Science.gov

Sample records for actin cross-linking domain

  1. Characterization of the Enzymatic Activity of the Actin Cross-Linking Domain from the Vibrio cholerae MARTXVc Toxin

    PubMed Central

    Kudryashov, Dmitri S.; Cordero, Christina L.; Reisler, Emil; Fullner Satchell, Karla J.

    2008-01-01

    Vibrio cholerae is a Gram-negative bacterial pathogen that exports enterotoxins which alter host cells through a number of mechanisms resulting in diarrheal disease. Among the secreted toxins is the multifunctional, autoprocessing RTX toxin (MARTXVc), which disrupts actin cytoskeleton by covalently cross-linking actin monomers into oligomers. The region of the toxin responsible for cross-linking activity is the actin cross-linking domain (ACD). In this study, we demonstrate unambiguously that ACD utilizes G- and not F-actin as a substrate for the cross-linking reaction and hydrolyzes one molecule of ATP per cross-linking event. Furthermore, major actin binding proteins that regulate actin cytoskeleton in vivo do not block the cross-linking reaction in vitro. Cofilin inhibits the cross-linking of G- and F-actin at high mole ratio to actin, but accelerates F-actin cross-linking at low mole ratios. DNase I blocks completely the cross-linking of actin, likely due to steric hindrance with one of the cross-linking sites on actin. In the context of the holotoxin, the inhibition of Rho by the Rho-inactivating domain of MARTXVc (Sheahan, K.L., Satchell, K.J.F. 2007 Cellular Microbiology 9:1324-1335) would accelerate F-actin depolymerization and provide G-actin, alone or in complex with actin binding proteins, for cross-linking by ACD, ultimately leading to the observed rapid cell rounding. PMID:17951576

  2. Microtubule-Actin Cross-Linking Factor 1: Domains, Interaction Partners, and Tissue-Specific Functions.

    PubMed

    Goryunov, Dmitry; Liem, Ronald K H

    2016-01-01

    The cytoskeleton of most eukaryotic cells is composed of three principal filamentous components: actin filaments, microtubules (MTs), and intermediate filaments. It is a highly dynamic system that plays crucial roles in a wide range of cellular processes, including migration, adhesion, cytokinesis, morphogenesis, intracellular traffic and signaling, and structural flexibility. Among the large number of cytoskeleton-associated proteins characterized to date, microtubule-actin cross-linking factor 1 (MACF1) is arguably the most versatile integrator and modulator of cytoskeleton-related processes. MACF1 belongs to the plakin family of proteins, and within it, to the spectraplakin subfamily. These proteins are characterized by the ability to bridge MT and actin cytoskeletal networks in a dynamic fashion, which underlies their involvement in the regulation of cell migration, axonal extension, and vesicular traffic. Studying MACF1 functions has provided insights not only into the regulation of the cytoskeleton but also into molecular mechanisms of both normal cellular physiology and cellular pathology. Multiple MACF1 isoforms exist, composed of a large variety of alternatively spliced domains. Each of these domains mediates a specific set of interactions and functions. These functions are manifested in tissue and cell-specific phenotypes observed in conditional MACF1 knockout mice. The conditional models described to date reveal critical roles of MACF1 in mammalian skin, nervous system, heart muscle, and intestinal epithelia. Complete elimination of MACF1 is early embryonic lethal, indicating an essential role for MACF1 in early development. Further studies of MACF1 domains and their interactions will likely reveal multiple new roles of this protein in various tissues.

  3. Human Muscle LIM Protein Dimerizes along the Actin Cytoskeleton and Cross-Links Actin Filaments

    PubMed Central

    Hoffmann, Céline; Moreau, Flora; Moes, Michèle; Luthold, Carole; Dieterle, Monika; Goretti, Emeline; Neumann, Katrin; Steinmetz, André

    2014-01-01

    The muscle LIM protein (MLP) is a nucleocytoplasmic shuttling protein playing important roles in the regulation of myocyte remodeling and adaptation to hypertrophic stimuli. Missense mutations in human MLP or its ablation in transgenic mice promotes cardiomyopathy and heart failure. The exact function(s) of MLP in the cytoplasmic compartment and the underlying molecular mechanisms remain largely unknown. Here, we provide evidence that MLP autonomously binds to, stabilizes, and bundles actin filaments (AFs) independently of calcium and pH. Using total internal reflection fluorescence microscopy, we have shown how MLP cross-links actin filaments into both unipolar and mixed-polarity bundles. Quantitative analysis of the actin cytoskeleton configuration confirmed that MLP substantially promotes actin bundling in live myoblasts. In addition, bimolecular fluorescence complementation (BiFC) assays revealed MLP self-association. Remarkably, BiFC complexes mostly localize along actin filament-rich structures, such as stress fibers and sarcomeres, supporting a functional link between MLP self-association and actin cross-linking. Finally, we have demonstrated that MLP self-associates through its N-terminal LIM domain, whereas it binds to AFs through its C-terminal LIM domain. Together our data support that MLP contributes to the maintenance of cardiomyocyte cytoarchitecture by a mechanism involving its self-association and actin filament cross-linking. PMID:24934443

  4. The actin-microtubule cross-linking activity of Drosophila Short stop is regulated by intramolecular inhibition.

    PubMed

    Applewhite, Derek A; Grode, Kyle D; Duncan, Mara C; Rogers, Stephen L

    2013-09-01

    Actin and microtubule dynamics must be precisely coordinated during cell migration, mitosis, and morphogenesis--much of this coordination is mediated by proteins that physically bridge the two cytoskeletal networks. We have investigated the regulation of the Drosophila actin-microtubule cross-linker Short stop (Shot), a member of the spectraplakin family. Our data suggest that Shot's cytoskeletal cross-linking activity is regulated by an intramolecular inhibitory mechanism. In its inactive conformation, Shot adopts a "closed" conformation through interactions between its NH(2)-terminal actin-binding domain and COOH-terminal EF-hand-GAS2 domain. This inactive conformation is targeted to the growing microtubule plus end by EB1. On activation, Shot binds along the microtubule through its COOH-terminal GAS2 domain and binds to actin with its NH(2)-terminal tandem CH domains. We propose that this mechanism allows Shot to rapidly cross-link dynamic microtubules in response to localized activating signals at the cell cortex.

  5. F actin bundles in Drosophila bristles. I. Two filament cross-links are involved in bundling

    PubMed Central

    1995-01-01

    Transverse sections though Drosophila bristles reveal 7-11 nearly round, plasma membrane-associated bundles of actin filaments. These filaments are hexagonally packed and in a longitudinal section they show a 12-nm periodicity in both the 1.1 and 1.0 views. From earlier studies this periodicity is attributable to cross-links and indicates that the filaments are maximally cross-linked, singed mutants also have 7-11 bundles, but the bundles are smaller, flattened, and the filaments within the bundles are randomly packed (not hexagonal); no periodicity can be detected in longitudinal sections. Another mutant, forked (f36a), also has 7-11 bundles but even though the bundles are very small, the filaments within them are hexagonally packed and display a 12-nm periodicity in longitudinal section. The singed-forked double mutant lacks filament bundles. Thus there are at least two species of cross-links between adjacent actin filaments. Hints of why two species of cross-links are necessary can be gleaned by studying bristle formation. Bristles sprout with only microtubules within them. A little later in development actin filaments appear. At early stages the filaments in the bundles are randomly packed. Later the filaments in the bundles become hexagonally packed and maximally cross-linked. We consider that the forked proteins may be necessary early in development to tie the filaments together in a bundle so that they can be subsequently zippered together by fascin (the singed gene product). PMID:7622563

  6. A Combination of Actin Treadmilling and Cross-Linking Drives Contraction of Random Actomyosin Arrays.

    PubMed

    Oelz, Dietmar B; Rubinstein, Boris Y; Mogilner, Alex

    2015-11-01

    We investigate computationally the self-organization and contraction of an initially random actomyosin ring. In the framework of a detailed physical model for a ring of cross-linked actin filaments and myosin-II clusters, we derive the force balance equations and solve them numerically. We find that to contract, actin filaments have to treadmill and to be sufficiently cross linked, and myosin has to be processive. The simulations reveal how contraction scales with mechanochemical parameters. For example, they show that the ring made of longer filaments generates greater force but contracts slower. The model predicts that the ring contracts with a constant rate proportional to the initial ring radius if either myosin is released from the ring during contraction and actin filaments shorten, or if myosin is retained in the ring, while the actin filament number decreases. We demonstrate that a balance of actin nucleation and compression-dependent disassembly can also sustain contraction. Finally, the model demonstrates that with time pattern formation takes place in the ring, worsening the contractile process. The more random the actin dynamics are, the higher the contractility will be. PMID:26536259

  7. Molecular origin of strain softening in cross-linked F-actin networks

    NASA Astrophysics Data System (ADS)

    Lee, Hyungsuk; Ferrer, Jorge M.; Lang, Matthew J.; Kamm, Roger D.

    2010-07-01

    Two types of measurement are presented that relate molecular events to macroscopic behavior of F-actin networks. First, shear modulus is measured by oscillating an embedded microbead. Second, a microbead is translated at constant rate and transitions in the resisting force are observed. The loading rate dependence of the force at the transitions is similar to that of the molecular unbinding force, suggesting that they share a common origin. Reversibility tests of shear modulus provide further evidence that strain softening of F-actin networks is caused by force-induced rupture of cross-links.

  8. Intrastrand cross-linked actin between Gln-41 and Cys-374. I. Mapping of sites cross-linked in F-actin by N-(4-azido-2-nitrophenyl) putrescine.

    PubMed

    Hegyi, G; Mák, M; Kim, E; Elzinga, M; Muhlrad, A; Reisler, E

    1998-12-22

    A new heterobifunctional photo-cross-linking reagent, N-(4-azido-2-nitrophenyl)-putrescine (ANP), was synthesized and covalently bound to Gln-41 of rabbit skeletal muscle actin by a bacterial transglutaminase-mediated reaction. Up to 1.0 mol of the reagent was incorporated per mole of G-actin; at least 90% of it was bound to Gln-41 while a minor fraction (about 8%) was attached to Gln-59. The labeled G-actin was polymerized, and the resulting F-actin was intermolecularly cross-linked by irradiation with UV light. The labeled and cross-linked peptides were isolated from either a complete or limited tryptic digest of cross-linked actin. In the limited digest the tryptic cleavage was restricted to arginine by succinylation of the lysyl residues. N-terminal sequencing and mass spectrometry indicated that the cross-linked peptides contained residues 40-50 (or 40-62 in the arginine limited digest) and residues 373-375, and that the actual cross-linking took place between Gln-41 and Cys-374. This latter finding was also supported by the inhibition of Cys-374 labeling with a fluorescent probe in the cross-linked actin. The dynamic length of ANP, between 11.1 and 12.5 A, constrains to that range the distance between the gamma-carboxyl group of Gln-41 in one monomer and the sulfur atom of Cys-374 in an adjacent monomer. This is consistent with the distances between these two residues on adjacent monomers of the same strand in the long-pitch helix in the structural models of F-actin [Holmes, K. C., Popp, D., Gebhard, W., and Kabsch, W. (1990) Nature 347, 44-49 and Lorenz, M., Popp, D., and Holmes, K. C. (1993) J. Mol. Biol. 234, 826-836]. The effect of cross-linking on the function of actin is described in the companion papers. PMID:9922144

  9. Myosin III-mediated cross-linking and stimulation of actin bundling activity of Espin

    PubMed Central

    Liu, Haiyang; Li, Jianchao; Raval, Manmeet H; Yao, Ningning; Deng, Xiaoying; Lu, Qing; Nie, Si; Feng, Wei; Wan, Jun; Yengo, Christopher M; Liu, Wei; Zhang, Mingjie

    2016-01-01

    Class III myosins (Myo3) and actin-bundling protein Espin play critical roles in regulating the development and maintenance of stereocilia in vertebrate hair cells, and their defects cause hereditary hearing impairments. Myo3 interacts with Espin1 through its tail homology I motif (THDI), however it is not clear how Myo3 specifically acts through Espin1 to regulate the actin bundle assembly and stabilization. Here we discover that Myo3 THDI contains a pair of repeat sequences capable of independently and strongly binding to the ankyrin repeats of Espin1, revealing an unexpected Myo3-mediated cross-linking mechanism of Espin1. The structures of Myo3 in complex with Espin1 not only elucidate the mechanism of the binding, but also reveal a Myo3-induced release of Espin1 auto-inhibition mechanism. We also provide evidence that Myo3-mediated cross-linking can further promote actin fiber bundling activity of Espin1. DOI: http://dx.doi.org/10.7554/eLife.12856.001 PMID:26785147

  10. Polymorphism of highly cross-linked F-actin networks: Probing multiple length scales

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam T.; Hirst, Linda S.

    2011-03-01

    The assembly properties of F-actin filaments in the presence of different biological cross-linker concentrations and types have been investigated using a combined approach of fluorescence confocal microscopy and coarse-grained molecular dynamics simulation. In particular for highly cross-linked regimes, new network morphologies are observed. Complex network formation and the details of the resulting structure are strongly dependent on the ratio of cross-linkers to actin monomers and cross-linker shape but only weakly dependent on overall actin concentration and filament length. The work presented here may help to provide some fundamental understanding of how excessive cross-linkers interact with the actin filament solution, creating different structures in the cell under high cross-linker concentrations. F-actin is not only of biological importance but also, as an example of a semiflexible polymer, has attracted significant interest in its physical behavior. In combination with different cross-linkers semiflexible filaments may provide new routes to bio-materials development and act as the inspiration for new hierarchical network-based materials.

  11. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells

    NASA Astrophysics Data System (ADS)

    Gardel, M. L.; Nakamura, F.; Hartwig, J. H.; Crocker, J. C.; Stossel, T. P.; Weitz, D. A.

    2006-02-01

    We show that actin filaments, shortened to physiological lengths by gelsolin and cross-linked with recombinant human filamins (FLNs), exhibit dynamic elastic properties similar to those reported for live cells. To achieve elasticity values of comparable magnitude to those of cells, the in vitro network must be subjected to external prestress, which directly controls network elasticity. A molecular requirement for the strain-related behavior at physiological conditionsis a flexible hinge found in FLNa and some FLNb molecules. Basic physical properties of the in vitro filamin-F-actin network replicate the essential mechanical properties of living cells. This physical behavior could accommodate passive deformation and internal organelle trafficking at low strains yet resist externally or internally generated high shear forces. cytoskeleton | cell mechanics | nonlinear rheology

  12. Stress Enhanced Gelation in α-Actinin-4 Cross-linked Actin Networks

    NASA Astrophysics Data System (ADS)

    Yao, Norman; Broedersz, Chase; Depken, Martin; Becker, Daniel; Pollak, Martin; Mackintosh, Frederick; Weitz, David

    2012-02-01

    A hallmark of biopolymer networks is their exquisite sensitivity to stress, demonstrated for example, by pronounced nonlinear elastic stiffening. Typically, they also yield under increased static load, providing a mechanism to achieve fluid-like behavior. In this talk, I will demonstrate an unexpected dynamical behavior in biopolymer networks consisting of F-actin cross-linked by a physiological actin binding protein, α-Actinin-4. Applied stress actually enhances gelation of these networks by delaying the onset of structural relaxation and network flow, thereby extending the regime of solid-like behavior to much lower frequencies. By using human kidney disease-associated mutant cross-linkers with varying binding affinities, we propose a molecular origin for this stress-enhanced gelation: It arises from the increased binding affinity of the cross-linker under load, characteristic of catch-bond-like behavior. This property may have important biological implications for intracellular mechanics, representing as it does a qualitatively new class of material behavior.

  13. An affine continuum mechanical model for cross-linked F-actin networks with compliant linker proteins.

    PubMed

    Holzapfel, Gerhard A; Unterberger, Michael J; Ogden, Ray W

    2014-10-01

    Cross-linked actin networks are important building blocks of the cytoskeleton. In order to gain deeper insight into the interpretation of experimental data on actin networks, adequate models are required. In this paper we introduce an affine constitutive network model for cross-linked F-actin networks based on nonlinear continuum mechanics, and specialize it in order to reproduce the experimental behavior of in vitro reconstituted model networks. The model is based on the elastic properties of single filaments embedded in an isotropic matrix such that the overall properties of the composite are described by a free-energy function. In particular, we are able to obtain the experimentally determined shear and normal stress responses of cross-linked actin networks typically observed in rheometer tests. In the present study an extensive analysis is performed by applying the proposed model network to a simple shear deformation. The single filament model is then extended by incorporating the compliance of cross-linker proteins and further extended by including viscoelasticity. All that is needed for the finite element implementation is the constitutive model for the filaments, the linkers and the matrix, and the associated elasticity tensor in either the Lagrangian or Eulerian formulation. The model facilitates parameter studies of experimental setups such as micropipette aspiration experiments and we present such studies to illustrate the efficacy of this modeling approach. PMID:25043658

  14. Conformational Transitions of the Cross-linking Domains of Elastin during Self-assembly*

    PubMed Central

    Reichheld, Sean E.; Muiznieks, Lisa D.; Stahl, Richard; Simonetti, Karen; Sharpe, Simon; Keeley, Fred W.

    2014-01-01

    Elastin is the intrinsically disordered polymeric protein imparting the exceptional properties of extension and elastic recoil to the extracellular matrix of most vertebrates. The monomeric precursor of elastin, tropoelastin, as well as polypeptides containing smaller subsets of the tropoelastin sequence, can self-assemble through a colloidal phase separation process called coacervation. Present understanding suggests that self-assembly is promoted by association of hydrophobic domains contained within the tropoelastin sequence, whereas polymerization is achieved by covalent joining of lysine side chains within distinct alanine-rich, α-helical cross-linking domains. In this study, model elastin polypeptides were used to determine the structure of cross-linking domains during the assembly process and the effect of sequence alterations in these domains on assembly and structure. CD temperature melts indicated that partial α-helical structure in cross-linking domains at lower temperatures was absent at physiological temperature. Solid-state NMR demonstrated that β-strand structure of the cross-linking domains dominated in the coacervate state, although α-helix was predominant after subsequent cross-linking of lysine side chains with genipin. Mutation of lysine residues to hydrophobic amino acids, tyrosine or alanine, leads to increased propensity for β-structure and the formation of amyloid-like fibrils, characterized by thioflavin-T binding and transmission electron microscopy. These findings indicate that cross-linking domains are structurally labile during assembly, adapting to changes in their environment and aggregated state. Furthermore, the sequence of cross-linking domains has a dramatic effect on self-assembly properties of elastin-like polypeptides, and the presence of lysine residues in these domains may serve to prevent inappropriate ordered aggregation. PMID:24550393

  15. Passive and active microrheology for cross-linked F-actin networks in vitro.

    PubMed

    Lee, Hyungsuk; Ferrer, Jorge M; Nakamura, Fumihiko; Lang, Matthew J; Kamm, Roger D

    2010-04-01

    Actin filament (F-actin) is one of the dominant structural constituents in the cytoskeleton. Orchestrated by various actin-binding proteins (ABPs), F-actin is assembled into higher-order structures such as bundles and networks that provide mechanical support for the cell and play important roles in numerous cellular processes. Although mechanical properties of F-actin networks have been extensively studied, the underlying mechanisms for network elasticity are not fully understood, in part because different measurements probe different length and force scales. Here, we developed both passive and active microrheology techniques using optical tweezers to estimate the mechanical properties of F-actin networks at a length scale comparable to cells. For the passive approach we tracked the motion of a thermally fluctuating colloidal sphere to estimate the frequency-dependent complex shear modulus of the network. In the active approach, we used an optical trap to oscillate an embedded microsphere and monitored the response in order to obtain network viscoelasticity over a physiologically relevant force range. While both active and passive measurements exhibit similar results at low strain, the F-actin network subject to high strain exhibits non-linear behavior which is analogous to the strain-hardening observed in macroscale measurements. Using confocal and total internal reflection fluorescent microscopy, we also characterize the microstructure of reconstituted F-actin networks in terms of filament length, mesh size and degree of bundling. Finally, we propose a model of network connectivity by investigating the effect of filament length on the mechanical properties and structure. PMID:19883801

  16. Duplication in the microtubule-actin cross-linking factor 1 gene causes a novel neuromuscular condition.

    PubMed

    Jørgensen, Louise H; Mosbech, Mai-Britt; Færgeman, Nils J; Graakjaer, Jesper; Jacobsen, Søren V; Schrøder, Henrik D

    2014-06-05

    Spectrins and plakins are important communicators linking cytoskeletal components to each other and to cellular junctions. Microtubule-actin cross-linking factor 1 (MACF1) belongs to the spectraplakin family and is involved in control of microtubule dynamics. Complete knock out of MACF1 in mice is associated with developmental retardation and embryonic lethality. Here we present a family with a novel neuromuscular condition. Genetic analyses show a heterozygous duplication resulting in reduced MACF1 gene product. The functional consequence is affected motility observed as periodic hypotonia, lax muscles and diminished motor skills, with heterogeneous presentation among the affected family members. To corroborate these findings we used RNA interference to knock down the VAB-10 locus containing the MACF1 homologue in C. elegans, and we could show that this also causes movement disturbances. These findings suggest that changes in the MACF1 gene is implicated in this neuromuscular condition, which is an important observation since MACF1 has not previously been associated with any human disease and thus presents a key to understanding the essential nature of this gene.

  17. A chemo-mechanical constitutive model for transiently cross-linked actin networks and a theoretical assessment of their viscoelastic behaviour.

    PubMed

    Fallqvist, B; Kroon, M

    2013-04-01

    Biological materials can undergo large deformations and also show viscoelastic behaviour. One such material is the network of actin filaments found in biological cells, giving the cell much of its mechanical stiffness. A theory for predicting the relaxation behaviour of actin networks cross-linked with the cross-linker α-actinin is proposed. The constitutive model is based on a continuum approach involving a neo-Hookean material model, modified in terms of concentration of chemically activated cross-links. The chemical model builds on work done by Spiros (Doctoral thesis, University of British Columbia, Vancouver, Canada, 1998) and has been modified to respond to mechanical stress experienced by the network. The deformation is split into a viscous and elastic part, and a thermodynamically motivated rate equation is assigned for the evolution of viscous deformation. The model predictions were evaluated for stress relaxation tests at different levels of strain and found to be in good agreement with experimental results for actin networks cross-linked with α-actinin. PMID:22623110

  18. Computational Modeling of Laminin N-Terminal Domains Using Sparse Distance Constraints from Disulfide Bonds and Chemical Cross-Linking

    PubMed Central

    Kalkhof, Stefan; Haehn, Sebastian; Paulsson, Mats; Smyth, Neil; Meiler, Jens; Sinz, Andrea

    2016-01-01

    Basement membranes are thin extracellular protein layers, which separate endothelial and epithelial cells from the underlying connecting tissue. The main non-collagenous components of basement membranes are laminins, trimeric glycoproteins, which form polymeric networks by interactions of their N-terminal (LN) domains; however, no high-resolution structure of laminin LN domains exists so far. To construct models for laminin β1 and γ1 LN domains 14 potentially suited template structures were determined using fold recognition methods. For each target/template-combination comparative models were created with Rosetta. Final models were selected based on their agreement with experimentally obtained distance constraints from natural cross-links, i.e., disulfide bonds as well as chemical cross-links obtained from reactions with two amine-reactive cross-linkers. We predict that laminin β1 and γ1 LN domains share the galactose-binding domain-like fold. PMID:20939100

  19. β1 and β3 Integrins Cooperate to Induce Syndecan-4-Containing Cross-linked Actin Networks in Human Trabecular Meshwork Cells

    PubMed Central

    Filla, Mark S.; Woods, Anne; Kaufman, Paul L.; Peters, Donna M.

    2006-01-01

    Purpose To characterize the molecular composition of cross-linked actin networks (CLANs) and the regulation of their formation by integrins in normal human trabecular meshwork (TM) cells. CLANs have been observed in steroid-treated and glaucomatous TM cells and have been suggested to contribute to decreased outflow facility by altering the contractility of the TM. Methods Immunofluorescence microscopy was used to identify molecular components of CLANs and quantitate CLAN formation in HTM cells plated on coverslips coated with various extracellular matrix (ECM) proteins (fibronectin, types I and IV collagen, and vitronectin), vascular cell adhesion molecule (VCAM)-1, or activating antibodies against β1, β3, or α2β1 integrins. These integrin antibodies were also used as soluble ligands. Results CLAN vertices contained the actin-binding proteins α-actinin and filamin and the signaling molecules syndecan-4 and PIP2. CLANs lacked Arp3 and cortactin. CLAN formation was dependent on the ECM substrate and was significantly higher on fibronectin and VCAM-1 compared with vitronectin, types I or IV collagen. Adsorbed β1 integrin antibodies also induced CLANs, whereas adsorbed β3 or α2β1 integrin antibodies did not. Soluble β3 integrin antibodies, however, induced CLANs and actually enhanced CLAN formation in cells spread on fibronectin, VCAM-1, type I or type IV collagen, or β1 integrin antibodies. Conclusions CLANs are unique actin-branched networks whose formation can be regulated by β1 and β3 integrin signaling pathways. Thus, integrin-mediated signaling events can modulate the organization of the actin cytoskeleton in TM cells and hence could participate in regulating cytoskeletal events previously demonstrated to be involved in controlling outflow facility. PMID:16639003

  20. Organization of Subunits in the Membrane Domain of the Bovine F-ATPase Revealed by Covalent Cross-linking*

    PubMed Central

    Lee, Jennifer; Ding, ShuJing; Walpole, Thomas B.; Holding, Andrew N.; Montgomery, Martin G.; Fearnley, Ian M.; Walker, John E.

    2015-01-01

    The F-ATPase in bovine mitochondria is a membrane-bound complex of about 30 subunits of 18 different kinds. Currently, ∼85% of its structure is known. The enzyme has a membrane extrinsic catalytic domain, and a membrane intrinsic domain where the turning of the enzyme's rotor is generated from the transmembrane proton-motive force. The domains are linked by central and peripheral stalks. The central stalk and a hydrophobic ring of c-subunits in the membrane domain constitute the enzyme's rotor. The external surface of the catalytic domain and membrane subunit a are linked by the peripheral stalk, holding them static relative to the rotor. The membrane domain contains six additional subunits named ATP8, e, f, g, DAPIT (diabetes-associated protein in insulin-sensitive tissues), and 6.8PL (6.8-kDa proteolipid), each with a single predicted transmembrane α-helix, but their orientation and topography are unknown. Mutations in ATP8 uncouple the enzyme and interfere with its assembly, but its roles and the roles of the other five subunits are largely unknown. We have reacted accessible amino groups in the enzyme with bifunctional cross-linking agents and identified the linked residues. Cross-links involving the supernumerary subunits, where the structures are not known, show that the C terminus of ATP8 extends ∼70 Å from the membrane into the peripheral stalk and that the N termini of the other supernumerary subunits are on the same side of the membrane, probably in the mitochondrial matrix. These experiments contribute significantly toward building up a complete structural picture of the F-ATPase. PMID:25851905

  1. Lysine directed cross-linking of viral DNA-RNA:DNA hybrid substrate to the isolated RNase H domain of HIV-1 reverse transcriptase.

    PubMed

    Guaitiao, Juan P; Zúñiga, Roberto A; Roth, Monica J; Leon, Oscar

    2004-02-10

    An isolated ribonuclease H domain of HIV-1 reverse transcriptase is capable of specifically removing the tRNA primer within an oligonucleotide mimic. The determinants for substrate specificity are located in a region within the terminal octanucleotide of the acceptor stem of the tRNA. Recognition of the substrate by HIV-1 RNase H was analyzed by the introduction of a cross-linking reagent directed toward lysines on the thymine residue complementary to the scissile bond, facing the major groove of the DNA-RNA:DNA substrate. Cross-linking of the modified substrate to RNase H required the presence of Mn(2+). The Mn(2+) titration of cross-linking paralleled the Mn(2+) requirement for activity. Modified substrate quenched with glycine prior to binding of substrate was efficiently cleaved, whereas the RNA within the cross-linked product was intact. Tryptic digestion of the isolated RNase H-nucleic acid covalent complex revealed a main cross-linked peptide whose N-terminal peptide sequence is VVTLTDTTNQ, indicating that the cross-linked lysine corresponds to Lys476. Cross-linking to K476 was confirmed by analysis of K476C RNase H. Mutation of K476C disrupted the chemical cross-linking while maintaining activity. On the basis of the size of the cross-linker arm, the results indicate that K476 is in closer proximity to the tRNA mimic substrate within the isolated RNase H domain than observed for the RNase H-resistant polypurine tract (PPT) substrate within the HIV-1 RT.

  2. Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking.

    PubMed

    Dubey, Badri N; Lori, Christian; Ozaki, Shogo; Fucile, Geoffrey; Plaza-Menacho, Ivan; Jenal, Urs; Schirmer, Tilman

    2016-09-01

    Histidine kinases are key components of regulatory networks in bacteria. Although many of these enzymes are bifunctional, mediating both phosphorylation and dephosphorylation of downstream targets, the molecular details of this central regulatory switch are unclear. We showed recently that the universal second messenger cyclic di-guanosine monophosphate (c-di-GMP) drives Caulobacter crescentus cell cycle progression by forcing the cell cycle kinase CckA from its default kinase into phosphatase mode. We use a combination of structure determination, modeling, and functional analysis to demonstrate that c-di-GMP reciprocally regulates the two antagonistic CckA activities through noncovalent cross-linking of the catalytic domain with the dimerization histidine phosphotransfer (DHp) domain. We demonstrate that both c-di-GMP and ADP (adenosine diphosphate) promote phosphatase activity and propose that c-di-GMP stabilizes the ADP-bound quaternary structure, which allows the receiver domain to access the dimeric DHp stem for dephosphorylation. In silico analyses predict that c-di-GMP control is widespread among bacterial histidine kinases, arguing that it can replace or modulate canonical transmembrane signaling. PMID:27652341

  3. Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking

    PubMed Central

    Dubey, Badri N.; Lori, Christian; Ozaki, Shogo; Fucile, Geoffrey; Plaza-Menacho, Ivan; Jenal, Urs; Schirmer, Tilman

    2016-01-01

    Histidine kinases are key components of regulatory networks in bacteria. Although many of these enzymes are bifunctional, mediating both phosphorylation and dephosphorylation of downstream targets, the molecular details of this central regulatory switch are unclear. We showed recently that the universal second messenger cyclic di–guanosine monophosphate (c-di-GMP) drives Caulobacter crescentus cell cycle progression by forcing the cell cycle kinase CckA from its default kinase into phosphatase mode. We use a combination of structure determination, modeling, and functional analysis to demonstrate that c-di-GMP reciprocally regulates the two antagonistic CckA activities through noncovalent cross-linking of the catalytic domain with the dimerization histidine phosphotransfer (DHp) domain. We demonstrate that both c-di-GMP and ADP (adenosine diphosphate) promote phosphatase activity and propose that c-di-GMP stabilizes the ADP-bound quaternary structure, which allows the receiver domain to access the dimeric DHp stem for dephosphorylation. In silico analyses predict that c-di-GMP control is widespread among bacterial histidine kinases, arguing that it can replace or modulate canonical transmembrane signaling. PMID:27652341

  4. Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking

    PubMed Central

    Dubey, Badri N.; Lori, Christian; Ozaki, Shogo; Fucile, Geoffrey; Plaza-Menacho, Ivan; Jenal, Urs; Schirmer, Tilman

    2016-01-01

    Histidine kinases are key components of regulatory networks in bacteria. Although many of these enzymes are bifunctional, mediating both phosphorylation and dephosphorylation of downstream targets, the molecular details of this central regulatory switch are unclear. We showed recently that the universal second messenger cyclic di–guanosine monophosphate (c-di-GMP) drives Caulobacter crescentus cell cycle progression by forcing the cell cycle kinase CckA from its default kinase into phosphatase mode. We use a combination of structure determination, modeling, and functional analysis to demonstrate that c-di-GMP reciprocally regulates the two antagonistic CckA activities through noncovalent cross-linking of the catalytic domain with the dimerization histidine phosphotransfer (DHp) domain. We demonstrate that both c-di-GMP and ADP (adenosine diphosphate) promote phosphatase activity and propose that c-di-GMP stabilizes the ADP-bound quaternary structure, which allows the receiver domain to access the dimeric DHp stem for dephosphorylation. In silico analyses predict that c-di-GMP control is widespread among bacterial histidine kinases, arguing that it can replace or modulate canonical transmembrane signaling.

  5. Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking.

    PubMed

    Dubey, Badri N; Lori, Christian; Ozaki, Shogo; Fucile, Geoffrey; Plaza-Menacho, Ivan; Jenal, Urs; Schirmer, Tilman

    2016-09-01

    Histidine kinases are key components of regulatory networks in bacteria. Although many of these enzymes are bifunctional, mediating both phosphorylation and dephosphorylation of downstream targets, the molecular details of this central regulatory switch are unclear. We showed recently that the universal second messenger cyclic di-guanosine monophosphate (c-di-GMP) drives Caulobacter crescentus cell cycle progression by forcing the cell cycle kinase CckA from its default kinase into phosphatase mode. We use a combination of structure determination, modeling, and functional analysis to demonstrate that c-di-GMP reciprocally regulates the two antagonistic CckA activities through noncovalent cross-linking of the catalytic domain with the dimerization histidine phosphotransfer (DHp) domain. We demonstrate that both c-di-GMP and ADP (adenosine diphosphate) promote phosphatase activity and propose that c-di-GMP stabilizes the ADP-bound quaternary structure, which allows the receiver domain to access the dimeric DHp stem for dephosphorylation. In silico analyses predict that c-di-GMP control is widespread among bacterial histidine kinases, arguing that it can replace or modulate canonical transmembrane signaling.

  6. Intramolecular cross-linking of domains at the active site links A1 and B subfragments of the Ca2+-ATPase of sarcoplasmic reticulum.

    PubMed

    Ross, D C; McIntosh, D B

    1987-02-15

    Glutaraldehyde treatment of sarcoplasmic reticulum vesicles results in formation of cross-linked Ca2+-ATPase oligomers. Under limiting reaction conditions, where minimal interpolypeptide cross-linking occurs, hydrodynamic properties of the monomer are altered, such that, on sodium dodecyl sulfate-polyacrylamide electrophoresis, the enzyme migrates with an apparent molecular weight of 125,000 (E(125], as compared to the native enzyme (E(110]. The E(125) species was also formed following reaction with other cross-linking bis-aldehydes, with formaldehyde and with a bissuccinimidyl ester. Derivitization resulted in inactivation of ATPase activity and of phosphoprotein formation from Pi. E(125) formation was inhibited by ATP, ADP, AMPPCP, and orthovanadate, and by specific modification of active site Lys-514 with fluorescein-5'-isothiocyanate. Tryptic cleavage patterns of the glutaraldehyde-modified enzyme were consistent with covalent linkage of A1 and B fragments that have been postulated to comprise the phosphorylation and nucleotide-binding domains (MacLennan, D. H., Brandt, C. J., Korczak, B., and Green, N. M. (1985) Nature 316, 696-700). The denaturing detergent, sodium dodecyl sulfate, prevented cross-link formation. Interdomain cross-linking was inhibited by prior modification with either 2,4,6-trinitrobenzene sulfonate, phenylglyoxal, or pyridoxal-5'-phosphate but was unaffected by thiol group modification with iodoacetate or N-ethylmaleimide, suggesting involvement of lysine residues. These findings indicate that intramolecular cross-linking at the active site of the Ca2+-ATPase involves phosphorylation- and ATP-binding domains that are widely separated in the linear sequence. PMID:2950084

  7. Cytoskeletal social networking in the growth cone: How +TIPs mediate microtubule-actin cross-linking to drive axon outgrowth and guidance.

    PubMed

    Cammarata, Garrett M; Bearce, Elizabeth A; Lowery, Laura Anne

    2016-09-01

    The growth cone is a unique structure capable of guiding axons to their proper destinations. Within the growth cone, extracellular guidance cues are interpreted and then transduced into physical changes in the actin filament (F-actin) and microtubule cytoskeletons, providing direction and movement. While both cytoskeletal networks individually possess important growth cone-specific functions, recent data over the past several years point towards a more cooperative role between the two systems. Facilitating this interaction between F-actin and microtubules, microtubule plus-end tracking proteins (+TIPs) have been shown to link the two cytoskeletons together. Evidence suggests that many +TIPs can couple microtubules to F-actin dynamics, supporting both microtubule advance and retraction in the growth cone periphery. In addition, growing in vitro and in vivo data support a secondary role for +TIPs in which they may participate as F-actin nucleators, thus directly influencing F-actin dynamics and organization. This review focuses on how +TIPs may link F-actin and microtubules together in the growth cone, and how these interactions may influence axon guidance. © 2016 Wiley Periodicals, Inc.

  8. A syndecan-4 binding peptide derived from laminin 5 uses a novel PKCε pathway to induce cross-linked actin network (CLAN) formation in human trabecular meshwork (HTM) cells.

    PubMed

    Filla, Mark S; Clark, Ross; Peters, Donna M

    2014-10-01

    In this study, we examined the role(s) of syndecan-4 in regulating the formation of an actin geodesic dome structure called a cross-linked actin network (CLAN) in which syndecan-4 has previously been localized. CLANs have been described in several different cell types, but they have been most widely studied in human trabecular meshwork (HTM) cells where they may play a key role in controlling intraocular pressure by regulating aqueous humor outflow from the eye. In this study we show that a loss of cell surface synedcan-4 significantly reduces CLAN formation in HTM cells. Analysis of HTM cultures treated with or without dexamethasone shows that laminin 5 deposition within the extracellular matrix is increased by glucocorticoid treatment and that a laminin 5-derived, syndecan-4-binding peptide (PEP75), induces CLAN formation in TM cells. This PEP75-induced CLAN formation was inhibited by heparin and the broad spectrum PKC inhibitor Ro-31-7549. In contrast, the more specific PKCα inhibitor Gö 6976 had no effect, thus excluding PKCα as a downstream effector of syndecan-4 signaling. Analysis of PKC isozyme expression showed that HTM cells also expressed both PKCγ and PKCε. Cells treated with a PKCε agonist formed CLANs while a PKCα/γ agonist had no effect. These data suggest that syndecan-4 is essential for CLAN formation in HTM cells and that a novel PKCε-mediated signaling pathway can regulate formation of this unique actin structure. PMID:25128150

  9. A syndecan-4 binding peptide derived from laminin 5 uses a novel PKCε pathway to induce cross-linked actin network (CLAN) formation in human trabecular meshwork (HTM) cells

    PubMed Central

    Filla, Mark S.; Clark, Ross; Peters, Donna M.

    2014-01-01

    In this study, we examined the role(s) of syndecan-4 in regulating the formation of an actin geodesic dome structure called a cross-linked actin network (CLAN) in which syndecan-4 has previously been localized. CLANs have been described in several different cell types, but they have been most widely studied in human trabecular meshwork (HTM) cells where they may play a key role in controlling intraocular pressure by regulating aqueous humor outflow from the eye. In this study we show that a loss of cell surface synedcan-4 significantly reduces CLAN formation in HTM cells. Analysis of HTM cultures treated with or without dexamethasone shows that laminin 5 deposition within the extracellular matrix is increased by glucocorticoid treatment and that a laminin 5-derived, syndecan-4-binding peptide (PEP75), induces CLAN formation in TM cells. This PEP75-induced CLAN formation was inhibited by heparin and the broad spectrum PKC inhibitor Ro-31-7549. In contrast, the more specific PKCα inhibitor Go 6976 had no effect, thus excluding PKCα as a downstream effector of syndecan-4 signaling. Analysis of PKC isozyme expression showed that HTM cells also expressed both PKCγ and PKCε. Cells treated with a PKCε agonist formed CLANs while a PKCα/γ agonist had no effect. These data suggest that syndecan-4 is essential for CLAN formation in HTM cells and that a novel PKCε-mediated signaling pathway can regulate formation of this unique actin structure. PMID:25128150

  10. Myelin basic protein domains involved in the interaction with actin.

    PubMed

    Roth, G A; Gonzalez, M D; Monferran, C G; De Santis, M L; Cumar, F A

    1993-11-01

    A fluorescence assay was used to measure the interaction of myelin basic protein (MBP) with monomeric actin labeled with a fluorescent compound (IAEDANS). The complex actin-IAEDANS increase the fluorescence in presence of MBP. The enhancement of the fluorescence has a sigmoidal dependence on the concentration of MBP and the fluorescence maximum is reached at a MBP:actin molar ratio of 1:20. The fluorescence maximum in absence of Ca2+ and ATP is 4 times lower than that in their presence although it is reached at the same MBP:actin molar ratio. Similar behavior is observed when synapsin replaces MBP, while acetylated MBP and bovine serum albumin fail to induce any fluorescence change. To define possible interacting domains on MBP involved in the actin-MBP interaction, experiments were performed using MBP-derived peptides obtained under controlled proteolysis of the whole molecule. The fluorescence changes induced by the different peptides depend on their location in the native protein and can not be explained simply by a difference in the net charge of the peptides. The results suggest that two sites are involved in the interaction. A Ca2+/ATP-dependent site located in the amino-terminal region (peptide 1-44) and a Ca2+/ATP-independent one near the carboxyl terminus of the MBP molecule. The actin-MBP interaction was also observed using immunoblot and ELISA techniques.

  11. Normal Activation of Discoidin Domain Receptor 1 Mutants with Disulfide Cross-links, Insertions, or Deletions in the Extracellular Juxtamembrane Region

    PubMed Central

    Xu, Huifang; Abe, Takemoto; Liu, Justin K. H.; Zalivina, Irina; Hohenester, Erhard; Leitinger, Birgit

    2014-01-01

    The discoidin domain receptors, DDR1 and DDR2, are receptor tyrosine kinases that are activated by collagen. DDR activation does not appear to occur by the common mechanism of ligand-induced receptor dimerization: the DDRs form stable noncovalent dimers in the absence of ligand, and ligand-induced autophosphorylation of cytoplasmic tyrosines is unusually slow and sustained. Here we sought to identify functionally important dimer contacts within the extracellular region of DDR1 by using cysteine-scanning mutagenesis. Cysteine substitutions close to the transmembrane domain resulted in receptors that formed covalent dimers with high efficiency, both in the absence and presence of collagen. Enforced covalent dimerization did not result in constitutive activation and did not affect the ability of collagen to induce receptor autophosphorylation. Cysteines farther away from the transmembrane domain were also cross-linked with high efficiency, but some of these mutants could no longer be activated. Furthermore, the extracellular juxtamembrane region of DDR1 tolerated large deletions as well as insertions of flexible segments, with no adverse effect on activation. These findings indicate that the extracellular juxtamembrane region of DDR1 is exceptionally flexible and does not constrain the basal or ligand-activated state of the receptor. DDR1 transmembrane signaling thus appears to occur without conformational coupling through the juxtamembrane region, but requires specific receptor interactions farther away from the cell membrane. A plausible mechanism to explain these findings is signaling by DDR1 clusters. PMID:24671415

  12. Stability domains of actin genes and genomic evolution

    NASA Astrophysics Data System (ADS)

    Carlon, E.; Dkhissi, A.; Malki, M. Lejard; Blossey, R.

    2007-11-01

    In eukaryotic genes, the protein coding sequence is split into several fragments, the exons, separated by noncoding DNA stretches, the introns. Prokaryotes do not have introns in their genomes. We report calculations of the stability domains of actin genes for various organisms in the animal, plant, and fungi kingdoms. Actin genes have been chosen because they have been highly conserved during evolution. In these genes, all introns were removed so as to mimic ancient genes at the time of the early eukaryotic development, i.e., before intron insertion. Common stability boundaries are found in evolutionarily distant organisms, which implies that these boundaries date from the early origin of eukaryotes. In general, the boundaries correspond with intron positions in the actins of vertebrates and other animals, but not much for plants and fungi. The sharpest boundary is found in a locus where fungi, algae, and animals have introns in positions separated by one nucleotide only, which identifies a hot spot for insertion. These results suggest that some introns may have been incorporated into the genomes through a thermodynamically driven mechanism, in agreement with previous observations on human genes. They also suggest a different mechanism for intron insertion in plants and animals.

  13. Mechanochemistry of protein 4.1's spectrin-actin-binding domain: ternary complex interactions, membrane binding, network integration, structural strengthening

    PubMed Central

    1995-01-01

    Mechanical strength of the red cell membrane is dependent on ternary interactions among the skeletal proteins, spectrin, actin, and protein 4.1. Protein 4.1's spectrin-actin-binding (SAB) domain is specified by an alternatively spliced exon encoding 21 amino acid (aa) and a constitutive exon encoding 59 aa. A series of truncated SAB peptides were engineered to define the sequences involved in spectrin-actin interactions, and also membrane strength. Analysis of in vitro supramolecular assemblies showed that gelation activity of SAB peptides correlates with their ability to recruit a critical amount of spectrin into the complex to cross-link actin filaments. Also, several SAB peptides appeared to exhibit a weak, cooperative actin-binding activity which mapped to the first 26 residues of the constitutive 59 aa. Fluorescence-imaged microdeformation was used to show SAB peptide integration into the elastic skeletal network of spectrin, actin, and protein 4.1. In situ membrane-binding and membrane-strengthening abilities of the SAB peptides correlated with their in vitro gelation activity. The findings imply that sites for strong spectrin binding include both the alternative 21-aa cassette and a conserved region near the middle of the 59 aa. However, it is shown that only weak SAB affinity is necessary for physiologically relevant action. Alternatively spliced exons can thus translate into strong modulation of specific protein interactions, economizing protein function in the cell without, in and of themselves, imparting unique function. PMID:7642705

  14. Multiple actin binding domains of Ena/VASP proteins determine actin network stiffening.

    PubMed

    Gentry, Brian S; van der Meulen, Stef; Noguera, Philippe; Alonso-Latorre, Baldomero; Plastino, Julie; Koenderink, Gijsje H

    2012-11-01

    Vasodilator-stimulated phosphoprotein (Ena/VASP) is an actin binding protein, important for actin dynamics in motile cells and developing organisms. Though VASP's main activity is the promotion of barbed end growth, it has an F-actin binding site and can form tetramers, and so could additionally play a role in actin crosslinking and bundling in the cell. To test this activity, we performed rheology of reconstituted actin networks in the presence of wild-type VASP or mutants lacking the ability to tetramerize or to bind G-actin and/or F-actin. We show that increasing amounts of wild-type VASP increase network stiffness up to a certain point, beyond which stiffness actually decreases with increasing VASP concentration. The maximum stiffness is 10-fold higher than for pure actin networks. Confocal microscopy shows that VASP forms clustered actin filament bundles, explaining the reduction in network elasticity at high VASP concentration. Removal of the tetramerization site results in significantly reduced bundling and bundle clustering, indicating that VASP's flexible tetrameric structure causes clustering. Removing either the F-actin or the G-actin binding site diminishes VASP's effect on elasticity, but does not eliminate it. Mutating the F-actin and G-actin binding site together, or mutating the F-actin binding site and saturating the G-actin binding site with monomeric actin, eliminates VASP's ability to increase network stiffness. We propose that, in the cell, VASP crosslinking confers only moderate increases in linear network elasticity, and unlike other crosslinkers, VASP's network stiffening activity may be tuned by the local concentration of monomeric actin.

  15. A central role for the WH2 domain of Srv2/CAP in recharging actin monomers to drive actin turnover in vitro and in vivo

    PubMed Central

    Chaudhry, Faisal; Little, Kristin; Talarico, Lou; Quintero-Monzon, Omar; Goode, Bruce L.

    2010-01-01

    Cellular processes propelled by actin polymerization require rapid disassembly of filaments, and then efficient recycling of ADF/cofilin-bound ADP-actin monomers back to an assembly-competent ATP-bound state. How monomer recharging is regulated in vivo is still not well understood, but recent work suggests the involvement of the ubiquitous actin-monomer binding protein Srv2/CAP. To better understand Srv2/CAP mechanism, we explored the contribution of its WH2 domain, the function of which has remained highly elusive. We found that the WH2 domain binds to actin monomers and, unlike most other WH2 domains, exhibits similar binding affinity for ATP-actin and ADP-actin (Kd ~1.5μM). Mutations in the WH2 domain that impair actin binding disrupt the ability of purified full-length Srv2/CAP to catalyze nucleotide exchange on ADF/cofilin-bound actin monomers and accelerate actin turnover in vitro. The same mutations impair Srv2/CAP function in vivo in regulating actin organization, cell growth, and cell morphogenesis. Thus, normal cell growth and organization depend on the ability of Srv2/CAP to recharge actin monomers, and the WH2 domain plays a central role in this process. Our data also reveal that while most isolated WH2 domains inhibit nucleotide exchange on actin, WH2 domains in the context of intact proteins can help promote nucleotide exchange. PMID:20169536

  16. The Nucleocapsid Domain of Gag Is Dispensable for Actin Incorporation into HIV-1 and for Association of Viral Budding Sites with Cortical F-Actin

    PubMed Central

    Stauffer, Sarah; Rahman, Sheikh Abdul; de Marco, Alex; Carlson, Lars-Anders; Glass, Bärbel; Oberwinkler, Heike; Herold, Nikolas; Briggs, John A. G.; Müller, Barbara

    2014-01-01

    ABSTRACT Actin and actin-binding proteins are incorporated into HIV-1 particles, and F-actin has been suggested to bind the NC domain in HIV-1 Gag. Furthermore, F-actin has been frequently observed in the vicinity of HIV-1 budding sites by cryo-electron tomography (cET). Filamentous structures emanating from viral buds and suggested to correspond to actin filaments have been observed by atomic force microscopy. To determine whether the NC domain of Gag is required for actin association with viral buds and for actin incorporation into HIV-1, we performed comparative analyses of virus-like particles (VLPs) obtained by expression of wild-type HIV-1 Gag or a Gag variant where the entire NC domain had been replaced by a dimerizing leucine zipper [Gag(LZ)]. The latter protein yielded efficient production of VLPs with near-wild-type assembly kinetics and size and exhibited a regular immature Gag lattice. Typical HIV-1 budding sites were detected by using cET in cells expressing either Gag or Gag(LZ), and no difference was observed regarding the association of buds with the F-actin network. Furthermore, actin was equally incorporated into wild-type HIV-1 and Gag- or Gag(LZ)-derived VLPs, with less actin per particle observed than had been reported previously. Incorporation appeared to correlate with the relative intracellular actin concentration, suggesting an uptake of cytosol rather than a specific recruitment of actin. Thus, the NC domain in HIV-1 Gag does not appear to have a role in actin recruitment or actin incorporation into HIV-1 particles. IMPORTANCE HIV-1 particles bud from the plasma membrane, which is lined by a network of actin filaments. Actin was found to interact with the nucleocapsid domain of the viral structural protein Gag and is incorporated in significant amounts into HIV-1 particles, suggesting that it may play an active role in virus release. Using electron microscopy techniques, we previously observed bundles of actin filaments near HIV-1 buds

  17. Stretching Actin Filaments within Cells Enhances their Affinity for the Myosin II Motor Domain

    PubMed Central

    Uyeda, Taro Q. P.; Iwadate, Yoshiaki; Umeki, Nobuhisa; Nagasaki, Akira; Yumura, Shigehiko

    2011-01-01

    To test the hypothesis that the myosin II motor domain (S1) preferentially binds to specific subsets of actin filaments in vivo, we expressed GFP-fused S1 with mutations that enhanced its affinity for actin in Dictyostelium cells. Consistent with the hypothesis, the GFP-S1 mutants were localized along specific portions of the cell cortex. Comparison with rhodamine-phalloidin staining in fixed cells demonstrated that the GFP-S1 probes preferentially bound to actin filaments in the rear cortex and cleavage furrows, where actin filaments are stretched by interaction with endogenous myosin II filaments. The GFP-S1 probes were similarly enriched in the cortex stretched passively by traction forces in the absence of myosin II or by external forces using a microcapillary. The preferential binding of GFP-S1 mutants to stretched actin filaments did not depend on cortexillin I or PTEN, two proteins previously implicated in the recruitment of myosin II filaments to stretched cortex. These results suggested that it is the stretching of the actin filaments itself that increases their affinity for the myosin II motor domain. In contrast, the GFP-fused myosin I motor domain did not localize to stretched actin filaments, which suggests different preferences of the motor domains for different structures of actin filaments play a role in distinct intracellular localizations of myosin I and II. We propose a scheme in which the stretching of actin filaments, the preferential binding of myosin II filaments to stretched actin filaments, and myosin II-dependent contraction form a positive feedback loop that contributes to the stabilization of cell polarity and to the responsiveness of the cells to external mechanical stimuli. PMID:22022566

  18. Septin 9 Exhibits Polymorphic Binding to F-Actin and Inhibits Myosin and Cofilin Activity.

    PubMed

    Smith, Clayton; Dolat, Lee; Angelis, Dimitrios; Forgacs, Eva; Spiliotis, Elias T; Galkin, Vitold E

    2015-10-01

    Septins are a highly conserved family of proteins in eukaryotes that is recognized as a novel component of the cytoskeleton. Septin 9 (SEPT9) interacts directly with actin filaments and functions as an actin stress fiber cross-linking protein that promotes the maturation of nascent focal adhesions and cell migration. However, the molecular details of how SEPT9 interacts with F-actin remain unknown. Here, we use electron microscopy and image analysis to show that SEPT9 binds to F-actin in a highly polymorphic fashion. We demonstrate that the basic domain (B-domain) of the N-terminal tail of SEPT9 is responsible for actin cross-linking, while the GTP-binding domain (G-domain) does not bundle F-actin. We show that the B-domain of SEPT9 binds to three sites on F-actin, and the two of these sites overlap with the binding regions of myosin and cofilin. SEPT9 inhibits actin-dependent ATPase activity of myosin and competes with the weakly bound state of myosin for binding to F-actin. At the same time, SEPT9 significantly reduces the extent of F-actin depolymerization by cofilin. Taken together, these data suggest that SEPT9 protects actin filaments from depolymerization by cofilin and myosin and indicate a mechanism by which SEPT9 could maintain the integrity of growing and contracting actin filaments.

  19. Interfacial Bioorthogonal Cross-Linking

    PubMed Central

    2015-01-01

    Described herein is interfacial bioorthogonal cross-linking, the use of bioorthogonal chemistry to create and pattern biomaterials through diffusion-controlled gelation at the liquid-gel interface. The basis is a rapid (k2 284000 M–1 s–1) reaction between strained trans-cyclooctene (TCO) and tetrazine (Tz) derivatives. Syringe delivery of Tz-functionalized hyaluronic acid (HA-Tz) to a bath of bis-TCO cross-linker instantly creates microspheres with a cross-linked shell through which bis-TCO diffuses freely to introduce further cross-linking at the interface. Tags can be introduced with 3D resolution without external triggers or templates. Water-filled hydrogel channels were prepared by simply reversing the order of addition. Prostate cancer cells encapsulated in the microspheres have 99% viability, proliferate readily, and form aggregated clusters. This process is projected to be useful in the fabrication of cell-instructive matrices for in vitro tissue models. PMID:25177528

  20. Actin-Based Transport Adapts Polarity Domain Size to Local Cellular Curvature.

    PubMed

    Bonazzi, Daria; Haupt, Armin; Tanimoto, Hirokazu; Delacour, Delphine; Salort, Delphine; Minc, Nicolas

    2015-10-19

    Intracellular structures and organelles such as the nucleus, the centrosome, or the mitotic spindle typically scale their size to cell size [1]. Similarly, cortical polarity domains built around the active form of conserved Rho-GTPases, such as Cdc42p, exhibit widths that may range over two orders of magnitudes in cells with different sizes and shapes [2-6]. The establishment of such domains typically involves positive feedback loops based on reaction-diffusion and/or actin-mediated vesicle transport [3, 7, 8]. How these elements may adapt polarity domain size to cellular geometry is not known. Here, by tracking the width of successive oscillating Cdc42-GTP domains in fission yeast spores [9], we find that domain width scales with local cell-surface radii of curvature over an 8-fold range, independently of absolute cell volume, surface, or Cdc42-GTP concentration. This local scaling requires formin-nucleated cortical actin cables and the fusion of secretory vesicles transported along these cables with the membrane. These data suggest that reaction-diffusion may set a minimal domain size and that secretory vesicle transport along actin cables may dilute and extend polarity domains to adapt their size to local cell-surface curvature. This work reveals that actin networks may act as micrometric curvature sensors and uncovers a generic morphogenetic principle for how polarity domains define their size according to cell morphologies. PMID:26441355

  1. Actin-Based Transport Adapts Polarity Domain Size to Local Cellular Curvature.

    PubMed

    Bonazzi, Daria; Haupt, Armin; Tanimoto, Hirokazu; Delacour, Delphine; Salort, Delphine; Minc, Nicolas

    2015-10-19

    Intracellular structures and organelles such as the nucleus, the centrosome, or the mitotic spindle typically scale their size to cell size [1]. Similarly, cortical polarity domains built around the active form of conserved Rho-GTPases, such as Cdc42p, exhibit widths that may range over two orders of magnitudes in cells with different sizes and shapes [2-6]. The establishment of such domains typically involves positive feedback loops based on reaction-diffusion and/or actin-mediated vesicle transport [3, 7, 8]. How these elements may adapt polarity domain size to cellular geometry is not known. Here, by tracking the width of successive oscillating Cdc42-GTP domains in fission yeast spores [9], we find that domain width scales with local cell-surface radii of curvature over an 8-fold range, independently of absolute cell volume, surface, or Cdc42-GTP concentration. This local scaling requires formin-nucleated cortical actin cables and the fusion of secretory vesicles transported along these cables with the membrane. These data suggest that reaction-diffusion may set a minimal domain size and that secretory vesicle transport along actin cables may dilute and extend polarity domains to adapt their size to local cell-surface curvature. This work reveals that actin networks may act as micrometric curvature sensors and uncovers a generic morphogenetic principle for how polarity domains define their size according to cell morphologies.

  2. Actin at receptor-rich domains of isolated acetylcholine receptor clusters.

    PubMed

    Bloch, R J

    1986-04-01

    Acetylcholine receptor (AChR) clusters of cultured rat myotubes, isolated by extraction with saponin (Bloch, R. J., 1984, J. Cell Biol. 99:984-993), contain a polypeptide that co-electrophoreses with purified muscle actins. A monoclonal antibody against actin reacts in immunoblots with this polypeptide and with purified actins. In indirect immunofluorescence, the antibody stains isolated AChR clusters only at AChR domains, strips of membrane within clusters that are rich in receptor. It also stains the postsynaptic region of the neuromuscular junction of adult rat skeletal muscle. Semiquantitative immunofluorescence analyses show that labeling by antiactin of isolated analyses show that labeling by antiactin of isolated AChR clusters is specific and saturable and that it varies linearly with the amount of AChR in the cluster. Filaments of purified gizzard myosin also bind preferentially at AChR-rich regions, and this binding is inhibited by MgATP. These experiments suggest that actin is associated with AChR-rich regions of receptor clusters. Depletion of actin by extraction of isolated clusters at low ionic strength selectively releases the actin-like polypeptide from the preparation. Simultaneously, AChRs redistribute within the plane of the membrane of the isolated clusters. Similarly, brief digestion with chymotrypsin reduces immunofluorescence staining and causes AChR redistribution. Treatments that deplete AChR from clusters in intact cells also reduce immunofluorescent staining for actin in isolated muscle membrane fragments. Upon reversal of these treatments, cluster reformation occurs in regions of the membrane that also stain for actin. I conclude that actin is associated with AChR domains and that changes in this association are accompanied by changes in the organization of isolated AChR clusters.

  3. Regulation of the human. beta. -actin promoter by upstream and intron domains

    SciTech Connect

    Ng, Sunyu )); Gunning, P.; Kedes, L. ); Liu, Shuhui National Tsing Hua Univ., Hsinchu ); Leavitt, J. )

    1989-01-25

    The authors have identified three regulatory domains of the complex human {beta}-actin gene promoter. They span a region of about 3,000 bases, from not more than {minus}2,011 bases upstream of the mRNA cap site to within the 5{prime} intron (832 bases long). A distal upstream domain contains at least one enhancer-like element. A proximal upstream domain, with a CArG (for CC(A+T rich){sub 6}GG) motif found in all known mammalian actin genes, seems to confer serum, but not growth factor, inducibility. The third domain is within the evolutionarily conserved 3{prime} region of the first intron and contains a 13 base-pair sequence, identical to the upstream sequence with the CArG motif. This domain also contains sequences that are both serum and fibroblast growth inducible.

  4. Transition to reinforced state by percolating domains of intercalated brush-modified cellulose nanocrystals and poly(butadiene) in cross-linked composites based on thiol-ene click chemistry.

    PubMed

    Rosilo, Henna; Kontturi, Eero; Seitsonen, Jani; Kolehmainen, Erkki; Ikkala, Olli

    2013-05-13

    The classic nanocomposite approach aims at percolation of low fraction of exfoliated individual reinforcing nanoscale elements within a polymeric matrix. By contrast, many of the mechanically excellent biological nanocomposites involve self-assembled and space-filled structures of hard reinforcing and soft toughening domains, with high weight fraction of reinforcements. Here we inspect a new concept toward mimicking such structures by studying whether percolation of intercalated domains consisting of alternating rigid and reinforcing, and soft rubbery domains could allow a transition to a reinforced state. Toward that, we present the functionalization of rigid native cellulose nanocrystals (CNCs) by esterification with a dense hydrocarbon chain brush containing cross-linkable double bonds. Composite films with 0-80 wt % of such modified CNCs (mCNCs) within a poly(butadiene) (PBD) rubber matrix were prepared via cross-linking by UV-light initiated thiol-ene click reaction. Transmission electron microscopy showed structures at two length scales, where the mCNCs and PBD form domains having internal aligned self-assemblies of alternating hard mCNCs and soft PBD with periodicity of ca. 40 nm, and where additional PBD connects such domains. Increasing the weight fraction of mCNCs causes an uncommon abrupt transition from PBD-dominated soft materials to significantly reinforced mCNC-dominated mechanical properties, suggesting that the intercalated self-assembled mCNC/PBD domains percolate in PBD upon passing 30-35 wt % of mCNCs. Maximum stress of 16 MPa at mCNC fraction of 80 wt % was obtained. The mechanical properties of the composites show exceptional insensitivity to air humidity. The shown simple concept of percolative intercalated nanocomposites suggests searching for more general biomimetic compositions involving several deformation mechanisms for improved mechanical properties. PMID:23506469

  5. Solution structure of villin 14T, a domain conserved among actin-severing proteins.

    PubMed Central

    Markus, M. A.; Nakayama, T.; Matsudaira, P.; Wagner, G.

    1994-01-01

    The solution structure of the N-terminal domain of the actin-severing protein villin has been determined by multidimensional heteronuclear resonance spectroscopy. Villin is a member of a family of actin-severing proteins that regulate the organization of actin in the eukaryotic cytoskeleton. Members of this family are built from 3 or 6 homologous repeats of a structural domain of approximately 130 amino acids that is unrelated to any previously known structure. The N-terminal domain of villin (14T) contains a central beta-sheet with 4 antiparallel strands and a fifth parallel strand at one edge. This sheet is sandwiched between 2 helices on one side and a 2-stranded parallel beta-sheet with another helix on the other side. The strongly conserved sequence characteristic of the protein family corresponds to internal hydrophobic residues. Calcium titration experiments suggest that there are 2 binding sites for Ca2+, a stronger site near the N-terminal end of the longest helix, with a Kd of 1.8 +/- 0.4 mM, and a weaker site near the C-terminal end of the same helix, with a Kd of 11 +/- 2 mM. Mutational and biochemical studies of this domain in several members of the family suggest that the actin monomer binding site is near the parallel strand at the edge of the central beta-sheet. PMID:8142900

  6. Apical domain polarization localizes actin-myosin activity to drive ratchet-like apical constriction.

    PubMed

    Mason, Frank M; Tworoger, Michael; Martin, Adam C

    2013-08-01

    Apical constriction promotes epithelia folding, which changes tissue architecture. During Drosophila gastrulation, mesoderm cells exhibit repeated contractile pulses that are stabilized such that cells apically constrict like a ratchet. The transcription factor Twist is required to stabilize cell shape. However, it is unknown how Twist spatially coordinates downstream signals to prevent cell relaxation. We find that during constriction, Rho-associated kinase (Rok) is polarized to the middle of the apical domain (medioapical cortex), separate from adherens junctions. Rok recruits or stabilizes medioapical myosin II (Myo-II), which contracts dynamic medioapical actin cables. The formin Diaphanous mediates apical actin assembly to suppress medioapical E-cadherin localization and form stable connections between the medioapical contractile network and adherens junctions. Twist is not required for apical Rok recruitment, but instead polarizes Rok medioapically. Therefore, Twist establishes radial cell polarity of Rok/Myo-II and E-cadherin and promotes medioapical actin assembly in mesoderm cells to stabilize cell shape fluctuations.

  7. Electrospinning formaldehyde cross-linked zein solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to develop zein fibers with improved physical properties and solvent resistance, formaldehyde was used as the cross-linking reagent before spinning. The cross-linking reaction was carried out in either acetic acid or ethanolic-HCl where the amount of cross-linking reagent was between 1 and...

  8. A domain of synapsin I involved with actin bundling shares immunologic cross-reactivity with villin.

    PubMed

    Petrucci, T C; Mooseker, M S; Morrow, J S

    1988-01-01

    Synapsin I is a neuronal phosphoprotein that can bundle actin filaments in vitro. This activity is under phosphorylation control, and may be related to its putative in vivo role of regulating the clustering and release of small synaptic vesicles. We have compared human and bovine synapsin I by peptide mapping, and have used NTCB (2-nitro-5-thiocyano benzoic acid) cleavage to generate a series of peptide fragments from bovine synapsin I. After chymotryptic digestion, 88% of the tyrosine-containing fragments appear to be structurally identical in human and bovine synapsin I, as judged by their positions on high-resolution two-dimensional peptide maps. The alignment of the NTCB peptides within the parent protein have been determined by peptide mapping, and the ability of these fragments to precipitate with actin bundles has been measured. Only peptides that are derived from regions near the ends of the protein are active. One such 25-kDa peptide which sediments with actin also cross-reacts with antibodies to chicken villin, an actin binding and bundling protein derived from the intestinal microvillus. Since in other respects villin appears to be an unrelated protein, these results suggest the possibility that certain actin binding proteins may show immunologic cross-reactivity due to convergent evolution within the acting binding domain. PMID:3125185

  9. Structural and Functional Dissection of the Abp1 ADFH Actin-binding Domain Reveals Versatile In Vivo Adapter Functions

    SciTech Connect

    Quintero-Monzon,O.; Rodal, A.; Strokopytov, B.; Almo, S.; Goode, B.

    2005-01-01

    Abp1 is a multidomain protein that regulates the Arp2/3 complex and links proteins involved in endocytosis to the actin cytoskeleton. All of the proposed cellular functions of Abp1 involve actin filament binding, yet the actin binding site(s) on Abp1 have not been identified, nor has the importance of actin binding for Abp1 localization and function in vivo been tested. Here, we report the crystal structure of the Saccharomyces cerevisiae Abp1 actin-binding actin depolymerizing factor homology (ADFH) domain and dissect its activities by mutagenesis. Abp1-ADFH domain and ADF/cofilin structures are similar, and they use conserved surfaces to bind actin; however, there are also key differences that help explain their differential effects on actin dynamics. Using point mutations, we demonstrate that actin binding is required for localization of Abp1 in vivo, the lethality caused by Abp1 overexpression, and the ability of Abp1 to activate Arp2/3 complex. Furthermore, we genetically uncouple ABP1 functions that overlap with SAC6, SLA1, and SLA2, showing they require distinct combinations of activities and interactions. Together, our data provide the first structural and functional view of the Abp1-actin interaction and show that Abp1 has distinct cellular roles as an adapter, linking different sets of ligands for each function.

  10. Corneal Collagen Cross-Linking

    PubMed Central

    Jankov II, Mirko R.; Jovanovic, Vesna; Nikolic, Ljubisa; Lake, Jonathan C.; Kymionis, Georgos; Coskunseven, Efekan

    2010-01-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet-A (UVA) is a new technique of corneal tissue strengthening by using riboflavin as a photosensitizer and UVA to increase the formation of intra and interfibrillar covalent bonds by photosensitized oxidation. Keratocyte apoptosis in the anterior segment of the corneal stroma all the way down to a depth of about 300 microns has been described and a demarcation line between the treated and untreated cornea has been clearly shown. It is important to ensure that the cytotoxic threshold for the endothelium has not been exceeded by strictly respecting the minimal corneal thickness. Confocal microscopy studies show that repopulation of keratocytes is already visible 1 month after the treatment, reaching its pre-operative quantity and quality in terms of functional morphology within 6 months after the treatment. The major indication for the use of CXL is to inhibit the progression of corneal ectasias, such as keratoconus and pellucid marginal degeneration. CXL may also be effective in the treatment and prophylaxis of iatrogenic keratectasia, resulting from excessively aggressive photoablation. This treatment has also been used to treat infectious corneal ulcers with apparent favorable results. Combination with other treatments, such as intracorneal ring segment implantation, limited topography-guided photoablation and conductive keratoplasty have been used with different levels of success. PMID:20543933

  11. The EH-domain-containing protein Pan1 is required for normal organization of the actin cytoskeleton in Saccharomyces cerevisiae.

    PubMed Central

    Tang, H Y; Cai, M

    1996-01-01

    Normal cell growth and division in the yeast Saccharomyces cerevisiae involve dramatic and frequent changes in the organization of the actin cytoskeleton. Previous studies have suggested that the reorganization of the actin cytoskeleton in accordance with cell cycle progression is controlled, directly or indirectly, by the cyclin-dependent kinase Cdc28. Here we report that by isolating rapid-death mutants in the background of the Start-deficient cdc28-4 mutation, the essential yeast gene PAN1, previously thought to encode the yeast poly(A) nuclease, is identified as a new factor required for normal organization of the actin cytoskeleton. We show that at restrictive temperature, the pan1 mutant exhibited abnormal bud growth, failed to maintain a proper distribution of the actin cytoskeleton, was unable to reorganize actin the cytoskeleton during cell cycle, and was defective in cytokinesis. The mutant also displayed a random pattern of budding even at permissive temperature. Ectopic expression of PAN1 by the GAL promoter caused abnormal distribution of the actin cytoskeleton when a single-copy vector was used. Immunofluorescence staining revealed that the Pan1 protein colocalized with the cortical actin patches, suggesting that it may be a filamentous actin-binding protein. The Pan1 protein contains an EF-hand calcium-binding domain, a putative Src homology 3 (SH3)-binding domain, a region similar to the actin cytoskeleton assembly control protein Sla1, and two repeats of a newly identified protein motif known as the EH domain. These findings suggest that Pan1, recently recognized as not responsible for the poly(A) nuclease activity (A. B. Sachs and J. A. Deardorff, erratum, Cell 83:1059, 1995; R. Boeck, S. Tarun, Jr., M. Rieger, J. A. Deardorff, S. Muller-Auer, and A. B. Sachs, J. Biol. Chem. 271:432-438, 1996), plays an important role in the organization of the actin cytoskeleton in S. cerevisiae. PMID:8756649

  12. Thermo-cross-linked elastomeric opal films.

    PubMed

    Schäfer, Christian G; Viel, Benjamin; Hellmann, Goetz P; Rehahn, Matthias; Gallei, Markus

    2013-11-13

    An efficient and convenient thermal cross-linking protocol in elastomeric opal films leading to fully reversible and stretch-tunable optical materials is reported. In this study, functional monodisperse core-shell particles were arranged in a face-centered cubic (fcc) lattice structure by a melt flow process. A problem up to now was that un-cross-linked films could not be drawn fully reversibly and hence lost their optical and mechanical performance. After thermal cross-linking reaction, the obtained films can be drawn like rubbers and the color of their Bragg reflection changes because of controlled lattice deformation, which makes the cross-linked films mechanochromic sensors. Different techniques were developed for the cross-linking of the films a posteriori, after their preparation in the melt flow process. A photo-cross-linking approach was reported earlier. This study now deals with a very efficient thermo-cross-linking approach based on the chemistry of hydroxyl- and isocyanate-functionalities that form urethane bridges. The focus of the present work is the mechanism and efficiency of this cross-linking process for elastomeric opal films with excellent mechanical and optical properties. PMID:24134322

  13. CD44 and beta3 integrin organize two functionally distinct actin-based domains in osteoclasts.

    PubMed

    Chabadel, Anne; Bañon-Rodríguez, Inmaculada; Cluet, David; Rudkin, Brian B; Wehrle-Haller, Bernhard; Genot, Elisabeth; Jurdic, Pierre; Anton, Ines M; Saltel, Frédéric

    2007-12-01

    The actin cytoskeleton of mature osteoclasts (OCs) adhering to nonmineralized substrates is organized in a belt of podosomes reminiscent of the sealing zone (SZ) found in bone resorbing OCs. In this study, we demonstrate that the belt is composed of two functionally different actin-based domains: podosome cores linked with CD44, which are involved in cell adhesion, and a diffuse cloud associated with beta3 integrin, which is involved in cell adhesion and contraction. Wiskott Aldrich Syndrome Protein (WASp) Interacting Protein (WIP)-/- OCs were devoid of podosomes, but they still exhibited actin clouds. Indeed, WIP-/- OCs show diminished expression of WASp, which is required for podosome formation. CD44 is a novel marker of OC podosome cores and the first nonintegrin receptor detected in these structures. The importance of CD44 is revealed by showing that its clustering restores podosome cores and WASp expression in WIP-/- OCs. However, although CD44 signals are sufficient to form a SZ, the presence of WIP is indispensable for the formation of a fully functional SZ.

  14. Convoluted Plasma Membrane Domains in the Green Alga Chara are Depleted of Microtubules and Actin Filaments.

    PubMed

    Sommer, Aniela; Hoeftberger, Margit; Hoepflinger, Marion C; Schmalbrock, Sarah; Bulychev, Alexander; Foissner, Ilse

    2015-10-01

    Charasomes are convoluted plasma membrane domains in the green alga Chara australis. They harbor H(+)-ATPases involved in acidification of the medium, which facilitates carbon uptake required for photosynthesis. In this study we investigated the distribution of cortical microtubules and cortical actin filaments in relation to the distribution of charasomes. We found that microtubules and actin filaments were largely lacking beneath the charasomes, suggesting the absence of nucleating and/or anchoring complexes or an inhibitory effect on polymerization. We also investigated the influence of cytoskeleton inhibitors on the light-dependent growth and the darkness-induced degradation of charasomes. Inhibition of cytoplasmic streaming by cytochalasin D significantly inhibited charasome growth and delayed charasome degradation, whereas depolymerization of microtubules by oryzalin or stabilization of microtubules by paclitaxel had no effect. Our data indicate that the membrane at the cytoplasmic surface of charasomes has different properties in comparison with the smooth plasma membrane. We show further that the actin cytoskeleton is necessary for charasome growth and facilitates charasome degradation presumably via trafficking of secretory and endocytic vesicles, respectively. However, microtubules are required neither for charasome growth nor for charasome degradation. PMID:26272553

  15. Convoluted Plasma Membrane Domains in the Green Alga Chara are Depleted of Microtubules and Actin Filaments.

    PubMed

    Sommer, Aniela; Hoeftberger, Margit; Hoepflinger, Marion C; Schmalbrock, Sarah; Bulychev, Alexander; Foissner, Ilse

    2015-10-01

    Charasomes are convoluted plasma membrane domains in the green alga Chara australis. They harbor H(+)-ATPases involved in acidification of the medium, which facilitates carbon uptake required for photosynthesis. In this study we investigated the distribution of cortical microtubules and cortical actin filaments in relation to the distribution of charasomes. We found that microtubules and actin filaments were largely lacking beneath the charasomes, suggesting the absence of nucleating and/or anchoring complexes or an inhibitory effect on polymerization. We also investigated the influence of cytoskeleton inhibitors on the light-dependent growth and the darkness-induced degradation of charasomes. Inhibition of cytoplasmic streaming by cytochalasin D significantly inhibited charasome growth and delayed charasome degradation, whereas depolymerization of microtubules by oryzalin or stabilization of microtubules by paclitaxel had no effect. Our data indicate that the membrane at the cytoplasmic surface of charasomes has different properties in comparison with the smooth plasma membrane. We show further that the actin cytoskeleton is necessary for charasome growth and facilitates charasome degradation presumably via trafficking of secretory and endocytic vesicles, respectively. However, microtubules are required neither for charasome growth nor for charasome degradation.

  16. Convoluted Plasma Membrane Domains in the Green Alga Chara are Depleted of Microtubules and Actin Filaments

    PubMed Central

    Sommer, Aniela; Hoeftberger, Margit; Hoepflinger, Marion C.; Schmalbrock, Sarah; Bulychev, Alexander; Foissner, Ilse

    2015-01-01

    Charasomes are convoluted plasma membrane domains in the green alga Chara australis. They harbor H+-ATPases involved in acidification of the medium, which facilitates carbon uptake required for photosynthesis. In this study we investigated the distribution of cortical microtubules and cortical actin filaments in relation to the distribution of charasomes. We found that microtubules and actin filaments were largely lacking beneath the charasomes, suggesting the absence of nucleating and/or anchoring complexes or an inhibitory effect on polymerization. We also investigated the influence of cytoskeleton inhibitors on the light-dependent growth and the darkness-induced degradation of charasomes. Inhibition of cytoplasmic streaming by cytochalasin D significantly inhibited charasome growth and delayed charasome degradation, whereas depolymerization of microtubules by oryzalin or stabilization of microtubules by paclitaxel had no effect. Our data indicate that the membrane at the cytoplasmic surface of charasomes has different properties in comparison with the smooth plasma membrane. We show further that the actin cytoskeleton is necessary for charasome growth and facilitates charasome degradation presumably via trafficking of secretory and endocytic vesicles, respectively. However, microtubules are required neither for charasome growth nor for charasome degradation. PMID:26272553

  17. Porous Cross-Linked Polyimide Networks

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Guo, Haiquan (Inventor)

    2015-01-01

    Porous cross-linked polyimide networks are provided. The networks comprise an anhydride end-capped polyamic acid oligomer. The oligomer (i) comprises a repeating unit of a dianhydride and a diamine and terminal anhydride groups, (ii) has an average degree of polymerization of 10 to 50, (iii) has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups, and (iv) has been chemically imidized to yield the porous cross-linked polyimide network. Also provided are porous cross-linked polyimide aerogels comprising a cross-linked and imidized anhydride end-capped polyamic acid oligomer, wherein the oligomer comprises a repeating unit of a dianhydride and a diamine, and the aerogel has a density of 0.10 to 0.333 g/cm.sup.3 and a Young's modulus of 1.7 to 102 MPa. Also provided are thin films comprising aerogels, and methods of making porous cross-linked polyimide networks.

  18. Filopodial actin bundles are not necessary for microtubule advance into the peripheral domain of Aplysia neuronal growth cones.

    PubMed

    Burnette, Dylan T; Schaefer, Andrew W; Ji, Lin; Danuser, Gaudenz; Forscher, Paul

    2007-12-01

    Filopodial actin bundles guide microtubule assembly in the growth cone peripheral (P) domain and retrograde actin-network flow simultaneously transports microtubules rearward. Therefore, microtubule-end position is determined by the sum of microtubule assembly and retrograde transport rates. However, how filopodia actually affect microtubule assembly dynamics is unknown. To address this issue we quantitatively assessed microtubule and actin dynamics before and after selective removal of filopodia. Filopodium removal had surprisingly little effect on retrograde actin-flow rates or underlying network structures, but resulted in an approximate doubling of peripheral microtubule density and deeper penetration of microtubules into the P domain. The latter stemmed from less efficient coupling of microtubules to remaining actin networks and not from a change in microtubule polymer dynamics. Loss of filopodia also resulted in increased lateral microtubule movements and a more randomized microtubule distribution in the P domain. In summary, filopodia do not seem to be formally required for microtubule advance; however, their presence ensures radial distribution of microtubules in the P domain and facilitates microtubule transport by retrograde flow. The resulting dynamic steady state has interesting implications for rapid microtubule-positioning responses in the P domain.

  19. The effect of cross-link distributions in axially-ordered, cross-linked networks

    PubMed Central

    Bennett, C. Brad; Kruczek, James; Rabson, D. A.; Matthews, W. Garrett; Pandit, Sagar A.

    2013-01-01

    Cross-linking between the constituent chains of biopolymers has a marked effect on their materials properties. In certain of these materials, such as fibrillar collagen, increases in cross-linking lead to an increase in the melting temperature. Fibrillar collagen is an axially-ordered network of cross-linked polymer chains exhibiting a broadened denaturation transition, which has been explained in terms of the successive denaturation with temperature of multiple species. We model axially-ordered cross-linked materials as stiff chains with distinct arrangements of cross-link-forming sites. Simulations suggest that systems composed of chains with identical arrangements of cross-link-forming sites exhibit critical behavior. In contrast, systems composed of non-identical chains undergo a crossover. This model suggests that the arrangement of cross-link-forming sites may contribute to the broadening of the denaturation transition in fibrillar collagen. PMID:23751928

  20. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1997-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  1. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1998-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  2. Cross-linked biopolymer bundles: Cross-link reversibility leads to cooperative binding/unbinding phenomena

    NASA Astrophysics Data System (ADS)

    Vink, Richard L. C.; Heussinger, Claus

    2012-01-01

    We consider a biopolymer bundle consisting of filaments that are cross-linked together. The cross-links are reversible: they can dynamically bind and unbind adjacent filament pairs as controlled by a binding enthalpy. The bundle is subjected to a bending deformation and the corresponding distribution of cross-links is measured. For a bundle consisting of two filaments, upon increasing the bending amplitude, a first-order transition is observed. The transition is from a state where the filaments are tightly coupled by many bound cross-links, to a state of nearly independent filaments with only a few bound cross-links. For a bundle consisting of more than two filaments, a series of first-order transitions is observed. The transitions are connected with the formation of an interface between regions of low and high cross-link densities. Combining umbrella sampling Monte Carlo simulations with analytical calculations, we present a detailed picture of how the competition between cross-link shearing and filament stretching drives the transitions. We also find that, when the cross-links become soft, collective behavior is not observed: the cross-links then unbind one after the other leading to a smooth decrease of the average cross-link density.

  3. Comparative genome analysis of cortactin and HS1: the significance of the F-actin binding repeat domain

    PubMed Central

    van Rossum, Agnes GSH; Schuuring-Scholtes, Ellen; Seggelen, Vera van Buuren-van; Kluin, Philip M; Schuuring, Ed

    2005-01-01

    Background In human carcinomas, overexpression of cortactin correlates with poor prognosis. Cortactin is an F-actin-binding protein involved in cytoskeletal rearrangements and cell migration by promoting actin-related protein (Arp)2/3 mediated actin polymerization. It shares a high amino acid sequence and structural similarity to hematopoietic lineage cell-specific protein 1 (HS1) although their functions differ considerable. In this manuscript we describe the genomic organization of these two genes in a variety of species by a combination of cloning and database searches. Based on our analysis, we predict the genesis of the actin-binding repeat domain during evolution. Results Cortactin homologues exist in sponges, worms, shrimps, insects, urochordates, fishes, amphibians, birds and mammalians, whereas HS1 exists in vertebrates only, suggesting that both genes have been derived from an ancestor cortactin gene by duplication. In agreement with this, comparative genome analysis revealed very similar exon-intron structures and sequence homologies, especially over the regions that encode the characteristic highly conserved F-actin-binding repeat domain. Cortactin splice variants affecting this F-actin-binding domain were identified not only in mammalians, but also in amphibians, fishes and birds. In mammalians, cortactin is ubiquitously expressed except in hematopoietic cells, whereas HS1 is mainly expressed in hematopoietic cells. In accordance with their distinct tissue specificity, the putative promoter region of cortactin is different from HS1. Conclusions Comparative analysis of the genomic organization and amino acid sequences of cortactin and HS1 provides inside into their origin and evolution. Our analysis shows that both genes originated from a gene duplication event and subsequently HS1 lost two repeats, whereas cortactin gained one repeat. Our analysis genetically underscores the significance of the F-actin binding domain in cytoskeletal remodeling, which

  4. Direct binding of F actin to the cytoplasmic domain of the alpha 2 integrin chain in vitro

    NASA Technical Reports Server (NTRS)

    Kieffer, J. D.; Plopper, G.; Ingber, D. E.; Hartwig, J. H.; Kupper, T. S.

    1995-01-01

    The transmembrane integrins have been shown to interact with the cytoskeleton via noncovalent binding between cytoplasmic domains (CDs) of integrin beta chains and various actin binding proteins within the focal adhesion complex. Direct or indirect integrin alpha chain CD binding to the actin cytoskeleton has not been reported. We show here that actin, as an abundant constituent of focal adhesion complex proteins isolated from fibroblasts, binds strongly and specifically to alpha 2 CD, but not to alpha 1 CD peptide. Similar specific binding to alpha 2 CD peptide was seen for highly purified F actin, free of putative actin-binding proteins. The bound complex of actin and peptide was visualized directly by coprecipitation, and actin binding was abrogated by removal of a five amino acid sequence from the alpha 2 CD peptide. Our findings may explain the earlier observation that, while integrins alpha 2 beta 1 and alpha 1 beta 1 both bind to collagen, only alpha 2 beta 1 can mediate contraction of extracellular collagen matrices.

  5. A three-dimensional FRET analysis to construct an atomic model of the actin-tropomyosin-troponin core domain complex on a muscle thin filament.

    PubMed

    Miki, Masao; Makimura, Satoshi; Sugahara, Yasuyuki; Yamada, Ryuta; Bunya, Masashi; Saitoh, Takahiro; Tobita, Hidetaka

    2012-06-29

    It is essential to know the detailed structure of the thin filament to understand the regulation mechanism of striated muscle contraction. Fluorescence resonance energy transfer (FRET) was used to construct an atomic model of the actin-tropomyosin (Tm)-troponin (Tn) core domain complex. We generated single-cysteine mutants in the 167-195 region of Tm and in TnC, TnI, and the β-TnT 25-kDa fragment, and each was attached with an energy donor probe. An energy acceptor probe was located at actin Gln41, actin Cys374, or the actin nucleotide-binding site. From these donor-acceptor pairs, FRET efficiencies were determined with and without Ca(2+). Using the atomic coordinates for F-actin, Tm, and the Tn core domain, we searched all possible arrangements for Tm or the Tn core domain on F-actin to calculate the FRET efficiency for each donor-acceptor pair in each arrangement. By minimizing the squared sum of deviations for the calculated FRET efficiencies from the observed FRET efficiencies, we determined the location of Tm segment 167-195 and the Tn core domain on F-actin with and without Ca(2+). The bulk of the Tn core domain is located near actin subdomains 3 and 4. The central helix of TnC is nearly perpendicular to the F-actin axis, directing the N-terminal domain of TnC toward the actin outer domain. The C-terminal region in the I-T arm forms a four-helix-bundle structure with the Tm 175-185 region. After Ca(2+) release, the Tn core domain moves toward the actin outer domain and closer to the center of the F-actin axis.

  6. Cross-linking reconsidered: binding and cross-linking fields and the cellular response.

    PubMed Central

    Sulzer, B; De Boer, R J; Perelson, A S

    1996-01-01

    We analyze a model for the reversible cross-linking of cell surface receptors by a collection of bivalent ligands with different affinities for the receptor as would be found in a polyclonal anti-receptor serum. We assume that the amount of cross-linking determines, via a monotonic function, the rate at which cells become activated and divide. In addition to the density of receptors on the cell surface, two quantities, the binding field and the cross-linking field, are needed to characterize the cross-linking curve, i.e., the equilibrium concentration of cross-linked receptors plotted as a function of the total ligand site concentration. The binding field is the sum of all ligand site concentrations weighted by their respective binding affinities, and the cross-linking field is the sum of all ligand site concentrations weighted by the product of their respective binding and cross-linking affinity and the total receptor density. Assuming that the cross-linking affinity decreases if the binding affinity decreases, we find that the height of the cross-linking curve decreases, its width narrows, and its center shifts to higher ligand site concentrations as the affinities decrease. Moreover, when we consider cross-linking-induced proliferation, we find that there is a minimum cross-linking affinity that must be surpassed before a clone can expand. We also show that under many circumstances a polyclonal antiserum would be more likely than a monoclonal antibody to lead to cross-linking-induced proliferation. Images FIGURE 1 FIGURE 2 FIGURE 5 PMID:8785275

  7. Structured Post-IQ Domain Governs Selectivity of Myosin X for Fascin-Actin Bundles*

    PubMed Central

    Nagy, Stanislav; Rock, Ronald S.

    2010-01-01

    Without guidance cues, cytoskeletal motors would traffic components to the wrong destination with disastrous consequences for the cell. Recently, we identified a motor protein, myosin X, that identifies bundled actin filaments for transport. These bundles direct myosin X to a unique destination, the tips of cellular filopodia. Because the structural and kinetic features that drive bundle selection are unknown, we employed a domain-swapping approach with the nonselective myosin V to identify the selectivity module of myosin X. We found a surprising role of the myosin X tail region (post-IQ) in supporting long runs on bundles. Moreover, the myosin X head is adapted for initiating processive runs on bundles. We found that the tail is structured and biases the orientation of the two myosin X heads because a targeted insertion that introduces flexibility in the tail abolishes selectivity. Together, these results suggest how myosin motors may manage to read cellular addresses. PMID:20538587

  8. Structure of the 34 kDa F-actin-bundling protein ABP34 from Dictyostelium discoideum.

    PubMed

    Kim, Min-Kyu; Kim, Ji-Hye; Kim, Ji-Sun; Kang, Sa-Ouk

    2015-09-01

    The crystal structure of the 34 kDa F-actin-bundling protein ABP34 from Dictyostelium discoideum was solved by Ca(2+)/S-SAD phasing and refined at 1.89 Å resolution. ABP34 is a calcium-regulated actin-binding protein that cross-links actin filaments into bundles. Its in vitro F-actin-binding and F-actin-bundling activities were confirmed by a co-sedimentation assay and transmission electron microscopy. The co-localization of ABP34 with actin in cells was also verified. ABP34 adopts a two-domain structure with an EF-hand-containing N-domain and an actin-binding C-domain, but has no reported overall structural homologues. The EF-hand is occupied by a calcium ion with a pentagonal bipyramidal coordination as in the canonical EF-hand. The C-domain structure resembles a three-helical bundle and superposes well onto the rod-shaped helical structures of some cytoskeletal proteins. Residues 216-244 in the C-domain form part of the strongest actin-binding sites (193-254) and exhibit a conserved sequence with the actin-binding region of α-actinin and ABP120. Furthermore, the second helical region of the C-domain is kinked by a proline break, offering a convex surface towards the solvent area which is implicated in actin binding. The F-actin-binding model suggests that ABP34 binds to the side of the actin filament and residues 216-244 fit into a pocket between actin subdomains -1 and -2 through hydrophobic interactions. These studies provide insights into the calcium coordination in the EF-hand and F-actin-binding site in the C-domain of ABP34, which are associated through interdomain interactions. PMID:26327373

  9. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, W.P. Jr.; Apen, P.G.; Mitchell, M.A.

    1998-01-20

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes. 1 fig.

  10. Cross-linked structure of network evolution

    SciTech Connect

    Bassett, Danielle S.; Wymbs, Nicholas F.; Grafton, Scott T.; Porter, Mason A.; Mucha, Peter J.

    2014-03-15

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  11. Cross-Linking Studies of Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc

    2000-01-01

    Tetragonal chicken egg white crystals consist of 4(sub 3) helices running in alternating directions, the helix rows having a two fold symmetry with each other. The unit cell consists of one complete tetrameric turn from each of two adjacent helices (an octamer). PBC analysis indicates that the helix intermolecular bonds are the strongest in the crystal, therefore likely formed first. AFM analysis of the (110) surface shows only complete helices, no half steps or bisected helices being found, while AFM line scans to measure the growth step increments show that they are multiples of the 4(sub 3) helix tetramer dimensions. This supports our thesis that the growth units are in fact multiples of the four molecule 4(sub 3) helix unit, the "average" growth unit size for the (110) face being an octamer (two turns about the helix) and the (101) growth unit averaging about the size of a hexamer. In an effort to better understand the species involved in the crystal nucleation and growth process, we have initiated an experimental program to study the species formed in solution compared to what is found in the crystal through covalent cross-linking studies. These experiments use the heterobifunctional cross-linking agent aminoethyl-4-azidonitroanaline (AEANA). An aliphatic amine at one end is covalently attached to the protein by a carbodiimide-mediated reaction, and a photo reactive group at the other can be used to initiate crosslinking. Modifications to the parent structure can be used to alter the distance between the two reactive groups and thus the cross-linking agents "reach". In practice, the cross-linking agent is first coupled to the asp101 side chain through the amine group. Asp101 lies within the active site cleft, and previous work with fluorescent probes had shown that derivatives at this site still crystallize in the tetragonal space group. This was also found to be the case with the AEANA derivative, which gave red tetragonal crystals. The protein now has a

  12. Complications of Corneal Collagen Cross-Linking

    PubMed Central

    Dhawan, Shikha; Rao, Kavita; Natrajan, Sundaram

    2011-01-01

    Cross-linking of corneal collagen (CXL) is a promising approach for the treatment of keratoconus and secondary ectasia. Several long-term and short-term complications of CXL have been studied and documented. The possibility of a secondary infection after the procedure exists because the patient is subjected to epithelial debridement and the application of a soft contact lens. Formation of temporary corneal haze, permanent scars, endothelial damage, treatment failure, sterile infiltrates, and herpes reactivation are the other reported complications of this procedure. Cross-linking is a low-invasive procedure with low complication and failure rate but it may have direct or primary complications due to incorrect technique application or incorrect patient's inclusion and indirect or secondary complications related to therapeutic soft contact lens, patient's poor hygiene, and undiagnosed concomitant ocular surface diseases. PMID:22254130

  13. Positive tone cross-linked resists based on photoacid inhibition of cross linking

    NASA Astrophysics Data System (ADS)

    Lawson, Richard A.; Chun, Jun Sung; Neisser, Mark; Tolbert, Laren M.; Henderson, Clifford L.

    2014-03-01

    A resist imaging design that utilizes photoacid inhibition of cationic polymerization and cross-linking during a postexposure bake step has been studied. The key to the design approach is the use of two different polymerization catalysts/initiators: (1) a photoacid produced from a photoacid generator (PAG) upon exposure of the resist that can result in polymerization and cross-linking of the resist matrix and (2) a thermal cross-linking catalyst (TCC) designed to thermally catalyze epoxide-phenol cross-linking. The TCC can be chosen from a variety of compounds such as triphenylphosphine (TPP) or imidazole. When only one of these catalysts (e.g TPP or photoacid) is present in an epoxide and phenol containing resist matrix, it will individually catalyze cross-linking. When they are present together, they effectively quench one another and little to no cross-linking occurs. This approach can be used to switch the tone of a resist from negative (photoacid catalyzed) to positive (TCC catalyzed and photoacid inhibited). The effect of the ratio of TCC:PAG was examined and the optimal ratio for positive tone behavior was determined. Resist contrast can be modified by optimization of epoxide:phenol ratio in the formulation. Dual tone behavior with positive tone at low dose and negative tone at higher doses can be observed in certain formulation conditions. Initial EUV patterning shows poor results, but the source of the poor imaging is not yet understood.

  14. Collagen cross-linking in thin corneas

    PubMed Central

    Padmanabhan, Prema; Dave, Abhishek

    2013-01-01

    Collagen cross-linking (CXL) has become the standard of care for progressive keratoconus, after numerous clinical studies have established its efficacy and safety in suitably selected eyes. The standard protocol is applicable in eyes which have a minimum corneal thickness of 400 μm after epithelial debridement. This prerequisite was stipulated to protect the corneal endothelium and intraocular tissues from the deleterious effect of ultraviolet-A (UVA) radiation. However, patients with keratoconus often present with corneal thickness of less than 400 μm and could have otherwise benefited from this procedure. A few modifications of the standard procedure have been suggested to benefit these patients without a compromise in safety. Transepithelial cross-linking, pachymetry-guided epithelial debridement before cross-linking, and the use of hypoosmolar riboflavin are some of the techniques that have been attempted. Although clinical data is limited at the present time, these techniques are worth considering in patients with thin corneas. Further studies are needed to scientifically establish their efficacy and safety. PMID:23925328

  15. Determination of protein conformation by isotopically labelled cross-linking and dedicated software

    NASA Astrophysics Data System (ADS)

    Nielsen, Tina; Thaysen-Andersen, Morten; Larsen, Nanna; Jørgensen, Flemming S.; Houen, Gunnar; Højrup, Peter

    2007-12-01

    , a few corrections to a model of calreticulin obtained by homology modelling using calnexin as template can be suggested. Furthermore, the cross-links show that the C-terminal of the protein continues along the core region opposite the P-domain for at least 11 residues beyond the known structure. In addition, it was observed that the conformation of CRT does not change significantly in the presence or absence of the divalent ions, Ca2+ and Zn2+.

  16. Immunofluoresence of rabbit corneas following collagen cross-linking treatment with Riboflavin and Ultraviolet A

    PubMed Central

    Esquenazi, Salomon; He, Jiucheng; Li, Na; Bazan, Haydee E.P.

    2009-01-01

    Purpose To assess ultrastructural modifications in keratocytes and inflammatory cell response in rabbit corneas after riboflavin and ultraviolet A (UVA) exposure using immunoflurescence microscopy. Methods Twenty adult New Zealand albino rabbits weighing 2.0 to 3.0 kg were used in this study. Two rabbits served as controls. The animals had their epithelia removed and were cross-linked with riboflavin 0.1% solution (10mgs riboflavin-5-phosphate in 10ml 20% dextran-T-500) applied every 3 minutes for 30 minutes, and exposed to UVA (360 nm, 3 mW/cm2) for 30 minutes. Four rabbits were humanely euthanized at each time point of 1, 3 and 11 days and at 3 and 5 weeks after the procedure. Immunohistochemestry studies of thin sections of each cornea were performed using TUNEL staining, Alpha smooth muscle actin (α-SMA), CD-3, myeloperoxidase (MPO) antibodies and DAPI counterstaining. In another experiment six additional rabbits were treated as above, and after 10 days of cross-linking, 5 μl of lipopolysaccharide (LPS) endotoxin (1μg/ml) was injected in the mid stroma. Results Cross-linked corneas showed early stromal edema. By 5 weeks, complete resolution of the edema and a pronounced highly organized anterior 200 μm fluorescent zone was observed. TUNEL staining showed keratocyte death by both necrosis and apoptosis between day 1 and 3 after cross-linking. At day 1 the limbal area close to the cross linking zone showed some inflammatory cells as well as α-SMA positive cells, indicative of the presence of myofibroblasts. By day 3 some myofibroblasts had migrated to the area beneath the cross linked stroma. Between day 3 and 5 weeks there was an increase in α-SMA staining in the area surrounding the cross linked stroma. The area of cross linking remained acellular up to 5 weeks. Conclusions Collagen cross-linking results in early edema, keratocyte apoptosis and necrosis, appearance of inflammatory cells in the surrounding area of treatment and transformation of

  17. Effect of Ca2+-Mg2+ exchange on the flexibility and/or conformation of the small domain in monomeric actin.

    PubMed

    Nyitrai, M; Hild, G; Lakos, Z; Somogyi, B

    1998-05-01

    A fluorescence resonance energy transfer (FRET) parameter, f' (defined as the average transfer efficiency, (E), normalized by the actual fluorescence intensity of the donor in the presence of acceptor, F(DA)), was previously shown to be capable of monitoring both changes in local flexibility of the protein matrix and major conformational transitions. The temperature profile of this parameter was used to detect the change of the protein flexibility in the small domain of the actin monomer (G-actin) upon the replacement of Ca2+ by Mg2+. The Cys-374 residue of the actin monomer was labeled with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (IAEDANS) to introduce a fluorescence donor and the Lys-61 residue with fluorescein-5-isothiocyanate (FITC) to serve as an acceptor. The f' increases with increasing temperature over the whole temperature range for Mg-G-actin. This parameter increases similarly in the case of Ca-G-actin up to 26 degrees C, whereas an opposite tendency appears above this temperature. These data indicate that there is a conformational change in Ca-G-actin above 26 degrees C that was not detected in the case of Mg-G-actin. In the temperature range between 6 degrees C and 26 degrees C the slope of the temperature profile of f' is the same for Ca-G-actin and Mg-G-actin, suggesting that the flexibility of the protein matrix between the two labels is identical in the two forms of actin.

  18. Contraction of cross-linked actomyosin bundles

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Natsuhiko; Marcq, Philippe

    2012-08-01

    Cross-linked actomyosin bundles retract when severed in vivo by laser ablation, or when isolated from the cell and micromanipulated in vitro in the presence of ATP. We identify the timescale for contraction as a viscoelastic time τ, where the viscosity is due to (internal) protein friction. We obtain an estimate of the order of magnitude of the contraction time τ ≈ 10-100 s, consistent with available experimental data for circumferential microfilament bundles and stress fibers. Our results are supported by an exactly solvable, hydrodynamic model of a retracting bundle as a cylinder of isotropic, active matter, from which the order of magnitude of the active stress is estimated.

  19. Evidence for physical and functional interactions among two Saccharomyces cerevisiae SH3 domain proteins, an adenylyl cyclase-associated protein and the actin cytoskeleton.

    PubMed Central

    Lila, T; Drubin, D G

    1997-01-01

    In a variety of organisms, a number of proteins associated with the cortical actin cytoskeleton contain SH3 domains, suggesting that these domains may provide the physical basis for functional interactions among structural and regulatory proteins in the actin cytoskeleton. We present evidence that SH3 domains mediate at least two independent functions of the Saccharomyces cerevisiae actin-binding protein Abp1p in vivo. Abp1p contains a single SH3 domain that has recently been shown to bind in vitro to the adenylyl cyclase-associated protein Srv2p. Immunofluorescence analysis of Srv2p subcellular localization in strains carrying mutations in either ABP1 or SRV2 reveals that the Abp1p SH3 domain mediates the normal association of Srv2p with the cortical actin cytoskeleton. We also show that a site in Abp1p itself is specifically bound by the SH3 domain of the actin-associated protein Rvs167p. Genetic analysis provides evidence that Abp1p and Rvs167p have functions that are closely interrelated. Abp1 null mutations, like rvs167 mutations, result in defects in sporulation and reduced viability under certain suboptimal growth conditions. In addition, mutations in ABP1 and RVS167 yield similar profiles of genetic "synthetic lethal" interactions when combined with mutations in genes encoding other cytoskeletal components. Mutations which specifically disrupt the SH3 domain-mediated interaction between Abp1p and Srv2p, however, show none of the shared phenotypes of abp1 and rvs167 mutations. We conclude that the Abp1p SH3 domain mediates the association of Srv2p with the cortical actin cytoskeleton, and that Abp1p performs a distinct function that is likely to involve binding by the Rvs167p SH3 domain. Overall, work presented here illustrates how SH3 domains can integrate the activities of multiple actin cytoskeleton proteins in response to varying environmental conditions. Images PMID:9190214

  20. Corneal collagen cross-linking: A review

    PubMed Central

    O’Brart, David P.S.

    2014-01-01

    The aim was to review the published literature on corneal collagen cross-linking. The emphasis was on the seminal publications, systemic reviews, meta-analyses and randomized controlled trials. Where such an evidence did not exist, selective large series cohort studies, case controlled studies and case series with follow-up preferably greater than 12 months were included. Riboflavin/Ultraviolet A (UVA) corneal collagen cross-linking appears to be the first treatment modality to halt the progression of keratoconus and other corneal ectatic disorders with improvement in visual, keratometric and topographic parameters documented by most investigators. Its precise mechanism of action at a molecular level is as yet not fully determined. Follow-up is limited to 4–6 years at present but suggests continued stability and improvement in corneal shape with time. Most published data are with epithelium-off techniques. Epithelium-on studies suggest some efficacy but less than with the epithelium-off procedures and long-term data are not currently available. The use of Riboflavin/UVA CXL for the management of infectious and non-infectious keratitis appears very promising. Its use in the management of bullous keratopathy is equivocal. Investigation of other methodologies for CXL are under investigation. PMID:25000866

  1. Reversible and irreversible cross-linking of immunoglobulin heavy chains through their carbohydrate residues.

    PubMed Central

    Heimgartner, U; Kozulić, B; Mosbach, K

    1990-01-01

    After periodate oxidation and incubation with a dihydrazide, cross-linking of the two heavy chains of immunoglobulins G from several species proceeds specifically through their oligosaccharides. We have used malonic acid dihydrazide, adipic acid dihydrazide and dithiodipropionic acid dihydrazide. The last compound is introduced in this work as a cleavable-carbohydrate-specific cross-linker. It was found that in rabbit and human immunoglobulins the degree of cross-linking was strongly dependent on the oxidation conditions but only very weakly dependent on the concentration and size of the dihydrazides. Papain cleavage of the cross-linked rabbit IgG indicated that the cross-linking occurred predominantly, if not exclusively, in the Fc region, probably through the two glycans linked to Asn-297 in the CH2 domain of each of the two heavy chains. The immunoglobulins from sheep, pig, goat and guinea pig show a comparable cross-linking pattern, indicating that the sugar chains from these immunoglobulins have a spatial structure closely related to that of rabbit and human IgG. When dithiodipropionic acid dihydrazide was used as the cross-linker, the cross-link could be cleaved by mercaptoethanol. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:2111130

  2. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase*

    PubMed Central

    Bihan, Dominique; Bonna, Arkadiusz; Rubin, Kristofer; Farndale, Richard W.

    2016-01-01

    The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites. PMID:26893379

  3. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase.

    PubMed

    Kalamajski, Sebastian; Bihan, Dominique; Bonna, Arkadiusz; Rubin, Kristofer; Farndale, Richard W

    2016-04-01

    The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites.

  4. [Riboflavin UVA cross-linking for keratoconus].

    PubMed

    Maier, P; Reinhard, T

    2013-09-01

    Keratoconus is a progressive, ectatic disease of the cornea leading to thinning and highly irregular astigmatism. Until recently all treatment options, such as prescription of glasses or contact lenses were symptomatic and neither keratoplasty nor the implantation of intracorneal rings can heal the disease. Riboflavin ultraviolet A (UVA) collagen cross-linking (CXL) cannot heal keratoconus either but promises to halt the progression. The therapeutic principle is a photochemical reaction of riboflavin and UVA light leading to free oxygen radicals in the corneal stroma that induce covalent linking of the collagen fibrils. This stiffening effect should stop the progression. After the first reports at the end of the 1990s the treatment was widely used and many case series show that CXL can be effective in stopping disease progression in some patients. However, randomized, controlled multicenter trials showing high evidence of the treatment effectiveness are rare. This report includes a review of the literature regarding treatment effectiveness, indications and new developments. PMID:23760423

  5. Corneal cross-linking treatment of keratoconus

    PubMed Central

    Farjadnia, Mahgol; Naderan, Mohammad

    2015-01-01

    Keratoconus as the most common cause of ectasia is one of the leading cause of corneal transplants worldwide. The current available therapies do not modify the underlying pathogenesis of the disease, and none of the available approaches but corneal transplant hinder the ongoing ectasia. Several studies document Crosslink defect between collagen fibrils in the pathogenesis of keratoconus. Collagen cross link is a relatively new approach that with the application of the riboflavin and ultraviolet A, new covalent bands reform. Subjective and objective results following this method seem to be promising. Endothelial damage besides other deep structural injury, which is the major concern of this technique have not yet been reported, when applying the standard method. PMID:26622134

  6. Riboflavin for corneal cross-linking.

    PubMed

    O'Brart, D P S

    2016-06-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet A (UVA) radiation is the first therapeutic modality that appears to arrest the progression of keratoconus and other corneal ectasias. Riboflavin is central to the process, acting as a photosensitizer for the production of oxygen singlets and riboflavin triplets. These free radicals drive the CXL process within the proteins of the corneal stroma, altering its biomechanical properties. Riboflavin also absorbs the majority of the UVA radiation, which is potentially cytotoxic and mutagenic, within the anterior stroma, preventing damage to internal ocular structures, such as the corneal endothelium, lens and retina. Clinical studies report cessation of ectatic progression in over 90% of cases and the majority document significant improvements in visual, keratometric and topographic parameters. Clinical follow-up is limited to 5-10 years, but suggests sustained stability and enhancement in corneal shape. Sight-threatening complications are rare. The optimal stromal riboflavin dosage for CXL is as yet undetermined. PMID:27458610

  7. Cross-links between stereocilia in the guinea pig cochlea.

    PubMed

    Furness, D N; Hackney, C M

    1985-05-01

    Cross-links between stereocilia on guinea pig cochlear hair cells have been examined using high resolution scanning (SEM) and transmission electron microscopy (TEM), confirming recent descriptions of these structures. Links from the tips of shorter stereocilia to the sides of the adjacent taller stereocilia (upward-pointing links), between stereocilia of the same row (side-to-side links) and between adjacent rows (row-to-row links), have been observed on inner and outer hair cells. These links have been seen in material fixed using (1) glutaraldehyde only, (2) glutaraldehyde/osmium and (3) glutaraldehyde/osmium/thiocarbohydrazide (a technique which makes gold coating unnecessary). Upward-pointing links were seen less frequently, and the surfaces of stereocilia and microvilli were smoother after fixation (3) compared with fixations (1) and (2) in which they were usually roughened in appearance. In TEM, side-to-side and row-to-row links form a regular lattice between stereocilia, and consist of a number of strands. Upward-pointing links consist of a single strand, the ends of which are associated with electron-dense material. This lies between the stereociliary membrane and the actin filament bundle, at the tip of the shorter stereocilium and the side of the taller stereocilium.

  8. Actin Filaments Are Involved in the Coupling of V0-V1 Domains of Vacuolar H+-ATPase at the Golgi Complex.

    PubMed

    Serra-Peinado, Carla; Sicart, Adrià; Llopis, Juan; Egea, Gustavo

    2016-04-01

    We previously reported that actin-depolymerizing agents promote the alkalization of the Golgi stack and thetrans-Golgi network. The main determinant of acidic pH at the Golgi is the vacuolar-type H(+)-translocating ATPase (V-ATPase), whose V1domain subunitsBandCbind actin. We have generated a GFP-tagged subunitB2construct (GFP-B2) that is incorporated into the V1domain, which in turn is coupled to the V0sector. GFP-B2 subunit is enriched at distal Golgi compartments in HeLa cells. Subcellular fractionation, immunoprecipitation, and inversal FRAP experiments show that the actin depolymerization promotes the dissociation of V1-V0domains, which entails subunitB2translocation from Golgi membranes to the cytosol. Moreover, molecular interaction between subunitsB2andC1and actin were detected. In addition, Golgi membrane lipid order disruption byd-ceramide-C6 causes Golgi pH alkalization. We conclude that actin regulates the Golgi pH homeostasis maintaining the coupling of V1-V0domains of V-ATPase through the binding of microfilaments to subunitsBandCand preserving the integrity of detergent-resistant membrane organization. These results establish the Golgi-associated V-ATPase activity as the molecular link between actin and the Golgi pH. PMID:26872971

  9. Actin Filaments Are Involved in the Coupling of V0-V1 Domains of Vacuolar H+-ATPase at the Golgi Complex.

    PubMed

    Serra-Peinado, Carla; Sicart, Adrià; Llopis, Juan; Egea, Gustavo

    2016-04-01

    We previously reported that actin-depolymerizing agents promote the alkalization of the Golgi stack and thetrans-Golgi network. The main determinant of acidic pH at the Golgi is the vacuolar-type H(+)-translocating ATPase (V-ATPase), whose V1domain subunitsBandCbind actin. We have generated a GFP-tagged subunitB2construct (GFP-B2) that is incorporated into the V1domain, which in turn is coupled to the V0sector. GFP-B2 subunit is enriched at distal Golgi compartments in HeLa cells. Subcellular fractionation, immunoprecipitation, and inversal FRAP experiments show that the actin depolymerization promotes the dissociation of V1-V0domains, which entails subunitB2translocation from Golgi membranes to the cytosol. Moreover, molecular interaction between subunitsB2andC1and actin were detected. In addition, Golgi membrane lipid order disruption byd-ceramide-C6 causes Golgi pH alkalization. We conclude that actin regulates the Golgi pH homeostasis maintaining the coupling of V1-V0domains of V-ATPase through the binding of microfilaments to subunitsBandCand preserving the integrity of detergent-resistant membrane organization. These results establish the Golgi-associated V-ATPase activity as the molecular link between actin and the Golgi pH.

  10. Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site.

    PubMed Central

    Gary, R; Bretscher, A

    1995-01-01

    Ezrin is a membrane-cytoskeletal linking protein that is concentrated in actin-rich surface structures. It is closely related to the microvillar proteins radixin and moesin and to the tumor suppressor merlin/schwannomin. Cell extracts contain ezrin dimers and ezrin-moesin heterodimers in addition to monomers. Truncated ezrin fusion proteins were assayed by blot overlay to determine which regions mediate self-association. Here we report that ezrin self-association occurs by head-to-tail joining of distinct N-terminal and C-terminal domains. It is likely that these domains, termed N- and C-ERMADs (ezrin-radixin-moesin association domain), are responsible for homotypic and heterotypic associations among ERM family members. The N-ERMAD of ezrin resided within amino acids 1-296; deletion of 10 additional residues resulted in loss of activity. The C-ERMAD was mapped to the last 107 amino acids of ezrin, residues 479-585. The two residues at the C-terminus were required for activity, and the region from 530-585 was insufficient. The C-ERMAD was masked in the native monomer. Exposure of this domain required unfolding ezrin with sodium dodecyl sulfate or expressing the domain as part of a truncated protein. Intermolecular association could not occur unless the C-ERMAD had been made accessible to its N-terminal partner. It can be inferred that dimerization in vivo requires an activation step that exposes this masked domain. The conformationally inaccessible C-terminal region included the F-actin binding site, suggesting that this activity is likewise regulated by masking. Images PMID:7579708

  11. The tail domain of myosin M catalyses nucleotide exchange on Rac1 GTPases and can induce actin-driven surface protrusions.

    PubMed

    Geissler, H; Ullmann, R; Soldati, T

    2000-05-01

    Members of the myosin superfamily play crucial roles in cellular processes including management of the cortical cytoskeleton, organelle transport and signal transduction. GTPases of the Rho family act as key control elements in the reorganization of the actin cytoskeleton in response to growth factors, and other functions such as membrane trafficking, transcriptional regulation, growth control and development. Here, we describe a novel unconventional myosin from Dictyostelium discoideum, MyoM. Primary sequence analysis revealed that it has the appearance of a natural chimera between a myosin motor domain and a guanine nucleotide exchange factor (GEF) domain for Rho GTPases. The functionality of both domains was established. Binding of the motor domain to F-actin was ATP-dependent and potentially regulated by phosphorylation. The GEF domain displayed selective activity on Rac1-related GTPases. Overexpression, rather than absence of MyoM, affected the cell morphology and viability. Particularly in response to hypo-osmotic stress, cells overexpressing the MyoM tail domain extended massive actin-driven protrusions. The GEF was enriched at the tip of growing protuberances, probably through its pleckstrin homology domain. MyoM is the first unconventional myosin containing an active Rac-GEF domain, suggesting a role at the interface of Rac-mediated signal transduction and remodeling of the actin cytoskeleton. PMID:11208126

  12. Cross-link guided molecular modeling with ROSETTA.

    PubMed

    Kahraman, Abdullah; Herzog, Franz; Leitner, Alexander; Rosenberger, George; Aebersold, Ruedi; Malmström, Lars

    2013-01-01

    Chemical cross-links identified by mass spectrometry generate distance restraints that reveal low-resolution structural information on proteins and protein complexes. The technology to reliably generate such data has become mature and robust enough to shift the focus to the question of how these distance restraints can be best integrated into molecular modeling calculations. Here, we introduce three workflows for incorporating distance restraints generated by chemical cross-linking and mass spectrometry into ROSETTA protocols for comparative and de novo modeling and protein-protein docking. We demonstrate that the cross-link validation and visualization software Xwalk facilitates successful cross-link data integration. Besides the protocols we introduce XLdb, a database of chemical cross-links from 14 different publications with 506 intra-protein and 62 inter-protein cross-links, where each cross-link can be mapped on an experimental structure from the Protein Data Bank. Finally, we demonstrate on a protein-protein docking reference data set the impact of virtual cross-links on protein docking calculations and show that an inter-protein cross-link can reduce on average the RMSD of a docking prediction by 5.0 Å. The methods and results presented here provide guidelines for the effective integration of chemical cross-link data in molecular modeling calculations and should advance the structural analysis of particularly large and transient protein complexes via hybrid structural biology methods. PMID:24069194

  13. Energetic modeling and single-molecule verification of dynamic regulation on receptor complexes by actin corrals and lipid raft domains

    NASA Astrophysics Data System (ADS)

    Lin, Chien Y.; Huang, Jung Y.; Lo, Leu-Wei

    2014-12-01

    We developed an energetic model by integrating the generalized Langevin equation with the Cahn-Hilliard equation to simulate the diffusive behaviors of receptor proteins in the plasma membrane of a living cell. Simulation results are presented to elaborate the confinement effects from actin corrals and protein-induced lipid domains. Single-molecule tracking data of epidermal growth factor receptors (EGFR) acquired on live HeLa cells agree with the simulation results and the mechanism that controls the diffusion of single-molecule receptors is clarified. We discovered that after ligand binding, EGFR molecules move into lipid nanodomains. The transition rates between different diffusion states of liganded EGFR molecules are regulated by the lipid domains. Our method successfully captures dynamic interactions of receptors at the single-molecule level and provides insight into the functional architecture of both the diffusing EGFR molecules and their local cellular environment.

  14. Energetic modeling and single-molecule verification of dynamic regulation on receptor complexes by actin corrals and lipid raft domains.

    PubMed

    Lin, Chien Y; Huang, Jung Y; Lo, Leu-Wei

    2014-12-01

    We developed an energetic model by integrating the generalized Langevin equation with the Cahn-Hilliard equation to simulate the diffusive behaviors of receptor proteins in the plasma membrane of a living cell. Simulation results are presented to elaborate the confinement effects from actin corrals and protein-induced lipid domains. Single-molecule tracking data of epidermal growth factor receptors (EGFR) acquired on live HeLa cells agree with the simulation results and the mechanism that controls the diffusion of single-molecule receptors is clarified. We discovered that after ligand binding, EGFR molecules move into lipid nanodomains. The transition rates between different diffusion states of liganded EGFR molecules are regulated by the lipid domains. Our method successfully captures dynamic interactions of receptors at the single-molecule level and provides insight into the functional architecture of both the diffusing EGFR molecules and their local cellular environment. PMID:25481171

  15. The N-terminal actin-binding tandem calponin-homology (CH) domain of dystrophin is in a closed conformation in solution and when bound to F-actin.

    PubMed

    Singh, Surinder M; Mallela, Krishna M G

    2012-11-01

    Deficiency of the vital muscle protein dystrophin triggers Duchenne/Becker muscular dystrophy, but the structure-function relationship of dystrophin is poorly understood. To date, molecular structures of three dystrophin domains have been determined, of which the N-terminal actin-binding domain (N-ABD or ABD1) is of particular interest. This domain is composed of two calponin-homology (CH) domains, which form an important class of ABDs in muscle proteins. A previously determined x-ray structure indicates that the dystrophin N-ABD is a domain-swapped dimer, with each monomer adopting an extended, open conformation in which the two CH domains do not interact. This structure is controversial because it contradicts functional studies and known structures of similar ABDs from other muscle proteins. Here, we investigated the solution conformation of the dystrophin N-ABD using a very simple and elegant technique of pyrene excimer fluorescence. Using the wild-type protein, which contains two cysteines, and the corresponding single-cysteine mutants, we show that the protein is a monomer in solution and is in a closed conformation in which the two CH domains seem to interact, as observed from the excimer fluorescence of pyrene-labeled wild-type protein. Excimer fluorescence was also observed in its actin-bound form, indicating that the dystrophin N-ABD binds to F-actin in a closed conformation. Comparison of the dystrophin N-ABD conformation with other ABDs indicates that the tandem CH domains in general may be monomeric in solution and predominantly occur in closed conformation, whereas their actin-bound conformations may differ.

  16. Corneal Cross-Linking and Safety Issues

    PubMed Central

    Spoerl, Eberhard; Hoyer, Anne; Pillunat, Lutz E; Raiskup, Frederik

    2011-01-01

    Purpose: To compile the safety aspects of the corneal collagen cross-linking (CXL) by means of the riboflavin/UVA (370 nm) approach. Materials and Methodology: Analysis of the current treatment protocol with respect to safety during CXL. Results: The currently used UVA dose density of 5.4 J/cm2 and the corresponding irradiance of 3 mW/cm2 are below the known damage thresholds of UVA for the corneal endothelium, lens, and retina. Regarding the photochemical damages due to the free radicals the damage threshold for endothelial cells is 0.35 mW/cm2. In a 400μm thick corneal stroma saturated with riboflavin, the irradiance at the endothelial level is about 0.18 mW/cm2, which is a factor of 2 smaller than the damage threshold. Conclusion: As long as the corneal stroma treated has a minimal thickness of 400 microns (as recommended), neither corneal endothelium nor deeper structures such as lens and retina will suffer any damages. The light source should provide a homogenous irradiance avoiding hot spots. PMID:21399770

  17. Collagen cross-linking and resorption: effect of glutaraldehyde concentration.

    PubMed

    Roe, S C; Milthorpe, B K; Schindhelm, K

    1990-12-01

    Cross-linked collagen bioprostheses usually are designed to be inert and nonresorbable, resulting in fatigue and wear failure in high-stress environments. Eventual replacement of the implant, although minimizing strength loss during resorption, would result in a graft with reparative ability. Kangaroo tail tendon (KTT) partially cross-linked with glutaraldehyde (GA) was evaluated in vitro for resistance to bacterial collagenase digestion and in vivo for biocompatibility and resorbability in an intramuscular implant assay. Cross-linking was quantified by thermal denaturation studies. Incomplete cross-linking was achieved with concentrations of GA less than 0.1% (w/v). KTT cross-linked in greater than or equal to 0.05% GA were collagenase resistant being incompletely digested after 240 h. Cross-linking of KTT with low concentrations of GA resulted in partial collagenase resistance and slowed resorption. PMID:2126427

  18. Cross-Linking Aromatic Polymers With Ionizing Radiation

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L.; Havens, Stephen J.

    1987-01-01

    Resistance to heat and solvents increased. Certain aromatic polymers containing radiation-sensitive methylene groups cross-linked through methylene groups upon exposure to ionizing radiation. Cross-linked polymers resistant to most organic solvents and generally more resistant to high temperatures, with less tendency to creep under load. No significant embrittlement of parts fabricated from these polymers when degree of cross-linking, as controlled by irradiation dose, kept at moderate level.

  19. xiNET: Cross-link Network Maps With Residue Resolution*

    PubMed Central

    Combe, Colin W.; Fischer, Lutz; Rappsilber, Juri

    2015-01-01

    xiNET is a visualization tool for exploring cross-linking/mass spectrometry results. The interactive maps of the cross-link network that it generates are a type of node-link diagram. In these maps xiNET displays: (1) residue resolution positional information including linkage sites and linked peptides; (2) all types of cross-linking reaction product; (3) ambiguous results; and, (4) additional sequence information such as domains. xiNET runs in a browser and exports vector graphics which can be edited in common drawing packages to create publication quality figures. Availability: xiNET is open source, released under the Apache version 2 license. Results can be viewed by uploading data to http://crosslinkviewer.org/ or by downloading the software from http://github.com/colin-combe/crosslink-viewer and running it locally. PMID:25648531

  20. Site-specific cross-linking of proteins through tyrosine hexahistidine tags.

    PubMed

    Stayner, R Scott; Min, Dong-Joon; Kiser, Patrick F; Stewart, Russell J

    2005-01-01

    The genetic addition of hexahistidine (H(6)) tags is widely used to isolate recombinant proteins by immobilized metal-affinity chromatography (IMAC). Addition of a tyrosine residue to H(6) tags enabled proteins to be covalently cross-linked under mild conditions in a manner similar to the natural, site-specific cross-linking of tyrosines into dityrosine. A series of seven hexahistidine tags with tyrosines placed in various positions (H(6)Y tags) were added to the amino terminus of the I28 immunoglobulin domain of the human cardiac titin. The H(6)Y-tagged I28 dimerized in the presence of excess Ni(2+) with a K(D) of 200 microM. Treatment of Ni(2+)-dimerized H(6)Y-I28 with an oxidant, monoperoxyphthalic acid (MMPP) or sodium sulfite, resulted in covalent protein multimerization through chelated Ni(2+)-catalyzed cross-linking of the Y residues engineered into the H(6) tag. The protein oligomerization was observed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE). The presence of dityrosine in the cross-linked proteins was confirmed by fluorescence emission at 410 nm. Proteins lacking the Y residue in the H(6) tag treated with the same oxidative conditions did not cross-link or exhibit dityrosine fluorescence, despite the presence of an endogenous Y residue. The method may have potential uses in other protein conjugation applications such as protein labeling and interfacial immobilization of proteins on artificial surfaces. PMID:16287262

  1. Systematic mutational analysis of the amino-terminal domain of the Listeria monocytogenes ActA protein reveals novel functions in actin-based motility.

    PubMed

    Lauer, P; Theriot, J A; Skoble, J; Welch, M D; Portnoy, D A

    2001-12-01

    The Listeria monocytogenes ActA protein acts as a scaffold to assemble and activate host cell actin cytoskeletal factors at the bacterial surface, resulting in directional actin polymerization and propulsion of the bacterium through the cytoplasm. We have constructed 20 clustered charged-to-alanine mutations in the NH2-terminal domain of ActA and replaced the endogenous actA gene with these molecular variants. These 20 clones were evaluated in several biological assays for phenotypes associated with particular amino acid changes. Additionally, each protein variant was purified and tested for stimulation of the Arp2/3 complex, and a subset was tested for actin monomer binding. These specific mutations refined the two regions involved in Arp2/3 activation and suggest that the actin-binding sequence of ActA spans 40 amino acids. We also identified a 'motility rate and cloud-to-tail transition' region in which nine contiguous mutations spanning amino acids 165-260 caused motility rate defects and changed the ratio of intracellular bacteria associated with actin clouds and comet tails without affecting Arp2/3 activation. Several unusual motility phenotypes were associated with amino acid changes in this region, including altered paths through the cytoplasm, discontinuous actin tails in host cells and the tendency to 'skid' or dramatically change direction while moving. These unusual phenotypes illustrate the complexity of ActA functions that control the actin-based motility of L. monocytogenes.

  2. Systematic mutational analysis of the amino-terminal domain of the Listeria monocytogenes ActA protein reveals novel functions in actin-based motility.

    PubMed

    Lauer, P; Theriot, J A; Skoble, J; Welch, M D; Portnoy, D A

    2001-12-01

    The Listeria monocytogenes ActA protein acts as a scaffold to assemble and activate host cell actin cytoskeletal factors at the bacterial surface, resulting in directional actin polymerization and propulsion of the bacterium through the cytoplasm. We have constructed 20 clustered charged-to-alanine mutations in the NH2-terminal domain of ActA and replaced the endogenous actA gene with these molecular variants. These 20 clones were evaluated in several biological assays for phenotypes associated with particular amino acid changes. Additionally, each protein variant was purified and tested for stimulation of the Arp2/3 complex, and a subset was tested for actin monomer binding. These specific mutations refined the two regions involved in Arp2/3 activation and suggest that the actin-binding sequence of ActA spans 40 amino acids. We also identified a 'motility rate and cloud-to-tail transition' region in which nine contiguous mutations spanning amino acids 165-260 caused motility rate defects and changed the ratio of intracellular bacteria associated with actin clouds and comet tails without affecting Arp2/3 activation. Several unusual motility phenotypes were associated with amino acid changes in this region, including altered paths through the cytoplasm, discontinuous actin tails in host cells and the tendency to 'skid' or dramatically change direction while moving. These unusual phenotypes illustrate the complexity of ActA functions that control the actin-based motility of L. monocytogenes. PMID:11886549

  3. Rhamnogalacturonan-II cross-linking of plant pectins via boron bridges occurs during polysaccharide synthesis and/or secretion.

    PubMed

    Chormova, Dimitra; Messenger, David J; Fry, Stephen C

    2014-01-01

    Rhamnogalacturonan-II (RG-II), a domain of plant cell wall pectins, is able to cross-link with other RG-II domains through borate diester bridges. Although it is known to affect mechanical properties of the cell wall, the biochemical requirements and lifecycle of this cross-linking remain unclear. We developed a PAGE methodology to allow separation of monomeric and dimeric RG-II and used this to study the dynamics of cross-linking in vitro and in vivo. Rosa cells grown in medium with no added boron contained no RG-II dimers, although these re-appeared after addition of boron to the medium. However, other Rosa cultures which were unable to synthesize new polysaccharides did not show dimer formation. We conclude that RG-II normally becomes cross-linked intraprotoplasmically or during secretion, but not post-secretion.

  4. X-Ray Diffraction Studies of Cross Linked Chitosan With Different Cross Linking Agents For Waste Water Treatment Application

    NASA Astrophysics Data System (ADS)

    Julkapli, Nurhidayatullaili Muhd; Ahmad, Zulkifli; Akil, Hazizan Md

    2010-01-01

    Chitosan is a polysaccharide derived from N-deacetylation of chitin and receiving increased attention as metal ion absorbent in wastewater treatment application. To improve the performance of chitosan as an absorbent, the cross linking approach was applied. Introduction of cross-linking agent would break the crystal zone in chitosan system, making it less crystal and consequently enhanced the absorption area. Therefore, in this study, cross-linked chitosan were prepared using different of cross-linking agents. The chitosan powder was weighed, dissolved in acetic acid (0.1 M), and dropped slowly into absolute N-methyl pyyrolidone solvent containing cross-linking agent. The cross linking reaction was carried out in N2 environment at 150° C for 6 hours. X-ray diffraction (XRD) analysis was applied to characterize the crystallinity of native and cross linked chitosan. Generally, the XRD patterns of all types of chitosan show two crystalline peaks approximately at 10° and 20° (2θ). However, the cross linked chitosan with longer length of cross linking agents show lower and broader crystalline peaks as compare to those with shorter length. Similarly, the calculated crystalline index (Cr I) also showed this decreasing tendency.

  5. Radiation cross-linked polyolefin-insulated wire

    NASA Astrophysics Data System (ADS)

    Sano, K.; Ishitani, H.

    Because radiation cross-linked polyolefin has excellent mechanical heat resistance, its application limit can be expanded extremely by improving the resistance against heat oxidation and flame. This paper is concerning a halogen free radiation cross-linked polyolefin-insulated wire having excellent heat resistance and flameretardant property, which is used for appliances.

  6. Multi-Scale Modeling of Cross-Linked Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Odegard, G. M.; Herzog, M. N.; Gates, T. S.; Fay, C. C.

    2005-01-01

    The effect of cross-linking single-walled carbon nanotubes on the Young's modulus of a nanotube-reinforced composite is modeled with a multi-scale method. The Young's modulus is predicted as a function of nanotube volume fraction and cross-link density. In this method, the constitutive properties of molecular representative volume elements are determined using molecular dynamics simulation and equivalent-continuum modeling. The Young's modulus is subsequently calculated for cross-linked nanotubes in a matrix which consists of the unreacted cross-linking agent. Two different cross-linking agents are used in this study, one that is short and rigid (Molecule A), and one that is long and flexible (Molecule B). Direct comparisons between the predicted elastic constants are made for the models in which the nanotubes are either covalently bonded or not chemically bonded to the cross-linking agent. At a nanotube volume fraction of 10%, the Young's modulus of Material A is not affected by nanotube crosslinking, while the Young's modulus of Material B is reduced by 64% when the nanotubes are cross-linked relative to the non-cross-linked material with the same matrix.

  7. Cofilin-mediated actin dynamics promotes actin bundle formation during Drosophila bristle development

    PubMed Central

    Wu, Jing; Wang, Heng; Guo, Xuan; Chen, Jiong

    2016-01-01

    The actin bundle is an array of linear actin filaments cross-linked by actin-bundling proteins, but its assembly and dynamics are not as well understood as those of the branched actin network. Here we used the Drosophila bristle as a model system to study actin bundle formation. We found that cofilin, a major actin disassembly factor of the branched actin network, promotes the formation and positioning of actin bundles in the developing bristles. Loss of function of cofilin or AIP1, a cofactor of cofilin, each resulted in increased F-actin levels and severe defects in actin bundle organization, with the defects from cofilin deficiency being more severe. Further analyses revealed that cofilin likely regulates actin bundle formation and positioning by the following means. First, cofilin promotes a large G-actin pool both locally and globally, likely ensuring rapid actin polymerization for bundle initiation and growth. Second, cofilin limits the size of a nonbundled actin-myosin network to regulate the positioning of actin bundles. Third, cofilin prevents incorrect assembly of branched and myosin-associated actin filament into bundles. Together these results demonstrate that the interaction between the dynamic dendritic actin network and the assembling actin bundles is critical for actin bundle formation and needs to be closely regulated. PMID:27385345

  8. Cofilin-mediated actin dynamics promotes actin bundle formation during Drosophila bristle development.

    PubMed

    Wu, Jing; Wang, Heng; Guo, Xuan; Chen, Jiong

    2016-08-15

    The actin bundle is an array of linear actin filaments cross-linked by actin-bundling proteins, but its assembly and dynamics are not as well understood as those of the branched actin network. Here we used the Drosophila bristle as a model system to study actin bundle formation. We found that cofilin, a major actin disassembly factor of the branched actin network, promotes the formation and positioning of actin bundles in the developing bristles. Loss of function of cofilin or AIP1, a cofactor of cofilin, each resulted in increased F-actin levels and severe defects in actin bundle organization, with the defects from cofilin deficiency being more severe. Further analyses revealed that cofilin likely regulates actin bundle formation and positioning by the following means. First, cofilin promotes a large G-actin pool both locally and globally, likely ensuring rapid actin polymerization for bundle initiation and growth. Second, cofilin limits the size of a nonbundled actin-myosin network to regulate the positioning of actin bundles. Third, cofilin prevents incorrect assembly of branched and myosin-associated actin filament into bundles. Together these results demonstrate that the interaction between the dynamic dendritic actin network and the assembling actin bundles is critical for actin bundle formation and needs to be closely regulated.

  9. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1982-01-01

    Cross-linking methods were investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. The pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide - zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  10. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1983-01-01

    Cross-linking methods have been investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. Then pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide-zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  11. Cross-linked polyvinyl alcohol and method of making same

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Sheibley, D. W.; Philipp, W. H. (Inventor)

    1981-01-01

    A film-forming polyvinyl alcohol polymer is mixed with a polyaldehyde-polysaccharide cross-linking agent having at least two monosaccharide units and a plurality of aldehyde groups per molecule, perferably an average of at least one aldehyde group per monosaccharide units. The cross-linking agent, such as a polydialdehyde starch, is used in an amount of about 2.5 to 20% of the theoretical amount required to cross-link all of the available hydroxyl groups of the polyvinyl alcohol polymer. Reaction between the polymer and cross-linking agent is effected in aqueous acidic solution to produce the cross-linked polymer. The polymer product has low electrical resistivity and other properties rendering it suitable for making separators for alkaline batteries.

  12. Cortactin Adopts a Globular Conformation and Bundles Actin into Sheets

    SciTech Connect

    Cowieson, Nathan P.; King, Gordon; Cookson, David; Ross, Ian; Huber, Thomas; Hume, David A.; Kobe, Bostjan; Martin, Jennifer L.

    2008-08-21

    Cortactin is a filamentous actin-binding protein that plays a pivotal role in translating environmental signals into coordinated rearrangement of the cytoskeleton. The dynamic reorganization of actin in the cytoskeleton drives processes including changes in cell morphology, cell migration, and phagocytosis. In general, structural proteins of the cytoskeleton bind in the N-terminal region of cortactin and regulatory proteins in the C-terminal region. Previous structural studies have reported an extended conformation for cortactin. It is therefore unclear how cortactin facilitates cross-talk between structural proteins and their regulators. In the study presented here, circular dichroism, chemical cross-linking, and small angle x-ray scattering are used to demonstrate that cortactin adopts a globular conformation, thereby bringing distant parts of the molecule into close proximity. In addition, the actin bundling activity of cortactin is characterized, showing that fully polymerized actin filaments are bundled into sheet-like structures. We present a low resolution structure that suggests how the various domains of cortactin interact to coordinate its array of binding partners at sites of actin branching.

  13. Vinculin Interacts with the Chlamydia Effector TarP Via a Tripartite Vinculin Binding Domain to Mediate Actin Recruitment and Assembly at the Plasma Membrane

    PubMed Central

    Thwaites, Tristan R.; Pedrosa, Antonio T.; Peacock, Thomas P.; Carabeo, Rey A.

    2015-01-01

    The mammalian protein vinculin is often a target of bacterial pathogens to subvert locally host cell actin dynamics. In Chlamydia infection, vinculin has been implicated in RNA interference screens, but the molecular basis for vinculin requirement has not been characterized. In this report, we show that vinculin was involved in the actin recruitment and F-actin assembly at the plasma membrane to facilitate invasion. Vinculin was recruited to the plasma membrane via its interaction with a specific tripartite motif within TarP that resembles the vinculin-binding domain (VBD) found in the Shigella invasion factor IpaA. The TarP-mediated plasma membrane recruitment of vinculin resulted in the localized recruitment of actin. In vitro pulldown assays for protein-protein interaction and imaging-based evaluation of recruitment to the plasma membrane demonstrated the essential role of the vinculin-binding site 1 (VBS1), and the dispensability of VBS2 and VBS3. As further support for the functionality of VBD-vinculin interaction, VBD-mediated actin recruitment required vinculin. Interestingly, while both vinculin and the focal adhesion kinase (FAK) colocalized at the sites of adhesion, the recruitment of one was independent of the other; and the actin recruitment function of the VBD/vinculin signaling axis was independent of the LD/FAK pathway. PMID:26649283

  14. Rotational motion of rhodamine 6G tethered to actin through oligo(ethylene glycol) linkers studied by frequency-domain fluorescence anisotropy.

    PubMed

    Wazawa, Tetsuichi; Morimoto, Nobuyuki; Nagai, Takeharu; Suzuki, Makoto

    2015-01-01

    Investigation of the rotational motion of a fluorescent probe tethered to a protein helps to elucidate the local properties of the solvent and protein near the conjugation site of the probe. In this study, we have developed an instrument for frequency-domain fluorescence (FDF) anisotropy measurements, and studied how the local properties around a protein, actin, can be elucidated from the rotational motion of a dye tethered to actin. Rhodamine 6G (R6G) was attached to Cys-374 using newly-synthesized R6G-maleimide with three different oligo(ethylene glycol) (OEG) linker lengths. The time-resolved anisotropy decay of R6G tethered to G-actin was revealed to be a combination of the two modes of the wobbling motion of R6G and the tumbling motion of G-actin. The rotational diffusion coefficient (RDC) of R6G wobbling was ~0.1 ns(-1) at 20°C and increased with OEG linker length. The use of the three R6G-actin conjugates of different linker lengths was useful to not only figure out the linker length dependence of the rotational motion of R6G but also validate the analyses. In the presence of a cosolvent of glycerol, although the tumbling motion of G-actin was retarded in response to the bulk viscosity, the wobbling motion of R6G tethered to actin exhibited an increase of RDC as glycerol concentration increased. This finding suggests an intricate relationship between the fluid properties of the bulk solvent and the local environment around actin.

  15. Rotational motion of rhodamine 6G tethered to actin through oligo(ethylene glycol) linkers studied by frequency-domain fluorescence anisotropy

    PubMed Central

    Wazawa, Tetsuichi; Morimoto, Nobuyuki; Nagai, Takeharu; Suzuki, Makoto

    2015-01-01

    Investigation of the rotational motion of a fluorescent probe tethered to a protein helps to elucidate the local properties of the solvent and protein near the conjugation site of the probe. In this study, we have developed an instrument for frequency-domain fluorescence (FDF) anisotropy measurements, and studied how the local properties around a protein, actin, can be elucidated from the rotational motion of a dye tethered to actin. Rhodamine 6G (R6G) was attached to Cys-374 using newly-synthesized R6G-maleimide with three different oligo(ethylene glycol) (OEG) linker lengths. The time-resolved anisotropy decay of R6G tethered to G-actin was revealed to be a combination of the two modes of the wobbling motion of R6G and the tumbling motion of G-actin. The rotational diffusion coefficient (RDC) of R6G wobbling was ~0.1 ns−1 at 20°C and increased with OEG linker length. The use of the three R6G-actin conjugates of different linker lengths was useful to not only figure out the linker length dependence of the rotational motion of R6G but also validate the analyses. In the presence of a cosolvent of glycerol, although the tumbling motion of G-actin was retarded in response to the bulk viscosity, the wobbling motion of R6G tethered to actin exhibited an increase of RDC as glycerol concentration increased. This finding suggests an intricate relationship between the fluid properties of the bulk solvent and the local environment around actin. PMID:27493858

  16. Elasticity of cross-linked semiflexible biopolymers under tension.

    PubMed

    von der Heydt, Alice; Wilkin, Daniel; Benetatos, Panayotis; Zippelius, Annette

    2013-09-01

    Aiming at the mechanical properties of cross-linked biopolymers, we set up and analyze a model of two weakly bending wormlike chains subjected to a tensile force, with regularly spaced inter-chain bonds (cross-links) represented by harmonic springs. Within this model, we compute the force-extension curve and the differential stiffness exactly and discuss several limiting cases. Cross-links effectively stiffen the chain pair by reducing thermal fluctuations transverse to the force and alignment direction. The extra alignment due to cross-links increases both with growing number and with growing strength of the cross-links, and is most prominent for small force f. For large f, the additional, cross-link-induced extension is subdominant except for the case of linking the chains rigidly and continuously along their contour. In this combined limit, we recover asymptotically the elasticity of a weakly bending wormlike chain without constraints, stiffened by a factor of 4. The increase in differential stiffness can be as large as 100% for small f or large numbers of cross-links.

  17. Direct dynamin–actin interactions regulate the actin cytoskeleton

    PubMed Central

    Gu, Changkyu; Yaddanapudi, Suma; Weins, Astrid; Osborn, Teresia; Reiser, Jochen; Pollak, Martin; Hartwig, John; Sever, Sanja

    2010-01-01

    The large GTPase dynamin assembles into higher order structures that are thought to promote endocytosis. Dynamin also regulates the actin cytoskeleton through an unknown, GTPase-dependent mechanism. Here, we identify a highly conserved site in dynamin that binds directly to actin filaments and aligns them into bundles. Point mutations in the actin-binding domain cause aberrant membrane ruffling and defective actin stress fibre formation in cells. Short actin filaments promote dynamin assembly into higher order structures, which in turn efficiently release the actin-capping protein (CP) gelsolin from barbed actin ends in vitro, allowing for elongation of actin filaments. Together, our results support a model in which assembled dynamin, generated through interactions with short actin filaments, promotes actin polymerization via displacement of actin-CPs. PMID:20935625

  18. Effect of nucleotides and actin on the orientation of the light chain-binding domain in myosin subfragment 1.

    PubMed

    Smyczynski, C; Kasprzak, A A

    1997-10-28

    The X-ray structure of myosin head (S1) reveals the presence of a long alpha-helical structure that supports both the essential and the regulatory light chains. It has been proposed that small structural changes in the catalytic domain of S1 are amplified by swinging the long alpha-helix (the "lever arm") to produce approximately 11 nm steps. To probe the spatial position of the putative lever in various S1 states, we have measured, by fluorescence resonance energy transfer (FRET), the effect of nucleotides and actin on the distances between Cys-177 of the essential light chain A1 (which is attached to the alpha-helix) and three loci in the catalytic domain. Cys-177 (donor) was labeled with 1,5-IAEDANS. The trinitrophenylated ADP analog (TNP-ADP, acceptor) was used to measure the distance to the active site. Lys-553 at the actin-binding site, labeled with a fluorescein derivative, and Lys-83 modified with trinitrobenzenesulfonic acid served as two other acceptors. FRET measurements were performed for S1 alone, for its complexes with MgADP and MgATP, for the analogs of the transition state of the ATPase reaction, S1.ADP.BeFx, S1.ADP.AlF4, and S1.ADP.VO4, and for acto-S1 in the absence and in the presence of ADP. When the transition state and acto-S1 complexes were formed, the change in the Cys-177 --> Lys-83 distance was <1.1 A, for the distance Cys-177 --> Lys-553, the change was +/-2.5 A. These distance changes correspond to rotations by <10 degrees and approximately 25 degrees, respectively. For the Cys-177 --> TNP-ADP the interprobe separation decreased by approximately 6 A in the presence of BeFx and AlF4- but only 1.9 A in the presence of vanadate; we do not interpret the 6 A change as resulting from the lever rotation. Using the coordinates of the acto-S1 complex, we have computed the expected changes in these distances resulting from rotation of the lever. These changes were much greater than the ones observed. The above results are inconsistent with models

  19. Redox-Responsive, Core Cross-Linked Polyester Micelles

    PubMed Central

    Zhang, Zhonghai; Yin, Lichen; Tu, Chunlai; Song, Ziyuan; Zhang, Yanfeng; Xu, Yunxiang; Tong, Rong; Zhou, Qin; Ren, Jie; Cheng, Jianjun

    2013-01-01

    Monomethoxy poly(ethylene glycol)-b-poly(Tyr(alkynyl)-OCA), a biodegradable amphiphilic block copolymer, was synthesized by means of ring-opening polymerization of 5-(4-(prop-2-yn-1-yloxy)benzyl)-1,3-dioxolane-2,4-dione (Tyr(alkynyl)-OCA) and used to prepare core cross-linked polyester micelles via click chemistry. Core cross-linking not only improved the structural stability of the micelles but also allowed controlled release of cargo molecules in response to the reducing reagent. This new class of core cross-linked micelles can potentially be used in controlled release and drug delivery applications. PMID:23536920

  20. A minimal model for stabilization of biomolecules by hydrocarbon cross-linking.

    PubMed

    Hamacher, K; Hübsch, A; McCammon, J A

    2006-04-28

    Programmed cell death regulating protein motifs play an essential role in the development of an organism, its immune response, and disease-related cellular mechanisms. Among those motifs the BH3 domain of the BCL-2 family is found to be of crucial importance. Recent experiments showed how the isolated, otherwise unstructured BH3 peptide can be modified by a hydrocarbon linkage to regain function. We parametrized a reduced, dynamic model for the stability effects of such covalent cross-linking and confirmed that the model reproduces the reinforcement of the structural stability of the BH3 motif by cross-linking. We show that an analytically solvable model for thermostability around the native state is not capable of reproducing the stabilization effect. This points to the crucial importance of the peptide dynamics and the fluctuations neglected in the analytic model for the cross-linking system to function properly. This conclusion is supported by a thorough analysis of a simulated Go model. The resulting model is suitable for rational design of generic cross-linking systems in silicio.

  1. A minimal model for stabilization of biomolecules by hydrocarbon cross-linking

    NASA Astrophysics Data System (ADS)

    Hamacher, K.; Hübsch, A.; McCammon, J. A.

    2006-04-01

    Programmed cell death regulating protein motifs play an essential role in the development of an organism, its immune response, and disease-related cellular mechanisms. Among those motifs the BH3 domain of the BCL-2 family is found to be of crucial importance. Recent experiments showed how the isolated, otherwise unstructured BH3 peptide can be modified by a hydrocarbon linkage to regain function. We parametrized a reduced, dynamic model for the stability effects of such covalent cross-linking and confirmed that the model reproduces the reinforcement of the structural stability of the BH3 motif by cross-linking. We show that an analytically solvable model for thermostability around the native state is not capable of reproducing the stabilization effect. This points to the crucial importance of the peptide dynamics and the fluctuations neglected in the analytic model for the cross-linking system to function properly. This conclusion is supported by a thorough analysis of a simulated Gō model. The resulting model is suitable for rational design of generic cross-linking systems in silicio.

  2. Thermoreversible physical gels of poly(dimethylsiloxane) without cross-links or functionalization.

    PubMed

    Dahan, Elianne; Sundararajan, Pudupadi R

    2013-07-01

    The preparation of gels of poly(dimethylsiloxane) (PDMS) reported in the literature so far involves catalysts and chemical cross-links (chemical gels) or functionalization with organogelators. We report that thermoreversible physical gels of PDMS, without cross-links or functionalization, can be made with propylamine or hexylamine as a solvent. The gels consist of spherical domains as small as 20 nm. We show that these spherical domains are part of a network. Differential scanning calorimetry (DSC), optical microscopy, and rheology show that the gel is thermoreversible. With the DSC experiments, we have devised a procedure to achieve thermoreversibility with very similar gel-sol transition endotherms in the first and second heating cycles. PMID:23799797

  3. 21 CFR 177.2420 - Polyester resins, cross-linked.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... following prescribed conditions: (a) The cross-linked polyester resins are produced by the condensation of... fiber Polyester fiber produced by the condensation of one or more of the acids listed in paragraph...

  4. Spectral Library Searching To Identify Cross-Linked Peptides.

    PubMed

    Schweppe, Devin K; Chavez, Juan D; Navare, Arti T; Wu, Xia; Ruiz, Bianca; Eng, Jimmy K; Lam, Henry; Bruce, James E

    2016-05-01

    Methods harnessing protein cross-linking and mass spectrometry (XL-MS) offer high-throughput means to identify protein-protein interactions (PPIs) and structural interfaces of protein complexes. Yet, specialized data dependent methods and search algorithms are often required to confidently assign peptide identifications to spectra. To improve the efficiency of matching high confidence spectra, we developed a spectral library based approach to search cross-linked peptide data derived from Protein Interaction Reporter (PIR) methods using the spectral library search algorithm, SpectraST. Spectral library matching of cross-linked peptide data from query spectra increased the absolute number of confident peptide relationships matched to spectra and thereby the number of PPIs identified. By matching library spectra from bona fide, previously established PIR-cross-linked peptide relationships, spectral library searching reduces the need for continued, complex mass spectrometric methods to identify peptide relationships, increases coverage of relationship identifications, and improves the accessibility of XL-MS technologies.

  5. Large Scale Chemical Cross-linking Mass Spectrometry Perspectives.

    PubMed

    Zybailov, Boris L; Glazko, Galina V; Jaiswal, Mihir; Raney, Kevin D

    2013-02-01

    The spectacular heterogeneity of a complex protein mixture from biological samples becomes even more difficult to tackle when one's attention is shifted towards different protein complex topologies, transient interactions, or localization of PPIs. Meticulous protein-by-protein affinity pull-downs and yeast-two-hybrid screens are the two approaches currently used to decipher proteome-wide interaction networks. Another method is to employ chemical cross-linking, which gives not only identities of interactors, but could also provide information on the sites of interactions and interaction interfaces. Despite significant advances in mass spectrometry instrumentation over the last decade, mapping Protein-Protein Interactions (PPIs) using chemical cross-linking remains time consuming and requires substantial expertise, even in the simplest of systems. While robust methodologies and software exist for the analysis of binary PPIs and also for the single protein structure refinement using cross-linking-derived constraints, undertaking a proteome-wide cross-linking study is highly complex. Difficulties include i) identifying cross-linkers of the right length and selectivity that could capture interactions of interest; ii) enrichment of the cross-linked species; iii) identification and validation of the cross-linked peptides and cross-linked sites. In this review we examine existing literature aimed at the large-scale protein cross-linking and discuss possible paths for improvement. We also discuss short-length cross-linkers of broad specificity such as formaldehyde and diazirine-based photo-cross-linkers. These cross-linkers could potentially capture many types of interactions, without strict requirement for a particular amino-acid to be present at a given protein-protein interface. How these shortlength, broad specificity cross-linkers be applied to proteome-wide studies? We will suggest specific advances in methodology, instrumentation and software that are needed to make

  6. Cross-linking and the molecular packing of corneal collagen

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.; Chandler, G. S.; Tanzawa, H.; Katz, E. P.

    1996-01-01

    We have quantitatively characterized, for the first time, the cross-linking in bovine cornea collagen as a function of age. The major iminium reducible cross-links were dehydro-hydroxylysinonorleucine (deH-HLNL) and dehydro-histidinohydroxymerodesmosine (deH-HHMD). The former rapidly diminished after birth; however, the latter persisted in mature animals at a level of 0.3 - 0.4 moles/mole of collagen. A nonreducible cross-link, histidinohydroxylysinonorleucine (HHL), previously found only in skin, was also found to be a major mature cross-link in cornea. The presence of HHL indicates that cornea fibrils have a molecular packing similar to skin collagen. However, like deH-HHMD, the HHL content in corneal fibrils only reaches a maximum value with time about half that of skin. These data suggest that the corneal fibrils are comprised of discrete filaments that are internally stabilized by HHL and deH-HHMD cross-links. This pattern of intermolecular cross-linking would facilitate the special collagen swelling property required for corneal transparency.

  7. Hekate: Software Suite for the Mass Spectrometric Analysis and Three-Dimensional Visualization of Cross-Linked Protein Samples

    PubMed Central

    2013-01-01

    Chemical cross-linking of proteins combined with mass spectrometry provides an attractive and novel method for the analysis of native protein structures and protein complexes. Analysis of the data however is complex. Only a small number of cross-linked peptides are produced during sample preparation and must be identified against a background of more abundant native peptides. To facilitate the search and identification of cross-linked peptides, we have developed a novel software suite, named Hekate. Hekate is a suite of tools that address the challenges involved in analyzing protein cross-linking experiments when combined with mass spectrometry. The software is an integrated pipeline for the automation of the data analysis workflow and provides a novel scoring system based on principles of linear peptide analysis. In addition, it provides a tool for the visualization of identified cross-links using three-dimensional models, which is particularly useful when combining chemical cross-linking with other structural techniques. Hekate was validated by the comparative analysis of cytochrome c (bovine heart) against previously reported data.1 Further validation was carried out on known structural elements of DNA polymerase III, the catalytic α-subunit of the Escherichia coli DNA replisome along with new insight into the previously uncharacterized C-terminal domain of the protein. PMID:24010795

  8. Elasticity of F-actin networks

    NASA Astrophysics Data System (ADS)

    Gardel, Margaret Lise

    This thesis presents a study of the elasticity and microstructure of three filamentous actin (F-actin) based materials. Using bulk rheology, microrheology, multiple particle tracking and imaging techniques, we study the microscopic origins of the mechanical properties of F-actin networks. We briefly introduce aspects of F-actin and rheology essential to provide a background for and motivate this thesis in Chapter 1. In Chapter 2, we describe the materials and methods used. An introduction to microrheology is given in Chapter 3. In Chapter 4, we study solutions of entangled F-actin. We elucidate the microscopic origins of bulk elasticity using microrheology techniques. We also show that multiple particle tracking can also probe the dynamics of the F-actin solution microstructure. We explore the effect of rigid, incompliant chemical cross-links between actin filaments in Chapter 5. We explore changes in the network microstructure as the concentration of cross-links is varied. We find that the elastic stiffness of these networks is extremely sensitive to small changes in cross-link density. Despite this large variation, the linear viscoelasticity of all networks can be scaled onto a universal master curve; this scaling reveals that the mechanical dissipation of the networks is due to thermal fluctuations of F-actin. At large stresses, the mechanical stiffness of these networks diverges. The form of this stress stiffening response is consistent with the non-linear force extension of a single semi-flexible polymer. Thus, over a large range of conditions, the linear and nonlinear mechanical response of rigidly cross-linked networks is entropic in origin. Finally, at very low cross-link and filament densities, we observe a transition to a qualitatively different type of elasticity; this is consistent with a transition to an enthalpic network elasticity dominated by bending of F-actin. In Chapter 6, we study the elastic properties of F-actin networks assembled with a

  9. Spectroscopic characterization of collagen cross-links in bone

    NASA Technical Reports Server (NTRS)

    Paschalis, E. P.; Verdelis, K.; Doty, S. B.; Boskey, A. L.; Mendelsohn, R.; Yamauchi, M.

    2001-01-01

    Collagen is the most abundant protein of the organic matrix in mineralizing tissues. One of its most critical properties is its cross-linking pattern. The intermolecular cross-linking provides the fibrillar matrices with mechanical properties such as tensile strength and viscoelasticity. In this study, Fourier transform infrared (FTIR) spectroscopy and FTIR imaging (FTIRI) analyses were performed in a series of biochemically characterized samples including purified collagen cross-linked peptides, demineralized bovine bone collagen from animals of different ages, collagen from vitamin B6-deficient chick homogenized bone and their age- and sex-matched controls, and histologically stained thin sections from normal human iliac crest biopsy specimens. One region of the FTIR spectrum of particular interest (the amide I spectral region) was resolved into its underlying components. Of these components, the relative percent area ratio of two subbands at approximately 1660 cm(-1) and approximately 1690 cm(-1) was related to collagen cross-links that are abundant in mineralized tissues (i.e., pyridinoline [Pyr] and dehydrodihydroxylysinonorleucine [deH-DHLNL]). This study shows that it is feasible to monitor Pyr and DHLNL collagen cross-links spatial distribution in mineralized tissues. The spectroscopic parameter established in this study may be used in FTIRI analyses, thus enabling the calculation of relative Pyr/DHLNL amounts in thin (approximately 5 microm) calcified tissue sections with a spatial resolution of approximately 7 microm.

  10. Collagen/elastin hydrogels cross-linked by squaric acid.

    PubMed

    Skopinska-Wisniewska, J; Kuderko, J; Bajek, A; Maj, M; Sionkowska, A; Ziegler-Borowska, M

    2016-03-01

    Hydrogels based on collagen and elastin are very valuable materials for medicine and tissue engineering. They are biocompatible; however their mechanical properties and resistance for enzymatic degradation need to be improved by cross-linking. Up to this point many reagents have been tested but more secure reactants are still sought. Squaric acid (SqAc), 3,4-dihydroxy 3-cyclobutene 1,2-dione, is a strong, cyclic acid, which reacts easily with amine groups. The properties of hydrogels based on collagen/elastin mixtures (95/5, 90/10) containing 5%, 10% and 20% of SqAc and neutralized via dialysis against deionized water were tested. Cross-linked, 3-D, transparent hydrogels were created. The cross-linked materials are stiffer and more resistant to enzymatic degradation than those that are unmodified. The pore size, swelling ability and surface polarity are reduced due to 5% and 10% of SqAc addition. At the same time, the cellular response is not significantly affected by the cross-linking. Therefore, squaric acid would be regarded as a safe, effective cross-linking agent.

  11. Transmembrane Signaling Characterized in Bacterial Chemoreceptors by Using Sulfhydryl Cross-Linking in vivo

    NASA Astrophysics Data System (ADS)

    Lee, Geoffrey F.; Lebert, Michael R.; Lilly, Angela A.; Hazelbauer, Gerald L.

    1995-04-01

    Transmembrane signaling by bacterial chemoreceptors is thought to involve conformational changes within a stable homodimer. We investigated the functional consequences of constraining movement between pairs of helices in the four-helix structure of the transmembrane domain of chemoreceptor Trg. Using a family of cysteine-containing receptors, we identified oxidation treatments for intact cells that catalyzed essentially complete sulfhydryl cross-linking at selected positions and yet left flagellar and sensory functions largely unperturbed. Constraining movement by cross-links between subunits had little effect on tactic response, but constraining movement between transmembrane segments of the monomer drastically reduced function. We deduce that transmembrane signaling requires substantial movement between transmembrane helices of a monomer but not between interacting helices across the interface between subunits.

  12. Mutation analysis of the short cytoplasmic domain of the cell-cell adhesion molecule CEACAM1 identifies residues that orchestrate actin binding and lumen formation.

    PubMed

    Chen, Charng-Jui; Kirshner, Julia; Sherman, Mark A; Hu, Weidong; Nguyen, Tung; Shively, John E

    2007-02-23

    CEACAM1-4S (carcinoembryonic antigen cell adhesion molecule 1, with 4 ectodomains and a short, 12-14 amino acid cytoplasmic domain) mediates lumen formation via an apoptotic and cytoskeletal reorganization mechanism when mammary epithelial cells are grown in a three-dimensional model of mammary morphogenesis. We show by quantitative yeast two-hybrid, BIAcore, NMR HSQC and STD, and confocal analyses that amino acids phenylalanine (Phe(454)) and lysine (Lys(456)) are key residues that interact with actin orchestrating the cytoskeletal reorganization. A CEACAM1 membrane model based on vitamin D-binding protein that predicts an interaction of Phe(454) at subdomain 3 of actin was supported by inhibition of binding of actin to vitamin D-binding protein by the cytoplasmic domain peptide. We also show that residues Thr(457) and/or Ser(459) are phosphorylated in CEACAM1-transfected cells grown in three-dimensional culture and that mutation analysis of these residues (T457A/S459A) or F454A blocks lumen formation. These studies demonstrate that a short cytoplasmic domain membrane receptor can directly mediate substantial intracellular signaling.

  13. Leptospira Immunoglobulin-Like Protein B (LigB) Binds to Both the C-Terminal 23 Amino Acids of Fibrinogen αC Domain and Factor XIII: Insight into the Mechanism of LigB-Mediated Blockage of Fibrinogen α Chain Cross-Linking

    PubMed Central

    Hsieh, Ching-Lin; Chang, Eric; Tseng, Andrew; Ptak, Christopher; Wu, Li-Chen; Su, Chun-Li; McDonough, Sean P.; Lin, Yi-Pin; Chang, Yung-Fu

    2016-01-01

    The coagulation system provides a primitive but effective defense against hemorrhage. Soluble fibrinogen (Fg) monomers, composed of α, β and γ chains, are recruited to provide structural support for the formation of a hemostatic plug. Fg binds to platelets and is processed into a cross-linked fibrin polymer by the enzymatic clotting factors, thrombin and Factor XIII (FXIII). The newly formed fibrin-platelet clot can act as barrier to protect against pathogens from entering the bloodstream. Further, injuries caused by bacterial infections can be confined to the initial wound site. Many pathogenic bacteria have Fg-binding adhesins that can circumvent the coagulation pathway and allow the bacteria to sidestep containment. Fg expression is upregulated during lung infection providing an attachment surface for bacteria with the ability to produce Fg-binding adhesins. Fg binding by leptospira might play a crucial factor in Leptospira-associated pulmonary hemorrhage, the main factor contributing to lethality in severe cases of leptospirosis. The 12th domain of Leptospira immunoglobulin-like protein B (LigB12), a leptospiral adhesin, interacts with the C-terminus of FgαC (FgαCC). In this study, the binding site for LigB12 was mapped to the final 23 amino acids at the C-terminal end of FgαCC (FgαCC8). The association of FgαCC8 with LigB12 (ELISA, KD = 0.76 μM; SPR, KD = 0.96 μM) was reduced by mutations of both charged residues (R608, R611 and H614 from FgαCC8; D1061 from LigB12) and hydrophobic residues (I613 from FgαCC8; F1054 and A1065 from LigB12). Additionally, LigB12 bound strongly to FXIII and also inhibited fibrin formation, suggesting that LigB can disrupt coagulation by suppressing FXIII activity. Here, the detailed binding mechanism of a leptospiral adhesin to a host hemostatic factor is characterized for the first time and should provide better insight into the pathogenesis of leptospirosis. PMID:27622634

  14. Leptospira Immunoglobulin-Like Protein B (LigB) Binds to Both the C-Terminal 23 Amino Acids of Fibrinogen αC Domain and Factor XIII: Insight into the Mechanism of LigB-Mediated Blockage of Fibrinogen α Chain Cross-Linking.

    PubMed

    Hsieh, Ching-Lin; Chang, Eric; Tseng, Andrew; Ptak, Christopher; Wu, Li-Chen; Su, Chun-Li; McDonough, Sean P; Lin, Yi-Pin; Chang, Yung-Fu

    2016-09-01

    The coagulation system provides a primitive but effective defense against hemorrhage. Soluble fibrinogen (Fg) monomers, composed of α, β and γ chains, are recruited to provide structural support for the formation of a hemostatic plug. Fg binds to platelets and is processed into a cross-linked fibrin polymer by the enzymatic clotting factors, thrombin and Factor XIII (FXIII). The newly formed fibrin-platelet clot can act as barrier to protect against pathogens from entering the bloodstream. Further, injuries caused by bacterial infections can be confined to the initial wound site. Many pathogenic bacteria have Fg-binding adhesins that can circumvent the coagulation pathway and allow the bacteria to sidestep containment. Fg expression is upregulated during lung infection providing an attachment surface for bacteria with the ability to produce Fg-binding adhesins. Fg binding by leptospira might play a crucial factor in Leptospira-associated pulmonary hemorrhage, the main factor contributing to lethality in severe cases of leptospirosis. The 12th domain of Leptospira immunoglobulin-like protein B (LigB12), a leptospiral adhesin, interacts with the C-terminus of FgαC (FgαCC). In this study, the binding site for LigB12 was mapped to the final 23 amino acids at the C-terminal end of FgαCC (FgαCC8). The association of FgαCC8 with LigB12 (ELISA, KD = 0.76 μM; SPR, KD = 0.96 μM) was reduced by mutations of both charged residues (R608, R611 and H614 from FgαCC8; D1061 from LigB12) and hydrophobic residues (I613 from FgαCC8; F1054 and A1065 from LigB12). Additionally, LigB12 bound strongly to FXIII and also inhibited fibrin formation, suggesting that LigB can disrupt coagulation by suppressing FXIII activity. Here, the detailed binding mechanism of a leptospiral adhesin to a host hemostatic factor is characterized for the first time and should provide better insight into the pathogenesis of leptospirosis. PMID:27622634

  15. Extreme dryness and DNA-protein cross-links

    NASA Astrophysics Data System (ADS)

    Bieger-Dose, A.; Dose, K.; Meffert, R.; Mehler, M.; Risi, S.

    Exposure of fungal conidia (Aspergillus ochraceus) or spores of Bacillus subtilis to extreme dryness or vacuum induces DNA lesions, including strand breaks and the formation of DNA-protein cross-links. In wet cells only a small amount of protein is bound to DNA, but exposure to conditions of lowered water activity results in an increasing number of cross-links between DNA and proteins. In fungal conidia these cross-links are detected after selective iodination (125J) of the DNA-bound proteins followed by gel electrophoresis and subsequent autoradiography. Another approach is the labelling of DNA with 32p by means of nick translation and the detection of differences in the electrophoretic mobility of DNA before and after digestion with proteinase K of proteins bound to DNA.

  16. Actinic Keratosis

    MedlinePlus

    ... rashes clinical tools newsletter | contact Share | Actinic Keratosis (Solar Keratosis) Information for adults A A A Actinic ... the touch. Overview Actinic keratoses, also known as solar keratoses, are small rough or scaly areas of ...

  17. FTIR Spectroscopic Studies on Cross Linking of SU-8 Photoresist

    NASA Astrophysics Data System (ADS)

    Kalaiselvi, S. M. P.; Tan, T. L.; Rawat, R. S.; Lee, P.; Heussler, S. P.; Breese, M. B. H.

    2013-11-01

    The usage of chemically-amplified, negative tone SU-8 photoresist is numerous, spanning industrial, scientific and medical fields. Hence, in this study, some preliminary studies were conducted to understand the dosage and heat treatment requirements of the SU-8 photoresist essential for pattern generation using X-ray lithography. In this work, using Synchrotron as the X-ray source, SU-8 photoresist was characterized for X-ray lithography in terms of its process parameters such as X-ray exposure dose, post exposure bake (PEB) time and temperature for various photoresist thicknesses which is considered worthwhile in view of applications of SU-8 for the fabrication of very high aspect ratio micro structures. The process parameters were varied and the resultant cross linking of the molecular chains of the photoresist was accurately monitored using a Fourier Transform Infra-Red (FTIR) spectrometer and the results are discussed. The infrared absorption peak at 914 cm-1 in the spectrum of the SU-8 photoresist was found to be a useful indicator for the completion of cross linking in the SU-8 photoresist. Results show that the cross linking of the SU-8 photoresist is at a higher rate from 0 J/cm3 to 30 J/cm3 after which the peak almost saturates regardless of the PEB time. It is a good evidence for the validation of dosage requirement of SU-8 photoresist for effective completion of cross linking, which in turn is a requirement for efficient fabrication of micro and nano structures. An analogous behavior was also observed between the extent of cross linking and the PEB time and temperature. The rate of cross linking declines after a certain period of PEB time regardless of PEB temperature. The obtained results also show a definite relation between variation of the absorbance area of the peak at 914 cm-1 and the X-ray exposure dose.

  18. Enhanced retention of encapsulated ions in cross-linked polymersomes.

    PubMed

    Wang, Guanglin; Hoornweg, Arentien; Wolterbeek, Hubert T; Franken, Linda E; Mendes, Eduardo; Denkova, Antonia G

    2015-03-19

    Polymer vesicles (polymersomes) composed of poly(butadiene-b-poly(ethylene oxide)) (PB-b-PEO) are known for their stability and limited permeability. However, when these vesicles are diluted, substances, such as ions, encapsulated in the aqueous cavity can be released due to vesicle disruption. In previous studies, we have shown that these vesicles can be loaded efficiently with sufficient quantities of radionuclides to allow application in radionuclide therapy and pharmacokinetics evaluation, provided that there is no loss of the encapsulated radionuclides when diluted in the bloodstream. In this paper, in order to stabilize the carriers, we propose to cross-link the hydrophobic part of the polymersome membrane and to investigate whether such cross-linking induced by γ radiation can enhance the retention of ions (radionuclides). Retention of ions encapsulated in the lumen in such cross-linked carriers has not been previously quantitatively evaluated, although it is of ultimate importance in any medical application. Here, we also investigate how cross-linking affects the transport of radionuclides (loading) through the membrane of the vesicles. The integrity of the vesicles as a function of the radiation dose is also investigated, including morphological changes. The results show that cross-linking hinders the transport of ions through the membrane, which also leads to higher retention of ions encapsulated prior to cross-linking in the vesicles. Electron micrographs show that the shape of the polymersomes is not greatly affected by γ radiation when left in the original solvent (phosphate buffered saline (PBS) or Milli-Q water), but when diluted in a good solvent for both blocks, i.e., tetrahydrofuran (THF), disintegration of the vesicles and the appearance of droplet-like structures is observed, which had not been reported previously. The results of the present study help to formulate polymersomes as carriers for radionuclide therapy, demonstrating a way to

  19. Swelling of cross-linked polystyrene spheres in toluene vapor

    SciTech Connect

    Zhang, R.; Graf, K.; Berger, R.

    2006-11-27

    The swelling behavior of individual micron-sized polystyrene (PS) spheres in toluene vapor was studied via mass loading by means of micromechanical cantilever sensors. For 4%-8% cross-linked PS a mass increase of 180% in saturated toluene vapor was measured. The mass of the swollen PS sphere decreases with increasing exposure time to ultraviolet light. In addition, the swelling response is significantly different between the first and the second exposure to toluene vapor. This is attributed to the formation of a cross-linked shell at the surface of the PS spheres. Shape persistent parts were observed for locally irradiated PS spheres.

  20. Cross-Linked Nanotube Materials with Variable Stiffness Tethers

    NASA Technical Reports Server (NTRS)

    Frankland, Sarah-Jane V.; Odegard, Gregory M.; Herzog, Matthew N.; Gates, Thomas S.; Fay, Catherine C.

    2004-01-01

    The constitutive properties of a cross-linked single-walled carbon nanotube material are predicted with a multi-scale model. The material is modeled as a transversely isotropic solid using concepts from equivalent-continuum modeling. The elastic constants are determined using molecular dynamics simulation. Some parameters of the molecular force field are determined specifically for the cross-linker from ab initio calculations. A demonstration of how the cross-linked nanotubes may affect the properties of a nanotube/polyimide composite is included using a micromechanical analysis.

  1. Modification of Cys-837 identifies an actin-binding site in the beta-propeller protein scruin.

    PubMed Central

    Sun, S; Footer, M; Matsudaira, P

    1997-01-01

    In the acrosomal process of Limulus sperm, the beta-propeller protein scruin cross-links actin into a crystalline bundle. To confirm that scruin has the topology of a beta-propeller protein and to understand how scruin binds actin, we compared the solvent accessibility of cysteine residues in scruin and the acrosomal process by chemical modification with (1,5-IAEDANS). In soluble scruin, the two most reactive cysteines of soluble scruin are C837 and C900, whereas C146, C333, and C683 are moderately reactive. This pattern of reactivity is consistent with the topology of a typical beta-propeller protein; all of the reactive cysteines map to putative loops and turns whereas the unreactive cysteines lie within the predicted interior of the protein. The chemical reactivities of cysteine in the acrosomal process implicate C837 at an actin-binding site. In contrast to soluble scruin, in the acrosomal process, C837 is completely unreactive while the other cysteines become less reactive. Binding studies of chemically modified scruin correlate the extent of modification at C837 with the extent of inhibition of actin binding. Furthermore, peptides corresponding to residues flanking C837 bind actin and narrow a possible actin-binding region to a KQK sequence. On the basis of these studies, our results suggest that an actin-binding site lies in the C-terminal domain of scruin and involves a putative loop defined by C837. Images PMID:9188095

  2. Concentration-dependent oligomerization of cross-linked complexes between ferredoxin and ferredoxin–NADP{sup +} reductase

    SciTech Connect

    Kimata-Ariga, Yoko Kubota-Kawai, Hisako; Lee, Young-Ho; Muraki, Norifumi; Ikegami, Takahisa; Kurisu, Genji; Hase, Toshiharu

    2013-05-17

    Highlights: •Cross-linked complexes of ferredoxin (Fd) and Fd–NADP{sup +} reductase form oligomers. •In the crystal structures, Fd- and FNR moieties swap across the molecules. •The complexes exhibit concentration-dependent oligomerization at sub-milimolar order. -- Abstract: Ferredoxin–NADP{sup +} reductase (FNR) forms a 1:1 complex with ferredoxin (Fd), and catalyzes the electron transfer between Fd and NADP{sup +}. In our previous study, we prepared a series of site-specifically cross-linked complexes of Fd and FNR, which showed diverse electron transfer properties. Here, we show that X-ray crystal structures of the two different Fd–FNR cross-linked complexes form oligomers by swapping Fd and FNR moieties across the molecules; one complex is a dimer from, and the other is a successive multimeric form. In order to verify whether these oligomeric structures are formed only in crystal, we investigated the possibility of the oligomerization of these complexes in solution. The mean values of the particle size of these cross-linked complexes were shown to increase with the rise of protein concentration at sub-milimolar order, whereas the size of dissociable wild-type Fd:FNR complex was unchanged as analyzed by dynamic light scattering measurement. The oligomerization products were detected by SDS–PAGE after chemical cross-linking of these complexes at the sub-milimolar concentrations. The extent and concentration-dependent profile of the oligomerizaion were differentiated between the two cross-linked complexes. These results show that these Fd–FNR cross-linked complexes exhibit concentration-dependent oligomerization, possibly through swapping of Fd and FNR moieties also in solution. These findings lead to the possibility that some native multi-domain proteins may present similar phenomenon in vivo.

  3. Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring

    PubMed Central

    1990-01-01

    Actin-binding protein (ABP-280, nonmuscle filamin) is a ubiquitous dimeric actin cross-linking phosphoprotein of peripheral cytoplasm, where it promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. The complete nucleotide sequence of human endothelial cell ABP cDNA predicts a polypeptide subunit chain of 2,647 amino acids, corresponding to 280 kD, also the mass derived from physical measurements of the native protein. The actin-binding domain is near the amino-terminus of the subunit where the amino acid sequence is similar to other actin filament binding proteins, including alpha-actinin, beta-spectrin, dystrophin, and Dictyostelium abp-120. The remaining 90% of the sequence comprises 24 repeats, each approximately 96 residues long, predicted to have stretches of beta-sheet secondary structure interspersed with turns. The first 15 repeats may have substantial intrachain hydrophobic interactions and overlap in a staggered fashion to yield a backbone with mechanical resilience. Sequence insertions immediately before repeats 16 and 24 predict two hinges in the molecule near points where rotary-shadowed molecules appear to swivel in electron micrographs. Both putative hinge regions are susceptible to cleavage by proteases and the second also contains the site that binds the platelet glycoprotein Ib/IX complex. Phosphorylation consensus sequences are also located in the hinges or near them. Degeneracy within every even- numbered repeat between 16 and 24 and the insertion before repeat 24 may convert interactions within chains to interactions between chains to account for dimer formation within a domain of 7 kD at the carboxy- terminus. The structure of ABP dimers resembles a leaf spring. Interchain interactions hold the leaves firmly together at one end, whereas intrachain hydrophobic bonds reinforce the arms of the spring where the leaves diverge, making it sufficiently stiff to promote high- angle branching of actin

  4. Characterization of the Raptor/4E-BP1 Interaction by Chemical Cross-linking Coupled with Mass Spectrometry Analysis*

    PubMed Central

    Coffman, Kimberly; Yang, Bing; Lu, Jie; Tetlow, Ashley L.; Pelliccio, Emelia; Lu, Shan; Guo, Da-Chuan; Tang, Chun; Dong, Meng-Qiu; Tamanoi, Fuyuhiko

    2014-01-01

    mTORC1 plays critical roles in the regulation of protein synthesis, growth, and proliferation in response to nutrients, growth factors, and energy conditions. One of the substrates of mTORC1 is 4E-BP1, whose phosphorylation by mTORC1 reverses its inhibitory action on eIF4E, resulting in the promotion of protein synthesis. Raptor in mTOR complex 1 is believed to recruit 4E-BP1, facilitating phosphorylation of 4E-BP1 by the kinase mTOR. We applied chemical cross-linking coupled with mass spectrometry analysis to gain insight into interactions between mTORC1 and 4E-BP1. Using the cross-linking reagent bis[sulfosuccinimidyl] suberate, we showed that Raptor can be cross-linked with 4E-BP1. Mass spectrometric analysis of cross-linked Raptor-4E-BP1 led to the identification of several cross-linked peptide pairs. Compilation of these peptides revealed that the most N-terminal Raptor N-terminal conserved domain (in particular residues from 89 to 180) of Raptor is the major site of interaction with 4E-BP1. On 4E-BP1, we found that cross-links with Raptor were clustered in the central region (amino acid residues 56–72) we call RCR (Raptor cross-linking region). Intramolecular cross-links of Raptor suggest the presence of two structured regions of Raptor: one in the N-terminal region and the other in the C-terminal region. In support of the idea that the Raptor N-terminal conserved domain and the 4E-BP1 central region are closely located, we found that peptides that encompass the RCR of 4E-BP1 inhibit cross-linking and interaction of 4E-BP1 with Raptor. Furthermore, mutations of residues in the RCR decrease the ability of 4E-BP1 to serve as a substrate for mTORC1 in vitro and in vivo. PMID:24403073

  5. Characterization of a novel cross-linked lipase: impact of cross-linking on solubility and release from drug product.

    PubMed

    Hetrick, Evan M; Sperry, David C; Nguyen, Hung K; Strege, Mark A

    2014-04-01

    Liprotamase is a novel non-porcine pancreatic enzyme replacement therapy containing purified biotechnology-derived lipase, protease, and amylase together with excipients in a capsule formulation. To preserve the structural integrity and biological activity of lipase (the primary drug substance) through exposure of the drug product to the low-pH gastric environment, the enzyme was processed through the use of cross-linked enzyme crystal (CLEC) technology, making the lipase-CLEC drug substance insoluble under acidic conditions but fully soluble at neutral pH and in alkaline environments. In this report we characterize the degree of cross-linking for lipase-CLEC and demonstrate its impact on lipase-CLEC solubility and release from the drug product under relevant physiological pH conditions. Cross-linked lipase-CLEC was characterized via size exclusion chromatography (SEC) and capillary electrophoresis sodium dodecyl sulfate polyacrylamide gel electrophoresis (CE-SDS-PAGE). A combination of methodologies was developed to understand the impact of cross-linking on drug product release. Dissolution evaluation using USP Apparatus 2 at pH 5.0 with an enzyme activity-based end point demonstrated solubility discrimination based on degree of cross-linking, while full release was demonstrated at pH 6.5. The dissolution of the drug product was also evaluated using a dual-stage test employing a USP Apparatus 4 flow-through system to mimic the changing pH environments experienced in the stomach and intestine to understand the impact of cross-linking on drug product performance. Use of USP Apparatus 4 to characterize the pH-dependent release of lipase-CLEC represents a novel approach compared to the Apparatus 1 test employing an acid-challenge stage outlined in the USP for delayed-release pancrelipase, and the advantages of this approach may prove useful for understanding the pH-dependence of release for other drug products. Collectively, these studies confirmed that degree of

  6. Specific covalent immobilization of proteins through dityrosine cross-links.

    PubMed

    Endrizzi, Betsy J; Huang, Gang; Kiser, Patrick F; Stewart, Russell J

    2006-12-19

    Dityrosine cross-links are widely observed in nature in structural proteins such as elastin and silk. Natural oxidative cross-linking between tyrosine residues is catalyzed by a diverse group of metalloenzymes. Dityrosine formation is also catalyzed in vitro by metal-peptide complexes such as Gly-Gly-His-Ni(II). On the basis of these observations, a system was developed to specifically and covalently surface immobilize proteins through dityrosine cross-links. Methacrylate monomers of the catalytic peptide Gly-Gly-His-Tyr-OH (GGHY) and the Ni(II)-chelating group nitrilotriacetic acid (NTA) were copolymerized with acrylamide into microbeads. Green fluorescent protein (GFP), as a model protein, was genetically tagged with a tyrosine-modified His6 peptide on its carboxy terminus. GFP-YGH6, specifically associated with the NTA-Ni(II) groups, was covalently coupled to the bead surface through dityrosine bond formation catalyzed by the colocalized GGHY-Ni(II) complex. After extensive washing with EDTA to disrupt metal coordination bonds, we observed that up to 75% of the initially bound GFP-YGH6 remained covalently bound to the bead while retaining its structure and activity. Dityrosine cross-linking was confirmed by quenching the reaction with free tyrosine. The method may find particular utility in the construction and optimization of protein microarrays. PMID:17154619

  7. Potential Effects of Corneal Cross-Linking upon the Limbus

    PubMed Central

    2016-01-01

    Corneal cross-linking is nowadays the most used strategy for the treatment of keratoconus and recently it has been exploited for an increasing number of different corneal pathologies, from other ectatic disorders to keratitis. The safety of this technique has been widely assessed, but clinical complications still occur. The potential effects of cross-linking treatment upon the limbus are incompletely understood; it is important therefore to investigate the effect of UV exposure upon the limbal niche, particularly as UV is known to be mutagenic to cellular DNA and the limbus is where ocular surface tumors can develop. The risk of early induction of ocular surface cancer is undoubtedly rare and has to date not been published other than in one case after cross-linking. Nevertheless it is important to further assess, understand, and reduce where possible any potential risk. The aim of this review is to summarize all the reported cases of a pathological consequence for the limbal cells, possibly induced by cross-linking UV exposure, the studies done in vitro or ex vivo, the theoretical bases for the risks due to UV exposure, and which aspects of the clinical treatment may produce higher risk, along with what possible mechanisms could be utilized to protect the limbus and the delicate stem cells present within it. PMID:27689081

  8. Cross-linking of dithiols by mitomycin C.

    PubMed

    Paz, Manuel M

    2010-08-16

    Upon reduction, the antitumor drug mitomycin C undergoes a cascade of reactions to give a bis-electrophile that alkylates cellular nucleophiles. We recently reported that dithiols activate mitomycin C by reduction, and we report here that dithiols, after executing the reductive activation of mitomycin C, are bis-alkylated by the activated drug to form S,S'-cross-links as the predominant end products. The diastereomeric pair of adducts formed by 1,3-propanedithiol has been fully characterized by UV, HRMS, CD, and NMR experiments. Racemic dithiol (+/-)-dithiothreitol gave four diastereomeric cross-links, and (+/-)-dihydrolipoic acid gave eight cross-links (two regioisomers with four diastereomers each) that were partially characterized by UV and MS. The observed dependence of cross-link formation on dithiol concentration indicated the requirement of a second reduction step by dithiol, prior to the alkylation of the second arm of the dithiol. The existence of unidentified reaction pathways was manifested by the formation of unexpected intermediates during the course of the reaction of mitomycin C with dithiols and by the formation of unsoluble mitosene derivatives in the reaction between equimolar amounts of dithiol and mitomycin C. Mechanistic details of the reaction are addressed in light of these results. Finally, we discuss the potential relevance of our findings for the interaction of mitomycin C with dithiol-containing proteins.

  9. Porous Cross-Linked Polyimide-Urea Networks

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor)

    2015-01-01

    Porous cross-linked polyimide-urea networks are provided. The networks comprise a subunit comprising two anhydride end-capped polyamic acid oligomers in direct connection via a urea linkage. The oligomers (a) each comprise a repeating unit of a dianhydride and a diamine and a terminal anhydride group and (b) are formulated with 2 to 15 of the repeating units. The subunit was formed by reaction of the diamine and a diisocyanate to form a diamine-urea linkage-diamine group, followed by reaction of the diamine-urea linkage-diamine group with the dianhydride and the diamine to form the subunit. The subunit has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups. The subunit has been chemically imidized to yield the porous cross-linked polyimide-urea network. Also provided are wet gels, aerogels, and thin films comprising the networks, and methods of making the networks.

  10. Femtosecond laser collagen cross-linking without traditional photosensitizers

    NASA Astrophysics Data System (ADS)

    Guo, Yizang; Wang, Chao; Celi, Nicola; Vukelic, Sinisa

    2015-03-01

    Collagen cross-linking in cornea has the capability of enhancing its mechanical properties and thereby providing an alternative treatment for eye diseases such as keratoconus. Currently, riboflavin assisted UVA light irradiation is a method of choice for cross-link induction in eyes. However, ultrafast pulsed laser interactions may be a powerful alternative enabling in-depth treatment while simultaneously diminishing harmful side effects such as, keratocyte apoptosis. In this study, femtosecond laser is utilized for treatment of bovine cornea slices. It is hypothesized that nonlinear absorption of femtosecond laser pulses plays a major role in the maturation of immature cross-links and the promotion of their growth. Targeted irradiation with tightly focused laser pulses allows for the absence of a photosensitizing agent. Inflation test was conducted on half treated porcine cornea to identify the changes of mechanical properties due to laser treatment. Raman spectroscopy was utilized to study subtle changes in the chemical composition of treated cornea. The effects of treatment are analyzed by observing shifts in Amide I and Amide III bands, which suggest deformation of the collagen structure in cornea due to presence of newly formed cross-links.

  11. Citric-acid-derived photo-cross-linked biodegradable elastomers.

    PubMed

    Gyawali, Dipendra; Tran, Richard T; Guleserian, Kristine J; Tang, Liping; Yang, Jian

    2010-01-01

    Citric-acid-derived thermally cross-linked biodegradable elastomers (CABEs) have recently received significant attention in various biomedical applications, including tissue-engineering orthopedic devices, bioimaging and implant coatings. However, citric-acid-derived photo-cross-linked biodegradable elastomers are rarely reported. Herein, we report a novel photo-cross-linked biodegradable elastomer, referred to as poly(octamethylene maleate citrate) (POMC), which preserves pendant hydroxyl and carboxylic functionalities after cross-linking for the potential conjugation of biologically active molecules. Pre-POMC is a low-molecular-mass pre-polymer with an average molecular mass between 701 and 1291 Da. POMC networks are soft and elastic with an initial modulus of 0.07 to 1.3 MPa and an elongation-at-break between 38 and 382%. FT-IR-ATR results confirmed the successful surface immobilization of type-I collagen onto POMC films, which enhanced in vitro cellular attachment and proliferation. Photo-polymerized POMC films implanted subcutaneously into Sprague-Dawley rats demonstrated minimal in vivo inflammatory responses. The development of POMC enriches the family of citric-acid-derived biodegradable elastomers and expands the available biodegradable polymers for versatile needs in biomedical applications.

  12. Citric-Acid-Derived Photo-cross-Linked Biodegradable Elastomers

    PubMed Central

    Gyawali, Dipendra; Tran, Richard T.; Guleserian, Kristine J.; Tang, Liping; Yang, Jian

    2010-01-01

    Citric-acid-derived thermally cross-linked biodegradable elastomers (CABEs) have recently received significant attention in various biomedical applications, including tissue-engineering orthopedic devices, bioimaging and implant coatings. However, citric-acid-derived photo-cross-linked biodegradable elastomers are rarely reported. Herein, we report a novel photo-cross-linked biodegradable elastomer, referred to as poly(octamethylene maleate citrate) (POMC), which preserves pendant hydroxyl and carboxylic functionalities after cross-linking for the potential conjugation of biologically active molecules. POMC is a low-molecular-mass pre-polymer with a molecular mass average between 701 and 1291 Da. POMC networks are soft and elastic with an initial modulus of 0.07 to 1.3 MPa and an elongation at break between 38 and 382%. FT-IR–ATR results confirmed the successful surface immobilization of type-I collagen onto POMC films, which enhanced in vitro cellular attachment and proliferation. Photo-polymerized POMC films implanted subcutaneously into Sprague–Dawley rats demonstrated minimal in vivo inflammatory responses. The development of POMC enriches the family of citric-acid-derived biodegradable elastomers and expands the available biodegradable polymers for versatile needs in biomedical applications. PMID:20557687

  13. Potential Effects of Corneal Cross-Linking upon the Limbus

    PubMed Central

    2016-01-01

    Corneal cross-linking is nowadays the most used strategy for the treatment of keratoconus and recently it has been exploited for an increasing number of different corneal pathologies, from other ectatic disorders to keratitis. The safety of this technique has been widely assessed, but clinical complications still occur. The potential effects of cross-linking treatment upon the limbus are incompletely understood; it is important therefore to investigate the effect of UV exposure upon the limbal niche, particularly as UV is known to be mutagenic to cellular DNA and the limbus is where ocular surface tumors can develop. The risk of early induction of ocular surface cancer is undoubtedly rare and has to date not been published other than in one case after cross-linking. Nevertheless it is important to further assess, understand, and reduce where possible any potential risk. The aim of this review is to summarize all the reported cases of a pathological consequence for the limbal cells, possibly induced by cross-linking UV exposure, the studies done in vitro or ex vivo, the theoretical bases for the risks due to UV exposure, and which aspects of the clinical treatment may produce higher risk, along with what possible mechanisms could be utilized to protect the limbus and the delicate stem cells present within it.

  14. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor)

    2016-01-01

    A method for creating a three dimensional cross-linked polyimide structure includes dissolving a diamine, a dianhydride, and a triamine in a solvent, imidizing a polyamic acid gel by heating the gel, extracting the gel in a second solvent, supercritically drying the gel, and removing the solvent to create a polyimide aerogel.

  15. Intermediate closed state for glycine receptor function revealed by cysteine cross-linking

    PubMed Central

    Prevost, Marie S.; Moraga-Cid, Gustavo; Van Renterghem, Catherine; Edelstein, Stuart J.; Changeux, Jean-Pierre; Corringer, Pierre-Jean

    2013-01-01

    Pentameric ligand-gated ion channels (pLGICs) mediate signal transmission by coupling the binding of extracellular ligands to the opening of their ion channel. Agonist binding elicits activation and desensitization of pLGICs, through several conformational states, that are, thus far, incompletely characterized at the structural level. We previously reported for GLIC, a prokaryotic pLGIC, that cross-linking of a pair of cysteines at both sides of the extracellular and transmembrane domain interface stabilizes a locally closed (LC) X-ray structure. Here, we introduced the homologous pair of cysteines on the human α1 glycine receptor. We show by electrophysiology that cysteine cross-linking produces a gain-of-function phenotype characterized by concomitant constitutive openings, increased agonist potency, and equalization of efficacies of full and partial agonists. However, it also produces a reduction of maximal currents at saturating agonist concentrations without change of the unitary channel conductance, an effect reversed by the positive allosteric modulator propofol. The cross-linking thus favors a unique closed state distinct from the resting and longest-lived desensitized states. Fitting the data according to a three-state allosteric model suggests that it could correspond to a LC conformation. Its plausible assignment to a gating intermediate or a fast-desensitized state is discussed. Overall, our data show that relative movement of two loops at the extracellular-transmembrane interface accompanies orthosteric agonist-mediated gating. PMID:24085847

  16. High-Strength, Tough, Fatigue Resistant, and Self-Healing Hydrogel Based on Dual Physically Cross-Linked Network.

    PubMed

    Gong, Zhengyu; Zhang, Guoping; Zeng, Xiaoliang; Li, Jinhui; Li, Gang; Huang, Wangping; Sun, Rong; Wong, Chingping

    2016-09-14

    Hydrogels usually suffer from low mechanical strength, which largely limit their application in many fields. In this Research Article, we prepared a dual physically cross-linked hydrogel composed of poly(acrylamide-co-acrylic acid) (PAM-co-PAA) and poly(vinyl alcohol) (PVA) by simple two-steps methods of copolymerization and freezing/thawing. The hydrogen bond-associated entanglement of copolymer chains formed as cross-linking points to construct the first network. After being subjected to the freezing/thawing treatment, PVA crystalline domains were formed to serve as knots of the second network. The hydrogels were demonstrated to integrate strength and toughness (1230 ± 90 kPa and 1250 ± 50 kJ/m(3)) by the introduction of second physically cross-linked network. What̀s more, the hydrogels exhibited rapid recovery, excellent fatigue resistance, and self-healing property. The dynamic property of the dual physically cross-linked network contributes to the excellent energy dissipation and self-healing property. Therefore, this work provides a new route to understand the toughness mechanism of dual physically cross-linked hydrogels, hopefully promoting current hydrogel research and expanding their applications. PMID:27548327

  17. The actin cytoskeleton in endothelial cell phenotypes

    PubMed Central

    Prasain, Nutan; Stevens, Troy

    2009-01-01

    Endothelium forms a semi-permeable barrier that separates blood from the underlying tissue. Barrier function is largely determined by cell-cell and cell-matrix adhesions that define the limits of cell borders. Yet, such cell-cell and cell-matrix tethering is critically reliant upon the nature of adherence within the cell itself. Indeed, the actin cytoskeleton fulfills this essential function, to provide a strong, dynamic intracellular scaffold that organizes integral membrane proteins with the cell’s interior, and responds to environmental cues to orchestrate appropriate cell shape. The actin cytoskeleton is comprised of three distinct, but interrelated structures, including actin cross-linking of spectrin within the membrane skeleton, the cortical actin rim, and actomyosin-based stress fibers. This review addresses each of these actin-based structures, and discusses cellular signals that control the disposition of actin in different endothelial cell phenotypes. PMID:19028505

  18. Hypertrophic cardiomyopathy mutations in the calponin-homology domain of ACTN2 affect actin binding and cardiomyocyte Z-disc incorporation

    PubMed Central

    Haywood, Natalie J.; Wolny, Marcin; Rogers, Brendan; Trinh, Chi H.; Shuping, Yu; Edwards, Thomas A.; Peckham, Michelle

    2016-01-01

    α-Actinin-2 (ACTN2) is the only muscle isoform of α-actinin expressed in cardiac muscle. Mutations in this protein have been implicated in mild to moderate forms of hypertrophic cardiomyopathy (HCM). We have investigated the effects of two mutations identified from HCM patients, A119T and G111V, on the secondary and tertiary structure of a purified actin binding domain (ABD) of ACTN2 by circular dichroism and X-ray crystallography, and show small but distinct changes for both mutations. We also find that both mutants have reduced F-actin binding affinity, although the differences are not significant. The full length mEos2 tagged protein expressed in adult cardiomyocytes shows that both mutations additionally affect Z-disc localization and dynamic behaviour. Overall, these two mutations have small effects on structure, function and behaviour, which may contribute to a mild phenotype for this disease. PMID:27287556

  19. Molecular analysis of insertion/deletion mutations in protein 4.1 in elliptocytosis. I. Biochemical identification of rearrangements in the spectrin/actin binding domain and functional characterizations.

    PubMed Central

    Marchesi, S L; Conboy, J; Agre, P; Letsinger, J T; Marchesi, V T; Speicher, D W; Mohandas, N

    1990-01-01

    Protein 4.1 (80 kD) interacts with spectrin and short actin filaments to form the erythrocyte membrane skeleton. Mutations of spectrin and protein 4.1 are associated with elliptocytosis or spherocytosis and anemia of varying severity. We analyzed two mutant protein 4.1 molecules associated with elliptocytosis: a high molecular weight 4.1 (95 kD) associated with mild elliptocytosis without anemia, and a low molecular weight 4.1 (two species at 68 and 65 kD) associated with moderate elliptocytosis and anemia. 4.1(95) was found to contain a approximately 15-kD insertion adjacent to the spectrin/actin binding domain comprised, at least in part, of repeated sequence. 4.1(68/65) was found to lack the entire spectrin-actin binding domain. The mechanical stability of erythrocyte membranes containing 4.1(95) was identical to that of normal membranes, consistent with the presence of an intact spectrin-actin binding domain in protein 4.1. In contrast, membranes containing 4.1(68/65) have markedly reduced mechanical stability as a result of deleting the spectrin-actin binding domain. The mechanical stability of these membranes was improved following reconstitution with normal 4.1. These studies have thus enabled us to establish the importance of the spectrin-actin binding domain in regulating the mechanical stability of the erythrocyte membrane. Images PMID:2384597

  20. Dynamin at actin tails.

    PubMed

    Lee, Eunkyung; De Camilli, Pietro

    2002-01-01

    Dynamin, the product of the shibire gene of Drosophila, is a GTPase critically required for endocytosis. Some studies have suggested a functional link between dynamin and the actin cytoskeleton. This link is of special interest, because there is evidence implicating actin dynamics in endocytosis. Here we show that endogenous dynamin 2, as well as green fluorescence protein fusion proteins of both dynamin 1 and 2, is present in actin comets generated by Listeria or by type I PIP kinase (PIPK) overexpression. In PIPK-induced tails, dynamin is further enriched at the interface between the tails and the moving organelles. Dynamin mutants harboring mutations in the GTPase domain inhibited nucleation of actin tails induced by PIPK and moderately reduced their speed. Although dynamin localization to the tails required its proline-rich domain, expression of a dynamin mutant lacking this domain also diminished tail formation. In addition, this mutant disrupted a membrane-associated actin scaffold (podosome rosette) previously shown to include dynamin. These findings suggest that dynamin is part of a protein network that controls nucleation of actin from membranes. At endocytic sites, dynamin may couple the fission reaction to the polymerization of an actin pool that functions in the separation of the endocytic vesicles from the plasma membrane. PMID:11782545

  1. Doubling the cross-linking interface of a rationally designed beta roll peptide for calcium-dependent proteinaceous hydrogel formation.

    PubMed

    Dooley, Kevin; Bulutoglu, Beyza; Banta, Scott

    2014-10-13

    We have rationally engineered a stimulus-responsive cross-linking domain based on a repeats-in-toxin (RTX) peptide to enable calcium-dependent formation of supramolecular hydrogel networks. The peptide isolated from the RTX domain is intrinsically disordered in the absence of calcium. In calcium rich environments, the peptide binds Ca(2+) ions and folds into a beta roll (β-roll) secondary structure composed to two parallel β-sheet faces. Previously, we mutated one of the faces to contain solvent exposed leucine side chains which are localized only in the calcium-bound β-roll conformation. We demonstrated the ability of this mutant peptide to self-assemble into hydrogels in the presence of calcium with the aid of additional peptide-based cross-linking moieties. Here, we have expanded this approach by engineering both β-roll faces to contain leucine residues, thereby doubling the cross-linking interface for each monomeric building block. These leucine rich surfaces impart a hydrophobic driving force for self-assembly. Extensive characterization was performed on this double-faced mutant to ensure the retention of calcium affinity and subsequent structural rearrangement similar to that of the wild type domain. We genetically fused an α-helical leucine zipper capable of forming tetrameric coiled-coil bundles to the peptide and the resulting chimeric protein self-assembles into a hydrogel only in calcium rich environments. Since this new mutant peptide enables cross-linking on both surfaces simultaneously, a higher oligomerization state was achieved. To further investigate the cross-linking capability, we constructed concatemers of the β-roll with maltose binding protein (MBP), a monomeric globular protein, without the leucine zipper domains. These concatemers show a similar sol-gel transition in response to calcium. Several biophysical techniques were used to probe the structural and mechanical properties of the mutant β-roll domain and the resulting

  2. Cross-linking in the silks of bees, ants and hornets.

    PubMed

    Campbell, Peter M; Trueman, Holly E; Zhang, Qiang; Kojima, Katsura; Kameda, Tsunenori; Sutherland, Tara D

    2014-05-01

    Silk production is integral to the construction of nests or cocoons for many Aculeata, stinging Hymenopterans such as ants, bees and wasps. Here we report the sequences of new aculeate silk proteins and compare cross-linking among nine native silks from three bee species (Apis mellifera, Bombus terrestris and Megachile rotundata), three ant species (Myrmecia forficata, Oecophylla smaragdina and Harpegnathos saltator) and three hornets (Vespa analis, Vespa simillima and Vespa mandarinia). The well studied silks of spiders and silkworms are comprised of large proteins that are cross-linked and stabilized predominantly by intra and intermolecular beta sheet structure. In contrast, the aculeate silks are comprised of relatively small proteins that contain central coiled coil domains and comparatively reduced amounts of beta sheet structure. The hornet silks, which have the most beta sheet structure and the greatest amount of amino acid sequence outside the coiled-coil domains, dissolve in concentrated LiBr solution and appear to be stabilized predominantly by beta sheet structure like the classic silks. In contrast, the ant and bee silks, which have less beta sheet and less sequence outside the coiled-coil domains, could not be dissolved in LiBr and appear to be predominantly stabilized by covalent cross-linking. The iso-peptide cross-linker, ε-(γ-glutamyl)-lysine that is produced by transglutaminase enzymes, was demonstrated to be present in all silks by mass spectrometry, but at greater levels in silks of ants and bees. The bee silks and ant cocoons, but not the Oecophylla nest silks, appeared to be further stabilized by tanning reactions. PMID:24607851

  3. Model selection for athermal cross-linked fiber networks.

    PubMed

    Shahsavari, A; Picu, R C

    2012-07-01

    Athermal random fiber networks are usually modeled by representing each fiber as a truss, a Euler-Bernoulli or a Timoshenko beam, and, in the case of cross-linked networks, each cross-link as a pinned, rotating, or welded joint. In this work we study the effect of these various modeling options on the dependence of the overall network stiffness on system parameters. We conclude that Timoshenko beams can be used for the entire range of density and beam stiffness parameters, while the Euler-Bernoulli model can be used only at relatively low network densities. In the high density-high bending stiffness range, strain energy is stored predominantly in the axial and shear deformation modes, while in the other extreme range of parameters, the energy is stored in the bending mode. The effect of the model size on the network stiffness is also discussed. PMID:23005468

  4. [Cross-linking and intrastromal corneal ring segment].

    PubMed

    Renesto, Adimara da Candelaria; Sartori, Marta; Campos, Mauro

    2011-01-01

    Corneal cross-linking is a procedure used for stabilizing the cornea in patients with progressive keratoconus by increasing corneal rigidity, and it is also used in corneal inflammatory melting process. The intrastromal corneal ring segments act by flattening the center of the cornea. Originally designed for the correction of mild myopia, the segments are now being used for reduction of keratoconus in order to improve the uncorrected visual acuity, the best spectacle corrected visual acuity, to allow good tolerance to the use of contact lenses and delay the need for corneal grafting procedures. The present text presents a review of corneal cross-linking and insertion of intrastromal corneal ring segments, emphasizing their indications, results and complications related until now. PMID:21670914

  5. Collagen cross-linking: Strengthening the unstable cornea

    PubMed Central

    Tomkins, Oren; Garzozi, Hanna J

    2008-01-01

    Corneal ectasia, a weakening of corneal integrity, occurs both due to acquired and congenital conditions such as keratoconus. It is a progressing condition that affects both visual acuity, and corneal stability. Various methods exist for correcting this impairment, however none address the inherit pathology, an increase laxity of the corneal stroma. Collagen cross-linking, a new, minimally invasive method, aims to strengthen the stroma by inducing cross links between neighboring collagen fibers. This method results in an increase in corneal tensile strength, with no medium term adverse effects on its normal architecture. Clinically, treated patients display improvement in both visual acuity and keratometric readings. This method may provide clinicians with easily accessible tools to stop the progression, and even correct visual deterioration due to corneal ectasia. Here we review the current information regarding this new method, as well as discuss its potential benefits and downfalls. PMID:19668440

  6. A membrane cytoskeleton from Dictyostelium discoideum. I. Identification and partial characterization of an actin-binding activity

    PubMed Central

    1981-01-01

    Dictyostelium discoideum plasma membranes isolated by each of three procedures bind F-actin. The interactions between these membranes and actin are examined by a novel application of falling ball viscometry. Treating the membranes as multivalent actin-binding particles analogous to divalent actin-gelation factors, we observe large increases in viscosity (actin cross-linking) when membranes of depleted actin and myosin are incubated with rabbit skeletal muscle F-actin. Pre- extraction of peripheral membrane proteins with chaotropes or the inclusion of Triton X-100 during the assay does not appreciably diminish this actin cross-linking activity. Lipid vesicles, heat- denatured membranes, proteolyzed membranes, or membranes containing endogenous actin show minimal actin cross-linking activity. Heat- denatured, but not proteolyzed, membranes regain activity when assayed in the presence of Triton X-100. Thus, integral membrane proteins appear to be responsible for some or all of the actin cross-linking activity of D. discoideum membranes. In the absence of MgATP, Triton X- 100 extraction of isolated D. discoideum membranes results in a Triton- insoluble residue composed of actin, myosin, and associated membrane proteins. The inclusion of MgATP before and during Triton extraction greatly diminishes the amount of protein in the Triton-insoluble residue without appreciably altering its composition. Our results suggest the existence of a protein complex stabilized by actin and/or myosin (membrane cytoskeleton) associated with the D. discoideum plasma membrane. PMID:6894148

  7. Cytokines and growth factors cross-link heparan sulfate

    PubMed Central

    Migliorini, Elisa; Thakar, Dhruv; Kühnle, Jens; Sadir, Rabia; Dyer, Douglas P.; Li, Yong; Sun, Changye; Volkman, Brian F.; Handel, Tracy M.; Coche-Guerente, Liliane; Fernig, David G.; Lortat-Jacob, Hugues; Richter, Ralf P.

    2015-01-01

    The glycosaminoglycan heparan sulfate (HS), present at the surface of most cells and ubiquitous in extracellular matrix, binds many soluble extracellular signalling molecules such as chemokines and growth factors, and regulates their transport and effector functions. It is, however, unknown whether upon binding HS these proteins can affect the long-range structure of HS. To test this idea, we interrogated a supramolecular model system, in which HS chains grafted to streptavidin-functionalized oligoethylene glycol monolayers or supported lipid bilayers mimic the HS-rich pericellular or extracellular matrix, with the biophysical techniques quartz crystal microbalance (QCM-D) and fluorescence recovery after photobleaching (FRAP). We were able to control and characterize the supramolecular presentation of HS chains—their local density, orientation, conformation and lateral mobility—and their interaction with proteins. The chemokine CXCL12α (or SDF-1α) rigidified the HS film, and this effect was due to protein-mediated cross-linking of HS chains. Complementary measurements with CXCL12α mutants and the CXCL12γ isoform provided insight into the molecular mechanism underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has three HS binding sites, was also found to cross-link HS, but FGF-9, which has just one binding site, did not. Based on these data, we propose that the ability to cross-link HS is a generic feature of many cytokines and growth factors, which depends on the architecture of their HS binding sites. The ability to change matrix organization and physico-chemical properties (e.g. permeability and rigidification) implies that the functions of cytokines and growth factors may not simply be confined to the activation of cognate cellular receptors. PMID:26269427

  8. Estimating the Degree of Cross-Linking in Rubber

    NASA Technical Reports Server (NTRS)

    Fedors, R. F.

    1983-01-01

    Degree of cross-linking or network chain concentration of rubber estimated with aid of new method. Quantity is needed in studies of mechanical behavior of rubber. New method is based on finding rubber follows different stress/ strain relationships in extension and retraction. When rubber specimen is stretched to given extension ration and released. Stress-vs-strain curve follows two paths: one for extension and other for retraction.

  9. Optimized Fragmentation Regime for Diazirine Photo-Cross-Linked Peptides

    PubMed Central

    2016-01-01

    Cross-linking/mass spectrometry has evolved into a robust technology that reveals structural insights into proteins and protein complexes. We leverage a new tribrid instrument with improved fragmentation capacities in a systematic comparison to identify which fragmentation method would be best for the identification of cross-linked peptides. Specifically, we explored three fragmentation methods and two combinations: collision-induced dissociation (CID), beam-type CID (HCD), electron-transfer dissociation (ETD), ETciD, and EThcD. Trypsin-digested, SDA-cross-linked human serum albumin (HSA) served as a test sample, yielding over all methods and in triplicate analysis in total 2602 matched PSMs and 1390 linked residue pairs at 5% false discovery rate, as confirmed by the crystal structure. HCD wins in number of matched peptide-spectrum-matches (958 PSMs) and identified links (446). CID is most complementary, increasing the number of identified links by 13% (58 links). HCD wins together with EThcD in cross-link site calling precision, with approximately 62% of sites having adjacent backbone cleavages that unambiguously locate the link in both peptides, without assuming any cross-linker preference for amino acids. Overall quality of spectra, as judged by sequence coverage of both peptides, is best for EThcD for the majority of peptides. Sequence coverage might be of particular importance for complex samples, for which we propose a data dependent decision tree, else HCD is the method of choice. The mass spectrometric raw data has been deposited in PRIDE (PXD003737). PMID:27454319

  10. Newer protocols and future in collagen cross-linking.

    PubMed

    Cummings, Arthur B; McQuaid, Rebecca; Mrochen, Michael

    2013-08-01

    Corneal Cross-Linking (CXL) is an established surgical procedure for the treatment of corneal disorders such as corneal ectasia and keratoconus. This method of treatment stabilises the corneal structure and increases rigidity, reducing the requirement for corneal transplantation. Since its development, many scientific studies have been conducted to investigate ways of improving the procedure. Biomechanical stability of the cornea after exposure to UV-A light, and the effect of shortening procedure time has been some of the many topics explored.

  11. Optimized Fragmentation Regime for Diazirine Photo-Cross-Linked Peptides.

    PubMed

    Giese, Sven H; Belsom, Adam; Rappsilber, Juri

    2016-08-16

    Cross-linking/mass spectrometry has evolved into a robust technology that reveals structural insights into proteins and protein complexes. We leverage a new tribrid instrument with improved fragmentation capacities in a systematic comparison to identify which fragmentation method would be best for the identification of cross-linked peptides. Specifically, we explored three fragmentation methods and two combinations: collision-induced dissociation (CID), beam-type CID (HCD), electron-transfer dissociation (ETD), ETciD, and EThcD. Trypsin-digested, SDA-cross-linked human serum albumin (HSA) served as a test sample, yielding over all methods and in triplicate analysis in total 2602 matched PSMs and 1390 linked residue pairs at 5% false discovery rate, as confirmed by the crystal structure. HCD wins in number of matched peptide-spectrum-matches (958 PSMs) and identified links (446). CID is most complementary, increasing the number of identified links by 13% (58 links). HCD wins together with EThcD in cross-link site calling precision, with approximately 62% of sites having adjacent backbone cleavages that unambiguously locate the link in both peptides, without assuming any cross-linker preference for amino acids. Overall quality of spectra, as judged by sequence coverage of both peptides, is best for EThcD for the majority of peptides. Sequence coverage might be of particular importance for complex samples, for which we propose a data dependent decision tree, else HCD is the method of choice. The mass spectrometric raw data has been deposited in PRIDE (PXD003737). PMID:27454319

  12. Reversible PH Lability of Cross-Linked Vault Nanocapsules

    SciTech Connect

    Yu, M.; Ng, B.C.; Rome, L.H.; Tolbert, S.H.; Monbouquette, H.G.

    2009-05-28

    Vaults are ubiquitous, self-assembled protein nanocapsules with dimension in the sub-100 nm range that are conserved across diverse phyla from worms to humans. Their normal presence in humans at a copy number of over 10 000/cell makes them attractive as potential drug delivery vehicles. Toward this goal, bifunctional amine-reactive reagents are shown to be useful for the reversible cross-linking of recombinant vaults such that they may be closed and opened in a controllable manner.

  13. Electrochemical Characterization of Ultrathin Cross-Linked Metal Nanoparticle Films.

    PubMed

    Han, Chu; Percival, Stephen J; Zhang, Bo

    2016-09-01

    Here we report the preparation, characterization, and electrochemical study of conductive, ultrathin films of cross-linked metal nanoparticles (NPs). Nanoporous films ranging from 40 to 200 nm in thickness composed of gold and platinum NPs of ∼5 nm were fabricated via a powerful layer-by-layer spin coating process. This process allows preparation of uniform NP films as large as 2 × 2 cm(2) with precise control over thickness, structure, and electrochemical and electrocatalytic properties. Gold, platinum, and bimetallic NP films were fabricated and characterized using cyclic voltammetry, scanning electron microscopy, and conductance measurements. Their electrocatalytic activity toward the oxygen reduction reaction (ORR) was investigated. Our results show that the electrochemical activity of such NP films is initially hindered by the presence of dense thiolate cross-linking ligands. Both electrochemical cycling and oxygen plasma cleaning are effective means in restoring their electrochemical activity. Gold NP films have higher electric conductivity than platinum possibly due to more uniform film structure and closer particle-particle distance. The electrochemical and electrocatalytic performance of platinum NP films can be greatly enhanced by the incorporation of gold NPs. This work focuses on electrochemical characterization of cross-linked NP films and demonstrates several unique properties. These include quick and easy preparation, ultrathin and uniform film thickness, tunable structure and composition, and transferability to many other substrates.

  14. Magnetic macromolecular cross linked enzyme aggregates (CLEAs) of glucoamylase.

    PubMed

    Nadar, Shamraja S; Rathod, Virendra K

    2016-02-01

    This work illustrates the preparation of magnetic macromolecular glucoamylase CLEAs using dialdehydic pectin, as a cross linker instead of traditional glutaraldehyde. The effect of precipitators type and amount, cross linker concentration, cross linking time and amount of amino functionalized magnetic nanoparticles (AFMNs) on glucoamylase activity was studied. Glucoamylase magnetic macromolecular CLEAs prepared by precipitation in presence of AFMNs by ammonium sulfate were subsequently cross linked by dialdehydic pectin. After cross-linked by pectin, 95.4% activity recovery was achieved in magnetic macromolecular CLEAs, whereas in case of glutaraldehyde cross linker, 85.3% activity recovery was achieved. Magnetic macromolecular CLEAs showed 2.91 and 1.27 folds higher thermal stability as compared to free and magnetic glutaraldehyde CLEAs. In kinetics study, magnetic macromolecular CLEAs retained same Km values, whereas magnetic glutaraldehyde CLEAs showed higher Km value than free enzyme. The porous structure of magnetic macromolecular CLEAs was not only enhanced mass transfer toward macromolecular substrates, but also showed compression resistance for 5 consecutive cycles which was checked in terms of effectiveness factor. At the end, in reusability study; magnetic macromolecular CLEAs were retained 84% activity after 10(th) cycle without leaching of enzyme which is 22% higher than traditional magnetic CLEAs.

  15. Ion exchange selectivity for cross-linked polyacrylic acid

    NASA Technical Reports Server (NTRS)

    May, C. E.; Philipp, W. H.

    1983-01-01

    The ion separation factors for 21 common metal ions with cross-linked polyacrylic acid were determined as a function of pH and the percent of the cross-linked polyacrylic acid neutralized. The calcium ion was used as a reference. At a pH of 5 the decreasing order of affinity of the ions for the cross-linked polyacrylic acid was found to be: Hg++, Fe+++, Pb++, Cr+++, Cu++, Cd++, Al+++, Ag+, Zn++, Ni++, Mn++, Co++, Ca++, Sr++, Ba++, Mg++, K+, Rb+, Cs+, Na+, and Li+. Members of a chemical family exhibited similar selectivities. The Hg++ ion appeared to be about a million times more strongly bound than the alkali metal ions. The relative binding of most of the metal ions varied with pH; the very tightly and very weakly bound ions showed the largest variations with pH. The calcium ion-hydrogen ion equilibrium was perturbed very little by the presence of the other ions. The separation factors and selectivity coefficients are discussed in terms of equilibrium and thermodynamic significance.

  16. Homogeneous UVA system for corneal cross-linking treatment

    NASA Astrophysics Data System (ADS)

    Ayres Pereira, Fernando R.; Stefani, Mario A.; Otoboni, José A.; Richter, Eduardo H.; Ventura, Liliane

    2010-02-01

    The treatment of keratoconus and corneal ulcers by collagen cross-linking using ultraviolet type A irradiation, combined with photo-sensitizer Riboflavin (vitamin B2), is a promising technique. The standard protocol suggests instilling Riboflavin in the pre-scratched cornea every 5min for 30min, during the UVA irradiation of the cornea at 3mW/cm2 for 30 min. This process leads to an increase of the biomechanical strength of the cornea, stopping the progression, or sometimes, even reversing Keratoconus. The collagen cross-linking can be achieved by many methods, but the utilization of UVA light, for this purpose, is ideal because of its possibility of a homogeneous treatment leading to an equal result along the treated area. We have developed a system, to be clinically used for treatment of unhealthy corneas using the cross-linking technique, which consists of an UVA emitting delivery device controlled by a closed loop system with high homogeneity. The system is tunable and delivers 3-5 mW/cm2, at 365nm, for three spots (6mm, 8mm and 10mm in diameter). The electronics close loop presents 1% of precision, leading to an overall error, after the calibration, of less than 10% and approximately 96% of homogeneity.

  17. Fiber optic immunosensor for cross-linked fibrin concentration

    NASA Astrophysics Data System (ADS)

    Moskowitz, Samuel E.

    2000-08-01

    Working with calcium ions in the blood, platelets produce thromboplastin which transforms prothrombin into thrombin. Removing peptides, thrombin changes fibrinogen into fibrin. Cross-linked insoluble fibrin polymers are solubilized by enzyme plasmin found in blood plasma. Resulting D-dimers are elevated in patients with intravascular coagulation, deep venous thrombosis, pulmonary embolism, myocardial infarction, multiple trauma, cancer, impaired renal and liver functions, and sepsis. Consisting principally of a NIR 780 nm GaAlAs laser diode and a 800 nm avalanche photodiode (APD), the fiber-optic immunosensor can determined D-dimer concentration to levels <0.1 ng/ml. A capture monoclonal antibody to the antigen soluble cross-linked fibrin is employed. Immobilized at the tip of an optical fiber by avidin-biotin, the captured antigen is detected by a second antibody which is labeled with NN 382 fluorescent dye. An evanescent wave traveling on an excitation optical fiber excites the antibody-antigen fluorophore complex. Concentration of cross-linked fibrin is directly proportional to the APD measured intensity of fluorescence. NIR fluorescence has advantages of low background interference, short fluorescence lifetime, and large difference between excitation and emission peaks. Competitive ELISA test for D-dimer concentration requires trained personnel performing a time consuming operation.

  18. Cross linking molecular systems to form ultrathin dielectric layers

    NASA Astrophysics Data System (ADS)

    Feng, Danqin

    Dehydrogenation leads to cross linking of polymer or polymer like formation in very different systems: self-assembled monolayers and in closo -carboranes leading to the formation of semiconducting and dielectric boron carbide. We find evidence of intermolecular interactions for a self-assembled monolayer (SAM) formed from a large molecular adsorbate, [1,1';4',1"-terphenyl]-4,4"-dimethanethiol, from the dispersion of the molecular orbitals with changing the wave vector k and from the changes with temperature. With the formation self assembled molecular (SAM) layer, the molecular orbitals hybridize to electronic bands, with indications of significant band dispersion of the unoccupied molecular orbitals. Although organic adsorbates and thin films are generally regarded as "soft" materials, the effective Debye temperature, indicative of the dynamic motion of the lattice normal to the surface, can be very high, e.g. in the multilayer film formed from [1,1'-biphenyl]-4,4'-dimethanethiol (BPDMT). Depending on molecular orientation, the effective Debye temperature can be comparable to that of graphite due to the 'stiffness' of the benzene rings, but follows the expected Debye-Waller behavior for the core level photoemission intensities with temperature. This is not always the case. We find that a monomolecular film formed from [1,1';4',1"-terphenyl]-4,4"-dimethanethiol deviates from Debye-Waller temperature behavior and is likely caused by temperature dependent changes in molecular orientation. We also find evidence for the increase in dielectric character with polymerization (cross-linking) in spite of the decrease in the HOMO-LUMO gap upon irradiation of TPDMT. The changes in the HOMO-LUMO gap, with cross-linking, are roughly consistent with the band dispersion. The decomposition and cross-linking processes are also accompanied by changes in molecular orientation. The energetics of the three isomeric carborane cage compounds [ closo-1,2-orthocarborane, closo-1

  19. Effect of ATP analogues on the actin-myosin interface.

    PubMed

    Van Dijk, J; Fernandez, C; Chaussepied, P

    1998-06-01

    The interaction between skeletal myosin subfragment 1 (S1) and filamentous actin was examined at various intermediate states of the actomyosin ATPase cycle by chemical cross-linking experiments. Reaction of the actin-S1 complex with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide and N-hydroxysuccinimide generated products with molecular masses of 165 and 175 kDa, in which S1 loops of residues 626-647 and 567-578 were cross-linked independently to the N-terminal segment of residues 1-12 of one actin monomer, and of 265 kDa, in which the two loops were bound to the N termini of two adjacent monomers. In strong-binding complexes, i.e., without nucleotide or with ADP, S1 was sequentially cross-linked to one and then to two actin monomers. In the weak-binding complexes, two types of cross-linking pattern were observed. First, during steady-state hydrolysis of ATP or ATPgammaS at 20 degreesC, the cross-linking reaction gave rise to a small amount of unknown 200 kDa product. Second, in the presence of AMPPNP, ADP.BeFx, ADP.AlF4-, or ADP.VO43- or with S1 internally cross-linked by N,N'-p-phenylenedimaleimide, only the 265 kDa product was obtained. The presence of 200 mM salt inhibited cross-linking reactions in both weak- and strong-binding states, while it dissociated only weak-binding complexes. These results indicate that, in the weak-binding state populated with the ADP.Pi analogues, skeletal S1 interacts predominantly and with an apparent equal affinity with the N termini of two adjacent actin monomers, while these ionic contacts are much less significant in stabilizing the rigor actin-S1 complexes. They also suggest that the electrostatic actin-S1 interface is not influenced by the type of ADP.Pi analogue bound to the active site.

  20. Probing actin incorporation into myofibrils using Asp11 and His73 actin mutants.

    PubMed

    Xia, D; Peng, B; Sesok, D A; Peng, I

    1993-01-01

    We used a cell free system Bouché et al.: J. Cell Biol. 107:587-596, 1988] to study the incorporation of actin into myofibrils. We used alpha-skeletal muscle actin and actins with substitutions of either His73 [Solomon and Rubenstein: J. Biol.Chem. 262:11382, 1987], or Asp11 [Solomon et al.: J. Biol. Chem. 263:19662, 1988]. Actins were translated in reticulocyte lysate and incubated with myofibrils. The incorporated wild type actin could be cross-linked into dimers using N,N'-1,4-phenylenebismaleimide (PBM), indicating that the incorporated actin is actually inserted into the thin filaments of the myofibril. The His73 mutants incorporated to the same extent as wild type actin and was also cross-linked with PBM. Although some of the Asp11 mutants co-assembled with carrier actin, only 1-3% of the Asp11 mutant actins incorporated after 2 min and did not increase after 2 hr. Roughly 17% of wild type actin incorporated after 2 min and 31% after 2 hr. ATP increased the release of wild type actin from myofibrils, but did not increase the release of Asp11 mutants. We suggest that (1) the incorporation of wild type and His73 mutant actins was due to a physiological process whereas association of Asp11 mutants with myofibrils was non-specific, (2) the incorporation of wild type actin involved a rapid initial phase, followed by a slower phase, and (3) since some of the Asp11 mutants can co-assemble with wild type actin, the ability to self-assemble was not sufficient for incorporation into myofibrils. Thus, incorporation probably includes interaction between actin and a thin filament associated protein. We also showed that incorporation occurred at actin concentrations which would cause disassembly of F-actin. Since the myofibrils did not show large scale disassembly but incorporated actin, filament stability and monomer incorporation are likely to be mediated by actin associated proteins of the myofibril. PMID:8287497

  1. Autoclavable highly cross-linked polyurethane networks in ophthalmology.

    PubMed

    Bruin, P; Meeuwsen, E A; van Andel, M V; Worst, J G; Pennings, A J

    1993-11-01

    Highly cross-linked aliphatic polyurethane networks have been prepared by the bulk step reaction of low molecular weight polyols and hexamethylenediisocyanate (HDI). These polyurethane networks are optically transparent, colourless and autoclavable amorphous glassy thermosets, which are suited for use in ophthalmic applications such as intraocular lenses and keratoprostheses. The properties of these glassy polyurethanes, obtained from the reaction of the low molecular weight polyols triisopropanolamine (TIPA) or tetrakis (2-hydroxypropyl)ethylenediamine (Quadrol) and HDI in stoichiometric proportions, have been investigated in more detail. The glassy Quadrol/HDI-based polyurethane exhibits a reduction in ultimate glass transition temperature from 85 to 48 degrees C by uptake of 1% of water, and good ultimate mechanical properties (tensile strength 80-85 MPa, elongation at break ca 15%, modulus ca 1.5 GPa). IR spectra of these hydrophobic polyurethane networks revealed the absence of an isocyanate absorption, indicating that all isocyanates, apparently, had reacted during the cross-linking reaction. The biocompatibility could be increased by grafting tethered polyacrylamide chains onto the surface during network formation. These transparent cross-linked polyurethanes did not transmit UV light up to 400 nm, by incorporation of a small amount of the UV absorbing chromophore Coumarin 102, and could be sterilized simply by autoclaving. They were implanted in rabbit eyes, either in the form of small circular disks or in the form of a keratoprosthesis (artificial cornea). It was shown that the material was well tolerated by the rabbit eyes. Serious opacification of the cornea, a direct result of an adverse reaction to the implant, was never seen. Even 1 yr after implantation of a polyurethane keratoprosthesis the eye was still 'quiet'. PMID:7508760

  2. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

    NASA Technical Reports Server (NTRS)

    Panek, John

    2010-01-01

    Polyimide aerogels with three-dimensional cross-linked structure are made using linear oligomeric segments of polyimide, and linked with one of the following into a 3D structure: trifunctional aliphatic or aromatic amines, latent reactive end caps such as nadic anhydride or phenylethynylphenyl amine, and silica or silsesquioxane cage structures decorated with amine. Drying the gels supercritically maintains the solid structure of the gel, creating a polyimide aerogel with improved mechanical properties over linear polyimide aerogels. Lightweight, low-density structures are desired for acoustic and thermal insulation for aerospace structures, habitats, astronaut equipment, and aeronautic applications. Aerogels are a unique material for providing such properties because of their extremely low density and small pore sizes. However, plain silica aerogels are brittle. Reinforcing the aerogel structure with a polymer (X-Aerogel) provides vast improvements in strength while maintaining low density and pore structure. However, degradation of polymers used in cross-linking tends to limit use temperatures to below 150 C. Organic aerogels made from linear polyimide have been demonstrated, but gels shrink substantially during supercritical fluid extraction and may have lower use temperature due to lower glass transition temperatures. The purpose of this innovation is to raise the glass transition temperature of all organic polyimide aerogel by use of tri-, tetra-, or poly-functional units in the structure to create a 3D covalently bonded network. Such cross-linked polyimides typically have higher glass transition temperatures in excess of 300 400 C. In addition, the reinforcement provided by a 3D network should improve mechanical stability, and prevent shrinkage on supercritical fluid extraction. The use of tri-functional aromatic or aliphatic amine groups in the polyimide backbone will provide such a 3D structure.

  3. Cross-linking of Newcastle disease virus (NDV) proteins.

    PubMed

    Nagai, Y; Yoshida, T; Hamaguchi, M; Iinuma, M; Maeno, K; Matsumoto, T

    1978-01-01

    The proxomity and spatial relationships of the structural proteins of Newcastle disease virus (NDV) were studied by chemical cross-linking with a series of imidoesters. When the virions were reacted by the cross-linker with a distance 6.1A or longer between the functional groups and analyzed by polyacrylamide gel electrophoresis, remarkable changes were observed in the migration patterns of the viral proteins. The most striking one was the extensive decrease in the intensity of the M protein band, and although not so strikingly, glycoprotein and nucleocapsid protein bands were reduced significantly. Instead, several protein complexes appeared at and near the top of the gels. The protein complexes formed by a reversible cross-linker, dimethyl-3,3'-dithiobispropionimidate (DTBP), were analyzed by two dimensional electrophoresis; the complexes on the first-dimension cylindrical gels were cleaved by reduction with 2-mercaptoethanol and electrophoresed laterally on the second-dimension slab gels. The results indicated that homodimers of glycoprotein, nucleocapsid protein and M protein were generated under the condition of the most gentle cross-linking employed. At the same time, however, trimer and higher homopolymers of M protein were already detectable. Under the more extensive conditions, the bulk of M protein was cross-linked to form a large protein complex with very high molecular weight. Further, small but significant amounts of glycoprotein and nucleocapsid protein were always detected in this complex. These results suggest that M protein may be present in the virion in close enough proximity to interact with each other and may further have some interactions with glycoprotein and nucleocapsid protein. On the basis of these findings possible roles of M protein in virus assembly were discussed.

  4. Newer protocols and future in collagen cross-linking

    PubMed Central

    Cummings, Arthur B; McQuaid, Rebecca; Mrochen, Michael

    2013-01-01

    Corneal Cross-Linking (CXL) is an established surgical procedure for the treatment of corneal disorders such as corneal ectasia and keratoconus. This method of treatment stabilises the corneal structure and increases rigidity, reducing the requirement for corneal transplantation. Since its development, many scientific studies have been conducted to investigate ways of improving the procedure. Biomechanical stability of the cornea after exposure to UV-A light, and the effect of shortening procedure time has been some of the many topics explored PMID:23925329

  5. LET dependence of DNA-protein cross-links

    SciTech Connect

    Blakely, E.A.; Chang, P.Y.; Bjornstad, K.A.

    1995-08-01

    We have preliminary data indicating a fluence-dependent yield of particle-induced protein cross-links (DPC`s) with a dependency on LET and particle residual energy. Our data indicate that the DPC yield for hamster fibroblasts in vitro irradiated at 32 keV/{mu}m is similar to that reported for hamster cells irradiated with cobalt-60 gamma rays. At 100-120 keV/{mu}m there is some evidence for an enhanced DPC yield with increasing particle fluence, but there are differences in the yields that are dependent on particle track structure.

  6. Chemically cross-linked thin poly(vinylidene fluoride-co-trifluoroethylene)films for nonvolatile ferroelectric polymer memory.

    PubMed

    Shin, Yu Jin; Kang, Seok Ju; Jung, Hee Joon; Park, Youn Jung; Bae, Insung; Choi, Dong Hoon; Park, Cheolmin

    2011-02-01

    Both chemically and electrically robust ferroelectric poly(vinylidene fluoride-co-trifluoro ethylene) (PVDF-TrFE) films were developed by spin-coating and subsequent thermal annealing with the thermal cross-linking agent 2,4,4-trimethyl-1,6-hexanediamine (THDA). Well-defined ferroelectric β crystalline domains were developed with THDA up to approximately 50 wt %, with respect to polymer concentration, resulting in characteristic ferroelectric hysteresis polarization-voltage loops in metal/cross-linked ferroelectric layer/metal capacitors with remnant polarization of approximately 4 μC/cm(2). Our chemically networked film allowed for facile stacking of a solution-processable organic semiconductor on top of the film, leading to a bottom-gate ferroelectric field effect transistor (FeFET). A low-voltage operating FeFET was realized with a networked PVDF-TrFE film, which had significantly reduced gate leakage current between the drain and gate electrodes. A solution-processed single crystalline tri-isopropylsilylethynyl pentacene FeFET with a chemically cross-linked PVDF-TrFE film showed reliable I-V hysteresis with source-drain ON/OFF current bistablility of 1 × 10(3) at a sweeping gate voltage of ±20 V. Furthermore, both thermal micro/nanoimprinting and transfer printing techniques were conveniently combined for micro/nanopatterning of chemically resistant cross-linked PVDF-TrFE films.

  7. Actin-binding proteins: the long road to understanding the dynamic landscape of cellular actin networks.

    PubMed

    Lappalainen, Pekka

    2016-08-15

    The actin cytoskeleton supports a vast number of cellular processes in nonmuscle cells. It is well established that the organization and dynamics of the actin cytoskeleton are controlled by a large array of actin-binding proteins. However, it was only 40 years ago that the first nonmuscle actin-binding protein, filamin, was identified and characterized. Filamin was shown to bind and cross-link actin filaments into higher-order structures and contribute to phagocytosis in macrophages. Subsequently many other nonmuscle actin-binding proteins were identified and characterized. These proteins regulate almost all steps of the actin filament assembly and disassembly cycles, as well as the arrangement of actin filaments into diverse three-dimensional structures. Although the individual biochemical activities of most actin-regulatory proteins are relatively well understood, knowledge of how these proteins function together in a common cytoplasm to control actin dynamics and architecture is only beginning to emerge. Furthermore, understanding how signaling pathways and mechanical cues control the activities of various actin-binding proteins in different cellular, developmental, and pathological processes will keep researchers busy for decades. PMID:27528696

  8. One-step electrospinning of cross-linked chitosan fibers.

    PubMed

    Schiffman, Jessica D; Schauer, Caroline L

    2007-09-01

    Chitin is a nitrogen-rich polysaccharide that is abundant in crustaceans, mollusks, insects, and fungi and is the second most abundant organic material found in nature next to cellulose. Chitosan, the N-deacetylated derivative of chitin, is environmentally friendly, nontoxic, biodegradable, and antibacterial. Fibrous mats are typically used in industries for filter media, catalysis, and sensors. Decreasing fiber diameters within these mats causes many beneficial effects such as increased specific surface area to volume ratios. When the intrinsically beneficial effects of chitosan are combined with the enhanced properties of nanofibrous mats, applications arise in a wide range of fields, including medical, packaging, agricultural, and automotive. This is particularly important as innovative technologies that focus around bio-based materials are currently of high urgency, as they can decrease dependencies on fossil fuels. We have demonstrated that Schiff base cross-linked chitosan fibrous mats can be produced utilizing a one-step electrospinning process that is 25 times faster and, therefore, more economical than a previously reported two-step vapor-cross-linking method. These fibrous mats are insoluble in acidic, basic, and aqueous solutions for 72 h. Additionally, this improved production method results in a decreased average fiber diameter, which measures 128 +/- 40 nm. Chemical and structural analyses were conducted utilizing Fourier transform infrared spectroscopy, solubility studies, and scanning electron microscopy. PMID:17696400

  9. Collagen Cross-Linking: Current Status and Future Directions

    PubMed Central

    Hovakimyan, Marine; Guthoff, Rudolf F.; Stachs, Oliver

    2012-01-01

    Collagen cross-linking (CXL) using UVA light and riboflavin (vitamin B2) was introduced as a clinical application to stabilize the cornea by inducing cross-links within and between collagen fibers. CXL has been investigated extensively and has been shown clinically to arrest the progression of keratoconic or post-LASIK ectasia. With its minimal cost, simplicity, and proven positive clinical outcome, CXL can be regarded as a useful approach to reduce the number of penetrating keratoplasties performed. Small case series have also indicated that CXL is beneficial in corneal edema by reducing stromal swelling behavior and in keratitis by inhibiting pathogen growth. Despite these encouraging results, CXL remains a relatively new method that is potentially associated with complications. Aspects such as side effects and recurrence rates have still to be elucidated. In light of the growing interest in CXL, our paper summarizes present knowledge about this promising approach. We have intentionally endeavored to include the more relevant studies from the recent literature to provide an overview of the current status of CXL. PMID:22288005

  10. Covalently Cross-Linked Arabinoxylans Films for Debaryomyces hansenii Entrapment.

    PubMed

    González-Estrada, Ramsés; Calderón-Santoyo, Montserrat; Carvajal-Millan, Elizabeth; Ascencio Valle, Felipe de Jesús; Ragazzo-Sánchez, Juan Arturo; Brown-Bojorquez, Francisco; Rascón-Chu, Agustín

    2015-01-01

    In the present study, wheat water extractable arabinoxylans (WEAX) were isolated and characterized, and their capability to form covalently cross-linked films in presence of Debaryomyces hansenii was evaluated. WEAX presented an arabinose to xylose ratio of 0.60, a ferulic acid and diferulic acid content of 2.1 and 0.04 µg∙mg(-1) WEAX, respectively and a Fourier Transform Infra-Red (FT-IR) spectrum typical of WEAX. The intrinsic viscosity and viscosimetric molecular weight values for WEAX were 3.6 dL∙g(-1) and 440 kDa, respectively. The gelation of WEAX (1% w/v) with and without D. hansenii (1 × 10(7) CFU∙cm(-2)) was rheologically investigated by small amplitude oscillatory shear. The entrapment of D. hansenii decreased gel elasticity from 1.4 to 0.3 Pa, probably by affecting the physical interactions between WEAX chains. Covalently cross-linked WEAX films containing D. hansenii were prepared by casting. Scanning electron microscopy images show that WEAX films containing D. hansenii were porous and consisted of granular-like and fibre microstructures. Average tensile strength, elongation at break and Young's modulus values dropped when D. hansenii was present in the film. Covalently cross-lined WEAX containing D. hansenii could be a suitable as a functional entrapping film. PMID:26102070

  11. Optimization model for UV-Riboflavin corneal cross-linking

    NASA Astrophysics Data System (ADS)

    Schumacher, S.; Wernli, J.; Scherrer, S.; Bueehler, M.; Seiler, T.; Mrochen, M.

    2011-03-01

    Nowadays UV-cross-linking is an established method for the treatment of keraectasia. Currently a standardized protocol is used for the cross-linking treatment. We will now present a theoretical model which predicts the number of induced crosslinks in the corneal tissue, in dependence of the Riboflavin concentration, the radiation intensity, the pre-treatment time and the treatment time. The model is developed by merging the difussion equation, the equation for the light distribution in dependence on the absorbers in the tissue and a rate equation for the polymerization process. A higher concentration of Riboflavin solution as well as a higher irradiation intensity will increase the number of induced crosslinks. However, performed stress-strain experiments which support the model showed that higher Riboflavin concentrations (> 0.125%) do not result in a further increase in stability of the corneal tissue. This is caused by the inhomogeneous distribution of induced crosslinks throughout the cornea due to the uneven absorption of the UV-light. The new model offers the possibility to optimize the treatment individually for every patient depending on their corneal thickness in terms of efficiency, saftey and treatment time.

  12. Thermoset-cross-linked lignocellulose: a moldable plant biomass.

    PubMed

    Karumuri, Sriharsha; Hiziroglu, Salim; Kalkan, A Kaan

    2015-04-01

    The present work demonstrates a high biomass content (i.e., up to 90% by weight) and moldable material by controlled covalent cross-linking of lignocellulosic particles by a thermoset through epoxide-hydroxyl reactions. As an example for lignocellulosic biomass, Eastern redcedar was employed. Using scanning fluorescence microscopy and vibrational spectroscopy, macroscopic to molecular scale interactions of the thermoset with the lignocellulose have been revealed. Impregnation of the polymer resin into the biomass cellular network by capillary action as well as applied pressure results in a self-organizing structure in the form of thermoset microrods in a matrix of lignocellulose. We also infer permeation of the thermoset into the cell walls from the reaction of epoxides with the hydroxyls of the lignin. Compression tests reveal, at 30% thermoset content, thermoset-cross-linked lignocellulose has superior mechanical properties over a commercial wood plastic composite while comparable stiffness and strength to bulk epoxy and wood, respectively. The failure mechanism is understood to be crack propagation along the particle-thermoset interface and/or interparticle thermoset network. PMID:25734539

  13. Mutations of the Mouse ELMO Domain Containing 1 Gene (Elmod1) Link Small GTPase Signaling to Actin Cytoskeleton Dynamics in Hair Cell Stereocilia

    PubMed Central

    Johnson, Kenneth R.; Longo-Guess, Chantal M.; Gagnon, Leona H.

    2012-01-01

    Stereocilia, the modified microvilli projecting from the apical surfaces of the sensory hair cells of the inner ear, are essential to the mechanoelectrical transduction process underlying hearing and balance. The actin-filled stereocilia on each hair cell are tethered together by fibrous links to form a highly patterned hair bundle. Although many structural components of hair bundles have been identified, little is known about the signaling mechanisms that regulate their development, morphology, and maintenance. Here, we describe two naturally occurring, allelic mutations that result in hearing and balance deficits in mice, named roundabout (rda) and roundabout-2J (rda2J). Positional cloning identified both as mutations of the mouse ELMO domain containing 1 gene (Elmod1), a poorly characterized gene with no previously reported mutant phenotypes. The rda mutation is a 138 kb deletion that includes exons 1–5 of Elmod1, and rda2J is an intragenic duplication of exons 3–8 of Elmod1. The deafness associated with these mutations is caused by cochlear hair cell dysfunction, as indicated by conspicuous elongations and fusions of inner hair cell stereocilia and progressive degeneration of outer hair cell stereocilia. Mammalian ELMO-family proteins are known to be involved in complexes that activate small GTPases to regulate the actin cytoskeleton during phagocytosis and cell migration. ELMOD1 and ELMOD2 recently were shown to function as GTPase-activating proteins (GAPs) for the Arf family of small G proteins. Our finding connecting ELMOD1 deficiencies with stereocilia dysmorphologies thus establishes a link between the Ras superfamily of small regulatory GTPases and the actin cytoskeleton dynamics of hair cell stereocilia. PMID:22558334

  14. Effects of processing conditions on the reliability of cross-linked polyethylene cable insulation. Progress report

    SciTech Connect

    Phillips, P.J.

    1981-03-01

    Crystallization and morphology were investigated in cross-linked PE. /sup 13/C NMR was used to quantify the cross-links. Production of cable is being studied. Dielectric constant and loss of cross-linked PE are being measured. (DLC)

  15. 21 CFR 177.2710 - Styrene-divinylbenzene resins, cross-linked.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Styrene-divinylbenzene resins, cross-linked. 177... resins, cross-linked. Styrene-divinylbenzene cross-linked copolymer resins may be safely used as articles... conditions: (a) The resins are produced by the copolymerization of styrene with divinylbenzene. (b)...

  16. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes.

    PubMed

    Leitner, Alexander; Joachimiak, Lukasz A; Unverdorben, Pia; Walzthoeni, Thomas; Frydman, Judith; Förster, Friedrich; Aebersold, Ruedi

    2014-07-01

    The study of proteins and protein complexes using chemical cross-linking followed by the MS identification of the cross-linked peptides has found increasingly widespread use in recent years. Thus far, such analyses have used almost exclusively homobifunctional, amine-reactive cross-linking reagents. Here we report the development and application of an orthogonal cross-linking chemistry specific for carboxyl groups. Chemical cross-linking of acidic residues is achieved using homobifunctional dihydrazides as cross-linking reagents and a coupling chemistry at neutral pH that is compatible with the structural integrity of most protein complexes. In addition to cross-links formed through insertion of the dihydrazides with different spacer lengths, zero-length cross-link products are also obtained, thereby providing additional structural information. We demonstrate the application of the reaction and the MS identification of the resulting cross-linked peptides for the chaperonin TRiC/CCT and the 26S proteasome. The results indicate that the targeting of acidic residues for cross-linking provides distance restraints that are complementary and orthogonal to those obtained from lysine cross-linking, thereby expanding the yield of structural information that can be obtained from cross-linking studies and used in hybrid modeling approaches. PMID:24938783

  17. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes

    PubMed Central

    Leitner, Alexander; Joachimiak, Lukasz A.; Unverdorben, Pia; Walzthoeni, Thomas; Frydman, Judith; Förster, Friedrich; Aebersold, Ruedi

    2014-01-01

    The study of proteins and protein complexes using chemical cross-linking followed by the MS identification of the cross-linked peptides has found increasingly widespread use in recent years. Thus far, such analyses have used almost exclusively homobifunctional, amine-reactive cross-linking reagents. Here we report the development and application of an orthogonal cross-linking chemistry specific for carboxyl groups. Chemical cross-linking of acidic residues is achieved using homobifunctional dihydrazides as cross-linking reagents and a coupling chemistry at neutral pH that is compatible with the structural integrity of most protein complexes. In addition to cross-links formed through insertion of the dihydrazides with different spacer lengths, zero-length cross-link products are also obtained, thereby providing additional structural information. We demonstrate the application of the reaction and the MS identification of the resulting cross-linked peptides for the chaperonin TRiC/CCT and the 26S proteasome. The results indicate that the targeting of acidic residues for cross-linking provides distance restraints that are complementary and orthogonal to those obtained from lysine cross-linking, thereby expanding the yield of structural information that can be obtained from cross-linking studies and used in hybrid modeling approaches. PMID:24938783

  18. 21 CFR 177.2710 - Styrene-divinylbenzene resins, cross-linked.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Styrene-divinylbenzene resins, cross-linked. 177... resins, cross-linked. Styrene-divinylbenzene cross-linked copolymer resins may be safely used as articles... conditions: (a) The resins are produced by the copolymerization of styrene with divinylbenzene. (b)...

  19. Drosophila Dachsous and Fat polarize actin-based protrusions over a restricted domain of the embryonic denticle field.

    PubMed

    Lawlor, Kynan T; Ly, Daniel C; DiNardo, Stephen

    2013-11-15

    Atypical cadherins Dachsous (Ds) and Fat coordinate the establishment of planar polarity, essential for the patterning of complex tissues and organs. The precise mechanisms by which this system acts, particularly in cases where Ds and Fat act independently of the 'core' frizzled system, are still the subject of investigation. Examining the deployment of the Ds-Fat system in different tissues of the model organism Drosophila, has provided insights into the general mechanisms by which polarity is established and propagated to coordinate outcomes across a field of cells. The Drosophila embryonic epidermis provides a simple model epithelia where the establishment of polarity can be observed from start to finish, and in the absence of proliferation, over a fixed number of cells. Using the asymmetric placement of f-actin during denticle assembly as a read-out of polarity, we examine the requirement for Ds and Fat in establishing polarity across the denticle field. Comparing detailed phenotypic analysis with steady state protein enrichment revealed a spatially restricted requirement for the Ds-Fat system within the posterior denticle field. Ectopic Ds signaling provides evidence for a model whereby Ds acts to asymmetrically enrich Fat in a neighboring cell, in turn polarizing the cell to specify the position of the actin-based protrusions at the cell cortex.

  20. Isolation of cross-linked peptides by diagonal strong cation exchange chromatography for protein complex topology studies by peptide fragment fingerprinting from large sequence databases.

    PubMed

    Buncherd, Hansuk; Roseboom, Winfried; Ghavim, Behrad; Du, Weina; de Koning, Leo J; de Koster, Chris G; de Jong, Luitzen

    2014-06-27

    Knowledge of spatial proximity of amino acid residues obtained by chemical cross-linking and mass spectrometric analysis provides information about protein folding, protein-protein interactions and topology of macromolecular assemblies. We show that the use of bis(succinimidyl)-3-azidomethyl glutarate as a cross-linker provides a solution for two major analytical problems of cross-link mapping by peptide fragment fingerprinting (PFF) from complex sequence databases, i.e., low abundance of protease-generated target peptides and lack of knowledge of the masses of linked peptides. Tris(carboxyethyl)phosphine (TCEP) reduces the azido group in cross-linked peptides to an amine group in competition with cleavage of an amide bond formed in the cross-link reaction. TCEP-induced reaction products were separated by diagonal strong cation exchange (SCX) from unmodified peptides. The relation between the sum of the masses of the cleavage products and the mass of the parent cross-linked peptide enables determination of the masses of candidate linked peptides. By reversed phase LC-MS/MS analysis of secondary SCX fractions, we identified several intraprotein and interprotein cross-links in a HeLa cell nuclear extract, aided by software tools supporting PFF from the entire human sequence database. The data provide new information about interacting protein domains, among others from assemblies involved in splicing.

  1. Thermally Reversible Physically Cross-Linked Hybrid Network Hydrogels Formed by Thermosensitive Hairy Nanoparticles.

    PubMed

    Wright, Roger A E; Henn, Daniel M; Zhao, Bin

    2016-08-18

    This Article reports on thermally induced reversible formation of physically cross-linked, three-dimensional network hydrogels from aqueous dispersions of thermosensitive diblock copolymer brush-grafted silica nanoparticles (hairy NPs). The hairy NPs consisted of a silica core, a water-soluble polyelectrolyte inner block of poly(2-(methacryloyloxy)ethyltrimethylammonium iodide), and a thermosensitive poly(methoxydi(ethylene glycol) methacrylate) (PDEGMMA) outer block synthesized by sequential surface-initiated atom transfer radical polymerizations and postpolymerization quaternization of tertiary amine moieties. Moderately concentrated dispersions of these hairy nanoparticles in water underwent thermally induced reversible transitions between flowing liquids to self-supporting gels upon heating. The gelation was driven by the lower critical solution temperature (LCST) transition of the PDEGMMA outer block, which upon heating self-associated into hydrophobic domains acting as physical cross-linking points for the gel network. Rheological studies showed that the sol-gel transition temperature decreased with increasing hairy NP concentration, and the gelation was achieved at concentrations as low as 3 wt %. PMID:27455167

  2. Structural insights into de novo actin polymerization

    PubMed Central

    Dominguez, Roberto

    2010-01-01

    Summary Many cellular functions depend on rapid and localized actin polymerization/depolymerization. Yet, the de novo polymerization of actin in cells is kinetically unfavorable because of the instability of polymerization intermediates (small actin oligomers) and the actions of actin monomer binding proteins. Cells use filament nucleation and elongation factors to initiate and sustain polymerization. Structural biology is beginning to shed light on the diverse mechanisms by which these unrelated proteins initiate polymerization, undergo regulation, and mediate the transition of monomeric actin onto actin filaments. A prominent role is played by the W domain, which in some of these proteins occurs in tandem repeats that recruit multiple actin subunits. Pro-rich regions are also abundant and mediate the binding of profilin-actin complexes, which are the main source of polymerization competent actin in cells. Filament nucleation and elongation factors frequently interact with Rho family GTPases, which relay signals from membrane receptors to regulate actin cytoskeleton remodeling. PMID:20096561

  3. Vibrio cholerae MARTX toxin heterologous translocation of beta-lactamase and roles of individual effector domains on cytoskeleton dynamics.

    PubMed

    Dolores, Jazel S; Agarwal, Shivani; Egerer, Martina; Satchell, Karla J F

    2015-02-01

    The Vibrio cholerae MARTXVc toxin delivers three effector domains to eukaryotic cells. To study toxin delivery and function of individual domains, the rtxA gene was modified to encode toxin with an in-frame beta-lactamase (Bla) fusion. The hybrid RtxA::Bla toxin was Type I secreted from bacteria; and then Bla was translocated into eukaryotic cells and delivered by autoprocessing, demonstrating that the MARTXVc toxin is capable of heterologous protein transfer. Strains that produce hybrid RtxA::Bla toxins that carry one effector domain in addition to Bla were found to more efficiently translocate Bla. In cell biological assays, the actin cross-linking domain (ACD) and Rho-inactivation domain (RID) are found to cross-link actin and inactivate RhoA, respectively, when other effector domains are absent, with toxin autoprocessing required for high efficiency. The previously unstudied alpha-beta hydrolase domain (ABH) is shown here to activate CDC42, although the effect is ameliorated when RID is also present. Despite all effector domains acting on cytoskeleton assembly, the ACD was sufficient to rapidly inhibit macrophage phagocytosis. Both the ACD and RID independently disrupted polarized epithelial tight junction integrity. The sufficiency of ACD but strong selection for retention of RID and ABH suggests these two domains may primarily function by modulating cell signaling.

  4. Change in the actin-myosin subfragment 1 interaction during actin polymerization.

    PubMed

    Chaussepied, P; Kasprzak, A A

    1989-12-01

    To better characterize the conformational differences of G- and F-actin, we have compared the interaction between G- and F-actin with myosin subfragment 1 (S1) which had part of its F-actin binding site (residues 633-642) blocked by a complementary peptide or "antipeptide" (Chaussepied, P., and Morales, M. F. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 7471-7475). Light scattering, sedimentation, and electron microscopy measurements showed that, with the antipeptide covalently attached to the S1 heavy chain, S1 was not capable of inducing G-actin polymerization in the absence of salt. Moreover, the antipeptide-carrying S1 did not change the fluorescence polarization of 5-[2-(iodoacetyl)-aminoethyl]aminonaphthalene-1-sulfonic acid (1,5-IAEDANS)-labeled G-actin or of 1,5-IAEDANS-labeled actin dimer, compared to the control S1. This result, interpreted as a lack of interaction between G-actin and antipeptide-carrying S1, was confirmed further by the following experiments: in the presence of G-actin, antipeptide.S1 heavy chain was not protected against trypsin and papain proteolysis, and G-actin could not be cross-linked to antipeptide.S1 by 1-ethyl-3[-3-(dimethylamino)propyl]carbodiimide. In contrast, similar experiments showed that antipeptide.S1 was able to interact with nascent F-actin and with F-actin. Thus, blocking the stretch 633-642 of S1 heavy chain by the antipeptide strongly inhibits G-actin-S1 interaction but only slightly alters F-actin-S1 contact. We, therefore postulate that this stretch of skeletal S1 heavy chain is essential for G-actin-S1 interaction and that the G-F transformation generates new S1 binding site(s) on the actin molecule.

  5. Studies on N-vinylformamide cross-linked copolymers

    NASA Astrophysics Data System (ADS)

    Świder, Joanna; Tąta, Agnieszka; Sokołowska, Katarzyna; Witek, Ewa; Proniewicz, Edyta

    2015-12-01

    Copolymers of N-vinylformamide (NVF) cross-linked with three multifunctional monomers, including divinylbenzene (DVB), ethylene glycol dimethacrylate (EGDMA), and N,N‧-methylenebisacrylamide (MBA) were synthetized by a three-dimensional free radical polymerization in inverse suspension using 2,2‧-azobis(2-methylpropionamide) dihydrochloride (AIBA) as an initiator. Methyl silicon oil was used as the continuous phase during the polymerization processes. Fourier-transform adsorption infrared (FT-IR) spectra revealed the presence of silicone oil traces and suggested that silicone oil strongly interacted with the copolymers surface. Purification procedure allowed to completely remove the silicon oil traces from P(NVF-co-DVB) only. The morphology and the structure of the investigated copolymers were examined by optical microscopy, FT-IR, and FT-Raman (Fourier-transform Raman spectroscopy) methods.

  6. Tough Stretchable Physically-Cross-linked Electrospun Hydrogel Fiber Mats.

    PubMed

    Yang, Yiming; Wang, Chao; Wiener, Clinton G; Hao, Jinkun; Shatas, Sophia; Weiss, R A; Vogt, Bryan D

    2016-09-01

    Nature uses supramolecular interactions and hierarchical structures to produce water-rich materials with combinations of properties that are challenging to obtain in synthetic systems. Here, we demonstrate hierarchical supramolecular hydrogels from electrospun, self-associated copolymers with unprecedented elongation and toughness for high porosity hydrogels. Hydrophobic association of perfluoronated comonomers provides the physical cross-links for these hydrogels based on copolymers of dimethyl acrylamide and 2-(N-ethylperfluorooctane sulfonamido)ethyl methacrylate (FOSM). Intriguingly, the hydrogel fiber mats show an enhancement in toughness in comparison to compression molded bulk hydrogels. This difference is attributed to the size distribution of the hydrophobic aggregates where narrowing the distribution in the electrospun material enhances the toughness of the hydrogel. These hydrogel fiber mats exhibit extensibility more than double that of the bulk hydrogel and a comparable modulus despite the porosity of the fiber mat leading to >25 wt % increase in water content. PMID:27548013

  7. Conventional Versus Cross-Linked Polyethylene for Total Hip Arthroplasty.

    PubMed

    Surace, Michele F; Monestier, Luca; Vulcano, Ettore; Harwin, Steven F; Cherubino, Paolo

    2015-09-01

    The clinical and radiographic outcomes of 88 patients who underwent primary total hip arthroplasty with either conventional polyethylene or cross-linked polyethylene (XLPE) from the same manufacturer were compared. There were no significant differences between the 2 subpopulations regarding average age, gender, side affected, or prosthetic stem and cup size. The average follow-up was 104 months (range, 55 to 131 months). To the authors' knowledge, this is the longest follow-up for this particular insert. Clinical and radiographic evaluations were performed at 1, 3, 6, and 12 months and then annually. Results showed that XLPE has a significantly greater wear reduction than that of standard polyethylene in primary total hip arthroplasty. At the longest available follow-up for these specific inserts, XLPE proved to be effective in reducing wear. PMID:26375527

  8. Protein cross-linking tools for the construction of nanomaterials.

    PubMed

    Domeradzka, Natalia E; Werten, Marc Wt; Wolf, Frits A de; de Vries, Renko

    2016-06-01

    Across bioengineering there is a need to couple proteins to other proteins, or to peptides. Although traditional chemical conjugations have dominated in the past, more and more highly specific coupling strategies are becoming available that are based on protein engineering. Here we review the use of protein modification approaches such as enzymatic and autocatalytic protein-protein coupling, as well as the use of hetero-dimerizing (or hetero-oligomerizing) modules, applied to the specific case of linking together de novo designed recombinant polypeptides into precisely structured nanomaterials. Such polypeptides are increasingly being investigated for biomedical and other applications. In this review, we describe the protein-engineering based cross-linking strategies that dramatically expand the repertoire of possible molecular structures and, hence, the range of materials that can be produced from them. PMID:26871735

  9. Structural Dynamics of an Actin Spring

    PubMed Central

    Mahadevan, L.; Riera, C.S.; Shin, Jennifer H.

    2011-01-01

    Actin-based motility in cells is usually associated with either polymerization/depolymerization in the presence of cross-linkers or contractility in the presence of myosin motors. Here, we focus on a third distinct mechanism involving actin in motility, seen in the dynamics of an active actin spring that powers the acrosomal reaction of the horseshoe crab (Limulus polyphemus) sperm. During this process, a 60-μm bent and twisted bundle of cross-linked actin uncoils and becomes straight in a few seconds in the presence of Ca2+. This straightening, which occurs at a constant velocity, allows the acrosome to forcefully penetrate the egg. Synthesizing ultrastructural information with the kinetics, energetics, and imaging of calcium binding allows us to construct a dynamical theory for this mechanochemical engine consistent with our experimental observations. It also illuminates the general mechanism by which energy may be stored in conformational changes and released cooperatively in ordered macromolecular assemblies. PMID:21320427

  10. Actinic keratosis

    MedlinePlus

    Solar keratosis; Sun-induced skin changes - keratosis; Keratosis - actinic (solar) ... Actinic keratosis is caused by exposure to sunlight. You are more likely to develop it if you: Have fair skin, blue or green eyes, or blond or red hair Had a ...

  11. Chemical cross-linking with thiol-cleavable reagents combined with differential mass spectrometric peptide mapping--a novel approach to assess intermolecular protein contacts.

    PubMed Central

    Bennett, K. L.; Kussmann, M.; Björk, P.; Godzwon, M.; Mikkelsen, M.; Sørensen, P.; Roepstorff, P.

    2000-01-01

    The intermolecular contact regions between monomers of the homodimeric DNA binding protein ParR and the interaction between the glycoproteins CD28 and CD80 were investigated using a strategy that combined chemical cross-linking with differential MALDI-MS analyses. ParR dimers were modified in vitro with the thiol-cleavable cross-linker 3,3'-dithio-bis(succinimidylproprionate) (DTSSP), proteolytically digested with trypsin and analyzed by MALDI-MS peptide mapping. Comparison of the peptide maps obtained from digested cross-linked ParR dimers in the presence and absence of a thiol reagent strongly supported a "head-to-tail" arrangement of the monomers in the dimeric complex. Glycoprotein fusion constructs CD28-IgG and CD80-Fab were cross-linked in vitro by DTSSP, characterized by nonreducing SDS-PAGE, digested in situ with trypsin and analyzed by MALDI-MS peptide mapping (+/- thiol reagent). The data revealed the presence of an intermolecular cross-link between the receptor regions of the glycoprotein constructs, as well as a number of unexpected but nonetheless specific interactions between the fusion domains of CD28-IgG and the receptor domain of CD80-Fab. The strategy of chemical cross-linking combined with differential MALDI-MS peptide mapping (+ thiol reagent) enabled localization of the interface region(s) of the complexes studied and clearly demonstrates the utility of such an approach to obtain structural information on interacting noncovalent complexes. PMID:10975572

  12. Cross-linking characterization of polymers based on their optical dispersion utilizing a white-light interferometer

    NASA Astrophysics Data System (ADS)

    Taudt, Ch.; Baselt, T.; Oreski, G.; Hirschl, Ch.; Koch, E.; Hartmann, P.

    2015-05-01

    This work analyses samples of the widely used encapsulant of photovoltaics modules, ethylene vinyl acetate (EVA). The samples were cross-linked using a lamination technique for different curing times (0 - 20 minutes). The cross-linking characterization is done by determinating the material dispersion with the aid of a combined temporal- and spectral domain white-light interferometer. With the proposed technique it was possible to discriminate the differences in crosslinking for the given curing times. One important feature of this approach is the possibility to perform space resolved measurements of the crosslinking state with μm-resolution. Furthermore the paper discusses the mathematical analysis and processing of measurement data and shows a prototype solution for the fast and automated data acquisition for industrial application.

  13. Preparation of shell cross-linked nano-objects from hybrid-peptide block copolymers.

    PubMed

    Rodríguez-Hernández, Juan; Babin, Jérôme; Zappone, Bruno; Lecommandoux, Sébastien

    2005-01-01

    Supramolecular structures formed by self-assembly of diblock copolymers in solution are stable over restricted environmental conditions: concentration, temperature, pH, or ion strength among others. To enlarge their domain of application, it appears necessary to develop stabilization strategies. We report here different strategies to stabilize the shell of micelles formed by self-assembly of amphiphilic polydiene-b-polypeptide diblock copolymers. For this purpose, covalent bonds can be formed between either amine or carboxylic acid groups distributed along the soluble peptide block and a cross-linking agent that contains respectively aldehyde or amine functions. Shell stabilization affords systems with unique properties that combine three main advantages: shape persistence, control of the porosity, and stimuli-responsive behavior. The covalent capture of such macromolecular objects has been studied by light scattering, AFM, and conductimetry measurements.

  14. Standard versus trans-epithelial collagen cross-linking in keratoconus patients suitable for standard collagen cross-linking

    PubMed Central

    Rossi, S; Orrico, A; Santamaria, C; Romano, V; De Rosa, L; Simonelli, F; De Rosa, G

    2015-01-01

    Purpose Evaluating the clinical results of trans-epithelial collagen cross-linking (CXL) and standard CXL in patients with progressive keratoconus. Methods This prospective study comprised 20 eyes of 20 patients with progressive keratoconus. Ten eyes were treated by standard CXL and ten by trans-epithelial cross-linking (TE-CXL, epithelium on) with 1 year of follow-up. All patients underwent complete ophthalmologic testing that included pre- and postoperative uncorrected visual acuity, corrected visual acuity, spherical error, spherical equivalent, corneal astigmatism, simulated maximum, minimum, and average keratometry, coma and spherical aberration, optical pachymetry, and endothelial cell density. Intra-and postoperative complications were recorded. The solution used for standard CXL comprised riboflavin 0.1% and dextran 20.0% (Ricrolin), while the solution for TE-CXL (Ricrolin, TE) comprised riboflavin 0.1%, dextran 15.0%, trometamol (Tris), and ethylenediaminetetraacetic acid. Ultraviolet-A treatment was performed with UV-X System at 3 mW/cm2. Results In both the standard CXL group (ten patients, ten eyes; mean age, 30.4±7.3 years) and the TE-CXL group (ten patients, ten eyes; mean age, 28±3.8 years), uncorrected visual acuity and corrected visual acuity improved significantly after treatment. Furthermore, a significant improvement in topographic outcomes, spherical error, and spherical equivalent was observed in both groups at month 12 posttreatment. No significant variations were recorded in other parameters. No complications were noted. Conclusion A 1-year follow-up showed stability of clinical and refractive outcomes after standard CXL and TE-CXL. PMID:25834386

  15. The Effect of Crosslinking on the Microscale Stress Response and Molecular Deformations in Actin Networks

    NASA Astrophysics Data System (ADS)

    Gurmessa, Bekele; Fitzpatrick, Robert; Valdivia, Jonathon; Anderson, Rae M. R.

    Actin, the most abundant protein in eukaryotic cells, is a semi-flexible biopolymer in the cytoskeleton that plays a crucial structural and mechanical role in cell stability, motion and replication, as well as muscle contraction. Most of these mechanically driven structural changes in cells stem from the complex viscoelastic nature of entangled actin networks and the presence of a myriad of proteins that cross-link actin filaments. Despite their importance, the mechanical response of actin networks is not yet well understood, particularly at the molecular level. Here, we use optical trapping - coupled with fluorescence microscopy - to characterize the microscale stress response and induced filament deformations in entangled and cross-linked actin networks subject to localized mechanical perturbations. In particular, we actively drive a microsphere 10 microns through an entangled or cross- linked actin network at a constant speed and measure the resistive force that the deformed actin filaments exert on the bead during and following strain. We simultaneously visualize and track individual sparsely-labeled actin filaments to directly link force response to molecular deformations, and map the propagation of the initially localized perturbation field throughout the rest of the network (~100 um). By varying the concentration of actin and cross-linkers we directly determine the role of crosslinking and entanglements on the length and time scales of stress propagation, molecular deformation and relaxation mechanisms in actin networks.

  16. Tuning nanoscale viscoelasticity of polyelectrolyte complexes with multiple types of cross-links

    NASA Astrophysics Data System (ADS)

    Ma, Tianzhu; Han, Biao; Lee, Daeyeon; Han, Lin

    Mechanical properties of hydrogels are manifestation of cross-link type and density, fixed charges and water-polymer interactions. In this study, we revealed how different types of cross-links regulate the nanoscale viscoelasticity of polyelectrolyte networks. Ionically cross-linked PAH/PAA layer-by-layer complexes were modified to include covalent cross-links using EDC. AFM-nanoindentation and force relaxation were performed at various ionic strength (0.01-1M) and pH (1.5-5.5). As-assembled networks, held only by ionic cross-links, underwent >95% relaxation, dominated by cross-link breaking and re-formation. Addition of covalent cross-links increased the instantaneous modulus by 1.6-fold and attenuated relaxation to ~80% of net neutral states (pH >=3.5), as covalent cross-links provide additional elastic components. The network remained stabilized when all ionic cross-links were dissociated at pH <=1.5, whereby further attenuation to 31% in relaxation could be due to viscoelastic polymer conformational changes and fluid flow-induced poroelasticity. Taken together, this study demonstrates the potential of using multiple cross-linking types to tune the viscoelastic mechanisms in polyelectrolyte complexes.

  17. Cross-linking of fibrinogen and fibrin by fibrin-stablizing factor (factor XIIIa).

    PubMed

    Kanaide, H; Shainoff, J R

    1975-04-01

    Factor XIIIa catalyzed intermolecular cross-linking of fibrinogen at initial rates that varied in direct (first order) proportion to the fibrinogen concentration, which differed from the well known zero order relationship in fibrin cross-linking. Preferential cross-linking of gamma-chains occurred with both substrates. The differences in rates and order of reaction were attributed mainly to effect of self-alignment of the gamma-chains in fibrin which enabled the cross-linking enzyme to interact with paired chains as a single rather than two independent entities. Studies on mixtures of fibrinogen and fibrin indicated factor XIIIa had near equal affinities for the two substrates. At low concentrations with which cross-linking of fibrinogen proceeded sluggishly compared to fibrin, fibrinogen inhibited stabilization of fibrin clots by competitively partitioning factor XIIIa away from the fribin. Additional inhibition arose from cross-linking of fibrin in soluble combination with fibrinogen in mixtures containing fibrinogen in large excess over fibrin. The observations demonstrate ways in which fibrinogen normally helps to suppress both polymerization and cross-linking of small amounts of fibrin produced within the circulation. At very high concentrations above 30 mg. per milliliter, fibrinogen underwent cross-linking at faster initial rates than the cross-linking of fibrin. Rapid cross-linking of concentrated fibrogen raises the possibility that filtration enrichment may be a factor contributing to abnormal formation of the highly insoluble fibrinogen deposits occurring in atheromatous tissue.

  18. Reactive electrospinning and biodegradation of cross-linked methacrylated polycarbonate nanofibers.

    PubMed

    Wu, Ruizhi; Zhang, Jian-Feng; Fan, Yuwei; Stoute, Diana; Lallier, Thomas; Xu, Xiaoming

    2011-06-01

    The objectives of this study were to fabricate cross-linked biodegradable polycarbonate nanofibers and to investigate their biodegradability by different enzymes. Poly(2,3-dihydroxycarbonate) was synthesized from naturally occurring l-tartaric acid. The hydroxyl groups on the functional polycarbonate were converted to methacrylate groups to enable the polymer to cross-link under UV irradiation. Smooth cross-linked methacrylated polycarbonate nanofibers (300-1800 nm) were fabricated by a reactive electrospinning process with in situ UV radiation from a mixed solution of linear methacrylated polycarbonate (MPC) and poly(ethylene oxide) (PEO) (MPC:PEO = 9:1) in methanol/chloroform (50/50). These cross-linked nanofibers have shown excellent solvent resistance and their solubility decreases with increasing degree of cross-linking. The thermal properties of linear and cross-linked polycarbonate nanofibers were investigated by differential scanning calorimetry and thermogravimetric analysis. The cross-linked polycarbonate nanofibers show no melting point below 200 °C and their decomposition temperature increases with increasing cross-linking degree. Their biodegradation products by five different enzymes were analyzed using liquid chromatography-mass spectrometry (LC-MS). The biodegradability of the polycarbonate nanofibers decreases with increasing cross-linking degree. These nanofibers were found to support human fibroblast survival and to promote cell attachment. This study demonstrates that cross-linked biodegradable polycarbonate nanofibers with different chemical properties and biodegradability can be fabricated using the novel reactive electrospinning technology to meet the needs of different biomedical applications.

  19. Characterization of Interstrand DNA-DNA Cross-Links Using the α-Hemolysin Protein Nanopore.

    PubMed

    Zhang, Xinyue; Price, Nathan E; Fang, Xi; Yang, Zhiyu; Gu, Li-Qun; Gates, Kent S

    2015-12-22

    Nanopore-based sensors have been studied extensively as potential tools for DNA sequencing, characterization of epigenetic modifications such as 5-methylcytosine, and detection of microRNA biomarkers. In the studies described here, the α-hemolysin protein nanopore embedded in a lipid bilayer was used for the detection and characterization of interstrand cross-links in duplex DNA. Interstrand cross-links are important lesions in medicinal chemistry and toxicology because they prevent the strand separation that is required for read-out of genetic information from DNA in cells. In addition, interstrand cross-links are used for the stabilization of duplex DNA in structural biology and materials science. Cross-linked DNA fragments produced unmistakable current signatures in the nanopore experiment. Some cross-linked substrates gave irreversible current blocks of >10 min, while others produced long current blocks (10-100 s) before the double-stranded DNA cross-link translocated through the α-hemolysin channel in a voltage-driven manner. The duration of the current block for the different cross-linked substrates examined here may be dictated by the stability of the duplex region left in the vestibule of the nanopore following partial unzipping of the cross-linked DNA. Construction of calibration curves measuring the frequency of cross-link blocking events (1/τon) as a function of cross-link concentration enabled quantitative determination of the amounts of cross-linked DNA present in samples. The unique current signatures generated by cross-linked DNA in the α-HL nanopore may enable the detection and characterization of DNA cross-links that are important in toxicology, medicine, and materials science.

  20. Development of a novel cross-linking strategy for fast and accurate identification of cross-linked peptides of protein complexes.

    PubMed

    Kao, Athit; Chiu, Chi-li; Vellucci, Danielle; Yang, Yingying; Patel, Vishal R; Guan, Shenheng; Randall, Arlo; Baldi, Pierre; Rychnovsky, Scott D; Huang, Lan

    2011-01-01

    Knowledge of elaborate structures of protein complexes is fundamental for understanding their functions and regulations. Although cross-linking coupled with mass spectrometry (MS) has been presented as a feasible strategy for structural elucidation of large multisubunit protein complexes, this method has proven challenging because of technical difficulties in unambiguous identification of cross-linked peptides and determination of cross-linked sites by MS analysis. In this work, we developed a novel cross-linking strategy using a newly designed MS-cleavable cross-linker, disuccinimidyl sulfoxide (DSSO). DSSO contains two symmetric collision-induced dissociation (CID)-cleavable sites that allow effective identification of DSSO-cross-linked peptides based on their distinct fragmentation patterns unique to cross-linking types (i.e. interlink, intralink, and dead end). The CID-induced separation of interlinked peptides in MS/MS permits MS(3) analysis of single peptide chain fragment ions with defined modifications (due to DSSO remnants) for easy interpretation and unambiguous identification using existing database searching tools. Integration of data analyses from three generated data sets (MS, MS/MS, and MS(3)) allows high confidence identification of DSSO cross-linked peptides. The efficacy of the newly developed DSSO-based cross-linking strategy was demonstrated using model peptides and proteins. In addition, this method was successfully used for structural characterization of the yeast 20 S proteasome complex. In total, 13 non-redundant interlinked peptides of the 20 S proteasome were identified, representing the first application of an MS-cleavable cross-linker for the characterization of a multisubunit protein complex. Given its effectiveness and simplicity, this cross-linking strategy can find a broad range of applications in elucidating the structural topology of proteins and protein complexes.

  1. Riboflavin-Ultraviolet A Corneal Cross-linking for Keratoconus

    PubMed Central

    El-Raggal, Tamer M.

    2009-01-01

    Purpose: To evaluate the safety, efficacy of riboflavin-ultraviolet A irradiation (UVA) corneal cross-linking and present refractive changes induced by the treatment in cases of keratoconus. Materials and Methods: The study includes 15 eyes of 9 patients with keratoconus with an average keratometric (K) reading less than 54 D and minimal corneal thickness greater than 420 microns. The corneal epithelium was removed manually within the central 8.5 mm diameter area and the cornea was soaked with riboflavin eye drops (0.1% in 20% dextran τ-500) for 30 minutes followed by exposure to UVA radiation (365 nm, 3 mW/cm2) for 30 minutes. During the follow-up period, uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity (BSCVA), manifest refraction, slit lamp examination and topographic changes were recorded at the first week, first month, 3 and 6 months. Results: There was statistically significant improvement of UCVA from a preoperative mean of 0.11 ± 0.07 (range 0.05–0.3) to a postoperative mean of 0.15 ± 0.06 (range 0.1–0.3) (P < 0.05). None of the eyes lost lines of preoperative UCVA but 1 eye lost 1 line of preoperative BSCVA. The preoperative mean K of 49.97 ± 2.81 D (range 47.20–51.75) changed to 48.34 ± 2.64 D (range 45.75–50.40). This decrease in K readings was statistically significant (P < 0.05). All eyes developed minimal faint stromal haze that cleared in 14 eyes within 1 month. In only 1 eye, this resulted in a very faint corneal scar. Other sight threatening complications were not encountered in this series. Progression of the original disease was not seen in any of the treated eyes within 6 months of follow-up. Conclusion: Riboflavin-UVA corneal cross-linking is a safe and promising method for keratoconus. Larger studies with longer follow up are recommended. PMID:20404993

  2. Energetic modeling and single-molecule verification of dynamic regulation on receptor protein diffusion by actin corrals and lipid raft domains receptor

    NASA Astrophysics Data System (ADS)

    Lin, Chien Yu; Huang, Jung Y.; Lo, Leu-Wei

    2015-03-01

    To faithfully estimate a signal that varies in both space and time, the optimization strategy used by a live cell is to organize a collection of distributed and mobile receptors into a mobile active clustering. However, living eukaryotic cells are highly heterogeneous and stochastically dynamic. It is therefore important to develop an energetic model based on fundamental laws to verify that the underlying processes are energetically favorable. We developed an energetic model based on the generalized Langevin equation and the Cahn-Hilliard equation to simulate the diffusive behaviors of receptor proteins in the plasma membrane with a hierarchical structure of actin corrals, lipid domains, and receptor proteins. Single-molecule tracking data of EGFR acquired on live HeLa cells agrees with the simulation results. We discovered that after ligand binding, EGFR molecules move into lipid nanodomains. The transition rates between different diffusion states of liganded EGFR molecules are regulated by the lipid domains. Our method captures both the sensitivity of single-molecule processes, statistic accuracy of data analysis, and the hierarchical structure of plasma membranes.

  3. Zinc cross-linked hydroxamated alginates for pulsed drug release

    PubMed Central

    Raut, Neha S; Deshmukh, Prasad R; Umekar, Milind J; Kotagale, Nandkishor R

    2013-01-01

    Introduction: Alginates can be tailored chemically to improve solubility, physicochemical, and biological properties and its complexation with metal ion is useful for controlling the drug release. Materials And Methods: Synthesized N,O-dimethyl, N-methyl, or N-Benzyl hydroxylamine derivatives of sodium alginate were subsequently complexed with zinc to form beads. Hydroxamation of sodium alginate was confirmed by Fourier transform infra-red spectroscopy (FTIR) and differential scanning calorimetry (DSC). Results: The synthesized polymeric material exhibited reduced aqueous, HCl and NaOH solubility. The hydroxamated derivatives demonstrated pulsed release where change in pH of the dissolution medium stimulated the atenolol release. Conclusion: Atenolol loaded Zn cross-linked polymeric beads demonstrated the sustained the plasma drug levels with increased half-life. Although the synthesized derivatives greatly altered the aqueous solubility of sodium alginate, no significant differences in in vitro and in vivo atenolol release behavior amongst the N,O-dimethyl, N-methyl, or N-Benzyl hydroxylamine derivatives of sodium alginate were observed. PMID:24350039

  4. Pyridinium cross-links in heritable disorders of collagen

    SciTech Connect

    Pasquali, M.; Still, M.J.; Dembure, P.P.

    1995-12-01

    Ehlers-Danlos syndrome (EDS) is a heterogeneous group of inherited disorders of collagen that is characterized by skin fragility, skin hyperextensibility, and joint hypermobility. EDS type VI is caused by impaired collagen lysyl hydroxylase (procollagen-lysine, 2-oxoglutarate 5-dioxygenase; E.C.1.14.11.4), the ascorbate-dependent enzyme that hydroxylates lysyl residues on collagen neopeptides. Different alterations in the gene for collagen lysyl hydroxylase have been reported in families with EDS type VI. In EDS type VI, impairment of collagen lysyl hydroxylase results in a low hydroxylysine content in mature collagen. Hydroxylysine is a precursor of the stable, covalent, intermolecular cross-links of collagen, pyridinoline (Pyr), and deoxypyridinoline (Dpyr). Elsewhere we reported in preliminary form that patients with EDS type VI had a distinctive alteration in the urinary excretion of Pyr and Dpyr. In the present study, we confirm that the increased Dpyr/Pyr ratio is specific for EDS type VI and is not observed in other inherited or acquired collagen disorders. In addition, we find that skin from patients with EDS type VI has reduced Pyr and increased Dpyr, which could account for the organ pathology. 19 refs., 1 tab.

  5. Enzymatic cross-linking of carboxymethylpullulan grafted with ferulic acid.

    PubMed

    Dulong, Virginie; Hadrich, Ahdi; Picton, Luc; Le Cerf, Didier

    2016-10-20

    Carboxymethylpullulan (CMP) has been modified in a two-step grafting reaction of ferulic acid (FA). Acid adipic dihydrazyde (ADH) was first reacted with FA activated with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC). Then the product of this first reaction was reacted with CMP (activated with EDC). Grafted polysaccharides structure was confirmed by FTIR and (1)H NMR spectroscopy. Analyses by size-exclusion chromatography (SEC) coupling on-line with a multi-angle light scattering detector (MALS), a viscometer and a differential refractive index detector (DRI) (SEC/MALS/DRI/Visco) showed that associations between FA moieties occurred due to hydrophobic interactions. The grafting rates of FA were determined by the Folin-Ciocalteu method and were found between 1.0% and 11.2% (mol/mol anhydroglucose unit). The CMP-FA were then enzymatically cross-linked with laccase from Pleurotus ostreatus. The crosslinking reactions were followed by rheological measurements, demonstrating the influence of laccase concentration on kinetics. Elastic modulus and swelling rates of hydrogels depends on FA content only for low values. PMID:27474545

  6. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    SciTech Connect

    Zhang, Xiaoqing; Wu, Liming; Sessler, Gerhard M.

    2015-07-15

    Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young’s modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d{sub 33} coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d{sub 33} ⋅ g{sub 33}) for a more typical d{sub 33} value of 400 pC/N is about 11.2 GPa{sup −1}. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm{sup 2} and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  7. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Wu, Liming; Sessler, Gerhard M.

    2015-07-01

    Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young's modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d33 coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d33 ṡ g33) for a more typical d33 value of 400 pC/N is about 11.2 GPa-1. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm2 and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  8. Synthesis and Properties of Cross-Linked Polyamide Aerogels

    NASA Technical Reports Server (NTRS)

    Williams, Jarrod C.; Meador, Mary Ann; McCorkle, Linda

    2015-01-01

    We report the first synthesis of cross-linked polyamide aerogels through step growth polymerization using a combination of diamines, diacid chloride and triacid chloride. Polyamide oligomers endcapped with amines are prepared as stable solutions in N-methylpyrrolidinone from several different diamine precursors and 1,3-benzenedicarbonyl dichloride. Addition of 1,3,5-benzenetricarbonyl trichloride yields gels which form in under five minutes according to the scheme shown. Solvent exchange of the gels into ethanol, followed by drying using supercritical CO2 extraction gives colorless aerogels with densities around 0.1 to 0.2 gcm3. Thicker monolithes of the polyamide aerogels are stiff and strong, while thin films of certain formulations are highly flexible, durable, and even translucent. These materials may have use as insulation for deployable space structures, rovers, habitats or extravehicular activity suits as well as in many terrestrial applications. Strucure property relationships of the aerogels, including surface area, mechanical properties, and thermal conductivity will be discussed.

  9. An Open Data Format for Visualization and Analysis of Cross-Linked Mass Spectrometry Results

    NASA Astrophysics Data System (ADS)

    Hoopmann, Michael R.; Mendoza, Luis; Deutsch, Eric W.; Shteynberg, David; Moritz, Robert L.

    2016-11-01

    Protein-protein interactions are an important element in the understanding of protein function, and chemical cross-linking shotgun mass spectrometry is rapidly becoming a routine approach to identify these specific interfaces and topographical interactions. Protein cross-link data analysis is aided by dozens of algorithm choices, but hindered by a lack of a common format for representing results. Consequently, interoperability between algorithms and pipelines utilizing chemical cross-linking remains a challenge. pepXML is an open, widely-used format for representing spectral search algorithm results that has facilitated information exchange and pipeline development for typical shotgun mass spectrometry analyses. We describe an extension of this format to incorporate cross-linking spectral search results. We demonstrate application of the extension by representing results of multiple cross-linking search algorithms. In addition, we demonstrate adapting existing pepXML-supporting software pipelines to analyze protein cross-linking results formatted in pepXML.

  10. Effect of glucose content on thermally cross-linked fibrous gelatin scaffolds for tissue engineering.

    PubMed

    Siimon, Kaido; Reemann, Paula; Põder, Annika; Pook, Martin; Kangur, Triin; Kingo, Külli; Jaks, Viljar; Mäeorg, Uno; Järvekülg, Martin

    2014-09-01

    Thermally cross-linked glucose-containing electrospun gelatin meshes were studied as possible cell substrate materials. FTIR analysis was used to study the effect of glucose on cross-linking reactions. It was found that the presence of glucose increases the extent of cross-linking of fibrous gelatin scaffolds, which in return determines scaffold properties and their usability in tissue engineering applications. Easy to handle fabric-like scaffolds were obtained from blends containing up to 15% glucose. Maximum extent of cross-linking was reached at nearly 20% glucose content. Cross-linking effectively resulted in decreased solubility and increased resistance to enzymatic degradation. Preliminary short-term cell culture experiments indicate that such thermally cross-linked gelatin-glucose scaffolds are suitable for tissue engineering applications. PMID:25063151

  11. Characterization of the Deoxyguanosine–Lysine Cross-Link of Methylglyoxal

    PubMed Central

    2015-01-01

    Methylglyoxal is a mutagenic bis-electrophile that is produced endogenously from carbohydrate precursors. Methylglyoxal has been reported to induce DNA–protein cross-links (DPCs) in vitro and in cultured cells. Previous work suggests that these cross-links are formed between guanine and either lysine or cysteine side chains. However, the chemical nature of the methylglyoxal induced DPC have not been determined. We have examined the reaction of methylglyoxal, deoxyguanosine (dGuo), and Nα-acetyllysine (AcLys) and determined the structure of the cross-link to be the N2-ethyl-1-carboxamide with the lysine side chain amino group (1). The cross-link was identified by mass spectrometry and the structure confirmed by comparison to a synthetic sample. Further, the cross-link between methylglyoxal, dGuo, and a peptide (AcAVAGKAGAR) was also characterized. The mechanism of cross-link formation is likely to involve an Amadori rearrangement. PMID:24801980

  12. Actinic Cheilitis

    MedlinePlus

    ... is a precancerous condition related to cumulative lifetime sun exposure. The lower lip is most often affected. Individuals ... Wearing barrier clothing (eg, wide-brimmed hats) and sunscreen-containing lip balms can aid in preventing actinic ...

  13. Peroxidase induced oligo-tyrosine cross-links during polymerization of α-lactalbumin.

    PubMed

    Dhayal, Surender Kumar; Sforza, Stefano; Wierenga, Peter A; Gruppen, Harry

    2015-12-01

    Horseradish peroxidase (HRP) induced cross-linking of proteins has been reported to proceed through formation of di-tyrosine cross-links. In the case of low molar mass phenolic substrates, the enzymatic oxidation is reported to lead to polymerization of the phenols. The aim of this work was to investigate if during oxidative cross-linking of proteins oligo-tyrosine cross-links are formed in addition to dityrosine. To this end, α-lactalbumin (α-LA) was cross-linked using horseradish peroxidase (HRP) and hydrogen peroxide (H₂O₂). The reaction products were acid hydrolysed, after which the cross-linked amino acids were investigated by LC-MS and MALDI-MS. To test the effect of the size of the substrate, the cross-linking reaction was also performed with L-tyrosine, N-acetyl L-tyrosinamide and angiotensin. These products were analyzed by LC-MS directly, as well as after acid hydrolysis. In the acid hydrolysates of all samples oligo-tyrosine (Yn, n=3-8) was found in addition to di-tyrosine (Y2). Two stages of cross-linking of α-LA were identified: a) 1-2 cross-links were formed per monomer until the monomers were converted into oligomers, and b) subsequent cross-linking of oligomers formed in the first stage to form nanoparticles containing 3-4 cross-links per monomer. The transition from first stage to the second stage coincided with the point where di-tyrosine started to decrease and more oligo-tyrosines were formed. In conclusion, extensive polymerization of α-LA using HRP via oligo-tyrosine cross-links is possible, as is the case for low molar mass tyrosine containing substrates. PMID:26282909

  14. Self-beating artificial cells: design of cross-linked polymersomes showing self-oscillating motion.

    PubMed

    Tamate, Ryota; Ueki, Takeshi; Yoshida, Ryo

    2015-02-01

    Biomimetic cross-linked polymersomes that exhibit a self-beating motion without any on-off switching are developed. The polymersomes are made from a well-defined synthetic thermoresponsive diblock copolymer, and the thermoresponsive segment includes ruthenium catalysts for the oscillatory chemical reaction and vinylidene groups to cross-link the polymersomes. Autonomous volume and shape oscillations of the cross-linked polymersomes are realized following redox changes of the catalysts.

  15. The Torque of Rotary F-ATPase Can Unfold Subunit Gamma If Rotor and Stator Are Cross-Linked

    PubMed Central

    Hilbers, Florian; Junge, Wolfgang; Sielaff, Hendrik

    2013-01-01

    During ATP hydrolysis by F1-ATPase subunit γ rotates in a hydrophobic bearing, formed by the N-terminal ends of the stator subunits (αβ)3. If the penultimate residue at the α-helical C-terminal end of subunit γ is artificially cross-linked (via an engineered disulfide bridge) with the bearing, the rotary function of F1 persists. This observation has been tentatively interpreted by the unfolding of the α-helix and swiveling rotation in some dihedral angles between lower residues. Here, we screened the domain between rotor and bearing where an artificial disulfide bridge did not impair the rotary ATPase activity. We newly engineered three mutants with double cysteines farther away from the C-terminus of subunit γ, while the results of three further mutants were published before. We found ATPase and rotary activity for mutants with cross-links in the single α-helical, C-terminal portion of subunit γ (from γ285 to γ276 in E. coli), and virtually no activity when the cross-link was placed farther down, where the C-terminal α-helix meets its N-terminal counterpart to form a supposedly stable coiled coil. In conclusion, only the C-terminal singular α-helix is prone to unwinding and can form a swivel joint, whereas the coiled coil portion seems to resist the enzyme's torque. PMID:23301103

  16. Effect of radiation cross-linking on the abrasive wear behaviour of polyethylenes

    NASA Astrophysics Data System (ADS)

    Gul, Rizwan M.; Khan, Tahir I.

    2014-06-01

    This study explores the differences in the dry abrasive wear behavior of different polyethylenes, and compares the effect of radiation cross-linking on the wear behavior. Four different types of polyethylenes: LDPE, LLDPE, HDPE and UHMWPE were studied. Cross-linking was carried out by high energy electron beam with radiation dose of 200 kGy. The results show that in unirradiated state UHMWPE has excellent wear resistance, with HDPE showing comparable wear properties; both LDPE and LLDPE exhibit high wear rate. Cross-linking improves wear rate of LDPE and UHMWPE, however, the wear rate of HDPE and LLDPE increases with cross-linking.

  17. Method for the manufacture of cross-linked and optionally foamed polypropylene

    SciTech Connect

    Lohmar, E.; Wenneis, W.

    1984-04-10

    Disclosed herein is a process for producing cross-linked polypropylene by subjecting a homogenous mixture of a polypropylene with from about 2 to about 20 weight percent, based upon the weight of the polypropylene, of polybutadiene with a molecular weight of from about 500 to about 10,000 to conditions sufficient to effect cross-linking, for example, through the use of cross-linking agents and/or irradiation. In addition, the process disclosed herein may be utilized to produce cross-linked and foamed polypropylenes.

  18. Methylglyoxal-induced DNA-protein cross-links and cytotoxicity in Chinese hamster ovary cells.

    PubMed

    Brambilla, G; Sciabà, L; Faggin, P; Finollo, R; Bassi, A M; Ferro, M; Marinari, U M

    1985-05-01

    The technique of alkaline elution was applied to study the capacity of methylglyoxal to induce DNA damage and repair in Chinese hamster ovary cells. DNA cross-linking was observed after a 90-min exposure to a subtoxic dose (1.5 mM), and the cross-links were fully repaired by 24 h. The cross-linking appeared to be DNA-protein in nature, since proteinase treatment removed the effect. When the same cells were exposed to methylglyoxal in the presence of a rat liver metabolic system, both cytotoxicity and cross-linking frequency were significantly reduced.

  19. Covalent cross-links in polyampholytic chitosan fibers enhances bone regeneration in a rabbit model.

    PubMed

    Ghosh, Paulomi; Rameshbabu, Arun Prabhu; Das, Dipankar; Francis, Nimmy K; Pawar, Harpreet Singh; Subramanian, Bhuvaneshwaran; Pal, Sagar; Dhara, Santanu

    2015-01-01

    Chitosan fibers were prepared in citric acid bath, pH 7.4 and NaOH solution at pH 13, to form ionotropically cross-linked and uncross-linked fibers, respectively. The fibers formed in citric acid bath were further cross-linked via carbodiimide chemistry; wherein the pendant carboxyl moieties of citric acid were used for new amide bond formation. Moreover, upon covalent cross-linking in the ionically gelled citrate-chitosan fibers, incomplete conversion of the ion pairs to amide linkages took place resulting in the formation of a dual network structure. The dual cross-linked fibers displayed improved mechanical property, higher stability against enzymatic degradation, hydrophobicity and superior bio-mineralization compared to the uncross-linked and native citrate cross-linked fibers. Additionally, upon cyclic loading, the ion pairs in the dual cross-linked fibers dissociated by dissipating energy and reformed during the relaxation period. The twin property of elasticity and energy dissipation mechanism makes the dual cross-linked fiber unique under dynamic mechanical conditions. The differences in the physico-chemical characteristics were reflected in protein adsorption, which in turn influenced the cellular activities on the fibers. Compared to the uncross-linked and ionotropically cross-linked fibers, the dual cross-linked fibers demonstrated higher proliferation and osteogenic differentiation of the MSCs in vitro as well as better osseous tissue regeneration in a rabbit model. PMID:25483844

  20. Controlled sparse and percolating cross-linking in waterborne soft adhesives.

    PubMed

    Deplace, F; Carelli, C; Langenfeld, A; Rabjohns, M A; Foster, A B; Lovell, P A; Creton, C

    2009-09-01

    The effect of low levels of cross-linking on the adhesive and mechanical properties of waterborne pressure-sensitive adhesives was investigated. We have taken advantage of a core-shell latex particle morphology obtained by emulsion polymerization to create a heterogeneous structure of cross-links without major modification of the monomer composition. The latex particles comprise a shell containing cross-linkable diacetone acrylamide (DAAM) repeat units localized on the periphery of a slightly softer core copolymer of very similar composition. Adipic acid dihydrazide was added to the latex prior to film formation to react with DAAM repeat units and affect interfacial cross-linking between particles in the adhesive films. The honeycomb-like structure obtained after drying of the latex results in a good balance between the dissipative properties required for adhesion and the resistance to creep. The characterization of the mechanical properties of the films shows that the chosen cross-linking method creates a percolating lightly cross-linked network, swollen with a nearly un-cross-linked component. With this cross-linking method, the linear viscoelastic properties of the soft films are nearly unaffected by the cross-linking while the nonlinear tensile properties are greatly modified. As a result, the long-term shear resistance of the adhesive film improves very significantly while the peel force remains nearly the same. A simple rheological model is used to interpret qualitatively the changes in the material parameters induced by cross-linking. PMID:20355828

  1. Detecting the Conformational Change of Transmembrane Signaling in a Bacterial Chemoreceptor by Measuring Effects on Disulfide Cross-Linking in vivo

    NASA Astrophysics Data System (ADS)

    Hughson, Andrew G.; Hazelbauer, Gerald L.

    1996-10-01

    Transmembrane signaling by bacterial chemoreceptors is thought to involve relative movement among the four transmembrane helices of the homodimer. We assayed that movement by measuring effects of ligand occupancy on rates of oxidative cross-linking between cysteines introduced into neighboring helices of the transmembrane domain of chemoreceptor Trg from Escherichia coli. Measurements were done on chemoreceptors in their native environment, intact cells that were motile and chemotactically responsive. Receptor occupancy did not appear to cause drastic rearrangement of the four-helix structure since, among 67 cysteine pairs tested, the same 19 exhibited oxidative cross-linking in the presence or absence of saturating chemoattractant. However, occupancy did cause subtle changes that were detected as effects on rates of cross-linking. Among the seven disulfides appropriate for measurements of initial rates of formation, ligand occupancy had significant and different effects on all three cross-links that connected the two helices within a subunit but had minimal effects on the four that spanned the packing interface between subunits. This constitutes direct evidence that the conformational change of transmembrane signaling involves significant movement within a subunit and minimal movement between subunits, a pattern deduced from several previous studies and now documented directly. Among possible modes of movement between the two helices of a subunit, axial sliding of one helix relative to the other was the conformational change that best accounted for the observed effects on cross-linking.

  2. Caught in the act: covalent cross-linking captures activator-coactivator interactions in vivo.

    PubMed

    Krishnamurthy, Malathy; Dugan, Amanda; Nwokoye, Adaora; Fung, Yik-Hong; Lancia, Jody K; Majmudar, Chinmay Y; Mapp, Anna K

    2011-12-16

    Currently there are few methods suitable for the discovery and characterization of transient, moderate affinity protein-protein interactions in their native environment, despite their prominent role in a host of cellular functions including protein folding, signal transduction, and transcriptional activation. Here we demonstrate that a genetically encoded photoactivatable amino acid, p-benzoyl-l-phenylalanine, can be used to capture transient and/or low affinity binding partners in an in vivo setting. In this study, we focused on ensnaring the coactivator binding partners of the transcriptional activator VP16 in S. cerevisiae. The interactions between transcriptional activators and coactivators in eukaryotes are moderate in affinity and short-lived, and due in part to these characteristics, identification of the direct binding partners of activators in vivo has met with only limited success. We find through in vivo photo-cross-linking that VP16 contacts the Swi/Snf chromatin-remodeling complex through the ATPase Snf2(BRG1/BRM) and the subunit Snf5 with two distinct regions of the activation domain. An analogous experiment with Gal4 reveals that Snf2 is also a target of this activator. These results suggest that Snf2 may be a valuable target for small molecule probe discovery given the prominent role the Swi/Snf complex family plays in development and in disease. More significantly, the successful implementation of the in vivo cross-linking methodology in this setting demonstrates that it can be applied to the discovery and characterization of a broad range of transient and/or modest affinity protein-protein interactions. PMID:21977905

  3. Computer-assisted mass spectrometric analysis of naturally occurring and artificially introduced cross-links in proteins and protein complexes.

    PubMed

    de Koning, Leo J; Kasper, Piotr T; Back, Jaap Willem; Nessen, Merel A; Vanrobaeys, Frank; Van Beeumen, Jozef; Gherardi, Ermanno; de Koster, Chris G; de Jong, Luitzen

    2006-01-01

    A versatile software tool, VIRTUALMSLAB, is presented that can perform advanced complex virtual proteomic experiments with mass spectrometric analyses to assist in the characterization of proteins. The virtual experimental results allow rapid, flexible and convenient exploration of sample preparation strategies and are used to generate MS reference databases that can be matched with the real MS data obtained from the equivalent real experiments. Matches between virtual and acquired data reveal the identity and nature of reaction products that may lead to characterization of post-translational modification patterns, disulfide bond structures, and cross-linking in proteins or protein complexes. The most important unique feature of this program is the ability to perform multistage experiments in any user-defined order, thus allowing the researcher to vary experimental approaches that can be conducted in the laboratory. Several features of VIRTUALMSLAB are demonstrated by mapping both disulfide bonds and artificially introduced protein cross-links. It is shown that chemical cleavage at aspartate residues in the protease resistant RNase A, followed by tryptic digestion can be optimized so that the rigid protein breaks up into MALDI-MS detectable fragments, leaving the disulfide bonds intact. We also show the mapping of a number of chemically introduced cross-links in the NK1 domain of hepatocyte growth factor/scatter factor. The VIRTUALMSLAB program was used to explore the limitation and potential of mass spectrometry for cross-link studies of more complex biological assemblies, showing the value of high performance instruments such as a Fourier transform mass spectrometer. The program is freely available upon request.

  4. Alkaline battery containing a separator of a cross-linked copolymer of vinyl alcohol and unsaturated carboxylic acid

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Philipp, W. H.; Sheibley, D. W.; Gonzalez-Sanabria, O. D. (Inventor)

    1985-01-01

    A battery separator for an alkaline battery is described. The separator comprises a cross linked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The cross linked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. Cross linking with a polyaldehyde cross linking agent is preferred.

  5. Atomic model of a cell-wall cross-linking enzyme in complex with an intact bacterial peptidoglycan.

    PubMed

    Schanda, Paul; Triboulet, Sébastien; Laguri, Cédric; Bougault, Catherine M; Ayala, Isabel; Callon, Morgane; Arthur, Michel; Simorre, Jean-Pierre

    2014-12-24

    The maintenance of bacterial cell shape and integrity is largely attributed to peptidoglycan, a highly cross-linked biopolymer. The transpeptidases that perform this cross-linking are important targets for antibiotics. Despite this biomedical importance, to date no structure of a protein in complex with an intact bacterial peptidoglycan has been resolved, primarily due to the large size and flexibility of peptidoglycan sacculi. Here we use solid-state NMR spectroscopy to derive for the first time an atomic model of an l,d-transpeptidase from Bacillus subtilis bound to its natural substrate, the intact B. subtilis peptidoglycan. Importantly, the model obtained from protein chemical shift perturbation data shows that both domains-the catalytic domain as well as the proposed peptidoglycan recognition domain-are important for the interaction and reveals a novel binding motif that involves residues outside of the classical enzymatic pocket. Experiments on mutants and truncated protein constructs independently confirm the binding site and the implication of both domains. Through measurements of dipolar-coupling derived order parameters of bond motion we show that protein binding reduces the flexibility of peptidoglycan. This first report of an atomic model of a protein-peptidoglycan complex paves the way for the design of new antibiotic drugs targeting l,d-transpeptidases. The strategy developed here can be extended to the study of a large variety of enzymes involved in peptidoglycan morphogenesis.

  6. Dynacortin is a novel actin bundling protein that localizes to dynamic actin structures.

    PubMed

    Robinson, Douglas N; Ocon, Stephani S; Rock, Ronald S; Spudich, James A

    2002-03-15

    Dynacortin is a novel protein that was discovered in a genetic suppressor screen of a Dictyostelium discoideum cytokinesis-deficient mutant cell line devoid of the cleavage furrow actin bundling protein, cortexillin I. While dynacortin is highly enriched in the cortex, particularly in cell-surface protrusions, it is excluded from the cleavage furrow cortex during cytokinesis. Here, we describe the biochemical characterization of this new protein. Purified dynacortin is an 80-kDa dimer with a large 5.7-nm Stokes radius. Dynacortin cross-links actin filaments into parallel arrays with a mole ratio of one dimer to 1.3 actin monomers and a 3.1 microm K(d). Using total internal reflection fluorescence microscopy, GFP-dynacortin and the actin bundling protein coronin-GFP are seen to concentrate in highly dynamic cortical structures with assembly and disassembly half-lives of about 15 s. These results indicate that cells have evolved different actin-filament cross-linking proteins with complementary cellular distributions that collaborate to orchestrate complex cell shape changes.

  7. Synthesis of borate cross-linked rhamnogalacturonan II.

    PubMed

    Funakawa, Hiroya; Miwa, Kyoko

    2015-01-01

    In the present review, we describe current knowledge about synthesis of borate crosslinked rhamnogalacturonan II (RG-II) and it physiological roles. RG-II is a portion of pectic polysaccharide with high complexity, present in primary cell wall. It is composed of homogalacturonan backbone and four distinct side chains (A-D). Borate forms ester bonds with the apiosyl residues of side chain A of two RG-II monomers to generate borate dimerized RG-II, contributing for the formation of networks of pectic polysaccharides. In plant cell walls, more than 90% of RG-II are dimerized by borate under boron (B) sufficient conditions. Borate crosslinking of RG-II in primary cell walls, to our knowledge, is the only experimentally proven molecular function of B, an essential trace-element. Although abundance of RG-II and B is quite small in cell wall polysaccharides, increasing evidence supports that RG-II and its borate crosslinking are critical for plant growth and development. Significant advancement was made recently on the location and the mechanisms of RG-II synthesis and borate cross-linking. Molecular genetic studies have successfully identified key enzymes for RG-II synthesis and regulators including B transporters required for efficient formation of RG-II crosslinking and consequent normal plant growth. The present article focuses recent advances on (i) RG-II polysaccharide synthesis, (ii) occurrence of borate crosslinking and (iii) B transport for borate supply to RG-II. Molecular mechanisms underlying formation of borate RG-II crosslinking and the physiological impacts are discussed. PMID:25954281

  8. The theory and art of corneal cross-linking.

    PubMed

    McQuaid, Rebecca; Cummings, Arthur B; Mrochen, Michael

    2013-08-01

    Before the discovery of corneal cross-linking (CXL), patients with keratoconus would have had to undergo corneal transplantation, or wear rigid gas permeable lenses (RGPs) that would temporarily flatten the cone, thereby improving the vision. The RGP contact lens (CL) would not however alter the corneal stability and if the keratoconus was progressive, the continued steepening of the cone would occur under the RGP CL. To date, the Siena Eye has been the largest study to investigate long term effects of standard CXL. Three hundred and sixty-three eyes were treated and monitored over 4 years, producing reliable long-term results proving long-term stability of the cornea by halting the progression of keratoconus, and proving the safety of the procedure. Traditionally, CXL requires epithelial removal prior to corneal soakage of a dextran-based 0.1% riboflavin solution, followed by exposure of ultraviolet-A (UV-A) light for 30 min with an intensity of 3 mW/cm2. A series of in vitro investigations on human and porcine corneas examined the best treatment parameters for standard CXL, such as riboflavin concentration, intensity, wavelength of UV-A light, and duration of treatment. Photochemically, CXL is achieved by the generation of chemical bonds within the corneal stroma through localized photopolymerization, strengthening the cornea whilst minimizing exposure to the surrounding structures of the eye. In vitro studies have shown that CXL has an effect on the biomechanical properties of the cornea, with an increased corneal rigidity of approximately 70%. This is a result of the creation of new chemical bonds within the stroma. PMID:23925326

  9. Integrated Cryogenic Satellite Communications Cross-Link Receiver Experiment

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Bhasin, K. B.; Downey, A. N.; Jackson, C. J.; Silver, A. H.; Javadi, H. H. S.

    1995-01-01

    An experiment has been devised which will validate, in space, a miniature, high-performance receiver. The receiver blends three complementary technologies; high temperature superconductivity (HTS), pseudomorphic high electron mobility transistor (PHEMT) monolithic microwave integrated circuits (MMIC), and a miniature pulse tube cryogenic cooler. Specifically, an HTS band pass filter, InP MMIC low noise amplifier, HTS-sapphire resonator stabilized local oscillator (LO), and a miniature pulse tube cooler will be integrated into a complete 20 GHz receiver downconverter. This cooled downconverter will be interfaced with customized signal processing electronics and integrated onto the space shuttle's 'HitchHiker' carrier. A pseudorandom data sequence will be transmitted to the receiver, which is in low Earth orbit (LEO), via the Advanced Communication Technology Satellite (ACTS) on a 20 GHz carrier. The modulation format is QPSK and the data rate is 2.048 Mbps. The bit error rate (BER) will be measured in situ. The receiver is also equipped with a radiometer mode so that experiment success is not totally contingent upon the BER measurement. In this mode, the receiver uses the Earth and deep space as a hot and cold calibration source, respectively. The experiment closely simulates an actual cross-link scenario. Since the receiver performance depends on channel conditions, its true characteristics would be masked in a terrestrial measurement by atmospheric absorption and background radiation. Furthermore, the receiver's performance depends on its physical temperature, which is a sensitive function of platform environment, thermal design, and cryocooler performance. This empirical data is important for building confidence in the technology.

  10. Corneal cross-linking in 9 horses with ulcerative keratitis

    PubMed Central

    2013-01-01

    Background Corneal ulcers are one of the most common eye problems in the horse and can cause varying degrees of visual impairment. Secondary infection and protease activity causing melting of the corneal stroma are always concerns in patients with corneal ulcers. Corneal collagen cross-linking (CXL), induced by illumination of the corneal stroma with ultraviolet light (UVA) after instillation of riboflavin (vitamin B2) eye drops, introduces crosslinks which stabilize melting corneas, and has been used to successfully treat infectious ulcerative keratitis in human patients. Therefore we decided to study if CXL can be performed in sedated, standing horses with ulcerative keratitis with or without stromal melting. Results Nine horses, aged 1 month to 16 years (median 5 years) were treated with a combination of CXL and medical therapy. Two horses were diagnosed with mycotic, 5 with bacterial and 2 with aseptic ulcerative keratitis. A modified Dresden-protocol for CXL could readily be performed in all 9 horses after sedation. Stromal melting, diagnosed in 4 horses, stopped within 24 h. Eight of nine eyes became fluorescein negative in 13.5 days (median time; range 4–26 days) days after CXL. One horse developed a bacterial conjunctivitis the day after CXL, which was successfully treated with topical antibiotics. One horse with fungal ulcerative keratitis and severe uveitis was enucleated 4 days after treatment due to panophthalmitis. Conclusions CXL can be performed in standing, sedated horses. We did not observe any deleterious effects attributed to riboflavin or UVA irradiation per se during the follow-up, neither in horses with infectious nor aseptic ulcerative keratitis. These data support that CXL can be performed in the standing horse, but further studies are required to compare CXL to conventional medical treatment in equine keratitis and to optimize the CXL protocol in this species. PMID:23803176

  11. Transepithelial corneal collagen cross-linking in ultrathin keratoconic corneas

    PubMed Central

    Spadea, Leopoldo; Mencucci, Rita

    2012-01-01

    Background The purpose of this paper was to report the results of transepithelial corneal collagen cross-linking (CXL) with modified riboflavin and ultraviolet A irradiation in patients affected by keratoconus, each with thinnest pachymetry values of less than 400 μm (with epithelium) and not treatable using standard de-epithelialization techniques. Methods Sixteen patients affected by progressive keratoconus with thinnest pachymetry values ranging from 331 μm to 389 μm underwent transepithelial CXL in one eye using a riboflavin 0.1% solution in 15% Dextran T500 containing ethylenediamine tetra-acetic acid 0.01% and trometamol to enhance epithelial penetration. The patients underwent complete ophthalmological examination, including endothelial cell density measurements and computerized videokeratography, before CXL and at one day, one week, and one, 6, and 12 months thereafter. Results Epithelial healing was complete in all patients after one day of use of a soft bandage contact lens. No side effects or damage to the limbal region was observed during the follow-up period. All patients showed slightly improved uncorrected and spectacle-corrected visual acuity; keratometric astigmatism showed reductions (up to 5.3 D) and apical ectasia power decreased (Kmax values reduced up to 4.3 D). Endothelial cell density was unchanged. Conclusion Application of transepithelial CXL using riboflavin with substances added to enhance epithelial permeability was safe, seemed to be moderately effective in keratoconic eyes with ultrathin corneas, and applications of the procedure could be extended to patients with advanced keratoconus. PMID:23152657

  12. The theory and art of corneal cross-linking.

    PubMed

    McQuaid, Rebecca; Cummings, Arthur B; Mrochen, Michael

    2013-08-01

    Before the discovery of corneal cross-linking (CXL), patients with keratoconus would have had to undergo corneal transplantation, or wear rigid gas permeable lenses (RGPs) that would temporarily flatten the cone, thereby improving the vision. The RGP contact lens (CL) would not however alter the corneal stability and if the keratoconus was progressive, the continued steepening of the cone would occur under the RGP CL. To date, the Siena Eye has been the largest study to investigate long term effects of standard CXL. Three hundred and sixty-three eyes were treated and monitored over 4 years, producing reliable long-term results proving long-term stability of the cornea by halting the progression of keratoconus, and proving the safety of the procedure. Traditionally, CXL requires epithelial removal prior to corneal soakage of a dextran-based 0.1% riboflavin solution, followed by exposure of ultraviolet-A (UV-A) light for 30 min with an intensity of 3 mW/cm2. A series of in vitro investigations on human and porcine corneas examined the best treatment parameters for standard CXL, such as riboflavin concentration, intensity, wavelength of UV-A light, and duration of treatment. Photochemically, CXL is achieved by the generation of chemical bonds within the corneal stroma through localized photopolymerization, strengthening the cornea whilst minimizing exposure to the surrounding structures of the eye. In vitro studies have shown that CXL has an effect on the biomechanical properties of the cornea, with an increased corneal rigidity of approximately 70%. This is a result of the creation of new chemical bonds within the stroma.

  13. Transglutaminases: Widespread Cross-linking Enzymes in Plants

    PubMed Central

    Serafini-Fracassini, Donatella; Del Duca, Stefano

    2008-01-01

    Background Transglutaminases have been studied in plants since 1987 in investigations aimed at interpreting some of the molecular mechanisms by which polyamines affect growth and differentiation. Transglutaminases are a widely distributed enzyme family catalysing a myriad of biological reactions in animals. In plants, the post-translational modification of proteins by polyamines forming inter- or intra-molecular cross-links has been the main transglutaminase reaction studied. Characteristics of Plant Transglutaminases The few plant transglutaminases sequenced so far have little sequence homology with the best-known animal enzymes, except for the catalytic triad; however, they share a possible structural homology. Proofs of their catalytic activity are: (a) their ability to produce glutamyl-polyamine derivatives; (b) their recognition by animal transglutaminase antibodies; and (c) biochemical features such as calcium-dependency, etc. However, many of their fundamental biochemical and physiological properties still remain elusive. Transglutaminase Activity is Ubiquitous It has been detected in algae and in angiosperms in different organs and sub-cellular compartments, chloroplasts being the best-studied organelles. Possible Roles Possible roles concern the structural modification of specific protein substrates. In chloroplasts, transglutaminases appear to stabilize the photosynthetic complexes and Rubisco, being regulated by light and other factors, and possibly exerting a positive effect on photosynthesis and photo-protection. In the cytosol, they modify cytoskeletal proteins. Preliminary reports suggest an involvement in the cell wall construction/organization. Other roles appear to be related to fertilization, abiotic and biotic stresses, senescence and programmed cell death, including the hypersensitive reaction. Conclusions The widespread occurrence of transglutaminases activity in all organs and cell compartments studied suggests a relevance for their still

  14. The theory and art of corneal cross-linking

    PubMed Central

    McQuaid, Rebecca; Cummings, Arthur B; Mrochen, Michael

    2013-01-01

    Before the discovery of corneal cross-linking (CXL), patients with keratoconus would have had to undergo corneal transplantation, or wear rigid gas permeable lenses (RGPs) that would temporarily flatten the cone, thereby improving the vision. The RGP contact lens (CL) would not however alter the corneal stability and if the keratoconus was progressive, the continued steepening of the cone would occur under the RGP CL. To date, the Siena Eye has been the largest study to investigate long term effects of standard CXL. Three hundred and sixty-three eyes were treated and monitored over 4 years, producing reliable long-term results proving long-term stability of the cornea by halting the progression of keratoconus, and proving the safety of the procedure. Traditionally, CXL requires epithelial removal prior to corneal soakage of a dextran-based 0.1% riboflavin solution, followed by exposure of ultraviolet-A (UV-A) light for 30 min with an intensity of 3 mW/cm2. A series of in vitro investigations on human and porcine corneas examined the best treatment parameters for standard CXL, such as riboflavin concentration, intensity, wavelength of UV-A light, and duration of treatment. Photochemically, CXL is achieved by the generation of chemical bonds within the corneal stroma through localized photopolymerization, strengthening the cornea whilst minimizing exposure to the surrounding structures of the eye. In vitro studies have shown that CXL has an effect on the biomechanical properties of the cornea, with an increased corneal rigidity of approximately 70%. This is a result of the creation of new chemical bonds within the stroma. PMID:23925326

  15. Matching cross-linked peptide spectra: only as good as the worse identification.

    PubMed

    Trnka, Michael J; Baker, Peter R; Robinson, Philip J J; Burlingame, A L; Chalkley, Robert J

    2014-02-01

    Chemical cross-linking mass spectrometry identifies interacting surfaces within a protein assembly through labeling with bifunctional reagents and identifying the covalently modified peptides. These yield distance constraints that provide a powerful means to model the three-dimensional structure of the assembly. Bioinformatic analysis of cross-linked data resulting from large protein assemblies is challenging because each cross-linked product contains two covalently linked peptides, each of which must be correctly identified from a complex matrix of potential confounders. Protein Prospector addresses these issues through a complementary mass modification strategy in which each peptide is searched and identified separately. We demonstrate this strategy with an analysis of RNA polymerase II. False discovery rates (FDRs) are assessed via comparison of cross-linking data to crystal structure, as well as by using a decoy database strategy. Parameters that are most useful for positive identification of cross-linked spectra are explored. We find that fragmentation spectra generally contain more product ions from one of the two peptides constituting the cross-link. Hence, metrics reflecting the quality of the spectral match to the less confident peptide provide the most discriminatory power between correct and incorrect matches. A support vector machine model was built to further improve classification of cross-linked peptide hits. Furthermore, the frequency with which peptides cross-linked via common acylating reagents fragment to produce diagnostic, cross-linker-specific ions is assessed. The threshold for successful identification of the cross-linked peptide product depends upon the complexity of the sample under investigation. Protein Prospector, by focusing the reliability assessment on the least confident peptide, is better able to control the FDR for results as larger complexes and databases are analyzed. In addition, when FDR thresholds are calculated separately

  16. Simulation of the effect of confinement in actin ring formation

    NASA Astrophysics Data System (ADS)

    Adeli Koudehi, Maral; Vavylonis, Dimitrios; Haosu Tang Team; Dimitrios Vavylonis Team

    Actin filaments are vital for different network structures in living cells. During cytokinesis, they form a contractile ring containing myosin motor proteins and actin filament cross-linkers to separate one cell into two cells. Recent experimental studies have quantified the bundle, ring, and network structures that form when actin filaments polymerize in confined environments in vitro, in the presence of varying concentrations of cross-linkers. In this study, we performed numerical simulations to investigate the effect of actin spherical confinement and cross-linking in ring formation. We used a spring-bead model and Brownian dynamics to simulate semiflexible actin filaments that polymerize in a confining sphere with a rate proportional to the monomer concentration. Applying the model for different size of the confining spheres shows that the probability of ring formation decreases by increasing the radius (at fixed initial monomer concentration), in agreement with prior experimental data. We describe the effect of persistence length, orientation-dependent cross-linking, and initial actin monomer concentration. Simulations show that equilibrium configurations can be reached through zipping and unzipping of actin filaments in bundles and transient ring formation.

  17. NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES PREPARED UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    A facile microwave irradiation approach that results in a cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic and bimetallic systems is described. Nanocomposites of PVA cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-P...

  18. PREPARATION OF NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    A facile method utilizing microwave irradiation is described that accomplishes the cross-linking reaction of PVA with metallic and bimetallic systems. Nanocomposites of PVA-cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-Pt, Pt-Fe, Cu...

  19. Investigation of anisotropic thermal transport in cross-linked polymers

    NASA Astrophysics Data System (ADS)

    Simavilla, David Nieto

    Thermal transport in lightly cross-linked polyisoprene and polybutadine subjected to uniaxial elongation is investigated experimentally. We employ two experimental techniques to assess the effect that deformation has on this class of materials. The first technique, which is based on Forced Rayleigh Scattering (FRS), allows us to measure the two independent components of the thermal diffusivity tensor as a function of deformation. These measurements along with independent measurements of the tensile stress and birefringence are used to evaluate the stress-thermal and stress-optic rules. The stress-thermal rule is found to be valid for the entire range of elongations applied. In contrast, the stress-optic rule fails for moderate to large stretch ratios. This suggests that the degree of anisotropy in thermal conductivity depends on both orientation and tension in polymer chain segments. The second technique, which is based on infrared thermography (IRT), allows us to measure anisotropy in thermal conductivity and strain induced changes in heat capacity. We validate this method measurements of anisotropic thermal conductivity by comparing them with those obtained using FRS. We find excellent agreement between the two techniques. Uncertainty in the infrared thermography method measurements is estimated to be about 2-5 %. The accuracy of the method and its potential application to non-transparent materials makes it a good alternative to extend current research on anisotropic thermal transport in polymeric materials. A second IRT application allows us to investigate the dependence of heat capacity on deformation. We find that heat capacity increases with stretch ratio in polyisoprene specimens under uniaxial extension. The deviation from the equilibrium value of heat capacity is consistent with an independent set of experiments comparing anisotropy in thermal diffusivity and conductivity employing FRS and IRT techniques. We identify finite extensibility and strain

  20. Modified gum arabic cross-linked gelatin scaffold for biomedical applications.

    PubMed

    Sarika, P R; Cinthya, Kuriakose; Jayakrishnan, A; Anilkumar, P R; James, Nirmala Rachel

    2014-10-01

    The present work deals with development of modified gum arabic cross-linked gelatin scaffold for cell culture. A new biocompatible scaffold was developed by cross-linking gelatin (Gel) with gum arabic, a polysaccharide. Gum arabic was subjected to periodate oxidation to obtain gum arabic aldehyde (GAA). GAA was reacted with gelatin under appropriate pH to prepare the cross-linked hydrogel. Cross-linking occurred due to Schiff's base reaction between aldehyde groups of oxidized gum arabic and amino groups of gelatin. The scaffold prepared from the hydrogel was characterized by swelling properties, degree of cross-linking, in vitro degradation and scanning electron microscopy (SEM). Cytocompatibility evaluation using L-929 and HepG2 cells confirmed non-cytotoxic and non-adherent nature of the scaffold. These properties are essential for generating multicellular spheroids and hence the scaffold is proposed to be a suitable candidate for spheroid cell culture. PMID:25175214

  1. Collagen cross-linking of skin in patients with amyotrophic lateral sclerosis

    NASA Technical Reports Server (NTRS)

    Ono, S.; Yamauchi, M.

    1992-01-01

    Collagen cross-links of skin tissue (left upper arm) from 11 patients with amyotrophic lateral sclerosis (ALS) and 9 age-matched control subjects were quantified. It was found that patients with ALS had a significant reduction in the content of an age-related, stable cross-link, histidinohydroxylysinonorleucine, that was negatively correlated with the duration of illness. The contents of sodium borohydride-reducible labile cross-links, dehydro-hydroxylysinonorleucine and dehydro-histidinohydroxymerodesmosine, were significantly increased and were positively associated with the duration of illness (r = 0.703, p less than 0.05 and r = 0.684, p less than 0.05, respectively). The results clearly indicate that during the course of ALS, the cross-linking pathway of skin collagen runs counter to its normal aging, resulting in a "rejuvenation" phenomenon of skin collagen. Thus, cross-linking of skin collagen is affected in ALS.

  2. Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility

    PubMed Central

    Kim, Min Hee; Park, Won Ho

    2016-01-01

    In this study, the synthesis of silk fibroin (SF) hydrogel via chemical cross-linking reactions of SF due to gamma-ray (γ-ray) irradiation was investigated, as were the resultant hydrogel’s properties. Two different hydrogels were investigated: physically cross-linked SF hydrogel and chemically cross-linked SF hydrogel irradiated at different doses of γ-rays. The effects of the irradiation dose and SF concentration on the hydrogelation of SF were examined. The chemically cross-linked SF hydrogel was compared with the physically cross-linked one with regard to secondary structure and gel strength. Furthermore, the swelling behavior, crystallinity, and biodegradation of the SF hydrogels were characterized. To assay cell proliferation, the cell viability of human mesenchymal stem cells on the lyophilized SF hydrogel scaffolds was evaluated, and no significant cytotoxicity against human mesenchymal stem cells was observed. PMID:27382283

  3. Characterization of the bombesin receptor on mouse pancreatic acini by chemical cross-linking

    SciTech Connect

    Huang, S.C.; Yu, D.H.; Wank, S.A.; Gardner, J.D.; Jensen, R.T. )

    1990-11-01

    Bombesin (BN), gastrin-releasing peptide (GRP) and GRP(18-27) (neuromedin C) were equipotent and 30-fold more potent than neuromedin B (NMB) in inhibiting binding of {sup 125}I-GRP to and in stimulating amylase release from mouse pancreatic acini. In the present study we used {sup 125}I-GRP and chemical cross-linking techniques to characterize the mouse pancreatic BN receptor. After binding of {sup 125}I-GRP to membranes, and incubation with various chemical cross-linking agents, cross-linked radioactivity was analyzed by SDS-PAG electrophoresis and autoradiography. With each of 4 different chemical cross-linking agents, there was a single broad polypeptide band of Mr 80,000. Cross-linking did not occur in the absence of the cross-linking agent. Cross-linking was inhibited only by peptides that interact with the BN receptor such as GRP, NMB, GRP(18-27) or BN. Dose-inhibition curves for the ability of BN or NMB to inhibit binding of {sup 125}I-GRP to membranes or cross-linking to the 80,000 polypeptide demonstrated for both that BN was 15-fold more potent than NMB. The apparent molecular weight of the cross-linked polypeptide was unchanged by adding dithiothreitol. N-Glycanase treatment reduced the molecular weight of the cross-linked peptide to 40,000. The present results indicate that the BN receptor on mouse pancreatic acinar cell membranes resembles that recently described on various tumor cells in being a single glycoprotein with a molecular weight of 76,000. Because dithiothreitol had no effect, this glycoprotein is not a subunit of a larger disulfide-linked structure.

  4. A Study into the Collision-induced Dissociation (CID) Behavior of Cross-Linked Peptides*

    PubMed Central

    Giese, Sven H.; Fischer, Lutz; Rappsilber, Juri

    2016-01-01

    Cross-linking/mass spectrometry resolves protein–protein interactions or protein folds by help of distance constraints. Cross-linkers with specific properties such as isotope-labeled or collision-induced dissociation (CID)-cleavable cross-linkers are in frequent use to simplify the identification of cross-linked peptides. Here, we analyzed the mass spectrometric behavior of 910 unique cross-linked peptides in high-resolution MS1 and MS2 from published data and validate the observation by a ninefold larger set from currently unpublished data to explore if detailed understanding of their fragmentation behavior would allow computational delivery of information that otherwise would be obtained via isotope labels or CID cleavage of cross-linkers. Isotope-labeled cross-linkers reveal cross-linked and linear fragments in fragmentation spectra. We show that fragment mass and charge alone provide this information, alleviating the need for isotope-labeling for this purpose. Isotope-labeled cross-linkers also indicate cross-linker-containing, albeit not specifically cross-linked, peptides in MS1. We observed that acquisition can be guided to better than twofold enrich cross-linked peptides with minimal losses based on peptide mass and charge alone. By help of CID-cleavable cross-linkers, individual spectra with only linear fragments can be recorded for each peptide in a cross-link. We show that cross-linked fragments of ordinary cross-linked peptides can be linearized computationally and that a simplified subspectrum can be extracted that is enriched in information on one of the two linked peptides. This allows identifying candidates for this peptide in a simplified database search as we propose in a search strategy here. We conclude that the specific behavior of cross-linked peptides in mass spectrometers can be exploited to relax the requirements on cross-linkers. PMID:26719564

  5. Actin Cytoskeleton-Based Plant Synapse as Gravitransducer in the Transition Zone of the Root Apex

    NASA Astrophysics Data System (ADS)

    Baluska, Frantisek; Barlow, Peter; Volkmann, Dieter; Mancuso, Stefano

    The actin cytoskeleton was originally proposed to act as the signal transducer in the plant gravity sensory-motoric circuit. Surprisingly, however, several studies have documented that roots perfom gravisensing and gravitropism more effectively if exposed to diverse anti-F-actin drugs. Our study, using decapped maize root apices, has revealed that depolymerization of F-actin stimulates gravity perception in cells of the transition zone where root gravitropism is initiated (Mancuso et al. 2006). It has been proposed (Balǔka et al. 2005, 2009a) that s the non-growing adhesive end-poles, enriched with F-actin and myosin VIII, and active in endocytic recycling of both PIN transporters and cell wall pectins cross-linked with calcium and boron, act as the gravisensing domains, and that these impinge directly upon the root motoric responses via control of polar auxin transport. This model suggests that mechanical asymmetry at these plant synapses determines vectorial gravity-controlled auxin transport. Due to the gravity-imposed mechanical load upon the protoplast, a tensional stress is also imposed upon the plasma membrane of the physically lower synaptic cell pole. This stress is then relieved by shifting the endocytosis-exocytosis balance towards exocytosis (Balǔka et al. s 2005, 2009a,b). This `Synaptic Auxin Secretion' hypothesis does not conflict with the `Starch Statolith' hypothesis, which is based on amyloplast sedimentation. In fact, the `Synaptic Auxin Secretion' hypothesis has many elements which allow its unification with the Starch-Statolith model (Balǔka et al. 2005, 2009a,b). s References Balǔka F, Volkmann D, Menzel D (2005) Plant synapses: actin-based adhesion s domains for cell-to-cell communication. Trends Plant Sci 10: 106-111 Balǔka F, Schlicht M, s Wan Y-L, Burbach C, Volkmann D (2009a) Intracellular domains and polarity in root apices: from synaptic domains to plant neurobiology. Nova Acta Leopoldina 96: 103-122 Balǔka s F, Mancuso S

  6. Differential expression of human lysyl hydroxylase genes, lysine hydroxylation, and cross-linking of type I collagen during osteoblastic differentiation in vitro

    NASA Technical Reports Server (NTRS)

    Uzawa, K.; Grzesik, W. J.; Nishiura, T.; Kuznetsov, S. A.; Robey, P. G.; Brenner, D. A.; Yamauchi, M.

    1999-01-01

    The pattern of lysyl hydroxylation in the nontriple helical domains of collagen is critical in determining the cross-linking pathways that are tissue specific. We hypothesized that the tissue specificity of type I collagen cross-linking is, in part, due to the differential expression of lysyl hydroxylase genes (Procollagen-lysine,2-oxyglutarate,5-dioxygenase 1, 2, and 3 [PLOD1, PLOD2, and PLOD3]). In this study, we have examined the expression patterns of these three genes during the course of in vitro differentiation of human osteoprogenitor cells (bone marrow stromal cells [BMSCs]) and normal skin fibroblasts (NSFs). In addition, using the medium and cell layer/matrix fractions in these cultures, lysine hydroxylation of type I collagen alpha chains and collagen cross-linking chemistries have been characterized. High levels of PLOD1 and PLOD3 genes were expressed in both BMSCs and NSFs, and the expression levels did not change in the course of differentiation. In contrast to the PLOD1 and PLOD3 genes, both cell types showed low PLOD2 gene expression in undifferentiated and early differentiated conditions. However, fully differentiated BMSCs, but not NSFs, exhibited a significantly elevated level (6-fold increase) of PLOD2 mRNA. This increase coincided with the onset of matrix mineralization and with the increase in lysyl hydroxylation in the nontriple helical domains of alpha chains of type I collagen molecule. Furthermore, the collagen cross-links that are derived from the nontriple helical hydroxylysine-aldehyde were found only in fully differentiated BMSC cultures. The data suggests that PLOD2 expression is associated with lysine hydroxylation in the nontriple helical domains of collagen and, thus, could be partially responsible for the tissue-specific collagen cross-linking pattern.

  7. Demonstration of prominent actin filaments in the root columella.

    PubMed

    Collings, D A; Zsuppan, G; Allen, N S; Blancaflor, E B

    2001-02-01

    The distribution of actin filaments within the gravity-sensing columella cells of plant roots remains poorly understood, with studies over numerous years providing inconsistent descriptions of actin organization in these cells. This uncertainty in actin organization, and thus in actin's role in graviperception and gravisignaling, has led us to investigate actin arrangements in the columella cells of Zea mays L., Medicago truncatula Gaertn., Linum usitatissiilium L. and Nicotianla benthamiana Domin. Actin organization was examined using a combination of optimized immunofluorescence techniques, and an improved fluorochrome-conjugated phalloidin labeling method reliant on 3-maleimidobenzoyl-N-hydroxy-succinimide ester (MBS) cross-linking combined with glycerol permeabilization. Confocal microscopy of root sections labeled with anti-actin antibodies revealed patterns suggestive of actin throughout the columella region. These patterns included short and fragmented actin bundles, fluorescent rings around amyloplasts and intense fluorescence originating from the nucleus. Additionally, confocal microscopy of MBS-stabilized and Alexa Fluor-phalloidin-labeled root sections revealed a previously undetected state of actin organization in the columella. Discrete actin structures surrounded the amyloplasts and prominent actin cables radiated from the nuclear surface toward the cell periphery. Furthermore, the cortex of the columella cells contained fine actin bundles (or single filaments) that had a predominant transverse orientation. We also used confocal microscopy of plant roots expressing endoplasmic reticulum (ER)-targeted green fluorescent protein to demonstrate rapid ER movements within the columella cells, suggesting that the imaged actin network is functional. The successful identification of discrete actin structures in the root columella cells forms the perception and signaling. PMID:11289604

  8. Demonstration of prominent actin filaments in the root columella

    NASA Technical Reports Server (NTRS)

    Collings, D. A.; Zsuppan, G.; Allen, N. S.; Blancaflor, E. B.; Brown, C. S. (Principal Investigator)

    2001-01-01

    The distribution of actin filaments within the gravity-sensing columella cells of plant roots remains poorly understood, with studies over numerous years providing inconsistent descriptions of actin organization in these cells. This uncertainty in actin organization, and thus in actin's role in graviperception and gravisignaling, has led us to investigate actin arrangements in the columella cells of Zea mays L., Medicago truncatula Gaertn., Linum usitatissiilium L. and Nicotianla benthamiana Domin. Actin organization was examined using a combination of optimized immunofluorescence techniques, and an improved fluorochrome-conjugated phalloidin labeling method reliant on 3-maleimidobenzoyl-N-hydroxy-succinimide ester (MBS) cross-linking combined with glycerol permeabilization. Confocal microscopy of root sections labeled with anti-actin antibodies revealed patterns suggestive of actin throughout the columella region. These patterns included short and fragmented actin bundles, fluorescent rings around amyloplasts and intense fluorescence originating from the nucleus. Additionally, confocal microscopy of MBS-stabilized and Alexa Fluor-phalloidin-labeled root sections revealed a previously undetected state of actin organization in the columella. Discrete actin structures surrounded the amyloplasts and prominent actin cables radiated from the nuclear surface toward the cell periphery. Furthermore, the cortex of the columella cells contained fine actin bundles (or single filaments) that had a predominant transverse orientation. We also used confocal microscopy of plant roots expressing endoplasmic reticulum (ER)-targeted green fluorescent protein to demonstrate rapid ER movements within the columella cells, suggesting that the imaged actin network is functional. The successful identification of discrete actin structures in the root columella cells forms the perception and signaling.

  9. Novel antimicrobial superporous cross-linked chitosan/pyromellitimide benzoyl thiourea hydrogels.

    PubMed

    Mohamed, Nadia A; Abd El-Ghany, Nahed A; Fahmy, Mona M

    2016-01-01

    In this work, chitosan (CS) was cross-linked with different amounts of pyromellitimide benzoyl thiourea moieties. The structure of the cross-linked CS was confirmed by elemental analyses, FTIR and (1)H- NMR spectroscopy. The cross-linking process proceeds via reacting of the amino groups of CS with the isothiocyanate groups of the N,N'-bis [4-(isothiocyanate carbonyl)phenyl] pyromellitimide cross-linker. The amount of the cross-linker was varied with respect to CS to produce four new pyromellitimide benzoyl thiourea cross-linked CS (PIBTU-CS) hydrogels designated as PIBTU-CS-1, PIBTU-CS-2, PIBTU-CS-3, and PIBTU-CS-4 of increasing cross-linking degree percent of 11, 22, 44 and 88%, respectively. The scanning electron microscopy observation indicates the extremely porous structure of the hydrogels. XRD results showed that the crystallinity of CS was decreased upon cross-linking. The four hydrogels exhibit a higher antibacterial activity on Bacillus subtilis and Streptococcus pneumoniae as Gram positive bacteria and against Escherichia coli as Gram negative bacteria and higher antifungal activity on Aspergillus fumigatus, Syncephalastrum racemosum and Geotricum candidum than that of the parent CS as shown from their higher inhibition zone diameters and their lower MIC values. The swell ability of the hydrogel as well as their antimicrobial activity increased with increasing cross-linking density. PMID:26388182

  10. Electrospun gelatin nanofibers: a facile cross-linking approach using oxidized sucrose.

    PubMed

    Jalaja, K; James, Nirmala R

    2015-02-01

    Gelatin nanofibers were fabricated via electrospinning with minimal toxicity from solvents and cross-linking agents. Electrospinning was carried out using a solvent system based on water and acetic acid (8:2, v/v). Acetic acid concentration was kept as minimum as possible to reduce the toxic effects. Electrospun gelatin nanofibers were cross-linked with oxidized sucrose. Sucrose was oxidized by periodate oxidation to introduce aldehyde functionality. Cross-linking with oxidized sucrose could be achieved without compromising the nanofibrous architecture. Cross-linked gelatin nanofibers maintained the fibrous morphology even after keeping in contact with aqueous medium. The morphology of the cross-linked nanofibrous mats was examined by scanning electron microscopy (SEM). Oxidized sucrose cross-linked gelatin nanofibers exhibited improved thermal and mechanical properties. The nanofibrous mats were evaluated for cytotoxicity and cell viability using L-929 fibroblast cells. The results confirmed that oxidized sucrose cross-linked gelatin nanofibers were non-cytotoxic towards L-929 cells with good cell viability.

  11. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma.

    PubMed

    Chen, Yulong; Terajima, Masahiko; Yang, Yanan; Sun, Li; Ahn, Young-Ho; Pankova, Daniela; Puperi, Daniel S; Watanabe, Takeshi; Kim, Min P; Blackmon, Shanda H; Rodriguez, Jaime; Liu, Hui; Behrens, Carmen; Wistuba, Ignacio I; Minelli, Rosalba; Scott, Kenneth L; Sanchez-Adams, Johannah; Guilak, Farshid; Pati, Debananda; Thilaganathan, Nishan; Burns, Alan R; Creighton, Chad J; Martinez, Elisabeth D; Zal, Tomasz; Grande-Allen, K Jane; Yamauchi, Mitsuo; Kurie, Jonathan M

    2015-03-01

    Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde-derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde-derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma. PMID:25664850

  12. Chemical and thermal cross-linking of collagen and elastin hydrolysates.

    PubMed

    Sionkowska, A; Skopinska-Wisniewska, J; Gawron, M; Kozlowska, J; Planecka, A

    2010-11-01

    Chemical and thermal cross-linking of collagen soluble in acetic acid and elastin hydrolysates soluble in water have been studied. Solutions of collagen and elastin hydrolysates were treated using variable concentrations of 1-ethyl-3(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). Moreover, diepoxypropylether (DEPE) has been used as cross-linking agent. Films made of collagen and elastin hydrolysates were also treated with temperature at 60°C and 100°C to get additional cross-links. The effect of cross-linking has been studied using FTIR spectroscopy, thermal analysis, AFM and SEM microscopy. Mechanical and surface properties of materials have been studied after cross-linking. It was found that thermal and mechanical properties of collagen and elastin materials have been altered after thermal treatment and after the reactions with EDC/NHS and/or DEPE. Surface properties of collagen materials after chemical cross-linking have been modified. Thermal and chemical cross-linking of collagen films lead to alteration of polarity of the surface.

  13. FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde.

    PubMed

    Chang, Myung Chul; Tanaka, Junzo

    2002-12-01

    FT-IR analysis was performed for the hydroxyapatite (HAp)/collagen (COL) nanocomposite cross-linked by glutaraldehyde (GA). The amide bands I, II and III from COL matrix, and phosphate and carbonate bands from HAp were identified. The amide B band arising from C-H stretching mode showed a sensitive conformation by the degree of cross-linking. The amide I band showed a complicate conformational change by the degree of cross-linking. The characteristic amide I band at 1685 cm(-1), which is known as an aging parameter in the biological bone, did not show a monotonous tendency by the degree of cross-linking. The relative contents of the organics in the cross-linked HAp/COL nanocomposite were evaluated as an integration ratio between the amide I band at 1600-1700 cm(-1) and PO(4)(3-) band at 900-1200 cm(-1). The increase of the organics content by the cross-linking is enabled by the further organization of Ca(2+) ions of HAp crystals in HAp/COL nanocomposite. The complicate conformational behavior in the amide I, II and III bands seems to be affected by the cross-linking induced directional arrangement of HAp/COL nanocomposite fibrils.

  14. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma.

    PubMed

    Chen, Yulong; Terajima, Masahiko; Yang, Yanan; Sun, Li; Ahn, Young-Ho; Pankova, Daniela; Puperi, Daniel S; Watanabe, Takeshi; Kim, Min P; Blackmon, Shanda H; Rodriguez, Jaime; Liu, Hui; Behrens, Carmen; Wistuba, Ignacio I; Minelli, Rosalba; Scott, Kenneth L; Sanchez-Adams, Johannah; Guilak, Farshid; Pati, Debananda; Thilaganathan, Nishan; Burns, Alan R; Creighton, Chad J; Martinez, Elisabeth D; Zal, Tomasz; Grande-Allen, K Jane; Yamauchi, Mitsuo; Kurie, Jonathan M

    2015-03-01

    Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde-derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde-derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma.

  15. Genipin cross-linked nanocomposite films for the immobilization of antimicrobial agent.

    PubMed

    Khan, Avik; Salmieri, Stéphane; Fraschini, Carole; Bouchard, Jean; Riedl, Bernard; Lacroix, Monique

    2014-09-10

    Cellulose nanocrystal (CNC) reinforced chitosan based antimicrobial films were prepared by immobilizing nisin on the surface of the films. Nanocomposite films containing 18.65 μg/cm(2) of nisin reduced the count of L. monocytogenes by 6.73 log CFU/g, compared to the control meat samples (8.54 log CFU/g) during storage at 4 °C in a Ready-To-Eat (RTE) meat system. Film formulations containing 9.33 μg/cm(2) of nisin increased the lag phase of L. monocytogenes on meat by more than 21 days, whereas formulations with 18.65 μg/cm(2) completely inhibited the growth of L. monocytogenes during storage. Genipin was used to cross-link and protect the activity of nisin during storage. Nanocomposite films cross-linked with 0.05% w/v genipin exhibited the highest bioactivity (10.89 μg/cm(2)) during the storage experiment, as compared to that of the un-cross-linked films (7.23 μg/cm(2)). Genipin cross-linked films were able to reduce the growth rate of L. monocytogenes on ham samples by 21% as compared to the un-cross-linked films. Spectroscopic analysis confirmed the formation of genipin-nisin-chitosan heterocyclic cross-linked network. Genipin cross-linked films also improved the swelling, water solubility, and mechanical properties of the nanocomposite films. PMID:25140839

  16. Novel antimicrobial superporous cross-linked chitosan/pyromellitimide benzoyl thiourea hydrogels.

    PubMed

    Mohamed, Nadia A; Abd El-Ghany, Nahed A; Fahmy, Mona M

    2016-01-01

    In this work, chitosan (CS) was cross-linked with different amounts of pyromellitimide benzoyl thiourea moieties. The structure of the cross-linked CS was confirmed by elemental analyses, FTIR and (1)H- NMR spectroscopy. The cross-linking process proceeds via reacting of the amino groups of CS with the isothiocyanate groups of the N,N'-bis [4-(isothiocyanate carbonyl)phenyl] pyromellitimide cross-linker. The amount of the cross-linker was varied with respect to CS to produce four new pyromellitimide benzoyl thiourea cross-linked CS (PIBTU-CS) hydrogels designated as PIBTU-CS-1, PIBTU-CS-2, PIBTU-CS-3, and PIBTU-CS-4 of increasing cross-linking degree percent of 11, 22, 44 and 88%, respectively. The scanning electron microscopy observation indicates the extremely porous structure of the hydrogels. XRD results showed that the crystallinity of CS was decreased upon cross-linking. The four hydrogels exhibit a higher antibacterial activity on Bacillus subtilis and Streptococcus pneumoniae as Gram positive bacteria and against Escherichia coli as Gram negative bacteria and higher antifungal activity on Aspergillus fumigatus, Syncephalastrum racemosum and Geotricum candidum than that of the parent CS as shown from their higher inhibition zone diameters and their lower MIC values. The swell ability of the hydrogel as well as their antimicrobial activity increased with increasing cross-linking density.

  17. Controlled degradation of hydrogels using multi-functional cross-linking molecules.

    PubMed

    Lee, Kuen Yong; Bouhadir, Kamal H; Mooney, David J

    2004-06-01

    Hydrogels, chemically cross-linked or physically entangled, have found a number of applications as novel delivery vehicles of drugs and cells. However, the narrow ranges of degradation rates and mechanical strength currently available from many hydrogels limits their applications. We have hypothesized that utilization of multi-functional cross-linking molecules to form hydrogels could provide a wider range and tighter control over the degradation rates and mechanical stiffness of gels than bi-functional cross-linking molecules. To address the possibility, we isolated alpha-L-guluronate residues of sodium alginate, and oxidized them to prepare poly(aldehyde guluronate) (PAG). Hydrogels were formed with either poly(acrylamide-co-hydrazide) (PAH) as a multi-functional cross-linking molecule or adipic acid dihydrazide (AAD) as a bi-functional cross-linking molecule. The initial properties and degradation behavior of both PAG gel types were monitored. PAG/PAH hydrogels showed higher mechanical stiffness before degradation and degraded more slowly than PAG/AAD gels, at the same concentration of cross-linking functional groups. The enhanced mechanical stiffness and prolonged degradation behavior could be attributed to the multiple attachment points of PAH in the gel at the same concentration of functional groups. This approach to regulating gel properties with multifunctional cross-linking molecules could be broadly used in hydrogels. PMID:14751730

  18. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma

    PubMed Central

    Chen, Yulong; Terajima, Masahiko; Yang, Yanan; Sun, Li; Ahn, Young-Ho; Pankova, Daniela; Puperi, Daniel S.; Watanabe, Takeshi; Kim, Min P.; Blackmon, Shanda H.; Rodriguez, Jaime; Liu, Hui; Behrens, Carmen; Wistuba, Ignacio I.; Minelli, Rosalba; Scott, Kenneth L.; Sanchez-Adams, Johannah; Guilak, Farshid; Pati, Debananda; Thilaganathan, Nishan; Burns, Alan R.; Creighton, Chad J.; Martinez, Elisabeth D.; Zal, Tomasz; Grande-Allen, K. Jane; Yamauchi, Mitsuo; Kurie, Jonathan M.

    2015-01-01

    Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde–derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde–derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma. PMID:25664850

  19. Arabinosylation Plays a Crucial Role in Extensin Cross-linking In Vitro

    PubMed Central

    Chen, Yuning; Dong, Wen; Tan, Li; Held, Michael A; Kieliszewski, Marcia J

    2015-01-01

    Extensins (EXTs) are hydroxyproline-rich glycoproteins (HRGPs) that are structural components of the plant primary cell wall. They are basic proteins and are highly glycosylated with carbohydrate accounting for >50% of their dry weight. Carbohydrate occurs as monogalactosyl serine and arabinosyl hydroxyproline, with arabinosides ranging in size from ~1 to 4 or 5 residues. Proposed functions of EXT arabinosylation include stabilizing the polyproline II helix structure and facilitating EXT cross-linking. Here, the involvement of arabinosylation in EXT cross-linking was investigated by assaying the initial cross-linking rate and degree of cross-linking of partially or fully de-arabinosylated EXTs using an in vitro cross-linking assay followed by gel permeation chromatography. Our results indicate that EXT arabinosylation is required for EXT cross-linking in vitro and the fourth arabinosyl residue in the tetraarabinoside chain, which is uniquely α-linked, may determine the initial cross-linking rate. Our results also confirm the conserved structure of the oligoarabinosides across species, indicating an evolutionary significance for EXT arabinosylation. PMID:26568683

  20. XLSearch: a Probabilistic Database Search Algorithm for Identifying Cross-Linked Peptides.

    PubMed

    Ji, Chao; Li, Sujun; Reilly, James P; Radivojac, Predrag; Tang, Haixu

    2016-06-01

    Chemical cross-linking combined with mass spectrometric analysis has become an important technique for probing protein three-dimensional structure and protein-protein interactions. A key step in this process is the accurate identification and validation of cross-linked peptides from tandem mass spectra. The identification of cross-linked peptides, however, presents challenges related to the expanded nature of the search space (all pairs of peptides in a sequence database) and the fact that some peptide-spectrum matches (PSMs) contain one correct and one incorrect peptide but often receive scores that are comparable to those in which both peptides are correctly identified. To address these problems and improve detection of cross-linked peptides, we propose a new database search algorithm, XLSearch, for identifying cross-linked peptides. Our approach is based on a data-driven scoring scheme that independently estimates the probability of correctly identifying each individual peptide in the cross-link given knowledge of the correct or incorrect identification of the other peptide. These conditional probabilities are subsequently used to estimate the joint posterior probability that both peptides are correctly identified. Using the data from two previous cross-link studies, we show the effectiveness of this scoring scheme, particularly in distinguishing between true identifications and those containing one incorrect peptide. We also provide evidence that XLSearch achieves more identifications than two alternative methods at the same false discovery rate (availability: https://github.com/COL-IU/XLSearch ). PMID:27068484

  1. Sulfhydryl site-specific cross-linking and labeling of monoclonal antibodies by a fluorescent equilibrium transfer alkylation cross-link reagent.

    PubMed

    del Rosario, R B; Wahl, R L; Brocchini, S J; Lawton, R G; Smith, R H

    1990-01-01

    The site-specific intramolecular cross-linking of sulfhydryls of monoclonal antibodies via a new class of "equilibrium transfer alkylation cross-link (ETAC) reagents" is described. Following complete or partial reduction of interchain disulfides with dithiothreitol (DTT), two murine IgG2a monoclonal antibodies, 225.28S and 5G6.4, were reacted with alpha,alpha-bis[(p-tolylsulfonyl)methyl]-m-aminoacetophenone (ETAC 1a) and a fluorescent conjugated derivative, sulforhodamine B m-(alpha,alpha-bis(p-tolysulfonylmethyl)acetyl)anilide derivative (ETAC 1b). Reducing SDS-polyacrylamide gel electrophoresis analysis of the products from 1b indicated the formation of S-ETAC-S interchain heavy and light chain cross-links (approximately 23-34% overall yield by video-camera densitometry) which do not undergo disulfide-thiol exchange with DTT at 100 degrees C. In contrast, no interchain cross-links were observed upon reaction of unreduced or reduced antibody wherein the thiols have been previously alkylated with iodoacetamide. These results indicated site-specific cross-linking of interchain sulfhydryls and places their distance within 3-4 A. Flow cytometry of the ETAC 1b 5G6.4 cross-linked product using 77 IP3 human ovarian carcinoma target cells showed positive binding and retention of immunoreactivity. The in vivo biodistributions of 131I-labeled intact 5G6.4 and 125I-labeled reduced 5G6.4 + ETAC 1a product in rats were essentially identical over a period of 24 h. The present study illustrates the potential applications of labelable ETAC reagents as thiol-specific probes for a wide variety of immunological studies. PMID:2128870

  2. Riboflavin/UVA Collagen Cross-Linking-Induced Changes in Normal and Keratoconus Corneal Stroma

    PubMed Central

    Hayes, Sally; Boote, Craig; Kamma-Lorger, Christina S.; Rajan, Madhavan S.; Harris, Jonathan; Dooley, Erin; Hawksworth, Nicholas; Hiller, Jennifer; Terill, Nick J.; Hafezi, Farhad; Brahma, Arun K.; Quantock, Andrew J.; Meek, Keith M.

    2011-01-01

    Purpose To determine the effect of Ultraviolet-A collagen cross-linking with hypo-osmolar and iso-osmolar riboflavin solutions on stromal collagen ultrastructure in normal and keratoconus ex vivo human corneas. Methods Using small-angle X-ray scattering, measurements of collagen D-periodicity, fibril diameter and interfibrillar spacing were made at 1 mm intervals across six normal post-mortem corneas (two above physiological hydration (swollen) and four below (unswollen)) and two post-transplant keratoconus corneal buttons (one swollen; one unswollen), before and after hypo-osmolar cross-linking. The same parameters were measured in three other unswollen normal corneas before and after iso-osmolar cross-linking and in three pairs of swollen normal corneas, in which only the left was cross-linked (with iso-osmolar riboflavin). Results Hypo-osmolar cross-linking resulted in an increase in corneal hydration in all corneas. In the keratoconus corneas and unswollen normal corneas, this was accompanied by an increase in collagen interfibrillar spacing (p<0.001); an increase in fibril diameter was also seen in two out of four unswollen normal corneas and one unswollen keratoconus cornea (p<0.001). Iso-osmolar cross-linking resulted in a decrease in tissue hydration in the swollen normal corneas only. Although there was no consistent treatment-induced change in hydration in the unswollen normal samples, iso-osmolar cross-linking of these corneas did result in a compaction of collagen fibrils and a reduced fibril diameter (p<0.001); these changes were not seen in the swollen normal corneas. Collagen D-periodicity was not affected by either treatment. Conclusion The observed structural changes following Ultraviolet-A cross-linking with hypo-osmolar or iso-osmolar riboflavin solutions are more likely a consequence of treatment-induced changes in tissue hydration rather than cross-linking. PMID:21850225

  3. Control of dehydrodiferulate cross-linking in pectins from sugar-beet tissues.

    PubMed

    Baydoun, Elias A -H; Pavlencheva, Natalie; Cumming, Carol M; Waldron, Keith W; Brett, Christopher T

    2004-04-01

    Pectins were extracted from roots, petioles and leaves of sugar beet, and cross-linked using hydrogen peroxide and peroxidase. The effects on dehydrodiferulate formation were monitored by HPLC and TLC. Dehydrodimers were formed in different proportions to those found in vivo. There was a net loss of around 50% of the phenolic groups (monomers plus dimers) during dimerisation. Gel filtration showed that root and petiole pectin, but not leaf pectin, increased in molecular weight during cross-linking. The effects of varying the cross-linking conditions were investigated, and it was found that hydrogen peroxide concentration was the most important factor in controlling both the type and amount of dehydrodiferulate formed.

  4. Chitosan-cross-linked osmium polymer composites as an efficient platform for electrochemical biosensors.

    PubMed

    Jirimali, Harishchandra Digambar; Nagarale, Rajaram Krishna; Lee, Jong Myung; Saravanakumar, Durai; Shin, Woonsup

    2013-07-22

    A new family of chitosan-cross-linked osmium polymer composites was prepared and its electrochemical properties were examined. The composites were prepared by quaternization of the poly(4-vinylpyridine) osmium bipyridyl polymer (PVP-Os) which was then cross-linked with chitosan, yielding PVP-Os/chitosan. Films made of the composites showed improved mass and electron transport owing to the porous and hydrophilic structure which is derived from the cross-links between the Os polymer and chitosan. The rate for glucose oxidation was enhanced four times when glucose oxidase (GOx) was immobilized on PVP-Os/chitosan compared immobilization on PVP-Os.

  5. Gelatin hydrogels cross-linked with bis(vinylsulfonyl)methane (BVSM): 1. The chemical networks.

    PubMed

    Hellio-Serughetti, Dominique; Djabourov, Madeleine

    2006-09-26

    This paper deals with chemical gelation of gelatin in the presence of a cross-linker, bis(vinylsulfonyl)methane (BVSM), which is able to create covalent C-N bonds with amine groups. The investigation is performed at 40 degrees C, where no triple helices are present. Gelatin is in random coil conformation. The influence of various parameters (gelatin concentration, cross-linker concentration, and pH (number of reacting sites along the gelatin chain)) was examined. Gel formation was followed by rheological and thermodynamic measurements (microcalorimetry) versus time (kinetic measurements). Furthermore, the storage moduli were compared to the number of links formed in the course of gelation. The experiments show that, within the experimental range investigated, a fully homogeneous network is not reached; the chemical gels, even upon completion of the reactions, are still in the critical domain, near the threshold. A power law behavior was put in evidence for the shear modulus versus the distance to the gel point, expressed as the concentration of links per gelatin chain. The exponent (f = 3.4 +/- 0.3) is close to that expected for the vulcanization of long chains. The storage moduli can be superposed on a single curve where the abscissa is the product of the number of C-N links per unit volume and the gelatin concentration at an exponent equal to -0.76 +/- 0.03. This exponent suggests the role of entanglements for interchain cross-linking. PMID:16981770

  6. Actinic Keratoses

    PubMed Central

    Brown, Marc D.

    2009-01-01

    Actinic keratoses are common intra-epidermal neoplasms that lie on a continuum with squamous cell carcinoma. Tightly linked to ultraviolet irradiation, they occur in areas of chronic sun exposure, and early treatment of these lesions may prevent their progression to invasive disease. A large variety of effective treatment modalities exist, and the optimal therapeutic choice is dependent on a variety of patient- and physician-associated variables. Many established and more recent approaches are discussed in this review with a focus on efficacy and administration techniques. Several previously experimental options, such as imiquimod and photodynamic therapy, have become incorporated as first-line options for the treatment of actinic keratoses, while combination treatment strategies have been gaining in popularity. The goal of all therapies is to ultimately limit the morbidity and mortality of squamous cell carcinoma. (J Clin Aesthetic Dermatol. 2009;2(7):43–48.) PMID:20729970

  7. Integration of linear and dendritic actin nucleation in Nck-induced actin comets

    PubMed Central

    Borinskaya, Sofya; Velle, Katrina B.; Campellone, Kenneth G.; Talman, Arthur; Alvarez, Diego; Agaisse, Hervé; Wu, Yi I.; Loew, Leslie M.; Mayer, Bruce J.

    2016-01-01

    The Nck adaptor protein recruits cytosolic effectors such as N-WASP that induce localized actin polymerization. Experimental aggregation of Nck SH3 domains at the membrane induces actin comet tails—dynamic, elongated filamentous actin structures similar to those that drive the movement of microbial pathogens such as vaccinia virus. Here we show that experimental manipulation of the balance between unbranched/branched nucleation altered the morphology and dynamics of Nck-induced actin comets. Inhibition of linear, formin-based nucleation with the small-molecule inhibitor SMIFH2 or overexpression of the formin FH1 domain resulted in formation of predominantly circular-shaped actin structures with low mobility (actin blobs). These results indicate that formin-based linear actin polymerization is critical for the formation and maintenance of Nck-dependent actin comet tails. Consistent with this, aggregation of an exclusively branched nucleation-promoting factor (the VCA domain of N-WASP), with density and turnover similar to those of N-WASP in Nck comets, did not reconstitute dynamic, elongated actin comets. Furthermore, enhancement of branched Arp2/3-mediated nucleation by N-WASP overexpression caused loss of the typical actin comet tail shape induced by Nck aggregation. Thus the ratio of linear to dendritic nucleation activity may serve to distinguish the properties of actin structures induced by various viral and bacterial pathogens. PMID:26609071

  8. Integration of linear and dendritic actin nucleation in Nck-induced actin comets.

    PubMed

    Borinskaya, Sofya; Velle, Katrina B; Campellone, Kenneth G; Talman, Arthur; Alvarez, Diego; Agaisse, Hervé; Wu, Yi I; Loew, Leslie M; Mayer, Bruce J

    2016-01-15

    The Nck adaptor protein recruits cytosolic effectors such as N-WASP that induce localized actin polymerization. Experimental aggregation of Nck SH3 domains at the membrane induces actin comet tails--dynamic, elongated filamentous actin structures similar to those that drive the movement of microbial pathogens such as vaccinia virus. Here we show that experimental manipulation of the balance between unbranched/branched nucleation altered the morphology and dynamics of Nck-induced actin comets. Inhibition of linear, formin-based nucleation with the small-molecule inhibitor SMIFH2 or overexpression of the formin FH1 domain resulted in formation of predominantly circular-shaped actin structures with low mobility (actin blobs). These results indicate that formin-based linear actin polymerization is critical for the formation and maintenance of Nck-dependent actin comet tails. Consistent with this, aggregation of an exclusively branched nucleation-promoting factor (the VCA domain of N-WASP), with density and turnover similar to those of N-WASP in Nck comets, did not reconstitute dynamic, elongated actin comets. Furthermore, enhancement of branched Arp2/3-mediated nucleation by N-WASP overexpression caused loss of the typical actin comet tail shape induced by Nck aggregation. Thus the ratio of linear to dendritic nucleation activity may serve to distinguish the properties of actin structures induced by various viral and bacterial pathogens. PMID:26609071

  9. Analysis of protein-RNA interactions in CRISPR proteins and effector complexes by UV-induced cross-linking and mass spectrometry.

    PubMed

    Sharma, Kundan; Hrle, Ajla; Kramer, Katharina; Sachsenberg, Timo; Staals, Raymond H J; Randau, Lennart; Marchfelder, Anita; van der Oost, John; Kohlbacher, Oliver; Conti, Elena; Urlaub, Henning

    2015-11-01

    Ribonucleoprotein (RNP) complexes play important roles in the cell by mediating basic cellular processes, including gene expression and its regulation. Understanding the molecular details of these processes requires the identification and characterization of protein-RNA interactions. Over the years various approaches have been used to investigate these interactions, including computational analyses to look for RNA binding domains, gel-shift mobility assays on recombinant and mutant proteins as well as co-crystallization and NMR studies for structure elucidation. Here we report a more specialized and direct approach using UV-induced cross-linking coupled with mass spectrometry. This approach permits the identification of cross-linked peptides and RNA moieties and can also pin-point exact RNA contact sites within the protein. The power of this method is illustrated by the application to different single- and multi-subunit RNP complexes belonging to the prokaryotic adaptive immune system, CRISPR-Cas (CRISPR: clustered regularly interspaced short palindromic repeats; Cas: CRISPR associated). In particular, we identified the RNA-binding sites within three Cas7 protein homologs and mapped the cross-linking results to reveal structurally conserved Cas7 - RNA binding interfaces. These results demonstrate the strong potential of UV-induced cross-linking coupled with mass spectrometry analysis to identify RNA interaction sites on the RNA binding proteins. PMID:26071038

  10. Use of Protein Cross-Linking and Radiolytic Labeling To Elucidate the Structure of PsbO within Higher-Plant Photosystem II.

    PubMed

    Mummadisetti, Manjula P; Frankel, Laurie K; Bellamy, Henry D; Sallans, Larry; Goettert, Jost S; Brylinski, Michal; Bricker, Terry M

    2016-06-14

    We have used protein cross-linking with the zero-length cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, and radiolytic footprinting coupled with high-resolution tandem mass spectrometry, to examine the structure of higher-plant PsbO when it is bound to Photosystem II. Twenty intramolecular cross-linked residue pairs were identified. On the basis of this cross-linking data, spinach PsbO was modeled using the Thermosynechococcus vulcanus PsbO structure as a template, with the cross-linking distance constraints incorporated using the MODELLER program. Our model of higher-plant PsbO identifies several differences between the spinach and cyanobacterial proteins. The N-terminal region is particularly interesting, as this region has been suggested to be important for oxygen evolution and for the specific binding of PsbO to Photosystem II. Additionally, using radiolytic mapping, we have identified regions on spinach PsbO that are shielded from the bulk solvent. These domains may represent regions on PsbO that interact with other components, as yet unidentified, of the photosystem. PMID:27203407

  11. Analysis of protein-RNA interactions in CRISPR proteins and effector complexes by UV-induced cross-linking and mass spectrometry.

    PubMed

    Sharma, Kundan; Hrle, Ajla; Kramer, Katharina; Sachsenberg, Timo; Staals, Raymond H J; Randau, Lennart; Marchfelder, Anita; van der Oost, John; Kohlbacher, Oliver; Conti, Elena; Urlaub, Henning

    2015-11-01

    Ribonucleoprotein (RNP) complexes play important roles in the cell by mediating basic cellular processes, including gene expression and its regulation. Understanding the molecular details of these processes requires the identification and characterization of protein-RNA interactions. Over the years various approaches have been used to investigate these interactions, including computational analyses to look for RNA binding domains, gel-shift mobility assays on recombinant and mutant proteins as well as co-crystallization and NMR studies for structure elucidation. Here we report a more specialized and direct approach using UV-induced cross-linking coupled with mass spectrometry. This approach permits the identification of cross-linked peptides and RNA moieties and can also pin-point exact RNA contact sites within the protein. The power of this method is illustrated by the application to different single- and multi-subunit RNP complexes belonging to the prokaryotic adaptive immune system, CRISPR-Cas (CRISPR: clustered regularly interspaced short palindromic repeats; Cas: CRISPR associated). In particular, we identified the RNA-binding sites within three Cas7 protein homologs and mapped the cross-linking results to reveal structurally conserved Cas7 - RNA binding interfaces. These results demonstrate the strong potential of UV-induced cross-linking coupled with mass spectrometry analysis to identify RNA interaction sites on the RNA binding proteins.

  12. Assembly Kinetics Determine the Architecture of α-actinin Crosslinked F-actin Networks

    PubMed Central

    Falzone, Tobias T.; Lenz, Martin; Kovar, David R.; Gardel, Margaret L.

    2013-01-01

    The actin cytoskeleton is organized into diverse meshworks and bundles that support many aspects of cell physiology. Understanding the self-assembly of these actin-based structures is essential for developing predictive models of cytoskeletal organization. Here we show that the competing kinetics of bundle formation with the onset of dynamic arrest arising from filament entanglements and cross-linking determine the architecture of reconstituted actin networks formed with α-actinin cross-links. Cross-link mediated bundle formation only occurs in dilute solutions of highly mobile actin filaments. As actin polymerization proceeds, filament mobility and bundle formation are arrested concomitantly. By controlling the onset of dynamic arrest, perturbations to actin assembly kinetics dramatically alter the architecture of biochemically identical samples. Thus, the morphology of reconstituted F-actin networks is a kinetically determined structure similar to those formed by physical gels and glasses. These results establish mechanisms controlling the structure and mechanics in diverse semi-flexible biopolymer networks. PMID:22643888

  13. Tissue-specific effects of aldose reductase inhibition on fluorescence and cross-linking of extracellular matrix in chronic galactosemia. Relationship to pentosidine cross-links.

    PubMed

    Richard, S; Tamas, C; Sell, D R; Monnier, V M

    1991-08-01

    Chronic experimental hyperglycemia mediated by galactose has been shown to induce browning and cross-linking of rat tail tendon collagen that could be duplicated in vitro by nonenzymatic galactosylation. To investigate the nature of these changes, Sprague-Dawley rats were placed on a 33% galactose diet without and with sorbinil for 6 and 12 mo. Collagen-linked fluorescence and pentosidine cross-links increased with age and galactosemia in tail tendons (P less than 0.001) and skin but were essentially unresponsive to aldose reductase inhibition (ARI). In contrast, tendon breaking time in urea, a likely parameter of cross-linking, was markedly improved (P less than 0.001) by ARI. Fluorescence that was inhibited by sorbinil treatment was increased in pepsin and proteinase K digest of aortic tissue from galactosemic rats (P less than 0.001), but impaired enzymatic digestibility was not observed. Systolic blood pressure as potential consequence of aortic stiffening was not increased in galactosemia. These data suggest that fluorescence in skin and tendon might be in part due to advanced glycosylation and pentosidine formation because these were not decreased by ARI. However, they also suggest that nonfluorescent cross-links may also be forming because, in contrast to fluorescence, tail tendon breaking time was partly corrected by ARI. Thus, it appears that extracellular matrix changes in chronic galactosemia are complex, being partly attributable to advanced glycosylation and partly to polyol-pathway activation.

  14. Cross-Linked Conjugated Polymer Fibrils: Robust Nanowires from Functional Polythiophene Diblock Copolymers

    SciTech Connect

    Hammer, Brenton A. G.; Bokel, Felicia A.; Hayward, Ryan C.; Emrick, Todd

    2011-09-27

    A series of poly(3-hexyl thiophene) (P3HT)-based diblock copolymers were prepared and examined in solution for their assembly into fibrils, and post-assembly cross-linking into robust nanowire structures. P3HT-b-poly(3-methanol thiophene) (P3MT), and P3HT-b-poly(3-aminopropyloxymethyl thiophene) (P3AmT) diblock copolymers were synthesized using Grignard metathesis (GRIM) polymerization. Fibrils formed from solution assembly of these copolymers are thus decorated with hydroxyl and amine functionality, and cross-linking is achieved by reaction of diisocyanates with the hydroxyl and amine groups. A variety of cross-linked structures, characterized by transmission electron microscopy (TEM), were produced by this method, including dense fibrillar sheets, fibril bundles, or predominately individual fibrils, depending on the chosen reaction conditions. In solution, the cross-linked fibrils maintained their characteristic vibronic structure in solvents that would normally disrupt (dissolve) the structures.

  15. Determination of the cross-linking effect of adipic acid dihydrazide on glycoconjugate preparation.

    PubMed

    Bystrický, S; Machová, E; Malovíková, A; Kogan, G

    1999-11-01

    The cross-linking effect of adipic acid dihydrazide (ADH) on polysaccharide derivatization can be evaluated by applying combination of elemental analysis and colorimetric assay. Elemental analysis is used for estimation of total ADH bound to polysaccharide and a colorimetric trinitrobenzene sulfonic acid assay is used to determine the part of ADH not involved in cross-linking. The difference of values expressed as molar ratios (per repeating unit) provides information on the amount of ADH involved in cross-linking the polysaccharides. Carboxymethylated polysaccharides were derivatized with different amounts of ADH to test the procedure. Analytical results showed that excess of ADH in the reaction only slightly decreased the cross-linking. The number of carboxyl groups remained unmodified even at high excess of ADH and high concentration of carbodiimide (EDC) coupling reagent. PMID:11003553

  16. Collagen type IX from human cartilage: a structural profile of intermolecular cross-linking sites.

    PubMed Central

    Diab, M; Wu, J J; Eyre, D R

    1996-01-01

    Type IX collagen, a quantitatively minor collagenous component of cartilage, is known to be associated with and covalently cross-linked to type II collagen fibrils in chick and bovine cartilage. Type IX collagen molecules have also been shown to form covalent cross-links with each other in bovine cartilage. In the present study we demonstrate by structural analysis and location of cross-linking sites that, in human cartilage, type IX collagen is covalently cross-linked to type II collagen and to other molecules of type IX collagen. We also present evidence that, if the proteoglycan form of type IX collagen is present in human cartilage, it can only be a minor component of the matrix, similar to findings with bovine cartilage. PMID:8660302

  17. Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer

    PubMed Central

    Udum, Yasemin; Denk, Patrick; Adam, Getachew; Apaydin, Dogukan H.; Nevosad, Andreas; Teichert, Christian; S. White, Matthew.; S. Sariciftci, Niyazi.; Scharber, Markus C.

    2014-01-01

    We have developed a hole-blocking layer for bulk-heterojunction solar cells based on cross-linked polyethylenimine (PEI). We tested five different ether-based cross-linkers and found that all of them give comparable solar cell efficiencies. The initial idea that a cross-linked layer is more solvent resistant compared to a pristine PEI layer could not be confirmed. With and without cross-linking, the PEI layer sticks very well to the surface of the indium–tin–oxide electrode and cannot be removed by solvents used to process PEI or common organic semiconductors. The cross-linked PEI hole-blocking layer functions for multiple donor–acceptor blends. We found that using cross-linkers improves the reproducibility of the device fabrication process. PMID:24817837

  18. Vapor deposition of cross-linked fluoropolymer barrier coatings onto pre-assembled microfluidic devices.

    PubMed

    Riche, Carson T; Marin, Brandon C; Malmstadt, Noah; Gupta, Malancha

    2011-09-21

    The interior surfaces of pre-assembled poly(dimethylsiloxane) (PDMS) microfluidic devices were modified with a cross-linked fluoropolymer barrier coating that significantly increased the chemical compatibility of the devices. PMID:21850298

  19. Activation energies control the macroscopic properties of physically cross-linked materials.

    PubMed

    Appel, Eric A; Forster, Rebecca A; Koutsioubas, Alexandros; Toprakcioglu, Chris; Scherman, Oren A

    2014-09-15

    Here we show the preparation of a series of water-based physically cross-linked polymeric materials utilizing cucurbit[8]uril (CB[8]) ternary complexes displaying a range of binding, and therefore cross-linking, dynamics. We determined that the mechanical strength of these materials is correlated directly with a high energetic barrier for the dissociation of the CB[8] ternary complex cross-links, whereas facile and rapid self-healing requires a low energetic barrier to ternary complex association. The versatile CB[8] ternary complex has, therefore, proven to be a powerful asset for improving our understanding of challenging property-structure relationships in supramolecular systems and their associated influence on the bulk behavior of dynamically cross-linked materials.

  20. Effect of cross-link density on carbon dioxide separation in polydimethylsiloxane-norbornene membranes

    DOE PAGES

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; Gmernicki, Kevin; Cheng, Shiwang; Fan, Fei; Johnson, J. Casey; Hong, Eunice; Mahurin, Shannon; Jiang, De -en; et al

    2015-01-01

    The development of high performance materials for CO2 separation and capture will significantly contribute to a solution for climate change. In this work, (bicycloheptenyl) ethyl terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability ~ 6800 Barrer and CO2/N2 selectivity ~ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in-situ cross-linking method of the difunctional PDMS macromonomers, which provides lightly cross-linked membranes.more » By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy and gas solubility measurements, we have elucidated the key parameters necessary for achieving their excellent performance.« less

  1. A Review of Collagen Cross-Linking in Cornea and Sclera

    PubMed Central

    Zhang, Xiao; Tao, Xiang-chen; Zhang, Jian; Li, Zhi-wei; Xu, Yan-yun; Wang, Yu-meng; Zhang, Chun-xiao; Mu, Guo-ying

    2015-01-01

    Riboflavin/UVA cross-linking is a technique introduced in the past decades for the treatment of keratoconus, keratectasia, and infectious keratitis. Its efficacy and safety have been investigated with clinical and laboratory studies since its first clinical application by Wollensak for the treatment of keratoconus. Although its complications are encountered during clinical practice, such as infection inducing risk, minimal invasion merits a further investigation on its future application in clinical practice. Recently, collagen cross-linking in sclera shows a promising prospect. In present study, we summarized the representative studies describing the clinical and laboratory application of collagen cross-linking published in past decades and provided our opinion on the positive and negative results of cross-linking in the treatment of ophthalmic disorders. PMID:25922758

  2. In Vivo Oxidative Stability Changes of Highly Cross-Linked Polyethylene Bearings: An Ex Vivo Investigation.

    PubMed

    Rowell, Shannon L; Reyes, Christopher R; Malchau, Henrik; Muratoglu, Orhun K

    2015-10-01

    The development of highly cross-linked UHMWPEs focused on stabilizing radiation-induced free radicals as the sole precursor to oxidative degradation. However, secondary in vivo oxidation mechanisms have been discovered. After a preliminary post-operative analysis, we subjected highly cross-linked retrievals with 1-4 years in vivo durations and never-implanted controls to accelerated aging to predict the extent to which their oxidative stability was compromised in vivo. Lipid absorption, oxidation, and hydroperoxides were measured using infrared spectroscopy. Gravimetric swelling was used to measure cross-link density. After aging, all retrievals, except vitamin E-stabilized components, regardless of initial lipid levels or oxidation, showed significant oxidative degradation, demonstrated by subsurface oxidative peaks, increased hydroperoxides and decreased cross-link density, compared to their post-operative material properties and never-implanted counterparts, confirming oxidative stability changes.

  3. Cross-linking proteins with bimetallic tetracarboxylate compounds of transition metals

    DOEpatents

    Kostic, N.M.; Chen, J.

    1991-03-05

    Stable cross-linked complexes of transition-metal tetracarboxylates and proteins are formed. The preferred transition-metal is rhodium. The protein may be collagen or an enzyme such as a proteolytic enzyme. No Drawings

  4. Cross-linking proteins with bimetallic tetracarboxylate compounds of transition metals

    DOEpatents

    Kostic, Nenad M.; Chen, Jian

    1991-03-05

    Stable cross-linked complexes of transition-metal tetracarboxylates and proteins are formed. The preferred transition-metal is rhodium. The protein may be collagen or an enzyme such as a proteolytic enzyme.

  5. Effect of cross-link density on carbon dioxide separation in polydimethylsiloxane-norbornene membranes

    SciTech Connect

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; Gmernicki, Kevin; Cheng, Shiwang; Fan, Fei; Johnson, J. Casey; Hong, Eunice; Mahurin, Shannon; Jiang, De -en; Long, Brian; Mays, Jimmy; Sokolov, Alexei; Saito, Tomonori

    2015-01-01

    The development of high performance materials for CO2 separation and capture will significantly contribute to a solution for climate change. In this work, (bicycloheptenyl) ethyl terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability ~ 6800 Barrer and CO2/N2 selectivity ~ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in-situ cross-linking method of the difunctional PDMS macromonomers, which provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy and gas solubility measurements, we have elucidated the key parameters necessary for achieving their excellent performance.

  6. Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer.

    PubMed

    Udum, Yasemin; Denk, Patrick; Adam, Getachew; Apaydin, Dogukan H; Nevosad, Andreas; Teichert, Christian; S White, Matthew; S Sariciftci, Niyazi; Scharber, Markus C

    2014-05-01

    We have developed a hole-blocking layer for bulk-heterojunction solar cells based on cross-linked polyethylenimine (PEI). We tested five different ether-based cross-linkers and found that all of them give comparable solar cell efficiencies. The initial idea that a cross-linked layer is more solvent resistant compared to a pristine PEI layer could not be confirmed. With and without cross-linking, the PEI layer sticks very well to the surface of the indium-tin-oxide electrode and cannot be removed by solvents used to process PEI or common organic semiconductors. The cross-linked PEI hole-blocking layer functions for multiple donor-acceptor blends. We found that using cross-linkers improves the reproducibility of the device fabrication process. PMID:24817837

  7. Effect of Cross-Link Density on Carbon Dioxide Separation in Polydimethylsiloxane-Norbornene Membranes.

    PubMed

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; Gmernicki, Kevin; Cheng, Shiwang; Fan, Fei; Johnson, J Casey; Hong, Eunice; Mahurin, Shannon; Jiang, De-en; Long, Brian; Mays, Jimmy; Sokolov, Alexei; Saito, Tomonori

    2015-11-01

    The development of high-performance materials for carbon dioxide separation and capture will significantly contribute to a solution for climate change. Herein, (bicycloheptenyl)ethyl-terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability≈6800 Barrer; CO2 /N2 selectivity≈14) is very promising for practical applications. The key to achieving this high performance is the use of an in situ cross-linking method for difunctional PDMS macromonomers, which provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy, and gas solubility measurements, key parameters necessary for achieving excellent performance have been elucidated.

  8. Biological relevance and consequences of chemical- or metal-induced DNA cross-linking

    SciTech Connect

    Paustenbach, D.J.; Finley, B.L.

    1996-03-01

    A vast number of chemicals are known to induce mutagenesis and/or carcinogenesis in mammals. Although disruption of cellular nuclear material resulting ultimately in mutagenesis/carcinogenesis can be accomplished by various mechanisms, the search for biomarkers of chemical-induced toxicity continues. This review focuses on the ability of certain metals or chemicals to bind to DNA in a cross-link fashion in whole animal as well as under in vitro conditions. The methodologies currently used to determine DNA cross-linking are described. The biological relevance of the presence of chemical- or metal-induced DNA cross-linking as a measure of carcinogenesis in humans is still under debate, as there is no clear correlation between the disease and the DNA cross-link reaction. 62 refs., 3 tabs.

  9. Enhanced mechanical properties and blood compatibility of PDMS/liquid crystal cross-linked membrane materials.

    PubMed

    Rao, Huaxin; Zhang, Ziyong; Liu, Fanna

    2013-04-01

    A novel polydimethylsiloxane/liquid crystal cross-linked membrane (PDMS/LC) was prepared by using PDMS containing vinyl groups and LCs containing unsaturated linkages as matrix materials. Mechanical properties, liquid crystalline performance and blood compatibility of the PDMS/LC cross-linked membrane containing different LC contents and LC groups were investigated, respectively. The results showed that mechanical properties of the membrane increased more significantly than those of pure PDMS membranes. The PDMS/LC cross-linked membrane also possessed better membrane-forming ability, lower hemolysis rate, less platelets adhesion and more favorable anti-coagulant properties. Additionally, mechanical properties and blood compatibility of the membrane can be enhanced simultaneously and obviously due to the introduction of the cholesteric liquid crystals and the application of the preferred cross-linked reaction without byproducts.

  10. Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer.

    PubMed

    Udum, Yasemin; Denk, Patrick; Adam, Getachew; Apaydin, Dogukan H; Nevosad, Andreas; Teichert, Christian; S White, Matthew; S Sariciftci, Niyazi; Scharber, Markus C

    2014-05-01

    We have developed a hole-blocking layer for bulk-heterojunction solar cells based on cross-linked polyethylenimine (PEI). We tested five different ether-based cross-linkers and found that all of them give comparable solar cell efficiencies. The initial idea that a cross-linked layer is more solvent resistant compared to a pristine PEI layer could not be confirmed. With and without cross-linking, the PEI layer sticks very well to the surface of the indium-tin-oxide electrode and cannot be removed by solvents used to process PEI or common organic semiconductors. The cross-linked PEI hole-blocking layer functions for multiple donor-acceptor blends. We found that using cross-linkers improves the reproducibility of the device fabrication process.

  11. DNA-protein cross-links produced by various chemicals in cultured human lymphoma cells.

    PubMed

    Costa, M; Zhitkovich, A; Harris, M; Paustenbach, D; Gargas, M

    1997-04-11

    Chemicals such as cis-platinum, formaldehyde, chromate, copper, and certain arsenic compounds have been shown to produce DNA-protein cross-links in human in vitro cell systems at high doses, such as those in the cytotoxic range. Thus far there have only been a limited number of other chemicals evaluated for their ability to produce cross-links. The purpose of the work described here was to evaluate whether select industrial chemicals can form DNA-protein cross-links in human cells in vitro. We evaluated acetaldehyde, acrolein, diepoxybutane, paraformaldehyde, 2-furaldehyde, propionaldehyde, chloroacetaldehyde, sodium arsenite, and a deodorant tablet [Mega Blue; hazardous component listed as tris(hydroxymethyl)nitromethane]. Short- and long-term cytotoxicity was evaluated and used to select appropriate doses for in vitro testing. DNA-protein cross-linking was evaluated at no fewer than three doses and two cell lysate washing temperatures (45 and 65 degrees C) in Epstein-Barr virus (EBV) human Burkitt's lymphoma cells. The two washing temperatures were used to assess the heat stability of the DNA-protein cross-link, 2-Furaldehyde, acetaldehyde, and propionaldehyde produced statistically significant increases in DNA-protein cross-links at washing temperatures of 45 degrees C, but not 65 degrees C, and at or above concentrations of 5, 17.5, and 75 mM, respectively. Acrolein, diepoxybutane, paraformaldehyde, and Mega Blue produced statistically significant increases in DNA-protein cross-links washed at 45 and 65 degrees C at or above concentrations of 0.15 mM, 12.5 mM, 0.003%, and 0.1%, respectively. Sodium arsenite and chloroacetaldehyde did not produce significantly increased DNA-protein cross-links at either temperature nor at any dose tested. Excluding paraformaldehyde and 2-furaldehyde treatments, significant increases in DNA-protein cross-links were observed only at doses that resulted in complete cell death within 4 d following dosing. This work demonstrates that

  12. Intra-molecular cross-linking of acidic residues for protein structure studies.

    SciTech Connect

    Kruppa, Gary Hermann; Young, Malin M.; Novak, Petr; Schoeniger, Joseph S.

    2005-03-01

    Intra-molecular cross-linking has been suggested as a method of obtaining distance constraints that would be useful in developing structural models of proteins. Recent work published on intra-molecular cross-linking for protein structural studies has employed commercially available primary amine selective reagents that can cross-link lysine residues to other lysine residues or the amino terminus. Previous work using these cross-linkers has shown that for several proteins of known structure, the number of cross-links that can be obtained experimentally may be small compared to what would be expected from the known structure, due to the relative reactivity, distribution, and solvent accessibility of the lysines in the protein sequence. To overcome these limitations we have investigated the use of cross-linking reagents that can react with other reactive sidechains in proteins. We used 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) to activate the carboxylic acid containing residues, aspartic acid (D), glutamic acid (E), and the carboxy terminus (O), for cross-linking reactions. Once activated, the DEO sidechains can react to form 'zero-length' cross-links with nearby primary amine containing resides, lysines (K) and the amino terminus (X), via the formation of a new amide bond. We also show that the EDC-activated DEO sidechains can be cross-linked to each other using dihydrazides, two hydrazide moieties connected by an alkyl cross-linker ann of variable length. Using these reagents, we have found three new 'zero-length' cross-links in ubiquitin consistent with its known structure (M1-E16, M1-E18, and K63-E64). Using the dihydrazide cross-linkers, we have identified 2 new cross-links (D21-D32 and E24-D32) unambiguously. Using a library of dihydrazide cross-linkers with varying arm length, we have shown that there is a minimum arm length required for the DEO-DEO cross-links of 5.8 angstroms. These results show that additional structural information

  13. Helical buckling of actin inside filopodia generates traction

    PubMed Central

    Leijnse, Natascha; Oddershede, Lene B.; Bendix, Poul M.

    2015-01-01

    Cells can interact with their surroundings via filopodia, which are membrane protrusions that extend beyond the cell body. Filopodia are essential during dynamic cellular processes like motility, invasion, and cell–cell communication. Filopodia contain cross-linked actin filaments, attached to the surrounding cell membrane via protein linkers such as integrins. These actin filaments are thought to play a pivotal role in force transduction, bending, and rotation. We investigated whether, and how, actin within filopodia is responsible for filopodia dynamics by conducting simultaneous force spectroscopy and confocal imaging of F-actin in membrane protrusions. The actin shaft was observed to periodically undergo helical coiling and rotational motion, which occurred simultaneously with retrograde movement of actin inside the filopodium. The cells were found to retract beads attached to the filopodial tip, and retraction was found to correlate with rotation and coiling of the actin shaft. These results suggest a previously unidentified mechanism by which a cell can use rotation of the filopodial actin shaft to induce coiling and hence axial shortening of the filopodial actin bundle. PMID:25535347

  14. False discovery rate estimation for cross-linked peptides identified by mass spectrometry.

    PubMed

    Walzthoeni, Thomas; Claassen, Manfred; Leitner, Alexander; Herzog, Franz; Bohn, Stefan; Förster, Friedrich; Beck, Martin; Aebersold, Ruedi

    2012-09-01

    The mass spectrometric identification of chemically cross-linked peptides (CXMS) specifies spatial restraints of protein complexes; these values complement data obtained from common structure-determination techniques. Generic methods for determining false discovery rates of cross-linked peptide assignments are currently lacking, thus making data sets from CXMS studies inherently incomparable. Here we describe an automated target-decoy strategy and the software tool xProphet, which solve this problem for large multicomponent protein complexes.

  15. Porphyrin-induced photodynamic cross-linking of hepatic heme-binding proteins.

    PubMed

    Vincent, S H; Holeman, B; Cully, B C; Muller-Eberhard, U

    1986-01-27

    Three types of hepatic proteins, a heme-binding Z protein, a mixture of the glutathione S-transferases and a cytochrome P450 isozyme, were shown to be susceptible to photodynamic cross-linking and loss in antigenicity by naturally occurring porphyrins. At 50 microM, uroporphyrin caused the most and protoporphyrin the least photodecomposition. Hemopexin, a specific serum heme carrier, was photodecomposed but no cross-linking was detected. Heme and scavengers of singlet oxygen partially prevented protein photodecomposition.

  16. Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia.

    PubMed

    Mižíková, Ivana; Ruiz-Camp, Jordi; Steenbock, Heiko; Madurga, Alicia; Vadász, István; Herold, Susanne; Mayer, Konstantin; Seeger, Werner; Brinckmann, Jürgen; Morty, Rory E

    2015-06-01

    Maturation of the lung extracellular matrix (ECM) plays an important role in the formation of alveolar gas exchange units. A key step in ECM maturation is cross-linking of collagen and elastin, which imparts stability and functionality to the ECM. During aberrant late lung development in bronchopulmonary dysplasia (BPD) patients and animal models of BPD, alveolarization is blocked, and the function of ECM cross-linking enzymes is deregulated, suggesting that perturbed ECM cross-linking may impact alveolarization. In a hyperoxia (85% O2)-based mouse model of BPD, blunted alveolarization was accompanied by alterations to lung collagen and elastin levels and cross-linking. Total collagen levels were increased (by 63%). The abundance of dihydroxylysinonorleucine collagen cross-links and the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio were increased by 11 and 18%, respectively, suggestive of a profibrotic state. In contrast, insoluble elastin levels and the abundance of the elastin cross-links desmosine and isodesmosine in insoluble elastin were decreased by 35, 30, and 21%, respectively. The lung collagen-to-elastin ratio was threefold increased. Treatment of hyperoxia-exposed newborn mice with the lysyl oxidase inhibitor β-aminopropionitrile partially restored normal collagen levels, normalized the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio, partially normalized desmosine and isodesmosine cross-links in insoluble elastin, and partially restored elastin foci structure in the developing septa. However, β-aminopropionitrile administration concomitant with hyperoxia exposure did not improve alveolarization, evident from unchanged alveolar surface area and alveoli number, and worsened septal thickening (increased by 12%). These data demonstrate that collagen and elastin cross-linking are perturbed during the arrested alveolarization of developing mouse lungs exposed to hyperoxia.

  17. Computational exploration of polymer nanocomposite mechanical property modification via cross-linking topology

    SciTech Connect

    Lacevic, N; Gee, R; Saab, A; Maxwell, R

    2008-04-24

    Molecular dynamics simulations have been performed in order to study the effects of nanoscale filler cross-linking topologies and loading levels on the mechanical properties of a model elastomeric nanocomposite. The model system considered here is constructed from octa-functional polyhedral oligomeric silsesquioxane (POSS) dispersed in a poly(dimethylsiloxane) (PDMS) matrix. Shear moduli, G, have been computed for pure and for filled and unfilled PDMS as a function of cross-linking density, POSS fill loading level, and polymer network topology. The results reported here show that G increases as the cross-linking (covalent bonds formed between the POSS and the PDMS network) density increases. Further, G is found to have a strong dependence on cross-linking topology. The increase in shear modulus, G, for POSS filled PDMS is significantly higher than that for unfilled PDMS cross-linked with standard molecular species, suggesting an enhanced reinforcement mechanism for POSS. In contrast, in blended systems (POSS/PDMS mixture with no cross-linking) G was not observed to significantly increase with POSS loading. Finally, we find intriguing differences in the structural arrangement of bond strains between the cross-linked and the blended systems. In the unfilled PDMS the distribution of highly strained bonds appears to be random, while in the POSS filled system, the strained bonds form a net-like distribution that spans the network. Such a distribution may form a structural network 'holding' the composite together and resulting in increases in G compared to an unfilled, cross-linked system. These results are of importance for engineering of new POSS-based multifunctional materials with tailor-made mechanical properties.

  18. Computational exploration of polymer nanocomposite mechanical property modification via cross-linking topology.

    PubMed

    Lacevic, Naida; Gee, Richard H; Saab, Andrew; Maxwell, Robert

    2008-09-28

    Molecular dynamics simulations have been performed in order to study the effects of nanoscale filler cross-linking topologies and loading levels on the mechanical properties of a model elastomeric nanocomposite. The model system considered here is constructed from octafunctional polyhedral oligomeric silsesquioxane (POSS) dispersed in a poly(dimethylsiloxane) (PDMS) matrix. Shear moduli, G, have been computed for pure and for filled and unfilled PDMS as a function of cross-linking density, POSS fill loading level, and polymer network topology. The results reported here show that G increases as the cross-linking (covalent bonds formed between the POSS and the PDMS network) density increases. Further, G is found to have a strong dependence on cross-linking topology. The increase in shear modulus, G, for POSS filled PDMS is significantly higher than that for unfilled PDMS cross-linked with standard molecular species, suggesting an enhanced reinforcement mechanism for POSS. In contrast, in blended systems (POSS/PDMS mixture with no cross-linking) G was not observed to significantly increase with POSS loading. Finally, we find intriguing differences in the structural arrangement of bond strains between the cross-linked and the blended systems. In the unfilled PDMS the distribution of highly strained bonds appears to be random, while in the POSS filled system, the strained bonds form a netlike distribution that spans the network. Such a distribution may form a structural network "holding" the composite together and resulting in increases in G compared to an unfilled, cross-linked system. These results are of importance for engineering of new POSS-based multifunctional materials with tailor-made mechanical properties. PMID:19045061

  19. Elucidation of protein-protein interactions using chemical cross-linking or label transfer techniques.

    PubMed

    Fancy, D A

    2000-02-01

    Understanding the architectures of multiprotein complexes is a central problem in biology. Of the many chemical methods available, label transfer and cross-linking are becoming more popular. Recently, label transfer has been applied to very large protein complexes with great success, and new oxidative methods for protein cross-linking have been developed that are fast and highly efficient. Advances in these techniques should increase the understanding of biological structures and mechanisms.

  20. The EGF receptor is an actin-binding protein

    PubMed Central

    1992-01-01

    In a number of recent studies it has been shown that in vivo part of the EGF receptor (EGFR) population is associated to the actin filament system. In this paper we demonstrate that the purified EGFR can be cosedimented with purified filamentous actin (F-actin) indicating a direct association between EGFR and actin. A truncated EGFR, previously shown not to be associated to the cytoskeleton, was used as a control and this receptor did not cosediment with actin filaments. Determination of the actin-binding domain of the EGFR was done by measuring competition of either a polyclonal antibody or synthetic peptides on EGFR cosedimentation with F-actin. A synthetic peptide was made homologous to amino acid residues 984-996 (HL-33) of the EGFR which shows high homology with the actin-binding domain of Acanthamoeba profilin. A polyclonal antibody raised against HL-33 was found to prevent cosedimentation of EGFR with F-actin. This peptide HL-33 was shown to bind directly to actin in contrast with a synthetic peptide homologous to residues 1001-1013 (HL-34). During cosedimentation, HL-33 competed for actin binding of the EGFR and HL-34 did not, indicating that the EGFR contains one actin-binding site. These results demonstrate that the EGFR is an actin-binding protein which binds to actin via a domain containing amino acids residues 984-996. PMID:1383230

  1. Crystal structure of a nuclear actin ternary complex.

    PubMed

    Cao, Tingting; Sun, Lingfei; Jiang, Yuxiang; Huang, Shanjin; Wang, Jiawei; Chen, Zhucheng

    2016-08-01

    Actin polymerizes and forms filamentous structures (F-actin) in the cytoplasm of eukaryotic cells. It also exists in the nucleus and regulates various nucleic acid transactions, particularly through its incorporation into multiple chromatin-remodeling complexes. However, the specific structure of actin and the mechanisms that regulate its polymeric nature inside the nucleus remain unknown. Here, we report the crystal structure of nuclear actin (N-actin) complexed with actin-related protein 4 (Arp4) and the helicase-SANT-associated (HSA) domain of the chromatin remodeler Swr1. The inner face and barbed end of N-actin are sequestered by interactions with Arp4 and the HSA domain, respectively, which prevents N-actin from polymerization and binding to many actin regulators. The two major domains of N-actin are more twisted than those of globular actin (G-actin), and its nucleotide-binding pocket is occluded, freeing N-actin from binding to and regulation by ATP. These findings revealed the salient structural features of N-actin that distinguish it from its cytoplasmic counterpart and provide a rational basis for its functions and regulation inside the nucleus. PMID:27457955

  2. Triple shape memory effects of cross-linked polyethylene/polypropylene blends with cocontinuous architecture.

    PubMed

    Zhao, Jun; Chen, Min; Wang, Xiaoyan; Zhao, Xiaodong; Wang, Zhenwen; Dang, Zhi-Min; Ma, Lan; Hu, Guo-Hua; Chen, Fenghua

    2013-06-26

    In this paper, the triple shape memory effects (SMEs) observed in chemically cross-linked polyethylene (PE)/polypropylene (PP) blends with cocontinuous architecture are systematically investigated. The cocontinuous window of typical immiscible PE/PP blends is the volume fraction of PE (v(PE)) of ca. 30-70 vol %. This architecture can be stabilized by chemical cross-linking. Different initiators, 2,5-dimethyl-2,5-di(tert-butylperoxy)-hexane (DHBP), dicumylperoxide (DCP) coupled with divinylbenzene (DVB) (DCP-DVB), and their mixture (DHBP/DCP-DVB), are used for the cross-linking. According to the differential scanning calorimetry (DSC) measurements and gel fraction calculations, DHBP produces the best cross-linking and DCP-DVB the worst, and the mixture, DHBP/DCP-DVB, is in between. The chemical cross-linking causes lower melting temperature (Tm) and smaller melting enthalpy (ΔHm). The prepared triple shape memory polymers (SMPs) by cocontinuous immiscible PE/PP blends with v(PE) of 50 vol % show pronounced triple SMEs in the dynamic mechanical thermal analysis (DMTA) and visual observation. This new strategy of chemically cross-linked immiscible blends with cocontinuous architecture can be used to design and prepare new SMPs with triple SMEs.

  3. Food-contact epoxy resin: co-variation between migration and degree of cross-linking.

    PubMed

    Lambert, C; Larroque, M; Lebrun, J C; Gérard, J F

    1997-01-01

    In order to predict the behaviour towards foodstuffs of an epoxy resin composed of bisphenol A diglycidyl ether (BADGE), 4,4'-methylenedianiline (MDA) and additives (plasticizers: dibutylphthalate (DBP), dioctylphthalate (DOP); accelerator: salicylic acid; inorganic fillers), a co-variation was established between the parameters evaluating the degree of cross-linking of the three-dimensional network and the migration of constituent molecules into various food simulants (distilled water, distilled water/ethanol/acetic acid, distilled water/ethanol). Varied degrees of cross-linking were obtained by subjecting the resin to different curing temperatures: respectively, 5 degrees C, 20 degrees C, 50 degrees C and 90 degrees C for 7 days. Irrespective of the food stimulant tested, specific migrations (DBP, DOP, salicylic acid, primary aromatic amines) diminished greatly as the curing temperature increased. At the same time, the degree of cross-linking increased with curing temperature, as indicated by the increase in glass transition temperature, the decrease in residual reaction exotherms and increased stability of the rubber storage modulus E'rub (increase in cross-link nodes), the fall in relaxation enthalpies (reduction in physical ageing) and the decreased amplitude of the loss-factor, tan delta (reduction in chain mobility). Maximum cross-linking was obtained in the resin cured at 90 degrees C (temperature above Tg infinity). In contrast to the degree of cross-linking, evaporation contributed little to the reduction of migration due to the elevation of curing temperature.

  4. Synchrotron Small-Angle X-ray Scattering Study of Cross-Linked Polymeric Micelles.

    PubMed

    Kim, Hyun-Chul; Jin, Kyeong Sik; Lee, Se Guen; Kim, Eunjoo; Lee, Sung Jun; Jeong, Sang Won; Lee, Seung Woo; Kim, Kwang-Woo

    2016-06-01

    Polymeric micelles of methoxypoly(ethylene glycol)-b-poly(lactide) containing lysine units (mPEG-PLA-Lys4) were cross-linked by reacting of lysine moieties with a bifunctional bis(N-hydroxy-succinimide ester). The micelles were characterized in aqueous solution using dynamic light scattering, transmission electron microscopy, and synchrotron small-angle X-ray scattering. The mPEG-PLA-Lys4 was synthesized through the ring-opening polymerization of N6-carbobenzyloxy-L-lysine N-carboxyanhydride with amine-terminated mPEG-PLA and subsequent deprotection. The polymeric micelles showed enhanced micelle stability after cross-linking, which was confirmed by adding sodium dodecyl sulfate as a destabilizing agent. The average diameters measured via dynamic light scattering were 19.1 nm and 29.2 nm for non-cross-linked polymeric micelles (NCPMs) and cross-linked polymeric micelles (CPMs), respectively. The transmission electron microscopy images showed that the size of the polymeric micelles increased slightly due to cross-linking, which was in good agreement with the DLS measurements. The overall structures and internal structural changes of NCPMs and CPMs in aqueous solution were studied in detail using synchrotron X-ray scattering method. According to the structural parameters of X-ray scattering analysis, CPMs with a more densely packed core structure were formed by reacting bifunctional cross-linking agents with lysine amino groups located in the innermost core of the polymeric micelles. PMID:27427731

  5. Curcumin cross-linked collagen aerogels with controlled anti-proteolytic and pro-angiogenic efficacy.

    PubMed

    Dharunya, G; Duraipandy, N; Lakra, Rachita; Korapatti, Purna Sai; Jayavel, R; Kiran, Manikantan Syamala

    2016-01-01

    This paper elucidates the development of a curcumin cross-linked collagen aerogel system with controlled anti-proteolytic activity and pro-angiogenic efficacy. The results of this study showed that in situ cross-linking of curcumin with collagen leads to the development of aerogels with enhanced physical and mechanical properties. The integrity of collagen after cross-linking with curcumin was studied via FTIR spectroscopy. The results confirmed that the cross-linking with curcumin did not induce any structural changes in the collagen. The curcumin cross-linked collagen aerogels exhibited potent anti-proteolytic and anti-microbial activity. Scanning electron and atomic force microscopic analysis of curcumin cross-linked collagen aerogels showed a 3D microstructure that enhanced the adhesion and proliferation of cells. The highly organized geometry of collagen-curcumin aerogels enhanced the permeability and water-retaining ability required for the diffusion of nutrients that aid cellular growth. The pro-angiogenic properties of collagen-curcumin aerogels were ascribed to the cumulative effect of the nutraceutical and the collagen molecule, which augmented the restoration of damaged tissue. Further, these aerogels exhibited controlled anti-proteolytic activity, which makes them suitable 3D scaffolds for biomedical applications. This study provides scope for the development of biocompatible and bioresorbable collagen aerogel systems that use a nutraceutical as a cross-linker for biomedical applications. PMID:27509047

  6. Dual-Cross-Linked Methacrylated Alginate Sub-Microspheres for Intracellular Chemotherapeutic Delivery.

    PubMed

    Fenn, Spencer L; Miao, Tianxin; Scherrer, Ryan M; Oldinski, Rachael A

    2016-07-20

    Intracellular delivery vehicles comprised of methacrylated alginate (Alg-MA) were developed for the internalization and release of doxorubicin hydrochloride (DOX). Alg-MA was synthesized via an anhydrous reaction, and a mixture of Alg-MA and DOX was formed into sub-microspheres using a water/oil emulsion. Covalently cross-linked sub-microspheres were formed via exposure to green light, in order to investigate effects of cross-linking on drug release and cell internalization, compared to traditional techniques, such as ultraviolet (UV) light irradiation. Cross-linking was performed using light exposure alone or in combination with ionic cross-linking using calcium chloride (CaCl2). Alg-MA sub-microsphere diameters were between 88 and 617 nm, and ζ-potentials were between -20 and -37 mV. Using human lung epithelial carcinoma cells (A549) as a model, cellular internalization was confirmed using flow cytometry; different sub-microsphere formulations varied the efficiency of internalization, with UV-cross-linked sub-microspheres achieving the highest internalization percentages. While blank (nonloaded) Alg-MA submicrospheres were noncytotoxic to A549 cells, DOX-loaded sub-microspheres significantly reduced mitochondrial activity after 5 days of culture. Photo-cross-linked Alg-MA sub-microspheres may be a potential chemotherapeutic delivery system for cancer treatment.

  7. Cross-linked chitosan improves the mechanical properties of calcium phosphate-chitosan cement

    PubMed Central

    Aryaei, Ashkan; Liu, Jason; Jayatissa, Ahalapitiya. H.; Jayasuriya, A. Champa

    2015-01-01

    Calcium phosphate (CaP) cements are highly applicable and valuable materials for filling bone defects by minimally invasive procedures. Chitosan (CS) biopolymer is also considered as one of the promising biomaterial candidates in bone tissue engineering. In the present study, some key features of CaP-CS were significantly improved by developing a novel CaP-CS composite. For this purpose, CS was the first cross-linked with tripolyphosphate (TPP) and then mixed with CaP matrix. A group of CaP-CS samples without cross-linking was also prepared. Samples were fabricated and tested based on the known standards. Additionally, the effect of different powder (P) to liquid (L) ratios was also investigated. Both cross-linked and uncross-linked CaP-CS samples showed excellent washout resistance. The most significant effects were observed on Young's modulus and compressive strength in wet condition as well as surface hardness. In dry conditions, the Young's modulus of cross-linked samples were slightly improved. Based on the presented results, cross-linking does not have significant effect on porosity. As expected, by increasing the P/L ratio of sample, ductility and injectabilty were decreased. However, in the most cases, mechanical properties were enhanced. The results have shown that cross-linking can be improved the mechanical properties of CaP-CS and hence it can be used for bone tissue engineering applications. PMID:26046262

  8. Directing the oligomer size distribution of peroxidase-mediated cross-linked bovine alpha-lactalbumin.

    PubMed

    Heijnis, Walter H; Wierenga, Peter A; van Berkel, Willem J H; Gruppen, Harry

    2010-05-12

    Enzymatic protein cross-linking is a powerful tool to change protein functionality. For optimal functionality in gel formation, the size of the cross-linked proteins needs to be controlled, prior to heating. In the current study, we addressed the optimization of the horseradish peroxidase-mediated cross-linking of calcium-depleted bovine alpha-lactalbumin. To characterize the formed products, the molecular weight distribution of the cross-linked protein was determined by size exclusion chromatography. At low ionic strength, more dimers of alpha-lactalbumin are formed than at high ionic strength, while the same conversion of monomers is observed. Similarly, at pH 5.9 more higher oligomers are formed than at pH 6.8. This is proposed to be caused by local changes in apo alpha-lactalbumin conformation as indicated by circular dichroism spectroscopy. A gradual supply of hydrogen peroxide improves the yield of cross-linked products and increases the proportion of higher oligomers. In conclusion, this study shows that the size distribution of peroxidase-mediated cross-linked alpha-lactalbumin can be directed toward the protein oligomers desired.

  9. xComb: a cross-linked peptide database approach to protein-protein interaction analysis

    PubMed Central

    Panchaud, Alexandre; Singh, Pragya; Shaffer, Scott A.; Goodlett, David R.

    2010-01-01

    We developed an informatic method to identify tandem mass spectra composed of chemically cross-linked peptides from those of linear peptides and to assign sequence to each of the two unique peptide sequences. For a given set of proteins the key software tool, xComb, combs through all theoretically feasible cross-linked peptides to create a database consisting of a subset of all combinations represented as peptide FASTA files. The xComb library of select theoretical cross-linked peptides may then be used as a database that is examined by a standard proteomic search engine to match tandem mass spectral datasets to identify cross-linked peptides. The database search may be conducted against as many as 50 proteins with a number of common proteomic search engines, e.g. Phenyx, Sequest, OMSSA, Mascot and X!Tandem. By searching against a peptide library of linearized, cross-linked peptides, rather than a linearized protein library, search times are decreased and the process is decoupled from any specific search engine. A further benefit of decoupling from the search engine is that protein cross-linking studies may be conducted with readily available informatics tools for which scoring routines already exist within the proteomic community. PMID:20302351

  10. Facile fabrication of core cross-linked micelles by RAFT polymerization and enzyme-mediated reaction.

    PubMed

    Wu, Yukun; Lai, Quanyong; Lai, Shuqi; Wu, Jing; Wang, Wei; Yuan, Zhi

    2014-06-01

    Polymeric micelles formed in aqueous solution by assembly of amphiphilic block copolymers have been extensively investigated due to their great potential as drug carriers. However, the stability of polymeric assembly is still one of the major challenges in delivering drugs to tissues and cells. Here, we report a facile route to fabricate core cross-linked (CCL) micelles using an enzymatic polymerization as the cross-linking method. We present synthesis of poly(ethylene glycol)-block-poly(N-isopropyl acrylamide-co-N-(4-hydroxyphenethyl) acrylamide) diblock copolymer PEG-b-P(NIPAAm-co-NHPAAm) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The diblock copolymer was then self-assembled into non-cross-linked (NCL) micelles upon heating above the lower critical solution temperature (LCST), and subsequently cross-linked using horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) as enzyme and oxidant. The characterization of the diblock copolymer and micelles were studied by NMR, DLS, UV-vis, and fluorescence spectroscopy. The fluorescence study reveals that the cross-linking process endows the micelles with much lower critical micelle concentration (CMC). In addition, the drug release study shows that the CCL micelles have lower release amount of doxorubicin (DOX) than the NCL micelles due to the enhanced stability of the CCL micelles by core cross-linking process. PMID:24768266

  11. Collagen Cross-Linking Using Riboflavin and Ultraviolet-A for Corneal Thinning Disorders

    PubMed Central

    Pron, G; Ieraci, L; Kaulback, K

    2011-01-01

    Executive Summary Objective The main objectives for this evidence-based analysis were to determine the safety and effectiveness of photochemical corneal collagen cross-linking with riboflavin (vitamin B2) and ultraviolet-A radiation, referred to as CXL, for the management of corneal thinning disease conditions. The comparative safety and effectiveness of corneal cross-linking with other minimally invasive treatments such as intrastromal corneal rings was also reviewed. The Medical Advisory Secretariat (MAS) evidence-based analysis was performed to support public financing decisions. Subject of the Evidence-Based Analysis The primary treatment objective for corneal cross-linking is to increase the strength of the corneal stroma, thereby stabilizing the underlying disease process. At the present time, it is the only procedure that treats the underlying disease condition. The proposed advantages for corneal cross-linking are that the procedure is minimally invasive, safe and effective, and it can potentially delay or defer the need for a corneal transplant. In addition, corneal cross-linking does not adversely affect subsequent surgical approaches, if they are necessary, or interfere with corneal transplants. The evidence for these claims for corneal cross-linking in the management of corneal thinning disorders such as keratoconus will be the focus of this review. The specific research questions for the evidence review were as follows: Technical: How technically demanding is corneal cross-linking and what are the operative risks? Safety: What is known about the broader safety profile of corneal cross-linking? Effectiveness - Corneal Surface Topographic Affects: What are the corneal surface remodeling effects of corneal cross-linking? Do these changes interfere with subsequent interventions, particularly corneal transplant known as penetrating keratoplasty (PKP)? Effectiveness -Visual Acuity: What impacts does the remodeling have on visual acuity? Are these impacts

  12. Cross-linking of IgG receptors inhibits membrane immunoglobulin-stimulated calcium influx in B lymphocytes.

    PubMed

    Choquet, D; Partiseti, M; Amigorena, S; Bonnerot, C; Fridman, W H; Korn, H

    1993-04-01

    By cross-linking membrane immunoglobulins (mIg), the antigenic stimulation of B lymphocytes induces an increase in intracellular free calcium levels ([Ca2+]i) because of a combination of release from intracellular stores and transmembrane influx. It has been suggested that both events are linked, as in a number of other cases of receptor-induced increase in [Ca2+]i. Conversely, in B lymphocytes, type II receptors for the Fc fragment of IgG (Fc gamma RII) inhibit mIg-mediated signaling. Thus, we have investigated at the level of single cells if these receptors could act on specific phases of mIg Ca2+ signaling. Lipopolysaccharide-activated murine B splenocytes and B lymphoma cells transfected with intact or truncated Fc gamma RII-cDNA were used to determine the domains of Fc gamma RII implicated in the inhibition of the Ca2+ signal. [Ca2+]i was measured in single fura-2-loaded cells by microfluorometry. The phases of release from intracellular stores and of transmembrane influx were discriminated by using manganese, which quenches fura-2, in the external medium as a tracer for bivalent cation entry. The role of membrane potential was studied by recording [Ca2+]i in cells voltage-clamped using the perforated patch-clamp method. Cross-linking of mIgM or mIgG with F(ab')2 fragments of anti-Ig antibodies induced a sustained rise in [Ca2+]i due to an extremely fast and transitory release of Ca2+ from intracellular stores and a long lasting transmembrane Ca2+ influx. The phase of influx, but not that of release, was inhibited by membrane depolarization. The increase in [Ca2+]i occurred after a delay inversely related to the dose of ligand. Co-cross-linking mIgs and Fc gamma RII with intact anti-Ig antibodies only triggered transitory release of Ca2+ from intracellular stores but no Ca2+ influx, even when the cell was voltage-clamped at negative membrane potentials. These transitory Ca2+ rises had similar amplitudes and delays to those induced by cross-linking mIgs alone

  13. Actin-organising properties of the muscular dystrophy protein myotilin.

    PubMed

    von Nandelstadh, Pernilla; Grönholm, Mikaela; Moza, Monica; Lamberg, Arja; Savilahti, Harri; Carpén, Olli

    2005-10-15

    Myotilin is a sarcomeric Z-disc protein that binds F-actin directly and bundles actin filaments, although it does not contain a conventional actin-binding domain. Expression of mutant myotilin leads to sarcomeric alterations in the dominantly inherited limb-girdle muscular dystrophy 1A and in myofibrillar myopathy/desmin-related myopathy. Together, with previous in vitro studies, this indicates that myotilin has an important function in the assembly and maintenance of Z-discs. This study characterises further the interaction between myotilin and actin. Functionally important regions in myotilin were identified by actin pull-down and yeast two-hybrid assays and with a novel strategy that combines in vitro DNA transposition-based peptide insertion mutagenesis with phenotype analysis in yeast cells. The shortest fragment to bind actin was the second Ig domain together with a short C-terminal sequence. Concerted action of the first and second Ig domain was, however, necessary for the functional activity of myotilin, as verified by analysis of transposon mutants, actin binding and phenotypic effect in mammalian cells. Furthermore, the Ig domains flanked with N- and C-terminal regions were needed for actin-bundling, indicating that the mere actin-binding sequence was insufficient for the actin-regulating activity. None of the four known disease-associated mutations altered the actin-organising ability. These results, together with previous studies in titin and kettin, identify the Ig domain as an actin-binding unit.

  14. Fan1 deficiency results in DNA interstrand cross-link repair defects, enhanced tissue karyomegaly, and organ dysfunction

    PubMed Central

    Thongthip, Supawat; Bellani, Marina; Gregg, Siobhan Q.; Sridhar, Sunandini; Conti, Brooke A.; Chen, Yanglu; Seidman, Michael M.; Smogorzewska, Agata

    2016-01-01

    Deficiency of FANCD2/FANCI-associated nuclease 1 (FAN1) in humans leads to karyomegalic interstitial nephritis (KIN), a rare hereditary kidney disease characterized by chronic renal fibrosis, tubular degeneration, and characteristic polyploid nuclei in multiple tissues. The mechanism of how FAN1 protects cells is largely unknown but is thought to involve FAN1's function in DNA interstrand cross-link (ICL) repair. Here, we describe a Fan1-deficient mouse and show that FAN1 is required for cellular and organismal resistance to ICLs. We show that the ubiquitin-binding zinc finger (UBZ) domain of FAN1, which is needed for interaction with FANCD2, is not required for the initial rapid recruitment of FAN1 to ICLs or for its role in DNA ICL resistance. Epistasis analyses reveal that FAN1 has cross-link repair activities that are independent of the Fanconi anemia proteins and that this activity is redundant with the 5′–3′ exonuclease SNM1A. Karyomegaly becomes prominent in kidneys and livers of Fan1-deficient mice with age, and mice develop liver dysfunction. Treatment of Fan1-deficient mice with ICL-inducing agents results in pronounced thymic and bone marrow hypocellularity and the disappearance of c-kit+ cells. Our results provide insight into the mechanism of FAN1 in ICL repair and demonstrate that the Fan1 mouse model effectively recapitulates the pathological features of human FAN1 deficiency. PMID:26980189

  15. The RecQ helicase RECQL5 participates in psoralen-induced interstrand cross-link repair.

    PubMed

    Ramamoorthy, Mahesh; May, Alfred; Tadokoro, Takashi; Popuri, Venkateswarlu; Seidman, Michael M; Croteau, Deborah L; Bohr, Vilhelm A

    2013-10-01

    Interstrand cross-links (ICLs) are very severe lesions as they are absolute blocks of replication and transcription. This property of interstrand cross-linking agents has been exploited clinically for the treatment of cancers and other diseases. ICLs are repaired in human cells by specialized DNA repair pathways including components of the nucleotide excision repair pathway, double-strand break repair pathway and the Fanconi anemia pathway. In this report, we identify the role of RECQL5, a member of the RecQ family of helicases, in the repair of ICLs. Using laser-directed confocal microscopy, we demonstrate that RECQL5 is recruited to ICLs formed by trioxalen (a psoralen-derived compound) and ultraviolet irradiation A. Using single-cell gel electrophoresis and proliferation assays, we identify the role of RECQL5 in the repair of ICL lesions. The domain of RECQL5 that recruits to the site of ICL was mapped to the KIX region between amino acids 500 and 650. Inhibition of transcription and of topoisomerases did not affect recruitment, which was inhibited by DNA-intercalating agents, suggesting that the DNA structure itself may be responsible for the recruitment of RECQL5 to the sites of ICLs.

  16. Fan1 deficiency results in DNA interstrand cross-link repair defects, enhanced tissue karyomegaly, and organ dysfunction.

    PubMed

    Thongthip, Supawat; Bellani, Marina; Gregg, Siobhan Q; Sridhar, Sunandini; Conti, Brooke A; Chen, Yanglu; Seidman, Michael M; Smogorzewska, Agata

    2016-03-15

    Deficiency of FANCD2/FANCI-associated nuclease 1 (FAN1) in humans leads to karyomegalic interstitial nephritis (KIN), a rare hereditary kidney disease characterized by chronic renal fibrosis, tubular degeneration, and characteristic polyploid nuclei in multiple tissues. The mechanism of how FAN1 protects cells is largely unknown but is thought to involve FAN1's function in DNA interstrand cross-link (ICL) repair. Here, we describe a Fan1-deficient mouse and show that FAN1 is required for cellular and organismal resistance to ICLs. We show that the ubiquitin-binding zinc finger (UBZ) domain of FAN1, which is needed for interaction with FANCD2, is not required for the initial rapid recruitment of FAN1 to ICLs or for its role in DNA ICL resistance. Epistasis analyses reveal that FAN1 has cross-link repair activities that are independent of the Fanconi anemia proteins and that this activity is redundant with the 5'-3' exonuclease SNM1A. Karyomegaly becomes prominent in kidneys and livers of Fan1-deficient mice with age, and mice develop liver dysfunction. Treatment of Fan1-deficient mice with ICL-inducing agents results in pronounced thymic and bone marrow hypocellularity and the disappearance of c-kit(+) cells. Our results provide insight into the mechanism of FAN1 in ICL repair and demonstrate that the Fan1 mouse model effectively recapitulates the pathological features of human FAN1 deficiency.

  17. Fan1 deficiency results in DNA interstrand cross-link repair defects, enhanced tissue karyomegaly, and organ dysfunction.

    PubMed

    Thongthip, Supawat; Bellani, Marina; Gregg, Siobhan Q; Sridhar, Sunandini; Conti, Brooke A; Chen, Yanglu; Seidman, Michael M; Smogorzewska, Agata

    2016-03-15

    Deficiency of FANCD2/FANCI-associated nuclease 1 (FAN1) in humans leads to karyomegalic interstitial nephritis (KIN), a rare hereditary kidney disease characterized by chronic renal fibrosis, tubular degeneration, and characteristic polyploid nuclei in multiple tissues. The mechanism of how FAN1 protects cells is largely unknown but is thought to involve FAN1's function in DNA interstrand cross-link (ICL) repair. Here, we describe a Fan1-deficient mouse and show that FAN1 is required for cellular and organismal resistance to ICLs. We show that the ubiquitin-binding zinc finger (UBZ) domain of FAN1, which is needed for interaction with FANCD2, is not required for the initial rapid recruitment of FAN1 to ICLs or for its role in DNA ICL resistance. Epistasis analyses reveal that FAN1 has cross-link repair activities that are independent of the Fanconi anemia proteins and that this activity is redundant with the 5'-3' exonuclease SNM1A. Karyomegaly becomes prominent in kidneys and livers of Fan1-deficient mice with age, and mice develop liver dysfunction. Treatment of Fan1-deficient mice with ICL-inducing agents results in pronounced thymic and bone marrow hypocellularity and the disappearance of c-kit(+) cells. Our results provide insight into the mechanism of FAN1 in ICL repair and demonstrate that the Fan1 mouse model effectively recapitulates the pathological features of human FAN1 deficiency. PMID:26980189

  18. Intra-molecular cross-linking of acidic residues for protein structure studies.

    PubMed

    Novak, Petr; Kruppa, Gary H

    2008-01-01

    Intra-molecular cross-linking has been suggested as a method of obtaining distance constraints that would help to develop structural models of proteins. Recent work published on intra-molecular cross-linking for protein structural studies has employed commercially available primary amine (lysine, the amino terminus) selective reagents. Previous work using these cross-linkers has shown that for several proteins of known structure, the number of cross-links that can be obtained experimentally may be small compared to what would be expected from the known structure, due to the relative reactivity, distribution and solvent accessibility of the lysines in the protein sequence. To overcome these limitations, we have investigated the use of cross-linking reagents that can react with other reactive side chains in proteins. We used 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) to activate the carboxylic acid containing residues, aspartic acid (D), glutamic acid (E) and the carboxy terminus (O), for cross-linking reactions. Once activated, the DEO side chains can react to form "zero-length" cross-links with nearby primary amine containing residues, lysines (K) and the amino terminus (X), via the formation of a new amide bond. We also show that the EDC-activated DEO side chains can be cross-linked to each other using dihydrazides, two hydrazide moieties connected by an alkyl cross-linker arm of variable length. Using these reagents, we have found three new "zero-length" cross-links in ubiquitin consistent with its known structure (M1-E16, M1-E18 and K63-E64). Using the dihydrazide cross-linkers, we have identified two new cross-links (D21-D32 and E24-D32) unambiguously. Using a library of dihydrazide cross-linkers with varying arm length, we have shown that there is a minimum arm length required for the DEO-DEO cross-links of 5.8 A. These results show that additional structural information can be obtained by exploiting new cross-linker chemistry

  19. Actin filament bundling by fimbrin is important for endocytosis, cytokinesis, and polarization in fission yeast.

    PubMed

    Skau, Colleen T; Courson, David S; Bestul, Andrew J; Winkelman, Jonathan D; Rock, Ronald S; Sirotkin, Vladimir; Kovar, David R

    2011-07-29

    Through the coordinated action of diverse actin-binding proteins, cells simultaneously assemble actin filaments with distinct architectures and dynamics to drive different processes. Actin filament cross-linking proteins organize filaments into higher order networks, although the requirement of cross-linking activity in cells has largely been assumed rather than directly tested. Fission yeast Schizosaccharomyces pombe assembles actin into three discrete structures: endocytic actin patches, polarizing actin cables, and the cytokinetic contractile ring. The fission yeast filament cross-linker fimbrin Fim1 primarily localizes to Arp2/3 complex-nucleated branched filaments of the actin patch and by a lesser amount to bundles of linear antiparallel filaments in the contractile ring. It is unclear whether Fim1 associates with bundles of parallel filaments in actin cables. We previously discovered that a principal role of Fim1 is to control localization of tropomyosin Cdc8, thereby facilitating cofilin-mediated filament turnover. Therefore, we hypothesized that the bundling ability of Fim1 is dispensable for actin patches but is important for the contractile ring and possibly actin cables. By directly visualizing actin filament assembly using total internal reflection fluorescence microscopy, we determined that Fim1 bundles filaments in both parallel and antiparallel orientations and efficiently bundles Arp2/3 complex-branched filaments in the absence but not the presence of actin capping protein. Examination of cells exclusively expressing a truncated version of Fim1 that can bind but not bundle actin filaments revealed that bundling activity of Fim1 is in fact important for all three actin structures. Therefore, fimbrin Fim1 has diverse roles as both a filament "gatekeeper" and as a filament cross-linker.

  20. Structure of a Bud6/actin complex reveals a novel WH2-like actin monomer recruitment motif

    PubMed Central

    Park, Eunyoung; Graziano, Brian R.; Zheng, Wei; Garabedian, Mikael; Goode, Bruce L.; Eck, Michael J.

    2015-01-01

    SUMMARY In budding yeast, the actin-binding protein Bud6 cooperates with formins Bni1 and Bnr1 to catalyze the assembly of actin filaments. The nucleation-enhancing activity of Bud6 requires both a “core” domain that binds to the formin and a “flank” domain that binds monomeric actin. Here we describe the structure of the Bud6 flank domain in complex with actin. Two helices in Bud6flank interact with actin; one binds in a groove at the barbed-end of the actin monomer in a manner closely resembling the helix of WH2 domains, a motif found in many actin nucleation factors. The second helix rises along the face of actin. Mutational analysis verifies the importance of these Bud6-actin contacts for nucleation-enhancing activity. The Bud6 binding site on actin overlaps with that of the formin FH2 domain and is also incompatible with inter-subunit contacts in F-actin, suggesting that Bud6 interacts only transiently with actin monomers during filament nucleation. PMID:26118535

  1. Structure of a Bud6/Actin Complex Reveals a Novel WH2-like Actin Monomer Recruitment Motif.

    PubMed

    Park, Eunyoung; Graziano, Brian R; Zheng, Wei; Garabedian, Mikael; Goode, Bruce L; Eck, Michael J

    2015-08-01

    In budding yeast, the actin-binding protein Bud6 cooperates with formins Bni1 and Bnr1 to catalyze the assembly of actin filaments. The nucleation-enhancing activity of Bud6 requires both a "core" domain that binds to the formin and a "flank" domain that binds monomeric actin. Here, we describe the structure of the Bud6 flank domain in complex with actin. Two helices in Bud6(flank) interact with actin; one binds in a groove at the barbed end of the actin monomer in a manner closely resembling the helix of WH2 domains, a motif found in many actin nucleation factors. The second helix rises along the face of actin. Mutational analysis verifies the importance of these Bud6-actin contacts for nucleation-enhancing activity. The Bud6 binding site on actin overlaps with that of the formin FH2 domain and is also incompatible with inter-subunit contacts in F-actin, suggesting that Bud6 interacts only transiently with actin monomers during filament nucleation.

  2. How actin binds and assembles onto plasma membranes from Dictyostelium discoideum

    PubMed Central

    1988-01-01

    We have shown previously (Schwartz, M. A., and E. J. Luna. 1986. J. Cell Biol. 102: 2067-2075) that actin binds with positive cooperativity to plasma membranes from Dictyostelium discoideum. Actin is polymerized at the membrane surface even at concentrations well below the critical concentration for polymerization in solution. Low salt buffer that blocks actin polymerization in solution also prevents actin binding to membranes. To further explore the relationship between actin polymerization and binding to membranes, we prepared four chemically modified actins that appear to be incapable of polymerizing in solution. Three of these derivatives also lost their ability to bind to membranes. The fourth derivative (EF actin), in which histidine-40 is labeled with ethoxyformic anhydride, binds to membranes with reduced affinity. Binding curves exhibit positive cooperativity, and cross- linking experiments show that membrane-bound actin is multimeric. Thus, binding and polymerization are tightly coupled, and the ability of these membranes to polymerize actin is dramatically demonstrated. EF actin coassembles weakly with untreated actin in solution, but coassembles well on membranes. Binding by untreated actin and EF actin are mutually competitive, indicating that they bind to the same membrane sites. Hill plots indicate that an actin trimer is the minimum assembly state required for tight binding to membranes. The best explanation for our data is a model in which actin oligomers assemble by binding to clustered membrane sites with successive monomers on one side of the actin filament bound to the membrane. Individual binding affinities are expected to be low, but the overall actin-membrane avidity is high, due to multivalency. Our results imply that extracellular factors that cluster membrane proteins may create sites for the formation of actin nuclei and thus trigger actin polymerization in the cell. PMID:3392099

  3. Immune Focusing and Enhanced Neutralization Induced by HIV-1 gp140 Chemical Cross-Linking

    PubMed Central

    Schiffner, T.; Kong, L.; Duncan, C. J. A.; Back, J. W.; Benschop, J. J.; Shen, X.; Huang, P. S.; Stewart-Jones, G. B.; DeStefano, J.; Seaman, M. S.; Tomaras, G. D.; Montefiori, D. C.; Schief, W. R.

    2013-01-01

    Experimental vaccine antigens based upon the HIV-1 envelope glycoproteins (Env) have failed to induce neutralizing antibodies (NAbs) against the majority of circulating viral strains as a result of antibody evasion mechanisms, including amino acid variability and conformational instability. A potential vaccine design strategy is to stabilize Env, thereby focusing antibody responses on constitutively exposed, conserved surfaces, such as the CD4 binding site (CD4bs). Here, we show that a largely trimeric form of soluble Env can be stably cross-linked with glutaraldehyde (GLA) without global modification of antigenicity. Cross-linking largely conserved binding of all potent broadly neutralizing antibodies (bNAbs) tested, including CD4bs-specific VRC01 and HJ16, but reduced binding of several non- or weakly neutralizing antibodies and soluble CD4 (sCD4). Adjuvanted administration of cross-linked or unmodified gp140 to rabbits generated indistinguishable total gp140-specific serum IgG binding titers. However, sera from animals receiving cross-linked gp140 showed significantly increased CD4bs-specific antibody binding compared to animals receiving unmodified gp140. Moreover, peptide mapping of sera from animals receiving cross-linked gp140 revealed increased binding to gp120 C1 and V1V2 regions. Finally, neutralization titers were significantly elevated in sera from animals receiving cross-linked gp140 rather than unmodified gp140. We conclude that cross-linking favors antigen stability, imparts antigenic modifications that selectively refocus antibody specificity and improves induction of NAbs, and might be a useful strategy for future vaccine design. PMID:23843636

  4. Click Cross-Linking-Improved Waterborne Polymers for Environment-Friendly Coatings and Adhesives.

    PubMed

    Hu, Jianqing; Peng, Kaimei; Guo, Jinshan; Shan, Dingying; Kim, Gloria B; Li, Qiyao; Gerhard, Ethan; Zhu, Liang; Tu, Weiping; Lv, Weizhong; Hickner, Michael A; Yang, Jian

    2016-07-13

    Waterborne polymers, including waterborne polyurethanes (WPU), polyester dispersions (PED), and polyacrylate emulsions (PAE), are employed as environmentally friendly water-based coatings and adhesives. An efficient, fast, stable, and safe cross-linking strategy is always desirable to impart waterborne polymers with improved mechanical properties and water/solvent/thermal and abrasion resistance. For the first time, click chemistry was introduced into waterborne polymer systems as a cross-linking strategy. Click cross-linking rendered waterborne polymer films with significantly improved tensile strength, hardness, adhesion strength, and water/solvent resistance compared to traditional waterborne polymer films. For example, click cross-linked WPU (WPU-click) has dramatically improved the mechanical strength (tensile strength increased from 0.43 to 6.47 MPa, and Young's modulus increased from 3 to 40 MPa), hardness (increased from 59 to 73.1 MPa), and water resistance (water absorption percentage dropped from 200% to less than 20%); click cross-linked PED (PED-click) film also possessed more than 3 times higher tensile strength (∼28 MPa) than that of normal PED (∼8 MPa). The adhesion strength of click cross-linked PAE (PAE-click) to polypropylene (PP) was also improved (from 3 to 5.5 MPa). In addition, extra click groups can be preserved after click cross-linking for further functionalization of the waterborne polymeric coatings/adhesives. In this work, we have demonstrated that click modification could serve as a convenient and powerful approach to significantly improve the performance of a variety of traditional coatings and adhesives. PMID:27326894

  5. The Effect of Substrate Stiffness, Thickness, and Cross-Linking Density on Osteogenic Cell Behavior

    PubMed Central

    Mullen, Conleth A.; Vaughan, Ted J.; Billiar, Kristen L.; McNamara, Laoise M.

    2015-01-01

    Osteogenic cells respond to mechanical changes in their environment by altering their spread area, morphology, and gene expression profile. In particular, the bulk modulus of the substrate, as well as its microstructure and thickness, can substantially alter the local stiffness experienced by the cell. Although bone tissue regeneration strategies involve culture of bone cells on various biomaterial scaffolds, which are often cross-linked to enhance their physical integrity, it is difficult to ascertain and compare the local stiffness experienced by cells cultured on different biomaterials. In this study, we seek to characterize the local stiffness at the cellular level for MC3T3-E1 cells plated on biomaterial substrates of varying modulus, thickness, and cross-linking concentration. Cells were cultured on flat and wedge-shaped gels made from polyacrylamide or cross-linked collagen. The cross-linking density of the collagen gels was varied to investigate the effect of fiber cross-linking in conjunction with substrate thickness. Cell spread area was used as a measure of osteogenic differentiation. Finite element simulations were used to examine the effects of fiber cross-linking and substrate thickness on the resistance of the gel to cellular forces, corresponding to the equivalent shear stiffness for the gel structure in the region directly surrounding the cell. The results of this study show that MC3T3 cells cultured on a soft fibrous substrate attain the same spread cell area as those cultured on a much higher modulus, but nonfibrous substrate. Finite element simulations predict that a dramatic increase in the equivalent shear stiffness of fibrous collagen gels occurs as cross-linking density is increased, with equivalent stiffness also increasing as gel thickness is decreased. These results provide an insight into the response of osteogenic cells to individual substrate parameters and have the potential to inform future bone tissue regeneration strategies that

  6. Mesoscopic simulations of hydrophilic cross-linked polycarbonate polyurethane networks: structure and morphology.

    PubMed

    Iype, E; Esteves, A C C; de With, G

    2016-06-14

    Polyurethane (PU) cross-linked networks are frequently used in biomedical and marine applications, e.g., as hydrophilic polymer coatings with antifouling or low-friction properties and have been reported to exhibit characteristic phase separation between soft and hard segments. Understanding this phase-separation behavior is critical to design novel hydrophilic polymer coatings. However, most of the studies on the structure and morphology of cross-linked coatings are experimental, which only assess the phase separation via indirect methods. Herein we present a mesoscopic simulation study of the network characteristics of model hydrophilic polymer networks, consisting of PU with and without methyl-polyethylene glycol (mPEG) dangling chains. The systems are analyzed using a number of tools, such as the radial distribution function, the cross-link point density distribution and the Voronoi volume distribution (of the cross-linking points). The combined results show that the cross-linked networks without dangling chains are rather homogeneous but contain a small amount of clustering of cross-linker molecules. A clear phase separation is observed when introducing the dangling chains. In spite of that, the amount of cross-linker molecules connected to dangling chains only, i.e., not connected to the main network, is relatively small, leading to about 3 wt% extractables. Thus, these cross-linked polymers consist of a phase-separated, yet highly connected network. This study provides valuable guidelines towards new self-healing hydrophilic coatings based on the molecular design of cross-linked networks in direct contact with water or aqueous fluids, e.g., as anti-fouling self-repairing coatings for marine applications. PMID:27174657

  7. Pharmacologic Alternatives to Riboflavin Photochemical Corneal Cross-Linking: A Comparison Study of Cell Toxicity Thresholds

    PubMed Central

    Kim, MiJung; Takaoka, Anna; Hoang, Quan V.; Trokel, Stephen L.; Paik, David C.

    2014-01-01

    Purpose. The efficacy of therapeutic cross-linking of the cornea using riboflavin photochemistry (commonly abbreviated as CXL) has caused its use to become widespread. Because there are known chemical agents that cross-link collagenous tissues, it may be possible to cross-link tissue pharmacologically. The present study was undertaken to compare the cell toxicity of such agents. Methods. Nine topical cross-linking agents (five nitroalcohols, glyceraldehyde [GLYC], genipin [GP], paraformaldehyde [FA], and glutaraldehyde [GLUT]) were tested with four different cell lines (immortalized human corneal epithelial cells, human skin fibroblasts, primary bovine corneal endothelial cells, and immortalized human retinal pigment epithelial cells [ARPE-19]). The cells were grown in planar culture and exposed to each agent in a range of concentrations (0.001 mM to 10 mM) for 24 hours followed by a 48-hour recovery phase. Toxicity thresholds were determined by using the trypan blue exclusion method. Results. A semiquantitative analysis using five categories of toxicity/fixation was carried out, based on plate attachment, uptake of trypan blue stain, and cellular fixation. The toxicity levels varied by a factor of 103 with the least toxic being mononitroalcohols and GLYC, intermediate toxicity for a nitrodiol and nitrotriol, and the most toxic being GLUT, FA, GP, and bronopol, a brominated nitrodiol. When comparing toxicity between different cell lines, the levels were generally in agreement. Conclusions. There are significant differences in cell toxicity among potential topical cross-linking compounds. The balance between cross-linking of tissue and cell toxicity should be borne in mind as compounds and strategies to improve mechanical tissue properties through therapeutic tissue cross-linking continue to develop. PMID:24722697

  8. Mesoscopic simulations of hydrophilic cross-linked polycarbonate polyurethane networks: structure and morphology.

    PubMed

    Iype, E; Esteves, A C C; de With, G

    2016-06-14

    Polyurethane (PU) cross-linked networks are frequently used in biomedical and marine applications, e.g., as hydrophilic polymer coatings with antifouling or low-friction properties and have been reported to exhibit characteristic phase separation between soft and hard segments. Understanding this phase-separation behavior is critical to design novel hydrophilic polymer coatings. However, most of the studies on the structure and morphology of cross-linked coatings are experimental, which only assess the phase separation via indirect methods. Herein we present a mesoscopic simulation study of the network characteristics of model hydrophilic polymer networks, consisting of PU with and without methyl-polyethylene glycol (mPEG) dangling chains. The systems are analyzed using a number of tools, such as the radial distribution function, the cross-link point density distribution and the Voronoi volume distribution (of the cross-linking points). The combined results show that the cross-linked networks without dangling chains are rather homogeneous but contain a small amount of clustering of cross-linker molecules. A clear phase separation is observed when introducing the dangling chains. In spite of that, the amount of cross-linker molecules connected to dangling chains only, i.e., not connected to the main network, is relatively small, leading to about 3 wt% extractables. Thus, these cross-linked polymers consist of a phase-separated, yet highly connected network. This study provides valuable guidelines towards new self-healing hydrophilic coatings based on the molecular design of cross-linked networks in direct contact with water or aqueous fluids, e.g., as anti-fouling self-repairing coatings for marine applications.

  9. Architecture of a Full-length Retroviral Integrase Monomer and Dimer, Revealed by Small Angle X-ray Scattering and Chemical Cross-linking

    SciTech Connect

    Bojja, Ravi S.; Andrake, Mark D.; Weigand, Steven; Merkel, George; Yarychkivska, Olya; Henderson, Adam; Kummerling, Marissa; Skalka, Anna Marie

    2012-02-07

    We determined the size and shape of full-length avian sarcoma virus (ASV) integrase (IN) monomers and dimers in solution using small angle x-ray scattering. The low resolution data obtained establish constraints for the relative arrangements of the three component domains in both forms. Domain organization within the small angle x-ray envelopes was determined by combining available atomic resolution data for individual domains with results from cross-linking coupled with mass spectrometry. The full-length dimer architecture so revealed is unequivocally different from that proposed from x-ray crystallographic analyses of two-domain fragments, in which interactions between the catalytic core domains play a prominent role. Core-core interactions are detected only in cross-linked IN tetramers and are required for concerted integration. The solution dimer is stabilized by C-terminal domain (CTD-CTD) interactions and by interactions of the N-terminal domain in one subunit with the core and CTD in the second subunit. These results suggest a pathway for formation of functional IN-DNA complexes that has not previously been considered and possible strategies for preventing such assembly.

  10. Vitamin E-diffused highly cross-linked UHMWPE particles induce less osteolysis compared to highly cross-linked virgin UHMWPE particles in vivo.

    PubMed

    Bichara, David A; Malchau, Erik; Sillesen, Nanna H; Cakmak, Selami; Nielsen, G Petur; Muratoglu, Orhun K

    2014-09-01

    Recent in vitro findings suggest that UHMWPE wear particles containing vitamin E (VE) may have reduced biologic activity and decreased osteolytic potential. We hypothesized that particles from VE-stabilized, radiation cross-linked UHMWPE would cause less osteolysis in a murine calvarial bone model when compared to virgin gamma irradiated cross-linked UHMWPE. Groups received equal amount of particulate debris overlaying the calvarium for 10 days. Calvarial bone was examined using high resolution micro-CT and histomorphometric analyses. There was a statistically significant difference between virgin (12.2%±8%) and VE-UHMWPE (3%±1.4%) groups in regards to bone resorption (P=0.005) and inflammatory fibrous tissue overlaying the calvaria (0.48 vs. 0.20, P<0.0001). These results suggest that VE-UHMWPE particles have reduced osteolytic potential in vivo when compared to virgin UHMWPE.

  11. [Cross-linking and neurodermitis: prolonged re-epithelisation with severe corneal vascularisation after cross-linking in a patient with neurodermitis and keratoconus].

    PubMed

    Görsch, I C; Steinberg, J; Richard, G; Katz, T; Linke, S

    2014-06-01

    This case report describes a patient with keratoconus and neurodermitis suffering from a significantly prolonged postoperative time interval to re-epithelisation after corneal cross-linking. The development of corneal calcifications and vascularisations additionally inhibited proper re-epithelisation. Therefore the patient received four subsequent subconjunctival injections of Bevacizumab and an additional keratectomy to remove the calcifications. This therapeutic scheme led to a significant reduction of corneal vascularisation and finally a full rehabilitation of the epithelium. PMID:24788604

  12. A single-headed fission yeast myosin V transports actin in a tropomyosin-dependent manner.

    PubMed

    Tang, Qing; Billington, Neil; Krementsova, Elena B; Bookwalter, Carol S; Lord, Matthew; Trybus, Kathleen M

    2016-07-18

    Myo51, a class V myosin in fission yeast, localizes to and assists in the assembly of the contractile ring, a conserved eukaryotic actomyosin structure that facilitates cytokinesis. Rng8 and Rng9 are binding partners that dictate the cellular localization and function of Myo51. Myo51 was expressed in insect cells in the presence or absence of Rng8/9. Surprisingly, electron microscopy of negatively stained images and hydrodynamic measurements showed that Myo51 is single headed, unlike most class V myosins. When Myo51-Rng8/9 was bound to actin-tropomyosin, two attachment sites were observed: the typical ATP-dependent motor domain attachment and a novel ATP-independent binding of the tail mediated by Rng8/9. A modified motility assay showed that this additional binding site anchors Myo51-Rng8/9 so that it can cross-link and slide actin-tropomyosin filaments relative to one another, functions that may explain the role of this motor in contractile ring assembly. PMID:27432898

  13. The effects of different crossing-linking conditions of genipin on type I collagen scaffolds: an in vitro evaluation.

    PubMed

    Zhang, Xiujie; Chen, Xueying; Yang, Ting; Zhang, Naili; Dong, Li; Ma, Shaoying; Liu, Xiaoming; Zhou, Mo; Li, Baoxing

    2014-12-01

    The purpose of this paper is to analyze the properties of fabricating rat tail type I collagen scaffolds cross-linked with genipin under different conditions. The porous genipin cross-linked scaffolds are obtained through a two step freeze-drying process. To find out the optimal cross-link condition, we used different genipin concentrations and various cross-linked temperatures to prepare the scaffolds in this study. The morphologies of the scaffolds were characterized by scanning electron microscope, and the mechanical properties of the scaffolds were evaluated under dynamic compression. Additionally, the cross-linking degree was assessed by ninhydrin assay. To investigate the swelling ratio and the in vitro degradation of the collagen scaffold, the tests were also carried out by immersion of the scaffolds in a PBS solution or digestion in a type I collagenase respectively. The morphologies of the non-cross-linked scaffolds presented a lattice-like structure while the cross-linked ones displayed a sheet-like framework. The morphology of the genipin cross-linked scaffolds could be significantly changed by either increasing genipin concentration or the temperature. The swelling ratio of each cross-linked scaffold was much lower than that of the control (non-cross-linked).The ninhydrin assay demonstrated that the higher temperature and genipin concentration could obviously increase the cross-linking efficiency. The in vitro degradation studies indicated that genipin cross-linking can effectively elevate the biostability of the scaffolds. The biocompatibility and cytotoxicity of the scaffolds was evaluated by culturing rat chondrocytes on the scaffold in vitro and by MTT. The results of MTT and the fact that the chondrocytes adhered well to the scaffolds demonstrated that genipin cross-linked scaffolds possessed an excellent biocompatibility and low cytotoxicity. Based on these results, 0.3 % genipin concentrations and 37 °C cross-linked temperatures are

  14. Effects of partial hydrolysis and subsequent cross-linking on wheat gluten physicochemical properties and structure.

    PubMed

    Wang, Kaiqiang; Luo, Shuizhong; Cai, Jing; Sun, Qiaoqiao; Zhao, Yanyan; Zhong, Xiyang; Jiang, Shaotong; Zheng, Zhi

    2016-04-15

    The rheological behavior and thermal properties of wheat gluten following partial hydrolysis using Alcalase and subsequent microbial transglutaminase (MTGase) cross-linking were investigated. The wheat gluten storage modulus (G') and thermal denaturation temperature (Tg) were significantly increased from 2.26 kPa and 54.43°C to 7.76 kPa and 57.69°C, respectively, by the combined action of partial hydrolysis (DH 0.187%) and cross-linking. The free SH content, surface hydrophobicity, and secondary structure analysis suggested that an appropriate degree of Alcalase-based hydrolysis allowed the compact wheat gluten structure to unfold, increasing the β-sheet content and surface hydrophobicity. This improved its molecular flexibility and exposed additional glutamine sites for MTGase cross-linking. SEM images showed that a compact 3D network formed, while SDS-PAGE profiles revealed that excessive hydrolysis resulted in high-molecular-weight subunits degrading to smaller peptides, unsuitable for cross-linking. It was also demonstrated that the combination of Alcalase-based partial hydrolysis with MTGase cross-linking might be an effective method for modifying wheat gluten rheological behavior and thermal properties.

  15. Cross-Linking Poly(lactic acid) Film Surface by Neutral Hyperthermal Hydrogen Molecule Bombardment.

    PubMed

    Du, Wangli; Shao, Hong; He, Zhoukun; Tang, Changyu; Liu, Yu; Shen, Tao; Zhu, Yan; Lau, Woon-ming; Hui, David

    2015-12-16

    Constructing a dense cross-linking layer on a polymer film surface is a good way to improve the water resistance of poly(lactic acid) (PLA). However, conventional plasma treatments have failed to achieve the aim as a result of the unavoidable surface damage arising from the charged species caused by the uncontrolled high energy coming from colliding ions and electrons. In this work, we report a modified plasma method called hyperthermal hydrogen-induced cross-linking (HHIC) technology to construct a dense cross-linking layer on PLA film surfaces. This method produces energy-controlled neutral hyperthermal hydrogen, which selectively cleaves C-H bonds by molecule collision from the PLA film without breaking other bonds (e.g., C-C bonds in the polymer backbone), and results in subsequent cross-linking of the carbon radicals generated from the organic molecules. The formation of a dense cross-linking layer can serve as a barrier layer to significantly improve both the hydrophobicity and water vapor barrier property of the PLA film. Because of the advantage of selective cleavage of C-H bonds by HHIC treatment, the original physical properties (e.g., mechanical strength and light transmittance) of the PLA films are well-preserved. PMID:26594874

  16. Synthesis, Characterization, and Antibacterial Activity of Cross-Linked Chitosan-Glutaraldehyde

    PubMed Central

    Li, Bin; Shan, Chang-Lin; Zhou, Qing; Fang, Yuan; Wang, Yang-Li; Xu, Fei; Han, Li-Rong; Ibrahim, Muhammad; Guo, Long-Biao; Xie, Guan-Lin; Sun, Guo-Chang

    2013-01-01

    This present study deals with synthesis, characterization and antibacterial activity of cross-linked chitosan-glutaraldehyde. Results from this study indicated that cross-linked chitosan-glutaraldehyde markedly inhibited the growth of antibiotic-resistant Burkholderia cepacia complex regardless of bacterial species and incubation time while bacterial growth was unaffected by solid chitosan. Furthermore, high temperature treated cross-linked chitosan-glutaraldehyde showed strong antibacterial activity against the selected strain 0901 although the inhibitory effects varied with different temperatures. In addition, physical-chemical and structural characterization revealed that the cross-linking of chitosan with glutaraldehyde resulted in a rougher surface morphology, a characteristic Fourier transform infrared (FTIR) band at 1559 cm−1, a specific X-ray diffraction peak centered at 2θ = 15°, a lower contents of carbon, hydrogen and nitrogen, and a higher stability of glucose units compared to chitosan based on scanning electron microscopic observation, FTIR spectra, X-ray diffraction pattern, as well as elemental and thermo gravimetric analysis. Overall, this study indicated that cross-linked chitosan-glutaraldehyde is promising to be developed as a new antibacterial drug. PMID:23670533

  17. Lignin cross-links with cysteine- and tyrosine-containing peptides under biomimetic conditions.

    PubMed

    Diehl, Brett G; Brown, Nicole R

    2014-10-22

    The work presented here investigates the cross-linking of various nucleophilic amino acids with lignin under aqueous conditions, thus providing insight as to which amino acids might cross-link with lignin in planta. Lignin dehydrogenation polymer (DHP) was prepared in aqueous solutions that contained tripeptides with the general structure XGG, where X represents an amino acid with a nucleophilic side chain. Fourier-transform infrared spectroscopy and energy dispersive X-ray spectroscopy showed that peptides containing cysteine and tyrosine were incorporated into the DHP to form DHP-CGG and DHP-YGG adducts, whereas peptides containing other nucleophilic amino acids were not incorporated. Scanning electron microscopy showed that the physical morphology of DHP was altered by the presence of peptides in the aqueous solution, regardless of peptide incorporation into the DHP. Nuclear magnetic resonance (NMR) spectroscopy showed that cysteine-containing peptide cross-linked with lignin at the lignin α-position, whereas in the case of the lignin-tyrosine adduct the exact cross-linking pathway could not be determined. This is the first study to use NMR to confirm cross-linking between lignin and peptides under biomimetic conditions. The results of this study may indicate the potential for lignin-protein linkage formation in planta, particularly between lignin and cysteine- and/or tyrosine-rich proteins. PMID:25275918

  18. Genipin cross-linked decellularized tracheal tubular matrix for tracheal tissue engineering applications

    PubMed Central

    Sun, Fei; Jiang, Yuan; Xu, Yanfei; Shi, Hongcan; Zhang, Siquan; Liu, Xingchen; Pan, Shu; Ye, Gang; Zhang, Weidong; Zhang, Fangbiao; Zhong, Chonghao

    2016-01-01

    Decellularization techniques have been widely used as an alternative strategy for organ reconstruction. This study investigated the mechanical, pro-angiogenic and in vivo biocompatibility properties of decellularized airway matrices cross-linked with genipin. New Zealand rabbit tracheae were decellularized and cross-linked with genipin, a naturally derived agent. The results demonstrated that, a significant (p < 0.05) increase in the secant modulus was computed for the cross-linked tracheae, compared to the decellularized samples. Angiogenic assays demonstrated that decellularized tracheal scaffolds and cross-linked tracheae treated with 1% genipin induce strong in vivo angiogenic responses (CAM analysis). Seven, 15 and 30 days after implantation, decreased (p < 0.01) inflammatory reactions were observed in the xenograft models for the genipin cross-linked tracheae matrices compared with control tracheae, and no increase in the IgM or IgG content was observed in rats. In conclusion, treatment with genipin improves the mechanical properties of decellularized airway matrices without altering the pro-angiogenic properties or eliciting an in vivo inflammatory response. PMID:27080716

  19. Mechanical and biocompatible characterization of a cross-linked collagen-hyaluronic acid wound dressing.

    PubMed

    Kirk, James F; Ritter, Gregg; Finger, Isaac; Sankar, Dhyana; Reddy, Joseph D; Talton, James D; Nataraj, Chandra; Narisawa, Sonoko; Millán, José Luis; Cobb, Ronald R

    2013-01-01

    Collagen scaffolds have been widely employed as a dermal equivalent to induce fibroblast infiltrations and dermal regeneration in the treatment of chronic wounds and diabetic foot ulcers. Cross-linking methods have been developed to address the disadvantages of the rapid degradation associated with collagen-based scaffolds. To eliminate the potential drawbacks associated with glutaraldehyde cross-linking, methods using a water soluble carbodiimide have been developed. In the present study, the glycosaminoglycan (GAG) hyaluronic acid (HA), was covalently attached to an equine tendon derived collagen scaffold using 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) to create ntSPONGE The HA was shown to be homogeneously distributed throughout the collagen matrix. In vitro analyses of the scaffold indicated that the cross-linking enhanced the biological stability by decreasing the enzymatic degradation and increasing the thermal denaturation temperature. The material was shown to support the attachment and proliferation of mouse L929 fibroblast cells. In addition, the cross-linking decreased the resorption rate of the collagen as measured in an intramuscular implant model in rabbits. The material was also shown to be biocompatible in a variety of in vitro and in vivo assays. These results indicate that this cross-linked collagen-HA scaffold, ntSPONGE has the potential for use in chronic wound healing.

  20. Organization of photosystem I polypeptides examined by chemical cross-linking

    NASA Technical Reports Server (NTRS)

    Armbrust, T. S.; Chitnis, P. R.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1996-01-01

    Photosystem I from the cyanobacterium Synechocystis sp. PCC 6803 was examined using the chemical cross-linkers glutaraldehyde and N-ethyl-1-3-[3-(dimethylamino)propyl]carbodiimide to investigate the organization of the polypeptide subunits. Thylakoid membranes and photosystem I, which was isolated by Triton X-100 fractionation, were treated with cross-linking reagents and were resolved using a Tricine/urea low-molecular-weight resolution gel system. Subunit-specific antibodies and western blotting analysis were used to identify the components of cross-linked species. These analyses identified glutaraldehyde-dependent cross-linking products composed of small amounts of PsaD and PsaC, PsaC and PsaE, and PsaE and PsaF. The novel cross-link between PsaE and PsaF was also observed following treatment with N-ethyl-1-3-[3-(dimethylamino)propyl]carbodiimide. These cross-linking results suggest a structural interaction between PsaE and PsaF and predict a transmembrane topology for PsaF.

  1. Cross-linking connectivity in bone collagen fibrils: the COOH-terminal locus of free aldehyde

    NASA Technical Reports Server (NTRS)

    Otsubo, K.; Katz, E. P.; Mechanic, G. L.; Yamauchi, M.

    1992-01-01

    Quantitative analyses of the chemical state of the 16c residue of the alpha 1 chain of bone collagen were performed on samples from fetal (4-6-month embryo) and mature (2-3 year old) bovine animals. All of this residue could be accounted for in terms of three chemical states, in relative amounts which depended upon the age of the animal. Most of the residue was incorporated into either bifunctional or trifunctional cross-links. Some of it, however, was present as free aldehyde, and the content increased with maturation. This was established by isolating and characterizing the aldehyde-containing peptides generated by tryptic digestion of NaB3H4-reduced mature bone collagen. We have concluded that the connectivity of COOH-terminal cross-linking in bone collagen fibrils changes with maturation in the following way: at first, each 16c residue in each of the two alpha 1 chains of the collagen molecule is incorporated into a sheet-like pattern of intermolecular iminium cross-links, which stabilizes the young, nonmineralized fibril as a whole. In time, some of these labile cross-links maturate into pyridinoline while others dissociate back to their precursor form. The latter is likely due to changes in the molecular packing brought about by the mineralization of the collagen fibrils. The resultant reduction in cross-linking connectivity may provide a mechanism for enhancing certain mechanical characteristics of the skeleton of a mature animal.

  2. Orientation birefringence of cross-linked rubber containing low-mass compound

    NASA Astrophysics Data System (ADS)

    Kiyama, Ayumi; Nobukawa, Shogo; Yamauchi, Masayuki

    2015-05-01

    Molecular orientation of low-mass compounds (LMCs) in a cross-linked rubber is studied in order to obtain the basic information on the dynamics of LMC molecules in a polymer beyond the glass transition temperature. A small amount of LMCs such as 4-cyano-4'-pentylbiphenyl (5CB), tricresylphosphate (TCP), and styrene-based tackifier (TF) is added into polybutadiene rubber (BR). After cross-linking reaction, the sheet samples are used to evaluate the orientation birefringence during stretching and stress relaxation. The rectangular films, cut out from the cross-linked sheets, are set in a uniaxial stretching machine equipped with an optical system to measure both birefringence and tensile stress simultaneously. It is confirmed that orientation birefringence is proportional to the stress for not only pure cross-linked BR, but also cross-linked BR containing an LMC in a wide range of strain. Even after stretching, the birefringence does not change as far as the sample is kept at a constant strain. The results suggest that the LMC molecules are forced to orient with polymer chains by the strong intermolecular orientation correlation. Because of the LMC orientation, the stress-optical coefficient CR is enhanced by the addition of 5CB and TCP, but depressed by TF. Therefore, the LMC doping can be used to control the birefringence of a retardation film.

  3. Novel Technique of Transepithelial Corneal Cross-Linking Using Iontophoresis in Progressive Keratoconus

    PubMed Central

    Raffa, Paolo; Rosati, Marianna

    2016-01-01

    In this work, the authors presented the techniques and the preliminary results at 6 months of a randomized controlled trial (NCT02117999) comparing a novel transepithelial corneal cross-linking protocol using iontophoresis with the Dresden protocol for the treatment of progressive keratoconus. At 6 months, there was a significant average improvement with an average flattening of the maximum simulated keratometry reading of 0.72 ± 1.20 D (P = 0.01); in addition, corrected distance visual acuity improved significantly (P = 0.08) and spherical equivalent refraction was significantly less myopic (P = 0.02) 6 months after transepithelial corneal cross-linking with iontophoresis. The novel protocol using iontophoresis showed comparable results with standard corneal cross-linking to halt progression of keratoconus during 6-month follow-up. Investigation of the long-term RCT outcomes are ongoing to verify the efficacy of this transepithelial corneal cross-linking protocol and to determine if it may be comparable with standard corneal cross-linking in the management of progressive keratoconus. PMID:27597895

  4. Novel Technique of Transepithelial Corneal Cross-Linking Using Iontophoresis in Progressive Keratoconus.

    PubMed

    Lombardo, Marco; Serrao, Sebastiano; Raffa, Paolo; Rosati, Marianna; Lombardo, Giuseppe

    2016-01-01

    In this work, the authors presented the techniques and the preliminary results at 6 months of a randomized controlled trial (NCT02117999) comparing a novel transepithelial corneal cross-linking protocol using iontophoresis with the Dresden protocol for the treatment of progressive keratoconus. At 6 months, there was a significant average improvement with an average flattening of the maximum simulated keratometry reading of 0.72 ± 1.20 D (P = 0.01); in addition, corrected distance visual acuity improved significantly (P = 0.08) and spherical equivalent refraction was significantly less myopic (P = 0.02) 6 months after transepithelial corneal cross-linking with iontophoresis. The novel protocol using iontophoresis showed comparable results with standard corneal cross-linking to halt progression of keratoconus during 6-month follow-up. Investigation of the long-term RCT outcomes are ongoing to verify the efficacy of this transepithelial corneal cross-linking protocol and to determine if it may be comparable with standard corneal cross-linking in the management of progressive keratoconus. PMID:27597895

  5. Knee-simulator testing of conventional and cross-linked polyethylene tibial inserts.

    PubMed

    Muratoglu, Orhun K; Bragdon, Charles R; Jasty, Murali; O'Connor, Daniel O; Von Knoch, Rebecca S; Harris, William H

    2004-10-01

    We compared the resistance to delamination and to adhesive/abrasive wear of conventional and highly cross-linked polyethylene tibial inserts of a cruciate-retaining total knee design using a knee simulator. Both groups were tested after aggressive, accelerated aging, and 1 set of conventional inserts was studied without aging. Aging oxidized the conventional, but not the highly cross-linked, inserts. The simulated normal gait testing lasted for 5 and 10 million cycles for the conventional and highly cross-linked inserts, respectively. Aged conventional inserts showed delaminations, whereas none were observed in the unaged conventional and aged cross-linked inserts. Wear rates measured by the gravimetric method were 9 +/- 2 mm3, 10 +/- 4 mm3, and 1 +/- 0 mm3 per million cycles; by the metrologic method, they were 8 +/- 1 mm3, 9 +/- 2 mm3, and 3 +/- 0 mm3 for the unaged conventional, aged conventional, and aged highly crosslinked inserts, respectively. In the test model used, oxidation led to delamination, whereas increased cross-link density resulted in reduced adhesive/abrasive wear of tibial inserts.

  6. Surface characteristics determining the cell compatibility of ionically cross-linked alginate gels.

    PubMed

    Machida-Sano, Ikuko; Hirakawa, Makoto; Matsumoto, Hiroki; Kamada, Mitsuki; Ogawa, Sakito; Satoh, Nao; Namiki, Hideo

    2014-04-01

    In this study we investigated differences in the characteristics determining the suitability of five types of ion (Fe(3+), Al(3+), Ca(2+), Ba(2+) and Sr(2+))-cross-linked alginate films as culture substrates for cells. Human dermal fibroblasts were cultured on each alginate film to examine the cell affinity of the alginates. Since cell behavior on the surface of a material is dependent on the proteins adsorbed to it, we investigated the protein adsorption ability and surface features (wettability, morphology and charge) related to the protein adsorption abilities of alginate films. We observed that ferric, aluminum and barium ion-cross-linked alginate films supported better cell growth and adsorbed higher amounts of serum proteins than other types. Surface wettability analysis demonstrated that ferric and aluminum ion-cross-linked alginates had moderate hydrophilic surfaces, while other types showed highly hydrophilic surfaces. The roughness was exhibited only on barium ion-cross-linked alginate surface. Surface charge measurements revealed that alginate films had negatively charged surfaces, and showed little difference among the five types of gel. These results indicate that the critical factors of ionically cross-linked alginate films determining the protein adsorption ability required for their cell compatibility may be surface wettability and morphology. PMID:24496019

  7. Preparation of cross-linked hen-egg white lysozyme crystals free of cracks

    PubMed Central

    Yan, Er-Kai; Lu, Qin-Qin; Zhang, Chen-Yan; Liu, Ya-Li; He, Jin; Chen, Da; Wang, Bo; Zhou, Ren-Bin; Wu, Ping; Yin, Da-Chuan

    2016-01-01

    Cross-linked protein crystals (CLPCs) are very useful materials in applications such as biosensors, catalysis, and X-ray crystallography. Hence, preparation of CLPCs is an important research direction. During the preparation of CLPCs, an often encountered problem is that cracks may appear in the crystals, which may finally lead to shattering of the crystals into small pieces and cause problem in practical applications. To avoid cross-link induced cracking, it is necessary to study the cracking phenomenon in the preparation process. In this paper, we present an investigation on how to avoid cracking during preparation of CLPCs. An orthogonal experiment was designed to study the phenomenon of cross-link induced cracking of hen-egg white lysozyme (HEWL) crystals against five parameters (temperature, solution pH, crystal growth time, glutaraldehyde concentration, and cross-linking time). The experimental results showed that, the solution pH and crystal growth time can significantly affect cross-link induced cracking. The possible mechanism was studied, and optimized conditions for obtaining crack-free CLPCs were obtained and experimentally verified. PMID:27703210

  8. Lipid Cross-Linking of Nanolipoprotein Particles Substantially Enhances Serum Stability and Cellular Uptake.

    PubMed

    Gilmore, Sean F; Blanchette, Craig D; Scharadin, Tiffany M; Hura, Greg L; Rasley, Amy; Corzett, Michele; Pan, Chong-Xian; Fischer, Nicholas O; Henderson, Paul T

    2016-08-17

    Nanolipoprotein particles (NLPs) consist of a discoidal phospholipid lipid bilayer confined by an apolipoprotein belt. NLPs are a promising platform for a variety of biomedical applications due to their biocompatibility, size, definable composition, and amphipathic characteristics. However, poor serum stability hampers the use of NLPs for in vivo applications such as drug formulation. In this study, NLP stability was enhanced upon the incorporation and subsequent UV-mediated intermolecular cross-linking of photoactive DiynePC phospholipids in the lipid bilayer, forming cross-linked nanoparticles (X-NLPs). Both the concentration of DiynePC in the bilayer and UV exposure time significantly affected the resulting X-NLP stability in 100% serum, as assessed by size exclusion chromatography (SEC) of fluorescently labeled particles. Cross-linking did not significantly impact the size of X-NLPs as determined by dynamic light scattering and SEC. X-NLPs had essentially no degradation over 48 h in 100% serum, which is a drastic improvement compared to non-cross-linked NLPs (50% degradation by ∼10 min). X-NLPs had greater uptake into the human ATCC 5637 bladder cancer cell line compared to non-cross-linked particles, indicating their potential utility for targeted drug delivery. X-NLPs also exhibited enhanced stability following intravenous administration in mice. These results collectively support the potential utility of X-NLPs for a variety of in vivo applications. PMID:27411034

  9. Availability of fluorescence spectroscopic in the accompaniment of formation of corneal cross-linking

    NASA Astrophysics Data System (ADS)

    Costa, M. M.; Kurachi, C.; Bagnato, V. S.; Faria e Sousa, S. J.; Ventura, L.

    2010-02-01

    The corneal cross-linking is a method that associates riboflavin and ultraviolet light to induce a larger mechanical resistance at cornea. This method has been used for the treatment of Keratoconus. Since cross-linking is recent as treatment, there is a need to verify the effectiveness of the method. Therefore, the viability of the fluorescence spectroscopy technique to follow the cross-linking formation at cornea was studied. Corneas were divided in two measuring procedures: M1 (cornea + riboflavin), and M2 (cornea + riboflavina + light irradiation, 365nm). For fluorescence measurements, a spectrofluorimeter was used, where several wavelengths were selected (between 320nm and 370nm) for cornea excitation. Several fluorescence spectra were collected, at 10 min-interval, during 60 min. Spectra allowed one to observe two very well defined bands of fluorescence: the first one at 400nm (collagen), and the second one at 520nm (riboflavin). After spectra analyses, a decrease of collagen fluorescence was observed for both groups. For riboflavin, on the other hand, there was a fluorescence increase for M1, and a decrease for M2. Thus, it is possible to conclude that it this technique is sensitive for the detection of tissue structural changes during cross-linking treatment, encouraging subsequent studies on quantification of cross-linking promotion in tissue.

  10. Usage of polarization-sensitive optical coherence tomography for investigation of collagen cross-linking

    NASA Astrophysics Data System (ADS)

    Ju, Myeong Jin; Tang, Shuo

    2015-04-01

    To investigate morphological alternation in corneal stroma induced by collagen cross-linking (CXL) treatment, polarization-sensitive optical coherence tomography (PS-OCT) capable of providing scattering, phase retardation, and degree of polarization uniformity (DOPU) images were employed on fresh bovine cornea. Significant corneal thickness reduction was observed after the CXL procedure, and its variation was quantitatively analyzed. From the scattering contrast, a hyperscattering region was observed in the anterior of the cornea immediately after the CXL procedure and its range increased with time. Within the scattering region, a slow increase was observed in the phase retardation image, and a discriminable characteristic was found in the DOPU image. A global threshold value was empirically determined from the averaged DOPU depth profile in order to locate the effective cross-linking depth. In addition to the standard protocol, an accelerated CXL procedure shortening the treatment time with higher intensity of ultraviolet-A (UV-)A power was also performed. From the measurement results after the two different CXL protocols, different cross-linking aspects were found and their difference was discussed in terms of the effectiveness of cross-linking. Based on this study, we believe that PS-OCT could be a promising optical imaging modality to evaluate the progression and effectiveness of the riboflavin/UV-A induced corneal collagen cross-linking.

  11. Physical properties of pectin-high amylose starch mixtures cross-linked with sodium trimetaphosphate.

    PubMed

    Carbinatto, Fernanda M; de Castro, Ana Dóris; Cury, Beatriz S F; Magalhães, Alviclér; Evangelista, Raul C

    2012-02-28

    Pectin-high amylose starch mixtures (1:4; 1:1; 4:1) were cross-linked at different degrees and characterized by rheological, thermal, X-ray diffraction and NMR analyses. For comparison, samples without cross-linker addition were also prepared and characterized. Although all samples behaved as gels, the results evidenced that the phosphorylation reaction promotes the network strengthening, resulting in covalent gels (highest critical stress, G' and recovery %). Likewise, cross-linked samples presented the highest thermal stability. However, alkaline treatment without cross-linker allowed a structural reorganization of samples, as they also behaved as covalent gels, but weaker than those gels from cross-linked samples, and presented higher thermal stability than the physical mixtures. X-ray diffractograms also evidenced the occurrence of physical and chemical modifications due to the cross-linking process and indicated that samples without cross-linker underwent some structural reorganization, resulting in a decrease of crystallinity. The chemical shift of resonance signals corroborates the occurrence of structural modifications by both alkaline treatment and cross-linking reaction. PMID:22178896

  12. Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering.

    PubMed

    Jang, Jinah; Seol, Young-Joon; Kim, Hyeon Ji; Kundu, Joydip; Kim, Sung Won; Cho, Dong-Woo

    2014-09-01

    An effective cross-linking of alginate gel was made through reaction with calcium carbonate (CaCO3). We used human chondrocytes as a model cell to study the effects of cross-linking density. Three different pore size ranges of cross-linked alginate hydrogels were fabricated. The morphological, mechanical, and rheological properties of various alginate hydrogels were characterized and responses of biosynthesis of cells encapsulated in each gel to the variation in cross-linking density were investigated. Desired outer shape of structure was maintained when the alginate solution was cross-linked with the applied method. The properties of alginate hydrogel could be tailored through applying various concentrations of CaCO3. The rate of synthesized GAGs and collagens was significantly higher in human chondrocytes encapsulated in the smaller pore structure than that in the larger pore structure. The expression of chondrogenic markers, including collagen type II and aggrecan, was enhanced in the smaller pore structure. It was found that proper structural morphology is a critical factor to enhance the performance and tissue regeneration.

  13. Cross-Linking Poly(lactic acid) Film Surface by Neutral Hyperthermal Hydrogen Molecule Bombardment.

    PubMed

    Du, Wangli; Shao, Hong; He, Zhoukun; Tang, Changyu; Liu, Yu; Shen, Tao; Zhu, Yan; Lau, Woon-ming; Hui, David

    2015-12-16

    Constructing a dense cross-linking layer on a polymer film surface is a good way to improve the water resistance of poly(lactic acid) (PLA). However, conventional plasma treatments have failed to achieve the aim as a result of the unavoidable surface damage arising from the charged species caused by the uncontrolled high energy coming from colliding ions and electrons. In this work, we report a modified plasma method called hyperthermal hydrogen-induced cross-linking (HHIC) technology to construct a dense cross-linking layer on PLA film surfaces. This method produces energy-controlled neutral hyperthermal hydrogen, which selectively cleaves C-H bonds by molecule collision from the PLA film without breaking other bonds (e.g., C-C bonds in the polymer backbone), and results in subsequent cross-linking of the carbon radicals generated from the organic molecules. The formation of a dense cross-linking layer can serve as a barrier layer to significantly improve both the hydrophobicity and water vapor barrier property of the PLA film. Because of the advantage of selective cleavage of C-H bonds by HHIC treatment, the original physical properties (e.g., mechanical strength and light transmittance) of the PLA films are well-preserved.

  14. Biodegradable Chitosan-Based Ambroxol Hydrochloride Microspheres: Effect of Cross-Linking Agents

    PubMed Central

    Gangurde, HH; Chavan, NV; Mundada, AS; Derle, DV; Tamizharasi, S

    2011-01-01

    The objective of this study was to investigate the influence of type of cross-linking method used on the properties of ambroxol hydrochloride microspheres such as encapsulation efficiency, particle size, and drug release. Microspheres were prepared by solvent evaporation technique using chitosan as a matrix-forming agent and cross-linked using formaldehyde and heat treatment. Morphological and physicochemical properties of microspheres were then investigated by scanning electron microscopy (SEM), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FTIR) spectroscopy. The cross-linking of chitosan takes place at the free amino group because of formation of imine bond as evidenced by FTIR. The DSC, XRD, and FTIR analysis showed that chitosan microspheres cross linked by heating were superior in properties and performance as compared to the microspheres cross-linked using formaldehyde. SEM results revealed that heat-treated microspheres were spherical, discrete having smooth, and porous structure. The particle size and encapsulation efficiencies of the prepared chitosan microspheres ranged between 10.83–24.11 μm and 39.73μ80.56%, respectively. The drug release was extended up to 12 h, and the kinetics of the drug release was obeying Higuchi kinetic proving diffusion-controlled drug release. PMID:21607049

  15. Structure and pasting properties of alkaline-treated phosphorylated cross-linked waxy maize starches.

    PubMed

    Shukri, Radhiah; Shi, Yong-Cheng

    2017-01-01

    The objectives of this study were to determine the stability of cross-linked bonds of starch at different pH values and their effects on the pasting property of waxy maize starch cross-linked by 0.05% and 3% sodium trimetaphosphate/sodium tripolyphosphate. The cross-linked waxy maize starch (CLWMS) was slurried (40%, w/w) and subjected to alkali treatments of pH 9, 10, 11, and 12 at 40°C for 4h. The phosphorus in 3% CLWMS decreased with increasing pH and remained unchanged in 0.05% CLWMS for all pH treatments. Decreased settling volumes indicated the reduction of swelling power for the alkali-treated CLWMS at pH 11 and 12. The (31)P NMR spectra of 3% CLWMS at pH 12 showed decreased cyclic monostarch phosphate, monostarch monophosphate, and monostarch diphosphate, but significantly increased distarch monophosphate. Alkali treatments of phosphorylated cross-linked starches offer a way to manipulate the rheological properties of cross-linked starch for desired food applications. PMID:27507452

  16. A Mechanism for Actin Filament Severing by Malaria Parasite Actin Depolymerizing Factor 1 via a Low Affinity Binding Interface*

    PubMed Central

    Wong, Wilson; Webb, Andrew I.; Olshina, Maya A.; Infusini, Giuseppe; Tan, Yan Hong; Hanssen, Eric; Catimel, Bruno; Suarez, Cristian; Condron, Melanie; Angrisano, Fiona; NebI, Thomas; Kovar, David R.; Baum, Jake

    2014-01-01

    Actin depolymerizing factor (ADF)/cofilins are essential regulators of actin turnover in eukaryotic cells. These multifunctional proteins facilitate both stabilization and severing of filamentous (F)-actin in a concentration-dependent manner. At high concentrations ADF/cofilins bind stably to F-actin longitudinally between two adjacent actin protomers forming what is called a decorative interaction. Low densities of ADF/cofilins, in contrast, result in the optimal severing of the filament. To date, how these two contrasting modalities are achieved by the same protein remains uncertain. Here, we define the proximate amino acids between the actin filament and the malaria parasite ADF/cofilin, PfADF1 from Plasmodium falciparum. PfADF1 is unique among ADF/cofilins in being able to sever F-actin but do so without stable filament binding. Using chemical cross-linking and mass spectrometry (XL-MS) combined with structure reconstruction we describe a previously overlooked binding interface on the actin filament targeted by PfADF1. This site is distinct from the known binding site that defines decoration. Furthermore, total internal reflection fluorescence (TIRF) microscopy imaging of single actin filaments confirms that this novel low affinity site is required for F-actin severing. Exploring beyond malaria parasites, selective blocking of the decoration site with human cofilin (HsCOF1) using cytochalasin D increases its severing rate. HsCOF1 may therefore also use a decoration-independent site for filament severing. Thus our data suggest that a second, low affinity actin-binding site may be universally used by ADF/cofilins for actin filament severing. PMID:24371134

  17. [Actinic Keratosis].

    PubMed

    Dejaco, D; Hauser, U; Zelger, B; Riechelmann, H

    2015-07-01

    Actinic keratosis is a cutaneous lesion characterized by proliferation of atypical epidermal keratinocytes due to prolonged exposure to exogenous factors such as ultraviolet radiation. AKs are in-situ-squamous cell carcinomas (PEC) of the skin. AK typically presents as erythematous, scaly patch or papule (classic AK), occasionally as thick, adherent scale on an erythematous base. Mostly fair-skinned adults are affected. AKs typically occur in areas of frequent sun exposure (balding scalp, face, "H-region", lateral neck, décolleté, dorsum of the hand and lower extremities). Actinic Cheilitis is the term used for AKs appearing on the lips. The diagnosis of AK is based on clinical examination including inspection and palpation. The typical palpable rough surface of AK often precedes a visible lesion. Dermoscopy may provide additional information. If diagnosis is uncertain and invasion suspected, biopsy and histopathologic evaluation should be performed. The potential for progression to invasive PECs mandates therapeutic intervention. Treatment options include topical and systemic therapies. Topical therapies are classified into physical, medical and combined physical-chemical approaches and a sequential combination of treatment modalities is possible. Topical-physical cryotherapy is the treatment of choice for isolated, non-hypertrophic AK. Topical-medical treatment, e. g. 5-fluoruracil (5FU) cream or Imiquomod or Ingenolmebutat application is used for multiple, non-hypertrophic AKs. For hypertrophic AKs, a dehorning pretreatment with salicinated vaseline is recommended. Isolated hypertrophic AKs often need cryotherapy with prolonged freezing time or several consecutive applications. Sequentially combined approaches are recommended for multiple, hypertrophic AKs. Photodynamic therapy (PDT) as example for a combined physical-chemical approach is an established treatment for multiple, non-hypertrophic and hypertrophic AKs. Prevention includes avoidance of sun and

  18. Colour stability, opacity and cross-link density of composites submitted to accelerated artificial aging.

    PubMed

    Mundim, Fabrício Mariano; Pires-de-Souza, Fernanda de Carvalho Panzeri; Garcia, Lucas da Fonseca Roberti; Consani, Simonides

    2010-06-01

    The study evaluated the influence of accelerated artificial aging on colour stability, opacity and cross-link density of resin-based composites (RBCs). Seven specimens were obtained of five RBCs (Heliomolar, 4 Seasons, Tetric Evo Ceram, SR Adoro), which were submitted to colour stability and opacity analysis and cross-link density evaluation. All tests were performed before and after aging. After statistical analysis (one-way ANOVA; Tukey; p<0.05), it was observed that QuiXfil and SR Adoro presented colour alteration values above those that are clinically acceptable (deltaE=5.77 and 4.34 respectively) and the variation in opacity was lowest for SR Adoro. There was an increase in the cross-link density of all studied materials after aging.

  19. Laccase-catalyzed cross-linking of amino acids and peptides with dihydroxylated aromatic compounds.

    PubMed

    Mikolasch, Annett; Hahn, Veronika; Manda, Katrin; Pump, Judith; Illas, Nicole; Gördes, Dirk; Lalk, Michael; Gesell Salazar, Manuela; Hammer, Elke; Jülich, Wolf-Dieter; Rawer, Stephan; Thurow, Kerstin; Lindequist, Ulrike; Schauer, Frieder

    2010-08-01

    In order to design potential biomaterials, we investigated the laccase-catalyzed cross-linking between L-lysine or lysine-containing peptides and dihydroxylated aromatics. L-Lysine is one of the major components of naturally occurring mussel adhesive proteins (MAPs). Dihydroxylated aromatics are structurally related to 3,4-dihydroxyphenyl-L-alanine, another main component of MAPs. Mass spectrometry and nuclear magnetic resonance analyses show that the epsilon-amino group of L-lysine is able to cross-link dihydroxylated aromatics. Additional oligomer and polymer cross-linked products were obtained from di- and oligopeptides containing L-lysine. Potential applications in medicine or industry for biomaterials synthesised via the three component system consisting of the oligopeptide [Tyr-Lys]10, dihydroxylated aromatics and laccase are discussed.

  20. Cheese whey protein recovery by ultrafiltration through transglutaminase (TG) catalysis whey protein cross-linking.

    PubMed

    Wen-Qiong, Wang; Lan-Wei, Zhang; Xue, Han; Yi, Lu

    2017-01-15

    In whey ultrafiltration (UF) production, two main problems are whey protein recovery and membrane fouling. In this study, membrane coupling protein transglutaminase (TG) catalysis protein cross-linking was investigated under different conditions to find out the best treatment. We found that the optimal conditions for protein recovery involved catalyzing whey protein cross-linking with TG (40U/g whey proteins) at 40°C for 60min at pH 5.0. Under these conditions, the recovery rate was increased 15-20%, lactose rejection rate was decreased by 10%, and relative permeate flux was increase 30-40% compared to the sample without enzyme treatment (control). It was noticeable that the total resistance and cake resistance were decreased after enzyme catalysis. This was mainly due to the increased particle size and decreased zeta potential. Therefore, membrane coupling enzyme catalysis protein cross-linking is a potential means for further use.

  1. Carbon Nanofiber Incorporated Silica Based Aerogels with Di-Isocyanate Cross-Linking

    NASA Technical Reports Server (NTRS)

    Vivod, Stephanie L.; Meador, Mary Ann B.; Capadona, Lynn A.; Sullivan, Roy M.; Ghosn, Louis J.; Clark, Nicholas; McCorkle, Linda

    2008-01-01

    Lightweight materials with excellent thermal insulating properties are highly sought after for a variety of aerospace and aeronautic applications. (1) Silica based aerogels with their high surface area and low relative densities are ideal for applications in extreme environments such as insulators for the Mars Rover battery. (2) However, the fragile nature of aerogel monoliths prevents their widespread use in more down to earth applications. We have shown that the fragile aerogel network can be cross-linked with a di-isocyanate via amine decorated surfaces to form a conformal coating. (3) This coating reinforces the neck regions between secondary silica particles and significantly strengthens the aerogels with only a small effect on density or porosity. Scheme 1 depicts the cross-linking reaction with the di-isocyanate and exhibits the stages that result in polymer cross-linked aerogel monoliths.

  2. Fracture Behavior of High-Toughness, Ionically Cross-linked Triblock Copolymer Hydrogels

    NASA Astrophysics Data System (ADS)

    Henderson, Kevin; Otim, Kathryn; Shull, Kenneth

    2011-03-01

    Mechanisms for enhancing energy dissipation and hence toughness are important for the generation of robust synthetic soft materials for biomedical applications. Ionic cross-linking in particular has been explored in triblock copolymer hydrogels and affords a remarkable change in mechanical performance comparable to non-cross-linked analogs. Here we employ a physically associated base triblock copolymer network composed of hydrophobic poly(methyl methacrylate) endblocks and a hydrophilic poly(methacrylic acid) midblock capable of complexing with divalent cations. Increases in stiffness and strength have previously been reported, with the extent dependent upon the identity, concentration, and pH of a cross-linking cation solution. We delineate the measured toughness in such systems using tensile tear tests and relate the mechanical performance to a damage zone model reminiscent of loading behavior observed in double network hydrogels.

  3. Tuning of cross-linking and mechanical properties of laser-deposited poly (methyl methacrylate) films

    NASA Astrophysics Data System (ADS)

    Süske, Erik; Scharf, Thorsten; Krebs, Hans-Ulrich; Panchenko, Elena; Junkers, Thomas; Egorov, Mark; Buback, Michael; Kijewski, Harald

    2005-03-01

    The chemical composition, amount of cross-linking and its influence on the mechanical properties of poly(methyl methacrylate) (PMMA) thin films produced by pulsed laser deposition (PLD) at a wavelength of 248nm under ultrahigh vacuum were investigated by infrared spectroscopy, scanning electron microscopy, size-exclusion chromatography, thermogravimetric analysis, and nanoindentation experiments. The films consist of two components, one fraction with a molecular weight well below that of the target material and a second fraction, which is cross-linked. Compared to bulk material, the Young's modulus of the film is increased. The amount of cross-linking in the film can be tuned by the applied laser fluence leading to changes of the mechanical properties.

  4. Solution processed organic light-emitting diodes using the plasma cross-linking technology

    NASA Astrophysics Data System (ADS)

    He, Kongduo; Liu, Yang; Gong, Junyi; Zeng, Pan; Kong, Xun; Yang, Xilu; Yang, Cheng; Yu, Yan; Liang, Rongqing; Ou, Qiongrong

    2016-09-01

    Solution processed multilayer organic light-emitting diodes (OLEDs) present challenges, especially regarding dissolution of the first layer during deposition of a second layer. In this work, we first demonstrated a plasma cross-linking technology to produce a solution processed OLED. The surfaces of organic films can be cross-linked after mixed acetylene and Ar plasma treatment for several tens of seconds and resist corrosion of organic solvent. The film thickness and surface morphology of emissive layers (EMLs) with plasma treatment and subsequently spin-rinsed with chlorobenzene are nearly unchanged. The solution processed triple-layer OLED is successfully fabricated and the current efficiency increases 50% than that of the double-layer OLED. Fluorescent characteristics of EMLs are also observed to investigate factors influencing the efficiency of the triple-layer OLED. Plasma cross-linking technology may open up a new pathway towards fabrication of all-solution processed multilayer OLEDs and other soft electronic devices.

  5. Three-dimensional multimodal microscopy of rabbit cornea after cross-linking treatment

    NASA Astrophysics Data System (ADS)

    Krüger, A.; Hovakimyan, M.; Ramírez, D. F.; Lorbeer, R.-A.; Kröger, M.; Stachs, O.; Wree, A.; Guthoff, R. F.; Lubatschowski, H.; Heisterkamp, A.

    2010-02-01

    Cross-linking of stromal collagen with Riboflavin and UVA radiation is an alternative treatment of keratoconus. After the cross-linking a wound healing process starts with the regeneration of the abraded epithelial layer and the stromal keratocyte-network. To clarify possible side effects by visualization we established an imaging platform for the multimodal three-dimensional imaging of the cornea and looked for differences between normal and cross-linked rabbit corneae. The microscopy system utilizes femtosecond laser light for two photon excitation of autofluorescent metabolic compounds, second harmonic imaging in forward and backward direction for the study of stromal collagen-I structure and confocal detection of the backscattered femtosecond laser light for cell detection. Preliminary results show signatures of treatment 5 weeks after the intervention in all imaging modalities.

  6. Localization of the dominant non-enzymatic intermolecular cross-linking sites on fibrous collagen.

    PubMed

    Chiue, Hiroko; Yamazoye, Tsutako; Matsumura, Sueo

    2015-06-01

    Previous studies have shown that fibrous collagen undergoes intermolecular cross-linking at multiple sites of the elongated triple-helical regions among adjacent juxtaposed collagen molecules on incubation with a very high concentration of reducing sugar such as 200 mM ribose, and the similarity of the changes in its physicochemical properties to that of senescent collagen aged in vivo has been emphasized. In the present study, however, it was found that when incubated with less than 30 mM ribose, fibrous collagen underwent intermolecular cross-linking primarily between the telopeptide region of a collagen molecule and the triple-helical region of another adjacent collagen molecule, and intermolecular cross-linking between the triple-helical regions of adjacent collagen molecules was very small. Physiological significance of the previous studies thus needs to be reevaluated.

  7. Cheese whey protein recovery by ultrafiltration through transglutaminase (TG) catalysis whey protein cross-linking.

    PubMed

    Wen-Qiong, Wang; Lan-Wei, Zhang; Xue, Han; Yi, Lu

    2017-01-15

    In whey ultrafiltration (UF) production, two main problems are whey protein recovery and membrane fouling. In this study, membrane coupling protein transglutaminase (TG) catalysis protein cross-linking was investigated under different conditions to find out the best treatment. We found that the optimal conditions for protein recovery involved catalyzing whey protein cross-linking with TG (40U/g whey proteins) at 40°C for 60min at pH 5.0. Under these conditions, the recovery rate was increased 15-20%, lactose rejection rate was decreased by 10%, and relative permeate flux was increase 30-40% compared to the sample without enzyme treatment (control). It was noticeable that the total resistance and cake resistance were decreased after enzyme catalysis. This was mainly due to the increased particle size and decreased zeta potential. Therefore, membrane coupling enzyme catalysis protein cross-linking is a potential means for further use. PMID:27542447

  8. Preparation of cross-linked maize (Zea mays L.) starch in different reaction media.

    PubMed

    Hong, Jung Sun; Gomand, Sara V; Delcour, Jan A

    2015-06-25

    Granular normal maize starch was reacted with sodium trimetaphosphate in deionized water ( [Formula: see text] ), aqueous sodium sulfate solution ( [Formula: see text] ), aqueous ethanol (MSethanol) or aqueous acetone (MSacetone) under otherwise identical reaction conditions. Analysis of the resultant starches by Rapid Visco Analysis (RVA) showed that the starch was cross-linked to a higher degree in aqueous ethanol or aqueous acetone than in water or sodium sulfate solution, and with minimal starch leaching. While MSacetone and MSethanol had incorporated similar levels of phosphorous, RVA analysis and microscopic analysis showed that MSacetone granules were more effectively stabilized by cross-linking than MSethanol granules. Cross-linking in aqueous acetone is believed to either contain the greater numbers of distarch monophosphate (versus monostarch monophosphate), or occur more intensively at the granule outer layers than that in aqueous ethanol and, at the same time, to account for the greater granular strength of MSethanol than that of MSacetone. PMID:25839824

  9. In vitro degradation of covalently cross-linked arabinoxylan hydrogels by bifidobacteria.

    PubMed

    Martínez-López, Ana L; Carvajal-Millan, Elizabeth; Micard, Valérie; Rascón-Chu, Agustín; Brown-Bojorquez, Francisco; Sotelo-Cruz, Norberto; López-Franco, Yolanda L; Lizardi-Mendoza, Jaime

    2016-06-25

    Arabinoxylan gels with different cross-linking densities, swelling ratios, and rheological properties were obtained by increasing the concentration of arabinoxylan from 4 to 6% (w/v) during oxidative gelation by laccase. The degradation of these covalently cross-linked gels by a mixture of two Bifidobacterium strains (Bifidobacterium longum and Bifidobacterium adolescentis) was investigated. The kinetics of the evolution of structural morphology of the arabinoxylan gel, the carbohydrate utilization profiles and the bacterial production of short-acid fatty acid (SCFA) were measured. Scanning electron microscopy analysis of the degraded gels showed multiple cavity structures resulting from the bacterial action. The total SCFA decreased when the degree of cross-linking increased in the gels. A slower fermentation of arabinoxylan chains was obtained for arabinoxylan gels with more dense network structures. These results suggest that the differences in the structural features and properties studied in this work affect the degradation time of the arabinoxylan gels. PMID:27083795

  10. Optimizing end-group cross-linking polymer electrolytes for fuel cell applications

    SciTech Connect

    Kim, Yu Seung; Lee, Kwan Soo; Jeong, Myung - Hwan; Lee, Jae - Suk

    2009-01-01

    This paper demonstrates the optimization of proton conductivity and water uptake for cross-linkable polymer electrolytes through synthesis and characterization of end-group cross-linkable sulfonated poly(arylene ether) copolymers (ESF-BPs). The extent of reaction of cross-linking was controlled by reaction time resulting in a series of polymers with two, independent tunable parameters, degree of sulfonation (DS) and degree of cross-linking (DC). For the polymers presented, cross-linking improved proton conductivity while reducing water uptake, an uncommon trend in polymer electrolytes where water is critical for proton conduction. Other trends relating to changes are reported and the results yield insight into the role of DS and DC and how to optimize electrochemical properties and performance of polymer electrolytes through these tunable parameters. Select polymer electrolytes were tested in fuel cells where performance and durability with accelerated relative humidity cycling were compared with Nafion{reg_sign}.

  11. Chloroacetamide-Linked Nucleotides and DNA for Cross-Linking with Peptides and Proteins.

    PubMed

    Olszewska, Agata; Pohl, Radek; Brázdová, Marie; Fojta, Miroslav; Hocek, Michal

    2016-09-21

    Nucleotides, 2'-deoxyribonucleoside triphosphates (dNTPs), and DNA probes bearing reactive chloroacetamido group linked to nucleobase (cytosine or 7-deazadaenine) through a propargyl tether were prepared and tested in cross-linking with cysteine- or histidine-containing peptides and proteins. The chloroacetamide-modifed dNTPs proved to be good substrates for DNA polymerases in the enzymatic synthesis of modified DNA probes. Modified nucleotides and DNA reacted efficiently with cysteine and cysteine-containing peptides, whereas the reaction with histidine was sluggish and low yielding. The modified DNA efficiently cross-linked with p53 protein through alkylation of cysteine and showed potential for cross-linking with histidine (in C277H mutant of p53).

  12. Comparison of Wear and Oxidation in Retrieved Conventional and Highly Cross-Linked UHMWPE Tibial Inserts.

    PubMed

    Currier, Barbara H; Currier, John H; Franklin, Katherine J; Mayor, Michael B; Reinitz, Steven D; Van Citters, Douglas W

    2015-12-01

    Two groups of retrieved tibial inserts from one manufacturer's knee system were analyzed to evaluate the effect of a highly cross-linked bearing surface on wear and in vivo oxidation. The two groups ((1) conventional gamma-inert sterilized and (2) highly cross-linked, coupled with the same rough (Ra=0.25) Ti-6Al-4V tray) were matched with statistically similar in vivo duration and patient variables. The retrieved inserts were analyzed for ketone oxidation and wear in the form of dimensional change. The difference in oxidation rate between highly cross-linked and conventional gamma-inert sterilized inserts did not reach statistical significance. Observations suggest that the majority of wear can be accounted for by the backside interface with the rough Ti-6Al-4V tray; however, wear measured by thickness-change rate was statistically indistinguishable between the two bearing materials.

  13. Synthesis of acrylic and allylic bifunctional cross-linking monomers derived from PET waste

    NASA Astrophysics Data System (ADS)

    Cruz-Aguilar, A.; Herrera-González, A. M.; Vázquez-García, R. A.; Navarro-Rodríguez, D.; Coreño, J.

    2013-06-01

    An acrylic and two novel allylic monomers synthesized from bis (hydroxyethyl) terephthalate, BHET, are reported. This was obtained by glycolysis of post-consumer PET with boiling ethylene glycol. The bifunctional monomer bis(2-(acryloyloxy)ethyl) terephthalate was obtained from acryloyl chloride, while the allylic monomers 2-(((allyloxi)carbonyl)oxy) ethyl (2-hydroxyethyl) terephthalate and bis(2-(((allyloxi)carbonyl)oxy)ethyl) terephthalate, from allyl chloroformate. Cross-linking was studied in bulk polymerization using two different thermal initiators. Monomers were analyzed by means of 1H NMR and the cross-linked polymers by infrared spectroscopy. Gel content higher than 90% was obtained for the acrylic monomer. In the case of the mixture of the allylic monomers, the cross-linked polymer was 80 % using BPO initiator, being this mixture 24 times less reactive than the acrylic monomer.

  14. Cross-linked block copolymer templated assembly of nanoparticle arrays with high density and position selectivity

    NASA Astrophysics Data System (ADS)

    Liu, Zhicheng; Chang, Tongxin; Huang, Haiying; Bai, Lu

    2016-10-01

    Patterning ordered nanoparticle arrays is crucial for the fascinating collective properties of nanoparticles. Block copolymer template provides us a platform for the simple and efficient assembly of nanoparticle arrays. In this work, cylinder-forming poly(styrene-block-2-vinylpyridine) thin film was firstly plasma-etched to expose poly(2-vinylpyridine) cylinders. Then the templates were cross-linked by small molecules so as to access gold nanoparticle arrays with both high density and excellent position selectivity. The cross-linking process significantly restrains the unfavorable surface reconstruction of the thin film. It is demonstrated that the quality of the nanoparticle array was affected by the degree of the cross-linking and the immersion time in nanoparticle solution. The highly ordered gold nanoparticle arrays are promising in several fields such as optics and surface enhanced Raman scattering (SERS).

  15. Curvature and torsion in growing actin networks

    NASA Astrophysics Data System (ADS)

    Shaevitz, Joshua W.; Fletcher, Daniel A.

    2008-06-01

    Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque.

  16. Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction

    NASA Technical Reports Server (NTRS)

    Woodley, D. T.; Yamauchi, M.; Wynn, K. C.; Mechanic, G.; Briggaman, R. A.

    1991-01-01

    Solubilized interstitial collagens will form a fibrillar, gel-like lattice when brought to physiologic conditions. In the presence of human dermal fibroblasts the collagen lattice will contract. The rate of contraction can be determined by computer-assisted planemetry. The mechanisms involved in contraction are as yet unknown. Using this system it was found that the rate of contraction was markedly decreased when collagen lacking telopeptides was substituted for native collagen. Histidinohydroxylysinonorleucine (HHL) is a major stable trifunctional collagen cross-link in mature skin that involves a carboxyl terminal, telopeptide site 16c, the sixteenth amino acid residue from the carboxy terminal of the telopeptide region of alpha 1 (I) in type I collagen. Little, if any, HHL was present in native, purified, reconstituted, soluble collagen fibrils from 1% acetic acid-extracted 2-year-old bovine skin. In contrast, HHL cross-links were present (0.22 moles of cross-link per mole of collagen) in lattices of the same collagen contracted by fibroblasts. However, rat tail tendon does not contain HHL cross-links, and collagen lattices made of rat tail tendon collagen are capable of contraction. This suggests that telopeptide sites, and not mature HHL cross-links per se, are essential for fibroblasts to contract collagen lattices. Beta-aminopropionitrile fumarate (BAPN), a potent lathyrogen that perturbs collagen cross-linking by inhibition of lysyl oxidase, also inhibited the rate of lattice cell contraction in lattices composed of native collagen. However, the concentrations of BAPN that were necessary to inhibit the contraction of collagen lattices also inhibited fibroblast growth suggestive of cellular toxicity. In accordance with other studies, we found no inhibition of the rate of lattice contraction when fibronectin-depleted serum was used. Electron microscopy of contracted gels revealed typical collagen fibers with a characteristic axial periodicity. The data

  17. Proteomic analysis of DNA-protein cross-linking by antitumor nitrogen mustards.

    PubMed

    Loeber, Rachel L; Michaelson-Richie, Erin D; Codreanu, Simona G; Liebler, Daniel C; Campbell, Colin R; Tretyakova, Natalia Y

    2009-06-01

    Nitrogen mustards are antitumor agents used clinically for the treatment of a variety of neoplastic conditions. The biological activity of these compounds is typically attributed to their ability to induce DNA-DNA cross-links. However, nitrogen mustards are able to produce a variety of other lesions, including DNA-protein cross-links (DPCs). DPCs induced by nitrogen mustards are not well-characterized because of their structural complexity and the insufficient specificity and sensitivity of previously available experimental methodologies. In the present work, affinity capture methodology in combination with mass spectrometry-based proteomics was employed to identify mammalian proteins that form covalent cross-links to DNA in the presence of a simple nitrogen mustard, mechlorethamine. Following incubation of 5'-biotinylated DNA duplexes with nuclear protein extracts, DPCs were isolated by affinity capture on streptavidin beads, and the cross-linked proteins were identified by high-performance liquid chromatography-electrospray tandem mass spectrometry of tryptic peptides. Mechlorethamine treatment resulted in the formation of DPCs with nuclear proteins involved in chromatin regulation, DNA replication and repair, cell cycle control, transcriptional regulation, and cell architecture. Western blot analysis was employed to confirm protein identification and to quantify the extent of drug-mediated cross-linking. Mass spectrometry of amino acid-nucleobase conjugates found in total proteolytic digests revealed that mechlorethamine-induced DPCs are formed via alkylation of the N7 position of guanine in duplex DNA and cysteine thiols within the proteins to give N-[2-[S-cysteinyl]ethyl]-N-[2-(guan-7-yl)ethyl]methylamine lesions. The results described herein suggest that cellular exposure to nitrogen mustards leads to cross-linking of a large spectrum of nuclear proteins to chromosomal DNA, potentially contributing to the cytotoxic and mutagenic effects of these drugs.

  18. Enzymatic cross-linking of human recombinant elastin (HELP) as biomimetic approach in vascular tissue engineering.

    PubMed

    Bozzini, Sabrina; Giuliano, Liliana; Altomare, Lina; Petrini, Paola; Bandiera, Antonella; Conconi, Maria Teresa; Farè, Silvia; Tanzi, Maria Cristina

    2011-12-01

    The use of polymers naturally occurring in the extracellular matrix (ECM) is a promising strategy in regenerative medicine. If compared to natural ECM proteins, proteins obtained by recombinant DNA technology have intrinsic advantages including reproducible macromolecular composition, sequence and molecular mass, and overcoming the potential pathogens transmission related to polymers of animal origin. Among ECM-mimicking materials, the family of recombinant elastin-like polymers is proposed for drug delivery applications and for the repair of damaged elastic tissues. This work aims to evaluate the potentiality of a recombinant human elastin-like polypeptide (HELP) as a base material of cross-linked matrices for regenerative medicine. The cross-linking of HELP was accomplished by the insertion of cross-linking sites, glutamine and lysine, in the recombinant polymer and generating ε-(γ-glutamyl) lysine links through the enzyme transglutaminase. The cross-linking efficacy was estimated by infrared spectroscopy. Freeze-dried cross-linked matrices showed swelling ratios in deionized water (≈2500%) with good structural stability up to 24 h. Mechanical compression tests, performed at 37°C in wet conditions, in a frequency sweep mode, indicated a storage modulus of 2/3 kPa, with no significant changes when increasing number of cycles or frequency. These results demonstrate the possibility to obtain mechanically resistant hydrogels via enzymatic crosslinking of HELP. Cytotoxicity tests of cross-linked HELP were performed with human umbilical vein endothelial cells, by use of transwell filter chambers for 1-7 days, or with its extracts in the opportune culture medium for 24 h. In both cases no cytotoxic effects were observed in comparison with the control cultures. On the whole, the results suggest the potentiality of this genetically engineered HELP for regenerative medicine applications, particularly for vascular tissue regeneration.

  19. Cross-linked Compared with Historical Polyethylene in THA: An 8-year Clinical Study

    PubMed Central

    Grimm, Bernd; Vencken, Wendy; Heyligers, Ide C.; Tonino, Alphons J.

    2008-01-01

    Wear particle-induced osteolysis is a major cause of aseptic loosening in THA. Increasing wear resistance of polyethylene (PE) occurs by increasing the cross-link density and early reports document low wear rates with such implants. To confirm longer-term reductions in wear we compared cross-linked polyethylene (irradiation in nitrogen, annealing) with historical polyethylene (irradiation in air) in a prospective, randomized clinical study involving 48 patients who underwent THAs with a minimum followup of 7 years (mean, 8 years; range, 7–9 years). The insert material was the only variable. The Harris hip score, radiographic signs of osteolysis, and polyethylene wear were recorded annually. Twenty-three historical and 17 moderately cross-linked polyethylene inserts were analyzed (five patients died, three were lost to followup). At 8 years, the wear rate was lower for cross-linked polyethylene (0.088 ± 0.03 mm/year) than for the historical polyethylene (0.142 ± 0.07 mm/year). This reduction (38%) did not diminish with time (33% at 5 years). Acetabular cyst formation was less frequent (39% versus 12%), affected fewer DeLee and Charnley zones (17% versus 4%), and was less severe for the cross-linked polyethylene. The only revision was for an aseptically loose cup in the historical polyethylene group. Moderately cross-linked polyethylene maintained its wear advantage with time and produced less osteolysis, showing no signs of aging at mid-term followup. Level of Evidence: Level I, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence. PMID:19030941

  20. Chemical and structural characterization of interstrand cross-links formed between abasic sites and adenine residues in duplex DNA

    PubMed Central

    Price, Nathan E.; Catalano, Michael J.; Liu, Shuo; Wang, Yinsheng; Gates, Kent S.

    2015-01-01

    A new type of interstrand DNA–DNA cross-link between abasic (Ap) sites and 2′-deoxyadenosine (dA) residues was recently reported, but the chemical structure and properties of this lesion were not rigorously established. Here we characterized the nucleoside cross-link remnant released by enzymatic digestion of duplex DNA containing the dA-Ap cross-link. A synthetic standard was prepared for the putative nucleoside cross-link remnant 6 in which the anomeric carbon of the 2-deoxyribose residue was connected to the exocyclic N6-amino group of dA. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that the synthetic material 6 matched the authentic cross-link remnant released by enzymatic digestion of cross-linked DNA. These findings establish the chemical structure of the dA-Ap cross-link released from duplex DNA and may provide methods for the detection of this lesion in cellular DNA. Both the nucleoside cross-link remnant 6 and the cross-link in duplex DNA were quite stable at pH 7 and 37°C, suggesting that the dA-Ap cross-link could be a persistent lesion with the potential to block the action of various DNA processing enzymes. PMID:25779045

  1. Multilayer structured polymer light emitting diodes with cross-linked polymer matrices

    NASA Astrophysics Data System (ADS)

    Zhou, Zhang-Lin; Sheng, Xia; Nauka, K.; Zhao, Lihua; Gibson, Gary; Lam, Sity; Yang, Chung Ching; Brug, James; Elder, Rich

    2010-01-01

    Currently, there is great interest in manufacturing multilayer polymer light emitting diode (PLED) structures via low-cost solution-based spin-casting or printing methods. The difficulty with this approach is that solvent from freshly deposited films often dissolves the underlying layers. This letter demonstrates that fully operational multilayer PLED structures can be fabricated via a solution process by embedding the hole transport material in cross-linked inert polymer matrices that protect the functional material while subsequent layers are deposited using the same solvent. The resulting devices exhibited greatly improved quantum efficiency compared with devices that did not employ cross-linked polymer matrices.

  2. Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase.

    PubMed

    Chen, Yukun; Yuan, Daosheng; Xu, Chuanhui

    2014-03-26

    We prepared a biobased material, dynamically vulcanized polylactide (PLA)/natural rubber (NR) blend in which the cross-linked NR phase owned a continuous network-like dispersion. This finding breaks the traditional concept of a sea-island morphology formed after dynamic vulcanization of the blends. The scan electron microscopy and dissolution/swell experiments provided the direct proof of the continuous cross-linked NR phase. This new biobased PLA/NR blend material with the novel structure is reported for the first time in the field of dynamic vulcanization and shows promise for development for various functional applications. PMID:24621374

  3. Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase.

    PubMed

    Chen, Yukun; Yuan, Daosheng; Xu, Chuanhui

    2014-03-26

    We prepared a biobased material, dynamically vulcanized polylactide (PLA)/natural rubber (NR) blend in which the cross-linked NR phase owned a continuous network-like dispersion. This finding breaks the traditional concept of a sea-island morphology formed after dynamic vulcanization of the blends. The scan electron microscopy and dissolution/swell experiments provided the direct proof of the continuous cross-linked NR phase. This new biobased PLA/NR blend material with the novel structure is reported for the first time in the field of dynamic vulcanization and shows promise for development for various functional applications.

  4. Method of Cross-Linking Aerogels Using a One-Pot Reaction Scheme

    NASA Technical Reports Server (NTRS)

    Meador, Ann B.; Capadona, Lynn A.

    2008-01-01

    A document discusses a new, simplified method for cross-linking silica and other oxide aerogels, with a polymeric material to increase strength of such materials without adversely affecting porosity or low density. This innovation introduces the polymer precursor into the sol before gelation either as an agent, which co-reacts with the oxide gel, or as soluble polymer precursors, which do not interact with the oxide gel in any way. Subsequent exposure to heat, light, catalyst or other method of promoting polymerization causes cross-linking without any additional infiltration steps.

  5. Durability of highly cross-linked polyethylene in total hip and total knee arthroplasty.

    PubMed

    Dion, Neil T; Bragdon, Charles; Muratoglu, Orhun; Freiberg, Andrew A

    2015-07-01

    This article reviews the history of the development of highly cross-linked polyethylene and provides an in-depth review of the clinical results regarding the durability of highly cross-linked polyethylene (HXLPE) used in total hip arthroplasty (THA) and total knee arthroplasty (TKA). The use of polyethylene as a bearing surface has contributed to the success of THA and TKA; however, polyethylene wear and osteolysis can lead to failure. Ongoing clinical and retrieval studies are required to analyze outcomes at longer-term follow-up.

  6. Cross-linking and modification of cytochrome c with redox-active metal complexes

    SciTech Connect

    Lukes, A.

    1991-05-02

    This thesis consists of two parts. The first part shows that a redox-active trinuclear metal cluster may be used as a cross-linking reagent for proteins. Electron transfer is observed in the protein oligomers. The second part involves labelling the cysteine residue of baker's yeast cytochrome c with chloromercuriferrocene. Chloromercuriferrocene reacts with cytochrome c in two interesting ways. Symmetrization produces two products; two proteins cross-linked with mercury and diferrocenylmercury. Simple substitution of FeHgCl onto the protein followed by the addition of a proton by electrophilic substitution affords ferrocene and the mercuric chloride modified protein. 16 refs., 3 figs.

  7. Photoinduced intermolecular cross-linking of gas phase triacylglycerol lipid ions.

    PubMed

    Nie, Shuai; Pham, Huong T; Blanksby, Stephen J; Reid, Gavin E

    2015-01-01

    Complex mixtures of plant derived triglycerol (TG) lipids are commonly used as feedstock components for the production of industrial polymers. However, there remains a need for the development of analytical strategies to investigate the intrinsic intermolecular cross-linking reactivity of individual TG molecules within these mixtures as a function of their structures and physicochemical properties, and for the characterization of the resultant products. Here, to address this need, we describe a novel multistage tandem mass spectrometry based method for intermolecular cross-linking and subsequent structural characterization of TG lipid ions in the gas phase. Cross-linking reactions were initiated using 266 nm ultraviolet photodissociation tandem mass spectrometry (UVPD-MS/MS) of saturated or unsaturated TG dimers introduced via electrospray ionization into a linear ion trap mass spectrometer as noncovalent complexes with protonated 3,4-, 2,4- or 3,5- diiodoaniline (diIA). UVPD resulted in the initial formation of an anilinyl biradical via the sequential loss of two iodine radicals, which underwent further reaction to yield multiple cross-linked TG products along with competing noncross-linking processes. These chemistries are proposed to occur via sequential combinations of hydrogen abstraction (H-abstraction), radical addition and radical recombination. Multistage collision induced dissociation tandem mass spectrometry (CID-MS(n)) was used to obtain evidence for the structures and mechanisms of formation for these products, as a function of both the TG lipid and diIA ion structures. The efficiency of the UVPD reaction was shown to be dependent on the number of unsaturation sites present within the TG lipids. However, when unsaturation sites were present, formation of the cross-linked and noncross-linked product ions via H-abstraction and radical addition mechanisms was found to be competitive. Finally, the identity of the anilinyl biradical (e.g., 3,4- versus 2

  8. Chemical cross-linking of polypropylenes towards new shape memory polymers.

    PubMed

    Raidt, Thomas; Hoeher, Robin; Katzenberg, Frank; Tiller, Joerg C

    2015-04-01

    In this work, syndiotactic polypropylene (sPP) as well as isotactic polypropylene (iPP) are cross-linked to gain a shape memory effect. Both prepared PP networks exhibit maximum strains of 700%, stored strains of up to 680%, and recoveries of nearly 100%. While x-iPP is stable for many cycles, x-sPP ruptures after the first shape-memory cycle. It is shown by wide-angle X-ray scattering (WAXS) experiments that cross-linked iPP exhibits homoepitaxy in the temporary, stretched shape but in contrast to previous reports it contains a higher amount of daughter than mother crystals.

  9. Durability of highly cross-linked polyethylene in total hip and total knee arthroplasty.

    PubMed

    Dion, Neil T; Bragdon, Charles; Muratoglu, Orhun; Freiberg, Andrew A

    2015-07-01

    This article reviews the history of the development of highly cross-linked polyethylene and provides an in-depth review of the clinical results regarding the durability of highly cross-linked polyethylene (HXLPE) used in total hip arthroplasty (THA) and total knee arthroplasty (TKA). The use of polyethylene as a bearing surface has contributed to the success of THA and TKA; however, polyethylene wear and osteolysis can lead to failure. Ongoing clinical and retrieval studies are required to analyze outcomes at longer-term follow-up. PMID:26043046

  10. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis

    PubMed Central

    Spracklen, Andrew J.; Fagan, Tiffany N.; Lovander, Kaylee E.; Tootle, Tina L.

    2015-01-01

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools – Utrophin, Lifeact, and F-tractin – for characterizing the actin remodeling events occurring within the germline-derived nurse cells during Drosophila mid-oogenesis or follicle development. Specifically, we used the UAS/GAL4 system to express these tools at different levels and in different cells, and analyzed these tools for effects on fertility, alterations in the actin cytoskeleton, and ability to label filamentous actin (F-actin) structures by both fixed and live imaging. While both Utrophin and Lifeact robustly label F-actin structures within the Drosophila germline, when strongly expressed they cause sterility and severe actin defects including cortical actin breakdown resulting in multi-nucleate nurse cells, early F-actin filament and aggregate formation during stage 9 (S9), and disorganized parallel actin filament bundles during stage 10B (S10B). However, by using a weaker germline GAL4 driver in combination with a higher temperature, Utrophin can label F-actin with minimal defects. Additionally, strong Utrophin expression within the germline causes F-actin formation in the nurse cell nuclei and germinal vesicle during mid-oogenesis. Similarly, Lifeact expression results in nuclear F-actin only within the germinal vesicle. F-tractin expresses at a lower level than the other two labeling tools, but labels cytoplasmic F-actin structures well without causing sterility or striking actin defects. Together these studies reveal how critical it is to evaluate the utility of each actin labeling

  11. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis.

    PubMed

    Spracklen, Andrew J; Fagan, Tiffany N; Lovander, Kaylee E; Tootle, Tina L

    2014-09-15

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools--Utrophin, Lifeact, and F-tractin--for characterizing the actin remodeling events occurring within the germline-derived nurse cells during Drosophila mid-oogenesis or follicle development. Specifically, we used the UAS/GAL4 system to express these tools at different levels and in different cells, and analyzed these tools for effects on fertility, alterations in the actin cytoskeleton, and ability to label filamentous actin (F-actin) structures by both fixed and live imaging. While both Utrophin and Lifeact robustly label F-actin structures within the Drosophila germline, when strongly expressed they cause sterility and severe actin defects including cortical actin breakdown resulting in multi-nucleate nurse cells, early F-actin filament and aggregate formation during stage 9 (S9), and disorganized parallel actin filament bundles during stage 10B (S10B). However, by using a weaker germline GAL4 driver in combination with a higher temperature, Utrophin can label F-actin with minimal defects. Additionally, strong Utrophin expression within the germline causes F-actin formation in the nurse cell nuclei and germinal vesicle during mid-oogenesis. Similarly, Lifeact expression results in nuclear F-actin only within the germinal vesicle. F-tractin expresses at a lower level than the other two labeling tools, but labels cytoplasmic F-actin structures well without causing sterility or striking actin defects. Together these studies reveal how critical it is to evaluate the utility of each actin labeling tool

  12. Use of Proteinase K Nonspecific Digestion for Selective and Comprehensive Identification of Interpeptide Cross-links: Application to Prion Proteins*

    PubMed Central

    Petrotchenko, Evgeniy V.; Serpa, Jason J.; Hardie, Darryl B.; Berjanskii, Mark; Suriyamongkol, Bow P.; Wishart, David S.; Borchers, Christoph H.

    2012-01-01

    Chemical cross-linking combined with mass spectrometry is a rapidly developing technique for structural proteomics. Cross-linked proteins are usually digested with trypsin to generate cross-linked peptides, which are then analyzed by mass spectrometry. The most informative cross-links, the interpeptide cross-links, are often large in size, because they consist of two peptides that are connected by a cross-linker. In addition, trypsin targets the same residues as amino-reactive cross-linkers, and cleavage will not occur at these cross-linker-modified residues. This produces high molecular weight cross-linked peptides, which complicates their mass spectrometric analysis and identification. In this paper, we examine a nonspecific protease, proteinase K, as an alternative to trypsin for cross-linking studies. Initial tests on a model peptide that was digested by proteinase K resulted in a “family” of related cross-linked peptides, all of which contained the same cross-linking sites, thus providing additional verification of the cross-linking results, as was previously noted for other post-translational modification studies. The procedure was next applied to the native (PrPC) and oligomeric form of prion protein (PrPβ). Using proteinase K, the affinity-purifiable CID-cleavable and isotopically coded cross-linker cyanurbiotindipropionylsuccinimide and MALDI-MS cross-links were found for all of the possible cross-linking sites. After digestion with proteinase K, we obtained a mass distribution of the cross-linked peptides that is very suitable for MALDI-MS analysis. Using this new method, we were able to detect over 60 interpeptide cross-links in the native PrPC and PrPβ prion protein. The set of cross-links for the native form was used as distance constraints in developing a model of the native prion protein structure, which includes the 90–124-amino acid N-terminal portion of the protein. Several cross-links were unique to each form of the prion protein

  13. Use of proteinase K nonspecific digestion for selective and comprehensive identification of interpeptide cross-links: application to prion proteins.

    PubMed

    Petrotchenko, Evgeniy V; Serpa, Jason J; Hardie, Darryl B; Berjanskii, Mark; Suriyamongkol, Bow P; Wishart, David S; Borchers, Christoph H

    2012-07-01

    Chemical cross-linking combined with mass spectrometry is a rapidly developing technique for structural proteomics. Cross-linked proteins are usually digested with trypsin to generate cross-linked peptides, which are then analyzed by mass spectrometry. The most informative cross-links, the interpeptide cross-links, are often large in size, because they consist of two peptides that are connected by a cross-linker. In addition, trypsin targets the same residues as amino-reactive cross-linkers, and cleavage will not occur at these cross-linker-modified residues. This produces high molecular weight cross-linked peptides, which complicates their mass spectrometric analysis and identification. In this paper, we examine a nonspecific protease, proteinase K, as an alternative to trypsin for cross-linking studies. Initial tests on a model peptide that was digested by proteinase K resulted in a "family" of related cross-linked peptides, all of which contained the same cross-linking sites, thus providing additional verification of the cross-linking results, as was previously noted for other post-translational modification studies. The procedure was next applied to the native (PrP(C)) and oligomeric form of prion protein (PrPβ). Using proteinase K, the affinity-purifiable CID-cleavable and isotopically coded cross-linker cyanurbiotindipropionylsuccinimide and MALDI-MS cross-links were found for all of the possible cross-linking sites. After digestion with proteinase K, we obtained a mass distribution of the cross-linked peptides that is very suitable for MALDI-MS analysis. Using this new method, we were able to detect over 60 interpeptide cross-links in the native PrP(C) and PrPβ prion protein. The set of cross-links for the native form was used as distance constraints in developing a model of the native prion protein structure, which includes the 90-124-amino acid N-terminal portion of the protein. Several cross-links were unique to each form of the prion protein, including

  14. Bacterial Actins? An Evolutionary Perspective

    NASA Technical Reports Server (NTRS)

    Doolittle, Russell F.; York, Amanda L.

    2003-01-01

    According to the conventional wisdom, the existence of a cytoskeleton in eukaryotes and its absence in prokaryotes constitute a fundamental divide between the two domains of life. An integral part of the dogma is that a cytoskeleton enabled an early eukaryote to feed upon prokaryotes, a consequence of which was the occasional endosymbiosis and the eventual evolution of organelles. Two recent papers present compelling evidence that actin, one of the principal components of a cytoskeleton, has a homolog in Bacteria that behaves in many ways like eukaryotic actin. Sequence comparisons reveml that eukaryotic actin and the bacterial homolog (mreB protein), unlike many other proteins common to eukaryotes and Bacteria, have very different and more highly extended evolutionary histories.

  15. Solution structure of the calmodulin-like C-terminal domain of Entamoeba α-actinin2.

    PubMed

    Karlsson, Göran; Persson, Cecilia; Mayzel, Maxim; Hedenström, Mattias; Backman, Lars

    2016-04-01

    Cell motility is dependent on a dynamic meshwork of actin filaments that is remodelled continuously. A large number of associated proteins that are severs, cross-links, or caps the filament ends have been identified and the actin cross-linker α-actinin has been implied in several important cellular processes. In Entamoeba histolytica, the etiological agent of human amoebiasis, α-actinin is believed to be required for infection. To better understand the role of α-actinin in the infectious process we have determined the solution structure of the C-terminal calmodulin-like domain using NMR. The final structure ensemble of the apo form shows two lobes, that both resemble other pairs of calcium-binding EF-hand motifs, connected with a mobile linker. PMID:26800385

  16. The architecture of actin filaments and the ultrastructural location of actin-binding protein in the periphery of lung macrophages.

    PubMed

    Hartwig, J H; Shevlin, P

    1986-09-01

    cell cytoskeletons and of an actin gel made with actin-binding protein with anti-actin-binding protein IgG and anti-IgG-coated gold beads resulted in the deposition of clusters of gold at points where filaments intersect and at the ends of filaments that may have been in contact with the membrane before its removal with detergent. In the actin gel made with actin-binding protein, 75% of actin-fiber intersections labeled, and the filament spacing between intersections is consistent with that predicted on theoretical grounds if each added actin-binding protein molecule cross-links two filaments to form an intersection in the gel.(ABSTRACT TRUNCATED AT 400 WORDS)

  17. Reconstitution and regulation of actin gel-sol transformation with purified filamin and villin.

    PubMed

    Nunnally, M H; Powell, L D; Craig, S W

    1981-03-10

    Gel-sol transformation of actin filaments, a process essential for cell motility, can be reconstituted in vitro and regulated in a predictable fashion by the combined action of villin and filamin. Measurements made in a low shear falling ball viscometer show that mixtures of actin, villin, and filamin exist either as a gel (yield point greater than or equal to 140 dynes/cm2) or as a low viscosity liquid depending on the relative ration of villin:actin. Filamin induces gelation of F-actin by forming stable cross-links between actin filaments. Villin inhibits filamin-induced F-actin gelation, but the effect can be overcome by increasing the amount of filamin. Sedimentation assays show that villin does not inhibit gelation of actin by preventing filamin from binding to F-actin. Results from viscosity measurements and filament length determinations show that villin increases actin filament number by reducing the average filament length without altering the total amount of polymer. Because the gel point of a fixed amount of polymer is sharply dependent on the ratio of cross-links to number of polymers, the solation effect of villin might be explained by its effect on filament number. Based on the network theory of gel formation, calculations of the amount of additional cross-linker required to overcome the effect of a known increase in the number of actin filaments agree reasonably well with experimental findings. These results document the existence of cellular proteins which could regulate gel-sol transformation in vivo by their effect on actin polymer length and, therefore, on actin filament number.

  18. Analysis of rhodamine and fluorescein-labeled F-actin diffusion in vitro by fluorescence photobleaching recovery.

    PubMed Central

    Simon, J R; Gough, A; Urbanik, E; Wang, F; Lanni, F; Ware, B R; Taylor, D L

    1988-01-01

    Properties of filamentous acetamidofluorescein-labeled actin and acetamidotetramethylrhodamine-labeled actin (AF and ATR-actin, respectively) were examined to resolve discrepancies in the reported translational diffusion coefficients of F-actin measured in vitro by FPR and other techniques. Using falling-ball viscometry and two independent versions of fluorescence photobleaching recovery (FPR), the present data indicate that several factors are responsible for these discrepancies. Gel filtration chromatography profoundly affects the viscosity of actin solutions and filament diffusion coefficients. ATR-actin and, to a lesser degree, AF-actin show a reduction in viscosity in proportion to the fraction labeled, presumably due to filament shortening. Actin filaments containing AF-actin or ATR-actin are susceptible to photoinduced damage, including a covalent cross-linking of actin protomers within filaments and an apparent cleavage of filaments detected by a decrease of the measured viscosity and an increase in the measured filament diffusion coefficients. Quantum yields of the two photoinduced effects are quite different. Multiple cross-links are produced relative to each photobleaching event, whereas less than 1% filament cleavage occurs. Substantial differences in the filament diffusion coefficients measured by FPR are also the result of differences in illumination geometry and sampling time. However, under controlled conditions, FPR can be used as a quantitative tool for measuring the hydrodynamic properties of actin filaments. Incremented filament shortening caused by photoinduced cleavage or incremental addition of filament capping proteins produces a continuous and approximately linear increase of filament diffusion coefficients, indicating that filaments are not associated in solution. Our results indicate that actin filaments exhibit low mobilities and it is inferred that actin filaments formed in vitro by column-purified actin, under standard conditions, are

  19. Gauging and Tuning Cross-Linking Kinetics of Catechol-PEG Adhesives via Catecholamine Functionalization.

    PubMed

    Paez, Julieta I; Ustahüseyin, Oya; Serrano, Cristina; Ton, Xuan-Anh; Shafiq, Zahid; Auernhammer, Günter K; d'Ischia, Marco; del Campo, Aránzazu

    2015-12-14

    The curing time of an adhesive material is determined by the polymerization and cross-linking kinetics of the adhesive formulation and needs to be optimized for the particular application. Here, we explore the possibility of tuning the polymerization kinetics and final mechanical properties of tissue-adhesive PEG gels formed by polymerization of end-functionalized star-PEGs with catecholamines with varying substituents. We show strong differences in cross-linking time and cohesiveness of the final gels among the catecholamine-PEG variants. Installation of an electron-withdrawing but π-electron donating chloro substituent on the catechol ring resulted in faster and more efficient cross-linking, while opposite effects were observed with the strongly electron-withdrawing nitro group. Chain substitution slowed down the kinetics and hindered cross-linking due either to chain breakdown (β-OH group, in norepinephrine) or intramolecular cyclization (α-carboxyl group, in DOPA). Interesting perspectives derive from use of mixtures of catecholamine-PEG precursors offering further opportunities for fine-tuning of the curing parameters. These are interesting properties for the application of catecholamine-PEG gels as tissue glues or biomaterials for cell encapsulation. PMID:26583428

  20. Cytotoxicity and internalization of Pluronic micelles stabilized by core cross-linking.

    PubMed

    Arranja, Alexandra; Schroder, André P; Schmutz, Marc; Waton, Gilles; Schosseler, François; Mendes, Eduardo

    2014-12-28

    A UV-cross-linkable agent was incorporated and polymerized in Pluronic micelle core to create an interpenetrating polymer network (IPN) of poly(pentaerythritol tetraacrylate). This stabilization prevented micelle disruption below the critical micelle temperature (CMT) and concentration (CMC), while maintaining the integrity of the PEO corona and the hydrophobic properties of the PPO core. The prepared stabilized spherical micelles of Pluronic P94 and F127 presented hydrodynamic diameters ranging from 40 to 50 nm. The stability of cross-linked Pluronic micelles at 37 °C in the presence of serum proteins was studied and no aggregation of the micelles was observed, revealing the colloidal stability of the system. Cytotoxicity experiments in NIH/3T3 mouse fibroblasts revealed that the presence of the cross-linking agent did not induce any further toxicity in comparison to the respective pure polymer solutions. Furthermore, stabilized micelles of Pluronic P94 were shown to be less toxic than the polymer itself. A hydrophobic fluorescent probe (Nile red) was absorbed in the cross-linked core of pre-stabilized micelles to mimic the incorporation of a poorly water-soluble drug, and the internalization and intracellular localization of Nile red was studied by confocal microscopy at different incubation times. Overall, the results indicate that Pluronic micelles stabilized by core cross-linking are capable of delivering hydrophobic components physically entrapped in the micelles, thus making them a potential candidate as a delivery platform for imaging or therapy of cancer.

  1. Effect of the cross-linking density on the thermoresponsive behavior of hollow PNIPAM microgels.

    PubMed

    Contreras-Cáceres, Rafael; Schellkopf, Leonard; Fernández-López, Cristina; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge; Stamm, Manfred

    2015-01-27

    We report on the fabrication of thermally responsive hollow pNIPAM particles through the oxidation of the metal core in an Au@pNIPAM system. The selective oxidation of the Au core is achieved by addition of AuCl4(-) to an aqueous dispersion of Au@pNIPAM particles in the presence of cetyltrimethylammonium bromide (CTAB). We fabricate hollow pNIPAM particles with three cross-linking densities (N,N'-methylenebis(acrylamide), BA, at 5%, 10%, and 17.5%). The study of the effect of the amount of BA within the microgel network was performed by dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM), showing its key role in determining the final hollow structure and thermal response. While the thermal responsiveness is largely achieved at low cross-linking densities, the hollow structure only remains at larger cross-linking densities. This was further confirmed by cryo-TEM analysis of hollow pNIPAM particles below and above the volume phase transition temperature (VPTT). Thus, it clearly shows (i) the shrinking of particle size with the temperature at low cross-linking density and (ii) the dependence of particle size on the amount of cross-linker for the final hollow pNIPAM structure. Observed differences in the hollow pNIPAM structure are attributed to different elastic contributions (Π(elas)), showing higher elasticity for microgels synthesized at lower amount of BA.

  2. Direct Patterning of Organic Functional Polymers through Conventional Photolithography and Noninvasive Cross-Link Agents.

    PubMed

    Squillaci, Marco A; Qiu, Feng; Aliprandi, Alessandro; Zhang, Fan; Feng, Xinliang; Samorì, Paolo

    2016-07-01

    A new technique for direct patterning of functional organic polymers using commercial photolithography setups with a minimal loss of the materials' performances is reported. This result is achieved through novel cross-link agents made by boron- and fluorine-containing heterocycles that can react between themselves upon UV- and white-light exposure.

  3. Cross-linking oppositely charged oil-in-water emulsions to enhance heteroaggregate stability.

    PubMed

    Maier, Christiane; Oechsle, Anja M; Weiss, Jochen

    2015-11-01

    The formation and subsequent enzymatic and chemical cross-linking of heteroaggregates from oppositely charged oil-in-water (O/W) emulsions was investigated. For this purpose, 10% (w/w) oil-in-water emulsions (d43<1 μm) were prepared at pH 4 using a positively charged emulsifier (Nα-lauroyl-L-arginine ethyl ester (LAE), cold water fish gelatin, or whey protein isolate) or a negatively charged one (sugar beet pectin or Quillaja saponins). The oppositely charged emulsions were then combined at a volume ratio of 1:1 and treated with laccase or glutaraldehyde in order to further stabilize the electrostatically attached aggregates by covalently cross-linking the oppositely charged membranes. Emulsions and heteroaggregates were characterized by their rheological properties, their surface charge, particle size distribution, and microstructure using dynamic and static light scattering as well as confocal laser scanning microscopy. Prior to cross-linking, the emulsifiers' stabilization mechanism were found to greatly influence the formation of heteroaggregates. Laccase treatment (1.34 mU/mL) increased aggregate expansion by ca. 30% for the combined emulsions stabilized by Quillaja saponins/whey protein isolate, while combined Quillaja saponins/fish gelatin stabilized emulsions remained unaffected. When combined emulsions were treated with 50mM glutaraldehyde, aggregate size significantly increased 2- and 3-fold, respectively. Thus, our study provides novel insights into the enzymatic and chemical cross-linking of heteroaggregates composed of oppositely charged O/W emulsions.

  4. The counterbend phenomenon in flagellar axonemes and cross-linked filament bundles.

    PubMed

    Gadêlha, Hermes; Gaffney, Eamonn A; Goriely, Alain

    2013-07-23

    Recent observations of flagellar counterbend in sea urchin sperm show that the mechanical induction of curvature in one part of a passive flagellum induces a compensatory countercurvature elsewhere. This apparent paradoxical effect cannot be explained using the standard elastic rod theory of Euler and Bernoulli, or even the more general Cosserat theory of rods. Here, we develop a geometrically exact mechanical model to describe the statics of microtubule bundles that is capable of predicting the curvature reversal events observed in eukaryotic flagella. This is achieved by allowing the interaction of deformations in different material directions, by accounting not only for structural bending, but also for the elastic forces originating from the internal cross-linking mechanics. Large-amplitude static configurations can be described analytically, and an excellent match between the model and the observed counterbend deformation was found. This allowed a simultaneous estimation of multiple sperm flagellum material parameters, namely the cross-linking sliding resistance, the bending stiffness, and the sperm head junction compliance ratio. We further show that small variations on the empirical conditions may induce discrepancies for the evaluation of the flagellar material quantities, so that caution is required when interpreting experiments. Finally, our analysis demonstrates that the counterbend emerges as a fundamental property of sliding resistance in cross-linked filamentous polymer bundles, which also suggests that cross-linking proteins may contribute to the regulation of the flagellar waveform in swimming sperm via counterbend mechanics. PMID:23824293

  5. Stabilization of soybean oil bodies by enzyme (laccase) cross-linking of adsorbed beet pectin coatings.

    PubMed

    Chen, Bingcan; McClements, David Julian; Gray, David A; Decker, Eric Andrew

    2010-08-25

    Soybean oil bodies are naturally coated by a layer of phospholipids and oleosin proteins, which protect them from in vivo environmental stresses. When oil bodies are incorporated into food products, they encounter new environmental stresses such as changes in pH, ionic strength, and temperature. Consequently, additional protection mechanisms are often needed to stabilize them. The purpose of this study was to determine whether soybean oil bodies could be stabilized by coating them with a layer of cross-linked anionic polysaccharide (beet pectin). The beet pectin layer was cross-linked via its ferulic acid groups using laccase (an enzyme that catalyzes the oxidation of phenolic groups). Oil body suspensions were prepared that contained 1 wt % oil and 0.06 wt % beet pectin at pH 7 and were then adjusted to pH 4.5 to promote electrostatic deposition of the beet pectin molecules onto the surfaces of the oil bodies. Laccase was then added to promote cross-linking of the adsorbed beet pectin layer. Cross-linked pectin-coated oil bodies had similar or better stability than uncoated oil bodies to pH changes (3 to 7), NaCl addition (0 to 500 mM), and freeze-thaw cycling (-20 °C for 22 h; +40 °C for 2 h). These pectin-coated oil bodies may provide a convenient means of incorporating soybean oil into food and other products.

  6. Endogenous and enhanced oxidative cross-linking in wheat flour mill streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The oxidative cross-linking of arabinoxylan and protein polymers is partially responsible for variation in end-use quality of wheat flour; specifically, differences in batter viscosity as well as variation in bread and cookie quality. A better understanding of the variation in oxidative cross-linkin...

  7. Baking Performance of Phosphorylated Cross-Linked Resistant Starch in Low-Moisture Bakery Goods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorylated cross-linked resistant starch (RS) is a type 4 RS, which can be used for enhancing the benefits of dietary fiber. The baking performance of the RS was explored using wire-cut cookie baking and benchtop chemically-leavened cracker baking methods to produce low-moisture baked goods (coo...

  8. Is dialdehyde starch a valuable cross-linking agent for collagen/elastin based materials?

    PubMed

    Skopinska-Wisniewska, J; Wegrzynowska-Drzymalska, K; Bajek, A; Maj, M; Sionkowska, A

    2016-04-01

    Collagen and elastin are the main structural proteins in mammal bodies. They provide mechanical support, strength, and elasticity to various organs and tissues, e.g. skin, tendons, arteries, and bones. They are readily available, biodegradable, biocompatible and they stimulate cell growth. The physicochemical properties of collagen and elastin-based materials can be modified by cross-linking. Glutaraldehyde is one of the most efficient cross-linking agents. However, the unreacted molecules can be released from the material and cause cytotoxic reactions. Thus, the aim of our work was to investigate the influence of a safer, macromolecular cross-linking agent--dialdehyde starch (DAS). The properties of hydrogels based on collagen/elastin mixtures (95/5, 90/10) containing 5 and 10% of DAS and neutralized via dialysis against deionized water were tested. The homogenous, transparent, stiff hydrogels were obtained. The DAS addition causes the formation of intermolecular cross-linking bonds but does not affect the secondary structure of the proteins. As a result, the thermal stability, mechanical strength, and, surprisingly, swelling ability increased. At the same time, the surface properties test and in vitro study show that the materials are attractive for 3T3 cells. Moreover, the materials containing 10% of DAS are more resistant to enzymatic degradation.

  9. Cross-linking carbon nanotubes by glycidyl azide polymer via click chemistry.

    PubMed

    Wei, Zhong; Du, Liang; Wang, Lin

    2012-01-01

    Functionalization and cross linking of carbon nanotubes was necessary to fabricate nanotube composites with good interfacial properties and mechanical performance. Glycidyl azide polymer was used as cross-linker of carbon nanotubes via a simple clickable one step reaction initiated by decomposition of azide groups. Both heating and UV irradiation were used to carry out the reaction. FTIR and Raman spectra confirmed the decomposition of azide groups and the anchoring of glycidyl azide polymer onto the surface of carbon nanotubes. Thermal gravity analysis showed that the polymer anchored onto carbon nanotubes was about 10% of the total mass in the solid product, but the efficiency of the reaction was low. The result of tensile test using bulky paper infiltrated with 10% GAP showed that cross linking could bring forth a higher strength, about 4 times higher than the not cross linked. The success of cross linking carbon nanotubes by glycidyl azide polymer paves a new way to fabrication of ultra strong carbon nanotube composites.

  10. ROMP-based thermosetting polymers from modified castor oil with various cross-linking agents

    NASA Astrophysics Data System (ADS)

    Ding, Rui

    Polymers derived from bio-renewable resources are finding an increase in global demand. In addition, polymers with distinctive functionalities are required in certain advanced fields, such as aerospace and civil engineering. In an attempt to meet both these needs, the goal of this work aims to develop a range of bio-based thermosetting matrix polymers for potential applications in multifunctional composites. Ring-opening metathesis polymerization (ROMP), which recently has been explored as a powerful method in polymer chemistry, was employed as a unique pathway to polymerize agricultural oil-based reactants. Specifically, a novel norbornyl-functionalized castor oil alcohol (NCA) was investigated to polymerize different cross-linking agents using ROMP. The effects of incorporating dicyclopentadiene (DCPD) and a norbornene-based crosslinker (CL) were systematically evaluated with respect to curing behavior and thermal mechanical properties of the polymers. Isothermal differential scanning calorimetry (DSC) was used to investigate the conversion during cure. Dynamic DSC scans at multiple heating rates revealed conversion-dependent activation energy by Ozawa-Flynn-Wall analysis. The glass transition temperature, storage modulus, and loss modulus for NCA/DCPD and NCA/CL copolymers with different cross-linking agent loading were compared using dynamic mechanical analysis. Cross-link density was examined to explain the very different dynamic mechanical behavior. Mechanical stress-strain curves were developed through tensile test, and thermal stability of the cross-linked polymers was evaluated by thermogravimetric analysis to further investigate the structure-property relationships in these systems.

  11. Cross-Linked Nanoporous Materials from Reactive and Multifunctional Block Polymers

    SciTech Connect

    Seo, Myungeun; Amendt, Mark A.; Hillmyer, Marc A.

    2012-10-10

    Polylactide-b-poly(styrene-co-2-hydroxyethylmethacrylate) (PLA-b-P(S-co-HEMA)) and polylactide-b-poly(styrene-co-2-hydroxyethylacrylate) (PLA-b-P(S-co-HEA)) were synthesized by combination of ring-opening polymerization and reversible addition-fragmentation chain transfer polymerization. {sup 1}H nuclear magnetic resonance spectroscopy and size exclusion chromatography data indicated that the polymerizations were controlled and that hydroxyl groups were successfully incorporated into the block polymers. The polymers were reacted with 4,4{prime}-methylenebis(phenyl isocyanate) (MDI) to form the corresponding cross-linked materials. The materials were annealed at 150 C to complete the coupling reaction. Robust nanoporous materials were obtained from the cross-linked polymers by treatment with aqueous base to hydrolyze the PLA phase. Small-angle X-ray scattering study combined with scanning electron microscopy showed that MDI-cross-linked PLA-b-P(S-co-HEMA)/PLA-b-P(S-co-HEA) can adopt lamellar, hexagonally perforated lamellar, and hexagonally packed cylindrical morphologies after annealing. In particular, the HPL morphology was found to evolve from lamellae due to increase in volume fraction of PS phase as MDI reacted with hydroxyl groups. The reaction also kinetically trapped the morphology by cross-linking. Bicontinuous morphologies were also observed when dibutyltin dilaurate was added to accelerate reaction between the polymer and MDI.

  12. Surface fabrication of hollow microspheres from N-methylated chitosan cross-linked with glutaraldehyde.

    PubMed

    Peng, Xianghong; Zhang, Lina

    2005-02-01

    We have successfully prepared biocompatible and biodegradable hollow microspheres with sizes between 2 and 5 mum using cyclohexane droplets as a template and the N-methylated chitosan (NMC) cross-linked with glutaraldehyde (GA) as the shell. The structure, morphology, and formation process of the hollow microspheres were characterized by FT-IR, (1)H and (13)C NMR, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results revealed that the microspheres exhibited a very smooth and hollow structure. This work confirmed that the hollow microspheres were accomplished by fabricating on the basis of chemical cross-linking on the surface of the emulsion droplets and by removing cyclohexane as core. The results from SEM and TEM indicated that the emulsion droplets covered with cross-linked NMC in the oil-in-water system aggregated together to form a precipitate of microspheres by coagulating with acetone. Moreover, the cross-linked NMC on the surface of the microspheres continuously cured to form the tight shell, whereas the inner area became a cavity with increase of the aging time, leading to the hollow microspheres. In addition, an anti-infective drug, ofloxacin (Floxin), encapsulated in the microspheres more rapidly released to reach 90 wt % at pH 7.4 within 8 h than at pH 1.2.

  13. Aggressive wear testing of a cross-linked polyethylene in total knee arthroplasty.

    PubMed

    Muratoglu, Orhun K; Bragdon, Charles R; O'Connor, Daniel O; Perinchief, Rebecca S; Jasty, Murali; Harris, William H

    2002-11-01

    Recently, highly cross-linked polyethylenes with high wear and oxidation resistance have been developed. These materials may improve the in vivo performance of polyethylene components used in total knee arthroplasty. To date, the in vitro knee wear testing of these new polyethylenes has been done under conditions of normal gait. However, their critical assessment also must include aggressive in vitro fatigue and wear testing. In the current study, an aggressive in vitro knee wear and device fatigue model simulating a tight posterior cruciate ligament balance during stair climbing was developed and used to assess the performance of one type of highly cross-linked polyethylene tibial knee insert in comparison with conventional polyethylene. The highly cross-linked inserts and one group of conventional inserts were tested after sterilization. One additional group of conventional inserts was subjected to accelerated aging before testing. The articular surfaces of the inserts were inspected visually for surface delamination, cracking, and pitting at regular intervals during the test. The aged conventional polyethylene inserts showed extensive delamination and cracking as early as 50,000 cycles. In contrast, the unaged conventional and highly cross-linked polyethylene inserts did not show any subsurface cracking or delamination at 0.5 million cycles. The appearance and location of delamination that occurred in the aged conventional inserts tested with the current model previously have been observed in vivo with posterior cruciate-sparing design knee arthroplasties with a tight posterior cruciate ligament.

  14. Dynamic Heterogeneity in Highly Cross-linked Epoxy in the Vicinity of Glass Transition

    NASA Astrophysics Data System (ADS)

    Lin, Po-Han; Khare, Rajesh

    2010-03-01

    Cross-linked epoxy has been widely used in aerospace and electronics industries. The highly cross-linked nature of these systems leads to different chain dynamics as compared to the linear polymeric systems. In this work, we have used molecular dynamics (MD) simulations to study the dynamic heterogeneity in cross-linked epoxy near the glass transition temperature. Well-relaxed atomistic models of cross-linked epoxy were first created by employing the simulated annealing polymerization approach. The specific epoxy system studied consisted of diglycidyl ether of bisphenol-A (DGEBA) as the epoxy monomer and trimethylene glycol di-p-aminobenzoate (TMAB) as the cross-linker. The glass transition temperature of these model structures was determined from MD simulation by monitoring their volume-temperature behaviour in a stepwise cooling run. The chain dynamics of these systems were characterized by their local translational and orientational mobility. Furthermore, dynamic heterogeneity was studied by analyzing the spatial distribution of the mobile and immobile atoms in the system near the glass transition temperature.

  15. Preferential sites for intramolecular glucosepane cross-link formation in type I collagen: A thermodynamic study

    PubMed Central

    Collier, Thomas A.; Nash, Anthony; Birch, Helen L.; de Leeuw, Nora H.

    2015-01-01

    The extracellular matrix (ECM) undergoes progressive age-related stiffening and loss of proteolytic digestibility due to an increase in concentration of advanced glycation end products (AGEs). The most abundant AGE, glucosepane, accumulates in collagen with concentrations over 100 times greater than all other AGEs. Detrimental collagen stiffening properties are believed to play a significant role in several age-related diseases such as osteoporosis and cardiovascular disease. Currently little is known of the potential location of covalently cross-linked glucosepane formation within collagen molecules; neither are there reports on how the respective cross-link sites affect the physical and biochemical properties of collagen. Using fully atomistic molecular dynamics simulations (MD) we have identified six sites where the formation of a covalent intra-molecular glucosepane cross-link within a single collagen molecule in a fibrillar environment is energetically favourable. Identification of these favourable sites enables us to align collagen cross-linking with experimentally observed changes to the ECM. For example, formation of glucosepane was found to be energetically favourable within close proximity of the Matrix Metalloproteinase-1 (MMP1) binding site, which could potentially disrupt collagen degradation. PMID:26049074

  16. Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin.

    PubMed

    Cui, Li; Jia, Junfang; Guo, Yi; Liu, Yun; Zhu, Ping

    2014-01-01

    The interpenetrating polymer networks (IPN) hydrogels based on chitosan and gelatin using genipin as the cross-linker were prepared and characterized. The IPN formation of the genipin-cross-linked chitosan/gelatin hydrogel was confirmed by means of the instrinsic viscosity measurement, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and the ninhydrin assays. The instrinsic viscosity measurement, FT-IR and SEM suggested that chitosan and gelatin were miscible in the molecular level. The miscibility leads to the formation of IPN after cross-linking. FT-IR also examined the cross-linking mechanism of genipin with primary amino groups. The degree of cross-linking increased with increase genipin concentration. Swelling results revealed that the IPN hydrogels are pH-sensitive, exhibiting reversibility and rather rapidly response in swelling to pH changes. It is expected this IPN hydrogel has potential as controlled drug delivery system or as alternative sorbents for biomedical and environmental use as pH altered. PMID:24274476

  17. Spine fusion cross-link causing delayed dural erosion and CSF leak: case report.

    PubMed

    Rahmathulla, Gazanfar; Deen, H Gordon

    2015-04-01

    The past 2 decades have seen a considerable increase in the number of lumbar spinal fusion surgeries. To enhance spinal stabilization and fusion, make the construct resistant to or stiffer for axial stress loading, lateral bending, and torsional stresses, cross-links and connectors were designed and included in a rod-screw construct. The authors present the case of a 49-year-old woman who presented 11 years after undergoing an L4-5 decompression and fusion in which a pedicle screw-rod construct with an integrated cross-link was designed to attach onto the pedicle screws. The patient's response at the time to the initial surgery was excellent; however, at the time of presentation 11 years later, she had significant postural headaches, severe neurogenic claudication, and radiculopathy. Imaging revealed canal compression across the instrumented levels and a possible thickened adherent filum terminale. Reexploration of the level revealed a large erosive dural defect with a CSF leak, spinal canal compression, and a thickened filum at the level of the cross-link. To the author's knowledge, such complications have not been reported in literature. The authors discuss this rare complication of spinal fusion and the need to avoid dural compression when cross-links are used. PMID:25635637

  18. Effects of mechanical stretch on collagen and cross-linking in engineered blood vessels.

    PubMed

    Solan, Amy; Dahl, Shannon L M; Niklason, Laura E

    2009-01-01

    It has been shown that mechanical stimulation affects the physical properties of multiple types of engineered tissues. However, the optimum regimen for applying cyclic radial stretch to engineered arteries is not well understood. To this end, the effect of mechanical stretch on the development of engineered blood vessels was analyzed in constructs grown from porcine vascular smooth muscle cells. Cyclic radial distension was applied during vessel culture at three rates: 0 beats per minute (bpm), 90 bpm, and 165 bpm. At the end of the 7-week culture period, harvested vessels were analyzed with respect to physical characteristics. Importantly, mechanical stretch at 165 bpm resulted in a significant increase in rupture strength in engineered constructs over nonstretched controls. Stress-strain data and maximal elastic moduli from vessels grown at the three stretch rates indicate enhanced physical properties with increasing pulse rate. In order to investigate the role of collagen cross-linking in the improved mechanical characteristics, collagen cross-link density was quantified by HPLC. Vessels grown with mechanical stretch had somewhat more collagen and higher burst pressures than nonpulsed control vessels. Pulsation did not increase collagen cross-link density. Thus, increased wall thickness and somewhat elevated collagen concentrations, but not collagen cross-link density, appeared to be responsible for increased burst strength.

  19. Phase diagram of selectively cross-linked block copolymers shows chemically microstructured gel.

    PubMed

    von der Heydt, Alice; Zippelius, Annette

    2015-02-01

    We study analytically the intricate phase behavior of cross-linked AB diblock copolymer melts, which can undergo two main phase transitions due to quenched random constraints. Gelation, i.e., spatially random localisation of polymers forming a system-spanning cluster, is driven by increasing the number parameter μ of irreversible, type-selective cross-links between random pairs of A blocks. Self-assembly into a periodic pattern of A/B-rich microdomains (microphase separation) is controlled by the AB incompatibility χ inversely proportional to temperature. Our model aims to capture the system's essential microscopic features, including an ensemble of random networks that reflects spatial correlations at the instant of cross-linking. We identify suitable order parameters and derive a free-energy functional in the spirit of Landau theory that allows us to trace a phase diagram in the plane of μ and χ. Selective cross-links promote microphase separation at higher critical temperatures than in uncross-linked diblock copolymer melts. Microphase separation in the liquid state facilitates gelation, giving rise to a novel gel state whose chemical composition density mirrors the periodic AB pattern. PMID:25662662

  20. Experimental scleral cross-linking increases glaucoma damage in a mouse model

    PubMed Central

    Kimball, Elizabeth C.; Nguyen, Cathy; Steinhart, Matthew R.; Nguyen, Thao D.; Pease, Mary E.; Oglesby, Ericka N.; Oveson, Brian C.; Quigley, Harry A.

    2014-01-01

    The purpose of this study was to assess the effect of a scleral cross-linking agent on susceptibility to glaucoma damage in a mouse model. CD1 mice underwent 3 subconjunctival injections of 0.5 M glyceraldehyde (GA) in 1 week, then had elevated intraocular pressure (IOP) induced by bead injection. Degree of cross-linking was measured by enzyme-linked immunosorbent assay (ELISA), scleral permeability was measured by fluorescence recovery after photobleaching (FRAP), and the mechanical effects of GA exposure were measured by inflation testing. Control mice had buffer injection or no injection in 2 separate glaucoma experiments. IOP was monitored by Tonolab and retinal ganglion cell (RGC) loss was measured by histological axon counting. To rule out undesirable effects of GA, we performed electroretinography and detailed histology of the retina. GA exposure had no detectable effects on RGC number, retinal structure or function either histologically or electrophysiologically. GA increased cross-linking of sclera by 37% in an ELISA assay, decreased scleral permeability (FRAP, p = 0.001), and produced a steeper pressure—strain behavior by in vitro inflation testing. In two experimental glaucoma experiments, GA-treated eyes had greater RGC axon loss from elevated IOP than either buffer-injected or control eyes, controlling for level of IOP exposure over time (p = 0.01, and 0.049, multivariable regression analyses). This is the first report that experimental alteration of the sclera, by cross-linking, increases susceptibility to RGC damage in mice. PMID:25285424

  1. Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch.

    PubMed

    Hazarika, Bidyut Jyoti; Sit, Nandan

    2016-04-20

    Dual modification of taro starch by hydroxypropylation and cross-linking was carried out and the properties of the modified starches were investigated. Two different levels of hydroxypropylation (5 and 10%) and cross-linking (0.05 and 0.10%) were used in different sequences. The amylose contents of the starch decreased due to single and dual modification. For the dual-modified starches, the swelling, solubility and clarity was found to increase with level of hydroxypropylation and decrease with level of cross-linking. The freeze-thaw stability of the dual-modified starches was also affected by the sequence of modification. The viscosities of the cross-linked and dual-modified starches were more than native and hydroxypropylated starches. The firmness of the dual-modified starches was also higher than native and single modified starches. The dual-modified starches have benefits of both type of modifications and could be used for specific purposes e.g. food products requiring high viscosity as well as freeze-thaw stability. PMID:26876854

  2. Design of phosphated cross-linked microspheres of bael fruit gum as a biodegradable carrier.

    PubMed

    Mahammed, Nawaz; Gowda, D V; Deshpande, Rohan D; Thirumaleshwar, Shailesh

    2015-01-01

    Present work was aimed at designing of phosphated cross-linked microspheres of bael fruit gum (BFG) by emulsification method using sodium-tri-meta phosphate as a cross-linking agent for treatment of colon cancer using 5-fluorouracil as model drug. Stirring speed was found to be 1,000 rpm for about 5 h to be optimal to obtain reproducible microspheres. It was found that there is an increase in particle size as polymer concentration is increased whereas a reduction in particle size was observed as there is increase in stirring speed. Cross-linked BFG microspheres were successfully prepared by emulsification method. Optimum surfactant concentration was found to be 2 % w/w. Scanning electron microscopy studies showed that the drug-loaded microspheres were non-aggregated and in spherical shape. Differential scanning calorimetry and Fourier transform infrared-spectroscopy studies showed that drug and excipients are compatible. Release studies showed that drug release was more profound in cecal medium induced with enzymes causing degradation of the cross linked BFG than that of the release showed in simulated intestinal fluid. Stability studies showed that there were no significant changes in the drug content and physical appearance of microspheres.

  3. Is dialdehyde starch a valuable cross-linking agent for collagen/elastin based materials?

    PubMed

    Skopinska-Wisniewska, J; Wegrzynowska-Drzymalska, K; Bajek, A; Maj, M; Sionkowska, A

    2016-04-01

    Collagen and elastin are the main structural proteins in mammal bodies. They provide mechanical support, strength, and elasticity to various organs and tissues, e.g. skin, tendons, arteries, and bones. They are readily available, biodegradable, biocompatible and they stimulate cell growth. The physicochemical properties of collagen and elastin-based materials can be modified by cross-linking. Glutaraldehyde is one of the most efficient cross-linking agents. However, the unreacted molecules can be released from the material and cause cytotoxic reactions. Thus, the aim of our work was to investigate the influence of a safer, macromolecular cross-linking agent--dialdehyde starch (DAS). The properties of hydrogels based on collagen/elastin mixtures (95/5, 90/10) containing 5 and 10% of DAS and neutralized via dialysis against deionized water were tested. The homogenous, transparent, stiff hydrogels were obtained. The DAS addition causes the formation of intermolecular cross-linking bonds but does not affect the secondary structure of the proteins. As a result, the thermal stability, mechanical strength, and, surprisingly, swelling ability increased. At the same time, the surface properties test and in vitro study show that the materials are attractive for 3T3 cells. Moreover, the materials containing 10% of DAS are more resistant to enzymatic degradation. PMID:26886815

  4. Vitamin C hinders radiation cross-linking in aqueous poly(vinyl alcohol) solutions

    NASA Astrophysics Data System (ADS)

    Oral, Ebru; Bodugoz-Senturk, Hatice; Macias, Celia; Muratoglu, Orhun K.

    2007-12-01

    Poly(vinyl alcohol) (PVA) is a promising semi-crystalline material for biomedical applications. It is soluble in water and can be formed into hydrogels by freezing and thawing or crystallizing from an aqueous theta solution such as that of polyethylene glycol (PEG). Radiation cross-linking caused by sterilization or high dose irradiation of concentrated PVA solutions could compromise some properties of these hydrogels. Therefore, we hypothesized that radiation cross-linking of PVA solutions and PVA-PEG theta gels could be prevented by using the antioxidant vitamin C as an anticross-linking agent. Our hypothesis tested positive. Vitamin C concentrations of 0.75 and 4.5 mol/mol of PVA repeating unit could prevent cross-linking in 17.5 wt/v% PVA solutions made with PVA molecular weight of 115,000 g/mol irradiated to 25 and 100 kGy, respectively. Vitamin C also prevented cross-linking in 25 kGy irradiated PVA-PEG theta gels containing up to 5 wt% PEG and decreased the viscosity of those up to 39 wt%.

  5. Cross-linking oppositely charged oil-in-water emulsions to enhance heteroaggregate stability.

    PubMed

    Maier, Christiane; Oechsle, Anja M; Weiss, Jochen

    2015-11-01

    The formation and subsequent enzymatic and chemical cross-linking of heteroaggregates from oppositely charged oil-in-water (O/W) emulsions was investigated. For this purpose, 10% (w/w) oil-in-water emulsions (d43<1 μm) were prepared at pH 4 using a positively charged emulsifier (Nα-lauroyl-L-arginine ethyl ester (LAE), cold water fish gelatin, or whey protein isolate) or a negatively charged one (sugar beet pectin or Quillaja saponins). The oppositely charged emulsions were then combined at a volume ratio of 1:1 and treated with laccase or glutaraldehyde in order to further stabilize the electrostatically attached aggregates by covalently cross-linking the oppositely charged membranes. Emulsions and heteroaggregates were characterized by their rheological properties, their surface charge, particle size distribution, and microstructure using dynamic and static light scattering as well as confocal laser scanning microscopy. Prior to cross-linking, the emulsifiers' stabilization mechanism were found to greatly influence the formation of heteroaggregates. Laccase treatment (1.34 mU/mL) increased aggregate expansion by ca. 30% for the combined emulsions stabilized by Quillaja saponins/whey protein isolate, while combined Quillaja saponins/fish gelatin stabilized emulsions remained unaffected. When combined emulsions were treated with 50mM glutaraldehyde, aggregate size significantly increased 2- and 3-fold, respectively. Thus, our study provides novel insights into the enzymatic and chemical cross-linking of heteroaggregates composed of oppositely charged O/W emulsions. PMID:26298085

  6. Effect of different cross-linking methods and processing parameters on drug release from hydrogel beads.

    PubMed

    Mitra, Shataneek; Maity, Siddhartha; Sa, Biswanath

    2015-03-01

    The purpose of this work was to evaluate different methods of cross-linking for developing diltiazem-resin complex loaded carboxymethyl xanthan gum (CMXG) hydrogel beads to achieve highest possible drug entrapment and extended release for effective cardio-protection. The hydrogel beads were prepared by ionic cross-linking and dual cross-linking using simultaneous (SIM) and sequential (SEQ) methods. Among the three methods, SEQ method produced smaller sized beads having higher drug entrapment efficacy and prolonged release characteristics as evidenced from mean dissolution time and diffusion coefficient of drug. Keeping the concentration of ionic cross-linker constant, increase in the amount of covalent cross-linker and cross-linking time decreased the drug release. Higher release of the drug in acid solution was attributed to the higher solubility of the basic drug and higher swelling of the matrices in acid solution. Comparison of FTIR spectra, drug content and dissolution profiles indicated that the drug was stable in the beads when kept under stress condition up to 3 months. In conclusion, the sequential method was found superior for producing CMXG hydrogel beads as a prolonged release delivery device in cardiovascular diseases. PMID:25576745

  7. Temperature dependence of creep compliance of highly cross-linked epoxy: A molecular simulation study

    SciTech Connect

    Khabaz, Fardin Khare, Ketan S. Khare, Rajesh

    2014-05-15

    We have used molecular dynamics (MD) simulations to study the effect of temperature on the creep compliance of neat cross-linked epoxy. Experimental studies of mechanical behavior of cross-linked epoxy in literature commonly report creep compliance values, whereas molecular simulations of these systems have primarily focused on the Young’s modulus. In this work, in order to obtain a more direct comparison between experiments and simulations, atomistically detailed models of the cross-linked epoxy are used to study their creep compliance as a function of temperature using MD simulations. The creep tests are performed by applying a constant tensile stress and monitoring the resulting strain in the system. Our results show that simulated values of creep compliance increase with an increase in both time and temperature. We believe that such calculations of the creep compliance, along with the use of time temperature superposition, hold great promise in connecting the molecular insight obtained from molecular simulation at small length- and time-scales with the experimental behavior of such materials. To the best of our knowledge, this work is the first reported effort that investigates the creep compliance behavior of cross-linked epoxy using MD simulations.

  8. Hierarchically porous polymers from hyper-cross-linked block polymer precursors.

    PubMed

    Seo, Myungeun; Kim, Soobin; Oh, Jaehoon; Kim, Sun-Jung; Hillmyer, Marc A

    2015-01-21

    We report synthesis of hierarchically porous polymers (HPPs) consisting of micropores and well-defined 3D continuous mesopores by combination of hyper-cross-linking and block polymer self-assembly. Copolymerization of 4-vinylbenzyl chloride (VBzCl) with divinylbenzene (DVB) in the presence of polylactide (PLA) macro-chain-transfer agent produced a cross-linked block polymer precursor PLA-b-P(VBzCl-co-DVB) via reversible addition-fragmentation chain transfer polymerization. A nanoscopic bicontinuous morphology containing PLA and P(VBzCl-co-DVB) microdomains was obtained as a result of polymerization-induced microphase separation. While a basic treatment of the precursor selectively removed PLA to yield a reticulated mesoporous polymer, hyper-cross-linking of the precursor by FeCl3 generated micropores in the P(VBzCl-co-DVB) microdomain via Friedel-Crafts alkylation and simultaneously degraded PLA to produce the HPP containing micropores in the mesoporous framework. The mesopore size of the HPP could be precisely controlled from 6 to 15 nm by controlling the molar mass of PLA. We demonstrate acceleration in adsorption rate in the HPP compared to a hyper-cross-linked microporous polymer. PMID:25551291

  9. Can para-aryl-dithiols cross-link two plasmonic noble nanoparticles as monolayer dithiolate spacers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Para-aryl-dithiols (PADTs, HS-(C6H4)n-SH, n = 1, 2, and 3) have been used extensively in molecular electronics, surface-enhanced Raman spectroscopy (SERS), and quantum electron tunneling between two gold or silver nanoparticles (AuNPs and AgNPs). One popular belief is that these dithiols cross-link ...

  10. Reversible Inter- and Intra-Microgel Cross-Linking using Disulfides

    PubMed Central

    Gaulding, Jeffrey C.; Smith, Michael H.; Hyatt, John S.; Fernandez-Nieves, Alberto; Lyon, L. Andrew

    2012-01-01

    Thermoresponsive hydrogel nanoparticles composed of poly(N-isopropylmethacrylamide) (pNIPMAm) and the disulfide-based cross-linker N,N’-bis(acryloyl)cystamine (BAC) have been prepared using a redox-initiated, aqueous precipitation polymerization approach, leading to improved stability of the disulfide bond compared to traditional thermally-initiated methods. The resultant particles demonstrate complete erosion in response to reducing conditions or thiol competition. This stands in contrast to the behavior of thermally-initiated particles, which retain a cross-linked network following disulfide cleavage due to uncontrolled chain-branching and self-cross-linking side reactions. The synthetic strategy has also been combined with the non-degradable cross-linker N,N-methylenebisacrylamide (BIS) to generate “co-cross-linked” pNIPMAm-BAC-BIS microgels. These particles are redox-responsive, swell upon BAC cross-link scission and present reactive thiols. This pendant thiol functionality was demonstrated to be useful for conjugation of thiol-reactive probes and in reversible network formation by assembling particles cross-linked by disulfide linkages. PMID:22287810

  11. Polymers and Cross-Linking: A CORE Experiment to Help Students Think on the Submicroscopic Level

    ERIC Educational Resources Information Center

    Bruce, Mitchell R. M.; Bruce, Alice E.; Avargil, Shirly; Amar, Francois G.; Wemyss, Thomas M.; Flood, Virginia J.

    2016-01-01

    The Polymers and Cross-Linking experiment is presented via a new three phase learning cycle: CORE (Chemical Observations, Representations, Experimentation), which is designed to model productive chemical inquiry and to promote a deeper understanding about the chemistry operating at the submicroscopic level. The experiment is built on two familiar…

  12. Identification of disulfide cross-linked tau dimer responsible for tau propagation

    PubMed Central

    Kim, Dohee; Lim, Sungsu; Haque, Md. Mamunul; Ryoo, Nayeon; Hong, Hyun Seok; Rhim, Hyewhon; Lee, Dong-Eun; Chang, Young-Tae; Lee, Jun-Seok; Cheong, Eunji; Kim, Dong Jin; Kim, Yun Kyung

    2015-01-01

    Recent evidence suggests that tau aggregates are not only neurotoxic, but also propagate in neurons acting as a seed for native tau aggregation. Prion-like tau transmission is now considered as an important pathogenic mechanism driving the progression of tau pathology in the brain. However, prion-like tau species have not been clearly characterized. To identify infectious tau conformers, here we prepared diverse tau aggregates and evaluated the effect on inducing intracellular tau-aggregation. Among tested, tau dimer containing P301L-mutation is identified as the most infectious form to induce tau pathology. Biochemical analysis reveals that P301L-tau dimer is covalently cross-linked with a disulfide bond. The relatively small and covalently cross-linked tau dimer induced tau pathology efficiently in primary neurons and also in tau-transgenic mice. So far, the importance of tau disulfide cross-linking has been overlooked in the study of tau pathology. Here our results suggested that tau disulfide cross-linking might play critical role in tau propagation by producing structurally stable and small tau conformers. PMID:26470054

  13. Design of phosphated cross-linked microspheres of bael fruit gum as a biodegradable carrier.

    PubMed

    Mahammed, Nawaz; Gowda, D V; Deshpande, Rohan D; Thirumaleshwar, Shailesh

    2015-01-01

    Present work was aimed at designing of phosphated cross-linked microspheres of bael fruit gum (BFG) by emulsification method using sodium-tri-meta phosphate as a cross-linking agent for treatment of colon cancer using 5-fluorouracil as model drug. Stirring speed was found to be 1,000 rpm for about 5 h to be optimal to obtain reproducible microspheres. It was found that there is an increase in particle size as polymer concentration is increased whereas a reduction in particle size was observed as there is increase in stirring speed. Cross-linked BFG microspheres were successfully prepared by emulsification method. Optimum surfactant concentration was found to be 2 % w/w. Scanning electron microscopy studies showed that the drug-loaded microspheres were non-aggregated and in spherical shape. Differential scanning calorimetry and Fourier transform infrared-spectroscopy studies showed that drug and excipients are compatible. Release studies showed that drug release was more profound in cecal medium induced with enzymes causing degradation of the cross linked BFG than that of the release showed in simulated intestinal fluid. Stability studies showed that there were no significant changes in the drug content and physical appearance of microspheres. PMID:24668152

  14. Light-scattering thermal cross-linking material using morphology of nanoparticle free polymer blends

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi

    2015-03-01

    A newly light-scattering thermal cross-linking material based on self-assembly for forming the morphology of nanoparticle free polymer blends was reported. The material design concept to use light-scattering thermal cross-linking material with high uniformity of light on display panel from LED for high quality such as brightness and evenness, mechanical properties, and gas and water barrier properties. The high light scattering rate of 8 % at 350-450 nm of wavelength, fast cure film at 140 ºC and 120 s, and thermal stability at 190 ºC in bake condition for high productivity were indicated in the light-scattering thermal cross-linking material using the nanoparticle free polymers with carboxylic acid functional groups. These novel system using morphology of nanoparticle free polymer blends in light-scattering package material for a LCD using LED was a valuable approach to the design of material formulations for newly light-scattering thermal cross-linking material.

  15. Highly conductive carbon nanotube buckypapers with improved doping stability via conjugational cross-linking

    NASA Astrophysics Data System (ADS)

    Chen, I.-Wen Peter; Liang, Richard; Zhao, Haibo; Wang, Ben; Zhang, Chuck

    2011-12-01

    Carbon nanotube (CNT) sheets or buckypapers have demonstrated promising electrical conductivity and mechanical performance. However, their electrical conductivity is still far below the requirements for engineering applications, such as using as a substitute for copper mesh, which is currently used in composite aircraft structures for lightning strike protection. In this study, different CNT buckypapers were stretched to increase their alignment, and then subjected to conjugational cross-linking via chemical functionalization. The conjugationally cross-linked buckypapers (CCL-BPs) demonstrated higher electrical conductivity of up to 6200 S cm - 1, which is more than one order increase compared to the pristine buckypapers. The CCL-BPs also showed excellent doping stability in over 300 h in atmosphere and were resistant to degradation at elevated temperatures. The tensile strength of the stretched CCL-BPs reached 220 MPa, which is about three times that of pristine buckypapers. We attribute these property improvements to the effective and stable conjugational cross-links of CNTs, which can simultaneously improve the electrical conductivity, doping stability and mechanical properties. Specifically, the electrical conductivity increase resulted from improving the CNT alignment and inter-tube electron transport capability. The conjugational cross-links provide effective 3D conductive paths to increase the mobility of electrons among individual nanotubes. The stable covalent bonding also enhances the thermal stability and load transfer. The significant electrical and mechanical property improvement renders buckypaper a multifunctional material for various applications, such as conducting composites, battery electrodes, capacitors, etc.

  16. Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch.

    PubMed

    Hazarika, Bidyut Jyoti; Sit, Nandan

    2016-04-20

    Dual modification of taro starch by hydroxypropylation and cross-linking was carried out and the properties of the modified starches were investigated. Two different levels of hydroxypropylation (5 and 10%) and cross-linking (0.05 and 0.10%) were used in different sequences. The amylose contents of the starch decreased due to single and dual modification. For the dual-modified starches, the swelling, solubility and clarity was found to increase with level of hydroxypropylation and decrease with level of cross-linking. The freeze-thaw stability of the dual-modified starches was also affected by the sequence of modification. The viscosities of the cross-linked and dual-modified starches were more than native and hydroxypropylated starches. The firmness of the dual-modified starches was also higher than native and single modified starches. The dual-modified starches have benefits of both type of modifications and could be used for specific purposes e.g. food products requiring high viscosity as well as freeze-thaw stability.

  17. ChIP bias as a function of cross-linking time.

    PubMed

    Baranello, Laura; Kouzine, Fedor; Sanford, Suzanne; Levens, David

    2016-05-01

    The chromatin immunoprecipitation (ChIP) assay is widely used to capture interactions between chromatin and regulatory proteins in vivo. Formaldehyde cross-linking of DNA and proteins is a critical step required to trap their interactions inside the cells before immunoprecipitation and analysis. Yet insufficient attention has been given to variables that might give rise to artifacts in this procedure, such as the duration of cross-linking. We analyzed the dependence of the ChIP signal on the duration of formaldehyde cross-linking time for two proteins: DNA topoisomerase 1 (Top1) that is functionally associated with the double helix in vivo, especially with active chromatin, and green fluorescent protein (GFP) that has no known bona fide interactions with DNA. With short time of formaldehyde fixation, only Top1 immunoprecipation efficiently recovered DNA from active promoters, whereas prolonged fixation augmented non-specific recovery of GFP dramatizing the need to optimize ChIP protocols to minimize the time of cross-linking, especially for abundant nuclear proteins. Thus, ChIP is a powerful approach to study the localization of protein on the genome when care is taken to manage potential artifacts. PMID:26685864

  18. An unprecedented single platform via cross-linking of zeolite and MOFs.

    PubMed

    Lim, Dae-Woon; Lee, Heeju; Kim, Sungjune; Cho, In Hwa; Yoon, Minyoung; Choi, Yong Nam

    2016-05-21

    The unprecedented ternary nanocomposites have been synthesized as a single platform via cross-linking of two nanoporous materials, MOFs and Pt nanoparticle (NP) loaded zeolite. The heterojunction of the novel nanocomposites is anticipated to work as a chemical platform for size selective catalytic hydrogenation or deuteration of small molecules. PMID:27086901

  19. Membrane Ig cross-linking regulates phosphatidylinositol 3-kinase in B lymphocytes.

    PubMed

    Gold, M R; Chan, V W; Turck, C W; DeFranco, A L

    1992-04-01

    Cross-linking of the B cell AgR results in activation of mature B cells and tolerization of immature B cells. The initial signaling events stimulated by membrane immunoglobulin (mIg) cross-linking are tyrosine phosphorylation of a number of proteins. Among the targets of mIg-induced tyrosine phosphorylation are the tyrosine kinases encoded by the lyn, blk, fyn, and syk genes, the mIg-associated proteins MB-1 and Ig-beta, phospholipase C-gamma 1 and -gamma 2, as well as many unidentified proteins. In this report we show that mIg cross-linking also regulates phosphatidylinositol 3-kinase (PtdIns 3-kinase), an enzyme that phosphorylates inositol phospholipids and plays a key role in mediating the effects of tyrosine kinases on growth control in fibroblasts. Cross-linking mIg on B lymphocytes greatly increased the amount of PtdIns 3-kinase activity which could be immunoprecipitated with anti-phosphotyrosine (anti-tyr(P) antibodies. This response was observed after mIg cross-linking in mIgM- and mIgG-bearing B cell lines and after cross-linking either mIgM or mIgD in murine splenic B cells. Thus, regulation of PtdIns 3-kinase is a common feature of signaling by several different isotypes of mIg. This response was rapid and peaked 2 to 3 min after the addition of anti-Ig antibodies. The anti-Ig-stimulated increase in PtdIns 3-kinase activity associated with anti-Tyr(P) immunoprecipitates could reflect increased tyrosine phosphorylation of PtdIns 3-kinase, increased activity of the enzyme, or both. In favor of the first possibility, the tyrosine kinase inhibitor herbimycin A blocked the increase in ant-Tyr(P)-immunoprecipitated PtdIns 3-kinase activity as well as the anti-Ig-induced tyrosine phosphorylation. Moreover, this response was not secondary to phospholipase C activation but rather seemed to be a direct consequence of mIg-induced tyrosine phosphorylation. Activation of the phosphoinositide pathway by a transfected M1 muscarinic acetylcholine receptor expressed in

  20. Initial Studies Using Aliphatic β-Nitro Alcohols for Therapeutic Corneal Cross-Linking

    PubMed Central

    Paik, David C.; Wen, Quan; Braunstein, Richard E.; Airiani, Suzanna; Trokel, Stephen L.

    2009-01-01

    Purpose Corneal collagen cross-linking through UVA-riboflavin photochemistry (UVAR) has been shown to be an effective treatment for keratoconus and related keratectasias. In recent studies using sclera, the authors observed that short-chain aliphatic β-nitro alcohols can cross-link collagenous tissue under physiologic conditions. Thus, this study was undertaken to evaluate these agents as potential pharmacologic alternatives to UVAR. Methods Porcine corneal strips (8 × 4 mm) and corneoscleral complexes were cross-linked using 1 to 100 mM 2-nitroethanol (2ne), 2-nitro-1-propanol (2nprop), and 3-nitro-2-pentanol (3n2pent) at pH 7.4, 34°C. Cross-linking by UVAR was carried out for comparison. Thermal shrinkage temperature analysis was used to evaluate cross-linking effects, and changes in corneal light transmission were determined with a fiber-optic spectrophotometer. Results At 10 and 100 mM for 96 hours, initial shrinkage temperature (Ti) was shifted by 3.3°C (P < 0.001) and 9.8°C (P < 0.001) for 2ne, 2.9°C (P = 0.008) and 4.9°C (P < 0.001) for 2nprop, and 3.8°C (P = 0.003) and 4.9°C (P < 0.001) for 3n2pent. Reacting at 1 mM through daily exchange of fluid over 7 days shifted Ti by 3.8°C (P < 0.001), 4.4°C (P = 0.002), and 3.2°C (P = 0.005), for 2ne, 2nprop, and 3n2pent, respectively. These shifts were greater than cross-linking using UVAR (Ti = 1.9°C; P = 0.012). In the blue light region (400−500 nm), transmission was decreased by 5.6% (P = 0.003), 2.1% (P = 0.260), and 0% (P = 0.428) for 2ne, 2nprop, and 3n2pent, respectively. Conclusions β-Nitro alcohols can induce corneal cross-linking in vitro better than the UVAR technique and can induce negligible effects on light transmission. These early results suggest that such compounds could be used as topical stiffening agents for keratoconus and related disorders. PMID:18836172

  1. Monitoring the internal structure of poly(N-vinylcaprolactam) microgels with variable cross-link concentration.

    PubMed

    Schneider, Florian; Balaceanu, Andreea; Feoktystov, Artem; Pipich, Vitaliy; Wu, Yaodong; Allgaier, Jürgen; Pyckhout-Hintzen, Wim; Pich, Andrij; Schneider, Gerald J

    2014-12-23

    The combination of a set of complementary techniques allows us to construct an unprecedented and comprehensive picture of the internal structure, temperature dependent swelling behavior, and the dependence of these properties on the cross-linker concentration of microgel particles based on N-vinylcaprolactam (VCL). The microgels were synthesized by precipitation polymerization using different amounts of cross-linking agent. Characterization was performed by small-angle neutron scattering (SANS) using two complementary neutron instruments to cover a uniquely broad Q-range with one probe. Additionally we used dynamic light scattering (DLS), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). Previously obtained nuclear magnetic resonance spectroscopy (NMR) results on the same PVCL particles are utilized to round the picture off. Our study shows that both the particle radius and the cross-link density and therefore also the stiffness of the microgels rises with increasing cross-linker content. Hence, more cross-linker reduces the swelling capability distinctly. These findings are supported by SANS and AFM measurements. Independent DLS experiments also found the increase in particle size but suggest an unchanged cross-link density. The reason for the apparent contradiction is the indirect extraction of the parameters via a model in the evaluation of DLS measurements. The more direct approach in AFM by evaluating the cross section profiles of observed microgel particles gives evidence of significantly softer and more deformable particles at lower cross-linker concentrations and therefore verifies the change in cross-link density. DSC data indicate a minor but unexpected shift of the volume phase transition temperature (VPTT) to higher temperatures and exposes a more heterogeneous internal structure of the microgels with increasing cross-link density. Moreover, a change in the total energy transfer during the VPT gives evidence that the strength

  2. Cross-linking of glycoprotein oligomers during herpes simplex virus type 1 entry.

    PubMed

    Handler, C G; Cohen, G H; Eisenberg, R J

    1996-09-01

    Herpes simplex virus (HSV) has 10 glycoproteins in its envelope. Glycoprotein B (gB), gC, gD, gH, and gL have been implicated in virus entry. We previously used chemical cross-linking to show that these five glycoproteins were close enough to each other to be cross-linked into homodimeric and hetero-oligomeric forms; hetero-oligomers of gB-gC, gC-gD, gD-gB, gH-gL, gC-gL and gD-gL were found in purified virions. To better understand the roles of these glycoproteins in viral entry, we have modified a standard HSV penetration assay to include cross-linkers. This allowed us to examine changes in associations of viral glycoproteins during the entry process. HSV-1(KOS) was adsorbed at 4 degrees C to human neuroblastoma cells (SY5Y). The temperature was raised to 37 degrees C and cells were treated with cross-linker at various times after the temperature shift. Cytoplasmic extracts were examined by Western blotting (immunoblotting) for viral glycoproteins. We found that (i) as in virus alone, the length and concentration of the cross-linking agent affected the number of specific complexes isolated; (ii) the same glycoprotein patterns found in purified virions were also present after attachment of virions to cells; and (iii) the ability to cross-link HSV glycoproteins changed as virus penetration proceeded, e.g., gB and gD complexes which were present during attachment disappeared with increasing time, and their disappearance paralleled the kinetics of penetration. However, this phenomenon appeared to be selective since it was not observed with gC oligomers. In addition, we examined the cross-linking patterns of gB and gD in null viruses K082 and KOSgD beta. Neither of these mutants, which attach but cannot penetrate, showed changes in glycoprotein cross-linking over time. We speculate that these changes are due to conformational changes which preclude cross-linking or spatial alterations which dissociate the glycoprotein interactions during the penetration events. PMID

  3. Tissue-specific distribution of cross-linked somatostatin receptor proteins in the rat.

    PubMed

    Srikant, C B; Murthy, K K; Patel, Y C

    1992-03-01

    Pharmacological studies have suggested that the somatostatin (SS) receptor is heterogeneous and exhibits SS-14-and SS-28-selective subtypes. Whether such subtypes arise from molecular heterogeneity of the receptor protein has not been definitively established. Previous reports characterizing the molecular properties of the SS receptor by the cross-linking approach have yielded divergent size estimates ranging from 27 kDa to 200 kDa. In order to resolve this discrepancy, as well as to determine whether SS-14 and SS-28 interact with specific receptor proteins, we have cross-linked radioiodinated derivatives of [125I-Tyr11]SS-14 (T*-SS-14) and [Leu8,D-Trp22,125I-Tyr25]SS-28 (LTT*-SS-28) to membrane SS receptors in rat brain, pituitary, exocrine pancreas and adrenal cortex using a number of chemical and photoaffinity cross-linking agents. The labelled cross-linked receptor proteins were analysed by SDS/PAGE under reducing conditions followed by autoradiography. Our findings indicate that the pattern of specifically labelled cross-linked SS receptor proteins is sensitive to the concentration of chemical cross-linking agents such as disuccinimidyl suberate and dithiobis-(succinimidyl propionate). Labelled high-molecular-mass complexes of cross-linked receptor-ligand proteins were observed only when high concentrations of these cross-linkers were employed. Using optimized low concentrations of cross-linkers, however, two major labelled bands of 58 +/- 3 kDa and 27 +/- 2 kDa were detected. These two bands were identified as specifically labelled SS receptor proteins subsequent to cross-linking with a number of photoaffinity cross-linking agents as well. We demonstrate here that the 58 kDa protein is the major SS receptor protein in the rat pituitary, adrenal and exocrine pancreas, whereas the 27 kDa moiety represents the principal form in the brain. Additionally, the presence of a minor specifically labelled band of 32 kDa was detected uniquely in the brain, and a minor

  4. Tissue-specific distribution of cross-linked somatostatin receptor proteins in the rat.

    PubMed Central

    Srikant, C B; Murthy, K K; Patel, Y C

    1992-01-01

    Pharmacological studies have suggested that the somatostatin (SS) receptor is heterogeneous and exhibits SS-14-and SS-28-selective subtypes. Whether such subtypes arise from molecular heterogeneity of the receptor protein has not been definitively established. Previous reports characterizing the molecular properties of the SS receptor by the cross-linking approach have yielded divergent size estimates ranging from 27 kDa to 200 kDa. In order to resolve this discrepancy, as well as to determine whether SS-14 and SS-28 interact with specific receptor proteins, we have cross-linked radioiodinated derivatives of [125I-Tyr11]SS-14 (T*-SS-14) and [Leu8,D-Trp22,125I-Tyr25]SS-28 (LTT*-SS-28) to membrane SS receptors in rat brain, pituitary, exocrine pancreas and adrenal cortex using a number of chemical and photoaffinity cross-linking agents. The labelled cross-linked receptor proteins were analysed by SDS/PAGE under reducing conditions followed by autoradiography. Our findings indicate that the pattern of specifically labelled cross-linked SS receptor proteins is sensitive to the concentration of chemical cross-linking agents such as disuccinimidyl suberate and dithiobis-(succinimidyl propionate). Labelled high-molecular-mass complexes of cross-linked receptor-ligand proteins were observed only when high concentrations of these cross-linkers were employed. Using optimized low concentrations of cross-linkers, however, two major labelled bands of 58 +/- 3 kDa and 27 +/- 2 kDa were detected. These two bands were identified as specifically labelled SS receptor proteins subsequent to cross-linking with a number of photoaffinity cross-linking agents as well. We demonstrate here that the 58 kDa protein is the major SS receptor protein in the rat pituitary, adrenal and exocrine pancreas, whereas the 27 kDa moiety represents the principal form in the brain. Additionally, the presence of a minor specifically labelled band of 32 kDa was detected uniquely in the brain, and a minor

  5. Bone fracture toughness and strength correlate with collagen cross-link maturity in a dose-controlled lathyrism mouse model

    PubMed Central

    McNerny, Erin M. B.; Gong, Bo; Morris, Michael D.; Kohn, David H.

    2014-01-01

    Collagen cross-linking is altered in many diseases of bone, and enzymatic collagen cross-links are important to bone quality as evidenced by losses of strength following lysyl oxidase inhibition (lathyrism). We hypothesized that cross-links also contribute directly to bone fracture toughness. A mouse model of lathyrism using subcutaneous injection of up to 500mg/kg β-aminopropionitrile (BAPN) was developed and characterized (60 animals across 4 dosage groups). Three weeks of 150 or 350 mg/kg BAPN treatment in young growing mice significantly reduced cortical bone fracture toughness, strength, and pyridinoline cross-link content. Ratios reflecting relative cross-link maturity were positive regressors of fracture toughness (HP/[DHLNL+HLNL] r2=0.208, p<0.05; [HP+LP]/[DHNL+HLNL] r2=0.196, p<0.1), whereas quantities of mature pyridinoline cross-links were significant positive regressors of tissue strength (lysyl pyridinoline r2=0.159, p=0.014; hydroxylysyl pyridinoline r2=0.112, p<0.05). Immature and pyrrole cross-links, which were not significantly reduced by BAPN, did not correlate with mechanical properties. The effect of BAPN treatment on mechanical properties was dose specific, with the greatest impact found at the intermediate (350mg/kg) dose. Calcein labeling was used to define locations of new bone formation, allowing for the identification of regions of normally cross-linked (preexisting) and BAPN treated (newly formed, cross-link-deficient) bone. Raman spectroscopy revealed spatial differences due to relative tissue age and effects of cross-link inhibition. Newly deposited tissues had lower mineral/matrix, carbonate/phosphate and Amide I cross-link (matrix maturity) ratios compared to preexisting tissues. BAPN treatment did not affect mineral measures, but significantly increased the cross-link (matrix maturity) ratio compared to newly formed control tissue. Our study reveals that spatially localized effects of short term BAPN cross-link inhibition can alter

  6. Role of collagen content and cross-linking in large pulmonary arterial stiffening after chronic hypoxia.

    PubMed

    Wang, Zhijie; Chesler, Naomi C

    2012-01-01

    Chronic hypoxic pulmonary hypertension (HPH) is associated with large pulmonary artery (PA) stiffening, which is correlated with collagen accumulation. However, the mechanisms by which collagen contributes to PA stiffening remain largely unexplored. Moreover, HPH may alter mechanical properties other than stiffness, such as pulse damping capacity, which also affects ventricular workload but is rarely quantified. We hypothesized that collagen content and cross-linking differentially regulate the stiffness and damping capacity of large PAs during HPH progression. The hypothesis was tested with transgenic mice that synthesize collagen type I resistant to collagenase degradation (Col1a1(R/R)). These mice and littermate controls (Col1a1(+/+)) were exposed to hypoxia for 10 days; some were treated with β-aminopropionitrile (BAPN), which prevents new cross-link formation. Isolated PA dynamic mechanical tests were performed, and collagen content and cross-linking were measured. In Col1a1(+/+) mice, HPH increased both collagen content and cross-linking, and BAPN treatment prevented these increases. Similar trends were observed in Col1a1(R/R) mice except that collagen content further increased with BAPN treatment. Mechanical tests showed that in Col1a1(+/+) mice, HPH increased PA stiffness and damping capacity, and these increases were impeded by BAPN treatment. In Col1a1(R/R) mice, HPH led to a smaller but significant increase in PA stiffness and a decrease in damping capacity. These mechanical changes were not affected by BAPN treatment. Vessel-specific correlations for each strain showed that the stiffness and damping capacity were correlated with the total content rather than cross-linking of collagen. Our results suggest that collagen total content is critical to extralobar PA stiffening during HPH. PMID:21538012

  7. Probabilistic cross-link analysis and experiment planning for high-throughput elucidation of protein structure.

    PubMed

    Ye, Xiaoduan; O'Neil, Patrick K; Foster, Adrienne N; Gajda, Michal J; Kosinski, Jan; Kurowski, Michal A; Bujnicki, Janusz M; Friedman, Alan M; Bailey-Kellogg, Chris

    2004-12-01

    Emerging high-throughput techniques for the characterization of protein and protein-complex structures yield noisy data with sparse information content, placing a significant burden on computation to properly interpret the experimental data. One such technique uses cross-linking (chemical or by cysteine oxidation) to confirm or select among proposed structural models (e.g., from fold recognition, ab initio prediction, or docking) by testing the consistency between cross-linking data and model geometry. This paper develops a probabilistic framework for analyzing the information content in cross-linking experiments, accounting for anticipated experimental error. This framework supports a mechanism for planning experiments to optimize the information gained. We evaluate potential experiment plans using explicit trade-offs among key properties of practical importance: discriminability, coverage, balance, ambiguity, and cost. We devise a greedy algorithm that considers those properties and, from a large number of combinatorial possibilities, rapidly selects sets of experiments expected to discriminate pairs of models efficiently. In an application to residue-specific chemical cross-linking, we demonstrate the ability of our approach to plan experiments effectively involving combinations of cross-linkers and introduced mutations. We also describe an experiment plan for the bacteriophage lambda Tfa chaperone protein in which we plan dicysteine mutants for discriminating threading models by disulfide formation. Preliminary results from a subset of the planned experiments are consistent and demonstrate the practicality of planning. Our methods provide the experimenter with a valuable tool (available from the authors) for understanding and optimizing cross-linking experiments. PMID:15557270

  8. Collagen cross-linking treatment effects on corneal dynamic biomechanical properties.

    PubMed

    Hatami-Marbini, Hamed; Rahimi, Abdolrasol

    2015-06-01

    Cornea is a soft tissue with the principal function of transmitting and refracting light rays. The objective of the current study was to characterize possible effects of the riboflavin/UVA collagen cross-linking on corneal dynamic properties. The original corneal cross-linking protocol was used to induce cross-links in the anterior portion of the bovine cornea. A DMA machine was used to conduct mechanical tensile experiments at different levels of tensile strains. The samples were divided into a control group (n = 5) and a treated group (n = 5). All specimens were first stretched to a strain of 5% and allowed to relax for twenty minutes. After completion of the stress-relaxation experiment, a frequency sweep test with oscillations ranging from 0.01 to 10 Hz was performed. The same procedure was repeated to obtain the stress-relaxation and dynamic properties at 10% strain. It was observed that the collagen cross-linking therapy significantly increased the immediate and equilibrium tensile behavior of the bovine cornea (P < 0.05). Furthermore, for all samples in control and treated groups and throughout the whole range of frequencies, a significantly larger tensile storage modulus was measured at an axial strain of 10% compared to what was obtained at a tensile strain of 5%. Finally, it was noted that although this treatment procedure resulted in a significant increase in the storage and loss modulus at any axial strain and frequency (P < 0.05), it significantly reduced the ratio of the dissipated and stored energy during a single cycle of deformation. Therefore, it was concluded that while the riboflavin/UVA collagen cross-linking increased significantly corneal stiffness, it decreased significantly its damping capability and deformability. This reduced damping ability might adversely interfere with corneal mechanical performance.

  9. Mitochondrial permeability transition as induced by cross-linking of the adenine nucleotide translocase.

    PubMed

    Zazueta, C; Reyes-Vivas, H; Zafra, G; Sánchez, C A; Vera, G; Chávez, E

    1998-04-01

    Mitochondrial permeability transition is caused by the opening of a transmembrane pore whose chemical nature has not been well established yet. The present work was aimed to further contribute to the knowledge of the membrane entity comprised in the formation of the non-specific channel. The increased permeability was established by analyzing the inability of rat kidney mitochondria to take up and accumulate Ca2+, as well as their failure to build up a transmembrane potential, after the cross-linking of membrane proteins by copper plus ortho-phenanthroline. To identify the cross-linked proteins, polyacrylamide gel electrophoresis was performed. The results are representative of at least three separate experiments. It is indicated that 30 microM Cu2+ induced the release of 4.3 nmol Ca2+ per mg protein. However, in the presence of 100 microM ortho-phenanthroline only 2 microM Cu2+ was required to attain the total release of the accumulated Ca2+; it should be noted that such a reaction is not inhibited by cyclosporin. The increased permeability corresponds to cross-linking of membrane proteins in which approximately 4 nmol thiol groups per mg protein appear to be involved. Such a linking process is inhibited by carboxyatractyloside. By using the fluorescent probe eosin-5-maleimide the label was found in a cross-linking 60 kDa dimer of two 30 kDa monomers. From the data presented it is concluded that copper-o-phenanthroline induces the intermolecular cross-linking of the adenine nucleotide translocase which in turn is converted to non-specific pore. PMID:9675885

  10. Thermogelling and Chemoselectively Cross-Linked Hydrogels with Controlled Mechanical Properties and Degradation Behavior.

    PubMed

    Boere, Kristel W M; van den Dikkenberg, Joep; Gao, Yuan; Visser, Jetze; Hennink, Wim E; Vermonden, Tina

    2015-09-14

    Chemoselectively cross-linked hydrogels have recently gained increasing attention for the development of novel, injectable biomaterials given their limited side reactions. In this study, we compared the properties of hydrogels obtained by native chemical ligation (NCL) and its recently described variation termed oxo-ester-mediated native chemical ligation (OMNCL) in combination with temperature-induced physical gelation. Triblock copolymers consisting of cysteine functionalities, thermoresponsive N-isopropylacrylamide (NIPAAm) units and degradable moieties were mixed with functionalized poly(ethylene glycol) (PEG) cross-linkers. Thioester or N-hydroxysuccinimide (NHS) functionalities attached to PEG reacted with cysteine residues of the triblock copolymers via either an NCL or OMNCL pathway. The combined physical and chemical cross-linking resulted in rapid network formation and mechanically strong hydrogels. Stiffness of the hydrogels was highest for thermogels that were covalently linked via OMNCL. Specifically, the storage modulus after 4 h reached a value of 26 kPa, which was over a 100 times higher than hydrogels formed by solely thermal physical interactions. Endothelial cells showed high cell viability of 98 ± 2% in the presence of OMNCL cross-linked hydrogels after 16 h of incubation, in contrast to a low cell viability (13 ± 7%) for hydrogels obtained by NCL cross-linking. Lysozyme was loaded in the gels and after 2 days more than 90% was released, indicating that the cross-linking reaction was indeed chemoselective as the protein was not covalently grafted to the hydrogel network. Moreover, the degradation rates of these hydrogels under physiological conditions could be tailored from 12 days up to 6 months by incorporation of a monomer containing a hydrolyzable lactone ring in the thermosensitive triblock copolymer. These results demonstrate a high tunability of mechanical properties and degradation rates of these in situ forming hydrogels that could be

  11. Developing functional musculoskeletal tissues through hypoxia and lysyl oxidase-induced collagen cross-linking

    PubMed Central

    Makris, Eleftherios A.; Responte, Donald J.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2014-01-01

    The inability to recapitulate native tissue biomechanics, especially tensile properties, hinders progress in regenerative medicine. To address this problem, strategies have focused on enhancing collagen production. However, manipulating collagen cross-links, ubiquitous throughout all tissues and conferring mechanical integrity, has been underinvestigated. A series of studies examined the effects of lysyl oxidase (LOX), the enzyme responsible for the formation of collagen cross-links. Hypoxia-induced endogenous LOX was applied in multiple musculoskeletal tissues (i.e., cartilage, meniscus, tendons, ligaments). Results of these studies showed that both native and engineered tissues are enhanced by invoking a mechanism of hypoxia-induced pyridinoline (PYR) cross-links via intermediaries like LOX. Hypoxia was shown to enhance PYR cross-linking 1.4- to 6.4-fold and, concomitantly, to increase the tensile properties of collagen-rich tissues 1.3- to 2.2-fold. Direct administration of exogenous LOX was applied in native cartilage and neocartilage generated using a scaffold-free, self-assembling process of primary chondrocytes. Exogenous LOX was found to enhance native tissue tensile properties 1.9-fold. LOX concentration- and time-dependent increases in PYR content (∼16-fold compared with controls) and tensile properties (approximately fivefold compared with controls) of neocartilage were also detected, resulting in properties on par with native tissue. Finally, in vivo subcutaneous implantation of LOX-treated neocartilage in nude mice promoted further maturation of the neotissue, enhancing tensile and PYR content approximately threefold and 14-fold, respectively, compared with in vitro controls. Collectively, these results provide the first report, to our knowledge, of endogenous (hypoxia-induced) and exogenous LOX applications for promoting collagen cross-linking and improving the tensile properties of a spectrum of native and engineered tissues both in vitro and in

  12. Vitamin C status and collagen cross-link ratios in Gambian children.

    PubMed

    Munday, K; Fulford, A; Bates, C J

    2005-04-01

    Vitamin C (ascorbate) is essential for hydroxylation of prolyl and lysyl residues in nascent collagen, the failure of which leads to connective tissue lesions of scurvy. Of the pyridinium-type cross-links in mature collagen, pyridinoline requires more hydroxylysyl residues than does deoxypyridinoline. Our study tested the hypothesis that pyridinoline:deoxypyridinoline ratios in urinary degradation products may vary with ascorbate status in man. These ratios were compared between British and Gambian prepubertal boys, mean age 8.3 years, and in Gambian boys between two seasons with contrasting ascorbate availability. The mean cross-links ratio in 216 British boys was 4.36 (SD 0.71), significantly greater (P<0.0001) than in sixty-two Gambian boys: 3.83 (SD 0.52). In the Gambians the cross-links ratio was significantly higher in the dry season (with high ascorbate intake and status) than in the rains (with low intake and status). A 7-week controlled intervention was carried out in Gambian boys during the rainy season (the 'hungry' season, when vitamin C-containing foods are virtually unavailable): 100 mg ascorbate/d was given to one group of thirty-two Gambian boys and placebo to another group. The intervention did not, however, significantly alter the cross-link ratio, possibly because the response time and/or intervention-response delay is >7 weeks. If confirmed, the putative association between ascorbate and collagen cross-link ratios in man could become the basis for a functional test for adequacy of ascorbate status.

  13. Developing functional musculoskeletal tissues through hypoxia and lysyl oxidase-induced collagen cross-linking.

    PubMed

    Makris, Eleftherios A; Responte, Donald J; Paschos, Nikolaos K; Hu, Jerry C; Athanasiou, Kyriacos A

    2014-11-11

    The inability to recapitulate native tissue biomechanics, especially tensile properties, hinders progress in regenerative medicine. To address this problem, strategies have focused on enhancing collagen production. However, manipulating collagen cross-links, ubiquitous throughout all tissues and conferring mechanical integrity, has been underinvestigated. A series of studies examined the effects of lysyl oxidase (LOX), the enzyme responsible for the formation of collagen cross-links. Hypoxia-induced endogenous LOX was applied in multiple musculoskeletal tissues (i.e., cartilage, meniscus, tendons, ligaments). Results of these studies showed that both native and engineered tissues are enhanced by invoking a mechanism of hypoxia-induced pyridinoline (PYR) cross-links via intermediaries like LOX. Hypoxia was shown to enhance PYR cross-linking 1.4- to 6.4-fold and, concomitantly, to increase the tensile properties of collagen-rich tissues 1.3- to 2.2-fold. Direct administration of exogenous LOX was applied in native cartilage and neocartilage generated using a scaffold-free, self-assembling process of primary chondrocytes. Exogenous LOX was found to enhance native tissue tensile properties 1.9-fold. LOX concentration- and time-dependent increases in PYR content (∼ 16-fold compared with controls) and tensile properties (approximately fivefold compared with controls) of neocartilage were also detected, resulting in properties on par with native tissue. Finally, in vivo subcutaneous implantation of LOX-treated neocartilage in nude mice promoted further maturation of the neotissue, enhancing tensile and PYR content approximately threefold and 14-fold, respectively, compared with in vitro controls. Collectively, these results provide the first report, to our knowledge, of endogenous (hypoxia-induced) and exogenous LOX applications for promoting collagen cross-linking and improving the tensile properties of a spectrum of native and engineered tissues both in vitro and in

  14. Tuning chemical and physical cross-links in silk electrogels for morphological analysis and mechanical reinforcement.

    PubMed

    Lin, Yinan; Xia, Xiaoxia; Shang, Ke; Elia, Roberto; Huang, Wenwen; Cebe, Peggy; Leisk, Gary; Omenetto, Fiorenzo; Kaplan, David L

    2013-08-12

    Electrochemically controlled, reversible assembly of biopolymers into hydrogel structures is a promising technique for on-demand cell or drug encapsulation and release systems. An electrochemically sol-gel transition has been demonstrated in regenerated Bombyx mori silk fibroin, offering a controllable way to generate biocompatible and reversible adhesives and other biomedical materials. Despite the involvement of an electrochemically triggered electrophoretic migration of the silk molecules, the mechanism of the reversible electrogelation remains unclear. It is, however, known that the freshly prepared silk electrogels (e-gels) adopt a predominantly random coil conformation, indicating a lack of cross-linking as well as thermal, mechanical, and morphological stabilities. In the present work, the tuning of covalent and physical β-sheet cross-links in silk hydrogels was studied for programming the structural properties. Scanning electron microscopy (SEM) revealed delicate morphology, including locally aligned fibrillar structures, in silk e-gels, preserved by combining glutaraldehyde-cross-linking and ethanol dehydration. Fourier transform infrared (FTIR) spectroscopic analysis of either electrogelled, vortex-induced or spontaneously formed silk hydrogels showed that the secondary structure of silk e-gels was tunable between non-β-sheet-dominated and β-sheet-dominated states. Dynamic oscillatory rheology confirmed the mechanical reinforcement of silk e-gels provided by controlled chemical and physical cross-links. The selective incorporation of either chemical or physical or both cross-links into the electrochemically responsive, originally unstructured silk e-gel should help in the design for electrochemically responsive protein polymers. PMID:23859710

  15. Role of collagen content and cross-linking in large pulmonary arterial stiffening after chronic hypoxia

    PubMed Central

    Wang, Zhijie; Chesler, Naomi C.

    2011-01-01

    Chronic hypoxic pulmonary hypertension (HPH) is associated with large pulmonary artery (PA) stiffening, which is correlated with collagen accumulation. However, the mechanisms by which collagen contributes to PA stiffening remain largely unexplored. Moreover, HPH may alter mechanical properties other than stiffness, such as pulse damping capacity, which also affects ventricular workload but is rarely quantified. We hypothesized that collagen content and cross-linking differentially regulate the stiffness and damping capacity of large PAs during HPH progression. The hypothesis was tested with transgenic mice that synthesize collagen type I resistant to collagenase degradation (Col1a1R/R). These mice and littermate controls (Col1a1+/+) were exposed to hypoxia for 10 days; some were treated with β-animopropionitrile (BAPN), which prevents new cross-link formation. Isolated PA dynamic mechanical tests were performed and collagen content and cross-linking were measured. In Col1a1+/+ mice, HPH increased both collagen content and cross-linking and BAPN treatment prevented these increases. Similar trends were observed in Col1a1R/R mice except that collagen content further increased with BAPN treatment. Mechanical tests showed that in Col1a1+/+ mice, HPH increased PA stiffness and damping capacity and these increases were impeded by BAPN treatment. In Col1a1R/R mice, HPH led to a smaller but significant increase in PA stiffness and a decrease in damping capacity. These mechanical changes were not affected by BAPN treatment. Vessel-specific correlations for each strain showed that the stiffness and damping capacity were correlated with the total content rather than cross-linking of collagen. Our results suggest that collagen total content is critical to extralobar PA stiffening during HPH. PMID:21538012

  16. Evaluation of the Efficacy of Excimer Laser Ablation of Cross-Linked Porcine Cornea

    PubMed Central

    Chen, Shihao; Li, Yini; Stojanovic, Aleksander; Zhang, Jia; Wang, Yibo; Wang, Qinmei; Seiler, Theo

    2012-01-01

    Background Combination of riboflavin/UVA cross-linking (CXL) and excimer laser ablation is a promising therapy for treating corneal ectasia. The cornea is strengthened by cross-linking, while the irregular astigmatism is reduced by laser ablation. This study aims to compare the efficacy of excimer laser ablation on porcine corneas with and without cross-linking. Methods and Findings The porcine cornea was de-epithelialized and treated with 0.1% riboflavin solution for 30 minutes. A half of the cornea was exposed to UVA-radiation for another 30 minutes while the controlled half of the cornea was protected from the UVA using a metal shield. Photo therapeutic keratectomy (PTK) was then performed on the central cornea. Corneal thickness of 5 paired locations on the horizontal line, ±0.5, ±1.0, ±1.5, ±2.0, and ±2.5 mm from the central spot, were measured using optical coherence tomography prior to and after PTK. The ablation depth was then determined by the corneal thickness. There was a 9% difference (P<0.001) in the overall ablation depth between the CXL-half corneas (158±22 µm) and the control-half corneas (174±26 µm). The ablation depths of all 5 correspondent locations on the CXL-half were significantly smaller (P<0.001). Conclusion The efficacy of the laser ablation seems to be lower in cross-linked cornea. Current ablation algorithms may need to be modified for cross-linked corneas. PMID:23056269

  17. Protein Cross-Linking Capillary Electrophoresis for Protein-Protein Interaction Analysis.

    PubMed

    Ouimet, Claire M; Shao, Hao; Rauch, Jennifer N; Dawod, Mohamed; Nordhues, Bryce; Dickey, Chad A; Gestwicki, Jason E; Kennedy, Robert T

    2016-08-16

    Capillary electrophoresis (CE) has been identified as a useful platform for detecting, quantifying, and screening for modulators of protein-protein interactions (PPIs). In this method, one protein binding partner is labeled with a fluorophore, the protein binding partners are mixed, and then, the complex is separated from free protein to allow direct determination of bound to free ratios. Although it possesses many advantages for PPI studies, the method is limited by the need to have separation conditions that both prevent protein adsorption to capillary and maintain protein interactions during the separation. In this work, we use protein cross-linking capillary electrophoresis (PXCE) to overcome this limitation. In PXCE, the proteins are cross-linked under binding conditions and then separated. This approach eliminates the need to maintain noncovalent interactions during electrophoresis and facilitates method development. We report PXCE methods for an antibody-antigen interaction and heterodimer and homodimer heat shock protein complexes. Complexes are cross-linked by short treatments with formaldehyde after reaching binding equilibrium. Cross-linked complexes are separated by electrophoretic mobility using free solution CE or by size using sieving electrophoresis of SDS complexes. The method gives good quantitative results; e.g., a lysozyme-antibody interaction was found to have Kd = 24 ± 3 nM by PXCE and Kd = 17 ± 2 nM using isothermal calorimetry (ITC). Heat shock protein 70 (Hsp70) in complex with bcl2 associated athanogene 3 (Bag3) was found to have Kd = 25 ± 5 nM by PXCE which agrees with Kd values reported without cross-linking. Hsp70-Bag3 binding site mutants and small molecule inhibitors of Hsp70-Bag3 were characterized by PXCE with good agreement to inhibitory constants and IC50 values obtained by a bead-based flow cytometry protein interaction assay (FCPIA). PXCE allows rapid method development for quantitative analysis of PPIs. PMID:27434096

  18. A gel network constituted by rigid schizophyllan chains and nonpermanent cross-links.

    PubMed

    Fang, Yapeng; Takahashi, Rheo; Nishinari, Katsuyoshi

    2004-01-01

    This work reports a gel network formed by rigid schizophyllan (SPG) chains with Borax as a cross-linking agent. The formed cross-links are non-permanent and somewhat dynamic in nature because the cross-linking reaction is governed by a complexation equilibrium. Gelation processes are traced by dynamic viscoelastic measurements to examine the effects of Borax content, SPG concentration, temperature, salt concentration, salt type, and strain. The first-order kinetic model containing three parameters, t(0) (induction time), 1/tau(c) (gelation rate), and (saturated storage modulus), is successfully applied to describe the gelation of the SPG-Borax system. Gelation occurs faster at higher Borax content, higher SPG concentration, higher salt concentration, or lower temperature. Moreover the gelation is cation-type-specific. Storage modulus is a linear function of both Borax content and SPG concentration. The linear relationship between storage modulus and Borax content can be explained by a modified ideal rubber elasticity theory with a front factor alpha to take into account the presence of ineffective cross-links and the effect of SPG chain rigidity. On the other hand, the linear dependence of storage modulus on SPG concentration could be explained on the basis of chain-chain contacting behavior of extended SPG chains. Apparent activation energy and cross-linking enthalpy are calculated to be -74.5 and -32.4 kJ/mol for the present system. Strain sweep measurements manifest that the elasticity behavior of this gel starts to deviate from Gaussian-chain network at a small strain of 10%.

  19. Wear measurement of highly cross-linked UHMWPE using a 7Be tracer implantation technique.

    PubMed

    Wimmer, Markus A; Laurent, Michel P; Dwiwedi, Yasha; Gallardo, Luis A; Chipps, Kelly A; Blackmon, Jeffery C; Kozub, Raymond L; Bardayan, Daniel W; Gross, Carl J; Stracener, Daniel W; Smith, Michael S; Nesaraja, Caroline D; Erikson, Luke; Patel, Nidhi; Rehm, Karl E; Ahmad, Irshad; Greene, John P; Greife, Uwe

    2013-04-01

    The very low wear rates achieved with the current highly cross-linked ultrahigh molecular weight polyethylenes (UHMWPE) used in joint prostheses have proven to be difficult to measure accurately by gravimetry. Tracer methods are therefore being explored. The purpose of this study was to perform a proof-of-concept experiment on the use of the radioactive tracer beryllium-7 ((7)Be) for the determination of in vitro wear in a highly cross-linked orthopedic UHMWPE. Three cross-linked and four conventional UHMWPE pins made from compression-molded GUR 1050, were activated with 10(9) to 10(10) (7)Be nuclei using a new implantation setup that produced a homogenous distribution of implanted nuclei up to 8.5 μm below the surface. The pins were tested for wear in a six-station pin-on-flat apparatus for up to 7.1 million cycles (178 km). A Germanium gamma detector was employed to determine activity loss of the UHMWPE pins at preset intervals during the wear test. The wear of the cross-linked UHMWPE pins was readily detected and estimated to be 17 ± 3 μg per million cycles. The conventional-to-cross-linked ratio of the wear rates was 13.1 ± 0.8, in the expected range for these materials. Oxidative degradation damage from implantation was negligible; however, a weak dependence of wear on implantation dose was observed limiting the number of radioactive tracer atoms that can be introduced. Future applications of this tracer technology may include the analysis of location-specific wear, such as loss of material in the post or backside of a tibial insert.

  20. ProXL (Protein Cross-Linking Database): A Platform for Analysis, Visualization, and Sharing of Protein Cross-Linking Mass Spectrometry Data

    PubMed Central

    2016-01-01

    ProXL is a Web application and accompanying database designed for sharing, visualizing, and analyzing bottom-up protein cross-linking mass spectrometry data with an emphasis on structural analysis and quality control. ProXL is designed to be independent of any particular software pipeline. The import process is simplified by the use of the ProXL XML data format, which shields developers of data importers from the relative complexity of the relational database schema. The database and Web interfaces function equally well for any software pipeline and allow data from disparate pipelines to be merged and contrasted. ProXL includes robust public and private data sharing capabilities, including a project-based interface designed to ensure security and facilitate collaboration among multiple researchers. ProXL provides multiple interactive and highly dynamic data visualizations that facilitate structural-based analysis of the observed cross-links as well as quality control. ProXL is open-source, well-documented, and freely available at https://github.com/yeastrc/proxl-web-app. PMID:27302480

  1. ProXL (Protein Cross-Linking Database): A Platform for Analysis, Visualization, and Sharing of Protein Cross-Linking Mass Spectrometry Data.

    PubMed

    Riffle, Michael; Jaschob, Daniel; Zelter, Alex; Davis, Trisha N

    2016-08-01

    ProXL is a Web application and accompanying database designed for sharing, visualizing, and analyzing bottom-up protein cross-linking mass spectrometry data with an emphasis on structural analysis and quality control. ProXL is designed to be independent of any particular software pipeline. The import process is simplified by the use of the ProXL XML data format, which shields developers of data importers from the relative complexity of the relational database schema. The database and Web interfaces function equally well for any software pipeline and allow data from disparate pipelines to be merged and contrasted. ProXL includes robust public and private data sharing capabilities, including a project-based interface designed to ensure security and facilitate collaboration among multiple researchers. ProXL provides multiple interactive and highly dynamic data visualizations that facilitate structural-based analysis of the observed cross-links as well as quality control. ProXL is open-source, well-documented, and freely available at https://github.com/yeastrc/proxl-web-app . PMID:27302480

  2. Randomized, evaluator-blind, split-face comparison study of single cross-linked versus double cross-linked hyaluronic acid in the treatment of glabellar lines.

    PubMed

    Kono, Taro; Kinney, Brian M; Groff, William Frederick; Chan, Henry H; Ercocen, Ali Riza; Nozaki, Motohiro

    2008-06-01

    BACKGROUND At present, various hyaluronic acids are being used to rejuvenate facial skin. There is no comparative study of single cross-linked hyaluronic acid (SCHA) versus double cross-linked hyaluronic acid (DCHA). The objective of our study is to compare the effectiveness and complications of SCHA versus DCHA in the treatment of glabellar lines. METHODS Ten female patients were enrolled in this randomized, evaluator-blind study. One side (left vs. right) of each patient's glabellar lines was treated with SCHA and the other side was treated with DCHA. Two independent blinded observers reviewed the clinical photographs at 3, 6, 9, and 12 months after the treatment and assessed for degree of improvement as well as complications. RESULTS The two products were equally effective in producing an optimal cosmetic result, although at 6, 9, and 12 months posttreatment, a higher proportion of patients showed over 50% improvement with DCHA than with SCHA. At 12 months posttreatment, DCHA was considered superior in 70% of patients, whereas SCHA was superior in 10% of patients. CONCLUSIONS Both SCHA and DCHA are equally effective in producing an optimal cosmetic result. DCHA provides a more durable esthetic improvement when compared to SCHA in the treatment of glabellar lines.

  3. Dephosphorylated synapsin I anchors synaptic vesicles to actin cytoskeleton: an analysis by videomicroscopy.

    PubMed

    Ceccaldi, P E; Grohovaz, F; Benfenati, F; Chieregatti, E; Greengard, P; Valtorta, F

    1995-03-01

    Synapsin I is a synaptic vesicle-associated protein which inhibits neurotransmitter release, an effect which is abolished upon its phosphorylation by Ca2+/calmodulin-dependent protein kinase II (CaM kinase II). Based on indirect evidence, it was suggested that this effect on neurotransmitter release may be achieved by the reversible anchoring of synaptic vesicles to the actin cytoskeleton of the nerve terminal. Using video-enhanced microscopy, we have now obtained experimental evidence in support of this model: the presence of dephosphorylated synapsin I is necessary for synaptic vesicles to bind actin; synapsin I is able to promote actin polymerization and bundling of actin filaments in the presence of synaptic vesicles; the ability to cross-link synaptic vesicles and actin is specific for synapsin I and is not shared by other basic proteins; the cross-linking between synaptic vesicles and actin is specific for the membrane of synaptic vesicles and does not reflect either a non-specific binding of membranes to the highly surface active synapsin I molecule or trapping of vesicles within the thick bundles of actin filaments; the formation of the ternary complex is virtually abolished when synapsin I is phosphorylated by CaM kinase II. The data indicate that synapsin I markedly affects synaptic vesicle traffic and cytoskeleton assembly in the nerve terminal and provide a molecular basis for the ability of synapsin I to regulate the availability of synaptic vesicles for exocytosis and thereby the efficiency of neurotransmitter release. PMID:7876313

  4. Static and dynamic properties of model elastomer with various cross-linking densities: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Cao, Dapeng; Zhang, Liqun

    2009-07-01

    The effects of the cross-linking density on the static and dynamic properties of polymer networks are examined by using a molecular dynamics simulation based on a simple elastomer model. Simulation results indicate that the introduced cross-linking junctions show almost no effect on the static structure factor. The glass transition temperature Tg increases slightly with the cross-linking density. By analyzing the mean square displacement of the monomers, the chain diffusion, and the incoherent intermediate dynamic structure factor ϕqs(t) at the chain and segmental length scales, it is found that the mobilities of the monomers and chains are retarded and the relaxation behavior is hindered by the cross linking of polymers. Furthermore, the spatial localization of the monomers is also observed at a long time period for a highly cross-linked system. For the cross-linked system, the time-temperature superposition principle is valid at the segmental length scale but breaks down at the chain length scale. The effect of the cross-linking density on the terminal relaxation is investigated by the end-to-end vector correlation, which is well fitted to the Kohlrauch-William-Watts (KWW) or modified KWW functions. The characteristic relaxation time shows an ap