Science.gov

Sample records for acth receptor gene

  1. A novel mutation of the adrenocorticotropin receptor (ACTH-R) gene in a family with the syndrome of isolated glucocorticoid deficiency, but no ACTH-R abnormalities in two families with the triple A syndrome.

    PubMed

    Tsigos, C; Arai, K; Latronico, A C; DiGeorge, A M; Rapaport, R; Chrousos, G P

    1995-07-01

    Isolated glucocorticoid deficiency (IGD) is an autosomal recessive disorder characterized by primary adrenocortical insufficiency, usually without mineralocorticoid deficiency. Occasionally, the disorder is associated with alacrima and achalasia of the esophagus (triple A syndrome), suggesting potential heterogeneity in its etiology. Mutations in the ACTH receptor gene have been reported in several families with IGD. We have amplified and directly sequenced the entire intronless ACTH receptor gene in 1 other family with IGD and 2 families with triple A syndrome. The proband with IGD was a homozygote for an A-->G substitution, changing tyrosine 254 to cysteine in the third extracellular loop of the receptor protein, probably interfering with ligand binding. Both of her parents were heterozygotes for this mutation, which was not detected in 100 normal alleles. No mutations were identified in the entire coding area of the ACTH receptor in the 2 families with triple A syndrome, supporting the idea of a developmental or postreceptor defect in this syndrome.

  2. A novel mutation of the adrenocorticotropin receptor (ACTH-R) gene in a family with the syndrome of isolated glucocorticoid deficiency, but no ACTH-R abnormalities in two families with the triple A syndrome

    SciTech Connect

    Tsigos, C.; Arai, K.; Latronico, A.C. ||

    1995-07-01

    Isolated glucocorticoid deficiency (IGD) is an autosomal recessive disorder characterized by primary adrenocortical insufficiency, usually without mineralocorticoid deficiency. Occasionally, the disorder is associated with alacrima and achalasia of the esophagus (triple A syndrome), suggesting potential heterogeneity in its etiology. Mutations in the ACTH receptor gene have been reported in several families with IGD. We have amplified and directly sequenced the entire intronless ACTH receptor gene in 1 other family with IGD and 2 famlies with triple A syndrome. The proband with IGD was a homozygote for an A {r_arrow}G substitution, changing tyrosine 254 to cysteine in the third extracellular loop of the receptor protein, probably interfering with ligand binding. Both of her parents were heterozygotes for this mutation, which was not detected in 100 normal alleles. No mutations were identified in the entire coding area of the ACTH receptor in the 2 families with triple A syndrome, supporting the idea of a developmental or postreceptor defect in this syndrome. 19 refs., 1 fig.

  3. The pituitary V3 vasopressin receptor and the corticotroph phenotype in ectopic ACTH syndrome.

    PubMed

    de Keyzer, Y; Lenne, F; Auzan, C; Jégou, S; René, P; Vaudry, H; Kuhn, J M; Luton, J P; Clauser, E; Bertagna, X

    1996-03-01

    Ectopic ACTH secretion occurs in highly differentiated and rather indolent tumors like bronchial carcinoids or, in contrast, in various types of aggressive and poorly differentiated neuroendocrine tumors. We explored this phenomenon using the recently cloned human pituitary V3 vasopressin receptor as an alternate molecular marker of the corticotroph phenotype. Expression of V3 receptor, corticotrophin releasing hormone (CRH) receptor, and proopiomelanocortin (POMC) genes was examined in tumors of pituitary and nonpituitary origin. A comparative RT-PCR approach revealed signals for both V3 receptor and CHR receptor mRNAs in 17 of 18 ACTH-secreting pituitary adenomas, and 6 of 6 normal pituitaries; in six growth hormone- or prolactin-secreting adenomas, a very faint V3 receptor signal was observed in three cases, and CRH receptor signal was undetected in all. Six of eight bronchial carcinoids responsible for the ectopic ACTH syndrome had both POMC and V3 receptor signals as high as those in ACTH-secreting pituitary adenomas; in contrast, no POMC signal and only a very faint V3 receptor signal were detected in six of eight nonsecreting bronchial carcinoids. Northern blot analysis showed V3 receptor mRNA of identical size in ACTH-secreting bronchial carcinoids and pituitary tumors. Other types of nonpituitary tumors responsible for ectopic ACTH syndrome presented much lower levels of both POMC and V3 receptor gene expression than those found in ACTH-secreting bronchial carcinoids. In contrast with the V3 receptor, CRH receptor mRNA was detected in the majority of neuroendocrine tumors irrespective of their POMC status. These results show that expression of the V3 receptor gene participates in the corticotroph phenotype. Its striking association with ACTH-secreting bronchial carcinoids defines a subset of nonpituitary tumors in which ectopic POMC gene expression is but one aspect of a wider process of corticotroph cell differentiation, and opens new possibilities of

  4. Impact of ACTH Signaling on Transcriptional Regulation of Steroidogenic Genes

    PubMed Central

    Ruggiero, Carmen; Lalli, Enzo

    2016-01-01

    The trophic peptide hormone adrenocorticotropic (ACTH) stimulates steroid hormone biosynthesis evoking both a rapid, acute response and a long-term, chronic response, via the activation of cAMP/protein kinase A (PKA) signaling. The acute response is initiated by the mobilization of cholesterol from lipid stores and its delivery to the inner mitochondrial membrane, a process that is mediated by the steroidogenic acute regulatory protein. The chronic response results in the increased coordinated transcription of genes encoding steroidogenic enzymes. ACTH binding to its cognate receptor, melanocortin 2 receptor (MC2R), stimulates adenylyl cyclase, thus inducing cAMP production, PKA activation, and phosphorylation of specific nuclear factors, which bind to target promoters and facilitate coactivator protein recruitment to direct steroidogenic gene transcription. This review provides a general view of the transcriptional control exerted by the ACTH/cAMP system on the expression of genes encoding for steroidogenic enzymes in the adrenal cortex. Special emphasis will be given to the transcription factors required to mediate ACTH-dependent transcription of steroidogenic genes. PMID:27065945

  5. Proopiomelanocortin, glucocorticoid, and CRH receptor expression in human ACTH-secreting pituitary adenomas.

    PubMed

    Cassarino, Maria Francesca; Sesta, Antonella; Pagliardini, Luca; Losa, Marco; Lasio, Giovanni; Cavagnini, Francesco; Pecori Giraldi, Francesca

    2017-03-01

    ACTH-secreting pituitary tumors are by definition partially autonomous, i.e., secrete ACTH independent of physiological control. However, only few, small-sized studies on proopiomelanocortin (POMC) and its regulation by corticotropin-releasing hormone (CRH) or glucocorticoids are available. Objective of the present study was to report on constitutive and CRH- and dexamethasone-regulated POMC, CRH (CRH-R1), and glucocorticoid receptor (NR3C1) gene expression in a large series of human corticotrope adenomas. Fifty-three ACTH-secreting adenomas were incubated with 10 nM CRH or 10 nM dexamethasone for 24 h. POMC, CRH-R1, NR3C1, and its alpha and beta isoforms were quantified and medium ACTH measured. Constitutive POMC expression proved extremely variable, with macroadenomas exhibiting higher levels than microadenomas. POMC increased during CRH in most specimens; conversely, changes induced by dexamethasone were varied, ranging from decrease to paradoxical increase. No correlation between POMC and ACTH was detected in any experimental condition. CRH-R1 expression was not linked to the response to CRH while NR3C1 was expressed at greater levels in specimens who failed to inhibit during dexamethasone; glucocorticoid receptor α was the more abundant isoform and subject to down-regulation by dexamethasone. Our results demonstrate a considerable variability in POMC expression among tumors and no correlation between POMC and ACTH, suggesting that POMC peptide processing/transport plays a major role in modulating ACTH secretion. Further, CRH-R1 and NR3C1 expression were not linked to the expected ligand-induced outcome, indicating that receptor signaling rather than abundance determines corticotrope responses. Our findings pave the way to new avenues of research into Cushing's disease pathophysiology.

  6. A polymorphic form of steroidogenic factor 1 associated with ACTH receptor deficiency in mouse adrenal cell mutants.

    PubMed

    Schimmer, Bernard P; Cordova, Martha; Tsao, Jennivine; Frigeri, Claudia

    2003-06-01

    We have described a family of adrenocortical tumor cell mutants (including clones OS3, Y6, and 10r9) that are resistant to ACTH because they fail to express the gene encoding the ACTH receptor (MC2R). The MC2R deficiency results from a mutation that impairs the activity of the nuclear receptor steroidogenic factor 1 (SF1) at the MC2R promoter. In this report, we show that ACTH resistance in the mutant clones is associated with a Sf1 gene that has Ser at codon 172 instead of Ala. In two of the three mutant clones, this Sf1 allele is amplified together with flanking DNA from chromosome 2 that includes the genes encoding germ cell nuclear factor and the beta-type proteosome subunit Psmb7. SF1(A172) and SF1(S172) exhibit little or no difference in transcriptional activity in SF1-dependent reporter gene assays, suggesting that SF1(S172) per se is not directly responsible for the loss of MC2R expression. Instead, the Sf1(S172) allele appears to be a marker of ACTH resistance in this family of adrenocortical tumor cell mutants, possibly reflecting the activity of a neighboring gene.

  7. ACTH Antagonists

    PubMed Central

    Clark, Adrian John; Forfar, Rachel; Hussain, Mashal; Jerman, Jeff; McIver, Ed; Taylor, Debra; Chan, Li

    2016-01-01

    Adrenocorticotropin (ACTH) acts via a highly selective receptor that is a member of the melanocortin receptor subfamily of type 1 G protein-coupled receptors. The ACTH receptor, also known as the melanocortin 2 receptor (MC2R), is unusual in that it is absolutely dependent on a small accessory protein, melanocortin receptor accessory protein (MRAP) for cell surface expression and function. ACTH is the only known naturally occurring agonist for this receptor. This lack of redundancy and high degree of ligand specificity suggests that antagonism of this receptor could provide a useful therapeutic aid and a potential investigational tool. Clinical situations in which this could be useful include (1) Cushing’s disease and ectopic ACTH syndrome – especially while preparing for definitive treatment of a causative tumor, or in refractory cases, or (2) congenital adrenal hyperplasia – as an adjunct to glucocorticoid replacement. A case for antagonism in other clinical situations in which there is ACTH excess can also be made. In this article, we will explore the scientific and clinical case for an ACTH antagonist, and will review the evidence for existing and recently described peptides and modified peptides in this role. PMID:27547198

  8. Ectopic ACTH secretion due to a bronchopulmonary carcinoid localized by somatostatin receptor scintigraphy.

    PubMed

    Iser, G; Pfohl, M; Dörr, U; Weiss, E M; Seif, F J

    1994-11-01

    We present the case of a 65-year-old woman with an adrenocorticotropic hormone (ACTH) secreting bronchopulmonary carcinoid. This patient showed the typical long history of Cushing's syndrome, including hypokaliemia, impaired glucose tolerance, high levels of ACTH and beta-endorphin, and coproduction of other peptides. At the onset of clinical symptoms in 1979 an adrenal adenoma was suspected, and left-sided adrenalectomy was performed. The symptoms soon recurred, and the diagnosis of ACTH-dependent Cushing's syndrome was made. As no ACTH-secreting tumor was found, the right adrenal was resected, and the patient was followed up regularly. Fourteen years later chest roentgenography and computed tomography revealed a para-aortic pulmonary lesion, which was suspicious for a bronchopulmonary carcinoid. ACTH and beta-endorphin were excessively, pancreatic polypeptide slightly elevated at that time. The final diagnosis was made using somatostatin receptor scintigraphy which confirmed the hormonal activity of the suspicious lesion; no additional focus was found. This method turned out to be not only a useful additional localization technique but also a promising tool for characterization and staging of a suspected ACTH-producing carcinoid. The tumor was resected curatively, and the diagnosis was confirmed histologically.

  9. Rapid Glucocorticoid Feedback Inhibition of ACTH Secretion Involves Ligand-Dependent Membrane Association of Glucocorticoid Receptors

    PubMed Central

    Deng, Qiong; Riquelme, Denise; Trinh, Loc; Low, Malcolm J.; Tomić, Melanija; Stojilkovic, Stanko

    2015-01-01

    The hypothesis that rapid glucocorticoid inhibition of pituitary ACTH secretion mediates a feedforward/feedback mechanism responsible for the hourly glucocorticoid pulsatility was tested in cultured pituitary cells. Perifusion with 30 pM CRH caused sustained the elevation of ACTH secretion. Superimposed corticosterone pulses inhibited CRH-stimulated ACTH release, depending on prior glucocorticoid clearance. When CRH perifusion started after 2 hours of glucocorticoid-free medium, corticosterone levels in the stress range (1 μM) caused a delayed (25 min) and prolonged inhibition of CRH-stimulated ACTH secretion, up to 60 minutes after corticosterone withdrawal. In contrast, after 6 hours of glucocorticoid-free medium, basal corticosterone levels inhibited CRH-stimulated ACTH within 5 minutes, after rapid recovery 5 minutes after corticosterone withdrawal. The latter effect was insensitive to actinomycin D but was prevented by the glucocorticoid receptor antagonist, RU486, suggesting nongenomic effects of the classical glucocorticoid receptor. In hypothalamic-derived 4B cells, 10 nM corticosterone increased immunoreactive glucocorticoid receptor content in membrane fractions, with association and clearance rates paralleling the effects on ACTH secretion from corticotrophs. Corticosterone did not affect CRH-stimulated calcium influx, but in AtT-20 cells, it had biphasic effects on CRH-stimulated Src phosphorylation, with early inhibition and late stimulation, suggesting a role for Src phosphorylation on the rapid glucocorticoid feedback. The data suggest that the nongenomic/membrane effects of classical GR mediate rapid and reversible glucocorticoid feedback inhibition at the pituitary corticotrophs downstream of calcium influx. The sensitivity and kinetics of these effects is consistent with the hypothesis that pituitary glucocorticoid feedback is part of the mechanism for adrenocortical ultradian pulse generation. PMID:26121342

  10. ACTH Receptor (MC2R) Specificity: What Do We Know About Underlying Molecular Mechanisms?

    PubMed

    Fridmanis, Davids; Roga, Ance; Klovins, Janis

    2017-01-01

    Coincidentally, the release of this Research Topic in Frontiers in Endocrinology takes place 25 years after the discovery of the adrenocorticotropic hormone receptor (ACTHR) by Mountjoy and colleagues. In subsequent years, following the discovery of other types of mammalian melanocortin receptors (MCRs), ACTHR also became known as melanocortin type 2 receptor (MC2R). At present, five types of MCRs have been reported, all of which share significant sequence similarity at the amino acid level, and all of which specifically bind melanocortins (MCs)-a group of biologically active peptides generated by proteolysis of the proopiomelanocortin precursor. All MCs share an identical -H-F-R-W- pharmacophore sequence. α-Melanocyte-stimulating hormone (α-MSH) and adrenocorticotropic hormone (ACTH) are the most extensively studied MCs and are derived from the same region. Essentially, α-MSH is formed from the first 13 amino acid residues of ACTH. ACTHR is unique among MCRs because it binds one sole ligand-ACTH, which makes it a very attractive research object for molecular pharmacologists. However, much research has failed, and functional studies of this receptor are lagging behind other MCRs. The reason for these difficulties has already been outlined by Mountjoy and colleagues in their publication on ACTHR coding sequence discovery where the Cloudman S91 melanoma cell line was used for receptor expression because it was a "more sensitive assay system." Subsequent work showed that ACTHR could be successfully expressed only in endogenous MCR-expressing cell lines, since in other cell lines it is retained within the endoplasmic reticulum. The resolution of this methodological problem came in 2005 with the discovery of melanocortin receptor accessory protein, which is required for the formation of functionally active ACTHR. The decade that followed this discovery was filled with exciting research that provided insight into the molecular mechanisms underlying the action of

  11. Effects of the 5-HT(1A) Receptor Agonist Tandospirone on ACTH-Induced Sleep Disturbance in Rats.

    PubMed

    Tsutsui, Ryuki; Shinomiya, Kazuaki; Sendo, Toshiaki; Kitamura, Yoshihisa; Kamei, Chiaki

    2015-01-01

    The aim of this study was to compare the effect of the serotonin (5-HT)1A receptor agonist tandospirone versus that of the benzodiazepine hypnotic flunitrazepam in a rat model of long-term adrenocorticotropic hormone (ACTH)-induced sleep disturbance. Rats implanted with electrodes for recording electroencephalogram and electromyogram were injected with ACTH once daily at a dose of 100 µg/rat. Administration of ACTH for 10 d caused a significant increase in sleep latency, decrease in non-rapid eye movement (non-REM) sleep time, and increase in wake time. Tandospirone caused a significant decrease in sleep latency and increase in non-REM sleep time in rats treated with ACTH. The effect of tandospirone on sleep patterns was antagonized by the 5-HT1A receptor antagonist WAY-100635. In contrast, flunitrazepam had no significant effect on sleep parameters in ACTH-treated rats. These results clearly indicate that long-term administration of ACTH causes sleep disturbance, and stimulating the 5-HT1A receptor by tandospirone may be efficacious for improving sleep in cases in which benzodiazepine hypnotics are ineffective.

  12. Melanocortin receptor agonist ACTH 1-39 protects rat forebrain neurons from apoptotic, excitotoxic and inflammation-related damage.

    PubMed

    Lisak, Robert P; Nedelkoska, Liljana; Bealmear, Beverly; Benjamins, Joyce A

    2015-11-01

    Patients with relapsing-remitting multiple sclerosis (RRMS) are commonly treated with high doses of intravenous corticosteroids (CS). ACTH 1-39, a member of the melanocortin family, stimulates production of CS by the adrenals, but melanocortin receptors are also found in the central nervous system (CNS) and on immune cells. ACTH is produced within the CNS and may have direct protective effects on glia and neurons independent of CS. We previously reported that ACTH 1-39 protected oligodendroglia (OL) and their progenitors (OPC) from a panel of excitotoxic and inflammation-related agents. Neurons are the most vulnerable cells in the CNS. They are terminally differentiated, and sensitive to inflammatory and excitotoxic insults. For potential therapeutic protection of gray matter, it is important to investigate the direct effects of ACTH on neurons. Cultures highly enriched in neurons were isolated from 2-3 day old rat brain. After 4-7 days in culture, the neurons were treated for 24h with selected toxic agents with or without ACTH 1-39. ACTH 1-39 protected neurons from death induced by staurosporine, glutamate, NMDA, AMPA, kainate, quinolinic acid, reactive oxygen species and, to a modest extent, from rapidly released NO, but did not protect against kynurenic acid or slowly released nitric oxide. Our results show that ACTH 1-39 protects neurons in vitro from several apoptotic, excitotoxic and inflammation-related insults.

  13. Human and mouse TPIT gene mutations cause early onset pituitary ACTH deficiency

    PubMed Central

    Pulichino, Anne-Marie; Vallette-Kasic, Sophie; Couture, Catherine; Gauthier, Yves; Brue, Thierry; David, Michel; Malpuech, Georges; Deal, Cheri; Van Vliet, Guy; De Vroede, Monique; Riepe, Felix G.; Partsch, Carl-Joachim; Sippell, Wolfgang G.; Berberoglu, Merih; Atasay, Begüm; Drouin, Jacques

    2003-01-01

    Tpit is a highly cell-restricted transcription factor that is required for expression of the pro-opiomelanocortin (POMC) gene and for terminal differentiation of the pituitary corticotroph lineage. Its exclusive expression in pituitary POMC-expressing cells has suggested that its mutation may cause isolated deficiency of pituitary adrenocorticotropin (ACTH). We now show that Tpit-deficient mice constitute a model of isolated ACTH deficiency (IAD) that is very similar to human IAD patients carrying TPIT gene mutations. Through genetic analysis of a panel of IAD patients, we show that TPIT gene mutations are associated at high frequency with early onset IAD, but not with juvenile forms of this deficiency. We identified seven different TPIT mutations, including nonsense, missense, point deletion, and a genomic deletion. This work defines congenital early onset IAD as a relatively homogeneous clinical entity caused by recessive transmission of loss-of-function mutations in the TPIT gene. PMID:12651888

  14. Human and mouse TPIT gene mutations cause early onset pituitary ACTH deficiency.

    PubMed

    Pulichino, Anne-Marie; Vallette-Kasic, Sophie; Couture, Catherine; Gauthier, Yves; Brue, Thierry; David, Michel; Malpuech, Georges; Deal, Cheri; Van Vliet, Guy; De Vroede, Monique; Riepe, Felix G; Partsch, Carl-Joachim; Sippell, Wolfgang G; Berberoglu, Merih; Atasay, Begüm; Drouin, Jacques

    2003-03-15

    Tpit is a highly cell-restricted transcription factor that is required for expression of the pro-opiomelanocortin (POMC) gene and for terminal differentiation of the pituitary corticotroph lineage. Its exclusive expression in pituitary POMC-expressing cells has suggested that its mutation may cause isolated deficiency of pituitary adrenocorticotropin (ACTH). We now show that Tpit-deficient mice constitute a model of isolated ACTH deficiency (IAD) that is very similar to human IAD patients carrying TPIT gene mutations. Through genetic analysis of a panel of IAD patients, we show that TPIT gene mutations are associated at high frequency with early onset IAD, but not with juvenile forms of this deficiency. We identified seven different TPIT mutations, including nonsense, missense, point deletion, and a genomic deletion. This work defines congenital early onset IAD as a relatively homogeneous clinical entity caused by recessive transmission of loss-of-function mutations in the TPIT gene.

  15. ACTH Receptor (MC2R) Specificity: What Do We Know About Underlying Molecular Mechanisms?

    PubMed Central

    Fridmanis, Davids; Roga, Ance; Klovins, Janis

    2017-01-01

    Coincidentally, the release of this Research Topic in Frontiers in Endocrinology takes place 25 years after the discovery of the adrenocorticotropic hormone receptor (ACTHR) by Mountjoy and colleagues. In subsequent years, following the discovery of other types of mammalian melanocortin receptors (MCRs), ACTHR also became known as melanocortin type 2 receptor (MC2R). At present, five types of MCRs have been reported, all of which share significant sequence similarity at the amino acid level, and all of which specifically bind melanocortins (MCs)—a group of biologically active peptides generated by proteolysis of the proopiomelanocortin precursor. All MCs share an identical –H–F–R–W– pharmacophore sequence. α-Melanocyte-stimulating hormone (α-MSH) and adrenocorticotropic hormone (ACTH) are the most extensively studied MCs and are derived from the same region. Essentially, α-MSH is formed from the first 13 amino acid residues of ACTH. ACTHR is unique among MCRs because it binds one sole ligand—ACTH, which makes it a very attractive research object for molecular pharmacologists. However, much research has failed, and functional studies of this receptor are lagging behind other MCRs. The reason for these difficulties has already been outlined by Mountjoy and colleagues in their publication on ACTHR coding sequence discovery where the Cloudman S91 melanoma cell line was used for receptor expression because it was a “more sensitive assay system.” Subsequent work showed that ACTHR could be successfully expressed only in endogenous MCR-expressing cell lines, since in other cell lines it is retained within the endoplasmic reticulum. The resolution of this methodological problem came in 2005 with the discovery of melanocortin receptor accessory protein, which is required for the formation of functionally active ACTHR. The decade that followed this discovery was filled with exciting research that provided insight into the molecular mechanisms underlying

  16. Effect of blockade of postsynaptic H1 or H2 receptors or activation of presynaptic H3 receptors on catecholamine-induced stimulation of ACTH and prolactin secretion.

    PubMed

    Willems, E; Knigge, U; Jorgensen, H; Kjaer, A; Warberg, J

    2000-06-01

    The effect of inhibition of the neuronal histaminergic system by blockade of postsynaptic H1 or H2 receptors or activation of presynaptic H3 autoreceptors on the ACTH and prolactin responses to the catecholamines epinephrine and norepinephrine was investigated in conscious male rats. Intracerebroventricular infusion of epinephrine and norepinephrine stimulated ACTH and prolactin secretion. Prior intracerebroventricular infusion of the H1 receptor antagonist, mepyramine, or the H2 receptor antagonist, cimetidine, had no effect on the ACTH response to epinephrine or norepinephrine, while these responses were inhibited by pretreatment with the H3 receptor agonist, imetit. The prolactin response to norepinephrine was significantly inhibited by pretreatment with mepyramine, cimetidine or imetit whereas the three histaminergic compounds had no effect on the prolactin response to epinephrine. The findings suggest that the histaminergic system exerts a mediating or permissive action on the norepinephrine-induced stimulation of prolactin secretion, whereas an intact histaminergic system may not be required for catecholamines to stimulate ACTH secretion. The inhibitory effect of imetit on catecholamine-induced release of ACTH may be due to an activation of H3 receptors located presynaptically on non-histaminergic neurons, e.g. aminergic neurons. The study further indicates an important role of histamine in the neuroendocrine regulation of prolactin secretion.

  17. Further evidence for ancient role of ACTH peptides at melanocortin (MC) receptors; pharmacology of dogfish and lamprey peptides at dogfish MC receptors.

    PubMed

    Haitina, Tatjana; Takahashi, Akiyoshi; Holmén, Linnea; Enberg, Johan; Schiöth, Helgi B

    2007-04-01

    The cloning of melanocortin (MC) receptors in distant species has provided us tools to get insight in how the ligand-receptors interactions in the MC system have evolved. We have however lacked studies on pharmacology of native ancient melanocortin peptides at the ancient MC receptors. In this paper we synthesized melanocortin peptides from both the sea lamprey (Petromyzon marinus) and spiny dogfish (Squalus acanthias) and tested them on the MC3 and MC4 receptors from spiny dogfish. The results show that both the dogfish and lamprey ACTH peptides have similar or higher affinity than the dogfish alpha-, beta- and gamma-MSH peptides to the dogfish MC3 and MC4 receptors. Moreover, both the dogfish and lamprey ACTH peptides have more than 10-fold higher affinity than alpha-MSH to the dogfish MC4 receptor. We also show that dogfish delta-MSH is able to bind to MC receptors and its potency is higher than of dogfish beta-MSH, which is considered to be its precursor. Our results provide the first evidence that native ACTH ligands from dogfish and lamprey have a preference above native MSH peptides to ancient version of the MC3 and MC4 receptors. This further strengthens the hypotheses that the ligand contributing to the first version of the melanocortin ligand-receptor system resembled ACTH.

  18. Corticotropin-releasing hormone, proopiomelanocortin, and glucocorticoid receptor gene expression in adrenocorticotropin-producing tumors in vitro.

    PubMed Central

    Suda, T; Tozawa, F; Dobashi, I; Horiba, N; Ohmori, N; Yamakado, M; Yamada, M; Demura, H

    1993-01-01

    To differentiate between ectopic ACTH syndrome and Cushing's disease, gene expression of corticotropin-releasing hormone (CRH), proopiomelanocortin (POMC), and glucocorticoid receptor was examined in 10 pituitary adenomas (Cushing's disease) and in 10 ectopic ACTH-producing tumors. CRH increased plasma ACTH levels in all patients with Cushing's disease and in five patients with ectopic ACTH syndrome whose tumors contained CRH and CRH mRNA. In five CRH nonresponders, CRH was not detected in tumors that contained no CRH mRNA or that contained only long-size CRH mRNA. Dexamethasone (Dex) decreased plasma ACTH levels in all patients with Cushing's disease and in three patients with ectopic ACTH-producing bronchial carcinoid. These tumors contained glucocorticoid receptor mRNA. CRH increased and Dex decreased ACTH release and POMC mRNA levels in pituitary adenoma and bronchial carcinoid cells. PMA increased POMC mRNA levels only in carcinoid cells. These results reveal characteristics of ectopic ACTH-producing tumors: long-size CRH mRNA and PMA-induced POMC gene expression. In addition, there are two ectopic ACTH syndrome subtypes: tumors containing ACTH with CRH (CRH responder) and tumors without CRH. Dex decreases ACTH release and POMC mRNA levels in some bronchial carcinoids. Therefore, CRH and Dex tests have limited usefulness in differentiating between Cushing's disease and ectopic ACTH syndrome. Images PMID:8254033

  19. Effect of Novel Melanocortin Type 2 Receptor Antagonists on the Corticosterone Response to ACTH in the Neonatal Rat Adrenal Gland In Vivo and In Vitro

    PubMed Central

    Nensey, Nasha K.; Bodager, Jonathan; Gehrand, Ashley L.; Raff, Hershel

    2016-01-01

    Stress-induced increases in neonatal corticosterone demonstrate a unique shift from ACTH independence to ACTH dependence between postnatal day 2 (PD2) and day 8 (PD8) in newborn rats. This shift could be due to the binding of a bioactive, non-­immunoreactive plasma ligand to the adrenocortical melanocortin 2 receptor (MC2R) (ACTH receptor). A potent MC2R antagonist would be useful to evaluate this phenomenon in the neonate. Therefore, we investigated the acute corticosterone response to ACTH(1–39) injection in rat pups pretreated with newly developed MC2R antagonists (GPS1573 and GPS1574), which have not been tested in vivo. The doses used in vivo were based on their in vitro potency, with GP1573 being more potent than GPS1574. GPS1573 (PD2 and PD8), GPS1574 (PD2 only), or vehicle were injected intraperitoneally (ip) 10 min before baseline sampling. Then, 0.001 mg/kg of ACTH(1–39) was injected ip, and subsequent blood samples obtained for the measurement of plasma corticosterone. Pretreatment of PD2 pups with GPS1573 demonstrated augmentation, rather than inhibition, of the corticosterone response to ACTH. In PD8 pups, pretreatment with 0.1 mg/kg GPS1573, but not 4 mg/kg, augmented the corticosterone response to ACTH. Pretreatment with GPS1574 attenuated the plasma corticosterone response to ACTH at 30 min in PD2 pups. The activity of these two compounds in vivo do not match their potency in vitro, with GPS1573 leading to a small augmentation of the corticosterone response to ACTH in vivo while GPS1574 resulted in inhibition. PMID:27047449

  20. Demonstration by transfection studies that mutations in the adrenocorticotropin receptor gene are one cause of the hereditary syndrome of glucocorticoid deficiency

    SciTech Connect

    Naville, D.; Barjhoux, L.; Jaillard, C.

    1996-04-01

    The hereditary syndrome of unresponsiveness to ACTH is a rare autosomal recessive disorder characterized by low levels of serum cortisol and high levels of plasma ACTH. There is no cortisol response to exogenous ACTH. Recent cloning of the human ACTH receptor gene has enabled us to study this gene in patients with glucocorticoid deficiency. By using the PCR to amplify the coding sequence of the ACTH receptor gene, we identified three mutations in two unrelated patients. One mutation present in homozygous form converted the negatively charged Asp{sup 107}, located in the third transmembrane domain, to an uncharged Asn residue. The second patient was a compound heterozygote: the paternal allele contained a one-nucleotide insertion leading to a stop codon within the third extracellular loop, and the maternal allele contained a point mutation converting Cys{sup 235} to Phe, also in the third extracellular loop. Normal and mutant ACTH receptor genes were expressed in the M3 cell line, and intracellular cAMP production in response to ACTH was measured. For the mutant receptors, no response to physiological ACTH concentrations was detected, suggesting an impaired binding of ACTH to the receptors and/or an altered coupling to the adenylate cyclase effector. 24 refs., 6 figs., 2 tabs.

  1. From Bioinactive ACTH to ACTH Antagonist: The Clinical Perspective

    PubMed Central

    Ghaddhab, Chiraz; Vuissoz, Jean-Marc; Deladoëy, Johnny

    2017-01-01

    The adrenocorticotropic hormone (ACTH) is a pituitary hormone derived from a larger peptide, the proopiomelanocortin (POMC), as are the MSHs (α-MSH, β-MSH, and γ-MSH) and the β-LPH-related polypeptides (Figure 1A). ACTH drives adrenal steroidogenesis and growth of the adrenal gland. ACTH is a 39 amino acid polypeptide that binds and activates its cognate receptor [melanocortin receptor 2 (MC2R)] through the two regions H6F7R8W9 and K15K16R17R18P19. Most POMC-derived polypeptides contain the H6F7R8W9 sequence that is conserved through evolution. This explains the difficulties in developing selective agonists or antagonists to the MCRs. In this review, we will discuss the clinical aspects of the role of ACTH in physiology and disease, and potential clinical use of selective ACTH antagonists. PMID:28228747

  2. Aberrant expression of glucagon receptors in adrenal glands of a patient with Cushing's syndrome and ACTH-independent macronodular adrenal hyperplasia.

    PubMed

    de Miguel, Valeria; Redal, María Ana; Viale, María Lorena; Kahan, Mariano; Glerean, Mariela; Beskow, Axel; Fainstein Day, Patricia

    2010-01-01

    Adrenocorticotropin (ACTH) independent bilateral macronodular adrenal hyperplasia (AIMAH) is a rare cause of Cushing's syndrome, characterized by bilateral adrenal lesions and excess cortisol production despite ACTH suppression. Cortisol synthesis is produced in response to abnormal activation of G-protein-coupled receptors, such as gastric inhibitory peptide, vasopressin, beta adrenergic agonists, LH/hCG and serotonin receptors. The aim of this study was to analyze the expression of glucagon receptors in adrenal glands from an AIMAH patient. A patient with ACTH-independent Cushing's syndrome and bilateral macronodular adrenal hyperplasia was screened for altered activation of adrenal receptors by physiological (mixed meal) and pharmacological (gonadotrophin releasing hormone, ACTH and glucagon) tests. The results showed abnormally high levels of serum cortisol after stimulation with glucagon. Hypercortisolism was successfully managed with ketoconazole treatment. Interestingly, a 4-month treatment with a somatostatin analogue (octreotide) was also able to reduce cortisol secretion. Finally, Cushing's syndrome was cured after bilateral adrenalectomy. Abnormal mRNA expression for glucagon receptor in the patient's adrenal glands was observed by Real-Time PCR procedure. These results strongly suggest that the mechanism of AIMAH causing Cushing's syndrome in this case involves the illicit activation of adrenal glucagon receptors. This is the first case reported of AIMAH associated with ectopic glucagon receptors.

  3. Possible relationship between elevated plasma ACTH and tall stature in familial glucocorticoid deficiency.

    PubMed

    Imamine, Hiroki; Mizuno, Haruo; Sugiyama, Yukari; Ohro, Yoichiro; Sugiura, Tokio; Togari, Hajime

    2005-02-01

    Familial glucocorticoid deficiency (FGD) is characterized clinically by severe glucocorticoid deficiency associated with failure of adrenal responsiveness to ACTH but not with mineralcorticoid deficiency. Excessive growth was described previously in some patients with FGD, many of whom were shown to have mutations in the ACTH receptor gene. The mechanisms responsible for their excessive growth are unknown. We analyzed the ACTH receptor gene in three patients with FGD and discussed the causes of excessive growth in FGD. No mutations were detected in the coding and promoter regions of the ACTH receptor gene of one female patient who had tall stature (+ 2.41S.D.) and advanced bone age (10 years 9 months) when she was 4 years 9 months old. Her plasma ACTH level had been elevated until then (124-2,684 pg/ml). Moreover, plasma estradiol was elevated for her age (21.3 pg/ml), and it decreased in response to the dexamethasone suppression test (from 25.4 to 6.9 pg/ml). Elevated plasma estradiol was apparently related to the increase in plasma ACTH and played a major role in excessive growth in this patient. On the other hand, the genetic analysis showed that the other two patients who were siblings were homozygous for the R137W mutation. Clinically, they responded well to hydrocortisone replacement therapy with almost normal plasma ACTH levels. Although all patients with the R137W mutation reported previously were tall, our patients were of normal height. We speculate that the major causes of excessive growth in FGD are not only from ACTH receptor mutation, but also from the action of elevated plasma ACTH.

  4. The Value of Somatostatin Receptor Imaging with In-111 Octreotide and/or Ga-68 DOTATATE in Localizing Ectopic ACTH Producing Tumors

    PubMed Central

    Gözde Özkan, Zeynep; Kuyumcu, Serkan; Balköse, Deniz; Özkan, Berker; Aksakal, Nihat; Yılmaz, Ebru; Şanlı, Yasemin; Türkmen, Cüneyt; Aral, Ferihan; Adalet, Işık

    2013-01-01

    Objective: We aimed to evaluate the value of somatostatin receptor imaging (SRI) with In-111 octreotide and Ga-68 DOTATATE in localizing ectopic ACTH producing tumors. Methods: Nineteen patients who had In-111 octreotide somatostatin receptor scintigraphy (SRS) and/or Ga-68 DOTATATE PET-CT to localize ectopic ACTH producing tumors between the years 2000 and 2012 were included retrospectively in our study. The results of SRI were compared with clinical onset, radiological findings and surgical data of the patients. Results: Sixteen In-111 octreotide SRS and five Ga-68 DOTATATE PET-CT were performed in 19 patients. In eight out of 19 patients, ectopic ACTH secretion site could be detected. In five patients, SRS showed pathologic uptake. In four of these patients, surgery revealed pulmonary carcinoid tumors and in one patient pancreatic neuroendocrine tumor. In one patient, Ga-68 DOTATATE PET-CT revealed pathologic uptake in lung nodule which came out to be pulmonary carcinoid tumor. In another patient who had resection of metastases of atypical carcinoid tumor prior to scans, new metastatic foci were detected both with SRS and Ga-68 DOTATATE PET-CT imaging. In one patient, although SRS was negative, CT which was performed three years later showed a lung nodule diagnosed as pulmonary carcinoid tumor. In 11 patients, ectopic ACTH secretion site could not be detected. In 10 of those patients, scintigraphic and radiological imaging did not show any lesions and in one patient, Ga-68 DOTATATE PET-CT was false positive. Conclusion: SRI has a complementary role with radiological imaging in localizing ectopic ACTH secretion sites. PET-CT imaging with Ga-68 peptide conjugates is a promising new modality for this indication. Conflict of interest:None declared. PMID:24003397

  5. ACTH (cosyntropin) stimulation test

    MedlinePlus

    ... The ACTH stimulation test measures how well the adrenal glands respond to adrenocorticotropic hormone ( ACTH ). ACTH is a ... produced in the pituitary gland that stimulates the adrenal glands to release a hormone called cortisol. How the ...

  6. Effects of imipramine and bupropion on the duration of immobility of ACTH-treated rats in the forced swim test: involvement of the expression of 5-HT2A receptor mRNA.

    PubMed

    Kitamura, Yoshihisa; Fujitani, Yoshika; Kitagawa, Kouhei; Miyazaki, Toshiaki; Sagara, Hidenori; Kawasaki, Hiromu; Shibata, Kazuhiko; Sendo, Toshiaki; Gomita, Yutaka

    2008-02-01

    We examined the effect of chronic administration of imipramine and bupropion, monoamine reuptake inhibitors, on the duration of immobility in the forced swim test and serotonin (5-HT)(2A) receptor function in the form of 5-HT(2A) receptor mRNA levels in rats chronically treated with adrenocorticotropic hormone (ACTH). The immobility-decreasing effect of bupropion without imipramine did not influence the chronic ACTH treatment. The effect on the expression of 5-HT(2A) receptor mRNA of chronic ACTH treatment was decreased by bupropion, but not imipramine. These results suggest that bupropion has the effect of reducing immobility time in the forced swim test in the tricyclic antidepressant-resistant depressive model induced by chronic ACTH treatment in rats, and that decreased 5-HT(2A) receptor mRNA levels may be involved in this phenomenon.

  7. Neurotrophin gene expression in rat brain under the action of Semax, an analogue of ACTH 4-10.

    PubMed

    Agapova, T Y; Agniullin, Y V; Shadrina, M I; Shram, S I; Slominsky, P A; Lymborska, S A; Myasoedov, N F

    2007-05-01

    The heptapeptide Semax, an analogue of the N-terminal adrenocorticotropic hormone fragment (4-10) (ACTH(4-10)), has been shown to exert a number of neuroprotective effects. There are some investigations that connected these effects with the increase of neurotrophin gene expression under the peptide drug application in neuron cell cultures [M.I. Shadrina, O.V. Dolotov, I.A. Grivennikov, P.A. Slominsky, L.A. Andreeva, L.S. Inozemtseva, S.A. Limborska, N.F. Myasoedov, Rapid induction of neurotrophin mRNAs in rat glial cell cultures by Semax, an adrenocorticotropic hormone analogue, Neurosci. Lett. 308 (2001) (2) 115-118]. In this work, we examined the action of Semax on rapid changes of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) gene expression in vivo. Male Wistar rats were treated for 1h with Semax (50 microg/kg, single intranasal application) and neurotrophin gene expression in rat brain was analyzed by real-time polymerase chain reaction (PCR). It was revealed that an intranasal application of Semax increased the expression of both neurotrophin genes in rat hippocampus. Bdnf gene expression also increased in the brainstem and cerebellum. Ngf gene expression decreased in rat frontal cortex. Thus, Semax induces rapid, gene- and region-specific changes in neurotrophin gene expression in normal rat brain.

  8. Bone morphogenetic protein 4 and bone morphogenetic protein receptor expression in the pituitary gland of adult dogs in healthy condition and with ACTH-secreting pituitary adenoma.

    PubMed

    Sato, A; Ochi, H; Harada, Y; Yogo, T; Kanno, N; Hara, Y

    2017-01-01

    The purpose of this study was to investigate the expression of bone morphogenetic protein 4 (BMP4) and its receptors, bone morphogenetic protein receptor I (BMPRI) and BMPRII, in the pituitary gland of healthy adult dogs and in those with ACTH-secreting pituitary adenoma. Quantitative polymerase chain reaction analysis showed that the BMP4 messenger RNA expression level in the ACTH-secreting pituitary adenoma samples was significantly lower than that in the normal pituitary gland samples (P = 0.03). However, there were no statistically significant differences between samples with respect to the messenger RNA expression levels of the receptors BMPRIA, BMPRIB, and BMPRII. Double-immunofluorescence analysis of the normal canine pituitary showed that BMP4 was localized in the thyrotroph (51.3 ± 7.3%) and not the corticotroph cells. By contrast, BMPRII was widely expressed in the thyrotroph (19.9 ± 5.2%) and somatotroph cells (94.7 ± 3.6%) but not in the corticotroph cells (P < 0.001, thyrotroph cells vs somatotroph cells). Similarly, in ACTH-secreting pituitary adenoma, BMP4 and BMPRII were not expressed in the corticotroph cells. Moreover, the percentage of BMP4-positive cells was also significantly reduced in the thyrotroph cells of the surrounding normal pituitary tissue obtained from the resected ACTH-secreting pituitary adenoma (8.3 ± 7.9%) compared with that in normal canine pituitary (P < 0.001). BMP4 has been reported to be expressed in corticotroph cells in the human pituitary gland. Therefore, the results of this study reveal a difference in the cellular pattern of BMP4-positive staining in the pituitary gland between humans and dogs and further revealed the pattern of BMPRII-positive staining in the dog pituitary gland. These species-specific differences regarding BMP4 should be considered when using dogs as an animal model for Cushing's disease.

  9. Adrenocorticotropic Hormone (ACTH) Responses Require Actions of the Melanocortin-2 Receptor Accessory Protein on the Extracellular Surface of the Plasma Membrane.

    PubMed

    Malik, Sundeep; Dolan, Terrance M; Maben, Zachary J; Hinkle, Patricia M

    2015-11-13

    The melanocortin-2 (MC2) receptor is a G protein-coupled receptor that mediates responses to ACTH. The MC2 receptor acts in concert with the MC2 receptor accessory protein (MRAP) that is absolutely required for ACTH binding and signaling. MRAP has a single transmembrane domain and forms a highly unusual antiparallel homodimer that is stably associated with MC2 receptors at the plasma membrane. Despite the physiological importance of the interaction between the MC2 receptor and MRAP, there is little understanding of how the accessory protein works. The dual topology of MRAP has made it impossible to determine whether highly conserved and necessary regions of MRAP are required on the intracellular or extracellular face of the plasma membrane. The strategy used here was to fix the orientation of two antiparallel MRAP molecules and then introduce inactivating mutations on one side of the membrane or the other. This was achieved by engineering proteins containing tandem copies of MRAP fused to the amino terminus of the MC2 receptor. The data firmly establish that only the extracellular amino terminus (Nout) copy of MRAP, oriented with critical segments on the extracellular side of the membrane, is essential. The transmembrane domain of MRAP is also required in only the Nout orientation. Finally, activity of MRAP-MRAP-MC2-receptor fusion proteins with inactivating mutations in either MRAP or the receptor was rescued by co-expression of free wild-type MRAP or free wild-type receptor. These results show that the basic MRAP-MRAP-receptor signaling unit forms higher order complexes and that these multimers signal.

  10. ACTH (Adrenocorticotropic Hormone) Test

    MedlinePlus

    ... disease and ectopic ACTH from cortisol and ACTH measurement alone. A variety of other tests are often ... as any steroid, oral, inhaled, topical or eye drop may cause abnormal results. Megestrol acetate can also ...

  11. Semax, an analog of ACTH(4-7), regulates expression of immune response genes during ischemic brain injury in rats.

    PubMed

    Medvedeva, Ekaterina V; Dmitrieva, Veronika G; Limborska, Svetlana A; Myasoedov, Nikolay F; Dergunova, Lyudmila V

    2017-03-02

    Brain stroke continues to claim the lives of million people every year. To build the effective strategies for stroke treatment it is necessary to understand the neuroprotective mechanisms that are able to prevent the ischemic injury. Consisting of the ACTH(4-7) fragment and the tripeptide Pro-Gly-Pro (PGP), the synthetic peptide Semax effectively protects brain against ischemic stroke. However, the molecular mechanisms underlying its neuroprotection and participation of PGP in them are still needed to be clarified. To reveal biological processes and signaling pathways, which are affected by Semax and PGP, we performed the transcriptome analysis of cerebral cortex of rats with focal cerebral ischemia treated by these peptides. The genome-wide biochip data analysis detected the differentially expressed genes (DEGs) and bioinformatic web-tool Ingenuity iReport found DEGs associations with several biological processes and signaling pathways. The immune response is the process most markedly affected by the peptide: Semax enhances antigen presentation signaling pathway, intensifies the effect of ischemia on the interferon signaling pathways and affects the processes for synthesizing immunoglobulins. Semax significantly increased expression of the gene encoding the immunoglobulin heavy chain, highly affects on cytokine, stress response and ribosomal protein-encoding genes after occlusion. PGP treatment of rats with ischemia attenuates the immune activity and suppresses neurotransmission in the CNS. We suppose that neuroprotective mechanism of Semax is realized via the neuroimmune crosstalk, and the new properties of PGP were found under ischemia. Our results provided the basis for further proteomic investigations in the field of searching Semax neuroprotection mechanism.

  12. Modulation of adrenocorticotrophin hormone (ACTH)-induced expression of stress-related genes by PUFA in inter-renal cells from European sea bass (Dicentrarchus labrax).

    PubMed

    Montero, Daniel; Terova, Genciana; Rimoldi, Simona; Tort, Lluis; Negrin, Davinia; Zamorano, María Jesús; Izquierdo, Marisol

    2015-01-01

    Dietary fatty acids have been shown to exert a clear effect on the stress response, modulating the release of cortisol. The role of fatty acids on the expression of steroidogenic genes has been described in mammals, but little is known in fish. The effect of different fatty acids on the release of cortisol and expression of stress-related genes of European sea bass (Dicentrarchus labrax) head kidney, induced by a pulse of adenocorticotrophin hormone (ACTH), was studied. Tissue was maintained in superfusion with 60 min of incubation with EPA, DHA, arachidonic acid (ARA), linoleic acid or α-linolenic acid (ALA) during 490 min. Cortisol was measured by RIA. The quantification of stress-related genes transcripts was conducted by One-Step TaqMan real-time RT-PCR. There was an effect of the type of fatty acid on the ACTH-induced release of cortisol, values from ALA treatment being elevated within all of the experimental period. The expression of some steroidogenic genes, such as the steroidogenic acute regulatory protein (StAR) and c-fos, were affected by fatty acids, ALA increasing the expression of StAR after 1 h of ACTH stimulation whereas DHA, ARA and ALA increased the expression of c-fos after 20 min. ARA increased expression of the 11β-hydroxylase gene. Expression of heat shock protein 70 (HSP70) was increased in all the experimental treatments except for ARA. Results corroborate previous studies of the effect of different fatty acids on the release of cortisol in marine fish and demonstrate that those effects are mediated by alteration of the expression of steroidogenic genes.

  13. ACTH blood test

    MedlinePlus

    ... any time the skin is broken) Alternative Names Serum adrenocorticotropic hormone; Adrenocorticotropic hormone; Highly-sensitive ACTH Images Endocrine glands References Ferri FF. Cushing's disease and syndrome. In: Ferri FF, ed. Ferri's Clinical ...

  14. Cloning of two melanocortin (MC) receptors in spiny dogfish: MC3 receptor in cartilaginous fish shows high affinity to ACTH-derived peptides while it has lower preference to gamma-MSH.

    PubMed

    Klovins, Janis; Haitina, Tatjana; Ringholm, Aneta; Löwgren, Maja; Fridmanis, Davids; Slaidina, Maija; Stier, Susanne; Schiöth, Helgi B

    2004-11-01

    We report the cloning and characterization of two melanocortin receptors (MCRs) from the spiny dogfish (Squalus acanthias) (Sac). Phylogenetic analysis shows that these shark receptors are orthologues of the MC3R and MC5R subtypes, sharing 65% and 70% overall amino acid identity with the human counterparts, respectively. The SacMC3R was expressed and pharmacologically characterized in HEK293 cells. The radioligand binding results show that this receptor has high affinity for adrenocorticotropic hormone (ACTH)-derived peptides while it has comparable affinity for alpha- and beta-melanocyte stimulating hormone (MSH), and slightly lower affinity for gamma-MSH when compared with the human orthologue. ACTH(1-24) has high potency in a second-messenger cAMP assay while alpha- and gamma-MSH had slightly lower potency in cells expressing the SacMC3R. We used receptor-enhanced green fluorescence protein (EGFP) fusion to show the presence of SacMC3R in plasma membrane of Chinese hamster ovary and HEK293 cells but the SacMC5R was retained in intracellular compartments of these cells hindering pharmacological characterization. The anatomical distribution of the receptors were determined using reverse transcription PCR. The results showed that the SacMC3R is expressed in the hypothalamus, brain stem and telencephalon, optic tectum and olfactory bulbs, but not in the cerebellum of the spiny dogfish while the SacMC5R was found only in the same central regions. This report describes the first molecular characterization of a MC3R in fish. The study indicates that many of the important elements of the MC system existed before radiation of gnathostomes, early in vertebrate evolution, at least 450 million years ago.

  15. Cerebellin and des-cerebellin exert ACTH-like effects on corticosterone secretion and the intracellular signaling pathway gene expression in cultured rat adrenocortical cells--DNA microarray and QPCR studies.

    PubMed

    Rucinski, Marcin; Ziolkowska, Agnieszka; Szyszka, Marta; Malendowicz, Ludwik K

    2009-04-01

    Precerebellins (Cbln) belong to the C1q/TNF superfamily of secreted proteins which have diverse functions. They are abundantly expressed in the cerebellum, however, three of them are also expressed in the rat adrenal gland. All members of the Cbln family form homomeric and heteromeric complexes with each other in vitro and it was suggested that such complexes play a crucial role in normal development of the cerebellum. The aim of our study was to investigate whether Cbln1-derived peptides, cerebellin (CER) and des-Ser1-cerebellin (desCER) are involved in regulating biological functions of rat adrenocortical cells. In the primary culture of rat adrenocortical cells, 24 h exposure to CER or desCER notably stimulated corticosterone output and inhibited proliferative activity and similar effects were evoked by ACTH. To study gene transcript regulation by CER, desCER and ACTH, we applied Oligo GEArray DNA Microarray: Rat Signal Transduction Pathway Finder. In relation to the control culture, 13 of the 113 transcripts present on the array were differentially expressed. These transcripts were either up- or down-regulated by ACTH and/or CER or desCER treatment. Validation of DNA Microarray data by QPCR revealed that only 5 of 13 genes studied were differentially expressed. Of those genes, Fos and Icam1 were up-regulated and Egr1 was down-regulated by ACTH, CER and desCER. The remaining two genes, Fasn (insulin signaling pathway) and Hspb1 (HSP27) (stress signaling pathway), were regulated only by CER and desCER, but not by ACTH. Thus, both CER and desCER have effects similar to and different from corticotrophin on the intracellular signaling pathway gene expression in cultured rat adrenocortical cells.

  16. [Gene c-Fos expression in brain of rats resistant and predisposed to emotional stress after intraperitoneal injection of the ACTH(4-10)analog--semax].

    PubMed

    Umriukhin, P E; Koplik, E V; Grivennikov, I A; Miasoedov, N F; Sudakov, K V

    2001-01-01

    The effect of the ACTH(4-10) analog Semax on immediate early gene c-Fos expression was studied in Wistar rats with high and low resistance to emotional stress under the usual conditions and during psychoemotional loading. Fos-immunoreactive cells in the were counted automatically with the help of a computer. It was shown that under the usual conditions the intraperitoneal Semax injection induced immediate early gene c-Fos expression in the lateral septal region in rats predisposed to emotional stress and in the paraventricular hypothalamus in rats of both groups. Preliminary Semax injection decreased the stress-induced c-Fos expression in the paraventricular hypothalamus and medial septum in rats predisposed to emotional stress and tended to reduce the number of stress-induced c-Fos-immunopositive cells in the lateral septum and basolateral amygdala in both groups of animals. The obtained data suggest that Semax differently affects the immediate early c-Fos gene expression in the brain of rats resistant and predisposed to emotional stress and this effect reflects the antistressor properties of the regulatory peptide.

  17. Activation of the dopamine receptor type-2 (DRD2) promoter by 9-cis retinoic acid in a cellular model of Cushing's disease mediates the inhibition of cell proliferation and ACTH secretion without a complete corticotroph-to-melanotroph transdifferentiation.

    PubMed

    Occhi, Gianluca; Regazzo, Daniela; Albiger, Nora Maria; Ceccato, Filippo; Ferasin, Sergio; Scanarini, Massimo; Denaro, Luca; Cosma, Chiara; Plebani, Mario; Cassarino, Maria Francesca; Mantovani, Giovanna; Stalla, Günter K; Pecori Giraldi, Francesca; Paez-Pareda, Marcelo; Scaroni, Carla

    2014-09-01

    Cushing's disease (CD) is a rare condition in which hypercortisolemia is secondary to excessive ACTH release from a pituitary corticotroph adenoma. CD is associated with significant morbidity and mortality, and a safe therapy that effectively targets the pituitary tumor is still lacking. Retinoic acid (RA) and dopamine agonists (DAs) have recently been considered as monotherapy in CD patients, and satisfactory results have been reported, albeit in a limited number of patients. Given the permissive role of RA on the dopamine receptor type-2 (DRD2), the aim of the present study was to see whether a combination of 9-cis RA and the DA bromocriptine (Br) might represent a possible treatment for CD. Here we show that 9-cis RA induces a functional DRD2 in the pituitary corticotroph cell line AtT20, and increases cell sensitivity to Br via a mechanism only partially related to corticotroph-to-melanotroph transdifferentiation. In addition, 9-cis RA and Br act synergistically to modulate cell viability, with favorable implications for clinical use. In nearly 45% of corticotropinoma-derived primary cultures, the combined administration of 9-cis RA and Br lowered the steady-state level of the ACTH precursor proopiomelanocortin (POMC) more efficiently than either of the drugs alone. In conclusion, the effects of a combination of 9-cis RA and Br on ACTH synthesis/secretion and cell viability in AtT20, and on POMC transcriptional activity in human corticotropinomas might represent a suitable starting point for assessing the potential of this treatment regimen for ACTH-secreting pituitary adenomas. This study thus has potentially important implications for novel therapeutic approaches to CD.

  18. Mapping the human melanocortin 2 receptor (adrenocorticotropic hormone receptor; ACTHR) gene (MC2R) to the small arm of chromosome 18 (18p11. 21-pter)

    SciTech Connect

    Vamvakopoulos, N.C.; Chrousos, G.P. ); Rojas, K.; Overhauser, J. ); Durkin, A.S.; Nierman, W.C. )

    1993-11-01

    The human adrenocorticotropic hormone receptor (ACTHR) was recently cloned and shown to belong to the superfamily of membrane receptors that couple to guanine nucleotide-binding proteins and adenylyl cyclase. A genetically heterogeneous (including both X-linked and autosomally recessive forms) congenital syndrome of general hereditary adrenal unresponsiveness to ACTH has been documented in several kindreds. This inherited defect affects one of the steps in the cascade of events of ACTH action on glucocorticoid biosynthesis, without altering mineralocorticoid productions. Since candidate targets for pathophysiological manifestations of deficient responsiveness to ACTH include lesions of the ACTHR gene, the authors undertook to map it to a chromosomal location. They first used polymerase chain reaction (PCR) amplification of NIGMS Panel 1 DNA template to assign a 960-bp-long fragment of the human ACTHR gene to chromosome 18. Subsequently, they determined the location of the ACTHR gene within human chromosome 18 by PCR amplification of genomic DNA template from somatic cell hybrids that contain deletions of this chromosome.

  19. Bowel perforation complicating an ACTH-secreting phaeochromocytoma

    PubMed Central

    Flynn, Elise; Liu, Dorothy; Ekinci, Elif I; Farrell, Stephen; Zajac, Jeffrey D; De Luise, Mario; Seeman, Ego

    2016-01-01

    Summary ACTH-secreting phaeochromocytoma (ASP) is a rare cause of ACTH-dependent Cushing’s syndrome (CS). We report the case of a 63-year-old female presenting with CS secondary to an ASP complicated by bowel perforation. This case report highlights ASP as an uncommon but important cause of ectopic ACTH secretion (EAS). There have been 29 cases of ASP, all of which were unilateral and benign, but associated with significant complications. Patients presenting with ASP have the potential for cure with unilateral adrenalectomy. Given this promising prognosis if recognised, ASP should be considered in the diagnostic workup of ACTH-dependent CS. As this case demonstrates, gastrointestinal complications can arise from severe hypercortisolaemia associated with CS. Early medical and surgical intervention is imperative as mortality approaches 50% once bowel perforation occurs. Learning points Consider phaeochromocytoma in the diagnostic workup of ACTH-dependent CS; screen with plasma metanephrines or urinary catecholamines. Serial screening may be required if ACTH-secreting phaeochromocytoma is suspected, as absolute levels can be misleading. Early catecholamine receptor blockade and adrenal synthesis blockade may avoid the need for rescue bilateral adrenalectomy in ACTH-secreting phaeochromocytoma. Consider early medical or surgical management when gastrointestinal features are present in patients with CS, as bowel perforation due to severe hypercortisolaemia can occur and is associated with significant mortality. PMID:28203371

  20. The orphan G protein-coupled receptor GPR139 is activated by the peptides: Adrenocorticotropic hormone (ACTH), α-, and β-melanocyte stimulating hormone (α-MSH, and β-MSH), and the conserved core motif HFRW.

    PubMed

    Nøhr, Anne Cathrine; Shehata, Mohamed A; Hauser, Alexander S; Isberg, Vignir; Mokrosinski, Jacek; Andersen, Kirsten B; Farooqi, I Sadaf; Pedersen, Daniel Sejer; Gloriam, David E; Bräuner-Osborne, Hans

    2017-01-01

    GPR139 is an orphan G protein-coupled receptor that is expressed primarily in the brain. Not much is known regarding the function of GPR139. Recently we have shown that GPR139 is activated by the amino acids l-tryptophan and l-phenylalanine (EC50 values of 220 μM and 320 μM, respectively), as well as di-peptides comprised of aromatic amino acids. This led us to hypothesize that GPR139 may be activated by peptides. Sequence alignment of the binding cavities of all class A GPCRs, revealed that the binding pocket of the melanocortin 4 receptor is similar to that of GPR139. Based on the chemogenomics principle "similar targets bind similar ligands", we tested three known endogenous melanocortin 4 receptor agonists; adrenocorticotropic hormone (ACTH) and α- and β-melanocyte stimulating hormone (α-MSH and β-MSH) on CHO-k1 cells stably expressing the human GPR139 in a Fluo-4 Ca(2+)-assay. All three peptides, as well as their conserved core motif HFRW, were found to activate GPR139 in the low micromolar range. Moreover, we found that peptides consisting of nine or ten N-terminal residues of α-MSH activate GPR139 in the submicromolar range. α-MSH1-9 was found to correspond to the product of a predicted cleavage site in the pre-pro-protein pro-opiomelanocortin (POMC). Our results demonstrate that GPR139 is a peptide receptor, activated by ACTH, α-MSH, β-MSH, the conserved core motif HFRW as well as a potential endogenous peptide α-MSH1-9. Further studies are needed to determine the functional relevance of GPR139 mediated signaling by these peptides.

  1. CRH stimulation of corticosteroids production in melanocytes is mediated by ACTH.

    PubMed

    Slominski, Andrzej; Zbytek, Blazej; Szczesniewski, Andrzej; Semak, Igor; Kaminski, Jan; Sweatman, Trevor; Wortsman, Jacobo

    2005-04-01

    The response to systemic stress is organized along the hypothalamic-pituitary-adrenal axis (HPA), whereas the response to a peripheral stress (solar radiation) is mediated by epidermal melanocytes (cells of neural crest origin) responsible for the pigmentary reaction. Melanocytes express proopiomelanocortin (POMC), corticotropin-releasing hormone (CRH), and CRH receptor-1 (CRH-R1) and can produce corticosterone. In the present study, incubation of normal epidermal melanocytes with CRH was found to trigger a functional cascade structured hierarchically and arranged along the same algorithm as in the HPA axis: CRH activation of CRH-R1 stimulated cAMP accumulation and increased POMC gene expression and production of ACTH. CRH and ACTH also enhanced production of cortisol and corticosterone, and cortisol production was also stimulated by progesterone. The chemical identity of the cortisol was confirmed by liquid chromatography-mass spectrometry (LC/MS2) with [corrected] mass spectrometry-mass spectrometry analyses. POMC gene silencing abolished the stimulatory effect of CRH on corticosteroid synthesis, indicating that this is indirect and mediated via production of ACTH. Thus the melanocyte response to CRH is highly organized along the same functional hierarchy as the HPA axis. This pattern demonstrates the fractal nature of the response to stress with similar activation sequence at the single-cell and whole body levels.

  2. Naloxone inhibits and morphine potentiates. The adrenal steroidogenic response to ACTH

    NASA Technical Reports Server (NTRS)

    Heybach, J. P.; Vernikos, J.

    1980-01-01

    The adrenal actions were stereospecific since neither the positve stereoisomer of morphine, nor that of naloxone, had any effect on the adrenal response to exogenous adrenocorticotrophic hormone (ACTH). The administration of human beta endorphin to phyophysectomized rats had no effect on the adrenal corticosterone concentration nor did it alter the response of the adrenal gland to ACTH. These results indicate that morphine can potentiate the action of ACTH on the adrenal by a direct, stereospecific, dose dependent mechanism that is prevented by naloxone pretreatment and which may involve competition for ACTH receptors on the corticosterone secreting cells of the adrenal cortex.

  3. The influence od melatonin receptors antagonists, luzindole and 4-phenyl-2-propionamidotetralin (4-P-PDOT), on melatonin-dependent vasopressin and adrenocorticotropic hormone (ACTH) release from the rat hypothalamo-hypophysial system. In vitro and in vivo studies.

    PubMed

    Juszczak, M; Roszczyk, M; Kowalczyk, E; Stempniak, B

    2014-12-01

    Melatonin exerts its biological role acting via G protein-coupled membrane receptors - MT1 and MT2, as well as through cytoplasmic and/or nuclear receptors. Melatonin has previously been shown to change vasopressin (AVP) and adrenocorticotropic hormone (ACTH) secretion dependently on its concentration. To determine whether the response of vasopressinergic neurones to different concentrations of melatonin is mediated through the membrane MT1 and/or MT2 receptors, the influence of luzindole - an antagonist of both MT1 and MT2 receptors, and 4-phenyl-2-propionamidotetralin (4-P-PDOT) - a selective MT2 receptor antagonist, on melatonin-dependent AVP release from the rat hypothalamo-neurohypophysial (H-NH) system was studied in vitro (melatonin at the concentrations of 10(-9), 10(-7) and 10(-3) M) and in vivo (melatonin at the concentrations of 10(-9) and 10(-7) M). Moreover, the second goal of this study was to find out whether melatonin receptors MT1 and/or MT2 are involved in the regulation of ACTH and corticosterone secretion into the blood. We have demonstrated that melatonin, at the concentrations of 10(-9) and 10(-7) M, significantly inhibited AVP secretion from isolated rat H-NH explants when antagonists solvent (i.e. 0.1% DMSO) was present in the medium. Neither luzindole, nor 4-P-PDOT, applied without melatonin, did influence AVP release in vitro. Luzindole applied together with melatonin (10(-7) M and 10(-9) M) significantly suppressed melatonin-dependent effect, while 4-PPDOT did not eliminate the inhibitory influence of 10(-7) M and 10(-9) M melatonin on AVP secretion from isolated rat H-NH explants. Melatonin at a concentration of 10(-3) M significantly increased AVP release when the H-NH explants were incubated in the medium containing luzindole or 4-P-PDOT. Under present experimental in vivo conditions, infused intracerebroventricularly (i.c.v.) melatonin, at a concentration close to its physiological level in the blood, significantly diminished AVP

  4. Ectopic ACTH syndrome: clinicopathological correlations.

    PubMed Central

    Singer, W; Kovacs, K; Ryan, N; Horvath, E

    1978-01-01

    Ten out of 164 cases of bronchogenic carcinoma showed pathological evidence at necropsy of the ectopic ACTH syndrome. All occurred in association with oat-cell carcinoma, constituting 19% of that group. The pathological features consisted of adrenocortical hyperplasia confined to the zona fasciculata and Crooke's hyaline change in the pituitary. Immunoperoxidase stainable ACTH was detected in the pituitary but not in the carcinoma tissue, a surprising finding, which may be due to the different nature of ACTH present in tumour tissue. The ectopic ACTH syndrome was diagnosed ante mortem in only four out of 10 patients on the basis of hypokalaemia and metabolic alkalosis. The lack of clinical pointers in all but terminal cases is discussed as well as possible measures for earlier diagnosis. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:209063

  5. Corticotropin (ACTH) regulates alternative RNA splicing in Y1 mouse adrenocortical tumor cells.

    PubMed

    Schimmer, Bernard P; Cordova, Martha

    2015-06-15

    The stimulatory effect of ACTH on gene expression is well documented and is thought to be a major mechanism by which ACTH maintains the functional and structural integrity of the gland. Previously, we showed that ACTH regulates the accumulation of over 1200 transcripts in Y1 adrenal cells, including a cluster with functions in alternative splicing of RNA. On this basis, we postulated that some of the effects of ACTH on the transcription landscape of Y1 cells are mediated by alternative splicing. In this study, we demonstrate that ACTH regulates the alternative splicing of four transcripts - Gnas, Cd151, Dab2 and Tia1. Inasmuch as alternative splicing potentially affects transcripts from more than two-thirds of the mouse genome, we suggest that these findings are representative of a genome-wide effect of ACTH that impacts on the mRNA and protein composition of the adrenal cortex.

  6. Effects of Chronic ACTH Excess on Human Adrenal Cortex

    PubMed Central

    Bertagna, Xavier

    2017-01-01

    Chronic ACTH excess leads to chronic cortisol excess, without escape phenomenon, resulting in Cushing’s syndrome. Excess adrenal androgens also occur: in females, they will overcompensate the gonadotrophic loss, inducing high testosterone; in males, they will not compensate it, inducing low testosterone. Chronic ACTH excess leads to chronic adrenal mineralocorticoid excess and low aldosterone levels: after an acute rise, aldosterone plasma levels resume low values after a few days when ACTH is prolonged. Two other mineralocorticoids in man, cortisol and 11 deoxycorticosterone (DOC), at the zona fasciculata, will not escape the long-term effect of chronic ACTH excess and their secretion rates will remain elevated in parallel. Over all, the concomitant rise in cortisol and 11 DOC will more than compensate the loss of aldosterone, and eventually create a state of chronic mineralocorticoid excess, best evidenced by the accompanying suppression of the renin plasma levels, a further contribution to the suppression of aldosterone secretion. Prolonged in vivo stimulation with ACTH leads to an increase in total adrenal protein and RNA synthesis. Cell proliferation is indicated by an increase in total DNA the resulting adrenocortical hyperplasia participates in the amplified response of the chronically stimulated gland, and the weight of each gland can be greatly increased. The growth-stimulatory effect of ACTH in vivo most likely proceeds through the activation of a local and complex network of autocrine growth factors and their own receptors; a number of compounds, including non-ACTH proopiomelanocortin peptides such as γ3-MSH, have been shown to exert some adrenocortical growth effect. PMID:28337175

  7. ACTH TREATMENT OF INFANTILE SPASMS: MECHANISMS OF ITS EFFECTS IN MODULATION OF NEURONAL EXCITABILITY

    PubMed Central

    Brunson, K. L.; Avishai-Eliner, S.; Baram, T. Z.

    2011-01-01

    The efficacy of ACTH, particularly in high doses, for rapid and complete elimination of infantile spasms (IS) has been demonstrated in prospective controlled studies. However, the mechanisms for this efficacy remain unknown. ACTH promotes the release of adrenal steroids (glucocorticoids), and most ACTH effects on the central nervous system have been attributed to activation of glucocorticoid receptors. The manner in which activation of these receptors improves IS and the basis for the enhanced therapeutic effects of ACTH — compared with steroids — for this disorder are the focus of this chapter. First, a possible “common excitatory pathway,” which is consistent with the many etiologies of IS and explains the confinement of this disorder to infancy, is proposed. This notion is based on the fact that all of the entities provoking IS activate the native “stress system” of the brain. This involves increased synthesis and release of the stress-activated neuropeptide, corticotropin-releasing hormone (CRH), in limbic, seizure-prone brain regions. CRH causes severe seizures in developing experimental animals, as well as limbic neuronal injury. Steroids, given as therapy or secreted from the adrenal gland upon treatment with ACTH, decrease the production and release of CRH in certain brain regions. Second, the hypothesis that ACTH directly influences limbic neurons via the recently characterized melanocortin receptors is considered, focusing on the effects of ACTH on the expression of CRH. Experimental data showing that ACTH potently reduces CRH expression in amygdala neurons is presented. This downregulation was not abolished by experimental elimination of steroids or by blocking their receptors and was reproduced by a centrally administered ACTH fragment that does not promote steroid release. Importantly, selective blocking of melanocortin receptors prevented ACTH-induced downregulation of CRH expression, providing direct evidence for the involvement of these

  8. Effects of RXR Agonists on Cell Proliferation/Apoptosis and ACTH Secretion/Pomc Expression

    PubMed Central

    Saito-Hakoda, Akiko; Uruno, Akira; Yokoyama, Atsushi; Shimizu, Kyoko; Parvin, Rehana; Kudo, Masataka; Saito-Ito, Takako; Sato, Ikuko; Kogure, Naotaka; Suzuki, Dai; Shimada, Hiroki; Yoshikawa, Takeo; Fujiwara, Ikuma; Kagechika, Hiroyuki; Iwasaki, Yasumasa; Kure, Shigeo; Ito, Sadayoshi; Sugawara, Akira

    2015-01-01

    Various retinoid X receptor (RXR) agonists have recently been developed, and some of them have shown anti-tumor effects both in vivo and in vitro. However, there has been no report showing the effects of RXR agonists on Cushing’s disease, which is caused by excessive ACTH secretion in a corticotroph tumor of the pituitary gland. Therefore, we examined the effects of synthetic RXR pan-agonists HX630 and PA024 on the proliferation, apoptosis, ACTH secretion, and pro-opiomelanocortin (Pomc) gene expression of murine pituitary corticotroph tumor AtT20 cells. We demonstrated that both RXR agonists induced apoptosis dose-dependently in AtT20 cells, and inhibited their proliferation at their higher doses. Microarray analysis identified a significant gene network associated with caspase 3 induced by high dose HX630. On the other hand, HX630, but not PA024, inhibited Pomc transcription, Pomc mRNA expression, and ACTH secretion dose-dependently. Furthermore, we provide new evidence that HX630 negatively regulates the Pomc promoter activity at the transcriptional level due to the suppression of the transcription factor Nur77 and Nurr1 mRNA expression and the reduction of Nur77/Nurr1 heterodimer recruiting to the Pomc promoter region. We also demonstrated that the HX630-mediated suppression of the Pomc gene expression was exerted via RXRα. Furthermore, HX630 inhibited tumor growth and decreased Pomc mRNA expression in corticotroph tumor cells in female nude mice in vivo. Thus, these results indicate that RXR agonists, especially HX630, could be a new therapeutic candidate for Cushing’s disease. PMID:26714014

  9. Nucleotide sequence and structural organization of the human vasopressin pituitary receptor (V3) gene.

    PubMed

    René, P; Lenne, F; Ventura, M A; Bertagna, X; de Keyzer, Y

    2000-01-04

    In the pituitary, vasopressin triggers ACTH release through a specific receptor subtype, termed V3 or V1b. We cloned the V3 cDNA and showed that its expression was almost exclusive to pituitary corticotrophs and some corticotroph tumors. To study the determinants of this tissue specificity, we have now cloned the gene for the human (h) V3 receptor and characterized its structure. It is composed of two exons, spanning 10kb, with the coding region interrupted between transmembrane domains 6 and 7. We established that the transcription initiation site is located 498 nucleotides upstream of the initiator codon and showed that two polyadenylation sites may be used, while the most frequent is the most downstream. Sequence analysis of the promoter region showed no TATA box but identified consensus binding motifs for Sp1, CREB, and half sites of the estrogen receptor binding site. However comparison with another corticotroph-specific gene, proopiomelanocortin, did not identify common regulatory elements in the two promoters except for a short GC-rich region. Unexpectedly, hV3 gene analysis revealed that a formerly cloned 'artifactual' hV3 cDNA indeed corresponded to a spliced antisense transcript, overlapping the 5' part of the coding sequence in exon 1 and the promoter region. This transcript, hV3rev, was detected in normal pituitary and in many corticotroph tumors expressing hV3 sense mRNA and may therefore play a role in hV3 gene expression.

  10. Aging of the rat adrenocortical cell: response to ACTH and cyclic AMP in vitro.

    PubMed

    Malamed, S; Carsia, R V

    1983-03-01

    To study intrinsic age-related changes in adrenocortical steroid production, cells isolated from rats of different ages (3 to 24 months) were used. Acute (2 hour) corticosterone production in response to stimulation by adrenocorticotrophic hormone (ACTH) and adenosine 3':5'-cyclic monophosphate (cAMP) was measured by radioimmunoassay. With age, adrenocortical cells lose much of their ability to produce corticosterone in the absence or presence of ACTH or cAMP. The loss is progressive from 6 to 24 months of age. Analysis of the data suggests that from 6 to 12 months, an intracellular steroidogenic lesion develops; in addition there may be a loss in ACTH receptors on the plasma membrane. After 12 months these defects increase and are accompanied by a decrease in receptor sensitivity to ACTH.

  11. Ketamine Inhibits Fetal ACTH Responses to Cerebral Hypoperfusion

    PubMed Central

    Powers, Melanie J.; Wood, Charles E.

    2009-01-01

    The present study tested the effect of ketamine on the fetal reflex responses of late-gestation sheep to brachiocephalic occlusion (BCO), a stimulus that mimics the reduction in cerebral blood flow that results from severe fetal hypotension. Ketamine, a dissociative anesthetic and known non-competitive antagonist of N-methyl D-aspartate (NMDA) receptors, has previously been shown to impair chemoreceptor responsiveness. Studies from this laboratory suggest that fetal reflex ACTH responses to hypotension are largely mediated by chemoreceptors; therefore we hypothesized that ketamine would inhibit the reflex hormonal response to BCO. Chronically catheterized fetal sheep were subjected to acute cerebral hypoperfusion through occlusion of the brachiocephalic artery. Fetal blood pressure and heart rate were continuously recorded and fetal blood samples drawn during the experiment were analyzed with specific hormone assays. Our results demonstrate that ketamine attenuates hemodynamic responses to cerebral hypoperfusion and is a potent inhibitor of adrenocorticotropin (ACTH) and proopiomelanocortin (POMC) / pro-ACTH release. These data support the hypothesis that fetal reflex responses hypotension are chemoreceptor mediated. Given the potency with which ketamine inhibits ACTH response to fetal hypotension, we suggest that the use of ketamine, or other anesthetic or analgesic drugs that block or otherwise interact with the NMDA-glutamate pathways, in late pregnancy or in pre-term newborns be reconsidered. PMID:17158270

  12. EDTA interference in electrochemiluminescence ACTH assay.

    PubMed

    Toprak, Burak; Yalcin, Hulya; Arı, Elif; Colak, Ayfer

    2016-11-01

    Background As plasma is the recommended sample type for Roche adrenocorticotropic hormone (ACTH) assay, we evaluated the effect of EDTA concentration on Cobas ACTH assay. Methods Samples containing twofold and fourfold higher concentrations of EDTA were prepared by adding plasma to empty K2EDTA tubes and by making under-filled EDTA tubes. All measurements were performed with four replicates. Results Increased EDTA concentration resulted in a significant decrease in ACTH concentration. Fifty-per cent-filled EDTA tube showed 19% decrease in ACTH concentration and 25% filled EDTA tube showed 50% decrease in ACTH concentration. Conclusion We recommend that inadequately filled EDTA specimens should be rejected when using Cobas ACTH assay.

  13. Naloxone inhibits and morphine potentiates the adrenal steroidogenic response to ACTH

    NASA Technical Reports Server (NTRS)

    Heybach, J. P.; Vernikos, J.

    1981-01-01

    The administration of morphine to hypophysectomized rats potentiated the steroidogenic response of the adrenal cortex to exogenous adrenocorticotrophic hormone (ACTH) in a dose-dependent fashion. Conversely, the opiate antagonist naloxone inhibited the adrenal response to ACTH. Naloxone pretreatment also antagonized the potentiating effect of morphine on ACTH-induced steroidogenesis in a dose-dependent manner. Neither morphine nor naloxone, administered to hypophysectomized rats, had any direct effect on adrenal steroidogenesis. These adrenal actions were stereospecific since neither the (+)-stereoisomer of morphine, nor that or naloxone, had any effect on the adrenal response to ACTH. The administration of human beta-endorphin to hypophysectomized rats had no effect on the adrenal corticosterone concentration nor did it alter the response of the adrenal gland to ACTH. These results indicate that morphine can potentiate the action of ACTH on the adrenal by a direct, stereospecific, dose-dependent mechanism that is prevented by naloxone pretreatment and which may involve competition for ACTH receptors on the corticosterone-secreting cells of the adrenal cortex.

  14. Voluntary wheel running modulates glutamate receptor subunit gene expression and stress hormone release in Lewis rats.

    PubMed

    Makatsori, A; Duncko, R; Schwendt, M; Moncek, F; Johansson, B B; Jezova, D

    2003-07-01

    Lewis rats that are known to be addiction-prone, develop compulsive running if they have access to running wheels. The present experiments were aimed 1) to evaluate the activation of stress systems following chronic and acute voluntary wheel running in Lewis rats by measurement of hormone release and gene expression of neuropeptides related to hypothalamic-pituitary-adrenocortical (HPA) axis activity and 2) to test the hypothesis that wheel running as a combined model of addictive behavior and stress exposure is associated with modulation of ionotropic glutamate receptor subunits in the ventral tegmental area. Voluntary running for three weeks but not for one night resulted in a rise in plasma corticosterone and adrenocorticotropic hormone (ACTH) levels (p<0.05) compared to those in control rats. Principal component analysis revealed the relation between POMC gene expression in the intermediate pituitary and running rate. Acute exposure of animals to voluntary wheel running induced a significant decrease in alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor GluR1 subunit mRNA levels (p<0.01), while repeated voluntary physical activity increased levels of GluR1 mRNA in the ventral tegmentum (p<0.05). Neither acute nor chronic wheel running influenced N-methyl-D-aspartate (NMDA) receptor subunit NR1 mRNA levels in the ventral tegmental area. Thus, the present study revealed changes in AMPA receptor subunit gene expression in a reward-related brain structure as well as an activation of HPA axis in response to compulsive wheel running in Lewis rats. It may be suggested that hormones of HPA axis and glutamate receptors belong to the factors that substantiate higher vulnerability to addictive behavior.

  15. Hormone (ACTH, T3) content of immunophenotyped lymphocyte subpopulations.

    PubMed

    Pállinger, Éva; Kiss, Gergely Attila; Csaba, György

    2016-12-01

    Cells of the immune system synthesize, store, and secrete polypeptide and amino acid type hormones, which also influence their functions, having receptors for different hormones. In the present experiment immunophenotyped immune cells isolated from bone marrow, thymus, and peritoneal fluid of mice were used for demonstrating the adrenocorticotropic hormone (ACTH) and triiodothyronine (T3) hormone production of differentiating immune cells. Both hormones were found in each cell type, and in each maturation state, which means that all cells are participating in the hormonal function of the immune system. The lineage-independent presence of ACTH and T3 in differentiating hematopoietic cells denotes that their expression ubiquitous during lymphocyte development. Higher ACTH and T3 content of B cells shows that these cells are the most hormonally active and suggests that the hormones may have an autocrine regulatory role in B cell development. Developing T cells showed heterogeneous hormone production which was associated with their maturation state. Differences in the hormone contents of immune cells isolated from different organs indicate that their hormone production is defined by their differentiation or maturation state, however, possibly also by the local microenvironment.

  16. The androgen receptor gene mutations database.

    PubMed

    Patterson, M N; Hughes, I A; Gottlieb, B; Pinsky, L

    1994-09-01

    The androgen receptor gene mutations database is a comprehensive listing of mutations published in journals and meetings proceedings. The majority of mutations are point mutations identified in patients with androgen insensitivity syndrome. Information is included regarding the phenotype, the nature and location of the mutations, as well as the effects of the mutations on the androgen binding activity of the receptor. The current version of the database contains 149 entries, of which 114 are unique mutations. The database is available from EMBL (NetServ@EMBL-Heidelberg.DE) or as a Macintosh Filemaker file (mc33001@musica.mcgill.ca).

  17. Direct activating effects of adrenocorticotropic hormone (ACTH) on brown adipose tissue are attenuated by corticosterone.

    PubMed

    van den Beukel, Johanna C; Grefhorst, Aldo; Quarta, Carmelo; Steenbergen, Jacobie; Mastroberardino, Pier G; Lombès, Marc; Delhanty, Patric J; Mazza, Roberta; Pagotto, Uberto; van der Lely, Aart Jan; Themmen, Axel P N

    2014-11-01

    Brown adipose tissue (BAT) and brown-like cells in white adipose tissue (WAT) can dissipate energy through thermogenesis, a process mediated by uncoupling protein 1 (UCP1). We investigated whether stress hormones ACTH and corticosterone contribute to BAT activation and browning of WAT. ACTH and corticosterone were studied in male mice exposed to 4 or 23°C for 24 h. Direct effects were studied in T37i mouse brown adipocytes and primary cultured murine BAT and inguinal WAT (iWAT) cells. In vivo effects were studied using (18)F-deoxyglucose positron emission tomography. Cold exposure doubled serum ACTH concentrations (P=0.03) and fecal corticosterone excretion (P=0.008). In T37i cells, ACTH dose-dependently increased Ucp1 mRNA (EC50=1.8 nM) but also induced Ucp1 protein content 88% (P=0.02), glycerol release 32% (P=0.03) and uncoupled respiration 40% (P=0.003). In cultured BAT and iWAT, ACTH elevated Ucp1 mRNA by 3-fold (P=0.03) and 3.7-fold (P=0.01), respectively. In T37i cells, corticosterone prevented induction of Ucp1 mRNA and Ucp1 protein by both ACTH and norepinephrine in a glucocorticoid receptor (GR)-dependent fashion. ACTH and GR antagonist RU486 independently doubled BAT (18)F-deoxyglucose uptake (P=0.0003 and P=0.004, respectively) in vivo. Our results show that ACTH activates BAT and browning of WAT while corticosterone counteracts this.

  18. ACTH Action on Messenger RNA Stability Mechanisms

    PubMed Central

    Desroches-Castan, Agnès; Feige, Jean-Jacques; Cherradi, Nadia

    2017-01-01

    The regulation of mRNA stability has emerged as a critical control step in dynamic gene expression. This process occurs in response to modifications of the cellular environment, including hormonal variations, and regulates the expression of subsets of proteins whose levels need to be rapidly adjusted. Modulation of messenger RNA stability is usually mediated by stabilizing or destabilizing RNA-binding proteins (RNA-BP) that bind to the 3′-untranslated region regulatory motifs, such as AU-rich elements (AREs). Destabilizing ARE-binding proteins enhance the decay of their target transcripts by recruiting the mRNA decay machineries. Failure of such mechanisms, in particular misexpression of RNA-BP, has been linked to several human diseases. In the adrenal cortex, the expression and activity of mRNA stability regulatory proteins are still understudied. However, ACTH- or cAMP-elicited changes in the expression/phosphorylation status of the major mRNA-destabilizing protein TIS11b/BRF1 or in the subcellular localization of the stabilizing protein Human antigen R have been reported. They suggest that this level of regulation of gene expression is also important in endocrinology. PMID:28163695

  19. Social regulation of cortisol receptor gene expression

    PubMed Central

    Korzan, Wayne J.; Grone, Brian P.; Fernald, Russell D.

    2014-01-01

    In many social species, individuals influence the reproductive capacity of conspecifics. In a well-studied African cichlid fish species, Astatotilapia burtoni, males are either dominant (D) and reproductively competent or non-dominant (ND) and reproductively suppressed as evidenced by reduced gonadotropin releasing hormone (GnRH1) release, regressed gonads, lower levels of androgens and elevated levels of cortisol. Here, we asked whether androgen and cortisol levels might regulate this reproductive suppression. Astatotilapia burtoni has four glucocorticoid receptors (GR1a, GR1b, GR2 and MR), encoded by three genes, and two androgen receptors (ARα and ARβ), encoded by two genes. We previously showed that ARα and ARβ are expressed in GnRH1 neurons in the preoptic area (POA), which regulates reproduction, and that the mRNA levels of these receptors are regulated by social status. Here, we show that GR1, GR2 and MR mRNAs are also expressed in GnRH1 neurons in the POA, revealing potential mechanisms for both androgens and cortisol to influence reproductive capacity. We measured AR, MR and GR mRNA expression levels in a microdissected region of the POA containing GnRH1 neurons, comparing D and ND males. Using quantitative PCR (qPCR), we found D males had higher mRNA levels of ARα, MR, total GR1a and GR2 in the POA compared with ND males. In contrast, ND males had significantly higher levels of GR1b mRNA, a receptor subtype with a reduced transcriptional response to cortisol. Through this novel regulation of receptor type, neurons in the POA of an ND male will be less affected by the higher levels of cortisol typical of low status, suggesting GR receptor type change as a potential adaptive mechanism to mediate high cortisol levels during social suppression. PMID:25013108

  20. The Evolution of Mammalian Olfactory Receptor Genes

    PubMed Central

    Issel-Tarver, L.; Rine, J.

    1997-01-01

    We performed a comparative study of four subfamilies of olfactory receptor genes first identified in the dog to assess changes in the gene family during mammalian evolution, and to begin linking the dog genetic map to that of humans. The human subfamilies were localized to chromosomes 7, 11, and 19. The two subfamilies that were tightly linked in the dog genome were also tightly linked in the human genome. The four subfamilies were compared in human (primate), horse (perissodactyl), and a variety of artiodactyls and carnivores. Some changes in gene number were detected, but overall subfamily size appeared to have been established before the divergence of these mammals 60-100 million years ago. PMID:9017400

  1. Cushing Syndrome Due to ACTH-Secreting Pheochromocytoma, Aggravated by Glucocorticoid-Driven Positive-Feedback Loop

    PubMed Central

    Sakuma, Ikki; Higuchi, Seiichiro; Fujimoto, Masanori; Takiguchi, Tomoko; Nakayama, Akitoshi; Tamura, Ai; Kohno, Takashi; Komai, Eri; Shiga, Akina; Nagano, Hidekazu; Hashimoto, Naoko; Suzuki, Sawako; Mayama, Takafumi; Koide, Hisashi; Ono, Katsuhiko; Sasano, Hironobu; Tatsuno, Ichiro; Yokote, Koutaro

    2016-01-01

    Context: Pheochromocytoma is a catecholamine-producing tumor that originates from adrenal chromaffin cells and is capable of secreting various hormones, including ACTH. Case Description: A 56-year-old female presented with Cushingoid appearance and diabetic ketoacidosis. Endocrinological examinations demonstrated ectopic ACTH production with hypercortisolemia and excess urinary cortisol accompanied by elevated plasma and urine catecholamines. Computed tomography revealed a large left adrenal tumor with bilateral adrenal enlargement. Metaiodobenzylguanidine scintigraphy revealed abnormal accumulation in the tumor, which was eventually diagnosed as pheochromocytoma with ectopic ACTH secretion with subsequent manifestation of Cushing's syndrome. Ectopic ACTH secretion and catecholamine production were blocked by metyrapone treatment, whereas dexamethasone paradoxically increased ACTH secretion. Left adrenalectomy resulted in complete remission of Cushing's syndrome and pheochromocytoma. In Vitro Studies: Immunohistological analysis revealed that the tumor contained two functionally distinct chromaffin-like cell types. The majority of tumor cells stained positive for tyrosine hydroxylase (TH), whereas a minor population of ACTH-positive tumor cells was negative for TH. Furthermore, gene expression and in vitro functional analyses using primary tumor tissue cultures demonstrated that dexamethasone facilitated ACTH as well as catecholamine secretion with parallel induction of proopiomelanocortin (POMC), TH, and phenylethanolamine N-methyltransferase mRNA, supporting a glucocorticoid-dependent positive-feedback loop of ACTH secretion in vivo. DNA methylation analysis revealed that the POMC promoter of this tumor, particularly the E2F binding site, was hypomethylated. Conclusion: We present a case of ectopic ACTH syndrome associated with pheochromocytoma. ACTH up-regulation with paradoxical response to glucocorticoid, possibly through the hypomethylation of the POMC

  2. Engineering AAV receptor footprints for gene therapy.

    PubMed

    Madigan, Victoria J; Asokan, Aravind

    2016-06-01

    Adeno-associated viruses (AAV) are currently at the forefront of human gene therapy clinical trials as recombinant vectors. Significant progress has been made in elucidating the structure, biology and tropisms of different naturally occurring AAV isolates in the past decade. In particular, a spectrum of AAV capsid interactions with host receptors have been identified and characterized. These studies have enabled a better understanding of key determinants of AAV cell recognition and entry in different hosts. This knowledge is now being applied toward engineering new, lab-derived AAV capsids with favorable transduction profiles. The current review conveys a structural perspective of capsid-glycan interactions and provides a roadmap for generating synthetic strains by engineering AAV receptor footprints.

  3. The effect of ACTH on suckling rats.

    PubMed

    Sato, Y

    1984-01-01

    In the present study, the causes of brain shrinkage induced by synthetic ACTH treatment in epileptic children were investigated using suckling rats. Synthetic ACTH was injected subcutaneously once a day for 5 days into suckling rats aged 15 days. Saline was injected into control subjects in the same way. Rats were sacrificed before the injection, immediately after the repeated injections, and 5 and 14 days from the end of the course of repeated injections. The weight, volume and water content of the brains were measured and the protein, DNA, sodium and potassium contents of the brains were also determined. The mean weight and volume of the brains after 5-day injection of ACTH were slightly smaller compared to those of control rats. No natural increase in brain protein with growth was found from the start of ACTH injections to 14 days after finishing the course of repeated injections. The DNA, sodium and potassium contents of the brains significantly increased immediately after the repeated injections of 5 days. It was suggested that the brain shrinkage of epileptics induced by ACTH treatment might be caused by decreased water content and not cellular degradation.

  4. Leptin Alters Adrenal Responsiveness by Decreasing Expression of ACTH-R, StAR, and P450c21 in Hypoxemic Fetal Sheep

    PubMed Central

    Su, Yixin; Carey, Luke C.; Pulgar, Victor M.

    2012-01-01

    The late gestation increase in adrenal responsiveness to adrenocorticotropin (ACTH) is dependent upon the upregulation of the ACTH receptor (ACTH-R), steroidogenic acute regulatory protein (StAR), and steroidogenic enzymes in the fetal adrenal. Long-term hypoxia decreases the expression of these and adrenal responsiveness to ACTH in vivo. Leptin, an adipocyte-derived hormone which attenuates the peripartum increase in fetal plasma cortisol is elevated in hypoxic fetuses. Therefore, we hypothesized that increases in plasma leptin will inhibit the expression of the ACTH-R, StAR, and steroidogenic enzymes and attenuate adrenal responsiveness in hypoxic fetuses. Spontaneously hypoxemic fetal sheep (132 days of gestation, PO2 ∼15 mm Hg) were infused with recombinant human leptin (n = 8) or saline (n = 7) for 96 hours. An ACTH challenge was performed at 72 hours of infusion to assess adrenal responsiveness. Plasma cortisol and ACTH were measured daily and adrenals were collected after 96 hours infusion for messenger RNA (mRNA) and protein expression measurement. Plasma cortisol concentrations were lower in leptin- compared with saline-infused fetuses (14.8 ± 3.2 vs 42.3 ± 9.6 ng/mL, P < .05), as was the cortisol:ACTH ratio (0.9 ± 0.074 vs 46 ± 1.49, P < .05). Increases in cortisol concentrations were blunted in the leptin-treated group after ACTH1-24 challenge (F = 12.2, P < .0001). Adrenal ACTH-R, StAR, and P450c21 expression levels were reduced in leptin-treated fetuses (P < .05), whereas the expression of Ob-Ra and Ob-Rb leptin receptor isoforms remained unchanged. Our results indicate that leptin blunts adrenal responsiveness in the late gestation hypoxemic fetus, and this effect appears mediated by decreased adrenal ACTH-R, StAR, and P450c21 expression. PMID:22534336

  5. The Androgen Receptor Gene Mutations Database.

    PubMed

    Gottlieb, B; Lehvaslaiho, H; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1998-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 272 to 309 in the past year. We have expanded the database: (i) by giving each entry an accession number; (ii) by adding information on the length of polymorphic polyglutamine (polyGln) and polyglycine (polyGly) tracts in exon 1; (iii) by adding information on large gene deletions; (iv) by providing a direct link with a completely searchable database (courtesy EMBL-European Bioinformatics Institute). The addition of the exon 1 polymorphisms is discussed in light of their possible relevance as markers for predisposition to prostate or breast cancer. The database is also available on the internet (http://www.mcgill. ca/androgendb/ ), from EMBL-European Bioinformatics Institute (ftp. ebi.ac.uk/pub/databases/androgen ), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca).

  6. Identification of a family of muscarinic acetylcholine receptor genes

    SciTech Connect

    Bonner, T.I.; Buckley, N.J.; Young, A.C.; Brann, M.R.

    1987-07-31

    Complementary DNAs for three different muscarinic acetylcholine receptors were isolated from a rat cerebral cortex library, and the cloned receptors were expressed in mammalian cells. Analysis of human and rat genomic clones indicates that there are at least four functional muscarinic receptor genes and that these genes lack introns in the coding sequence. This gene family provides a new basis for evaluating the diversity of muscarinic mechanisms in the nervous system.

  7. ACTH and prednisone in childhood seizure disorders.

    PubMed

    Snead, O C; Benton, J W; Myers, G J

    1983-08-01

    We treated 116 children with ACTH or prednisone. Fifty-two had infantile spasms with hypsarhythmia, and 64 had other types of intractable seizures. ACTH completely controlled seizures in all patients with infantile spasms and hypsarhythmia and 74% of those with other types of seizures. Prednisone controlled 51% of patients with infantile spasms and none with other seizures. Serious side effects were minimal for both drugs, and recurrent seizures occurred in 40 to 50% of patients within 4 to 14 months after completion of therapy.

  8. Effects of ACTH on the last step of aldosterone biosynthesis.

    PubMed

    Cozza, E N; Ceballos, N R; Lantos, C P

    1989-12-01

    The production of tritiated aldosterone and tritiated SM (a saponifiable 18-hydroxycorticosterone derivative) by rat adrenals were studied at various incubation times in absence or presence of two concentrations of ACTH. Tritiated 18-hydroxycorticosterone or 18-deoxyaldosterone served as precursors. The lower ACTH concentration (150 pM) increased the production of tritiated aldosterone. Whereas, the higher ACTH concentration (1.5 microM) stimulated tritiated aldosterone production at shorter incubation time (30 min), while after 60 min it inhibited. This time dependency would reflect variations in the levels of endogenous steroids. On the other hand, the effects of ACTH on tritiated SM production were opposite to those on tritiated aldosterone. In effect, while 150 pM ACTH inhibited SM production, 1.5 microM ACTH stimulated it. These results suggest that ACTH promotes opposite effects on the productions of aldosterone and SM and therefore both productions would be coordinated under the regulation of ACTH.

  9. Treatment of infantile spasms with high-dose ACTH: efficacy and plasma levels of ACTH and cortisol.

    PubMed

    Snead, O C; Benton, J W; Hosey, L C; Swann, J W; Spink, D; Martin, D; Rej, R

    1989-08-01

    Fifteen children with infantile spasms and a hypsarrhythmic EEG defined by EEG-videotelemetry monitoring received a regimen of high-dose (150 IU/m2/d) ACTH for their seizures. We carried out an endocrinologic evaluation before and after initiation of the ACTH and conducted a time course study of plasma ACTH and cortisol levels after ACTH dosing. Spasms were controlled and the EEG normalized in 14 of the 15 children. Prior to starting ACTH therapy all the patients had normal prolactin, insulin, cortisol, and ACTH levels in plasma and normal thyroid function. Although the pattern of rise of ACTH levels in plasma after ACTH dosing was similar in all the children, there was great individual variation in the absolute concentrations. However, both the pattern of rise and absolute level of cortisol in plasma after ACTH was highly predictable in all patients. Plasma cortisol rose rapidly within 1 hour of ACTH administration and continued a slower rise for 12 to 24 hours after the ACTH dose. High-dose ACTH therapy seems quite effective in infantile spasms, perhaps because of a sustained high level of plasma cortisol. This sustained plateau of cortisol may be more effective in controlling infantile spasms than the pulse effect expected with oral steroids or lower doses of ACTH.

  10. Regulatory Features for Odorant Receptor Genes in the Mouse Genome

    PubMed Central

    Degl’Innocenti, Andrea; D’Errico, Anna

    2017-01-01

    The odorant receptor genes, seven transmembrane receptor genes constituting the vastest mammalian gene multifamily, are expressed monogenically and monoallelicaly in each sensory neuron in the olfactory epithelium. This characteristic, often referred to as the one neuron–one receptor rule, is driven by mostly uncharacterized molecular dynamics, generally named odorant receptor gene choice. Much attention has been paid by the scientific community to the identification of sequences regulating the expression of odorant receptor genes within their loci, where related genes are usually arranged in genomic clusters. A number of studies identified transcription factor binding sites on odorant receptor promoter sequences. Similar binding sites were also found on a number of enhancers that regulate in cis their transcription, but have been proposed to form interchromosomal networks. Odorant receptor gene choice seems to occur via the local removal of strongly repressive epigenetic markings, put in place during the maturation of the sensory neuron on each odorant receptor locus. Here we review the fast-changing state of art for the study of regulatory features for odorant receptor genes. PMID:28270833

  11. Regulatory Features for Odorant Receptor Genes in the Mouse Genome.

    PubMed

    Degl'Innocenti, Andrea; D'Errico, Anna

    2017-01-01

    The odorant receptor genes, seven transmembrane receptor genes constituting the vastest mammalian gene multifamily, are expressed monogenically and monoallelicaly in each sensory neuron in the olfactory epithelium. This characteristic, often referred to as the one neuron-one receptor rule, is driven by mostly uncharacterized molecular dynamics, generally named odorant receptor gene choice. Much attention has been paid by the scientific community to the identification of sequences regulating the expression of odorant receptor genes within their loci, where related genes are usually arranged in genomic clusters. A number of studies identified transcription factor binding sites on odorant receptor promoter sequences. Similar binding sites were also found on a number of enhancers that regulate in cis their transcription, but have been proposed to form interchromosomal networks. Odorant receptor gene choice seems to occur via the local removal of strongly repressive epigenetic markings, put in place during the maturation of the sensory neuron on each odorant receptor locus. Here we review the fast-changing state of art for the study of regulatory features for odorant receptor genes.

  12. Analysis of antigen receptor genes in Hodgkin's disease.

    PubMed Central

    Angel, C A; Pringle, J H; Naylor, J; West, K P; Lauder, I

    1993-01-01

    AIM--To analyse the configuration of the antigen receptor genes in Hodgkin's disease. METHODS--DNA extracted from 45 samples of Hodgkin's disease was analysed using Southern blotting and DNA hybridisation, using probes to the joining region of the immunoglobulin heavy chain gene, the constant region of kappa immunoglobulin light chain gene, and the constant region of the beta chain of the T cell receptor gene. RESULTS--A single case of nodular sclerosing disease showed clonal rearrangement of the immunoglobulin heavy and light chain genes, all other samples having germline immunoglobulin genes. The nature of the clonal population in the diseased tissue is uncertain, because the intensity of the rearranged bands did not correlate with the percentage of Reed-Sternberg cells present. The T cell receptor genes were in germline configuration in all the samples. CONCLUSIONS--Antigen receptor gene rearrangement is a rare finding in unselected cases of Hodgkin's disease. Images PMID:8388407

  13. Brain sites mediating corticosteroid feedback inhibition of stimulated ACTH secretion

    SciTech Connect

    Jacobson, L.

    1989-01-01

    There is substantial evidence that the brain mediates stress-induced and circadian increases in ACTH secretion and that corticosteroid concentrations which normalize basal plasma ACTH are insufficient to normalize ACTH responses to circadian or stressful stimuli in adrenalectomized rats. To identify brain sites mediating corticosteroid inhibition of stimulated ACTH secretion, two approaches were used. The first compared brain ({sup 14}C)-2-deoxyglucose uptake in rats with differential ACTH responses to stress. Relative to sham-adrenalectomized (SHAM) rats, adrenalectomized rats replaced with low, constant corticosterone levels via a subcutaneous corticosterone pellet (B-PELLET) exhibited elevated and prolonged ACTH responses to a variety of stimuli. Adrenalectomized rate given a circadian corticosterone rhythm via corticosterone in their drinking water exhibited elevated ACTH levels immediately after stress, but unlike B-PELLET rats, terminated stress induced ACTH secretion normally relative to SHAMS. Therefore, the abnormal ACTH responses to stress in B-PELLET rats were due to the lack of both circadian variations and stress-induced increases in corticosterone. Hypoxia was selected as a standardized stimulus for correlating brain ({sup 14}C)-2-deoxyglucose uptake with ACTH secretion. In intact rats, increases in plasma ACTH and decreases in arterial PO{sub 2} correlated with the severity of hypoxia at arterial PCO{sub 2} below 60 mm Hg. Hypoxia PELLET vs. SHAM rats. However, in preliminary experiments, although hypoxia increased brain 2-deoxyglucose uptake in most brain regions, plasma ACTH correlated poorly with 2-deoxyglucose uptake at 12% and 10% O{sub 2}.

  14. ACTH-secreting 'apudoma' of gallbladder.

    PubMed Central

    Spence, R W; Burns-Cox, C J

    1975-01-01

    The case of a 44-year-old woman is reported. The diagnosis after the appropriate tests and laparotomy was ACTH-secreting 'apudoma' of the gallbladder. This is a rare tumour and this case is believed to be the first reported of an ectopic hormone producing tumour from this side. Images Fig 1 Fig 2 PMID:168130

  15. The androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Trifiro, M; Lumbroso, R; Vasiliou, D M; Pinsky, L

    1996-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. We have added (if available) data on the androgen binding phenotype of the mutant AR, the clinical phenotype of the affected persons, the family history and whether the pathogenicity of a mutation has been proven. Exonic mutations are now listed in 5'-->3' sequence regardless of type and single base pair changes are presented in codon context. Splice site and intronic mutations are listed separately. The database has allowed us to substantiate and amplify the observation of mutational hot spots within exons encoding the AR androgen binding domain. The database is available from EML (ftp://www.ebi.ac.uk/pub/databases/androgen) or as a Macintosh Filemaker file (MC33@musica.mcgill.ca).

  16. The androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Trifiro, M; Lumbroso, R; Pinsky, L

    1997-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 212 to 272. We have expanded the database: (i) by adding a large amount of new data on somatic mutations in prostatic cancer tissue; (ii) by defining a new constitutional phenotype, mild androgen insensitivity (MAI); (iii) by placing additional relevant information on an internet site (http://www.mcgill.ca/androgendb/ ). The database has allowed us to examine the contribution of CpG sites to the multiplicity of reports of the same mutation in different families. The database is also available from EMBL (ftp.ebi.ac.uk/pub/databases/androgen) or as a Macintosh Filemaker Pro or Word file (MC33@musica,mcgill.ca)

  17. Effects of (+)-8-OH-DPAT on the duration of immobility during the forced swim test and hippocampal cell proliferation in ACTH-treated rats.

    PubMed

    Miyake, Ayaka; Kitamura, Yoshihisa; Miyazaki, Ikuko; Asanuma, Masato; Sendo, Toshiaki

    2014-07-01

    In the present study, we examined the effect of ACTH on the immobilization of rats in the forced swim test and hippocampal cell proliferation after administration of the 5-HT1A receptor agonist, R-(+)-8-hydroxy-2-di-n-propylamino tetralin ((+)-8-OH-DPAT). Chronic treatment with (+)-8-OH-DPAT (0.01-0.1 mg/kg, s.c.) significantly decreased the duration of immobility in saline- and ACTH-treated rats. Chronic administration of ACTH caused a significant decrease in hippocampal cell proliferation. However, (+)-8-OH-DPAT significantly normalized cell proliferation in ACTH-treated rats. We then investigated the effects of (+)-8-OH-DPAT on the expression of brain-derived neurotrophic factor (BDNF) and cyclin D1 (elements of cyclic adenosine monophosphate response element-binding protein (CREB)-BDNF and Wnt signaling pathways, respectively) in the hippocampus of saline- and ACTH-treated rats. ACTH treatment significantly decreased the expression of cyclin D1, while treatment with (+)-8-OH-DPAT normalized the expression of cyclin D1 in ACTH-treated rats. However, the expression of BDNF did not change in either saline- or ACTH-treated rats. These findings suggest that the antidepressant effects of (+)-8-OH-DPAT in treatment-resistant animals may be attributed to an enhancement of hippocampal cell proliferation, at least in part due to an enhancement of cyclin D1 expression.

  18. Effects of smoking on ACTH and cortisol secretion

    SciTech Connect

    Seyler, L.E. Jr.; Fertig, J.; Pomerleau, O.; Hunt, D.; Parker, K.

    1984-01-02

    The relationships among changes in plasma nicotine, ACTH, and cortisol secretion after smoking were investigated. Ten male subjects smoked cigarettes containing 2.87 mg nicotine and 0.48 mg nicotine. No rises in cortisol or ACTH were detected after smoking 0.48 mg nicotine cigarettes. Cortisol rises were significant in 11 of 15 instances after smoking 2.87 mg nicotine cigarattes, but ACTH rose significantly in only 5 of the 11 instances where cortisol increased. Each ACTH rise occurred in a subject who reported nausea and was observed to be pale, sweaty, and tachycardic. Peak plasma nicotine concentrations were not significantly different in sessions when cortisol rose with or without ACTH increases, but cortisol increases were significantly greater in nauseated than in non-nauseated smokers. This data suggest that smoking-induced nausea stimulates cortisol release by stimulating ACTH secretion and that cortisol secretion in non-nauseated smokers may occur through a non-ACTH mechanism.

  19. Hypothalamic-pituitary-adrenal axis activity, personality traits, and BCL1 and N363S polymorphisms of the glucocorticoid receptor gene in metabolically obese normal-weight women.

    PubMed

    Porzezińska-Furtak, Joanna; Krzyżanowska-Świniarska, Barbara; Miazgowski, Tomasz; Safranow, Krzysztof; Kamiński, Ryszard

    2014-09-01

    We sought associations among metabolic profiles, copeptin levels, emotional control, personality traits, and hypothalamic-pituitary-adrenal axis activity in metabolically obese normal-weight young women (MONW). We assessed body composition, including fat-free mass; body fat (BF) and android and gynoid fat depots; fasting blood glucose, insulin, copeptin, cortisol (baseline and after dexamethasone), adrenocorticotropin (ACTH), triglycerides, total cholesterol, low- (LDL) and high-density (HDL) lipoproteins; and the BCL1 and N363S polymorphisms of the glucocorticoid receptor gene in 59 MONW and 71 healthy women aged 20-40 years. We also evaluated personality traits using the NEO-Five Factor Inventory and the subjective extent of emotional suppression by the Courtauld Emotional Control Scale. Compared to the controls, MONW had significantly higher insulin, cholesterol, LDL, triglycerides, and waist circumference, but lower HDL. MONW also had increased BF (>30 % of weight) and unfavorable regional fat distribution with excess android fat. The android/BF ratio was 8.29 % (MONW) versus 7.89 % (controls) (p = 0.005), while the gynoid/BF ratio was 31.99 versus 34.1 %, respectively (p = 0.008). Despite similar ACTH levels in both groups, MONW had higher cortisol levels both at the baseline (p < 0.001) and in the dexamethasone suppression test (p = 0.003). Copeptin levels and the distribution of glucocorticoid receptor polymorphisms were similar in both groups. There were also no significant differences in psychological features between MONW and controls. In conclusion, the MONW phenotype was associated with hypothalamic-pituitary-adrenal axis dysregulation, unfavorable metabolic profiles, and fat accumulation, but normal distribution of glucocorticoid receptor gene polymorphisms and copeptin levels, and no significant differences in psychological features between MONW and controls.

  20. Effects of pramipexole on the duration of immobility during the forced swim test in normal and ACTH-treated rats.

    PubMed

    Kitagawa, Kouhei; Kitamura, Yoshihisa; Miyazaki, Toshiaki; Miyaoka, Junya; Kawasaki, Hiromu; Asanuma, Masato; Sendo, Toshiaki; Gomita, Yutaka

    2009-07-01

    The dopamine D2/D3 receptor agonist pramipexole has clinically been proven to improve depression or treatment-resistant depression. However, the involvement of the dopamine receptor system on the effect of pramipexole on depression remains unclear. We examined the influence of pramipexole on the duration of immobility during the forced swim test in normal and adrenocorticotropic hormone (ACTH)-treated rats and further analyzed the possible role of dopamine receptors in this effect. Additionally, the mechanism by which pramipexole acts in this model was explored specifically in relation to the site of action through the use of microinjections into the intramedial prefrontal cortex and nucleus accumbens. Pramipexole (0.3-1 mg/kg) significantly decreased the duration of immobility in normal and ACTH-treated rats. This effect was blocked by L-741,626, a D2 receptor antagonist, and nafadotride, a D3 receptor antagonist, in normal rats. Furthermore, infusions of pramipexole into the intranucleus accumbens, but not the medial prefrontal cortex, decreased the immobility of normal and ACTH-treated rats during the forced swim test. Taken together, the results of these experiments suggested that pramipexole, administered into the intranucleus accumbens rather than the medial prefrontal cortex, exerted an antidepressant-like effect on ACTH-treated rats via the dopaminergic system. The immobility-decreasing effect of pramipexole may be mediated by dopamine D2 and D3 receptors.

  1. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    NASA Astrophysics Data System (ADS)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  2. Regulation of cytochrome P450 (CYP) genes by nuclear receptors.

    PubMed Central

    Honkakoski, P; Negishi, M

    2000-01-01

    Members of the nuclear-receptor superfamily mediate crucial physiological functions by regulating the synthesis of their target genes. Nuclear receptors are usually activated by ligand binding. Cytochrome P450 (CYP) isoforms often catalyse both formation and degradation of these ligands. CYPs also metabolize many exogenous compounds, some of which may act as activators of nuclear receptors and disruptors of endocrine and cellular homoeostasis. This review summarizes recent findings that indicate that major classes of CYP genes are selectively regulated by certain ligand-activated nuclear receptors, thus creating tightly controlled networks. PMID:10749660

  3. Dopamine receptor genes: new tools for molecular psychiatry.

    PubMed Central

    Niznik, H B; Van Tol, H H

    1992-01-01

    For over a decade it has been generally assumed that all the pharmacological and biochemical actions of dopamine within the central nervous system and periphery were mediated by two distinct dopamine receptors. These receptors, termed D1 and D2, were defined as those coupled to the stimulation or inhibition of adenylate cyclase, respectively, and by their selectivity and avidity for various drugs and compounds. The concept that two dopamine receptors were sufficient to account for all the effects mediated by dopamine was an oversimplification. Recent molecular biological studies have identified five distinct genes which encode at least eight functional dopamine receptors. The members of the expanded dopamine receptor family, however, can still be codifed by way of the original D1 and D2 receptor dichotomy. These include two genes encoding dopamine D1-like receptors (D1 [D1A]/D5 [D1B]) and three genes encoding D2-like receptors (D2/D3/D4). We review here our recent work on the cloning and characterization of some of the members of the dopamine receptor gene family (D1, D2, D4, D5), their relationship to neuropsychiatric disorders and their potential role in antipsychotic drug action. Images Fig. 1 PMID:1450188

  4. Gene mutations in Cushing's disease

    PubMed Central

    Xiong, Qi; Ge, Wei

    2016-01-01

    Cushing's disease (CD) is a severe (and potentially fatal) disease caused by adrenocorticotropic hormone (ACTH)-secreting adenomas of the pituitary gland (often termed pituitary adenomas). The majority of ACTH-secreting corticotroph tumors are sporadic and CD rarely appears as a familial disorder, thus, the genetic mechanisms underlying CD are poorly understood. Studies have reported that various mutated genes are associated with CD, such as those in menin 1, aryl hydrocarbon receptor-interacting protein and the nuclear receptor subfamily 3 group C member 1. Recently it was identified that ubiquitin-specific protease 8 mutations contribute to CD, which was significant towards elucidating the genetic mechanisms of CD. The present study reviews the associated gene mutations in CD patients. PMID:27588171

  5. Adenovirus receptors and their implications in gene delivery

    PubMed Central

    Sharma, Anurag; Li, Xiaoxin; Bangari, Dinesh S.; Mittal, Suresh K.

    2010-01-01

    Adenoviruses (Ads) have gained popularity as gene delivery vectors for therapeutic and prophylactic applications. Ad entry into host cells involves specific interactions between cell surface receptors and viral capsid proteins. Several cell surface molecules have been identified as receptors for Ad attachment and entry. Tissue tropism of Ad vectors is greatly influenced by their receptor usage. A variety of strategies have been investigated to modify Ad vector tropism by manipulating the receptor-interacting moieties. Many such strategies are aimed at targeting and/or detargeting of Ad vectors. In this review, we discuss the various cell surface molecules that are implicated as receptors for virus attachment and internalization. Special emphasis is given to Ad types that are utilized as gene delivery vectors. Various strategies to modify Ad tropism using the knowledge of Ad receptors are also discussed. PMID:19647886

  6. Role of ACTH and Other Hormones in the Regulation of Aldosterone Production in Primary Aldosteronism

    PubMed Central

    El Ghorayeb, Nada; Bourdeau, Isabelle; Lacroix, André

    2016-01-01

    The major physiological regulators of aldosterone production from the adrenal zona glomerulosa are potassium and angiotensin II; other acute regulators include adrenocorticotropic hormone (ACTH) and serotonin. Their interactions with G-protein coupled hormone receptors activate cAMP/PKA pathway thereby regulating intracellular calcium flux and CYP11B2 transcription, which is the specific steroidogenic enzyme of aldosterone synthesis. In primary aldosteronism (PA), the increased production of aldosterone and resultant relative hypervolemia inhibits the renin and angiotensin system; aldosterone secretion is mostly independent from the suppressed renin–angiotensin system, but is not autonomous, as it is regulated by a diversity of other ligands of various eutopic or ectopic receptors, in addition to activation of calcium flux resulting from mutations of various ion channels. Among the abnormalities in various hormone receptors, an overexpression of the melanocortin type 2 receptor (MC2R) could be responsible for aldosterone hypersecretion in aldosteronomas. An exaggerated increase in plasma aldosterone concentration (PAC) is found in patients with PA secondary either to unilateral aldosteronomas or bilateral adrenal hyperplasia (BAH) following acute ACTH administration compared to normal individuals. A diurnal increase in PAC in early morning and its suppression by dexamethasone confirms the increased role of endogenous ACTH as an important aldosterone secretagogue in PA. Screening using a combination of dexamethasone and fludrocortisone test reveals a higher prevalence of PA in hypertensive populations compared to the aldosterone to renin ratio. The variable level of MC2R overexpression in each aldosteronomas or in the adjacent zona glomerulosa hyperplasia may explain the inconsistent results of adrenal vein sampling between basal levels and post ACTH administration in the determination of source of aldosterone excess. In the rare cases of glucocorticoid remediable

  7. ACTH protects against glucocorticoid-induced osteonecrosis of bone.

    PubMed

    Zaidi, Mone; Sun, Li; Robinson, Lisa J; Tourkova, Irina L; Liu, Li; Wang, Yujuan; Zhu, Ling-Ling; Liu, Xuan; Li, Jianhua; Peng, Yuanzhen; Yang, Guozhe; Shi, Xingming; Levine, Alice; Iqbal, Jameel; Yaroslavskiy, Beatrice B; Isales, Carlos; Blair, Harry C

    2010-05-11

    We report that adrenocorticotropic hormone (ACTH) protects against osteonecrosis of the femoral head induced by depot methylprednisolone acetate (depomedrol). This therapeutic response likely arises from enhanced osteoblastic support and the stimulation of VEGF by ACTH; the latter is largely responsible for maintaining the fine vascular network that surrounds highly remodeling bone. We suggest examining the efficacy of ACTH in preventing human osteonecrosis, a devastating complication of glucocorticoid therapy.

  8. CXCL10/CXCR3 signaling mediates inhibitory action by interferon-gamma on CRF-stimulated adrenocorticotropic hormone (ACTH) release.

    PubMed

    Horiguchi, Kotaro; Fujiwara, Ken; Tsukada, Takehiro; Yoshida, Saishu; Higuchi, Masashi; Tateno, Kozue; Hasegawa, Rumi; Takigami, Shu; Ohsako, Shunji; Yashiro, Takashi; Kato, Takako; Kato, Yukio

    2016-05-01

    Secretion of hormones by the anterior pituitary gland can be stimulated or inhibited by paracrine factors that are produced during inflammatory reactions. The inflammation cytokine interferon-gamma (IFN-γ) is known to inhibit corticotropin-releasing factor (CRF)-stimulated adrenocorticotropin (ACTH) release but its signaling mechanism is not yet known. Using rat anterior pituitary, we previously demonstrated that the CXC chemokine ligand 10 (CXCL10), known as interferon-γ (IFN-γ) inducible protein 10 kDa, is expressed in dendritic cell-like S100β protein-positive (DC-like S100β-positive) cells and that its receptor CXCR3 is expressed in ACTH-producing cells. DC-like S100β-positive cells are a subpopulation of folliculo-stellate cells in the anterior pituitary. In the present study, we examine whether CXCL10/CXCR3 signaling between DC-like S100β-positive cells and ACTH-producing cells mediates inhibition of CRF-activated ACTH-release by IFN-γ, using a CXCR3 antagonist in the primary pituitary cell culture. We found that IFN-γ up-regulated Cxcl10 expression via JAK/STAT signaling and proopiomelanocortin (Pomc) expression, while we reconfirmed that IFN-γ inhibits CRF-stimulated ACTH-release. Next, we used a CXCR3 agonist in primary culture to analyze whether CXCL10 induces Pomc-expression and ACTH-release using a CXCR3 agonist in the primary culture. The CXCR3 agonist significantly stimulated Pomc-expression and inhibited CRF-induced ACTH-release, while ACTH-release in the absence of CRF did not change. Thus, the present study leads us to an assumption that CXCL10/CXCR3 signaling mediates inhibition of the CRF-stimulated ACTH-release by IFN-γ. Our findings bring us to an assumption that CXCL10 from DC-like S100β-positive cells acts as a local modulator of ACTH-release during inflammation.

  9. Inhibition of ACTH Release by Peptide Hormones: Molecular Mechanisms and Possible Role as Anti-Stress Factors

    DTIC Science & Technology

    1989-11-16

    somatostatin (SRIF) may be a non- steriod inhibitor of Ar.TH release. The goals of the proposal were to examine the structure of the SRIF receptor and determine...major objective of the research proposal was the identification of non- steriodal factors which inhibit ACTH release and may be useful in the treatment

  10. Impact of estrogen receptor α gene and oxytocin receptor gene polymorphisms on female sexuality.

    PubMed

    Armeni, Anastasia K; Assimakopoulos, Konstantinos; Marioli, Dimitra; Koika, Vassiliki; Michaelidou, Euthychia; Mourtzi, Niki; Iconomou, Gregoris; Georgopoulos, Neoklis A

    2017-01-01

    Over the past decades, research attention has increasingly been paid to the neurobiological component of sexual behavior. The aim of the present study was to investigate the correlation of estrogen receptor α (ERA) gene polymorphism (rs2234693-PvuII) (T→C substitution) and oxytocin receptor gene polymorphism (rs53576) (G→A substitution) with sexuality parameters of young, healthy women. One hundred thirty-three Greek heterosexual women, students in higher education institutions, 20-25 years of age, sexually active, with normal menstrual cycles (28-35 days), were recruited in the study. Exclusion criteria were chronic and/or major psychiatric diseases, use of oral contraceptive pills (OCs), polycystic ovary syndrome (PCOS), thyroid diseases as well as drugs that are implicated in hypothalamus-pituitary-gonadal axis. T allele (wildtype) of rs2234693 (PvuII) polymorphism of ERA gene was correlated with increased levels of arousal and lubrication, whereas A allele (polymorphic) of rs53576 (OXTR) polymorphism was correlated with increased arousal levels. The simultaneous presence of both T allele of rs2234693 (PvuII) and A allele of rs53576 (OXTR) polymorphisms (T + A group) was correlated with increased arousal, orgasm levels as well as female sexual function index full score. To our knowledge, this is the first study to investigate the interaction between ERA and OXTR with regard to sexual function in women. Female sexuality is a complex behavioral trait that encompasses both biological and psychological components. It seems that variability in female sexual response stems from genetic variability that characterizes endocrine, neurotransmitter and central nervous system influences.

  11. Impact of estrogen receptor α gene and oxytocin receptor gene polymorphisms on female sexuality

    PubMed Central

    Armeni, Anastasia K; Assimakopoulos, Konstantinos; Marioli, Dimitra; Koika, Vassiliki; Michaelidou, Euthychia; Mourtzi, Niki; Iconomou, Gregoris

    2017-01-01

    Over the past decades, research attention has increasingly been paid to the neurobiological component of sexual behavior. The aim of the present study was to investigate the correlation of estrogen receptor α (ERA) gene polymorphism (rs2234693-PvuII) (T→C substitution) and oxytocin receptor gene polymorphism (rs53576) (G→A substitution) with sexuality parameters of young, healthy women. One hundred thirty-three Greek heterosexual women, students in higher education institutions, 20–25 years of age, sexually active, with normal menstrual cycles (28–35 days), were recruited in the study. Exclusion criteria were chronic and/or major psychiatric diseases, use of oral contraceptive pills (OCs), polycystic ovary syndrome (PCOS), thyroid diseases as well as drugs that are implicated in hypothalamus–pituitary–gonadal axis. T allele (wildtype) of rs2234693 (PvuII) polymorphism of ERA gene was correlated with increased levels of arousal and lubrication, whereas A allele (polymorphic) of rs53576 (OXTR) polymorphism was correlated with increased arousal levels. The simultaneous presence of both T allele of rs2234693 (PvuII) and A allele of rs53576 (OXTR) polymorphisms (T + A group) was correlated with increased arousal, orgasm levels as well as female sexual function index full score. To our knowledge, this is the first study to investigate the interaction between ERA and OXTR with regard to sexual function in women. Female sexuality is a complex behavioral trait that encompasses both biological and psychological components. It seems that variability in female sexual response stems from genetic variability that characterizes endocrine, neurotransmitter and central nervous system influences. PMID:28069897

  12. Estrogen increases renal oxytocin receptor gene expression.

    PubMed

    Ostrowski, N L; Young, W S; Lolait, S J

    1995-04-01

    Estrogens have been implicated in the sodium and fluid imbalances associated with the menstrual cycle and late pregnancy. An estrogen-dependent role for renal oxytocin receptors in fluid homeostasis is suggested by the present findings which demonstrate that estradiol benzoate treatment increases the expression of the oxytocin receptor messenger ribonucleic acid and 125I-OTA binding to oxytocin receptors in the renal cortex and medullary collecting ducts of ovariectomized female rats. Moreover, estradiol induced high levels of oxytocin receptor expression in outer stripe proximal tubules of ovariectomized female and adrenalectomized male rats. Proximal tubule induction was inhibited in a dose-dependent manner by the antiestrogen tamoxifen, but cortical expression of oxytocin receptors in macula densa cells was unaffected by tamoxifen. These data demonstrate cell-specific regulation of oxytocin receptor expression in macula densa and proximal tubule cells, and suggest a important role for these receptors in mediating estrogen-induced alterations in renal fluid dynamics by possibly affecting glomerular filtration and water and solute reabsorption during high estrogen states.

  13. Characteristics of the mouse genomic histamine H1 receptor gene

    SciTech Connect

    Inoue, Isao; Taniuchi, Ichiro; Kitamura, Daisuke

    1996-08-15

    We report here the molecular cloning of a mouse histamine H1 receptor gene. The protein deduced from the nucleotide sequence is composed of 488 amino acid residues with characteristic properties of GTP binding protein-coupled receptors. Our results suggest that the mouse histamine H1 receptor gene is a single locus, and no related sequences were detected. Interspecific backcross analysis indicated that the mouse histamine H1 receptor gene (Hrh1) is located in the central region of mouse Chromosome 6 linked to microphthalmia (Mitfmi), ras-related fibrosarcoma oncogene 1 (Raf1), and ret proto-oncogene (Ret) in a region of homology with human chromosome 3p. 12 refs., 3 figs.

  14. Prolactin receptor and signal transduction to milk protein genes

    SciTech Connect

    Djiane, J.; Daniel, N.; Bignon, C.

    1994-06-01

    After cloning of the mammary gland prolactin (PRL) receptor cDNA, a functional assay was established using co-transfection of PRL receptor cDNA together with a milk protein promoter/chloramphenicol acetyl transferase (CAT) construct in Chinese hamster ovary (CHO) cells. Different mutants of the PRL receptor were tested in this CAT assay to delimit the domains in the receptor necessary for signal transduction to milk protein genes. In CHO cells stably transfected with PRL receptor cDNA, high numbers of PRL receptor are expressed. By metabolic labeling and immunoprecipitation, expressed PRL receptor was identified as a single species of 100 kDa. Using these cells, we analyzed the effects of PRL on intracellular free Ca{sup ++} concentration. PRL stimulates Ca{sup ++} entry and induces secondary Ca{sup ++} mobilization. The entry of Ca{sup ++} is a result of an increase in K{sup +} conductance that hyperpolarizes the membranes. We have also analyzed tyrosine phosphorylation induced by PRL. In CHO cells stably transfected with PRL receptor cDNA, PRL induced a very rapid and transient tyrosine phosphorylation of a 100-kDa protein which is most probably the PRL receptor. The same finding was obtained in mammary membranes after PRL injection to lactating rabbits. Whereas tyrosine kinase inhibitors genistein and lavendustin were without effect, PRL stimulation of milk protein gene promoters was partially inhibited by 2 {mu}M herbimycin in CHO cells co-transfected with PRL receptor cDNA and the {Beta} lactoglobulin CAT construct. Taken together these observations indicate that the cytoplasmic domain of the PRL receptor interacts with one or several tyrosine kinases, which may represent early postreceptor events necessary for PRL signal transduction to milk protein genes. 14 refs., 4 figs.

  15. Structure of the human histamine H1 receptor gene.

    PubMed Central

    De Backer, M D; Loonen, I; Verhasselt, P; Neefs, J M; Luyten, W H

    1998-01-01

    Histamine H1 receptor expression has been reported to change in disorders such as allergic rhinitis, autoimmune myocarditis, rheumatoid arthritis and atherosclerosis. Here we report the isolation and characterization of genomic clones containing the 5' flanking (regulatory) region of the human histamine H1 receptor gene. An intron of approx. 5.8 kb was identified in the 5' untranslated region, which suggests that an entire subfamily of G-protein-coupled receptors may contain an intron immediately upstream of the start codon. The transcription initiation site was mapped by 5' rapid amplification of cDNA ends to a region 6.2 kb upstream of the start codon. Immediately upstream of the transcription start site a fragment of 1.85 kb was identified that showed promoter activity when placed upstream of a luciferase reporter gene and transiently transfected into cells expressing the histamine H1 receptor. The promoter sequence shares a number of characteristics with the promoter sequences of other G-protein-coupled receptor encoding genes, including binding sites for several transcription factors, and the absence of TATA and CAAT sequences at the appropriate locations. The promoter sequence described here differs from that reported previously [Fukui, Fujimoto, Mizuguchi, Sakamoto, Horio, Takai, Yamada and Ito (1994) Biochem. Biophys. Res. Commun. 201, 894-901] because the reported genomic clone was chimaeric. Furthermore our study provides evidence that the 3' untranslated region of the H1 receptor mRNA is much longer than previously accepted. Together, these findings provide a complete view of the structure of the human histamine H1 receptor gene. Both the coding region of the H1 receptor gene and its promoter region were independently mapped to chromosome 3p25. PMID:9794809

  16. ACTH Action on StAR Biology.

    PubMed

    Clark, Barbara J

    2016-01-01

    Adrenocorticotropin hormone (ACTH) produced by the anterior pituitary stimulates glucocorticoid synthesis by the adrenal cortex. The first step in glucocorticoid synthesis is the delivery of cholesterol to the mitochondrial matrix where the first enzymatic reaction in the steroid hormone biosynthetic pathway occurs. A key response of adrenal cells to ACTH is activation of the cAMP-protein kinase A (PKA) signaling pathway. PKA activation results in an acute increase in expression and function of the Steroidogenic Acute Regulatory protein (StAR). StAR plays an essential role in steroidogenesis- it controls the hormone-dependent movement of cholesterol across the mitochondrial membranes. Currently StAR's mechanism of action remains a major unanswered question in the field. However, some insight may be gained from understanding the mechanism(s) controlling the PKA-dependent phosphorylation of StAR at S194/195 (mouse/human StAR), a modification that is required for function. This mini-review provides a background on StAR's biology with a focus on StAR phosphorylation. The model for StAR translation and phosphorylation at the outer mitochondrial membrane, the location for StAR function, is presented to highlight a unifying theme emerging from diverse studies.

  17. ACTH Action on StAR Biology

    PubMed Central

    Clark, Barbara J.

    2016-01-01

    Adrenocorticotropin hormone (ACTH) produced by the anterior pituitary stimulates glucocorticoid synthesis by the adrenal cortex. The first step in glucocorticoid synthesis is the delivery of cholesterol to the mitochondrial matrix where the first enzymatic reaction in the steroid hormone biosynthetic pathway occurs. A key response of adrenal cells to ACTH is activation of the cAMP-protein kinase A (PKA) signaling pathway. PKA activation results in an acute increase in expression and function of the Steroidogenic Acute Regulatory protein (StAR). StAR plays an essential role in steroidogenesis- it controls the hormone-dependent movement of cholesterol across the mitochondrial membranes. Currently StAR's mechanism of action remains a major unanswered question in the field. However, some insight may be gained from understanding the mechanism(s) controlling the PKA-dependent phosphorylation of StAR at S194/195 (mouse/human StAR), a modification that is required for function. This mini-review provides a background on StAR's biology with a focus on StAR phosphorylation. The model for StAR translation and phosphorylation at the outer mitochondrial membrane, the location for StAR function, is presented to highlight a unifying theme emerging from diverse studies. PMID:27999527

  18. Adrenal hemorrhage complicating ACTH therapy in Crohn's disease.

    PubMed

    Levin, T L; Morton, E

    1993-01-01

    Huge dose ACTH therapy is used in some severely ill patients with inflammatory bowel disease. We report a teenage girl with Crohn's disease who developed an acute abdomen following ACTH therapy. CT revealed the mass to be a hemorrhagic adrenal gland; the opposite adrenal gland was hypertrophied but without signs of hemorrhage.

  19. Muscle transcriptome response to ACTH administration in a free-ranging marine mammal

    PubMed Central

    Champagne, Cory D.; Preeyanon, Likit; Ortiz, Rudy M.; Crocker, Daniel E.

    2015-01-01

    While much of our understanding of stress physiology is derived from biomedical studies, little is known about the downstream molecular consequences of adaptive stress responses in free-living animals. We examined molecular effectors of the stress hormones cortisol and aldosterone in the northern elephant seal, a free-ranging study system in which extreme physiological challenges and cortisol fluctuations are a routine part of life history. We stimulated the neuroendocrine stress axis by administering exogenous adrenocorticotropic hormone (ACTH) and examined the resultant effects by measuring corticosteroid hormones, metabolites, and gene expression before, during, and following administration. ACTH induced an elevation in cortisol, aldosterone, glucose, and fatty acids within 2 h, with complete recovery observed within 24 h of administration. The global transcriptional response of elephant seal muscle tissue to ACTH was evaluated by transcriptomics and involved upregulation of a highly coordinated network of conserved glucocorticoid (GC) target genes predicted to promote metabolic substrate availability without causing deleterious effects seen in laboratory animals. Transcriptional recovery from ACTH was characterized by downregulation of GC target genes and restoration of cell proliferation, metabolism, and tissue maintenance pathways within 24 h. Differentially expressed genes included several adipokines not previously described in muscle, reflecting unique metabolic physiology in fasting-adapted animals. This study represents one of the first transcriptome analyses of cellular responses to hypothalamic-pituitary-adrenal axis stimulation in a free-living marine mammal and suggests that compensatory, tissue-sparing mechanisms may enable marine mammals to maintain cortisol and aldosterone sensitivity while avoiding deleterious long-term consequences of stress. PMID:26038394

  20. A single nucleotide polymorphism in the corticotropin receptor gene is associated with a blunted cortisol response during pediatric critical illness

    PubMed Central

    Jardine, David; Emond, Mary; Meert, Kathleen L.; Harrison, Rick; Carcillo, Joseph A.; Anand, Kanwaljeet J. S.; Berger, John; Newth, Christopher J. L.; Willson, Douglas F.; Nicholson, Carol; Dean, J. Michael; Zimmerman, Jerry J.

    2016-01-01

    Objective The cortisol response during critical illness varies widely among patients. Our objective was to examine single nucleotide polymorphisms (SNPs) in candidate genes regulating cortisol synthesis, metabolism, and activity to determine if genetic differences were associated with variability in the cortisol response among critically ill children. Design This was a prospective observational study employing tag SNP methodology to examine genetic contributions to the variability of the cortisol response in critical illness. Thirty-one candidate genes and 31 ancestry markers were examined. Setting Patients were enrolled from 7 pediatric critical care units that constitute the Eunice Kennedy Shriver Collaborative Pediatric Critical Care Research Network. Subjects Critically ill children (n=92), ages 40 weeks gestation to 18 years of age were enrolled. Interventions Blood samples were obtained from all patients for serum cortisol measurements and DNA isolation. Demographic and illness severity data were collected. Measurements and Main Results SNPs were tested for association with serum free cortisol (FC) concentrations in context of higher illness severity as quantified by PRISM III score > 7. A SNP (rs1941088) in the MC2R gene was strongly associated (p =0.0005) with a low FC response to critical illness. Patients with the AA genotype were over seven times more likely to have a low FC response to critical illness than those with a GG genotype. Patients with the GA genotype exhibited an intermediate FC response to critical illness. Conclusions The A allele at rs1941088 in the MC2R gene, that encodes the ACTH (corticotropin) receptor, is associated with a low cortisol response in critically ill children. These data provide evidence for a genetic basis for a portion of the variability in cortisol production during critical illness. Independent replication of these findings will be important and could facilitate development of personalized treatment for patients with

  1. Androgen receptor gene mutation, rearrangement, polymorphism

    PubMed Central

    Eisermann, Kurtis; Wang, Dan; Jing, Yifeng; Pascal, Laura E.

    2013-01-01

    Genetic aberrations of the androgen receptor (AR) caused by mutations, rearrangements, and polymorphisms result in a mutant receptor that has varied functions compared to wild type AR. To date, over 1,000 mutations have been reported in the AR with most of these being associated with androgen insensitivity syndrome (AIS). While mutations of AR associated with prostate cancer occur less often in early stage localized disease, mutations in castration-resistant prostate cancer (CRPC) patients treated with anti-androgens occur more frequently with 10-30% of these patients having some form of mutation in the AR. Resistance to anti-androgen therapy usually results from gain-of-function mutations in the LBD such as is seen with bicalutamide and more recently with enzalutamide (MDV3100). Thus, it is crucial to investigate these new AR mutations arising from drug resistance to anti-androgens and other small molecule pharmacological agents. PMID:25045626

  2. Mouse T-cell receptor variable gene segment families

    SciTech Connect

    Arden, B.; Kabelitz, D.; Clark, S.P.; Mak, T.W.

    1995-10-01

    All mouse T-cell receptor {alpha}/{delta}, {beta}, and {gamma} variable (Tcra/d-, b-, and g-V) gene segments were aligned to compare the sequences with one another, to group them into subfamilies, and to derive a name which complies with the standard nomenclature. it was necessary to change the names of some V gene segments because they conflicted with those of other segments. The traditional classification into subfamilies was re-evaluated using a much larger pool of sequences. In the mouse, most V gene segments can be grouped into subfamilies of closely related genes with significantly less similarity between different subfamilies. 118 refs., 11 figs., 4 tabs.

  3. Characterization of melanocortin receptors from stingray Dasyatis akajei, a cartilaginous fish.

    PubMed

    Takahashi, Akiyoshi; Davis, Perry; Reinick, Christina; Mizusawa, Kanta; Sakamoto, Tatsuya; Dores, Robert M

    2016-06-01

    Melanocortin (MC) systems are composed of MC peptides such as adrenocorticotropic hormone (ACTH), several molecular forms of melanocyte-stimulating hormones (MSHs) and MC receptors (MCRs). Here we demonstrated that the cartilaginous fish, Dasyatis akajei (stingray) expresses five subtypes of MCR genes-mc1r to mc5r-as in the case of teleost and tetrapod species. This is the first evidence showing the presence of the full repertoire of melanocortin receptors in a single of cartilaginous fish. Expression of respective stingray mcr cDNAs in Chinese hamster ovary cells revealed that Des-acetyl-α-MSH exhibited cAMP-producing activity indistinguishable to ACTH(1-24) on MC1R and MC2R, while the activity of Des-acetyl-α-MSH on MC3R, MC4R, and MC5R were similar to or slightly greater than that of ACTH(1-24). Notably, in contrast to the other vertebrates, MC2R did not require coexpression with a melanocortin receptor-2 accessory protein 1 (mrap1) cDNA for functional expression. One of the roles of MC system resides in regulation of the pituitary-interrenal (PI) axis-a homologue of tetrapod pituitary-adrenal axis. In stingray, interrenal tissues were shown to express mc2r and mc5r as major MCR genes. These results established the presence of functional PI axis in stingray at the level of receptor molecule. While MC2R participates in adrenal functions together with MRAP1 in tetrapod species, the fact that sensitivity of MC5R to Des-acetyl-α-MSH and ACTH(1-24) were two order of magnitude higher than MC2R without coexpression with MRAP1 suggested that MC5R could play a more important role than MC2R to transmit signals conveyed by ACTH and MSHs if MRAP1 is really absent in the stingray.

  4. Peroxisome proliferator-activated receptor alpha target genes.

    PubMed

    Rakhshandehroo, Maryam; Knoch, Bianca; Müller, Michael; Kersten, Sander

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well.

  5. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    PubMed Central

    Rakhshandehroo, Maryam; Knoch, Bianca; Müller, Michael; Kersten, Sander

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well. PMID:20936127

  6. Transcriptional activation of melanocortin 2 receptor accessory protein by PPARγ in adipocytes

    SciTech Connect

    Kim, Nam Soo; Kim, Yoon-Jin; Cho, Si Young; Lee, Tae Ryong; Kim, Sang Hoon

    2013-09-27

    Highlights: •MRAP enhanced HSL expression. •ACTH-mediated MRAP reduced glycerol release. •PPARγ induced MRAP expression. •PPARγ bound to the MRAP promoter. -- Abstract: Adrenocorticotropic hormone (ACTH) in rodents decreases lipid accumulation and body weight. Melanocortin receptor 2 (MC2R) and MC2R accessory protein (MRAP) are specific receptors for ACTH in adipocytes. Peroxisome proliferator-activated receptor γ (PPARγ) plays a role in the transcriptional regulation of metabolic pathways such as adipogenesis and β-oxidation of fatty acids. In this study we investigated the transcriptional regulation of MRAP expression during differentiation of 3T3-L1 cells. Stimulation with ACTH affected lipolysis in murine mature adipocytes via MRAP. Putative peroxisome proliferator response element (PPRE) was identified in the MRAP promoter region. In chromatin immunoprecipitation and reporter assays, we observed binding of PPARγ to the MRAP promoter. The mutagenesis experiments showed that the −1209/−1198 region of the MRAP promoter could function as a PPRE site. These results suggest that PPARγ is required for transcriptional activation of the MRAP gene during adipogenesis, which contributes to understanding of the molecular mechanism of lipolysis in adipocytes.

  7. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism

    SciTech Connect

    Noble, E.P.; Blum, K.; Ritchie, T.; Montgomery, A.; Sheridan, P.J. )

    1991-07-01

    The allelic association of the human D2 dopamine receptor gene with the binding characteristics of the D2 dopamine receptor was determined in 66 brains of alcoholic and non-alcoholic subjects. In a blinded experiment, DNA from the cerebral cortex was treated with the restriction endonuclease Taql and probed with a 1.5-kilobase (kb) digest of a clone (lambda hD2G1) of the human D2 dopamine receptor gene. The binding characteristics (Kd (binding affinity) and Bmax (number of binding sites)) of the D2 dopamine receptor were determined in the caudate nuclei of these brains using tritiated spiperone as the ligand. The adjusted Kd was significantly lower in alcoholic than in nonalcoholic subjects. In subjects with the A1 allele, in whom a high association with alcoholism was found, the Bmax was significantly reduced compared with the Bmax of subjects with the A2 allele. Moreover, a progressively reduced Bmax was found in subjects with A2/A2, A1/A2, and A1/A1 alleles, with subjects with A2/A2 having the highest mean values, and subjects with A1/A1, the lowest. The polymorphic pattern of the D2 dopamine receptor gene and its differential expression of receptors suggests the involvement of the dopaminergic system in conferring susceptibility to at least one subtype of severe alcoholism.

  8. Evolution of an expanded mannose receptor gene family.

    PubMed

    Staines, Karen; Hunt, Lawrence G; Young, John R; Butter, Colin

    2014-01-01

    Sequences of peptides from a protein specifically immunoprecipitated by an antibody, KUL01, that recognises chicken macrophages, identified a homologue of the mammalian mannose receptor, MRC1, which we called MRC1L-B. Inspection of the genomic environment of the chicken gene revealed an array of five paralogous genes, MRC1L-A to MRC1L-E, located between conserved flanking genes found either side of the single MRC1 gene in mammals. Transcripts of all five genes were detected in RNA from a macrophage cell line and other RNAs, whose sequences allowed the precise definition of spliced exons, confirming or correcting existing bioinformatic annotation. The confirmed gene structures were used to locate orthologues of all five genes in the genomes of two other avian species and of the painted turtle, all with intact coding sequences. The lizard genome had only three genes, one orthologue of MRC1L-A and two orthologues of the MRC1L-B antigen gene resulting from a recent duplication. The Xenopus genome, like that of most mammals, had only a single MRC1-like gene at the corresponding locus. MRC1L-A and MRC1L-B genes had similar cytoplasmic regions that may be indicative of similar subcellular migration and functions. Cytoplasmic regions of the other three genes were very divergent, possibly indicating the evolution of a new functional repertoire for this family of molecules, which might include novel interactions with pathogens.

  9. Comparative Effect of ACTH and Related Peptides on Proliferation and Growth of Rat Adrenal Gland

    PubMed Central

    Lotfi, Claudimara Ferini Pacicco; de Mendonca, Pedro O. R.

    2016-01-01

    Pro-opiomelanocortin (POMC) is a polypeptide precursor known to yield biologically active peptides related to a range of functions. These active peptides include the adrenocorticotropic hormone (ACTH), which is essential for maintenance of adrenal growth and steroidogenesis, and the alpha-melanocyte stimulation hormone, which plays a key role in energy homeostasis. However, the role of the highly conserved N-terminal region of POMC peptide fragments has begun to be unraveled only recently. Here, we review the cascade of events involved in regulation of proliferation and growth of murine adrenal cortex triggered by ACTH and other POMC-derived peptides. Key findings regarding signaling pathways and modulation of genes and proteins required for the regulation of adrenal growth are summarized. We have outlined the known mechanisms as well as future challenges for research on the regulation of adrenal proliferation and growth triggered by these peptides. PMID:27242663

  10. Selection for Genes Encoding Secreted Proteins and Receptors

    NASA Astrophysics Data System (ADS)

    Klein, Robert D.; Gu, Qimin; Goddard, Audrey; Rosenthal, Arnon

    1996-07-01

    Extracellular proteins play an essential role in the formation, differentiation, and maintenance of multicellular organisms. Despite that, the systematic identification of genes encoding these proteins has not been possible. We describe here a highly efficient method to isolate genes encoding secreted and membrane-bound proteins by using a single-step selection in yeast. Application of this method, termed signal peptide selection, to various tissues yielded 559 clones that appear to encode known or novel extracellular proteins. These include members of the transforming growth factor and epidermal growth factor protein families, endocrine hormones, tyrosine kinase receptors, serine/threonine kinase receptors, seven transmembrane receptors, cell adhesion molecules, extracellular matrix proteins, plasma proteins, and ion channels. The eventual identification of most, or all, extracellular signaling molecules will advance our understanding of fundamental biological processes and our ability to intervene in disease states.

  11. Characterization of the "CCR5" Chemokine Receptor Gene

    ERIC Educational Resources Information Center

    Thomas, John C.

    2004-01-01

    The life cycle of retroviruses is an essential topic of modern cell biology instruction. Furthermore, the process of HIV viral entry into the cell is a question of great interest in basic and clinical biology. This paper describes how students can easily recover their own DNA, amplify a portion of the "CCR5" chemokine receptor gene, characterize…

  12. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases

    PubMed Central

    Shiu, Shin-Han; Bleecker, Anthony B.

    2001-01-01

    Plant receptor-like kinases (RLKs) are proteins with a predicted signal sequence, single transmembrane region, and cytoplasmic kinase domain. Receptor-like kinases belong to a large gene family with at least 610 members that represent nearly 2.5% of Arabidopsis protein coding genes. We have categorized members of this family into subfamilies based on both the identity of the extracellular domains and the phylogenetic relationships between the kinase domains of subfamily members. Surprisingly, this structurally defined group of genes is monophyletic with respect to kinase domains when compared with the other eukaryotic kinase families. In an extended analysis, animal receptor kinases, Raf kinases, plant RLKs, and animal receptor tyrosine kinases form a well supported group sharing a common origin within the superfamily of serine/threonine/tyrosine kinases. Among animal kinase sequences, Drosophila Pelle and related cytoplasmic kinases fall within the plant RLK clade, which we now define as the RLK/Pelle family. A survey of expressed sequence tag records for land plants reveals that mosses, ferns, conifers, and flowering plants have similar percentages of expressed sequence tags representing RLK/Pelle homologs, suggesting that the size of this gene family may have been close to the present-day level before the diversification of land plant lineages. The distribution pattern of four RLK subfamilies on Arabidopsis chromosomes indicates that the expansion of this gene family is partly a consequence of duplication and reshuffling of the Arabidopsis genome and of the generation of tandem repeats. PMID:11526204

  13. Mid-gut ACTH-secreting neuroendocrine tumor unmasked with 18F-dihydroxyphenylalanine-positron emission tomography

    PubMed Central

    Gomez, Fulgencio; Prior, John O; Boubaker, Ariane; Matter, Maurice; Monti, Matteo; Pu, Yan; Pitteloud, Nelly; Portmann, Luc

    2015-01-01

    Summary Ectopic ACTH Cushing's syndrome (EAS) is often caused by neuroendocrine tumors (NETs) of lungs, pancreas, thymus, and other less frequent locations. Localizing the source of ACTH can be challenging. A 64-year-old man presented with rapidly progressing fatigue, muscular weakness, and dyspnea. He was in poor condition and showed facial redness, proximal amyotrophy, and bruises. Laboratory disclosed hypokalemia, metabolic alkalosis, and markedly elevated ACTH and cortisol levels. Pituitary was normal on magnetic resonance imaging (MRI), and bilateral inferior petrosal sinus blood sampling with corticotropin-releasing hormone stimulation showed no significant central-to-periphery gradient of ACTH. Head and neck, thoracic and abdominal computerized tomography (CT), MRI, somatostatin receptor scintigraphy (SSRS), and 18F-deoxyglucose-positron emission tomography (FDG-PET) failed to identify the primary tumor. 18F-dihydroxyphenylalanine (F-DOPA)-PET/CT unveiled a 20-mm nodule in the jejunum and a metastatic lymph node. Segmental jejunum resection showed two adjacent NETs, measuring 2.0 and 0.5 cm with a peritoneal metastasis. The largest tumor expressed ACTH in 30% of cells. Following surgery, after a transient adrenal insufficiency, ACTH and cortisol levels returned to normal values and remain normal over a follow-up of 26 months. Small mid-gut NETs are difficult to localize on CT or MRI, and require metabolic imaging. Owing to low mitotic activity, NETs are generally poor candidates for FDG-PET, whereas SSRS shows poor sensitivity in EAS due to intrinsically low tumor concentration of type-2 somatostatin receptors (SST2) or to receptor down regulation by excess cortisol. However, F-DOPA-PET, which is related to amine precursor uptake by NETs, has been reported to have high positive predictive value for occult EAS despite low sensitivity, and constitutes a useful alternative to more conventional methods of tumor localization. Learning points Uncontrolled high

  14. Interspecies variations in Bordetella catecholamine receptor gene regulation and function.

    PubMed

    Brickman, Timothy J; Suhadolc, Ryan J; Armstrong, Sandra K

    2015-12-01

    Bordetella bronchiseptica can use catecholamines to obtain iron from transferrin and lactoferrin via uptake pathways involving the BfrA, BfrD, and BfrE outer membrane receptor proteins, and although Bordetella pertussis has the bfrD and bfrE genes, the role of these genes in iron uptake has not been demonstrated. In this study, the bfrD and bfrE genes of B. pertussis were shown to be functional in B. bronchiseptica, but neither B. bronchiseptica bfrD nor bfrE imparted catecholamine utilization to B. pertussis. Gene fusion analyses found that expression of B. bronchiseptica bfrA was increased during iron starvation, as is common for iron receptor genes, but that expression of the bfrD and bfrE genes of both species was decreased during iron limitation. As shown previously for B. pertussis, bfrD expression in B. bronchiseptica was also dependent on the BvgAS virulence regulatory system; however, in contrast to the case in B. pertussis, the known modulators nicotinic acid and sulfate, which silence Bvg-activated genes, did not silence expression of bfrD in B. bronchiseptica. Further studies using a B. bronchiseptica bvgAS mutant expressing the B. pertussis bvgAS genes revealed that the interspecies differences in bfrD modulation are partly due to BvgAS differences. Mouse respiratory infection experiments determined that catecholamine utilization contributes to the in vivo fitness of B. bronchiseptica and B. pertussis. Additional evidence of the in vivo importance of the B. pertussis receptors was obtained from serologic studies demonstrating pertussis patient serum reactivity with the B. pertussis BfrD and BfrE proteins.

  15. Interspecies Variations in Bordetella Catecholamine Receptor Gene Regulation and Function

    PubMed Central

    Brickman, Timothy J.; Suhadolc, Ryan J.

    2015-01-01

    Bordetella bronchiseptica can use catecholamines to obtain iron from transferrin and lactoferrin via uptake pathways involving the BfrA, BfrD, and BfrE outer membrane receptor proteins, and although Bordetella pertussis has the bfrD and bfrE genes, the role of these genes in iron uptake has not been demonstrated. In this study, the bfrD and bfrE genes of B. pertussis were shown to be functional in B. bronchiseptica, but neither B. bronchiseptica bfrD nor bfrE imparted catecholamine utilization to B. pertussis. Gene fusion analyses found that expression of B. bronchiseptica bfrA was increased during iron starvation, as is common for iron receptor genes, but that expression of the bfrD and bfrE genes of both species was decreased during iron limitation. As shown previously for B. pertussis, bfrD expression in B. bronchiseptica was also dependent on the BvgAS virulence regulatory system; however, in contrast to the case in B. pertussis, the known modulators nicotinic acid and sulfate, which silence Bvg-activated genes, did not silence expression of bfrD in B. bronchiseptica. Further studies using a B. bronchiseptica bvgAS mutant expressing the B. pertussis bvgAS genes revealed that the interspecies differences in bfrD modulation are partly due to BvgAS differences. Mouse respiratory infection experiments determined that catecholamine utilization contributes to the in vivo fitness of B. bronchiseptica and B. pertussis. Additional evidence of the in vivo importance of the B. pertussis receptors was obtained from serologic studies demonstrating pertussis patient serum reactivity with the B. pertussis BfrD and BfrE proteins. PMID:26371128

  16. ACTH stimulation test in the captive cheetah (Acinonyx jubatus).

    PubMed

    Köster, L S; Schoeman, J P; Meltzer, D G A

    2007-09-01

    Serum cortisol response was assessed in 8 captive cheetahs, of varying ages, after the intravenous administration of 500 microg of tetracosactide (Synacthen Depot, Novartis, Kempton Park) while maintained under general anaesthesia. In addition, 8 cheetahs were anaesthetised and given an equal volume of saline in order to establish baseline cortisol concentrations at similar stages of anaesthesia. A significant difference in the median cortisol concentration measured over time was found following ACTH administration in the ACTH group (P < 0.001). There was no difference between the median cortisol concentrations in the ACTH group at time-points 120, 150 and 180 min after ACTH stimulation (P = 0.867). Thus it appears appropriate to collect serum 120 to 180 min after tetracosactide administration to assess maximal stimulation of the adrenal in the cheetah. No statistically significant rise was seen in the anaesthetised control group following the injection of saline (P = 0.238).

  17. Folate receptor gene variants and neural tube defect occurrence

    SciTech Connect

    Finnell, R.; Greer, K.; Lammer, E.

    1994-09-01

    Recent epidemiological evidence shows that periconceptional use of folic acid supplements may prevent 40-50% of neural tube defects (NTDs). The FDA has subsequently recommended folic acid supplementation of all women of childbearing potential, even though the mechanism by which folic acid prevents NTDs is unknown. We investigated genetic variation of a candidate gene, the 5-methyltetrahydrofolate (5-MeTHF) receptor, that may mediate this preventive effect. The receptor concentrates folate within cells and we have localized its mRNA to neuroepithelial cells during neurulation. Our hypothesis is that dysfunctional 5-MeTHF receptors inadequately concentrate folate intracellularly, predisposing infants to NTDs. We have completed SSCP analysis on 3 of the 4 coding exons of the 5-MeTHF receptor gene of 474 infants participating in a large population-based epidemiological case-control study of NTDs in California; genotyping of another 500 infants is ongoing. Genomic DNA was extracted from residual blood spots from newborn screening samples of cases and controls. Genotyping was done blinded to case status. Polymorphisms have been detected for exons 4 and 5; fourteen percent of the infants have exon 5 polymorphisms. Data will be presented on the prevalence of 5-MeTHF receptor polymorphisms among cases and controls. Relationships among the polymorphisms and NTD occurrence may shed light on how folic acid supplementation prevents NTDs.

  18. CRDB: Database of Chemosensory Receptor Gene Families in Vertebrate

    PubMed Central

    Wu, Xiaoli; Zhong, Yang

    2012-01-01

    Chemosensory receptors (CR) are crucial for animals to sense the environmental changes and survive on earth. The emergence of whole-genome sequences provides us an opportunity to identify the entire CR gene repertoires. To completely gain more insight into the evolution of CR genes in vertebrates, we identified the nearly all CR genes in 25 vertebrates using homology-based approaches. Among these CR gene repertoires, nearly half of them were identified for the first time in those previously uncharacterized species, such as the guinea pig, giant panda and elephant, etc. Consistent with previous findings, we found that the numbers of CR genes vary extensively among different species, suggesting an extreme form of ‘birth-and-death’ evolution. For the purpose of facilitating CR gene analysis, we constructed a database with the goals to provide a resource for CR genes annotation and a web tool for exploring their evolutionary patterns. Besides a search engine for the gene extraction from a specific chromosome region, an easy-to-use phylogenetic analysis tool was also provided to facilitate online phylogeny study of CR genes. Our work can provide a rigorous platform for further study on the evolution of CR genes in vertebrates. PMID:22393364

  19. Olfactory receptor gene expression in tiger salamander olfactory epithelium.

    PubMed

    Marchand, James E; Yang, Xinhai; Chikaraishi, Dona; Krieger, Jurgen; Breer, Heinz; Kauer, John S

    2004-06-28

    Physiological studies of odor-elicited responses from the olfactory epithelium and bulb in the tiger salamander, Ambystoma tigrinum, have elucidated a number of features of olfactory coding that appear to be conserved across several vertebrate species. This animal model has provided an accessible in vivo system for observing individual and ensemble olfactory responses to odorant stimulation using biochemical, neurophysiological, and behavioral assays. In this paper we have complemented these studies by characterizing 35 candidate odorant receptor genes. These receptor sequences are similar to those of the large families of olfactory receptors found in mammals and fish. In situ hybridization, using RNA probes to 20 of these sequences, demonstrates differential distributions of labeled cells across the extent and within the depth of the olfactory epithelium. The distributions of cells labeled with probes to different receptors show spatially restricted patterns that are generally localized to different degrees in medial-lateral and anterior-posterior directions. The patterns of receptor expression in the ventral olfactory epithelium (OE) are mirrored in the dorsal OE. We present a hypothesis as to how the sensory neuron populations expressing different receptor types responding to a particular odorant may relate to the distribution patterns of epithelial and bulbar responses previously characterized using single-unit and voltage-sensitive dye recording methods.

  20. Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes.

    PubMed

    McGrath, Patrick T; Xu, Yifan; Ailion, Michael; Garrison, Jennifer L; Butcher, Rebecca A; Bargmann, Cornelia I

    2011-08-17

    Evolution can follow predictable genetic trajectories, indicating that discrete environmental shifts can select for reproducible genetic changes. Conspecific individuals are an important feature of an animal's environment, and a potential source of selective pressures. Here we show that adaptation of two Caenorhabditis species to growth at high density, a feature common to domestic environments, occurs by reproducible genetic changes to pheromone receptor genes. Chemical communication through pheromones that accumulate during high-density growth causes young nematode larvae to enter the long-lived but non-reproductive dauer stage. Two strains of Caenorhabditis elegans grown at high density have independently acquired multigenic resistance to pheromone-induced dauer formation. In each strain, resistance to the pheromone ascaroside C3 results from a deletion that disrupts the adjacent chemoreceptor genes serpentine receptor class g (srg)-36 and -37. Through misexpression experiments, we show that these genes encode redundant G-protein-coupled receptors for ascaroside C3. Multigenic resistance to dauer formation has also arisen in high-density cultures of a different nematode species, Caenorhabditis briggsae, resulting in part from deletion of an srg gene paralogous to srg-36 and srg-37. These results demonstrate rapid remodelling of the chemoreceptor repertoire as an adaptation to specific environments, and indicate that parallel changes to a common genetic substrate can affect life-history traits across species.

  1. Identification of novel androgen receptor target genes in prostate cancer

    PubMed Central

    Jariwala, Unnati; Prescott, Jennifer; Jia, Li; Barski, Artem; Pregizer, Steve; Cogan, Jon P; Arasheben, Armin; Tilley, Wayne D; Scher, Howard I; Gerald, William L; Buchanan, Grant; Coetzee, Gerhard A; Frenkel, Baruch

    2007-01-01

    Background The androgen receptor (AR) plays critical roles in both androgen-dependent and castrate-resistant prostate cancer (PCa). However, little is known about AR target genes that mediate the receptor's roles in disease progression. Results Using Chromatin Immunoprecipitation (ChIP) Display, we discovered 19 novel loci occupied by the AR in castrate resistant C4-2B PCa cells. Only four of the 19 AR-occupied regions were within 10-kb 5'-flanking regulatory sequences. Three were located up to 4-kb 3' of the nearest gene, eight were intragenic and four were in gene deserts. Whereas the AR occupied the same loci in C4-2B (castrate resistant) and LNCaP (androgen-dependent) PCa cells, differences between the two cell lines were observed in the response of nearby genes to androgens. Among the genes strongly stimulated by DHT in C4-2B cells – D-dopachrome tautomerase (DDT), Protein kinase C delta (PRKCD), Glutathione S- transferase theta 2 (GSTT2), Transient receptor potential cation channel subfamily V member 3 (TRPV3), and Pyrroline-5-carboxylate reductase 1 (PYCR1) – most were less strongly or hardly stimulated in LNCaP cells. Another AR target gene, ornithine aminotransferase (OAT), was AR-stimulated in a ligand-independent manner, since it was repressed by AR siRNA knockdown, but not stimulated by DHT. We also present evidence for in vivo AR-mediated regulation of several genes identified by ChIP Display. For example, PRKCD and PYCR1, which may contribute to PCa cell growth and survival, are expressed in PCa biopsies from primary tumors before and after ablation and in metastatic lesions in a manner consistent with AR-mediated stimulation. Conclusion AR genomic occupancy is similar between LNCaP and C4-2B cells and is not biased towards 5' gene flanking sequences. The AR transcriptionally regulates less than half the genes nearby AR-occupied regions, usually but not always, in a ligand-dependent manner. Most are stimulated and a few are repressed. In general

  2. The Role of Metabotropic Glutamate Receptor Genes in Schizophrenia

    PubMed Central

    Maj, Carlo; Minelli, Alessandra; Giacopuzzi, Edoardo; Sacchetti, Emilio; Gennarelli, Massimo

    2016-01-01

    Genomic studies revealed two main components in the genetic architecture of schizophrenia, one constituted by common variants determining a distributed polygenic effect and one represented by a large number of heterogeneous rare and highly disruptive mutations. These gene modifications often affect neural transmission and different studies proved an involvement of metabotropic glutamate receptors in schizophrenia phenotype. Through the combination of literature information with genomic data from public repositories, we analyzed the current knowledge on the involvement of genetic variations of the human metabotropic glutamate receptors in schizophrenia and related endophenotypes. Despite the analysis did not reveal a definitive connection, different suggestive associations have been identified and in particular a relevant role has emerged for GRM3 in affecting specific schizophrenia endophenotypes. This supports the hypothesis that these receptors are directly involved in schizophrenia disorder. PMID:27296644

  3. The Role of Metabotropic Glutamate Receptor Genes in Schizophrenia.

    PubMed

    Maj, Carlo; Minelli, Alessandra; Giacopuzzi, Edoardo; Sacchetti, Emilio; Gennarelli, Massimo

    2016-01-01

    Genomic studies revealed two main components in the genetic architecture of schizophrenia, one constituted by common variants determining a distributed polygenic effect and one represented by a large number of heterogeneous rare and highly disruptive mutations. These gene modifications often affect neural transmission and different studies proved an involvement of metabotropic glutamate receptors in schizophrenia phenotype. Through the combination of literature information with genomic data from public repositories, we analyzed the current knowledge on the involvement of genetic variations of the human metabotropic glutamate receptors in schizophrenia and related endophenotypes. Despite the analysis did not reveal a definitive connection, different suggestive associations have been identified and in particular a relevant role has emerged for GRM3 in affecting specific schizophrenia endophenotypes. This supports the hypothesis that these receptors are directly involved in schizophrenia disorder.

  4. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence

    PubMed Central

    Zuo, Lingjun; Garcia-Milian, Rolando; Guo, Xiaoyun; Zhong, Chunlong; Tan, Yunlong; Wang, Zhiren; Wang, Jijun; Wang, Xiaoping; Kang, Longli; Lu, Lu; Chen, Xiangning; Li, Chiang-Shan R.; Luo, Xingguang

    2016-01-01

    It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs) play important roles in nicotine dependence (ND) and influence the number of cigarettes smoked per day (CPD) in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs) and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4). These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4, CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD. PMID:27827986

  5. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence.

    PubMed

    Zuo, Lingjun; Garcia-Milian, Rolando; Guo, Xiaoyun; Zhong, Chunlong; Tan, Yunlong; Wang, Zhiren; Wang, Jijun; Wang, Xiaoping; Kang, Longli; Lu, Lu; Chen, Xiangning; Li, Chiang-Shan R; Luo, Xingguang

    2016-11-07

    It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs) play important roles in nicotine dependence (ND) and influence the number of cigarettes smoked per day (CPD) in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs) and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4). These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4,CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD.

  6. Mechanisms of oestrogen receptor (ER) gene regulation in breast cancer

    PubMed Central

    2016-01-01

    Most breast cancers are driven by a transcription factor called oestrogen receptor (ER). Understanding the mechanisms of ER activity in breast cancer has been a major research interest and recent genomic advances have revealed extraordinary insights into how ER mediates gene transcription and what occurs during endocrine resistance. This review discusses our current understanding on ER activity, with an emphasis on several evolving, but important areas of ER biology. PMID:26884552

  7. Complete structural characterisation of the human aryl hydrocarbon receptor gene

    PubMed Central

    Bennett, P; Ramsden, D B; Williams, A C

    1996-01-01

    Aims—To clone and characterise the complete structural gene for the human aryl hydrocarbon receptor (AhR). This gene, located on chromosome 7, encodes a cytosolic receptor protein which, upon activation by various xenobiotic ligands, translocates to the nucleus, where it acts as a specific transcription factor. Methods—Primers, based on the AhR cDNA sequence, were used in conjunction with recently developed long range PCR techniques to amplify contiguous sections of the cognate gene. The amplicons produced were then cloned and characterised. A cDNA probe was also used to screen a human P1 library. Results—Using the cDNA primers, DNA fragments which mapped the entire coding region of the gene were amplified and cloned. All but one of these fragments were amplified directly from human genomic DNA. The remaining fragment was amplified using DNA prepared from a P1 clone as the PCR template. This P1 clone, obtained by screening a human P1 library, also contained the entire Ah locus. Characterisation of amplified and cloned DNA fragments provided sufficient information for the construction of a complete structural map of the gene. This also included 150 base pairs of nucleotide sequence data at all intronic termini. Conclusions—These data indicate that the human AhR gene is about 50 kilobases long and contains 11 exons. The overall intron/exon structure of the human gene is homologous to that of the previously characterised mouse gene; however, it is probably some 20 kilobases larger. These results demonstrate the need for further characterisation and provide the data to facilitate this. Images PMID:16696038

  8. Constitutive androstane receptor activation evokes the expression of glycolytic genes.

    PubMed

    Yarushkin, Andrei A; Kazantseva, Yuliya A; Prokopyeva, Elena A; Markova, Diana N; Pustylnyak, Yuliya A; Pustylnyak, Vladimir O

    2016-09-23

    It is well-known that constitutive androstane receptor (CAR) activation by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) increases the liver-to-body weight ratio. CAR-mediated liver growth is correlated with increased expression of the pleiotropic transcription factor cMyc, which stimulates cell cycle regulatory genes and drives proliferating cells into S phase. Because glycolysis supports cell proliferation and cMyc is essential for the activation of glycolytic genes, we hypothesized that CAR-mediated up-regulation of cMyc in mouse livers might play a role in inducing the expression of glycolytic genes. The aim of the present study was to examine the effect of long-term CAR activation on glycolytic genes in a mouse model not subjected to metabolic stress. We demonstrated that long-term CAR activation by TCPOBOP increases expression of cMyc, which was correlated with reduced expression of gluconeogenic genes and up-regulation of glucose transporter, glycolytic and mitochondrial pyruvate metabolising genes. These changes in gene expression after TCPOBOP treatment were strongly correlated with changes in levels of glycolytic intermediates in mouse livers. Moreover, we demonstrated a significant positive regulatory effect of TCPOBOP-activated CAR on both mRNA and protein levels of Pkm2, a master regulator of glucose metabolism and cell proliferation. Thus, our findings provide evidence to support the conclusion that CAR activation initiates a transcriptional program that facilitates the coordinated metabolic activities required for cell proliferation.

  9. Decreased GH secretion and enhanced ACTH and cortisol release after ghrelin administration in Cushing's disease: comparison with GH-releasing peptide-6 (GHRP-6) and GHRH.

    PubMed

    Correa-Silva, Silvia Regina; Nascif, Sérgio Oliva; Lengyel, Ana-Maria Judith

    2006-01-01

    GH responsiveness to GH secretagogues (GHS) is blunted in Cushing's disease (CD), while ACTH/cortisol responses are enhanced, by mechanisms still unclear. Ghrelin, the endogenous ligand for GHS-receptors (GHS-R), increases GH, ACTH, cortisol and glucose levels in humans. This study evaluated the GH, ACTH, cortisol and glucose-releasing effects of ghrelin in CD in comparison with GHRP-6. GHRH-induced GH release was also studied. Ten patients with CD (BMI 26.9+/-1.0 kg/m(2)) and ten controls (BMI 24.4+/-1.1 kg/m(2)) received ghrelin (1 microg/kg), GHRP-6 (1 microg/kg) and GHRH (100 microg) separately. GH, ACTH, cortisol and glucose levels were measured. In CD ghrelin-induced GH (microg/L; mean +/- SE) release (peak: 7.2+/-3.0) was higher than seen with GHRP-6 (2.7+/-1.0) and GHRH (0.7+/-0.2), but lower than in controls (ghrelin: 58.3+/-12.1; GHRP-6: 22.9+/-4.8; GHRH: 11.3+/-3.7). In controls ACTH (pg/mL) release after ghrelin (79.2+/-26.8) was higher than after GHRP-6 (23.6+/-5.7). In CD these responses (ghrelin: 192+/-43; GHRP-6: 185+/-56) were similar, and enhanced compared to controls. The same was observed with cortisol. Glucose levels failed to increase after ghrelin in CD, differently than in controls. Our data suggests that hypothalamic and pituitary pathways of GH release activated by ghrelin, GHRP-6 and GHRH are deranged in chronic hypercortisolism. The increased ACTH/cortisol responses to ghrelin and GHRP-6 in CD could be mediated by overexpression of GHS-R in ACTH-secreting adenomas. Hypercortisolism apparently impairs the ability of ghrelin to increase glucose levels.

  10. Localization of the genes encoding the melanocortin-2 (Adrenocorticotropic hormone) and melanocortin-3 receptors to chromosomes 18p11. 2 and 20q13. 2-q13. 3 by fluorescence in situ hybridization

    SciTech Connect

    Gantz, I.; Tashiro, Takao; Konda, Yoshitaka; Shimoto, Yoshimasa; Miwa, Hiroto; Munzert, G.; Barcroft, C.; Glover, T.; Yamada, Tadataka )

    1993-10-01

    Adrenocorticotropic hormone (ACTH) and [alpha]-, [beta]-, and [gamma]-melanocyte-stimulating hormone (MSH) are products of propiomelanocortin post-translational processing. These compounds are collectively labeled as melanocortins (MC). Aside from their established effects on the regulation of the adrenal cortex (ACTH) and melanocytes ([alpha]-MSH), the melanocortins have been implicated in a broad array of physiological events. Melanocortins mediate their effects through cell membrane receptors belonging to the superfamily of seven transmembrane G-protein-linked receptors. Using the technique of polymerase chain reaction with primers based on conserved areas of the seven transmembrane G-protein-linked receptor family, the authors recently isolated an [open quotes]orphan[close quotes] subfamily of this receptor group. Within the past year, two of these receptors were identified as specific for [alpha]-MSH (MC1) and ACTH (MC2). They have recently described a third melanocortin receptor (MC3) that appears to recognize the core heptapeptide sequence of melanocortins with equal potency and efficacy and identified its presence in the brain, placenta, and gut. Using the FISH technique, they localized the ACTH and the melanocortin-3 receptors to chromosome loci 18p11.2 and 20q12.3-q13.2, respectively. 19 refs., 1 fig.

  11. Concurrent papillary thyroid cancer with pituitary ACTH-secreting tumor.

    PubMed

    Kuo, Sheng-Fong; Chen, Jeng-Yeou; Chuang, Wen-Yu; Jung, Shih-Ming; Chang, Yu-Chen; Lin, Jen-Der

    2007-04-01

    Concomitant thyroid cancer with pituitary tumor is uncommon. This study reports a case of advanced papillary thyroid carcinoma with pituitary adrenocorticotropic hormone (ACTH)-secreting tumor. A 58-year-old male patient had thyroid cancer in 1991 and presented with headache caused by pituitary tumor with apoplexy in 1993. Due to hypopituitarism, the patient underwent radioactive iodide ((131)I) for detection and treatment of metastatic thyroid cancer after the use of recombinant human thyroid-stimulating hormone (rhTSH) in 2000. During follow-up for thyroid cancer, (201)thallium scan proved to be an effective tool for detecting metastatic thyroid cancer in the patient without pituitary TSH reserve. Pituitary ACTH-secreting tumor was confirmed in 2001 based on the high serum ACTH level and positive immunohistochemical stain for ACTH. The patient had no Cushingoid features. Moreover, serum ACTH levels were 337 and 232 pg/mL with normal serum cortisol and urine-free cortisol. Although the patient underwent three operations and a total of 370 mCi (131)I therapy for recurrent thyroid cancer, the cancer continued to progress. Finally, the patient died of pneumonia with septic shock 12 years after the diagnosis of thyroid cancer.

  12. Dopamine Receptor Genes Modulate Associative Memory in Old Age.

    PubMed

    Papenberg, Goran; Becker, Nina; Ferencz, Beata; Naveh-Benjamin, Moshe; Laukka, Erika J; Bäckman, Lars; Brehmer, Yvonne

    2017-02-01

    Previous research shows that associative memory declines more than item memory in aging. Although the underlying mechanisms of this selective impairment remain poorly understood, animal and human data suggest that dopaminergic modulation may be particularly relevant for associative binding. We investigated the influence of dopamine (DA) receptor genes on item and associative memory in a population-based sample of older adults (n = 525, aged 60 years), assessed with a face-scene item associative memory task. The effects of single-nucleotide polymorphisms of DA D1 (DRD1; rs4532), D2 (DRD2/ANKK1/Taq1A; rs1800497), and D3 (DRD3/Ser9Gly; rs6280) receptor genes were examined and combined into a single genetic score. Individuals carrying more beneficial alleles, presumably associated with higher DA receptor efficacy (DRD1 C allele; DRD2 A2 allele; DRD3 T allele), performed better on associative memory than persons with less beneficial genotypes. There were no effects of these genes on item memory or other cognitive measures, such as working memory, executive functioning, fluency, and perceptual speed, indicating a selective association between DA genes and associative memory. By contrast, genetic risk for Alzheimer disease (AD) was associated with worse item and associative memory, indicating adverse effects of APOE ε4 and a genetic risk score for AD (PICALM, BIN1, CLU) on episodic memory in general. Taken together, our results suggest that DA may be particularly important for associative memory, whereas AD-related genetic variations may influence overall episodic memory in older adults without dementia.

  13. Carbon dioxide receptor genes in cotton bollworm Helicoverpa armigera

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Anderson, Alisha

    2015-04-01

    Carbon dioxide (CO2) is important in insect ecology, eliciting a range of behaviours across different species. Interestingly, the numbers of CO2 gustatory receptors (GRs) vary among insect species. In the model organism Drosophila melanogaster, two GRs (DmelGR21a and DmelGR63a) have been shown to detect CO2. In the butterfly, moth, beetle and mosquito species studied so far, three CO2 GR genes have been identified, while in tsetse flies, four CO2 GR genes have been identified. In other species including honeybees, pea aphids, ants, locusts and wasps, no CO2 GR genes have been identified from the genome. These genomic differences may suggest different mechanisms for CO2 detection exist in different insects but, with the exception of Drosophila and mosquitoes, limited attention has been paid to the CO2 GRs in insects. Here, we cloned three putative CO2 GR genes from the cotton bollworm Helicoverpa armigera and performed phylogenetic and expression analysis. All three H. armigera CO2 GRs (HarmGR1, HarmGR2 and HarmGR3) are specifically expressed in labial palps, the CO2-sensing tissue of this moth. HarmGR3 is significantly activated by NaHCO3 when expressed in insect Sf9 cells but HarmGR1 and HarmGR2 are not. This is the first report characterizing the function of lepidopteran CO2 receptors, which contributes to our general understanding of the molecular mechanisms of insect CO2 gustatory receptors.

  14. Carbon dioxide receptor genes in cotton bollworm Helicoverpa armigera.

    PubMed

    Xu, Wei; Anderson, Alisha

    2015-04-01

    Carbon dioxide (CO2) is important in insect ecology, eliciting a range of behaviours across different species. Interestingly, the numbers of CO2 gustatory receptors (GRs) vary among insect species. In the model organism Drosophila melanogaster, two GRs (DmelGR21a and DmelGR63a) have been shown to detect CO2. In the butterfly, moth, beetle and mosquito species studied so far, three CO2 GR genes have been identified, while in tsetse flies, four CO2 GR genes have been identified. In other species including honeybees, pea aphids, ants, locusts and wasps, no CO2 GR genes have been identified from the genome. These genomic differences may suggest different mechanisms for CO2 detection exist in different insects but, with the exception of Drosophila and mosquitoes, limited attention has been paid to the CO2 GRs in insects. Here, we cloned three putative CO2 GR genes from the cotton bollworm Helicoverpa armigera and performed phylogenetic and expression analysis. All three H. armigera CO2 GRs (HarmGR1, HarmGR2 and HarmGR3) are specifically expressed in labial palps, the CO2-sensing tissue of this moth. HarmGR3 is significantly activated by NaHCO3 when expressed in insect Sf9 cells but HarmGR1 and HarmGR2 are not. This is the first report characterizing the function of lepidopteran CO2 receptors, which contributes to our general understanding of the molecular mechanisms of insect CO2 gustatory receptors.

  15. Prospects and limitations of T cell receptor gene therapy.

    PubMed

    Jorritsma, Annelies; Schotte, Remko; Coccoris, Miriam; de Witte, Moniek A; Schumacher, Ton N M

    2011-08-01

    Adoptive transfer of antigen-specific T cells is an attractive means to provide cancer patients with immune cells of a desired specificity and the efficacy of such adoptive transfers has been demonstrated in several clinical trials. Because the T cell receptor is the single specificity-determining molecule in T cell function, adoptive transfer of TCR genes into patient T cells may be used as an alternative approach for the transfer of tumor-specific T cell immunity. On theoretical grounds, TCR gene therapy has two substantial advantages over conventional cellular transfer. First, it circumvents the demanding process of in vitro generation of large numbers of specific immune cells. Second, it allows the use of a set of particularly effective TCR genes in large patient groups. Conversely, TCR gene therapy may be associated with a number of specific problems that are not confronted during classical cellular therapy. Here we review our current understanding of the potential and possible problems of TCR gene therapy, as based on in vitro experiments, mouse model systems and phase I clinical trials. Furthermore, we discuss the prospects of widespread clinical application of this gene therapy approach for the treatment of human cancer.

  16. Brain shrinkage and subdural effusion associated with ACTH administration.

    PubMed

    Satoh, J; Takeshige, H; Hara, H; Fukuyama, Y

    1982-01-01

    Sequential computed tomographic (CT) studies of 11 patients (aged five months to seven years) with intractable epilepsy treated with synthetic ACTH-Z showed brain shrinkage in all cases. Brain shrinkage started to appear on daily ACTH injections for seven days, reached the maximum within four weeks of administration (14 injections every day and then 7 injections every other day), and almost returned to the original status in seven out of nine cases which were followed up for one to three months after the therapy. The subjects aged less than two years showed more remarkable brain shrinkage than did those aged more than five years. Furthermore, two other cases were complicated by subdural effusion after ACTH therapy. It is the authors' assumption that both of these phenomena are caused by the high concentration of corticosteroid through a change of the water and electrolyte contents in the brain.

  17. Perilipin, a critical regulator of fat storage and breakdown, is a target gene of estrogen receptor-related receptor {alpha}

    SciTech Connect

    Akter, Mst. Hasina; Yamaguchi, Tomohiro; Hirose, Fumiko; Osumi, Takashi

    2008-04-11

    Perilipin is a protein localized on lipid droplet surfaces in adipocytes and steroidogenic cells, playing a central role in regulated lipolysis. Expression of the perilipin gene is markedly induced during adipogenesis. We found that transcription from the perilipin gene promoter is activated by an orphan nuclear receptor, estrogen receptor-related receptor (ERR){alpha}. A response element to this receptor was identified in the promoter region by a gene reporter assay, the electrophoretic-gel mobility-shift assay and the chromatin immunoprecipitation assay. Peroxisome proliferator-activated receptor {gamma} coactivator (PGC)-1{alpha} enhanced, whereas small heterodimer partner (SHP) repressed, the transactivating function of ERR{alpha} on the promoter. Thus, the perilipin gene expression is regulated by a transcriptional network controlling energy metabolism, substantiating the functional importance of perilipin in the maintenance of body energy balance.

  18. Dissecting the regulation of yeast genes by the osmotin receptor

    PubMed Central

    Kupchak, Brian R.; Villa, Nancy Y.; Kulemina, Lidia; Lyons, Thomas J.

    2008-01-01

    The Izh2p protein from Saccharomyces cerevisiae is a receptor for the plant antifungal protein, osmotin. Since Izh2p is conserved in fungi, understanding its biochemical function could inspire novel strategies for the prevention of fungal growth. However, it has been difficult to determine the exact role of Izh2p because it has pleiotropic effects on cellular biochemistry. Herein, we demonstrate that Izh2p negatively regulates functionally divergent genes through a CCCTC promoter motif. Moreover, we show that Izh2p-dependent promoters containing this motif are regulated by the Nrg1p/Nrg2p and Msn2p/Msn4p transcription factors. The fact that Izh2p can regulate gene expression through this widely dispersed element presents a reasonable explanation of its pleiotropy. The involvement of Nrg1p/Nrgp2 in Izh2p-dependent gene regulation also suggests a role for this receptor in regulating fungal differentiation in response to stimuli produced by plants. PMID:18625204

  19. Functional characterization of ecdysone receptor gene switches in mammalian cells.

    PubMed

    Panguluri, Siva K; Kumar, Prasanna; Palli, Subba R

    2006-12-01

    Regulated expression of transgene is essential in basic research as well as for many therapeutic applications. The main purpose of the present study is to understand the functioning of the ecdysone receptor (EcR)-based gene switch in mammalian cells and to develop improved versions of EcR gene switches. We utilized EcR mutants to develop new EcR gene switches that showed higher ligand sensitivity and higher magnitude of induction of reporter gene expression in the presence of ligand. We also developed monopartite versions of EcR gene switches with reduced size of the components that are accommodated into viral vectors. Ligand binding assays revealed that EcR alone could not bind to the nonsteroidal ligand, RH-2485. The EcR's heterodimeric partner, ultraspiracle, is required for efficient binding of EcR to the ligand. The essential role of retinoid X receptor (RXR) or its insect homolog, ultraspiracle, in EcR function is shown by RXR knockdown experiments using RNAi. Chromatin immunoprecipitation assays demonstrated that VP16 (activation domain, AD):GAL4(DNA binding domain, DBD):EcR(ligand binding domain, LBD) or GAL4(DBD):EcR(LBD) fusion proteins can bind to GAL4 response elements in the absence of ligand. The VP16(AD) fusion protein of a chimera between human and locust RXR could heterodimerize with GAL4(DBD):EcR(LBD) in the absence of ligand but the VP16(AD) fusion protein of Homo sapiens RXR requires ligand for its heterodimerization with GAL4(DBD):EcR(LBD).

  20. Nuclear Receptor Corepressor Recruitment by Unliganded Thyroid Hormone Receptor in Gene Repression during Xenopus laevis Development

    PubMed Central

    Sachs, Laurent M.; Jones, Peter L.; Havis, Emmanuelle; Rouse, Nicole; Demeneix, Barbara A.; Shi, Yun-Bo

    2002-01-01

    Thyroid hormone receptors (TR) act as activators of transcription in the presence of the thyroid hormone (T3) and as repressors in its absence. While many in vitro approaches have been used to study the molecular mechanisms of TR action, their physiological relevance has not been addressed. Here we investigate how TR regulates gene expression during vertebrate postembryonic development by using T3-dependent amphibian metamorphosis as a model. Earlier studies suggest that TR acts as a repressor during premetamorphosis when T3 is absent. We hypothesize that corepressor complexes containing the nuclear receptor corepressor (N-CoR) are key factors in this TR-dependent gene repression, which is important for premetamorphic tadpole growth. To test this hypothesis, we isolated Xenopus laevis N-CoR (xN-CoR) and showed that it was present in pre- and metamorphic tadpoles. Using a chromatin immunoprecipitation assay, we demonstrated that xN-CoR was recruited to the promoters of T3 response genes during premetamorphosis and released upon T3 treatment, accompanied by a local increase in histone acetylation. Furthermore, overexpression of a dominant-negative N-CoR in tadpole tail muscle led to increased transcription from a T3-dependent promoter. Our data indicate that N-CoR is recruited by unliganded TR to repress target gene expression during premetamorphic animal growth, an important process that prepares the tadpole for metamorphosis. PMID:12446772

  1. Isolation of ACTH-resistant Y1 adrenal tumor cells

    SciTech Connect

    Schimmer, B.P.

    1985-01-01

    Y1 cells originate from a minimally deviated mouse adrenal tumor. When treated with ACTh or cAMP, these cells increase the rate of steroiodigenesis, stop dividing, assume a rounded morphology, and detach from the culture vessel. The ability of ACTH and cAMP to inhibit Y1 cell growth and cause cell rounding and detachment provides a basis for selection of Y1 mutants resistant to hormones and cyclic nucleotides. Newly cloned populations of Y1 cells can be treated with mutagens, such as N-methyl-N'-nitro-N-nitroso-guanidine (MNNG) or ethyl methanesulfonate (EMS) to raise the frequency of specific mutations to detectable levels.

  2. Human T-cell receptor variable gene segment families

    SciTech Connect

    Arden, B.; Kabelitz, D.; Clark, S.P.; Mak, T.W.

    1995-10-01

    Multiple DNA and protein sequence alignments have been constructed for the human T-cell receptor {alpha}/{delta}, {beta}, and {gamma} (TCRA/D, B, and G) variable (V) gene segments. The traditional classification into subfamilies was confirmed using a much larger pool of sequences. For each sequence, a name was derived which complies with the standard nomenclature. The traditional numbering of V gene segments in the order of their discovery was continued and changed when in conflict with names of other segments. By discriminating between alleles at the same locus versus genes from different loci, we were able to reduce the number of more than 150 different TCRBV sequences in the database to a repertoire of only 47 functional TCRBV gene segments. An extension of this analysis to the over 100 TCRAV sequences results in a predicted repertoire of 42 functional TCRAV gene segments. Our alignment revealed two residues that distinguish between the highly homologous V{delta} and V{alpha}, one at a site that in V{sub H} contacts the constant region, the other at the interface between immunoglobulin V{sub H} and V{sub L}. This site may be responsible for restricted pairing between certain V{delta} and V{gamma} chains. On the other hand, V{beta} and V{gamma} appear to be related by the fact that their CDR2 length is increased by four residues as compared with that of V{alpha}/{delta} peptides. 150 refs., 12 figs., 5 tabs.

  3. Cardiac gene expression data and in silico analysis provide novel insights into human and mouse taste receptor gene regulation.

    PubMed

    Foster, Simon R; Porrello, Enzo R; Stefani, Maurizio; Smith, Nicola J; Molenaar, Peter; dos Remedios, Cristobal G; Thomas, Walter G; Ramialison, Mirana

    2015-10-01

    G protein-coupled receptors are the principal mediators of the sweet, umami, bitter, and fat taste qualities in mammals. Intriguingly, the taste receptors are also expressed outside of the oral cavity, including in the gut, airways, brain, and heart, where they have additional functions and contribute to disease. However, there is little known about the mechanisms governing the transcriptional regulation of taste receptor genes. Following our recent delineation of taste receptors in the heart, we investigated the genomic loci encoding for taste receptors to gain insight into the regulatory mechanisms that drive their expression in the heart. Gene expression analyses of healthy and diseased human and mouse hearts showed coordinated expression for a subset of chromosomally clustered taste receptors. This chromosomal clustering mirrored the cardiac expression profile, suggesting that a common gene regulatory block may control the taste receptor locus. We identified unique domains with strong regulatory potential in the vicinity of taste receptor genes. We also performed de novo motif enrichment in the proximal promoter regions and found several overrepresented DNA motifs in cardiac taste receptor gene promoters corresponding to ubiquitous and cardiac-specific transcription factor binding sites. Thus, combining cardiac gene expression data with bioinformatic analyses, this study has provided insights into the noncoding regulatory landscape for taste GPCRs. These findings also have broader relevance for the study of taste GPCRs outside of the classical gustatory system, where understanding the mechanisms controlling the expression of these receptors may have implications for future therapeutic development.

  4. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression

    PubMed Central

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A.; Choi, Hueng-Sik

    2016-01-01

    Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion. PMID:27455076

  5. ACTH-Independent Cushing’s Syndrome with Bilateral Micronodular Adrenal Hyperplasia and Ectopic Adrenocortical Adenoma

    PubMed Central

    Louiset, Estelle; Gobet, Françoise; Libé, Rossella; Horvath, Anelia; Renouf, Sylvie; Cariou, Juliette; Rothenbuhler, Anya; Bertherat, Jérôme; Clauser, Eric; Grise, Philippe; Stratakis, Constantine A.; Kuhn, Jean-Marc; Lefebvre, Hervé

    2010-01-01

    Context: Bilateral micronodular adrenal hyperplasia and ectopic adrenocortical adenoma are two rare causes of ACTH-independent Cushing’s syndrome. Objective: The aim of the study was to evaluate a 35-yr-old woman with ACTH-independent hypercortisolism associated with both micronodular adrenal hyperplasia and ectopic pararenal adrenocortical adenoma. Design and Setting: In vivo and in vitro studies were performed in a University Hospital Department and academic research laboratories. Intervention: Mutations of the PRKAR1A, PDE8B, and PDE11A genes were searched for in leukocytes and adrenocortical tissues. The ability of adrenal and adenoma tissues to synthesize cortisol was investigated by immunohistochemistry, quantitative PCR, and/or cell culture studies. Main Outcome Measure: Detection of 17α-hydroxylase and 21-hydroxylase immunoreactivities, quantification of CYP11B1 mRNA in adrenal and adenoma tissues, and measurement of cortisol levels in supernatants by radioimmunological assays were the main outcomes. Results: Histological examination of the adrenals revealed nonpigmented micronodular cortical hyperplasia associated with relative atrophy of internodular cortex. No genomic and/or somatic adrenal mutations of the PRKAR1A, PDE8B, and PDE11A genes were detected. 17α-Hydroxylase and 21-hydroxylase immunoreactivities as well as CYP11B1 mRNA were detected in adrenal and adenoma tissues. ACTH and dexamethasone activated cortisol secretion from adenoma cells. The stimulatory action of dexamethasone was mediated by a nongenomic effect involving the protein kinase A pathway. Conclusion: This case suggests that unknown molecular defects can favor both micronodular adrenal hyperplasia and ectopic adrenocortical adenoma associated with Cushing’s syndrome. PMID:19915020

  6. Mu-opioid receptor A118G polymorphism in healthy volunteers affects hypothalamic-pituitary-adrenal axis adrenocorticotropic hormone stress response to metyrapone.

    PubMed

    Ducat, Elizabeth; Ray, Brenda; Bart, Gavin; Umemura, Yoshie; Varon, Jack; Ho, Ann; Kreek, Mary Jeanne

    2013-03-01

    The mu-opioid receptor encoded by the gene OPRM1 plays a primary role in opiate, alcohol, cocaine and nicotine addiction. Studies using opioid antagonists demonstrate that the mu-opioid receptor (MOP-r) also mediates the hypothalamic-pituitary-adrenal (HPA) axis stress response. A common polymorphism in exon one of the MOP-r gene, A118G, has been shown to significantly alter receptor function and MOP-r gene expression; therefore, this variant likely affects HPA-axis responsivity. In the current study, we have investigated whether the presence of the 118AG variant genotype affects HPA axis responsivity to the stressor metyrapone, which transiently blocks glucocorticoid production in the adrenal cortex. Forty-eight normal and healthy volunteers (32 men, 16 women) were studied, among whom nine men and seven women had the 118AG genotype. The 118G allele blunted the adrenocorticotropic hormone (ACTH) response to metyrapone. Although there was no difference in basal levels of ACTH, subjects with the 118AG genotype had a more modest rise and resultant significantly lower ACTH levels than those with the prototype 118AA at the 8-hour time point (P < 0.02). We found no significant difference between genders. These findings suggest a relatively greater tonic inhibition at hypothalamic-pituitary sites through the mu-opioid receptor and relatively less cyclical glucocorticoid inhibition in subjects with the 118G allele.

  7. ACTH and Polymorphisms at Steroidogenic Loci as Determinants of Aldosterone Secretion and Blood Pressure

    PubMed Central

    MacKenzie, Scott M.; Freel, E. Marie; Connell, John M.; Fraser, Robert; Davies, Eleanor

    2017-01-01

    The majority of genes contributing to the heritable component of blood pressure remain unidentified, but there is substantial evidence to suggest that common polymorphisms at loci involved in the biosynthesis of the corticosteroids aldosterone and cortisol are important. This view is supported by data from genome-wide association studies that consistently link the CYP17A1 locus to blood pressure. In this review article, we describe common polymorphisms at three steroidogenic loci (CYP11B2, CYP11B1 and CYP17A1) that alter gene transcription efficiency and levels of key steroids, including aldosterone. However, the mechanism by which this occurs remains unclear. While the renin angiotensin system is rightly regarded as the major driver of aldosterone secretion, there is increasing evidence that the contribution of corticotropin (ACTH) is also significant. In light of this, we propose that the differential response of variant CYP11B2, CYP11B1 and CYP17A1 genes to ACTH is an important determinant of blood pressure, tending to predispose individuals with an unfavourable genotype to hypertension. PMID:28272372

  8. A reference gene set for chemosensory receptor genes of Manduca sexta.

    PubMed

    Koenig, Christopher; Hirsh, Ariana; Bucks, Sascha; Klinner, Christian; Vogel, Heiko; Shukla, Aditi; Mansfield, Jennifer H; Morton, Brian; Hansson, Bill S; Grosse-Wilde, Ewald

    2015-11-01

    The order of Lepidoptera has historically been crucial for chemosensory research, with many important advances coming from the analysis of species like Bombyx mori or the tobacco hornworm, Manduca sexta. Specifically M. sexta has long been a major model species in the field, especially regarding the importance of olfaction in an ecological context, mainly the interaction with its host plants. In recent years transcriptomic data has led to the discovery of members of all major chemosensory receptor families in the species, but the data was fragmentary and incomplete. Here we present the analysis of the newly available high-quality genome data for the species, supplemented by additional transcriptome data to generate a high quality reference gene set for the three major chemosensory receptor gene families, the gustatory (GR), olfactory (OR) and antennal ionotropic receptors (IR). Coupled with gene expression analysis our approach allows association of specific receptor types and behaviors, like pheromone and host detection. The dataset will provide valuable support for future analysis of these essential chemosensory modalities in this species and in Lepidoptera in general.

  9. Update of the androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1999-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 309 to 374 during the past year. We have expanded the database by adding information on AR-interacting proteins; and we have improved the database by identifying those mutation entries that have been updated. Mutations of unknown significance have now been reported in both the 5' and 3' untranslated regions of the AR gene, and in individuals who are somatic mosaics constitutionally. In addition, single nucleotide polymorphisms, including silent mutations, have been discovered in normal individuals and in individuals with male infertility. A mutation hotspot associated with prostatic cancer has been identified in exon 5. The database is available on the internet (http://www.mcgill.ca/androgendb/), from EMBL-European Bioinformatics Institute (ftp.ebi.ac.uk/pub/databases/androgen), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca).

  10. Evolution of dopamine receptor genes of the D1 class in vertebrates.

    PubMed

    Yamamoto, Kei; Mirabeau, Olivier; Bureau, Charlotte; Blin, Maryline; Michon-Coudouel, Sophie; Demarque, Michaël; Vernier, Philippe

    2013-04-01

    The receptors of the dopamine neurotransmitter belong to two unrelated classes named D1 and D2. For the D1 receptor class, only two subtypes are found in mammals, the D1A and D1B, receptors, whereas additional subtypes, named D1C, D1D, and D1X, have been found in other vertebrate species. Here, we analyzed molecular phylogeny, gene synteny, and gene expression pattern of the D1 receptor subtypes in a large range of vertebrate species, which leads us to propose a new view of the evolution of D1 dopamine receptor genes. First, we show that D1C and D1D receptor sequences are encoded by orthologous genes. Second, the previously identified Cypriniform D1X sequence is a teleost-specific paralog of the D1B sequences found in all groups of jawed vertebrates. Third, zebrafish and several sauropsid species possess an additional D1-like gene, which is likely to form another orthology group of vertebrate ancestral genes, which we propose to name D1E. Ancestral jawed vertebrates are thus likely to have possessed four classes of D1 receptor genes-D1A, D1B(X), D1C(D), and D1E-which arose from large-scale gene duplications. The D1C receptor gene would have been secondarily lost in the mammalian lineage, whereas the D1E receptor gene would have been lost independently in several lineages of modern vertebrates. The D1A receptors are well conserved throughout jawed vertebrates, whereas sauropsid D1C receptors have rapidly diverged, to the point that they were misidentified as D1D. The functional significance of the D1C receptor loss is not known. It is possible that the function may have been substituted with D1A or D1B receptors in mammals, following the disappearance of D1C receptors in these species.

  11. Reciprocal regulation of a glucocorticoid receptor-steroidogenic factor-1 transcription complex on the Dax-1 promoter by glucocorticoids and adrenocorticotropic hormone in the adrenal cortex.

    PubMed

    Gummow, Brian M; Scheys, Joshua O; Cancelli, Victoria R; Hammer, Gary D

    2006-11-01

    Numerous genes required for adrenocortical steroidogenesis are activated by the nuclear hormone receptor steroidogenic factor 1 (SF-1) (NR5A1). Dax-1 (NR0B1), another nuclear hormone receptor, represses SF-1-dependent activation. Glucocorticoid products of the adrenal cortex provide negative feedback to the production of hypothalamic CRH and pituitary ACTH. We hypothesized that glucocorticoids stimulate an intraadrenal negative feedback loop via activation of Dax-1 expression. Reporter constructs show glucocorticoid-dependent synergy between SF-1 and glucocorticoid receptor (GR) in the activation of Dax-1, which is antagonized by ACTH signaling. We map the functional glucocorticoid response element between -718 and -704 bp, required for activation by GR and synergy with SF-1. Of three SF-1 response elements, only the -128-bp SF-1 response element is required for synergy with GR. Chromatin immunoprecipitation (ChIP) assays demonstrate that dexamethasone treatment increases GR and SF-1 binding to the endogenous murine Dax-1 promoter 10- and 3.5-fold over baseline. Serial ChIP assays reveal that that GR and SF-1 are part of the same complex on the Dax-1 promoter, whereas coimmunoprecipitation assay confirms the presence of a protein complex that contains both GR and SF-1. ACTH stimulation disrupts the formation of this complex by abrogating SF-1 binding to the Dax-1 promoter, while promoting SF-1 binding to the melanocortin-2 receptor (Mc2r) and steroidogenic acute regulatory protein (StAR) promoters. Finally, dexamethasone treatment increases endogenous Dax-1 expression and concordantly decreases StAR expression. ACTH signaling antagonizes the increase in Dax-1 yet strongly activates StAR transcription. These data indicate that GR provides feedback regulation of adrenocortical steroid production through synergistic activation of Dax-1 with SF-1, which is antagonized by ACTH activation of the adrenal cortex.

  12. Thyrotropin receptor gene alterations in thyroid hyperfunctioning adenomas

    SciTech Connect

    Russo, D.; Arturi, F.; Filetti, S.

    1996-04-01

    Forty-four thyroid autonomously hyperfunctioning adenomas were analyzed to assess the frequency of mutations occurring in the TSH receptor (TSHR). PCR-amplified fragments encompassing the entire exon 10 of the TSHR gene were obtained from the genomic DNA extracted from the tumors and their adjacent normal tissues and were examined by direct nucleotide sequencing. Point mutations were found in 9 of 44 adenomas examined (20%). One mutation occurred in codon 619 (Asp to Gly), four in codon 623 (three were Ala to Ser, one Ala to substitution), two in codon 632 (both Thr to Ile), and two in codon 633 (Asp to Tyr or His). All the alterations were located in a part of the gene coding for an area including the third intracellular loop and the sixth transmembrane domain of the TSH receptor. All mutations were somatic and heterozygotic, and none was simultaneous with alterations of ras or gsp oncogenes. Thus, our data show that in our series of 44 hyperfunctioning thyroid adenomas, a somatic mutation of the TSHR, responsible for the constitutive activation of the cAMP pathway, occurs in 20% of the tumors. 28 refs., 2 tabs.

  13. Variability of the Transferrin Receptor 2 Gene in AMD

    PubMed Central

    Blasiak, Janusz; Dorecka, Mariola; Kowalska, Marta; Pawlowska, Elzbieta; Szaflik, Jerzy; Szaflik, Jacek Pawel

    2014-01-01

    Oxidative stress is a major factor in the pathogenesis of age-related macular degeneration (AMD). Iron may catalyze the Fenton reaction resulting in overproduction of reactive oxygen species. Transferrin receptor 2 plays a critical role in iron homeostasis and variability in its gene may influence oxidative stress and AMD occurrence. To verify this hypothesis we assessed the association between polymorphisms of the TFR2 gene and AMD. A total of 493 AMD patients and 171 matched controls were genotyped for the two polymorphisms of the TFR2 gene: c.1892C>T (rs2075674) and c.−258+123T>C (rs4434553). We also assessed the modulation of some AMD risk factors by these polymorphisms. The CC and TT genotypes of the c.1892C>T were associated with AMD occurrence but the latter only in obese patients. The other polymorphism was not associated with AMD occurrence, but the CC genotype was correlated with an increasing AMD frequency in subjects with BMI < 26. The TT genotype and the T allele of this polymorphism decreased AMD occurrence in subjects above 72 years, whereas the TC genotype and the C allele increased occurrence of AMD in this group. The c.1892C>T and c.−258+123T>C polymorphisms of the TRF2 gene may be associated with AMD occurrence, either directly or by modulation of risk factors. PMID:24648608

  14. Variability of the transferrin receptor 2 gene in AMD.

    PubMed

    Wysokinski, Daniel; Blasiak, Janusz; Dorecka, Mariola; Kowalska, Marta; Robaszkiewicz, Jacek; Pawlowska, Elzbieta; Szaflik, Jerzy; Szaflik, Jacek Pawel

    2014-01-01

    Oxidative stress is a major factor in the pathogenesis of age-related macular degeneration (AMD). Iron may catalyze the Fenton reaction resulting in overproduction of reactive oxygen species. Transferrin receptor 2 plays a critical role in iron homeostasis and variability in its gene may influence oxidative stress and AMD occurrence. To verify this hypothesis we assessed the association between polymorphisms of the TFR2 gene and AMD. A total of 493 AMD patients and 171 matched controls were genotyped for the two polymorphisms of the TFR2 gene: c.1892C>T (rs2075674) and c.-258+123T>C (rs4434553). We also assessed the modulation of some AMD risk factors by these polymorphisms. The CC and TT genotypes of the c.1892C>T were associated with AMD occurrence but the latter only in obese patients. The other polymorphism was not associated with AMD occurrence, but the CC genotype was correlated with an increasing AMD frequency in subjects with BMI < 26. The TT genotype and the T allele of this polymorphism decreased AMD occurrence in subjects above 72 years, whereas the TC genotype and the C allele increased occurrence of AMD in this group. The c.1892C>T and c.-258+123T>C polymorphisms of the TRF2 gene may be associated with AMD occurrence, either directly or by modulation of risk factors.

  15. Evolution of Dopamine Receptor Genes of the D1 Class in Vertebrates

    PubMed Central

    Yamamoto, Kei; Mirabeau, Olivier; Bureau, Charlotte; Blin, Maryline; Michon-Coudouel, Sophie; Demarque, Michaël; Vernier, Philippe

    2013-01-01

    The receptors of the dopamine neurotransmitter belong to two unrelated classes named D1 and D2. For the D1 receptor class, only two subtypes are found in mammals, the D1A and D1B, receptors, whereas additional subtypes, named D1C, D1D, and D1X, have been found in other vertebrate species. Here, we analyzed molecular phylogeny, gene synteny, and gene expression pattern of the D1 receptor subtypes in a large range of vertebrate species, which leads us to propose a new view of the evolution of D1 dopamine receptor genes. First, we show that D1C and D1D receptor sequences are encoded by orthologous genes. Second, the previously identified Cypriniform D1X sequence is a teleost-specific paralog of the D1B sequences found in all groups of jawed vertebrates. Third, zebrafish and several sauropsid species possess an additional D1-like gene, which is likely to form another orthology group of vertebrate ancestral genes, which we propose to name D1E. Ancestral jawed vertebrates are thus likely to have possessed four classes of D1 receptor genes—D1A, D1B(X), D1C(D), and D1E—which arose from large-scale gene duplications. The D1C receptor gene would have been secondarily lost in the mammalian lineage, whereas the D1E receptor gene would have been lost independently in several lineages of modern vertebrates. The D1A receptors are well conserved throughout jawed vertebrates, whereas sauropsid D1C receptors have rapidly diverged, to the point that they were misidentified as D1D. The functional significance of the D1C receptor loss is not known. It is possible that the function may have been substituted with D1A or D1B receptors in mammals, following the disappearance of D1C receptors in these species. PMID:23197594

  16. Anxious behavior induces elevated hippocampal Cb2 receptor gene expression.

    PubMed

    Robertson, James M; Achua, Justin K; Smith, Justin P; Prince, Melissa A; Staton, Clarissa D; Ronan, Patrick J; Summers, Tangi R; Summers, Cliff H

    2017-04-07

    Anxiety is differentially expressed across a continuum of stressful/fearful intensity, influenced endocannabinoid systems and receptors. The hippocampus plays important roles in the regulation of affective behavior, emotion, and anxiety, as well as memory. Location of Cb1/Cb2 receptor action could be important in determining emotional valence, because while the dorsal hippocampus is involved in spatial memory and cognition, the ventral hippocampus has projections to the PFC, BNST, amygdala, and HPA axis, and is important for emotional responses to stress. During repeated social defeat in a Stress-Alternatives Model arena (SAM; an oval open field with escape portals only large enough for smaller mice), smaller C57BL6/N mice are subject to fear conditioning (tone=CS), and attacked by novel larger aggressive CD1 mice (US) over four daily (5min) trials. Each SAM trial presents an opportunity for escape or submission, with stable behavioral responses established by the second day of interaction. Additional groups had access to a running wheel. Social aggression plus fear conditioning stimulates enhanced Cb2 receptor gene expression in the dorsal CA1, dorsal and ventral dentate gyrus subregions in animals displaying a submissive behavioral phenotype. Escape behavior is associated with reduced Cb2 expression in the dorsal CA1 region, with freezing and escape latency correlated with mRNA levels. Escaping and submitting animals with access to running wheels had increased Cb2 mRNA in dorsal DG/CA1. These results suggest that the Cb2 receptor system is rapidly induced during anxiogenic social interactions plus fear conditioning or exercise; with responses potentially adaptive for coping mechanisms.

  17. ACTH and. cap alpha. -melanotropin in central temperature control

    SciTech Connect

    Lipton, J.M.; Glyn, J.R.; Zimmer, J.A.

    1981-11-01

    Adrenocorticotropin (ACTH) and ..cap alpha..-melanotropin (..cap alpha..-MSH) occur in brain tissue known to be important to temperature control. These peptides cause hypothermia if they are injected centrally in sufficient doses, but they do not act on the central set point of temperature control. Instead they appear to inhibit central pathways for heat conservation and production. In addition to their hypothermic capability, these peptides are antipyretic when given centrally in doses that have no effect on normal body temperature. ACTH has previously been associated with fever reduction in both clinical and experimental studies, and it may be that endogenous central ACTH is important for limitation of maximal fever. The hypothermic and antipyretic effects of ACTH do not depend on stimulation of the adrenal cortex because they are also observed in adrenalectomized rabbits. Nor is the antipyretic effect limited to the rabbit inasmuch as a comparable effect has been demonstrated in the squirrel monkey. The two peptides may be involved in central mediation of normal thermoregulation and fever, perhaps limiting the febrile response and other rises in body temperature by acting as neurotransmitters or neuromodulators in central thermoregulatory pathways.

  18. 21 CFR 862.1025 - Adrenocorticotropic hormone (ACTH) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Adrenocorticotropic hormone (ACTH) test system. 862.1025 Section 862.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  19. 21 CFR 862.1025 - Adrenocorticotropic hormone (ACTH) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Adrenocorticotropic hormone (ACTH) test system. 862.1025 Section 862.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  20. 21 CFR 862.1025 - Adrenocorticotropic hormone (ACTH) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Adrenocorticotropic hormone (ACTH) test system. 862.1025 Section 862.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  1. 21 CFR 862.1025 - Adrenocorticotropic hormone (ACTH) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Adrenocorticotropic hormone (ACTH) test system. 862.1025 Section 862.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  2. 21 CFR 862.1025 - Adrenocorticotropic hormone (ACTH) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Adrenocorticotropic hormone (ACTH) test system. 862.1025 Section 862.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  3. Fc-receptor and M-protein genes of group A streptococci are products of gene duplication.

    PubMed Central

    Heath, D G; Cleary, P P

    1989-01-01

    The partial nucleotide sequence for an Fc-receptor gene from an M-type 76 group A streptococcus was determined. DNA sequence analysis revealed considerable sequence similarity between the Fc-receptor and M-protein genes in their proposed promoter regions, signal sequences, and 3' termini. Additional analysis indicated that the deduced Fc-receptor protein contains a proline-rich region and membrane anchor region highly similar to that of M protein. In view of these results, we postulated that Fc-receptor and M-protein genes of group A streptococci are the products of gene duplication from a common ancestral gene. It is proposed that DNA sequence similarity between these two genes may allow for extragenic homologous recombination as a means of generating antigenic diversity in these two surface proteins. PMID:2660147

  4. Radioactive probes for adrenocorticotropic hormone receptors

    SciTech Connect

    Hofmann, K.; Romovacek, H.; Stehle, C.J.; Finn, F.M.; Bothner-By, A.A.; Mishra, P.K.

    1986-03-25

    Our attempts to develop adrenocorticotropic hormone (ACTH) analogues that can be employed for ACTH receptor identification and isolation began with the synthesis of ACTH fragments containing N epsilon-(dethiobiotinyl)lysine (dethiobiocytin) amide in position 25 to be used for affinity chromatographic purification of hormone-receptor complexes on Sepharose-immobilized avidin resins. Because labeling ACTH or ACTH fragments by conventional iodination techniques destroys biological activity due to oxidation of Met4 and incorporation of iodine into Tyr2, we have prepared (Phe2,Nle4)ACTH1-24, (Phe2,Nle4,biocytin25)ACTH1-25 amide, and (Phe2,Nle4,dethiobiocytin25)ACTH1-25 amide by conventional synthetic techniques. The HPLC profiles and amino acid analyses of the final products indicate that the materials are of a high degree of purity. The amount of tertiary butylation of the Trp residue in the peptides was assessed by NMR and was found to be less than 0.5%. All three peptides are equipotent with the standard ACTH1-24 as concerns their ability to stimulate steroidogenesis and cAMP formation in bovine adrenal cortical cells. Iodination of (Phe2,Nle4)ACTH1-24, with iodogen as the oxidizing agent, has been accomplished without any detectable loss of biological activity. The mono- and diiodo derivatives of (Phe2,Nle4)ACTH1-24 have been prepared, separated by HPLC, and assayed for biological activity. Both peptides have the full capacity to stimulate steroidogenesis and cAMP production in bovine adrenal cortical cells.

  5. The absence of P2X7 receptors (P2rx7) on non-haematopoietic cells leads to selective alteration in mood-related behaviour with dysregulated gene expression and stress reactivity in mice.

    PubMed

    Csölle, Cecilia; Andó, Rómeó D; Kittel, Ágnes; Gölöncsér, Flóra; Baranyi, Mária; Soproni, Krisztina; Zelena, Dóra; Haller, József; Németh, Tamás; Mócsai, Attila; Sperlágh, Beáta

    2013-02-01

    The purpose of this study was to explore how genetic deletion and pharmacological antagonism of the P2X7 receptor (P2rx7) alter mood-related behaviour, gene expression and stress reactivity in the brain. The forced swim test (FST), tail suspension test (TST) and amphetamine-induced hyperlocomotion (AH) tests were used in wild-type (P2rx7(+/+)) and P2rx7-deficient (P2rx7(-/-)) mice. Biogenic amine levels were analysed in the amygdala and striatum, adrenocorticotropic hormone (ACTH) and corticosterone levels were measured in the plasma and pituitary after restraint stress. Chimeric mice were generated by bone marrow transplantation. A whole genome microarray analysis with real-time polymerase chain reaction validation was performed on the amygdala. In the absence of P2rx7s decreased behavioural despair in the FST, reduced immobility in the TST and attenuated amphetamine-induced hyperactivity were detected. Basal norepinephrine levels were elevated in the amygdala, whereas stress-induced ACTH and corticosterone responses were alleviated in P2rx7(-/-) mice. Sub-acute treatment with the selective P2rx7 antagonist, Brilliant Blue G, reproduced the effect of genetic deletion in the TST and AH test in P2rx7(+/+) but not P2rx7(-/-) mice. No change in behavioural phenotype was observed in chimeras lacking the P2rx7 in their haematopoietic compartment. Whole genome microarray analysis indicated a widespread up- and down-regulation of genes crucial for synaptic function and neuroplasticity by genetic deletion. Here, we present evidence that the absence of P2rx7s on non-haematopoietic cells leads to a mood-stabilizing phenotype in several behavioural models and suggest a therapeutic potential of P2rx7 antagonists for the treatment of mood disorders.

  6. Effects of bupropion on the forced swim test and release of dopamine in the nucleus accumbens in ACTH-treated rats.

    PubMed

    Kitamura, Yoshihisa; Yagi, Takahiko; Kitagawa, Kouhei; Shinomiya, Kazuaki; Kawasaki, Hiromu; Asanuma, Masato; Gomita, Yutaka

    2010-08-01

    The dopamine reuptake inhibitor bupropion has clinically been proven to improve depression and treatment-resistant depression. We examined its influence on the duration of immobility during the forced swim test in adrenocorticotropic hormone (ACTH)-treated rats and further analyzed the possible role of dopamine receptors in this effect. Additionally, the mechanism by which bupropion acts in this model was explored specifically in relation to the site of action through the use of microinjections into the medial prefrontal cortex and nucleus accumbens. Bupropion significantly decreased the duration of immobility in normal and ACTH-treated rats. This effect was blocked by D2 and D3 receptor antagonists in normal rats. Furthermore, infusions of bupropion into the nucleus accumbens, but not medial prefrontal cortex, decreased the immobility of normal and ACTH-treated rats during the forced swim test. Bupropion treatment plus repeated ACTH treatment significantly increased the extracellular dopamine concentration. These findings suggest the antidepressant-like effect of bupropion to be related to levels of dopamine in the rat nucleus accumbens.

  7. Decreased glucocorticoid receptor activity following glucocorticoid receptor antisense RNA gene fragment transfection.

    PubMed Central

    Pepin, M C; Barden, N

    1991-01-01

    Depression is often characterized by increased cortisol secretion caused by hyperactivity of the hypothalamic-pituitary-adrenal axis and by nonsuppression of cortisol secretion following dexamethasone administration. This hyperactivity of the hypothalamic-pituitary-adrenal axis could result from a reduced glucocorticoid receptor (GR) activity in neurons involved in its control. To investigate the effect of reduced neuronal GR levels, we have blocked cellular GR mRNA processing and/or translation by introduction of a complementary GR antisense RNA strand. Two cell lines were transfected with a reporter plasmid carrying the chloramphenicol acetyltransferase (CAT) gene under control of the mouse mammary tumor virus long terminal repeat (a glucocorticoid-inducible promoter). This gene construction permitted assay of the sensitivity of the cells to glucocorticoid hormones. Cells were also cotransfected with a plasmid containing 1,815 bp of GR cDNA inserted in the reverse orientation downstream from either a neurofilament gene promoter element or the Rous sarcoma virus promoter element. Northern (RNA) blot analysis demonstrated formation of GR antisense RNA strands. Measurement of the sensitivity of CAT activity to exogeneous dexamethasone showed that although dexamethasone increased CAT activity by as much as 13-fold in control incubations, expression of GR antisense RNA caused a 2- to 4-fold decrease in the CAT response to dexamethasone. Stable transfectants bearing the GR antisense gene fragment construction demonstrated a 50 to 70% decrease of functional GR levels compared with normal cells, as evidenced by a ligand-binding assay with the type II glucocorticoid receptor-specific ligand [3H]RU 28362. These results validate the use of antisense RNA to GR to decrease cellular response to glucocorticoids. Images PMID:1996114

  8. Transcriptional Characterization of Porcine Leptin and Leptin Receptor Genes

    PubMed Central

    Pérez-Montarelo, Dafne; Fernández, Almudena; Barragán, Carmen; Noguera, Jose L.; Folch, Josep M.; Rodríguez, M. Carmen; Óvilo, Cristina; Silió, Luis; Fernández, Ana I.

    2013-01-01

    The leptin (LEP) and its receptor (LEPR) regulate food intake and energy balance through hypothalamic signaling. However, the LEP-LEPR axis seems to be more complex and its expression regulation has not been well described. In pigs, LEP and LEPR genes have been widely studied due to their relevance. Previous studies reported significant effects of SNPs located in both genes on growth and fatness traits. The aim of this study was to determine the expression profiles of LEP and LEPR across hypothalamic, adipose, hepatic and muscle tissues in Iberian x Landrace backcrossed pigs and to analyze the effects of gene variants on transcript abundance. To our knowledge, non porcine LEPR isoforms have been described rather than LEPRb. A short porcine LEPR isoform (LEPRa), that encodes a protein lacking the intracellular residues responsible of signal transduction, has been identified for the first time. The LEPRb isoform was only quantifiable in hypothalamus while LEPRa appeared widely expressed across tissues, but at higher levels in liver, suggesting that both isoforms would develop different roles. The unique LEP transcript showed expression in backfat and muscle. The effects of gene variants on transcript expression revealed interesting results. The LEPRc.1987C>T polymorphism showed opposite effects on LEPRb and LEPRa hypothalamic expression. In addition, one out of the 16 polymorphisms identified in the LEPR promoter region revealed high differential expression in hepatic LEPRa. These results suggest a LEPR isoform-specific regulation at tissue level. Conversely, non-differential expression of LEP conditional on the analyzed polymorphisms could be detected, indicating that its regulation is likely affected by other mechanisms rather than gene sequence variants. The present study has allowed a transcriptional characterization of LEP and LEPR isoforms on a range of tissues. Their expression patterns seem to indicate that both molecules develop peripheral roles apart from

  9. Calcium-Sensing Receptor Gene: Regulation of Expression

    PubMed Central

    Hendy, Geoffrey N.; Canaff, Lucie

    2016-01-01

    The human calcium-sensing receptor gene (CASR) has 8 exons, and localizes to chromosome 3q. Exons 1A and 1B encode alternative 5′-untranslated regions (UTRs) that splice to exon 2 encoding the AUG initiation codon. Exons 2–7 encode the CaSR protein of 1078 amino acids. Promoter P1 has TATA and CCAAT boxes upstream of exon 1A, and promoter P2 has Sp1/3 motifs at the start site of exon 1B. Exon 1A transcripts from the P1 promoter are reduced in parathyroid tumors and colon carcinomas. Studies of colon carcinomas and neuroblastomas have emphasized the importance of epigenetic changes—promoter methylation of the GC-rich P2 promoter, histone acetylation—as well as involvement of microRNAs in bringing about CASR gene silencing and reduced CaSR expression. Functional cis-elements in the CASR promoters responsive to 1,25-dihydroxyvitamin D [1,25(OH)2D], proinflammatory cytokines, and the transcription factor glial cells missing-2 (GCM2) have been characterized. Reduced levels of CaSR and reduced responsiveness to active vitamin D in parathyroid neoplasia and colon carcinoma may blunt the “tumor suppressor” activity of the CaSR. The hypocalcemia of critically ill patients with burn injury or sepsis is associated with CASR gene upregulation by TNF-alpha and IL-1beta via kappaB elements, and by IL-6 via Stat1/3 and Sp1/3 elements in the CASR gene promoters, respectively. The CASR is transactivated by GCM2—the expression of which is essential for parathyroid gland development. Hyperactive forms of GCM2 may contribute to later parathyroid hyperactivity or tumorigenesis. The expression of the CaSR—the calciostat—is regulated physiologically and pathophysiologically at the gene level. PMID:27679579

  10. Receptor protein kinase gene encoded at the self-incompatibility locus

    DOEpatents

    Nasrallah, June B.; Nasrallah, Mikhail E.; Stein, Joshua

    1996-01-01

    Described herein is a S receptor kinase gene (SRK), derived from the S locus in Brassica oleracea, having a extracellular domain highly similar to the secreted product of the S-locus glycoprotein gene.

  11. Toll-like receptors and microbial exposure: gene-gene and gene-environment interaction in the development of atopy.

    PubMed

    Reijmerink, N E; Kerkhof, M; Bottema, R W B; Gerritsen, J; Stelma, F F; Thijs, C; van Schayck, C P; Smit, H A; Brunekreef, B; Postma, D S; Koppelman, G H

    2011-10-01

    Environmental and genetic factors contribute to atopy development. High microbial exposure may confer a protective effect on atopy. Toll-like receptors (TLRs) bind microbial products and are important in activating the immune system. To assess whether interactions between microbial exposures and genes encoding TLRs (and related genes) result in atopy, genes, environmental factors and gene-environment interactions of 66 single-nucleotide polymorphisms (SNPs) of 12 genes (TLR 1-6, 9 and 10, CD14, MD2, lipopolysaccharide-binding protein (LBP) and Dectin-1), and six proxy parameters of microbial exposure (sibship size, pets (three different parameters), day-care and intrauterine and childhood tobacco smoke exposure) were analysed for association with atopic phenotypes in 3,062 Dutch children (the Allergenic study). The presence of two or more older siblings increased the risk of developing high total immunoglobulin (Ig)E levels at different ages. This risk increased further in children aged 1-2 yrs carrying the minor allele of TLR6 SNP rs1039559. Furthermore, novel two- and three-factor gene-gene and gene-environment interactions were found (e.g. between sibship size, day-care and LBP SNP rs2232596). Larger sibship size is associated with increased total IgE levels. Furthermore, complex two- and three-factor interactions exist between genes and the environment. The TLRs and related genes interact with proxy parameters of high microbial exposure in atopy development.

  12. Variants in the vitamin D receptor gene and asthma

    PubMed Central

    Wjst, Matthias

    2005-01-01

    Background Early lifetime exposure to dietary or supplementary vitamin D has been predicted to be a risk factor for later allergy. Twin studies suggest that response to vitamin D exposure might be influenced by genetic factors. As these effects are primarily mediated through the vitamin D receptor (VDR), single base variants in this gene may be risk factors for asthma or allergy. Results 951 individuals from 224 pedigrees with at least 2 asthmatic children were analyzed for 13 SNPs in the VDR. There was no preferential transmission to children with asthma. In their unaffected sibs, however, one allele in the 5' region was 0.5-fold undertransmitted (p = 0.049), while two other alleles in the 3' terminal region were 2-fold over-transmitted (p = 0.013 and 0.018). An association was also seen with bronchial hyperreactivity against methacholine and with specific immunoglobulin E serum levels. Conclusion The transmission disequilibrium in unaffected sibs of otherwise multiple-affected families seem to be a powerful statistical test. A preferential transmission of vitamin D receptor variants to children with asthma could not be confirmed but raises the possibility of a protective effect for unaffected children. PMID:15651992

  13. Transcriptional regulation of the bovine oxytocin receptor gene.

    PubMed

    Telgmann, Ralph; Bathgate, Ross A D; Jaeger, Stefanie; Tillmann, Gina; Ivell, Richard

    2003-03-01

    The oxytocin receptor (OTR) is expressed in the cow uterus at high levels at estrus and at term of pregnancy. This expression appears to be controlled mostly at the transcriptional level and correlates with increasing estrogen concentration and progesterone withdrawal. Approximately 3200 base pairs of the upstream region of the bovine OTR gene were cloned and analyzed using a combination of bioinformatic, electrophoretic mobility shift (EMSA), and transfection analyses. Using nuclear proteins from high- and low-expressing tissues, EMSA indicated no significant quantitative or qualitative changes in specific DNA-protein binding, suggesting that transcription is probably controlled by signalling systems targeting constitutive factors. Using various cell types, including primary and immortalized ruminant endometrial epithelial cells, as hosts for transfection of promoter-reporter constructs showed that endogenous activity resided only in the longest, i.e., 3.2-kb, construct but not in those shorter than 1.0 kb. While estrogen appears to be important in vivo, no effect of estradiol was found on any construct directly; only when the longest 3.2-kb construct was used in combination with some cotransfected steroid receptor cofactors, e.g., SRC1e, was an estradiol-dependent effect observed. A putative interferon-responsive element (IRE) was found at approximately -2,400 from the transcription start site. This element was shown to bind mouse IRF1 and IRF2 as well as similar proteins from bovine endometrial and myometrial nuclear extracts. This element also responded to these factors when cotransfected into various cell types. The bovine equivalents to IRF1 and IRF2 were molecularly cloned from endometrial tissue and shown to be expressed in a temporal fashion, supporting the role of interferon-tau in maternal recognition of pregnancy. Of many factors tested or analyzed, these components of the IFN system are the only ones found to significantly influence the transcription

  14. Optimizing T-cell receptor gene therapy for hematologic malignancies

    PubMed Central

    Morris, Emma C.

    2016-01-01

    Recent advances in genetic engineering have enabled the delivery of clinical trials using patient T cells redirected to recognize tumor-associated antigens. The most dramatic results have been seen with T cells engineered to express a chimeric antigen receptor (CAR) specific for CD19, a differentiation antigen expressed in B cells and B lineage malignancies. We propose that antigen expression in nonmalignant cells may contribute to the efficacy of T-cell therapy by maintaining effector function and promoting memory. Although CAR recognition is limited to cell surface structures, T-cell receptors (TCRs) can recognize intracellular proteins. This not only expands the range of tumor-associated self-antigens that are amenable for T-cell therapy, but also allows TCR targeting of the cancer mutagenome. We will highlight biological bottlenecks that potentially limit mutation-specific T-cell therapy and may require high-avidity TCRs that are capable of activating effector function when the concentrations of mutant peptides are low. Unexpectedly, modified TCRs with artificially high affinities function poorly in response to low concentration of cognate peptide but pose an increased safety risk as they may respond optimally to cross-reactive peptides. Recent gene-editing tools, such as transcription activator–like effector nucleases and clustered regularly interspaced short palindromic repeats, provide a platform to delete endogenous TCR and HLA genes, which removes alloreactivity and decreases immunogenicity of third-party T cells. This represents an important step toward generic off-the-shelf T-cell products that may be used in the future for the treatment of large numbers of patients. PMID:27207802

  15. Liver X Receptor Genes Variants Modulate ALS Phenotype.

    PubMed

    Mouzat, Kevin; Molinari, Nicolas; Kantar, Jovana; Polge, Anne; Corcia, Philippe; Couratier, Philippe; Clavelou, Pierre; Juntas-Morales, Raul; Pageot, Nicolas; Lobaccaro, Jean -Marc A; Raoul, Cedric; Lumbroso, Serge; Camu, William

    2017-02-27

    Amyotrophic lateral sclerosis (ALS) is one of the most severe motor neuron (MN) disorders in adults. Phenotype of ALS patients is highly variable and may be influenced by modulators of energy metabolism. Recent works have implicated the liver X receptors α and β (LXRs), either in the propagation process of ALS or in the maintenance of MN survival. LXRs are nuclear receptors activated by oxysterols, modulating cholesterol levels, a suspected modulator of ALS severity. In a cohort of 438 ALS patients and 330 healthy controls, the influence of LXR genes on ALS risk and phenotype was studied using single nucleotide polymorphisms (SNPs). The two LXRα SNPs rs2279238 and rs7120118 were shown to be associated with age at onset in ALS patients. Consistently, homozygotes were twice more correlated than were heterozygotes to delayed onset. The onset was thus delayed by 3.9 years for rs2279238 C/T carriers and 7.8 years for T/T carriers. Similar results were obtained for rs7120118 (+2.1 years and +6.7 years for T/C and C/C genotypes, respectively). The LXRβ SNP rs2695121 was also shown to be associated with a 30% increase of ALS duration (p = 0.0055, FDR = 0.044). The tested genotypes were not associated with ALS risk. These findings add further evidence to the suspected implication of LXR genes in the disease process of ALS and might open new perspectives in ALS therapeutics.

  16. The Dopamine D2 Receptor Gene, Perceived Parental Support, and Adolescent Loneliness: Longitudinal Evidence for Gene-Environment Interactions

    ERIC Educational Resources Information Center

    van Roekel, Eeske; Goossens, Luc; Scholte, Ron H. J.; Engels, Rutger C. M. E.; Verhagen, Maaike

    2011-01-01

    Background: Loneliness is a common problem in adolescence. Earlier research focused on genes within the serotonin and oxytocin systems, but no studies have examined the role of dopamine-related genes in loneliness. In the present study, we focused on the dopamine D2 receptor gene (DRD2). Methods: Associations among the DRD2, sex, parental support,…

  17. Expression of androgen receptor target genes in skeletal muscle.

    PubMed

    Rana, Kesha; Lee, Nicole K L; Zajac, Jeffrey D; MacLean, Helen E

    2014-01-01

    We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR)-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (AR(ΔZF2)) versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR(∆ZF2) muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57(Kip2), Igf2 and calcineurin Aa, was increased in AR(∆ZF2) muscle, and the expression of all but p57(Kip2) was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  18. Melanocortin-4 receptor gene mutations in obese Slovak children.

    PubMed

    Stanikova, D; Surova, M; Ticha, L; Petrasova, M; Virgova, D; Huckova, M; Skopkova, M; Lobotkova, D; Valentinova, L; Mokan, M; Stanik, J; Klimes, I; Gasperikova, D

    2015-01-01

    The most common etiology of non-syndromic monogenic obesity are mutations in gene for the Melanocortin-4 receptor (MC485) with variable prevalence in different countries (1.2-6.3 % of obese children). The aim of our study was 1) to search for MC4R mutations in obese children in Slovakia and compare their prevalence with other European countries, and 2) to describe the phenotype of the mutation carriers. DNA analysis by direct Sanger sequencing of the coding exons and intron/exon boundaries of the MC4R gene was performed in 268 unrelated Slovak children and adolescents with body mass index above the 97(th) percentile for age and sex and obesity onset up to 11 years (mean 4.3+/-2.8 years). Two different previously described heterozygous loss of function MC4R variants (i.e. p.Ser19Alafs*34, p.Ser127Leu) were identified in two obese probands, and one obese (p.Ser19Alafs*34), and one lean (p.Ser127Leu) adult family relatives. No loss of function variants were found in lean controls. The prevalence of loss-of-function MC4R variants in obese Slovak children was 0.7 %, what is one of the lowest frequencies in Europe.

  19. Anti-Epidermal Growth Factor Receptor Gene Therapy for Glioblastoma

    PubMed Central

    Hicks, Martin J.; Chiuchiolo, Maria J.; Ballon, Douglas; Dyke, Jonathan P.; Aronowitz, Eric; Funato, Kosuke; Tabar, Viviane; Havlicek, David; Fan, Fan; Sondhi, Dolan; Kaminsky, Stephen M.; Crystal, Ronald G.

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary intracranial brain tumor in adults with a mean survival of 14 to 15 months. Aberrant activation of the epidermal growth factor receptor (EGFR) plays a significant role in GBM progression, with amplification or overexpression of EGFR in 60% of GBM tumors. To target EGFR expressed by GBM, we have developed a strategy to deliver the coding sequence for cetuximab, an anti-EGFR antibody, directly to the CNS using an adeno-associated virus serotype rh.10 gene transfer vector. The data demonstrates that single, local delivery of an anti-EGFR antibody by an AAVrh.10 vector coding for cetuximab (AAVrh.10Cetmab) reduces GBM tumor growth and increases survival in xenograft mouse models of a human GBM EGFR-expressing cell line and patient-derived GBM. AAVrh10.CetMab-treated mice displayed a reduction in cachexia, a significant decrease in tumor volume and a prolonged survival following therapy. Adeno-associated-directed delivery of a gene encoding a therapeutic anti-EGFR monoclonal antibody may be an effective strategy to treat GBM. PMID:27711187

  20. Mannose receptor-mediated gene delivery into antigen presenting dendritic cells.

    PubMed

    Diebold, Sandra S; Plank, Christian; Cotten, Matt; Wagner, Ernst; Zenke, Martin

    2002-11-01

    Dendritic cells are professional antigen presenting cells and are unique in their ability to prime naïve T cells. Gene modification of dendritic cells is of particular interest for immunotherapy of diseases where the immune system has failed or is aberrantly regulated, such as in cancer or autoimmune disease, respectively. Dendritic cells abundantly express mannose receptor and mannose receptor-related receptors, and receptor-mediated gene transfer via mannose receptor offers a versatile tool for targeted gene delivery into these cells. Accordingly, mannose polyethylenimine DNA transfer complexes were generated and used for gene delivery into dendritic cells. Mannose receptor belongs to the group of scavenger receptors that allow dendritic cells to take up pathogenic material, which is directed for degradation and MHC class II presentation. Therefore, a limiting step of transgene expression by mannose receptor-mediated gene delivery is endosomal degradation of DNA. Several strategies have been explored to overcome this limitation including the addition of endosomolytic components to DNA transfer complexes like adenovirus particles and influenza peptides. Here, we review the current understanding of mannose receptor-mediated gene delivery into dendritic cells and discuss strategies to identify appropriate endosomolytic agents to improve DNA transfer efficacy.

  1. ACTH adenomas transforming their clinical expression: report of 5 cases.

    PubMed

    Zoli, Matteo; Faustini-Fustini, Marco; Mazzatenta, Diego; Marucci, Gianluca; De Carlo, Eugenio; Bacci, Antonella; Pasquini, Ernesto; Lanzino, Giuseppe; Frank, Giorgio

    2015-02-01

    OBJECT Adrenocorticotropic hormone (ACTH) adenomas have been recognized as a more aggressive and invasive subtype of pituitary adenomas. An additional and clinically relevant peculiarity of these tumors is their ability to modify their clinical expression from a silent form to Cushing disease or vice versa. The aim of this study was to review a series of patients with pituitary adenomas and analyze the clinical implications of the transformation of clinical expression in 5 cases that showed this phenomenon. METHODS The authors retrospectively reviewed a series of patients with pituitary adenoma and collected clinical, biohumoral, and neuroradiological data of those who presented with a transformation from silent ACTH adenomas to functioning tumors or vice versa. In all the cases, preoperative assessment consisted of brain MRI, ophthalmological examination, and complete baseline endocrinological investigation. In patients with clinical and/or biochemical findings suspicious for Cushing syndrome, a low-dose dexamethasone suppression test was performed to rule in or out this diagnosis. Endocrinological evaluations were repeated 1 month after surgery, 3 months after surgery, and every 6 months or annually thereafter. Ophthalmological evaluations and brain MRIs were repeated after 3 months and then every 6 or 12 months thereafter. RESULTS Five patients (2 men and 3 women) included in this series had corticotropic tumors that showed transformation from an endocrinologically silent form to manifest Cushing disease and vice versa. The mean age at presentation was 40 years (range 18-51 years). In 3 of these patients, a transformation from silent to functioning ACTH adenoma with manifest Cushing disease occurred. In 1 patient, the authors observed the transition from a functioning to a silent adenoma with spontaneous resolution of hypercortisolism. Another patient's silent adenoma "shifted" to a functioning adenoma and then regressed back to a silent form with spontaneous

  2. Testosterone, estradiol, ACTH and musical, spatial and verbal performance.

    PubMed

    Hassler, M; Gupta, D; Wollmann, H

    1992-01-01

    Testosterone, estradiol, and ACTH were determined in blood serum of 26 healthy males aged 19.16 and of 25 healthy females aged 18.77 years on average, and results were correlated with test scores of three spatial tests, a verbal fluency measure, and a test measuring general musical ability. In addition, hemispheric lateralization for verbal material and handedness was assessed. While testosterone and estradiol alone were not significantly related to any of the cognitive or musical tests, testosterone/estradiol ratio was significantly negatively correlated with spatial tests, and ACTH was significantly positively correlated with spatial and musical tests. Correlations were stronger in females than in males. The laterality index was significantly negatively correlated with testosterone in males indicating that right hemisphere involvement in verbal processing was associated with high testosterone levels.

  3. Androgen Activation of the Folate Receptor α Gene through Partial Tethering of the Androgen Receptor by C/EBPα○

    PubMed Central

    Sivakumaran, Suneethi; Zhang, Juan; Kelley, Karen M.M.; Gonit, Mesfin; Hao, Hong; Ratnam, Manohar

    2010-01-01

    The folate receptor α (FRα) is critical for normal embryonic and fetal development. The receptor has a relatively narrow tissue specificity which includes the visceral endoderm and the placenta and mediates delivery of folate, inadequacy of which results in termination of pregnancy or developmental defects. We have previously reported that the FRα gene is negatively and directly regulated by estrogen and positively but indirectly by progesterone and glucocorticoid. To further investigate hormonal control of this gene and in view of the growing evidence for the importance of the androgen receptor (AR) in endometrial and placental functions, we examined the response of the FRα gene to androgen. Here we demonstrate that the FRα gene is directly activated by androgen. The P4 promoter of the FRα gene is the target of hormone-dependent activation by the androgen receptor (AR) in a manner that is co-activator-dependent. The site of functional association of AR in the FRα gene maps to a 35bp region occurring ~1500bp upstream of the target promoter. The functional elements within this region are an androgen response element (ARE) half-site and a non-canonical C/EBP element that cooperate to recruit AR in a manner that is dependent on the DNA-bound C/EBPα. Since the placenta is rich in C/EBPα, the findings underscore the multiplicity of mechanisms by which the FRα gene is under the exquisite control of steroid hormones. PMID:20817090

  4. Characterization of the hormone responsive element involved in the regulation of the progesterone receptor gene.

    PubMed Central

    Savouret, J F; Bailly, A; Misrahi, M; Rauch, C; Redeuilh, G; Chauchereau, A; Milgrom, E

    1991-01-01

    The transcription of the progesterone receptor gene is induced by estrogens and decreased by progestins. Studies were performed to define the regions of the gene and the molecular mechanisms involved. No hormonal regulation could be observed using 5' flanking regions of the gene up to -2762 in front of a heterologous gene. Estrogen and progestin regulation could be observed only when using fragments of the gene extending down to +788. Progressive deletions from the 5' and 3' ends, site-directed mutagenesis and DNase protection experiments with purified estrogen receptor suggested that the biologically active estrogen responsive element (ERE) is present at +698/+723, overlapping the initiation of translation. An oligonucleotide was synthesized bearing this ERE and shown to impart estrogen inducibility to a heterologous gene. Its regulation by anti-estrogens corresponded to that of the in situ progesterone receptor gene since tamoxifen was a partial agonist whereas ICI 164384 was a full antagonist. This ERE also mediated down-regulation by progestins in the presence of the progesterone receptor, even though it has no progesterone receptor binding ability. DNase footprinting showed that this effect was not due to a decrease of estrogen receptor affinity for the ERE in the presence of progesterone receptor. Finally, use of deletion mutants of the progesterone receptor showed that the steroid binding and the DNA binding domains were necessary for down-regulation whereas deletions of various parts of the N-terminal domain were without effect. Images PMID:2050123

  5. Olfactory Receptor Gene Polymorphisms and Nonallergic Vasomotor Rhinitis

    PubMed Central

    Bernstein, Jonathan A.; Zhang, Ge; Jin, Li; Abbott, Carol; Nebert, Daniel W.

    2009-01-01

    We sought a genotype-phenotype association: between single-nucleotide polymorphisms (SNPs) in olfactory receptor (OR) genes from the two largest OR gene clusters and odor-triggered nonallergic vasomotor rhinitis (nVMR). In the initial pedigree screen, using transmission disequilibrium test (TDT) analysis, six SNPs showed “significant” p-values between 0.0449 and 0.0043. In a second case-control population, the previously identified six SNPs did not re-emerge, whereas four new SNPs showed p-values between 0.0490 and 0.0001. Combining both studies, none of the SNPs in the TDT analysis survived the Bonferroni correction. In the population study, one SNP showed an empirical p-value of 0.0066 by shuffling cases and controls with 105 replicates; however, the p-value for this SNP was 0.83 in the pedigree study. This study emphasizes that underpowered studies having p-values between <0.05 and 0.0001 should be regarded as inconclusive and require further replication before concluding the study is “informative.” However, we believe that our hypothesis that an association between OR genotypes and the nVMR phenotype remains feasible. Future studies using either a genomewide association study of all OR gene-pseudogene regions throughout the genome—at the current recommended density of 2.5 to 5 kb per tag SNP—or studies incorporating microarray analyses of the entire “OR genome” in well-characterized nVMR patients are required. PMID:18446592

  6. Estrogen receptor genes in gastropods: phylogenetic divergence and gene expression responses to a synthetic estrogen.

    PubMed

    Hultin, Cecilia L; Hallgren, Per; Hansson, Maria C

    2016-11-01

    Endocrine disrupting chemicals (EDCs) have the potential to affect development and reproduction in gastropods. However, one is today lacking basic understanding of the Molluscan endocrine system and one can therefore not fully explain these EDC-induced affects. Furthermore, only a few genes that potentially may be connected to the endocrine system have been sequenced in gastropods. An example is the estrogen receptor gene (er) that have been identified in a restricted number of freshwater and marine gastropods. Here, we have identified a new partial coding sequence of an estrogen receptor gene (er) in the European common heterobranch Radix balthica. The following phylogenetic analysis divided the ers of heterobranchs and ceanogastropods in two branches. Furthermore, exposure to the synthetic estrogen 17α-ethinylestradiol (EE2) showed that exposure could significantly affect er expression level in the heterobranch R. balthica. This paper is the first that phylogenetically compares gastropods' er, basal er expression profiles, and transcriptional estrogenic responses in gastropods from two different evolutionary groups.

  7. Olfactory receptor accessory proteins play crucial roles in receptor function and gene choice

    PubMed Central

    Sharma, Ruchira; Ishimaru, Yoshiro; Davison, Ian; Ikegami, Kentaro; Chien, Ming-Shan; You, Helena; Chi, Quiyi; Kubota, Momoka; Yohda, Masafumi; Ehlers, Michael; Matsunami, Hiroaki

    2017-01-01

    Each of the olfactory sensory neurons (OSNs) chooses to express a single G protein-coupled olfactory receptor (OR) from a pool of hundreds. Here, we show the receptor transporting protein (RTP) family members play a dual role in both normal OR trafficking and determining OR gene choice probabilities. Rtp1 and Rtp2 double knockout mice (RTP1,2DKO) show OR trafficking defects and decreased OSN activation. Surprisingly, we discovered a small subset of the ORs are expressed in larger numbers of OSNs despite the presence of fewer total OSNs in RTP1,2DKO. Unlike typical ORs, some overrepresented ORs show robust cell surface expression in heterologous cells without the co-expression of RTPs. We present a model in which developing OSNs exhibit unstable OR expression until they choose to express an OR that exits the ER or undergo cell death. Our study sheds light on the new link between OR protein trafficking and OR transcriptional regulation. DOI: http://dx.doi.org/10.7554/eLife.21895.001 PMID:28262096

  8. Ah Receptor-mediated impairment of interrenal steroidogenesis involves StAR protein and P450scc gene attenuation in rainbow trout.

    PubMed

    Aluru, Neelakanteswar; Renaud, Rick; Leatherland, John F; Vijayan, Mathilakath M

    2005-04-01

    The objective of the study was to investigate the impact of aryl hydrocarbon receptor (AhR) activation on interrenal steroidogenesis in rainbow trout. To this end, fish were fed AhR agonist (beta-naphthoflavone (BNF): 10 mg/kg body mass/day) and antagonist (alpha-naphthoflavone (ANF): 10 mg/kg body mass/day) either singly or in combination (ABNF) for 5 days to elucidate the mechanisms involved in AhR-mediated depression of cortisol production. Liver AhR protein expression was significantly elevated only with ABNF, but not with BNF and ANF compared to the control group. However, all three treatments (BNF, ANF, and ABNF) significantly elevated cytochrome P450 1A1 (CYP1A1) gene and protein expression in the kidney and liver, respectively. Also, these three treatment groups had significantly depressed ACTH-stimulated cortisol production in vitro compared to the control group. This attenuation of interrenal steroidogenesis corresponded with a lower mRNA abundance of steroidogenic acute regulatory (StAR) protein and cytochrome P450 cholesterol side chain cleavage enzyme (P450scc), but not 11beta-hydroxylase. Furthermore, in vitro incubation of head kidney pieces with 7-3H-pregnenolone failed to show any treatment effects on pathways downstream of P450scc, except for a significantly higher conversion to progesterone in the BNF and ANF groups. Plasma cortisol and glucose levels showed no significant change between the treated groups and control, but liver and brain glucocorticoid receptor (GR) protein expression was higher in the BNF group, and ANF abolished this response. Taken together, both BNF and ANF impaired cortisol production, and the mechanism may involve attenuation of StAR and P450scc, the rate limiting steps in steroidogenesis. Overall, endocrine disruption by xenobiotics acting via AhR includes impaired cortisol biosynthesis and abnormal cortisol target tissue GR responses in rainbow trout.

  9. ACTH-like peptides increase pain sensitivity and antagonize opiate analgesia

    NASA Technical Reports Server (NTRS)

    Heybach, J. P.; Vernikos, J.

    1981-01-01

    The role of the pituitary and of ACTH in pain sensitivity was investigated in the rat. Pain sensitivity was assessed by measuring paw-lick and jump latencies in response to being placed on a grid at 55 C. Hypophysectomy reduced pain sensitivity, and this effect was reversed by the intracerebroventricular (ICV) injection of the opiate antagonist naloxone. Similarly, the analgesia produced by a dose of morphine was antagonized by the administration of ACTH or alpha-MSH. The peripheral injection of ACTH or alpha-MSH in normal rats did not increase pain sensitivity. However, ACTH administered ICV increased pain sensivity within 10 min. The results indicate that the pituitary is the source of an endogenous opiate antagonist and hyperalgesic factor and that this factor is ACTH or an ACTH-like peptide. This activity resides in the N-terminal portion of the ACTH molecule since ACTH sub 4-10 is not active in this respect, nor does this activity require a free N-terminal serine since alpha-MSH appears to be almost as potent as the ACTH sub 1-24 peptide. It is concluded that ACTH-like peptides of pituitary origin act as endogenous hyperalgesic and opiate antagonistic factors.

  10. The effect of intracarotid vasopressin infusion on ACTH release in neurohypophysectomized, conscious dogs.

    PubMed

    Raff, H; Papanek, P E; Liard, J F; Cowley, A W

    1994-09-01

    Neurohypophysectomy (NHX) attenuates the adrenocorticotropic hormone (ACTH) response to arterial hypotension but not corticotropin-releasing hormone (CRH) or insulin-induced hypoglycemia in conscious dogs. The purpose of the present study was to determine if increasing vasopressin (AVP) in the cephalic circulation by carotid infusion normalizes the ACTH response to hypotension attenuated by NHX. Five male, conditioned dogs underwent controlled, acute decreases in arterial pressure (by approximately 25 mmHg) by infusion of sodium nitroprusside (NP) before and > 4 wk after selective NHX. ACTH increased from 40 +/- 3 to 242 +/- 79 pg/ml during NP in the intact state. This response was greatly attenuated after NHX (peak ACTH 81 +/- 15 pg/ml). Simultaneous intravenous infusion of AVP (12.5 ng/min) had a small, augmenting effect on the ACTH response to NP (peak ACTH 120 +/- 27 pg/ml). Intracarotid AVP (12.5 ng/min) greatly augmented the ACTH response to NP (peak ACTH 202 +/- 26 pg/ml) such that it was no longer different from the intact response. Neither intravenous nor intracarotid AVP infusion per se had a great effect on ACTH. A normal ACTH response to hypotension requires an intact neurohypophysis and is mediated by a cephalic action of magnocellular AVP.

  11. Functional Characterization of Soybean Glyma04g39610 as a Brassinosteroid Receptor Gene and Evolutionary Analysis of Soybean Brassinosteroid Receptors

    PubMed Central

    Peng, Suna; Tao, Ping; Xu, Feng; Wu, Aiping; Huo, Weige; Wang, Jinxiang

    2016-01-01

    Brassinosteroids (BR) play important roles in plant growth and development. Although BR receptors have been intensively studied in Arabidopsis, the BR receptors in soybean remain largely unknown. Here, in addition to the known receptor gene Glyma06g15270 (GmBRI1a), we identified five putative BR receptor genes in the soybean genome: GmBRI1b, GmBRL1a, GmBRL1b, GmBRL2a, and GmBRL2b. Analysis of their expression patterns by quantitative real-time PCR showed that they are ubiquitously expressed in primary roots, lateral roots, stems, leaves, and hypocotyls. We used rapid amplification of cDNA ends (RACE) to clone GmBRI1b (Glyma04g39160), and found that the predicted amino acid sequence of GmBRI1b showed high similarity to those of AtBRI1 and pea PsBRI1. Structural modeling of the ectodomain also demonstrated similarities between the BR receptors of soybean and Arabidopsis. GFP-fusion experiments verified that GmBRI1b localizes to the cell membrane. We also explored GmBRI1b function in Arabidopsis through complementation experiments. Ectopic over-expression of GmBRI1b in Arabidopsis BR receptor loss-of-function mutant (bri1-5 bak1-1D) restored hypocotyl growth in etiolated seedlings; increased the growth of stems, leaves, and siliques in light; and rescued the developmental defects in leaves of the bri1-6 mutant, and complemented the responses of BR biosynthesis-related genes in the bri1-5 bak1-D mutant grown in light. Bioinformatics analysis demonstrated that the six BR receptor genes in soybean resulted from three gene duplication events during evolution. Phylogenetic analysis classified the BR receptors in dicots and monocots into three subclades. Estimation of the synonymous (Ks) and the nonsynonymous substitution rate (Ka) and selection pressure (Ka/Ks) revealed that the Ka/Ks of BR receptor genes from dicots and monocots were less than 1.0, indicating that BR receptor genes in plants experienced purifying selection during evolution. PMID:27338344

  12. Ghrelin axis genes, peptides and receptors: recent findings and future challenges.

    PubMed

    Seim, Inge; Josh, Peter; Cunningham, Peter; Herington, Adrian; Chopin, Lisa

    2011-06-20

    The ghrelin axis consists of the gene products of the ghrelin gene (GHRL), and their receptors, including the classical ghrelin receptor GHSR. While it is well-known that the ghrelin gene encodes the 28 amino acid ghrelin peptide hormone, it is now also clear that the locus encodes a range of other bioactive molecules, including novel peptides and non-coding RNAs. For many of these molecules, the physiological functions and cognate receptor(s) remain to be determined. Emerging research techniques, including proteogenomics, are likely to reveal further ghrelin axis-derived molecules. Studies of the role of ghrelin axis genes, peptides and receptors, therefore, promises to be a fruitful area of basic and clinical research in years to come.

  13. Hypothermic and antipyretic effects of ACTH (1-24) and alpha-melanotropin in guinea-pigs

    NASA Technical Reports Server (NTRS)

    Kandasamy, S. B.; Williams, B. A.

    1984-01-01

    Intracerebroventricular administration of adrenocorticotropin (ACTH 1-24) and alpha-melanotropin (alpha-MSH), peptides which occur naturally in brain induced dose-related hypothermia in guinea-pigs at room temperature (21 C) and also produced greater hypothermia at low (10 C) ambient temperature. However, when the experiments were repeated in a warm (30 C) environment, no effect on body temperature was observed. These results indicate that the peptides did not reduce the central set-point of temperature control. The hypothermia induced by ACTH and alpha-MSH was not mediated via histamine H1- or H2-receptors and serotonin since the H1-receptor antagonist, mepyramine, the H2-receptor antagonist, cimetidine, and the serotonin antagonist, methysergide, had no antagonistic effects. The peptides were antipyretic since they reduced pyrogen-induced-fever and hyperthermia due to prostaglandin E2, norepinephrine and dibutyryl cAMP, at a dose which did not affect normal body temperature. The powerful central effects of these peptides on normal body temperature, fever and hyperthermia, together with their presence of the brain regions important to temperature control, suggest that they participate in thermoregulation.

  14. Classification of Dopamine Receptor Genes in Vertebrates: Nine Subtypes in Osteichthyes.

    PubMed

    Yamamoto, Kei; Fontaine, Romain; Pasqualini, Catherine; Vernier, Philippe

    2015-01-01

    Dopamine neurotransmission regulates various brain functions, and its regulatory roles are mediated by two families of G protein-coupled receptors: the D1 and D2 receptor families. In mammals, the D1 family comprises two receptor subtypes (D1 and D5), while the D2 family comprises three receptor subtypes (D2, D3 and D4). Phylogenetic analyses of dopamine receptor genes strongly suggest that the common ancestor of Osteichthyes (bony jawed vertebrates) possessed four subtypes in the D1 family and five subtypes in the D2 family. Mammals have secondarily lost almost half of the ancestral dopamine receptor genes, whereas nonmammalian species kept many of them. Although the mammalian situation is an exception among Osteichthyes, the current classification and characterization of dopamine receptors are based on mammalian features, which have led to confusion in the identification of dopamine receptor subtypes in nonmammalian species. Here we begin by reviewing the history of the discovery of dopamine receptors in vertebrates. The recent genome sequencing of coelacanth, gar and elephant shark led to the proposal of a refined scenario of evolution of dopamine receptor genes. We also discuss a current problem of nomenclature of dopamine receptors. Following the official nomenclature of mammalian dopamine receptors from D1 to D5, we propose to name newly identified receptor subtypes from D6 to D9 in order to facilitate the use of an identical name for orthologous genes among different species. To promote a nomenclature change which allows distinguishing the two dopamine receptor families, a nomenclature consortium is needed. This comparative perspective is crucial to correctly interpret data obtained in animal studies on dopamine-related brain disorders, and more fundamentally, to understand the characteristics of dopamine neurotransmission in vertebrates.

  15. Mapping of the gene encoding the melanocortin-1 ([alpha]-melanocyte stimulating hormone) receptor (MC1R) to human chromosome 16q24. 3 by fluorescence in situ hybridization

    SciTech Connect

    Gantz, I.; Yamada, Tadataka; Tashiro, Takao; Konda, Yoshitaka; Shimoto, Yoshimasa; Miwa, Hiroto; Trent, J.M. )

    1994-01-15

    [alpha]-Melanocyte stimulating hormone ([alpha]-MSH), a hormone originally named for its ability to regulate pigmentation of melanocytes, is a 13-amino-acid post-translational product of the pro-opiomelanocortin (POMC) gene. [alpha]-MSH and the other products of POMC processing, which share the core heptapeptide amino acid sequence Met-Glu (Gly)-His-Phe-Arg-Trp-Gly (Asp), the adrenocorticotropic hormone (ACTH), [beta]-MSH, and [gamma]-MSH, are collectively referred to as melanocortins. While best known for their effects on the melanocyte (pigmentation) and adrenal cortical cells (steroidogenesis), melanocortins have been postulated to function in diverse activities, including enhancement of learning and memory, control of the cardiovascular system, analgesia, thermoregulation, immunomodulation, parturition, and neurotrophism. To identify the chromosomal band encoding the human melanocortin-1 receptor gene, 1 [mu]g of an EMBL clone coding region of the human MC1R and approximately 15 kb of surrounding DNA was labeled with biotin and hybridized to human metaphase chromosomes as previously described. The results indicate that the human MC1R gene is localized to 16q24.3. 15 refs., 1 fig.

  16. Allelic association of human dopamine D sub 2 receptor gene in alcoholism

    SciTech Connect

    Blum, K.; Sheridan, P.J.; Montgomery, A.; Jagadeeswaran, P.; Nogami, H.; Briggs, A.H. ); Noble, E.P.; Ritchie, T.; Cohn, J.B. )

    1990-04-18

    In a blinded experiment, the authors report the first allelic association of the dopamine D{sub 2} receptor gene in alcoholism. From 70 brain samples of alcoholics and nonalcoholics, DNA was digested with restriction endonucleases and probed with a clone that contained the entire 3{prime} coding exon, the polyadenylation signal, and approximately 16.4 kilobases of noncoding 3{prime} sequence of the human dopamine D{sub 2} receptor gene ({lambda}hD2G1). In the present samples, the presence of A1 allele of the dopamine D{sub 2} receptor gene correctly classified 77% of alcoholics, and its absence classified 72% of nonalcoholics. The polymorphic pattern of this receptor gene suggests that a gene that confers susceptibility to at least one form of alcoholism is located on the q22-q23 region of chromosome 11.

  17. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium

    EPA Science Inventory

    The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents inc...

  18. Association study of dopamine D3 receptor gene and schizophrenia

    SciTech Connect

    Kennedy, J.L.; Billett, E.A.; Macciardi, F.M.

    1995-12-18

    Several groups have reported an association between schizophrenia and the MscI polymorphism in the first exon of the dopamine D3 receptor gene (DRD3). We studied this polymorphism using a North American sample (117 patients plus 188 controls) and an Italian sample (97 patients plus 64 controls). In the first part of the study, we compared allele frequencies of schizophrenia patients and unmatched controls and observed a significant difference in the total sample (P = 0.01). The second part of the study involved a case control approach in which each schizophrenia patient was matched to a control of the same sex, and of similar age and ethnic background. The DRD3 allele frequencies of patients and controls revealed no significant difference between the two groups in the Italian (N = 53) or the North American (N = 54) matched populations; however, when these two matched samples were combined, a significant difference was observed (P = 0.026). Our results suggest that the MscI polymorphism may be associated with schizophrenia in the populations studied. 32 refs., 2 tabs.

  19. Penguins reduced olfactory receptor genes common to other waterbirds

    PubMed Central

    Lu, Qin; Wang, Kai; Lei, Fumin; Yu, Dan; Zhao, Huabin

    2016-01-01

    The sense of smell, or olfaction, is fundamental in the life of animals. However, penguins (Aves: Sphenisciformes) possess relatively small olfactory bulbs compared with most other waterbirds such as Procellariiformes and Gaviiformes. To test whether penguins have a reduced reliance on olfaction, we analyzed the draft genome sequences of the two penguins, which diverged at the origin of the order Sphenisciformes; we also examined six closely related species with available genomes, and identified 29 one-to-one orthologous olfactory receptor genes (i.e. ORs) that are putatively functionally conserved and important across the eight birds. To survey the 29 one-to-one orthologous ORs in penguins and their relatives, we newly generated 34 sequences that are missing from the draft genomes. Through the analysis of totaling 378 OR sequences, we found that, of these functionally important ORs common to other waterbirds, penguins have a significantly greater percentage of OR pseudogenes than other waterbirds, suggesting a reduction of olfactory capability. The penguin-specific reduction of olfactory capability arose in the common ancestor of penguins between 23 and 60 Ma, which may have resulted from the aquatic specializations for underwater vision. Our study provides genetic evidence for a possible reduction of reliance on olfaction in penguins. PMID:27527385

  20. Identification of Androgen Receptor and Beta-Catenin Target Genes in Prostate and Prostate Cancer

    DTIC Science & Technology

    2013-10-01

    Transdisciplinary Research in Epigenetics and Cancer Journal Clubs and Transdisciplinary Science Meetings, biweekly and monthly 3. To gain expertise...Target Genes in Prostate and Prostate Cancer PRINCIPAL INVESTIGATOR: Laura Lamb CONTRACTING ORGANIZATION: Washington University...TITLE AND SUBTITLE Identification of Androgen Receptor and Beta-Catenin Target Genes in Prostate and Prostate Cancer 5a. CONTRACT NUMBER Genes in

  1. Positive association between a DNA sequence variant in the serotonin 2A receptor gene and schizophrenia

    SciTech Connect

    Inayama, Y.; Yoneda, H.; Sakai, T.

    1996-02-16

    Sixty-two patients with schizophrenia and 96 normal controls were investigated for genetic association with restriction fragment length polymorphisms (RFLPs) in the serotonin receptor genes. A positive association between the serotonin 2A receptor gene (HTR2A) and schizophrenia was found, but not between schizophrenia and the serotonin 1A receptor gene. The positive association we report here would suggest that the DNA region with susceptibility to schizophrenia lies in the HTR2A on the long arm of chromosome 13. 15 refs., 2 tabs.

  2. From "junk" to gene: curriculum vitae of a primate receptor isoform gene.

    PubMed

    Singer, Silke S; Männel, Daniela N; Hehlgans, Thomas; Brosius, Jürgen; Schmitz, Jürgen

    2004-08-20

    Exonization of Alu retroposons awakens public opinion, particularly when causing genetic diseases. However, often neglected, alternative "Alu-exons" also carry the potential to greatly enhance genetic diversity by increasing the transcriptome of primates chiefly via alternative splicing.Here, we report a 5' exon generated from one of the two alternative transcripts in human tumor necrosis factor receptor gene type 2 (p75TNFR) that contains an ancient Alu-SINE, which provides an alternative N-terminal protein-coding domain. We follow the primate evolution over the past 63 million years to reconstruct the key events that gave rise to a novel receptor isoform. The Alu integration and start codon formation occurred between 58 and 40 million years ago (MYA) in the common ancestor of anthropoid primates. Yet a functional gene product could not be generated until a novel splice site and an open reading frame were introduced between 40 and 25 MYA on the catarrhine lineage (Old World monkeys including apes).

  3. Isolation of Drosophila genes encoding G protein-coupled receptor kinases.

    PubMed Central

    Cassill, J A; Whitney, M; Joazeiro, C A; Becker, A; Zuker, C S

    1991-01-01

    G protein-coupled receptors are regulated via phosphorylation by a variety of protein kinases. Recently, termination of the active state of two such receptors, the beta-adrenergic receptor and rhodopsin, has been shown to be mediated by agonist- or light-dependent phosphorylation of the receptor by members of a family of protein-serine/threonine kinases (here referred to as G protein-coupled receptor kinases). We now report the isolation of a family of genes encoding a set of Drosophila protein kinases that appear to code for G protein-coupled receptor kinases. These proteins share a high degree of sequence homology with the bovine beta-adrenergic receptor kinase. The presence of a conserved family of G protein-coupled receptor kinases in vertebrates and invertebrates points to the central role of these kinases in signal transduction cascades. Images PMID:1662381

  4. Epigenetic regulation of olfactory receptor gene expression by the Myb–MuvB/dREAM complex

    PubMed Central

    Sim, Choon Kiat; Perry, Sarah; Tharadra, Sana Khalid; Lipsick, Joseph S.; Ray, Anandasankar

    2012-01-01

    In both mammals and insects, an olfactory neuron will usually select a single olfactory receptor and repress remaining members of large receptor families. Here we show that a conserved multiprotein complex, Myb–MuvB (MMB)/dREAM, plays an important role in mediating neuron-specific expression of the carbon dioxide (CO2) receptor genes (Gr63a/Gr21a) in Drosophila. Activity of Myb in the complex is required for expression of Gr63a/Gr21a and acts in opposition to the histone methyltransferase Su(var)3-9. Consistent with this, we observed repressive dimethylated H3K9 modifications at the receptor gene loci, suggesting a mechanism for silencing receptor gene expression. Conversely, other complex members, Mip120 (Myb-interacting protein 120) and E2F2, are required for repression of Gr63a in inappropriate neurons. Misexpression in mutants is accompanied by an increase in the H3K4me3 mark of active chromatin at the receptor gene locus. Nuclei of CO2 receptor-expressing neurons contain reduced levels of the repressive subunit Mip120 compared with surrounding neurons and increased levels of Myb, suggesting that activity of the complex can be regulated in a cell-specific manner. Our evidence suggests a model in which olfactory receptors are regulated epigenetically and the MMB/dREAM complex plays a critical role in specifying, maintaining, and modulating the receptor-to-neuron map. PMID:23105004

  5. Profiling of Olfactory Receptor Gene Expression in Whole Human Olfactory Mucosa

    PubMed Central

    Tarabichi, Maxime; Gregoire, Françoise; Dumont, Jacques E.; Chatelain, Pierre

    2014-01-01

    Olfactory perception is mediated by a large array of olfactory receptor genes. The human genome contains 851 olfactory receptor gene loci. More than 50% of the loci are annotated as nonfunctional due to frame-disrupting mutations. Furthermore haplotypic missense alleles can be nonfunctional resulting from substitution of key amino acids governing protein folding or interactions with signal transduction components. Beyond their role in odor recognition, functional olfactory receptors are also required for a proper targeting of olfactory neuron axons to their corresponding glomeruli in the olfactory bulb. Therefore, we anticipate that profiling of olfactory receptor gene expression in whole human olfactory mucosa and analysis in the human population of their expression should provide an opportunity to select the frequently expressed and potentially functional olfactory receptors in view of a systematic deorphanization. To address this issue, we designed a TaqMan Low Density Array (Applied Biosystems), containing probes for 356 predicted human olfactory receptor loci to investigate their expression in whole human olfactory mucosa tissues from 26 individuals (13 women, 13 men; aged from 39 to 81 years, with an average of 67±11 years for women and 63±12 years for men). Total RNA isolation, DNase treatment, RNA integrity evaluation and reverse transcription were performed for these 26 samples. Then 384 targeted genes (including endogenous control genes and reference genes specifically expressed in olfactory epithelium for normalization purpose) were analyzed using the same real-time reverse transcription PCR platform. On average, the expression of 273 human olfactory receptor genes was observed in the 26 selected whole human olfactory mucosa analyzed, of which 90 were expressed in all 26 individuals. Most of the olfactory receptors deorphanized to date on the basis of sensitivity to known odorant molecules, which are described in the literature, were found in the

  6. Family structure and phylogenetic analysis of odorant receptor genes in the large yellow croaker (Larimichthys crocea)

    PubMed Central

    2011-01-01

    Background Chemosensory receptors, which are all G-protein-coupled receptors (GPCRs), come in four types: odorant receptors (ORs), vomeronasal receptors, trace-amine associated receptors and formyl peptide receptor-like proteins. The ORs are the most important receptors for detecting a wide range of environmental chemicals in daily life. Most fish OR genes have been identified from genome databases following the completion of the genome sequencing projects of many fishes. However, it remains unclear whether these OR genes from the genome databases are actually expressed in the fish olfactory epithelium. Thus, it is necessary to clone the OR mRNAs directly from the olfactory epithelium and to examine their expression status. Results Eighty-nine full-length and 22 partial OR cDNA sequences were isolated from the olfactory epithelium of the large yellow croaker, Larimichthys crocea. Bayesian phylogenetic analysis classified the vertebrate OR genes into two types, with several clades within each type, and showed that the L. crocea OR genes of each type are more closely related to those of fugu, pufferfish and stickleback than they are to those of medaka, zebrafish and frog. The reconciled tree showed 178 duplications and 129 losses. The evolutionary relationships among OR genes in these fishes accords with their evolutionary history. The fish OR genes have experienced functional divergence, and the different clades of OR genes have evolved different functions. The result of real-time PCR shows that different clades of ORs have distinct expression levels. Conclusion We have shown about 100 OR genes to be expressed in the olfactory epithelial tissues of L. crocea. The OR genes of modern fishes duplicated from their common ancestor, and were expanded over evolutionary time. The OR genes of L. crocea are closely related to those of fugu, pufferfish and stickleback, which is consistent with its evolutionary position. The different expression levels of OR genes of large

  7. Transient brain shrinkage in infantile spasms after ACTH treatment. Report of two cases.

    PubMed

    Maekawa, K; Ohta, H; Tamai, I

    1980-02-01

    This is the report of two cases of infantile spasms, manifesting transient brain shrinkage in computerized tomography (CT) after ACTH treatment. ACTH was given for 8 weeks to a 8-months-old Japanese girl with infantile spasms. First CT performed at 2 weeks after the final ACTH injection, displayed moderate brain shrinkage. Second CT at 4 months showed marked diminution of the shrinkage. ACTH was also given for 8 weeks to a 14 months old Japanese boy with infantile spasms. First CT, just before ACTH treatment, showed mild cortical atrophy, the second at 7 days after the final ACTH injection revealed marked brain shrinkage and moderate ventricular dilatation, and the third at 2 months, disclosed mild improvement of the shrinkage. ACTH or corticoateroid has widespread effects on the developing nervous system. In animal experiments, ACTH or steroids interfere with brain growth of young rats. CT findings of transient brain shrinkage in a child with infantile spasms might suggest that intensive treatment with ACTH or steroids in infancy interferes with brain growth as seen in the results of animal experiments.

  8. Comparative study of analgesic potency of ACTH4-10 fragment and its analog semax.

    PubMed

    Ivanova, D M; Levitskaya, N G; Andreeva, L A; Kamenskii, A A; Myasoedov, N F

    2007-01-01

    The effects of ACTH4-10 fragment and its analog semax on nociception were examined on various animal models. ACTH4-10 in a dose of 0.5 mg/kg decreased nociception in rats during hindpaw compression test and in mice subjected to acetic acid writhing test. Lower doses of ACTH4-10 produced no analgesic effect. Semax (0.015-0.500 mg/kg) decreased pain sensitivity in all experimental models. Hence, the substitution of three C-terminal amino acid residues in ACTH4-10 for Pro-Gly-Pro sequence augmented the analgesic potency of the peptide after its peripheral injection.

  9. Effect of hypotension and hyperosmolality on vasopressin and ACTH responses to hypoglycemia in conscious dogs.

    PubMed

    Raff, H; Papanek, P E; Cowley, A W

    1992-08-01

    The purpose of these studies was, first, to determine whether hypertonic saline (HS) infusion or nitroprusside (NiPr)-induced hypotension augments the vasopressin (AVP) and adrenocorticotropic hormone (ACTH) responses to insulin (Ins)-induced hypoglycemia and, second, to determine whether neurohypophysectomy could attenuate the augmentation. Conscious, male dogs (n = 8) underwent two different types of experiments. In the first, Ins was preceded by either a 30-min infusion of normal saline (control) or HS to raise plasma osmolality and AVP. HS augmented the AVP response but diminished the ACTH response to Ins. In the second group of experiments, Ins was preceded by a controlled decrease in mean arterial pressure using NiPr, which led to an increase in AVP and ACTH. The initial ACTH and AVP response to Ins was augmented by NiPr, but this early augmentation was not sustained. Neurohypophysectomy attenuated the early augmentation of the ACTH response to Ins by NiPr, but did not alter the final ACTH level achieved. We conclude that HS augmented the AVP but inhibited the ACTH response to Ins probably because of expansion of plasma volume. Concomitant hypotension led to an augmentation of the early but not sustained AVP and ACTH response to Ins. Neurohypophysectomy eliminated this augmentation, suggesting a role for AVP from the neural lobe in the early ACTH response to combined hypotension and Ins-induced hypoglycemia.

  10. Quinoline derivatives: candidate drugs for a Class B G-protein coupled receptor, the Calcitonin gene-related peptide receptor, a cause of migraines

    PubMed Central

    Iftikhar, Hira; Ahmad, Iqra; Gan, Siew Hua; Shaik, Munvar Miya; Iftikhar, Naveed; Nawaz, Muhammad Sulaman; Greig, Nigel H.; Kamal, Mohammad A

    2016-01-01

    Class B G-protein coupled receptors are involved in a wide variety of diseases and are a major focus in drug design. Migraines are a common problem, and one of their major causative agents is class B G-protein coupled receptor, Calcitonin gene-related peptide (CGRP) receptor, a target for competitive drug discovery. The calcitonin receptor-like receptor generates complexes with a receptor activity-modifying protein, which determines the type of receptor protein formed. The CGRP receptor comprises a complex formed from the calcitonin receptor-like receptor and receptor activity-modifying protein 1. In this study, an in silico docking approach was used to target calcitonin receptor-like receptor in the bound form with receptor activity-modifying protein 1 (CGRP receptor), as well as in the unbound form. In both cases, the resulting inhibitors bound to the same cavity of the calcitonin receptor-like receptor. The twelve evaluated compounds were competitive inhibitors and showed efficient inhibitory activity against the CGRP receptor and Calcitonin receptor-like receptor. The two studied quinoline derivatives demonstrated potentially ideal inhibitory activity in terms of binding interactions and low range nano-molar inhibition constants. These compounds could prove helpful in designing drugs for the effective treatment of migraines. We propose that quinoline derivatives possess inhibitory activity by disturbing CGRP binding in the trigeminovascular system and may be considered for further preclinical appraisal for the treatment of migraines. PMID:25230231

  11. A nonsense mutation in the LDL receptor gene leads to familial hypercholesterolemia in the Druze sect

    SciTech Connect

    Landsberger, D.; Meiner, V.; Reshef, A.; Leitersdorf, E. ); Levy, Yishai ); Westhytzen, D.R. van der; Coetzee, G.A. )

    1992-02-01

    Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the LDL receptor gene. Here the authors characterize and LDL receptor mutation that is associated with a distinct haplotype and causes FH in the Druze, a small Middle Eastern Islamic sect with a high degree of inbreeding. The mutation was found in FH families from two distinct Druze villages from the Golan Heights (northern Israel). It was not found either in another Druze FH family residing in a different geographical area nor in eight Arab and four Jewish FH heterozygote index cases whose hypercholesterolemia cosegregates with an identical LDL receptor gene haplotype. The mutation, a single-base substitution, results in a termination codon in exon 4 of the LDL receptor gene that encodes for the fourth repeat of the binding domain of the mature receptor. It can be diagnosed by allele-specific oligonucleotide hybridization of PCR-amplified DNA from FH patients.

  12. Effect of high-dose total body irradiation on ACTH, corticosterone, and catecholamines in the rat.

    PubMed

    Cohen, Eric P; Bruder, Eric D; Cullinan, William E; Ziegler, Dana; Raff, Hershel

    2011-01-01

    Total body irradiation (TBI) or partial body irradiation is a distinct risk of accidental, wartime, or terrorist events. Total body irradiation is also used as conditioning therapy before hematopoietic stem cell transplantation. This therapy can result in injury to multiple tissues and might result in death as a result of multiorgan failure. The hypothalamic-pituitary-adrenal (HPA) axis could play a causative role in those injuries, in addition to being activated under conditions of stress. In a rat model of TBI, we have established that radiation nephropathy is a significant lethal complication, which is caused by hypertension and uremia. The current study assessed HPA axis function in rats undergoing TBI. Using a head-shielded model of TBI, we found an enhanced response to corticotropin-releasing hormone (CRH) in vitro in pituitaries from irradiated compared with nonirradiated rats at both 8 and 70 days after 10-Gy single fraction TBI. At 70, but not 8 days, plasma adrenocorticotrophic hormone (ACTH) and corticosterone levels were increased significantly in irradiated compared with nonirradiated rats. Plasma aldosterone was not affected by TBI at either time point, whereas plasma renin activity was decreased in irradiated rats at 8 days. Basal and stimulated adrenal steroid synthesis in vitro was not affected by TBI. In addition, plasma epinephrine was decreased at 70 days after TBI. The hypothalamic expression of CRH messenger RNA (mRNA) and hippocampal expression of glucocorticoid receptor mRNA were unchanged by irradiation. We conclude that the hypertension of radiation nephropathy is not aldosterone or catecholamine-dependent but that there is an abscopal activation of the HPA axis after 10 Gy TBI. This activation was attributable at least partially to enhanced pituitary ACTH production.

  13. Aggressive prolactinoma in a child related to germline mutation in the ARYL hydrocarbon receptor interacting protein (AIP) gene.

    PubMed

    Naves, Luciana Ansaneli; Jaffrain-Rea, Marie-Lise; Vêncio, Sergio Alberto Cunha; Jacomini, Clausmir Zaneti; Casulari, Luiz Augusto; Daly, Adrian F; Beckers, Albert

    2010-11-01

    The objective of this study was to describe a familial screening for AIP mutations in the context of aggressive prolactinoma in childhood. A 12-year-old boy, presented headaches and bilateral hemianopsia. He had adequate height and weight for his age (50(th) percentile), Tanner stage G1 P1. His bone age was 10 years. Prolactin was 10.560 ng/mL (3-25), FSH and LH were undetectable, IGF-1, TSH, Free T4, ACTH, and cortisol were within normal ranges. MRI showed a pituitary macroadenoma, 5.3 X 4.0 X 3.5 cm with compression of the optic chiasm, bilateral cavernous sinus invasion, encasement of carotids, and extension to clivus. Surgical debulking was performed. Resistance to cabergoline was characterized and he was submitted to two surgeries and radiotherapy. Immunohistochemical evaluation included prolactin, ACTH, GH, FSH, LH,AIP, c-erb B2, Ki-67, and p53. Genomic DNA was isolated from the index case and 48 relatives, PCR and sequencing were performed.A germline A195V mutation in AIP was identified in the index case and in five asymptomatic relatives. Germline mutations in the AIP gene may be involved in the predisposition to pituitary adenoma formation, as cause or co-factor in pathogenesis of aggressive tumors in young patients.

  14. Effects of ACTH and cAMP on steroidogenic acute regulatory protein and P450 11beta-hydroxylase messenger RNAs in rainbow trout interrenal cells: relationship with in vitro cortisol production.

    PubMed

    Hagen, I Julie; Kusakabe, Makoto; Young, Graham

    2006-02-01

    Steroidogenic acute regulatory protein (StAR) transfers cholesterol over the inner mitochondrial membrane, thereby making the molecule available for cholesterol side-chain cleavage enzyme, which carries out the first conversion in the steroidogenic pathway. In mammals, StAR controls this rate limiting step in steroidogenesis, and both StAR protein and StAR mRNA levels become rapidly elevated in response to tropic hormone stimulation. The relationship between StAR gene expression and steroid production in fish has not yet been well explored. We investigated the relationship between adrenocorticotropic hormone (ACTH)- and cAMP-stimulated cortisol production in vitro and levels of StAR transcripts in interrenal cells of rainbow trout. To assess the effect of ACTH on mRNA levels of a downstream steroidogenic enzyme, we also investigated the effects of ACTH on transcripts encoding 11beta hydroxylase (P450 11beta). In a series of experiments, juvenile rainbow trout head kidney tissue containing interrenal cells was incubated with either ACTH or dibutyryl cyclic AMP (dbcAMP). Cortisol in incubation media were measured by radioimmunoassay and total RNA was isolated from the tissue for Northern analysis or for quantitative real-time PCR. Incubation of tissue with 150 ng/mL ACTH for 1-18 h induced a progressive increase in cortisol accumulation in media, but StAR mRNA levels increased modestly and mostly insignificantly over 18 h, irrespective of treatment. Exposure of tissue for 18 h to 5, 150, 500 or 1,500 ng ACTH/mL resulted in a strong increase in cortisol production, with a peak response (15-fold increase over controls) achieved with 150 ng/mL ACTH. Although there was a trend towards a dose-response effect, mean StAR mRNA levels were only significantly affected by the highest concentration of ACTH used (1,500 ng/mL), which induced a less than 2-fold increase in StAR transcripts. However, there was a significant linear relationship between StAR mRNA levels and ACTH

  15. Differential regulation of alpha7 nicotinic receptor gene (CHRNA7) expression in schizophrenic smokers.

    PubMed

    Mexal, Sharon; Berger, Ralph; Logel, Judy; Ross, Randal G; Freedman, Robert; Leonard, Sherry

    2010-01-01

    The alpha7 neuronal nicotinic receptor gene (CHRNA7) has been implicated in the pathophysiology of schizophrenia by genetic and pharmacological studies. Expression of the alpha7* receptor, as measured by [(125)I]alpha-bungarotoxin autoradiography, is decreased in postmortem brain of schizophrenic subjects compared to non-mentally ill controls. Most schizophrenic patients are heavy smokers, with high levels of serum cotinine. Smoking changes the expression of multiple genes and differentially regulates gene expression in schizophrenic hippocampus. We examined the effects of smoking on CHRNA7 expression in the same tissue and find that smoking differentially regulates expression of both mRNA and protein for this gene. CHRNA7 mRNA and protein levels are significantly lower in schizophrenic nonsmokers compared to control nonsmokers and are brought to control levels in schizophrenic smokers. Sufficient protein but low surface expression of the alpha7* receptor, seen in the autoradiographic studies, suggests aberrant assembly or trafficking of the receptor.

  16. Histamine H1 Receptor Gene Expression and Drug Action of Antihistamines.

    PubMed

    Fukui, Hiroyuki; Mizuguchi, Hiroyuki; Nemoto, Hisao; Kitamura, Yoshiaki; Kashiwada, Yoshiki; Takeda, Noriaki

    2016-11-25

    The upregulation mechanism of histamine H1 receptor through the activation of protein kinase C-δ (PKCδ) and the receptor gene expression was discovered. Levels of histamine H1 receptor mRNA and IL-4 mRNA in nasal mucosa were elevated by the provocation of nasal hypersensitivity model rats. Pretreatment with antihistamines suppressed the elevation of mRNA levels. Scores of nasal symptoms were correlatively alleviated to the suppression level of mRNAs above. A correlation between scores of nasal symptoms and levels of histamine H1 receptor mRNA in the nasal mucosa was observed in patients with pollinosis. Both scores of nasal symptoms and the level of histamine H1 receptor mRNA were improved by prophylactic treatment of antihistamines. Similar to the antihistamines, pretreatment with antiallergic natural medicines showed alleviation of nasal symptoms with correlative suppression of gene expression in nasal hypersensitivity model rats through the suppression of PKCδ. Similar effects of antihistamines and antiallergic natural medicines support that histamine H1 receptor-mediated activation of histamine H1 receptor gene expression is an important signaling pathway for the symptoms of allergic diseases. Antihistamines with inverse agonist activity showed the suppression of constitutive histamine H1 receptor gene expression, suggesting the advantage of therapeutic effect.

  17. Farnesoid X receptor represses hepatic human APOA gene expression

    PubMed Central

    Chennamsetty, Indumathi; Claudel, Thierry; Kostner, Karam M.; Baghdasaryan, Anna; Kratky, Dagmar; Levak-Frank, Sanja; Frank, Sasa; Gonzalez, Frank J.; Trauner, Michael; Kostner, Gert M.

    2011-01-01

    High plasma concentrations of lipoprotein(a) [Lp(a), which is encoded by the APOA gene] increase an individual’s risk of developing diseases, such as coronary artery diseases, restenosis, and stroke. Unfortunately, increased Lp(a) levels are minimally influenced by dietary changes or drug treatment. Further, the development of Lp(a)-specific medications has been hampered by limited knowledge of Lp(a) metabolism. In this study, we identified patients suffering from biliary obstructions with very low plasma Lp(a) concentrations that rise substantially after surgical intervention. Consistent with this, common bile duct ligation in mice transgenic for human APOA (tg-APOA mice) lowered plasma concentrations and hepatic expression of APOA. To test whether farnesoid X receptor (FXR), which is activated by bile acids, was responsible for the low plasma Lp(a) levels in cholestatic patients and mice, we treated tg-APOA and tg-APOA/Fxr–/– mice with cholic acid. FXR activation markedly reduced plasma concentrations and hepatic expression of human APOA in tg-APOA mice but not in tg-APOA/Fxr–/– mice. Incubation of primary hepatocytes from tg-APOA mice with bile acids dose dependently downregulated APOA expression. Further analysis determined that the direct repeat 1 element between nucleotides –826 and –814 of the APOA promoter functioned as a negative FXR response element. This motif is also bound by hepatocyte nuclear factor 4α (HNF4α), which promotes APOA transcription, and FXR was shown to compete with HNF4α for binding to this motif. These findings may have important implications in the development of Lp(a)-lowering medications. PMID:21804189

  18. Motion sickness susceptibility related to ACTH, ADH and TSH

    NASA Technical Reports Server (NTRS)

    Kohl, R. L.; Leach, C.; Homick, J. L.; Larochelle, F. T.

    1983-01-01

    The hypothesis that endogenous levels of certain hormones might be indicative of an individual's susceptibility to stressful motion is tested in a comparison of subjects classified as less prone to motion sickness with those of higher susceptibility. The levels of ACTH and vasopressin measured before exposure to stressful motion were twice as high in the less-suceptible group. No significant differences were noted in the levels of angiotensin, aldosterone, or TSH. The differences between the two groups were greater for a given hormone than for any of the changes induced by exposure to stressful motion.

  19. Plasma adrenocorticotropin (ACTH) concentrations and clinical response in horses treated for equine Cushing's disease with cyproheptadine or pergolide.

    PubMed

    Perkins, G A; Lamb, S; Erb, H N; Schanbacher, B; Nydam, D V; Divers, T J

    2002-11-01

    Plasma ACTH levels have been variable in horses with a positive clinical response for therapy for equine Cushing's Disease (ECD). Therefore, our purpose was to determine the value of monitoring plasma adrenocorticotropin (ACTH) levels during treatment of equine Cushing's disease (ECD) with either cyproheptadine (n = 32) or pergolide (n = 10). First, we validated the chemiluminescent ACTH assay (specificity, precision, accuracy, intra-assay and interassay variations) and tested methods of handling the whole blood from the time of collection to when the ACTH was assayed. The sensitivity and specificity of high plasma ACTH levels for detecting ECD was determined in a retrospective study on hospitalised horses (n = 68). Surveys were sent to veterinarians who submitted equine ACTH levels that were high initially and had at least 2 ACTH samples to determine the value of monitoring ACTH levels during therapy of ECD. The ACTH chemiluminescent assay was valid. The ACTH was stable when whole blood was collected and held in plastic tubes for 8 h before separating the plasma. The sensitivity and specificity of plasma ACTH levels for detecting ECD were 84% (n = 19,95% CI 60,97) and 78% (n = 49,95% CI 63,88), respectively. Treated horses generally showed a decrease in plasma ACTH. Plasma ACTH levels may be helpful when monitoring therapy of ECD, although improvement in clinical signs should be considered most important. There were no differences between cyproheptadine and pergolide in terms of improvements in any of the clinical signs.

  20. Molecular Pathways: Breaking the Epithelial Cancer Barrier for Chimeric Antigen Receptor and T-cell Receptor Gene Therapy.

    PubMed

    Hinrichs, Christian S

    2016-04-01

    Adoptive transfer of T cells genetically engineered to express a tumor-targeting chimeric antigen receptor (CAR) or T-cell receptor (TCR) can mediate cancer regression in some patients. CARs are synthetic single-chain proteins that use antibody domains to target cell surface antigens. TCRs are natural heterodimeric proteins that can target intracellular antigens through recognition of peptides bound to human leukocyte antigens. CARs have shown promise in B-cell malignancies and TCRs in melanoma, but neither approach has achieved clear success in an epithelial cancer. Treatment of epithelial cancers may be particularly challenging because of a paucity of target antigens expressed by carcinomas and not by important healthy tissues. In addition, epithelial cancers may be protected by inhibitory ligands and soluble factors in the tumor microenvironment. One strategy to overcome these negative regulators is to modulate expression of T-cell genes to enhance intrinsic T-cell function. Programmable nucleases, which can suppress inhibitory genes, and inducible gene expression systems, which can enhance stimulatory genes, are entering clinical testing. Other work is delineating whether control of genes for immune checkpoint receptors (e.g.,PDCD1, CTLA4) and cytokine and TCR signaling regulators (e.g.,CBLB, CISH, IL12, IL15) can increase the antitumor activity of therapeutic T cells.

  1. Structure and chromosomal localization of the human antidiuretic hormone receptor gene

    SciTech Connect

    Seibold, A.; Brabet, P.; Rosenthal, W.; Birnbaumer, M. )

    1992-11-01

    Applying a genomic DNA-expression approach, the authors cloned the gene and cDNA coding for the human antidiuretic hormone receptor, also called vasopressin V2 receptor' (V2R). The nucleotide sequence of both cloned DNAs provided the information to elucidate the structure of the isolated transcriptional unit. The structure of this gene is unusual in that it is the first G protein-coupled receptor gene that contains two very small intervening sequences, the second of which separates the region encoding the seventh transmembrane region from the rest of the open reading frame. The sequence information was used to synthesize appropriate oligonucleotides to be used as primers in the PCR. The V2R gene was localized by PCR using DNA from hybrid cells as template. The gene was found to reside in the q28-qter portion of the human X chromosome, a region identified as the locus for congential nephrogenic diabetes insipidus. 27 refs., 4 figs.

  2. Novel androgen receptor gene mutation in patient with complete androgen insensitivity syndrome.

    PubMed

    Ning, Ye; Zhang, Feng; Zhu, Yong; Chen, Huixing; Lu, Jianqi; Li, Zheng

    2012-07-01

    To present a rare case of a patient probably with complete androgen insensitivity syndrome (CAIS) and studied its potential genetic cause. A 24-year-old woman with a normal-appearing vulva and vagina presented to us because of primary amenorrhea. Imaging studies showed no uterus or ovary development but inguinal cryptorchism. Histopathologic examination revealed normal testicular structures. Sequencing the CAIS-associated androgen receptor gene revealed a novel missense mutation of T to G (F698L). A novel androgen receptor gene mutation in the ligand binding domain was detected in the present patient with CAIS, supporting the important role of an androgen receptor defect in the etiology of CAIS.

  3. Orphan nuclear receptor oestrogen-related receptor γ (ERRγ) plays a key role in hepatic cannabinoid receptor type 1-mediated induction of CYP7A1 gene expression

    PubMed Central

    Zhang, Yaochen; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Jeong, Won-IL; Kim, Seong Heon; Lee, In-Kyu; Lee, Chul-Ho; Chiang, John Y.L.; Choi, Hueng-Sik

    2017-01-01

    Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ -binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism. PMID:26348907

  4. Orphan nuclear receptor oestrogen-related receptor γ (ERRγ) plays a key role in hepatic cannabinoid receptor type 1-mediated induction of CYP7A1 gene expression.

    PubMed

    Zhang, Yaochen; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Jeong, Won-Il; Kim, Seong Heon; Lee, In-Kyu; Lee, Chul-Ho; Chiang, John Y L; Choi, Hueng-Sik

    2015-09-01

    Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ-binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism.

  5. Effect of MSH/ACTH peptides on fast axonal transport in intact and regenerating sciatic nerves

    SciTech Connect

    Crescitelli, L.A.

    1985-01-01

    Fast axonal transport was examined in intact rats treated with ACTH 4-10 or ACTH 4-9 (ORG 2766), hypophysectomized rats, adrenalectomized rats, and in ACTH 4-10 treated rats with crushed regenerating sciatic nerves by injecting /sup 3/H-leucine into the ventral horn region of the spinal cord. The distance traveled by the transported activity along the sciatic nerve and the rate of fast axonal transport were not significantly altered as a result of treatment with ACTH 4-10, ACTH 4-9 (ORG 2766), hypophysectomy, or adrenalectomy. Treatment with ACTH 4-9 (ORG 2766) at concentrations of 1 ..mu..g/Kg /day and 10 ..mu..g/Kg/day caused significant reductions (62% and 64% respectively) in the crest height of the fast axonal transport curve as compared to 0.9% saline treated control animals. No significant differences were found in comparing the distance, rate, slope, or crest height of ACTH 4-10 treated animals with crushed regenerating (7 or 14d) sciatic nerves to control animals. In the group of animals in days, the amount of radiolabeled activity was significantly increased in the ACTH 4-10 treated animals as compared to control animals. The results indicate that during regeneration the peptide acts to prolong the initially high levels of synthetic activity which occur in regenerating axons.

  6. Uptake and release of adrenal ascorbic acid in the guinea pig after injection of ACTH

    SciTech Connect

    Kipp, D.E.; Rivers, J.M.

    1987-09-01

    The effect of a single injection of ACTH (3 IU/100 g body weight) on the distribution of ascorbic acid (AA) and radiolabeled AA in 20 tissues was studied in adult male guinea pigs consuming 500 mg AA/kg diet. Saline- or ACTH-injected animals were simultaneously injected with (1-/sup 14/C)AA, and killed at 0.5, 1, 2, 4 and 6 h after injection. There was no significant difference between treatments in the weight of any tissue over the 6-h experimental period. As anticipated, the concentration of AA in the adrenals of animals injected with ACTH was 33% of that of animals injected with saline at 4 h. Unexpectedly, the concentration of radiolabeled AA in the adrenals at 0.5 h after ACTH injection was 172% of that after saline injection. The concentration of radiolabeled AA in the adrenal of the saline-injected animals increased slowly over time to reach a level similar to that of ACTH-injected animals by 6 h. There was no effect of ACTH on the level of AA or uptake in any of the other tissues examined. These results demonstrate that a single dose of ACTH markedly influences the retention of AA in the adrenal gland without similarly altering retention of AA in other tissues. Furthermore, ACTH treatment causes both accelerated uptake and release of AA into the adrenals.

  7. The effects of ACTH on steroid metabolomic profiles in human adrenal cells.

    PubMed

    Xing, Yewei; Edwards, Michael A; Ahlem, Clarence; Kennedy, Mike; Cohen, Anthony; Gomez-Sanchez, Celso E; Rainey, William E

    2011-06-01

    The adrenal glands are the primary source of mineralocorticoids, glucocorticoids, and the so-called adrenal androgens. Under physiological conditions, cortisol and adrenal androgen synthesis are controlled primarily by ACTH. Although it is well established that ACTH can stimulate steroidogenesis in the human adrenal gland, the effect of ACTH on overall production of different classes of steroid hormones has not been defined. In this study, we examined the effect of ACTH on the production of 23 steroid hormones in adult adrenal primary cultures and 20 steroids in the adrenal cell line, H295R. Liquid chromatography/tandem mass spectrometry analysis revealed that, in primary adrenal cell cultures, cortisol and corticosterone were the two most abundant steroid hormones produced with or without ACTH treatment (48  h). Cortisol production responded the most to ACTH treatment, with a 64-fold increase. Interestingly, the production of two androgens, androstenedione and 11β-hydroxyandrostenedione (11OHA), that were also produced in large amounts under basal conditions significantly increased after ACTH incubation. In H295R cells, 11-deoxycortisol and androstenedione were the major products under basal conditions. Treatment with forskolin increased the percentage of 11β-hydroxylated products, including cortisol and 11OHA. This study illustrates that adrenal cells respond to ACTH through the secretion of a variety of steroid hormones, thus supporting the role of adrenal cells as a source of both corticosteroids and androgens.

  8. Can ACTH therapy improve the long-term outcome of drug-resistant frontal lobe epilepsy?

    PubMed

    Gobbi, Giuseppe; Loiacono, Giulia; Boni, Antonella; Marangio, Lucia; Verrotti, Alberto

    2014-06-01

    Frontal lobe epilepsy is a common focal epilepsy in children and is often difficult to treat. Adrenocorticotropic hormone (ACTH) or steroids have been used for patients with several forms of medically intractable epilepsy. We evaluated the short, medium, and long-term evolution of patients with frontal lobe epilepsy and secondary bilateral synchrony on the EEG, who received ACTH treatment. Patients were recruited for an add-on trial during clinical practice, and data was retrospectively analysed. The study group comprised 6 patients treated with ACTH. The effects of ACTH were assessed in the short term (at the end of a 6-week period of ACTH treatment), medium term (at 6 months after the end of treatment), and long term (at 12 months after the end of treatment). At short-term follow-up, ACTH treatment was effective for all types of seizures in 5 of 6 patients and ineffective in 1 patient. All patients who were seizure-free at the end of ACTH treatment maintained an excellent outcome, remaining seizure-free at the end of follow-up. Our study demonstrates that ACTH may represent an effective treatment for frontal lobe epilepsy with secondary bilateral synchrony. Further double-blind prospective studies are required to confirm our initial findings.

  9. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    PubMed

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory.

  10. Scavenger receptor A gene regulatory elements target gene expression to macrophages and to foam cells of atherosclerotic lesions.

    PubMed Central

    Horvai, A; Palinski, W; Wu, H; Moulton, K S; Kalla, K; Glass, C K

    1995-01-01

    Transcription of the macrophage scavenger receptor A gene is markedly upregulated during monocyte to macrophage differentiation. In these studies, we demonstrate that 291 bp of the proximal scavenger receptor promoter, in concert with a 400-bp upstream enhancer element, is sufficient to direct macrophage-specific expression of a human growth hormone reporter in transgenic mice. These regulatory elements, which contain binding sites for PU.1, AP-1, and cooperating ets-domain transcription factors, are also sufficient to mediate regulation of transgene expression during the in vitro differentiation of bone marrow progenitor cells in response to macrophage colony-stimulating factor. Mutation of the PU.1 binding site within the scavenger receptor promoter severely impairs transgene expression, consistent with a crucial role of PU.1 in regulating the expression of the scavenger receptor gene. The ability of the scavenger receptor promoter and enhancer to target gene expression to macrophages in vivo, including foam cells of atherosclerotic lesions, suggests that these regulatory elements will be of general utility in the study of macrophage differentiation and function by permitting specific modifications of macrophage gene expression. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7777517

  11. Desensitization of the Y1 cell adrenocorticotropin receptor: evidence for a restricted heterologous mechanism implying a role for receptor-effector complexes.

    PubMed

    Baig, A H; Swords, F M; Noon, L A; King, P J; Hunyady, L; Clark, A J

    2001-11-30

    Receptor desensitization provides a potential mechanism for the regulation of adrenocortical adrenocorticotropin (ACTH) responsiveness. Using the mouse adrenocortical Y1 cell line we demonstrate that ACTH effectively desensitizes the cAMP response of its own receptor, the melanocortin 2 receptor (MC2R), in these cells with a maximal effect between 30 and 60 min. Neither forskolin nor isoproterenol (in Y1 cells stably transfected with the beta(2)-adrenergic receptor) desensitize this ACTH response. ACTH desensitizes its receptor at concentrations at which only a fraction of receptors are occupied, implying that this mechanism acts on agonist-unoccupied receptors. Y1 cells express G protein-coupled receptor kinase (GRK) 2 and 5, but stable expression of a dominant negative GRK2 (K220W) only marginally reduces the desensitization by ACTH. The protein kinase A (PKA) inhibitor, H89, extinguishes almost the entire desensitization response over the initial 30-min period at all concentrations of ACTH. A mutant MC2R in which the single consensus PKA phosphorylation site has been mutated (S208A) when expressed in MC2R-negative Y6 cells is also unable to desensitize. These data imply a heterologous, PKA-dependent, mode of desensitization, which is restricted to agonist-occupied and -unoccupied MC2R, possibly as a consequence of receptor/effector complexes that functionally compartmentalize this receptor.

  12. Evolution of a symbiotic receptor through gene duplications in the legume-rhizobium mutualism.

    PubMed

    De Mita, Stéphane; Streng, Arend; Bisseling, Ton; Geurts, René

    2014-02-01

    The symbiosis between legumes and nitrogen-fixing rhizobia co-opted pre-existing endomycorrhizal features. In particular, both symbionts release lipo-chitooligosaccharides (LCOs) that are recognized by LysM-type receptor kinases. We investigated the evolutionary history of rhizobial LCO receptor genes MtLYK3-LjNFR1 to gain insight into the evolutionary origin of the rhizobial symbiosis. We performed a phylogenetic analysis integrating gene copies from nonlegumes and legumes, including the non-nodulating, phylogenetically basal legume Cercis chinensis. Signatures of differentiation between copies were investigated through patterns of molecular evolution. We show that two rounds of duplication preceded the evolution of the rhizobial symbiosis in legumes. Molecular evolution patterns indicate that the resulting three paralogous gene copies experienced different selective constraints. In particular, one copy maintained the ancestral function, and another specialized into perception of rhizobial LCOs. It has been suggested that legume LCO receptors evolved from a putative ancestral defense-related chitin receptor through the acquisition of two kinase motifs. However, the phylogenetic analysis shows that these domains are actually ancestral, suggesting that this scenario is unlikely. Our study underlines the evolutionary significance of gene duplication and subsequent neofunctionalization in MtLYK3-LjNFR1 genes. We hypothesize that their ancestor was more likely a mycorrhizal LCO receptor, than a defense-related receptor kinase.

  13. CXC motif chemokine receptor 4 gene polymorphism and cancer risk

    PubMed Central

    Wu, Yang; Zhang, Chun; Xu, Weizhang; Zhang, Jianzhong; Zheng, Yuxiao; Lu, Zipeng; Liu, Dongfang; Jiang, Kuirong

    2016-01-01

    Abstract Background: Previous epidemiological studies have reported the relationship between CXC motif chemokine receptor 4 (CXCR4) synonymous polymorphism (rs2228014), and risk of cancer, but the results remained conflicting and controversial. Therefore, this study was devised to evaluate the genetic effects of the rs2228014 polymorphism on cancer risk in a large meta-analysis. Methods: The computer-based databases (EMBASE, Web of Science, and PubMed) were searched for all relevant studies evaluating rs2228014 and susceptibility to cancer. In the analysis, pooled odds ratios (ORs) with its corresponding 95% confidence intervals (CIs) were calculated in 5 genetic models to assess the genetic risk. Egger regression and Begg funnel plots test were conducted to appraise the publication bias. Results: Data on rs2228014 polymorphism and overall cancer risk were available for 3684 cancer patients and 5114 healthy controls participating in 11 studies. Overall, a significantly increased risk of cancer was associated with rs2228014 polymorphism in homozygote model (OR = 2.01, 95% CI: 1.22–3.33) and in recessive model (OR = 1.97, 95% CI: 1.23–3.16). When stratified by ethnicity, the results were positive only in Asian populations (heterozygote model: OR = 1.36, 95% CI: 1.13–1.65; homozygote model: OR = 2.43, 95% CI: 1.21–4.91; dominant model: OR = 1.47, 95% CI: 1.13–1.90; recessive model: OR = 2.25, 95% CI: 1.13–4.48; and allele model: OR = 1.48, 95% CI: 1.10–1.99). Besides, in the subgroup analysis by source of control, the result was significant only in population-based control (homozygote model: OR = 2.39, 95% CI: 1.06–5.40; recessive model: pooled OR = 2.24, 95% CI: 1.02–4.96). Conclusion: In general, our results first indicated that the rs2228014 polymorphism in CXCR4 gene is correlated with an increased risk of cancer, especially among Asian ethnicity. Large, well-designed epidemiological studies are required to verify the current findings. PMID

  14. A common polymorphism in the LDL receptor gene has multiple effects on LDL receptor function.

    PubMed

    Gao, Feng; Ihn, Hansel E; Medina, Marisa W; Krauss, Ronald M

    2013-04-01

    A common synonymous single nucleotide polymorphism in exon 12 of the low-density lipoprotein receptor (LDLR) gene, rs688, has been associated with increased plasma total and LDL cholesterol in several populations. Using immortalized lymphoblastoid cell lines from a healthy study population, we confirmed an earlier report that the minor allele of rs688 is associated with increased exon 12 alternative splicing (P < 0.05) and showed that this triggered nonsense-mediated decay (NMD) of the alternatively spliced LDLR mRNA. However, since synonymous single nucleotide polymorphisms may influence structure and function of the encoded proteins by co-translational effects, we sought to test whether rs688 was also functional in the full-length mRNA. In HepG2 cells expressing LDLR cDNA constructs engineered to contain the major or minor allele of rs688, the latter was associated with a smaller amount of LDLR protein at the cell surface (-21.8 ± 0.6%, P = 0.012), a higher amount in the lysosome fraction (+25.7 ± 0.3%, P = 0.037) and reduced uptake of fluorescently labeled LDL (-24.3 ± 0.7%, P < 0.01). Moreover, in the presence of exogenous proprotein convertase subtilisin/kexin type 9 (PCSK9), a protein that reduces cellular LDL uptake by promoting lysosomal degradation of LDLR, the minor allele resulted in reduced capacity of a PCSK9 monoclonal antibody to increase LDL uptake. These findings are consistent with the hypothesis that rs688, which is located in the β-propeller region of LDLR, has effects on LDLR activity beyond its role in alternative splicing due to impairment of LDLR endosomal recycling and/or PCSK9 binding, processes in which the β-propeller is critically involved.

  15. Adrenomedullin and calcitonin gene-related peptide receptors in endocrine-related cancers: opportunities and challenges.

    PubMed

    Hay, Debbie L; Walker, Christopher S; Poyner, David R

    2011-02-01

    Adrenomedullin (AM), adrenomedullin 2 (AM2/intermedin) and calcitonin gene-related peptide (CGRP) are members of the calcitonin family of peptides. They can act as growth or survival factors for a number of tumours, including those that are endocrine-related. One mechanism through which this occurs is stimulating angiogenesis and lymphangiogenesis. AM is expressed by numerous tumour types and for some cancers, plasma AM levels can be correlated with the severity of the disease. In cancer models, lowering AM content or blocking AM receptors can reduce tumour mass. AM receptors are complexes formed between a seven transmembrane protein, calcitonin receptor-like receptor and one of the two accessory proteins, receptor activity-modifying proteins (RAMPs) 2 or 3 to give the AM1 and AM2 receptors respectively. AM also has affinity at the CGRP receptor, which uses RAMP1. Unfortunately, due to a lack of selective pharmacological tools or antibodies to distinguish AM and CGRP receptors, the precise receptors and signal transduction pathways used by the peptides are often uncertain. Two other membrane proteins, RDC1 and L1/G10D (the 'ADMR'), are not currently considered to be genuine CGRP or AM receptors. In order to properly evaluate whether AM or CGRP receptor inhibition has a role in cancer therapy, it is important to identify which receptors mediate the effects of these peptides. To effectively distinguish AM1 and AM2 receptors, selective receptor antagonists need to be developed. The development of specific CGRP receptor antagonists suggests that this is now feasible.

  16. Phenotype-Genotype Association Analysis of ACTH-Secreting Pituitary Adenoma and Its Molecular Link to Patient Osteoporosis

    PubMed Central

    Wang, Renzhi; Yang, Yakun; Sheng, Miaomiao; Bu, Dechao; Huang, Fengming; Liu, Xiaohai; Zhou, Cuiqi; Dai, Congxin; Sun, Bowen; Zhu, Jindong; Qiao, Yi; Yao, Yong; Zhu, Huijuan; Lu, Lin; Pan, Hui; Feng, Ming; Deng, Kan; Xing, Bing; Lian, Wei; Zhao, Yi; Jiang, Chengyu

    2016-01-01

    Adrenocorticotrophin (ACTH)-secreting pituitary adenoma, also known as Cushing disease (CD), is rare and causes metabolic syndrome, cardiovascular disease and osteoporosis due to hypercortisolism. However, the molecular pathogenesis of CD is still unclear because of a lack of human cell lines and animal models. Here, we study 106 clinical characteristics and gene expression changes from 118 patients, the largest cohort of CD in a single-center. RNA deep sequencing is used to examine genotypic changes in nine paired female ACTH-secreting pituitary adenomas and adjacent nontumorous pituitary tissues (ANPT). We develop a novel analysis linking disease clinical characteristics and whole transcriptomic changes, using Pearson Correlation Coefficient to discover a molecular network mechanism. We report that osteoporosis is distinguished from the phenotype and genotype analysis. A cluster of genes involved in osteoporosis is identified using Pearson correlation coefficient analysis. Most of the genes are reported in the bone related literature, confirming the feasibility of phenotype-genotype association analysis, which could be used in the analysis of almost all diseases. Secreted phosphoprotein 1 (SPP1), collagen type I α 1 chain (COL1A1), 5′-nucleotidase ecto (NT5E), HtrA serine peptidase 1 (HTRA1) and angiopoietin 1 (ANGPT1) and their signalling pathways are shown to be involved in osteoporosis in CD patients. Our discoveries provide a molecular link for osteoporosis in CD patients, and may open new potential avenues for osteoporosis intervention and treatment. PMID:27690016

  17. ACTH acts via an anterior ventral third ventricular site to elicit grooming behavior.

    PubMed

    Dunn, A J; Hurd, R W

    1986-01-01

    Intracerebroventricular but not parenteral application of ACTH has been shown to elicit excessive grooming behavior in rats and mice. This behavior is elicited by administration of ACTH into the lateral, third, or fourth ventricles. Plugging of the cerebral aqueduct with cold cream fails to prevent grooming in response to lateral ventricle injection of ACTH. However, cold cream plugs in the third ventricle can prevent the subsequent induction of grooming behavior by lateral ventricle injection of ACTH, but only when the plugs are located in the anterior ventral third ventricle in the region of the organum vasculosum laminae terminalis (OVLT) and median eminence. These data suggest the anterior ventral third ventricle as the periventricular site of action of ACTH in eliciting excessive grooming, although it is possible that peptides taken up in this area are transported to other regions to elicit the behavioral response.

  18. Metabolic effects of chronic ACTH administration, interaction with response to stress.

    PubMed

    Armario, A; Campmany, L; Hidalgo, J

    1986-01-01

    The present experiment was undertaken to study the metabolic response to stress of single or chronic ACTH-treated male rats. It was found that chronic ACTH-treated rats showed a slight reduction in food intake and a decrease in body weight gain. This treatment increased basal serum triglyceride and insulin levels. In addition, some differences in response to stress was found in chronic ACTH-treated rats. Thus, these latter animals, unlike the other two groups, showed a decrease in circulating triglyceride and insulin levels in response to short-term stress. Moreover, 24 h after onset of stress a more marked fall in liver weight and glucose levels were found in chronic ACTH-treated rats. It suggests that chronic ACTH treatment might alter the metabolic response to prolonged acute stress what could result in lower resistance to severe stresses.

  19. Identification of a null mutation in the human dopamine D4 receptor gene

    SciTech Connect

    Noethen, M.M.; Cichon, S.; Hebebrand, J.

    1994-09-01

    Dopamine receptors belong to the family of G protein-coupled receptors. Five different dopamine receptor genes have thus far been identified. These receptors are classified into two main subfamilies: D1, which includes the D1 and D5 receptors, and D2, which includes the D2, D3, and D4 receptors. The dopamine D4 receptor is of great interest for research into neuropsychiatric disorders and psychopharmacology in light of the fact that it binds the antipsychotic medication clozapine with higher affinity than does any other dopamine receptor. In addition, among the dopamine receptors, the D4 receptor shows a uniquely high degree of genetic variation in the human population. We identified a new 13 bp deletion in exon 1 of the D4 gene. This frameshift creates a terminator codon at amino acid position 98. mRNA isolated from brain tissue of two heterozygous persons showed both alleles to be expressed. The deletion occurs with a frequency of 2% in the German population. One person was identified to be homozygous for the deletion. Interestingly, he has a normal intelligence and did not exhibit a major psychiatric disorder as defined by DSM III-R. The 13 bp deletion is the first mutation resulting in premature translation termination reported for a dopamine receptor gene so far. This mutation is a good candidate to test for potential effects on disease and/or individual response to pharmacotherapy. Association studies in patients with various psychiatric illnesses and differences in response to clozapine are underway.

  20. Multimodality Imaging of Gene Transfer with a Receptor-Based Reporter Gene

    PubMed Central

    Chen, Ron; Parry, Jesse J.; Akers, Walter J.; Berezin, Mikhail Y.; El Naqa, Issam M.; Achilefu, Samuel; Edwards, W. Barry; Rogers, Buck E.

    2010-01-01

    Gene therapy trials have traditionally used tumor and tissue biopsies for assessing the efficacy of gene transfer. Non-invasive imaging techniques offer a distinct advantage over tissue biopsies in that the magnitude and duration of gene transfer can be monitored repeatedly. Human somatostatin receptor subtype 2 (SSTR2) has been used for the nuclear imaging of gene transfer. To extend this concept, we have developed a somatostatin receptor–enhanced green fluorescent protein fusion construct (SSTR2-EGFP) for nuclear and fluorescent multimodality imaging. Methods An adenovirus containing SSTR2-EGFP (AdSSTR2-EGFP) was constructed and evaluated in vitro and in vivo. SCC-9 human squamous cell carcinoma cells were infected with AdEGFP, AdSSTR2, or AdSSTR2-EGFP for in vitro evaluation by saturation binding, internalization, and fluorescence spectroscopy assays. In vivo biodistribution and nano-SPECT imaging studies were conducted with mice bearing SCC-9 tumor xenografts directly injected with AdSSTR2-EGFP or AdSSTR2 to determine the tumor localization of 111In-diethylenetriaminepentaacetic acid (DTPA)-Tyr3-octreotate. Fluorescence imaging was conducted in vivo with mice receiving intratumoral injections of AdSSTR2, AdSSTR2-EGFP, or AdEGFP as well as ex vivo with tissues extracted from mice. Results The similarity between AdSSTR2-EGFP and wild-type AdSSTR2 was demonstrated in vitro by the saturation binding and internalization assays, and the fluorescence emission spectra of cells infected with AdSSTR2-EGFP was almost identical to the spectra of cells infected with wild-type AdEGFP. Biodistribution studies demonstrated that the tumor uptake of 111In-DTPA-Tyr3-octreotate was not significantly different (P > 0.05) when tumors (n = 5) were injected with AdSSTR2 or AdSSTR2-EGFP but was significantly greater than the uptake in control tumors. Fluorescence was observed in tumors injected with AdSSTR2-EGFP and AdEGFP in vivo and ex vivo but not in tumors injected with AdSSTR2

  1. The low-density lipoprotein receptor gene family: a cellular Swiss army knife?

    PubMed

    Nykjaer, Anders; Willnow, Thomas E

    2002-06-01

    The low-density lipoprotein receptor gene family is an evolutionarily conserved group of cell-surface receptors produced by mammals and other organisms. Initially thought to be endocytic receptors that mediate the uptake of lipoproteins, recent findings have shown that these receptors have other roles in a range of cellular processes. Among other activities, members of this family act as signal transducers in neuronal migration processes, regulate synaptic plasticity or control vitamin homeostasis. Such multifunctionality is achieved by interaction with diverse cell-surface proteins including glycolipid-anchored receptors, G-protein-coupled receptors and ion channels. Here, we review the molecular interactions of this protein family with other cell-surface proteins that provide specificity and versatility - a versatility that may be reminiscent of a cellular Swiss army knife.

  2. Identification of Gene Markers for Activation of the Nuclear Receptor Pregnane X Receptor

    EPA Science Inventory

    Many environmentally-relevant chemicals and drugs activate the nuclear receptor pregnane X receptor (PXR). Activation of PXR in the mouse liver can lead to increases in liver weight in part through increased hepatocyte replication similar to chemicals that activate other nuclear ...

  3. Gene expression profiles of estrogen receptor positive and estrogen receptor negative breast cancers are detectable in histologically normal breast epithelium

    PubMed Central

    Graham, Kelly; Ge, Xijin; de las Morenas, Antonio; Tripathi, Anusri; Rosenberg, Carol L.

    2010-01-01

    Purpose Previously, we found that gene expression in histologically normal breast epithelium (NlEpi) from women at high breast cancer risk can resemble gene expression in NlEpi from cancer-containing breasts. Therefore, we hypothesized that gene expression characteristic of a cancer subtype might be seen in NlEpi of breasts containing that subtype. Experimental Design We examined gene expression in 46 cases of microdissected NlEpi from untreated women undergoing breast cancer surgery. From 30 age-matched cases (15 estrogen receptor (ER)+, 15 ER-) we used Affymetryix U133A arrays. From 16 independent cases (9 ER+, 7 ER-), we validated selected genes using qPCR. We then compared gene expression between NlEpi and invasive breast cancer using 4 publicly available datasets. Results We identified 198 genes that are differentially expressed between NlEpi from breasts with ER+ (NlEpiER+) compared to ER- cancers (NlEpiER-). These include genes characteristic of ER+ and ER- cancers (e.g., ESR1, GATA3, and CX3CL1, FABP7). QPCR validated the microarray results in both the 30 original cases and the 16 independent cases. Gene expression in NlEpiER+ and NlEpiER- resembled gene expression in ER+ and ER- cancers, respectively: 25-53% of the genes or probes examined in 4 external datasets overlapped between NlEpi and the corresponding cancer subtype. Conclusions Gene expression differs in NlEpi of breasts containing ER+ compared to ER- breast cancers. These differences echo differences in ER+ and ER- invasive cancers. NlEpi gene expression may help elucidate subtype-specific risk signatures, identify early genomic events in cancer development and locate targets for prevention and therapy. PMID:21059815

  4. Evidence for association between polymorphisms in the Cannabinoid Receptor 1 (CNR1) gene and cannabis dependence

    PubMed Central

    Agrawal, Arpana; Wetherill, Leah; Dick, Danielle M.; Xuei, Xiaoling; Hinrichs, Anthony; Hesselbrock, Victor; Kramer, John; Nurnberger, John I.; Schuckit, Marc; Bierut, Laura J.; Edenberg, Howard J.; Foroud, Tatiana

    2009-01-01

    Genomic studies of cannabis use disorders have been limited. The cannabinoid receptor 1 gene (CNR1) on chromosome 6q14–15 is an excellent candidate gene for cannabis dependence due to the important role of the G-protein coupled receptor encoded by this gene in the rewarding effects of Δ9-tetrahydrocannabinol. Previous studies have found equivocal evidence for an association between SNPs in CNR1 and a general vulnerability to substance use disorders. We investigate the association between 9 SNPs spanning CNR1 and cannabis dependence in 1,923 individuals. Two SNPs that were previously associated with cannabis dependence in other studies were also significant with this phenotype in our analyses [rs806368 (p = 0.05) and rs806380 (p = 0.009)]. Haplotype analyses revealed the association to be largely driven by the SNP rs806380. These results suggest a role for the cannabinoid receptor 1 gene in cannabis dependence. PMID:19016476

  5. PET/CT imaging of human somatostatin receptor 2 (hsstr2) as reporter gene for gene therapy

    NASA Astrophysics Data System (ADS)

    Hofmann, M.; Gazdhar, A.; Weitzel, T.; Schmid, R.; Krause, T.

    2006-12-01

    Localized information on region-selective gene expression in small animals is widely obtained by use of reporter genes inducing light emission. Using these reporter genes for imaging deep inside the human body fluorescent probes are hindered by attenuation, scattering and possible fluorescence quenching. This can be overcome by use of radio-peptide receptors as reporter genes. Therefore, the feasibility of the somatostatin receptor 2 expression vector system for expression imaging was checked against a control vector containing luciferase gene. For in vivo transduction of vector DNA into the rat forelimb muscles the in vivo electroporation technique was chosen because of its high regio-selectivity. The gene expression was imaged by high-sensitive CCD camera (luciferase activity) and by PET/CT using a Ga-68-DOTATOC as radio peptide probe. The relative sstr2 expression was enhanced by gene transduction at maximum to a factor of 15. The PET/CT images could be fully quantified. The above demonstrated feasibility of radio-peptide PET/CT reporter gene imaging may serve in the future as a tool for full quantitative understanding of regional gene expression, especially in large animals and humans.

  6. Semax and Pro-Gly-Pro activate the transcription of neurotrophins and their receptor genes after cerebral ischemia.

    PubMed

    Dmitrieva, Veronika G; Povarova, Oksana V; Skvortsova, Veronika I; Limborska, Svetlana A; Myasoedov, Nikolai F; Dergunova, Lyudmila V

    2010-01-01

    Consisting of a fragment of ACTH(4-7) and C-terminal PGP tripeptide, the polypeptide Semax is successfully used for acute stroke therapy. Previous experiments showed rapid induction of Bdnf, Ngf, and TrkB expression in intact rat hippocampus following Semax treatment. To investigate the mRNA expression of neurotrophins and their receptors after treatment with either Semax or PGP, the rat brains were analyzed at three time points following a permanent middle cerebral artery occlusion (pMCAO). We have shown for the first time that both Semax and PGP activate the transcription of neurotrophins and their receptors in the cortex of rats subjected to pMCAO. The profiles of transcription alteration under PGP and Semax treatment were partially overlapped. Semax enhanced the transcription of Bdnf, TrkC, and TrkA 3 h after occlusion, Nt-3 and Ngf 24 h after occlusion, and Ngf 72 h after occlusion. PGP enhanced the transcription of Bdnf and TrkC 3 h after pMCAO and Ngf, TrkB, TrkC, and TrkA 24 h after pMCAO. The analysis of the transcription alterations under PGP and Semax treatment in the cortex of rats without surgery, sham-operated rats and rats subjected to pMCAO revealed that Semax selectively affected the transcription of neurotrophins and their receptors in the ischemic rat cortex, whereas the influence of PGP was mainly unspecific.

  7. 5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists.

    PubMed

    Harmon, Jennifer L; Wills, Lauren P; McOmish, Caitlin E; Demireva, Elena Y; Gingrich, Jay A; Beeson, Craig C; Schnellmann, Rick G

    2016-04-01

    In acute organ injuries, mitochondria are often dysfunctional, and recent research has revealed that recovery of mitochondrial and renal functions is accelerated by induction of mitochondrial biogenesis (MB). We previously reported that the nonselective 5-HT2 receptor agonist DOI [1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine] induced MB in renal proximal tubular cells (RPTCs). The goal of this study was to determine the role of 5-HT2 receptors in the regulation of mitochondrial genes and oxidative metabolism in the kidney. The 5-HT2C receptor agonist CP-809,101 [2-[(3-chlorophenyl)methoxy]-6-(1-piperazinyl)pyrazine] and antagonist SB-242,084 [6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride] were used to examine the induction of renal mitochondrial genes and oxidative metabolism in RPTCs and in mouse kidneys in the presence and absence of the 5-HT2C receptor. Unexpectedly, both CP-809,101 and SB-242,084 increased RPTC respiration and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA expression in RPTCs at 1-10 nM. In addition, CP-809,101 and SB-242,084 increased mRNA expression of PGC-1α and the mitochondrial proteins NADH dehydrogenase subunit 1 and NADH dehydrogenase (ubiquinone) β subcomplex 8 in mice. These compounds increased mitochondrial genes in RPTCs in which the 5-HT2C receptor was downregulated with small interfering RNA and in the renal cortex of mice lacking the 5-HT2C receptor. By contrast, the ability of these compounds to increase PGC-1α mRNA and respiration was blocked in RPTCs treated with 5-HT2A receptor small interfering RNA or the 5-HT2A receptor antagonist eplivanserin. In addition, the 5-HT2A receptor agonist NBOH-2C-CN [4-[2-[[(2-hydroxyphenyl)methyl]amino]ethyl]-2,5-dimethoxybenzonitrile] increased RPTC respiration at 1-100 nM. These results suggest that agonism of the 5-HT2A receptor induces MB and that the classic 5-HT2C receptor agonist CP

  8. The nuclear receptors pregnane X receptor and constitutive androstane receptor contribute to the impact of fipronil on hepatic gene expression linked to thyroid hormone metabolism.

    PubMed

    Roques, Béatrice B; Leghait, Julien; Lacroix, Marlène Z; Lasserre, Frédéric; Pineau, Thierry; Viguié, Catherine; Martin, Pascal G P

    2013-10-01

    Fipronil is described as a thyroid disruptor in rat. Based on the hypothesis that this results from a perturbation of hepatic thyroid hormone metabolism, our goal was to investigate the pathways involved in fipronil-induced liver gene expression regulations. First, we performed a microarray screening in the liver of rats treated with fipronil or vehicle. Fipronil treatment led to the upregulation of several genes involved in the metabolism of xenobiotics, including the cytochrome P450 Cyp2b1, Cyp2b2 and Cyp3a1, the carboxylesterases Ces2 and Ces6, the phase II enzymes Ugt1a1, Sult1b1 and Gsta2, and the membrane transporters Abcc2, Abcc3, Abcg5, Abcg8, Slco1a1 and Slco1a4. Based on a large overlap with the target genes of constitutive androstane receptor (CAR) and pregnane X receptor (PXR), we postulated that these two nuclear receptors are involved in mediating the effects of fipronil on liver gene expression in rodents. We controlled that liver gene expression changes induced by fipronil were generally reproduced in mice, and then studied the effects of fipronil in wild-type, CAR- and PXR-deficient mice. For most of the genes studied, the gene expression modulations were abolished in the liver of PXR-deficient mice and were reduced in the liver of CAR-deficient mice. However, CAR and PXR activation in mouse liver was not associated with a marked increase of thyroid hormone clearance, as observed in rat. Nevertheless, our data clearly indicate that PXR and CAR are key modulators of the hepatic gene expression profile following fipronil treatment which, in rats, may contribute to increase thyroid hormone clearance.

  9. Molecular characterization of the Aphis gossypii olfactory receptor gene families.

    PubMed

    Cao, Depan; Liu, Yang; Walker, William B; Li, Jianhong; Wang, Guirong

    2014-01-01

    The cotton aphid, Aphis gossypii Glover, is a polyphagous pest that inflicts great damage to cotton yields worldwide. Antennal olfaction, which is extremely important for insect survival, mediates key behaviors such as host preference, mate choice, and oviposition site selection. In insects, odor detection is mediated by odorant receptors (ORs) and ionotropic receptors (IRs), which ensure the specificity of the olfactory sensory neuron responses. In this study, our aim is to identify chemosensory receptors in the cotton aphid genome, as a means to uncover olfactory encoding of the polyphagous feeding habits as well as to aid the discovery of new targets for behavioral interference. We identified a total of 45 candidate ORs and 14 IRs in the cotton aphid genome. Among the candidate AgoORs, 9 are apparent pseudogenes, while 19 can be clustered with ORs from the pea aphid, forming 16 AgoOR/ApOR orthologous subgroups. Among the candidate IRs, we identified homologs of the two highly conserved co-receptors IR8a and IR25a; no AgoIR retain the complete glutamic acid binding domain, suggesting that putative AgoIRs bind different ligands. Our results provide the necessary information for functional characterization of the chemosensory receptors of A. gossypii, with potential for new or refined applications of semiochemicals-based control of this pest insect.

  10. Genomic organization of the mouse T-cell receptor beta-chain gene family.

    PubMed Central

    Lai, E; Barth, R K; Hood, L

    1987-01-01

    We have combined three different methods, deletion mapping of T-cell lines, field-inversion gel electrophoresis, and the restriction mapping of a cosmid clone, to construct a physical map of the murine T-cell receptor beta-chain gene family. We have mapped 19 variable (V beta) gene segments and the two clusters of diversity (D beta) and joining (J beta) gene segments and constant (C beta) genes. These members of the beta-chain gene family span approximately equal to 450 kilobases of DNA, excluding one potential gap in the DNA fragment alignments. Images PMID:3035555

  11. Steroid hormone receptor gene expression in human breast cancer cells: inverse relationship between oestrogen and glucocorticoid receptor messenger RNA levels.

    PubMed

    Hall, R E; Lee, C S; Alexander, I E; Shine, J; Clarke, C L; Sutherland, R L

    1990-12-15

    The relative expression in human breast cancer cells of messenger ribonucleic acids (mRNA) encoding different steroid hormone receptors is unknown. Accordingly, mRNA levels in total RNA extracted from 13 human breast cancer cell lines were measured by Northern analysis employing complementary DNA probes for the human oestrogen (ER), progesterone (PR), androgen (AR), vitamin D3 (VDR) and glucocorticoid receptors (GR). The 7 ER+ lines expressed a single 6.4 kilobases (kb) ER mRNA. Interestingly, low concentrations of ER mRNA were detected in the ER- cell lines, MDA-MB-330 and BT 20. PR mRNA, predominantly a 13.5 kb species, was expressed in the 6 lines known to be ER+, PR+ by radioligand binding; however, one ER+ cell line, MDA-MB-134, failed to express PR mRNA. A 10.5 kb AR mRNA was expressed at significantly higher levels in ER+ than ER- cell lines. All cell lines expressed a single 4.6 kb mRNA for VDR and a single 7.4 kb mRNA for GR. ER and PR mRNA levels were positively correlated (p = 0.011) and each was positively correlated with androgen receptor (AR) mRNA levels (p less than or equal to 0.009). ER, PR and AR mRNAs were negatively associated with GR levels (p less than or equal to 0.012), while ER and AR mRNA levels were negatively correlated with mRNA for the epidermal growth factor receptor. In contrast, levels of VDR mRNA were unrelated to the concentration of any other steroid receptor mRNA. Our data demonstrate the coordinate expression of ER, PR and AR genes, and an inverse relationship between sex steroid hormone receptor and GR gene expression in human breast cancer cell lines.

  12. Endogenous hepatic glucocorticoid receptor signaling coordinates sex-biased inflammatory gene expression.

    PubMed

    Quinn, Matthew A; Cidlowski, John A

    2016-02-01

    An individual's sex affects gene expression and many inflammatory diseases present in a sex-biased manner. Glucocorticoid receptors (GRs) are regulators of inflammatory genes, but their role in sex-specific responses is unclear. Our goal was to evaluate whether GR differentially regulates inflammatory gene expression in male and female mouse liver. Twenty-five percent of the 251 genes assayed by nanostring analysis were influenced by sex. Of these baseline sexually dimorphic inflammatory genes, 82% was expressed higher in female liver. Pathway analyses defined pattern-recognition receptors as the most sexually dimorphic pathway. We next exposed male and female mice to the proinflammatory stimulus LPS. Female mice had 177 genes regulated by treatment with LPS, whereas males had 149, with only 66% of LPS-regulated genes common between the sexes. To determine the contribution of GR to sexually dimorphic inflammatory genes we performed nanostring analysis on liver-specific GR knockout (LGRKO) mice in the presence or absence of LPS. Comparing LGRKO to GR(flox/flox) revealed that 36 genes required GR for sexually dimorphic expression, whereas 24 genes became sexually dimorphic in LGRKO. Fifteen percent of LPS-regulated genes in GR(flox/flox) were not regulated in male and female LGRKO mice treated with LPS. Thus, GR action is influenced by sex to regulate inflammatory gene expression.

  13. Massive Losses of Taste Receptor Genes in Toothed and Baleen Whales

    PubMed Central

    Feng, Ping; Zheng, Jinsong; Rossiter, Stephen J.; Wang, Ding; Zhao, Huabin

    2014-01-01

    Taste receptor genes are functionally important in animals, with a surprising exception in the bottlenose dolphin, which shows extensive losses of sweet, umami, and bitter taste receptor genes. To examine the generality of taste gene loss, we examined seven toothed whales and five baleen whales and sequenced the complete repertoire of three sweet/umami (T1Rs) and ten bitter (T2Rs) taste receptor genes. We found all amplified T1Rs and T2Rs to be pseudogenes in all 12 whales, with a shared premature stop codon in 10 of the 13 genes, which demonstrated massive losses of taste receptor genes in the common ancestor of whales. Furthermore, we analyzed three genome sequences from two toothed whales and one baleen whale and found that the sour taste marker gene Pkd2l1 is a pseudogene, whereas the candidate salty taste receptor genes are intact and putatively functional. Additionally, we examined three genes that are responsible for taste signal transduction and found the relaxation of functional constraints on taste signaling pathways along the ancestral branch leading to whales. Together, our results strongly suggest extensive losses of sweet, umami, bitter, and sour tastes in whales, and the relaxation of taste function most likely arose in the common ancestor of whales between 36 and 53 Ma. Therefore, whales represent the first animal group to lack four of five primary tastes, probably driven by the marine environment with high concentration of sodium, the feeding behavior of swallowing prey whole, and the dietary switch from plants to meat in the whale ancestor. PMID:24803572

  14. Massive losses of taste receptor genes in toothed and baleen whales.

    PubMed

    Feng, Ping; Zheng, Jinsong; Rossiter, Stephen J; Wang, Ding; Zhao, Huabin

    2014-05-06

    Taste receptor genes are functionally important in animals, with a surprising exception in the bottlenose dolphin, which shows extensive losses of sweet, umami, and bitter taste receptor genes. To examine the generality of taste gene loss, we examined seven toothed whales and five baleen whales and sequenced the complete repertoire of three sweet/umami (T1Rs) and ten bitter (T2Rs) taste receptor genes. We found all amplified T1Rs and T2Rs to be pseudogenes in all 12 whales, with a shared premature stop codon in 10 of the 13 genes, which demonstrated massive losses of taste receptor genes in the common ancestor of whales. Furthermore, we analyzed three genome sequences from two toothed whales and one baleen whale and found that the sour taste marker gene Pkd2l1 is a pseudogene, whereas the candidate salty taste receptor genes are intact and putatively functional. Additionally, we examined three genes that are responsible for taste signal transduction and found the relaxation of functional constraints on taste signaling pathways along the ancestral branch leading to whales. Together, our results strongly suggest extensive losses of sweet, umami, bitter, and sour tastes in whales, and the relaxation of taste function most likely arose in the common ancestor of whales between 36 and 53 Ma. Therefore, whales represent the first animal group to lack four of five primary tastes, probably driven by the marine environment with high concentration of sodium, the feeding behavior of swallowing prey whole, and the dietary switch from plants to meat in the whale ancestor.

  15. T cell receptor genes in an alloreactive CTL clone: implications for rearrangement and germline diversity of variable gene segments.

    PubMed Central

    Chou, H S; Behlke, M A; Godambe, S A; Russell, J H; Brooks, C G; Loh, D Y

    1986-01-01

    Both cDNA and genomic clones of the T cell receptor (TCR) alpha- and beta-chain genes of the alloreactive cytotoxic T lymphocyte (CTL) clone F3 were examined. Two distinct rearrangement events, one functional and one non-functional, were found for both the alpha and beta loci. Thus only a single functional TCR alpha beta heterodimer could be defined, consistent with allelic exclusion in the TCR genes. The V alpha gene employed by F3 is part of a six-member V alpha subfamily. Genomic clones containing each member of this subfamily were isolated and the V alpha nucleotide sequences determined. Five of these six genes are functional; these genes differ from each other by 7-14% at the amino acid level. A single dominant hypervariable region was defined within this subfamily, in contrast to the pattern of variability seen between V alpha genes in general. Images Fig. 4. Fig. 5. PMID:3490968

  16. Natural Killer Cell Receptor Genes in the Family Equidae: Not only Ly49

    PubMed Central

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  17. Natural killer cell receptor genes in the family Equidae: not only Ly49.

    PubMed

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  18. Sulfotransferase genes: Regulation by nuclear receptors in response to xeno/endo-biotics

    PubMed Central

    Kodama, Susumu; Negishi, Masahiko

    2014-01-01

    Pregnane X receptor (PXR) and constitutive active/androstane receptor (CAR), members of the nuclear receptor superfamily, are two major xeno-sensing transcription factors. They can be activated by a broad range of lipophilic xenobiotics including therapeutics drugs. In addition to xenobiotics, endogenous compounds such as steroid hormones and bile acids can also activate PXR and/or CAR. These nuclear receptors regulate genes that encode enzymes and transporters that metabolize and excrete both xenobiotics and endobiotics. Sulfotransferases (SULTs) are a group of these enzymes and sulfate xenobiotics for detoxification. In general, inactivation by sulfation constitutes the mechanism to maintain homeostasis of endobiotics. Thus, deciphering the molecular mechanism by which PXR and CAR regulate SULT genes is critical for understanding the roles of SULTs in the alterations of physiological and pathophysiological processes caused by drug treatment or environmental exposures. PMID:24025090

  19. Increase of AMPA receptor glutamate receptor 1 subunit and B-cell receptor-associated protein 31 gene expression in hippocampus of fatigued mice.

    PubMed

    Kamakura, Masaki; Tamaki, Keisuke; Sakaki, Toshiyuki; Yoneda, Yukio

    2005-10-14

    Central fatigue is an indispensable biosignal for maintaining life, but the neuronal and molecular mechanisms involved remain unclear. In this study, we searched for genes differentially expressed in the hippocampus of fatigued mice to elucidate the mechanisms underlying fatigue. Mice were forced to swim in an adjustable-current water pool, and the maximum swimming time (endurance) until fatigue was measured thrice. Fatigued and nonfatigued mice with equal swimming capacity and body weight were compared. We found that the genes of GluR1 and B-cell receptor-associated protein 31 (Bap31), which acts as a transport molecule in the secretory pathway or as a mediator of apoptosis, were upregulated in the hippocampus of fatigued mice, and increases of GluR1 and Bap31 were confirmed by Northern blotting and real-time PCR. No change of gene expression of AMPA receptor subunits other than GluR1 was observed. These results suggest that a compositional change of AMPA receptor (increase of GluR1) and upregulation of the Bap31 gene may be implicated in fatigue in mice.

  20. Selective Gene Regulation by Androgen Receptor in Prostate Cancer

    DTIC Science & Technology

    2013-10-01

    androgen receptor pathway in prostate cancer. Curr Opin Pharmacol, 2008. 8(4): p. 440-8. 6. Claessens, F., P. Alen , A. Devos, B. Peeters, G...Chem, 1996. 271(32): p. 19013-6. 7. Schoenmakers, E., P. Alen , G. Verrijdt, B. Peeters, G. Verhoeven, W. Rombauts, and F. Claessens, Differential DNA

  1. Ecdysone Receptor-Based Gene Switches for Applications in Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are a number of circumstances in which it is advantageous to use an inducible gene regulation system, the most obvious being when introducing transgenes whose constitutive expression is detrimental or even lethal to the host plants. The selective induction of gene expression is typically accom...

  2. T-cell receptor variable region gene usage in T-cell populations.

    PubMed Central

    Garman, R D; Ko, J L; Vulpe, C D; Raulet, D H

    1986-01-01

    We have examined T-cell receptor alpha- and beta-chain variable (V) region gene usage in T-cell populations predicted to have different major histocompatibility complex-restriction specificities. Using a sensitive ribonuclease protection assay to measure T-cell receptor mRNA levels, we found no striking differences in the usage of three V alpha genes and three V beta genes in T-cell populations from three congeneic H-2-disparate strains of mice and between the mutually exclusive Ly2+ L3T4- and Ly2- L3T4+ T-cell subpopulations. These results suggest that major histocompatibility complex restriction cannot be explained by the differential usage of nonoverlapping V alpha or V beta gene pools. In contrast, striking but unpredictable differences were seen in V gene usage in populations of T cells selected by activation with particular alloantigens. Images PMID:3487085

  3. Influences of ACTH 4-10 on event-related potentials reflecting attention in man.

    PubMed

    Born, J; Fehm-Wolfsdorf, G; Voigt, K H; Fehm, H L

    1987-01-01

    The present paper is concerned with effects of the 4-10 sequence of the endogenous ACTH on electrophysiological measures of attention in humans. It was attempted to replicate previous findings of an impaired selective attention following administration of an analog of ACTH 4-9. The effect of this analog had been found to dominate in the beginning of the blocks of an attention task, but to fade away with time on task. In the present study, fourteen male students were tested in a dichotic listening paradigm, 40 min after intranasal application of either 0.4 mg ACTH 4-10, or placebo. Averaged auditory evoked potentials (AEPs) to attended and inattended tone pips, EEG power spectra, heart rate and blood pressure, and behavioral performance were measured during task performance. ACTH 4-10 appeared to slightly impair selective attention as indicated by AEP responses. In particular, the positive shift of the AEP waveforms to inattended stimuli was reduced at the beginning of each block of tone pips under ACTH 4-10. The pattern of actions resembled the effects observed after administration of the more potent synthetic analog of ACTH 4-9 in the previous experiment. Effects of ACTH 4-10 on the AEPs to inattended stimuli, however, differed from influences of the synthetic analog in that they did not affect a rather wide latency range but concentrated on the latency range of the P200 component.

  4. Effect of ACTH on plasma corticosterone and cortisol in eagles and condors.

    PubMed

    Zenoble, R D; Kemppainen, R J; Young, D W; Carpenter, J W

    1985-12-01

    The effect of ACTH on plasma corticosterone and cortisol was determined in 12 eagles (Haliaeetus leucocephalus) and in 6 Andean condors (Vultur gryphus). In all raptors, the concentration of plasma corticosterone was substantially greater than that of cortisol. After ACTH administration, the eagles had a marked increase (P less than 0.001) in plasma corticosterone concentrations, but not in plasma cortisol. Administration of saline solution did not induce increased plasma corticosterone concentrations in the eagles. The condors had a smaller increase (P less than 0.002) in plasma corticosterone concentrations after ACTH administration, as compared with that of the eagles. However, administration of saline solution in 2 condors resulted in an increase in corticosterone similar to the increase after ACTH administration. In the condor, a stress-related release of endogenous ACTH may have an effect similar to that induced by exogenously administered ACTH. Plasma cortisol concentrations did not increase significantly after administration of ACTH or saline solution in either raptor species.

  5. Effect of ACTH on plasma corticosterone and cortisol in eagles and condors

    USGS Publications Warehouse

    Zenoble, R.D.; Kemppainen, R.J.; Young, D.W.; Carpenter, J.W.

    1985-01-01

    The effect of ACTH on plasma corticosterone and cortisol was determined in 12 eagles (Haliaeetus leucocephalus) and in 6 Andean condors (Vultur gryphus). In all raptors, the concentration of plasma corticosterone was substantially greater than that of cortisol. After ACTH administration, the eagles had a marked increase (P less than 0.001) in plasma corticosterone concentrations, but not in plasma cortisol. Administration of saline solution did not induce increased plasma corticosterone concentrations in the eagles. The condors had a smaller increase (P less than 0.002) in plasma corticosterone concentrations after ACTH administration, as compared with that of the eagles. However, administration of saline solution in 2 condors resulted in an increase in corticosterone similar to the increase after ACTH administration. In the condor, a stress-related release of endogenous ACTH may have an effect similar to that induced by exogenously administered ACTH. Plasma cortisol concentrations did not increase significantly after administration of ACTH or saline solution in either raptor species.

  6. Functional characterization of insulin receptor gene mutations contributing to Rabson-Mendenhall syndrome - phenotypic heterogeneity of insulin receptor gene mutations.

    PubMed

    Jiang, Shan; Fang, Qichen; Zhang, Feng; Wan, Hui; Zhang, Rong; Wang, Congrong; Bao, Yuqian; Zhang, Lei; Ma, Xiaojing; Lu, Junxi; Gao, Fei; Xiang, Kunsan; Jia, Weiping

    2011-01-01

    Rabson-Mendenhall syndrome (RMS) is a rare disorder that presents as severe insulin resistance as a result of mutations present in the insulin receptor (INSR). A Chinese girl with RMS presented with profound diabetes, hyperinsulinemia, acanthosis nigricans, hirsutism, and abnormalities of teeth and nails. Direct sequencing of the patient's INSR detected heterozygote mutations at Arg83Gln (R83Q) and Ala1028Val (A1028V), with the former representing a novel mutation. Functional studies of Chinese hamster ovary (CHO) cells transfected with wild-type (WT) and mutant forms of INSR were performed to evaluate the effects of these mutations on receptor expression and activation. Receptor expression, insulin binding activity, and phosphorylation of the R83Q variant were comparable to WT. In contrast, expression of the A1028V receptor was much lower than that of WT INSR, and impairment of insulin binding and autophosphorylation were nearly commensurate with the decrease in expression detected. Reductions in the phosphorylation of IRS-1, Akt, and Erk1/2 (60%, 40%, and 50% of WT, respectively) indicate that the A1028V receptor contributes to impaired signal transduction. In conclusion, INSR mutations associated with RMS were identified. Moreover, the A1028V mutation associated with a decrease in expression of INSR potentially accounts for loss of function of the INSR.

  7. The DAF-7 TGF-β signaling pathway regulates chemosensory receptor gene expression in C. elegans

    PubMed Central

    Nolan, Katherine M.; Sarafi-Reinach, Trina R.; Horne, Jennifer G.; Saffer, Adam M.; Sengupta, Piali

    2002-01-01

    Regulation of chemoreceptor gene expression in response to environmental or developmental cues provides a mechanism by which animals can alter their sensory responses. Here we demonstrate a role for the daf-7 TGF-β pathway in the regulation of expression of a subset of chemoreceptor genes in Caenorhabditis elegans. We describe a novel role of this pathway in maintaining receptor gene expression in the adult and show that the DAF-4 type II TGF-β receptor functions cell-autonomously to modulate chemoreceptor expression. We also find that the alteration of receptor gene expression in the ASI chemosensory neurons by environmental signals, such as levels of a constitutively produced pheromone, may be mediated via a DAF-7-independent pathway. Receptor gene expression in the ASI and ASH sensory neurons appears to be regulated via distinct mechanisms. Our results suggest that the expression of individual chemoreceptor genes in C. elegans is subject to multiple modes of regulation, thereby ensuring that animals exhibit the responses most appropriate for their developmental stage and environmental conditions. PMID:12464635

  8. Vitamin D Receptor Gene as a Candidate Gene for Parkinson Disease

    PubMed Central

    BUTLER, MEGAN W.; BURT, AMBER; EDWARDS, TODD L.; ZUCHNER, STEPHAN; SCOTT, WILLIAM K.; MARTIN, EDEN R.; VANCE, JEFFERY M.; WANG, LIYONG

    2010-01-01

    Summary Vitamin D and vitamin D receptor (VDR) have been postulated as environmental and genetic factors in neurodegeneration disorders including multiple sclerosis (MS), Alzheimer disease (AD), and recently Parkinson disease (PD). Given the sparse data on PD and VDR, we conducted a two-stage study to evaluate the genetic effects of VDR in PD. In the discovery stage, 30 tagSNPs in VDR were tested for association with PD risk as a discrete trait and age-at-onset of PD as a quantitative trait in 770 Caucasian PD families. In the validation stage, 18 VDR SNPs were tested in an independent Caucasian cohort (267 cases and 267 controls) constructed from a genome-wide association study (GWAS). In the discovery dataset, SNPs in the 5′ end of VDR were associated with both risk and age-at-onset with more significant evidence of association with age-at-onset (nominal p=0.0008 for the most significant SNPs). These SNPs were also associated with AD in a recent GWAS. In the validation dataset, SNPs in the 3′ end of VDR were associated with age-at-onset (nominal p=0.003 for the most significant SNPs but not risk. The most significant 3′end SNP has been be associated with both MS and AD. Our findings suggest VDR as a potential susceptibility gene and support an essential role of vitamin D in PD. PMID:21309754

  9. Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs

    PubMed Central

    Saccone, Scott F.; Hinrichs, Anthony L.; Saccone, Nancy L.; Chase, Gary A.; Konvicka, Karel; Madden, Pamela A.F.; Breslau, Naomi; Johnson, Eric O.; Hatsukami, Dorothy; Pomerleau, Ovide; Swan, Gary E.; Goate, Alison M.; Rutter, Joni; Bertelsen, Sarah; Fox, Louis; Fugman, Douglas; Martin, Nicholas G.; Montgomery, Grant W.; Wang, Jen C.; Ballinger, Dennis G.; Rice, John P.; Bierut, Laura Jean

    2007-01-01

    Nicotine dependence is one of the world’s leading causes of preventable death. To discover genetic variants that influence risk for nicotine dependence, we targeted over 300 candidate genes and analyzed 3713 single nucleotide polymorphisms (SNPs) in 1050 cases and 879 controls. The Fagerström test for nicotine dependence (FTND) was used to assess dependence, in which cases were required to have an FTND of 4 or more. The control criterion was strict: control subjects must have smoked at least 100 cigarettes in their lifetimes and had an FTND of 0 during the heaviest period of smoking. After correcting for multiple testing by controlling the false discovery rate, several cholinergic nicotinic receptor genes dominated the top signals. The strongest association was from an SNP representing CHRNB3, the β3 nicotinic receptor subunit gene (P = 9.4 × 10−5). Biologically, the most compelling evidence for a risk variant came from a non-synonymous SNP in the α5 nicotinic receptor subunit gene CHRNA5 (P = 6.4 × 10−4). This SNP exhibited evidence of a recessive mode of inheritance, resulting in individuals having a 2-fold increase in risk of developing nicotine dependence once exposed to cigarette smoking. Other genes among the top signals were KCNJ6 and GABRA4. This study represents one of the most powerful and extensive studies of nicotine dependence to date and has found novel risk loci that require confirmation by replication studies. PMID:17135278

  10. Hormone Receptor and ERBB2 Status in Gene Expression Profiles of Human Breast Tumor Samples

    PubMed Central

    Dvorkin-Gheva, Anna; Hassell, John A.

    2011-01-01

    The occurrence of large publically available repositories of human breast tumor gene expression profiles provides an important resource to discover new breast cancer biomarkers and therapeutic targets. For example, knowledge of the expression of the estrogen and progesterone hormone receptors (ER and PR), and that of the ERBB2 in breast tumor samples enables choice of therapies for the breast cancer patients that express these proteins. Identifying new biomarkers and therapeutic agents affecting the activity of signaling pathways regulated by the hormone receptors or ERBB2 might be accelerated by knowledge of their expression levels in large gene expression profiling data sets. Unfortunately, the status of these receptors is not invariably reported in public databases of breast tumor gene expression profiles. Attempts have been made to employ a single probe set to identify ER, PR and ERBB2 status, but the specificity or sensitivity of their prediction is low. We enquired whether estimation of ER, PR and ERBB2 status of profiled tumor samples could be improved by using multiple probe sets representing these three genes and others with related expression. We used 8 independent datasets of human breast tumor samples to define gene expression signatures comprising 24, 51 and 14 genes predictive of ER, PR and ERBB2 status respectively. These signatures, as demonstrated by sensitivity and specificity measures, reliably identified hormone receptor and ERBB2 expression in breast tumors that had been previously determined using protein and DNA based assays. Our findings demonstrate that gene signatures can be identified which reliably predict the expression status of the estrogen and progesterone hormone receptors and that of ERBB2 in publically available gene expression profiles of breast tumor samples. Using these signatures to query transcript profiles of breast tumor specimens may enable discovery of new biomarkers and therapeutic targets for particular subtypes of

  11. Oxytocin, vasopressin and estrogen receptor gene expression in relation to social recognition in female mice

    PubMed Central

    Clipperton-Allen, Amy E.; Lee, Anna W.; Reyes, Anny; Devidze, Nino; Phan, Anna; Pfaff, Donald W.; Choleris, Elena

    2012-01-01

    Inter- and intra-species differences in social behavior and recognition-related hormones and receptors suggest that different distribution and/or expression patterns may relate to social recognition. We used qRT-PCR to investigate naturally occurring differences in expression of estrogen receptor-alpha (ERα), ER-beta (ERβ), progesterone receptor (PR), oxytocin (OT) and receptor, and vasopressin (AVP) and receptors in proestrous female mice. Following four 5 min exposures to the same two conspecifics, one was replaced with a novel mouse in the final trial (T5). Gene expression was examined in mice showing high (85–100%) and low (40–60%) social recognition scores (i.e., preferential novel mouse investigation in T5) in eight socially-relevant brain regions. Results supported OT and AVP involvement in social recognition, and suggest that in the medial preoptic area, increased OT and AVP mRNA, together with ERα and ERβ gene activation, relate to improved social recognition. Initial social investigation correlated with ERs, PR and OTR in the dorsolateral septum, suggesting that these receptors may modulate social interest without affecting social recognition. Finally, increased lateral amygdala gene activation in the LR mice may be associated with general learning impairments, while decreased lateral amygdala activity may indicate more efficient cognitive mechanisms in the HR mice. PMID:22079582

  12. Molecular cloning of a gene encoding the histamine H2 receptor

    SciTech Connect

    Gantz, I.; Schaeffer, M.; DelValle, J.; Logsdon, C.; Campbell, V.; Uhler, M.; Yamada, Tadataka )

    1991-01-15

    The H2 subclass of histamine receptors mediates gastric acid secretion, and antagonists for this receptor have proven to be effective therapy for acid peptic disorders of the gastrointestinal tract. The physiological action of histamine has been shown to be mediated via a guanine nucleotide-binding protein linked to adenylate cyclase activation and cellular cAMP generation. The authors capitalized on the technique of polymerase chain reaction, using degenerate oligonucleotide primers based on the known homology between cellular receptors linked to guanine nucleotide-binding proteins to obtain a partial-length clone from canine gastric parietal cell cDNA. This clone was used to obtain a full-length receptor gene from a canine genomic library. Histamine increased in a dose-dependent manner cellular cAMP content in L cells permanently transfected with this gene, and preincubation of the cells with the H2-selective antagonist cimetidine shifted the dose-response curve to the right. Cimetidine inhibited the binding of the radiolabeled H2 receptor-selective ligand (methyl-{sup 3}H)tiotidine to the transfected cells in a dose-dependent fashion, but the H1-selective antagonist diphenhydramine did not. These data indicate that they have cloned a gene that encodes the H2 subclass of histamine receptors.

  13. Domain-dependent effects of insulin and IGF-1 receptors on signalling and gene expression

    PubMed Central

    Cai, Weikang; Sakaguchi, Masaji; Kleinridders, Andre; Gonzalez-Del Pino, Gonzalo; Dreyfuss, Jonathan M.; O'Neill, Brian T.; Ramirez, Alfred K.; Pan, Hui; Winnay, Jonathon N.; Boucher, Jeremie; Eck, Michael J.; Kahn, C. Ronald

    2017-01-01

    Despite a high degree of homology, insulin receptor (IR) and IGF-1 receptor (IGF1R) mediate distinct cellular and physiological functions. Here, we demonstrate how domain differences between IR and IGF1R contribute to the distinct functions of these receptors using chimeric and site-mutated receptors. Receptors with the intracellular domain of IGF1R show increased activation of Shc and Gab-1 and more potent regulation of genes involved in proliferation, corresponding to their higher mitogenic activity. Conversely, receptors with the intracellular domain of IR display higher IRS-1 phosphorylation, stronger regulation of genes in metabolic pathways and more dramatic glycolytic responses to hormonal stimulation. Strikingly, replacement of leucine973 in the juxtamembrane region of IR to phenylalanine, which is present in IGF1R, mimics many of these signalling and gene expression responses. Overall, we show that the distinct activities of the closely related IR and IGF1R are mediated by their intracellular juxtamembrane region and substrate binding to this region. PMID:28345670

  14. 5-HT2A receptor gene polymorphisms in Croatian subjects with autistic disorder.

    PubMed

    Hranilovic, Dubravka; Blazevic, Sofia; Babic, Marina; Smurinic, Maja; Bujas-Petkovic, Zorana; Jernej, Branimir

    2010-08-15

    Disturbances in the expression/function of the 5-HT2A receptor are implicated in autism. The association of the 5-HT2A receptor gene with autism was studied in the Croatian population. Distribution frequencies for alleles, genotypes and haplotypes of -1438 A/G and His452Tyr polymorphisms were compared in samples of 103 autistic and 214 control subjects. Significant overrepresentation of the G allele and the GG genotype of the -1438 A/G polymorphism was observed in group of autistic subjects, supporting the possible involvement of the 5-HT2A receptor in the development of autism.

  15. [Histamine H₁ receptor gene as an allergic diseases-sensitive gene and its impact on therapeutics for allergic diseases].

    PubMed

    Mizuguchi, Hiroyuki; Kitamura, Yoshiaki; Kondo, Yuto; Kuroda, Wakana; Yoshida, Haruka; Miyamoto, Yuko; Hattori, Masashi; Takeda, Noriaki; Fukui, Hiroyuki

    2011-02-01

    Therapeutics targeting disease-sensitive genes are required for the therapy of multifactorial diseases. There is no clinical report on therapeutics for allergic disease-sensitive genes. We are focusing on the histamine H₁ receptor (H1R) as a sensitive gene. H1R mediates allergy histamine signals. H1R is a rate-limiting molecule of the H1R signal because the signal is increased with elevated receptor expression level. We discovered that the stimulation of H1R induced H1R gene expression through PKCδ activation, resulting in receptor upregulation. The mechanism of H1R gene expression was revealed to play a key role in the receptor expression level in studies using cultured HeLa cells and allergic rhinitis model rats. Preseasonal prophylactic treatment with antihistamines is recommended for the therapy of pollinosis. However, the mechanism of the therapy remains to be elucidated. We demonstrated that repeated pretreatment treatment with antihistamines in the allergic rhinitis model rats resulted not only in improvement of symptoms but also in suppressed elevation of H1R mRNA levels in the nasal mucosa. A clinical trial was then initiated. When symptoms and H1R mRNA levels in the nasal mucosa of pollinosis patients with or without preseasonal prophylactic treatment with antihistamines were examined, both symptoms and high levels of H1R mRNA were significantly improved in treated compared with untreated patients. These results strongly suggest that H1R is an allergic disease-sensitive gene.

  16. Estrogen receptor-alpha gene expression in the cortex: sex differences during development and in adulthood.

    PubMed

    Wilson, Melinda E; Westberry, Jenne M; Trout, Amanda L

    2011-03-01

    17β-estradiol is a hormone with far-reaching organizational, activational and protective actions in both male and female brains. The organizational effects of early estrogen exposure are essential for long-lasting behavioral and cognitive functions. Estradiol mediates many of its effects through the intracellular receptors, estrogen receptor-alpha (ERα) and estrogen receptor-beta (ERβ). In the rodent cerebral cortex, estrogen receptor expression is high early in postnatal life and declines dramatically as the animal approaches puberty. This decline is accompanied by decreased expression of ERα mRNA. This change in expression is the same in both males and females in the developing isocortex and hippocampus. An understanding of the molecular mechanisms involved in the regulation of estrogen receptor alpha (ERα) gene expression is critical for understanding the developmental, as well as changes in postpubertal expression of the estrogen receptor. One mechanism of suppressing gene expression is by the epigenetic modification of the promoter regions by DNA methylation that results in gene silencing. The decrease in ERα mRNA expression during development is accompanied by an increase in promoter methylation. Another example of regulation of ERα gene expression in the adult cortex is the changes that occur following neuronal injury. Many animal studies have demonstrated that the endogenous estrogen, 17β-estradiol, is neuroprotective. Specifically, low levels of estradiol protect the cortex from neuronal death following middle cerebral artery occlusion (MCAO). In females, this protection is mediated through an ERα-dependent mechanism. ERα expression is rapidly increased following MCAO in females, but not in males. This increase is accompanied by a decrease in methylation of the promoter suggesting a return to the developmental program of gene expression within neurons. Taken together, during development and in adulthood, regulation of ERα gene expression in the

  17. Reciprocal activation of Xenobiotic response genes by nuclear receptors SXR/PXR and CAR

    PubMed Central

    Xie, Wen; Barwick, Joyce L.; Simon, Cynthia M.; Pierce, Alexis M.; Safe, Stephen; Blumberg, Bruce; Guzelian, Philip S.; Evans, Ronald M.

    2000-01-01

    The cytochrome P450 (CYP) gene products such as CYP3A and CYP2B are essential for the metabolism of steroid hormones and xenochemicals including prescription drugs. Nuclear receptor SXR/PXR (steroid and xenobiotic receptor/pregnenolone X receptor) has been shown both biochemically and genetically to activate CYP3A genes, while similar studies have established constitutive androstane receptor (CAR) as a CYP2B regulator. The response elements in these genes are also distinct, furthering the concept of independent regulation. Unexpectedly, we found that SXR can regulate CYP2B, both in cultured cells and in transgenic mice via adaptive recognition of the phenobarbital response element (PBRE). In a type of functional symmetry, orphan receptor CAR was also found to activate CYP3A through previously defined SXR/PXR response elements. These observations not only provide a rational explanation for the activation of multiple CYP gene classes by certain xenobiotics, but also reveal the existence of a metabolic safety net that confers a second layer of protection to the harmful effects of toxic compounds and at the same time increases the propensity for drug–drug interactions. PMID:11114890

  18. Ectopic ACTH syndrome due to pheochromocytoma: case report and review of the literature.

    PubMed Central

    Forman, B. H.; Marban, E.; Kayne, R. D.; Passarelli, N. M.; Bobrow, S. N.; Livolsi, V. A.; Merino, M.; Minor, M.; Farber, L. R.

    1979-01-01

    A 51-year-old female was diagnosed preoperatively to have a pheochromocytoma producing ACTH. This diagnosis was based upon her paroxysmal hypertension, hyperpigmentation, and hypokalemia. Elevated levels of serum and urine corticosteroids, plasma ACTH, urinary VMA, and catecholamines fell after a right adrenal pheochromocytoma was removed. Subsequently this tumor was found to have a high content of ACTH. Review of the literature indicates a mortality rate of 57% for this syndrome. Proper preoperative recognition and management can result in total cure. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 FIG. 5 FIG. 6 PMID:222080

  19. The role of ACTH and glucocorticoids in nonenzymatic fibrinolysis during immobilization stress in animals

    NASA Technical Reports Server (NTRS)

    Kudryashov, B. A.; Shapiro, F. B.; Lomovskaya, E. G.; Lyapina, L. A.

    1980-01-01

    The role of the altered hormonal status of an organism in the activation of the anticoagulative system during stress is investigated. The 30 minute immobilization stress was shown to raise significantly the nonenzymatic fibrinolytic activity of blood in rats. Combined with adrenocorticotropin (ACTH) the effect is still greater. Intravenous administration of 0.2 m1 0.01 percent solution of protamine sulphate prevented the nonenzymatic fibrinolysis induced by the stress. Administration of ACTH after protomine sulphate again raised the fibrinolysis. This suggests that ACTH stimulates the release of heparin.

  20. Sequence variation in the androgen receptor gene is not a common determinant of male sexual orientation

    SciTech Connect

    Macke, J.P.; Nathans, J.; King, V.L. ); Hu, N.; Hu, S.; Hamer, D.; Bailey, M. ); Brown, T. )

    1993-10-01

    To test the hypothesis that DNA sequence variation in the androgen receptor gene plays a causal role in the development of male sexual orientation, the authors have (1) measured the degree of concordance of androgen receptor alleles in 36 pairs of homosexual brothers, (2) compared the lengths of polyglutamine and polyglycine tracts in the amino-terminal domain of the androgen receptor in a sample of 197 homosexual males and 213 unselected subjects, and (3) screened the entire androgen receptor coding region for sequence variation by PCR and denaturing gradient-gel electrophoresis (DGGE) and/or single-strand conformation polymorphism analysis in 20 homosexual males with homosexual or bisexual brothers and one homosexual male with no homosexual brothers, and screened the amino-terminal domain of the receptor for sequence variation in an additional 44 homosexual males, 37 of whom had one or more first- or second-degree male relatives who were either homosexual or bisexual. These analyses show that (1) homosexual brothers are as likely to be discordant as concordant for androgen receptor alleles; (2) there are no large-scale differences between the distributions of polyglycine or polyglutamine tract lengths in the homosexual and control groups; and (3) coding region sequence variation is not commonly found within the androgen receptor gene of homosexual men. The DGGE screen identified two rare amino acid substitutions, ser[sup 205] -to-arg and glu[sup 793]-to-asp, the biological significance of which is unknown. 32 refs., 2 figs., 2 tabs.

  1. Enhanced antinociceptive effects of morphine in histamine H2 receptor gene knockout mice.

    PubMed

    Mobarakeh, Jalal Izadi; Takahashi, Kazuhiro; Sakurada, Shinobu; Kuramasu, Atsuo; Yanai, Kazuhiko

    2006-09-01

    We have previously shown that antinociceptive effects of morphine are enhanced in histamine H1 receptor gene knockout mice. In the present study, involvement of supraspinal histamine H2 receptor in antinociception by morphine was examined using histamine H2 receptor gene knockout (H2KO) mice and histamine H2 receptor antagonists. Antinociception was evaluated by assays for thermal (hot-plate, tail-flick and paw-withdrawal tests), mechanical (tail-pressure test) and chemical (formalin and capsaicin tests) stimuli. Thresholds for pain perception in H2KO mice were higher than wild-type mice. Antinociceptive effects of intracerebroventricularly administered morphine were enhanced in the H2KO mice compared to wild-type mice. Intracerebroventricular co-administration of morphine and cimetidine produced significant antinociceptive effects in the wild-type mice when compared to morphine or cimetidine alone. Furthermore, zolantidine, a selective and hydrophobic H2 receptor antagonist, enhanced the effects of morphine in all nociceptive assays examined. These results suggest that histamine exerts inhibitory effects on morphine-induced antinociception through H2 receptors at the supraspinal level. Our present and previous studies suggest that H1 and H2 receptors cooperatively function to modulate pain perception in the central nervous system.

  2. The evolution of drug-activated nuclear receptors: one ancestral gene diverged into two xenosensor genes in mammals

    PubMed Central

    Handschin, Christoph; Blättler, Sharon; Roth, Adrian; Looser, Renate; Oscarson, Mikael; Kaufmann, Michel R; Podvinec, Michael; Gnerre, Carmela; Meyer, Urs A

    2004-01-01

    Background Drugs and other xenobiotics alter gene expression of cytochromes P450 (CYP) by activating the pregnane X receptor (PXR) and constitutive androstane receptor (CAR) in mammals. In non-mammalian species, only one xenosensor gene has been found. Using chicken as a model organism, the aim of our study was to elucidate whether non-mammalian species only have one or two xenosensors like mammals. Results To explore the evolutionary aspect of this divergence, we tried to identify additional xenobiotic sensing nuclear receptors in chicken using various experimental approaches. However, none of those revealed novel candidates. Ablation of chicken xenobiotic receptor (CXR) function by RNAi or dominant-negative alleles drastically reduced drug-induction in a chicken hepatoma cell line. Subsequently, we functionally and structurally characterized CXR and compared our results to PXR and CAR. Despite the high similarity in their amino acid sequence, PXR and CAR have very distinct modes of activation. Some aspects of CXR function, e.g. direct ligand activation and high promiscuity are very reminiscent of PXR. On the other hand, cellular localization studies revealed common characteristics of CXR and CAR in terms of cytoplasmic-nuclear distribution. Finally, CXR has unique properties regarding its regulation in comparison to PXR and CAR. Conclusion Our finding thus strongly suggest that CXR constitutes an ancestral gene which has evolved into PXR and CAR in mammals. Future studies should elucidate the reason for this divergence in mammalian versus non-mammalian species. PMID:15479477

  3. The Aryl Hydrocarbon Receptor Complex and the Control of Gene Expression

    PubMed Central

    Beischlag, Timothy V.; Morales, J. Luis; Hollingshead, Brett D.; Perdew, Gary H.

    2008-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that controls the expression of a diverse set of genes. The toxicity of the potent AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin is almost exclusively mediated through this receptor. However, the key alterations in gene expression that mediate toxicity are poorly understood. It has been established through characterization of AhR-null mice that the AhR has a required physiological function, yet how endogenous mediators regulate this orphan receptor remains to be established. A picture as to how the AhR/ARNT heterodimer actually mediates gene transcription is starting to emerge. The AhR/ARNT complex can alter transcription both by binding to its cognate response element and through tethering to other transcription factors. In addition, many of the coregulatory proteins necessary for AhR-mediated transcription have been identified. Cross talk between the estrogen receptor and the AhR at the promoter of target genes appears to be an important mode of regulation. Inflammatory signaling pathways and the AhR also appear to be another important site of cross talk at the level of transcription. A major focus of this review is to highlight experimental efforts to characterize nonclassical mechanisms of AhR-mediated modulation of gene transcription. PMID:18540824

  4. Control of transcriptional repression of the vitellogenin receptor gene in largemouth bass (Micropterus salmoides) by select estrogen receptors isotypes.

    PubMed

    Dominguez, Gustavo A; Bisesi, Joseph H; Kroll, Kevin J; Denslow, Nancy D; Sabo-Attwood, Tara

    2014-10-01

    The vitellogenin receptor (Vtgr) plays an important role in fish reproduction. This receptor functions to incorporate vitellogenin (Vtg), a macromolecule synthesized and released from the liver in the bloodstream, into oocytes where it is processed into yolk. Although studies have focused on the functional role of Vtgr in fish, the mechanistic control of this gene is still unexplored. Here we report the identification and analysis of the first piscine 5' regulatory region of the vtgr gene which was cloned from largemouth bass (Micropterus salmoides). Using this putative promoter sequence, we investigated a role for hormones, including insulin and 17β-estradiol (E2), in transcriptional regulation through cell-based reporter assays. No effect of insulin was observed, however, E2 was able to repress transcriptional activity of the vtgr promoter through select estrogen receptor subtypes, Esr1 and Esr2a but not Esr2b. Electrophoretic mobility shift assay demonstrated that Esr1 likely interacts with the vtgr promoter region through half ERE and/or SP1 sites, in part. Finally we also show that ethinylestradiol (EE2), but not bisphenol-A (BPA), represses promoter activity similarly to E2. These results reveal for the first time that the Esr1 isoform may play an inhibitory role in the expression of LMB vtgr mRNA under the influence of E2, and potent estrogens such as EE2. In addition, this new evidence suggests that vtgr may be a target of select endocrine disrupting compounds through environmental exposures.

  5. Selective prostacyclin receptor agonism augments glucocorticoid-induced gene expression in human bronchial epithelial cells.

    PubMed

    Wilson, Sylvia M; Shen, Pamela; Rider, Christopher F; Traves, Suzanne L; Proud, David; Newton, Robert; Giembycz, Mark A

    2009-11-15

    Prostacyclin receptor (IP-receptor) agonists display anti-inflammatory and antiviral activity in cell-based assays and in preclinical models of asthma and chronic obstructive pulmonary disease. In this study, we have extended these observations by demonstrating that IP-receptor activation also can enhance the ability of glucocorticoids to induce genes with anti-inflammatory activity. BEAS-2B bronchial epithelial cells stably transfected with a glucocorticoid response element (GRE) luciferase reporter were activated in a concentration-dependent manner by the glucocorticoid dexamethasone. An IP-receptor agonist, taprostene, increased cAMP in these cells and augmented luciferase expression at all concentrations of dexamethasone examined. Analysis of the concentration-response relationship that described this effect showed that taprostene increased the magnitude of transcription without affecting the potency of dexamethasone and was, thus, steroid-sparing in this simple system. RO3244794, an IP-receptor antagonist, and oligonucleotides that selectively silenced the IP-receptor gene, PTGIR, abolished these effects of taprostene. Infection of BEAS-2B GRE reporter cells with an adenovirus vector encoding a highly selective inhibitor of cAMP-dependent protein kinase (PKA) also prevented taprostene from enhancing GRE-dependent transcription. In BEAS-2B cells and primary cultures of human airway epithelial cells, taprostene and dexamethasone interacted either additively or cooperatively in the expression of three glucocorticoid-inducible genes (GILZ, MKP-1, and p57(kip2)) that have anti-inflammatory potential. Collectively, these data show that IP-receptor agonists can augment the ability of glucocorticoids to induce anti-inflammatory genes in human airway epithelial cells by activating a cAMP/PKA-dependent mechanism. This observation may have clinical relevance in the treatment of airway inflammatory diseases that are either refractory or respond suboptimally to

  6. The chromosomal localization of the human follicle-stimulating hormone receptor gene (FSHR) on 2p21-p16 ls similar to that of the luteinizing hormone receptor gene

    SciTech Connect

    Rousseau-Merck, M.F.; Berger, R.; Atger, M.; Loosfelt, H.; Milgrom, E. )

    1993-01-01

    Two cDNA probes (5[prime]and 3[prime]region) corresponding to the human follicle-stimulating hormone receptor gene (FSHR) were used for chromosomal localization by in situ hybridization. The localization obtained on chromosome 2p21-p16 is similar to that of the luteinizing hormone/choriogonadotropin (LH/CG) receptor gene. 24 refs. 1 fig., 1 tab.

  7. The Medicago truncatula lysin [corrected] motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes.

    PubMed

    Arrighi, Jean-François; Barre, Annick; Ben Amor, Besma; Bersoult, Anne; Soriano, Lidia Campos; Mirabella, Rossana; de Carvalho-Niebel, Fernanda; Journet, Etienne-Pascal; Ghérardi, Michèle; Huguet, Thierry; Geurts, René; Dénarié, Jean; Rougé, Pierre; Gough, Clare

    2006-09-01

    Rhizobial Nod factors are key symbiotic signals responsible for starting the nodulation process in host legume plants. Of the six Medicago truncatula genes controlling a Nod factor signaling pathway, Nod Factor Perception (NFP) was reported as a candidate Nod factor receptor gene. Here, we provide further evidence for this by showing that NFP is a lysin [corrected] motif (LysM)-receptor-like kinase (RLK). NFP was shown both to be expressed in association with infection thread development and to be involved in the infection process. Consistent with deviations from conserved kinase domain sequences, NFP did not show autophosphorylation activity, suggesting that NFP needs to associate with an active kinase or has unusual functional characteristics different from classical kinases. Identification of nine new M. truncatula LysM-RLK genes revealed a larger family than in the nonlegumes Arabidopsis (Arabidopsis thaliana) or rice (Oryza sativa) of at least 17 members that can be divided into three subfamilies. Three LysM domains could be structurally predicted for all M. truncatula LysM-RLK proteins, whereas one subfamily, which includes NFP, was characterized by deviations from conserved kinase sequences. Most of the newly identified genes were found to be expressed in roots and nodules, suggesting this class of receptors may be more extensively involved in nodulation than was previously known.

  8. [Roles of histamine receptors in pain perception: a study using receptors gene knockout mice].

    PubMed

    Yanai, Kazuhiko; Mobarakeh, Jalal Izadi; Kuramasu, Atsuo; Sakurada, Shinobu

    2003-11-01

    To study the participation of histamine H1- and H2-receptors in pain perception, H1 and H2 receptor knockout (KO) mice were examined for pain threshold by means of three kinds of nociceptive tasks. These included assays for thermal, mechanical, and chemical nociception. H1KO mice showed significantly fewer nociceptive responses to the hot-plate, tail-flick, tail-pressure, paw-withdrawal, formalin, capsaicin, and abdominal constriction tests. Sensitivity to noxious stimuli in H1KO mice was significantly decreased when compared to wild-type mice. The antinociceptive phenotypes of H2KO were relatively less prominent when compared to H1KO mice. We also examined the antinociceptive effects of intrathecally-, intracerebroventricularly-, and subcutaneously-administered morphine in H1KO and H2KO mice. In these nociceptive assays, the antinociceptive effects produced by morphine were more enhanced in both H1KO and H2KO mice. The effects of histamine H1- and H2-receptor antagonists on morphine-induced antinociception were studied in ICR mice. The intrathecal, intracerebroventricular and subcutaneous co-administrations of d-chlorpheniramine enhanced the effects of morphine in all nociceptive assays examined. In addition, intrathecal co-administrations of cimetidine enhanced the antinociception of morphine in the hot plate tests. These results suggest that existing H1 and H2 receptors play an inhibitory role in morphine-induced antinociception in the spinal and supra-spinal levels.

  9. Linkage analysis of schizophrenia with five dopamine receptor genes in nine pedigrees

    SciTech Connect

    Coon, H.; Byerley, W.; Holik, J.; Hoff, M.; Myles-Worsley, M.; Plaetke, R. ); Lannfelt, L. ); Sokoloff, P.; Schwartz, J.C. ); Waldo, M.; Freedman, R. )

    1993-02-01

    Alterations in dopamine neurotransmission have been strongly implicated in the pathogenesis of schizophrenia for nearly 2 decades. Recently, the genes for five dopamine receptors have been cloned and characterized, and genetic and physical map information has become available. Using these five loci as candidate genes, the authors have tested for genetic linkage to schizophrenia in nine multigenerational families which include multiple affected individuals. In addition to testing conservative disease models, the have used a neurophysiological indicator variable, the P50 auditory evoked response. Deficits in gating of the P50 response have been shown to segregate with schizophrenia in this sample and may identify carriers of gene(s) predisposing for schizophrenia. Linkage results were consistently negative, indicating that a defect at any of the actual receptor sites is unlikely to be a major contributor to schizophrenia in the nine families studied. 47 refs., 1 fig., 4 tabs.

  10. Gene expression profiles linked to AT1 angiotensin receptors in the kidney

    PubMed Central

    Makhanova, Natalia A.; Crowley, Steven D.; Griffiths, Robert C.

    2010-01-01

    To characterize gene expression networks linked to AT1 angiotensin receptors in the kidney, we carried out genome-wide transcriptional analysis of RNA from kidneys of wild-type (WT) and AT1A receptor-deficient mice (KOs) at baseline and after 2 days of angiotensin II infusion (1,000 ng·kg−1·min−1). At baseline, 405 genes were differentially expressed (>1.5×) between WT and KO kidneys. Of these, >80% were upregulated in the KO group including genes involved in inflammation, oxidative stress, and cell proliferation. After 2 days of angiotensin II infusion in WT mice, expression of ≈805 genes was altered (18% upregulated, 82% repressed). Genes in metabolism and ion transport pathways were upregulated while there was attenuated expression of genes protective against oxidative stress including glutathione synthetase and mitochondrial superoxide dismutase 2. Angiotensin II infusion had little effect on blood pressure in KOs. Nonetheless, expression of >250 genes was altered in kidneys from KO mice during angiotensin II infusion; 14% were upregulated, while 86% were repressed including genes involved in immune responses, angiogenesis, and glutathione metabolism. Between WT and KO kidneys during angiotensin II infusion, 728 genes were differentially expressed; 10% were increased and 90% were decreased in the WT group. Differentially regulated pathways included those involved in ion transport, immune responses, metabolism, apoptosis, cell proliferation, and oxidative stress. This genome-wide assessment should facilitate identification of critical distal pathways linked to blood pressure regulation. PMID:20807774

  11. Glucocorticoids regulate arrestin gene expression and redirect the signaling profile of G protein-coupled receptors.

    PubMed

    Oakley, Robert H; Revollo, Javier; Cidlowski, John A

    2012-10-23

    G protein-coupled receptors (GPCRs) compose the largest family of cell surface receptors and are the most common target of therapeutic drugs. The nonvisual arrestins, β-arrestin-1 and β-arrestin-2, are multifunctional scaffolding proteins that play critical roles in GPCR signaling. On binding of activated GPCRs at the plasma membrane, β-arrestins terminate G protein-dependent responses (desensitization) and stimulate β-arrestin-dependent signaling pathways. Alterations in the cellular complement of β-arrestin-1 and β-arrestin-2 occur in many human diseases, and their genetic ablation in mice has severe consequences. Surprisingly, however, the factors that control β-arrestin gene expression are poorly understood. We demonstrate that glucocorticoids differentially regulate β-arrestin-1 and β-arrestin-2 gene expression in multiple cell types. Glucocorticoids act via the glucocorticoid receptor (GR) to induce the synthesis of β-arrestin-1 and repress the expression of β-arrestin-2. Glucocorticoid-dependent regulation involves the recruitment of ligand-activated glucocorticoid receptors to conserved and functional glucocorticoid response elements in intron-1 of the β-arrestin-1 gene and intron-11 of the β-arrestin-2 gene. In human lung adenocarcinoma cells, the increased expression of β-arrestin-1 after glucocorticoid treatment impairs G protein-dependent activation of inositol phosphate signaling while enhancing β-arrestin-1-dependent stimulation of the MAPK pathway by protease activated receptor 1. These studies demonstrate that glucocorticoids redirect the signaling profile of GPCRs via alterations in β-arrestin gene expression, revealing a paradigm for cross-talk between nuclear and cell surface receptors and a mechanism by which glucocorticoids alter the clinical efficacy of GPCR-based drugs.

  12. Oxytocin and Vasopressin Receptor Gene Polymorphisms: Role in Social and Psychiatric Traits

    PubMed Central

    Aspé-Sánchez, Mauricio; Moreno, Macarena; Rivera, Maria Ignacia; Rossi, Alejandra; Ewer, John

    2016-01-01

    Oxytocin (OXT) and arginine-vasopressin (AVP) are two phylogenetically conserved neuropeptides that have been implicated in a wide range of social behaviors. Although a large body of research, ranging from rodents to humans, has reported on the effects of OXT and AVP administration on affiliative and trust behaviors, and has highlighted the genetic contributions of OXT and AVP receptor polymorphisms to both social behaviors and to diseases related to social deficits, the consequences of peptide administration on psychiatric symptoms, and the impact of receptor polymorphisms on receptor function, are still unclear. Despite the exciting advances that these reports have brought to social neuroscience, they remain preliminary and suffer from the problems that are inherent to monogenetic linkage and association studies. As an alternative, some studies are using polygenic approaches, and consider the contributions of other genes and pathways, including those involving DA, 5-HT, and reelin, in addition to OXT and AVP; a handful of report are also using genome-wide association studies. This review summarizes findings on the associations between OXT and AVP receptor polymorphism, social behavior, and psychiatric diseases. In addition, we discuss reports on the interactions of OXT and AVP receptor genes and genes involved in other pathways (such as those of dopamine, serotonin, and reelin), as well as research that has shed some light on the impact of gene polymorphisms on the volume, connectivity, and activation of specific neural structures, differential receptor expression, and plasma levels of the OXT and AVP peptides. We hope that this effort will be helpful for understanding the studies performed so far, and for encouraging the inclusion of other candidate genes not explored to date. PMID:26858594

  13. A comparison of reptilian and avian olfactory receptor gene repertoires: Species-specific expansion of group γ genes in birds

    PubMed Central

    Steiger, Silke S; Kuryshev, Vladimir Y; Stensmyr, Marcus C; Kempenaers, Bart; Mueller, Jakob C

    2009-01-01

    Background The detection of odorants is mediated by olfactory receptors (ORs). ORs are G-protein coupled receptors that form a remarkably large protein superfamily in vertebrate genomes. We used data that became available through recent sequencing efforts of reptilian and avian genomes to identify the complete OR gene repertoires in a lizard, the green anole (Anolis carolinensis), and in two birds, the chicken (Gallus gallus) and the zebra finch (Taeniopygia guttata). Results We identified 156 green anole OR genes, including 42 pseudogenes. The OR gene repertoire of the two bird species was substantially larger with 479 and 553 OR gene homologs in the chicken and zebra finch, respectively (including 111 and 221 pseudogenes, respectively). We show that the green anole has a higher fraction of intact OR genes (~72%) compared with the chicken (~66%) and the zebra finch (~38%). We identified a larger number and a substantially higher proportion of intact OR gene homologs in the chicken genome than previously reported (214 versus 82 genes and 66% versus 15%, respectively). Phylogenetic analysis showed that lizard and bird OR gene repertoires consist of group α, θ and γ genes. Interestingly, the vast majority of the avian OR genes are confined to a large expansion of a single branch (the so called γ-c clade). An analysis of the selective pressure on the paralogous genes of each γ-c clade revealed that they have been subjected to adaptive evolution. This expansion appears to be bird-specific and not sauropsid-specific, as it is lacking from the lizard genome. The γ-c expansions of the two birds do not intermix, i.e., they are lineage-specific. Almost all (group γ-c) OR genes mapped to the unknown chromosome. The remaining OR genes mapped to six homologous chromosomes plus three to four additional chromosomes in the zebra finch and chicken. Conclusion We identified a surprisingly large number of potentially functional avian OR genes. Our data supports recent

  14. [Acute pancreatitis after bilateral laparoscopic adrenalectomy in patients with ectopic ACTH syndrome].

    PubMed

    Cougard, P; Peix, J L; Peschaud, F; Goudet, P

    2001-05-01

    Two cases of acute necrotizing pancreatitis after bilateral laparoscopic adrenalectomy were observed in patients with an ectopic ACTH syndrome. Two reasons may be suspected: the difficulty of dissection in such patients and the specific morbidity in relation to hypercorticism.

  15. Cloning, sequencing, and expression of the gene coding for the human platelet. cap alpha. /sub 2/-adrenergic receptor

    SciTech Connect

    Kobilka, B.K.; Matsui, H.; Kobilka, T.S.; Yang-Feng, T.L.; Francke, U.; Caron, M.G.; Lefkowitz, R.J.; Regan, J.W.

    1987-10-30

    The gene for the human platelet ..cap alpha../sub 2/-adrenergic receptor has been cloned with oligonucleotides corresponding to the partial amino acid sequence of the purified receptor. The identity of this gene has been confirmed by the binding of ..cap alpha../sub 2/-adrenergic ligands to the cloned receptor expressed in Xenopus laevis oocytes. The deduced amino acid sequence is most similar to the recently cloned human ..beta../sub 2/- and ..beta../sub 1/-adrenergic receptors; however, similarities to the muscarinic cholinergic receptors are also evident. Two related genes have been identified by low stringency Southern blot analysis. These genes may represent additional ..cap alpha../sub 2/-adrenergic receptor subtypes.

  16. The ERBB3 receptor in cancer and cancer gene therapy

    PubMed Central

    Sithanandam, G; Anderson, LM

    2009-01-01

    ERBB3, a member of the epidermal growth factor receptor (EGFR) family, is unique in that its tyrosine kinase domain is functionally defective. It is activated by neuregulins, by other ERBB and nonERBB receptors as well as by other kinases, and by novel mechanisms. Downstream it interacts prominently with the phosphoinositol 3-kinase/AKT survival/mitogenic pathway, but also with GRB, SHC, SRC, ABL, rasGAP, SYK and the transcription regulator EBP1. There are likely important but poorly understood roles for nuclear localization and for secreted isoforms. Studies of ERBB3 expression in primary cancers and of its mechanistic contributions in cultured cells have implicated it, with varying degrees of certainty, with causation or sustenance of cancers of the breast, ovary, prostate, certain brain cells, retina, melanocytes, colon, pancreas, stomach, oral cavity and lung. Recent results link high ERBB3 activity with escape from therapy targeting other ERBBs in lung and breast cancers. Thus a wide and centrally important role for ERBB3 in cancer is becoming increasingly apparent. Several approaches for targeting ERBB3 in cancers have been tested or proposed. Small inhibitory RNA (siRNA) to ERBB3 or AKT is showing promise as a therapeutic approach to treatment of lung adenocarcinoma. PMID:18404164

  17. Improvement of a Monopartite Ecdysone Receptor Gene Switch and Demonstration of its Utility in Regulation of Transgene Expression in Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical inducible gene regulation systems provide essential tools for the precise regulation of transgene expression in plants and animals. We have recent developed a two-hybrid ecdysone receptor (EcR) gene regulation system that works in conjunction with the retinoid X receptor of Locusta migrato...

  18. Developmentally Regulated Expression of the Nerve Growth Factor Receptor Gene in the Periphery and Brain

    NASA Astrophysics Data System (ADS)

    Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.

    1987-05-01

    Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.

  19. Sequence and diversity of rabbit T-cell receptor gamma chain genes

    SciTech Connect

    Isono, T.; Kim, C.J.; Seto, A.

    1995-03-01

    The nucleotide sequences of one constant (C), six variable (V), and two joining (J) gene segments coding for the rabbit T-cell receptor gamma chain (Tcrg) were determined by directly sequencing fragments amplified by the cassette-ligation mediated polymerase chain reaction. The Tcrg-C gene segment did not encode a cysteine residue for connection to the Tcr delta chain in the connecting region, and two variant forms of the Tcrg-C gene segment were generated by alternative splicing, like the human Tcrg-C2 gene. Five of six rabbit Tcrg-V gene segments belonged to the same family and displayed similarity to five productive human Tcrg-V1 family genes as well as the mouse Tcrg-V5 gene. The remaining rabbit Tcrg-V gene segment displayed similarity to the human Tcrg-V3 gene. Both rabbit Tcrg-J gene segments displayed similarity to the human Tcrg-J2.1 and 2.3, respectively. These findings suggested that the genomic organization of rabbit Tcrg genes is more similar to that of human than of mouse Tcrg genes. 18 refs., 4 figs., 1 tab.

  20. Isolated ACTH deficiency in a patient with empty sella as revealed by severe hyponatremia.

    PubMed

    Doroftei, Nicoleta Alina; de Rudder, Catherine; de Visscher, Nathalie; Hanon, Francois

    2016-12-01

    Hyponatremia due to isolated adrenocorticotropic hormone (ACTH) deficiency is difficult to diagnose as it is usually indistinguishable from non-endocrine syndrome of inappropriate antidiuretic hormone secretion (SIADH). We present a case secondary to empty sella. Most patients with empty sella remain asymptomatic throughout life and require no treatment; however, in cases involving the development of isolated ACTH deficiency, corticosteroid treatment should be enforced to avoid fatal consequences.

  1. ACTH and vasopressin responses to insulin-induced hypoglycemia in intact and neurohypophysectomized conscious dogs.

    PubMed

    Raff, H; Papanek, P E; Cowley, A W

    1991-01-01

    Factors from the neurohypophysis are important in the control of anterior pituitary function. This study evaluated the hypothesis that the neurophypophysis is an integral component of the adrenocorticotropin (ACTH) response to certain stimuli. Furthermore, we investigated the possibility that the importance of the neurohypophysis during corticotropic stimuli can be classified by the magnitude of the systemic vasopressin response induced. The ACTH response to insulin-induced hypoglycemia (INS), nitroprusside hypotension (NP), or ovine corticotropin-releasing factor (CRF) infusion (20 ng/kg/min) was measured in dogs before (intact) and greater than 2 weeks after selective transbuccal neurohypophysectomy (NHX). INS (0.2 U/kg) resulted in a significant decrease in plasma glucose from 93 +/- 1 to 33 +/- 2 mg/dl at 30 min and a significant increase in plasma ACTH from 53 +/- 10 to 306 +/- 33 pg/ml in intact dogs whereas the vasopressin (AVP) response was small (2.8 +/- 0.3 to 5.5 +/- 0.7 pg/ml). NHX had no effect on the blood glucose or ACTH response to INS. NP resulted in large increases in ACTH from 54 +/- 8 to 351 +/- 89 pg/ml and in AVP from 2.7 +/- 0.2 to 272 +/- 98 pg/ml. In contrast to INS, NHX significantly attenuated the ACTH and AVP responses to NP. The ACTH response to CRF was not attenuated by NHX, indicating normal pituitary corticotropic function. In summary, NHX attenuated the ACTH response to hypotension (large peripheral AVP response) but not to INS or CRF (small peripheral AVP response).(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Adrenocortical response to low-dose ACTH test in female patients with rheumatoid arthritis.

    PubMed

    Radikova, Zofia; Rovensky, Jozef; Vlcek, Miroslav; Penesova, Adela; Kerlik, Jana; Vigas, Milan; Imrich, Richard

    2008-12-01

    Alterations in adrenal steroid production have been suggested in females with rheumatoid arthritis (RA). The aim of the present study was to assess adrenocortical function in RA females. We examined 11 female RA patients (RA: age 30 +/- 2 years, BMI 21.0 +/- 0.7 kg/m(2)) and 10 matched healthy controls (C: age 31 +/- 1 years, BMI 21.6 +/- 0.6 kg/m(2)). Low-dose adrenocorticotropic hormone (ACTH) test (i.v. bolus of 1 microg synthetic ACTH) was performed at 10.00 h with blood sampling every 15 min for 90 min. Cortisol, 17-OH-progesterone (17OHP), androstenedione (ASD), and dehydroepiandrosterone (DHEA) were assayed in plasma. Baseline cortisol levels were higher in RA patients (RA: 385 +/- 38 versus C: 229 +/- 28 nmol/L, P= 0.007). In both study groups, ACTH administration increased all the four steroids measured (P < 0.001). Cortisol response to ACTH administration was diminished in RA patients when compared to controls (Delta(max): 284 +/- 24 in RA versus 424 +/- 31 nmol/L in C, P= 0.002). ACTH-induced maximal rise in plasma DHEA was significantly lower in RA patients when compared to controls (Delta(max): 2.59 +/- 0.68 in RA versus 5.57 +/- 1.25 ng/mL in C, P= 0.015). No significant between-groups differences were found in responses of ASD or 17OHP. The molar ratio of ASD:cortisol was significantly lower (P < 0.05) in RA patients at base line, but did not differ during ACTH test. After ACTH bolus, the cortisol:17OHP ratio decreased significantly in the RA group (P < 0.001), whereas there was no change in the control group. The present results show decreased secretion of cortisol and DHEA in RA patients in response to ACTH, suggesting a subtle HPA hypofunction at the adrenocortical level.

  3. Pseudogenization of a sweet-receptor gene accounts for cats' indifference toward sugar.

    PubMed

    Li, Xia; Li, Weihua; Wang, Hong; Cao, Jie; Maehashi, Kenji; Huang, Liquan; Bachmanov, Alexander A; Reed, Danielle R; Legrand-Defretin, Véronique; Beauchamp, Gary K; Brand, Joseph G

    2005-07-01

    Although domestic cats (Felis silvestris catus) possess an otherwise functional sense of taste, they, unlike most mammals, do not prefer and may be unable to detect the sweetness of sugars. One possible explanation for this behavior is that cats lack the sensory system to taste sugars and therefore are indifferent to them. Drawing on work in mice, demonstrating that alleles of sweet-receptor genes predict low sugar intake, we examined the possibility that genes involved in the initial transduction of sweet perception might account for the indifference to sweet-tasting foods by cats. We characterized the sweet-receptor genes of domestic cats as well as those of other members of the Felidae family of obligate carnivores, tiger and cheetah. Because the mammalian sweet-taste receptor is formed by the dimerization of two proteins (T1R2 and T1R3; gene symbols Tas1r2 and Tas1r3), we identified and sequenced both genes in the cat by screening a feline genomic BAC library and by performing PCR with degenerate primers on cat genomic DNA. Gene expression was assessed by RT-PCR of taste tissue, in situ hybridization, and immunohistochemistry. The cat Tas1r3 gene shows high sequence similarity with functional Tas1r3 genes of other species. Message from Tas1r3 was detected by RT-PCR of taste tissue. In situ hybridization and immunohistochemical studies demonstrate that Tas1r3 is expressed, as expected, in taste buds. However, the cat Tas1r2 gene shows a 247-base pair microdeletion in exon 3 and stop codons in exons 4 and 6. There was no evidence of detectable mRNA from cat Tas1r2 by RT-PCR or in situ hybridization, and no evidence of protein expression by immunohistochemistry. Tas1r2 in tiger and cheetah and in six healthy adult domestic cats all show the similar deletion and stop codons. We conclude that cat Tas1r3 is an apparently functional and expressed receptor but that cat Tas1r2 is an unexpressed pseudogene. A functional sweet-taste receptor heteromer cannot form, and

  4. Novel Mutation of Interferon-γ Receptor 1 Gene Presenting as Early Life Mycobacterial Bronchial Disease

    PubMed Central

    Gutierrez, Maria J.; Kalra, Neelu; Horwitz, Alexandra; Nino, Gustavo

    2016-01-01

    Mendelian susceptibility to mycobacterial diseases (MSMD) are a spectrum of inherited disorders characterized by localized or disseminated infections caused by atypical mycobacteria. Interferon-γ receptor 1 (IFNGR1) deficiency was the first identified genetic disorder recognized as MSMD. Mutations in the genes encoding IFNGR1 can be recessive or dominant and cause complete or partial receptor deficiency. We present the case of a 2½-year-old boy with a history of recurrent wheezing, diagnosed with endobronchial mycobacterial infection. Immunological workup revealed a homozygous nonsense mutation in the IFNGR1 gene, a novel mutation predicted in silico to cause complete IFNGR1 deficiency. This case demonstrates that (a) Interferon-γ receptor deficiency can present resembling common disorders of the lung; (b) mycobacterial infections should be suspected when parenchymal lung disease, hilar lymphadenopathy, and endobronchial disease are present; and (c) high index of suspicion for immunodeficiency should be maintained in patients with disseminated nontubercular mycobacterial infection. PMID:27868075

  5. Novel Mutation of Interferon-γ Receptor 1 Gene Presenting as Early Life Mycobacterial Bronchial Disease.

    PubMed

    Gutierrez, Maria J; Kalra, Neelu; Horwitz, Alexandra; Nino, Gustavo

    2016-01-01

    Mendelian susceptibility to mycobacterial diseases (MSMD) are a spectrum of inherited disorders characterized by localized or disseminated infections caused by atypical mycobacteria. Interferon-γ receptor 1 (IFNGR1) deficiency was the first identified genetic disorder recognized as MSMD. Mutations in the genes encoding IFNGR1 can be recessive or dominant and cause complete or partial receptor deficiency. We present the case of a 2½-year-old boy with a history of recurrent wheezing, diagnosed with endobronchial mycobacterial infection. Immunological workup revealed a homozygous nonsense mutation in the IFNGR1 gene, a novel mutation predicted in silico to cause complete IFNGR1 deficiency. This case demonstrates that (a) Interferon-γ receptor deficiency can present resembling common disorders of the lung; (b) mycobacterial infections should be suspected when parenchymal lung disease, hilar lymphadenopathy, and endobronchial disease are present; and (c) high index of suspicion for immunodeficiency should be maintained in patients with disseminated nontubercular mycobacterial infection.

  6. Sensory experience and sensory activity regulate chemosensory receptor gene expression in Caenorhabditis elegans

    PubMed Central

    Peckol, Erin L.; Troemel, Emily R.; Bargmann, Cornelia I.

    2001-01-01

    Changes in the environment cause both short-term and long-term changes in an animal's behavior. Here we show that specific sensory experiences cause changes in chemosensory receptor gene expression that may alter sensory perception in the nematode Caenorhabditis elegans. Three predicted chemosensory receptor genes expressed in the ASI chemosensory neurons, srd-1, str-2, and str-3, are repressed by exposure to the dauer pheromone, a signal of crowding. Repression occurs at pheromone concentrations below those that induce formation of the alternative dauer larva stage, suggesting that exposure to pheromones can alter the chemosensory behaviors of non-dauer animals. In addition, ASI expression of srd-1, but not str-2 and str-3, is induced by sensory activity of the ASI neurons. Expression of two receptor genes is regulated by developmental entry into the dauer larva stage. srd-1 expression in ASI neurons is repressed in dauer larvae. str-2 expression in dauer animals is induced in the ASI neurons, but repressed in the AWC neurons. The ASI and AWC neurons remodel in the dauer stage, and these results suggest that their sensory specificity changes as well. We suggest that experience-dependent changes in chemosensory receptor gene expression may modify olfactory behaviors. PMID:11572964

  7. Methylation of the Glucocorticoid Receptor Gene Promoter in Preschoolers: Links with Internalizing Behavior Problems

    ERIC Educational Resources Information Center

    Parade, Stephanie H.; Ridout, Kathryn K.; Seifer, Ronald; Armstrong, David A.; Marsit, Carmen J.; McWilliams, Melissa A.; Tyrka, Audrey R.

    2016-01-01

    Accumulating evidence suggests that early adversity is linked to methylation of the glucocorticoid receptor (GR) gene, "NR3C1," which is a key regulator of the hypothalamic-pituitary-adrenal axis. Yet no prior work has considered the contribution of methylation of "NR3C1" to emerging behavior problems and psychopathology in…

  8. Comparative study of leptin and leptin receptor gene expression in different swine breeds.

    PubMed

    Georgescu, S E; Manea, M A; Dinescu, S; Costache, M

    2014-02-14

    Leptin is an important regulator of appetite, energy metabolism, and reproduction and is mainly synthesized in the adipocytes and then secreted into the bloodstream. The leptin receptor was classified as type I cytokine receptor due to its structural homology with IL-6 receptors and the signaling pathways in which they are both involved. The aim of our study is to comparatively assess the gene expression levels of leptin (lep) and leptin receptor (lepr) in different swine breeds specialized either in meat production (Duroc, Belgian Landrace, Large White, Synthetic Lines LS-345, and LSP-2000) or fat production (Mangalitsa) in order to correlate them with morphological and productivity characteristics. Additionally, lepr pattern of expression was evaluated comparatively between different tissue types in the Mangalitsa breed. Our results revealed high expression of the lep gene in Mangalitsa compared to those of all the other breeds, while for the lepr gene, average/medium levels were registered in Mangalitsa and increased pattern of expression was found in the synthetic lines LS-345 and LSP-2000. Regarding the comparative analysis of lepr gene expression in various tissues in the Mangalitsa breed, elevated levels were found in the liver and kidney, while the lowest expression was identified in the brain and muscles. Our results suggest that the Mangalitsa population exhibits leptin resistance, which might be correlated with atypical morpho-productive characteristics for this breed, such as below-average prolificacy and a strong tendency to accumulate fat.

  9. An evolutionarily mobile antigen receptor variable region gene: doubly rearranging NAR-TcR genes in sharks.

    PubMed

    Criscitiello, Michael F; Saltis, Mark; Flajnik, Martin F

    2006-03-28

    Distinctive Ig and T cell receptor (TcR) chains define the two major lineages of vertebrate lymphocyte yet similarly recognize antigen with a single, membrane-distal variable (V) domain. Here we describe the first antigen receptor chain that employs two V domains, which are generated by separate VDJ gene rearrangement events. These molecules have specialized "supportive" TcRdeltaV domains membrane-proximal to domains with most similarity to IgNAR V. The ancestral NAR V gene encoding this domain is hypothesized to have recombined with the TRD locus in a cartilaginous fish ancestor >200 million years ago and encodes the first V domain shown to be used in both Igs and TcRs. Furthermore, these data support the view that gamma/delta TcRs have for long used structural conformations recognizing free antigen.

  10. Mapping toll-like receptor signaling pathway genes of Zhikong scallop ( Chlamys farreri) with FISH

    NASA Astrophysics Data System (ADS)

    Zhao, Bosong; Zhao, Liang; Liao, Huan; Cheng, Jie; Lian, Shanshan; Li, Xuan; Huang, Xiaoting; Bao, Zhenmin

    2015-12-01

    Toll-like receptor (TLR) signaling pathway plays a pivotal role in the innate immune system. Studies on TLR signaling pathway genes in Zhikong scallop ( Chlamys farreri) have mainly focused on sequence analysis and expression profiling, no research has been carried out on their localization. The chromosomal position of TLR signaling pathway genes can be valuable for assemblying scallop genome and analysizing gene regulatory networks. In the present study, five key TLR signaling pathway genes ( CfTLR, CfMyd88, CfTRAF6, CfNFκB, and CfIκB) containing bacterial artificial chromosomes (BACs) were isolated and physically mapped through fluorescence in situ hybridization on five non-homologous chromosome pairs, showing a similar distribution to another five model species. The isolation and mapping of these key immune genes of C. farreri will aid to the research on innate immunity, assignment of interested genes to chromosomes, and integration of physical, linkage and cytogenetic maps of this species.

  11. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy.

    PubMed

    Bendle, Gavin M; Linnemann, Carsten; Hooijkaas, Anna I; Bies, Laura; de Witte, Moniek A; Jorritsma, Annelies; Kaiser, Andrew D M; Pouw, Nadine; Debets, Reno; Kieback, Elisa; Uckert, Wolfgang; Song, Ji-Ying; Haanen, John B A G; Schumacher, Ton N M

    2010-05-01

    The transfer of T cell receptor (TCR) genes can be used to induce immune reactivity toward defined antigens to which endogenous T cells are insufficiently reactive. This approach, which is called TCR gene therapy, is being developed to target tumors and pathogens, and its clinical testing has commenced in patients with cancer. In this study we show that lethal cytokine-driven autoimmune pathology can occur in mouse models of TCR gene therapy under conditions that closely mimic the clinical setting. We show that the pairing of introduced and endogenous TCR chains in TCR gene-modified T cells leads to the formation of self-reactive TCRs that are responsible for the observed autoimmunity. Furthermore, we demonstrate that adjustments in the design of gene therapy vectors and target T cell populations can be used to reduce the risk of TCR gene therapy-induced autoimmune pathology.

  12. Identification of a Bitter-Taste Receptor Gene Repertoire in Different Lagomorphs Species

    PubMed Central

    Ferreira, Ana M.; Marques, Andreia T.; Fontanesi, Luca; Thulin, Carl-Gustaf; Sales-Baptista, Elvira; Araújo, Susana S.; Almeida, André M.

    2016-01-01

    The repertoires of bitter-taste receptor (T2R) gene have been described for several animal species, but these data are still scarce for Lagomorphs. The aim of the present work is to identify potential repertoires of T2R in several Lagomorph species, covering a wide geographical distribution. We studied these genes in Lepus timidus, L. europaeus, Oryctolagus cuniculus algirus, Romerolagus diazi, and Sylvilagus floridanus, using O. cuniculus cuniculus as control species for PCR and DNA sequencing. We studied the identities of the DNA sequences and built the corresponding phylogenetic tree. Sequencing was successful for both subspecies of O. cuniculus for all T2R genes studied, for five genes in Lepus, and for three genes in R. diazi and S. floridanus. We describe for the first time the partial repertoires of T2R genes for Lagomorphs species, other than the common rabbit. Our phylogenetic analyses indicate that sequence proximity levels follow the established taxonomic classification. PMID:27092177

  13. The human insulin receptor substrate-1 gene (IRS1) is localized on 2q36

    SciTech Connect

    Nishiyama, Masaki; Matsufuji, Senya; Hayashi, Shin-ichi; Furusaka, Akihiro; Tanaka, Teruji ); Inazawa, J.; Nakamura, Yusuke ); Ariyama, Takeshi ); Wands, J.R. )

    1994-03-01

    The chromosomal localization of some of the genes participating in the insulin signaling pathway is known. The insulin and insulin receptor genes have been mapped to chromosomes 11 and 19, respectively. To identify the chromosomal localization of the human IRS1 gene, the fluorescence in situ hybridization technique was employed with Genomic Clone B-10. A total of 50 metaphase cells exhibiting either single or double spots of hybridization signals were examined. Among them, 32 showed the specific signals on 2q36. Therefore, the authors assigned the human IRS1 gene to 2q36. The genes for homeobox sequence (HOX4), fibronectin 1, alkaline phosphatase (intestinal), transition protein 1, villin 1, collagen (type IV), Waardenburg syndrome (type 1), alanine-glyoxylate aminotransferase, and glucagon have been localized in the vicinity of the IRS1 gene.

  14. Gene correction in the evolution of the T cell receptor beta chain

    PubMed Central

    1986-01-01

    Mutational mechanisms operating at the T cell receptor beta chain locus have been examined by comparison of the CT beta 1 and CT beta 2 gene sequences from Mus pahari, believed to be the oldest living species in the genus Mus, with those of inbred mice. Results indicate that a gene correction event independent of that suggested to have occurred in inbred mice has homogenized the M. pahari CT beta exon 1 sequences, minimizing diversity in this region of the molecule. These observations suggest that correction events such as gene conversion may occur frequently, even in pauci-gene families with as few as two members, and therefore play a significant role in gene diversification or homogenization of small as well as large gene families. PMID:3783089

  15. Somatic and germline mutations of the TSH receptor gene in thyroid diseases

    SciTech Connect

    Van Sande, J.; Parma, J.; Tonacchera, M.

    1995-09-01

    Under physiological circumstances, thyrotropin (TSH) is the primary hormone that controls thyroid function and growth. TSH acts by binding to its receptor at the basolateral membrane of thyroid follicular cells. The TSH receptor is a member of the large family of G protein-coupled receptors, which share a similar structural pattern: seven transmembrane segments connected by three extra and three intracellular loops. Together with the receptors for other glycoprotein hormones LH/CG and FSH, the TSH receptor has a long aminoterminal domain that has been shown to encode the specificity for hormone recognition and binding. The G protein-coupled receptors share a common mode of intracellular signalling: They control the on/off state of a variety of trimeric G proteins (G{alpha}{beta}{gamma}) by stimulating the exchange of GDP for GTP on the {alpha} subunit (G{alpha}). The result is that G{alpha} or G{beta}{gamma}, after dissociation of the trimer, will interact with downstream effectors of the receptor. In the case of the TSH receptor, the main G protein involved is Gs, which activates adenylyl cyclase via Gs{alpha}. In some species, including man, the TSH receptor is also capable of activating phospholipase C (via Gq), thus stimulating the production of diacylglycerol and inositolphosphate (IP{sub 3}). However, higher concentrations of TSH are required to activate phospholipase C, compared with adenylyl cyclase. As a consequence, the main second messenger of TSH effects on the human thyroid is cyclic AMP. The present review will summarize recent findings identifying mutations of the TSH receptor gene as a cause for thyroid diseases. 59 refs., 4 figs.

  16. Decrease of N-acetylaspartate after ACTH therapy in patients with infantile spasms.

    PubMed

    Maeda, H; Furune, S; Nomura, K; Kitou, O; Ando, Y; Negoro, T; Watanabe, K

    1997-10-01

    Apparent brain atrophy has been frequently observed at CT and MRI after ACTH therapy in patients with infantile spasms. There are several hypotheses to explain ACTH-induced brain shrinkage: 1) a catabolic effect of ACTH on brain tissue, 2) a mineralocorticoid effect resulting in a loss of water and 3) an increase in cerebrospinal fluid (CSF) pressure compressing the brain. An average of 0.21 +/- 0.03 mg/kg of ACTH was administered to nine patients over a period of 14 to 17 days. Water content and concentrations of N-acetylaspartate (NAA), creatine and phosphocreatine (Cr + PCr), and choline (Cho) were measured before, immediately after, and several months after the ACTH therapy by using in-vivo 1H magnetic resonance spectroscopy (MRS). Only NAA concentration exhibited a significant change during the study (6.6 +/- 1.5 mmol/kg, 5.4 +/- 1.1, and 7.0 +/- 1.5, p = 0.017). There was no significant change in Cr + PCr, in Cho, or in water content. These data suggest catabolic effects of ACTH on brain tissue, such as cell loss, decrease in NAA synthesis in mitochondria, and leakage of NAA from cell membrane.

  17. ACTH Modulates PTP-PEST Activity and Promotes Its Interaction With Paxillin.

    PubMed

    Gorostizaga, Alejandra Beatriz; Mori Sequeiros Garcia, M Mercedes; Acquier, Andrea B; Lopez-Costa, Juan J; Mendez, Carlos F; Maloberti, Paula M; Paz, Cristina

    2016-09-01

    Adrenocorticotropic hormone (ACTH) treatment has been proven to promote paxillin dephosphorylation and increase soluble protein tyrosine phosphatase (PTP) activity in rat adrenal zona fasciculata (ZF). Also, in-gel PTP assays have shown the activation of a 115-kDa PTP (PTP115) by ACTH. In this context, the current work presents evidence that PTP115 is PTP-PEST, a PTP that recognizes paxillin as substrate. PTP115 was partially purified from rat adrenal ZF and PTP-PEST was detected through Western blot in bioactive samples taken in each purification step. Immunohistochemical and RT-PCR studies revealed PTP-PEST expression in rat ZF and Y1 adrenocortical cells. Moreover, a PTP-PEST siRNA decreased the expression of this phosphatase. PKA phosphorylation of purified PTP115 isolated from non-ACTH-treated rats increased KM and VM . Finally, in-gel PTP assays of immunoprecipitated paxillin from control and ACTH-treated rats suggested a hormone-mediated increase in paxillin-PTP115 interaction, while PTP-PEST and paxillin co-localize in Y1 cells. Taken together, these data demonstrate PTP-PEST expression in adrenal ZF and its regulation by ACTH/PKA and also suggest an ACTH-induced PTP-PEST-paxillin interaction. J. Cell. Biochem. 117: 2170-2181, 2016. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.

  18. Ghrelin and GHRP-6-induced ACTH and cortisol release in thyrotoxicosis.

    PubMed

    Nascif, Sergio Oliva; Molica, Patrícia; Correa-Silva, Silvia Regina; Silva, Marcos Roberto; Lengyel, Ana-Maria Judith

    2009-01-01

    Thyrotoxicosis might alter the hypothalamic-pituitary-adrenal (HPA) axis. We evaluated the effects of ghrelin and GHRP-6 on the HPA axis in 20 hyperthyroid patients and in 9 controls. Mean basal cortisol (microg/dl) and ACTH (pg/ml) levels were higher in hyperthyroidism (cortisol: 10.7 +/- 0.7; ACTH: 21.5 +/- 2.9) compared to controls (cortisol: 8.1 +/- 0.7; ACTH: 13.5 +/- 1.8). In thyrotoxicosis Delta AUC cortisol values (microg/dl.90 min) after ghrelin (484 +/- 80) and GHRP-6 (115 +/- 63) were similar to controls (ghrelin: 524 +/- 107; GHRP-6: 192 +/- 73). A significant increase in Delta AUC ACTH (pg/ml x 90 min) after ghrelin was observed in thyrotoxicosis (4,189 +/- 1,202) compared to controls (1,499 +/- 338). Delta AUC ACTH values after GHRP-6 were also higher, although not significantly (patients: 927 +/- 330; controls: 539 +/- 237). In summary, our results suggest that ghrelin-mediated pathways of ACTH release might be activated by thyroid hormone excess, but adrenocortical reserve is maintained.

  19. The ACTH cells in the pituitary gland of the nine-spined stickleback, Pungitius pungitius L.

    PubMed Central

    Benjamin, M

    1982-01-01

    The ACTH cells form a layer 1-8 cells thick, dorsal to the prolactin cells in the rostral pars distalis. They react only mildly with a variety of stains including PAS-lead haematoxylin. Their nuclear diameters vary seasonally in a manner that closely parallels that of the prolactin cells. The relative volumes of the ACTH and prolactin cell zones are remarkably constant in animals of different sizes. It is suggested that the two hormones may act synergistically at various body sites and that this accounts for the related morphological features of the ACTH and prolactin cells. There are no changes in the surface density of the ACTH zone with increasing animal size. Consequently, the ACTH/neurohypophysial border is highly convoluted in large animals. The proximity of the neurohypophysis also influences cell ultrastructure, as small processes, packed with secretory granules are more numerous near the basal lamina separating the adeno- and neurohypophyses. A morphometric analysis of ACTH cells provides base-line ultrastructural data for experimental studies and for comparisons with other teleosts. The cells have small, secretory granules, 100-300 nm in diameter, and of variable electron density. There is little rough endoplasmic reticulum and a small Golgi apparatus. There is no evidence of granule release by exocytosis and various explanations for this are suggested. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:6290440

  20. The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development.

    PubMed

    Estevez, M; Attisano, L; Wrana, J L; Albert, P S; Massagué, J; Riddle, D L

    1993-10-14

    The bone morphogenetic protein (BMP) family is a conserved group of signalling molecules within the transforming growth factor-beta (TGF-beta) superfamily. This group, including the Drosophila decapentaplegic (dpp) protein and the mammalian BMPs, mediates cellular interactions and tissue differentiation during development. Here we show that a homologue of human BMPs controls a developmental switch in the life cycle of the free-living soil nematode Caenorhabditis elegans. Starvation and overcrowding induce C. elegans to form a developmentally arrested, third-stage dauer larva. The daf-4 gene, which acts to inhibit dauer larva formation and promote growth, encodes a receptor protein kinase similar to the daf-1, activin and TGF-beta receptor serine/threonine kinases. When expressed in monkey COS cells, the daf-4 receptor binds human BMP-2 and BMP-4. The daf-4 receptor is the first to be identified for any growth factor in the BMP family.

  1. Phenotypic characterization of a patient homozygous for the D558N LDL receptor gene mutation.

    PubMed

    Jensen, H K; Jensen, L G; Heath, F; Melsen, F; Hansen, P S; Meinertz, H; Bolund, L; Gregersen, N; Faergeman, O

    1996-11-01

    We describe the clinical, biochemical, and genetic features of a patient with true homozygous familial hypercholesterolemia due to the D558N low-density lipoprotein receptor gene mutation, previously designated FH Cincinnati-4. Functional flow-cytometric analysis of the LDL receptorR protein on upregulated EBV-transformed lymphocytes indicated reduction of the number of receptors on the cell surface by 87% and reduction of receptor activity by 89% compared to control cells. With drugs and a portacaval shunt operation, performed when the patient was 15 years old, serum cholesterol was reduced from about 28 to about 15 mmol/l. He died at the age of 32 of a myocardial infarction. The autopsy showed generalized atherosclerosis, especially in the coronary arteries, which were severely stenosed proximally. A rare finding was a large intracranial xanthoma that apparently had been asymptomatic.

  2. Isolation and characterization of alternatively spliced variants of the mouse sigma1 receptor gene, Sigmar1

    PubMed Central

    Pan, Ling; Pasternak, David A.; Xu, Jin; Xu, Mingming; Lu, Zhigang; Pasternak, Gavril W.

    2017-01-01

    The sigma1 receptor acts as a chaperone at the endoplasmic reticulum, associates with multiple proteins in various cellular systems, and involves in a number of diseases, such as addiction, pain, cancer and psychiatric disorders. The sigma1 receptor is encoded by the single copy SIGMAR1 gene. The current study identifies five alternatively spliced variants of the mouse sigma1 receptor gene using a polymerase chain reaction cloning approach. All the splice variants are generated by exon skipping or alternative 3’ or 5’ splicing, producing the truncated sigma1 receptor. Similar alternative splicing has been observed in the human SIGMAR1 gene based on the molecular cloning or genome sequence prediction, suggesting conservation of alternative splicing of SIGMAR1 gene. Using quantitative polymerase chain reactions, we demonstrate differential expression of several splice variants in mouse tissues and brain regions. When expressed in HEK293 cells, all the splice variants fail to bind sigma ligands, implicating that each truncated region in these splice variants is important for ligand binding. However, co-immunoprecipitation (Co-IP) study in HEK293 cells co-transfected with tagged constructs reveals that all the splice variants maintain their ability to physically associate with a mu opioid receptor (mMOR-1), providing useful information to correlate the motifs/sequences necessary for their physical association. Furthermore, a competition Co-IP study showed that all the variants can disrupt in a dose-dependent manner the dimerization of the original sigma1 receptor with mMOR-1, suggesting a potential dominant negative function and providing significant insights into their function. PMID:28350844

  3. Meiotic recombination generates rich diversity in NK cell receptor genes, alleles, and haplotypes

    PubMed Central

    Norman, Paul J.; Abi-Rached, Laurent; Gendzekhadze, Ketevan; Hammond, John A.; Moesta, Achim K.; Sharma, Deepti; Graef, Thorsten; McQueen, Karina L.; Guethlein, Lisbeth A.; Carrington, Christine V.F.; Chandanayingyong, Dasdayanee; Chang, Yih-Hsin; Crespí, Catalina; Saruhan-Direskeneli, Güher; Hameed, Kamran; Kamkamidze, Giorgi; Koram, Kwadwo A.; Layrisse, Zulay; Matamoros, Nuria; Milà, Joan; Park, Myoung Hee; Pitchappan, Ramasamy M.; Ramdath, D. Dan; Shiau, Ming-Yuh; Stephens, Henry A.F.; Struik, Siske; Tyan, Dolly; Verity, David H.; Vaughan, Robert W.; Davis, Ronald W.; Fraser, Patricia A.; Riley, Eleanor M.; Ronaghi, Mostafa; Parham, Peter

    2009-01-01

    Natural killer (NK) cells contribute to the essential functions of innate immunity and reproduction. Various genes encode NK cell receptors that recognize the major histocompatibility complex (MHC) Class I molecules expressed by other cells. For primate NK cells, the killer-cell immunoglobulin-like receptors (KIR) are a variable and rapidly evolving family of MHC Class I receptors. Studied here is KIR3DL1/S1, which encodes receptors for highly polymorphic human HLA-A and -B and comprises three ancient allelic lineages that have been preserved by balancing selection throughout human evolution. While the 3DS1 lineage of activating receptors has been conserved, the two 3DL1 lineages of inhibitory receptors were diversified through inter-lineage recombination with each other and with 3DS1. Prominent targets for recombination were D0-domain polymorphisms, which modulate enhancer function, and dimorphism at position 283 in the D2 domain, which influences inhibitory function. In African populations, unequal crossing over between the 3DL1 and 3DL2 genes produced a deleted KIR haplotype in which the telomeric “half” was reduced to a single fusion gene with functional properties distinct from its 3DL1 and 3DL2 parents. Conversely, in Eurasian populations, duplication of the KIR3DL1/S1 locus by unequal crossing over has enabled individuals to carry and express alleles of all three KIR3DL1/S1 lineages. These results demonstrate how meiotic recombination combines with an ancient, preserved diversity to create new KIR phenotypes upon which natural selection acts. A consequence of such recombination is to blur the distinction between alleles and loci in the rapidly evolving human KIR gene family. PMID:19411600

  4. Structure and variation of three canine genes involved in serotonin binding and transport: the serotonin receptor 1A gene (htr1A), serotonin receptor 2A gene (htr2A), and serotonin transporter gene (slc6A4).

    PubMed

    van den Berg, L; Kwant, L; Hestand, M S; van Oost, B A; Leegwater, P A J

    2005-01-01

    Aggressive behavior is the most frequently encountered behavioral problem in dogs. Abnormalities in brain serotonin metabolism have been described in aggressive dogs. We studied canine serotonergic genes to investigate genetic factors underlying canine aggression. Here, we describe the characterization of three genes of the canine serotonergic system: the serotonin receptor 1A and 2A gene (htr1A and htr2A) and the serotonin transporter gene (slc6A4). We isolated canine bacterial artificial chromosome clones containing these genes and designed oligonucleotides for genomic sequencing of coding regions and intron-exon boundaries. Golden retrievers were analyzed for DNA sequence variations. We found two nonsynonymous single nucleotide polymorphisms (SNPs) in the coding sequence of htr1A; one SNP close to a splice site in htr2A; and two SNPs in slc6A4, one in the coding sequence and one close to a splice site. In addition, we identified a polymorphic microsatellite marker for each gene. Htr1A is a strong candidate for involvement in the domestication of the dog. We genotyped the htr1A SNPs in 41 dogs of seven breeds with diverse behavioral characteristics. At least three SNP haplotypes were found. Our results do not support involvement of the gene in domestication.

  5. Polo-like kinase 2 gene expression is regulated by the orphan nuclear receptor estrogen receptor-related receptor gamma (ERR{gamma})

    SciTech Connect

    Park, Yun-Yong; Kim, Seok-Ho; Kim, Yong Joo; Kim, Sun Yee; Lee, Tae-Hoon; Lee, In-Kyu; Park, Seung Bum; Choi, Hueng-Sik

    2007-10-12

    Estrogen receptor-related receptor gamma (ERR{gamma}) is a member of the nuclear receptor family of transcriptional activators. To date, the target genes and physiological functions of ERR{gamma} are not well understood. In the current study, we identify that Plk2 is a novel target of ERR{gamma}. Northern blot analysis showed that overexpression of ERR{gamma} induced Plk2 expression in cancer cell lines. ERR{gamma} activated the Plk2 gene promoter, and deletion and mutational analysis of the Plk2 promoter revealed that the ERR{gamma}-response region is located between nucleotides (nt) -2327 and -2229 and -441 and -432 (relative to the transcriptional start site at +1). Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) analysis demonstrated that ERR{gamma} binds directly to the Plk2 promoter. Overexpression of ERR{gamma} in the presence of the mitotic inhibitor nocodazole significantly decreased apoptosis, and induced S-phase cell cycle progression through the induction of Plk2 expression. Taken together, these results demonstrated that Plk2 is a novel target of ERR{gamma}, and suggest that this interaction is crucial for cancer cell proliferation.

  6. Self administration of oxycodone by adolescent and adult mice affects striatal neurotransmitter receptor gene expression.

    PubMed

    Mayer-Blackwell, B; Schlussman, S D; Butelman, E R; Ho, A; Ott, J; Kreek, M J; Zhang, Y

    2014-01-31

    Illicit use of prescription opioid analgesics (e.g., oxycodone) in adolescence is a pressing public health issue. Our goal was to determine whether oxycodone self administration differentially affects striatal neurotransmitter receptor gene expression in the dorsal striatum of adolescent compared to adult C57BL/6J mice. Groups of adolescent mice (4 weeks old, n=12) and of adult mice (11 weeks old, n=11) underwent surgery during which a catheter was implanted into their jugular veins. After recovering from surgery, mice self administered oxycodone (0.25 mg/kg/infusion) 2 h/day for 14 consecutive days or served as yoked saline controls. Mice were sacrificed within 1h after the last self-administration session and the dorsal striatum was isolated for mRNA analysis. Gene expression was analyzed with real time PCR using a commercially available neurotransmitter receptor PCR array containing 84 genes. We found that adolescent mice self administered less oxycodone than adult mice over the 14 days. Monoamine oxidase A (Maoa) and neuropeptide Y receptor 5 mRNA levels were lower in adolescent mice than in adult mice without oxycodone exposure. Oxycodone self administration increased Maoa mRNA levels compared to controls in both age groups. There was a positive correlation of the amount of oxycodone self administered in the last session or across 14 sessions with Maoa mRNA levels. Gastrin-releasing peptide receptor mRNA showed a significant Drug × Age interaction, with point-wise significance. More genes in the dorsal striatum of adolescents (19) changed in response to oxycodone self administration compared to controls than in adult (4) mice. Overall, this study demonstrates that repeated oxycodone self administration alters neurotransmitter receptors gene expression in the dorsal striatum of adolescent and adult mice.

  7. Variation in the oxytocin receptor gene (OXTR) is associated with differences in moral judgment.

    PubMed

    Bernhard, Regan M; Chaponis, Jonathan; Siburian, Richie; Gallagher, Patience; Ransohoff, Katherine; Wikler, Daniel; Perlis, Roy H; Greene, Joshua D

    2016-12-01

    Moral judgments are produced through the coordinated interaction of multiple neural systems, each of which relies on a characteristic set of neurotransmitters. Genes that produce or regulate these neurotransmitters may have distinctive influences on moral judgment. Two studies examined potential genetic influences on moral judgment using dilemmas that reliably elicit competing automatic and controlled responses, generated by dissociable neural systems. Study 1 (N = 228) examined 49 common variants (SNPs) within 10 candidate genes and identified a nominal association between a polymorphism (rs237889) of the oxytocin receptor gene (OXTR) and variation in deontological vs utilitarian moral judgment (that is, judgments favoring individual rights vs the greater good). An association was likewise observed for rs1042615 of the arginine vasopressin receptor gene (AVPR1A). Study 2 (N = 322) aimed to replicate these findings using the aforementioned dilemmas as well as a new set of structurally similar medical dilemmas. Study 2 failed to replicate the association with AVPR1A, but replicated the OXTR finding using both the original and new dilemmas. Together, these findings suggest that moral judgment is influenced by variation in the oxytocin receptor gene and, more generally, that single genetic polymorphisms can have a detectable effect on complex decision processes.

  8. Identification and evolution of two insulin receptor genes involved in Tribolium castaneum development and reproduction.

    PubMed

    Sang, Ming; Li, Chengjun; Wu, Wei; Li, Bin

    2016-07-10

    The insulin and insulin-like signaling (IIS) pathway exists in a wide range of organisms from mammals to invertebrates and regulates several vital physiological functions. A phylogenetic analysis have indicated that insulin receptors have been duplicated at least twice among vertebrates, whereas only one duplication occurred in insects before the differentiation of Coleoptera, Hymenoptera, and Hemiptera. Thus, we cloned two putative insulin receptor genes, T.cas-ir1 and T.cas-ir2, from T. castaneum and determined that T.cas-ir1 is most strongly expressed during the late adult and early pupal stages, whereas T.cas-ir2 is most strongly expressed during the late larval stage. We found that larval RNAi against T.cas-ir1 and T.cas-ir2 causes 100% and 42.0% insect death, respectively, and that parental RNAi against T.cas-ir1 and T.cas-ir2 leads to 100% and 33.3% reductions in beetle fecundity, respectively. The hatching rate of ds-ir2 insects was 66.2%. Moreover, RNAi against these two genes increased the expression of the pkc, foxo, jnk, cdc42, ikk, and mekk genes but decreased erk gene expression. Despite these similarities, these two genes act via distinct regulatory pathways. These results indicate that these two receptors have functionally diverged with respect to the development and reproduction of T. castaneum, even though they retain some common regulatory signaling pathways.

  9. Variation in the oxytocin receptor gene (OXTR) is associated with differences in moral judgment

    PubMed Central

    Chaponis, Jonathan; Siburian, Richie; Gallagher, Patience; Ransohoff, Katherine; Wikler, Daniel; Perlis, Roy H.; Greene, Joshua D.

    2016-01-01

    Moral judgments are produced through the coordinated interaction of multiple neural systems, each of which relies on a characteristic set of neurotransmitters. Genes that produce or regulate these neurotransmitters may have distinctive influences on moral judgment. Two studies examined potential genetic influences on moral judgment using dilemmas that reliably elicit competing automatic and controlled responses, generated by dissociable neural systems. Study 1 (N = 228) examined 49 common variants (SNPs) within 10 candidate genes and identified a nominal association between a polymorphism (rs237889) of the oxytocin receptor gene (OXTR) and variation in deontological vs utilitarian moral judgment (that is, judgments favoring individual rights vs the greater good). An association was likewise observed for rs1042615 of the arginine vasopressin receptor gene (AVPR1A). Study 2 (N = 322) aimed to replicate these findings using the aforementioned dilemmas as well as a new set of structurally similar medical dilemmas. Study 2 failed to replicate the association with AVPR1A, but replicated the OXTR finding using both the original and new dilemmas. Together, these findings suggest that moral judgment is influenced by variation in the oxytocin receptor gene and, more generally, that single genetic polymorphisms can have a detectable effect on complex decision processes. PMID:27497314

  10. Mutation analysis of the transferrin receptor-2 gene in patients with iron overload.

    PubMed

    Lee, P L; Halloran, C; West, C; Beutler, E

    2001-01-01

    Three mutations in the transferrin receptor-2 gene have recently been identified in four Sicilian families with iron overload who had a normal hemochromatosis gene, HFE (C. Camaschella, personal communication). To determine the extent to which mutations in the transferrin receptor-2 gene occur in other populations with iron overload, we have completely sequenced this gene in 17 whites, 10 Asians, and 8 African Americans with iron overload and a C282C/C282C HFE genotype, as well as 4 subjects without iron overload and homozygous for the mutant HFE C282Y genotype, 5 patients with iron overload and homozygous for the mutant HFE C282Y genotype, and 5 normal individuals. None of the individuals exhibited the Sicilian mutations, Y250X in exon 6, M172K in exon 4, and E60X in exon 2. One iron-overloaded individual of Asian descent exhibited a I238M mutation which was subsequently found to be a polymorphism present in the Asian population at a frequency of 0.0192. The presence of the I238M mutation was not associated with an increase in ferritin or transferrin saturation levels. Three silent polymorphisms were also identified, nt 1770 (D590D) and nt 1851 (A617A) and a polymorphism at nt 2255 in the 3' UTR. Thus, mutations in the transferrin receptor-2 gene were not responsible for the iron overload seen in our subjects.

  11. Distinct, genome-wide, gene-specific selectivity patterns of four glucocorticoid receptor coregulators.

    PubMed

    Wu, Dai-Ying; Ou, Chen-Yin; Chodankar, Rajas; Siegmund, Kimberly D; Stallcup, Michael R

    2014-01-01

    Glucocorticoids are a class of steroid hormones that bind to and activate the glucocorticoid receptor (GR), which then positively or negatively regulates transcription of many genes that govern multiple important physiological pathways such as inflammation and metabolism of glucose, fat and bone. The remodeling of chromatin and regulated assembly or disassembly of active transcription complexes by GR and other DNA-binding transcription factors is mediated and modulated by several hundred transcriptional coregulator proteins. Previous studies focusing on single coregulators demonstrated that each coregulator is required for regulation of only a subset of all the genes regulated by a steroid hormone. We hypothesized that the gene-specific patterns of coregulators may correspond to specific physiological pathways such that different coregulators modulate the pathway-specificity of hormone action, thereby providing a mechanism for fine tuning of the hormone response. We tested this by direct comparison of multiple coregulators, using siRNA to deplete the products of four steroid hormone receptor coregulator genes (CCAR1, CCAR2, CALCOCO1 and ZNF282). Global analysis of glucocorticoid-regulated gene expression after siRNA mediated depletion of coregulators confirmed that each coregulator acted in a selective and gene-specific manner and demonstrated both positive and negative effects on glucocorticoid-regulated expression of different genes. We identified several classes of hormone-regulated genes based on the effects of coregulator depletion. Each coregulator supported hormonal regulation of some genes and opposed hormonal regulation of other genes (coregulator-modulated genes), blocked hormonal regulation of a second class of genes (coregulator-blocked genes), and had no effect on hormonal regulation of a third gene class (coregulator-independent genes). In spite of previously demonstrated physical and functional interactions among these four coregulators, the majority

  12. NMDA receptor gene variations as modifiers in Huntington disease: a replication study.

    PubMed

    Saft, Carsten; Epplen, Jörg T; Wieczorek, Stefan; Landwehrmeyer, G Bernhard; Roos, Raymund A C; de Yebenes, Justo Garcia; Dose, Matthias; Tabrizi, Sarah J; Craufurd, David; Arning, Larissa

    2011-10-04

    Several candidate modifier genes which, in addition to the pathogenic CAG repeat expansion, influence the age at onset (AO) in Huntington disease (HD) have already been described. The aim of this study was to replicate association of variations in the N-methyl D-aspartate receptor subtype genes GRIN2A and GRIN2B in the "REGISTRY" cohort from the European Huntington Disease Network (EHDN). The analyses did replicate the association reported between the GRIN2A rs2650427 variation and AO in the entire cohort. Yet, when subjects were stratified by AO subtypes, we found nominally significant evidence for an association of the GRIN2A rs1969060 variation and the GRIN2B rs1806201 variation. These findings further implicate the N-methyl D-aspartate receptor subtype genes as loci containing variation associated with AO in HD.

  13. The role of the nuclear receptor CAR as a coordinate regulator of hepatic gene expression in defense against chemical toxicity.

    PubMed

    Yamamoto, Yukio; Kawamoto, Takeshi; Negishi, Masahiko

    2003-01-01

    The nuclear receptor CAR (constitutive active receptor) mediates the induction of transcription of cytochrome P450 (CYP) genes by phenobarbital (PB) and PB-type inducers. A recent study using CAR-null mice has shown that CAR regulates not only the CYP genes but also other genes encoding various drug/steroid-metabolizing enzymes. In addition to coordinating these enzymes, CAR plays other roles in hepatic gene expression: CAR represses various genes including carnitine palmitoyltransferase 1a and phosphoenolpyruvate carboxykinase 1 in response to PB, and the receptor regulates the constitutive expression of genes such as squalene epoxidase. On the other hand, induction of certain genes such as amino levulinate synthase 1 by PB is not regulated by CAR. Here we describe diverse roles of CAR in hepatic gene expression with a particular focus on endogenous substances such as cholesterol, bilirubin, and steroid hormones.

  14. Smallest bitter taste receptor (T2Rs) gene repertoire in carnivores.

    PubMed

    Hu, Ling-Ling; Shi, Peng

    2013-06-01

    Bitter taste reception is presumably associated with dietary selection, preventing animals from ingesting potentially harmful compounds. Accordingly, carnivores, who encounter these toxic substances less often, should have fewer genes associated with bitter taste reception compared with herbivores and omnivores. To investigate the genetic basis of bitter taste reception, we confirmed bitter taste receptor (T2R) genes previously found in the genome sequences of two herbivores (cow and horse), two omnivores (mouse and rat) and one carnivore (dog). We also identified, for the first time, the T2R repertoire from the genome of other four carnivore species (ferret, giant panda, polar bear and cat) and detected 17-20 bitter receptor genes from the five carnivore genomes, including 12-16 intact genes, 0-1 partial but putatively functional genes, and 3-8 pseudogenes. Both the intact T2R genes and the total T2R gene number among carnivores were the smallest among the tested species, supporting earlier speculations that carnivores have fewer T2R genes, herbivores an intermediate number, and omnivores the largest T2R gene repertoire. To further explain the genetic basis for this disparity, we constructed a phylogenetic tree, which showed most of the T2R genes from the five carnivores were one-to-one orthologs across the tree, suggesting that carnivore T2Rs were conserved among mammals. Similarly, the small carnivore T2R family size was likely due to rare duplication events. Collectively, these results strengthen arguments for the connection between T2R gene family size, diet and habit.

  15. Structural and phylogenetic analysis of the MHC class I-like Fc receptor gene

    SciTech Connect

    Kandil, Eman; Ishibashi, Teruo; Kasahara, Masanori

    1995-06-01

    The intestinal epithelium of neonatal mice and rats expresses an Fc receptor that mediates selective uptake of IgG in mothers`milk. This receptor (FcRn), which helps newborn animals to acquire passive immunity, is an MHC class I-like heterodimer made up of a heavy chain and {beta}{sub 2}-microglobulin. In the present study, we determined the genomic structure of a mouse gene (FcRn) encoding the heavy of FcRn. The overall exon-intron organization of the Fcrn gene was similar to that of the Fcrn gene, thus providing structural evidence that Fcrn os a bona fide class I gene. The 5{prime}-flanking region of the Fcrn gene contained the binding motifs for two cytokine-inducible transcription factors, NF-IL6 and NF1. However, regulatory elements found in MHC class I genes (enhancer A, enhancer B, and the IFN response element) were absent. Phylogenetic tree analysis suggested that, like the MICA, AZGP1, and CD1 genes, the Fcrn gene diverged form MHC class I genes after the emergence of amphibians but before the split of placental and marsupial mammals. Consistent with this result, Southern blot analysis with a mouse Fcrn cDNA probe detected cross-hybridizing bands in various mammalian species and chickens. Sequence analysis of the Fcrn gene isolated from eight mouse strains showed that the membrane-distal domain of FcRn has at least three amino acid variants. The fact that Fcrn is a single copy gene indicates that it is expressed in both the neonatal intestine and the fetal yolk sac. 74 refs., 7 figs., 2 tabs.

  16. Glucocorticoid receptor represses proinflammatory genes at distinct steps of the transcription cycle.

    PubMed

    Gupte, Rebecca; Muse, Ginger W; Chinenov, Yurii; Adelman, Karen; Rogatsky, Inez

    2013-09-03

    Widespread anti-inflammatory actions of glucocorticoid hormones are mediated by the glucocorticoid receptor (GR), a ligand-dependent transcription factor of the nuclear receptor superfamily. In conjunction with its corepressor GR-interacting protein-1 (GRIP1), GR tethers to the DNA-bound activator protein-1 and NF-κB and represses transcription of their target proinflammatory cytokine genes. However, these target genes fall into distinct classes depending on the step of the transcription cycle that is rate-limiting for their activation: Some are controlled through RNA polymerase II (PolII) recruitment and initiation, whereas others undergo signal-induced release of paused elongation complexes into productive RNA synthesis. Whether these genes are differentially regulated by GR is unknown. Here we report that, at the initiation-controlled inflammatory genes in primary macrophages, GR inhibited LPS-induced PolII occupancy. In contrast, at the elongation-controlled genes, GR did not affect PolII recruitment or transcription initiation but promoted, in a GRIP1-dependent manner, the accumulation of the pause-inducing negative elongation factor. Consistently, GR-dependent repression of elongation-controlled genes was abolished specifically in negative elongation factor-deficient macrophages. Thus, GR:GRIP1 use distinct mechanisms to repress inflammatory genes at different stages of the transcription cycle.

  17. Differential expression of functional adrenocorticotropic hormone receptors by subpopulations of lymphocytes

    SciTech Connect

    Clarke, B.L.; Bost, K.L.

    1989-07-15

    In an effort to investigate the presence of adrenocorticotropic hormone (ACTH) receptors on rat lymphocytes, cells were separated by a panning procedure into T and B cell populations. By using the radiolabeled ACTH agonist, (/sup 125/I-Tyr23) phenylalanine2-norleucine4-ACTH1-24, substantial numbers of ACTH binding sites were detected on T and B lymphocytes, but not on thymocytes. Scatchard analysis revealed two types of binding sites on each cell population, one with Kd1 = 0.088 +/- 0.025 nM and one with Kd2 = 4.2 +/- 0.6 nM; however, the absolute number of binding sites per cell was different. B lymphocytes expressed approximately three times the number of Kd1 binding sites per cell when compared with T lymphocytes. However, ACTH receptor expression by these cell populations was not static as suggested by the ability to induce receptor expression via mitogens. B or T cells and thymocytes stimulated with the mitogens LPS or Con A, respectively, substantially increased their number of Kd1 binding sites per cell (approximately three-fold). Even more dramatic increases in Kd1 receptor expression (approximately 100-fold) were observed when comparing ''normal'' and stimulated thymocytes. To demonstrate that these ACTH binding sites were in fact functional, cAMP levels were measured in lymphocytes 10 min after exposure to varying concentrations of ACTH. Dose-dependent increases in cAMP levels were observed, with significant stimulation occurring with as little as 0.1 nM ACTH added. Taken together, these studies demonstrate the presence of functional ACTH receptors on normal, rat T and B lymphocytes.

  18. The regulation of oxytocin receptor gene expression during adipogenesis.

    PubMed

    Yi, K J; So, K H; Hata, Y; Suzuki, Y; Kato, D; Watanabe, K; Aso, H; Kasahara, Y; Nishimori, K; Chen, C; Katoh, K; Roh, S G

    2015-05-01

    Although it has been reported that oxytocin stimulates lipolysis in adipocytes, changes in the expression of oxytocin receptor (OTR) mRNA in adipogenesis are still unknown. The present study aimed to investigate the expression of OTR mRNA during adipocyte differentiation and fat accumulation in adipocytes. OTR mRNA was highly expressed in adipocytes prepared from mouse adipose tissues compared to stromal-vascular cells. OTR mRNA expression was increased during the adipocyte differentiation of 3T3-L1 cells. OTR expression levels were higher in subcutaneous and epididymal adipose tissues of 14-week-old male mice compared to 7-week-old male mice. Levels of OTR mRNA expression were higher in adipose tissues at four different sites of mice fed a high-fat diet than in those of mice fed a normal diet. The OTR expression level was also increased by refeeding for 4 h after fasting for 16 h. Oxytocin significantly induced lipolysis in 3T3-L1 adipocytes. In conclusion, a new regulatory mechanism is demonstrated for oxytocin to control the differentiation and fat accumulation in adipocytes via activation of OTR as a part of the hypothalamic-pituitary-adipose axis.

  19. High-throughput mapping of the promoters of the mouse olfactory receptor genes reveals a new type of mammalian promoter and provides insight into olfactory receptor gene regulation

    PubMed Central

    Clowney, E. Josephine; Magklara, Angeliki; Colquitt, Bradley M.; Pathak, Nidhi; Lane, Robert P.; Lomvardas, Stavros

    2011-01-01

    The olfactory receptor (OR) genes are the largest mammalian gene family and are expressed in a monogenic and monoallelic fashion in olfactory neurons. Using a high-throughput approach, we mapped the transcription start sites of 1085 of the 1400 murine OR genes and performed computational analysis that revealed potential transcription factor binding sites shared by the majority of these promoters. Our analysis produced a hierarchical model for OR promoter recognition in which unusually high AT content, a unique epigenetic signature, and a stereotypically positioned O/E site distinguish OR promoters from the rest of the murine promoters. Our computations revealed an intriguing correlation between promoter AT content and evolutionary plasticity, as the most AT-rich promoters regulate rapidly evolving gene families. Within the AT-rich promoter category the position of the TATA-box does not correlate with the transcription start site. Instead, a spike in GC composition might define the exact location of the TSS, introducing the concept of “genomic contrast” in transcriptional regulation. Finally, our experiments show that genomic neighborhood rather than promoter sequence correlates with the probability of different OR genes to be expressed in the same olfactory cell. PMID:21705439

  20. Identification and functional analysis of pheromone and receptor genes in the B3 mating locus of Pleurotus eryngii.

    PubMed

    Kim, Kyung-Hee; Kang, Young Min; Im, Chak Han; Ali, Asjad; Kim, Sun Young; Je, Hee-Jeong; Kim, Min-Keun; Rho, Hyun Su; Lee, Hyun Sook; Kong, Won-Sik; Ryu, Jae-San

    2014-01-01

    Pleurotus eryngii has recently become a major cultivated mushroom; it uses tetrapolar heterothallism as a part of its reproductive process. Sexual development progresses only when the A and B mating types are compatible. Such mating incompatibility occasionally limits the efficiency of breeding programs in which crossing within loci-shared strains or backcrossing strategies are employed. Therefore, understanding the mating system in edible mushroom fungi will help provide a short cut in the development of new strains. We isolated and identified pheromone and receptor genes in the B3 locus of P. eryngii and performed a functional analysis of the genes in the mating process by transformation. A genomic DNA library was constructed to map the entire mating-type locus. The B3 locus was found to contain four pheromone precursor genes and four receptor genes. Remarkably, receptor PESTE3.3.1 has just 34 amino acid residues in its C-terminal cytoplasmic region; therefore, it seems likely to be a receptor-like gene. Real-time quantitative RT-PCR (real-time qRT-PCR) revealed that most pheromone and receptor genes showed significantly higher expression in monokaryotic cells than dikaryotic cells. The pheromone genes PEphb3.1 and PEphb3.3 and the receptor gene PESTE3.3.1 were transformed into P5 (A3B4). The transformants were mated with a tester strain (A4B4), and the progeny showed clamp connections and a normal fruiting body, which indicates the proposed role of these genes in mating and fruiting processes. This result also confirms that PESTE3.3.1 is a receptor gene. In this study, we identified pheromone and receptor genes in the B3 locus of P. eryngii and found that some of those genes appear to play a role in the mating and fruiting processes. These results might help elucidate the mechanism of fruiting differentiation and improve breeding efficiency.

  1. Ecdysone Receptor Gene Switch Technology for Inducible Gene Expression in Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inducible gene regulation systems based on specific chemicals have many potential applications in agriculture and in the basic understanding of gene function. As a result several gene switches have been developed. However, the properties of the chemicals used in most of these switches make their use...

  2. High-throughput chemiluminometric genotyping of single nucleotide polymorphisms of histamine, serotonin, and adrenergic receptor genes.

    PubMed

    Toubanaki, Dimitra K; Christopoulos, Theodore K; Ioannou, Penelope C; Flordellis, Christodoulos S

    2009-02-01

    Several pharmacogenetic studies are focused on the investigation of the relation between the efficacy of various antipsychotic agents (e.g., clozapine) and the genetic profile of the patient with an emphasis on genes that code for neurotransmitter receptors such as histamine, serotonin, and adrenergic receptors. We report a high-throughput method for genotyping of single nucleotide polymorphisms (SNPs) within the genes of histamine H2 receptor (HRH2), serotonin receptor (HTR2A1 and HTR2A2), and beta(3) adrenergic receptor (ADRB3). The method combines the high specificity of allele discrimination by oligonucleotide ligation reaction (OLR) and the superior sensitivity and simplicity of chemiluminometric detection in a microtiter well assay configuration. The genomic region that spans the locus of interest is first amplified by polymerase chain reaction (PCR). Subsequently, an oligonucleotide ligation reaction is performed using a biotinylated common probe and two allele-specific probes that are labeled at the 3' end with digoxigenin and fluorescein. The ligation products are immobilized in polystyrene wells via biotin-streptavidin interaction, and the hybrids are denatured. Detection is accomplished by the addition of alkaline phosphatase-conjugated anti-digoxigenin or anti-fluorescein antibodies in combination with a chemiluminogenic substrate. The ratio of the luminescence signals obtained from digoxigenin and fluorescein indicates the genotype of the sample. The method was applied successfully to the genotyping of 23 blood samples for all four SNPs. The results were in concordance with both PCR-restriction fragment length polymorphism analysis and sequencing.

  3. Zearalenone activates pregnane X receptor, constitutive androstane receptor and aryl hydrocarbon receptor and corresponding phase I target genes mRNA in primary cultures of human hepatocytes.

    PubMed

    Ayed-Boussema, Imen; Pascussi, Jean Marc; Maurel, Patrick; Bacha, Hassen; Hassen, Wafa

    2011-01-01

    The mycotoxin zearalenone (ZEN) is found worldwide as a contaminant in cereals and grains. ZEN subchronic and chronic toxicities are dominated by reproductive disorders in different mammalian species which have made ZEN established mammalian endocrine disrupter. Over the last 30 years of ZEN biotransformation study, the toxin was thought to undergo reductive metabolism only, with the generation in several species of α- and β-isomers of zearalenol. However, recent investigations have noticed that the mycoestrogen is prone to oxidative metabolism leading to hydroxylation of ZEN though the involvement of different cytochromes P450 (CYPs) isoforms. The aim of the present study was to further explore the effect of ZEN on regulation of some CYPs using primary cultures of human hepatocytes. For this aim, using real time RT-PCR, we monitored in a first time, the effect of ZEN on mRNA levels of pregnane X receptor (PXR), constitutive androstane receptor (CAR) and aryl hydrocarbon receptor (AhR), nuclear receptors known to be involved in the regulation of some CYPs. In a second time, we looked for ZEN effect on expression of PXR, CAR and AhR corresponding phase I target genes (CYP3A4, CYP3A5, CYP2B6, CYP2C9, CYP1A1 and CYP1A2). Finally, we realised the luciferase assay in HepG2 treated with the toxin and transiently transfected with p-CYP3A4-Luc in the presence of a hPXR vector or transfected with p-CYPA1-Luc.Our results clearly showed that ZEN activated human PXR, CAR and AhR mRNA levels in addition to some of their phase I target genes mainly CYP3A4, CYP2B6 and CYP1A1 and at lesser extent CYP3A5 and CYP2C9 at ZEN concentrations as low as 0.1 μM.

  4. Developmental regulation of insulin-like growth factor-I and growth hormone receptor gene expression.

    PubMed

    Shoba, L; An, M R; Frank, S J; Lowe, W L

    1999-06-25

    During development, the insulin-like growth factor I (IGF-I) gene is expressed in a tissue specific manner; however, the molecular mechanisms governing its developmental regulation remain poorly defined. To examine the hypothesis that expression of the growth hormone (GH) receptor accounts, in part, for the tissue specific expression of the IGF-I gene during development, the developmental regulation of IGF-I and GH receptor gene expression in rat tissues was examined. The level of IGF-I and GH receptor mRNA was quantified in RNA prepared from rats between day 17 of gestation (E17) and 17 months of age (17M) using an RNase protection assay. Developmental regulation of IGF-I gene expression was tissue specific with four different patterns of expression seen. In liver, IGF-I mRNA levels increased markedly between E17 and postnatal day 45 (P45) and declined thereafter. In contrast, in brain, skeletal muscle and testis, IGF-I mRNA levels decreased between P5 and 4M but were relatively unchanged thereafter. In heart and kidney, a small increase in IGF-I mRNA levels was observed between the early postnatal period and 4 months, whereas in lung, minimal changes were observed during development. The changes in GH receptor mRNA levels were, in general, coordinate with the changes in IGF-I mRNA levels, except in skeletal muscle. Interestingly, quantification of GH receptor levels by Western blot analysis in skeletal muscle demonstrated changes coordinate with IGF-I mRNA levels. The levels of the proteins which mediate GH receptor signaling (STAT1, -3, and -5, and JAK2) were quantified by Western blot analysis. These proteins also are expressed in a tissue specific manner during development. In some cases, the pattern of expression was coordinate with IGF-I gene expression, whereas in others it was discordant. To further define molecular mechanisms for the developmental regulation of IGF-I gene expression, protein binding to IGFI-FP1, a protein binding site that is in the major

  5. Biocomputational analysis of evolutionary relationship between toll-like receptor and nucleotide-binding oligomerization domain-like receptors genes

    PubMed Central

    Bhardwaj, Rabia; Mukhopadhyay, Chandra Shekhar; Deka, Dipak; Verma, Ramneek; Dubey, P. P.; Arora, J. S.

    2016-01-01

    Aim: The active domains (TIR and NACHT) of the pattern recognition receptors (PRRs: Toll-like receptors [TLRs] and nucleotide-binding oligomerization domain [NOD]-like receptors [NLR], respectively) are the major hotspots of evolution as natural selection has crafted their final structure by substitution of residues over time. This paper addresses the evolutionary perspectives of the TLR and NLR genes with respect to the active domains in terms of their chronological fruition, functional diversification, and species-specific stipulation. Materials and Methods: A total of 48 full-length cds (and corresponding peptide) of the domains were selected as representatives of each type of PRRs, belonging to divergent animal species, for the biocomputational analyses. The secondary and tertiary structure of the taurine TIR and NACHT domains was predicted to compare the relatedness among the domains under study. Results: Multiple sequence alignment and phylogenetic tree results indicated that these host-specific PRRs formed entirely different clusters, with active domains of NLRs (NACHT) evolved earlier as compared to the active domains of TLRs (TIR). Each type of TLR or NLR shows comparatively less variation among the animal species due to the specificity of action against the type of microbes. Conclusion: It can be concluded from the study that there has been no positive selection acting on the domains associated with disease resistance which is a fitness trait indicating the extent of purifying pressure on the domains. Gene duplication could be a possible reason of genesis of similar kinds of TLRs (virus or bacteria specific). PMID:27956772

  6. Largest vertebrate vomeronasal type 1 receptor gene repertoire in the semiaquatic platypus.

    PubMed

    Grus, Wendy E; Shi, Peng; Zhang, Jianzhi

    2007-10-01

    Vertebrate vomeronasal chemoreception plays important roles in many aspects of an organism's daily life, such as mating, territoriality, and foraging. Vomeronasal type 1 receptors (V1Rs) and vomeronasal type 2 receptors (V2Rs), 2 large families of G protein-coupled receptors, serve as vomeronasal receptors to bind to various pheromones and odorants. Contrary to the previous observations of reduced olfaction in aquatic and semiaquatic mammals, we here report the surprising finding that the platypus, a semiaquatic monotreme, has the largest V1R repertoire and nearly largest combined repertoire of V1Rs and V2Rs of all vertebrates surveyed, with 270 intact genes and 579 pseudogenes in the V1R family and 15 intact genes, 55 potentially intact genes, and 57 pseudogenes in the V2R family. Phylogenetic analysis shows a remarkable expansion of the V1R repertoire and a moderate expansion of the V2R repertoire in platypus since the separation of monotremes from placentals and marsupials. Our results challenge the view that olfaction is unimportant to aquatic mammals and call for further study into the role of vomeronasal reception in platypus physiology and behavior.

  7. Exchange factors directly activated by cAMP mediate melanocortin 4 receptor-induced gene expression

    PubMed Central

    Glas, Evi; Mückter, Harald; Gudermann, Thomas; Breit, Andreas

    2016-01-01

    Gs protein-coupled receptors regulate many vital body functions by activation of cAMP response elements (CRE) via cAMP-dependent kinase A (PKA)-mediated phosphorylation of the CRE binding protein (CREB). Melanocortin 4 receptors (MC4R) are prototypical Gs-coupled receptors that orchestrate the hypothalamic control of food-intake and metabolism. Remarkably, the significance of PKA for MC4R-induced CRE-dependent transcription in hypothalamic cells has not been rigorously interrogated yet. In two hypothalamic cell lines, we observed that blocking PKA activity had only weak or no effects on reporter gene expression. In contrast, inhibitors of exchange factors directly activated by cAMP-1/2 (EPAC-1/2) mitigated MC4R-induced CRE reporter activation and mRNA induction of the CREB-dependent genes c-fos and thyrotropin-releasing hormone. Furthermore, we provide first evidence that extracellular-regulated kinases-1/2 (ERK-1/2) activated by EPACs and not PKA are the elusive CREB kinases responsible for MC4R-induced CREB/CRE activation in hypothalamic cells. Overall, these data emphasize the pivotal role of EPACs rather than PKA in hypothalamic gene expression elicited by a prototypical Gs-coupled receptor. PMID:27612207

  8. Methuselah/Methuselah-like G protein-coupled receptors constitute an ancient metazoan gene family

    PubMed Central

    de Mendoza, Alexandre; Jones, Jeffery W.; Friedrich, Markus

    2016-01-01

    Inconsistent conclusions have been drawn regarding the phylogenetic age of the Methuselah/Methuselah-like (Mth/Mthl) gene family of G protein-coupled receptors, the founding member of which regulates development and lifespan in Drosophila. Here we report the results from a targeted homolog search of 39 holozoan genomes and phylogenetic analysis of the conserved seven transmembrane domain. Our findings reveal that the Mth/Mthl gene family is ancient, has experienced numerous extinction and expansion events during metazoan evolution, and acquired the current definition of the Methuselah ectodomain during its exceptional expansion in arthropods. In addition, our findings identify Mthl1, Mthl5, Mthl14, and Mthl15 as the oldest Mth/Mthl gene family paralogs in Drosophila. Future studies of these genes have the potential to define ancestral functions of the Mth/Mthl gene family. PMID:26915348

  9. Lack of imprinting of the human dopamine D4 receptor (DRD4) gene

    SciTech Connect

    Cichon, S.; Noethen, M.M.; Propping, P.; Wolf, H.K.

    1996-04-09

    The term genomic imprinting has been used to refer to the differential expression of genetic material depending on whether it has come from the male or female parent. In humans, the chromosomal region 11p15.5 has been shown to contain 2 imprinted genes (H19 and IGF2). The gene for the dopamine D4 receptor (DRD4), which is of great interest for research into neuropsychiatric disorders and psychopharmacology, is also located in this area. In the present study, we have examined the imprinting status of the DRD4 gene in brain tissue of an epileptic patient who was heterozygous for a 12 bp repeat polymorphism in exon 1 of the DRD4 gene. We show that both alleles are expressed in equivalent amounts. We therefore conclude that the DRD4 gene is not imprinted in the human brain. 30 refs., 1 fig.

  10. Diet Shapes the Evolution of the Vertebrate Bitter Taste Receptor Gene Repertoire

    PubMed Central

    Li, Diyan; Zhang, Jianzhi

    2014-01-01

    Vertebrate Tas2r taste receptors bind to bitter compounds, which are typically poisonous, to elicit bitter sensation to prevent the ingestion of toxins. Previous studies noted a marked variation in the number of Tas2r genes among species, but the underlying cause is unclear. To address this question, we compile the Tas2r gene repertoires from 41 mammals, 4 birds, 2 reptiles, 1 amphibian, and 6 fishes. The number of intact Tas2r genes varies from 0 in the bottlenose dolphin to 51 in the Western clawed frog, with numerous expansions and contractions of the gene family throughout vertebrates, especially among tetrapods. The Tas2r gene number in a species correlates with the fraction of plants in its diet. Because plant tissues contain more toxic compounds than animal tissues do, our observation supports the hypothesis that dietary toxins are a major selective force shaping the diversity of the Tas2r repertoire. PMID:24202612

  11. Genes expressed in the brain define three distinct neuronal nicotinic acetylcholine receptors.

    PubMed Central

    Nef, P; Oneyser, C; Alliod, C; Couturier, S; Ballivet, M

    1988-01-01

    Four genes encode the related protein subunits that assemble to form the nicotinic acetylcholine receptor (nAChR) at the motor endplate of vertebrates. We have isolated from the chicken genome four additional members of the same gene family whose protein products, termed alpha 2, alpha 3, alpha 4 and n alpha (non-alpha) probably define three distinct neuronal nAChR subtypes. The neuronal nAChR genes have identical structures consisting of six protein-coding exons and specify proteins that are best aligned with the chicken endplate alpha subunit, whose gene we have also characterized. mRNA transcripts encoding alpha 4 and n alpha are abundant in embryonic and in adult avian brain, whereas alpha 2 and alpha 3 transcripts are much scarcer. The same set of neuronal genes probably exists in all vertebrates since their counterparts have also been identified in the rat genome. Images PMID:3267226

  12. Transforming growth factor-beta receptor requirements for the induction of the endothelin-1 gene.

    PubMed

    Castañares, Cristina; Redondo-Horcajo, Mariano; Magan-Marchal, Noemi; Lamas, Santiago; Rodriguez-Pascual, Fernando

    2006-06-01

    Expression of the endothelin (ET)-1 gene is subject to complex regulation by numerous factors, among which the cytokine transforming growth factor-beta (TGF-beta) is one of the most important. TGF-beta action is based on the activation of the Smad signaling pathway. Smad proteins activate transcription of the gene by cooperation with activator protein-1 (AP-1) at specific sites on the ET-1 promoter. Smad signaling pathway is initiated by binding of the cytokine to a heteromeric complex of type I and type II receptors. Signal is then propagated to the nucleus by specific members of the Smad family. Most cell types contain a type I receptor known as ALK5. However, endothelial cells are unique because they coexpress an additional type I receptor named ALK1. These forms do not constitute redundant receptors with the same function, but they actually activate different Smad-mediated expression programs that lead to specific endothelial phenotypes. TGF-beta/ALK5/Smad3 pathway is associated to a mature endothelium because it leads to inhibition of cell migration/proliferation. Conversely, TGF-beta/ALK1/Smad5 activates both processes and is more related to the angiogenic state. We have analyzed the TGF-beta receptor subtype requirements for the activation of the ET-1 gene. For that purpose, we have overexpressed type I receptor and Smad isoforms in endothelial cells and analyzed the effect on ET-1 expression. Our experiments indicate that TGF-beta induces ET-1 expression preferentially through the activation of the ALK5/Smad3 pathway and, therefore, the expression of the vaso-constrictor may be associated to a quiescent and mature endothelial phenotype.

  13. The effects of spiritual intervention and changes in dopamine receptor gene expression in breast cancer patients.

    PubMed

    Akbari, Mohammad Esmael; Kashani, Farah Lotfi; Ahangari, Ghasem; Pornour, Majid; Hejazi, Hessam; Nooshinfar, Elah; Kabiri, Mohsen; Hosseini, Leili

    2016-11-01

    Breast cancer is the most common cancer in females in Iran and in most of the developed countries. Studies have shown that having chronic stress in individuals predisposes several types of cancer including breast cancer. Research results showed that spiritual factors correlate with indices of physical consequences such as heart disease, cancer, and death, so do psychiatric conditions and changes in receptor gene expression in depression, anxiety, and social dysfunction. Different studies demonstrated the role of neurotransmitters in occurrence and progression of cancers. They affected cells by their various types of receptors. An effective gene in mental and physical conditions is Dopamine receptor. Accordingly, the study was conducted to evaluate effects of psychotherapy (spiritual intervention) on changes in Dopamine receptor gene expressions in breast cancer patients. 90 female volunteers, including 30 healthy individuals and 60 diagnosed with breast cancer, considering exclusion criteria, were selected for the purpose of the study. The breast cancer patients were further categorized into experimental and control groups of 30 each. Blood samples were collected both prior to and following the spiritual intervention to analyze changes in their dopamine gene receptor expressions. We observed that DRD2-DRD4 in the control group (breast cancer patients) PBMC increased compared to healthy individuals. Also, DRD2-DRD4 in intervention group PBMC decreased compared to the control group and to even lower than those of healthy individuals. The findings were of great significance in management and treatment of cancer because they revealed the possibility of using alternative treatments (e.g., spiritual interventions) apart from conventional medical treatments.

  14. Dopamine inhibits somatolactin gene expression in tilapia pituitary cells through the dopamine D2 receptors.

    PubMed

    Jiang, Quan; Lian, Anji; He, Qi

    2016-07-01

    Dopamine (DA) is an important neurotransmitter in the central nervous system of vertebrates and possesses key hypophysiotropic functions. Early studies have shown that DA has a potent inhibitory effect on somatolactin (SL) release in fish. However, the mechanisms responsible for DA inhibition of SL gene expression are largely unknown. To this end, tilapia DA type-1 (D1) and type-2 (D2) receptor transcripts were examined in the neurointermediate lobe (NIL) of the tilapia pituitary by real-time PCR. In tilapia, DA not only was effective in inhibiting SL mRNA levels in vivo and in vitro, but also could abolish pituitary adenylate cyclase-activating polypeptide (PACAP)- and salmon gonadotropin-releasing hormone (sGnRH)-stimulated SL gene expression at the pituitary level. In parallel studies, the specific D2 receptor agonists quinpirole and bromocriptine could mimic the DA-inhibited SL gene expression. Furthermore, the D2 receptor antagonists domperidone and (-)-sulpiride could abolish the SL response to DA or the D2 agonist quinpirole, whereas D1 receptor antagonists SCH23390 and SKF83566 were not effective in this respect. In primary cultures of tilapia NIL cells, D2 agonist quinpirole-inhibited cAMP production could be blocked by co-treatment with the D2 antagonist domperidone and the ability of forskolin to increase cAMP production was also inhibited by quinpirole. Using a pharmacological approach, the AC/cAMP pathway was shown to be involved in quinpirole-inhibited SL mRNA expression. These results provide evidence that DA can directly inhibit SL gene expression at the tilapia pituitary level via D2 receptor through the AC/cAMP-dependent mechanism.

  15. Gene expression of muscarinic, tachykinin, and purinergic receptors in porcine bladder: comparison with cultured cells

    PubMed Central

    Bahadory, Forough; Moore, Kate H.; Liu, Lu; Burcher, Elizabeth

    2013-01-01

    Urothelial cells, myofibroblasts, and smooth muscle cells are important cell types contributing to bladder function. Multiple receptors including muscarinic (M3/M5), tachykinin (NK1/NK2), and purinergic (P2X1/P2Y6) receptors are involved in bladder motor and sensory actions. Using female pig bladder, our aim was to differentiate between various cell types in bladder by genetic markers. We compared the molecular expression pattern between the fresh tissue layers and their cultured cell counterparts. We also examined responses to agonists for these receptors in cultured cells. Urothelial, suburothelial (myofibroblasts), and smooth muscle cells isolated from pig bladder were cultured (10–14 days) and identified by marker antibodies. Gene (mRNA) expression level was demonstrated by real-time PCR. The receptor expression pattern was very similar between suburothelium and detrusor, and higher than urothelium. The gene expression of all receptors decreased in culture compared with the fresh tissue, although the reduction in cultured urothelial cells appeared less significant compared to suburothelial and detrusor cells. Cultured myofibroblasts and detrusor cells did not contract in response to the agonists acetylcholine, neurokinin A, and β,γ-MeATP, up to concentrations of 0.1 and 1 mM. The significant reduction of M3, NK2, and P2X1 receptors under culture conditions may be associated with the unresponsiveness of cultured suburothelial and detrusor cells to their respective agonists. These results suggest that under culture conditions, bladder cells lose the receptors that are involved in contraction, as this function is no longer required. The study provides further evidence that cultured cells do not necessarily mimic the actions exerted by intact tissues. PMID:24348420

  16. Cadmium-mediated disruption of cortisol biosynthesis involves suppression of corticosteroidogenic genes in rainbow trout.

    PubMed

    Sandhu, Navdeep; Vijayan, Mathilakath M

    2011-05-01

    Cadmium is widely distributed in the aquatic environment and is toxic to fish even at sublethal concentrations. This metal is an endocrine disruptor, and one well established role in teleosts is the suppression of adrenocorticotrophic hormone (ACTH)-stimulated cortisol biosynthesis by the interrenal tissue. However the mechanism(s) leading to this steroid suppression is poorly understood. We tested the hypothesis that cadmium targets genes encoding proteins critical for corticosteroid biosynthesis, including melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage enzyme (P450scc), in rainbow trout (Oncorhynchus mykiss). To test this, head kidney slices (containing the interrenal tissues) were incubated in vitro with cadmium chloride (0, 10, 100 and 1000nM) for 4h either in the presence or absence of ACTH (0.5IU/mL). In the unstimulated head kidney slices, cadmium exposure did not affect basal cortisol secretion and the mRNA levels of MC2R and P450scc, while StAR gene expression was significantly reduced. Cadmium exposure significantly suppressed ACTH-stimulated cortisol production in a dose-related fashion. This cadmium-mediated suppression in corticosteroidogenesis corresponded with a significant reduction in MC2R, StAR and P450scc mRNA levels in trout head kidney slices. The inhibition of ACTH-stimulated cortisol production and suppression of genes involved in corticosteroidogenesis by cadmium were completely abolished in the presence of 8-Bromo-cAMP (a cAMP analog). Overall, cadmium disrupts the expression of genes critical for corticosteroid biosynthesis in rainbow trout head kidney slices. However, the rescue of cortisol production as well as StAR and P450scc gene expressions by cAMP analog suggests that cadmium impact occurs upstream of cAMP production. We propose that MC2R signaling, the primary step in ACTH-induced cortocosteroidogenesis, is a key target for cadmium-mediated disruption of

  17. Concerted Gene Expression of Hippocampal Steroid Receptors during Spatial Learning in Male Wistar Rats: A Correlation Analysis

    PubMed Central

    Lubec, Gert; Korz, Volker

    2016-01-01

    Adrenal and gonadal steroid receptor activities are significantly involved and interact in the regulation of learning, memory and stress. Thus, a coordinated expression of steroid receptor genes during a learning task can be expected. Although coexpression of steroid receptors in response to behavioral tasks has been reported the correlative connection is unclear. According to the inverted U-shape model of the impact of stress upon learning and memory we hypothesized that glucocorticoid (GR) receptor expression should be correlated to corticosterone levels in a linear or higher order manner. Other cognition modulating steroid receptors like estrogen receptors (ER) should be correlated to GR receptors in a quadratic manner, which describes a parabola and thus a U-shaped connection. Therefore, we performed a correlational meta-analyis of data of a previous study (Meyer and Korz, 2013a) of steroid receptor gene expressions during spatial learning, which provides a sufficient data basis in order to perform such correlational connections. In that study male rats of different ages were trained in a spatial holeboard or remained untrained and the hippocampal gene expression of different steroid receptors as well as serum corticosterone levels were measured. Expressions of mineralocorticoid (MR) and GR receptors were positively and linearly correlated with blood serum corticosterone levels in spatially trained but not in untrained animals. Training induced a cubic (best fit) relationship between mRNA levels of estrogen receptor α (ERα) and androgen receptor (AR) with MR mRNA. GR gene expression was linearly correlated with MR expression under both conditions. ERα m RNA levels were negatively and linearily and MR and GR gene expressions were cubicely correlated with reference memory errors (RME). Due to only three age classes correlations with age could not be performed. The findings support the U-shape theory of steroid receptor interaction, however the cubic fit

  18. Expression of growth arrest-specific gene 6 and its receptors in dysfunctional human renal allografts.

    PubMed

    Yin, Jian L; Hambly, Brett D; Bao, Shi S; Painter, Dorothy; Bishop, G Alex; Eris, Josette M

    2003-09-01

    Growth arrest-specific gene 6 (Gas6) and its receptors Rse, Axl and Mer have recently been found to be involved in a rat model of chronic allograft nephropathy (CAN). Thus, in this study we investigated the function of Gas6 and its receptors in human renal allograft dysfunction. Expression of Gas6 and its receptors was detected by immunohistochemical staining. Gas6 and its receptors were widely expressed in glomeruli, tubules and vessels of renal allografts. Gas6 expression was detected in normal-functioning allografts and was increased in acute rejection ( P<0.05), acute tubular necrosis ( P<0.05) and CAN ( P<0.01). Gas6 receptors were not upregulated in any of the allograft groups, except for the Axl receptor, which increased only in acute tubular necrosis ( P<0.01). Gas6 expression was also found to correspond with the expression of alpha-smooth muscle actin, a general marker of CAN ( r(2)=0.21, P<0.01). These findings suggest that Gas6, acting as a growth factor, is increased in the process of kidney allograft dysfunction and in CAN.

  19. The significance of ACTH for the process of formation of complex heparin compounds in the blood during immobilization stress

    NASA Technical Reports Server (NTRS)

    Kudryashov, B. A.; Shapiro, F. B.; Lomovskaya, F. B.; Lyapina, L. A.

    1979-01-01

    Adrenocorticotropin (ACTH) was administered to rats at different times following adrenalectomy. Adrenocorticotropin caused a significant increase in the formation of heparin complexes even in the absence of stress factor. When ACTH secretion is blocked, immobilization stress is not accompanied by an increase in the process of complex formation. The effect of ACTH on the formation of heparin complexes was mediated through its stimulation of the adrenal cortex.

  20. Association of Toll-like receptors 2, 3, and 4 genes polymorphisms with periapical pathosis risk

    PubMed Central

    Özan, Ülkü; Ocak, Zeynep; Özan, Fatih; Oktay, Elif-Aybala; Şahman, Halil; Yikilgan, İhsan; Oruçoğlu, Hasan; Er, Kürşat

    2016-01-01

    Background The aim of this study was to investigate the role of gene variations of Toll-like receptors (TLR) 2, 3, and 4 on genetic susceptibility to periapical pathosis. Material and Methods One hundred patients were included in the study and divided into two groups as follows; Control Group (n=50) that have root canal treatment and no periapical lesion, Patient Group (n=50) that have root canal treatment and periapical lesion. TLR2 Arg753Gln, TLR3 (c.1377C/T) and TLR4 Asp299Gly and Thr399Ile polymorphisms were genotyped by using PCR-RFLP. Genotypical analysis of control and patient groups were investigated to disclose whether there is any association between periapical lesions and gene variations. Results There are no significant statistical differences between control and patient groups according to TLR 2 and 4 gene sequence. On the contrary, CC allele detected 74% for TLR 3 in patient group, and this difference was found to be statistically significant (p < 0.005). Conclusions According to these results, it can be suggested that patients with Toll-like receptor 3 gene polymorphisms could be susceptible to periapical pathosis. Key words:Toll-like receptors, periapical pathosis, endodontics. PMID:27031066

  1. Polymorphism and genetic mapping of the human oxytocin receptor gene on chromosome 3

    SciTech Connect

    Michelini, S.; Urbanek, M.; Goldman, D.

    1995-06-19

    Centrally administered oxytocin has been reported to facilitate affiliative and social behaviors, in functional harmony with its well-known peripheral effects on uterine contraction and milk ejection. The biological effects of oxytocin could be perturbed by mutations occurring in the sequence of the oxytocin receptor gene, and it would be of interest to establish the position of this gene on the human linkage map. Therefore we identified a polymorphism at the human oxytocin receptor gene. A portion of the 3{prime} untranslated region containing a 30 bp CA repeat was amplified by polymerase chain reaction (PCR), revealing a polymorphism with two alleles occurring with frequencies of 0.77 and 0.23 in a sample of Caucasian CEPH parents (n = 70). The CA repeat polymorphism we detected was used to map the human oxytocin receptor to chromosome 3p25-3p26, in a region which contains several important genes, including loci for Von Hippel-Lindau disease (VHL) and renal cell carcinoma. 53 refs., 2 figs., 1 tab.

  2. Sweet Taste Receptor Gene Variation and Aspartame Taste in Primates and Other Species

    PubMed Central

    Li, Xia; Bachmanov, Alexander A.; Maehashi, Kenji; Li, Weihua; Lim, Raymond; Brand, Joseph G.; Beauchamp, Gary K.; Reed, Danielle R.; Thai, Chloe

    2011-01-01

    Aspartame is a sweetener added to foods and beverages as a low-calorie sugar replacement. Unlike sugars, which are apparently perceived as sweet and desirable by a range of mammals, the ability to taste aspartame varies, with humans, apes, and Old World monkeys perceiving aspartame as sweet but not other primate species. To investigate whether the ability to perceive the sweetness of aspartame correlates with variations in the DNA sequence of the genes encoding sweet taste receptor proteins, T1R2 and T1R3, we sequenced these genes in 9 aspartame taster and nontaster primate species. We then compared these sequences with sequences of their orthologs in 4 other nontasters species. We identified 9 variant sites in the gene encoding T1R2 and 32 variant sites in the gene encoding T1R3 that distinguish aspartame tasters and nontasters. Molecular docking of aspartame to computer-generated models of the T1R2 + T1R3 receptor dimer suggests that species variation at a secondary, allosteric binding site in the T1R2 protein is the most likely origin of differences in perception of the sweetness of aspartame. These results identified a previously unknown site of aspartame interaction with the sweet receptor and suggest that the ability to taste aspartame might have developed during evolution to exploit a specialized food niche. PMID:21414996

  3. Sweet taste receptor gene variation and aspartame taste in primates and other species.

    PubMed

    Li, Xia; Bachmanov, Alexander A; Maehashi, Kenji; Li, Weihua; Lim, Raymond; Brand, Joseph G; Beauchamp, Gary K; Reed, Danielle R; Thai, Chloe; Floriano, Wely B

    2011-06-01

    Aspartame is a sweetener added to foods and beverages as a low-calorie sugar replacement. Unlike sugars, which are apparently perceived as sweet and desirable by a range of mammals, the ability to taste aspartame varies, with humans, apes, and Old World monkeys perceiving aspartame as sweet but not other primate species. To investigate whether the ability to perceive the sweetness of aspartame correlates with variations in the DNA sequence of the genes encoding sweet taste receptor proteins, T1R2 and T1R3, we sequenced these genes in 9 aspartame taster and nontaster primate species. We then compared these sequences with sequences of their orthologs in 4 other nontasters species. We identified 9 variant sites in the gene encoding T1R2 and 32 variant sites in the gene encoding T1R3 that distinguish aspartame tasters and nontasters. Molecular docking of aspartame to computer-generated models of the T1R2 + T1R3 receptor dimer suggests that species variation at a secondary, allosteric binding site in the T1R2 protein is the most likely origin of differences in perception of the sweetness of aspartame. These results identified a previously unknown site of aspartame interaction with the sweet receptor and suggest that the ability to taste aspartame might have developed during evolution to exploit a specialized food niche.

  4. Estrogen-related receptor alpha modulates the expression of adipogenesis-related genes during adipocyte differentiation.

    PubMed

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Yagi, Ken; Okazaki, Yasushi; Inoue, Satoshi

    2007-07-06

    Estrogen-related receptor alpha (ERRalpha) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERRalpha in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERRalpha and ERRalpha-related transcriptional coactivators, peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator-1alpha (PGC-1alpha) and PGC-1beta, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERRalpha-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPARgamma, and PGC-1alpha in 3T3-L1 cells in the adipogenesis medium. ERRalpha and PGC-1beta mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERRalpha in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERRalpha may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.

  5. Lack of association between dopamine D4 receptor gene and schizophrenia

    SciTech Connect

    Tanaka, Toshihisa; Kameda, K.; Ihda, S.

    1995-12-18

    An intriguing property of the dopamine D4 receptor gene is a hypervariable segment in the coding region characterized by a varying number of direct imperfect 48 bp repeats (2-8 or 10 repeats) in the third exon of the gene. The authors analyzed 70 unrelated schizophrenics and 70 normal controls to determine the allele and genotype frequencies created by length polymorphism of dopamine D4 receptor gene. All patients and controls were unrelated and from the Japanese population. Patients were divided into three groups with regard to age at onset, familial loading, and severity of symptoms assessed strictly with Manchester scale. There were no statistically significant differences if the distributions of alleles and genotypes were analyzed in consideration of those clinical subtypes. Lichter and colleagues [1993] have reported that at least 25 haplotypes exist for this polymorphic region of the dopamine receptor D4 gene. In this study only the alleles created by length polymorphism were analyzed, and further investigation to determine the haplotypes of patients and controls on using a much larger sample size will be required. 11 refs., 1 fig., 1 tab.

  6. Association study between schizophrenia and dopamine D3 receptor gene polymorphism

    SciTech Connect

    Tanaka, Toshihisa; Takahashi, Makoto; Maeda, Masaya

    1996-07-26

    Crocq et al. reported the existence of an association between schizophrenia and homozygosity of a BalI polymorphism in the first exon of the dopamine D3 receptor (DRD3) gene. In response to this report, further studies were conducted; however, these studies yielded conflicting results. In the present study, we examined 100 unrelated Japanese schizophrenics and 100 normal controls to determine any association between this polymorphism and schizophrenia. Results suggest that neither allele nor genotype frequencies of the DRD3 gene in the schizophrenics as a whole are significantly different from those of the controls. Further, we found no association between any allele or genotype and any clinical subtype based on family history of schizophrenia and age-at-onset. A significantly high frequency of homozygosity of a dopamine D3 receptor gene allele was not observed in the schizophrenics as a whole, or in clinical subtypes. Our results suggest that an association between the dopamine D3 receptor gene and schizophrenia is unlikely to exist. 26 refs., 1 tab.

  7. Oxytocin receptor gene polymorphisms are associated with human directed social behavior in dogs (Canis familiaris).

    PubMed

    Kis, Anna; Bence, Melinda; Lakatos, Gabriella; Pergel, Enikő; Turcsán, Borbála; Pluijmakers, Jolanda; Vas, Judit; Elek, Zsuzsanna; Brúder, Ildikó; Földi, Levente; Sasvári-Székely, Mária; Miklósi, Adám; Rónai, Zsolt; Kubinyi, Enikő

    2014-01-01

    The oxytocin system has a crucial role in human sociality; several results prove that polymorphisms of the oxytocin receptor gene are related to complex social behaviors in humans. Dogs' parallel evolution with humans and their adaptation to the human environment has made them a useful species to model human social interactions. Previous research indicates that dogs are eligible models for behavioral genetic research, as well. Based on these previous findings, our research investigated associations between human directed social behaviors and two newly described (-212AG, 19131AG) and one known (rs8679684) single nucleotide polymorphisms (SNPs) in the regulatory regions (5' and 3' UTR) of the oxytocin receptor gene in German Shepherd (N = 104) and Border Collie (N = 103) dogs. Dogs' behavior traits have been estimated in a newly developed test series consisting of five episodes: Greeting by a stranger, Separation from the owner, Problem solving, Threatening approach, Hiding of the owner. Buccal samples were collected and DNA was isolated using standard protocols. SNPs in the 3' and 5' UTR regions were analyzed by polymerase chain reaction based techniques followed by subsequent electrophoresis analysis. The gene-behavior association analysis suggests that oxytocin receptor gene polymorphisms have an impact in both breeds on (i) proximity seeking towards an unfamiliar person, as well as their owner, and on (ii) how friendly dogs behave towards strangers, although the mediating molecular regulatory mechanisms are yet unknown. Based on these results, we conclude that similarly to humans, the social behavior of dogs towards humans is influenced by the oxytocin system.

  8. Repurposed transcriptomic data facilitate discovery of innate immunity toll-like receptor (TLR) Genes across Lophotrochozoa.

    PubMed

    Halanych, Kenneth M; Kocot, Kevin M

    2014-10-01

    The growing volume of genomic data from across life represents opportunities for deriving valuable biological information from data that were initially collected for another purpose. Here, we use transcriptomes collected for phylogenomic studies to search for toll-like receptor (TLR) genes in poorly sampled lophotrochozoan clades (Annelida, Mollusca, Brachiopoda, Phoronida, and Entoprocta) and one ecdysozoan clade (Priapulida). TLR genes are involved in innate immunity across animals by recognizing potential microbial infection. They have an extracellular leucine-rich repeat (LRR) domain connected to a transmembrane domain and an intracellular toll/interleukin-1 receptor (TIR) domain. Consequently, these genes are important in initiating a signaling pathway to trigger defense. We found at least one TLR ortholog in all but two taxa examined, suggesting that a broad array of lophotrochozoans may have innate immune systems similar to those observed in vertebrates and arthropods. Comparison to the SMART database confirmed the presence of both the LRR and the TIR protein motifs characteristic of TLR genes. Because we looked at only one transcriptome per species, discovery of TLR genes was limited for most taxa. However, several TRL-like genes that vary in the number and placement of LRR domains were found in phoronids. Additionally, several contigs contained LRR domains but lacked TIR domains, suggesting they were not TLRs. Many of these LRR-containing contigs had other domains (e.g., immunoglobin) and are likely involved in innate immunity.

  9. Prolactin (PRL) and prolactin receptor (PRLR) genes and their role in poultry production traits.

    PubMed

    Wilkanowska, Anna; Mazurowski, Artur; Mroczkowski, Sławomir; Kokoszyński, Dariusz

    2014-01-01

    Prolactin (PRL), secreted from the anterior pituitary, plays extensive roles in osmoregulation, corpus luteum formation, mammogenesis, lactogenesis, lactopoiesis, and production of crop milk. In birds, prolactin (PRL) is generally accepted as crucial to the onset and maintenance of broodiness. All the actions of prolactin (PRL) hormone are mediated by its receptor (PRLR), which plays an important role in the PRL signal transduction cascade. It has been well established that the PRL gene is closely associated to the onset and maintenance of broody behavior, and could be a genetic marker in breeding against broodiness in chickens. Meanwhile, the prolactin receptor (PRLR) gene is regarded as a candidate genetic marker for reproductive traits. PRLR is also an important regulator gene for cell growth and differentiation. The identified polymorphism of this gene is mainly viewed in terms of egg production traits. Due to different biological activities attributed to PRL and PRLR, they can be used as major candidate genes in molecular animal breeding programs. Characterization of PRL and PRLR genes helps to elucidate their roles in birds and provides insights into the regulatory mechanisms of PRL and PRLR expression conserved in birds and mammals.

  10. An altered repertoire of T cell receptor V gene expression by rheumatoid synovial fluid T lymphocytes.

    PubMed Central

    Lunardi, C; Marguerie, C; So, A K

    1992-01-01

    The pattern of T cell receptor V gene expression by lymphocytes from rheumatoid synovial fluid and paired peripheral blood samples was compared using a polymerase chain reaction (PCR)-based assay. Eight rheumatoid arthritis (RA) patients who had varying durations of disease (from 2 to 20 years) were studied. In all patients there was evidence of a different pattern of V gene expression between the two compartments. Significantly increased expression of at least one V alpha or V beta gene family by synovial fluid T cells was observed in all the patients studied. Three different V alpha (V alpha 10, 15 and 18) and three V beta (V beta 4, 5 and 13) families were commonly elevated. Sequencing of synovial V beta transcripts demonstrated that the basis of increased expression of selected V gene families in the synovial fluid was due to the presence of dominant clonotypes within those families, which constituted up to 53% of the sequences isolated from one particular synovial V gene family. There were considerable differences in the NDJ sequences found in synovial and peripheral blood T cell receptor (TCR) transcripts of the same V beta gene family. These data suggest that the TCR repertoire in the two compartments differs, and that antigen-driven expansion of particular synovial T cell populations is a component of rheumatoid synovitis, and is present in all stages of the disease. PMID:1458680

  11. Effects of retinoic acid on growth hormone-releasing hormone receptor, growth hormone secretagogue receptor gene expression and growth hormone secretion in rat anterior pituitary cells.

    PubMed

    Maliza, Rita; Fujiwara, Ken; Tsukada, Takehiro; Azuma, Morio; Kikuchi, Motoshi; Yashiro, Takashi

    2016-06-30

    Retinoic acid (RA) is an important signaling molecule in embryonic development and adult tissue. The actions of RA are mediated by the nuclear receptors retinoic acid receptor (RAR) and retinoid X receptor (RXR), which regulate gene expression. RAR and RXR are widely expressed in the anterior pituitary gland. RA was reported to stimulate growth hormone (GH) gene expression in the anterior pituitary cells. However, current evidence is unclear on the role of RA in gene expression of growth hormone-releasing hormone receptor (Ghrh-r), growth hormone secretagogue receptor (Ghs-r) and somatostatin receptors (Sst-rs). Using isolated anterior pituitary cells of rats, we examined the effects of RA on gene expression of these receptors and GH release. Quantitative real-time PCR revealed that treatment with all-trans retinoic acid (ATRA; 10(-6) M) for 24 h increased gene expression levels of Ghrh-r and Ghs-r; however, expressions of Sst-r2 and Sst-r5 were unchanged. Combination treatment with the RAR-agonist Am80 and RXR-agonist PA024 mimicked the effects of ATRA on Ghrh-r and Ghs-r gene expressions. Exposure of isolated pituitary cells to ATRA had no effect on basal GH release. In contrast, ATRA increased growth hormone-releasing hormone (GHRH)- and ghrelin-stimulated GH release from cultured anterior pituitary cells. Our results suggest that expressions of Ghrh-r and Ghs-r are regulated by RA through the RAR-RXR receptor complex and that RA enhances the effects of GHRH and ghrelin on GH release from the anterior pituitary gland.

  12. Multiple melanocortin receptors are expressed in bone cells

    NASA Technical Reports Server (NTRS)

    Zhong, Qing; Sridhar, Supriya; Ruan, Ling; Ding, Ke-Hong; Xie, Ding; Insogna, Karl; Kang, Baolin; Xu, Jianrui; Bollag, Roni J.; Isales, Carlos M.

    2005-01-01

    Melanocortin receptors belong to the seven transmembrane domain, G-protein coupled family of receptors. There are five members of this receptor family labeled MC1R-MC5R. These receptors are activated by fragments derived from a larger molecule, proopiomelanocortin (POMC) and include ACTH, alpha beta and gamma-MSH and beta-endorphin. Because of in vitro and in vivo data suggesting direct effects of these POMC molecules on bone and bone turnover, we examined bone and bone derived cells for the presence of the various members of the melanocortin receptor family. We report that the five known melanocortin receptors are expressed to varying degrees in osteoblast-like and osteoclastic cells. POMC fragments increased proliferation and expression of a variety of genes in osteoblastic cells. Furthermore, POMC mRNA was detected in osteoclastic cells. These data demonstrate that POMC-derived peptide hormones acting through high affinity melanocortin receptors have specific effects on bone cells. Thus, in addition to the indirect effects of POMC-derived hormones on bone turnover through their modulation of steroid hormone secretion, POMC fragments may have direct and specific effects on bone cell subpopulations.

  13. The Melanocortin Receptor System: A Target for Multiple Degenerative Diseases.

    PubMed

    Cai, Minying; Hruby, Victor J

    2016-01-01

    The melanocortin receptor system consists of five closely related G-protein coupled receptors (MC1R, MC2R, MC3R, MC4R and MC5R). These receptors are involved in many of the key biological functions for multicellular animals, including human beings. The natural agonist ligands for these receptors are derived by processing of a primordial animal gene product, proopiomelanocortin (POMC). The ligand for the MC2R is ACTH (Adrenal Corticotropic Hormone), a larger processed peptide from POMC. The natural ligands for the other 4 melanocortin receptors are smaller peptides including α-melanocyte stimulating hormone (α-MSH) and related peptides from POMC (β-MSH and γ-MSH). They all contain the sequence His-Phe-Arg-Trp that is conserved throughout evolution. Thus, there has been considerable difficulty in developing highly selective ligands for the MC1R, MC3R, MC4R and MC5R. In this brief review, we discuss the various approaches that have been taken to design agonist and antagonist analogues and derivatives of the POMC peptides that are selective for the MC1R, MC3R, MC4R and MC5R receptors, via peptide, nonpeptide and peptidomimetic derivatives and analogues and their differential interactions with receptors that may help account for these selectivities.

  14. Association of polymorphisms in nicotinic acetylcholine receptor alpha 4 subunit gene (CHRNA4), mu-opioid receptor gene (OPRM1), and ethanol-metabolizing enzyme genes with alcoholism in Korean patients.

    PubMed

    Kim, Soon Ae; Kim, Jong-Woo; Song, Ji-Young; Park, Sunny; Lee, Hee Jae; Chung, Joo-Ho

    2004-01-01

    Findings obtained from several studies indicate that ethanol enhances the activity of alpha4beta2 neuronal nicotinic acetylcholine receptor and support the possibility that a polymorphism of the nicotinic acetylcholine receptor alpha4 subunit gene (CHRNA4) modulates enhancement of nicotinic receptor function by ethanol. To identify the association between the CfoI polymorphism of the CHRNA4 and alcoholism, we examined distribution of genotypes and allele frequencies in Korean patients diagnosed with alcoholism (n = 127) and Korean control subjects without alcoholism (n = 185) with polymerase chain reaction-restriction fragment length polymorphism methods. We were able to detect the association between the CfoI polymorphism of the CHRNA4 and alcoholism in Korean patients (genotype P = .023; allele frequency P = .047). The genotypes and allele frequencies of known polymorphisms in other alcoholism candidate genes, such as alcohol metabolism-related genes [alcohol dehydrogenase 2 (ADH2), aldehyde dehydrogenase 2 (ALDH2), alcohol dehydrogenase 3 (ADH3), and cytochrome P450 2E1 (CYP2E1)] and mu-opioid receptor gene (OPRM1), were studied. The polymorphisms of ADH2, ALDH2, and CYP2E1 were significantly different in Korean patients with alcoholism and Korean control subjects without alcoholism, but ADH3 and OPRM1 did not differ between the two groups.

  15. Pituitary and Brain Dopamine D2 Receptors Regulate Liver Gene Sexual Dimorphism

    PubMed Central

    Ramirez, Maria Cecilia; Ornstein, Ana Maria; Luque, Guillermina Maria; Perez Millan, Maria Ines; Garcia-Tornadu, Isabel; Rubinstein, Marcelo

    2015-01-01

    Liver sexual gene dimorphism, which depends mainly on specific patterns of GH secretion, may underlie differential susceptibility to some liver diseases. Because GH and prolactin secretion are regulated by dopaminergic pathways, we studied the participation of brain and lactotrope dopamine 2 receptors (D2Rs) on liver gene sexual dimorphism, to explore a link between the brain and liver gene expression. We used global D2R knockout mice (Drd2−/−) and conducted a functional dissection strategy based on cell-specific Drd2 inactivation in neurons (neuroDrd2KO) or pituitary lactotropes. Disruption of neuronal D2Rs (which impaired the GH axis) decreased most of male or female-predominant class I liver genes and increased female–predominant class II genes in males, consistent with the positive (class I) or negative (class II) regulation of these genes by GH. Notably, sexual dimorphism was lost for class I and II genes in neuroDrd2KO mice. Disruption of lactotrope D2Rs did not modify class I or II genes in either sex, because GH axis was preserved. But surprisingly, 1 class II gene (Prlr) and female-predominant class I genes were markedly up-regulated in lacDrd2KO females, pointing to direct or indirect effects of prolactin in the regulation of selected female-predominant liver genes. This suggestion was strengthened in the hyperprolactinemic Drd2−/− female mouse, in which increased expression of the same 4 liver genes was observed, despite a decreased GH axis. We hereby demonstrate endocrine-mediated D2R actions on sexual dimorphic liver gene expression, which may be relevant during chronic dopaminergic medications in psychiatric disease. PMID:25545383

  16. Genomic architecture of MHC-linked odorant receptor gene repertoires among 16 vertebrate species.

    PubMed

    Santos, Pablo Sandro Carvalho; Kellermann, Thomas; Uchanska-Ziegler, Barbara; Ziegler, Andreas

    2010-09-01

    The recent sequencing and assembly of the genomes of different organisms have shown that almost all vertebrates studied in detail so far have one or more clusters of genes encoding odorant receptors (OR) in close physical linkage to the major histocompatibility complex (MHC). It has been postulated that MHC-linked OR genes could be involved in MHC-influenced mate choice, comprising both pre- as well as post-copulatory mechanisms. We have therefore carried out a systematic comparison of protein sequences of these receptors from the genomes of man, chimpanzee, gorilla, orangutan, rhesus macaque, mouse, rat, dog, cat, cow, pig, horse, elephant, opossum, frog and zebra fish (amounting to a total of 559 protein sequences) in order to identify OR families exhibiting evolutionarily conserved MHC linkage. In addition, we compared the genomic structure of this region within these 16 species, accounting for presence or absence of OR gene families, gene order, transcriptional orientation and linkage to the MHC or framework genes. The results are presented in the form of gene maps and phylogenetic analyses that reveal largely concordant repertoires of gene families, at least among tetrapods, although each of the eight taxa studied (primates, rodents, ungulates, carnivores, proboscids, marsupials, amphibians and teleosts) exhibits a typical architecture of MHC (or MHC framework loci)-linked OR genes. Furthermore, the comparison of the genomic organization of this region has implications for phylogenetic relationships between closely related taxa, especially in disputed cases such as the evolutionary history of even- and odd-toed ungulates and carnivores. Finally, the largely conserved linkage between distinct OR genes and the MHC supports the concept that particular alleles within a given haplotype function in a concerted fashion during self-/non-self-discrimination processes in reproduction.

  17. Canakinumab reverses overexpression of inflammatory response genes in tumour necrosis factor receptor-associated periodic syndrome

    PubMed Central

    Torene, Rebecca; Nirmala, Nanguneri; Obici, Laura; Cattalini, Marco; Tormey, Vincent; Caorsi, Roberta; Starck-Schwertz, Sandrine; Letzkus, Martin; Hartmann, Nicole; Abrams, Ken; Lachmann, Helen; Gattorno, Marco

    2017-01-01

    Objective To explore whether gene expression profiling can identify a molecular mechanism for the clinical benefit of canakinumab treatment in patents with tumour necrosis factor receptor-associated periodic syndrome (TRAPS). Methods Blood samples were collected from 20 patients with active TRAPS who received canakinumab 150 mg every 4 weeks for 4 months in an open-label proof-of-concept phase II study, and from 20 aged-matched healthy volunteers. Gene expression levels were evaluated in whole blood samples by microarray analysis for arrays passing quality control checks. Results Patients with TRAPS exhibited a gene expression signature in blood that differed from that in healthy volunteers. Upon treatment with canakinumab, many genes relevant to disease pathogenesis moved towards levels seen in the healthy volunteers. Canakinumab downregulated the TRAPS-causing gene (TNF super family receptor 1A (TNFRSF1A)), the drug-target gene (interleukin (IL)-1B) and other inflammation-related genes (eg, MAPK14). In addition, several inflammation-related pathways were evident among the differentially expressed genes. Canakinumab treatment reduced neutrophil counts, but the observed expression differences remained after correction for this. Conclusions These gene expression data support a model in which canakinumab produces clinical benefit in TRAPS by increasing neutrophil apoptosis and reducing pro-inflammatory signals resulting from the inhibition of IL-1β. Notably, treatment normalised the overexpression of TNFRSF1A, suggesting that canakinumab has a direct impact on the main pathogenic mechanism in TRAPS. Trial registration number NCT01242813. PMID:27474763

  18. Molecular characterisation of the STRUBBELIG-RECEPTOR FAMILY of genes encoding putative leucine-rich repeat receptor-like kinases in Arabidopsis thaliana

    PubMed Central

    Eyüboglu, Banu; Pfister, Karen; Haberer, Georg; Chevalier, David; Fuchs, Angelika; Mayer, Klaus FX; Schneitz, Kay

    2007-01-01

    Background Receptor-like kinases are a prominent class of surface receptors that regulate many aspects of the plant life cycle. Despite recent advances the function of most receptor-like kinases remains elusive. Therefore, it is paramount to investigate these receptors. The task is complicated by the fact that receptor-like kinases belong to a large monophyletic family with many sub-clades. In general, functional analysis of gene family members by reverse genetics is often obscured by several issues, such as redundancy, subtle or difficult to detect phenotypes in mutants, or by decision problems regarding suitable biological and biochemical assays. Therefore, in many cases additional strategies have to be employed to allow inference of hypotheses regarding gene function. Results We approached the function of genes encoding the nine-member STRUBBELIG-RECEPTOR FAMILY (SRF) class of putative leucine-rich repeat receptor-like kinases. Sequence comparisons show overall conservation but also divergence in predicted functional domains among SRF proteins. Interestingly, SRF1 undergoes differential splicing. As a result, SRF1 is predicted to exist in a standard receptor configuration and in a membrane-anchored receptor-like version that lacks most of the intracellular domain. Furthermore, SRF1 is characterised by a high degree of polymorphism between the Ler and Col accessions. Two independent T-DNA-based srf4 mutants showed smaller leaves while 35S::SRF4 plants displayed enlarged leaves. This is in addition to the strubbelig phenotype which has been described before. Additional single and several key double mutant combinations did not reveal obvious mutant phenotypes. Ectopic expression of several SRF genes, using the 35S promoter, resulted in male sterility. To gain possible insights into SRF gene function we employed a computational analysis of publicly available microarray data. We performed global expression profiling, coexpression analysis, and an analysis of the

  19. Distinct functions for thyroid hormone receptors alpha and beta in brain development indicated by differential expression of receptor genes.

    PubMed Central

    Forrest, D; Hallböök, F; Persson, H; Vennström, B

    1991-01-01

    Thyroid hormones are essential for correct brain development, and since vertebrates express two thyroid hormone receptor genes (TR alpha and beta), we investigated TR gene expression during chick brain ontogenesis. In situ hybridization analyses showed that TR alpha mRNA was widely expressed from early embryonic stages, whereas TR beta was sharply induced after embryonic day 19 (E19), coinciding with the known hormone-sensitive period. Differential expression of TR mRNAs was striking in the cerebellum: TR beta mRNA was induced in white matter and granule cells after the migratory phase, suggesting a main TR beta function in late, hormone-dependent glial and neuronal maturation. In contrast, TR alpha mRNA was expressed in the earlier proliferating and migrating granule cells, and in the more mature granular and Purkinje cell layers after hatching, indicating a role for TR alpha in both immature and mature neural cells. Surprisingly, both TR genes were expressed in early cerebellar outgrowth at E9, before known hormone requirements, with TR beta mRNA restricted to the ventricular epithelium of the metencephalon and TR alpha expressed in migrating cells and the early granular layer. The results implicate TRs with distinct functions in the early embryonic brain as well as in the late phase of hormone requirement. Images PMID:1991448

  20. Deletion of exon 3 of the insulin receptor gene in a kindred with a familial form of insulin resistance

    SciTech Connect

    Wertheimer, E.; Barbetti, F.; Accili, D.; Taylor, S.I.; Litvin, Y.; Ebstein, R.P.; Bennet, E.R.

    1994-05-01

    Molecular scanning techniques, such as denaturing gradient gel electrophoresis (DGGE), greatly facilitate screening candidate genes for mutations. The authors have used DGGE to screen for mutations in the insulin receptor gene in a family in which four of five daughters were affected by type A insulin resistance in association with acanthosis nigricans and hyperandrogenism. DGGE did not detect mutations in any of the 22 exons of the insulin receptor gene. Nevertheless, Southern blot analysis suggested that there was a deletion of exon 3 in the other paternal allele of the insulin receptor gene. Analysis of the father`s cDNA confirmed that exon 3 was deleted from mRNA molecules derived from one of his two alleles of the insulin receptor gene. Furthermore, the father was found to be hemizygous for a polymorphic sequence (GAC{sup Asp} at codon 234) in exon 3 that was not inherited by any of the five daughters. Instead, all five daughters inherited the paternal allele with the deletion mutation. They did not detect mutations in the mother`s insulin receptor gene. Furthermore, the clinical syndrome did not segregate with either of the mother`s two alleles of the insulin receptor gene. Although the youngest daughter inherited the mutant allele from her father, she was not clinically affected. The explanation for the incomplete penetrance is not known. These results emphasize the importance of specifically searching for deletion mutations when screening candidate genes for mutations. Furthermore, the existence of apparently asymptomatic carriers of mutations in the insulin receptor gene, such as the father in the present study, suggests that the prevalence of mutations in the insulin receptor gene may be higher than would be predicted on the basis of the observed prevalence of patients with extreme insulin resistance. 34 refs., 6 figs., 1 tab.

  1. Expression map of a complete set of gustatory receptor genes in chemosensory organs of Bombyx mori.

    PubMed

    Guo, Huizhen; Cheng, Tingcai; Chen, Zhiwei; Jiang, Liang; Guo, Youbing; Liu, Jianqiu; Li, Shenglong; Taniai, Kiyoko; Asaoka, Kiyoshi; Kadono-Okuda, Keiko; Arunkumar, Kallare P; Wu, Jiaqi; Kishino, Hirohisa; Zhang, Huijie; Seth, Rakesh K; Gopinathan, Karumathil P; Montagné, Nicolas; Jacquin-Joly, Emmanuelle; Goldsmith, Marian R; Xia, Qingyou; Mita, Kazuei

    2017-03-01

    Most lepidopteran species are herbivores, and interaction with host plants affects their gene expression and behavior as well as their genome evolution. Gustatory receptors (Grs) are expected to mediate host plant selection, feeding, oviposition and courtship behavior. However, due to their high diversity, sequence divergence and extremely low level of expression it has been difficult to identify precisely a complete set of Grs in Lepidoptera. By manual annotation and BAC sequencing, we improved annotation of 43 gene sequences compared with previously reported Grs in the most studied lepidopteran model, the silkworm, Bombyx mori, and identified 7 new tandem copies of BmGr30 on chromosome 7, bringing the total number of BmGrs to 76. Among these, we mapped 68 genes to chromosomes in a newly constructed chromosome distribution map and 8 genes to scaffolds; we also found new evidence for large clusters of BmGrs, especially from the bitter receptor family. RNA-seq analysis of diverse BmGr expression patterns in chemosensory organs of larvae and adults enabled us to draw a precise organ specific map of BmGr expression. Interestingly, most of the clustered genes were expressed in the same tissues and more than half of the genes were expressed in larval maxillae, larval thoracic legs and adult legs. For example, BmGr63 showed high expression levels in all organs in both larval and adult stages. By contrast, some genes showed expression limited to specific developmental stages or organs and tissues. BmGr19 was highly expressed in larval chemosensory organs (especially antennae and thoracic legs), the single exon genes BmGr53 and BmGr67 were expressed exclusively in larval tissues, the BmGr27-BmGr31 gene cluster on chr7 displayed a high expression level limited to adult legs and the candidate CO2 receptor BmGr2 was highly expressed in adult antennae, where few other Grs were expressed. Transcriptional analysis of the Grs in B. mori provides a valuable new reference for

  2. Regulation of AMPA Receptor Function by the Human Memory-Associated Gene KIBRA

    PubMed Central

    Makuch, Lauren; Volk, Lenora; Anggono, Victor; Johnson, Richard C.; Yu, Yilin; Duning, Kerstin; Kremerskothen, Joachim; Xia, Jun; Takamiya, Kogo; Huganir, Richard L.

    2011-01-01

    KIBRA has recently been identified as a gene associated with human memory performance. Despite the elucidation of the role of KIBRA in several diverse processes in non-neuronal cells, the molecular function of KIBRA in neurons is unknown. We found that KIBRA directly binds to the protein interacting with C-kinase 1 (PICK1) and forms a complex with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPARs), the major excitatory neurotransmitter receptors in the brain. KIBRA knockdown accelerates the rate of AMPAR recycling following N-methyl-D-aspartate receptor induced internalization. Genetic deletion of KIBRA in mice impairs both long-term depression and long-term potentiation at hippocampal Schaffer collateral-CA1 synapses. Moreover, KIBRA knockout mice have severe deficits in contextual fear learning and memory. These results indicate that KIBRA regulates higher brain function by regulating AMPAR trafficking and synaptic plasticity. PMID:21943600

  3. Regulation of AMPA receptor function by the human memory-associated gene KIBRA.

    PubMed

    Makuch, Lauren; Volk, Lenora; Anggono, Victor; Johnson, Richard C; Yu, Yilin; Duning, Kerstin; Kremerskothen, Joachim; Xia, Jun; Takamiya, Kogo; Huganir, Richard L

    2011-09-22

    KIBRA has recently been identified as a gene associated with human memory performance. Despite the elucidation of the role of KIBRA in several diverse processes in nonneuronal cells, the molecular function of KIBRA in neurons is unknown. We found that KIBRA directly binds to the protein interacting with C-kinase 1 (PICK1) and forms a complex with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPARs), the major excitatory neurotransmitter receptors in the brain. KIBRA knockdown accelerates the rate of AMPAR recycling following N-methyl-D-aspartate receptor-induced internalization. Genetic deletion of KIBRA in mice impairs both long-term depression and long-term potentiation at hippocampal Schaffer collateral-CA1 synapses. Moreover, KIBRA knockout mice have severe deficits in contextual fear learning and memory. These results indicate that KIBRA regulates higher brain function by regulating AMPAR trafficking and synaptic plasticity.

  4. Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor.

    PubMed

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Seunghee; Lee, Soo-Kyung; Lee, Jae W

    2013-10-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance.

  5. Low SGK1 Expression in Human Adrenocortical Tumors Is Associated with ACTH-Independent Glucocorticoid Secretion and Poor Prognosis

    PubMed Central

    Sbiera, Silviu; Leich, Ellen; Tissier, Frédérique; Steinhauer, Sonja; Deutschbein, Timo; Fassnacht, Martin; Allolio, Bruno

    2012-01-01

    Context: Using single-nucleotide polymorphism analysis, we observed allelic loss of the gene for serum glucocorticoid (GC) kinase 1 (SGK1), a GC-responsive kinase involved in multiple cellular functions, in a subset of cortisol-secreting adenomas. Objective: Our objective was to analyze SGK1 expression in adrenocortical tumors and to further characterize its role in ACTH-independent cortisol secretion, tumor progression, and prognosis. Design and Setting: Gene expression levels of SGK1, SGK3, and CTNNB1 (coding for β-catenin) and protein expression levels of SGK1, nuclear β-catenin, and phosphorylated AKT were determined in adrenocortical tumors and normal adrenal glands. Patients: A total of 227 adrenocortical tumors (40 adenomas and 187 carcinomas) and 25 normal adrenal tissues were included. Among them, 62 frozen tumor samples were used for mRNA analysis and 203 tumors were investigated on tissue microarrays or full standard slides by immunohistochemistry. Main Outcome Measures: We evaluated the relationship between SGK1 mRNA and/or protein levels and clinical parameters. Results: SGK1 mRNA levels were lower in cortisol-secreting than in nonsecreting tumors (P < 0.005). Nonsecreting neoplasias showed a significant correlation between SGK1 and CTNNB1 mRNA levels (P < 0.001; r = 0.57). Low SGK1 protein levels, but not nuclear β-catenin and phosphorylated AKT, were associated with poor overall survival in patients with adrenocortical carcinoma (P < 0.005; hazard ratio = 2.0; 95% confidence interval = 1.24–3.24), independent of tumor stage and GC secretion. Conclusion: Low SGK1 expression is related to ACTH-independent cortisol secretion in adrenocortical tumors and is a new prognostic factor in adrenocortical carcinoma. PMID:23055545

  6. Identification of natural killer cell receptor genes in the genome of the marsupial Tasmanian devil (Sarcophilus harrisii).

    PubMed

    van der Kraan, Lauren E; Wong, Emily S W; Lo, Nathan; Ujvari, Beata; Belov, Katherine

    2013-01-01

    Within the mammalian immune system, natural killer (NK) cells contribute to the first line of defence against infectious agents and tumours. Their activity is regulated, in part, by cell surface NK cell receptors. NK receptors can be divided into two unrelated, but functionally analogous superfamilies based on the structure of their extracellular ligand-binding domains. Receptors belonging to the C-type lectin superfamily are predominantly encoded in the natural killer complex (NKC), while receptors belonging to the immunoglobulin superfamily are predominantly encoded in the leukocyte receptor complex (LRC). Natural killer cell receptors are emerging as a rapidly evolving gene family which can display significant intra- and interspecific variation. To date, most studies have focused on eutherian mammals, with significantly less known about the evolution of these receptors in marsupials. Here, we describe the identification of 43 immunoglobulin domain-containing LRC genes in the genome of the Tasmanian devil (Sarcophilus harrisii), the largest remaining marsupial carnivore and only the second marsupial species to be studied. We also identify orthologs of NKC genes KLRK1, CD69, CLEC4E, CLEC1B, CLEC1A and an ortholog of an opossum NKC receptor. Characterisation of these regions in a second, distantly related marsupial provides new insights into the dynamic evolutionary histories of these receptors in mammals. Understanding the functional role of these genes is also important for the development of therapeutic agents against Devil Facial Tumour Disease, a contagious cancer that threatens the Tasmanian devil with extinction.

  7. Identification of natural killer cell receptor clusters in the platypus genome reveals an expansion of C-type lectin genes.

    PubMed

    Wong, Emily S W; Sanderson, Claire E; Deakin, Janine E; Whittington, Camilla M; Papenfuss, Anthony T; Belov, Katherine

    2009-08-01

    Natural killer (NK) cell receptors belong to two unrelated, but functionally analogous gene families: the immunoglobulin superfamily, situated in the leukocyte receptor complex (LRC) and the C-type lectin superfamily, located in the natural killer complex (NKC). Here, we describe the largest NK receptor gene expansion seen to date. We identified 213 putative C-type lectin NK receptor homologs in the genome of the platypus. Many have arisen as the result of a lineage-specific expansion. Orthologs of OLR1, CD69, KLRE, CLEC12B, and CLEC16p genes were also identified. The NKC is split into at least two regions of the genome: 34 genes map to chromosome 7, two map to a small autosome, and the remainder are unanchored in the current genome assembly. No NK receptor genes from the LRC were identified. The massive C-type lectin expansion and lack of Ig-domain-containing NK receptors represents the most extreme polarization of NK receptors found to date. We have used this new data from platypus to trace the possible evolutionary history of the NK receptor clusters.

  8. Chromosomal localization of the human V3 pituitary vasopressin receptor gene (AVPR3) to 1q32

    SciTech Connect

    Rousseau-Merck, M.F.; Derre, J.; Berger, R.

    1995-11-20

    Vasopressin exerts its physiological effects on liver metabolism, fluid osmolarity, and corticotrophic response to stress through a set of at least three receptors, V1a, V2, and V3 (also called V1b), respectively. These receptors constitute a distinct group of the superfamily of G-protein-coupled cell surface receptors. When bound to vasopressin, they couple to G proteins activating phospholipase C for the V1a and V3 types and adenylate cyclase for the V2. The vasopressin receptor subfamily also includes the receptor for oxytocin, a structurally related hormone that signals through the activation of phospholipase C. The chromosomal position of the V2 receptor gene has been assigned to Xq28-qter by PCR-based screening of somatic cell hybrids, whereas the oxytocin receptor gene has been mapped to chromosome 3q26.2 by fluorescence in situ hybridization (FISH). The chromosomal location of the V1a gene is currently unknown. We recently cloned the cDNA and the gene coding for the human pituitary-specific V3 receptor (HGMW-approved symbol AVPR3). We report here the chromosomal localization of this gene by two distinct in situ hybridization techniques using radioactive and fluorescent probes. 11 refs., 1 fig.

  9. Genetic variations in the human cannabinoid receptor gene are associated with happiness.

    PubMed

    Matsunaga, Masahiro; Isowa, Tokiko; Yamakawa, Kaori; Fukuyama, Seisuke; Shinoda, Jun; Yamada, Jitsuhiro; Ohira, Hideki

    2014-01-01

    Happiness has been viewed as a temporary emotional state (e.g., pleasure) and a relatively stable state of being happy (subjective happiness level). As previous studies demonstrated that individuals with high subjective happiness level rated their current affective states more positively when they experience positive events, these two aspects of happiness are interrelated. According to a recent neuroimaging study, the cytosine to thymine single-nucleotide polymorphism of the human cannabinoid receptor 1 gene is associated with sensitivity to positive emotional stimuli. Thus, we hypothesized that our genetic traits, such as the human cannabinoid receptor 1 genotypes, are closely related to the two aspects of happiness. In Experiment 1, 198 healthy volunteers were used to compare the subjective happiness level between cytosine allele carriers and thymine-thymine carriers of the human cannabinoid receptor 1 gene. In Experiment 2, we used positron emission tomography with 20 healthy participants to compare the brain responses to positive emotional stimuli of cytosine allele carriers to that of thymine-thymine carriers. Compared to thymine-thymine carriers, cytosine allele carriers have a higher subjective happiness level. Regression analysis indicated that the cytosine allele is significantly associated with subjective happiness level. The positive mood after watching a positive film was significantly higher for the cytosine allele carriers compared to the thymine-thymine carriers. Positive emotion-related brain region such as the medial prefrontal cortex was significantly activated when the cytosine allele carriers watched the positive film compared to the thymine-thymine carriers. Thus, the human cannabinoid receptor 1 genotypes are closely related to two aspects of happiness. Compared to thymine-thymine carriers, the cytosine allele carriers of the human cannabinoid receptor 1 gene, who are sensitive to positive emotional stimuli, exhibited greater magnitude

  10. The Dopamine D4 Receptor Gene and Moderation of the Association Between Externalizing Behavior and IQ

    PubMed Central

    DeYoung, Colin G.; Peterson, Jordan B.; Séguin, Jean R.; Mejia, Jose Maria; Pihl, Robert O.; Beitchman, Joseph H.; Jain, Umesh; Tremblay, Richard E.; Kennedy, James L.; Palmour, Roberta M.

    2012-01-01

    Background Dopaminergic neurotransmission is implicated in externalizing behavior problems, such as aggression and hyperactivity. Externalizing behavior is known to be negatively associated with cognitive ability. Activation of dopamine D4 receptors appears to inhibit the functioning of the prefrontal cortex, a brain region implicated in cognitive ability. The 7-repeat allele of the dopamine D4 receptor gene produces less efficient receptors, relative to other alleles, and this may alter the effects of dopamine on cognitive function. Objective To examine the influence of a polymorphism in the third exon of the dopamine D4 receptor gene on the association between externalizing behavior and IQ. Design In 1 community sample and 2 clinical samples, the presence or absence of the 7-repeat allele was examined as a moderator of the association between externalizing behavior and IQ; the strength of this effect across samples was estimated meta-analytically. Patients Eighty-seven boys from a longitudinal community study, 48 boys referred clinically for aggression, and 42 adult males diagnosed with attention-deficit/hyperactivity disorder. Main Outcome Measures IQ scores and observer ratings of externalizing behavior were taken from existing data sets. Results Among individuals lacking the 7-repeat allele, externalizing behavior was negatively correlated with IQ (mean r=−0.43; P<.001). Among individuals having at least 1 copy of the 7-repeat allele, externalizing behavior and IQ were uncorrelated (mean r=0.02; P=.45). The difference between these correlations was significant (z=−2.99; P<.01). Conclusions Allelic variation of the dopamine D4 receptor gene appears to be a genetic factor moderating the association between externalizing behavior and cognitive ability. This finding may help to elucidate the adaptive value of the 7-repeat allele. PMID:17146015

  11. Recombinant Human Adenovirus: Targeting to the Human Transferrin Receptor Improves Gene Transfer to Brain Microcapillary Endothelium

    PubMed Central

    Xia, Haibin; Anderson, Brian; Mao, Qinwen; Davidson, Beverly L.

    2000-01-01

    Some inborn errors of metabolism due to deficiencies of soluble lysosomal enzymes cause global neurodegenerative disease. Representative examples include the infantile and late infantile forms of the ceroid lipofuscinoses (CLN1 or CLN2 deficiency, respectively) and mucopolysaccharidoses type VII (MPS VII), a deficiency of β-glucuronidase. Treatment of the central nervous system component of these disorders will require widespread protein or enzyme replacement, either through dissemination of the protein or through dissemination of a gene encoding it. We hypothesize that transduction of brain microcapillary endothelium (BME) with recombinant viral vectors, with secretion of enzyme product basolaterally, could allow for widespread enzyme dissemination. To achieve this, viruses should be modified to target the BME. This requires (i) identification of a BME-resident target receptor, (ii) identification of motifs targeted to that molecule, (iii) the construction of modified viruses to allow for binding to the target receptor, and (iv) demonstrated transduction of receptor-expressing cells. In proof of principal experiments, we chose the human transferrin receptor (hTfR), a molecule found at high density on human BME. A nonamer phage display library was panned for motifs which could bind hTfR. Forty-three clones were sequenced, most of which contained an AKxxK/R, KxKxPK/R, or KxK motif. Ten peptides representative of the three motifs were cloned into the HI loop of adenovirus type 5 fiber. All motifs tested retained their ability to trimerize and bind transferrin receptor, and seven allowed for recombinant adenovirus production. Importantly, the fiber-modified viruses facilitated increased gene transfer (2- to 34-fold) to hTfR expressing cell lines and human brain microcapillary endothelia expressing high levels of endogenous receptor. Our data indicate that adenoviruses can be modified in the HI loop for expanded tropism to the hTfR. PMID:11070036

  12. Structurally divergent human T cell receptor. gamma. proteins encoded by distinct C. gamma. genes

    SciTech Connect

    Krangel, M.S.; Band, H.; Hata, S.; McLean, J.; Brenner, M.B.

    1987-07-03

    The human T cell receptor (TCR) ..gamma.. polypeptide occurs in structurally distinct forms on certain peripheral blood T lymphocytes. Complementary DNA clones representing the transcripts of functionally rearranged TCR ..gamma.. genes in these cells have been analyzed. The expression of a disulfide-linked and a nondisulfide-linked form of TCR ..gamma.. correlates with the use of the C..gamma..1 and C..gamma..2 constant-region gene segments, respectively. Variability in TCR ..gamma.. polypeptide and disulfide linkage is determined by the number of copies and the sequence of a repeated segment of the constant region. Thus, C..gamma..1 and C..gamma..2 are used to generate structurally distinct, yet functional, T3-associated receptor complexes on peripheral blood lymphocytes. Tryptic peptide mapping suggests that the T3-associated TCR ..gamma.. and delta peptides in the nondisulfide-linked form are distinct.

  13. A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome.

    PubMed

    Muenke, M; Schell, U; Hehr, A; Robin, N H; Losken, H W; Schinzel, A; Pulleyn, L J; Rutland, P; Reardon, W; Malcolm, S

    1994-11-01

    Pfeiffer syndrome (PS) is one of the classic autosomal dominant craniosynostosis syndromes with craniofacial anomalies and characteristic broad thumbs and big toes. We have previously mapped one of the genes for PS to the centromeric region of chromosome 8 by linkage analysis. Here we present evidence that mutations in the fibroblast growth factor receptor-1 (FGFR1) gene, which maps to 8p, cause one form of familial Pfeiffer syndrome. A C to G transversion in exon 5, predicting a proline to arginine substitution in the putative extracellular domain, was identified in all affected members of five unrelated PS families but not in any unaffected individuals. FGFR1 therefore becomes the third fibroblast growth factor receptor to be associated with an autosomal dominant skeletal disorder.

  14. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats.

    PubMed Central

    Torii, K U; Mitsukawa, N; Oosumi, T; Matsuura, Y; Yokoyama, R; Whittier, R F; Komeda, Y

    1996-01-01

    Arabidopsis Landsberg erecta is one of the most popular ecotypes and is used widely for both molecular and genetic studies. It harbors the erecta (er) mutation, which confers a compact inflorescence, blunt fruits, and short petioles. We have identified five er mutant alleles from ecotypes Columbia and Wassilewskija. Phenotypic characterization of the mutant alleles suggests a role for the ER gene in regulating the shape of organs originating from the shoot apical meristem. We cloned the ER gene, and here, we report that it encodes a putative receptor protein kinases. The deduced ER protein contains a cytoplasmic protein kinase catalytic domain, a transmembrane region, and an extracellular domain consisting of leucine-rich repeats, which are thought to interact with other macromolecules. Our results suggest that cell-cell communication mediated by a receptor kinase has an important role in plant morphogenesis. PMID:8624444

  15. Novel growth hormone receptor gene mutation in a patient with Laron syndrome.

    PubMed

    Arman, Ahmet; Yüksel, Bilgin; Coker, Ajda; Sarioz, Ozlem; Temiz, Fatih; Topaloglu, Ali Kemal

    2010-04-01

    Growth Hormone (GH) is a 22 kDa protein that has effects on growth and glucose and fat metabolisms. These effects are initiated by binding of growth hormone (GH) to growth hormone receptors (GHR) expressed in target cells. Mutations or deletions in the growth hormone receptor cause an autosomal disorder called Laron-type dwarfism (LS) characterized by high circulating levels of serum GH and low levels of insulin like growth factor-1 (IGF-1). We analyzed the GHR gene for genetic defect in seven patients identified as Laron type dwarfism. We identified two missense mutations (S40L and W104R), and four polymorphisms (S473S, L526I, G168G and exon 3 deletion). We are reporting a mutation (W104R) at exon 5 of GHR gene that is not previously reported, and it is a novel mutation.

  16. Enhancement of gene transactivation activity of androgen receptor by hepatitis B virus X protein

    SciTech Connect

    Zheng Yanyan; Chen Wenling; Ma, W.-L. Maverick; Chang Chawnshang; Ou, J.-H. James . E-mail: jamesou@hsc.usc.edu

    2007-07-05

    Hepatitis B virus (HBV) X protein (HBx) is a regulatory protein that is required for efficient replication of HBV in its natural host. In this report, we demonstrate by co-immunoprecipitation experiments that HBx can physically bind to the androgen receptor (AR), which is a nuclear hormone receptor that is expressed in many different tissues including the liver. This observation is further supported by confocal microscopy, which reveals that HBx can alter the subcellular localization of the AR both in the presence and in the absence of dihydrotestosterone (DHT). Further studies indicate that HBx can enhance the gene transactivation activity of AR by enhancing its DNA binding activity in a DHT-dependent manner. However, HBx does not remain associated with AR on the DNA. As AR can regulate the expression of a number of cellular genes, our results raise the possibility that HBV pathogenesis may be mediated in part via the interaction between HBx and AR.

  17. Characterization of a novel ACTH inducible cytochrome P-450 from rat adrenal microsomes

    SciTech Connect

    Otto, S.A.; Marcus, C.M.; Jefcoate, C.R. )

    1990-02-26

    In rat adrenal cortex 7,12 dimethylbenz(a)anthracene (DMBA) causes massive necrosis that is dependent of ACTH. This is related to an ACTH inducible adrenal microsomal cytochrome P-450 that catalyzes hydrocarbon metabolism. Rat adrenal microsomes, catalyze the formation of DMBA 3,4 diol a precursor of the bay region reactive electrophile DMBA 3,4 diol 1,2 oxide. Both DMBA metabolism and a 57Kd protein have disappeared from microsomes 30 days after hypophysectomy, but are restored by 14 days treatment with ACTH. Dexamethasone which fully suppresses ACTH only partially suppresses this activity. The 57 Kd protein was partially purified to a single major band in one step from solubilized microsomes by h.p.l.c. chromatography using detergent elution from a novel column that mimics phospholipid membranes. This preparation exhibits a specific content of 2 nm P-450/mg protein and a turnover number of 1,500pm DMBA/nm P-450/minutes. A polyclonal antisera raised against this preparation provides a single western blot corresponding to the 57Kd ACTH sensitive protein. This antibody did not blot microsomal P-450 c21, nor did selected antibodies from known families react with this adrenal P-450 protein, suggesting substantial sequence differences from known P-450's.

  18. ACTH-producing neuroendocrine tumor of the pancreas: a case report and literature review

    PubMed Central

    Byun, Justin; Kim, Sung Hyun; Jeong, Hyang Sook; Rhee, Yumie; Lee, Woo Jung

    2017-01-01

    Tumors that arise from the endocrine pancreas, or the islets of pancreas, are called pancreatic neuroendocrine tumors (NETs). Pancreatic NET have an incidence of <0.1 per one million persons, and can lead to secretion of ectopic adrenocorticotropic hormone (ACTH). Herein, we presented a case of patient with Cushing's syndrome as a result of ACTH-producing pancreatic NET, who underwent successful laparoscopic distal pancreatosplenectomy. A 40-year-old Korean female patient with ophthalmologic discomfort, osteoporosis, and unexplained hypokalemia was admitted to our hospital. Under the suspicion of ACTH producing pancreatic NET after the diagnostic workup, we decided to perform surgical resection. Laparoscopic distal pancreatosplenectomy was performed; and the pathological examination revealed a 1.5 cm-sized grade 2 neuroendocrine tumor of the pancreas, which was encapsulated within the pancreatic parenchyma. After the operation, the patient no longer displayed cushingoid features. ACTH-producing pancreatic NET is rare, but can be one of the causes of Cushing's syndrome. Surgical resection is a feasible option in treating ACTH-producing pancreatic NET. PMID:28317048

  19. The structure and organization of the human follicle-stimulating hormone receptor (FSHR) gene

    SciTech Connect

    Gromoll, J; Pekel, E.; Nieschlag, E.

    1996-07-15

    The structure and organization of the human follicle-stimulating hormone receptor (FSHR) gene were determined by either screening a phage library of human genomic DNA or applying the long PCR technique to amplify different exon pairs with their corresponding introns. The FSHR gene spans a region of 54 kb and consists of 10 exons and 9 introns. Most of the extracellular domain is encoded by 9 exons, ranging in length between 69 and 251 bp; the C-terminal part of the extracellular domain, the transmembrane domain, and the intracellular domain are encoded by the large exon 10 (1234 bp). Overall the gene encodes 695 amino acids. The structure of the human FSHR displays a striking similarity to that of the previously characterized rat FSHR gene, with a high degree of conservation in exon sizes and exon/intron junctions. 20 refs., 2 tabs.

  20. Growth and gene expression are predominantly controlled by distinct regions of the human IL-4 receptor.

    PubMed

    Ryan, J J; McReynolds, L J; Keegan, A; Wang, L H; Garfein, E; Rothman, P; Nelms, K; Paul, W E

    1996-02-01

    IL-4 causes hematopoietic cells to proliferate and express a series of genes, including CD23. We examined whether IL-4-mediated growth, as measured by 4PS phosphorylation, and gene induction were similarly controlled. Studies of M12.4.1 cells expressing human IL-4R truncation mutants indicated that the region between amino acids 557-657 is necessary for full gene expression, which correlated with Stat6 DNA binding activity. This region was not required for 4PS phosphorylation. Tyrosine-to-phenylalanine mutations in the interval between amino acids 557-657 revealed that as long as one tyrosine remained unmutated, CD23 was fully induced. When all three tyrosines were mutated, the receptor was unable to induce CD23. The results indicate that growth regulation and gene expression are principally controlled by distinct regions of IL-4R.

  1. Diversity in the Toll-like receptor genes of the Tasmanian devil (Sarcophilus harrisii).

    PubMed

    Cui, Jian; Cheng, Yuanyuan; Belov, Katherine

    2015-03-01

    The Tasmanian devil is an endangered marsupial species that has survived several historical bottlenecks and now has low genetic diversity. Here we characterize the Toll-like receptor (TLR) genes and their diversity in the Tasmanian devil. TLRs are a key innate immune gene family found in all animals. Ten TLR genes were identified in the Tasmanian devil genome. Unusually low levels of diversity were found in 25 devils from across Tasmania. We found two alleles at TLR2, TLR3 and TLR6. The other seven genes were monomorphic. The insurance population, which safeguards the species from extinction, has successfully managed to capture all of these TLR alleles, but concerns remain for the long-term survival of this species.

  2. Rebalancing immune specificity and function in cancer by T-cell receptor gene therapy

    PubMed Central

    Udyavar, Akshata; Geiger, Terrence L.

    2010-01-01

    Adoptive immunotherapy with tumor-specific T lymphocytes has demonstrated clinical benefit in some cancers, particularly melanoma. Yet isolating and expanding tumor-specific cells from patients is challenging, and there is limited ability to control T cell affinity and response characteristics. T cell receptor (TCR) gene therapy, in which T lymphocytes for immunotherapy are redirected using introduced rearranged TCR, has emerged as an important alternative. Successful TCR gene therapy requires consideration of a number of issues, including TCR specificity and affinity, optimal gene therapy constructs, types of T cells administered, and the survival and activity of the modified cells. In this review, we highlight the rationale for and experience with, as well as new approaches to enhance TCR gene therapy. PMID:20680493

  3. Characterization of Squamate Olfactory Receptor Genes and Their Transcripts by the High-Throughput Sequencing Approach

    PubMed Central

    Dehara, Yuki; Hashiguchi, Yasuyuki; Matsubara, Kazumi; Yanai, Tokuma; Kubo, Masahito; Kumazawa, Yoshinori

    2012-01-01

    The olfactory receptor (OR) genes represent the largest multigene family in the genome of terrestrial vertebrates. Here, the high-throughput next-generation sequencing (NGS) approach was applied to characterization of OR gene repertoires in the green anole lizard Anolis carolinensis and the Japanese four-lined ratsnake Elaphe quadrivirgata. Tagged polymerase chain reaction (PCR) products amplified from either genomic DNA or cDNA of the two species were used for parallel pyrosequencing, assembling, and screening for errors in PCR and pyrosequencing. Starting from the lizard genomic DNA, we accurately identified 56 of 136 OR genes that were identified from its draft genome sequence. These recovered genes were broadly distributed in the phylogenetic tree of vertebrate OR genes without severe biases toward particular OR families. Ninety-six OR genes were identified from the ratsnake genomic DNA, implying that the snake has more OR gene loci than the anole lizard in response to an increased need for the acuity of olfaction. This view is supported by the estimated number of OR genes in the Burmese python's draft genome (∼280), although squamates may generally have fewer OR genes than terrestrial mammals and amphibians. The OR gene repertoire of the python seems unique in that many class I OR genes are retained. The NGS approach also allowed us to identify candidates of highly expressed and silent OR gene copies in the lizard's olfactory epithelium. The approach will facilitate efficient and parallel characterization of considerable unbiased proportions of multigene family members and their transcripts from nonmodel organisms. PMID:22511035

  4. Response to Xanthomonas campestris pv. vesicatoria in Tomato Involves Regulation of Ethylene Receptor Gene Expression1

    PubMed Central

    Ciardi, Joseph A.; Tieman, Denise M.; Lund, Steven T.; Jones, Jeffrey B.; Stall, Robert E.; Klee, Harry J.

    2000-01-01

    Although ethylene regulates a wide range of defense-related genes, its role in plant defense varies greatly among different plant-microbe interactions. We compared ethylene's role in plant response to virulent and avirulent strains of Xanthomonas campestris pv. vesicatoria in tomato (Lycopersicon esculentum Mill.). The ethylene-insensitive Never ripe (Nr) mutant displays increased tolerance to the virulent strain, while maintaining resistance to the avirulent strain. Expression of the ethylene receptor genes NR and LeETR4 was induced by infection with both virulent and avirulent strains; however, the induction of LeETR4 expression by the avirulent strain was blocked in the Nr mutant. To determine whether ethylene receptor levels affect symptom development, transgenic plants overexpressing a wild-type NR cDNA were infected with virulent X. campestris pv. vesicatoria. Like the Nr mutant, the NR overexpressors displayed greatly reduced necrosis in response to this pathogen. NR overexpression also reduced ethylene sensitivity in seedlings and mature plants, indicating that, like LeETR4, this receptor is a negative regulator of ethylene response. Therefore, pathogen-induced increases in ethylene receptors may limit the spread of necrosis by reducing ethylene sensitivity. PMID:10806227

  5. Melanocortin-1-receptor gene and sun sensitivity in individuals without red hair.

    PubMed

    Healy, E; Flannagan, N; Ray, A; Todd, C; Jackson, I J; Matthews, J N; Birch-Machin, M A; Rees, J L

    2000-03-25

    Susceptibility to sunburn, photoageing, and skin cancer is inversely related to an individual's ability to tan after sun exposure. We examined variants in the melanocortin-1-receptor (MC1R) gene in individuals from Ireland and the UK. We found evidence of an association between the degree of tanning after repeated sun exposure, and the number of variant alleles present. Heterozygotes were intermediate between wild-type individuals and those with two variant alleles. We suggest that MC1R gene status therefore determines sun sensitivity in people without red hair.

  6. Localization of the gene for the ciliary neutrotrophic factor receptor (CNTFR) to human chromosome 9

    SciTech Connect

    Donaldson, D.H.; Jones, C.; Patterson, D. Univ. of Colorado Health Science Center, Denver, CO ); Britt, D.E.; Jackson, C.L. )

    1993-09-01

    Ciliary neurotrophic factor (CNTF) has recently been found to be important for the survival of motor neurons and has shown activity in animal models of amyotrophic lateral sclerosis (ALS). CNTF therefore holds promise as a treatment for ALS, and it and its receptor (CNTFR) are candidates for a gene involved in familial ALS. The CNTFR gene was mapped to chromosome 9 by PCR on a panel of human/CHO somatic cell hybrids and localized to 9p13 by PCR on a panel of radiation hybrids. 18 ref., 1 fig., 2 tabs.

  7. Association study of schizophrenia and IL-2 receptor {beta} chain gene

    SciTech Connect

    Nimgaonkar, V.L.; Yang, Z.W.; Zhang, X.R.; Brar, J.S.

    1995-10-09

    A case-control association study was conducted in Caucasian patients with schizophrenia (DSM-III-R, n = 42) and unaffected controls (n = 47) matched for ethnicity and area of residence. Serum interleukin-2 receptor (IL-2R) concentrations, as well as a dinucleotide repeat polymorphism in the IL-2RP chain gene, were examined in both groups. No significant differences in IL-2R concentrations or in the distribution of the polymorphism were noted. This study does not support an association between schizophrenia and the IL-2RP gene locus, contrary to the suggestive evidence from linkage analysis in multicase families. 17 refs., 2 tabs.

  8. The dopamine D sub 2 receptor locus as a modifying gene in neuropsychiatric disorders

    SciTech Connect

    Comings, D.E.; Comings, B.G.; Muhleman, D.; Dietz, G.; Shahbahrami, B.; Tast, D.; Knell, E.; Kocsis, P.; Baumgarten, R.; Kovacs, B.W.; Gysin, R.; Flanagan, S.D. ); Levy, D.L. ); Smith, M. ); Klein, D.N. ); MacMurray, J.; Tosk, J.M. ); Sverd, J. Cornell Univ. Medical College, Manhasset, NY ); Borison, R.L.; Evans, D.D. )

    1991-10-02

    The A1 allele of the Taq I polymorphism of the dopamine D{sub 2} receptor (DRD2) gene has been earlier reported to occur in 69% of alcoholics, compared with 20% of controls. Other research has reported no significant difference in the prevalence of the A1 allele in alcoholics vs controls and no evidence that the DRD2 gene was linked to alcoholism. The authors hypothesized that these seemingly conflicting results might be because increases in the prevalence of the A1 allele may not be specific to alcoholism. Thus, they examined other disorders frequently associated with alcoholism or those believed to involve defects in dopaminergic neurotransmission.

  9. Farnesoid X receptor directly regulates xenobiotic detoxification genes in the long-lived Little mice.

    PubMed

    Jiang, Yanjun; Jin, Jingling; Iakova, Polina; Hernandez, Julio Cesar; Jawanmardi, Nicole; Sullivan, Emily; Guo, Grace L; Timchenko, Nikolai A; Darlington, Gretchen J

    2013-09-01

    Activation of xenobiotic metabolism pathways has been linked to lifespan extension in different models of aging. However, the mechanisms underlying activation of xenobiotic genes remain largely unknown. Here we showed that although farnesoid X receptor (FXR, Nr1h4) mRNA levels do not change significantly, FXR protein levels are elevated in the livers of the long-lived Little mice, leading to increased DNA binding activity of FXR. Hepatic FXR expression is sex-dependent in wild-type mice but not in Little mice, implying that up-regulation of FXR might be dependent on the reduction of growth hormone in Little mice. Growth hormone treatment decreased hepatic expression of FXR and xenobiotic genes Abcb1a, Fmo3 and Gsta2 in both wild-type and Little mice, suggesting an association between FXR and xenobiotic gene expression. We found that Abcb1a is transactivated by FXR via direct binding of FXR/retinoid X receptor α (RXRα) heterodimer to a response element at the proximal promoter. FXR also positively controls Fmo3 and Gsta2 expression through direct interaction with the response elements in these genes. Our study demonstrates that xenobiotic genes are direct transcriptional targets of FXR and suggests that FXR signaling may play a critical role in the lifespan extension observed in Little mice.

  10. The neuronal nicotinic acetylcholine receptor {alpha}7 subunit gene: Cloning, mapping, structure, and targeting in mouse

    SciTech Connect

    Orr-Urtreger, A.; Baldini, A.; Beaudet, A.L.

    1994-09-01

    The neuronal nicotinic acetylcholine receptor {alpha}7 subunit is a member of a family of ligand-gated ion channels, and is the only subunit know to bind {alpha}-bungarotoxin in mammalian brain. {alpha}-Bungarotoxin binding sites are known to be more abundant in the hippocampus of mouse strains that are particularly sensitive to nicotine-induced seizures. The {alpha}7 receptor is highly permeable to calcium, which could suggest a role in synaptic plasticity in the nervous system. Auditory gating deficiency, an abnormal response to a second auditory stimulus, is characteristic of schizophrenia. Mouse strains that exhibit a similar gating deficit have reduced hippocampal expression of the {alpha}7 subunit. We have cloned and sequenced the full length cDNA for the mouse {alpha}7 gene (Acra-7) and characterized its gene structure. The murine {alpha}7 shares amino acid identity of 99% and 93% with the rat and human {alpha}7 subunits, respectively. Using an interspecies backcross panel, the murine gene was mapped to chromosome 7 near the p locus, a region syntenic with human chromosome 15; the human gene (CHRNA7) was confirmed to map to 15q13-q14 by FISH. To generate a mouse {alpha}7 mutant by homologous recombination, we have constructed a replacement vector which will delete transmembrane domains II-IV and the cytoplasmic domain from the gene product. Recombinant embryonic stem (ES) cell clones were selected and used to develop mouse chimeras that are currently being bred to obtain germline transmission.

  11. Chimpanzee sociability is associated with vasopressin (Avpr1a) but not oxytocin receptor gene (OXTR) variation.

    PubMed

    Staes, Nicky; Koski, Sonja E; Helsen, Philippe; Fransen, Erik; Eens, Marcel; Stevens, Jeroen M G

    2015-09-01

    The importance of genes in regulating phenotypic variation of personality traits in humans and animals is becoming increasingly apparent in recent studies. Here we focus on variation in the vasopressin receptor gene 1a (Avpr1a) and oxytocin receptor gene (OXTR) and their effects on social personality traits in chimpanzees. We combine newly available genetic data on Avpr1a and OXTR allelic variation of 62 captive chimpanzees with individual variation in personality, based on behavioral assessments. Our study provides support for the positive association of the Avpr1a promoter region, in particular the presence of DupB, and sociability in chimpanzees. This complements findings of previous studies on adolescent chimpanzees and studies that assessed personality using questionnaire data. In contrast, no significant associations were found for the single nucleotide polymorphism (SNP) ss1388116472 of the OXTR and any of the personality components. Most importantly, our study provides additional evidence for the regulatory function of the 5' promoter region of Avpr1a on social behavior and its evolutionary stable effect across species, including rodents, chimpanzees and humans. Although it is generally accepted that complex social behavior is regulated by a combination of genes, the environment and their interaction, our findings highlight the importance of candidate genes with large effects on behavioral variation.

  12. Engineering validamycin production by tandem deletion of γ-butyrolactone receptor genes in Streptomyces hygroscopicus 5008.

    PubMed

    Tan, Gao-Yi; Peng, Yao; Lu, Chenyang; Bai, Linquan; Zhong, Jian-Jiang

    2015-03-01

    Paired homologs of γ-butyrolactone (GBL) biosynthesis gene afsA and GBL receptor gene arpA are located at different positions in genome of Streptomyces hygroscopicus 5008. Inactivation of afsA homologs dramatically decreased biosynthesis of validamycin, an important anti-fungal antibiotic and a critical substrate for antidiabetic drug synthesis, and the deletion of arpA homologs increased validamycin production by 26% (ΔshbR1) and 20% (ΔshbR3). By double deletion, the ΔshbR1/R3 mutant showed higher transcriptional levels of adpA-H (the S. hygroscopicus ortholog of the global regulatory gene adpA) and validamycin biosynthetic genes, and validamycin production increased by 55%. Furthermore, by engineering a high-producing industrial strain via tandem deletion of GBL receptor genes, validamycin production and productivity were enhanced from 19 to 24 g/L (by 26%) and from 6.7 to 9.7 g/L(-1) d(-1) (by 45%), respectively, which was the highest ever reported. The strategy demonstrated here may be useful to engineering other Streptomyces spp. with multiple pairs of afsA-arpA homologs.

  13. The frequency distribution of vitamin D Receptor fok I gene polymorphism among Ugandan pulmonary TB patients

    PubMed Central

    Acen, Ester L.; Worodria, William; Mulamba, Peter; Kambugu, Andrew; Erume, Joseph

    2016-01-01

    Background: Mycobacterium tuberculosis (TB) is still a major problem globally and especially in Africa. Vitamin D deficiency has been linked to TB in the past and studies have found vitamin D deficiency to be common among Ugandan TB patients. The functional activity of vitamin D is dependent on the genotype of the vitamin D receptor (VDR) polymorphic genes. Recent findings have indicated that VDR polymorphisms may cause increased resistance or susceptibility to TB. The vitamin D ligand and its receptor play a pivotal role in innate immunity by eliciting antimicrobial activity, which is important in prevention of TB. The fok I vitamin D receptor gene has extensively been examined in TB patients but findings so far have been inconclusive. Objectives: This study sought to investigate the frequency distribution of the VDR fok I gene polymorphisms in pulmonary TB patients and controls. Methods: A pilot case control study of 41 newly diagnosed TB patients and 41 healthy workers was set up. Vitamin D receptor fok I gene was genotyped. Results: The frequency distribution of fok I genotype in Ugandan TB patients was 87.8% homozygous-dominant (FF), 7.3% (Ff) heterozygous and 4.8% (ff) homozygous recessive. For normal healthy subjects the frequencies were (FF) 92.6%, (Ff) 2.4% and (ff) 4.8%. No significant difference was observed in the FF and ff genotypes among TB patients and controls. The Ff heterozygous genotype distribution appeared more in TB patients than in controls. A significant difference was observed in the fok I genotype among gender p value 0.02. No significant difference was observed in ethnicity, p value 0.30. Conclusions: The heterozygous Ff fok I genotype may be associated with TB in the Ugandan population. PMID:27785354

  14. Familial hypercalcemia and hypercalciuria: no mutations in the Ca2+-sensing receptor gene.

    PubMed

    Rodríguez-Soriano, J; Vallo, A; Quintela, M J; Pérez de Nanclares, G; Bilbao, J R; Castaño, L

    2001-09-01

    A 6-year-old boy presented with persistent hypercalcemia, hypercalciuria and nephrocalcinosis from early infancy. His 40-year-old father also had hypercalcemia and hypercalciuria. In both individuals serum values of intact parathyroid hormone (PTH) were repeatedly normal. Although these findings suggest a functional abnormality of the calcium-sensing receptor (CaR), no mutations in coding regions of the CaR gene could be demonstrated.

  15. The Sigma-2 Receptor and Progesterone Receptor Membrane Component 1 are Different Binding Sites Derived From Independent Genes

    PubMed Central

    Chu, Uyen B.; Mavlyutov, Timur A.; Chu, Ming-Liang; Yang, Huan; Schulman, Amanda; Mesangeau, Christophe; McCurdy, Christopher R.; Guo, Lian-Wang; Ruoho, Arnold E.

    2015-01-01

    The sigma-2 receptor (S2R) is a potential therapeutic target for cancer and neuronal diseases. However, the identity of the S2R has remained a matter of debate. Historically, the S2R has been defined as (1) a binding site with high affinity to 1,3-di-o-tolylguanidine (DTG) and haloperidol but not to the selective sigma-1 receptor ligand (+)-pentazocine, and (2) a protein of 18–21 kDa, as shown by specific photolabeling with [3H]-Azido-DTG and [125I]-iodoazido-fenpropimorph ([125I]-IAF). Recently, the progesterone receptor membrane component 1 (PGRMC1), a 25 kDa protein, was reported to be the S2R (Nature Communications, 2011, 2:380). To confirm this identification, we created PGRMC1 knockout NSC34 cell lines using the CRISPR/Cas9 technology. We found that in NSC34 cells devoid of or overexpressing PGRMC1, the maximum [3H]-DTG binding to the S2R (Bmax) as well as the DTG-protectable [125I]-IAF photolabeling of the S2R were similar to those of wild-type control cells. Furthermore, the affinities of DTG and haloperidol for PGRMC1 (KI = 472 μM and 350 μM, respectively), as determined in competition with [3H]-progesterone, were more than 3 orders of magnitude lower than those reported for the S2R (20–80 nM). These results clarify that PGRMC1 and the S2R are distinct binding sites expressed by different genes. PMID:26870805

  16. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium

    PubMed Central

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R.; Aleksunes, Lauren M.; Thomas, Russell S.; Applegate, Dawn; Klaassen, Curtis D.; Corton, J. Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression compendium that lead to alteration of CAR activity. A gene expression biomarker signature of 83 CAR-dependent genes was identified using microarray profiles from the livers of wild-type and CAR-null mice after exposure to three structurally-diverse CAR activators (CITCO, phenobarbital, TCPOBOP). A rank-based algorithm (Running Fisher’s algorithm (p-value ≤ 10-4)) was used to evaluate the similarity between the CAR biomarker signature and a test set of 28 and 32 comparisons positive or negative, respectively, for CAR activation; the test resulted in a balanced accuracy of 97%. The biomarker signature was used to identify chemicals that activate or suppress CAR in an annotated mouse liver/primary hepatocyte gene expression database of ~1850 comparisons. CAR was activated by 1) activators of the aryl hydrocarbon receptor (AhR) in wild-type but not AhR-null mice, 2) pregnane X receptor (PXR) activators in wild-type and to lesser extents in PXR-null mice, and 3) activators of PPARα in wild-type and PPARα-null mice. CAR was consistently activated by five conazole fungicides and four perfluorinated compounds. Comparison of effects in wild-type and CAR-null mice showed that the fungicide propiconazole increased liver weight and hepatocyte proliferation in a CAR-dependent manner, whereas the perfluorinated compound perfluorooctanoic acid (PFOA) increased these endpoints in a CAR-independent manner. A number of compounds suppressed CAR coincident with increases in markers of

  17. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium.

    PubMed

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R; Aleksunes, Lauren M; Thomas, Russell S; Applegate, Dawn; Klaassen, Curtis D; Corton, J Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression compendium that lead to alteration of CAR activity. A gene expression biomarker signature of 83 CAR-dependent genes was identified using microarray profiles from the livers of wild-type and CAR-null mice after exposure to three structurally-diverse CAR activators (CITCO, phenobarbital, TCPOBOP). A rank-based algorithm (Running Fisher's algorithm (p-value ≤ 10(-4))) was used to evaluate the similarity between the CAR biomarker signature and a test set of 28 and 32 comparisons positive or negative, respectively, for CAR activation; the test resulted in a balanced accuracy of 97%. The biomarker signature was used to identify chemicals that activate or suppress CAR in an annotated mouse liver/primary hepatocyte gene expression database of ~1850 comparisons. CAR was activated by 1) activators of the aryl hydrocarbon receptor (AhR) in wild-type but not AhR-null mice, 2) pregnane X receptor (PXR) activators in wild-type and to lesser extents in PXR-null mice, and 3) activators of PPARα in wild-type and PPARα-null mice. CAR was consistently activated by five conazole fungicides and four perfluorinated compounds. Comparison of effects in wild-type and CAR-null mice showed that the fungicide propiconazole increased liver weight and hepatocyte proliferation in a CAR-dependent manner, whereas the perfluorinated compound perfluorooctanoic acid (PFOA) increased these endpoints in a CAR-independent manner. A number of compounds suppressed CAR coincident with increases in markers of

  18. Detection of circulating tumor cells using GeneScan analysis for antigen receptor gene rearrangements in canine lymphoma patients

    PubMed Central

    HIYOSHI-KANEMOTO, Saaya; GOTO-KOSHINO, Yuko; FUKUSHIMA, Kenjiro; TAKAHASHI, Masashi; KANEMOTO, Hideyuki; UCHIDA, Kazuyuki; FUJINO, Yasuhito; OHNO, Koichi; TSUJIMOTO, Hajime

    2016-01-01

    The presence of circulating tumor cells (CTCs) serves as a prognostic marker and indicator of disease relapse, as well as a means of evaluating treatment efficacy in human and canine lymphoma patients. As an extension of our previous study for the construction of clinically useful GeneScan system, we utilized the GeneScan system for detecting CTCs in canine lymphoma patients. Samples from the primary lesion and peripheral blood mononuclear cells (PBMCs) were obtained from 32 dogs with lymphoma at initial diagnosis. All samples were subjected to polymerase chain reaction (PCR) for antigen receptor gene rearrangements (PARR) followed by GeneScan analysis. Common clonal rearrangements with identical amplified fragments were detected in both the primary lesion and PBMCs in 19 of the 32 dogs (59.4%). However, the detection rate of CTCs varied among the anatomical classification of lymphoma studied. GeneScan analysis following PARR would facilitate studies on determining the clinical significance of CTCs in canine lymphoma patients. PMID:26888583

  19. Sequence Analysis of Bitter Taste Receptor Gene Repertoires in Different Ruminant Species

    PubMed Central

    Monteiro Ferreira, Ana; Tomás Marques, Andreia; Bhide, Mangesh; Cubric-Curik, Vlatka; Hollung, Kristin; Knight, Christopher Harold; Raundrup, Katrine; Lippolis, John; Palmer, Mitchell; Sales-Baptista, Elvira; Araújo, Susana Sousa; de Almeida, André Martinho

    2015-01-01

    Bitter taste has been extensively studied in mammalian species and is associated with sensitivity to toxins and with food choices that avoid dangerous substances in the diet. At the molecular level, bitter compounds are sensed by bitter taste receptor proteins (T2R) present at the surface of taste receptor cells in the gustatory papillae. Our work aims at exploring the phylogenetic relationships of T2R gene sequences within different ruminant species. To accomplish this goal, we gathered a collection of ruminant species with different feeding behaviors and for which no genome data is available: American bison, chamois, elk, European bison, fallow deer, goat, moose, mouflon, muskox, red deer, reindeer and white tailed deer. The herbivores chosen for this study belong to different taxonomic families and habitats, and hence, exhibit distinct foraging behaviors and diet preferences. We describe the first partial repertoires of T2R gene sequences for these species obtained by direct sequencing. We then consider the homology and evolutionary history of these receptors within this ruminant group, and whether it relates to feeding type classification, using MEGA software. Our results suggest that phylogenetic proximity of T2R genes corresponds more to the traditional taxonomic groups of the species rather than reflecting a categorization by feeding strategy. PMID:26061084

  20. Growth hormone receptor gene mutations in two Italian patients with Laron Syndrome.

    PubMed

    Fassone, L; Corneli, G; Bellone, S; Camacho-Hübner, C; Aimaretti, G; Cappa, M; Ubertini, G; Bona, G

    2007-05-01

    Laron Syndrome (LS) represents a condition characterized by GH insensitivity caused by molecular defects in the GH receptor (GHR) gene or in the post-receptor signalling pathway. We report the molecular characterization of two unrelated Italian girls from Sicily diagnosed with LS. The DNA sequencing of the GHR gene revealed the presence of different nonsense mutations, occurring in the same background haplotype. The molecular defects occurred in the extracellular domain of the GHR leading to a premature termination signal and to a truncated non-functional receptor. In one patient, a homozygous G to T transversion, in exon 6, led to the mutation GAA to TAA at codon 180 (E180X), while in the second patient a homozygous C to T transition in exon 7 was detected, causing the CGA to TAA substitution at codon 217 (R217X). Both probands presented the polymorphisms Gly168Gly and Ile544Leu in a homozygous state in exons 6 and 10, respectively. The E180X represents a novel defect of the GHR gene, while the R217X mutation has been previously reported in several patients from different ethnic backgrounds but all from countries located in the Mediterranean and Middle Eastern region.

  1. Rapid evolution of smell and taste receptor genes during host specialization in Drosophila sechellia

    PubMed Central

    McBride, Carolyn S.

    2007-01-01

    Our understanding of the genetic basis of host specialization in insects is limited to basic information on the number and location of genetic factors underlying changes in conspicuous phenotypes. We know nothing about general patterns of molecular evolution that may accompany host specialization but are not traceable to a single prominent phenotypic change. Here, I describe changes in the entire repertoire of 136 olfactory receptor (Or) and gustatory receptor (Gr) genes of the recently specialized vinegar fly Drosophila sechellia. I find that D. sechellia is losing Or and Gr genes nearly 10 times faster than its generalist sibling Drosophila simulans. Moreover, those D. sechellia receptors that remain intact have fixed amino acid replacement mutations at a higher rate relative to silent mutations than have their D. simulans orthologs. Comparison of these patterns with those observed in a random sample of genes indicates that the changes at Or and Gr loci are likely to reflect positive selection and/or relaxed constraint associated with the altered ecological niche of this fly. PMID:17360391

  2. Evidence for an indirect transcriptional regulation of glucose-6-phosphatase gene expression by liver X receptors

    SciTech Connect

    Grempler, Rolf . E-mail: rolfgrempler@yahoo.de; Guenther, Susanne; Steffensen, Knut R.; Nilsson, Maria; Barthel, Andreas; Schmoll, Dieter

    2005-12-16

    Liver X receptor (LXR) paralogues {alpha} and {beta} (LXR{alpha} and LXR{beta}) are members of the nuclear hormone receptor family and have oxysterols as endogenous ligands. LXR activation reduces hepatic glucose production in vivo through the inhibition of transcription of the key gluconeogenic enzymes phosphoenolpyruvate carboxykinase and glucose-6-phosphatase (G6Pase). In the present study, we investigated the molecular mechanisms involved in the regulation of G6Pase gene expression by LXR. Both T0901317, a synthetic LXR agonist, and the adenoviral overexpression of either LXR{alpha} or LXR{beta} suppressed G6Pase gene expression in H4IIE hepatoma cells. However, compared to the suppression of G6Pase expression seen by insulin, the decrease of G6Pase mRNA by LXR activation was delayed and was blocked by cycloheximide, an inhibitor of protein synthesis. These observations, together with the absence of a conserved LXR-binding element within the G6Pase promoter, suggest an indirect inhibition of G6Pase gene expression by liver X receptors.

  3. T Cell Receptor-Independent Basal Signaling via Erk and Abl Kinases Suppresses RAG Gene Expression

    PubMed Central

    Roose, Jeroen P; Diehn, Maximilian; Tomlinson, Michael G; Lin, Joseph; Alizadeh, Ash A; Botstein, David; Brown, Patrick O

    2003-01-01

    Signal transduction pathways guided by cellular receptors commonly exhibit low-level constitutive signaling in a continuous, ligand-independent manner. The dynamic equilibrium of positive and negative regulators establishes such a tonic signal. Ligand-independent signaling by the precursors of mature antigen receptors regulates development of B and T lymphocytes. Here we describe a basal signal that controls gene expression profiles in the Jurkat T cell line and mouse thymocytes. Using DNA microarrays and Northern blots to analyze unstimulated cells, we demonstrate that expression of a cluster of genes, including RAG-1 and RAG-2, is repressed by constitutive signals requiring the adapter molecules LAT and SLP-76. This TCR-like pathway results in constitutive low-level activity of Erk and Abl kinases. Inhibition of Abl by the drug STI-571 or inhibition of signaling events upstream of Erk increases RAG-1 expression. Our data suggest that physiologic gene expression programs depend upon tonic activity of signaling pathways independent of receptor ligation. PMID:14624253

  4. Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells

    NASA Technical Reports Server (NTRS)

    Chen, J.; Fabry, B.; Schiffrin, E. L.; Wang, N.; Ingber, D. E. (Principal Investigator)

    2001-01-01

    A magnetic twisting stimulator was developed based on the previously published technique of magnetic twisting cytometry. Using ligand-coated ferromagnetic microbeads, this device can apply mechanical stresses with varying amplitudes, duration, frequencies, and waveforms to specific cell surface receptors. Biochemical and biological responses of the cells to the mechanical stimulation can be assayed. Twisting integrin receptors with RGD (Arg-Gly-Asp)-containing peptide-coated beads increased endothelin-1 (ET-1) gene expression by >100%. In contrast, twisting scavenger receptors with acetylated low-density lipoprotein-coated beads or twisting HLA antigen with anti-HLA antibody-coated beads did not lead to alterations in ET-1 gene expression. In situ hybridization showed that the increase in ET-1 mRNA was localized in the cells that were stressed with the RGD-coated beads. Blocking stretch-activated ion channels with gadolinium, chelating Ca2+ with EGTA, or inhibiting tyrosine phosphorylation with genistein abolished twist-induced ET-1 mRNA elevation. Abolishing cytoskeletal tension with an inhibitor of the myosin ATPase, with an inhibitor of myosin light chain kinase, or with an actin microfilament disrupter blocked twisted-induced increases in ET-1 expression. Our results are consistent with the hypothesis that the molecular structural linkage of integrin-cytoskeleton is an important pathway for stress-induced ET-1 gene expression.

  5. Human GABAA receptor alpha 1 and alpha 3 subunits genes and alcoholism.

    PubMed

    Parsian, A; Cloninger, C R

    1997-05-01

    gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain. GABA effects are largely mediated by binding to the postsynaptic GABAA receptor, causing the opening of an integral chloride-ion channel. The GABAA antagonists picrotoxin and bicuculline reduce some ethanol-induced behaviors, such as motor impairment, sedation, and hypnosis. The role of this receptor in alcoholism is further supported by effective alleviation of alcohol withdrawal symptoms by GABAA agonists. To determine the role of the GABAA receptor (GABR) genes in the development of alcoholism, we have used alpha 1 and alpha 3 simple sequence repeat polymorphisms in a sample of unrelated alcoholics, alcoholic probands with both parents, and psychiatrically normal controls. For the GABR alpha 1 gene, the differences between allele frequencies, when all alleles were compared together, were not significant between total alcoholics, subtypes of alcoholics, and normal controls. However, for GABR alpha 3, the differences between total alcoholics and normal controls were significant when all alleles were compared together. The differences between subtypes of alcoholics and normal controls were not significant. The results of haplotype relative risk analysis for both genes, GABR alpha 1 and GABR alpha 3, were also negative. It is possible that the sample size in the haplotype relative risk is too small to have power to detect the differences in transmitted versus nontransmitted alleles. There is a need for a replication study in a large family sample that will allow haplotype relative risk or affected sib-pair analysis.

  6. Ethylene and pollination decrease transcript abundance of an ethylene receptor gene in Dendrobium petals.

    PubMed

    Thongkum, Monthathip; Burns, Parichart; Bhunchoth, Anjana; Warin, Nuchnard; Chatchawankanphanich, Orawan; van Doorn, Wouter G

    2015-03-15

    We studied the expression of a gene encoding an ethylene receptor, called Ethylene Response Sensor 1 (Den-ERS1), in the petals of Dendrobium orchid flowers. Transcripts accumulated during the young floral bud stage and declined by the time the flowers had been open for several days. Pollination or exposure to exogenous ethylene resulted in earlier flower senescence, an increase in ethylene production and a lower Den-ERS1 transcript abundance. Treatment with 1-methylcyclopropene (1-MCP), an inhibitor of the ethylene receptor, decreased ethylene production and resulted in high transcript abundance. The literature indicates two kinds of ethylene receptor genes with regard to the effects of ethylene. One group shows ethylene-induced down-regulated transcription, while the other has ethylene-induced up-regulation. The present gene is an example of the first group. The 5' flanking region showed binding sites for Myb and myb-like, homeodomain, MADS domain, NAC, TCP, bHLH and EIN3-like transcription factors. The binding site for the EIN3-like factor might explain the ethylene effect on transcription. A few other transcription factors (RAV1 and NAC) seem also related to ethylene effects.

  7. Expansion of the Receptor-Like Kinase/Pelle Gene Family and Receptor-Like Proteins in Arabidopsis1[w

    PubMed Central

    Shin-Han, Shiu; Bleecker, Anthony B.

    2003-01-01

    Receptor-like kinases (RLKs) are a family of transmembrane proteins with versatile N-terminal extracellular domains and C-terminal intracellular kinases. They control a wide range of physiological responses in plants and belong to one of the largest gene families in the Arabidopsis genome with more than 600 members. Interestingly, this gene family constitutes 60% of all kinases in Arabidopsis and accounts for nearly all transmembrane kinases in Arabidopsis. Analysis of four fungal, six metazoan, and two Plasmodium sp. genomes indicates that the family was represented in all but fungal genomes, indicating an ancient origin for the family with a more recent expansion only in the plant lineages. The RLK/Pelle family can be divided into several subfamilies based on three independent criteria: the phylogeny based on kinase domain sequences, the extracellular domain identities, and intron locations and phases. A large number of receptor-like proteins (RLPs) resembling the extracellular domains of RLKs are also found in the Arabidopsis genome. However, not all RLK subfamilies have corresponding RLPs. Several RLK/Pelle subfamilies have undergone differential expansions. More than 33% of the RLK/Pelle members are found in tandem clusters, substantially higher than the genome average. In addition, 470 of the RLK/Pelle family members are located within the segmentally duplicated regions in the Arabidopsis genome and 268 of them have a close relative in the corresponding regions. Therefore, tandem duplications and segmental/whole-genome duplications represent two of the major mechanisms for the expansion of the RLK/Pelle family in Arabidopsis. PMID:12805585

  8. Dopamine D1 receptors, regulation of gene expression in the brain, and neurodegeneration.

    PubMed

    Cadet, Jean Lud; Jayanthi, Subramaniam; McCoy, Michael T; Beauvais, Genevieve; Cai, Ning Sheng

    2010-11-01

    Dopamine (DA), the most abundant catecholamine in the basal ganglia, participates in the regulation of motor functions and of cognitive processes such as learning and memory. Abnormalities in dopaminergic systems are thought to be the bases for some neuropsychiatric disorders including addiction, Parkinson's disease, and Schizophrenia. DA exerts its arrays of functions via stimulation of D1-like (D1 and D5) and D2-like (D2, D3, and D4) DA receptors which are located in various regions of the brain. The DA D1 and D2 receptors are very abundant in the basal ganglia where they exert their functions within separate neuronal cell types. The present paper focuses on a review of the effects of stimulation of DA D1 receptors on diverse signal transduction pathways and gene expression patterns in the brain. We also discuss the possible involvement of the DA D1 receptors in DA-mediated toxic effects observed both in vitro and in vivo. Future studies using more selective agonist and antagonist agents and the use of genetically modified animals should help to further clarify the role of these receptors in the normal physiology and in pathological events that involve DA.

  9. Molecular Characterization and Sex Distribution of Chemosensory Receptor Gene Family Based on Transcriptome Analysis of Scaeva pyrastri

    PubMed Central

    Li, Xiao-Ming; Zhu, Xiu-Yun; He, Peng; Xu, Lu; Sun, Liang; Chen, Li; Wang, Zhi-Qiang; Deng, Dao-Gui

    2016-01-01

    Chemosensory receptors play key roles in insect behavior. Thus, genes encoding these receptors have great potential for use in integrated pest management. The hover fly Scaeva pyrastri (L.) is an important pollinating insect and a natural enemy of aphids, mainly distributed in the Palearctic and Nearctic regions. However, a systematic identification of their chemosensory receptor genes in the antennae has not been reported. In the present study, we assembled the antennal transcriptome of S. pyrastri by using Illumina sequencing technology. Analysis of the transcriptome data identified 60 candidate chemosensory genes, including 38 for odorant receptors (ORs), 16 for ionotropic receptors (IRs), and 6 for gustatory receptors (GRs). The numbers are similar to those of other Diptera species, suggesting that we were able to successfully identify S. pyrastri chemosensory genes. We analyzed the expression patterns of all genes by using reverse transcriptase PCR (RT-PCR), and found that some genes exhibited sex-biased or sex-specific expression. These candidate chemosensory genes and their tissue expression profiles provide information for further studies aimed at fully understanding the molecular basis behind chemoreception-related behaviors in S. pyrastri. PMID:27171401

  10. Taste and odorant receptors of the coelacanth--a gene repertoire in transition.

    PubMed

    Picone, Barbara; Hesse, Uljana; Panji, Sumir; Van Heusden, Peter; Jonas, Mario; Christoffels, Alan

    2014-09-01

    G-protein coupled chemosensory receptors (GPCR-CRs) aid in the perception of odors and tastes in vertebrates. So far, six GPCR-CR families have been identified that are conserved in most vertebrate species. Phylogenetic analyses indicate differing evolutionary dynamics between teleost fish and tetrapods. The coelacanth Latimeria chalumnae belongs to the lobe-finned fishes, which represent a phylogenetic link between these two groups. We searched the genome of L. chalumnae for GPCR-CRs and found that coelacanth taste receptors are more similar to those in tetrapods than in teleost fish: two coelacanth T1R2s co-segregate with the tetrapod T1R2s that recognize sweet substances, and our phylogenetic analyses indicate that the teleost T1R2s are closer related to T1R1s (umami taste receptors) than to tetrapod T1R2s. Furthermore, coelacanths are the first fish with a large repertoire of bitter taste receptors (58 T2Rs). Considering current knowledge on feeding habits of coelacanths the question arises if perception of bitter taste is the only function of these receptors. Similar to teleost fish, coelacanths have a variety of olfactory receptors (ORs) necessary for perception of water-soluble substances. However, they also have seven genes in the two tetrapod OR subfamilies predicted to recognize airborne molecules. The two coelacanth vomeronasal receptor families are larger than those in teleost fish, and similar to tetrapods and form V1R and V2R monophyletic clades. This may point to an advanced development of the vomeronasal organ as reported for lungfish. Our results show that the intermediate position of Latimeria in the phylogeny is reflected in its GPCR-CR repertoire.

  11. Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance.

    PubMed

    Vinatzer, B A; Patocchi, A; Gianfranceschi, L; Tartarini, S; Zhang, H B; Gessler, C; Sansavini, S

    2001-04-01

    Scab caused by the fungal pathogen Venturia inaequalis is the most common disease of cultivated apple (Malus x domestica Borkh.). Monogenic resistance against scab is found in some small-fruited wild Malus species and has been used in apple breeding for scab resistance. Vf resistance of Malus floribunda 821 is the most widely used scab resistance source. Because breeding a high-quality cultivar in perennial fruit trees takes dozens of years, cloning disease resistance genes and using them in the transformation of high-quality apple varieties would be advantageous. We report the identification of a cluster of receptor-like genes with homology to the Cladosporium fulvum (Cf) resistance gene family of tomato on bacterial artificial chromosome clones derived from the Vf scab resistance locus. Three members of the cluster were sequenced completely. Similar to the Cf gene family of tomato, the deduced amino acid sequences coded by these genes contain an extracellular leucine-rich repeat domain and a transmembrane domain. The transcription of three members of the cluster was determined by reverse transcriptionpolymerase chain reaction to be constitutive, and the transcription and translation start of one member was verified by 5' rapid amplification of cDNA ends. We discuss the parallels between Cf resistance of tomato and Vf resistance of apple and the possibility that one of the members of the gene cluster is the Vf gene. Cf homologs from other regions of the apple genome also were identified and are likely to present other scab resistance genes.

  12. The murine DUB-1 gene is specifically induced by the betac subunit of interleukin-3 receptor.

    PubMed Central

    Zhu, Y; Pless, M; Inhorn, R; Mathey-Prevot, B; D'Andrea, A D

    1996-01-01

    Cytokines regulate cell growth and differentiation by inducing the expression of specific target genes. We have recently isolated a cytokine-inducible, immediate-early cDNA, DUB-1, that encodes a deubiquitinating enzyme. The DUB-1 mRNA was specifically induced by the receptors for interleukin-3, granulocyte-macrophage colony-stimulating factor, and interleukin-5, suggesting a role for the beta common (betac subunit known to be shared by these receptors. In order to identify the mechanism of cytokine induction, we isolated a murine genomic clone for DUB-1 containing a functional promoter region. The DUB-1 gene contains two exons, and the nucleotide sequence of its coding region is identical to the sequence of DUB-1 cDNA. Various regions of the 5' flanking region of the DUB-1 gene were assayed for cytokine-inducible activity. An enhancer region that retains the beta c-specific inducible activity of the DUB-1 gene was identified. Enhancer activity was localized to a 112-bp fragment located 1.4 kb upstream from the ATG start codon. Gel mobility shift assays revealed two specific protein complexes that bound to this minimal enhancer region. One complex was induced by betac signaling, while the other was noninducible. Finally, the membrane-proximal region of human betac was required for DUB-1 induction. In conclusion, DUB-1 is the first example of an immediate-early gene that is induced by a specific subunit of a cytokine receptor. Further analysis of the DUB-1 enhancer element may reveal specific determinants of a betac-specific signaling pathway. PMID:8756639

  13. Effects of different fixatives on demonstrating epinephrine and ACTH hormones in Tetrahymena.

    PubMed

    Csaba, G; Kovács, P; Pállinger, E

    2009-12-01

    The unicellular Tetrahymena produces, contains, and secretes many hormones characteristic of higher animals. We tested three fixatives, formaldehyde, N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDAC), and glutaraldehyde for suitability for immunocytochemical demonstration of epinephrine and adrenocorticotropic harmone (ACTH) in Tetrahymena. Using flow cytometric immunocytochemistry, staining of ACTH was highest after EDAC fixation and that of epinephrine after glutaraldehyde fixation. Using laser scanning confocal microscopy, formaldehyde fixation prevented staining. Glutaraldehyde fixation produced high autofluorescence, which obscured specific staining. After EDAC fixation, ACTH was localized in the ciliary row; however, demonstration of epinephrine was not improved. Our results show that there is no "fixative for any hormone." Different fixatives are needed to demonstrate different hormones in Tetrahymena.

  14. Plasma N-POMC, ACTH and cortisol concentrations in a psychogeriatric population.

    PubMed

    Leake, A; Charlton, B G; Lowry, P J; Jackson, S; Fairbairn, A; Ferrier, I N

    1990-05-01

    Elderly patients with depression and Alzheimer-type dementia (ATD) were compared with age-matched control subjects using a protocol which measured cortisol, adrenocorticotrophic hormone (ACTH) and N-terminal pro-opiomelanocortin (N-POMC) to determine diurnal variation and the effect of dexamethasone administration. Depressed patients had significantly elevated cortisol concentrations both before and after dexamethasone administration. Basal ACTH and N-POMC concentrations were normal in depressed patients but were both elevated, compared with controls, after dexamethasone. By contrast, in ATD patients, cortisol was elevated only after dexamethasone, as was ACTH, but not N-POMC. This may imply that the pattern of secretion of POMC-derived peptides underlying increased cortisol secretion is different in ATD from that in depression.

  15. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    NASA Technical Reports Server (NTRS)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of

  16. The nicotinic acetylcholine receptor CHRNA5/A3/B4 gene cluster: Dual role in nicotine addiction and lung cancer

    PubMed Central

    Improgo, Ma. Reina D.; Scofield, Michael D.; Tapper, Andrew R.; Gardner, Paul D.

    2010-01-01

    More than 1 billion people around the world smoke, with 10 million cigarettes sold every minute. Cigarettes contain thousands of harmful chemicals including the psychoactive compound, nicotine. Nicotine addiction is initiated by the binding of nicotine to nicotinic acetylcholine receptors, ligand-gated cation channels activated by the endogenous neurotransmitter, acetylcholine. These receptors serve as prototypes for all ligand-gated ion channels and have been extensively studied in an attempt to elucidate their role in nicotine addiction. Many of these studies have focused on heteromeric nicotinic acetylcholine receptors containing α4 and β2 subunits and homomeric nicotinic acetylcholine receptors containing the α7 subunit, two of the most abundant subtypes expressed in the brain. Recently however, a series of linkage analyses, candidate-gene analyses and genome-wide association studies have brought attention to three other members of the nicotinic acetylcholine receptor family: the α5, α3 and β4 subunits. The genes encoding these subunits lie in a genomic cluster that contains variants associated with increased risk for several diseases including nicotine dependence and lung cancer. The underlying mechanisms for these associations have not yet been elucidated but decades of research on the nicotinic receptor gene family as well as emerging data provide insight on how these receptors may function in pathological states. Here, we review this body of work, focusing on the clustered nicotinic acetylcholine receptor genes and evaluating their role in nicotine addiction and lung cancer. PMID:20685379

  17. Genome-wide landscape of liver X receptor chromatin binding and gene regulation in human macrophages

    PubMed Central

    2012-01-01

    Background The liver X receptors (LXRs) are oxysterol sensing nuclear receptors with multiple effects on metabolism and immune cells. However, the complete genome-wide cistrome of LXR in cells of human origin has not yet been provided. Results We performed ChIP-seq in phorbol myristate acetate-differentiated THP-1 cells (macrophage-type) after stimulation with the potent synthetic LXR ligand T0901317 (T09). Microarray gene expression analysis was performed in the same cellular model. We identified 1357 genome-wide LXR locations (FDR < 1%), of which 526 were observed after T09 treatment. De novo analysis of LXR binding sequences identified a DR4-type element as the major motif. On mRNA level T09 up-regulated 1258 genes and repressed 455 genes. Our results show that LXR actions are focused on 112 genomic regions that contain up to 11 T09 target genes per region under the control of highly stringent LXR binding sites with individual constellations for each region. We could confirm that LXR controls lipid metabolism and transport and observed a strong association with apoptosis-related functions. Conclusions This first report on genome-wide binding of LXR in a human cell line provides new insights into the transcriptional network of LXR and its target genes with their link to physiological processes, such as apoptosis. The gene expression microarray and sequence data have been submitted collectively to the NCBI Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/geo under accession number GSE28319. PMID:22292898

  18. Expanding Duplication of Free Fatty Acid Receptor-2 (GPR43) Genes in the Chicken Genome.

    PubMed

    Meslin, Camille; Desert, Colette; Callebaut, Isabelle; Djari, Anis; Klopp, Christophe; Pitel, Frédérique; Leroux, Sophie; Martin, Pascal; Froment, Pascal; Guilbert, Edith; Gondret, Florence; Lagarrigue, Sandrine; Monget, Philippe

    2015-04-24

    Free fatty acid receptors (FFAR) belong to a family of five G-protein coupled receptors that are involved in the regulation of lipid metabolism, so that their loss of function increases the risk of obesity. The aim of this study was to determine the expansion of genes encoding paralogs of FFAR2 in the chicken, considered as a model organism for developmental biology and biomedical research. By estimating the gene copy number using quantitative polymerase chain reaction, genomic DNA resequencing, and RNA sequencing data, we showed the existence of 23 ± 1.5 genes encoding FFAR2 paralogs in the chicken genome. The FFAR2 paralogs shared an identity from 87.2% up to 99%. Extensive gene conversion was responsible for this high degree of sequence similarities between these genes, and this concerned especially the four amino acids known to be critical for ligand binding. Moreover, elevated nonsynonymous/synonymous substitution ratios on some amino acids within or in close-vicinity of the ligand-binding groove suggest that positive selection may have reduced the effective rate of gene conversion in this region, thus contributing to diversify the function of some FFAR2 paralogs. All the FFAR2 paralogs were located on a microchromosome in a same linkage group. FFAR2 genes were expressed in different tissues and cells such as spleen, peripheral blood mononuclear cells, abdominal adipose tissue, intestine, and lung, with the highest rate of expression in testis. Further investigations are needed to determine whether these chicken-specific events along evolution are the consequence of domestication and may play a role in regulating lipid metabolism in this species.

  19. The emergence of the vasopressin and oxytocin hormone receptor gene family lineage: Clues from the characterization of vasotocin receptors in the sea lamprey (Petromyzon marinus).

    PubMed

    Mayasich, Sally A; Clarke, Benjamin L

    2016-01-15

    The sea lamprey (Petromyzon marinus) is a jawless vertebrate at an evolutionary nexus between invertebrates and jawed vertebrates. Lampreys are known to possess the arginine vasotocin (AVT) hormone utilized by all non-mammalian vertebrates. We postulated that the lamprey would possess AVT receptor orthologs of predecessors to the arginine vasopressin (AVP)/oxytocin (OXT) family of G protein-coupled receptors found in mammals, providing insights into the origins of the mammalian V1A, V1B, V2 and OXT receptors. Among the earliest animals to diverge from the vertebrate lineage in which these receptors are characterized is the jawed, cartilaginous elephant shark, which has genes orthologous to all four mammalian receptor types. Therefore, our work was aimed at helping resolve the critical gap concerning the outcomes of hypothesized large-scale (whole-genome) duplication events. We sequenced one partial and four full-length putative lamprey AVT receptor genes and determined their mRNA expression patterns in 15 distinct tissues. Phylogenetically, three of the full-coding genes possess structural characteristics of the V1 clade containing the V1A, V1B and OXT receptors. Another full-length coding gene and the partial sequence are part of the V2 clade and appear to be most closely related to the newly established V2B and V2C receptor subtypes. Our synteny analysis also utilizing the Japanese lamprey (Lethenteron japonicum) genome supports the recent proposal that jawless and jawed vertebrates shared one-round (1R) of WGD as the most likely scenario.

  20. Global Analysis of Predicted G Protein−Coupled Receptor Genes in the Filamentous Fungus, Neurospora crassa

    PubMed Central

    Cabrera, Ilva E.; Pacentine, Itallia V.; Lim, Andrew; Guerrero, Nayeli; Krystofova, Svetlana; Li, Liande; Michkov, Alexander V.; Servin, Jacqueline A.; Ahrendt, Steven R.; Carrillo, Alexander J.; Davidson, Liza M.; Barsoum, Andrew H.; Cao, Jackie; Castillo, Ronald; Chen, Wan-Ching; Dinkchian, Alex; Kim, Stephanie; Kitada, Sho M.; Lai, Taffani H.; Mach, Ashley; Malekyan, Cristin; Moua, Toua R.; Torres, Carlos Rojas; Yamamoto, Alaina; Borkovich, Katherine A.

    2015-01-01

    G protein−coupled receptors (GPCRs) regulate facets of growth, development, and environmental sensing in eukaryotes, including filamentous fungi. The largest predicted GPCR class in these organisms is the Pth11-related, with members similar to a protein required for disease in the plant pathogen Magnaporthe oryzae. However, the Pth11-related class has not been functionally studied in any filamentous fungal species. Here, we analyze phenotypes in available mutants for 36 GPCR genes, including 20 Pth11-related, in the model filamentous fungus Neurospora crassa. We also investigate patterns of gene expression for all 43 predicted GPCR genes in available datasets. A total of 17 mutants (47%) possessed at least one growth or developmental phenotype. We identified 18 mutants (56%) with chemical sensitivity or nutritional phenotypes (11 uniquely), bringing the total number of mutants with at least one defect to 28 (78%), including 15 mutants (75%) in the Pth11-related class. Gene expression trends for GPCR genes correlated with the phenotypes observed for many mutants and also suggested overlapping functions for several groups of co-transcribed genes. Several members of the Pth11-related class have phenotypes and/or are differentially expressed on cellulose, suggesting a possible role for this gene family in plant cell wall sensing or utilization. PMID:26464358

  1. Genes Involved in Interleukin-1 Receptor Type II Activities Are Associated With Asthmatic Phenotypes

    PubMed Central

    Madore, Anne-Marie; Vaillancourt, Vanessa T.; Bouzigon, Emmanuelle; Sarnowski, Chloé; Monier, Florent; Dizier, Marie-Hélène; Demenais, Florence

    2016-01-01

    Purpose Interleukin-1 (IL-1) plays a key role in inflammation and immunity and its decoy receptor, IL-1R2, has been implicated in transcriptomic and genetic studies of asthma. Methods Two large asthma family collections, the French-Canadian Saguenay—Lac-St-Jean (SLSJ) study and the French Epidemiological Study on the Genetics and Environment of Asthma (EGEA), were used to investigate the association of SNPs in 10 genes that modulate IL-1R2 activities with asthma, allergic asthma, and atopy. Gene-gene interactions were also tested. Results One SNP in BACE2 was associated with allergic asthma in the SLSJ study and replicated in the EGEA study before statistical correction for multiple testing. Additionally, two SNPs in the MMP2 gene were replicated in both studies prior to statistical correction and reached significance in the combined analysis. Moreover, three gene-gene interactions also survived statistical correction in the combined analyses (BACE1-IL1RAP in asthma and allergic asthma and IL1R1-IL1RAP in atopy). Conclusions Our results highlight the relevance of genes involved in the IL-1R2 activity in the context of asthma and asthma-related traits. PMID:27334786

  2. Distribution of killer cell immunoglobulin-like receptor genes in Roma from Republic of Macedonia.

    PubMed

    Petlichkovski, A; Djulejic, E; Trajkov, D; Efinska-Mladenovska, O; Hristomanova, S; Kirijas, M; Senev, A; Spiroski, M

    2011-12-01

    The aim of this study was to analyze Killer Ig-Like Receptor (KIR) gene polymorphisms in Roma people from Republic of Macedonia. The studied sample consists of 103 healthy unrelated individuals, aged 20-45 years. All individuals are of Roma origin, residents of different geographical regions (Gostivar, Skopje, and Kochani). The population genetics analysis package, Arlequin, was used for analysis of the data. We found that all 16 KIR genes were observed in the Roma individuals and framework genes (KIR3DL3, KIR3DP1, KIR- 2DL4, and KIR3DL2) were present in all individuals. The frequencies of other KIR genes were: KIR2DP1 (1), KIR2DL1 (0.961), KIR2DL2 (0.544), KIR2DL3 (0.874), KIR2DL5 (0.311), KIR3DL1 (0.990), KIR- 2DS1 (0.330), KIR2DS2 (0.553), KIR2DS3 (0.359), KIR2DS4 (0.981), KIR2DS5 (0.291), and KIR3DS1 (0.379). The results of tested linkage disequilibrium (LD) among KIR genes demonstrated that KIR genes present a wide range of linkage disequilibrium. The obtained results for KIR genes and genotype frequencies in Macedonian Roma individuals can be used for anthropological comparisons.

  3. Adenoviral-Mediated Imaging of Gene Transfer Using a Somatostatin Receptor-Cytosine Deaminase Fusion Protein

    PubMed Central

    Lears, Kimberly A.; Parry, Jesse J.; Andrews, Rebecca; Nguyen, Kim; Wadas, Thaddeus J.; Rogers, Buck E.

    2015-01-01

    Suicide gene therapy is a process by which cells are administered a gene that encodes a protein capable of converting a nontoxic prodrug into an active toxin. Cytosine deaminase (CD) has been widely investigated as a means of suicide gene therapy due to the enzyme’s ability to convert the prodrug 5-fluorocytosine (5-FC) into the toxic compound 5-fluorouracil (5-FU). However, the extent of gene transfer is a limiting factor in predicting therapeutic outcome. The ability to monitor gene transfer, non-invasively, would strengthen the efficiency of therapy. In this regard, we have constructed and evaluated a replication-deficient adenovirus (Ad) containing the human somatostatin receptor subtype 2 (SSTR2) fused with a C-terminal yeast CD gene for the non-invasive monitoring of gene transfer and therapy. The resulting Ad (AdSSTR2-yCD) was evaluated in vitro in breast cancer cells to determine the function of the fusion protein. These studies demonstrated that the both the SSTR2 and yCD were functional in binding assays, conversion assays, and cytotoxicity assays. In vivo studies similarly demonstrated the functionality using conversion assays, biodistribution studies, and small animal positron-emission tomography (PET) imaging studies. In conclusion, the fusion protein has been validated as useful for the non-invasive imaging of yCD expression and will be evaluated in the future for monitoring yCD-based therapy. PMID:25837665

  4. Methylation Status of Vitamin D Receptor Gene Promoter in Benign and Malignant Adrenal Tumors

    PubMed Central

    Pilon, Catia; Rebellato, Andrea; Urbanet, Riccardo; Guzzardo, Vincenza; Cappellesso, Rocco; Sasano, Hironobu; Fassina, Ambrogio

    2015-01-01

    We previously showed a decreased expression of vitamin D receptor (VDR) mRNA/protein in a small group of adrenocortical carcinoma (ACC) tissues, suggesting the loss of a protective role of VDR against malignant cell growth in this cancer type. Downregulation of VDR gene expression may result from epigenetics events, that is, methylation of cytosine nucleotide of CpG islands in VDR gene promoter. We analyzed methylation of CpG sites in the VDR gene promoter in normal adrenals and adrenocortical tumor samples. Methylation of CpG-rich 5′ regions was assessed by bisulfite sequencing PCR using bisulfite-treated DNA from archival microdissected paraffin-embedded adrenocortical tissues. Three normal adrenals and 23 various adrenocortical tumor samples (15 adenomas and 8 carcinomas) were studied. Methylation in the promoter region of VDR gene was found in 3/8 ACCs, while no VDR gene methylation was observed in normal adrenals and adrenocortical adenomas. VDR mRNA and protein levels were lower in ACCs than in benign tumors, and VDR immunostaining was weak or negative in ACCs, including all 3 methylated tissue samples. The association between VDR gene promoter methylation and reduced VDR gene expression is not a rare event in ACC, suggesting that VDR epigenetic inactivation may have a role in adrenocortical carcinogenesis. PMID:26843863

  5. Adenoviral-mediated imaging of gene transfer using a somatostatin receptor-cytosine deaminase fusion protein.

    PubMed

    Lears, K A; Parry, J J; Andrews, R; Nguyen, K; Wadas, T J; Rogers, B E

    2015-03-01

    Suicide gene therapy is a process by which cells are administered a gene that encodes a protein capable of converting a nontoxic prodrug into an active toxin. Cytosine deaminase (CD) has been widely investigated as a means of suicide gene therapy owing to the enzyme's ability to convert the prodrug 5-fluorocytosine (5-FC) into the toxic compound 5-fluorouracil (5-FU). However, the extent of gene transfer is a limiting factor in predicting therapeutic outcome. The ability to monitor gene transfer, non-invasively, would strengthen the efficiency of therapy. In this regard, we have constructed and evaluated a replication-deficient adenovirus (Ad) containing the human somatostatin receptor subtype 2 (SSTR2) fused with a C-terminal yeast CD gene for the non-invasive monitoring of gene transfer and therapy. The resulting Ad (AdSSTR2-yCD) was evaluated in vitro in breast cancer cells to determine the function of the fusion protein. These studies demonstrated that both the SSTR2 and yCD were functional in binding assays, conversion assays and cytotoxicity assays. In vivo studies similarly demonstrated the functionality using conversion assays, biodistribution studies and small animal positron-emission tomography (PET) imaging studies. In conclusion, the fusion protein has been validated as useful for the non-invasive imaging of yCD expression and will be evaluated in the future for monitoring yCD-based therapy.

  6. Human substance P receptor (NK-1): Organization of the gene, chromosome localization, and functional expression of cDNA clones

    SciTech Connect

    Gerard, N.P.; Paquet, J.L. Children's Hospital, Boston, MA Harvard Medical School, Boston, MA ); Garraway, L.A. Harvard Medical School, Boston, MA ); Eddy, R.L. Jr.; Shows, T.B. ); Iijima, Hideya Harvard School of Public Health, Boston, MA ); Gerard, C. )

    1991-11-05

    The gene for the human substance P receptor (NK-1) was cloned using cDNA probes made by the polymerase chain reaction from primers based on the rat sequence. The gene spans 45-60 kb and is contained in five exons, with introns interrupting at sites homologous to those in the NK-2 receptor gene. Analysis of restriction digests of genomic DNA from mouse/human cell hybrids indicates the NK-1 receptor is a single-copy gene located on human chromosome 2. Polymerase chain reaction using primers based on the 5{prime} and 3{prime} ends of the coding sequence was used to generate full-length cDNAs from human lung and from IM9 lymphoblast cells. When transfected into COS-7 cells, the NK-1 receptor binds {sup 125}I-BHSP with a K{sub d} of 0.35 {plus minus} 0.07 nM and mediates substance P induced phosphatidylinositol metabolism. The receptor is selective for substance P; the relative affinity for neurokinin A and neurokinin B is 100- and 500-fold lower, respectively. Human IM9 lymphoblast cells express relatively high levels of the NK-1 receptor, and Northern blot analysis indicates modulation of mRNA levels by glucocorticoids and growth factors, suggesting that this cell line may be useful as a model for studying the control of NK-1 receptor gene expression.

  7. Role of constitutive androstane receptor in Toll-like receptor-mediated regulation of gene expression of hepatic drug-metabolizing enzymes and transporters.

    PubMed

    Shah, Pranav; Guo, Tao; Moore, David D; Ghose, Romi

    2014-01-01

    Impairment of drug disposition in the liver during inflammation has been attributed to downregulation of gene expression of drug-metabolizing enzymes (DMEs) and drug transporters. Inflammatory responses in the liver are primarily mediated by Toll-like receptors (TLRs). We have recently shown that activation of TLR2 or TLR4 by lipoteichoic acid (LTA) and lipopolysaccharide (LPS), respectively, leads to the downregulation of gene expression of DMEs/transporters. However, the molecular mechanism underlying this downregulation is not fully understood. The xenobiotic nuclear receptors, pregnane X receptor (PXR) and constitutive androstane receptor (CAR), regulate the expression of DMEs/transporter genes. Downregulation of DMEs/transporters by LTA or LPS was associated with reduced expression of PXR and CAR genes. To determine the role of CAR, we injected CAR(+/+) and CAR(-/-) mice with LTA or LPS, which significantly downregulated (~40%-60%) RNA levels of the DMEs, cytochrome P450 (Cyp)3a11, Cyp2a4, Cyp2b10, uridine diphosphate glucuronosyltransferase 1a1, amine N-sulfotransferase, and the transporter, multidrug resistance-associated protein 2, in CAR(+/+) mice. Suppression of most of these genes was attenuated in LTA-treated CAR(-/-) mice. In contrast, LPS-mediated downregulation of these genes was not attenuated in CAR(-/-) mice. Induction of these genes by mouse CAR activator 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene was sustained in LTA- but not in LPS-treated mice. Similar observations were obtained in humanized CAR mice. We have replicated these results in primary hepatocytes as well. Thus, LPS can downregulate DME/transporter genes in the absence of CAR, whereas the effect of LTA on these genes is attenuated in the absence of CAR, indicating the potential involvement of CAR in LTA-mediated downregulation of DME/transporter genes.

  8. Vasopressin and angiotensin II in reflex regulation of ACTH, glucocorticoids, and renin: effect of water deprivation

    NASA Technical Reports Server (NTRS)

    Brooks, V. L.; Keil, L. C.

    1992-01-01

    Angiotensin II (ANG II) and vasopressin participate in baroreflex regulation of adrenocorticotropic hormone (ACTH), glucocorticoid, and renin secretion. The purpose of this study was to determine whether this participation is enhanced in water-deprived dogs, with chronically elevated plasma ANG II and vasopressin levels, compared with water-replete dogs. The baroreflex was assessed by infusing increasing doses of nitroprusside (0.3, 0.6, 1.5, and 3.0 micrograms.kg-1.min-1) in both groups of animals. To quantitate the participation of ANG II and vasopressin, the dogs were untreated or pretreated with the competitive ANG II antagonist saralasin, a V1-vasopressin antagonist, or combined V1/V2-vasopressin antagonist, either alone or in combination. The findings were as follows. 1) Larger reflex increases in ANG II, vasopressin, and glucocorticoids, but not ACTH, were produced in water-deprived dogs compared with water-replete dogs. 2) ANG II blockade blunted the glucocorticoid and ACTH responses to hypotension in water-deprived dogs, but not water-replete dogs. In contrast, vasopressin blockade reduced the ACTH response only in water-replete dogs. 3) Vasopressin or combined vasopressin and ANG II blockade reduced the plasma level of glucocorticoids related either to the fall in arterial pressure or to the increase in plasma ACTH concentration in water-replete dogs, and this effect was enhanced in water-deprived dogs. 4) In both water-deprived and water-replete animals, saralasin and/or a V1-antagonist increased the renin response to hypotension, but a combined V1/V2-antagonist did not. These results reemphasize the importance of endogenous ANG II and vasopressin in the regulation of ACTH, glucocorticoid, and renin secretion.(ABSTRACT TRUNCATED AT 250 WORDS).

  9. MicroRNA-433 Dampens Glucocorticoid Receptor Signaling, Impacting Circadian Rhythm and Osteoblastic Gene Expression.

    PubMed

    Smith, Spenser S; Dole, Neha S; Franceschetti, Tiziana; Hrdlicka, Henry C; Delany, Anne M

    2016-10-07

    Serum glucocorticoids play a critical role in synchronizing circadian rhythm in peripheral tissues, and multiple mechanisms regulate tissue sensitivity to glucocorticoids. In the skeleton, circadian rhythm helps coordinate bone formation and resorption. Circadian rhythm is regulated through transcriptional and post-transcriptional feedback loops that include microRNAs. How microRNAs regulate circadian rhythm in bone is unexplored. We show that in mouse calvaria, miR-433 displays robust circadian rhythm, peaking just after dark. In C3H/10T1/2 cells synchronized with a pulse of dexamethasone, inhibition of miR-433 using a tough decoy altered the period and amplitude of Per2 gene expression, suggesting that miR-433 regulates rhythm. Although miR-433 does not directly target the Per2 3'-UTR, it does target two rhythmically expressed genes in calvaria, Igf1 and Hif1α. miR-433 can target the glucocorticoid receptor; however, glucocorticoid receptor protein abundance was unaffected in miR-433 decoy cells. Rather, miR-433 inhibition dramatically enhanced glucocorticoid signaling due to increased nuclear receptor translocation, activating glucocorticoid receptor transcriptional targets. Last, in calvaria of transgenic mice expressing a miR-433 decoy in osteoblastic cells (Col3.6 promoter), the amplitude of Per2 and Bmal1 mRNA rhythm was increased, confirming that miR-433 regulates circadian rhythm. miR-433 was previously shown to target Runx2, and mRNA for Runx2 and its downstream target, osteocalcin, were also increased in miR-433 decoy mouse calvaria. We hypothesize that miR-433 helps maintain circadian rhythm in osteoblasts by regulating sensitivity to glucocorticoid receptor signaling.

  10. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese A{sup y} mice

    SciTech Connect

    Nonogaki, Katsunori . E-mail: knonogaki-tky@umin.ac.jp; Nozue, Kana; Oka, Yoshitomo

    2006-12-29

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mic