNL. They include commercial waste treatment and disposal, diverse forms of characterization, inventory maintenance and reporting, on-site treatment, and treatability studies. These activities are conducted in an integrated fashion to meet schedules defined in the STP. The processes managing wastes are dynamic due to required integration of administrative, regulatory, and technical concerns spanning the gamut to insure safe proper disposal.

  20. EPA Facility Registry Service (FRS): RCRA

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of hazardous waste facilities that link to the Resource Conservation and Recovery Act Information System (RCRAInfo). EPA's comprehensive information system in support of the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984, RCRAInfo tracks many types of information about generators, transporters, treaters, storers, and disposers of hazardous waste. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to RCRAInfo hazardous waste facilities once the RCRAInfo data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs

  1. RCRA Part A permit characterization plan for the U-2bu subsidence crater. Revision 1

    SciTech Connect

    1998-04-01

    This plan presents the characterization strategy for Corrective Action Unit (CAU) 109, U-2bu Subsidence Crater (referred to as U-2bu) in Area 2 at the Nevada Test Site (NTS). The objective of the planned activities is to obtain sufficient characterization data for the crater soils and observed wastes under the conditions of the current Resource Conservation and Recovery Act (RCRA) Part A permit. The scope of the characterization plan includes collecting surface and subsurface soil samples with hand augers and for the purpose of site characterization. The sampling strategy is to characterize the study area soils and look for RCRA constituents. Observable waste soils and surrounding crater soils will be analyzed and evaluated according to RCRA closure criteria. Because of the status of the crater a RCRA Part A permit site, acquired radionuclide analyses will only be evaluated in regards to the health and safety of site workers and the disposition of wastes generated during site characterization. The U-2bu Subsidence Crater was created in 1971 by a Lawrence Livermore National Laboratory underground nuclear test, event name Miniata, and was used as a land-disposal unit for radioactive and hazardous waste from 1973 to 1988.

  2. Engineering Forum Issue Paper: Online Hazardous Waste Cleanup Technical Resources

    EPA Pesticide Factsheets

    This issue paper is intended to give the reader examples of some online technical resources that can assist with hazardous waste cleanups in the Superfund, Resource Conservation and Recovery Act (RCRA), and Brownfields programs.

  3. Hazardous Waste Management System - Definition of Hazardous Waste - Mixture and Derived- From Rules - Federal Register Notice, October 30, 1992

    EPA Pesticide Factsheets

    This action responds to public comment on two proposals (57 FR 7636, March 3, 1992, and 57 FR 21450, May 20, 1992) to modify EPA's hazardous waste identification rules under the Resource Conservation and Recovery Act (RCRA).

  4. Final Regulatory Determination for Special Wastes From Mineral Processing (Mining Waste Exclusion) - Federal Register Notice, June 13, 1991

    EPA Pesticide Factsheets

    This action presents the Agency's final regulatory determination required by section 3001(b)(3)(C) of the Resource Conservation and Recovery Act (RCRA) for 20 special wastes from the processing of ores and minerals.

  5. 75 FR 41121 - Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... AGENCY 40 CFR Parts 257, 261, 264, 265, 268, 271 and 302 RIN 2050-AE81 Hazardous and Solid Waste...), 3001, 3004, 3005, and 4004 of the Solid Waste Disposal Act of 1970, as amended by the Resource Conservation and Recovery Act of 1976 (RCRA), as amended by the Hazardous and Solid Waste Amendments of...

  6. HWMA/RCRA Closure Plan for the CPP-602 Laboratory Lines

    SciTech Connect

    Idaho Cleanup Project

    2009-09-30

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure (HWMA/RCRA) Plan for the CPP-602 laboratory lines was developed to meet the tank system closure requirements of the Idaho Administrative Procedures Act 58.01.05.008 and 40 Code of Federal Regulations 264, Subpart G. CPP-602 is located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The lines in CPP-602 were part of a liquid hazardous waste collection system included in the Idaho Nuclear Technology and Engineering Center Liquid Waste Management System Permit. The laboratory lines discharged to the Deep Tanks System in CPP-601 that is currently being closed under a separate closure plan. This closure plan presents the closure performance standards and the methods for achieving those standards. The closure approach for the CPP-602 laboratory lines is to remove the lines, components, and contaminants to the extent practicable. Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Site CPP-117 includes the CPP-602 waste trench and the area beneath the basement floor where waste lines are direct-buried. Upon completion of rinsing or mopping to remove contamination to the extent practicable from the waste trench and rinsing the intact buried lines (i.e., stainless steel sections), these areas will be managed as part of CERCLA Site CPP-117 and will not be subject to further HWMA/RCRA closure activities. The CPP-602 building is being decontaminated and decommissioned under CERCLA as a non-time critical removal action in accordance with the Federal Facility Agreement/Consent Order. As such, all waste generated by this CERCLA action, including closure-generated waste, will be managed in coordination with that CERCLA action in substantive compliance with HWMA/RCRA regulations. All waste will be subject to a hazardous waste determination for the purpose of supporting appropriate management and will be managed in accordance

  7. HWMA/RCRA Closure Plan for the TRA/MTR Warm Waste System Voluntary Consent Order SITE-TANK-005 Tank System TRA-007

    SciTech Connect

    K. Winterholler

    2007-01-30

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure Plan was developed for portions of the Test Reactor Area/Materials Test Reactor Warm Waste System located in the Materials Test Reactor Building (TRA-603) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan SITE-TANK-005 for the Tank System TRA-007. The reactor drain tank and canal sump to be closed are included in the Test Reactor Area/Materials Test Reactor Warm Waste System. The reactor drain tank and the canal sump will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods for achieving those standards.

  8. Performance test results of noninvasive characterization of Resource Conservation and Recovery Act surrogate waste by prompt gamma neutron activation analysis

    SciTech Connect

    Gehrke, R.J.; Streier, G.G.

    1997-03-01

    During FY-96, a performance test was carried out with funding from the Mixed Waste Focus Area (MWFA) of the Department of Energy (DOE) to determine the noninvasive elemental assay capabilities of commercial companies for Resource Conservation and Recovery Act (RCRA) metals present in 8-gal drums containing surrogate waste. Commercial companies were required to be experienced in the use of prompt gamma neutron activation analysis (PGNAA) techniques and to have a prototype assay system with which to conduct the test assays. Potential participants were identified through responses to a call for proposals advertised in the Commerce Business Daily and through personal contacts. Six companies were originally identified. Two of these six were willing and able to participate in the performance test, as described in the test plan, with some subsidizing from the DOE MWFA. The tests were conducted with surrogate sludge waste because (1) a large volume of this type of waste awaits final disposition and (2) sludge tends to be somewhat homogeneous. The surrogate concentrations of the above RCRA metals ranged from {approximately} 300 ppm to {approximately} 20,000 ppm. The lower limit was chosen as an estimate of the expected sensitivity of detection required by noninvasive, pretreatment elemental assay systems to be of value for operational and compliance purposes and to still be achievable with state-of-the-art methods of analysis. The upper limit of {approximately} 20,000 ppm was chosen because it is the opinion of the author that assay above this concentration level is within current state-of-the-art methods for most RCRA constituents. This report is organized into three parts: Part 1, Test Plan to Evaluate the Technical Status of Noninvasive Elemental Assay Techniques for Hazardous Waste; Part 2, Participants` Results; and Part 3, Evaluation of and Comments on Participants` Results.

  9. The East Tennessee Technology Park Progress Report for the Tennessee Hazardous Waste Reduction Act for Calendar Year 1999

    SciTech Connect

    Bechtel Jacobs Company LLC

    2000-03-01

    This report is prepared for the East Tennessee Technology Park (formerly the Oak Ridge K-25 Site) (ETTP) in compliance with the ''Tennessee Hazardous Waste Reduction Act of 1990'' (THWRA) (TDEC 1990), Tennessee Code Annotated 68-212-306. Annually, THWRA requires a review of the site waste reduction plan, completion of summary waste reduction information as part of the site's annual hazardous waste reporting, and completion of an annual progress report analyzing and quantifying progress toward THWRA-required waste stream-specific reduction goals. This THWRA-required progress report provides information about ETTP's hazardous waste streams regulated under THWRA and waste reduction progress made in calendar year (CY) 1999. This progress report also documents the annual review of the site plan, ''Oak Ridge Operations Environmental Management and Enrichment Facilities (EMEF) Pollution Prevention Program Plan'', BJC/OR-306/R1 (Bechtel Jacobs Company 199a). In 1996, ETTP established new goal year ratios that extended the goal year to CY 1999 and targeted 50 percent waste stream-specific reduction goals. In CY 1999, these CY 1999 goals were extended to CY 2000 for all waste streams that generated waste in 1999. Of the 70 ETTP RCRA waste streams tracked in this report from base years as early as CY 1991, 51 waste streams met or exceeded their reduction goal based on the CY 1999 data.

  10. The East Tennessee Technology Park Progress Report for the Tennessee Hazardous Waste Reduction Act for Calendar Year 2000

    SciTech Connect

    Bechtel Jacobs Company LLC

    2001-03-01

    This report is prepared for the East Tennessee Technology Park (formerly the Oak Ridge K-25 Site) (ETTP) in compliance with the ''Tennessee Hazardous Waste Reduction Act of 1990'' (THWRA) (TDEC 1990), Tennessee Code Annotated 68-212-306. Annually, THWRA requires a review of the site waste reduction plan, completion of summary waste reduction information as part of the site's annual hazardous waste reporting, and completion of an annual progress report analyzing and quantifying progress toward THWRA-required waste stream-specific reduction goals. This THWRA-required progress report provides information about ETTP's hazardous waste streams regulated under THWRA and waste reduction progress made in calendar year (CY) 2000. This progress report also documents the annual review of the site plan, ''Oak Ridge Operations Environmental Management and Enrichment Facilities (EMEF) Pollution Prevention Program Plan'', BJC/OR-306/R1 (Bechtel Jacobs Company 2000). In 1996, ETTP established new goal year ratios that extended the goal year to CY 1999 and targeted 50 percent waste stream-specific reduction goals. In CY 2000, these goals were extended to CY 2001 for all waste streams that generated waste in 2000. Of the 70 ETTP RCRA waste streams tracked in this report from base years as early as CY 1991, 50 waste streams met or exceeded their reduction goal based on the CY 2000 data.

  11. Quarterly RCRA Groundwater Monitoring Data for the Period July through September 2006

    SciTech Connect

    Hartman, Mary J.

    2007-02-01

    This report provides information about RCRA groundwater monitoring for the period July through September 2006. Eighteen Resource Conservation and Recovery Act (RCRA) sites were sampled during the reporting quarter.

  12. The solid waste dilemma

    USGS Publications Warehouse

    Amey, E.B.; Russell, J.A.; Hurdelbrink, R.J.

    1996-01-01

    In 1976, the U.S. Congress enacted the Resource Conservation and Recovery Act (RCRA) to further address the problem of increasing industrial and municipal waste. The main objectives of RCRA were to responsibly manage hazardous and solid waste and to procure materials made from recovered wastes. To fulfill these objectives, four main programs of waste management were developed. These programs were defined under Subtitle C, the Hazardous Waste Program; Subtitle D, the Solid Waste Program; Subtitle I, the Underground Storage Tank Program; and Subtitle J, the Medical Waste Program. Subtitle D illustrates the solid waste dilemma occurring in the United States. Under this program, states are encouraged to develop and implement their own waste management plans. These plans include the promotion of recycling solid wastes and the closing and upgrading of all environmentally unsound dumps. ?? 1996 International Association for Mathematical Geology.

  13. Identification and Listing of Hazardous Waste - CERCLA Hazardous Substance Designation - Reportable Quantity Adjustment - Coke By-Products Wastes - Federal Register Notice, August 18, 1992

    EPA Pesticide Factsheets

    EPA is amending its regulations under the Resource Conservation and Recovery Act (RCRA) by listing as hazardous seven wastes generated during the production, recovery, and refining of coke by-products produced from coal.

  14. Management of hazardous waste containers and container storage areas under the Resource Conservation and Recovery Act

    SciTech Connect

    Not Available

    1993-08-01

    DOE`s Office of Environmental Guidance, RCRA/CERCLA Division, has prepared this guidance document to assist waste management personnel in complying with the numerous and complex regulatory requirements associated with RCRA hazardous waste and radioactive mixed waste containers and container management areas. This document is designed using a systematic graphic approach that features detailed, step-by-step guidance and extensive references to additional relevant guidance materials. Diagrams, flowcharts, reference, and overview graphics accompany the narrative descriptions to illustrate and highlight the topics being discussed. Step-by-step narrative is accompanied by flowchart graphics in an easy-to-follow, ``roadmap`` format.

  15. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site

    SciTech Connect

    NSTec Environmental Protection and Technical Services

    2009-09-30

    This permit application provides facility information on the design, processes, and security features associated with the proposed Mixed Waste Disposal Unit. The unit will receive and dispose of onsite and offsite containerized low-level mixed waste (LLMW) that has an approved U.S. Department of Energy nexus.

  16. 75 FR 12989 - Hazardous Waste Technical Corrections and Clarifications Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ...The Environmental Protection Agency (EPA or the Agency) is taking Direct Final action on a number of technical changes that correct or clarify several parts of the Resource Conservation and Recovery Act (RCRA) hazardous waste regulations that relate to hazardous waste identification, manifesting, the hazardous waste generator requirements, standards for owners and operators of hazardous waste......

  17. Hazardous Waste Management - Liquids in Landfills - Federal Register Notice, November 18, 1992

    EPA Pesticide Factsheets

    Under authority of the Resource Conservation and Recovery Act (RCRA) as amended by the Hazardous and Solid Waste Amendments of 1984 (HSWA), EPA is promulgating this final rule regarding the landfill disposal of containerized liquids mixed with sorbents.

  18. Hazardous Waste Reduction Naval Air Station Oceana

    DTIC Science & Technology

    1991-06-01

    hazardous waste. 1. Federal Legislation Resources Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of...Material Control and Management HSWA Hazardous and Solid Waste Amendments MATWING Medium Attack Wing MEK Methylethyl Ketone MI Maintenance Instruction

  19. Evaluating the use of captive insurance as a financial assurance mechanism under RCRA

    SciTech Connect

    Finney, J.R.; Chan, E.K.; Clark, E.M.; Evans, M.L.; Johnson, M.F.

    1994-12-31

    This paper evaluates the use of insurance coverage underwritten by captive insurance companies to provide financial assurance for closure and post-closure care for facilities regulated under the Resource Conservation and Recovery Act of 1976 (RCRA). Regulations under RCRA subtitle C and subtitle D require that owners and operators of both hazardous waste treatment, storage, and disposal facilities (TSDF) and municipal solid waste landfills (MSWLF) demonstrate financial assurance for closure and post-closure care of such facilities. Those requirements help ensure that funds are available to cover the costs of closure and post-closure care, should the owner or operator be unable or unwilling to pay those costs. This paper provides a detailed analysis of how owners and operators use captive insurance companies to demonstrate financial assurance for closure and post-closure care under RCRA. The analysis explores, from a regulator`s point of view, the potential limitations of accepting captive insurance coverage as financial assurance for obligations for closure and post-closure care. The paper also provides: (1) an overview of captive insurance arrangements; (2) specific requirements for insurance for closure and post-closure care under RCRA; (3) state insurance regulations pertaining to the operations of captive insurance companies; and (4) recommendations that EPA and state agencies might consider to improve the current regulations and to ensure that funds will be available to pay for future environmental obligations.

  20. Resource Conservation and Recovery Act Organic Air Emission Standards for Treatment, Storage and Disposal Facilities and Generators

    EPA Pesticide Factsheets

    This document describes the requirements of the Resource Conservation and Recovery Act (RCRA) organic air emission standards contained in 40 CFR parts 264/265, subpart CC for hazardous waste treatment

  1. The Integration of the 241-Z Building Decontamination and Decommissioning Under Cercla with RCRA Closure at the Plutonium Finishing Plant

    SciTech Connect

    Mattlin, E.; Charboneau, S.; Johnston, G.; Hopkins, A.; Bloom, R.; Skeels, B.; Klos, D.B.

    2007-07-01

    The 241-Z treatment and storage tanks, a hazardous waste Treatment, Storage and Disposal (TSD) unit permitted pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA) and Washington State Hazardous Waste Management Act, RCW 70.105, , have been deactivated and are being actively decommissioned under the provisions of the Hanford Federal Facility Agreement and Consent Order (HFFACO), RCRA and Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) 42 U.S.C. 9601 et seq. The 241-Z TSD unit managed non-listed radioactive contaminated waste water, containing trace RCRA characteristic constituents. The 241-Z TSD unit consists of below grade tanks (D-4, D-5, D-7, D-8, and an overflow tank) located in a concrete containment vault, sample glovebox GB-2-241-ZA, and associated ancillary piping and equipment. The tank system is located beneath the 241-Z building. The 241-Z building is not a portion of the TSD unit. The sample glovebox is housed in the above-grade building. Waste managed at the TSD unit was received via underground piping from Plutonium Finishing Plant (PFP) sources. Tank D-6, located in the D-6 vault cell, is a past-practice tank that was taken out of service in 1972 and has never operated as a portion of the RCRA TSD unit. CERCLA actions will address Tank D-6, its containment vault cell, and soil beneath the cell that was potentially contaminated during past-practice operations and any other potential past-practice contamination identified during 241-Z closure, while outside the scope of the Hanford Facility Dangerous Waste Closure Plan, 241-Z Treatment and Storage Tanks. Under the RCRA closure plan, the 241-Z TSD unit is anticipated to undergo clean closure to the performance standards of the State of Washington with respect to dangerous waste contamination from RCRA operations. The TSD unit will be clean closed if physical closure activities identified in the plan achieve clean closure standards for all 241-Z

  2. RCRA Assessment Plan for Single-Shell Tank Waste Management Area S-SX at the Hanford Site

    SciTech Connect

    Chou, C.J.; Johnson, V.G.

    1999-10-06

    A groundwater quality assessment plan was prepared for waste management area S-SX at the Hanford Site. Groundwater monitoring is conducted at this facility in accordance with Title 40, Code of Federal Regulation (CFR) Part 265, Subpart F [and by reference of Washington Administrative Code (WAC) 173-303-400(3)]. The facility was placed in assessment groundwater monitoring program status after elevated waste constituents and indicator parameter measurements (i.e., chromium, technetium-99 and specific conductance) in downgradient monitoring wells were observed and confirmed. A first determination, as allowed under 40 CFR 265.93(d), provides the owner/operator of a facility an opportunity to demonstrate that the regulated unit is not the source of groundwater contamination. Based on results of the first determination it was concluded that multiple source locations in the waste management area could account for observed spatial and temporal groundwater contamination patterns. Consequently, a continued investigation is required. This plan, developed using the data quality objectives process, is intended to comply with the continued investigation requirement. Accordingly, the primary purpose of the present plan is to determine the rate and extent of dangerous waste (hexavalent chromium and nitrate) and radioactive constituents (e.g., technetium-99) in groundwater and to determine their concentrations in groundwater beneath waste management area S-SX. Comments and concerns expressed by the Washington State Department of Ecology on the initial waste management area S-SX assessment report were addressed in the descriptive narrative of this plan as well as in the planned activities. Comment disposition is documented in a separate addendum to this plan.

  3. RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY at the Hanford Site

    SciTech Connect

    Hodges, Floyd N.; Chou, Charissa J.

    2001-02-23

    A groundwater quality assessment plan was prepared to investigate the rate and extent of aquifer contamination beneath Waste Management Area TX-TY on the Hanford Site in Washington State. This plan is an update of a draft plan issued in February 1999, which guided work performed in fiscal year 2000.

  4. RCRA Assessment Plan for Single-Shell Tank Waste Management Area B-BX-BY at the Hanford Site

    SciTech Connect

    Narbutovskih, Susan M.

    2006-09-29

    This document was prepared as a groundwater quality assessment plan revision for the single-shell tank systems in Waste Management Area B-BX-BY at the Hanford Site. Groundwater monitoring is conducted at this facility in accordance with 40 CFR Part 265, Subpart F. In FY 1996, the groundwater monitoring program was changed from detection-level indicator evaluation to a groundwater quality assessment program when elevated specific conductance in downgradient monitoring well 299 E33-32 was confirmed by verification sampling. During the course of the ensuing investigation, elevated technetium-99 and nitrate were observed above the drinking water standard at well 299-E33-41, a well located between 241-B and 241-BX Tank Farms. Earlier observations of the groundwater contamination and tank farm leak occurrences combined with a qualitative analysis of possible solutions, led to the conclusion that waste from the waste management area had entered the groundwater and were observed in this well. Based on 40 CFR 265.93 [d] paragraph (7), the owner-operator must continue to make the minimum required determinations of contaminant level and rate/extent of migrations on a quarterly basis until final facility closure. These continued determinations are required because the groundwater quality assessment was implemented prior to final closure of the facility.

  5. The Nuclear Waste Policy Act, as amended with appropriations acts appended

    SciTech Connect

    Not Available

    1994-03-01

    The Nuclear Waste Policy Act of 1982 provides for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel, to establish a program of research, development and demonstration regarding the disposal of high-level radioactive waste and spent nuclear fuel. Titles 1 and 2 cover these subjects. Also included in this Act are: Title 3: Other provisions relating to radioactive waste; Title 4: Nuclear waste negotiation; Title 5: Nuclear waste technical review board; and Title 6: High-level radioactive waste. An appendix contains excerpts from appropriations acts from fiscal year 1984--1994.

  6. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report - Calendar Year 2014

    SciTech Connect

    Arnold, Patrick

    2015-02-17

    This report summarizes the EPA identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

  7. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2011

    SciTech Connect

    NSTec Environmental Restoration

    2012-02-16

    This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream; a description and quantity of each waste stream in tons and cubic feet received at the facility; the method of treatment, storage, and/or disposal for each waste stream; a description of the waste minimization efforts undertaken; a description of the changes in volume and toxicity of waste actually received; any unusual occurrences; and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

  8. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2012, Nevada National Security Site, Nevada

    SciTech Connect

    Arnold, P. M.

    2013-02-21

    This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101, issued 10/17/10.

  9. RCRA groundwater monitoring data. Quarterly report, April 1, 1995--June 30, 1995

    SciTech Connect

    1995-10-01

    Nineteen Resource Conservation and Recovery Act of 1976 (RCRA) groundwater monitoring projects are conducted at the Hanford Site. These projects include treatment, storage, and disposal facilities for both solid and liquid waste. The groundwater monitoring programs described in this report comply with the interim-status federal (Title 40 Code of Federal Regulation [CFR] Part 265) and state (Washington Administrative Code [WAC] 173-303-400) regulations. The RCRA projects are monitored under one of three programs: background monitoring, indicator parameter evaluation, or groundwater quality assessment. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects on the Hanford Site. Performing project management, preparing groundwater monitoring plans, well network design and installation, specifying groundwater data needs, performing quality control (QC) oversight, data management, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between April and June 1995, which are the cutoff dates for this reporting period. This report may contain not only data from the April through June quarter, but also data from earlier sampling events that were not previously reported.

  10. Instructions and Form for Hazardous Waste Generators, Transporters, and Treatment, Storage and Disposal Facilities to Obtain an EPA Identification Number (EPA Form 8700-12)

    EPA Pesticide Factsheets

    This booklet is designed to help you determine if you are subject to requirements under the Resource Conservation and Recovery Act (RCRA) for notifying the U.S. Environmental Protection Agency (EPA) of your regulated waste activities.

  11. 76 FR 36480 - Hazardous Waste Manifest Printing Specifications Correction Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... AGENCY 40 CFR Part 262 Hazardous Waste Manifest Printing Specifications Correction Rule AGENCY... proposing a minor change to the Resource Conservation and Recovery Act (RCRA) hazardous waste manifest regulations that affects those entities that print the hazardous waste manifest form in accordance with...

  12. Hanford Facility RCRA permit handbook

    SciTech Connect

    1996-03-01

    Purpose of this Hanford Facility (HF) RCRA Permit Handbook is to provide, in one document, information to be used for clarification of permit conditions and guidance for implementing the HF RCRA Permit.

  13. RCRA NPL listing policy

    SciTech Connect

    Not Available

    1986-09-10

    The directive discusses that on 6/10/86, EPA announced the first phase of a new policy for listing RCRA Subtitle C facilities on the NPL (51 FR 21057-21062 and 21109-21112). The document presents interim guidance for implementation of the new policy and solicits information from the Regions to assist in the final policy development. Specifically this includes the final and proposed RCRA/NPL listing policy; provides a questionnaire for an initial screening of potential NPL sites with respect to their RCRA status; solicits suggestions about effective policy development and implementation from the Regional Offices; and identifies an interim course of action until more definitive guidance is available.

  14. Radium/Barium Waste Project

    SciTech Connect

    McDowell, Allen K.; Ellefson, Mark D.; McDonald, Kent M.

    2015-06-25

    The treatment, shipping, and disposal of a highly radioactive radium/barium waste stream have presented a complex set of challenges requiring several years of effort. The project illustrates the difficulty and high cost of managing even small quantities of highly radioactive Resource Conservation and Recovery Act (RCRA)-regulated waste. Pacific Northwest National Laboratory (PNNL) research activities produced a Type B quantity of radium chloride low-level mixed waste (LLMW) in a number of small vials in a facility hot cell. The resulting waste management project involved a mock-up RCRA stabilization treatment, a failed in-cell treatment, a second, alternative RCRA treatment approach, coordinated regulatory variances and authorizations, alternative transportation authorizations, additional disposal facility approvals, and a final radiological stabilization process.

  15. Integration of the CERCLA and RCRA processes at an industrial facility using Texas risk reduction standards

    SciTech Connect

    Crossley, D.B.; Rogers, W.J.

    1995-12-31

    Industrial facilities in Texas that use, store and/or treat hazardous materials operate pursuant to the conditions of a Resource Conservation and Recovery Act (RCRA) permit and must also ensure compliance with provisions of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) if nominated to the National Priorities List of contaminated sites. While the CERCLA and RCRA programs have differing approaches, their objective is similar, i.e., mitigation of releases or threatened releases of toxic substances that may adversely impact human health or the environment. Recognizing the similarities in regulatory intent, a regulated facility may use Texas-promulgated risk reduction standards to establish risk-based contaminant specific cleanup levels for corrective actions pursuant to RCRA authority. Simultaneously, the facility will be evaluated for risk to human and ecological endpoints pursuant to CERCLA. A Baseline Risk Assessment (BRA) must be conducted to establish site-wide objectives that will be applied to individual solid waste management units ensuring compliance with all substantive requirements of CERCLA. The authors conclude that the parallel, integrated approach to these regulatory requirements will accelerate characterization/remediation of potential waste disposal sites, thereby reducing Environmental Restoration program expenditures.

  16. SACM and the RCRA stabilization initiative: Similarities of principles and applicability

    SciTech Connect

    1996-01-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the corrective action provisions of the Resource Conservation and Recovery Act (RCRA) provide standards for the remediation of environmental media contaminated with hazardous substances or hazardous waste, respectively. In both cases, prior to the US Environmental Protection Agency`s (EPA) development of the two subject reform initiatives, existing formal processes specified the level of site investigation required, the process for reaching a decision on the method of remediation, public participation in the decision process, and enforcement authorities that include orders and schedules of compliance. Traditionally, implementation of these processes has resulted in a great amount of time, effort, and money being expended before actual remediation began. Following criticism from the public and the regulated community, the EPA has proposed streamlining reforms for hazardous waste site cleanup under both CERCLA and RCRA that will begin remediation sooner with lower costs. The purpose of this Information Brief is to discuss the common goals, processes, and strategies of the Superfund Accelerated Cleanup Model (SACM) and the RCRA Stabilization Initiative.

  17. Impact of the resource conservation and recovery act on energy facility siting

    SciTech Connect

    Tevepaugh, C.W.

    1982-01-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 is a multifaceted approach to the management of both solid and hazardous waste. The focus of this research is on the RCRA mandated proposed regulations for the siting of hazardous waste disposal facilities. This research is an analysis of the interactions among hazardous waste disposal facilities, energy supply technologies and land use issues. This study addresses the impact of RCRA hazardous waste regulations in a descriptive and exploratory manner. A literature and legislative review, interviews and letters of inquiry were synthesized to identify the relationship between RCRA hazardous waste regulations and the siting of selected energy supply technologies. The results of this synthesis were used to determine if and how RCRA influences national land use issues. It was found that the interaction between RCRA and the siting of hazardous waste disposal facilities required by energy supply technologies will impact national land use issues. All energy supply technologies reviewed generate hazardous waste. The siting of industrial functions such as energy supply facilities and hazardous waste disposal facilities will influence future development patterns. The micro-level impacts from the siting of hazardous waste disposal facilities will produce a ripple effect on land use with successive buffer zones developing around the facilities due to the interactive growth of the land use sectors.

  18. DWD International, LCC Agrees to Address RCRA Violations in Texas

    EPA Pesticide Factsheets

    DALLAS - (May 28, 2015) The U.S. Environmental Protection Agency recently issued a consent agreement and final order to DWD International, LLC in Houston, Texas. The company violated laws under the Resource Conservation and Recovery Act (RCRA) relat

  19. RCRA, superfund and EPCRA hotline training module. Introduction to: Other laws that interface with RCRA, updated July 1996

    SciTech Connect

    1996-07-01

    The module provides a brief overview of some of the major environmental laws that interface with RCRA: Clean Air Act (CAA); Clean Water Act (CWA); Safe Drinking Water Act (SDWA); Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA); Toxic Substances Control Act (TSCA); Pollution Prevention Act (PPA); and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund). It also covers regulations administered by other agencies that interface with RCRA, such as health and safety requirements under the occupational health and safety administration, and the hazardous materials transportation requirements administered by the Department of Transportation.

  20. Quarterly report of RCRA groundwater monitoring data for period January 1--March 31, 1995

    SciTech Connect

    1995-07-01

    This quarterly report contains data received between January and March 1995, which are the cutoff dates for this reporting period. This report may contain not only data from the January through March quarter, but also data from earlier sampling events that were not previously reported. Nineteen Resource Conservation and Recovery Act of 1976 (RCRA) groundwater monitoring projects are conducted at the Hanford Site. These projects include treatment, storage, and disposal facilities for both solid and liquid waste. The groundwater monitoring programs described in this report comply with the interim-status federal (Title 40 Code of Federal Regulation [CFR] Part 265) and state (Washington Administrative Code [WAC] 173-303-400) regulations. The RCRA projects are monitored under one of three programs: background monitoring, indicator parameter evaluation, or groundwater quality assessment.

  1. Quarterly report of RCRA groundwater monitoring data for period July 1, 1991 through September 30, 1991

    SciTech Connect

    1991-12-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and 40 CFR 265, Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities, as amended (EPA 1989). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303 (Ecology 1991). This submittal provides data obtained from groundwater monitoring activities for July 1, 1991 through September 30, 1991. This report contains groundwater monitoring data from Hanford Site groundwater projects. A RCRA network is currently being established at the 100-D Pond. Groundwater chemistry analyses have not yet been performed.

  2. Groundwater monitoring plan for the Hanford Site 216-B-3 pond RCRA facility

    SciTech Connect

    Barnett, D.B.; Chou, C.J.

    1998-06-01

    The 216-B-3 pond system was a series of ponds for disposal of liquid effluent from past Hanford production facilities. In operation since 1945, the B Pond system has been a RCRA facility since 1986, with Resource Conservation and Recovery Act (RCRA) interim-status groundwater monitoring in place since 1988. In 1994, discharges were diverted from the main pond, where the greatest potential for contamination was thought to reside, to the 3C expansion pond. In 1997, all discharges to the pond system were discontinued. In 1990, the B Pond system was elevated from detection groundwater monitoring to an assessment-level status because total organic halogens and total organic carbon were found to exceed critical means in two wells. Subsequent groundwater quality assessment failed to find any specific hazardous waste contaminant that could have accounted for the exceedances, which were largely isolated in occurrence. Thus, it was recommended that the facility be returned to detection-level monitoring.

  3. The Nuclear Waste Policy Act, as amended, with appropriations acts appended. Revision 1

    SciTech Connect

    1995-02-01

    This act provides for the development of repositories for the disposal of high-level radioactive wastes, low-level radioactive wastes, and spent nuclear fuels. In addition, it establishes research and development programs, as well as demonstration programs regarding the disposal of these wastes. This Act consists of the Act of Jan. 7, 1983 (Public Law 97-425; 96 Stat. 2201), as amended by Public Law 100-203 and Public Law 102-486.

  4. Dual regulation of Department of Energy mixed waste

    SciTech Connect

    Dever, G.L.

    1989-01-01

    The purposes of this paper are to discuss the US Department of Energy's (DOE's) experience with dual regulation under the Resource Conservation and Recovery Act (RCRA), as amended, and the Atomic Energy Act (AEA), as amended, of mixed waste and to describe one mechanism for the resolution of inconsistencies that may arise. To date, the department has not identified any unresolvable inconsistency between the AEA and RCRA, although technical differences are being discussed among DOE, EPA, and state regulators at several locations. As long as the flexibilities of RCRA are explored with careful consideration of the radiological hazard of each mixed-waste stream, the potential for inconsistencies between AEA and RCRA that DOE must resolve is expected to remain small.

  5. EPA Facility Registry Service (FRS): RCRA_ACTIVE

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of active hazardous waste facilities that link to the Resource Conservation and Recovery Act Information System (RCRAInfo). EPA's comprehensive information system in support of the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984, RCRAInfo tracks many types of information about generators, transporters, treaters, storers, and disposers of hazardous waste. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to active RCRAInfo hazardous waste facilities once the RCRAInfo data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs

  6. EPA Facility Registry Service (FRS): RCRA_INACTIVE

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of hazardous waste facilities that link to the Resource Conservation and Recovery Act Information System (RCRAInfo). EPA's comprehensive information system in support of the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984, RCRAInfo tracks many types of information about generators, transporters, treaters, storers, and disposers of hazardous waste. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to inactive RCRAInfo hazardous waste facilities once the RCRAInfo data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs.

  7. EPA Facility Registry Service (FRS): RCRA_TRANS

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the Resource Conservation and Recovery Act Information System (RCRAInfo) and are transporters of hazardous waste. RCRAInfo is EPA's comprehensive information system in support of the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. It tracks many types of information about generators, transporters, treaters, storers, and disposers of hazardous waste. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to RCRAInfo hazardous waste transporters once the RCRAInfo data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs.

  8. Self-assembled monolayers on mosoporous supports (SAMMS) for RCRA metal removal

    SciTech Connect

    Feng, Xiangdong; Liu, Jun; Fryxell, G.

    1997-10-01

    The Mixed Waste Focus Area has declared mercury removal and stabilization as the first and fourth priorities among 30 prioritized deficiencies. Resource Conservation and Recovery Act (RCRA) metal and mercury removal has also been identified as a high priority at DOE sites such as Albuquerque, Idaho Falls, Oak Ridge, Hanford, Rocky Flats, and Savannah River. Under this task, a proprietary new technology, Self-Assembled Monolayers on Mesoporous Supports (SAMMS), for RCRA metal ion removal from aqueous wastewater and mercury removal from organic wastes such as vacuum pump oils is being developed at Pacific Northwest National Laboratory (PNNL). The six key features of the SAMMS technology are (1) large surface area (>900 m{sup 2}/g) of the mesoporous oxides (SiO{sub 2}, ZrO{sub 2}, TiO{sub 2}) ensures high capacity for metal loading (more than 1 g Hg/g SAMMS); (2) molecular recognition of the interfacial functional groups ensures the high affinity and selectivity for heavy metals without interference from other abundant cations (such as calcium and iron) in wastewater; (3) suitability for removal of mercury from both aqueous wastes and organic wastes; (4) the Hg-laden SAMMS not only pass TCLP tests, but also have good long-term durability as a waste form because the covalent binding between mercury and SAMMS has good resistance to ion exchange, oxidation, and hydrolysis; (5) the uniform and small pore size (2 to 40 nm) of the mesoporous silica prevents bacteria (>2000 nm) from solubilizing the bound mercury; and (6) SAMMS can also be used for RCRA metal removal from gaseous mercury waste, sludge, sediment, and soil.

  9. New hazardous waste management system: regulation of wastes or wasted regulation

    SciTech Connect

    Friedland, S.I.

    1981-01-01

    The unsound management of hazardous wastes, as exemplified by Love Canal, causes a variety of environmental and health problems. A review of present state controls reveals the need for the Federal regulation that was incorporated in the Resource Conservation and Recovery Act of 1976 (RCRA). A detailed description of RCRA, however, faults the Environmental Protection Agency (EPA) for deferring regulation and for its failure to meet deadlines, issue standards, or include many dangerous wastes in the prohibited list. EPA's interim standards of essentially voluntary guidelines will offer little protection from contamination until final permit regulations are established. 326 references. (DCK)

  10. Treatment Technologies for Hazardous Ashes Generated from Possible Incineration of Navy Waste

    DTIC Science & Technology

    1990-10-01

    Hazardous and Solid Waste Amendments of 1984 HW - Hazardous Waste HWM - Hazardous Waste Minimization IWTP - Industrial wastewater treatment piant...Resource Conservation and Recovery Act of 1976 (RCRA) and the Hazardous and Solid Waste Amendments of 1984 (HSWA) will eventually prohibit land disposal of...Conservation and Recovery Act of 1976, as amended, PL 94-580, 42 USC 6901. 3. Hazardous and Solid Waste Amendments

  11. Implementation of EPA criminal enforcement strategy for RCRA interim status facilities

    SciTech Connect

    Not Available

    1985-11-15

    The directive discusses criminal enforcement priorities and procedures related to the RCRA section 3007(e)(2) Loss of Interim Status (LOIS) provision, including: (1) identifying/targeting facilities with violations, (2) verifying receipt of RCRA 3007 letters, and (3) inspections of facilities. The directive supplements directive no. 9930.0-1 RCRA LOIS Enforcement Strategy, dated October 15, 1985. The directive is supplemented by directive no. 9930.0-2a, Accepting Nonhazardous Waste After Losing Interim Status, dated December 20, 1986.

  12. Medical Waste Act. Requires physician compliance.

    PubMed

    Chadzynki, L

    1991-07-01

    In Michigan, the medical care community has a long history of carefully managing infectious medical wastes within their facilities to control communicable diseases. Never the less, concerns have surfaced about health risks posed by medical waste because of the notoriety of reported incidents of improperly disposed medical waste that led to the promulgation of emergency rules and now permanent statutes. As the environment reemerges as a national issue, the proper disposal of medical waste remains, at the very least, a highly visible and volatile part of this nation's solid waste crisis. To better develop appropriate controls for dealing with regulated medical waste, we will need to work together. Journal articles such as this provide an important opportunity to share and more forward our understanding of this problem so that we may all enjoy a safer and better environment. Proper handling and disposal of medical waste will remain a public issue as long as wastes believed to be of medical origin are found on beaches or at unauthorized storage or disposal locations. Hence, compliance with the regulations for the handling, storing, treating, transporting and ultimate disposal of regulated medical waste by providers of health care in Michigan must be observed.

  13. Spring 2009 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post-Closure Permit for the INTEC Waste Calcining Facility at the INL Site

    SciTech Connect

    Boehmer, Ann M.

    2009-05-31

    The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under and approved Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure plan. Vessels and spaces were grouted and then covered with a concrete cap. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment.

  14. Radioactive mixed waste disposal

    SciTech Connect

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

  15. Closure of hazardous and mixed radioactive waste management units at DOE facilities. [Contains glossary

    SciTech Connect

    Not Available

    1990-06-01

    This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA.

  16. Quarterly report of RCRA groundwater monitoring data for period October 1 through December 31, 1994

    SciTech Connect

    1995-04-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and {open_quotes}Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities{close_quotes} (Title 40 Code of Federal Regulations [CFR] Part 265), as amended. Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. The location of each facility is shown. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Performing project management, preparing groundwater monitoring plans, well network design and installation, specifying groundwater data needs, performing quality control (QC) oversight, data management, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services and provides groundwater sampling services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between October and December 1994, which are the cutoff dates for this reporting period. This report may contain not only data from the October through December quarter, but also data from earlier sampling events that were not previously reported.

  17. Quarterly report of RCRA groundwater monitoring data for period October 1, 1993--December 31, 1993

    SciTech Connect

    Jungers, D.K.

    1994-04-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities, as amended (40 Code of Federal Regulations [CFR] 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Project management, specifying data needs, performing quality control (QC) oversight, managing data, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services and provides groundwater sampling services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between November 20 and February 25, 1994, which are the cutoff dates for this reporting period. This report may contain not only data from the October through December quarter but also data from earlier sampling events that were not previously reported.

  18. Results of RCRA groundwater quality assessment at the 216-B-3 Pond Facility

    SciTech Connect

    Barnett, D.B.; Teel, S.S.

    1997-06-01

    This document describes a groundwater quality assessment of the 216-B-3 pond system, a Resources Conservation and Recovery act of 1976 (RCRA) waste facility. In 1990, sampling and chemical analysis of groundwater underlying the facility indicated that the contamination indicator parameters, total organic halogens (TOX), and total organic carbon (TOC) had exceeded established limits in two wells. This discovery placed the facility into RCRA groundwater assessment status and subsequently led to a more detailed hydrochemical analysis of groundwater underlying the facility. Comprehensive chemical analyses of groundwater samples from 1994 through 1996 revealed one compound, tris (2-chloroethyl) phosphate (TRIS2CH), that may have contributed to elevated TOX concentrations. No compound was identified as a contributor to TOC. Detailed evaluations of TOX, TOC, and TRIS2CH and comparison of occurrences of these parameters led to conclusions that (1) with few exceptions, these constituents occur at low concentrations below or near limits of quantitation; (2) it is problematic whether the low concentrations of TRIS2CH represent a contaminant originating from the facility or if it is a product of well construction; and (3) given the low and diminishing concentration of TOX, TOC, and TRIS2CH, no further investigation into the occurrent of these constituents is justified. Continued groundwater monitoring should include an immediate recalculation of background critical means of upgradient/downgradient comparisons and a return to seminannual groundwater monitoring under a RCRA indicator parameter evaluation program.

  19. Wastewater and Hazardous Waste Survey, England AFB Louisiana.

    DTIC Science & Technology

    1988-01-01

    Background 1 A. Wastewater System 2 B. England AFB Wastewater Discharge Limitations 2 C. Characteristic Hazardous Waste Regulations 3 1II. Procedures 4 A...Conservation and Recovery Act, or the Louisiana State Hazardous Waste Regulations . The wastewater survey was conducted by 1 Lt Robert A. Tetla, 2Lt Charles W...34Hazardous Waste Abatement Plan, England Air Force Base, Louisiana," 1987. 0 12. State of Louisiana Hazardous Waste Regulations 13. RCRA Interim

  20. Low temperature setting iron phosphate ceramics as a stabilization and solidification agent for incinerator ash contaminated with transuranic and RCRA metals

    SciTech Connect

    Medvedev, P.G.; Hansen, M.; Wood, E.L.; Frank, S.M.; Sidwell, R.W.; Giglio, J.J.; Johnson, S.G.; Macheret, J.

    1997-06-01

    Incineration of combustible Mixed Transuranic Waste yields an ash residue that contains oxides of Resource Conservation and Recovery Act (RCRA) and transuranic metals. In order to dispose of this ash safely, it has to be solidified and stabilized to satisfy appropriate requirements for repository disposal. This paper describes a new method for solidification of incinerator ash, using room temperature setting iron phosphate ceramics, and includes fabrication procedures for these waste forms as well as results of the MCC-1 static leach test, XRD analysis, scanning electron microscopy studies and density measurements of the solidified waste form produced.

  1. House passes RCRA fix by wide margin

    SciTech Connect

    1996-02-07

    The House of Representatives has passed a bill to prevent expensive, court-ordered tightening of the Resource Conservation and Recovery Act`s (RCRA) land-disposal rules. The measure was initiated last March as part of the Clinton Administration`s {open_quotes}reinventing environmental regulation{close_quotes} initiative and was championed by House Republicans. It passed, 402 to 19, drawing overwhelming support from Democrats. CMA president and CEO Fred Webber hailed the bipartisan approach as the right way to legislate. {open_quotes}We hope this bill can serve as a model for Superfund and other pieces of unfinished business,{close_quotes} he says.

  2. National spent fuel program preliminary report RCRA characteristics of DOE-owned spent nuclear fuel DOE-SNF-REP-002. Revision 3

    SciTech Connect

    1995-07-01

    This report presents information on the preliminary process knowledge to be used in characterizing all Department of Energy (DOE)-owned Spent Nuclear Fuel (SNF) types that potentially exhibit a Resource Conservation and Recovery Act (RCRA) characteristic. This report also includes the process knowledge, analyses, and rationale used to preliminarily exclude certain SNF types from RCRA regulation under 40 CFR {section}261.4(a)(4), ``Identification and Listing of Hazardous Waste,`` as special nuclear and byproduct material. The evaluations and analyses detailed herein have been undertaken as a proactive approach. In the event that DOE-owned SNF is determined to be a RCRA solid waste, this report provides general direction for each site regarding further characterization efforts. The intent of this report is also to define the path forward to be taken for further evaluation of specific SNF types and a recommended position to be negotiated and established with regional and state regulators throughout the DOE Complex regarding the RCRA-related policy issues.

  3. 76 FR 44093 - Definition of Solid Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ...The Environmental Protection Agency (EPA or the Agency) is proposing to revise certain exclusions from the definition of solid waste for hazardous secondary materials intended for reclamation that would otherwise be regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA). The purpose of these proposed revisions is to ensure that the recycling regulations, as......

  4. Resource Conservation and Recovery Act (RCRA) Part B permit application for container storage units at the Oak Ridge Y-12 Plant

    SciTech Connect

    Not Available

    1994-08-01

    This document contains Part B of the Permit Application for Container Storage Units at the Oak Ridge Y-12 Plant. Sections cover the following areas: Facility description; Waste characteristics; Process information; Ground water monitoring; Procedures to prevent hazards; Contingency plan; Personnel training; Closure plan, post closure plan, and financial requirements; Recordkeeping; Other federal laws; Organic air emissions; Solid waste management units; and Certification.

  5. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3. Appendixes 1 through 8

    SciTech Connect

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU'S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data. (CBS)

  6. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2. Sections 4 through 9

    SciTech Connect

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU's) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment and baseline human health evaluation including a toxicity assessment, and a baseline environmental evaluation.

  7. Response Action Plan for the Basin F Interim Response Action Waste Pile.

    DTIC Science & Technology

    1992-10-01

    requirements of the Resource Conservation I and Recovery Act (RCRA), as amended by the 1984 Hazardous and Solid Waste Amendments and the i Colorado Hazardous...submittal process. Action Leakage Rate (ALR) S Background EPA has historically used the term de minimus In the Hazardous and Solid Waste Amendments leakage

  8. 77 FR 69788 - Colorado: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    ... AGENCY 40 CFR Part 271 Colorado: Final Authorization of State Hazardous Waste Management Program... applied to the EPA for final authorization of changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA). The EPA proposes to grant final authorization to the hazardous...

  9. Resource Conservation and Recovery Act (RCRA) Part B permit application for Production Associated Units at the Oak Ridge Y-12 Plant

    SciTech Connect

    1995-05-01

    Attention is focused on permit applications for the following units: Building 9206 Container Storage Unit; Building 9212 Container Storage Unit; Building 9720-12 Container Storage Unit; and Cyanide Treatment Unit. This report addresses the following areas: facility description; waste characteristics; process information; ground water monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plant, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification.

  10. 76 FR 55846 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... Listing of Hazardous Waste: Carbon Dioxide (CO2) Streams in Geologic Sequestration Activities AGENCY...) to conditionally exclude carbon dioxide (CO 2 ) streams that are hazardous from the definition of... Recovery Act (RCRA) to conditionally exclude carbon dioxide (CO 2 ) streams that are hazardous from...

  11. Borehole Data Package for Four CY 2003 RCRA Wells 299-E27-4, 299-E27-21, 299-E27-22, and 299-E27-23 at Single-Shell Tank, Waste Management Area C, Hanford Site, Washington

    SciTech Connect

    Williams, Bruce A.; Narbutovskih, Susan M.

    2004-05-12

    Four new Resource Conservation and Recovery Act (RCRA) groundwater monitoring wells were installed at the single-shell tank farm Waste Management Area (WMA) C in fiscal year 2003 to fulfill commitments for well installations proposed in the draft Hanford Federal Facility Agreement and Consent Order milestone M-24-00. Well 299-E27-22, installed upgradient, was drilled through the entire uppermost unconfined aquifer to the basalt and wells 299-E27-4, 299-E27-21 and 299-E27-23 were drilled approximately 40 feet into the uppermost unconfined aquifer and installed downgradient of the WMA. Specific objectives for these wells include monitoring the impact, if any, that potential releases from inside the WMA may have on current groundwater conditions (i.e., improved network coverage) and differentiating upgradient groundwater contamination from contaminants released at the WMA. This report supplies the information obtained during drilling, characterization, and installation of the four new groundwater monitoring wells. This document also provides a compilation of hydrogeologic and well construction information obtained during drilling, well development, aquifer testing, and sample collection/analysis activities.

  12. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: Other laws that interface with RCRA, updated as of July 1995

    SciTech Connect

    1995-11-01

    The module provides a brief overview of some of the major environmental laws that interface with RCRA: Clean Air Act (CAA); Clean Water Act (CWA); Safe Drinking Water Act (SDWA); Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA); Toxic Substances Control Act (TSCA); Pollution Prevention Act (PPA); and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund). It also covers regulations administered by other agencies that interface with RCRA, such as health and safety requirements under the Occupational Health and Safety Administration, and the Hazardous Materials Transportation Requirements administered by the Department of Transportation.

  13. Annual committee reports on significant legislative, judicial and administrative developments in 1983: Solid and Hazardous Waste Committee

    SciTech Connect

    Not Available

    1984-01-01

    There were several significant developments under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund), the Resource Conservation and Recovery Act (RCRA), and the Toxic Substance Act (TSCA). Court cases on CERCLA involved basic liability issues, prerequisites to actions, and several miscellaneous issues, while adminstrative developments included issuing the national priorities list and amendments to the National Contingency Plan. Court decisions under RCRA addressed liability of those accepting wastes. The Environmental Protection Agency issued a new definition of solid waste and new regulations. Administrative developments under TSCA covered integrated control programs for new and existing chemicals, the collection of information on existing chemicals, and enforcement and inspection activities. 228 references.

  14. Management of corrective action wastes pursuant to proposed Subpart S

    SciTech Connect

    Not Available

    1995-02-01

    Under Section 3004(u) of the Resource Conservation and Recovery Act (RCRA), owners/operators of permitted or interim status treatment, storage, and disposal facilities (TSDFs) are required to perform corrective action to address releases of hazardous waste or hazardous constituents from solid waste management units (SWMUs). On July 27, 1990, the Environmental Protection Agency (EPA) proposed specific corrective action requirements under Part 264, Subpart S of Title 40 of the code of Federal Regulations (CFR). One portion of this proposed rule, addressing requirements applicable to corrective action management units (CAMUs) and temporary units (TUs), was finalized on February 16, 1993 (58 FR 8658 et seq.). (CAMUs and TUs are RCRA waste management units that are specifically designated for the management of corrective action wastes). Portions of the proposed Subpart S rule that address processes for the investigation and cleanup of releases to environmental media have not yet been finalized. EPA and authorized State agencies, however, are currently using the investigation and cleanup procedures of the proposed rule as a framework for implementation of RCRA`s corrective action requirements. The performance of corrective action cleanup activities generates wastes that have to be characterized and managed in accordance with applicable RCRA requirements. This Information Brief describes these requirements. It is one of a series of information Briefs on RCRA Corrective Action.

  15. Annual report RCRA post-closure monitoring and inspections for CAU 112: Area 23 hazardous waste trenches, Nevada Test Site, for the period October 1996--October 1997

    SciTech Connect

    1998-01-01

    The Area 23 Hazardous Waste Trenches were closed in-place in September 1993. Post-closure monitoring of the Area 23 Hazardous Waste Trenches began in October 1993. The post-closure monitoring program is used to verify that the Area 23 Hazardous Waste Trench covers are performing properly, and that there is no water infiltrating into or out of the waste trenches. The performance of the Area 23 Hazardous Waste Trenches is currently monitored using 30 neutron access tubes positioned on and along the margins of the covers. Soil moisture measurements are obtained in the soils directly beneath the trenches and compared to baseline conditions from the first year of post-closure operation. This report documents the post-closure activities between October 1996 and October 1997.

  16. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1990

    SciTech Connect

    Not Available

    1991-02-01

    This report documents the annual evaluation of eighteen Resource Conservation and Recovery Act of 1976 (RCRA) groundwater monitoring projects and one nonhazardous waste facility at the Hanford Site. The RCRA projects are monitored under three programs: (1) a background monitoring program; (2) an indicator evaluation program; and (3) a groundwater quality assessment program. The background monitoring program and the indicator evaluation program are described as two phases of the detection level monitoring program. Briefly stated, when a groundwater monitoring system has been installed, a background monitoring program begins. Samples and water levels from upgradient monitoring well(s) must be obtained and analyzed quarterly for one year to obtain background data on the quality of the groundwater. After one year, the indicator evaluation program commences, and groundwater samples and water levels must be taken semiannually. Data obtained through the indicator evaluation program are compared with background data; if a significant change over background has occurred, a groundwater quality assessment plan must be implemented. The Solid Waste Landfill (SWL) is included in this report because of uncertainty in the final regulatory authority for the site and because of the interest of the Washington State Department of Ecology (Ecology) in all aspects of Hanford Site operations. 193 refs., 114 figs., 44 tabs.

  17. Balancing act creating the right regulation for coal combustion waste

    SciTech Connect

    Manuel, J.

    2009-11-15

    The December 2008 collapse of a coal ash pond in Tennessee threw safe management of coal combustion waste (CCW) into the spotlight. Millions of tons of CCW are produced in the United States each year, and a large percentage of that is recycled. The US Environmental Protection Agency is pursuing a host of initiatives that could directly or indirectly affect the disposition of CCW. States, too, are taking a look at how they regulate CCW. Among the options is the possibility of regulating CCW under the Resource Conservation and Recovery Act, a move that could have far-reaching implications for both the recycling and the disposal of this waste.

  18. RCRA Summary Document for the David Witherspoon 1630 Site, Knoxville, Tennessee

    SciTech Connect

    Pfeffer, J.

    2008-06-10

    , cylinders, and cable) and populations of debris type items (e.g., piles of bricks, small scrap metal, roofing material, scaffolding, and shelving) that are located throughout the DWI 1630 site. The project also generates an additional small volume of secondary waste [e.g., personal protective equipment (PPE), and miscellaneous construction waste] that is bagged and included in bulk soil shipments to the EMWMF. The Waste Acceptance Criteria (WAC) for the EMWMF does not allow for material that does not meet the Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions (LDRs). The waste being excavated in certain areas of the DWI 1630 site contained soil that did not meet RCRA LDR criteria; therefore this waste had to be segregated for treatment or alternate disposal offsite. This document identifies the approach taken by the DWI 1630 project to further characterize the areas identified during the Phase II Remedial Investigation (RI) as potentially containing RCRA-characteristic waste. This document also describes the methodology used to determine excavation limits for areas determined to be RCRA waste, post excavation sampling, and the treatment and disposal of this material.

  19. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1993

    SciTech Connect

    Not Available

    1994-02-01

    This report presents the annual hydrogeologic evaluation of 20 Resource Conservation and Recovery Act of 1976 groundwater monitoring projects and 1 nonhazardous waste facility at the US Department of Energy`s Hanford Site. Most of the projects no longer receive dangerous waste; a few projects continue to receive dangerous waste constituents for treatment, storage, or disposal. The 20 RCRA projects comprise 30 waste management units. Ten of the units are monitored under groundwater quality assessment status because of elevated levels of indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration, distribution, and rate of migration are evaluated. Groundwater is monitored at the other 20 units to detect contamination, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1992 and September 1993. Recent groundwater quality is also described for the 100, 200, 300, and 600 Areas and for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides.

  20. RCRA, Superfund and EPCRA hotline training module. Introduction to: Statutory overview of the Comprehensive Environmental Response, Compensation, and Liability Act (updated February 1998); Directive

    SciTech Connect

    1998-06-01

    This module presents a brief overview of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the statute through which Congress established EPA`s hazardous substance release reporting and cleanup program, known as the Superfund program. This module presents information of the CERCLA statute only, not the regulations promulgated pursuant to the statute.

  1. Key regulatory drivers affecting shipments of mixed transuranic waste from Los Alamos National Laboratory to the Waste Isolation Pilot Plant

    SciTech Connect

    Schumann, P.B.; Bacigalupa, G.A.; Kosiewicz, S.T.; Sinkule, B.J.

    1997-02-01

    A number of key regulatory drivers affect the nature, scope, and timing of Los Alamos National Laboratory`s (LANL`s) plans for mixed transuranic (MTRU) waste shipments to the Waste Isolation Pilot Plant (WIPP), which are planned to commence as soon as possible following WIPP`s currently anticipated November, 1997 opening date. This paper provides an overview of some of the key drivers at LANL, particularly emphasizing those associated with the hazardous waste component of LANL`s MTRU waste (MTRU, like any mixed waste, contains both a radioactive and a hazardous waste component). The key drivers discussed here derive from the federal Resource Conservation and Recovery Act (RCRA) and its amendments, including the Federal Facility Compliance Act (FFCAU), and from the New Mexico Hazardous Waste Act (NMHWA). These statutory provisions are enforced through three major mechanisms: facility RCRA permits; the New Mexico Hazardous Waste Management Regulations, set forth in the New Mexico Administrative Code, Title 20, Chapter 4, Part 1: and compliance orders issued to enforce these requirements. General requirements in all three categories will apply to MTRU waste management and characterization activities at both WIPP and LANL. In addition, LANL is subject to facility-specific requirements in its RCRA hazardous waste facility permit, permit conditions as currently proposed in RCRA Part B permit applications presently being reviewed by the New Mexico Environment Department (NNED), and facility-specific compliance orders related to MTRU waste management. Likewise, permitting and compliance-related requirements specific to WIPP indirectly affect LANL`s characterization, packaging, record-keeping, and transportation requirements for MTRU waste. LANL must comply with this evolving set of regulatory requirements to begin shipments of MTRU waste to WIPP in a timely fashion.

  2. Science, Society, and America's Nuclear Waste: The Nuclear Waste Policy Act, Unit 3. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 3 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to identify the key elements of the United States' nuclear waste dilemma and introduce the Nuclear Waste Policy Act and the role of the…

  3. 40 CFR 22.37 - Supplemental rules governing administrative proceedings under the Solid Waste Disposal Act.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sections 3005(d) and (e), 3008, 9003 and 9006 of the Solid Waste Disposal Act (42 U.S.C. 6925(d) and (e... administrative proceedings under the Solid Waste Disposal Act. 22.37 Section 22.37 Protection of Environment... Supplemental rules governing administrative proceedings under the Solid Waste Disposal Act. (a) Scope....

  4. 40 CFR 22.37 - Supplemental rules governing administrative proceedings under the Solid Waste Disposal Act.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... administrative proceedings under the Solid Waste Disposal Act. 22.37 Section 22.37 Protection of Environment... Supplemental rules governing administrative proceedings under the Solid Waste Disposal Act. (a) Scope. This... sections 3005(d) and (e), 3008, 9003 and 9006 of the Solid Waste Disposal Act (42 U.S.C. 6925(d) and...

  5. 40 CFR 22.37 - Supplemental rules governing administrative proceedings under the Solid Waste Disposal Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... administrative proceedings under the Solid Waste Disposal Act. 22.37 Section 22.37 Protection of Environment... Supplemental rules governing administrative proceedings under the Solid Waste Disposal Act. (a) Scope. This... sections 3005(d) and (e), 3008, 9003 and 9006 of the Solid Waste Disposal Act (42 U.S.C. 6925(d) and...

  6. Expediting the commercial disposal option: Low-level radioactive waste shipments from the Mound Plant

    SciTech Connect

    Rice, S.; Rothman, R.

    1995-12-31

    In April, Envirocare of Utah, Inc., successfully commenced operation of its mixed waste treatment operation. A mixed waste which was (a) radioactive, (b) listed as a hazardous waste under the Resource Conservation and Recovery Act (RCRA), and (c) prohibited from land disposal was treated using Envirocare`s full-scale Mixed Waste Treatment Facility. The treatment system involved application of chemical fixation/stabilization technologies to reduce the leachability of the waste to meet applicable concentration-based RCRA treatment standards. In 1988, Envirocare became the first licensed facility for the disposal of naturally occurring radioactive material. In 1990, Envirocare received a RCRA Part B permit for commercial mixed waste storage and disposal. In 1994, Envirocare was awarded a contract for the disposal of DOE mixed wastes. Envirocare`s RCRA Part B permit allows for the receipt, storage, treatment, and disposal of mixed wastes that do not meet the land-disposal treatment standards of 40 CFR (Code of Federal Regulations) 268. Envirocare has successfully received, managed, and disposed of naturally occurring radioactive material, low-activity radioactive waste, and mixed waste from government and private generators.

  7. An analysis of the CERCLA response program and the RCRA corrective action program in determining cleanup strategies for federal facilities which have been proposed for listing on the National Priorities List

    SciTech Connect

    Baker, P.; Vinson, R. |

    1994-12-31

    This document was prepared as an issue paper for the Department of Energy to serve in the decision-making process for environmental restoration activities. The paper compares cleanup requirements under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and those currently proposed under Subpart S of the Resource Conservation and Recovery Act (RCRA). The history and regulatory framework for both laws is discussed, and the process for environmental restoration actions under both regulatory programs is compared and contrasted. Contaminants regulated under CERCLA and RCRA differ significantly in that radioactive contaminants are subject to Environmental Protection Agency jurisdiction only under CERCLA. The DOE has the jurisdiction to implement radioactive waste management and cleanup levels under the Atomic Energy Act (AEA) at nuclear weapons facilities. For sites with significant amounts of contaminants which are radioactive only, cleanup under RCRA can present significant advantages, since the DOE can then manage restoration activities under its own authority. There are, conversely several significant advantages for a remedial action being conducted at a CERCLA site recognized on the National Priorities List (NPL). Other provisions in the CERCLA remediation and the RCRA corrective action process offer both advantages and disadvantages related to DOE environmental restoration programs. This paper presents a discussion of significant issues which should be considered in such negotiations.

  8. Mixed waste characterization, treatment & disposal focus area

    SciTech Connect

    1996-08-01

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  9. TRA Closure Plan REV 0-9-20-06 HWMA/RCRA Closure Plan for the TRA/MTR Warm Waste System Voluntary Consent Order SITE-TANK-005 Tank System TRA-007

    SciTech Connect

    Winterholler, K.

    2007-01-31

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for portions of the Test Reactor Area/Materials Test Reactor Warm Waste System located in the Materials Test Reactor Building (TRA-603) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan SITE-TANK-005 for Tank System TRA-007. The reactor drain tank and canal sump to be closed are included in the Test Reactor Area/Materials Test Reactor Warm Waste System. The reactor drain tank and the canal sump were characterized as having managed hazardous waste. The reactor drain tank and canal sump will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods for achieving those standards.

  10. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Chapter E, Appendix E1, Chapter L, Appendix L1: Volume 12, Revision 3

    SciTech Connect

    Not Available

    1993-01-01

    The Waste Isolation Pilot Plant (WIPP) Project was authorized by the US Department of Energy 5 (DOE) National Security and Military Applications of the Nuclear Energy Authorization Act of 1980 (Public Law 96-164). Its legislative mandate is to provide a research and development facility to demonstrate the safe disposal of radioactive waste resulting from national defense programs and activities. To fulfill this mandate, the WIPP facility has been designed to perform scientific investigations of the behavior of bedded salt as a repository medium and the interactions between the soft and radioactive wastes. In 1991, DOE proposed to initiate a experimental Test Phase designed to demonstrate the performance of the repository. The Test Phase activities involve experiments using transuranic (TRU) waste typical of the waste planned for future disposal at the WIPP facility. Much of this TRU waste is co-contaminated with chemical constituents which are defined as hazardous under HWMR-7, Pt. II, sec. 261. This waste is TRU mixed waste and is the subject of this application. Because geologic repositories, such as the WIPP facility, are defined under the Resource Conservation and Recovery Act (RCRA) as land disposal facilities, the groundwater monitoring requirements of HWMR-7, PLV, Subpart X, must be addressed. HWMR-7, Pt. V, Subpart X, must be addressed. This appendix demonstrates that groundwater monitoring is not needed in order to demonstrate compliance with the performance standards; therefore, HWMR-7, Pt.V, Subpart F, will not apply to the WIPP facility.

  11. Waste minimization policies, regulations, and practices within the U.S. Department of Energy defense programs

    SciTech Connect

    Mathur, S.P.

    1989-11-01

    In 1984 the US Congress enacted the Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA). One of the goals of this legislation was to focus attention on the need to reduce or eliminate hazardous waste so as to minimize the threat to human health and the environment. Subsequently, in September of 1988, DOE issued a Radioactive Waste Management Policy, DOE Order 5820.2A, and in November a General Environmental Program Order, DOE Order 5400.1. These documents embrace the principles set forth in RCRA, and expand their scope to include radioactive, mixed, and pollutant waste, and all actions for reducing waste from the point of generation through waste treatment, storage, transportation and disposal. This paper will present an overview of the legislation and policies for waste reduction and, in addition, give site responsibilities for implementing waste reduction program activities.

  12. Tobacco industry responsibility for butts: a Model Tobacco Waste Act

    PubMed Central

    Curtis, Clifton; Novotny, Thomas E; Lee, Kelley; Freiberg, Mike; McLaughlin, Ian

    2017-01-01

    Cigarette butts and other postconsumer products from tobacco use are the most common waste elements picked up worldwide each year during environmental cleanups. Under the environmental principle of Extended Producer Responsibility, tobacco product manufacturers may be held responsible for collection, transport, processing and safe disposal of tobacco product waste (TPW). Legislation has been applied to other toxic and hazardous postconsumer waste products such as paints, pesticide containers and unused pharmaceuticals, to reduce, prevent and mitigate their environmental impacts. Additional product stewardship (PS) requirements may be necessary for other stakeholders and beneficiaries of tobacco product sales and use, especially suppliers, retailers and consumers, in order to ensure effective TPW reduction. This report describes how a Model Tobacco Waste Act may be adopted by national and subnational jurisdictions to address the environmental impacts of TPW. Such a law will also reduce tobacco use and its health consequences by raising attention to the environmental hazards of TPW, increasing the price of tobacco products, and reducing the number of tobacco product retailers. PMID:26931480

  13. RCRA corrective measures using a permeable reactive iron wall US Coast Guard Support Center, Elizabeth City, North Carolina

    SciTech Connect

    Schmithors, W.L.; Vardy, J.A.

    1997-12-31

    A chromic acid release was discovered at a former electroplating shop at the U.S. Coast Guard Support Center in Elizabeth City, North Carolina. Initial investigative activities indicated that chromic acid had migrated into the subsurface soils and groundwater. In addition, trichloroethylene (TCE) was also discovered in groundwater during subsequent investigations of the hexavalent chromium (Cr VI) plume. Corrective measures were required under the Resource Conservation and Recovery Act (RCRA). The in-situ remediation method, proposed under RCRA Interim Measures to passively treat the groundwater contaminants, uses reactive zero-valent iron to reductively dechlorinate the chlorinated compounds and to mineralize the hexavalent chromium. A 47 meter by 0.6 meter subsurface permeable iron wall was installed downgradient of the source area to a depth of 7 meters using a direct trenching machine. The iron filings were placed in the ground as the soils were excavated from the subsurface. This is the first time that direct trenching was used to install reactive zero-valent iron filings. Over 250 metric tons of iron filings were used as the reactive material in the barrier wall. Installation of the iron filings took one full day. Extensive negotiations with regulatory agencies were required to use this technology under the current facility Hazardous Waste Management Permit. All waste soils generated during the excavation activities were contained and treated on site. Once contaminant concentrations were reduced the waste soils were used as fill material.

  14. Hazardous Waste Data (RCRAInfo)

    EPA Pesticide Factsheets

    Hazardous waste information is contained in the Resource Conservation and Recovery Act Information (RCRAInfo), a national program management and inventory system about hazardous waste handlers. In general, all generators, transporters, treaters, storers, and disposers of hazardous waste are required to provide information about their activities to state environmental agencies. These agencies, in turn pass on the information to regional and national EPA offices. This regulation is governed by the Resource Conservation and Recovery Act (RCRA), as amended by the Hazardous and Solid Waste Amendments of 1984. You may use the RCRAInfo Search to determine identification and location data for specific hazardous waste handlers, and to find a wide range of information on treatment, storage, and disposal facilities regarding permit/closure status, compliance with Federal and State regulations, and cleanup activities.

  15. Exiting RCRA Subtitle C regulation data for supporting a new regulatory path for immobilized mixed debris

    SciTech Connect

    Porter, C.L.; Carson, S.D.; Cheng, Wu-Ching

    1995-12-31

    This paper presents analytical and empirical data that provide technical support for the position that mixed debris (debris contaminated with both radioactive and hazardous constituents) treated by immobilization in accordance with 40 CFR 268.45 can exit RCRA Subtitle C requirements at the time the treatment is complete. Pathways analyses and risk assessments of low-level waste and RCRA mixed waste disposal facilities show that these two types of facilities provide equivalent long-term (> 100 years) performance and protection of human health and the environment. A proposed two-tier approach for waste form performance criteria is discussed.

  16. Preparation of the First Shipment of Transuranic Waste by the Los Alamos National Laboratory: A Rest Stop on the Road to WIPP

    SciTech Connect

    Allen, G.; Barr, A.; Betts, S.E.; Farr, J.; Foxx, J.; Gavett, M.A.; Janecky, D.R.; Kosiewicz, S.T.; Liebman, C.P.; Montoya, A.; Poths, H.; Rogers, P.S.Z.; Taggart, D.P.; Triay, I.R.; Vigil, G.I.; Vigil, J.J.; Wander, S.G.; Yeamans, D.

    1999-02-01

    The Los Alamos National Laboratory (LANL) achieved a national milestone on the road to shipping transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) when it received certification authority on September 12, 1997. Since that time, LANL has been characterizing a non-mixed TRU waste stream and preparing shipments of this TRU waste for disposal in the WIPP. The paper describes the TRU waste identified as waste stream TA-55-43 Lot No. 01 from LANL Technical Area-55 and the process used to determine that it does not contain hazardous waste regulated by the Resource Conservation Recovery Act (RCRA) or the New Mexico Hazardous Waste Act (HWA). The non-mixed determination is based on the acceptable knowledge (AK) characterization process, which clearly shows that the waste does not exhibit any RCRA characteristics nor meet any RCRA listing descriptions. LANL has certified TRU waste from waste stream TA-55-43 Lot No. 01 and is prepared to certify additional quantities of TRU waste horn other non-mixed TRU waste streams. Assembly and preparation of AK on the processes that generated TRU waste is recognized as a necessary part of the process for having waste ready for shipment to the WIPP.

  17. 75 FR 39041 - Notice of Lodging of Proposed Consent Decree Under the Solid Waste Disposal Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... of Lodging of Proposed Consent Decree Under the Solid Waste Disposal Act Notice is hereby given that... Environmental Protection Agency (``EPA'') for violations of Section 7003 of the Solid Waste Disposal Act (as... oilfield waste disposal facility, located in Campbell County, Wyoming. The Consent Decree resolves...

  18. Quarterly report of RCRA groundwater monitoring data for period January 1, 1993 through March 31, 1993

    SciTech Connect

    Not Available

    1993-07-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities, as amended (40 Code of Federal Regulations [CFR] 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. This quarterly report contains data received between March 8 and May 24, 1993, which are the cutoff dates for this reporting period. This report may contain not only data from the January through March quarter but also data from earlier sampling events that were not previously reported.

  19. Quarterly report of RCRA groundwater monitoring data for period July 1, 1993--September 30, 1993

    SciTech Connect

    Jungers, D.K.

    1994-01-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and ``Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities,`` as amended (40 Code of Federal Regulations [CFR] 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173--303. This quarterly report contains data received between August 21 and November 19, 1993, which are the cutoff dates for this reporting period. This report may contain not only data from samples collected during the July through September quarter but also data from earlier sampling events that were not previously reported.

  20. Disemployment effects caused by regulation of drilling fluids and produced waters as hazardous under the Resource Conservation and Recovery Act

    SciTech Connect

    Flaim, S.J.

    1988-03-01

    This report reviews and compares several studies of the effects on employment of regulating wastes from oil and natural gas exploration and extraction under the Resource Conservation and Recovery Act (RCRA). The waste management scenarios on which most of the studies were based were developed by the U.S. Environmental Protection Agency. The analyses show that as many as 500,000-700,000 jobs may be lost in the first year if RCRA Subtitle C rules are applied to drilling fluids and produced waters. As a results, unemployment in major oil-producing states could rise by as much as six percentage points. 13 refs., 4 tabs.

  1. 40 CFR 261.8 - PCB wastes regulated under Toxic Substance Control Act.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false PCB wastes regulated under Toxic... (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.8 PCB wastes regulated under Toxic Substance Control Act. The disposal of PCB-containing dielectric fluid and...

  2. 40 CFR 261.8 - PCB wastes regulated under Toxic Substance Control Act.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false PCB wastes regulated under Toxic... (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.8 PCB wastes regulated under Toxic Substance Control Act. The disposal of PCB-containing dielectric fluid and...

  3. 40 CFR 261.8 - PCB wastes regulated under Toxic Substance Control Act.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false PCB wastes regulated under Toxic... (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.8 PCB wastes regulated under Toxic Substance Control Act. The disposal of PCB-containing dielectric fluid and...

  4. 40 CFR 261.8 - PCB wastes regulated under Toxic Substance Control Act.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false PCB wastes regulated under Toxic... (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.8 PCB wastes regulated under Toxic Substance Control Act. The disposal of PCB-containing dielectric fluid and...

  5. Report to the Senate Appropriations Committee: Regulation of wood-preserving wastes

    SciTech Connect

    Not Available

    1991-07-01

    On November 15, 1990, the United States Environmental Protection Agency (EPA) issued a final rule designating three categories of wastes from wood preserving operations as hazardous waste under Subtitle C of the Resource Conservation and Recovery Act (RCRA). The Senate Committee on Appropriations had directed the Agency to submit by March 15, 1991, a Report regarding the potential advantages, costs, and risks associated with a multistatute approach to regulation of wastes from wood preserving operations. The approach would employ three statutory authorities to control wood preserving wastes in the following manner: (1) Clean Water Act (CWA) - regulation of wastewaters and stormwaters; (2) Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) - regulation of treated wood drippage and the establishment of drip pad management standards; (3) Resource Conservation and Recovery Act (RCRA) - regulation of process residuals. The report is in response to the Committee's directive to look at the advantages, costs, and risks of the multistatute approach. To do so, the elements of the multistatute approach are examined qualitatively in Section One. As part of this examination, a comparison of the multistatute elements to analogous RCRA elements is included at various points. In Section Two of the Report, the costs and risks of the multistatute approach are examined, including a comparison to those of the RCRA Subtitle C approach.

  6. Pinellas Plant contingency plan for the hazardous waste management facility

    SciTech Connect

    1988-04-01

    Subpart D of Part 264 (264.50 through .56) of the Resource Conservation and Recovery Act (RCRA) regulations require that each facility maintain a contingency plan detailing procedures to {open_quotes}minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water.{close_quotes}

  7. Audits of hazardous waste TSDFs let generators sleep easy. [Hazardous waste treatment, storage and disposal facility

    SciTech Connect

    Carr, F.H.

    1990-02-01

    Because of the increasingly strict enforcement of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA), generators of hazardous waste are compelled to investigate the hazardous waste treatment, storage and disposal facility (TSDF) they use. This investigation must include an environmental and a financial audit. Simple audits may be performed by the hazardous waste generator, while more thorough ones such as those performed for groups of generators are more likely to be conducted by environmental consultants familiar with treatment, storage, and disposal techniques and the regulatory framework that guides them.

  8. EPA finalizes offsite management requirements for CERCLA wastes

    SciTech Connect

    1993-11-01

    Effective October 22, 1993, EPA has added a new section to the National Contingency Plan (NCP) establishing procedures for managing CERCLA response action wastes at offsite facilities. The purpose of the NCP amendments is to ensure that CERCLA cleanup wastes are directed to environmentally sound waste management units, thus preventing these wastes from contributing to present or future environmental problems. Wastes may only be transferred to facilities that are in compliance with RCRA, the Toxic Substances Control Act (TSCA), or other applicable federal and state requirements. The final rule was published on September 22, 1993 (58 FR 49200-49218) and will add {section}300.440 to the NCP. 1 tab.

  9. Process equipment waste and process waste liquid collection systems

    SciTech Connect

    Not Available

    1990-06-01

    The US DOE has prepared an environmental assessment for construction related to the Process Equipment Waste (PEW) and Process Waste Liquid (PWL) Collection System Tasks at the Idaho Chemical Processing Plant. This report describes and evaluates the environmental impacts of the proposed action (and alternatives). The purpose of the proposed action would be to ensure that the PEW and PWL collection systems, a series of enclosed process hazardous waste, and radioactive waste lines and associated equipment, would be brought into compliance with applicable State and Federal hazardous waste regulations. This would be accomplished primarily by rerouting the lines to stay within the buildings where the lined floors of the cells and corridors would provide secondary containment. Leak detection would be provided via instrumented collection sumps locate din the cells and corridors. Hazardous waste transfer lines that are routed outside buildings will be constructed using pipe-in-pipe techniques with leak detection instrumentation in the interstitial area. The need for the proposed action was identified when a DOE-sponsored Resource Conservation and Recovery Act (RCRA) compliance assessment of the ICPP facilities found that singly-contained waste lines ran buried in the soil under some of the original facilities. These lines carried wastes with a pH of less than 2.0, which were hazardous waste according to the RCRA standards. 20 refs., 7 figs., 1 tab.

  10. 75 FR 76633 - Oregon; Correction of Federal Authorization of the State's Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-09

    ... authorization for changes the State of Oregon made to its federally authorized RCRA Hazardous Waste Management... Conditionally Exempt Small Quality Generators (CESQG) waste is subject to RCRA used oil management standards... later date. With this correction to Oregon's federally authorized RCRA Hazardous Waste...

  11. Determining Cleanup Standards for Hazardous Waste Sites

    DTIC Science & Technology

    1991-04-01

    CERCLA ) 8 was designed to deal with so-called Superfund sites like Love Canal. Among other things, Section 121 of that Act 9 describes, the cleanup...the "big stick" for cleaning up dangerous environmental sites falls under the broad 17 scope of CERCLA and the Superfund . The fundamental difference...as wastes under RCRA but are still 43 considered "hazardous" for CERCLA regulation. Furthermore, CERCLA , as amended by the Superfund Amendment and

  12. Hazardous Waste Permitting

    EPA Pesticide Factsheets

    To provide RCRA hazardous waste permitting regulatory information and resources permitted facilities, hazardous waste generators, and permit writers. To provide the public with information on how they can be involved in the permitting process.

  13. 40 CFR 2.305 - Special rules governing certain information obtained under the Solid Waste Disposal Act, as amended.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... information obtained under the Solid Waste Disposal Act, as amended. 2.305 Section 2.305 Protection of... § 2.305 Special rules governing certain information obtained under the Solid Waste Disposal Act, as amended. (a) Definitions. For purposes of this section: (1) Act means the Solid Waste Disposal Act,...

  14. RCRA Facilities Assessment (RFA)---Oak Ridge National Laboratory

    SciTech Connect

    Not Available

    1987-03-01

    US Department of Energy (DOE) facilities are required to be in full compliance with all federal and state regulations. In response to this requirement, the Oak Ridge National Laboratory (ORNL) has established a Remedial Action Program (RAP) to provide comprehensive management of areas where past and current research, development, and waste management activities have resulted in residual contamination of facilities or the environment. This report presents the RCRA Facility Assessment (RFA) required to meet the requirements of RCRA Section 3004(u). Included in the RFA are (1) a listing of all sites identified at ORNL that could be considered sources of releases or potential releases; (2) background information on each of these sites, including location, type, size, period of operation, current operational status, and information on observed or potential releases (as required in Section II.A.1 of the RCRA permit); (3) analytical results obtained from preliminary surveys conducted to verify the presence or absence of releases from some of the sites; and (4) ORNL's assessment of the need for further remedial attention.

  15. RCRA Facilities Assessment (RFA)---Oak Ridge National Laboratory

    SciTech Connect

    Not Available

    1987-03-01

    US Department of Energy (DOE) facilities are required to be in full compliance with all federal and state regulations. In response to this requirement, the Oak Ridge National Laboratory (ORNL) has established a Remedial Action Program (RAP) to provide comprehensive management of areas where past and current research, development, and waste management activities have resulted in residual contamination of facilities or the environment. This report presents the RCRA Facility Assessment (RFA) required to meet the requirements of RCRA Section 3004(u). Included in the RFA are (1) a listing of all sites identified at ORNL that could be considered sources of releases or potential releases; (2) background information on each of these sites, including location, type, size, period of operation, current operational status, and information on observed or potential releases (as required in Section II.A.1 of the RCRA permit); (3) analytical results obtained from preliminary surveys conducted to verify the presence or absence of releases from some of the sites; and (4) ORNL`s assessment of the need for further remedial attention.

  16. Audit Report on "Waste Processing and Recovery Act Acceleration Efforts for Contact-Handled Transuranic Waste at the Hanford Site"

    SciTech Connect

    2010-05-01

    The Department of Energy's Office of Environmental Management's (EM), Richland Operations Office (Richland), is responsible for disposing of the Hanford Site's (Hanford) transuranic (TRU) waste, including nearly 12,000 cubic meters of radioactive contact-handled TRU wastes. Prior to disposing of this waste at the Department's Waste Isolation Pilot Plant (WIPP), Richland must certify that it meets WIPP's waste acceptance criteria. To be certified, the waste must be characterized, screened for prohibited items, treated (if necessary) and placed into a satisfactory disposal container. In a February 2008 amendment to an existing Record of Decision (Decision), the Department announced its plan to ship up to 8,764 cubic meters of contact-handled TRU waste from Hanford and other waste generator sites to the Advanced Mixed Waste Treatment Project (AMWTP) at Idaho's National Laboratory (INL) for processing and certification prior to disposal at WIPP. The Department decided to maximize the use of the AMWTP's automated waste processing capabilities to compact and, thereby, reduce the volume of contact-handled TRU waste. Compaction reduces the number of shipments and permits WIPP to more efficiently use its limited TRU waste disposal capacity. The Decision noted that the use of AMWTP would avoid the time and expense of establishing a processing capability at other sites. In May 2009, EM allocated $229 million of American Recovery and Reinvestment Act of 2009 (Recovery Act) funds to support Hanford's Solid Waste Program, including Hanford's contact-handled TRU waste. Besides providing jobs, these funds were intended to accelerate cleanup in the short term. We initiated this audit to determine whether the Department was effectively using Recovery Act funds to accelerate processing of Hanford's contact-handled TRU waste. Relying on the availability of Recovery Act funds, the Department changed course and approved an alternative plan that could increase costs by about $25 million

  17. Applying the Clean Air Act to municipal solid waste landfills

    SciTech Connect

    Heitz, D.R.; Romzick, P.G.

    1998-12-31

    On March 12, 1996, the EPA promulgated the new Source Performance Standards (NSPS) for Municipal Solid Waste (MSW) Landfills, the first federal air regulation specifically for MSW landfills. Landfills subject to this regulation which exceeded the threshold design capacity also became subject to the Title V operating permit program. This began the application of the Clean Air Act (CAA) to most of these nontraditional air sources. Unlike landfills, typical air sources have easily defined input capacities that correspond to potential emissions while the process creates a product or output. All these concepts are difficult and confusing to apply to MSW landfills. Applicability of the following CAA regulations are specifically addressed in this paper: NSPS for MSW landfills; new Source Review (NSR)/Prevention of Significant Deterioration (PSD); landfill Maximum Achievable Control Technologies (MACT); 112(g) Modification of Major Sources of Hazardous Air Pollutants (HAP); 112(r) Accidental Release Prevention; and Title V. Along with summarizing the potential applicability of each, the main issues are presented along with the current information on the regulations.

  18. Assessment of natural gas technology opportunities in the treatment of selected metals containing wastes. Topical report, June 1994-August 1995

    SciTech Connect

    McGervey, J.; Holmes, J.G.; Bluestein, J.

    1995-08-01

    The report analyzes the disposal of certain waste streams that contain heavy metals, as determined by Resource Conservation and Recovery Act (RCRA) regulations. Generation of the wastes, the regulatory status of the wastes, and current treatment practices are characterized, and the role of natural gas is determined. The four hazardous metal waste streams addressed in this report are electric arc furnace (EAF) dust, electroplating sludge wastes, used and off-specification circuit boards and cathode ray tubes, and wastes from lead manufacturing. This report assesses research and development opportunities relevant to natural gas technologies that may result from current and future enviromental regulations.

  19. F-Area Hazardous Waste Management Facility Semiannual Corrective Action Report, First and Second Quarter 1998, Volume I and II

    SciTech Connect

    Chase, J.

    1998-10-30

    This report addresses groundwater quality and monitoring data during first and second quarter 1998 for the F-Area Hazardous Waste management Facility (HWMF). The report fulfills the semiannual reporting requirements of Module III, Section D, of the 1995 Resource Conservation and Recovery Act (RCRA) Renewal Permit (South Carolina Hazardous and Mixed Waste Permit SC1-890-008-989), effective October 5, 1995 (hereafter referred to as the RCRA permit), and Section C of the Underground Injection Control Permit Application hereafter referred to as the Section C of the Underground Injection Control Permit Application (hereafter referred to as the UIC permit). The HWMF is described in the Introduction to Module III, Section C, of the RCRA permit.

  20. RCRA Sustainable Materials Management Information

    EPA Pesticide Factsheets

    This asset includes a broad variety of documents, descriptive data, technical analyses and guidance materials relative to voluntary improvements in resource conservation, the beneficial use of sustainable materials and the management of non-hazardous wastes and materials. Included in this asset are participant information and outreach materials of various voluntary programs relating to better materials and waste management programs. An example is the WasteWise program and Sustainable Materials Management (SMM) Challenges, which help organizations and businesses apply sustainable materials management practices to reduce municipal and select industrial wastes. Also included in this asset are guidance materials to assist municipalities in recycling and reuse of municipal solid waste, including diverting materials to composting, and the use of conversion methods such as anaerobic digestion. Another component are the data necessary to compile reports on the characterization of municipal solid waste (including such waste streams as food waste, yard and wood waste, discarded electronics, and household non-hazardous waste), the recycled content of manufactured goods, and other analyses performed using such tools as the Waste Assessment Reduction Model (WARM).For industrial non-hazardous waste, this asset includes guidance and outreach materials on industrial materials recycling and waste minimization. Finally, this asset includes research analyses on sustainable materia

  1. Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    SciTech Connect

    Not Available

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.

  2. Project report for the commercial disposal of mixed low-level waste debris

    SciTech Connect

    Andrews, G.; Balls, V.; Shea, T.; Thiesen, T.

    1994-05-01

    This report summarizes the basis for the commercial disposal of Idaho National Engineering Laboratory (INEL) mixed low-level waste (MLLW) debris and the associated activities. Mixed waste is radioactive waste plus hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). The critical factors for this project were DOE 5820.2A exemption, contracting mechanism, NEPA documentation, sampling and analysis, time limitation and transportation of waste. This report also will provide a guide or a starting place for future use of Envirocare of Utah or other private sector disposal/treatment facilities, and the lessons learned during this project.

  3. SEMINAR PROCEEDINGS: RCRA CORRECTIVE ACTION STABILIZATION TECHNOLOGIES

    EPA Science Inventory

    The seminar publication provides an overview of many technologies that can be used in applying the stabilization concept to RCRA cleanup activities. Technologies discussed include covers, grouting, slurry walls, hydrofracture, horizontal well drilling, a vacuum extraction, and b...

  4. Quarterly report of RCRA groundwater monitoring data for period July 1--September 30, 1995

    SciTech Connect

    1996-01-01

    Nineteen RCRA groundwater monitoring projects are conducted at the Hanford site. They include treatment, storage, and disposal facilities for both solid and liquid waste. Groundwater monitoring programs described in this report comply with the interim- and final- status federal and state regulations. The RCRA projects are monitored under one of the following programs: background monitoring, indicator parameter evaluation, or groundwater quality assessment or detection. This quarterly report contains data received between July 1 and Sept. 30, 1995, which are the cutoff dates for this reporting period. This report may contain not only data from the July-Sept. quarter, but also data from earlier sampling events not previously reported.

  5. 1999 Annual Mixed Waste Management Facility Groundwater Correction - Action Report (Volumes I, II, and III)

    SciTech Connect

    Chase, J.

    2000-06-14

    This Corrective Action Report (CAR) for the Mixed Waste Management Facility (MWMF) is being prepared to comply with the Resource Conservation and Recovery Act (RCRA) Permit Number SC1 890 008 989, dated October 31, 1999. This CAR compiles and presents all groundwater sampling and monitoring activities that are conducted at the MWMF. As set forth in previous agreements with South Carolina Department of Health and Environmental Control (SCDHEC), all groundwater associated with the Burial Ground Complex (BGC) (comprised of the MWMF, Low-Level Radioactive Waste Disposal Facility, and Old Radioactive Waste Burial Ground) will be addressed under this RCRA Permit. This CAR is the first to be written for the MWMF and presents monitoring activities and results as an outcome of Interim Status and limited Permitted Status activities. All 1999 groundwater monitoring activities were conducted while the MWMF was operated during Interim Status. Changes to the groundwater monitoring program were made upon receipt of the RCRA Permit, where feasible. During 1999, 152 single-screened and six multi-screened groundwater monitoring wells at the BGC monitored groundwater quality in the uppermost aquifer as required by the South Carolina Hazardous Waste Management Regulations (SCHWMR), settlement agreements 87-52-SW and 91-51-SW, and RCRA Permit SC1 890 008 989. However, overall compliance with the recently issued RCRA Permit could not be implemented until the year 2000 due to the effective date of the RCRA Permit and scheduling of groundwater monitoring activities. Changes have been made to the groundwater monitoring network to meet Permit requirements for all 2000 sampling events.

  6. Mixed Waste Working Group report

    SciTech Connect

    Not Available

    1993-11-09

    The treatment of mixed waste remains one of this country`s most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country`s largest mixed waste generator, responsible for 95 percent of the Nation`s mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE`s earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies.

  7. Demonstration of New Technologies Required for the Treatment of Mixed Waste Contaminated with {ge}260 ppm Mercury

    SciTech Connect

    Morris, M.I.

    2002-02-06

    The Resource Conservation and Recovery Act (RCRA) defines several categories of mercury wastes, each of which has a defined technology or concentration-based treatment standard, or universal treatment standard (UTS). RCRA defines mercury hazardous wastes as any waste that has a TCLP value for mercury of 0.2 mg/L or greater. Three of these categories, all nonwastewaters, fall within the scope of this report on new technologies to treat mercury-contaminated wastes: wastes as elemental mercury; hazardous wastes with less than 260 mg/kg [parts per million (ppm)] mercury; and hazardous wastes with 260 ppm or more of mercury. While this report deals specifically with the last category--hazardous wastes with 260 ppm or more of mercury--the other two categories will be discussed briefly so that the full range of mercury treatment challenges can be understood. The treatment methods for these three categories are as follows: Waste as elemental mercury--RCRA identifies amalgamation (AMLGM) as the treatment standard for radioactive elemental mercury. However, radioactive mercury condensates from retorting (RMERC) processes also require amalgamation. In addition, incineration (IMERC) and RMERC processes that produce residues with >260 ppm of radioactive mercury contamination and that fail the RCRA toxicity characteristic leaching procedure (TCLP) limit for mercury (0.20 mg/L) require RMERC, followed by AMLGM of the condensate. Waste with <260 ppm mercury--No specific treatment method is specified for hazardous wastes containing <260 ppm. However, RCRA regulations require that such wastes (other than RMERC residues) that exceed a TCLP mercury concentration of 0.20 mg/L be treated by a suitable method to meet the TCLP limit for mercury of 0.025 mg/L. RMERC residues must meet the TCLP value of {ge}0.20 mg/L, or be stabilized and meet the {ge}0.025 mg/L limit. Waste with {ge}260 ppm mercury--For hazardous wastes with mercury contaminant concentrations {ge}260 ppm and RCRA

  8. Clean Air Act Guidelines and Standards for Waste Management

    EPA Pesticide Factsheets

    This page contains the stationary sources of air pollution for the waste management industries, and their corresponding air pollution regulations. To learn more about the regulations for each industry, just click on the links below.

  9. Listed waste determination report. Environmental characterization

    SciTech Connect

    Not Available

    1993-06-01

    On September 23, 1988, the US Environmental Protection Agency (EPA) published a notice clarifying interim status requirements for the management of radioactive mixed waste thereby subjecting the Idaho National Engineering Laboratory (INEL) and other applicable Department of Energy (DOE) sites to regulation under the Resource Conservation and Recovery Act (RCRA). Therefore, the DOE was required to submit a Part A Permit application for each treatment, storage, and disposal (TSD) unit within the INEL, defining the waste codes and processes to be regulated under RCRA. The September 1990 revised Part A Permit application, that was approved by the State of Idaho identified 101 potential acute and toxic hazardous waste codes (F-, P-, and U- listed wastes according to 40 CFR 261.31 and 40 CFR 261.33) for some TSD units at the Idaho Chemical Processing Plant. Most of these waste were assumed to have been introduced into the High-level Liquid Waste TSD units via laboratory drains connected to the Process Equipment Waste (PEW) evaporator (PEW system). At that time, a detailed and systematic evaluation of hazardous chemical use and disposal practices had not been conducted to determine if F-, P-, or Unlisted waste had been disposed to the PEW system. The purpose of this investigation was to perform a systematic and detailed evaluation of the use and disposal of the 101 F-, P-, and Unlisted chemicals found in the approved September 1990 Part A Permit application. This investigation was aimed at determining which listed wastes, as defined in 40 CFR 261.31 (F-listed) and 261.33 (P & Unlisted) were discharged to the PEW system. Results of this investigation will be used to support revisions to the RCRA Part A Permit application.

  10. SEMINAR PUBLICATION: DESIGN AND CONSTRUCTION OF RCRA/CERCLA FINAL COVERS

    EPA Science Inventory

    Cover systems are an essential part of all land disposal facilities. Covers control moisture infiltration from the surface into closed facilities and limit the formation of leachate and its migration to ground water. The Resource Conservation and Recovery Act (RCRA) Subparts G, K...

  11. Regulatory Exclusions and Alternative Standards for the Recycling of Materials, Solid Wastes and Hazardous Wastes

    EPA Pesticide Factsheets

    Determining the Level of Regulation for Hazardous Waste Recycling, Recycled Materials that are not Subject to RCRA Hazardous Waste Regulation, Materials Subject to Alternative Regulatory Controls, Materials Subject to Full Hazardous Waste Regulations.

  12. Mixed Waste Focus Area -- Waste form initiative

    SciTech Connect

    Nakaoka, R.; Waters, R.; Pohl, P.; Roach, J.

    1998-07-01

    The mission of the US Department of Energy`s (DOE) Mixed Waste Focus Area (MWFA) is to provide acceptable technologies that enable implementation of mixed waste treatment systems which are developed in partnership with end-users, stakeholders, tribal governments, and regulators. To accomplish this mission, a technical baseline was established in 1996 and revised in 1997. The technical baseline forms the basis for determining which technology development activities will be supported by the MWFA. The primary attribute of the technical baseline is a set of prioritized technical deficiencies or roadblocks related to implementation of mixed waste treatment systems. The Waste Form Initiative (WFI) was established to address an identified technical deficiency related to waste form performance. The primary goal of the WFI was to ensure that the mixed low-level waste (MLLW) treatment technologies being developed, currently used, or planned for use by DOE would produce final waste forms that meet the waste acceptance criteria (WAC) of the existing and/or planned MLLW disposal facilities. The WFI was limited to an evaluation of the disposal requirements for the radioactive component of MLLW. Disposal requirements for the hazardous component are dictated by the Resource Conservation and Recovery Act (RCRA), and were not addressed. This paper summarizes the technical basis, strategy, and results of the activities performed as part of the WFI.

  13. RCRA Facility Investigation/Remedial Investigation Report with Baseline Risk Assessment for the Fire Department Hose Training Facility (904-113G)

    SciTech Connect

    Palmer, E.

    1997-04-01

    This report documents the Resource Conservation and Recovery Act (RCRA) Facility Investigation/Remedial Investigation/Baseline Risk Assessment (RFI/RI/BRA) for the Fire Department Hose Training Facility (FDTF) (904-113G).

  14. RCRA Facility investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 6, Technical memorandums 06-13, 06-14, and 06-15

    SciTech Connect

    Kannard, J. R.; Wilson, R. C.; Zondlo, T. F.

    1991-09-01

    This report describes the borehole geophysical logging performed at selected monitoring wells at waste area grouping (WAG) 6 of Oak Ridge National Laboratory in support of the WAG 6 Resource Conservation and Recovery Act Facility Investigation (RFI). It identifies the locations and describes the methods, equipment used in the effort, and the results of the activity. The actual logs for each well logged are presented in Attachment 1 through 4 of the TM. Attachment 5 provide logging contractor service literature and Attachment 6 is the Oak Ridge National Laboratory (ORNL) Procedure for Control of a Nuclear Source Utilized in Geophysical logging. The primary objectives of the borehole geophysical logging program were to (1) identify water-bearing fractured bedrock zones to determine the placement of the screen and sealed intervals for subsequent installation, and (2) further characterize local bedrock geology and hydrogeology and gain insight about the deeper component of the shallow bedrock aquifer flow system. A secondary objective was to provide stratigraphic and structural correlations with existing logs for Hydraulic Head Monitoring Station (HHMS) wells, which display evidence of faulting.

  15. Recent developments in the French programme for radioactive waste management planning Act of 28 june 2006

    SciTech Connect

    Ouzounian, G.

    2007-07-01

    In 2005, new developments on radioactive-waste management in France were marked mostly by the preparation of the 2006 milestone specified in the act of 30 December 1991. A bill on radioactive waste management has been prepared by the Government at the beginning of 2006 and passed to the French Parliament on 15 June 2006. The Planning Act on the sustainable management of radioactive materials and wastes has been drawn from the results of the 15 years of research performed by ANDRA and the CEA on 'partitioning and transmutation of long-lived radionuclides', 'deep geological disposal' and 'conditioning and long term interim storage'. Major milestones during those two last years are presented, including reviews of the Dossier 2005, official reports, the Public Debate, and finally the Planning Act. (authors)

  16. Effectiveness evaluation of three RCRA caps at the Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Shevenell, L.A.; Goldstrand, P.M.

    1994-01-01

    Because installation of Resource Conservation and Recovery Act (RCRA)- engineered caps is costly, it is prudent to evaluate the effectiveness of this procedure for hydrologically isolating contaminants. The objective for installation of five-part engineered caps at the Y-12 Plant was to (1) satisfy the regulatory compliance issues, (2) minimize the risk of direct contact with the wastes, and (3) reduce rainfall infiltration. Although the original objectives of installing the caps were not to alter groundwater flow, a potential effect of reducing infiltration is to minimize leaching, thus retarding groundwater contaminant migration from the site. Hence, cap effectiveness with respect to reduced groundwater contaminant migration is evaluated using groundwater data in this report. Based on the available data at the Y-12 capped areas, evaluation of cap effectiveness includes studying water level and chemical variability in nearby monitoring wells. Three caps installed during 1989 are selected for evaluation in this report. These caps are located in three significantly different hydrogeologic settings: overlying a karst aquifer (Chestnut Ridge Security Pits [CRSP]), overlying shales located on a hill slope (Oil Landfarm Waste Management Area [OLWMA]), and overlying shales in a valley floor which is a site of convergent groundwater flow (New Hope Pond [NHP]). Presumably, the caps have been effective in minimizing risk of direct contact with the wastes and halting direct rainfall infiltration into the sites over the extent of the capped areas, but no evidence is presented in this report to directly demonstrate this. The caps installed over the three sites appear to have had a minimal effect on groundwater contaminant migration from the respective sites. Following cap construction, no changes in the configuration of the water table were observed. Migration of contaminant plumes occurred at all three sites, apparently without regard to the timing of cap installation.

  17. Results of Phase I groundwater quality assessment for single-shell tank waste management Area S-SX at the Hanford Site

    SciTech Connect

    Johnson, V.G.; Chou, C.J.

    1998-01-01

    Pacific Northwest National Laboratory (PNNL) conducted a Phase I, Resource Conservation and Recovery Act of 1976 (RCRA) groundwater quality assessment for the Richland Field Office of the U.S. Department of Energy (DOE-RL), in accordance with the Federal Facility Compliance Agreement. The purpose of the investigation was to determine if the Single-Shell Tank Waste Management Area (WMA) S-SX has impacted groundwater quality. The WMA is located in the southern portion of the 200 West Area of the Hanford Site and consists of the 241-S and 241-SX tank farms and ancillary waste systems. The unit is regulated under RCRA interim-status regulations (40 CFR 265, Subpart F) and was placed in assessment groundwater monitoring (40 CFR 265.93 [d]) in August 1996 because of elevated specific conductance and technetium-99, a non-RCRA co-contaminant, in downgradient monitoring wells. Major findings of the assessment are summarized below: (1) Distribution patterns for radionuclides and RCRA/dangerous waste constituents indicate WMA S-SX has contributed to groundwater contamination observed in downgradient monitoring wells. (2) Drinking water standards for nitrate and technetium-99 are currently exceeded in one RCRA-compliant well (299-W22-46) located at the southeastern comer of the SX tank farm. (3) Technetium-99, nitrate, and chromium concentrations in downgradient well 299-W22-46 (the well with the highest current concentrations) appear to be declining after reaching maximum concentrations in May 1997. (4) Cesium-137 and strontium-90, major constituents of concern in single-shell tank waste, were not detected in any of the RCRA-compliant wells in the WMA network, including the well with the highest current technetium-99 concentrations (299-W22-46). (5) Low but detectable strontium-90 and cesium-137 were found in one old well (2-W23-7), located inside and between the S and SX tank farms.

  18. Characterization of Vadose Zone Sediment: Uncontaminated RCRA Borehole Core Samples and Composite Samples

    SciTech Connect

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Schaef, Herbert T.; Williams, Bruce A.; Lanigan, David C.; Horton, Duane G.; Clayton, Ray E.; Mitroshkov, Alexandre V.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Parker, Kent E.; Kutnyakov, Igor V.; Serne, Jennifer N.; Last, George V.; Smith, Steven C.; Lindenmeier, Clark W.; Zachara, John M.; Burke, Deborah S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.14, 4.16, 5.20, 5.22, 5.43, and 5.45. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc. asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is one in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from Resource Conservation and Recovery Act (RCRA) borehole bore samples and composite samples.

  19. Waste Isolation Pilot Plant Land Withdrawal Act of 1988

    SciTech Connect

    Not Available

    1988-01-01

    The Committee on Energy and Natural Resources reports on the Bill S. 1272 and recommends passage of the bill as amended by the Committee. S. 1272 as amended withdraws 10,240 acres of land in Eddy county, New Mexico for the exclusive use of the Department of Energy (DOE) for construction, operation, decommissioning and post-decommissioning control of the Waste Isolation Pilot Plant (WIPP). The lands, currently managed by the Department of the Interior, would be permanently withdrawn and transferred to the control of DOE. The bill sets forth specific instructions to the Secretary of Energy to preserve the ecology of these lands and mandates compliance with standards of the Environmental Protection Agency (EPA) for storage and disposal of transuranium radioactive waste as set forth in 40 C.F.R. Part 191. In addition to the section-by-section analysis of the bill, a cost estimate from the Congressional Budget Office and copies of communications received by the Committee from DOE and the Department of the Interior setting forth executive recommendations relating to the bill are included.

  20. Title III list of lists: Consolidated list of chemicals subject to the Emergency Planning and Community Right-to-Know Act (EPCRA) and section 112(r) of the Clean Air Act, as ammended. Title III of the Superfund Amendments and Reauthorization Act of 1986, and Title III of the Clean Air Act Amendments of 1990, April 1995

    SciTech Connect

    1995-04-01

    This consolidated list has been prepared to help firms handling chemicals determine whether they need to submit reports under sections 302, 304, or 313 of SARA Title III (EPCRA) and, for a specific chemical, what reports may need to be submitted. It will also help firms determine whether they will be subject to accident prevention regulations under CAA section 112(r). Separate lists are also provided of Resource Conservation and Recovery Act (RCRA) waste streams and unlisted hazardous wastes, and of radionuclides reportable under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). These lists should be used as a reference tool, not as a definitive source of compliance information.

  1. Getting waste ready for shipment to the WIPP: integration of characterization and certification activities

    SciTech Connect

    Sinkule, B.; Knudsen, K.; Rogers, P.

    1996-06-01

    The Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC) serve as the primary directive for assuring the safe handling, transportation, and disposal of transuranic (TRU) waste generated at Department of Energy (DOE) sites. The WIPP WAC address fulfillment of WIPP`s operational safety and performance assessment criteria, compliance with Resource Conservation and Recovery Act (RCRA) requirements, and preparation of waste packages that meet all transportation criteria. At individual generator sites, preparation of transuranic waste for final disposal at WIPP includes characterizing the waste to meet the requirements of the transuranic Waste Characterization Quality Assurance Program Plan (QAPP) and certifying waste containers to meet the WIPP WAC and the Transuranic Package Transporter-II Authorized Methods for Payload Control (TRAMPAC). This paper compares the quality assurance and quality control requirements specified in the WIPP WAC, QAPP, and TRAMPAC and discusses the potential to consolidate activities to comply with the TRU waste characterization and certification program requirements.

  2. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    SciTech Connect

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D.

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

  3. RCRA Post-Closure Monitoring and Inspection Report for CAU 91: Area 3 U-3fi Waste Unit, Nevada Test Site, Nevada, for the Period October 1999-October 2000

    SciTech Connect

    D. F. Emer

    2001-02-01

    This annual Neutron Soil Moisture Monitoring report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the U-3fi Resource Conservation and Recovery Act Unit, located in Area 3 of the Nevada Test Site, Nye County, Nevada, during the October 1999 to October 2000 period. Inspections of the U-3fi Resource Conservation and Recovery Act Unit are conducted to determine and document the physical condition of the concrete pad, facilities, and any unusual conditions that could impact the proper operation of the waste unit closure. The objective of the neutron-logging program is to monitor the soil moisture conditions along the 128-meter (m) (420-feet [ft]) ER3-3 monitoring well and detect changes that maybe indicative of moisture movement in the regulated interval extending between 73 to 82 m (240 to 270 ft) or to detect changes that maybe indicative of subsidence within the disposal unit itself. Physical inspections of the closure were completed in March and September 2000 and indicated that the site is in good condition with no significant findings noted. The directional survey which is required to be completed every five years was run in the ER3-3 casing to determine if subsidence was occurring in the U-3fi emplacement borehole. Small changes were noted which are attributed to initial settling of the sand pack stemming. No evidence of subsidence within the emplacement borehole was observed. The subsidence survey for the October 1999 to October 2000 monitoring period indicated an increase in elevation of 0.244 centimeters (cm) (0.008 ft) compared to the previous year, July 1999. All changes in subsidence survey data taken to date are so small as to be at the survey instrument resolution level and it is not clear if they represent subsidence or measurement error. There is no clear evidence for any subsidence of the monument. Soil moisture monitoring results indicate dry stable conditions

  4. RCRA lawmaking engine stands idle

    SciTech Connect

    Fields, H.

    1993-08-01

    One of the first major actions of the Clinton administration`s EPA was to postpone for six months the October 9 deadline for municipal solid waste landfills to comply with massive standards. A bill ntroduced in Congress would extend the original deadline by two years instead of six months. The National Recycling Coalition is extremely opposed to the extension because of unsound disosal practices. Issues regarding the landfill actions are discussed.

  5. Recovery Act: Waste Energy Project at AK Steel Corporation Middletown

    SciTech Connect

    Joyce, Jeffrey

    2012-06-30

    In 2008, Air Products and Chemicals, Inc. (“Air Products”) began development of a project to beneficially utilize waste blast furnace “topgas” generated in the course of the iron-making process at AK Steel Corporation’s Middletown, Ohio works. In early 2010, Air Products was awarded DOE Assistance Agreement DE-EE002736 to further develop and build the combined-cycle power generation facility. In June 2012, Air Products and AK Steel Corporation terminated work when it was determined that the project would not be economically viable at that time nor in the foreseeable future. The project would have achieved the FOA-0000044 Statement of Project Objectives by demonstrating, at a commercial scale, the technology to capture, treat, and convert blast furnace topgas into electric power and thermal energy.

  6. Final closure cover for a Hanford radioactive mixed waste disposal facility

    SciTech Connect

    Johnson, K.D.

    1996-02-06

    This study provides a preliminary design for a RCRA mixed waste landfill final closure cover. The cover design was developed by a senior class design team from Seattle University. The design incorporates a layered design of indigenous soils and geosynthetics in a layered system to meet final closure cover requirements for a landfill as imposed by the Washington Administrative Code WAC-173-303 implementation of the Resource Conservation and Recovery Act.

  7. Performance Demonstration Program Plan for Nondestructive Assay of Boxed Wastes for the TRU Waste Characterization Program

    SciTech Connect

    None, None

    2009-10-01

    Each testing and analytical facility performing waste characterization activities for the Waste Isolation Pilot Plant (WIPP) participates in the Performance Demonstration Program (PDP) to comply with the Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC) (DOE/WIPP-02-3122) and the Quality Assurance Program Document (QAPD) (CBFO-94-1012). The PDP serves as a quality control check for data generated in the characterization of waste destined for WIPP. Single-blind audit samples are prepared and distributed to each of the facilities participating in the PDP. Different PDPs evaluate the analyses of simulated headspace gases (HSGs), constituents of the Resource Conservation and Recovery Act (RCRA), and transuranic (TRU) radionuclides using nondestructive assay (NDA) techniques.

  8. Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program

    SciTech Connect

    N /A

    2009-04-01

    Each testing and analytical facility performing waste characterization activities for the Waste Isolation Pilot Plant (WIPP) participates in the Performance Demonstration Program (PDP) to comply with the Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC) (DOE/WIPP-02-3122) and the Quality Assurance Program Document (QAPD) (CBFO-94-1012). The PDP serves as a quality control check for data generated in the characterization of waste destined for WIPP. Single blind audit samples are prepared and distributed to each of the facilities participating in the PDP. The PDP evaluates analyses of simulated headspace gases, constituents of the Resource Conservation and Recovery Act (RCRA), and transuranic (TRU) radionuclides using nondestructive assay (NDA) techniques.

  9. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 4, Technical memorandums 06-03A, 06-04A, 06-05A, and 06-08A

    SciTech Connect

    Wilson, R. C.; Lewis, K. K.

    1991-09-01

    This report presents data and information related to remedial investigation studies for Oak Ridge National Laboratory (ORNL). Information is included on a soil gas survey, surface radiological investigations of waste areas, and well installation for ground water monitoring. (CBS)

  10. RCRA Facility Investigation Plan K-1004 Area Lab Drain and the K-1007-B Pond - Oak Ridge Gaseous Diffusion Plant - Oak Ridge, Tennessee

    SciTech Connect

    ORGDP, Martin Marietta Energy Systems Inc.

    1988-12-01

    Within the confines of the Oak Ridge Gaseous Diffusion Plant (ORGDP) are hazardous waste treatment, storage, and disposal facilities; some are in operation while others are no longer in use. these solid waste management units (SWMUs) are subject to assessment by the US Environmental Protection Agency (EPA). The RCRA Facility Investigation (RFI) Plans are scheduled to be submitted for all units during calendar years 1987 and 1988. The RFI Plan - General Document (K/HS-132) includes information applicable to all the ORGDP SMWUs and serves as a reference document for the site-specific RFI plans. This document is the site-specific RFI Plan for the K-1004 Area Lab Drain (ALD) and the K-1007-B Pond. This plan is based upon requirements described in the draft document, RFI Guidance, Vols. I-IV, December 1987 (EPA 530/SW-87-001). This unit is regulated by Section 3004(u) of the 1984 Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation Recovery Act (RCRA). Contained within this document are geographical, historical, operational, geological, and hydrological data specific to the K-1004 ALD and the K-1007-B Pond. The potential for release of contamination through the various media to receptors is addressed. A sampling plan is proposed to further determine the extent (if any) of release of contamination to the surrounding environment. Included are health and safety procedures to be followed when implementing the sampling plan. Quality control (QC) procedures for remedial action occurring on the Oak Ridge Reservation (ORR) are presented in 'The Environmental Surveillance Procedures Quality Control Program, Martin Marietta Energy Systems, Inc., (ESH/Sub/87-21706/1), and quality assurance (QA) guidelines for ORGDP investigations are contained in The K-25 Remedial Actions Program Quality Assurance Plan, K/HS-231.

  11. Hazardous Waste Determination Evaluation

    EPA Pesticide Factsheets

    This document details EPA’s Resource Conservation and Recovery Act (RCRA) regulations, which are designed to prevent serious environmental damages that might occur, as well as mitigate damages that have occurred.

  12. Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication, Environmental Protection Agency Number ID4890008952

    SciTech Connect

    Holzemer, Michael J.; Hart, Edward

    2015-04-01

    Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication for the Idaho National Laboratory Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Partial Permit, PER-116. This Permit Reapplication is required by the PER-116 Permit Conditions I.G. and I.H., and must be submitted to the Idaho Department of Environmental Quality in accordance with IDAPA 58.01.05.012 [40 CFR §§ 270.10 and 270.13 through 270.29].

  13. CHALLENGES WITH RETRIEVING TRANSURANIC WASTE FROM THE HANFORD BURIAL GROUNDS

    SciTech Connect

    SWAN, R.J.; LAKES, M.E.

    2007-08-06

    The U.S. DOE's Hanford Reservation produced plutonium and other nuclear materials for the nation's defense starting in World War II. The defense mission generated wastes that were either retrievably stored (i.e. retrievably stored waste) and/or disposed of in burial grounds. Challenges have emerged from retrieving suspect TRU waste including adequacy of records, radiological concerns, container integrity, industrial hygiene and safety issues, the lack of processing/treatment facilities, and the integration of regulatory requirements. All retrievably stored waste is managed as mixed waste and assumed to be TRU waste, unless documented otherwise. Mixed waste is defined as radioactive waste that contains hazardous constituents. The Atomic Energy Act governs waste with radionuclides, and the Resource Conservation and Recovery Act (RCRA) governs waste with hazardous constituents. Waste may also be governed by the Toxic Substances Control Act (TSCA), and a portion may be managed under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). In 1970, TRU waste was required to be placed in 20-year retrievable storage and segregated from other Waste. Prior to that date, segregation did not occur. Because of the changing definition of TRU over the years, and the limitations of early assay equipment, all retrievably stored waste in the burial grounds is managed as suspect TRU. Experience has shown that some of this waste will be characterized as low-level (non-TRU) waste after assay. The majority of the retrieved waste is not amenable to sampling due to waste type and/or radiological issues. Key to waste retrieval and disposition are characterization, historical investigation and research, knowledge of past handling and packaging, as well as a broad understanding and application of the regulations.

  14. Processing results of 1,800 gallons of mercury and radioactively contaminated mixed waste rinse solution

    SciTech Connect

    Thiesen, B.P.

    1993-01-01

    The mercury-contaminated rinse solution (INEL waste ID{number_sign} 123; File 8 waste) was successfully treated at the Idaho National Engineering Laboratory (INEL). This waste was generated during the decontamination of the Heat Transfer Reactor Experiment 3 (HTRE-3) reactor shield tank. Approximately 1,800 gal of waste was generated and was placed into 33 drums. Each drum contained precipitated sludge material ranging from 1--10 in. in depth, with the average depth of about 2.5 in. The pH of each drum varied from 3--11. The bulk liquid waste had a mercury level of 7.0 mg/l, which exceeded the Resource Conservation and Recovery Act (RCRA) limit of 0.2 mg/l. The average liquid bulk radioactivity was about 2.1 pCi/ml, while the average sludge contamination was about 13,800 pci/g. Treatment of the waste required separation of the liquid from the sludge, filtration, pH adjustment, and ion exchange. Because of difficulties in processing, three trials were required to reduce the mercury levels to below the RCRA limit. In the first trial, insufficient filtration of the waste allowed solid particulate produced during pH adjustment to enter into the ion exchange columns and ultimately the waste storage tank. In the second trial, the waste was filtered down to 0.1 {mu} to remove all solid mercury compounds. However, before filtration could take place, a solid mercury complex dissolved and mercury levels exceeded the RCRA limit after filtration. In the third trial, the waste was filtered through 0.3-A filters and then passed through the S-920 resin to remove the dissolved mercury. The resulting solution had mercury levels at 0.0186 mg/l and radioactivity of 0.282 pCi/ml. This solution was disposed of at the TAN warm waste pond, TAN782, TSF-10.

  15. Evoqua RCRA Permit Application and Draft Permit Documents

    EPA Pesticide Factsheets

    Documents pertaining to the proposed RCRA permit for the Evoqua Water Technologies LLC carbon regeneration facility located on the Colorado River Indian Tribes (CRIT) reservation near Parker, Arizona.

  16. Results of Hazardous and Mixed Waste Excavation from the Chemical Waste Landfill

    SciTech Connect

    Young, S. G.; Schofield, D. P.; Kwiecinski, D.; Edgmon, C. L.; Methvin, R.

    2002-02-27

    This paper describes the results of the excavation of a 1.9-acre hazardous and mixed waste landfill operated for 23 years at Sandia National Laboratories, Albuquerque, New Mexico. Excavation of the landfill was completed in 2 1/2 years without a single serious accident or injury. Approximately 50,000 cubic yards of soil contaminated with volatile and semi-volatile organics, metals, polychlorinated biphenyl compounds, and radioactive constituents was removed. In addition, over 400 cubic yards of buried debris was removed, including bulk debris, unknown chemicals, compressed gas cylinders, thermal and chemical batteries, explosive and ordnance debris, pyrophoric materials and biohazardous waste. Removal of these wastes included negotiation of multiple regulations and guidances encompassed in the Resource Conservation and Recovery Act (RCRA), the Toxic Substances Control Act (TSCA), and risk assessment methodology. RCRA concepts that were addressed include the area of contamination, permit modification, emergency treatment provision, and listed waste designation. These regulatory decisions enabled the project to overcome logistical and programmatic needs such as increased operational area, the ability to implement process improvements while maintaining a record of decisions and approvals.

  17. Glossary of CERCLA, RCRA and TSCA related terms and acronyms. Environmental Guidance

    SciTech Connect

    Not Available

    1993-10-01

    This glossary contains CERCLA, RCRA and TSCA related terms that are most often encountered in the US Department of Energy (DOE) Environmental Restoration and Emergency Preparedness activities. Detailed definitions are included for key terms. The CERCLA definitions included in this glossary are taken from the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as amended and related federal rulemakings. The RCRA definitions included in this glossary are taken from the Resource Conservation and Recovery Act (RCRA) and related federal rulemakings. The TSCA definitions included in this glossary are taken from the Toxic Substances and Control Act (TSCA) and related federal rulemakings. Definitions related to TSCA are limited to those sections in the statute and regulations concerning PCBs and asbestos.Other sources for definitions include additional federal rulemakings, assorted guidance documents prepared by the US Environmental Protection Agency (EPA), guidance and informational documents prepared by the US Department of Energy (DOE), and DOE Orders. The source of each term is noted beside the term. Terms presented in this document reflect revised and new definitions published before July 1, 1993.

  18. 75 FR 35720 - Massachusetts: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... AGENCY 40 CFR Part 271 Massachusetts: Final Authorization of State Hazardous Waste Management Program... Robin Biscaia. Mail: Robin Biscaia, RCRA Waste Management Section, Office of Site Remediation and.... Hand Delivery or Courier: Deliver your comments to: Robin Biscaia, RCRA Waste Management...

  19. 78 FR 35837 - North Carolina: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... Conservation and Recovery Act (RCRA). These changes correspond to certain Federal rules promulgated between July 1, 2004, and June 30, 2008 (also known as RCRA Clusters XV through XVIII). With this proposed rule... Docket ID No. EPA-R04- RCRA-2012-0173, by one of the following methods: http://...

  20. Environmental assessment: Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory

    SciTech Connect

    1996-07-01

    The U.S. Department of Energy (DOE) proposes to close the Waste Calcining Facility (WCF). The WCF is a surplus DOE facility located at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering Laboratory (INEL). Six facility components in the WCF have been identified as Resource Conservation and Recovery Ace (RCRA)-units in the INEL RCRA Part A application. The WCF is an interim status facility. Consequently, the proposed WCF closure must comply with Idaho Rules and Standards for Hazardous Waste contained in the Idaho Administrative Procedures Act (IDAPA) Section 16.01.05. These state regulations, in addition to prescribing other requirements, incorporate by reference the federal regulations, found at 40 CFR Part 265, that prescribe the requirements for facilities granted interim status pursuant to the RCRA. The purpose of the proposed action is to reduce the risk of radioactive exposure and release of hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce potential risks to human health and the environment, and to comply with the Idaho Hazardous Waste Management Act (HWMA) requirements.

  1. Workplan/RCRA Facility Investigation/Remedial Investigation Report for the Old Radioactive Waste Burial Ground 643-E, S01-S22 - Volume I - Text and Volume II - Appendices

    SciTech Connect

    Conner, K.R.

    2000-12-12

    This document presents the assessment of environmental impacts resulting from releases of hazardous substances from the facilities in the Old Radioactive Waste Burial Ground 643-E, including Solvent Tanks 650-01E to 650-22E, also referred to as Solvent Tanks at the Savannah River Site, Aiken, South Carolina.

  2. No-migration variance petition for the Waste Isolation Pilot Plant

    SciTech Connect

    Carnes, R.G.; Hart, J.S. ); Knudtsen, K. )

    1990-01-01

    The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) project to provide a research and development facility to demonstrate the safe disposal of radioactive waste resulting from US defense activities and programs. The DOE is developing the WIPP facility as a deep geologic repository in bedded salt for transuranic (TRU) waste currently stored at or generated by DOE defense installations. Approximately 60 percent of the wastes proposed to be emplaced in the WIPP are radioactive mixed wastes. Because such mixed wastes contain a hazardous chemical component, the WIPP is subject to requirements of the Resource Conservation and Recovery Act (RCRA). In 1984 Congress amended the RCRA with passage of the Hazardous and Solid Waste Amendments (HSWA), which established a stringent regulatory program to prohibit the land disposal of hazardous waste unless (1) the waste is treated to meet treatment standards or other requirements established by the Environmental Protection Agency (EPA) under {section}3004(n), or (2) the EPA determines that compliance with the land disposal restrictions is not required in order to protect human health and the environment. The DOE WIPP Project Office has prepared and submitted to the EPA a no-migration variance petition for the WIPP facility. The purpose of the petition is to demonstrate, according to the requirements of RCRA {section}3004(d) and 40 CFR {section}268.6, that to a reasonable degree of certainty, there will be no migration of hazardous constituents from the WIPP facility for as long as the wastes remain hazardous. This paper provides an overview of the petition and describes the EPA review process, including key issues that have emerged during the review. 5 refs.

  3. Mixed waste management plans at the Fernald Environmental Management Project (FEMP)

    SciTech Connect

    Walsh, T.J.; Sattler, J.M.

    1996-07-01

    The Fernald Environmental Management Project (FEMP) is a United States Department of Energy (DOE) facility located in southwestern Ohio. The facility began production of uranium metal products in the early 1950`s and continued processing of uranium ore concentrates until 1989. The facility used a variety of chemical and metallurgical processes to manufacture uranium metals for use at other DOE sites across the country. Because of the chemical and metallurgical processes employed at the site, some hazardous wastes as defined by the Resource Conservation and Recovery Act (RCRA) were generated during the manufacture of the uranium metal products. Because of uranium metal`s radioactive properties, the hazardous wastes generated at the facility typically contain some radioactivity. Wastes which contain both a hazardous component subject to RCRA regulation and a radioactive component subject to the Atomic Energy Act of 1954 are described as mixed waste. In 1989, the FEMP was placed on the National Priorities List (NPL) requiring cleanup of the facility`s radioactive and chemical contamination under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This paper examines the regulatory requirements associated with development of the plan used to manage mixed wastes at the FEMP. In addition, the paper discusses the strategies used to integrate the requirements of the Federal Facility Compliance Act (FFCAct) with CERCLA response actions.

  4. Opportunities for artificial intelligence application in computer- aided management of mixed waste incinerator facilities

    SciTech Connect

    Rivera, A.L.; Ferrada, J.J.; Singh, S.P.N.

    1992-01-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site. It is designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conservation and Recovery Act (RCRA). This facility, known as the TSCA Incinerator, services seven DOE/OR installations. This incinerator was recently authorized for production operation in the United States for the processing of mixed (radioactively contaminated-chemically hazardous) wastes as regulated under TSCA and RCRA. Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. These requirements impact the characteristics and disposition of incinerator residues, limits the quality of liquid and gaseous effluents, limit the characteristics and rates of waste feeds and operating conditions, and restrict the handling of the waste feed inventories. This incinerator facility presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. Demonstrated computer-aided management systems could be transferred to future mixed waste incinerator facilities.

  5. Opportunities for artificial intelligence application in computer- aided management of mixed waste incinerator facilities

    SciTech Connect

    Rivera, A.L.; Ferrada, J.J.; Singh, S.P.N.

    1992-05-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site. It is designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conservation and Recovery Act (RCRA). This facility, known as the TSCA Incinerator, services seven DOE/OR installations. This incinerator was recently authorized for production operation in the United States for the processing of mixed (radioactively contaminated-chemically hazardous) wastes as regulated under TSCA and RCRA. Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. These requirements impact the characteristics and disposition of incinerator residues, limits the quality of liquid and gaseous effluents, limit the characteristics and rates of waste feeds and operating conditions, and restrict the handling of the waste feed inventories. This incinerator facility presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. Demonstrated computer-aided management systems could be transferred to future mixed waste incinerator facilities.

  6. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect

    GREAGER, T.M.

    2000-12-06

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In

  7. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect

    GREAGER, T.M.

    2000-12-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In

  8. Proposed plan for the Tank 105-C Hazardous Waste Management Facility. Revision 1

    SciTech Connect

    Miles, W.C. Jr.

    1994-06-24

    This Proposed Plan was developed to describe the remedial action selected at the Tank 105-C Hazardous Waste Management Facility (HWMF) source-specific unit within the C-Area Fundamental Study Area (FSA) at the Savannah River Site (SRS) and to fulfill Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements. This 8,400 gallon capacity tank was certified and accepted closed according to a closure plan approved by the state of South Carolina under the Resource Conservation and Recovery Act (RCRA) authority in January 1991. As a result of the closure, previously performed under RCRA, the unit poses no current or potential threat to human health or the environment. Accordingly, no further remedial action is necessary under CERCLA.

  9. RCRA designation of discarded americium/beryllium sealed sources

    SciTech Connect

    Kirner, N.P.

    1994-09-01

    Many sealed sources containing americium and beryllium are used throughout construction, industry, and research, and will eventually require disposal. For planning purposes it is necessary to determine whether these sources, when disposed, constitute a mixed waste, i.e., a waste containing hazardous constituents regulated under the Resource Conservation and Recovery Act and radioactive constituents regulated under the Atomic Energy Act. Waste designation criteria contained in 40 CFR 261 are evaluated in detail in this report. It is determined that discarded americium/beryllium sealed sources do not contain any wastes listed in Subpart D of 40 CFR 261, nor do the discarded sources exhibit any hazardous characteristics. Therefore, it is concluded that discarded americium/beryllium sealed sources are not a mixed waste under regulations established by the US Environmental Protection Agency. Hazardous waste regulatory programs delegated to States, however, may have regulations that differ from those of the Federal government.

  10. Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams

    SciTech Connect

    1996-07-01

    The U.S. Department of Energy (DOE) has established the Mixed Waste Focus Area (MWFA), which represents a national effort to develop and coordinate treatment solutions for mixed waste among all DOE facilities. The hazardous waste component of mixed waste is regulated under the Resource Conservation and Recovery Act (RCRA), while the radioactive component is regulated under the Atomic Energy Act, as implemented by the DOE, making mixed waste one of the most complex types of waste for the DOE to manage. The MWFA has the mission to support technologies that meet the needs of the DOE`s waste management efforts to characterize, treat, and dispose of mixed waste being generated and stored throughout the DOE complex. The technologies to be supported must meet all regulatory requirements, provide cost and risk improvements over available technologies, and be acceptable to the public. The most notable features of the DOE`s mixed-waste streams are the wide diversity of waste matrices, volumes, radioactivity levels, and RCRA-regulated hazardous contaminants. Table 1-1 is constructed from data from the proposed site treatment plans developed by each DOE site and submitted to DOE Headquarters. The table shows the number of mixed-waste streams and their corresponding volumes. This table illustrates that the DOE has a relatively small number of large-volume mixed-waste streams and a large number of small-volume mixed-waste streams. There are 1,033 mixed-waste streams with volumes less than 1 cubic meter; 1,112 mixed-waste streams with volumes between 1 and 1,000 cubic meters; and only 61 mixed-waste streams with volumes exceeding 1,000 cubic meters.

  11. 3Q/4Q99 F-Area Hazardous Waste Management Facility Corrective Action Report - Third and Fourth Quarter 1999, Volumes I and II

    SciTech Connect

    Chase, J.

    2000-05-12

    Savannah River Site (SRS) monitors groundwater quality at the F-Area Hazardous Waste management Facility (HWMF) and provides results of this monitoring to the South Carolina Department of Health and Environmental Control (SCDHEC) semiannually as required by the Resource Conservation and Recovery Act (RCRA) permit. SRS also performs monthly sampling of the Wastewater Treatment Unit (WTU) effluent in accordance with Section C of the Underground Injection Control (UIC) application.

  12. Hazardous Waste Generator Regulations: A User-Friendly Reference Document

    EPA Pesticide Factsheets

    User-friendly reference to assist EPA and state staff, industrial facilities generating and managing hazardous wastes as well as the general public, in locating and understanding RCRA hazardous waste generator regulations.

  13. Radioactive waste policy and legislation: 50 years on from the 1960 Act.

    PubMed

    Chandler, Steve

    2011-09-01

    Over the past 50 years a comprehensive regulatory framework for radioactive substances in the UK has been progressively introduced, important initial milestones being the white paper Cmnd 884 and the Radioactive Substances Act 1960. During the 1970s and 1980s there were a succession of enquiries and white papers which developed from the growing awareness of the problems of the nuclear waste legacy. This was followed by a comprehensive policy white paper in 1995: Cm 2919. In 1990, 1993, 1995 and 2005 some aspects of the 1960 Act were updated. The most recent, and most radical, modernisation took place in 2010, when the Act was incorporated into the Environmental Permitting Regulations, in England and Wales. Currently a major review of the exemption orders and exclusion criteria under the radioactive substances legislation is close to completion, which will complete the current phase of modernisation of the regulatory framework.

  14. Federal Facility Compliance Act: Conceptual Site Treatment Plan for Lawrence Livermore National Laboratory, Livermore, California

    SciTech Connect

    Not Available

    1993-10-01

    The Department of Energy (DOE) is required by section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (the Act), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The Act requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the State or EPA for approval, approval with modification, or disapproval. The Lawrence Livermore National Laboratory (LLNL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the Act and is being provided to California, the US Environmental Protection Agency (EPA), and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix 1.1 of this document. Please note that Appendix 1.1 appears as Appendix A, pages A-1 and A-2 in this document.

  15. Development of an Evaluation Methodology for Hazardous Waste Training Programs

    DTIC Science & Technology

    2006-03-01

    substances, which reduces the amount of waste covered by RCRA. 2.2.2. Enforcement of Hazardous Waste Regulations The goals of the RCRA enforcement...civil action is a formal lawsuit filed against an entity that failed to comply with hazardous waste regulations or contributed to a release of... hazardous waste regulations on an Air Force installation is the _______________. A. State environmental regulatory agency B. Local county or city

  16. Environmental Protection Agency update on mixed waste regulations

    SciTech Connect

    Wolfe, A.

    1989-11-01

    This paper is divided into discussion of the following four basic areas: (1) dual regulation; (2) the state role; (3) an overview of current agency activities; and (4) current issues. The first area, dual regulation of mixed waste, requires the cooperation between regulatory agencies, whether federal or state, for managing the chemical and radioactive aspects of mixed waste. Dual or joint regulation of mixed waste is now a well established fact. The second area is state involvement. Dual regulation involves not only the EPA, DOE, and NRC, but also state authorities. The Resource Conservation and Recovery Act (RCRA) is implemented for the most part by the individual states. Congress intended that the states be the primary implementers of RCRA and created provisions in the Act to authorize state programs. The third area discussed in this paper is concerned with EPA`s progress on current issues. EPA has progressed on several promises to create strong centralized guidance. Fourth and finally, there are many issues outstanding and some may have direct specific significant impact on DOE facility operations. Perhaps the biggest outstanding issue is how the land disposal restrictions will affect the treatment, storage, and disposal of mixed waste at DOE facilities.

  17. Closure plan for Solid Waste Storage Area 6: Volume 1, Closure plan

    SciTech Connect

    Not Available

    1988-09-01

    This Closure Plan for Solid Waste Storage Area 6 (SWSA 6) a disposal area for low-level radioactive wastes and hazardous materials, of the US Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) describes how portions of SWSA 6 will be closed under Resource Conservation and Recovery Act (RCRA) Interim Status per 40 CFR 265 Subpart G (TN Rule 1200-1-11-.05(7)). An overview is provided of activities necessary for final closure and corrective measures for all of SWSA 6. Results of surface waters and groundwater sampling are provided.

  18. Safety evaluation of the Mixed Waste Storage Building (Building 643-43E)

    SciTech Connect

    Pareizs, J.M.

    1992-01-27

    A safety evaluation has been conducted for the Mixed Waste Storage Building (MWSB) at the Savannah River Site. The results of this evaluation are compared with those contained in the Burial Ground Safety Analysis Report (SAR). The MWSB will function as an interim storage facility for Resource Conservation and Recovery Act (RCRA) regulated mixed waste. It will meet all applicable standards set forth by the Environmental Protection Agency (EPA), the South Carolina Department of Health and Environment Control (SCDHEC), and Department of Energy (DOE) Orders.

  19. RCRA Facility Investigation/Remedial Investigation Report with Baseline Risk Assessment for the Central Shops Burning/Rubble Pit (631-6G), Volume 1 Final

    SciTech Connect

    1996-04-01

    The Burning/Rubble Pits at the Savannah River Site were usually shallow excavations approximately 3 to 4 meters in depth. Operations at the pits consisted of collecting waste on a continuous basis and burning on a monthly basis. The Central Shops Burning/Rubble Pit 631- 6G (BRP6G) was constructed in 1951 as an unlined earthen pit in surficial sediments for disposal of paper, lumber, cans and empty galvanized steel drums. The unit may have received other materials such as plastics, rubber, rags, cardboard, oil, degreasers, or drummed solvents. The BRP6G was operated from 1951 until 1955. After disposal activities ceased, the area was covered with soil. Hazardous substances, if present, may have migrated into the surrounding soil and/or groundwater. Because of this possibility, the United States Environmental Protection Agency (EPA) has designated the BRP6G as a Solid Waste Management Unit (SWMU) subject to the Resource Conservation Recovery Act/Comprehensive Environmental Response, Compensation and Liability Act (RCRA/CERCLA) process.

  20. The Mixed Waste Management Facility closure and expansion at the Savannah River Site

    SciTech Connect

    Bittner, M.F.; Frye-O`Bryant, R.C.

    1992-07-01

    Process wastes containing radioactive and hazardous constituents have been generated throughout the operational history of the Savannah River Site. Solid wastes containing low level radionuclides were buried in Low Level Radioactive Disposal Facility (LLRWDF). Until 1986, waste containing lead and cadmium was disposed of in the Mixed Waste Management Facility (MWMF) portion of LLRWDF. Between 1986 and 1990, waste containing F-listed hazardous rags were buried. Current Resource Conservation and Recovery Act (RCRA) regulations prohibit the disposal of these hazardous wastes at nonpermitted facilities. This paper describes the closure activities for the MWMF, completed in 1990 and plans proposed for the expansion of this closure to include the LLRWDF suspect solvent rag trenches.

  1. The Mixed Waste Management Facility closure and expansion at the Savannah River Site

    SciTech Connect

    Bittner, M.F.; Frye-O'Bryant, R.C.

    1992-01-01

    Process wastes containing radioactive and hazardous constituents have been generated throughout the operational history of the Savannah River Site. Solid wastes containing low level radionuclides were buried in Low Level Radioactive Disposal Facility (LLRWDF). Until 1986, waste containing lead and cadmium was disposed of in the Mixed Waste Management Facility (MWMF) portion of LLRWDF. Between 1986 and 1990, waste containing F-listed hazardous rags were buried. Current Resource Conservation and Recovery Act (RCRA) regulations prohibit the disposal of these hazardous wastes at nonpermitted facilities. This paper describes the closure activities for the MWMF, completed in 1990 and plans proposed for the expansion of this closure to include the LLRWDF suspect solvent rag trenches.

  2. Integrating Total Quality Management (TQM) and hazardous waste management

    SciTech Connect

    Kirk, Nancy

    1993-11-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

  3. Guidance document publications list - Office of Environmental Policy and Assistance RCRA/CERCLA Division (EH-413)

    SciTech Connect

    1995-08-01

    This document provides a listing of Guidance Documents from the RCRA/CERCLA Division for August 1995. Documents are listed under the following categories: RCRA Guidance Manuals; RCRA Information Briefs; CERCLA Guidance Manuals; CERCLA Regulatory Bulletins; RCRA/CERCLA Guidance Manuals; TSCA Guidance Manuals; TSCA Information Briefs; and, Cross Cut Manuals.

  4. Contaminant Release Data Package for Residual Waste in Single-Shell Hanford Tanks

    SciTech Connect

    Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.

    2007-12-01

    The Hanford Federal Facility Agreement and Consent Order requires that a Resource Conservation and Recovery Act (RCRA) Facility Investigation report be submitted to the Washington State Department of Ecology. The RCRA Facility Investigation report will provide a detailed description of the state of knowledge needed for tank farm performance assessments. This data package provides detailed technical information about contaminant release from closed single-shell tanks necessary to support the RCRA Facility Investigation report. It was prepared by Pacific Northwest National Laboratory (PNNL) for CH2M HILL Hanford Group, Inc., which is tasked by the U.S. Department of Energy (DOE) with tank closure. This data package is a compilation of contaminant release rate data for residual waste in the four Hanford single-shell tanks (SSTs) that have been tested (C-103, C-106, C-202, and C-203). The report describes the geochemical properties of the primary contaminants of interest from the perspective of long-term risk to groundwater (uranium, technetium-99, iodine-129, chromium, transuranics, and nitrate), the occurrence of these contaminants in the residual waste, release mechanisms from the solid waste to water infiltrating the tanks in the future, and the laboratory tests conducted to measure release rates.

  5. Groundwater Monitoring Plan for the Nonradioactive Dangerous Waste Landfill

    SciTech Connect

    J.S. Lindberg; M.J. Hartman

    1999-08-17

    The Nonradioactive Dangerous Waste Landfill (NRDWL), which received nonradioactive hazardous waste between 1975 and 1985, is located in the central Hanford Site (Figure 1.1) in southeastern Washington State. The Solid Waste Landfill, which is regulated and monitored separately, is adjacent to the NRDWL. The NRDWL is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA) and monitored by Pacific Northwest National Laboratory. Monitoring is done under interim-status, indicator-evaluation requirements (WAC 173-303 and by reference, 40 CFR 265.92). The well network includes three upgradient wells (one shared with the Solid Waste Landfill) and six downgradient wells. The wells are sampled semiannually for contaminant indicator parameters and site-specific parameters and annually for groundwater quality parameters.

  6. Alternative disposal for Investigation Derived Wastes (IDW) containing low activity source material

    SciTech Connect

    Downey, H.T.; Majer, T.

    2007-07-01

    As part of a Remedial Investigation (RI) at a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Site, approximately 77,111 kg (85 tons) I would use the actual tons of investigation derived wastes (IDW) were generated from exploratory soil borings and as part of removal activities at a former drum burial area. Characterization of these materials indicated elevated concentrations of metals including uranium and thorium (source material). Concentrations of uranium and thorium were at levels less than 0.05% by mass, which is the threshold for exempt source material under Nuclear Regulatory Commission (NRC) regulations. Disposal of this material was evaluated as low-level radioactive waste and as exempt radioactive waste. The NRC has established a process for evaluation and review of exempt source material transfer and direct disposal in a Resource Conservation and Recovery Act (RCRA) landfill. These requests are normally approved if the dose to a member of the general public is unlikely to exceed 0.25 mSv per year (25 milli-rem per year). The soil was evaluated for disposal as exempt radioactive waste at a RCRA landfill, which included dose modeling to workers during transportation and disposal as well as potential dose to members of the public after closure of the disposal facility. These evaluations determined that the potential dose was very small, and review by the agreement state regulatory agency indicated that this disposal process should not result in any undue hazard to public health and safety or property. The advantage of this approach is that disposal of 77,111 kg (85 tons) of IDW at a RCRA landfill is estimated to result in a savings of $80,000 as compared to disposal as low-level radioactive waste. Alternative waste disposal of exempt source material provides more disposal options and can lead to significant cost savings. (authors)

  7. Cementation and solidification of miscellaneous mixed wastes at the Rocky Flats Environmental Technology Site

    SciTech Connect

    Phillips, J.A.; Semones, G.B.

    1995-02-01

    The Rocky Flats Environmental Technology Site produces a variety of wastes which are amenable to micro-encapsulation in cement Portland cement is an inexpensive and readily available material for this application. The Waste Projects (WP) group at Rocky Flats evaluated cementation to determine its effectiveness in encapsulating several wastes. These included waste analytical laboratory solutions, incinerator ash, hydroxide precipitation sludge, and an acidic solution from the Delphi process (a chemical oxidation technology being evaluated as an alternative to incineration). WP prepared surrogate wastes and conducted designed experiments to optimize the cement formulation for the waste streams. These experiments used a Taguchi or factorial experimental design, interactions between the variables were also considered in the testing. Surrogate waste samples were spiked with various levels of each of six Resource Conservation and Recovery Act (RCRA) listed metals (Cd, Cr, Ba, Pb, Ni, and Ag), cemented using the optimized formulation, and analyzed for leach resistance using the Toxicity Characteristic Leaching Procedure (TCLP). The metal spike levels chosen were based on characterization data, and also based on an estimate of the highest levels of contaminants suspected in the waste. This paper includes laboratory test results for each waste studied. These include qualitative observations as well as quantitative data from TCLP analyses and environmental cycling studies. The results from these experiments show that cement stabilization of the different wastes can produce final waste forms which meet the current RCRA Land Disposal Restriction (LDR) requirements. Formulations that resulted in LDR compliant waste forms are provided. The volume increases associated with cementation are also lower than anticipated. Future work will include verification studies with actual mixed radioactive waste as well as additional formulation development studies on other waste streams.

  8. Resource Conservation and Recovery Act (RCRA) Facility Presentation

    EPA Pesticide Factsheets

    The first presentation (86-slides), provided by Environmental Management Services (contractor to Cavenham Forest Industries) covers work progress being undertaken with respect to the corrective action.

  9. Emergency Permits under the Resource Conservation and Recovery Act (RCRA)

    EPA Pesticide Factsheets

    This rule under the Code of Federal Regulations (CFR) provides EPA with the authority to grant a permittee temporary authorization, without prior public notice and comment, to conduct activities necessary to respond promptly to changing conditions.

  10. 76 FR 6594 - Florida: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ... AGENCY 40 CFR Part 271 Florida: Final Authorization of State Hazardous Waste Management Program Revisions... for Final authorization of the changes to its hazardous waste program under the Resource Conservation... Johnson, Permits and State Programs Section, RCRA Programs and Materials Management Branch, RCRA...

  11. 76 FR 6594 - North Carolina: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ... AGENCY 40 CFR Part 271 North Carolina: Final Authorization of State Hazardous Waste Management Program... applied to EPA for Final authorization of the changes to its hazardous waste program under the Resource... Johnson, Permits and State Programs Section, RCRA Programs and Materials Management Branch, RCRA...

  12. 75 FR 53220 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ...: (617) 918-0646, to the attention of Juiyu Hsieh. Mail: Juiyu Hsieh, RCRA Waste Management Section..., Suite 100, Boston, MA 02109-3912. Hand Delivery or Courier: Deliver your comments to Juiyu Hsieh, RCRA Waste Management Section, Office of Site Remediation and Restoration (OSRR 07-01), EPA New...

  13. 75 FR 82005 - Agency Information Collection Activities; Proposed Collection; Comment Request; Hazardous Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ...] Agency Information Collection Activities; Proposed Collection; Comment Request; Hazardous Waste Generator.... Title: Hazardous Waste Generator Standards (Renewal). ICR numbers: EPA ICR No. 0820.11, OMB Control No... RCRA requires EPA to develop standards for small quantity generators. Section 3002 of RCRA...

  14. Sampling and analysis plan for sampling of liquid waste streams generated by 222-S Laboratory Complex operations

    SciTech Connect

    Benally, A.B.

    1997-08-14

    This Sampling and Analysis Plan (SAP) establishes the requirements and guidelines to be used by the Waste Management Federal Services of Hanford, Inc. personnel in characterizing liquid waste generated at the 222-S Laboratory Complex. The characterization process to verify the accuracy of process knowledge used for designation and subsequent management of wastes consists of three steps: to prepare the technical rationale and the appendix in accordance with the steps outlined in this SAP; to implement the SAP by sampling and analyzing the requested waste streams; and to compile the report and evaluate the findings to the objectives of this SAP. This SAP applies to portions of the 222-S Laboratory Complex defined as Generator under the Resource Conservation and Recovery Act (RCRA). Any portion of the 222-S Laboratory Complex that is defined or permitted under RCRA as a treatment, storage, or disposal (TSD) facility is excluded from this document. This SAP applies to the liquid waste generated in the 222-S Laboratory Complex. Because the analytical data obtained will be used to manage waste properly, including waste compatibility and waste designation, this SAP will provide directions for obtaining and maintaining the information as required by WAC173-303.

  15. Groundwater quality sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1994-03-01

    This Sampling and Analysis Plan addresses groundwater quality sampling and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of energy and managed by martin Marietta Energy Systems, Inc. (Energy Systems). Groundwater sampling will be conducted by Energy Systems at 45 wells within WAG 6. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the groundwater quality monitoring, sampling, and analysis will aid in evaluating relative risk associated with contaminants migrating off-WAG, and also will fulfill Resource Conservation and Recovery Act (RCRA) interim permit monitoring requirements. The sampling steps described in this plan are consistent with the steps that have previously been followed by Energy Systems when conducting RCRA sampling.

  16. Groundwater Quality Sampling and Analysis Plan for Environmental Monitoring Waste Area Grouping 6 at Oak Ridge National Laboratory. Environmental Restoration Program

    SciTech Connect

    1995-09-01

    This Sampling and Analysis Plan addresses groundwater quality sampling and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. (Energy Systems). Groundwater sampling will be conducted by Energy Systems at 45 wells within WAG 6. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the groundwater quality monitoring, sampling, and analysis will aid in evaluating relative risk associated with contaminants migrating off-WAG, and also will fulfill Resource Conservation and Recovery Act (RCRA) interim permit monitoring requirements. The sampling steps described in this plan are consistent with the steps that have previously been followed by Energy Systems when conducting RCRA sampling.

  17. NPL deletion policy for RCRA-regulated TSD facilities finalized

    SciTech Connect

    1995-05-01

    Under a new policy published by EPA on March 20, 1995, certain sites may be deleted from the National Priorities List (NPL) and deferred to RCRA corrective action. To be deleted from the NPL, a site must (1) be regulated under RCRA as a treatment, storage, or disposal (TSD) facility and (2) meet the four criteria specified by EPA. The new NPL deletion policy, which does not pertain to federal TSD facilities, became effective on April 19, 1995. 1 tab.

  18. Closure plan for Solid Waste Storage Area 6: Volume 1, Closure plan. Remedial investigation/feasibility study

    SciTech Connect

    Not Available

    1988-09-01

    This Closure Plan for Solid Waste Storage Area 6 (SWSA 6) a disposal area for low-level radioactive wastes and hazardous materials, of the US Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) describes how portions of SWSA 6 will be closed under Resource Conservation and Recovery Act (RCRA) Interim Status per 40 CFR 265 Subpart G [TN Rule 1200-1-11-.05(7)]. An overview is provided of activities necessary for final closure and corrective measures for all of SWSA 6. Results of surface waters and groundwater sampling are provided.

  19. Waste minimization in the oil and gas industries

    SciTech Connect

    Smith, K.P.

    1992-09-01

    Recent legislative actions place an emphasis on waste minimization as opposed to traditional end-of-pipe waste management. This new philosophy, coupled with increasing waste disposal costs and associated liabilities, sets the stage for investigating waste minimization opportunities in all industries wastes generated by oil and gas exploration and production (E&P) and refuting activities are regulated as non-hazardous under the Resource Conservation and Recovery Act (RCRA). Potential reclassification of these wastes as hazardous would make minimization of these waste streams even more desirable. Oil and gas E&P activities generate a wide variety of wastes, although the bulk of the wastes (98%) consists of a single waste stream: produced water. Opportunities to minimize E&P wastes through point source reduction activities are limited by the extractive nature of the industry. Significant waste minimization is possible, however, through recycling. Recycling activities include underground injection of produced water, use of closed-loop drilling systems, reuse of produced water and drilling fluids in other oilfield activities, use of solid debris as construction fill, use of oily wastes as substitutes for road mix and asphalt, landspreading of produced sand for soil enhancement, and roadspreading of suitable aqueous wastes for dust suppression or deicing. Like the E&P wastes, wastes generated by oil and gas treatment and refining activities cannot be reduced substantially at the point source but can be reduced through recycling. For the most part, extensive recycling and reprocessing of many waste streams already occurs at most petroleum refineries. A variety of innovative waste treatment activities have been developed to minimize the toxicity or volume of oily wastes generated by both E&P and refining activities. These treatments include bioremediation, oxidation, biooxidation, incineration, and separation. Application of these treatment processes is still limited.

  20. Waste minimization in the oil and gas industries

    SciTech Connect

    Smith, K.P.

    1992-01-01

    Recent legislative actions place an emphasis on waste minimization as opposed to traditional end-of-pipe waste management. This new philosophy, coupled with increasing waste disposal costs and associated liabilities, sets the stage for investigating waste minimization opportunities in all industries wastes generated by oil and gas exploration and production (E P) and refuting activities are regulated as non-hazardous under the Resource Conservation and Recovery Act (RCRA). Potential reclassification of these wastes as hazardous would make minimization of these waste streams even more desirable. Oil and gas E P activities generate a wide variety of wastes, although the bulk of the wastes (98%) consists of a single waste stream: produced water. Opportunities to minimize E P wastes through point source reduction activities are limited by the extractive nature of the industry. Significant waste minimization is possible, however, through recycling. Recycling activities include underground injection of produced water, use of closed-loop drilling systems, reuse of produced water and drilling fluids in other oilfield activities, use of solid debris as construction fill, use of oily wastes as substitutes for road mix and asphalt, landspreading of produced sand for soil enhancement, and roadspreading of suitable aqueous wastes for dust suppression or deicing. Like the E P wastes, wastes generated by oil and gas treatment and refining activities cannot be reduced substantially at the point source but can be reduced through recycling. For the most part, extensive recycling and reprocessing of many waste streams already occurs at most petroleum refineries. A variety of innovative waste treatment activities have been developed to minimize the toxicity or volume of oily wastes generated by both E P and refining activities. These treatments include bioremediation, oxidation, biooxidation, incineration, and separation. Application of these treatment processes is still limited.

  1. H.R. 4984: A Bill to amend the Solid Waste Disposal Act to regulate the use of hazardous waste as fuel for energy recovery, the operation of cement kilns that burn hazardous waste as fuel, the disposal of cement kiln dust waste, and related activities. Introduced in the House of Representatives, One Hundred Third Congress, Second Session, August 18, 1994

    SciTech Connect

    1994-12-31

    The report H.R. 4984 is a bill to amend the Solid Waste Disposal Act to regulate the use of hazardous waste as fuel for energy recovery, the operation of cement kilns that burn hazardous waste as fuel, the disposal of cement kiln dust waste. The proposed legislative text is provided.

  2. State Environmental Policy Act (SEPA) Environmental Checklist Form 216-B-3 Expansion Ponds Closure Plan. Revision 1

    SciTech Connect

    Not Available

    1993-12-01

    The 216-B-3 Expansion Ponds Closure Plan (Revision 1) consists of a Part A Dangerous Waste Permit Application and a Resource Conservation and Recovery Act Closure Plan. An explanation of the Part A submitted with this document is provided at the beginning of the Part A Section. The closure plan consists of nine chapters and five appendices. The 216-B-3 Pond System consists of a series of four earthen, unlined, interconnected ponds and the 216-B-3-3 Ditch that receive waste water from various 200 East Area operating facilities. These four ponds, collectively. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the 216-B-3-3 Ditch. Water discharged to the 216-8-3-3 Ditch flows directly into the 216-B-3 Pond. In the past, waste water discharges to B Pond and the 216-B-3-3 Ditch contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the nonradioactive dangerous portion of mixed waste is regulated under RCRA. Mixed waste also may be considered a hazardous substance under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) when considering remediation of waste sites.

  3. Handling 78,000 drums of mixed-waste sludge

    SciTech Connect

    Berry, J.B.; Harrington, E.S.; Mattus, A.J.

    1991-01-01

    The Oak Ridge Gaseous Diffusion Plant (now known as the Oak Ridge K-25 Site) closed two mixed-waste surface impoundments by removing the sludge and contaminated pond-bottom clay and attempting to process it into durable, nonleachable, concrete monoliths. Interim, controlled, above-ground storage included delisting the stabilized sludge from hazardous to nonhazardous and disposing of the delisted monoliths as Class 1 radioactive waste. Because of schedule constraints and process design and control deficiencies, {approximately}46,000 drums of material in various stages of solidification and {approximately}32,000 barrels of unprocessed sludge are stored. The abandoned treatment facility still contains {approximately}16,000 gal of raw sludge. Such storage of mixed waste does not comply with the Resource Conservation and Recovery Act (RCRA) guidelines. This paper describes actions that are under way to bring the storage of {approximately}78,000 drums of mixed waste into compliance with RCRA. Remediation of this problem by treatment to meet regulatory requirements is the focus of the discussion. 3 refs., 2 figs., 4 tabs.

  4. Closure of a unique mixed waste storage canal at the Dept. of Energy`s Oak Ridge National Laboratory (ORNL)

    SciTech Connect

    Greer, J.K. Jr.; Etheridge, J.T.; Thompson, W.T.

    1994-09-01

    At the Department of Energy`s (DOE`s) Oak Ridge National Laboratory (ORNL) a unique closure was accomplished for a storage canal that contained both hazardous chemical contaminants controlled by the Resource Conservation and Recovery Act (RCRA), and radioactive contaminants controlled by the Atomic Energy Act (AEA). During 1991 and 1992, after approvals were received from the DOE and the Tennessee Department of Environment and Conservation (TDEC), subcontractors to DOE`s Construction Manager were mobilized and remote controlled equipment was operated on site to remove the RCRA and radioactive contamination (referred to hereafter as mixed wastes) from the 3001 Storage Canal at ORNL. After numerous {open_quotes}surprises{close_quotes} during the removal activities, each requiring problem resolution and approvals from DOE and TDEC, the canal closure was completed in September 1992 and final closure certification was submitted to TDEC in October 1992. The following discussion describes the learning experiences that ORNL and DOE acquired from a RCRA closure project for a mixed waste storage canal containing high radiation levels. The project was successful, especially since worker exposures were minimized, but was lengthy, requiring 30 months from notification of a leak in the canal until final demobilization of the subcontractor, and expensive to complete (total overall cost of $3 million).

  5. Federal legislative and regulatory incentives and disincentives for industrial waste reduction

    SciTech Connect

    Cordes, R.; Nixon, J.

    1991-10-01

    The Office of Industrial Technologies (OIT) within the US DOE has recently initiated the Industrial Waste Reduction Program, which is designed to reduce industrial energy use and pollution by reducing the amount of waste materials generated. The Program's primary focus is to develop and commercialize waste reduction technologies and practices in conjunction with industrial partners. OIT recognizes that adoption of these technologies is often inhibited by an assortment of institutional barriers that are unrelated to technical or economic performance. Therefore, OIT is examining selected barriers to industrial waste reduction to help identify and remove impediments to wider technology implementation. This report examines the incentives and disincentives to industrial waste reduction that are provided in an assortment of legislation and regulations. The intent is to shed light on how our environmental laws affect industry's implementation of waste reduction, what particular problems exist with current legislation/regulations, and what general options are available for correcting any deficiencies. Our study was confined strictly to federal legislation and regulations. During the course of the study, (March and May 1991), we examined 16 pieces of existing legislation and their attendant regulations plus 22 pieces of proposed legislation. In addition, the authors consulted representatives from industry and from the government agencies administering or sponsoring the legislation. The Resource Conservation and Recovery Act (RCRA) is by far the most comprehensive and dominant piece of legislation affecting solid waste disposal. This is because RCRA, which governs, the management of both nonhazardous and hazardous waste, places the most restrictive requirements on industry. Other important pieces of legislation that exert a direct influence on waste reduction per se include the Clean Air Act and the Pollution Prevention Act. 90 refs., 12 tabs.

  6. 40 CFR 261.8 - PCB wastes regulated under Toxic Substance Control Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.8 PCB wastes... 40 Protection of Environment 25 2010-07-01 2010-07-01 false PCB wastes regulated under Toxic... hazardous only because they fail the test for the Toxicity Characteristic (Hazardous Waste Codes...

  7. Waste Isolation Pilot Plant (WIPP) fact sheet

    SciTech Connect

    Not Available

    1993-10-01

    Pursuant to the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (RCRA), as amended (42 USC 6901, et seq.), and the New Mexico Hazardous Waste Act (Section 74-4-1 et seq., NMSA 1978), Permit is issued to the owner and operator of the US DOE, WIPP site (hereafter called the Permittee(s)) to operate a hazardous waste storage facility consisting of a container storage unit (Waste Handling Building) and two Subpart X miscellaneous below-ground storage units (Bin Scale Test Rooms 1 and 3), all are located at the above location. The Permittee must comply with all terms and conditions of this Permit. This Permit consists of the conditions contained herein, including the attachments. Applicable regulations cited are the New Mexico Hazardous Waste Management Regulations, as amended 1992 (HWMR-7), the regulations that are in effect on the date of permit issuance. This Permit shall become effective upon issuance by the Secretary of the New Mexico Environment Department and shall be in effect for a period of ten (10) years from issuance. This Permit is also based on the assumption that all information contained in the Permit application and the administrative record is accurate and that the activity will be conducted as specified in the application and the administrative record. The Permit application consists of Revision 3, as well as associated attachments and clarifying information submitted on January 25, 1993, and May 17, 1993.

  8. Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site

    SciTech Connect

    L. Desotell; D. Wieland; V. Yucel; G. Shott; J. Wrapp

    2008-03-01

    The U.S. Department of Energy, National Security Administration Nevada Site Office (NNSA/NSO) is planning to close the 92-Acre Area of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), which is about 65 miles northwest of Las Vegas, Nevada. Closure planning for this facility must take into account the regulatory requirements for a diversity of waste streams, disposal and storage configurations, disposal history, and site conditions. This paper provides a brief background of the Area 5 RWMS, identifies key closure issues, and presents the closure strategy. Disposals have been made in 25 shallow excavated pits and trenches and 13 Greater Confinement Disposal (GCD) boreholes at the 92-Acre Area since 1961. The pits and trenches have been used to dispose unclassified low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform waste, and to store classified low-level and low-level mixed materials. The GCD boreholes are intermediate-depth disposal units about 10 feet (ft) in diameter and 120 ft deep. Classified and unclassified high-specific activity LLW, transuranic (TRU), and mixed TRU are disposed in the GCD boreholes. TRU waste was also disposed inadvertently in trench T-04C. Except for three disposal units that are active, all pits and trenches are operationally covered with 8-ft thick alluvium. The 92-Acre Area also includes a Mixed Waste Disposal Unit (MWDU) operating under Resource Conservation and Recovery Act (RCRA) Interim Status, and an asbestiform waste unit operating under a state of Nevada Solid Waste Disposal Site Permit. A single final closure cover is envisioned over the 92-Acre Area. The cover is the evapotranspirative-type cover that has been successfully employed at the NTS. Closure, post-closure care, and monitoring must meet the requirements of the following regulations: U.S. Department of Energy Order 435.1, Title 40 Code of Federal Regulations (CFR) Part 191, Title 40 CFR Part 265, Nevada Administrative

  9. Life Cycle Analysis for Treatment and Disposal of PCB Waste at Ashtabula and Fernald

    SciTech Connect

    Morris, M.I.

    2001-01-11

    This report presents the use of the life cycle analysis (LCA) system developed at Oak Ridge National Laboratory (ORNL) to assist two U.S. Department of Energy (DOE) sites in Ohio--the Ashtabula Environmental Management Project near Cleveland and the Fernald Environmental Management Project near Cincinnati--in assessing treatment and disposal options for polychlorinated biphenyl (PCB)-contaminated low-level radioactive waste (LLW) and mixed waste. We will examine, first, how the LCA process works, then look briefly at the LCA system's ''toolbox,'' and finally, see how the process was applied in analyzing the options available in Ohio. As DOE nuclear weapons facilities carry out planned decontamination and decommissioning (D&D) activities for site closure and progressively package waste streams, remove buildings, and clean up other structures that have served as temporary waste storage locations, it becomes paramount for each waste stream to have a prescribed and proven outlet for disposition. Some of the most problematic waste streams throughout the DOE complex are PCB low-level radioactive wastes (liquid and solid) and PCB low-level Resource Conservation and Recovery Act (RCRA) liquid and solid wastes. Several DOE Ohio Field Office (OH) sites have PCB disposition needs that could have an impact on the critical path of the decommissioning work of these closure sites. The Ashtabula Environmental Management Project (AEMP), an OH closure site, has an urgent problem with disposition of soils contaminated by PCB and low-level waste at the edge of the site. The Fernald Environmental Management Project (FEMP), another OH closure site, has difficulties in timely disposition of its PCB-low-level sludges and its PCB low-level RCRA sludges in order to avoid impacting the critical path of its D&D activities. Evaluation of options for these waste streams is the subject of this report. In the past a few alternatives for disposition of PCB low-level waste and PCB low-level RCRA

  10. 75 FR 42130 - Notice of Lodging of Consent Decree Under the Clean Air Act; Clean Water Act; Resource...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ...''); Clean Water Act, 33 U.S.C. 1311 to 1387 (``CWA''); Resource Conservation and Recovery Act (``RCRA''), 42... of Lodging of Consent Decree Under the Clean Air Act; Clean Water Act; Resource Conservation and Recovery Act; Safe Drinking Water Act; Toxic Substances Control Act; and the Reporting Requirements of...

  11. An Alternative to Performing Remote-Handled Transuranic Waste Container Headspace Gas Sampling and Analysis

    SciTech Connect

    Spangler, L. R.; Djordjevic, S. M.; Kehrman, R. F.; Most, W. A.

    2002-02-26

    The Waste Isolation Pilot Plant (WIPP) is operating under a Resource Conservation and Recovery Act (RCRA) Hazardous Waste Facility Permit (HWFP) for contact-handled (CH) transuranic (TRU) waste. The HWFP contains limitations on allowable emissions from waste disposed in the underground. This environmental performance standard imposed on the WIPP consists of limiting volatile organic compound (VOC) emissions from emplaced waste to ensure protection of human health and the environment. The standard is currently met by tracking individual waste container headspace gas concentrations, which are determined by headspace gas sampling and analysis of CH TRU waste containers. The WIPP is seeking a HWFP modification to allow the disposal of remote-handled (RH) TRU waste. Because RH TRU waste is limited to approximately 5% of the waste volume and is emplaced in the disposal room walls, it is possible to bound the potential RH TRU waste contribution to VOC emissions using conservative upper bounds. These conservative upper bounds were developed as an alternative to RH TRU waste canister headspace gas sampling and analysis. The methodology used to perform the calculations used to evaluate VOC emissions from emplaced RH TRU waste canisters applied the same equations as those used to evaluate VOC emissions in the original HWFP application.

  12. 40 CFR 2.305 - Special rules governing certain information obtained under the Solid Waste Disposal Act, as amended.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Special rules governing certain information obtained under the Solid Waste Disposal Act, as amended. 2.305 Section 2.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL PUBLIC INFORMATION Confidentiality of Business...

  13. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    SciTech Connect

    WINTERHALDER, J.A.

    1999-09-29

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  14. Incineration of DOE offsite mixed waste at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect

    Harris, J.D.; Harvego, L.A.; Jacobs, A.M.; Willcox, M.V.

    1998-01-01

    The Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering and Environmental Laboratory (INEEL) is one of three incinerators in the US Department of Energy (DOE) Complex capable of incinerating mixed low-level waste (MLLW). WERF has received MLLW from offsite generators and is scheduled to receive more. The State of Idaho supports receipt of offsite MLLW waste at the WERF incinerator within the requirements established in the (INEEL) Site Treatment Plan (STP). The incinerator is operating as a Resource Conservation and Recovery Act (RCRA) Interim Status Facility, with a RCRA Part B permit application currently being reviewed by the State of Idaho. Offsite MLLW received from other DOE facilities are currently being incinerated at WERF at no charge to the generator. Residues associated with the incineration of offsite MLLW waste that meet the Envirocare of Utah waste acceptance criteria are sent to that facility for treatment and/or disposal. WERF is contributing to the treatment and reduction of MLLW in the DOE Complex.

  15. Sampling and analyses plan for tank 103 at the 219-S waste handling facility

    SciTech Connect

    FOWLER, K.D.

    1999-06-23

    This document describes the sampling and analysis activities associated with taking a Resource Conservation and Recovery Act (RCRA) protocol sample of the waste from Tank 103 at the 21 9-S Waste Handling Facility treatment storage, andlor disposal (TSD) unit at the 2224 Laboratory complex. This sampling and analyses is required based on negotiations between the State of Washington Department of Ecology (Ecology) and the Department of Energy, Richland Operations, (RL) in letters concerning the TPA Change Form M-32-98-01. In a letter from George H. Sanders, RL to Moses N. Jaraysi, Ecology, dated January 28,1999, it was noted that ''Prior to the Tank 103 waste inventory transfer, a RCRA protocol sample of the waste will be obtained and tested for the constituents contained on the Part A, Form 3 Permit Application for the 219-S Waste Handling Facility.'' In the April 2, 1999 letter, from Brenda L. Becher-Khaleel, Ecology to James, E. Rasmussen, RL, and William O. Adair, FDH, Ecology states that the purpose of these analyses is to provide information and justification for leaving Tank 103 in an isolated condition in the 2194 TSD unit until facility closure. The data may also be used at some future date in making decisions regarding closure methodology for Tank 103. Ecology also notes that As Low As Reasonably Achievable (ALARA) concerns may force deviations from some SW-846 protocol. Every effort will be made to accommodate requirements as specified. Deviations from SW-846 will be documented in accordance with HASQARD.

  16. Hazardous Waste Dashboard Help | ECHO | US EPA

    EPA Pesticide Factsheets

    The dashboards found on the Enforcement and Compliance History Online (ECHO) website are specialized to track both facility and agency performance as they relate to compliance with and enforcement of environmental standards under the Resource Conservation and Recovery Act (RCRA).

  17. Hydrogeologic data for science trench boreholes at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    SciTech Connect

    Not Available

    1993-12-01

    A program to conduct drilling, sampling, and laboratory testing was designed and implemented to obtain important physical, geochemical, and hydrologic property information for the near surface portion of thick unsaturated alluvial sediments at the Area 5 Radioactive Waste Management Site (RWMS). These data are required to understand and simulate infiltration and redistribution of water as well as the transport of solutes in the immediate vicinity of existing and future low-level, mixed, and high-specific-activity waste disposal cells at the site. The program was designed specifically to meet data needs associated with a Resource Conservation and Recovery Act (RCRA) Part B permit application for disposal of hazardous mixed waste, possible RCRA waivers involving mixed waste, DOE Order 5820.2A, ``Radioactive Waste Management,`` and 40 Code of Federal Regulations (CFR) 191 requirements for land disposal of radioactive waste. The hydrologic condition data, when combined with hydrologic property data, indicate that very little net liquid flow (if any) is occurring in the upper vadose zone, and the direction of movement is upward. It follows that vapor movement is probably the dominant mechanism of water transport in this upper region, except immediately following precipitation events.

  18. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete

    SciTech Connect

    Gidarakos, E. . E-mail: gidarako@mred.tuc.gr; Havas, G.; Ntzamilis, P.

    2006-07-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.

  19. Treatment Study Plan for Nitrate Salt Waste Remediation Revision 1.0

    SciTech Connect

    Juarez, Catherine L.; Funk, David John; Vigil-Holterman, Luciana R.; Naranjo, Felicia Danielle

    2016-03-07

    The two stabilization treatment methods that are to be examined for their effectiveness in the treatment of both the unremediated and remediated nitrate salt wastes include (1) the addition of zeolite and (2) cementation. Zeolite addition is proposed based on the results of several studies and analyses that specifically examined the effectiveness of this process for deactivating nitrate salts. Cementation is also being assessed because of its prevalence as an immobilization method used for similar wastes at numerous facilities around the DOE complex, including at Los Alamos. The results of this Treatment Study Plan will be used to provide the basis for a Resource Conservation and Recovery Act (RCRA) permit modification request of the LANL Hazardous Waste Facility Permit for approval by the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of the proposed treatment process and the associated facilities.

  20. Revised interim soil lead guidance for CERCLA sites and RCRA Corrective Action Facilities. Directive

    SciTech Connect

    Not Available

    1994-07-14

    As part of the Superfund Administrative Improvements Initiative, this interim directive establishes a streamlined approach for determining protective levels for lead in soil at CERCLA sites and RCRA facilities that are subject to corrective action under RCRA section 3004(u) or 3008(h). This interim directive replaces all previous directives on soil lead cleanup for CERCLA and RCRA programs.

  1. Monitoring Plan for RCRA Groundwater Assessment at the 216-U-12 Crib

    SciTech Connect

    Williams, Bruce A.; Chou, Charissa J.

    2005-09-20

    This document contains a revised and updated monitoring plan for RCRA interim status groundwater assessment, site hydrogeology, and a conceptual model of the RCRA treatment, storage, and disposal unit. Monitoring under interim status is expected to continue until the 216-U-12 crib is incorporated as a chapter into the Hanford Facility RCRA Permit or administratively closed as proposed to EPA and Ecology.

  2. Hanford land disposal restrictions plan for mixed wastes

    SciTech Connect

    Not Available

    1990-10-01

    Since the early 1940s, the Hanford Site has been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 (RCRA) and the Atomic Energy Act. The State of Washington Department of Ecology (Ecology), the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) to bring Hanford Site Operations into compliance with dangerous waste regulations. The Tri-Party Agreement was amended to require development of the Hanford Land Disposal Restrictions Plan for Mixed Wastes (this plan) to comply with land disposal restrictions requirements for radioactive mixed waste. The Tri-Party Agreement requires, and the this plan provides, the following sections: Waste Characterization Plan, Storage Report, Treatment Report, Treatment Plan, Waste Minimization Plan, a schedule, depicting the events necessary to achieve full compliance with land disposal restriction requirements, and a process for establishing interim milestones. 34 refs., 28 figs., 35 tabs.

  3. Radioactive waste disposal implications of extending Part IIA of the Environmental Protection Act to cover radioactively contaminated land.

    PubMed

    Nancarrow, D J; White, M M

    2004-03-01

    A short study has been carried out of the potential radioactive waste disposal issues associated with the proposed extension of Part IIA of the Environmental Protection Act 1990 to include radioactively contaminated land, where there is no other suitable existing legislation. It was found that there is likely to be an availability problem with respect to disposal at landfills of the radioactive wastes arising from remediation. This is expected to be principally wastes of high volume and low activity (categorised as low level waste (LLW) and very low level waste (VLLW)). The availability problem results from a lack of applications by landfill operators for authorisation to accept LLW wastes for disposal. This is apparently due to perceived adverse publicity associated with the consultation process for authorisation coupled with uncertainty over future liabilities. Disposal of waste as VLLW is limited both by questions over volumes that may be acceptable and, more fundamentally, by the likely alpha activity of wastes (originating from radium and thorium operations). Authorised on-site disposal has had little attention in policy and guidance in recent years, but may have a part to play, especially if considered commercially attractive. Disposal at BNFL's near surface disposal facility for LLW at Drigg is limited to wastes for which there are no practical alternative disposal options (and preference has been given to operational type wastes). Therefore, wastes from the radioactively contaminated land (RCL) regime are not obviously attractive for disposal to Drigg. Illustrative calculations have been performed based on possible volumes and activities of RCL arisings (and assuming Drigg's future volumetric disposal capacity is 950,000 m3). These suggest that wastes arising from implementing the RCL regime, if all disposed to Drigg, would not represent a significant fraction of the volumetric capacity of Drigg, but could have a significant impact on the radiological

  4. S. 1082: This Act may be cited as the Hazardous and Additional Waste Export and Import Act of 1991, introduced in the US Senate, One Hundred Second Congress, First Session, May 15, 1991

    SciTech Connect

    Not Available

    1991-01-01

    This bill was introduced into the US Senate on May 15, 1991 to amend the Solid Waste Disposal Act. This legislation prohibits the export from and import into the United States of Hazardous and additional waste except in compliance with the requirements of this bill. The purpose of this act is to implement the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal, done at Basel, Switzerland, March 22, 1989. Key sections of this bill address the following: international shipments of hazardous and additional waste; objectives and national policy; retention of existing authority; and conforming amendments.

  5. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    SciTech Connect

    1988-01-01

    Chapter six describes the basis for facility design, the completed facility conceptual design, the completed analytical work relating to the resolution of design issues, and future design-related work. The basis for design and the conceptual design information presented in this chapter meet the requirements of the Nuclear Waste Policy Act of 1982, for a conceptual repository design that takes into account site-specific requirements. This information is presented to permit a critical evaluation of planned site characterization activities. Chapter seven describes waste package components, emplacement environment, design, and status of research and development that support the Nevada Nuclear Waste Storage Investigation (NNWSI) Project. The site characterization plan (SCP) discussion of waste package components is contained entirely within this chapter. The discussion of emplacement environment in this chapter is limited to considerations of the environment that influence, or which may influence, if perturbed, the waste packages and their performance (particularly hydrogeology, geochemistry, and borehole stability). The basis for conceptual waste package design as well as a description of the design is included in this chapter. The complete design will be reported in the advanced conceptual design (ACD) report and is not duplicated in the SCP. 367 refs., 173 figs., 68 tabs.

  6. The munitions provisions of the Federal Facility Compliance Act

    SciTech Connect

    Kimmell, T.A.; Green, D.R.; Queen, R.

    1994-03-01

    The Federal Facility Compliance Act (FFCA) was signed by President Bush on October 6, 1992. This Act amends the Resource Conservation and Recovery Act (RCRA), the primary law governing hazardous waste management in the US The most significant provision of the FFCA was the waiver of sovereign immunity. This waiver subjects Federal facilities to the same ``incentives`` as the private sector for compliance. While the waiver has broad implications for all Federal facilities, other provisions of the FFCA impact specific sectors of the Federal complex. The focus of this paper is the FFCA Munitions Provisions, which have the potential to change some aspects of the structure of munitions management within the military. The Munitions Provisions, contained in Section 107 of the FFCA, modifies Section 3004 of RCRA by adding a new subsection (y) on Munitions. Section 107 requires the Environmental Protection Agency (EPA) to develop, after consultation with the Department of Defense (DOD) and appropriate State officials, regulations identifying when military munitions (including conventional and chemical munitions) become hazardous waste, and to provide for the safe transportation and storage of such waste. The FFCA requires EPA to promulgate the final ``Munitions Rule`` by October 6, 1994. These are the only provisions of the FFCA that require a new rulemaking. It is clear that the Munitions Rule could have a significant effect on the way in which DOD manages munitions. Demilitarization, range management, training activities, and emergency response actions may be affected. It is important for DOD, the Services, and individual installations, to be aware of potential impacts of the FFCA on munitions management operations. The purpose of this paper is to review several important munitions Rule issues, and to discuss potential impacts of these issues.

  7. The findings of the Agency for Toxic Substances and Disease Registry Medical Waste Tracking Act report.

    PubMed Central

    Lichtveld, M Y; Rodenbeck, S E; Lybarger, J A

    1992-01-01

    The Agency for Toxic Substances and Disease Registry (ATSDR) report "The Public Health Implications of Medical Waste: A Report to Congress" has been finalized and submitted to Congress. The report is a comprehensive review of all available data and information on the subject. Based on the data developed in the report, ATSDR concludes that the general public is not likely to be adversely affected by medical waste generated in the traditional health setting. However, the increase of in-home health care and other sources of nonregulated medical waste (e.g., intravenous drug users) provides opportunities for the general public to contact medical waste. In addition, ATSDR concludes that public health concerns exist for selected occupations involved with medical waste. These populations include janitorial and laundry workers, nurses, emergency medical personnel, and refuse workers. The ATSDR report also defines what material should be managed as medical waste and identifies research needs related to medical waste. PMID:1486856

  8. Groundwater Monitoring Plan for the Hanford Site 216-B-3 Pond RCRA Facility

    SciTech Connect

    Barnett, D BRENT.; Smith, Ronald M.; Chou, Charissa J.; McDonald, John P.

    2005-11-01

    The 216-B-3 Pond system was a series of ponds used for disposal of liquid effluent from past Hanford production facilities. In operation from 1945 to 1997, the B Pond System has been a Resource Conservation and Recovery Act (RCRA) facility since 1986, with RCRA interim-status groundwater monitoring in place since 1988. In 1994 the expansion ponds of the facility were clean closed, leaving only the main pond and a portion of the 216-B-3-3 ditch as the currently regulated facility. In 2001, the Washington State Department of Ecology (Ecology) issued a letter providing guidance for a two-year, trial evaluation of an alternate, intrawell statistical approach to contaminant detection monitoring at the B Pond system. This temporary variance was allowed because the standard indicator-parameters evaluation (pH, specific conductance, total organic carbon, and total organic halides) and accompanying interim status statistical approach is ineffective for detecting potential B-Pond-derived contaminants in groundwater, primarily because this method fails to account for variability in the background data and because B Pond leachate is not expected to affect the indicator parameters. In July 2003, the final samples were collected for the two-year variance period. An evaluation of the results of the alternate statistical approach is currently in progress. While Ecology evaluates the efficacy of the alternate approach (and/or until B Pond is incorporated into the Hanford Facility RCRA Permit), the B Pond system will return to contamination-indicator detection monitoring. Total organic carbon and total organic halides were added to the constituent list beginning with the January 2004 samples. Under this plan, the following wells will be monitored for B Pond: 699-42-42B, 699-43-44, 699-43-45, and 699-44-39B. The wells will be sampled semi-annually for the contamination indicator parameters (pH, specific conductance, total organic carbon, and total organic halides) and annually for

  9. 76 FR 18927 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... statutory and regulatory provisions necessary to administer the provisions of RCRA Cluster XVIII, and... aspects of the oil and gas production and transportation industry in Oklahoma, including certain wastes... necessary to administer Cluster XVIII and Checklist 220 in RCRA Cluster XIX will not affect...

  10. The marriage of RCRA and CERCLA at the Rocky Flats Environmental Technology Site

    SciTech Connect

    Shelton, D.C.; Brooks, L.M.

    1998-11-01

    A key goal of the Rocky Flats Cleanup Agreement (RFCA) signed in July of 1996 was to provide a seamless marriage of the Resource Conservation and Recovery Act (RCRA) (and other media specific programs) and the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the implementing agencies of each. This paper examines the two years since the signing of RFCA and identifies the successes, failures, and stresses of the marriage. RFCA has provided an excellent vehicle for regulatory and substantive progress at the Department of Energy`s Rocky Flats facility. The key for a fully successful marriage is to build on the accomplishments to date and to continually improve the internal and external systems and relationships. To date, the parties can be proud of both the substantial accomplishment of substantive environmental work and the regulatory systems that have enabled the work.

  11. Savannah River Site RCRA Facility Investigation plan: Road A Chemical Basin

    SciTech Connect

    Not Available

    1989-06-01

    The nature of wastes disposed of at the Road A Chemical Basin (RACB) is such that some degree of soil contamination is probable. Lead has also been detected in site monitoring wells at concentrations above SRS background levels. A RCRA Facility Investigation (RFI) is proposed for the RACB and will include a ground penetrating radar (GPR) survey, collection and chemical and radiological analyses of soil cores, installation of groundwater monitoring wells, collection and chemical and radiological analyses of groundwater samples, and collection of chemical and radiological analyses of surface water and sediment samples. Upon completion of the proposed RFI field work and chemical and radiological analyses, and RFI report should be prepared to present conclusions on the nature and extent of contamination at the site, and to make recommendations for site remediation. If contamination is detected at concentrations above SRS background levels, a receptor analysis should be done to evaluate potential impacts of site contamination on nearby populations.

  12. Resource conservation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP). Attachments: Volume 3 of 4

    SciTech Connect

    Not Available

    1993-08-01

    Volume III contains attachments for Module III and Module IV. Module III attachments are: test bin design drawings; SWB/RCB design drawings; waste handling building secondary containment system drawings; and test bin flammable gas concentration control system drawings. Only one attachment for Module IV is included in this volume. The remaining attachments are in Volume IV.

  13. Risk analysis of ectoparasites acting as vectors for chronic wasting disease.

    PubMed

    Lupi, Omar

    2005-01-01

    Prion diseases are rare neurodegenerative diseases of humans and animals with a lethal evolution. Animal prion infections, such as chronic wasting disease (CWD) and scrapie (sheep) have shown a pattern of horizontal transmission. CWD is an endemic disease that has been affecting thousands of domestic and wild cervids in US for the last three decades. The mode of contamination is not known, although direct contact between infected and non-infected animals via saliva, urine and feces have been considered. Increasing spread of CWD has raised concerns about the potential transmission to humans and the conversion of human prion protein by CWD-associated prions has been demonstrated in laboratory experiments. Fly larvae exposed to brain infected material were able to readily transmit scrapie to hamsters. Prion rods were identified in both larvae and fly pupae. New lines of evidence confirmed that adult flies are also able to express prion proteins. The most prevalent species of myiasis in cattle, sheep and wild cervids (Hypoderma spp.) present a very different life cycle from human myiasis, with a long contact with neurologic structures, such as the spinal canal and epidural fat, that are potentially rich in prion rods. Considering the huge amount of fly larvae that affects each animal, it is important to discuss the possibility that these ectoparasites could theoretically act as reservoirs and vectors for CWD and other prion diseases. It is critical to recognize all the possible factors involved in CWD transmission since ectoparasites could be handled in an easier way than the environmental persistence of infectious prions.

  14. Significance of water fluxes in a deep arid-region vadose zone to waste disposal strategies

    SciTech Connect

    Johnejack, K.R.; Blout, D.O.; Sully, M.J.; Emer, D.F.; Hammermeister, D.P.; Dever, L.G.; O`Neill, L.J.; Tyler, S.W.; Chapman, J.

    1994-03-01

    Recently collected subsurface site characterization data have led to the development of a conceptual model of water movement beneath the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) that differs significantly from the conceptual model of water movement inherent in Resource Conservation and Recovery Act (RCRA) regulations. At the Area 5 RWMS, water fluxes in approximately the upper 75 m (250 ft) of the vadose zone point in the upward direction (rather than downward) which effectively isolates this region from the deep (approximately 250 m (820 ft)) uppermost aquifer. Standard RCRA approaches for detection and containment (groundwater monitoring and double liners/leachate collection/leak detection systems) are not able to fulfill their intended function in this rather unique hydrogeologic environment. In order to better fulfill the waste detection and containment intentions of RCRA for mixed waste disposal at the Area 5 RWMS, the Department of Energy, Nevada Operations Office (DOE/NV) is preparing a single petition for both a waiver from groundwater monitoring and an exemption from double liners with leachate collection/leak detection. DOE/NV proposes in this petition that the containment function of liners and leachate collection is better accomplished by the natural hydrogeologic processes operating in the upper vadose zone; and the detection function of groundwater monitoring and the leak detection system in liners is better fulfilled by an alternative vadose zone monitoring system. In addition, an alternative point of compliance is proposed that will aid in early detection, as well as limit the extent of potential contamination before detection. Finally, special cell design features and operation practices will be implemented to limit leachate formation, especially while the cell is open to the atmosphere during waste emplacement.

  15. Methodology to remediate a mixed waste site

    SciTech Connect

    Berry, J.B.

    1994-08-01

    In response to the need for a comprehensive and consistent approach to the complex issue of mixed waste management, a generalized methodology for remediation of a mixed waste site has been developed. The methodology is based on requirements set forth in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA) and incorporates ``lessons learned`` from process design, remediation methodologies, and remediation projects. The methodology is applied to the treatment of 32,000 drums of mixed waste sludge at the Oak Ridge K-25 Site. Process technology options are developed and evaluated, first with regard to meeting system requirements and then with regard to CERCLA performance criteria. The following process technology options are investigated: (1) no action, (2) separation of hazardous and radioactive species, (3) dewatering, (4) drying, and (5) solidification/stabilization. The first two options were eliminated from detailed consideration because they did not meet the system requirements. A quantitative evaluation clearly showed that, based on system constraints and project objectives, either dewatering or drying the mixed waste sludge was superior to the solidification/stabilization process option. The ultimate choice between the drying and the dewatering options will be made on the basis of a technical evaluation of the relative merits of proposals submitted by potential subcontractors.

  16. Toxic Substances Control Act (TSCA) Polychlorinated Biphenyl (PCB)/Radioactive Waste Annual Inventory for Calendar Year 2014

    SciTech Connect

    Layton, Deborah L.

    2015-06-01

    The Toxic Substances Control Act, 40 CFR 761.65(a)(1) provides an exemption from the one year storage time limit for PCB/radioactive waste. PCB/radioactive waste may exceed the one year time limit provided that the provisions at 40 CFR 761.65(a)(2)(ii) and 40 CFR 761.65(a)(2)(iii) are followed. These two subsections require, (ii) "A written record documenting all continuing attempts to secure disposal is maintained until the waste is disposed of" and (iii) "The written record required by subsection (ii) of this section is available for inspection or submission if requested by EPA." EPA Region 10 has requested the Department of Energy (DOE) to submit an inventory of radioactive-contaminated PCB waste in storage at the Idaho National Laboratory (INL) for the previous calendar year. The annual inventory is separated into two parts, INL without Advanced Mixed Waste Treatment Project (AMWTP) (this includes Battelle Energy Alliance, LLC, CH2M-WG Idaho, LLC, and the Naval Reactors Facility), and AMWTP.

  17. Toxic Substances Control Act (TSCA) Polychlorinated Biphenyl (PCB)/Radioactive Waste Annual Inventory for Calendar Year 2013

    SciTech Connect

    no author on report

    2014-06-01

    The Toxic Substances Control Act, 40 CFR 761.65(a)(1) provides an exemption from the one year storage time limit for PCB/radioactive waste. PCB/radioactive waste may exceed the one year time limit provided that the provisions at 40 CFR 761.65(a)(2)(ii) and 40 CFR 761.65(a)(2)(iii) are followed. These two subsections require, (ii) "A written record documenting all continuing attempts to secure disposal is maintained until the waste is disposed of" and (iii) "The written record required by subsection (ii) of this section is available for inspection or submission if requested by EPA." EPA Region 10 has requested the Department of Energy (DOE) to submit an inventory of radioactive-contaminated PCB waste in storage at the Idaho National Laboratory (INL) for the previous calendar year. The annual inventory is separated into two parts, INL without Advanced Mixed Waste Treatment Project (AMWTP) (this includes Battelle Energy Alliance, LLC, CH2M-WG Idaho, LLC, and the Naval Reactors Facility), and AMWTP.

  18. Secondary Waste Form Screening Test Results—THOR® Fluidized Bed Steam Reforming Product in a Geopolymer Matrix

    SciTech Connect

    Pires, Richard P.; Westsik, Joseph H.; Serne, R. Jeffrey; Mattigod, Shas V.; Golovich, Elizabeth C.; Valenta, Michelle M.; Parker, Kent E.

    2011-07-14

    Screening tests are being conducted to evaluate waste forms for immobilizing secondary liquid wastes from the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Plans are underway to add a stabilization treatment unit to the Effluent Treatment Facility to provide the needed capacity for treating these wastes from WTP. The current baseline is to use a Cast Stone cementitious waste form to solidify the wastes. Through a literature survey, DuraLith alkali-aluminosilicate geopolymer, fluidized-bed steam reformation (FBSR) granular product encapsulated in a geopolymer matrix, and a Ceramicrete phosphate-bonded ceramic were identified both as candidate waste forms and alternatives to the baseline. These waste forms have been shown to meet waste disposal acceptance criteria, including compressive strength and universal treatment standards for Resource Conservation and Recovery Act (RCRA) metals (as measured by the toxicity characteristic leaching procedure [TCLP]). Thus, these non-cementitious waste forms should also be acceptable for land disposal. Information is needed on all four waste forms with respect to their capability to minimize the release of technetium. Technetium is a radionuclide predicted to be in the secondary liquid wastes in small quantities, but the Integrated Disposal Facility (IDF) risk assessment analyses show that technetium, even at low mass, produces the largest contribution to the estimated IDF disposal impacts to groundwater.

  19. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    SciTech Connect

    JOHNSTON GA

    2008-01-15

    Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980' (CERCLA). The

  20. Information for Exporters of Hazardous Waste to Canada, Chile, Mexico or Non-Organization of Economic Cooperation and Development (OECD) Countries

    EPA Pesticide Factsheets

    Information for exporters of hazardous waste from Canada, Chile, Mexico, or non-OECD countries who are subject to the hazardous waste generator and importer requirements described in 40 CFR Part 262 Subpart E, under RCRA

  1. Information for Importers of Hazardous Waste from Canada, Chile, Mexico or Non-Organization of Economic Cooperation and Development (OECD) Countries

    EPA Pesticide Factsheets

    Information for importers of hazardous waste from Canada, Chile, Mexico, or non-OECD countries who are subject to the hazardous waste generator and importer requirements described in 40 CFR Part 262 Subpart A – D and F, under RCRA

  2. Hanford Site waste minimization and pollution prevention awareness program plan

    SciTech Connect

    Place, B.G.

    1998-09-24

    This plan, which is required by US Department of Energy (DOE) Order 5400. 1, provides waste minimization and pollution prevention guidance for all Hanford Site contractors. The plan is primary in a hierarchical series that includes the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan, Prime contractor implementation plans, and the Hanford Site Guide for Preparing and Maintaining Generator Group Pollution Prevention Program Documentation (DOE-RL, 1997a) describing programs required by Resource Conservation and Recovery Act of 1976 (RCRA) 3002(b) and 3005(h) (RCRA and EPA, 1994). Items discussed include the pollution prevention policy and regulatory background, organizational structure, the major objectives and goals of Hanford Site`s pollution prevention program, and an itemized description of the Hanford Site pollution prevention program. The document also includes US Department of Energy, Richland Operations Office`s (RL`s) statement of policy on pollution prevention as well as a listing of regulatory drivers that require a pollution prevention program.

  3. Technological options for management of hazardous wastes from US Department of Energy facilities

    SciTech Connect

    Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

    1982-08-01

    This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables.

  4. Defending Superfund and RCRA imminent hazard cases

    SciTech Connect

    Miller, J.G.

    1983-01-01

    Legal defenses by the government under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (Superfund) and the Resource Conservation and Recovery Act include common defenses in which there is (1) no imminent or substantial endangerment, (2) inappropriate remedy, (3) action not in accord with the National Contingency Plan that governs Environmental Protection Agency (EPA) remedial actions, (4) not credible or sufficient evidence, (5) not credible scientific conclusion, or (6) government action precluding the relief. Defenses to Superfund reimbursement claims include cases (1) when defendant is not among the class of liable partners, (2) of joint and several liability and the right of contribution, (3) involving releases by an act of God, war, or third party. Defenses to abatement actions include cases in which (1) there is no irreparable harm and adequate remedy at law is available and (2) emergency provisions are not retrospective. Also relevant to EPA enforcement efforts are political pressures and the government's intentions. The author discusses basic defense strategies and implementation tactics. 67 references.

  5. RCRA Facilities Assessment (RFA) Oak Ridge National Laboratory addendum August 25, 1987

    SciTech Connect

    Not Available

    1987-08-01

    The RCRA Facilities Assessment (RFA) report identified approximately 250 Solid Waste Management Units (SWMUs) that were grouped into 20 Waste Area Groupings (WAGs) at Oak Ridge National Laboratory. Identification of each SWMU included information as to location, type, size, dates of operation, type of waste handled, and evidence of releases. Preliminary sampling studies were performed around each WAG to determine if there was evidence of releases beyond its perimeter. Analytical results from the surveys and historical information were the basis for recommendations concerning further actions for each WAG. Remedial investigations (RIs) were recommended for WAGs 1--10 and 17; for WAGs 14, 16, 18, and 20, it was suggested that they be removed from further consideration for remedial action. For the remaining WAGs (11, 12, 13, 15, and 19) the evidence concerning the possible release of contaminants was inconclusive and additional sampling was recommended. The purpose of this Addendum is to report the analytical data obtained from the additional surveys, to make recommendations concerning future remedial actions within these WAGs, and to provide descriptive information for additional sites listed in Table 1.2 of the RFA. Since information concerning the rationale for identifying releases, the sampling survey methodology, and background information for each WAG is presented in the RFA, it is not repeated in this Addendum.

  6. Comparison of RCRA SWMU Corrective Action and CERCLA Remedial Action

    DTIC Science & Technology

    1991-09-30

    supra note 29, at 10042 (citing EPA, Superfund LDR Guide No. 5, Determining When Land Disposal Restrictions (LDRs) are Applicable to CERCLA Response...at TSD facilities to join the increasing number of CERCLA Superfund sites.140 136 EPA’s omnibus authority under section 3005(c) of RCRA, added by the...cleanups of Superfund sites. As will be discussed later, Section 122 of the 1986 Superfund Amendments to CERCLA codified EPA’s policy that any substantive

  7. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 2

    SciTech Connect

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. Chapter 3 summarizes present knowledge of the regional and site hydrologic systems. The purpose of the information presented is to (1) describe the hydrology based on available literature and preliminary site-exploration activities that have been or are being performed and (2) provide information to be used to develop the hydrologic aspects of the planned site characterization program. Chapter 4 contains geochemical information about the Yucca Mountain site. The chapter references plan for continued collection of geochemical data as a part of the site characterization program. Chapter 4 describes and evaluates data on the existing climate and site meterology, and outlines the suggested procedures to be used in developing and validating methods to predict future climatic variation. 534 refs., 100 figs., 72 tabs.

  8. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 7

    SciTech Connect

    1988-01-01

    The Yucca Mountain site in Neavada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining hte geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare and environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  9. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 4

    SciTech Connect

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package; and to present the plans for obtaining the geologic information necessary to demonstate the suitability of the site for a repository, to desin the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next; it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  10. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 1

    SciTech Connect

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in acordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and eveloping a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing prinicples, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed. 880 refs., 130 figs., 25 tabs.

  11. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 6

    SciTech Connect

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  12. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    SciTech Connect

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended by the Secretary of Energy and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared by the US Department of Energy (DOE) in accordance with the requirements of the Nulcear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of the site characterization plan are oulined, and compliance with applicable regulations is discussed.

  13. Estimating the Long Term Liability from Landfilling Hazardous Waste

    DTIC Science & Technology

    1992-01-01

    Hazardous and Solid Waste Amendments make the key element in...Society of Civil Engineers, New York, Nov. 1990. 44 required by the 1984 Hazardous and Solid Waste Amendments to RCRA, as shown in Figure 10...reauthorized in 1984 by the Hazardous and Solid Waste Amendments , is due for reauthorization in 1992 and it is probable that leachate flow rates shall

  14. Recommendations for continuous emissions monitoring of mixed waste incinerators

    SciTech Connect

    Quigley, G.P.

    1992-02-01

    Considerable quantities of incinerable mixed waste are being stored in and generated by the DOE complex. Mixed waste is defined as containing a hazardous component and a radioactive component. At the present time, there is only one incinerator in the complex which has the proper TSCA and RCRA permits to handle mixed waste. This report describes monitoring techniques needed for the incinerator.

  15. H.R. 1180: A Bill to amend the Solid Waste Disposal Act to provide congressional authorization for restrictions on receipt of out-of-State municipal solid waste and for State control over transportation of municipal solid waste, and to clarify the authority for certain municipal solid waste flow control arrangements, and for other purposes. Introduced in the House of Representatives, One Hundred Fourth Congress, First Session, March 9, 1995

    SciTech Connect

    1995-12-31

    The report H.R. 1180 is a bill to amend the Solid Waste Disposal Act to provide congressional authorization for restrictions on receipt of out-of-State municipal solid waste and for State control over transportation of municipal solid waste, and to clarify the authority for certain municipal solid waste flow control arrangements. The proposed legislative text is provided.

  16. Groundwater Quality Assessment Plan for Single-Shell Tank Waste Management Area U

    SciTech Connect

    Smith, Ronald M.; Hodges, Floyd N.; Williams, Barbara A.

    2001-08-29

    Single-Shell Tank Waste Management Area U (WMA U) is in the 200 West Area on the Hanford Site. The area includes the U Tank Farm that contains 16 underground, single-shell tanks and their ancillary equipment and waste systems. WMA U is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA) as codified in 40 CFR Part 265, Subpart F and Washington's Hazardous Waste Management Act (HWMA, RCW 70.105) and its implementing requirements in the Washington State dangerous waste regulations (WAC 173-303-400). Releases of hazardous wastes from WMA U have contaminated groundwater beneath the area. Therefore, the WMA U is being assessed to determine the rate of movement and extent of the contamination released and to determine the concentrations in groundwater. The original finding of groundwater impact was determined from elevated specific conductance in downgradient well 299-W19-41. The elevated specific conductance was attributed to the nonhazardous constituents calcium, magnesium, sulfate, and chloride. Tank waste constituents nitrate and technetium-99 are also present as co-contaminants and have increased over the past several years; however, at concentrations well below the respective drinking water standards. Chromium concentrations in downgradient wells have generally exceeded background levels, but similar levels were also observed in upgradient well 299-W18-25 in early 2000 before it went dry. The objective of this report is to present the current conceptual model for how and where contaminant releases have reached the water table and how that contamination has dispersed in the groundwater system. These efforts will achieve the requirements of a groundwater quality assessment under RCRA [40 CFR 265.93 (d)(4)]. On that basis, a monitoring schedule with appropriate analytes and proposals for new wells and tests are presented in this document.

  17. Results of screening activities in salt states prior to the enactment of the Nationall Waste Policy Act

    SciTech Connect

    Carbiener, W.A.

    1983-01-01

    The identification of potential sites for a nuclear waste repository through screening procedures in the salt states is a well-established, deliberate process. This screening process has made it possible to carry out detailed studies of many of the most promising potential sites, and general studies of all the sites, in anticipation of the siting guidelines specified in the Nuclear Waste Policy Act. The screening work completed prior to the passage of the Act allowed the Secretary of Energy to identify seven salt sites as potentially acceptable under the provisions of Section 116(a) of the Act. These sites were formally identified by letters from Secretary Hodel to the states of Texas, Utah, Mississippi, and Louisiana on February 2, 1983. The potentially acceptable salt sites were in Deaf Smith and Swisher Counties in Texas; Davis and Lavender Canyons in the Gibson Dome location in Utah; Richton and Cypress Creek Domes in Mississippi; and Vacherie Dome in Louisiana. Further screening will include comparison of each potentially acceptable site against disqualification factors and selection of a preferred site in each of the three geohydrologic settings from those remaining, in accordance with the siting guidelines. These steps will be documented in statutory Environmental Assessments prepared for each site to be nominated for detailed characterization. 9 references.

  18. Dynamic computer model for heat transfer and incineration in the Oak Ridge TSCA (Toxic Substances Control Act) hazardous waste incinerator

    SciTech Connect

    Clinton, J.H.

    1989-01-01

    The Oak Ridge Toxic Substances Control Act (TSCA) incinerator was designed to burn toxic wastes such as PCBs. During the course of certification, concern was expressed by the Environmental Protection Agency that unburned PCBs might not continue to be destructed if the ''burning'' in the incinerator ceased. For example, it is possible that the flow of auxiliary fuel could be interrupted during the course of incinerator operation. The situation could occur at the time when a fresh batch of waste was introduced into the incinerator which would be the worst time for normal incinerator operation to cease. In response to the question concerning the destruction of PCBs during such an accidental cooling period, a dynamic model was constructed to approximate the situation, and thus obtain an estimate of the time period that the exit gas would remain above the necessary temperature required to detoxify the undesirable substance.

  19. Radiation dose assessment methodology and preliminary dose estimates to support US Department of Energy radiation control criteria for regulated treatment and disposal of hazardous wastes and materials

    SciTech Connect

    Aaberg, R.L.; Baker, D.A.; Rhoads, K.; Jarvis, M.F.; Kennedy, W.E. Jr.

    1995-07-01

    This report provides unit dose to concentration levels that may be used to develop control criteria for radionuclide activity in hazardous waste; if implemented, these criteria would be developed to provide an adequate level of public and worker health protection, for wastes regulated under U.S, Environmental Protection Agency (EPA) requirements (as derived from the Resource Conservation and Recovery Act [RCRA] and/or the Toxic Substances Control Act [TSCA]). Thus, DOE and the US Nuclear Regulatory Commission can fulfill their obligation to protect the public from radiation by ensuring that such wastes are appropriately managed, while simultaneously reducing the current level of dual regulation. In terms of health protection, dual regulation of very small quantities of radionuclides provides no benefit.

  20. Mixed Waste Focus Area: Department of Energy complex needs report

    SciTech Connect

    Roach, J.A.

    1995-11-16

    The Assistant Secretary for the Office of Environmental Management (EM) at the US Department of Energy (DOE) initiated a new approach in August of 1993 to environmental research and technology development. A key feature of this new approach included establishment of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA). The mission of the MWFA is to identify, develop, and implement needed technologies such that the major environmental management problems related to meeting DOE`s commitments for treatment of mixed wastes under the Federal Facility Compliance Act (FFCA), and in accordance with the Land Disposal Restrictions (LDR) of the Resource Conservation and Recovery Act (RCRA), can be addressed, while cost-effectively expending the funding resources. To define the deficiencies or needs of the EM customers, the MWFA analyzed Proposed Site Treatment Plans (PSTPs), as well as other applicable documents, and conducted site visits throughout the summer of 1995. Representatives from the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60) at each site visited were requested to consult with the Focus Area to collaboratively define their technology needs. This report documents the needs, deficiencies, technology gaps, and opportunities for expedited treatment activities that were identified during the site visit process. The defined deficiencies and needs are categorized by waste type, namely Wastewaters, Combustible Organics, Sludges/Soils, Debris/Solids, and Unique Wastes, and will be prioritized based on the relative affect the deficiency has on the DOE Complex.

  1. Hazardous Waste Management System - Removal of Strontium Sulfide From the List of Hazardous Waste - Federal Register Notice, February 25, 1991

    EPA Pesticide Factsheets

    The Environmental Protection Agency is correcting an amendment to regulations under the Resource Conservation and Recovery Act (RCRA) to remove strontium sulfide (CAS No. 1314-96-1) from 40 CFR 261.33.

  2. Demonstration of ATG Process for Stabilizing Mercury (<260 ppm) Contaminated Mixed Waste. Mixed Waste Focus Area. OST Reference # 2407

    SciTech Connect

    None, None

    1999-09-01

    Mercury contaminated wastes in many forms are present at various U. S. Department of Energy (DOE) sites. Based on efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of wastes contaminated with <260 ppm mercury and with radionuclides stored at various DOE sites is estimated to be approximately 6,000 m3). At least 26 different DOE sites have this type of mixed low-level waste in their storage facilities. Extraction methods are required to remove mercury from waste containing >260 ppm levels, but below 260 ppm Hg contamination levels the U. S. Environmental Protection Agency (EPA) does not require removal of mercury from the waste. Steps must still be taken, however, to ensure that the final waste form does not leach mercury in excess of the limit for mercury prescribed in the Resource Conservation and Recovery Act (RCRA) when subjected to the Toxicity Characteristic Leaching Procedure (TCLP). At this time, the limit is 0.20 mg/L. However, in the year 2000, the more stringent Universal Treatment Standard (UTS) of 0.025 mg/L will be used as the target endpoint. Mercury contamination in the wastes at DOE sites presents a challenge because it exists in various forms, such as soil, sludges, and debris, as well as in different chemical species of mercury. Stabilization is of interest for radioactively contaminated mercury waste (<260 ppm Hg) because of its success with particular wastes, such as soils, and its promise of applicability to a broad range of wastes. However, stabilization methods must be proven to be adequate to meet treatment standards. It must also be proven feasible in terms of economics, operability, and safety. To date, no standard method of stabilization has been developed and proven for such varying waste types as those within the DOE complex.

  3. TREATMENT OF VOCS IN HIGH STRENGTH WASTES USING AN ANAEROBIC EXPANDED-BED GAS REACTOR

    EPA Science Inventory

    The potential of the expanded-bed granular activated carbon (GAC) anaerobic reactor in treating a high strength waste containing RCRA volatile organic compounds (VOCs) was studied. A total of six VOCs, methylene chloride, chlorobenzene, carbon tetrachloride, chloroform, toluene ...

  4. Treatment of semivolatile compounds in high strength wastes using an anaerobic expanded-bed GAC reactor

    EPA Science Inventory

    The potential of the anaerobic, expanded bed granular activated carbon (GAC) reactor in treating a high strength waste containing RCRA semivolatile organic compounds (VOCs) was studied. Six semivolatiles, orthochlorophenol, nitrobenzene, naphthalene, para-nitrophenol, lindane, a...

  5. Regulatory issues for Waste Isolation Pilot Plant long-term compliance with U.S. Environmental Protection Agency 40 CFR 191B and 268

    SciTech Connect

    Anderson, D.R.; Marietta, M.G.; Higgins, P.J. Jr.

    1993-10-01

    Before disposing of transuranic radioactive waste at the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with long-term regulations of the United States Environmental Protection Agency (EPA), specifically the Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191), and the Land Disposal Restrictions (40 CFR 268) of the Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act (RCRA). Sandia National Laboratories (SNL) is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for final compliance evaluations. This paper provides background information on the regulations, describes the SNL WIPP PA Departments approach to developing a defensible technical basis for consistent compliance evaluations, and summarizes the major observations and conclusions drawn from the 1991 and 1992 PAs.

  6. Hazardous Waste: EPA’s Generation and Management Data Need Further Improvement

    DTIC Science & Technology

    1990-02-01

    Hazardous and Solid Waste Amendments of 1984 form the foundation for this...Superfund) EPA Environmental Protection Agency GAO General Accounting Office HSWA Hazardous and Solid Waste Amendments , 1984 NGA National Governors...to final disposition. The Hazardous and Solid Waste Amendments of 1984 (HswA) strengthened RCRA by further encouraging waste

  7. 1993 report on Hanford Site land disposal restrictions for mixed wastes

    SciTech Connect

    Black, D.

    1993-04-01

    Since the early 1940s, the contractors at the Hanford Site have been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste (RMW). This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976{sup 2}(RCRA) and Atomic Energy Act{sup 3}. This report covers mixed waste only. Hazardous waste that is not contaminated with radionuclides is not addressed in this report. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order{sup 1} (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for RMW. This report is the third update of the plan first issued in 1990. The Tri-Party Agreement requires, and the baseline plan and annual update reports provide, the information that follows: Waste characterization information; storage data; treatment information; waste reduction information; schedule; and progress.

  8. Hazardous waste minimization report for CY 1986

    SciTech Connect

    Kendrick, C.M.

    1990-12-01

    Oak Ridge National Laboratory (ORNL) is a multipurpose research and development facility. Its primary role is the support of energy technology through applied research and engineering development and scientific research in basic and physical sciences. ORNL also is a valuable resource in the solution of problems of national importance, such as nuclear and chemical waste management. In addition, useful radioactive and stable isotopes which are unavailable from the private sector are produced at ORNL. As a result of these activities, hazardous, radioactive, and mixed wastes are generated at ORNL. A formal hazardous waste minimization program for ORNL was launched in mid 1985 in response to the requirements of Section 3002 of the Resource Conservation and Recovery Act (RCRA). During 1986, a task plan was developed. The six major tasks include: planning and implementation of a laboratory-wide chemical inventory and the subsequent distribution, treatment, storage, and/or disposal (TSD) of unneeded chemicals; establishment and implementation of a distribution system for surplus chemicals to other (internal and external) organizations; training and communication functions necessary to inform and motivate laboratory personnel; evaluation of current procurement and tracking systems for hazardous materials and recommendation and implementation of improvements; systematic review of applicable current and proposed ORNL procedures and ongoing and proposed activities for waste volume and/or toxicity reduction potential; and establishment of criteria by which to measure progress and reporting of significant achievements. 8 refs., 1 fig., 5 tabs.

  9. 2401-W Waste storage building closure plan

    SciTech Connect

    LUKE, S.M.

    1999-07-15

    This plan describes the performance standards met and closure activities conducted to achieve clean closure of the 2401-W Waste Storage Building (2401-W) (Figure I). In August 1998, after the last waste container was removed from 2401-W, the U.S. Department of Energy, Richland Operations Office (DOE-RL) notified Washington State Department of Ecology (Ecology) in writing that the 2401-W would no longer receive waste and would be closed as a Resource Conservation and Recovery Act (RCRA) of 1976 treatment, storage, and/or disposal (TSD) unit (98-EAP-475). Pursuant to this notification, closure activities were conducted, as described in this plan, in accordance with Washington Administrative Code (WAC) 173-303-610 and completed on February 9, 1999. Ecology witnessed the closure activities. Consistent with clean closure, no postclosure activities will be necessary. Because 2401-W is a portion of the Central Waste Complex (CWC), these closure activities become the basis for removing this building from the CWC TSD unit boundary. The 2401-W is a pre-engineered steel building with a sealed concrete floor and a 15.2-centimeter concrete curb around the perimeter of the floor. This building operated from April 1988 until August 1998 storing non-liquid containerized mixed waste. All waste storage occurred indoors. No potential existed for 2401-W operations to have impacted soil. A review of operating records and interviews with cognizant operations personnel indicated that no waste spills occurred in this building (Appendix A). After all waste containers were removed, a radiation survey of the 2401-W floor for radiological release of the building was performed December 17, 1998, which identified no radiological contamination (Appendix B).

  10. Draft environmental assessment: Lavender Canyon site, Utah. Nuclear Waste Policy Act (Section 112). [Contains glossary

    SciTech Connect

    Not Available

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified the Lavender Canyon site in Utah, as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Lavender Canyon site and the eight other potentially acceptable sites h

  11. Illinois solid waste management legislation

    SciTech Connect

    1999-07-01

    Contents include: Degradable Plastic Act; Energy Assistance Act of 1989; Hazardous and Solid Waste Recycling and Treatment Act; Household Hazardous Waste Collection Program Act; Illinois Emergency Planning and Community Right to Know Act; Illinois Environmental Facilities Financing Act; Illinois Procurement Code; Illinois Solid Waste Management Act; Intergovernmental Cooperation Act; Junkyard Act; Litter Control Act; Local Solid Waste Disposal Act; Metro East Solid Waste Disposal and Energy Producing Service Act; Recycled Newsprint Use Act; Responsible Property Transfer Act of 1988; Solid Waste Disposal District Act; Solid Waste Planning and Recycling Act; Solid Waste Site Operator Certification Law; Township Refuse Collection and Disposal Act; Toxic Pollution Prevention Act; Used Motor Oil Recycling Act; Waste Oil Recovery Act; and Water Supply, Drainage and Flood Control Act.

  12. RCRA facility investigation for the townsite of Los Alamos, New Mexico

    SciTech Connect

    Dorries, A.M.; Conrad, R.C.; Nonno, L.M.

    1992-01-01

    During World War II, Los Alamos, New Mexico was established as an ideal location for the secrecy and safety needed for the research and development required to design a nuclear fission bomb. Experiments carried out in the 1940s generated both radioactive and hazardous waste constituents on what is presently part of the Los Alamos townsite. Under the RCRA permit issued to Los alamos national Laboratory in 1990, the Laboratory is scheduled for investigation of its solid waste management units (SWMUs). The existing information on levels of radioactivity on the townsite is principally data from soil samples taken during the last site decontamination in 1976, little information on the presence of hazardous constituents exists today. This paper addresses pathway analysis and a preliminary risk assessment for current residents of the Los Alamos townsite. The estimated dose levels, in mrem per year, show that the previously decontaminated SWMU areas on the Los Alamos townsite will not contribute a radiation dose of any concern to the current residents.

  13. Notification: EPA Progress on Meeting Resource Conservation and Recovery Act Statutory Mandate for Minimum Frequency of Inspections at Hazardous Waste Disposal Facilities

    EPA Pesticide Factsheets

    Project #OPE-FY15-0018, January 20, 2015. The EPA OIG plans to begin preliminary research on EPA’s progress in meeting minimum inspection requirements under the RCRA at treatment, storage and disposal facilities (TSDFs).

  14. Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington

    SciTech Connect

    Freeman-Pollard, J.R.

    1994-03-02

    This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handling and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.

  15. Quarterly RCRA Groundwater Monitoring Data for the Period April Through June 2006

    SciTech Connect

    Hartman, Mary J.

    2006-11-01

    This report provides information about RCRA groundwater monitoring for the period April through June 2006. Seventeen RCRA sites were sampled during the reporting quarter. Sampled sites include seven monitored under groundwater indicator evaluation (''detection'') programs, eight monitored under groundwater quality assessment programs, and two monitored under final-status programs.

  16. A Toolbox for Corrective Action: Resource Conservation and Recovery Act Facilities Investigation Remedy Selection Track

    EPA Pesticide Factsheets

    The purpose of this toolbox is to help EPA Regional staff and their partners to take advantage of the efficiency and quality gains from the Resource Conservation and Recovery Act (RCRA) Facilities Investigation Remedy Selection Track (FIRST) approach.

  17. Poly-urea spray elastomer for waste containment applications

    SciTech Connect

    Miller, C.J.; Cheng, S.C.J.; Tanis, R.

    1997-12-31

    Geomembrane usage in environmental applications has increased dramatically following the promulgation of federal regulations resulting from the Resource Conservation and Recovery Act of 1976 (RCRA). Subtitle D rules, formulated under the authority of RCRA, call for minimum performance standards to limit adverse effects of a solid waste disposal facility on human health or the environment (40 CFR 257,258, August 30, 1988). These rules set minimum standards requiring new landfill designs to include liner systems and final cover systems. Each state has the responsibility to develop rules that are at least as stringent as the Subtitle D rules. There are several types of geomembranes currently available for landfill applications, each offering particular advantages and disadvantages. For example, PVC does not show the yield point (point of instability) that HDPE shows, HDPE has a higher puncture resistance than PVC, and PVC will deform much more than HDPE before barrier properties of the geomembrane are lost. Because each geomembrane material exhibits its own particular characteristics the material selected should be chosen based on the individual project requirements. It is preferable to select a design that uses the least expensive material and meets the performance specifications of the project.

  18. Solid waste integrated cost analysis model: 1991 project year report

    SciTech Connect

    Not Available

    1991-01-01

    The purpose of the City of Houston's 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA's Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

  19. Policy Statement: Clarification of the Dilution Prohibition and Combustion of Inorganic Metal-Bearing Hazardous Wastes for Land Disposal Restrictions

    EPA Pesticide Factsheets

    This memorandum sets out a Statement of Policy under the RCRA clarifying the application of the Land Disposal Restrictions (LDR) prohibition on dilution (see 40 CFR 268.3) to combustion of certain inorganic metal-bearing hazardous wastes.

  20. 22 CFR 145.16 - Resource Conservation and Recovery Act.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Resource Conservation and Recovery Act. 145.16 Section 145.16 Foreign Relations DEPARTMENT OF STATE CIVIL RIGHTS GRANTS AND AGREEMENTS WITH INSTITUTIONS... Resource Conservation and Recovery Act. Under the Resource Conservation and Recovery Act (RCRA) (Pub. L....

  1. 22 CFR 145.16 - Resource Conservation and Recovery Act.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Resource Conservation and Recovery Act. 145.16 Section 145.16 Foreign Relations DEPARTMENT OF STATE CIVIL RIGHTS GRANTS AND AGREEMENTS WITH INSTITUTIONS... Resource Conservation and Recovery Act. Under the Resource Conservation and Recovery Act (RCRA) (Pub. L....

  2. 22 CFR 145.16 - Resource Conservation and Recovery Act.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Resource Conservation and Recovery Act. 145.16 Section 145.16 Foreign Relations DEPARTMENT OF STATE CIVIL RIGHTS GRANTS AND AGREEMENTS WITH INSTITUTIONS... Resource Conservation and Recovery Act. Under the Resource Conservation and Recovery Act (RCRA) (Pub. L....

  3. 36 CFR 1210.16 - Resource Conservation and Recovery Act.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Resource Conservation and Recovery Act. 1210.16 Section 1210.16 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS... Conservation and Recovery Act. Under the Resource Conservation and Recovery Act ((RCRA) (Pub. L....

  4. 36 CFR 1210.16 - Resource Conservation and Recovery Act.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Resource Conservation and Recovery Act. 1210.16 Section 1210.16 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS... Conservation and Recovery Act. Under the Resource Conservation and Recovery Act ((RCRA) (Pub. L....

  5. 24 CFR 84.16 - Resource Conservation and Recovery Act.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false Resource Conservation and Recovery Act. 84.16 Section 84.16 Housing and Urban Development Office of the Secretary, Department of Housing... Resource Conservation and Recovery Act. Under the Resource Conservation and Recovery Act (RCRA) (Pub. L....

  6. 36 CFR 1210.16 - Resource Conservation and Recovery Act.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Resource Conservation and Recovery Act. 1210.16 Section 1210.16 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS... Conservation and Recovery Act. Under the Resource Conservation and Recovery Act ((RCRA) (Pub. L....

  7. 22 CFR 145.16 - Resource Conservation and Recovery Act.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Resource Conservation and Recovery Act. 145.16 Section 145.16 Foreign Relations DEPARTMENT OF STATE CIVIL RIGHTS GRANTS AND AGREEMENTS WITH INSTITUTIONS... Resource Conservation and Recovery Act. Under the Resource Conservation and Recovery Act (RCRA) (Pub. L....

  8. 24 CFR 84.16 - Resource Conservation and Recovery Act.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Resource Conservation and Recovery Act. 84.16 Section 84.16 Housing and Urban Development Office of the Secretary, Department of Housing... Resource Conservation and Recovery Act. Under the Resource Conservation and Recovery Act (RCRA) (Pub. L....

  9. 22 CFR 145.16 - Resource Conservation and Recovery Act.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Resource Conservation and Recovery Act. 145.16 Section 145.16 Foreign Relations DEPARTMENT OF STATE CIVIL RIGHTS GRANTS AND AGREEMENTS WITH INSTITUTIONS... Resource Conservation and Recovery Act. Under the Resource Conservation and Recovery Act (RCRA) (Pub. L....

  10. 24 CFR 84.16 - Resource Conservation and Recovery Act.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Resource Conservation and Recovery Act. 84.16 Section 84.16 Housing and Urban Development Office of the Secretary, Department of Housing... Resource Conservation and Recovery Act. Under the Resource Conservation and Recovery Act (RCRA) (Pub. L....

  11. 36 CFR 1210.16 - Resource Conservation and Recovery Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Resource Conservation and Recovery Act. 1210.16 Section 1210.16 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS... Conservation and Recovery Act. Under the Resource Conservation and Recovery Act ((RCRA) (Pub. L....

  12. 36 CFR 1210.16 - Resource Conservation and Recovery Act.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Resource Conservation and Recovery Act. 1210.16 Section 1210.16 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS... Conservation and Recovery Act. Under the Resource Conservation and Recovery Act ((RCRA) (Pub. L....

  13. 24 CFR 84.16 - Resource Conservation and Recovery Act.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Resource Conservation and Recovery Act. 84.16 Section 84.16 Housing and Urban Development Office of the Secretary, Department of Housing... Resource Conservation and Recovery Act. Under the Resource Conservation and Recovery Act (RCRA) (Pub. L....

  14. 24 CFR 84.16 - Resource Conservation and Recovery Act.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Resource Conservation and Recovery Act. 84.16 Section 84.16 Housing and Urban Development Office of the Secretary, Department of Housing... Resource Conservation and Recovery Act. Under the Resource Conservation and Recovery Act (RCRA) (Pub. L....

  15. Nuclear Waste Policy Act Amendments of 1988. Introduced in the Senate, One Hundredth Congress, Second Session, Report 100-517, September 16, 1988

    SciTech Connect

    Not Available

    1988-01-01

    After consideration of bill S. 2800, a bill to amend the Nuclear Waste Policy Act of 1982 with respect to the Office of Nuclear Waste Negotiator and the Monitored Retrievable Storage (MRS) Commission, the Committee on Energy and Natural Resources reported favorably on the bill and recommended its passage. This bill would establish the Office of Nuclear Waste Negotiator as an independent establishment in the executive branch and would extend the deadline for submission of the MRS report from 1 June 1989 to 1 November 1989. The background and need for the bill, its legislative history, and the voting positions of Committee members regarding the bill are all included.

  16. Draft environmental assessment: Swisher County site, Texas. Nuclear Waste Policy Act (Section 112). [Contains Glossary

    SciTech Connect

    Not Available

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified a location in Swisher County, Texas, as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The potentially acceptable site was subsequently narrowed to an area of 9 square miles. To determine their suitability, the Swisher site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft environmental assessment (EA), which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluations are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received. On the basis of the evaluations contained in this draft EA, the DOE has found that the Swisher site is not disqualified under the guidelines. The site is contained in the Permian Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site - the Deaf Smith site. Although the Swisher site appears to be suitable for site characterization, the DOE has concluded that the Deaf Smith site is the preferred site in the Permian Basin and is proposing to nominate the Deaf Smith site rather than the Swisher site as one of the five sites suitable for characterization.

  17. Mixed Waste Encapsulation in Polyester Resins. Treatment for Mixed Wastes Containing Salts. Mixed Waste Focus Area. OST Reference #1685

    SciTech Connect

    None, None

    1999-09-01

    Throughout the Department of Energy (DOE) complex there are large inventories of homogeneous solid mixed wastes, such as treatment residues, fly ashes, and sludges that contain relatively high concentrations (greater than 15% by weight) of salts. The inherent solubility of nitrate, sulfate, and chloride salts makes traditional cement stabilization of these waste streams difficult, expensive, and challenging. Salts can effect the setting rate of cements and can react with cement hydration products to form expansive and cement damaging compounds. Many of these salt wastes are in a dry granular form and are the by-product of treating spent acidic and metal solutions used to recover and reformulate nuclear weapons materials over the past 50 years. At the Idaho National Engineering and Environmental Laboratory (INEEL) alone, there is approximately 8,000 cubic meters of nitrate salts (potassium and sodium nitrate) stored above ground with an earthen cover. Current estimates indicate that over 200 million kg of contaminated salt wastes exist at various DOE sites. Continued primary treatment of waste water coupled with the use of mixed waste incinerators may generate an additional 5 million kg of salt-containing, mixed waste residues each year. One of the obvious treatment solutions for these salt-containing wastes is to immobilize the hazardous components to meet Environmental Protection Agency/Resource Conservation and Recovery Act (EPA/RCRA) Land Disposal Restrictions (LDR), thus rendering the mixed waste to a radioactive waste only classification. One proposed solution is to use thermal treatment via vitrification to immobilize the hazardous component and thereby substantially reduce the volume, as well as provide exceptional durability. However, these melter systems involve expensive capital apparatus with complicated off-gas systems. In addition, the vitrification of high salt waste may cause foaming and usually requires extensive development to specify glass

  18. Annual Waste Minimization Summary Report Calendar Year 2007

    SciTech Connect

    NSTec Environmental Management

    2008-02-01

    This report summarizes the waste minimization efforts undertaken by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), during calendar year (CY) 2007. This report was developed in accordance with the requirements of the Nevada Test Site (NTS) Resource Conservation and Recovery Act (RCRA) Permit (number NEV HW0021), and as clarified in a letter dated April 21, 1995, from Paul Liebendorfer of the Nevada Division of Environmental Protection to Donald Elle of the U.S. Department of Energy, Nevada Operations Office. The NNSA/NSO Pollution Prevention (P2) Program establishes a process to reduce the volume and toxicity of waste generated by the NNSA/NSO and ensures that proposed methods of treatment, storage, and/or disposal of waste minimize potential threats to human health and the environment. The following information provides an overview of the P2 Program, major P2 accomplishments during the reporting year, a comparison of the current year waste generation to prior years, and a description of efforts undertaken during the year to reduce the volume and toxicity of waste generated by the NNSA/NSO.

  19. Proposed modifications to the RCRA post-closure permit for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1997-05-01

    This report presents proposed modifications to several conditions of the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Bear Creek Hydrogeologic Regime (BCHR). These permit conditions define the requirements for RCRA post-closure corrective action groundwater monitoring at the S-3 Ponds, the Oil Landfarm, and the Bear Creek Burial Grounds (units A, C-West, and Walk-in Pits). Modification of these PCP conditions is requested to: (1) clarify the planned integration of RCRA post-closure corrective action groundwater monitoring with the monitoring program to be established in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Record of Decision (ROD) for the Bear Creek Valley (BCV) Watershed, (2) revise several of the current technical requirements for groundwater monitoring based on implementation of the RCRA post-closure corrective action monitoring program during 1996, and (3) update applicable technical procedures with revised versions recently issued by the Y-12 Plant Groundwater Protection Program (GWPP). With these modifications, the Y-12 Plant will continue to meet the full intent of all regulatory obligations for post-closure care of these facilities. Section 2.0 provides the technical justification for each proposed permit modification. The proposed changes to permit language are provided in Section 3.0 (S-3 Ponds), Section 4.0 (Oil Landfarm), and Section 5.0 (Bear Creek Burial Grounds). Sections 6.0 and 7.0 reference updated and revised procedures for groundwater sampling, and monitoring well plugging and abandonment, respectively. Appendix A includes all proposed revisions to the PCP Attachments.

  20. Evaluation of a Mobile Hot Cell Technology for Processing Idaho National Laboratory Remote-Handled Wastes

    SciTech Connect

    B.J. Orchard; L.A. Harvego; R.P. Miklos; F. Yapuncich; L. Care

    2009-03-01

    The Idaho National Laboratory (INL) currently does not have the necessary capabilities to process all remote-handled wastes resulting from the Laboratory’s nuclear-related missions. Over the years, various U.S. Department of Energy (DOE)-sponsored programs undertaken at the INL have produced radioactive wastes and other materials that are categorized as remote-handled (contact radiological dose rate > 200 mR/hr). These materials include Spent Nuclear Fuel (SNF), transuranic (TRU) waste, waste requiring geological disposal, low-level waste (LLW), mixed waste (both radioactive and hazardous per the Resource Conservation and Recovery Act [RCRA]), and activated and/or radioactively-contaminated reactor components. The waste consists primarily of uranium, plutonium, other TRU isotopes, and shorter-lived isotopes such as cesium and cobalt with radiological dose rates up to 20,000 R/hr. The hazardous constituents in the waste consist primarily of reactive metals (i.e., sodium and sodium-potassium alloy [NaK]), which are reactive and ignitable per RCRA, making the waste difficult to handle and treat. A smaller portion of the waste is contaminated with other hazardous components (i.e., RCRA toxicity characteristic metals). Several analyses of alternatives to provide the required remote-handling and treatment capability to manage INL’s remote-handled waste have been conducted over the years and have included various options ranging from modification of existing hot cells to construction of new hot cells. Previous analyses have identified a mobile processing unit as an alternative for providing the required remote-handled waste processing capability; however, it was summarily dismissed as being a potentially viable alternative based on limitations of a specific design considered. In 2008 INL solicited expressions of interest from Vendors who could provide existing, demonstrated technology that could be applied to the retrieval, sorting, treatment (as required), and

  1. Mandated recycling rates: Impacts on energy consumption and municipal waste volume

    SciTech Connect

    Gaines, L.L.; Stodolsky, F.

    1994-03-01

    In 1992, Congress sought to rewrite its comprehensive solid waste legislation the Resource Conservation and Recovery Act (RCRA). Commodity-specific recycling rates were proposed for consumer-goods packaging, materials and newsprint. In this paper, we compare the impacts on energy, materials use, and landfill volume of recycling at those rates to the impacts associated with alternative methods of disposition to determine, the optimal method for each material. Alternative paths for material disposition include reuse, recycling to the same product, recycling to a lower-valued product, combustion for energy recovery, incineration without energy recovery, and landfilling. The recovery rates considered during RCRA reauthorization are summarized. Combustion was specifically excluded by Congress to meet recovery goals. This exclusion is probably based on the idea that combustion is a form of disposal and therefore wastes resources and has negative environmental effects. Our paper does not make that assumption. A report by Gaines and Stodolsky, from which this paper is derived, offers a more complete discussion of energy and S impacts.

  2. 3001 canal radiological characterization and waste removal report, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Ritchie, M.G.

    1996-12-01

    An underground steel reinforced concrete transfer and storage canal was built in 1943 and operated as an integral part of the Oak Ridge Graphite Reactor Building (3001) until 1963 when the reactor was shutdown. During operation, the canal was used for under water transfer of irradiated materials and other metals from the reactor in Building 3001 to the Building 3019 hot cell for further processing. After shutdown of the reactor, the canal was used for storage of irradiated materials and fission products until 1990 when the larger materials were removed and stored in the Department of Energy (DOE) approved solid waste management storage facilities. At that time it was discovered that a considerable amount of sludge had accumulated over the intervening years and subsequent analysis showed that the sludge contained Resource Conservation and Recovery Act (RCRA) materials that violated quantities allowed by the RCRA regulations. It was also recognized in 1990 that the canal was losing water to evaporation and the ground at the rate of approximately 400 gallons per day. To maintain water quality; i.e., radionuclide content at or near DOE derived concentration guidelines (DCG), the water in the canal is constantly demineralized using a demineralizer in the Building 3001 and demineralized make up water is supplied from the Building 3004 demineralizer. This report summarizes the 301 Canal Cleanup Task and the solid waste removed from the 3001 Canal in 1996.

  3. Slurry-phase biological treatment of polycyclic aromatic hydrocarbons in wood preserving wastes

    SciTech Connect

    Jerger, D.E.; Woodhull, P.M.

    1994-12-31

    The Southeastern Wood Preserving site is an abandoned wood preserving facility that was in operation from 1928 to 1979. The US Environmental Protection Agency (USEPA) initiated an emergency response action at the site in June 1986, and excavated approximately 10,500 cubic yards of sludge and contaminated soils from lagoons, treatment facilities and storage areas. The lagoon material was considered to be bottom sediment and sludge from the treatment of wastewaters from wood preserving processes using creosote, and was classified as a Resource Conservation and Recovery Act (RCRA)-listed waste number K001. The excavated materials were stabilized with kiln dust and stockpiled on-site for further treatment. Polycyclic aromatic hydrocarbon (PAH) concentration in the stockpiled soil ranged from 8,000 mg/kg dry-weight to 15,000 mg/kg dryweight for total PAHs and from 1,000 mg/kg dryweight to 2,500 mg/kg dry-weight for carcinogenic PAHs. Treatment criteria were best demonstrated available technology (BDAT) cleanup criteria for RCRA K001 waste, but based on laboratory, pilot and full-scale system performance, a treatability variance was obtained. The treatability variance established the cleanup criteria at 950 mg/kg dry-weight for total PAHs and 180 mg/kg dry-weight for benzo(a)pyrene-equivalent carcinogenic PAHs.

  4. Waste sampling and characterization facility (WSCF)

    SciTech Connect

    Not Available

    1994-10-01

    The Waste Sampling and Characterization Facility (WSCF) complex consists of the main structure (WSCF) and four support structures located in the 600 Area of the Hanford site east of the 200 West area and south of the Hanford Meterology Station. WSCF is to be used for low level sample analysis, less than 2 mRem. The Laboratory features state-of-the-art analytical and low level radiological counting equipment for gaseous, soil, and liquid sample analysis. In particular, this facility is to be used to perform Resource Conservation and Recovery Act (RCRA) of 1976 and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 sample analysis in accordance with U.S. Environmental Protection Agency Protocols, room air and stack monitoring sample analysis, waste water treatment process support, and contractor laboratory quality assurance checks. The samples to be analyzed contain very low concentrations of radioisotopes. The main reason that WSCF is considered a Nuclear Facility is due to the storage of samples at the facility. This maintenance Implementation Plan has been developed for maintenace functions associate with the WSCF.

  5. Demonstration of NFS DeHg Process for Stabilizing Mercury (<260 ppm) Contaminated Mixed Waste. Mixed Waste Focus Area. OST Reference Number 2229

    SciTech Connect

    None, None

    1999-09-01

    Mercury-contaminated wastes in many forms are present at various U. S. Department of Energy (DOE) sites. Based on efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of wastes contaminated with < 260 ppm mercury and with radionuclides stored at various DOE sites is estimated to be approximately 6,000 m3 (Conley, Morris, Osborne-Lee, and Hulet 1998). At least 26 different DOE sites have this type of mixed low-level waste in their storage facilities. Extraction methods are required to remove mercury from waste containing >260 ppm levels, but below 260 ppm Hg contamination levels, the U. S. Environmental Protection Agency (EPA) does not require removal of mercury from the waste. Steps must still be taken, however, to ensure that the final waste form does not leach mercury in excess of the limit for mercury prescribed in the Resource Conservation and Recovery Act (RCRA) when subjected to the Toxicity Characteristic Leaching Procedure (TCLP). At this time, the limit is 0.20mg/L. However, in the year 2000, the more stringent Universal Treatment Standard (UTS) of 0.025 mg/L will be used as the target endpoint. Mercury contamination in the wastes at DOE sites presents a challenge because it exists in various forms, such as soil, sludges, and debris. Stabilization is of interest for radioactively contaminated mercury waste (<260 ppm Hg) because of its success with particular wastes, such as soils, and its promise of applicability to a broad range of wastes. However, stabilization methods must be proven to be adequate to meet treatment standards and to be feasible in terms of economics, operability, and safety. To date, no standard method of stabilization has been developed and proven for such varying waste types as those within the DOE complex.

  6. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  7. Draft environmental assessment: Davis Canyon site, Utah. Nuclear Waste Policy Act (Section 112). [Contains glossary

    SciTech Connect

    Not Available

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah, as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft environmental assessment (EA), which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluations are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received. On the basis of the evaluations reported in this draft EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. The site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site - the Lavender Canyon site. Although the Lavender Canyon site appears to be suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. Furthermore, the DOE finds that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is proposing to nominate the Davis Canyon site as one of five sites suitable for characterization. Having compared the Davis Canyon site with the other four sites proposed for nomination, the DOE has determined that the Davis Canyon site is not one of the three preferred sites for recommendation to the President as candidates for characterization.

  8. Draft environmental assessment: Deaf Smith County site, Texas. Nuclear Waste Policy Act (Section 112). [Contains Glossary

    SciTech Connect

    Not Available

    1984-12-01

    In February 1983, the US Department of Energy identified a location in Deaf Smith County, Texas, as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The potentially acceptable site was subsequently narrowed to an area of 9 square miles. To determine their suitability, the Deaf Smith site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft environmental assessment, which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluations are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received. On the basis of the evaluations reported in this draft EA, the DOE has found that the Deaf Smith site is not disqualified under the guidelines. The site is in the Permian Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site - the Swisher site. Although the Swisher site appears to be suitable for site characterization, DOE has concluded that the Deaf Smith site is the preferred site. The DOE finds that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is proposing to nominate the Deaf Smith site as one of five sites suitable for characterization. Having compared the Deaf Smith site with the other four sites proposed for nomination, the DOE has determined that the Deaf Smith site is one of the three preferred sites for recommendation to the President as candidates for characterization.

  9. Low-level waste program technical strategy

    SciTech Connect

    Bledsoe, K.W.

    1994-10-01

    The Low-Level Waste Technical Strategy document describes the mechanisms which the Low-Level Waste Program Office plans to implement to achieve its mission. The mission is to manage the receipt, immobilization, packaging, storage/disposal and RCRA closure (of the site) of the low-level Hanford waste (pretreated tank wastes) in an environmentally sound, safe and cost-effective manner. The primary objective of the TWRS Low-level waste Program office is to vitrify the LLW fraction of the tank waste and dispose of it onsite.

  10. 1997 Hanford site report on land disposal restrictions for mixed waste

    SciTech Connect

    Black, D.G.

    1997-04-07

    The baseline land disposal restrictions (LDR) plan was prepared in 1990 in accordance with the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tn-Party Agreement) Milestone M-26-00 (Ecology et al, 1989). The text of this milestone is below. ''LDR requirements include limitations on storage of specified hazardous wastes (including mixed wastes). In accordance with approved plans and schedules, the U.S. Department of Energy (DOE) shall develop and implement technologies necessary to achieve full compliance with LDR requirements for mixed wastes at the Hanford Site. LDR plans and schedules shall be developed with consideration of other action plan milestones and will not become effective until approved by the U.S. Environmental Protection Agency (EPA) (or Washington State Department of Ecology [Ecology]) upon authorization to administer LDRs pursuant to Section 3006 of the Resource Conservation and Recovery Act of 1976 (RCRA). Disposal of LDR wastes at any time is prohibited except in accordance with applicable LDR requirements for nonradioactive wastes at all times. The plan will include, but not be limited to, the following: Waste characterization plan; Storage report; Treatment report; Treatment plan; Waste minimization plan; A schedule depicting the events necessary to achieve full compliance with LDR requirements; and A process for establishing interim milestones.

  11. Radionuclide Retention Mechanisms in Secondary Waste-Form Testing: Phase II

    SciTech Connect

    Um, Wooyong; Valenta, Michelle M.; Chung, Chul-Woo; Yang, Jungseok; Engelhard, Mark H.; Serne, R. Jeffrey; Parker, Kent E.; Wang, Guohui; Cantrell, Kirk J.; Westsik, Joseph H.

    2011-09-26

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate candidate stabilization technologies that have the potential to successfully treat liquid secondary waste stream effluents produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). WRPS is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF, a multi-waste, treatment-and-storage unit that has been permitted under the Resource Conservation and Recovery Act (RCRA), can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid waste generated during operation of the WTP. The STU will provide the additional capacity needed for ETF to process the increased volume of secondary waste expected to be produced by WTP. This report on radionuclide retention mechanisms describes the testing and characterization results that improve understanding of radionuclide retention mechanisms, especially for pertechnetate, {sup 99}TcO{sub 4}{sup -} in four different waste forms: Cast Stone, DuraLith alkali aluminosilicate geopolymer, encapsulated fluidized bed steam reforming (FBSR) product, and Ceramicrete phosphate bonded ceramic. These data and results will be used to fill existing data gaps on the candidate technologies to support a decision-making process that will identify a subset of the candidate waste forms that are most promising and should undergo further performance testing.

  12. H.R. 1085: A Bill to amend the Solid Waste Disposal Act to provide congressional authorization for State and local flow control authority over solid waste, and for other purposes. Introduced in the House of Representatives, One Hundred Fourth Congress, First Session, February 28, 1995

    SciTech Connect

    1995-12-31

    The report H.R. 1085 is a bill to amend the Solid Waste Disposal Act to provide congressional authorization for State and local flow control authority over solid waste. The proposed legislative text is provided.

  13. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control

  14. 77 FR 15966 - Ohio: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-19

    ... AGENCY 40 CFR Part 271 Ohio: Final Authorization of State Hazardous Waste Management Program Revision..., 1989 (54 FR 27170) to implement the RCRA hazardous waste management program. We granted authorization... Combustors; Final Rule, Checklist 198, February 14, 2002 (67 FR 6968); Hazardous Waste Management...

  15. 77 FR 60919 - Tennessee: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... AGENCY 40 CFR Part 271 Tennessee: Final Authorization of State Hazardous Waste Management Program... the Tennessee Department of Environment and Conservation, Division of Solid Waste Management, 5th...), to implement the RCRA hazardous waste management program. We granted authorization for changes...

  16. 78 FR 79654 - Vermont: Proposed Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ...-0554; FRL-9904-46-Region 1] Vermont: Proposed Authorization of State Hazardous Waste Management Program... INFORMATION CONTACT: Sharon Leitch, RCRA Waste Management and UST Section, Office of Site Remediation and... grant final authorization to the State of Vermont for changes to its hazardous waste program. In...

  17. 76 FR 62303 - California: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... AGENCY 40 CFR Part 271 California: Final Authorization of State Hazardous Waste Management Program... hazardous waste management program shall be effective at 1 p.m. on October 7, 2011. FOR FURTHER INFORMATION..., effective August 1, 1992 (57 FR 32726), to implement the RCRA hazardous waste management program....

  18. 77 FR 69765 - Colorado: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    ... AGENCY 40 CFR Part 271 Colorado: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: The Solid Waste... November 2, 1984 (49 FR 41036), to implement the RCRA hazardous waste management program. We...

  19. 75 FR 76691 - Oregon; Correction of Federal Authorization of the State's Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-09

    ... waste management program. On January 7, 2010, EPA published a final rule under docket EPA-R10-RCRA 2009... Hazardous Waste Management Program. These authorized changes included, among others, the Federal Recycled... Hazardous Waste Management Program Revision though a direct final rule without prior proposal because...

  20. 75 FR 60398 - California: Proposed Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... AGENCY 40 CFR Part 271 California: Proposed Authorization of State Hazardous Waste Management Program... application for authorization for changes to its hazardous waste management program by November 1, 2010... waste management program. EPA continues to have independent enforcement authority under RCRA...

  1. RCRA Facility Investigation/Remedial Investigation Report for Gunsite 720 Rubble Pit Unit (631-16G) - March 1996

    SciTech Connect

    Palmer, E.

    1996-03-01

    Gunsite 720 Rubble Pit Unit is located on the west side of SRS. In the early to mid 1980`s, while work was being performed in this area, nine empty, partially buried drums, labeled `du Pont Freon 11`, were found. As a result, Gunsite 720 became one of the original waste units specified in the SRS RCRA Facility Assessment (RFA). The drums were excavated on July 30, 1987 and placed on a pallet at the unit. Both the drums and pallet were removed and disposed of in October 1989. The area around the drums was screened during the excavation and the liquid (rainwater) that collected in the excavated drums was sampled prior to disposal. No evidence of hazardous materials was found. Based on the review of the analytical data and screening techniques used to evaluate all the chemicals of potential concern at Gunsite 720 Rubble Pit Unit, it is recommended that no further remedial action be performed at this unit.

  2. Financial Assurance Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    EPA Pesticide Factsheets

    The Resource Conservation and Recovery Act (RCRA) requires all treatment, storage and disposal facilities (TSDFs) to demonstrate that they will have the financial resources to properly close the facility

  3. A comparison of the RCRA Corrective Action and CERCLA Remedial Action Processes

    SciTech Connect

    Traceski, Thomas T.

    1994-02-01

    This document provides a comprehensive side-by-side comparison of the RCRA corrective action and the CERCLA remedial action processes. On the even-numbered pages a discussion of the RCRA corrective action process is presented and on the odd-numbered pages a comparative discussion of the CERCLA remedial action process can be found. Because the two programs have a difference structure, there is not always a direct correlation between the two throughout the document. This document serves as an informative reference for Departmental and contractor personnel responsible for oversight or implementation of RCRA corrective action and CERCLA remedial action activities at DOE environmental restoration sites.

  4. EXAMPLE OF A RISK BASED DISPOSAL APPROVAL SOLIDIFICATION OF HANFORD SITE TRANSURANIC (TRU) WASTE

    SciTech Connect

    PRIGNANO AL

    2007-11-14

    The Hanford Site requested, and the U.S. Environmental Protection Agency (EPA) Region 10 approved, a Toxic Substances Control Act of 1976 (TSCA) risk-based disposal approval (RBDA) for solidifying approximately four cubic meters of waste from a specific area of one of the K East Basin: the North Loadout Pit (NLOP). The NLOP waste is a highly radioactive sludge that contained polychlorinated biphenyls (PCBs) regulated under TSCA. The prescribed disposal method for liquid PCB waste under TSCA regulations is either thermal treatment or decontamination. Due to the radioactive nature of the waste, however, neither thermal treatment nor decontamination was a viable option. As a result, the proposed treatment consisted of solidifying the material to comply with waste acceptance criteria at the Waste Isolation Pilot Plant (WPP) in Carlsbad, New Mexico, or possibly the Environmental Restoration Disposal Facility at the Hanford Site, depending on the resulting transuranic (TRU) content of the stabilized waste. The RBDA evaluated environmental risks associated with potential airborne PCBs. In addition, the RBDA made use of waste management controls already in place at the treatment unit. The treatment unit, the T Plant Complex, is a Resource Conservation and Recovery Act of 1976 (RCRA)-permitted facility used for storing and treating radioactive waste. The EPA found that the proposed activities did not pose an unreasonable risk to human health or the environment. Treatment took place from October 26,2005 to June 9,2006, and 332 208-liter (55-gallon) containers of solidified waste were produced. All treated drums assayed to date are TRU and will be disposed at WIPP.

  5. A sensitivity analysis of hazardous waste disposal site climatic and soil design parameters using HELP3

    SciTech Connect

    Adelman, D.D.; Stansbury, J.

    1997-12-31

    The Resource Conservation and Recovery Act (RCRA) Subtitle C, Comprehensive Environmental Response, Compensation, And Liability Act (CERCLA), and subsequent amendments have formed a comprehensive framework to deal with hazardous wastes on the national level. Key to this waste management is guidance on design (e.g., cover and bottom leachate control systems) of hazardous waste landfills. The objective of this research was to investigate the sensitivity of leachate volume at hazardous waste disposal sites to climatic, soil cover, and vegetative cover (Leaf Area Index) conditions. The computer model HELP3 which has the capability to simulate double bottom liner systems as called for in hazardous waste disposal sites was used in the analysis. HELP3 was used to model 54 combinations of climatic conditions, disposal site soil surface curve numbers, and leaf area index values to investigate how sensitive disposal site leachate volume was to these three variables. Results showed that leachate volume from the bottom double liner system was not sensitive to these parameters. However, the cover liner system leachate volume was quite sensitive to climatic conditions and less sensitive to Leaf Area Index and curve number values. Since humid locations had considerably more cover liner system leachate volume than and locations, different design standards may be appropriate for humid conditions than for and conditions.

  6. Title III list of lists: Consolidated list of chemicals subject to the Emergency Planning and Community Right-to-Know Act (EPCRA) and section 112(r) of the Clean Air Act, as amended. Title III of the Superfund Amendments and Reauthorization Act of 1986, and Title III of the Clean Air Act Amendments of 1990

    SciTech Connect

    Not Available

    1994-06-01

    The consolidated chemical list includes chemicals subject to reporting requirements under Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA), also known as the Emergency Planning and Community Right-to-Know Act (EPCRA), and chemicals listed under section 112(r) of Title III the Clean Air Act (CAA) Amendments of 1990. This consolidated list has been prepared to help firms handling chemicals determine whether they need to submit reports under sections 302, 304, or 313 of SARA Title III (EPCRA) and, for a specific chemical, what reports may need to be submitted. Separate lists are also provided of Resource Conservation and Recovery Act (RCRA) waste streams and unlisted hazardous wastes, and of radionuclides reportable under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). These lists should be used as reference tool, not as a definitive source of compliance information. The chemicals on the consolidated list are ordered by Chemical Abstract Service (CAS) registry number. Categories of chemicals, which do not have CAS registry numbers, but which are cited under CERCLA, EPCRA section 313, and the CAA, are placed at the end of the list. More than one chemical name may be listed for one CAS number, because the same chemical may appear on different lists under different names.

  7. Overview of hazardous-waste regulation at federal facilities

    SciTech Connect

    Tanzman, E.; LaBrie, B.; Lerner, K.

    1982-05-01

    This report is organized in a fashion that is intended to explain the legal duties imposed on officials responsible for hazardous waste at each stage of its existence. Section 2 describes federal hazardous waste laws, explaining the legal meaning of hazardous waste and the protective measures that are required to be taken by its generators, transporters, and storers. In addition, penalties for violation of the standards are summarized, and a special discussion is presented of so-called imminent hazard provisions for handling hazardous waste that immediately threatens public health and safety. Although the focus of Sec. 2 is on RCRA, which is the principal federal law regulating hazardous waste, other federal statutes are discussed as appropriate. Section 3 covers state regulation of hazardous waste. First, Sec. 3 explains the system of state enforcement of the federal RCRA requirements on hazardous waste within their borders. Second, Sec. 3 discusses two peculiar provisions of RCRA that appear to permit states to regulate federal facilities more strictly than RCRA otherwise would require.

  8. Treatment technology analysis for mixed waste containers and debris

    SciTech Connect

    Gehrke, R.J.; Brown, C.H.; Langton, C.A.; Askew, N.M.; Kan, T.; Schwinkendorf, W.E.

    1994-03-01

    A team was assembled to develop technology needs and strategies for treatment of mixed waste debris and empty containers in the Department of Energy (DOE) complex, and to determine the advantages and disadvantages of applying the Debris and Empty Container Rules to these wastes. These rules issued by the Environmental Protection Agency (EPA) apply only to the hazardous component of mixed debris. Hazardous debris that is subjected to regulations under the Atomic Energy Act because of its radioactivity (i.e., mixed debris) is also subject to the debris treatment standards. The issue of treating debris per the Resource Conservation and Recovery Act (RCRA) at the same time or in conjunction with decontamination of the radioactive contamination was also addressed. Resolution of this issue requires policy development by DOE Headquarters of de minimis concentrations for radioactivity and release of material to Subtitle D landfills or into the commercial sector. The task team recommends that, since alternate treatment technologies (for the hazardous component) are Best Demonstrated Available Technology (BDAT): (1) funding should focus on demonstration, testing, and evaluation of BDAT on mixed debris, (2) funding should also consider verification of alternative treatments for the decontamination of radioactive debris, and (3) DOE should establish criteria for the recycle/reuse or disposal of treated and decontaminated mixed debris as municipal waste.

  9. Superfund TIO videos. Set A. Regulatory overview - CERCLA's relationship to other programs: RCRA, Title III, UST, CWA, SDWA. Part 1. Audio-Visual

    SciTech Connect

    Not Available

    1990-01-01

    The videotape is divided into five sections. Section 1 provides definitions and historical information on both the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The four types of RCRA regulatory programs - Subtitles C, D, I, and J - are described. Treatment, storage, and disposal (TSD) and recycling facilities are also discussed. Section 2 discusses the history behind the Emergency Planning and Community Right-to-Know Act (Title III). The four major provisions of Title III, which are emergency planning, emergency release notification, community right-to-know reporting, and the toxic chemical release inventory are covered. Section 3 outlines the UST program covering notification, record keeping, and the UST Trust Fund. Section 4 outlines the six major provisions of the Clean Water Act (CWA): water quality, pretreatment, prevention of oil and hazardous substance discharges, responses to oil and hazardous substance discharges, discharges of hazardous substances into the ocean, and dredge and fill. Section 5 explains the purpose, regulations, and standards of the Safe Drinking Water Act (SDWA). Specific issues such as underground injection, sole source aquifers, and lead contamination are discussed.

  10. MEASUREMENTS TAKEN IN SUPPORT OF QUALIFICATION OF PROCESSING SAVANNAH RIVER SITE LOW-LEVEL LIQUID WASTE INTO SALTSTONE

    SciTech Connect

    Reigel, M.; Bibler, N.; Diprete, C.; Cozzi, A.; Staub, A.; Ray, J.

    2010-01-27

    The Saltstone Facility at the Savannah River Site (SRS) immobilizes low-level liquid waste into Saltstone to be disposed of in the Z-Area Saltstone Disposal Facility, Class Three Landfill. In order to meet the permit conditions and regulatory limits set by the South Carolina Department of Health and Environmental Control (SCDHEC), the Resource Conservation and Recovery Act (RCRA) and the Environmental Protection Agency (EPA), both the low-level salt solution and Saltstone samples are analyzed quarterly. Waste acceptance criteria (WAC) are designed to confirm the salt solution sample from the Tank Farm meets specific radioactive and chemical limits. The toxic characteristic leaching procedure (TCLP) is used to confirm that the treatment has immobilized the hazardous constituents of the salt solution. This paper discusses the methods used to characterize the salt solution and final Saltstone samples from 2007-2009.

  11. Addendum 1, to Resource Conservation and Recovery Act (RCRA) Facility Investigation R Report for IRP Sites Number’s 17, 18, 19 and 21. Volume 2. Appendices A-L. 148th Fighter Group, Minnesota Air National Guard Duluth Air National Guard Base, Duluth, Minnesota.

    DTIC Science & Technology

    1996-03-01

    National Guard Base, Duluth, Minnesota is outlined in the final permit for a hazardous waste storage facility issued to the Minnesota Air National Guard (ID...P.O.Box 20807 Houston, Texas 77225 (713) 660-0901 FAX: (713) 660-8975 Dear Karen, The following is a brief summary of some analytical issues questioned...OC,1 DCýC DC ýC C~l m m enem nnnm m m S0000000000 c c 0 C 0 0 CD C) 0D CD = 0 CD 0 C0 471. 0 00 ... Lt , . - CC 4.4 00000 00000 .~~*e,~000000~ CL,0

  12. Assessing Risks to Populations at Superfund and Rcra Sites: Characterizing Effects on Populations (Final)

    EPA Science Inventory

    The Ecological Risk Assessment Support Center (ERASC) announced the release of the final document titled, Assessing Risks to Populations at Superfund and RCRA Sites: Characterizing Effects on Populations.

  13. Guidance: Using RCRA's Results-Based Approaches and Tailored Oversight Guidance when Performing Superfund Oversight

    EPA Pesticide Factsheets

    Memorandum providing additional information in support of Superfund's administrative reform on PRP oversight. Superfund program managers should consider RCRA's Results-Based Guidance when developing oversight plans with PRPs.

  14. Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

    SciTech Connect

    Washington TRU Solutions LLC

    2005-12-29

    The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source

  15. ORD RESEARCH SUPPORT FOR RCRA VAPOR INTRUSION GUIDANCE

    EPA Science Inventory

    ASTSWMO - Association of State and Territorial Solid Waste Management Officials meet twice a year to exchange information on some of the emerging opportunities for forming partnerships with other government entities to address the challenges of waste program management and cleanu...

  16. Applicability of federal and state hazardous waste regulatory programs to waste chemical weapons and chemical warfare agents.

    SciTech Connect

    Haffenden, R.; Kimmell, T.

    2002-02-20

    This report reviews federal and state hazardous waste regulatory programs that govern the management of chemical weapons or chemical warfare agents. It addresses state programs in the eight states with chemical weapon storage facilities managed by the U.S. Army: Alabama, Arkansas, Colorado, Indiana, Kentucky, Maryland, Oregon, and Utah. It also includes discussions on 32 additional states or jurisdictions with known or suspected chemical weapons or chemical warfare agent presence (e.g., disposal sites containing chemical agent identification sets): Alaska, Arizona, California, Florida, Georgia, Hawaii, Idaho, Illinois, Iowa, Kansas, Louisiana, Massachusetts, Michigan, Mississippi, Missouri, Nebraska, Nevada, New Jersey, New Mexico, New York, North Carolina, Ohio, Pennsylvania, South Carolina, South Dakota, Tennessee, Texas, the U.S. Virgin Islands, Virginia, Washington, Washington, D.C., and Wyoming. Resource Conservation and Recovery Act (RCRA) hazardous waste programs are reviewed to determine whether chemical weapons or chemical warfare agents are listed hazardous wastes or otherwise defined or identified as hazardous wastes. Because the U.S. Environmental Protection Agency (EPA) military munitions rule specifically addresses the management of chemical munitions, this report also indicates whether a state has adopted the rule and whether the resulting state regulations have been authorized by EPA. Many states have adopted parts or all of the EPA munitions rule but have not yet received authorization from EPA to implement the rule. In these cases, the states may enforce the adopted munitions rule provisions under state law, but these provisions are not federally enforceable.

  17. Treatment of M-area mixed wastes at the Savannah River Site

    SciTech Connect

    Not Available

    1994-06-01

    The Department of Energy has prepared this environmental assessment, DOE/EA-0918, to assess the potential environmental impacts of the treatment of mixed wastes currently stored in the M-Area at the Savannah River Site, near Aiken, South Carolina. DOE is proposing to treat and stabilize approximately 700,000 gallons of mixed waste currently stored in the Interim Treatment/Storage Facility (IT/SF) and Mixed Waste Storage Shed (MWSS). This waste material is proposed to be stabilized using a vitrification process and temporarily stored until final disposal is available by the year 2005. This document has been prepared to assess the potential environmental impacts attributable to the treatment and stabilization of M-area mixed wastes, the closure of the interim storage area, and storage of the vitrified waste until disposal in onsite RCRA vaults. Based on the analyses in the environmental assessment, the Department of Energy has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required, and the Department of Energy is issuing this finding of no significant impact.

  18. Results of RCRA groundwater quality assessment program at the 216-U-12 crib

    SciTech Connect

    Williams, B.A.; Chou, C.J.

    1997-05-01

    The 216-U-12 crib has been in a Resource Conservation and Recovery Act of 1976 (RCRA) interim-status groundwater quality assessment program since the first quarter of 1993. Specific conductance measured in downgradient wells 299-W22-41 and 299-W22-42 exceeds its critical mean. This report presents the results and findings of Phases I and II of the assessment monitoring program, as required by 40 CFR 265.93. The elevated levels of specific conductance in the downgradient {open_quotes}triggering{close_quotes} wells are attributed to nitrate, the mobile anion released when nitric acid is diluted in water, and calcium which is released from the sediments as acid is neutralized. Technetium-99 levels have been elevated in these same downgradient wells since 1991. The source of these constituents is the 216-U-12 crib. Downward migration of nitrate and technetium-99 from the vadose zone (and continued elevated specific conductance in the two downgradient wells) is still occurring because the driving force is still present.

  19. Proposed modifications to the RCRA post-closure permit for the Chestnut Ridge Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1997-05-01

    This report presents proposed modifications to several conditions of the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Chestnut Ridge Hydrogeologic Regime (CRHR) (permit number TNHW-088, EPA ID No. TN3 89 009 0001). These permit conditions define the requirements for RCRA post-closure detection groundwater monitoring at the Chestnut Ridge Sediment Disposal Basin (CRSDB) and Kerr Hollow Quarry (KHQ), and RCRA post-closure corrective action groundwater monitoring at the Chestnut Ridge Security Pits (CRSPs). Modification of these PCP conditions is requested to: (1) clarify the planned integration of RCRA post-closure corrective action groundwater monitoring at the CRSPs with the monitoring program to be established in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) record of decision (ROD), (2) revise several of the current technical requirements for groundwater monitoring based on implementation of the RCRA monitoring programs during 1996, (3) replace several of the technical procedures included in the PCP with updated versions recently issued by the Y-12 Plant Groundwater Protection Program (GWPP), and (4) correct inaccurate regulatory citations and references to permit conditions and permit attachments. With these modifications, the Y- 12 Plant will continue to meet the full intent of all regulatory obligations for post-closure care of these facilities. Section 2 provides the technical justification for each proposed permit modification. Section 3.0 contains proposed changes to Section II of the PCP. Modifications to site-specific permit conditions are presented in Section 4.0 (CRSDB), Section 5.0 (CRSPs), and Section 6.0 (KHQ). Sections 7.0 and 8.0 reference updated and revised procedures for groundwater sampling, and monitoring well plugging and abandonment, respectively. Appendix A includes all proposed revisions to the permit attachments.

  20. Separation technologies for the treatment of Idaho National Engineering Laboratory wastes

    SciTech Connect

    Todd, T.A.

    1997-10-01

    Currently about 6.8 million L of acidic, radioactive liquid waste that is not amenable to calcination, and about 3800 m{sup 3} of calcine exist at the ICPP. Legal drivers (court orders) and agreements between the state of Idaho, the U.S. Navy, and DOE exist that obligate INEL to develop, demonstrate, and implement technologies for treatment and interim storage of the radioactive liquid and calcine wastes. Per these agreements, all tank waste must be removed from the underground liquid storage tanks by the year 2012, and high-level radioactive waste must be treated and removed from INEL by 2035. Separation of the radionuclides from the wastes, followed by immobilization of the high-activity and low-activity fractions in glass and grout, respectively, is the approach preferred by INEL. Technologies to remove actinides (U, Np, Pu, and Am), Cs, Sr, and possibly Tc from highly acidic solutions are required to process INEL wastes. Decontamination of the wastes to NRC Class A low-level waste (LLW) is planned. Separation and isolation of Resource Conservation and Recovery Act (RCRA) metals (Hg, Pb, Cd, and Cr) from the highly radioactive waste streams may also be required. Remediation efforts will begin in FY 1997 to remove volatile organic compounds (VOCs) and radionuclides (Cs and Sr) from groundwater located at the Test Area North facility at INEL. A plume of VOCs and radionuclides has spread from the former TSF-05 injection well, and a Comprehensive Environmental Response, Conservation, and Liability Act (CERCLA) remediation action is under way. A Record of Decision was signed in August 1995 that commits INEL to remediate the plume from TSF-05. Removal of Sr and Cs from the groundwater using commercially available ion-exchange resins has been unsuccessful at meeting maximum contaminant levels, which are 119 pCi/L and 8 pCi/L for Cs and Sr, respectively. Cesium and Sr are the major contaminants that must be removed from the groundwater.

  1. 76 FR 72311 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... the receptor's respiratory system. This is no longer necessary as toxicity reference values for...-2009-0312; SW FRL-9490-9] Hazardous Waste Management System; Identification and Listing of Hazardous... States: States having a dual system that includes Federal RCRA requirements and their own...

  2. Progress in High-Level Waste Tank Cleaning at the Idaho National Environmental and Engineering Laboratory

    SciTech Connect

    Lockie, K. A.; McNaught, W. B.

    2002-02-26

    The Department of Energy Idaho Operations Office (DOE-ID) is making preparations to close two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy (DOE) orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 300,000 gallon tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). Design, development, and deployment of a remotely operated tank cleaning system were completed in August 2001. The system incorporates many commercially available components, which have been adapted for application in cleaning high-level waste tanks. The system also uses existing waste transfer technology (steam-jets) to remove tank heel solids from the tank bottoms during the cleaning operations. By using this existing transfer system and commercially available equipment, the cost of developing custom designed cleaning equipment can be avoided. Remotely operated directional spray nozzles, automatic rotating wash balls, video monitoring equipment, decontamination spray-rings, and tank specific access interface devices have been integrated to provide a system that efficiently cleans tank walls and heel solids in an acidic, radioactive environment. This system is also compliant with operational and safety performance requirements at INTEC. Through the deployment of the tank cleaning system, the INEEL High Level Waste Program has demonstrated the capability to clean tanks to meet RCRA clean closure standards and DOE closure performance measures. The tank cleaning system deployed at the INTEC offers unique advantages over other approaches evaluated at the INEEL and throughout the DOE Complex. The system's ability to agitate and homogenize the tank heel sludge will simplify verification-sampling techniques and reduce the total quantity of samples required to

  3. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1995

    SciTech Connect

    Hartman, M.J.

    1996-02-01

    This report presents the annual hydrogeologic evaluation of 19 Resource Conservation and Recovery Act of 1976 facilities and 1 nonhazardous waste facility at the US Department of Energy`s Hanford Site. Although most of the facilities no longer receive dangerous waste, a few facilities continue to receive dangerous waste constituents for treatment, storage, or disposal. The 19 Resource Conservation and Recovery Act facilities comprise 29 waste management units. Nine of the units are monitored under groundwater quality assessment status because of elevated levels of contamination indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration profiles, rate, and extent of migration are evaluated. Groundwater is monitored at the other 20 units to detect leakage, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1994 and September 1995. Groundwater quality is described for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides.

  4. Groundwater modeling in RCRA assessment, corrective action design and evaluation

    SciTech Connect

    Rybak, I.; Henley, W.

    1995-12-31

    Groundwater modeling was conducted to design, implement, modify, and terminate corrective action at several RCRA sites in EPA Region 4. Groundwater flow, contaminant transport and unsaturated zone air flow models were used depending on the complexity of the site and the corrective action objectives. Software used included Modflow, Modpath, Quickflow, Bioplume 2, and AIR3D. Site assessment data, such as aquifer properties, site description, and surface water characteristics for each facility were used in constructing the models and designing the remedial systems. Modeling, in turn, specified additional site assessment data requirements for the remedial system design. The specific purpose of computer modeling is discussed with several case studies. These consist, among others, of the following: evaluation of the mechanism of the aquifer system and selection of a cost effective remedial option, evaluation of the capture zone of a pumping system, prediction of the system performance for different and difficult hydrogeologic settings, evaluation of the system performance, and trouble-shooting for the remedial system operation. Modeling is presented as a useful tool for corrective action system design, performance, evaluation, and trouble-shooting. The case studies exemplified the integration of diverse data sources, understanding the mechanism of the aquifer system, and evaluation of the performance of alternative remediation systems in a cost-effective manner. Pollutants of concern include metals and PAHs.

  5. WIPP waste characterization program sampling and analysis guidance manual

    SciTech Connect

    Not Available

    1991-01-01

    The Waste Isolation Pilot Plant (WIPP) Waste Characterization Program Sampling and Analysis Guidance Manual (Guidance Manual) provides a unified source of information on the sampling and analytical techniques that enable Department of Energy (DOE) facilities to comply with the requirements established in the current revision of the Quality Assurance Program Plan (QAPP) for the WIPP Experimental-Waste Characterization Program (the Program). This Guidance Manual includes all of the sampling and testing methodologies accepted by the WIPP Project Office (DOE/WPO) for use in implementing the Program requirements specified in the QAPP. This includes methods for characterizing representative samples of transuranic (TRU) wastes at DOE generator sites with respect to the gas generation controlling variables defined in the WIPP bin-scale and alcove test plans, as well as waste container headspace gas sampling and analytical procedures to support waste characterization requirements under the WIPP test program and the Resource Conservation and Recovery Act (RCRA). The procedures in this Guidance Manual are comprehensive and detailed and are designed to provide the necessary guidance for the preparation of site specific procedures. The use of these procedures is intended to provide the necessary sensitivity, specificity, precision, and comparability of analyses and test results. The solutions to achieving specific program objectives will depend upon facility constraints, compliance with DOE Orders and DOE facilities' operating contractor requirements, and the knowledge and experience of the TRU waste handlers and analysts. With some analytical methods, such as gas chromatography/mass spectrometry, the Guidance Manual procedures may be used directly. With other methods, such as nondestructive/destructive characterization, the Guidance Manual provides guidance rather than a step-by-step procedure.

  6. Investigation of Accelerated Casing Corrosion in Two Wells at Waste Management Area A-AX

    SciTech Connect

    Brown, Christopher F.; Serne, R. Jeffrey; Schaef, Herbert T.; Williams, Bruce A.; Valenta, Michelle M.; Legore, Virginia L.; Lindberg, Michael J.; Geiszler, Keith N.; Baum, Steven R.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Clayton, Ray E.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 3.13 and 3.14. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in August 2005. An overall goal of the Groundwater Performance Assessment Project, led by Pacific Northwest National Laboratory (PNNL) and per guidance in DOE Order 5400.1, includes characterizing and defining trends in the physical, chemical, and biological condition of the environment. To meet these goals, numerous Resource Conservation and Recovery Act (RCRA) monitoring wells have been installed throughout the Hanford Site. In 2003, it was determined that two RCRA monitoring wells (299-E24-19 and 299-E25-46) in Waste Management Area (WMA) A-AX failed due to rapid corrosion of the stainless steel casing over a significant length of the wells. Complete casing corrosion occurred between 276.6 and 277.7 feet below ground surface (bgs) in well 299- E24-19 and from 274.4 to 278.6 feet bgs in well 299-E25-46. CH2M HILL Hanford Group, Inc., asked scientists from PNNL to perform detailed analyses of vadose zone sediment samples collected in the vicinity of the WMA A-AX from depths comparable to those where the rapid corrosion occurred in hopes of ascertaining the cause of the rapid corrosion.

  7. Development of soil cleanup standards for the biological treatment of wood preserving wastes

    SciTech Connect

    Jerger, D.E.; LaGoy, P.

    1995-12-31

    The primary goal of hazardous waste site remediation is to achieve a set of conditions that are environmentally safe for organismal receptors, and will prevent any further action on site. Establishing these conditions raises the issue of ``how clean is clean`` or ``what concentration of a contaminant in soil is environmentally acceptable`` for contaminated sites. This debate is occurring on a national scale as part of the Superfund reauthorization. Historically, cleanup goals have not explicitly addressed whether the remedial action results in a safe site. The use of Resource Conservation and Recovery Act (RCRA), Best Demonstrated Available Technology (BDAT), or limits of detection (LOD) as a cleanup criteria may also be inappropriate if the remediating goal is to protect human health and the environment. OHM Remediation Services Corp. (OHM) has recently completed the successful treatment of 14,000 tons of creosote-contaminated material at the Southeastern Wood Superfund Site in Canton, MS. Slurry phase biological treatment was the technology chosen to remediate the contaminated material classified as RCRA K001 criteria for CERCLA (Superfund) actions: protection of public health, welfare, and the environment.

  8. Characterization of Class A low-level radioactive waste 1986--1990. Volume 1: Executive summary

    SciTech Connect

    Dehmel, J.C.; Loomis, D.; Mauro, J.; Kaplan, M.

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

  9. Solid waste integrated cost analysis model: 1991 project year report. Part 2

    SciTech Connect

    Not Available

    1991-12-31

    The purpose of the City of Houston`s 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA`s Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

  10. Characterization of Class A low-level radioactive waste 1986--1990. Volume 5: Appendix F

    SciTech Connect

    Dehmel, J.C.; Loomis, D.; Mauro, J.; Kaplan, M.

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

  11. Transuranic (TRU) Waste Phase I Retrieval Plan

    SciTech Connect

    MCDONALD, K.M.

    2000-09-28

    From 1970 to 1987, TRU and suspect TRU wastes at Hanford were placed in the SWBG. At the time of placement in the SWBG these wastes were not regulated under existing Resource Conservation and Recovery Act (RCRA) regulations, since they were generated and disposed of prior to the effective date of RCRA at the Hanford Site (1987). From the standpoint of DOE Order 5820.2A1, the TRU wastes are considered retrievably stored, and current plans are to retrieve these wastes for shipment to WIPP for disposal. This plan provides a strategy for the Phase I retrieval that meets the intent of TPA milestone M-91 and Project W-113, and incorporates the lessons learned during TRU retrieval campaigns at Hanford, LANL, and SRS. As in the original Project W-113 plans, the current plan calls for examination of approximately 10,000 suspect-TRU drums located in the 218-W-4C burial ground followed by the retrieval of those drums verified to contain TRU waste. Unlike the older plan, however, this plan proposes an open-air retrieval scenario similar to those used for TRU drum retrieval at LANL and SRS. Phase I retrieval consists of the activities associated with the assessment of approximately 10,000 55-gallon drums of suspect TRU-waste in burial ground 218-W-4C and the retrieval of those drums verified to contain TRU waste. Four of the trenches in 218-W-4C (Trenches 1, 4, 20, and 29) are prime candidates for Phase I retrieval because they contain large numbers of suspect TRU drums, stacked from 2 to 5 drums high, on an asphalt pad. In fact, three of the trenches (Trenches 1 , 20, and 29) contain waste that has not been covered with soil, and about 1500 drums can be retrieved without excavation. The other three trenches in 218-W-4C (Trenches 7, 19, and 24) are not candidates for Phase I retrieval because they contain significant numbers of boxes. Drums will be retrieved from the four candidate trenches, checked for structural integrity, overpacked, if necessary, and assayed at the burial

  12. Groundwater Monitoring Plan for the Hanford Site 216-B-3 Pond RCRA Facility

    SciTech Connect

    Barnett, D. Brent; Smith, Ronald M.; Chou, Charissa J.

    2000-11-28

    The 216-B-3 Pond was a series of ponds for disposal of liquid effluent from past Hanford production facilities. In 1990, groundwater monitoring at B Pond was elevated from "detection" to assessment status because total organic halides and total organic carbon were found to exceed critical means in two wells. Groundwater quality assessment, which ended in 1996, failed to find any specific hazardous waste contaminant that could have accounted for the isolated occurrences of elevated total organic halides and total organic carbon. Hence, the facility was subsequently returned to detection-level monitoring in 1998. Exhaustive groundwater analyses during the assessment period indicated that only two contaminants, tritium and nitrate, could be positively attributed to the B Pond System, with two others (arsenic and I-129) possibly originating from B Pond. Chemical and radiological analyses of soil at the main pond and 216-B-3-3 ditch has not revealed significant contamination. Based on the observed, minor contamination in groundwater and in the soil column, three parameters were selected for site-specific, semiannual monitoring; gross alpha, gross beta, and specific conductance. Total organic halides and total organic carbon are included as constituents because of regulatory requirements. Nitrate, tritium, arsenic, and iodine-129 will be monitored under the aegis of Hanford site-wide monitoring. Although the B Pond System is not scheduled to advance from RCRA interim status to final status until the year 2003, a contingency plan for an improved monitoring strategy, which will partially emulate final status requirements, will be contemplated before the official change to final status. This modification will allow a more sensible and effective screening of groundwater for the facility.

  13. Integrated process analysis of treatment systems for mixed low level waste

    SciTech Connect

    Cooley, C.R.; Schwinkendorf, W.E. |; Bechtold, T.E.

    1997-10-01

    Selection of technologies to be developed for treatment of DOE`s mixed low level waste (MLLW) requires knowledge and understanding of the expected costs, schedules, risks, performance, and reliability of the total engineered systems that use these technologies. Thus, an integrated process analysis program was undertaken to identify the characteristics and needs of several thermal and nonthermal systems. For purposes of comparison, all systems were conceptually designed for a single facility processing the same amount of waste at the same rate. Thirty treatment systems were evaluated ranging from standard incineration to innovative thermal systems and innovative nonthermal chemical treatment. Treating 236 million pounds of waste in 20 years through a central treatment was found to be the least costly option with total life cycle cost ranging from $2.1 billion for a metal melting system to $3.9 billion for a nonthermal acid digestion system. Little cost difference exists among nonthermal systems or among thermal systems. Significant cost savings could be achieved by working towards maximum on line treatment time per year; vitrifying the final waste residue; decreasing front end characterization segregation and sizing requirements; using contaminated soil as the vitrifying agent; and delisting the final vitrified waste form from Resource Conservation and Recovery Act (RCRA) Land Disposal Restriction (LDR) requirements.

  14. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    SciTech Connect

    NSTec Environmental Management

    2008-09-01

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

  15. Facility Search - Hazardous Waste | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  16. Analyze Trends: State Hazardous Waste Dashboard | ECHO ...

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  17. 77 FR 18266 - Notice of Lodging of Consent Decree Under the Resource Conservation and Recovery Act and Clean...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... of Lodging of Consent Decree Under the Resource Conservation and Recovery Act and Clean Air Act... compliance with the Resource Conservation and Recovery Act (``RCRA'') and the Clean Air Act (``CAA''). The... be addressed to the Assistant Attorney General, Environment and Natural Resources Division,...

  18. Protocol for laboratory research on degradation, interaction, and fate of wastes disposed by deep-well injection: Final report

    SciTech Connect

    Collins, A.G.; Crocker, M.E.

    1987-12-01

    The objective of this research investigation was to develop a laboratory protocol for use in determining degradation, interaction, and fate of organic wastes disposed in deep subsurface reservoirs via disposal wells. Knowledge of the ultimate fate of deep-well disposed wastes is important because provisions of the Resource Conservation and Recovery Act (RCRA) require that by August 1988, the Environmental Protection Agency (EPA) must show that the disposal of specified wastes by deep-well injection is safe to human health and the environment, or the practice must be stopped. The National Institute for Petroleum and Energy Research (NIPER) developed this protocol primarily by transferring some of its expertise and knowledge of laboratory protocol relevant to improved recovery of petroleum. Phenol, because it is injected into deep, subsurface reservoirs for disposal, was selected for study by the EPA. Phenol is one waste product that has been injected into the Frio formation; therefore, a decision was made to use phenol and sedimentary rock from the Frio formation for a series of laboratory experiments to demonstrate the protocol. This study investigates the adsorption properties of a specific reservoir rock which is representative of porous sedimentary geologic formations used as repositories for hazardous organic wastes. The developed protocol can be used to evaluate mobility, adsorption, and degradation of an organic hazardous waste under simulated subsurface reservoir conditions. 22 refs., 13 figs., 16 tabs.

  19. Regulated Disposal of NORM/TENORM Waste in Colorado: The Deer Trail Landfill

    SciTech Connect

    Kennedy, W.E. Jr.; Retallick, P.G.; Kehoe, J.H.; Webb, M.M.; Nielsen, D.B.; Spaanstra, J.R.; Kornfeld, L.M.

    2006-07-01

    On January 31, 2005, Clean Harbors Environmental Services submitted a license application to the Colorado Department of Public Health and Environment (CDPHE) for the disposal of naturally occurring radioactive material (NORM) and technologically enhanced radioactive material (TENORM) at Clean Harbor's Deer Trail RCRA Subtitle C landfill. Deer Trail is located 70 miles east of Denver, Colorado. The license application for Deer Trail was submitted under CCR 1007-1, Part 14 [1] the Colorado State equivalent of 10 CFR Part 61 [2] for radioactive waste disposal. A disposal license is required since some of the NORM/TENORM waste in Colorado is licensed by CDPHE. The license application does not extend to byproduct or source material, and thus does not include the broader categories found in Class A radioactive waste. The license application requires the establishment of a radiation protection program, assuring that all NORM/TENORM waste, even non-licensed waste disposed under RCRA, will have appropriate radiological controls for workers, the public, and the environment. Because Deer Trail is a RCRA Subtitle C facility with an active RCRA Permit and because of the overlapping and similar requirements in the process to obtain either a RCRA permit or a radioactive waste disposal license, the license process for Deer Trail was appropriately focused. This focusing was accomplished by working with the Colorado Department of Public Health and Environment (CDPHE) and excluding or waiving selected radioactive materials license requirements from further consideration because they were found to be adequately addressed under the RCRA Permit. Of most significance, these requirements included: - Institutional Information - Federal or State ownership will not be required, since the State's Radiation Control regulations allow for private site ownership, consistent with the same financial assurance and institutional control requirements of RCRA. - Development of Additional Technical

  20. Post-Closure RCRA Groundwater Monitoring Plan for the 216-S-10 Pond and Ditch

    SciTech Connect

    Barnett, D BRENT.; Williams, Bruce A.; Chou, Charissa J.; Hartman, Mary J.

    2006-03-17

    The purpose of this plan is to provide a post-closure groundwater monitoring program for the 216-S-10 Pond and Ditch (S-10) treatment, storage, and/or disposal (TSD) unit. The plan incorporates the sum of knowledge about the potential for groundwater contamination to originate from the S-10, including groundwater monitoring results, hydrogeology, and operational history. The S-10 has not received liquid waste since October 1991. The closure of S-10 has been coordinated with the 200-CS-1 source operable unit in accordance with the Tri-Party Agreement interim milestones M-20-39 and M-15-39C. The S-10 is closely situated among other waste sites of very similar operational histories. The proximity of the S-10 to the other facilities (216-S-17 pond, 216-S-11 Pond, 216-S-5,6 cribs, 216-S-16 ditch and pond, and 216-U-9 ditch) indicate that at least some observed groundwater contamination beneath and downgradient of S-10 could have originated from waste sites other than S-10. Hence, it may not be feasible to strictly discriminate between the contributions of each waste site to groundwater contamination beneath the S-10. A post-closure groundwater monitoring network is proposed that will include the drilling of three new wells to replace wells that have gone dry. When completed, the revised network will meet the intent for groundwater monitoring network under WAC 173-303-645, and enable an improved understanding of groundwater contamination at the S-10. Site-specific sampling constituents are based on the dangerous waste constituents of concern relating to RCRA TSD unit operations (TSD unit constituents) identified in the Part A Permit Application. Thus, a constituent is selected for monitoring if it is: A dangerous waste constituent identified in the Part A Permit Application, or A mobile decomposition product (i.e., nitrate from nitrite) of a Part A constituent, or A reliable indicator of the site-specific contaminants (i.e., specific conductance). Using these criteria