Science.gov

Sample records for actin cross-linking domain

  1. Microtubule-Actin Cross-Linking Factor 1: Domains, Interaction Partners, and Tissue-Specific Functions.

    PubMed

    Goryunov, Dmitry; Liem, Ronald K H

    2016-01-01

    The cytoskeleton of most eukaryotic cells is composed of three principal filamentous components: actin filaments, microtubules (MTs), and intermediate filaments. It is a highly dynamic system that plays crucial roles in a wide range of cellular processes, including migration, adhesion, cytokinesis, morphogenesis, intracellular traffic and signaling, and structural flexibility. Among the large number of cytoskeleton-associated proteins characterized to date, microtubule-actin cross-linking factor 1 (MACF1) is arguably the most versatile integrator and modulator of cytoskeleton-related processes. MACF1 belongs to the plakin family of proteins, and within it, to the spectraplakin subfamily. These proteins are characterized by the ability to bridge MT and actin cytoskeletal networks in a dynamic fashion, which underlies their involvement in the regulation of cell migration, axonal extension, and vesicular traffic. Studying MACF1 functions has provided insights not only into the regulation of the cytoskeleton but also into molecular mechanisms of both normal cellular physiology and cellular pathology. Multiple MACF1 isoforms exist, composed of a large variety of alternatively spliced domains. Each of these domains mediates a specific set of interactions and functions. These functions are manifested in tissue and cell-specific phenotypes observed in conditional MACF1 knockout mice. The conditional models described to date reveal critical roles of MACF1 in mammalian skin, nervous system, heart muscle, and intestinal epithelia. Complete elimination of MACF1 is early embryonic lethal, indicating an essential role for MACF1 in early development. Further studies of MACF1 domains and their interactions will likely reveal multiple new roles of this protein in various tissues. PMID:26778566

  2. Actin polymerization is stimulated by actin cross-linking protein palladin.

    PubMed

    Gurung, Ritu; Yadav, Rahul; Brungardt, Joseph G; Orlova, Albina; Egelman, Edward H; Beck, Moriah R

    2016-02-15

    The actin scaffold protein palladin regulates both normal cell migration and invasive cell motility, processes that require the co-ordinated regulation of actin dynamics. However, the potential effect of palladin on actin dynamics has remained elusive. In the present study, we show that the actin-binding immunoglobulin-like domain of palladin, which is directly responsible for both actin binding and bundling, also stimulates actin polymerization in vitro. Palladin eliminated the lag phase that is characteristic of the slow nucleation step of actin polymerization. Furthermore, palladin dramatically reduced depolymerization, slightly enhanced the elongation rate, and did not alter the critical concentration. Microscopy and in vitro cross-linking assays reveal differences in actin bundle architecture when palladin is incubated with actin before or after polymerization. These results suggest a model whereby palladin stimulates a polymerization-competent form of globular or monomeric actin (G-actin), akin to metal ions, either through charge neutralization or through conformational changes. PMID:26607837

  3. Polymorphism of Cross-Linked Actin Networks in Giant Vesicles

    NASA Astrophysics Data System (ADS)

    Limozin, Laurent; Sackmann, Erich

    2002-09-01

    Actin networks cross-linked by natural linkers α-actinin and filamin are generated in giant vesicles by polymerization through ionophore-mediated influx of Mg2+. α-actinin induces the formation of randomly linked networks at 25 °C which transform at <15 °C into spiderweblike gels or ringlike bundles depending on the vesicle size. Muscle filamin forms ringlike structures under all experimental conditions which can supercoil by subsequent Mg2+ addition. The polymorphism is rationalized in terms of recent models of bivalent ion coupled semiflexible polyelectrolytes and by considering the topology of the linkers.

  4. Arabidopsis CROLIN1, a Novel Plant Actin-binding Protein, Functions in Cross-linking and Stabilizing Actin Filaments*

    PubMed Central

    Jia, Honglei; Li, Jisheng; Zhu, Jingen; Fan, Tingting; Qian, Dong; Zhou, Yuelong; Wang, Jiaojiao; Ren, Haiyun; Xiang, Yun; An, Lizhe

    2013-01-01

    Higher order actin filament structures are necessary for cytoplasmic streaming, organelle movement, and other physiological processes. However, the mechanism by which the higher order cytoskeleton is formed in plants remains unknown. In this study, we identified a novel actin-cross-linking protein family (named CROLIN) that is well conserved only in the plant kingdom. There are six isovariants of CROLIN in the Arabidopsis genome, with CROLIN1 specifically expressed in pollen. In vitro biochemical analyses showed that CROLIN1 is a novel actin-cross-linking protein with binding and stabilizing activities. Remarkably, CROLIN1 can cross-link actin bundles into actin networks. CROLIN1 loss of function induces pollen germination and pollen tube growth hypersensitive to latrunculin B. All of these results demonstrate that CROLIN1 may play an important role in stabilizing and remodeling actin filaments by binding to and cross-linking actin filaments. PMID:24072702

  5. Actin cross-link assembly and disassembly mechanics for alpha-Actinin and fascin.

    PubMed

    Courson, David S; Rock, Ronald S

    2010-08-20

    Self-assembly of complex structures is commonplace in biology but often poorly understood. In the case of the actin cytoskeleton, a great deal is known about the components that include higher order structures, such as lamellar meshes, filopodial bundles, and stress fibers. Each of these cytoskeletal structures contains actin filaments and cross-linking proteins, but the role of cross-linking proteins in the initial steps of structure formation has not been clearly elucidated. We employ an optical trapping assay to investigate the behaviors of two actin cross-linking proteins, fascin and alpha-actinin, during the first steps of structure assembly. Here, we show that these proteins have distinct binding characteristics that cause them to recognize and cross-link filaments that are arranged with specific geometries. alpha-Actinin is a promiscuous cross-linker, linking filaments over all angles. It retains this flexibility after cross-links are formed, maintaining a connection even when the link is rotated. Conversely, fascin is extremely selective, only cross-linking filaments in a parallel orientation. Surprisingly, bundles formed by either protein are extremely stable, persisting for over 0.5 h in a continuous wash. However, using fluorescence recovery after photobleaching and fluorescence decay experiments, we find that the stable fascin population can be rapidly competed away by free fascin. We present a simple avidity model for this cross-link dissociation behavior. Together, these results place constraints on how cytoskeletal structures assemble, organize, and disassemble in vivo. PMID:20551315

  6. H2O2-treated actin: assembly and polymer interactions with cross-linking proteins.

    PubMed Central

    DalleDonne, I; Milzani, A; Colombo, R

    1995-01-01

    During inflammation, hydrogen peroxide, produced by polymorphonuclear leukocytes, provokes cell death mainly by disarranging filamentous (polymerized) actin (F-actin). To show the molecular mechanism(s) by which hydrogen peroxide could alter actin dynamics, we analyzed the ability of H2O2-treated actin samples to polymerize as well as the suitability of actin polymers (from oxidized monomers) to interact with cross-linking proteins. H2O2-treated monomeric (globular) actin (G-actin) shows an altered time course of polymerization. The increase in the lag phase and the lowering in both the polymerization rate and the polymerization extent have been evidenced. Furthermore, steady-state actin polymers, from oxidized monomers, are more fragmented than control polymers. This seems to be ascribable to the enhanced fragility of oxidized filaments rather than to the increase in the nucleation activity, which markedly falls. These facts; along with the unsuitability of actin polymers from oxidized monomers to interact with both filamin and alpha-actinin, suggest that hydrogen peroxide influences actin dynamics mainly by changing the F-actin structure. H2O2, via the oxidation of actin thiols (in particular, the sulfhydryl group of Cys-374), likely alters the actin C-terminus, influencing both subunit/subunit interactions and the spatial structure of the binding sites for cross-linking proteins in F-actin. We suggest that most of the effects of hydrogen peroxide on actin could be explained in the light of the "structural connectivity," demonstrated previously in actin. Images FIGURE 3 FIGURE 9 PMID:8599677

  7. A Combination of Actin Treadmilling and Cross-Linking Drives Contraction of Random Actomyosin Arrays.

    PubMed

    Oelz, Dietmar B; Rubinstein, Boris Y; Mogilner, Alex

    2015-11-01

    We investigate computationally the self-organization and contraction of an initially random actomyosin ring. In the framework of a detailed physical model for a ring of cross-linked actin filaments and myosin-II clusters, we derive the force balance equations and solve them numerically. We find that to contract, actin filaments have to treadmill and to be sufficiently cross linked, and myosin has to be processive. The simulations reveal how contraction scales with mechanochemical parameters. For example, they show that the ring made of longer filaments generates greater force but contracts slower. The model predicts that the ring contracts with a constant rate proportional to the initial ring radius if either myosin is released from the ring during contraction and actin filaments shorten, or if myosin is retained in the ring, while the actin filament number decreases. We demonstrate that a balance of actin nucleation and compression-dependent disassembly can also sustain contraction. Finally, the model demonstrates that with time pattern formation takes place in the ring, worsening the contractile process. The more random the actin dynamics are, the higher the contractility will be. PMID:26536259

  8. Intrastrand cross-linked actin between Gln-41 and Cys-374. I. Mapping of sites cross-linked in F-actin by N-(4-azido-2-nitrophenyl) putrescine.

    PubMed

    Hegyi, G; Mák, M; Kim, E; Elzinga, M; Muhlrad, A; Reisler, E

    1998-12-22

    A new heterobifunctional photo-cross-linking reagent, N-(4-azido-2-nitrophenyl)-putrescine (ANP), was synthesized and covalently bound to Gln-41 of rabbit skeletal muscle actin by a bacterial transglutaminase-mediated reaction. Up to 1.0 mol of the reagent was incorporated per mole of G-actin; at least 90% of it was bound to Gln-41 while a minor fraction (about 8%) was attached to Gln-59. The labeled G-actin was polymerized, and the resulting F-actin was intermolecularly cross-linked by irradiation with UV light. The labeled and cross-linked peptides were isolated from either a complete or limited tryptic digest of cross-linked actin. In the limited digest the tryptic cleavage was restricted to arginine by succinylation of the lysyl residues. N-terminal sequencing and mass spectrometry indicated that the cross-linked peptides contained residues 40-50 (or 40-62 in the arginine limited digest) and residues 373-375, and that the actual cross-linking took place between Gln-41 and Cys-374. This latter finding was also supported by the inhibition of Cys-374 labeling with a fluorescent probe in the cross-linked actin. The dynamic length of ANP, between 11.1 and 12.5 A, constrains to that range the distance between the gamma-carboxyl group of Gln-41 in one monomer and the sulfur atom of Cys-374 in an adjacent monomer. This is consistent with the distances between these two residues on adjacent monomers of the same strand in the long-pitch helix in the structural models of F-actin [Holmes, K. C., Popp, D., Gebhard, W., and Kabsch, W. (1990) Nature 347, 44-49 and Lorenz, M., Popp, D., and Holmes, K. C. (1993) J. Mol. Biol. 234, 826-836]. The effect of cross-linking on the function of actin is described in the companion papers. PMID:9922144

  9. Motion in partially and fully cross-linked F-actin networks

    NASA Astrophysics Data System (ADS)

    Morris, Eliza; Ehrlicher, Allen; Weitz, David

    2012-02-01

    Single molecule experiments have measured stall forces and procession rates of molecular motors on isolated cytoskeletal fibers in Newtonian fluids. But in the cell, these motors are transporting cargo through a highly complex cytoskeletal network. To compare these single molecule results to the forces exerted by motors within the cell, an evaluation of the response of the cytoskeletal network is needed. Using magnetic tweezers and fluorescence confocal microscopy we observe and quantify the relationship between bead motion and filament response in F-actin networks both partially and fully cross-linked with filamin We find that when the transition from full to partial cross-linking is brought about by a decrease in cross-linker concentration there is a simultaneous decline in the elasticity of the network, but the response of the bead remains qualitatively similar. However, when the cross-linking is reduced through a shortening of the F-actin filaments the bead response is completely altered. The characteristics of the altered bead response will be discussed here.

  10. Myosin III-mediated cross-linking and stimulation of actin bundling activity of Espin

    PubMed Central

    Liu, Haiyang; Li, Jianchao; Raval, Manmeet H; Yao, Ningning; Deng, Xiaoying; Lu, Qing; Nie, Si; Feng, Wei; Wan, Jun; Yengo, Christopher M; Liu, Wei; Zhang, Mingjie

    2016-01-01

    Class III myosins (Myo3) and actin-bundling protein Espin play critical roles in regulating the development and maintenance of stereocilia in vertebrate hair cells, and their defects cause hereditary hearing impairments. Myo3 interacts with Espin1 through its tail homology I motif (THDI), however it is not clear how Myo3 specifically acts through Espin1 to regulate the actin bundle assembly and stabilization. Here we discover that Myo3 THDI contains a pair of repeat sequences capable of independently and strongly binding to the ankyrin repeats of Espin1, revealing an unexpected Myo3-mediated cross-linking mechanism of Espin1. The structures of Myo3 in complex with Espin1 not only elucidate the mechanism of the binding, but also reveal a Myo3-induced release of Espin1 auto-inhibition mechanism. We also provide evidence that Myo3-mediated cross-linking can further promote actin fiber bundling activity of Espin1. DOI: http://dx.doi.org/10.7554/eLife.12856.001 PMID:26785147

  11. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells

    NASA Astrophysics Data System (ADS)

    Gardel, M. L.; Nakamura, F.; Hartwig, J. H.; Crocker, J. C.; Stossel, T. P.; Weitz, D. A.

    2006-02-01

    We show that actin filaments, shortened to physiological lengths by gelsolin and cross-linked with recombinant human filamins (FLNs), exhibit dynamic elastic properties similar to those reported for live cells. To achieve elasticity values of comparable magnitude to those of cells, the in vitro network must be subjected to external prestress, which directly controls network elasticity. A molecular requirement for the strain-related behavior at physiological conditionsis a flexible hinge found in FLNa and some FLNb molecules. Basic physical properties of the in vitro filamin-F-actin network replicate the essential mechanical properties of living cells. This physical behavior could accommodate passive deformation and internal organelle trafficking at low strains yet resist externally or internally generated high shear forces. cytoskeleton | cell mechanics | nonlinear rheology

  12. Structure of a Longitudinal Actin Dimer Assembled by Tandem W Domains: Implications for Actin Filament Nucleation

    SciTech Connect

    Rebowski, Grzegorz; Namgoong, Suk; Boczkowska, Malgorzata; Leavis, Paul C.; Navaza, Jorge; Dominguez, Roberto

    2013-11-20

    Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin {beta}4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin {beta}4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.

  13. Hierarchical Cross-linked F-actin Networks: Understanding Structure and Assembly

    NASA Astrophysics Data System (ADS)

    Hirst, Linda; Nguyen, Lam

    2009-11-01

    The protein, F-actin provides us with an interesting system in which to investigate the assembly properties of semi-flexible filaments in the presence of cross-linkers. Recently it was observed that F-actin, in the presence of the cross-linker alpha-actinin at high molar ratios will generate a novel hierarchical network of filament bundles. We investigate this system using coarse-grained molecular dynamics (MD) simulation, confocal microscopy and x-ray scattering. We have studied the F-actin/alpha-actinin system in detail with different actin conc. (C) and alpha-actinin/actin molar ratios (gamma). Confocal microscopy and analysis shows that the assembled systems fall into one of 3 phases depending on C and gamma: (1) loosely connected network of F-actin and bundles, (2) loosely connected network of dense domains and (3) uniform network of bundles. This can be explained and replicated using MD simulation. We have also examined different types of cross-linkers to represent the proteins, fascin and filamin. Results show that phase formation is related to the flexibility in binding between F-actin and cross-linkers. This degree of freedom, possible with longer cross-linkers allows the formation of branch points and thus bundle networks.

  14. Stress Enhanced Gelation in α-Actinin-4 Cross-linked Actin Networks

    NASA Astrophysics Data System (ADS)

    Yao, Norman; Broedersz, Chase; Depken, Martin; Becker, Daniel; Pollak, Martin; Mackintosh, Frederick; Weitz, David

    2012-02-01

    A hallmark of biopolymer networks is their exquisite sensitivity to stress, demonstrated for example, by pronounced nonlinear elastic stiffening. Typically, they also yield under increased static load, providing a mechanism to achieve fluid-like behavior. In this talk, I will demonstrate an unexpected dynamical behavior in biopolymer networks consisting of F-actin cross-linked by a physiological actin binding protein, α-Actinin-4. Applied stress actually enhances gelation of these networks by delaying the onset of structural relaxation and network flow, thereby extending the regime of solid-like behavior to much lower frequencies. By using human kidney disease-associated mutant cross-linkers with varying binding affinities, we propose a molecular origin for this stress-enhanced gelation: It arises from the increased binding affinity of the cross-linker under load, characteristic of catch-bond-like behavior. This property may have important biological implications for intracellular mechanics, representing as it does a qualitatively new class of material behavior.

  15. F-actin cross-linking enhances the stability of force generation in disordered actomyosin networks

    NASA Astrophysics Data System (ADS)

    Jung, Wonyeong; Murrell, Michael P.; Kim, Taeyoon

    2015-12-01

    Myosin molecular motors and actin cross-linking proteins (ACPs) are known to mediate the generation and transmission of mechanical forces within the cortical F-actin cytoskeleton that drive major cellular processes such as cell division and migration. However, how motors and ACPs interact collectively over diverse timescales to modulate the time-dependent mechanical properties of the cytoskeleton remains unclear. In this study, we present a three-dimensional agent-based computational model of the cortical actomyosin network to quantitatively determine the effects of motor activity and the density and kinetics of ACPs on the accumulation and maintenance of mechanical tension within a disordered actomyosin network. We found that motors accumulate large stress quickly by behaving as temporary cross-linkers although this stress is relaxed over time unless there are sufficient passive ACPs to stabilize the network. Stabilization by ACPs helps motors to generate forces up to their maximum potential, leading to significant enhancement of the efficiency and stability of stress generation. Thus, we demonstrated that the force-dependent kinetics of ACP dissociation plays a critical role for the accumulation and sustainment of stress and the structural remodeling of networks.

  16. The actinin family of actin cross-linking proteins - a genetic perspective.

    PubMed

    Murphy, Anita C H; Young, Paul W

    2015-01-01

    Actinins are one of the major actin cross-linking proteins found in virtually all cell types and are the ancestral proteins of a larger family that includes spectrin, dystrophin and utrophin. Invertebrates have a single actinin-encoding ACTN gene, while mammals have four. Mutations in all four human genes have now been linked to heritable diseases or traits. ACTN1 mutations cause macrothrombocytopenia, a platelet disorder characterized by excessive bleeding. ACTN2 mutations have been linked to a range of cardiomyopathies, and ACTN4 mutations cause a kidney condition called focal segmental glomerulosclerosis. Intriguingly, approximately 16 % of people worldwide are homozygous for a nonsense mutation in ACTN3 that abolishes actinin-3 protein expression. This ACTN3 null allele has undergone recent positive selection in specific human populations, which may be linked to improved endurance and adaptation to colder climates. In this review we discuss the human genetics of the ACTN gene family, as well as ACTN gene knockout studies in several model organisms. Observations from both of these areas provide insights into the evolution and cellular functions of actinins. PMID:26312134

  17. Reversible mechano-memory in sheared cross-linked actin networks

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayantan; Gardel, Margaret L.

    2015-03-01

    Is it possible to control the shear modulus of a material mechanically? We reconstitute a network of actin filaments cross-linked with Filamin A and show that the system has remarkable property to respond under shear in a deformation history dependent manner. When a large shear stress pulse is applied to the system, the system remembers the direction of deformation long after the stress pulse is removed. For the next loading cycle, shear response of the system becomes anisotropic; if the applied pulse direction is same as the previous one, the system behaves like a viscoelastic solid but a transient liquefaction is observed if the pulse direction is reversed. Imaging and normal force measurements under shear suggest that this anisotropic response comes from stretching and bending dominated deformation directions induced by the large shear deformation giving rise to a direction dependent mechano-memory. The long time scale over which the memory effect persists has relevance in various deformations in cellular and multicellular systems. S.M. acknowledges support from a Kadanoff-Rice Post Doctoral fellowship from MRSEC, University of Chicago.

  18. An affine continuum mechanical model for cross-linked F-actin networks with compliant linker proteins.

    PubMed

    Holzapfel, Gerhard A; Unterberger, Michael J; Ogden, Ray W

    2014-10-01

    Cross-linked actin networks are important building blocks of the cytoskeleton. In order to gain deeper insight into the interpretation of experimental data on actin networks, adequate models are required. In this paper we introduce an affine constitutive network model for cross-linked F-actin networks based on nonlinear continuum mechanics, and specialize it in order to reproduce the experimental behavior of in vitro reconstituted model networks. The model is based on the elastic properties of single filaments embedded in an isotropic matrix such that the overall properties of the composite are described by a free-energy function. In particular, we are able to obtain the experimentally determined shear and normal stress responses of cross-linked actin networks typically observed in rheometer tests. In the present study an extensive analysis is performed by applying the proposed model network to a simple shear deformation. The single filament model is then extended by incorporating the compliance of cross-linker proteins and further extended by including viscoelasticity. All that is needed for the finite element implementation is the constitutive model for the filaments, the linkers and the matrix, and the associated elasticity tensor in either the Lagrangian or Eulerian formulation. The model facilitates parameter studies of experimental setups such as micropipette aspiration experiments and we present such studies to illustrate the efficacy of this modeling approach. PMID:25043658

  19. Conformational Transitions of the Cross-linking Domains of Elastin during Self-assembly*

    PubMed Central

    Reichheld, Sean E.; Muiznieks, Lisa D.; Stahl, Richard; Simonetti, Karen; Sharpe, Simon; Keeley, Fred W.

    2014-01-01

    Elastin is the intrinsically disordered polymeric protein imparting the exceptional properties of extension and elastic recoil to the extracellular matrix of most vertebrates. The monomeric precursor of elastin, tropoelastin, as well as polypeptides containing smaller subsets of the tropoelastin sequence, can self-assemble through a colloidal phase separation process called coacervation. Present understanding suggests that self-assembly is promoted by association of hydrophobic domains contained within the tropoelastin sequence, whereas polymerization is achieved by covalent joining of lysine side chains within distinct alanine-rich, α-helical cross-linking domains. In this study, model elastin polypeptides were used to determine the structure of cross-linking domains during the assembly process and the effect of sequence alterations in these domains on assembly and structure. CD temperature melts indicated that partial α-helical structure in cross-linking domains at lower temperatures was absent at physiological temperature. Solid-state NMR demonstrated that β-strand structure of the cross-linking domains dominated in the coacervate state, although α-helix was predominant after subsequent cross-linking of lysine side chains with genipin. Mutation of lysine residues to hydrophobic amino acids, tyrosine or alanine, leads to increased propensity for β-structure and the formation of amyloid-like fibrils, characterized by thioflavin-T binding and transmission electron microscopy. These findings indicate that cross-linking domains are structurally labile during assembly, adapting to changes in their environment and aggregated state. Furthermore, the sequence of cross-linking domains has a dramatic effect on self-assembly properties of elastin-like polypeptides, and the presence of lysine residues in these domains may serve to prevent inappropriate ordered aggregation. PMID:24550393

  20. Actin bundles cross-linked with [Formula: see text]-actinin studied by nanobeam X-ray diffraction.

    PubMed

    Töpperwien, M; Priebe, M; Salditt, T

    2016-07-01

    We have performed scanning nano-beam small-angle X-ray scattering (nano-SAXS) experiments on in vitro-formed actin filaments cross-linked with [Formula: see text]-actinin. The experimental method combines a high resolution in reciprocal space with a real space resolution as given by the spot-size of the nano-focused X-ray beam, and opens up new opportunities to study local super-molecular structures of actin filaments. In this first proof-of-concept, we show that the local orientation of actin bundles formed by the cross-linking can be visualized by the X-ray darkfield maps. The filament bundles give rise to highly anisotropic diffraction patterns showing distinct streaks perpendicular to the bundle axes. Interestingly, some diffraction patterns exhibit a fine structure in the form of intensity modulations allowing for a more detailed analysis of the order within the bundles. A first empirical quantification of these modulations is included in the present work. PMID:26715112

  1. Passive and active microrheology for cross-linked F-actin networks in vitro.

    PubMed

    Lee, Hyungsuk; Ferrer, Jorge M; Nakamura, Fumihiko; Lang, Matthew J; Kamm, Roger D

    2010-04-01

    Actin filament (F-actin) is one of the dominant structural constituents in the cytoskeleton. Orchestrated by various actin-binding proteins (ABPs), F-actin is assembled into higher-order structures such as bundles and networks that provide mechanical support for the cell and play important roles in numerous cellular processes. Although mechanical properties of F-actin networks have been extensively studied, the underlying mechanisms for network elasticity are not fully understood, in part because different measurements probe different length and force scales. Here, we developed both passive and active microrheology techniques using optical tweezers to estimate the mechanical properties of F-actin networks at a length scale comparable to cells. For the passive approach we tracked the motion of a thermally fluctuating colloidal sphere to estimate the frequency-dependent complex shear modulus of the network. In the active approach, we used an optical trap to oscillate an embedded microsphere and monitored the response in order to obtain network viscoelasticity over a physiologically relevant force range. While both active and passive measurements exhibit similar results at low strain, the F-actin network subject to high strain exhibits non-linear behavior which is analogous to the strain-hardening observed in macroscale measurements. Using confocal and total internal reflection fluorescent microscopy, we also characterize the microstructure of reconstituted F-actin networks in terms of filament length, mesh size and degree of bundling. Finally, we propose a model of network connectivity by investigating the effect of filament length on the mechanical properties and structure. PMID:19883801

  2. Specific disulfide cross-linking to constrict the mobile carrier domain of nonribosomal peptide synthetases

    PubMed Central

    Tarry, Michael J.; Schmeing, T. Martin

    2015-01-01

    Nonribosomal peptide synthetases are large, multi-domain enzymes that produce peptide molecules with important biological activity such as antibiotic, antiviral, anti-tumor, siderophore and immunosuppressant action. The adenylation (A) domain catalyzes two reactions in the biosynthetic pathway. In the first reaction, it activates the substrate amino acid by adenylation and in the second reaction it transfers the amino acid onto the phosphopantetheine arm of the adjacent peptide carrier protein (PCP) domain. The conformation of the A domain differs significantly depending on which of these two reactions it is catalyzing. Recently, several structures of A–PCP di-domains have been solved using mechanism-based inhibitors to trap the PCP domain in the A domain active site. Here, we present an alternative strategy to stall the A–PCP di-domain, by engineering a disulfide bond between the native amino acid substrate and the A domain. Size exclusion studies showed a significant shift in apparent size when the mutant A–PCP was provided with cross-linking reagents, and this shift was reversible in the presence of high concentrations of reducing agent. The cross-linked protein crystallized readily in several of the conditions screened and the best crystals diffracted to ≈8 Å. PMID:25713404

  3. Chemical Cross-linking and MALDI-TOF/TOF to Investigate Protein Interacting Domains

    PubMed Central

    Pottiez, G.; Ciborowski, P.; Wojtkiewicz, Melinda

    2012-01-01

    INTRODUCTION: Mapping peptides modified by chemical cross-linker(s) provides clues about proteins' interacting domains. One complication is that such modification may result from intra- but not inter-molecular interactions. Western blot analyses showed an ability of pGSN to spontaneously form homo-dimers and homo-trimers, which we also detected in samples of human plasma. Therefore, main goal of this study was to use chemical cross-linking to map residues involved in inter- and/or intra-molecular interactions. METHODS: Two separate commercially available preparations were used in this study: recombinant expressed in E.coli (Cytoskeleton Inc.) and native purified from human plasma (Sigma, Inc.). Cross-linkers, Bis(sulfosuccinimidyl)glutarate-d0 (BS2G-d0), Bis(sulfo-succinimidyl)suberate-d0 (BS3G-d0), Bis-N-succinimidyl(PEG)5 (BS(PEG)5) and 3,3′-Dithiobis (sulfosuccinimidylpropionate) (DTSSP) were from Thermo Scientific (San Jose, CA, USA). For mass spectrometry analyses we used ABSciex 4800 MALDI-TOF/TOF. RESULTS: We used cross-linkers with arm length ranging from 7.7Å to 21.7Å. We present that MALDI based mass spectrometry generates high quality data to show lysine residues modified by cross-linkers and combined with existing data based on crystallography (Protein Data Bank, PDB) can be used to discriminate between inter- and intra-molecular linking. Interestingly, a 12.0Å linker did not support complete intra-molecular cross-linking of monomer like 11.4Å cross-linker resulting in the presence of two bands in 1-DE analysis. CONCLUSIONS: When interpreting results of in vitro cross-linking interacting proteins, a possibility of self cross-linking of any of interacting proteins should be considered. Therefore, critical residues for forming hetero-complexes can be blocked and new and not biologically relevant interacting domains can be created. Flexibility of some regions within the protein polypeptide chain may lead to linking of distant residues where linker

  4. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin

    PubMed Central

    Pukatzki, Stefan; Ma, Amy T.; Revel, Andrew T.; Sturtevant, Derek; Mekalanos, John J.

    2007-01-01

    Genes encoding type VI secretion systems (T6SS) are widely distributed in pathogenic Gram-negative bacterial species. In Vibrio cholerae, T6SS have been found to secrete three related proteins extracellularly, VgrG-1, VgrG-2, and VgrG-3. VgrG-1 can covalently cross-link actin in vitro, and this activity was used to demonstrate that V. cholerae can translocate VgrG-1 into macrophages by a T6SS-dependent mechanism. Protein structure search algorithms predict that VgrG-related proteins likely assemble into a trimeric complex that is analogous to that formed by the two trimeric proteins gp27 and gp5 that make up the baseplate “tail spike” of Escherichia coli bacteriophage T4. VgrG-1 was shown to interact with itself, VgrG-2, and VgrG-3, suggesting that such a complex does form. Because the phage tail spike protein complex acts as a membrane-penetrating structure as well as a conduit for the passage of DNA into phage-infected cells, we propose that the VgrG components of the T6SS apparatus may assemble a “cell-puncturing device” analogous to phage tail spikes to deliver effector protein domains through membranes of target host cells. PMID:17873062

  5. A chemo-mechanical constitutive model for transiently cross-linked actin networks and a theoretical assessment of their viscoelastic behaviour.

    PubMed

    Fallqvist, B; Kroon, M

    2013-04-01

    Biological materials can undergo large deformations and also show viscoelastic behaviour. One such material is the network of actin filaments found in biological cells, giving the cell much of its mechanical stiffness. A theory for predicting the relaxation behaviour of actin networks cross-linked with the cross-linker α-actinin is proposed. The constitutive model is based on a continuum approach involving a neo-Hookean material model, modified in terms of concentration of chemically activated cross-links. The chemical model builds on work done by Spiros (Doctoral thesis, University of British Columbia, Vancouver, Canada, 1998) and has been modified to respond to mechanical stress experienced by the network. The deformation is split into a viscous and elastic part, and a thermodynamically motivated rate equation is assigned for the evolution of viscous deformation. The model predictions were evaluated for stress relaxation tests at different levels of strain and found to be in good agreement with experimental results for actin networks cross-linked with α-actinin. PMID:22623110

  6. Force generation and work production by covalently cross-linked actin-myosin cross-bridges in rabbit muscle fibers.

    PubMed

    Bershitsky, S Y; Tsaturyan, A K

    1995-09-01

    To separate a fraction of the myosin cross-bridges that are attached to the thin filaments and that participate in the mechanical responses, muscle fibers were cross-linked with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide and then immersed in high-salt relaxing solution (HSRS) of 0.6 M ionic strength for detaching the unlinked myosin heads. The mechanical properties and force-generating ability of the cross-linked cross-bridges were tested with step length changes (L-steps) and temperature jumps (T-jumps) from 6-10 degrees C to 30-40 degrees C. After partial cross-linking, when instantaneous stiffness in HSRS was 25-40% of that in rigor, the mechanical behavior of the fibers was similar to that during active contraction. The kinetics of the T-jump-induced tension transients as well as the rate of the fast phase of tension recovery after length steps were close to those in unlinked fibers during activation. Under feedback force control, the T-jump initiated fiber shortening by up to 4 nm/half-sarcomere. Work produced by a cross-linked myosin head after the T-jump was up to 30 x 10(-21) J. When the extent of cross-linking was increased and fiber stiffness in HSRS approached that in rigor, the fibers lost their viscoelastic properties and ability to generate force with a rise in temperature. PMID:8519956

  7. A single charge in the actin binding domain of fascin can independently tune the linear and non-linear response of an actin bundle network.

    PubMed

    Maier, M; Müller, K W; Heussinger, C; Köhler, S; Wall, W A; Bausch, A R; Lieleg, O

    2015-05-01

    Actin binding proteins (ABPs) not only set the structure of actin filament assemblies but also mediate the frequency-dependent viscoelastic moduli of cross-linked and bundled actin networks. Point mutations in the actin binding domain of those ABPs can tune the association and dissociation dynamics of the actin/ABP bond and thus modulate the network mechanics both in the linear and non-linear response regime. We here demonstrate how the exchange of a single charged amino acid in the actin binding domain of the ABP fascin triggers such a modulation of the network rheology. Whereas the overall structure of the bundle networks is conserved, the transition point from strain-hardening to strain-weakening sensitively depends on the cross-linker off-rate and the applied shear rate. Our experimental results are consistent both with numerical simulations of a cross-linked bundle network and a theoretical description of the bundle network mechanics which is based on non-affine bending deformations and force-dependent cross-link dynamics. PMID:26004635

  8. B cell receptor cross-linking triggers a caspase-8-dependent apoptotic pathway that is independent of the death effector domain of Fas-associated death domain protein.

    PubMed

    Besnault, L; Schrantz, N; Auffredou, M T; Leca, G; Bourgeade, M F; Vazquez, A

    2001-07-15

    We have previously reported that B cell receptors, depending on the degree to which they are cross-linked, can promote apoptosis in various human B cell types. In this study, we show that B cell receptors can trigger two apoptotic pathways according to cross-linking and that these pathways control mitochondrial activation in human Burkitt's lymphoma cells. Whereas soluble anti-mu Ab triggers caspase-independent mitochondrial activation, cross-linked anti-mu Ab induces an apoptotic response associated with a caspase-dependent loss of mitochondrial transmembrane potential. This B cell receptor-mediated caspase-dependent mitochondrial activation is associated with caspase-8 activation. We show here that caspase-8 inhibitors strongly decrease cross-linking-dependent B cell receptor-mediated apoptosis in Burkitt's lymphoma BL41 cells. These inhibitors act upstream from the mitochondria as they prevented the loss of mitochondrial membrane potential observed in B cell receptor-treated BL41 cells. Caspase-8 activation in these cells was also evident from the detection of cleaved fragments of caspase-8 and the cleavage of specific substrates, including Bid. Our data show that cross-linked B cell receptors induced an apoptotic pathway involving sequential caspase-8 activation, loss of mitochondrial membrane potential, and the activation of caspase-9 and caspase-3. Cells expressing a dominant negative mutant of Fas-associated death domain protein were sensitive to cross-linked B cell receptor-induced caspase-8 activation and apoptosis; therefore, this caspase-8 activation was independent of the death effector domain of Fas-associated death domain protein. PMID:11441077

  9. β1 and β3 Integrins Cooperate to Induce Syndecan-4-Containing Cross-linked Actin Networks in Human Trabecular Meshwork Cells

    PubMed Central

    Filla, Mark S.; Woods, Anne; Kaufman, Paul L.; Peters, Donna M.

    2006-01-01

    Purpose To characterize the molecular composition of cross-linked actin networks (CLANs) and the regulation of their formation by integrins in normal human trabecular meshwork (TM) cells. CLANs have been observed in steroid-treated and glaucomatous TM cells and have been suggested to contribute to decreased outflow facility by altering the contractility of the TM. Methods Immunofluorescence microscopy was used to identify molecular components of CLANs and quantitate CLAN formation in HTM cells plated on coverslips coated with various extracellular matrix (ECM) proteins (fibronectin, types I and IV collagen, and vitronectin), vascular cell adhesion molecule (VCAM)-1, or activating antibodies against β1, β3, or α2β1 integrins. These integrin antibodies were also used as soluble ligands. Results CLAN vertices contained the actin-binding proteins α-actinin and filamin and the signaling molecules syndecan-4 and PIP2. CLANs lacked Arp3 and cortactin. CLAN formation was dependent on the ECM substrate and was significantly higher on fibronectin and VCAM-1 compared with vitronectin, types I or IV collagen. Adsorbed β1 integrin antibodies also induced CLANs, whereas adsorbed β3 or α2β1 integrin antibodies did not. Soluble β3 integrin antibodies, however, induced CLANs and actually enhanced CLAN formation in cells spread on fibronectin, VCAM-1, type I or type IV collagen, or β1 integrin antibodies. Conclusions CLANs are unique actin-branched networks whose formation can be regulated by β1 and β3 integrin signaling pathways. Thus, integrin-mediated signaling events can modulate the organization of the actin cytoskeleton in TM cells and hence could participate in regulating cytoskeletal events previously demonstrated to be involved in controlling outflow facility. PMID:16639003

  10. Organization of Subunits in the Membrane Domain of the Bovine F-ATPase Revealed by Covalent Cross-linking*

    PubMed Central

    Lee, Jennifer; Ding, ShuJing; Walpole, Thomas B.; Holding, Andrew N.; Montgomery, Martin G.; Fearnley, Ian M.; Walker, John E.

    2015-01-01

    The F-ATPase in bovine mitochondria is a membrane-bound complex of about 30 subunits of 18 different kinds. Currently, ∼85% of its structure is known. The enzyme has a membrane extrinsic catalytic domain, and a membrane intrinsic domain where the turning of the enzyme's rotor is generated from the transmembrane proton-motive force. The domains are linked by central and peripheral stalks. The central stalk and a hydrophobic ring of c-subunits in the membrane domain constitute the enzyme's rotor. The external surface of the catalytic domain and membrane subunit a are linked by the peripheral stalk, holding them static relative to the rotor. The membrane domain contains six additional subunits named ATP8, e, f, g, DAPIT (diabetes-associated protein in insulin-sensitive tissues), and 6.8PL (6.8-kDa proteolipid), each with a single predicted transmembrane α-helix, but their orientation and topography are unknown. Mutations in ATP8 uncouple the enzyme and interfere with its assembly, but its roles and the roles of the other five subunits are largely unknown. We have reacted accessible amino groups in the enzyme with bifunctional cross-linking agents and identified the linked residues. Cross-links involving the supernumerary subunits, where the structures are not known, show that the C terminus of ATP8 extends ∼70 Å from the membrane into the peripheral stalk and that the N termini of the other supernumerary subunits are on the same side of the membrane, probably in the mitochondrial matrix. These experiments contribute significantly toward building up a complete structural picture of the F-ATPase. PMID:25851905

  11. Elucidating protein inter- and intra-molecular interacting domains using chemical cross-linking and MALDI-TOF/TOF mass spectrometry

    PubMed Central

    Pottiez, Gwënaël; Ciborowski, Pawel

    2012-01-01

    Among many methods used to investigate proteins/protein interactions, chemical cross-linking combined with mass spectrometry remains a vital experimental approach. Mapping peptides modified by cross-linker provides clues about proteins’ interacting domains. One complication is that such modification may result from intra- but not intermolecular interactions. Therefore, for overall data interpretation, a combination of results from various platforms is necessary. It is postulated that the secretory isoform of gelsolin regulates several biological processes through interactions with proteins such as actin, fibronectin, vitamin D binding protein and unidentified receptors on the surface of eukaryotic; it also has been shown to self-assemble eventually leading to the formation of homo-multimers. As such, it is an excellent model for this study. We used four cross-linkers with arm length ranging from 7.7Å to 21.7Å and MALDI-TOF/TOF mass spectrometry as the analytical platform. Results of this study show that MALDI based mass spectrometry generates high quality data to show lysine residues modified by cross-linkers and combined with existing data based on crystallography (Protein Data Bank, PDB) can be used to discriminate between inter- and intra-molecular linking. PMID:22226790

  12. An In Vivo Photo-Cross-Linking Approach Reveals a Homodimerization Domain of Aha1 in S. cerevisiae

    PubMed Central

    Berg, Michael; Michalowski, Annette; Palzer, Silke; Rupp, Steffen; Sohn, Kai

    2014-01-01

    Protein-protein interactions play an essential role in almost any biological processes. Therefore, there is a particular need for methods which describe the interactions of a defined target protein in its physiological context. Here we report a method to photo-cross-link interacting proteins in S. cerevisiae by using the non-canonical amino acid p-azido-L-phenylalanine (pAzpa). Based on the expanded genetic code the photoreactive non-canonical amino acid pAzpa was site-specifically incorporated at eight positions into a domain of Aha1 that was previously described to bind Hsp90 in vitro to function as a cochaperone of Hsp90 and activates its ATPase activity. In vivo photo-cross-linking to the cognate binding partner of Aha1 was carried out by irradiation of mutant strains with UV light (365 nm) to induce covalent intermolecular bonds. Surprisingly, an interaction between Aha1 and Hsp90 was not detected, although, we could confirm binding of suppressed pAzpa containing Aha1 to Hsp90 by native co-immunoprecipitation. However, a homodimer consisting of two covalently crosslinked Aha1 monomers was identified by mass spectrometry. This homodimer could also be confirmed using p-benzoyl-L-phenylalanine, another photoreactive non-canonical amino acid. Crosslinking was highly specific as it was dependent on irradiation using UV light, the exact position of the non-canonical amino acid in the protein sequence as well as on the addition of the non-canonical amino acid to the growth medium. Therefore it seems possible that an interaction of Aha1 with Hsp90 takes place at different positions than previously described in vitro highlighting the importance of in vivo techniques to study protein-protein interactions. Accordingly, the expanded genetic code can easily be applied to other S. cerevisiae proteins to study their interaction under physiological relevant conditions in vivo. PMID:24614167

  13. Structural Basis of Actin Filament Nucleation by Tandem W Domains

    PubMed Central

    Chen, Xiaorui; Ni, Fengyun; Tian, Xia; Kondrashkina, Elena; Wang, Qinghua; Ma, Jianpeng

    2013-01-01

    SUMMARY Spontaneous nucleation of actin is very inefficient in cells. To overcome this barrier, cells have evolved a set of actin filament nucleators to promote rapid nucleation and polymerization in response to specific stimuli. However, the molecular mechanism of actin nucleation remains poorly understood. This is hindered largely by the fact that actin nucleus, once formed, rapidly polymerizes into filament, thus making it impossible to capture stable multisubunit actin nucleus. Here, we report an effective double-mutant strategy to stabilize actin nucleus by preventing further polymerization. Employing this strategy, we solved the crystal structure of AMPPNP-actin in complex with the first two tandem W domains of Cordon-bleu (Cobl), a potent actin filament nucleator. Further sequence comparison and functional studies suggest that the nucleation mechanism of Cobl is probably shared by the p53 cofactor JMY, but not Spire. Moreover, the double-mutant strategy opens the way for atomic mechanistic study of actin nucleation and polymerization. PMID:23727244

  14. The catalytic domain of inositol-1,4,5-trisphosphate 3-kinase-a contributes to ITPKA-induced modulation of F-actin.

    PubMed

    Ashour, Dina Julia; Pelka, Benjamin; Jaaks, Patricia; Wundenberg, Torsten; Blechner, Christine; Zobiak, Bernd; Failla, Antonio Virgilio; Windhorst, Sabine

    2015-02-01

    Inositol-1,4,5-trisphosphate-3-kinase-A (ITPKA) has been considered as an actin bundling protein because its N-terminal actin binding domain (ABD) induces formation of linear actin bundles. Since in many cancer cell lines ITPKA is essential for formation of lamellipodia, which consist of cross-linked actin filaments, here we analyzed if full length-ITPKA may induce formation of more complex actin structures. Indeed, we found that incubation of F-actin with ITPKA resulted in formation of dense, branched actin networks. Based on our result that ITPKA does not exhibit an additional C-terminal ABD, we exclude that ITPKA cross-links actin filaments by simultaneous F-actin binding with two different ABDs. Instead, stimulated-emission-depletion-microscopy and measurement of InsP3 Kinase activity give evidence that that N-terminal ABD-homodimers of ITPKA bind to F-actin while the monomeric C-termini insert between adjacent actin filaments. Thereby, they prevent formation of thick actin bundles but induce formation of thin branched actin structures. Interestingly, when embedded in this dense actin network, InsP3 Kinase activity is doubled and the product of InsP3 Kinase activity, Ins(1,3,4,5)P4 , inhibits spontaneous actin polymerization which may reflect a local negative feedback regulation of InsP3 Kinase activity. In conclusion, we demonstrate that not only the ABD of ITPKA modulates actin dynamics but reveal that the InsP3 Kinase domain substantially contributes to this process. PMID:25620569

  15. Intramolecular cross-linking of domains at the active site links A1 and B subfragments of the Ca2+-ATPase of sarcoplasmic reticulum.

    PubMed

    Ross, D C; McIntosh, D B

    1987-02-15

    Glutaraldehyde treatment of sarcoplasmic reticulum vesicles results in formation of cross-linked Ca2+-ATPase oligomers. Under limiting reaction conditions, where minimal interpolypeptide cross-linking occurs, hydrodynamic properties of the monomer are altered, such that, on sodium dodecyl sulfate-polyacrylamide electrophoresis, the enzyme migrates with an apparent molecular weight of 125,000 (E(125], as compared to the native enzyme (E(110]. The E(125) species was also formed following reaction with other cross-linking bis-aldehydes, with formaldehyde and with a bissuccinimidyl ester. Derivitization resulted in inactivation of ATPase activity and of phosphoprotein formation from Pi. E(125) formation was inhibited by ATP, ADP, AMPPCP, and orthovanadate, and by specific modification of active site Lys-514 with fluorescein-5'-isothiocyanate. Tryptic cleavage patterns of the glutaraldehyde-modified enzyme were consistent with covalent linkage of A1 and B fragments that have been postulated to comprise the phosphorylation and nucleotide-binding domains (MacLennan, D. H., Brandt, C. J., Korczak, B., and Green, N. M. (1985) Nature 316, 696-700). The denaturing detergent, sodium dodecyl sulfate, prevented cross-link formation. Interdomain cross-linking was inhibited by prior modification with either 2,4,6-trinitrobenzene sulfonate, phenylglyoxal, or pyridoxal-5'-phosphate but was unaffected by thiol group modification with iodoacetate or N-ethylmaleimide, suggesting involvement of lysine residues. These findings indicate that intramolecular cross-linking at the active site of the Ca2+-ATPase involves phosphorylation- and ATP-binding domains that are widely separated in the linear sequence. PMID:2950084

  16. Actin nucleation by WH2 domains at the autophagosome.

    PubMed

    Coutts, Amanda S; La Thangue, Nicholas B

    2015-01-01

    Autophagy is a catabolic process whereby cytosolic components and organelles are degraded to recycle key cellular materials. It is a constitutive process required for proper tissue homoeostasis but can be rapidly regulated by a variety of stimuli (for example, nutrient starvation and chemotherapeutic agents). JMY is a DNA damage-responsive p53 cofactor and actin nucleator important for cell survival and motility. Here we show that JMY regulates autophagy through its actin nucleation activity. JMY contains an LC3-interacting region, which is necessary to target JMY to the autophagosome where it enhances the autophagy maturation process. In autophagosomes, the integrity of the WH2 domains allows JMY to promote actin nucleation, which is required for efficient autophagosome formation. Thus our results establish a direct role for actin nucleation mediated by WH2 domain proteins that reside at the autophagosome. PMID:26223951

  17. Actin nucleation by WH2 domains at the autophagosome

    PubMed Central

    Coutts, Amanda S.; La Thangue, Nicholas B.

    2015-01-01

    Autophagy is a catabolic process whereby cytosolic components and organelles are degraded to recycle key cellular materials. It is a constitutive process required for proper tissue homoeostasis but can be rapidly regulated by a variety of stimuli (for example, nutrient starvation and chemotherapeutic agents). JMY is a DNA damage-responsive p53 cofactor and actin nucleator important for cell survival and motility. Here we show that JMY regulates autophagy through its actin nucleation activity. JMY contains an LC3-interacting region, which is necessary to target JMY to the autophagosome where it enhances the autophagy maturation process. In autophagosomes, the integrity of the WH2 domains allows JMY to promote actin nucleation, which is required for efficient autophagosome formation. Thus our results establish a direct role for actin nucleation mediated by WH2 domain proteins that reside at the autophagosome. PMID:26223951

  18. Glutamyl Phosphate Is an Activated Intermediate in Actin Crosslinking by Actin Crosslinking Domain (ACD) Toxin

    PubMed Central

    Kudryashova, Elena; Kalda, Caitlin; Kudryashov, Dmitri S.

    2012-01-01

    Actin Crosslinking Domain (ACD) is produced by several life-threatening Gram-negative pathogenic bacteria as part of larger toxins and delivered into the cytoplasm of eukaryotic host cells via Type I or Type VI secretion systems. Upon delivery, ACD disrupts the actin cytoskeleton by catalyzing intermolecular amide bond formation between E270 and K50 residues of actin, leading to the formation of polymerization-deficient actin oligomers. Ultimately, accumulation of the crosslinked oligomers results in structural and functional failure of the actin cytoskeleton in affected cells. In the present work, we advanced in our understanding of the ACD catalytic mechanism by discovering that the enzyme transfers the gamma-phosphoryl group of ATP to the E270 actin residue, resulting in the formation of an activated acyl phosphate intermediate. This intermediate is further hydrolyzed and the energy of hydrolysis is utilized for the formation of the amide bond between actin subunits. We also determined the pH optimum for the reaction and the kinetic parameters of ACD catalysis for its substrates, ATP and actin. ACD showed sigmoidal, non-Michaelis-Menten kinetics for actin (K0.5 = 30 µM) reflecting involvement of two actin molecules in a single crosslinking event. We established that ACD can also utilize Mg2+-GTP to support crosslinking, but the kinetic parameters (KM = 8 µM and 50 µM for ATP and GTP, respectively) suggest that ATP is the primary substrate of ACD in vivo. The optimal pH for ACD activity was in the range of 7.0–9.0. The elucidated kinetic mechanism of ACD toxicity adds to understanding of complex network of host-pathogen interactions. PMID:23029200

  19. Tailor-Made Ezrin Actin Binding Domain to Probe Its Interaction with Actin In-Vitro

    PubMed Central

    Shrivastava, Rohini; Köster, Darius; Kalme, Sheetal; Mayor, Satyajit; Neerathilingam, Muniasamy

    2015-01-01

    Ezrin, a member of the ERM (Ezrin/Radixin/Moesin) protein family, is an Actin-plasma membrane linker protein mediating cellular integrity and function. In-vivo study of such interactions is a complex task due to the presence of a large number of endogenous binding partners for both Ezrin and Actin. Further, C-terminal actin binding capacity of the full length Ezrin is naturally shielded by its N-terminal, and only rendered active in the presence of Phosphatidylinositol bisphosphate (PIP2) or phosphorylation at the C-terminal threonine. Here, we demonstrate a strategy for the design, expression and purification of constructs, combining the Ezrin C-terminal actin binding domain, with functional elements such as fusion tags and fluorescence tags to facilitate purification and fluorescence microscopy based studies. For the first time, internal His tag was employed for purification of Ezrin actin binding domain based on in-silico modeling. The functionality (Ezrin-actin interaction) of these constructs was successfully demonstrated by using Total Internal Reflection Fluorescence Microscopy. This design can be extended to other members of the ERM family as well. PMID:25860910

  20. A syndecan-4 binding peptide derived from laminin 5 uses a novel PKCε pathway to induce cross-linked actin network (CLAN) formation in human trabecular meshwork (HTM) cells.

    PubMed

    Filla, Mark S; Clark, Ross; Peters, Donna M

    2014-10-01

    In this study, we examined the role(s) of syndecan-4 in regulating the formation of an actin geodesic dome structure called a cross-linked actin network (CLAN) in which syndecan-4 has previously been localized. CLANs have been described in several different cell types, but they have been most widely studied in human trabecular meshwork (HTM) cells where they may play a key role in controlling intraocular pressure by regulating aqueous humor outflow from the eye. In this study we show that a loss of cell surface synedcan-4 significantly reduces CLAN formation in HTM cells. Analysis of HTM cultures treated with or without dexamethasone shows that laminin 5 deposition within the extracellular matrix is increased by glucocorticoid treatment and that a laminin 5-derived, syndecan-4-binding peptide (PEP75), induces CLAN formation in TM cells. This PEP75-induced CLAN formation was inhibited by heparin and the broad spectrum PKC inhibitor Ro-31-7549. In contrast, the more specific PKCα inhibitor Gö 6976 had no effect, thus excluding PKCα as a downstream effector of syndecan-4 signaling. Analysis of PKC isozyme expression showed that HTM cells also expressed both PKCγ and PKCε. Cells treated with a PKCε agonist formed CLANs while a PKCα/γ agonist had no effect. These data suggest that syndecan-4 is essential for CLAN formation in HTM cells and that a novel PKCε-mediated signaling pathway can regulate formation of this unique actin structure. PMID:25128150

  1. A syndecan-4 binding peptide derived from laminin 5 uses a novel PKCε pathway to induce cross-linked actin network (CLAN) formation in human trabecular meshwork (HTM) cells

    PubMed Central

    Filla, Mark S.; Clark, Ross; Peters, Donna M.

    2014-01-01

    In this study, we examined the role(s) of syndecan-4 in regulating the formation of an actin geodesic dome structure called a cross-linked actin network (CLAN) in which syndecan-4 has previously been localized. CLANs have been described in several different cell types, but they have been most widely studied in human trabecular meshwork (HTM) cells where they may play a key role in controlling intraocular pressure by regulating aqueous humor outflow from the eye. In this study we show that a loss of cell surface synedcan-4 significantly reduces CLAN formation in HTM cells. Analysis of HTM cultures treated with or without dexamethasone shows that laminin 5 deposition within the extracellular matrix is increased by glucocorticoid treatment and that a laminin 5-derived, syndecan-4-binding peptide (PEP75), induces CLAN formation in TM cells. This PEP75-induced CLAN formation was inhibited by heparin and the broad spectrum PKC inhibitor Ro-31-7549. In contrast, the more specific PKCα inhibitor Go 6976 had no effect, thus excluding PKCα as a downstream effector of syndecan-4 signaling. Analysis of PKC isozyme expression showed that HTM cells also expressed both PKCγ and PKCε. Cells treated with a PKCε agonist formed CLANs while a PKCα/γ agonist had no effect. These data suggest that syndecan-4 is essential for CLAN formation in HTM cells and that a novel PKCε-mediated signaling pathway can regulate formation of this unique actin structure. PMID:25128150

  2. ELMO recruits actin cross-linking family 7 (ACF7) at the cell membrane for microtubule capture and stabilization of cellular protrusions.

    PubMed

    Margaron, Yoran; Fradet, Nadine; Côté, Jean-François

    2013-01-11

    ELMO and DOCK180 proteins form an evolutionarily conserved module controlling Rac GTPase signaling during cell migration, phagocytosis, and myoblast fusion. Here, we identified the microtubule and actin-binding spectraplakin ACF7 as a novel ELMO-interacting partner. A C-terminal polyproline segment in ELMO and the last spectrin repeat of ACF7 mediate a direct interaction between these proteins. Co-expression of ELMO1 with ACF7 promoted the formation of long membrane protrusions during integrin-mediated cell spreading. Quantification of membrane dynamics established that coupling of ELMO and ACF7 increases the persistence of the protruding activity. Mechanistically, we uncovered a role for ELMO in the recruitment of ACF7 to the membrane to promote microtubule capture and stability. Functionally, these effects of ELMO and ACF7 on cytoskeletal dynamics required the Rac GEF DOCK180. In conclusion, our findings support a role for ELMO in protrusion stability by acting at the interface between the actin cytoskeleton and the microtubule network. PMID:23184944

  3. Corneal cross-linking.

    PubMed

    Randleman, J Bradley; Khandelwal, Sumitra S; Hafezi, Farhad

    2015-01-01

    Since its inception in the late 1990s, corneal cross-linking has grown from an interesting concept to a primary treatment for corneal ectatic disease worldwide. Using a combination of ultraviolet-A light and a chromophore (vitamin B2, riboflavin), the cornea can be stiffened, usually with a single application, and progressive thinning diseases such as keratoconus arrested. Despite being in clinical use for many years, some of the underlying processes, such as the role of oxygen and the optimal treatment times, are still being worked out. More than a treatment technique, corneal cross-links represent a physiological principle of connective tissue, which may explain the enormous versatility of the method. We highlight the history of corneal cross-linking, the scientific underpinnings of current techniques, evolving clinical treatment parameters, and the use of cross-linking in combination with refractive surgery and for the treatment of infectious keratitis. PMID:25980780

  4. Normal Activation of Discoidin Domain Receptor 1 Mutants with Disulfide Cross-links, Insertions, or Deletions in the Extracellular Juxtamembrane Region

    PubMed Central

    Xu, Huifang; Abe, Takemoto; Liu, Justin K. H.; Zalivina, Irina; Hohenester, Erhard; Leitinger, Birgit

    2014-01-01

    The discoidin domain receptors, DDR1 and DDR2, are receptor tyrosine kinases that are activated by collagen. DDR activation does not appear to occur by the common mechanism of ligand-induced receptor dimerization: the DDRs form stable noncovalent dimers in the absence of ligand, and ligand-induced autophosphorylation of cytoplasmic tyrosines is unusually slow and sustained. Here we sought to identify functionally important dimer contacts within the extracellular region of DDR1 by using cysteine-scanning mutagenesis. Cysteine substitutions close to the transmembrane domain resulted in receptors that formed covalent dimers with high efficiency, both in the absence and presence of collagen. Enforced covalent dimerization did not result in constitutive activation and did not affect the ability of collagen to induce receptor autophosphorylation. Cysteines farther away from the transmembrane domain were also cross-linked with high efficiency, but some of these mutants could no longer be activated. Furthermore, the extracellular juxtamembrane region of DDR1 tolerated large deletions as well as insertions of flexible segments, with no adverse effect on activation. These findings indicate that the extracellular juxtamembrane region of DDR1 is exceptionally flexible and does not constrain the basal or ligand-activated state of the receptor. DDR1 transmembrane signaling thus appears to occur without conformational coupling through the juxtamembrane region, but requires specific receptor interactions farther away from the cell membrane. A plausible mechanism to explain these findings is signaling by DDR1 clusters. PMID:24671415

  5. Cross-linked informofers.

    PubMed Central

    Prosvirnin, V V; Ruzidic, S; Samarina, O P

    1979-01-01

    The proteins of 30S RNP particles containing pre-mRNA (hnRNA) were cross-linked with bifunctional reagents (dimethyl-suberimidate and dimethyl-3,3'-dithiobispropionimidate). Further treatment with 1 or 2 M NaCl dissociates all RNA from protein. However, a significant part of protein particles--informofers being cross-linked survived high salt treatment. Their sedimentation coefficients were close to those of original particles. No RNA could be detected in the informofers even after labeling the cells with a precursor for a long period of time. Sodium dodecylsulfate or urea dissociated cross-linked informofers into oligomeric polypeptides. They could be dissociated by beta-mercaptoethanol treatment if a reversible cross-linked reagent had been used. The resulting polypeptides were represented by informatin. RNP particles (30S RNP or poly-particles) were reconstituted upon mixing of cross-linked informofers with pre-mRNA and removal of 2 M NaCl. PMID:503864

  6. Stability domains of actin genes and genomic evolution

    NASA Astrophysics Data System (ADS)

    Carlon, E.; Dkhissi, A.; Malki, M. Lejard; Blossey, R.

    2007-11-01

    In eukaryotic genes, the protein coding sequence is split into several fragments, the exons, separated by noncoding DNA stretches, the introns. Prokaryotes do not have introns in their genomes. We report calculations of the stability domains of actin genes for various organisms in the animal, plant, and fungi kingdoms. Actin genes have been chosen because they have been highly conserved during evolution. In these genes, all introns were removed so as to mimic ancient genes at the time of the early eukaryotic development, i.e., before intron insertion. Common stability boundaries are found in evolutionarily distant organisms, which implies that these boundaries date from the early origin of eukaryotes. In general, the boundaries correspond with intron positions in the actins of vertebrates and other animals, but not much for plants and fungi. The sharpest boundary is found in a locus where fungi, algae, and animals have introns in positions separated by one nucleotide only, which identifies a hot spot for insertion. These results suggest that some introns may have been incorporated into the genomes through a thermodynamically driven mechanism, in agreement with previous observations on human genes. They also suggest a different mechanism for intron insertion in plants and animals.

  7. Cyclophilin-B Modulates Collagen Cross-linking by Differentially Affecting Lysine Hydroxylation in the Helical and Telopeptidyl Domains of Tendon Type I Collagen.

    PubMed

    Terajima, Masahiko; Taga, Yuki; Chen, Yulong; Cabral, Wayne A; Hou-Fu, Guo; Srisawasdi, Sirivimol; Nagasawa, Masako; Sumida, Noriko; Hattori, Shunji; Kurie, Jonathan M; Marini, Joan C; Yamauchi, Mitsuo

    2016-04-29

    Covalent intermolecular cross-linking provides collagen fibrils with stability. The cross-linking chemistry is tissue-specific and determined primarily by the state of lysine hydroxylation at specific sites. A recent study on cyclophilin B (CypB) null mice, a model of recessive osteogenesis imperfecta, demonstrated that lysine hydroxylation at the helical cross-linking site of bone type I collagen was diminished in these animals (Cabral, W. A., Perdivara, I., Weis, M., Terajima, M., Blissett, A. R., Chang, W., Perosky, J. E., Makareeva, E. N., Mertz, E. L., Leikin, S., Tomer, K. B., Kozloff, K. M., Eyre, D. R., Yamauchi, M., and Marini, J. C. (2014) PLoS Genet 10, e1004465). However, the extent of decrease appears to be tissue- and molecular site-specific, the mechanism of which is unknown. Here we report that although CypB deficiency resulted in lower lysine hydroxylation in the helical cross-linking sites, it was increased in the telopeptide cross-linking sites in tendon type I collagen. This resulted in a decrease in the lysine aldehyde-derived cross-links but generation of hydroxylysine aldehyde-derived cross-links. The latter were absent from the wild type and heterozygous mice. Glycosylation of hydroxylysine residues was moderately increased in the CypB null tendon. We found that CypB interacted with all lysyl hydroxylase isoforms (isoforms 1-3) and a putative lysyl hydroxylase-2 chaperone, 65-kDa FK506-binding protein. Tendon collagen in CypB null mice showed severe size and organizational abnormalities. The data indicate that CypB modulates collagen cross-linking by differentially affecting lysine hydroxylation in a site-specific manner, possibly via its interaction with lysyl hydroxylases and associated molecules. This study underscores the critical importance of collagen post-translational modifications in connective tissue formation. PMID:26934917

  8. Arrangement of the COOH-terminal and NH2-terminal domains of caldesmon bound to actin.

    PubMed

    Graceffa, P

    1997-04-01

    Smooth muscle caldesmon is a single polypeptide chain with its NH2- and COOH-terminal domains separated by a long alpha-helix. Caldesmon was labeled at either Cys-153 in the NH2 domain or Cys-580 in the COOH domain with a variety of fluorescence probes. Fluorescence intensity, peak position, and polarization of probes on Cys-580 were very sensitive to the binding to actin (with or without tropomyosin), whereas for probes on Cys-153, there was a lack of response, in reconstituted or native actin thin filaments. From fluorescence resonance energy transfer from donor labels on either caldesmon cysteine to acceptor labels on Cys-374 of actin, the distance between the donor and acceptor was estimated to be 27 A for the donor at Cys-580 and 65-80 A for the donor at Cys-153. These findings were the same for caldesmon prepared with or without heat treatment and with striated or smooth muscle actin. These results, together with previous knowledge that COOH-terminal fragments of caldesmon bind to actin whereas NH2-terminal fragments do not, indicate that, while the COOH domain of caldesmon is bound to actin, the NH2 domain is largely dissociated. Fluorescence quenching studies showed that actin binding to caldesmon greatly decreased the accessibility of probes at caldesmon Cys-580 to the quencher, whereas for probes at Cys-153, actin afforded much less, but significant, protection from quenching. Consequently, it appears that, although the NH2 domain is mostly dissociated, it spends some time in the vicinity of actin, through either a weak interaction with actin or collisions with actin and/or because of restricted flexibility which constrains the NH2 domain to be close to the actin filament. Since the NH2 domain of caldesmon binds to the neck region of myosin, a dissociated NH2 domain may account for caldesmon's ability to link myosin and actin filaments. PMID:9092808

  9. Electrostatic Interactions Between the Bni1p Formin FH2 Domain and Actin Influence Actin Filament Nucleation

    PubMed Central

    Baker, Joseph L.; Courtemanche, Naomi; Parton, Daniel L.; McCullagh, Martin; Pollard, Thomas D.; Voth, Gregory A.

    2014-01-01

    SUMMARY Formins catalyze nucleation and growth of actin filaments. Here we study the structure and interactions of actin with the FH2 domain of budding yeast formin Bni1p. We built an all-atom model of the formin dimer on an Oda actin filament 7-mer and studied structural relaxation and inter-protein interactions by molecular dynamics simulations. These simulations produced a refined model for the FH2 dimer associated with the barbed end of the filament and revealed electrostatic interactions between the formin knob and actin target-binding cleft. Mutations of two formin residues contributing to these interactions (R1423N, K1467L or both) reduced the interaction energies between the proteins, and in coarse-grained simulations the formin lost more inter-protein contacts with an actin dimer than with an actin 7-mer. Biochemical experiments confirmed a strong influence of these mutations on Bni1p-mediated actin filament nucleation, but not elongation, suggesting that different interactions contribute to these two functions of formins. PMID:25482541

  10. Verprolin function in endocytosis and actin organization. Roles of the Las17p (yeast WASP)-binding domain and a novel C-terminal actin-binding domain.

    PubMed

    Thanabalu, Thirumaran; Rajmohan, Rajamuthiah; Meng, Lei; Ren, Gang; Vajjhala, Parimala R; Munn, Alan L

    2007-08-01

    Vrp1p (verprolin, End5p) is the yeast ortholog of human Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP). Vrp1p localizes to the cortical actin cytoskeleton, is necessary for its polarization to sites of growth and is also essential for endocytosis. At elevated temperature, Vrp1p becomes essential for growth. A C-terminal Vrp1p fragment (C-Vrp1p) retains the ability to localize to the cortical actin cytoskeleton and function in actin-cytoskeleton polarization, endocytosis and growth. Here, we demonstrate that two submodules in C-Vrp1p are required for actin-cytoskeleton polarization: a novel C-terminal actin-binding submodule (CABS) that contains a novel G-actin-binding domain, which we call a verprolin homology 2 C-terminal (VH2-C) domain; and a second submodule comprising the Las17p-binding domain (LBD) that binds Las17p (yeast WASP). The LBD localizes C-Vrp1p to membranes and the cortical actin cytoskeleton. Intriguingly, the LBD is sufficient to restore endocytosis and growth at elevated temperature to Vrp1p-deficient cells. The CABS also restores these functions, but only if modified by a lipid anchor to provide membrane association. Our findings highlight the role of Las17p binding for Vrp1p membrane association, suggest general membrane association may be more important than specific targeting to the cortical actin cytoskeleton for Vrp1p function in endocytosis and cell growth, and suggest that Vrp1p binding to individual effectors may alter their physiological activity. PMID:17635585

  11. Stretching Actin Filaments within Cells Enhances their Affinity for the Myosin II Motor Domain

    PubMed Central

    Uyeda, Taro Q. P.; Iwadate, Yoshiaki; Umeki, Nobuhisa; Nagasaki, Akira; Yumura, Shigehiko

    2011-01-01

    To test the hypothesis that the myosin II motor domain (S1) preferentially binds to specific subsets of actin filaments in vivo, we expressed GFP-fused S1 with mutations that enhanced its affinity for actin in Dictyostelium cells. Consistent with the hypothesis, the GFP-S1 mutants were localized along specific portions of the cell cortex. Comparison with rhodamine-phalloidin staining in fixed cells demonstrated that the GFP-S1 probes preferentially bound to actin filaments in the rear cortex and cleavage furrows, where actin filaments are stretched by interaction with endogenous myosin II filaments. The GFP-S1 probes were similarly enriched in the cortex stretched passively by traction forces in the absence of myosin II or by external forces using a microcapillary. The preferential binding of GFP-S1 mutants to stretched actin filaments did not depend on cortexillin I or PTEN, two proteins previously implicated in the recruitment of myosin II filaments to stretched cortex. These results suggested that it is the stretching of the actin filaments itself that increases their affinity for the myosin II motor domain. In contrast, the GFP-fused myosin I motor domain did not localize to stretched actin filaments, which suggests different preferences of the motor domains for different structures of actin filaments play a role in distinct intracellular localizations of myosin I and II. We propose a scheme in which the stretching of actin filaments, the preferential binding of myosin II filaments to stretched actin filaments, and myosin II-dependent contraction form a positive feedback loop that contributes to the stabilization of cell polarity and to the responsiveness of the cells to external mechanical stimuli. PMID:22022566

  12. Functional characterization of spectrin-actin-binding domains in 4.1 family of proteins.

    PubMed

    Gimm, J Aura; An, Xiuli; Nunomura, Wataru; Mohandas, Narla

    2002-06-11

    Protein 4.1R is the prototypical member of a protein family that includes 4.1G, 4.1B, and 4.1N. 4.1R plays a crucial role in maintaining membrane mechanical integrity by binding cooperatively to spectrin and actin through its spectrin-actin-binding (SAB) domain. While the binary interaction between 4.1R and spectrin has been well characterized, the actin binding site in 4.1R remains unidentified. Moreover, little is known about the interaction of 4.1R homologues with spectrin and actin. In the present study, we showed that the 8 aa motif (LKKNFMES) within the 10 kDa spectrin-actin-binding domain of 4.1R plays a critical role in binding of 4.1R to actin. Recombinant 4.1R SAB domain peptides with mutations in this motif showed a marked decrease in their ability to form ternary complexes with spectrin and actin. Binary protein-protein interaction studies revealed that this decrease resulted from the inability of mutant SAB peptides to bind to actin filaments while affinity for spectrin was unchanged. We also documented that the 14 C-terminal residues of the 21 amino acid cassette encoded by exon 16 in conjunction with residues 27-43 encoded by exon 17 constituted a fully functional minimal spectrin-binding motif. Finally, we showed that 4.1N SAB domain was unable to form a ternary complex with spectrin and actin, while 4.1G and 4.1B SAB domains were able to form such a complex but less efficiently than 4.1R SAB. This was due to a decrease in the ability of 4.1G and 4.1B SAB domain to interact with actin but not with spectrin. These data enabled us to propose a model for the 4.1R-spectrin-actin ternary complex which may serve as a general paradigm for regulation of spectrin-based cytoskeleton interaction in various cell types. PMID:12044158

  13. Actin-Based Transport Adapts Polarity Domain Size to Local Cellular Curvature.

    PubMed

    Bonazzi, Daria; Haupt, Armin; Tanimoto, Hirokazu; Delacour, Delphine; Salort, Delphine; Minc, Nicolas

    2015-10-19

    Intracellular structures and organelles such as the nucleus, the centrosome, or the mitotic spindle typically scale their size to cell size [1]. Similarly, cortical polarity domains built around the active form of conserved Rho-GTPases, such as Cdc42p, exhibit widths that may range over two orders of magnitudes in cells with different sizes and shapes [2-6]. The establishment of such domains typically involves positive feedback loops based on reaction-diffusion and/or actin-mediated vesicle transport [3, 7, 8]. How these elements may adapt polarity domain size to cellular geometry is not known. Here, by tracking the width of successive oscillating Cdc42-GTP domains in fission yeast spores [9], we find that domain width scales with local cell-surface radii of curvature over an 8-fold range, independently of absolute cell volume, surface, or Cdc42-GTP concentration. This local scaling requires formin-nucleated cortical actin cables and the fusion of secretory vesicles transported along these cables with the membrane. These data suggest that reaction-diffusion may set a minimal domain size and that secretory vesicle transport along actin cables may dilute and extend polarity domains to adapt their size to local cell-surface curvature. This work reveals that actin networks may act as micrometric curvature sensors and uncovers a generic morphogenetic principle for how polarity domains define their size according to cell morphologies. PMID:26441355

  14. Nonlinear elasticity of cross-linked networks

    NASA Astrophysics Data System (ADS)

    John, Karin; Caillerie, Denis; Peyla, Philippe; Raoult, Annie; Misbah, Chaouqi

    2013-04-01

    Cross-linked semiflexible polymer networks are omnipresent in living cells. Typical examples are actin networks in the cytoplasm of eukaryotic cells, which play an essential role in cell motility, and the spectrin network, a key element in maintaining the integrity of erythrocytes in the blood circulatory system. We introduce a simple mechanical network model at the length scale of the typical mesh size and derive a continuous constitutive law relating the stress to deformation. The continuous constitutive law is found to be generically nonlinear even if the microscopic law at the scale of the mesh size is linear. The nonlinear bulk mechanical properties are in good agreement with the experimental data for semiflexible polymer networks, i.e., the network stiffens and exhibits a negative normal stress in response to a volume-conserving shear deformation, whereby the normal stress is of the same order as the shear stress. Furthermore, it shows a strain localization behavior in response to an uniaxial compression. Within the same model we find a hierarchy of constitutive laws depending on the degree of nonlinearities retained in the final equation. The presented theory provides a basis for the continuum description of polymer networks such as actin or spectrin in complex geometries and it can be easily coupled to growth problems, as they occur, for example, in modeling actin-driven motility.

  15. The 1.9-A crystal structure of the noncollagenous (NC1) domain of human placenta collagen IV shows stabilization via a novel type of covalent Met-Lys cross-link.

    PubMed

    Than, Manuel E; Henrich, Stefan; Huber, Robert; Ries, Albert; Mann, Karlheinz; Kühn, Klaus; Timpl, Rupert; Bourenkov, Gleb P; Bartunik, Hans D; Bode, Wolfram

    2002-05-14

    Triple-helical collagen IV protomers associate through their N- and C-termini forming a three-dimensional network, which provides basement membranes with an anchoring scaffold and mechanical strength. The noncollagenous (NC1) domain of the C-terminal junction between two adjacent collagen IV protomers from human placenta was crystallized and its 1.9-A structure was solved by multiple anomalous diffraction (MAD) phasing. This hexameric NC1 particle is composed of two trimeric caps, which interact through a large planar interface. Each cap is formed by two alpha 1 fragments and one alpha 2 fragment with a similar previously uncharacterized fold, segmentally arranged around an axial tunnel. Each monomer chain folds into two structurally very similar subdomains, which each contain a finger-like hairpin loop that inserts into a six-stranded beta-sheet of the neighboring subdomain of the same or the adjacent chain. Thus each trimer forms a quite regular, but nonclassical, sixfold propeller. The trimer-trimer interaction is further stabilized by a previously uncharacterized type of covalent cross-link between the side chains of a Met and a Lys residue of the alpha 1 and alpha 2 chains from opposite trimers, explaining previous findings of nonreducible cross-links in NC1. This structure provides insights into NC1-related diseases such as Goodpasture and Alport syndromes. PMID:12011424

  16. Regulation of the human. beta. -actin promoter by upstream and intron domains

    SciTech Connect

    Ng, Sunyu )); Gunning, P.; Kedes, L. ); Liu, Shuhui National Tsing Hua Univ., Hsinchu ); Leavitt, J. )

    1989-01-25

    The authors have identified three regulatory domains of the complex human {beta}-actin gene promoter. They span a region of about 3,000 bases, from not more than {minus}2,011 bases upstream of the mRNA cap site to within the 5{prime} intron (832 bases long). A distal upstream domain contains at least one enhancer-like element. A proximal upstream domain, with a CArG (for CC(A+T rich){sub 6}GG) motif found in all known mammalian actin genes, seems to confer serum, but not growth factor, inducibility. The third domain is within the evolutionarily conserved 3{prime} region of the first intron and contains a 13 base-pair sequence, identical to the upstream sequence with the CArG motif. This domain also contains sequences that are both serum and fibroblast growth inducible.

  17. Effective-medium approach for stiff polymer networks with flexible cross-links

    NASA Astrophysics Data System (ADS)

    Broedersz, C. P.; Storm, C.; Mackintosh, F. C.

    2009-06-01

    Recent experiments have demonstrated that the nonlinear elasticity of in vitro networks of the biopolymer actin is dramatically altered in the presence of a flexible cross-linker such as the abundant cytoskeletal protein filamin. The basic principles of such networks remain poorly understood. Here we describe an effective-medium theory of flexibly cross-linked stiff polymer networks. We argue that the response of the cross-links can be fully attributed to entropic stiffening, while softening due to domain unfolding can be ignored. The network is modeled as a collection of randomly oriented rods connected by flexible cross-links to an elastic continuum. This effective medium is treated in a linear elastic limit as well as in a more general framework, in which the medium self-consistently represents the nonlinear network behavior. This model predicts that the nonlinear elastic response sets in at strains proportional to cross-linker length and inversely proportional to filament length. Furthermore, we find that the differential modulus scales linearly with the stress in the stiffening regime. These results are in excellent agreement with bulk rheology data.

  18. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain.

    PubMed

    Pearson, M A; Reczek, D; Bretscher, A; Karplus, P A

    2000-04-28

    The ezrin-radixin-moesin (ERM) protein family link actin filaments of cell surface structures to the plasma membrane, using a C-terminal F-actin binding segment and an N-terminal FERM domain, a common membrane binding module. ERM proteins are regulated by an intramolecular association of the FERM and C-terminal tail domains that masks their binding sites. The crystal structure of a dormant moesin FERM/tail complex reveals that the FERM domain has three compact lobes including an integrated PTB/PH/ EVH1 fold, with the C-terminal segment bound as an extended peptide masking a large surface of the FERM domain. This extended binding mode suggests a novel mechanism for how different signals could produce varying levels of activation. Sequence conservation suggests a similar regulation of the tumor suppressor merlin. PMID:10847681

  19. Photomobile polymer materials: photoresponsive behavior of cross-linked liquid-crystalline polymers with mesomorphic diarylethenes.

    PubMed

    Mamiya, Jun-ichi; Kuriyama, Akito; Yokota, Naoki; Yamada, Munenori; Ikeda, Tomiki

    2015-02-16

    Cross-linked liquid-crystalline (LC) polymers with a mesomorphic diarylethene were prepared to demonstrate a versatile strategy for cross-linked photochromic LC polymers as photomobile materials. Upon exposure to UV light to cause photocyclization of the diarylethene chromophore, the cross-linked polymer films bend toward an actinic light source. By irradiation with visible light to cause a closed-ring to open-ring isomerization, the bent films revert to the initial flat state. Without visible-light irradiation, the bent films remain bent even at 120 °C, indicating high thermal stability of the cross-linked diarylethene LC polymers. PMID:25581255

  20. Solution structure of villin 14T, a domain conserved among actin-severing proteins.

    PubMed Central

    Markus, M. A.; Nakayama, T.; Matsudaira, P.; Wagner, G.

    1994-01-01

    The solution structure of the N-terminal domain of the actin-severing protein villin has been determined by multidimensional heteronuclear resonance spectroscopy. Villin is a member of a family of actin-severing proteins that regulate the organization of actin in the eukaryotic cytoskeleton. Members of this family are built from 3 or 6 homologous repeats of a structural domain of approximately 130 amino acids that is unrelated to any previously known structure. The N-terminal domain of villin (14T) contains a central beta-sheet with 4 antiparallel strands and a fifth parallel strand at one edge. This sheet is sandwiched between 2 helices on one side and a 2-stranded parallel beta-sheet with another helix on the other side. The strongly conserved sequence characteristic of the protein family corresponds to internal hydrophobic residues. Calcium titration experiments suggest that there are 2 binding sites for Ca2+, a stronger site near the N-terminal end of the longest helix, with a Kd of 1.8 +/- 0.4 mM, and a weaker site near the C-terminal end of the same helix, with a Kd of 11 +/- 2 mM. Mutational and biochemical studies of this domain in several members of the family suggest that the actin monomer binding site is near the parallel strand at the edge of the central beta-sheet. PMID:8142900

  1. How a single residue in individual β-thymosin/WH2 domains controls their functions in actin assembly

    PubMed Central

    Didry, Dominique; Cantrelle, Francois-Xavier; Husson, Clotilde; Roblin, Pierre; Moorthy, Anna M Eswara; Perez, Javier; Le Clainche, Christophe; Hertzog, Maud; Guittet, Eric; Carlier, Marie-France; van Heijenoort, Carine; Renault, Louis

    2012-01-01

    β-Thymosin (βT) and WH2 domains are widespread, intrinsically disordered actin-binding peptides that display significant sequence variability and different regulations of actin self-assembly in motile and morphogenetic processes. Here, we reveal the structural mechanisms by which, in their 1:1 stoichiometric complexes with actin, they either inhibit assembly by sequestering actin monomers like Thymosin-β4, or enhance motility by directing polarized filament assembly like Ciboulot βT. We combined mutational, functional or structural analysis by X-ray crystallography, SAXS (small angle X-ray scattering) and NMR on Thymosin-β4, Ciboulot, TetraThymosinβ and the long WH2 domain of WASP-interacting protein. The latter sequesters G-actin with the same molecular mechanisms as Thymosin-β4. Functionally different βT/WH2 domains differ by distinct dynamics of their C-terminal half interactions with G-actin pointed face. These C-terminal interaction dynamics are controlled by the strength of electrostatic interactions with G-actin. At physiological ionic strength, a single salt bridge with actin located next to their central LKKT/V motif induces G-actin sequestration in both isolated long βT and WH2 domains. The results open perspectives for elucidating the functions of βT/WH2 domains in other modular proteins. PMID:22193718

  2. A LIM domain protein from tobacco involved in actin-bundling and histone gene transcription.

    PubMed

    Moes, Danièle; Gatti, Sabrina; Hoffmann, Céline; Dieterle, Monika; Moreau, Flora; Neumann, Katrin; Schumacher, Marc; Diederich, Marc; Grill, Erwin; Shen, Wen-Hui; Steinmetz, André; Thomas, Clément

    2013-03-01

    The two LIM domain-containing proteins from plants (LIMs) typically exhibit a dual cytoplasmic-nuclear distribution, suggesting that, in addition to their previously described roles in actin cytoskeleton organization, they participate in nuclear processes. Using a south-western blot-based screen aimed at identifying factors that bind to plant histone gene promoters, we isolated a positive clone containing the tobacco LIM protein WLIM2 (NtWLIM2) cDNA. Using both green fluorescent protein (GFP) fusion- and immunology-based strategies, we provide clear evidence that NtWLIM2 localizes to the actin cytoskeleton, the nucleus, and the nucleolus. Interestingly, the disruption of the actin cytoskeleton by latrunculin B significantly increases NtWLIM2 nuclear fraction, pinpointing a possible novel cytoskeletal-nuclear crosstalk. Biochemical and electron microscopy experiments reveal the ability of NtWLIM2 to directly bind to actin filaments and to crosslink the latter into thick actin bundles. Electrophoretic mobility shift assays show that NtWLIM2 specifically binds to the conserved octameric cis-elements (Oct) of the Arabidopsis histone H4A748 gene promoter and that this binding largely relies on both LIM domains. Importantly, reporter-based experiments conducted in Arabidopsis and tobacco protoplasts confirm the ability of NtWLIM2 to bind to and activate the H4A748 gene promoter in live cells. Expression studies indicate the constitutive presence of NtWLIM2 mRNA and NtWLIM2 protein during tobacco BY-2 cell proliferation and cell cycle progression, suggesting a role of NtWLIM2 in the activation of basal histone gene expression. Interestingly, both live cell and in vitro data support NtWLIM2 di/oligomerization. We propose that NtWLIM2 functions as an actin-stabilizing protein, which, upon cytoskeleton remodeling, shuttles to the nucleus in order to modify gene expression. PMID:22930731

  3. A domain of synapsin I involved with actin bundling shares immunologic cross-reactivity with villin.

    PubMed

    Petrucci, T C; Mooseker, M S; Morrow, J S

    1988-01-01

    Synapsin I is a neuronal phosphoprotein that can bundle actin filaments in vitro. This activity is under phosphorylation control, and may be related to its putative in vivo role of regulating the clustering and release of small synaptic vesicles. We have compared human and bovine synapsin I by peptide mapping, and have used NTCB (2-nitro-5-thiocyano benzoic acid) cleavage to generate a series of peptide fragments from bovine synapsin I. After chymotryptic digestion, 88% of the tyrosine-containing fragments appear to be structurally identical in human and bovine synapsin I, as judged by their positions on high-resolution two-dimensional peptide maps. The alignment of the NTCB peptides within the parent protein have been determined by peptide mapping, and the ability of these fragments to precipitate with actin bundles has been measured. Only peptides that are derived from regions near the ends of the protein are active. One such 25-kDa peptide which sediments with actin also cross-reacts with antibodies to chicken villin, an actin binding and bundling protein derived from the intestinal microvillus. Since in other respects villin appears to be an unrelated protein, these results suggest the possibility that certain actin binding proteins may show immunologic cross-reactivity due to convergent evolution within the acting binding domain. PMID:3125185

  4. Closed membrane shapes with attached BAR domains subject to external force of actin filaments.

    PubMed

    Mesarec, Luka; Góźdź, Wojciech; Iglič, Veronika Kralj; Kralj, Samo; Iglič, Aleš

    2016-05-01

    Membrane deformations induced by attached BAR superfamily domains could trigger or facilitate the growth of plasma membrane protrusions. The BAR domain family consists of BAR, F-BAR and I-BAR domains, each enforcing a different local curvature when attached to the membrane surface. Our theoretical study mainly focuses on the role of I-BAR in the membrane tubular deformations generated or stabilised by actin filaments. The influence of the area density of membrane attached BAR domains and their intrinsic curvature on the closed membrane shapes (vesicles) was investigated numerically. We derived an analytical approximative expression for the critical relative area density of BARs at which the membrane tubular protrusions on vesicles are most prominent. We have shown that the BARs with a higher intrinsic curvature induce thinner and longer cylindrical protrusions. The average orientation of the membrane attached BARs is altered when the vesicle shape is subjected to external force of growing actin rod-like structure inside a vesicle. The average orientation angle of membrane attached BARs may indicate whether the actin filaments are just stabilising the protrusion or generating it by stretching the vesicle. PMID:26854580

  5. Electrospinning formaldehyde cross-linked zein solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to develop zein fibers with improved physical properties and solvent resistance, formaldehyde was used as the cross-linking reagent before spinning. The cross-linking reaction was carried out in either acetic acid or ethanolic-HCl where the amount of cross-linking reagent was between 1 and...

  6. Structural and Functional Dissection of the Abp1 ADFH Actin-binding Domain Reveals Versatile In Vivo Adapter Functions

    SciTech Connect

    Quintero-Monzon,O.; Rodal, A.; Strokopytov, B.; Almo, S.; Goode, B.

    2005-01-01

    Abp1 is a multidomain protein that regulates the Arp2/3 complex and links proteins involved in endocytosis to the actin cytoskeleton. All of the proposed cellular functions of Abp1 involve actin filament binding, yet the actin binding site(s) on Abp1 have not been identified, nor has the importance of actin binding for Abp1 localization and function in vivo been tested. Here, we report the crystal structure of the Saccharomyces cerevisiae Abp1 actin-binding actin depolymerizing factor homology (ADFH) domain and dissect its activities by mutagenesis. Abp1-ADFH domain and ADF/cofilin structures are similar, and they use conserved surfaces to bind actin; however, there are also key differences that help explain their differential effects on actin dynamics. Using point mutations, we demonstrate that actin binding is required for localization of Abp1 in vivo, the lethality caused by Abp1 overexpression, and the ability of Abp1 to activate Arp2/3 complex. Furthermore, we genetically uncouple ABP1 functions that overlap with SAC6, SLA1, and SLA2, showing they require distinct combinations of activities and interactions. Together, our data provide the first structural and functional view of the Abp1-actin interaction and show that Abp1 has distinct cellular roles as an adapter, linking different sets of ligands for each function.

  7. The Nucleotide-Free State of the Multidrug Resistance ABC Transporter LmrA: Sulfhydryl Cross-Linking Supports a Constant Contact, Head-to-Tail Configuration of the Nucleotide-Binding Domains

    PubMed Central

    Jones, Peter M.; George, Anthony M.

    2015-01-01

    ABC transporters are integral membrane pumps that are responsible for the import or export of a diverse range of molecules across cell membranes. ABC transporters have been implicated in many phenomena of medical importance, including cystic fibrosis and multidrug resistance in humans. The molecular architecture of ABC transporters comprises two transmembrane domains and two ATP-binding cassettes, or nucleotide-binding domains (NBDs), which are highly conserved and contain motifs that are crucial to ATP binding and hydrolysis. Despite the improved clarity of recent structural, biophysical, and biochemical data, the seemingly simple process of ATP binding and hydrolysis remains controversial, with a major unresolved issue being whether the NBD protomers separate during the catalytic cycle. Here chemical cross-linking data is presented for the bacterial ABC multidrug resistance (MDR) transporter LmrA. These indicate that in the absence of nucleotide or substrate, the NBDs come into contact to a significant extent, even at 4°C, where ATPase activity is abrogated. The data are clearly not in accord with an inward-closed conformation akin to that observed in a crystal structure of V. cholerae MsbA. Rather, they suggest a head-to-tail configuration ‘sandwich’ dimer similar to that observed in crystal structures of nucleotide-bound ABC NBDs. We argue the data are more readily reconciled with the notion that the NBDs are in proximity while undergoing intra-domain motions, than with an NBD ‘Switch’ mechanism in which the NBD monomers separate in between ATP hydrolysis cycles. PMID:26120849

  8. The carboxyterminal EF domain of erythroid α-spectrin is necessary for optimal spectrin-actin binding

    PubMed Central

    Korsgren, Catherine

    2010-01-01

    Spectrin and protein 4.1R crosslink F-actin, forming the membrane skeleton. Actin and 4.1R bind to one end of β-spectrin. The adjacent end of α-spectrin, called the EF domain, is calmodulin-like, with calcium-dependent and calcium-independent EF hands. The severely anemic sph1J/sph1J mouse has very fragile red cells and lacks the last 13 amino acids in the EF domain, implying that the domain is critical for skeletal integrity. To test this, we constructed a minispectrin heterodimer from the actin-binding domain, the EF domain, and 4 adjacent spectrin repeats in each chain. The minispectrin bound to F-actin in the presence of native human protein 4.1R. Formation of the spectrin-actin-4.1R complex was markedly attenuated when the minispectrin contained the shortened sph1J α-spectrin. The α-spectrin deletion did not interfere with spectrin heterodimer assembly or 4.1R binding but abolished the binary interaction between spectrin and F-actin. The data show that the α-spectrin EF domain greatly amplifies the function of the β-spectrin actin-binding domain (ABD) in forming the spectrin-actin-4.1R complex. A model, based on the structure of α-actinin, suggests that the EF domain modulates the function of the ABD and that the C-terminal EF hands (EF34) may bind to the linker that connects the ABD to the first spectrin repeat. PMID:20585040

  9. The Actin-binding Domain of Cortactin is Dynamic and Unstructured and Affects Lateral and Longitudinal Contacts in F-actin

    PubMed Central

    Shvetsov, Alexander; Berkane, Emir; Chereau, David; Dominguez, Roberto; Reisler, Emil

    2011-01-01

    Cortactin is an F-actin- and Arp2/3 complex-binding protein, implicated in the regulation of cytoskeleton dynamics and cortical actin-assembly. The actin-binding domain of cortactin consists of a 6.5 tandem repeat of a 37-amino acid sequence known as the cortactin repeat (residues 80-325). Using a combination of structure prediction, circular dichroism and cysteine crosslinking, we tested a recently published three-dimensional model of the cortactin molecule in which the cortactin repeat is folded as a globular helical domain (Zhang et al., 2007). We show that the cortactin repeat is unstructured in solution. Thus, wild type and mutant constructs of the cortactin repeat, containing pairs of cysteines at positions 112 and 246, 83 and 112, 83 and 246, and 83 and 306, could be readily crosslinked with reagents of varying lengths (0–9.6 Å). Using yeast actin cysteine mutants, we also show that cortactin inhibits disulfide and dibromobimane crosslinking across the lateral and longitudinal interfaces of actin subunits in the filament, suggesting a weakening of inter-subunits contacts. Our results are in disagreement with the proposed model of the cortactin molecule and have important implications for our understanding of cortactin regulation of cytoskeleton dynamics. PMID:19089942

  10. The actin-binding domain of cortactin is dynamic and unstructured and affects lateral and longitudinal contacts in F-actin.

    PubMed

    Shvetsov, Alexander; Berkane, Emir; Chereau, David; Dominguez, Roberto; Reisler, Emil

    2009-02-01

    Cortactin is an F-actin- and Arp2/3 complex-binding protein, implicated in the regulation of cytoskeleton dynamics and cortical actin-assembly. The actin-binding domain of cortactin consists of a 6.5 tandem repeat of a 37-amino acid sequence known as the cortactin repeat (residues 80-325). Using a combination of structure prediction, circular dichroism, and cysteine crosslinking, we tested a recently published three-dimensional model of the cortactin molecule in which the cortactin repeat is folded as a globular helical domain [Zhang et al., 2007, Mol Cell 27:197-213]. We show that the cortactin repeat is unstructured in solution. Thus, wild type and mutant constructs of the cortactin repeat, containing pairs of cysteines at positions 112 and 246, 83 and 112, 83 and 246, and 83 and 306, could be readily crosslinked with reagents of varying lengths (0-9.6 A). Using yeast actin cysteine mutants, we also show that cortactin inhibits disulfide and dibromobimane crosslinking across the lateral and longitudinal interfaces of actin subunits in the filament, suggesting a weakening of intersubunits contacts. Our results are in disagreement with the proposed model of the cortactin molecule and have important implications for our understanding of cortactin regulation of cytoskeleton dynamics. PMID:19089942

  11. Corneal Collagen Cross-Linking

    PubMed Central

    Jankov II, Mirko R.; Jovanovic, Vesna; Nikolic, Ljubisa; Lake, Jonathan C.; Kymionis, Georgos; Coskunseven, Efekan

    2010-01-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet-A (UVA) is a new technique of corneal tissue strengthening by using riboflavin as a photosensitizer and UVA to increase the formation of intra and interfibrillar covalent bonds by photosensitized oxidation. Keratocyte apoptosis in the anterior segment of the corneal stroma all the way down to a depth of about 300 microns has been described and a demarcation line between the treated and untreated cornea has been clearly shown. It is important to ensure that the cytotoxic threshold for the endothelium has not been exceeded by strictly respecting the minimal corneal thickness. Confocal microscopy studies show that repopulation of keratocytes is already visible 1 month after the treatment, reaching its pre-operative quantity and quality in terms of functional morphology within 6 months after the treatment. The major indication for the use of CXL is to inhibit the progression of corneal ectasias, such as keratoconus and pellucid marginal degeneration. CXL may also be effective in the treatment and prophylaxis of iatrogenic keratectasia, resulting from excessively aggressive photoablation. This treatment has also been used to treat infectious corneal ulcers with apparent favorable results. Combination with other treatments, such as intracorneal ring segment implantation, limited topography-guided photoablation and conductive keratoplasty have been used with different levels of success. PMID:20543933

  12. Characterization of F-Actin Tryptophan Phosphorescence in the Presence and Absence of Tryptophan-Free Myosin Motor Domain

    PubMed Central

    Bódis, Emöke; Strambini, Giovanni B.; Gonnelli, Margherita; Málnási-Csizmadia, András; Somogyi, Béla

    2004-01-01

    The effect of binding the Trp-free motor domain mutant of Dictyostelium discoideum, rabbit skeletal muscle myosin S1, and tropomyosin on the dynamics and conformation of actin filaments was characterized by an analysis of steady-state tryptophan phosphorescence spectra and phosphorescence decay kinetics over a temperature range of 140–293 K. The binding of the Trp-free motor domain mutant of D. discoideum to actin caused red shifts in the phosphorescence spectrum of two internal Trp residues of actin and affected the intrinsic lifetime of each emitter, decreasing by roughly twofold the short phosphorescence lifetime components (τ1 and τ2) and increasing by ∼20% the longest component (τ3). The alteration of actin phosphorescence by the motor protein suggests that i), structural changes occur deep down in the core of actin and that ii), subtle changes in conformation appear also on the surface but in regions distant from the motor domain binding site. When actin formed complexes with skeletal S1, an extra phosphorescence lifetime component appeared (τ4, twice as long as τ3) in the phosphorescence decay that is absent in the isolated proteins. The lack of this extra component in the analogous actin-Trp-free motor domain mutant of D. discoideum complex suggests that it should be assigned to Trps in S1 that in the complex attain a more compact local structure. Our data indicated that the binding of tropomyosin to actin filaments had no effect on the structure or flexibility of actin observable by this technique. PMID:15298917

  13. Convoluted Plasma Membrane Domains in the Green Alga Chara are Depleted of Microtubules and Actin Filaments

    PubMed Central

    Sommer, Aniela; Hoeftberger, Margit; Hoepflinger, Marion C.; Schmalbrock, Sarah; Bulychev, Alexander; Foissner, Ilse

    2015-01-01

    Charasomes are convoluted plasma membrane domains in the green alga Chara australis. They harbor H+-ATPases involved in acidification of the medium, which facilitates carbon uptake required for photosynthesis. In this study we investigated the distribution of cortical microtubules and cortical actin filaments in relation to the distribution of charasomes. We found that microtubules and actin filaments were largely lacking beneath the charasomes, suggesting the absence of nucleating and/or anchoring complexes or an inhibitory effect on polymerization. We also investigated the influence of cytoskeleton inhibitors on the light-dependent growth and the darkness-induced degradation of charasomes. Inhibition of cytoplasmic streaming by cytochalasin D significantly inhibited charasome growth and delayed charasome degradation, whereas depolymerization of microtubules by oryzalin or stabilization of microtubules by paclitaxel had no effect. Our data indicate that the membrane at the cytoplasmic surface of charasomes has different properties in comparison with the smooth plasma membrane. We show further that the actin cytoskeleton is necessary for charasome growth and facilitates charasome degradation presumably via trafficking of secretory and endocytic vesicles, respectively. However, microtubules are required neither for charasome growth nor for charasome degradation. PMID:26272553

  14. Convoluted Plasma Membrane Domains in the Green Alga Chara are Depleted of Microtubules and Actin Filaments.

    PubMed

    Sommer, Aniela; Hoeftberger, Margit; Hoepflinger, Marion C; Schmalbrock, Sarah; Bulychev, Alexander; Foissner, Ilse

    2015-10-01

    Charasomes are convoluted plasma membrane domains in the green alga Chara australis. They harbor H(+)-ATPases involved in acidification of the medium, which facilitates carbon uptake required for photosynthesis. In this study we investigated the distribution of cortical microtubules and cortical actin filaments in relation to the distribution of charasomes. We found that microtubules and actin filaments were largely lacking beneath the charasomes, suggesting the absence of nucleating and/or anchoring complexes or an inhibitory effect on polymerization. We also investigated the influence of cytoskeleton inhibitors on the light-dependent growth and the darkness-induced degradation of charasomes. Inhibition of cytoplasmic streaming by cytochalasin D significantly inhibited charasome growth and delayed charasome degradation, whereas depolymerization of microtubules by oryzalin or stabilization of microtubules by paclitaxel had no effect. Our data indicate that the membrane at the cytoplasmic surface of charasomes has different properties in comparison with the smooth plasma membrane. We show further that the actin cytoskeleton is necessary for charasome growth and facilitates charasome degradation presumably via trafficking of secretory and endocytic vesicles, respectively. However, microtubules are required neither for charasome growth nor for charasome degradation. PMID:26272553

  15. Chemical cross-linking of Chlamydia trachomatis.

    PubMed Central

    Birkelund, S; Lundemose, A G; Christiansen, G

    1988-01-01

    Purified elementary bodies (EBs) of Chlamydia trachomatis serovar L2 were analyzed by chemical cross-linking with disuccinimidyl selenodipropionate. The effect of the cross-linking was analyzed by immunoblotting sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated components which were reacted with monoclonal antibodies against major outer membrane protein (MOMP) and lipopolysaccharide (LPS). It was shown that in EBs, MOMP was cross-linked to the LPS component of the outer membrane. Migration analysis of the cross-linked components showed that with extensive cross-linking, most of the MOMP became cross-linked to LPS, changing the migration rate from 40 to 42.5 kilodaltons. A small fraction of MOMP associated with LPS was shown to be present in bands with migration rates of 100 and 110 kilodaltons. No association of MOMP or LPS to other proteins, or to dimer or multimer forms of MOMP without LPS, was observed. A totally different membrane structure must be present in reticulate bodies, since there, MOMP was so heavily cross-linked that it did not enter the polyacrylamide gel and thus became impossible to analyze. Furthermore, the monoclonal antibody, which reacted with LPS associated with MOMP in the cross-linked EBs, did not react with reticulate bodies. Images PMID:2449399

  16. Self-Organized Gels in DNA/F-Actin Mixtures without Crosslinkers: Networks of Induced Nematic Domains with Tunable Density

    NASA Astrophysics Data System (ADS)

    Lai, Ghee Hwee; Butler, John C.; Zribi, Olena V.; Smalyukh, Ivan I.; Angelini, Thomas E.; Purdy, Kirstin R.; Golestanian, Ramin; Wong, Gerard C. L.

    2008-11-01

    We examine mixtures of DNA and filamentous actin (F-actin) as a model system of like-charged rigid rods and flexible chains. Confocal microscopy reveals the formation of elongated nematic F-actin domains reticulated via defect-free vertices into a network embedded in a mesh of random DNA. Synchrotron x-ray scattering results indicate that the DNA mesh squeezes the F-actin domains into a nematic state with an interactin spacing that decreases with increasing DNA concentration as dactin∝ρDNA-1/2. Interestingly, the system changes from a counterion-controlled regime to a depletion-controlled regime with added salt, with drastic consequences for the osmotic pressure induced phase behavior.

  17. Histone cross-linking by transglutaminase.

    PubMed

    Kim, Jae-Hong; Nam, Kang Hoon; Kwon, Oh-Seok; Kim, In Gyu; Bustin, Michael; Choy, Hyon E; Park, Sang Chul

    2002-05-24

    Transglutaminases irreversibly catalyze covalent cross-linking of proteins by forming isopeptide bonds between peptide-bound glutamine and lysine residues. Among several transglutaminases, tissue-type transglutaminase (tTGase) is most ubiquitously found in every type of cells and tissues in animals, but its natural substrate has yet to be identified. In an attempt to identify the natural substrate for tTGase, we examined in vitro if core histones were subject to cross-linking by tTGase. We found core histone subunits, H2A and H2B, were specifically cross-linked by tTGase. The cross-linking was between either one or both glutamines at C-terminal end of H2A (-VTIAQ104 GGVLPNTQ112 SVLLPKKTESSKSK-C' end) and the first and/or third lysine from C-terminal end of H2B (-AVESEGK116 AVTKYTSSK125-C' end). The cross-linking occurred only when these subunits were released from nucleosome but not when these were organized in nucleosome. Most interestingly, in chicken erythrocyte the cross-linked H2A-H2B was present in a significant amount. From these results, it can be proposed that tTGase-mediated cross-linking is an another form of core histone modification and it may play a role of chromatin condensation during erythrocyte differentiation. PMID:12054678

  18. Porous Cross-Linked Polyimide Networks

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Guo, Haiquan (Inventor)

    2015-01-01

    Porous cross-linked polyimide networks are provided. The networks comprise an anhydride end-capped polyamic acid oligomer. The oligomer (i) comprises a repeating unit of a dianhydride and a diamine and terminal anhydride groups, (ii) has an average degree of polymerization of 10 to 50, (iii) has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups, and (iv) has been chemically imidized to yield the porous cross-linked polyimide network. Also provided are porous cross-linked polyimide aerogels comprising a cross-linked and imidized anhydride end-capped polyamic acid oligomer, wherein the oligomer comprises a repeating unit of a dianhydride and a diamine, and the aerogel has a density of 0.10 to 0.333 g/cm.sup.3 and a Young's modulus of 1.7 to 102 MPa. Also provided are thin films comprising aerogels, and methods of making porous cross-linked polyimide networks.

  19. Plasmodium falciparum aldolase and the C-terminal cytoplasmic domain of certain apical organellar proteins promote actin polymerization.

    PubMed

    Diaz, Suraya A; Martin, Stephen R; Grainger, Munira; Howell, Steven A; Green, Judith L; Holder, Anthony A

    2014-10-01

    The current model of Apicomplexan motility and host cell invasion is that both processes are driven by an actomyosin motor located beneath the plasma membrane, with the force transduced to the outside of the cell via coupling through aldolase and the cytoplasmic tail domains (CTDs) of certain type 1 membrane proteins. In Plasmodium falciparum (Pf), aldolase is thought to bind to the CTD of members of the thrombospondin-related anonymous protein (TRAP) family, which are micronemal proteins and represented by MTRAP in merozoites. Other type 1 membrane proteins including members of the erythrocyte binding antigen (EBA) and reticulocyte binding protein homologue (RH) protein families, which are also apical organellar proteins, have also been implicated in host cell binding in erythrocyte invasion. However, recent studies with Toxoplasma gondii have questioned the importance of aldolase in these processes. Using biolayer interferometry we show that Pf aldolase binds with high affinity to both rabbit and Pf actin, with a similar affinity for filamentous (F-) actin and globular (G-) actin. The interaction between Pf aldolase and merozoite actin was confirmed by co-sedimentation assays. Aldolase binding was shown to promote rabbit actin polymerization indicating that the interaction is more complicated than binding alone. The CTDs of some but not all type 1 membrane proteins also promoted actin polymerization in the absence of aldolase; MTRAP and RH1 CTDs promoted actin polymerization but EBA175 CTD did not. Direct actin polymerization mediated by membrane protein CTDs may contribute to actin recruitment, filament formation and stability during motor assembly, and actin-mediated movement, independent of aldolase. PMID:25261592

  20. Direct binding of F actin to the cytoplasmic domain of the alpha 2 integrin chain in vitro

    NASA Technical Reports Server (NTRS)

    Kieffer, J. D.; Plopper, G.; Ingber, D. E.; Hartwig, J. H.; Kupper, T. S.

    1995-01-01

    The transmembrane integrins have been shown to interact with the cytoskeleton via noncovalent binding between cytoplasmic domains (CDs) of integrin beta chains and various actin binding proteins within the focal adhesion complex. Direct or indirect integrin alpha chain CD binding to the actin cytoskeleton has not been reported. We show here that actin, as an abundant constituent of focal adhesion complex proteins isolated from fibroblasts, binds strongly and specifically to alpha 2 CD, but not to alpha 1 CD peptide. Similar specific binding to alpha 2 CD peptide was seen for highly purified F actin, free of putative actin-binding proteins. The bound complex of actin and peptide was visualized directly by coprecipitation, and actin binding was abrogated by removal of a five amino acid sequence from the alpha 2 CD peptide. Our findings may explain the earlier observation that, while integrins alpha 2 beta 1 and alpha 1 beta 1 both bind to collagen, only alpha 2 beta 1 can mediate contraction of extracellular collagen matrices.

  1. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1997-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  2. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1998-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  3. The Actin Binding Domain of βI-Spectrin Regulates the Morphological and Functional Dynamics of Dendritic Spines

    PubMed Central

    Nestor, Michael W.; Cai, Xiang; Stone, Michele R.; Bloch, Robert J.; Thompson, Scott M.

    2011-01-01

    Actin microfilaments regulate the size, shape and mobility of dendritic spines and are in turn regulated by actin binding proteins and small GTPases. The βI isoform of spectrin, a protein that links the actin cytoskeleton to membrane proteins, is present in spines. To understand its function, we expressed its actin-binding domain (ABD) in CA1 pyramidal neurons in hippocampal slice cultures. The ABD of βI-spectrin bundled actin in principal dendrites and was concentrated in dendritic spines, where it significantly increased the size of the spine head. These effects were not observed after expression of homologous ABDs of utrophin, dystrophin, and α-actinin. Treatment of slice cultures with latrunculin-B significantly decreased spine head size and decreased actin-GFP fluorescence in cells expressing the ABD of α-actinin, but not the ABD of βI-spectrin, suggesting that its presence inhibits actin depolymerization. We also observed an increase in the area of GFP-tagged PSD-95 in the spine head and an increase in the amplitude of mEPSCs at spines expressing the ABD of βI-spectrin. The effects of the βI-spectrin ABD on spine size and mEPSC amplitude were mimicked by expressing wild-type Rac3, a small GTPase that co-immunoprecipitates specifically with βI-spectrin in extracts of cultured cortical neurons. Spine size was normal in cells co-expressing a dominant negative Rac3 construct with the βI-spectrin ABD. We suggest that βI-spectrin is a synaptic protein that can modulate both the morphological and functional dynamics of dendritic spines, perhaps via interaction with actin and Rac3. PMID:21297961

  4. Cross-linking Chemistry of Squid Beak*

    PubMed Central

    Miserez, Ali; Rubin, Daniel; Waite, J. Herbert

    2010-01-01

    In stark contrast to most aggressive predators, Dosidicus gigas (jumbo squids) do not use minerals in their powerful mouthparts known as beaks. Their beaks instead consist of a highly sclerotized chitinous composite with incremental hydration from the tip to the base. We previously reported l-3,4-dihydroxyphenylalanine (dopa)-histidine (dopa-His) as an important covalent cross-link providing mechanical strengthening to the beak material. Here, we present a more complete characterization of the sclerotization chemistry and describe additional cross-links from D. gigas beak. All cross-links presented in this report share common building blocks, a family of di-, tri-, and tetra-histidine-catecholic adducts, that were separated by affinity chromatography and high performance liquid chromatography (HPLC) and identified by tandem mass spectroscopy and proton nuclear magnetic resonance (1H NMR). The data provide additional insights into the unusually high cross-link density found in mature beaks. Furthermore, we propose both a low molecular weight catechol, and peptidyl-dopa, to be sclerotization agents of squid beak. This appears to represent a new strategy for forming hard tissue in animals. The interplay between covalent cross-linking and dehydration on the graded properties of the beaks is discussed. PMID:20870720

  5. Cross-linking chemistry of squid beak.

    PubMed

    Miserez, Ali; Rubin, Daniel; Waite, J Herbert

    2010-12-01

    In stark contrast to most aggressive predators, Dosidicus gigas (jumbo squids) do not use minerals in their powerful mouthparts known as beaks. Their beaks instead consist of a highly sclerotized chitinous composite with incremental hydration from the tip to the base. We previously reported l-3,4-dihydroxyphenylalanine (dopa)-histidine (dopa-His) as an important covalent cross-link providing mechanical strengthening to the beak material. Here, we present a more complete characterization of the sclerotization chemistry and describe additional cross-links from D. gigas beak. All cross-links presented in this report share common building blocks, a family of di-, tri-, and tetra-histidine-catecholic adducts, that were separated by affinity chromatography and high performance liquid chromatography (HPLC) and identified by tandem mass spectroscopy and proton nuclear magnetic resonance ((1)H NMR). The data provide additional insights into the unusually high cross-link density found in mature beaks. Furthermore, we propose both a low molecular weight catechol, and peptidyl-dopa, to be sclerotization agents of squid beak. This appears to represent a new strategy for forming hard tissue in animals. The interplay between covalent cross-linking and dehydration on the graded properties of the beaks is discussed. PMID:20870720

  6. Structural studies on mitochondrial NADH dehydrogenase using chemical cross-linking.

    PubMed Central

    Patel, S D; Ragan, C I

    1988-01-01

    The structure of bovine heart mitochondrial NADH dehydrogenase was investigated by cross-linking constituent subunits with disuccinimidyl tartrate, (ethylene glycol)yl bis(succinimidyl succinate) and dimethyl suberimidate. Cross-linked products were identified by Western blotting with monospecific antisera to nine subunits of the enzyme. Cross-links between subunits within the flavoprotein, iron-protein and hydrophobic domains of the enzyme were identified. Cross-linking between the 75 kDa iron-protein-domain subunit and the 51 kDa flavoprotein-domain subunit was modulated by the substrate NADH. Cross-linking of subunits of the iron-protein and flavoprotein domains to constituents of the hydrophobic domain was also found. This was further substantiated by photolabelling subunits of the latter region, which were in contact with the membrane lipid, with 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine. One such subunit of Mr 19,000 could be cross-linked to components of the iron-protein domain. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:3223927

  7. Structure of the 34 kDa F-actin-bundling protein ABP34 from Dictyostelium discoideum.

    PubMed

    Kim, Min-Kyu; Kim, Ji-Hye; Kim, Ji-Sun; Kang, Sa-Ouk

    2015-09-01

    The crystal structure of the 34 kDa F-actin-bundling protein ABP34 from Dictyostelium discoideum was solved by Ca(2+)/S-SAD phasing and refined at 1.89 Å resolution. ABP34 is a calcium-regulated actin-binding protein that cross-links actin filaments into bundles. Its in vitro F-actin-binding and F-actin-bundling activities were confirmed by a co-sedimentation assay and transmission electron microscopy. The co-localization of ABP34 with actin in cells was also verified. ABP34 adopts a two-domain structure with an EF-hand-containing N-domain and an actin-binding C-domain, but has no reported overall structural homologues. The EF-hand is occupied by a calcium ion with a pentagonal bipyramidal coordination as in the canonical EF-hand. The C-domain structure resembles a three-helical bundle and superposes well onto the rod-shaped helical structures of some cytoskeletal proteins. Residues 216-244 in the C-domain form part of the strongest actin-binding sites (193-254) and exhibit a conserved sequence with the actin-binding region of α-actinin and ABP120. Furthermore, the second helical region of the C-domain is kinked by a proline break, offering a convex surface towards the solvent area which is implicated in actin binding. The F-actin-binding model suggests that ABP34 binds to the side of the actin filament and residues 216-244 fit into a pocket between actin subdomains -1 and -2 through hydrophobic interactions. These studies provide insights into the calcium coordination in the EF-hand and F-actin-binding site in the C-domain of ABP34, which are associated through interdomain interactions. PMID:26327373

  8. Hybridization triggered cross-linking of deoxyoligonucleotides.

    PubMed Central

    Webb, T R; Matteucci, M D

    1986-01-01

    This paper reports details of the synthesis of oligodeoxynucleotides containing the modified base 5-methyl-N4,N4-ethanocytosine (Ce). The 9-fluorenylmethoxycarbonyl group is used as a protecting group for the exocyclic amines of dA and dC. This group can be removed rapidly under very mild conditions. Oligomers containing the Ce base form a cross-link when hybridized to their complementary deoxyoligonucleotides. Some of the scope and limitations of these cross-link forming oligonucleotides are reported. Images PMID:3774542

  9. Stretching and bending in cross-linked biopolymer networks

    NASA Astrophysics Data System (ADS)

    Heussinger, Claus; Frey, Erwin

    2007-03-01

    The elastic response of cross-linked biopolymer networks is usually interpreted in terms of affine stretching models, adopted from the theory of rubber-elasticity valid for flexible polymer gels. Unlike flexible polymers, however, stiff polymers have a highly anisotropic elastic response, where the low-energy elastic excitations are actually of bending nature. As a consequence, similar to springs connected in series, one would expect the softer bending mode to dominate the elastic energy rather than the stiff stretching mode. We propose a theory that, unlike recent affine models, properly accounts for the soft bending response of stiff polymers. It allows calculating the macroscopic elastic moduli starting from a microscopic characterization of the (non-affine) deformation field. The calculated scaling properties for the shear modulus are in excellent agreement with the results of recent simulations obtained in simple two-dimensional model networks, and can also be applied to rationalize bulk rheological data in reconstituted actin networks.

  10. A complex of ZO-1 and the BAR-domain protein TOCA-1 regulates actin assembly at the tight junction

    PubMed Central

    Van Itallie, Christina M.; Tietgens, Amber Jean; Krystofiak, Evan; Kachar, Bechara; Anderson, James M.

    2015-01-01

    Assembly and sealing of the tight junction barrier are critically dependent on the perijunctional actin cytoskeleton, yet little is known about physical and functional links between barrier-forming proteins and actin. Here we identify a novel functional complex of the junction scaffolding protein ZO-1 and the F-BAR–domain protein TOCA-1. Using MDCK epithelial cells, we show that an alternative splice of TOCA-1 adds a PDZ-binding motif, which binds ZO-1, targeting TOCA-1 to barrier contacts. This isoform of TOCA-1 recruits the actin nucleation–promoting factor N-WASP to tight junctions. CRISPR-Cas9–mediated knockout of TOCA-1 results in increased paracellular flux and delayed recovery in a calcium switch assay. Knockout of TOCA-1 does not alter FRAP kinetics of GFP ZO-1 or occludin, but longer term (12 h) time-lapse microscopy reveals strikingly decreased tight junction membrane contact dynamics in knockout cells compared with controls. Reexpression of TOCA-1 with, but not without, the PDZ-binding motif rescues both altered flux and membrane contact dynamics. Ultrastructural analysis shows actin accumulation at the adherens junction in TOCA-1–knockout cells but unaltered freeze-fracture fibril morphology. Identification of the ZO-1/TOCA-1 complex provides novel insights into the underappreciated dependence of the barrier on the dynamic nature of cell-to-cell contacts and perijunctional actin. PMID:26063734

  11. Cross-linked structure of network evolution

    NASA Astrophysics Data System (ADS)

    Bassett, Danielle S.; Wymbs, Nicholas F.; Porter, Mason A.; Mucha, Peter J.; Grafton, Scott T.

    2014-03-01

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  12. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, W.P. Jr.; Apen, P.G.; Mitchell, M.A.

    1998-01-20

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes. 1 fig.

  13. Cross-linked structure of network evolution

    SciTech Connect

    Bassett, Danielle S.; Wymbs, Nicholas F.; Grafton, Scott T.; Porter, Mason A.; Mucha, Peter J.

    2014-03-15

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  14. Cross-Linking Studies of Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc

    2000-01-01

    Tetragonal chicken egg white crystals consist of 4(sub 3) helices running in alternating directions, the helix rows having a two fold symmetry with each other. The unit cell consists of one complete tetrameric turn from each of two adjacent helices (an octamer). PBC analysis indicates that the helix intermolecular bonds are the strongest in the crystal, therefore likely formed first. AFM analysis of the (110) surface shows only complete helices, no half steps or bisected helices being found, while AFM line scans to measure the growth step increments show that they are multiples of the 4(sub 3) helix tetramer dimensions. This supports our thesis that the growth units are in fact multiples of the four molecule 4(sub 3) helix unit, the "average" growth unit size for the (110) face being an octamer (two turns about the helix) and the (101) growth unit averaging about the size of a hexamer. In an effort to better understand the species involved in the crystal nucleation and growth process, we have initiated an experimental program to study the species formed in solution compared to what is found in the crystal through covalent cross-linking studies. These experiments use the heterobifunctional cross-linking agent aminoethyl-4-azidonitroanaline (AEANA). An aliphatic amine at one end is covalently attached to the protein by a carbodiimide-mediated reaction, and a photo reactive group at the other can be used to initiate crosslinking. Modifications to the parent structure can be used to alter the distance between the two reactive groups and thus the cross-linking agents "reach". In practice, the cross-linking agent is first coupled to the asp101 side chain through the amine group. Asp101 lies within the active site cleft, and previous work with fluorescent probes had shown that derivatives at this site still crystallize in the tetragonal space group. This was also found to be the case with the AEANA derivative, which gave red tetragonal crystals. The protein now has a

  15. Subcellular localisation of the p40phox component of NADPH oxidase involves direct interactions between the Phox homology domain and F-actin

    PubMed Central

    Shao, Dongmin; Segal, Anthony W.; Dekker, Lodewijk V.

    2010-01-01

    Cytosolic components of the NADPH oxidase interact with the actin cytoskeleton. These interactions are thought to be important for the activation of this enzyme system but they are poorly characterised at the molecular level. Here we have explored the interaction between the actin cytoskeleton and p40phox, one of the cytosolic components of NADPH oxidase. Full length p40phox expressed in COS cells co-localised with F-actin in a peripheral lamellar compartment. The co-localisation was lost after deletion of the Phox homology (PX) domain and the PX domain in isolation (p40PX) showed the same F-actin co-localisation as the full length protein. PX domains are known lipid-binding modules however, a mutant p40PX which did not bind lipids still co-localised with F-actin suggesting that lipid-independent interactions underlie the localisation. Affinity chromatography identified actin as a binding partner for p40PX in neutrophil extracts. Pure actin interacted with both p40phox and with p40PX suggesting it is a direct interaction. Disruption of the actin cytoskeleton with cytochalasin D resulted in actin rearrangement and concomitantly the localisation of full length p40phox proteins and that of p40PX changed. Thus p40PX is a dual F-actin/lipid-binding module and F-actin interactions with the PX domain dictate at least in part the intracellular localisation of the cytosolic p40phox subunit of the NADPH oxidase. PMID:20637895

  16. Positive tone cross-linked resists based on photoacid inhibition of cross linking

    NASA Astrophysics Data System (ADS)

    Lawson, Richard A.; Chun, Jun Sung; Neisser, Mark; Tolbert, Laren M.; Henderson, Clifford L.

    2014-03-01

    A resist imaging design that utilizes photoacid inhibition of cationic polymerization and cross-linking during a postexposure bake step has been studied. The key to the design approach is the use of two different polymerization catalysts/initiators: (1) a photoacid produced from a photoacid generator (PAG) upon exposure of the resist that can result in polymerization and cross-linking of the resist matrix and (2) a thermal cross-linking catalyst (TCC) designed to thermally catalyze epoxide-phenol cross-linking. The TCC can be chosen from a variety of compounds such as triphenylphosphine (TPP) or imidazole. When only one of these catalysts (e.g TPP or photoacid) is present in an epoxide and phenol containing resist matrix, it will individually catalyze cross-linking. When they are present together, they effectively quench one another and little to no cross-linking occurs. This approach can be used to switch the tone of a resist from negative (photoacid catalyzed) to positive (TCC catalyzed and photoacid inhibited). The effect of the ratio of TCC:PAG was examined and the optimal ratio for positive tone behavior was determined. Resist contrast can be modified by optimization of epoxide:phenol ratio in the formulation. Dual tone behavior with positive tone at low dose and negative tone at higher doses can be observed in certain formulation conditions. Initial EUV patterning shows poor results, but the source of the poor imaging is not yet understood.

  17. Determination of protein conformation by isotopically labelled cross-linking and dedicated software

    NASA Astrophysics Data System (ADS)

    Nielsen, Tina; Thaysen-Andersen, Morten; Larsen, Nanna; Jørgensen, Flemming S.; Houen, Gunnar; Højrup, Peter

    2007-12-01

    , a few corrections to a model of calreticulin obtained by homology modelling using calnexin as template can be suggested. Furthermore, the cross-links show that the C-terminal of the protein continues along the core region opposite the P-domain for at least 11 residues beyond the known structure. In addition, it was observed that the conformation of CRT does not change significantly in the presence or absence of the divalent ions, Ca2+ and Zn2+.

  18. Bcr is a substrate for Transglutaminase 2 cross-linking activity

    PubMed Central

    2011-01-01

    Background Breakpoint cluster region (Bcr) is a multi-domain protein that contains a C-terminal GTPase activating protein (GAP) domain for Rac. Transglutaminase 2 (TG2) regulates Bcr by direct binding to its GAP domain. Since TG2 has transglutaminase activity that has been implicated in the response to extreme stress, we investigated if Bcr can also act as a substrate for TG2. Results We here report that activation of TG2 by calcium caused the formation of covalently cross-linked Bcr. Abr, a protein related to Bcr but lacking its N-terminal oligomerization domain, was not cross-linked by TG2 even though it forms a complex with it. A Bcr mutant missing the first 62 amino acid residues remained monomeric in the presence of activated TG2, showing that this specific domain is necessary for the cross-linking reaction. Calcium influx induced by a calcium ionophore in primary human endothelial cells caused cross-linking of endogenous Bcr, which was inhibited by the TG2 inhibitor cystamine. Treatment of cells with cobalt chloride, a hypoxia-mimetic that causes cellular stress, also generated high molecular weight Bcr complexes. Cross-linked Bcr protein appeared in the TritonX-100-insoluble cell fraction and further accumulated in cells treated with a proteasome inhibitor. Conclusions Bcr thus represents both an interacting partner under non-stressed conditions and a target of transglutaminase activity for TG2 during extreme stress. PMID:21310073

  19. Contraction of cross-linked actomyosin bundles

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Natsuhiko; Marcq, Philippe

    2012-08-01

    Cross-linked actomyosin bundles retract when severed in vivo by laser ablation, or when isolated from the cell and micromanipulated in vitro in the presence of ATP. We identify the timescale for contraction as a viscoelastic time τ, where the viscosity is due to (internal) protein friction. We obtain an estimate of the order of magnitude of the contraction time τ ≈ 10-100 s, consistent with available experimental data for circumferential microfilament bundles and stress fibers. Our results are supported by an exactly solvable, hydrodynamic model of a retracting bundle as a cylinder of isotropic, active matter, from which the order of magnitude of the active stress is estimated.

  20. Corneal Collagen Cross-Linking Outcomes: Review

    PubMed Central

    Jankov II, Mirko R; Jovanovic, Vesna; Delevic, Sladjana; Coskunseven, Efekan

    2011-01-01

    Keratoconus is a condition characterized by biomechanical instability of the cornea, presenting in a progressive, asymmetric and bilateral way. Corneal collagen cross-linking with riboflavin and UVA (CXL) is a new technique of corneal tissue strengthening that combines the use of riboflavin as a photo sensitizer and UVA irradiation. The studies showed that CXL was effective in halting the progression of keratoconus over a period of up to four years. The published studies also revealed a reduction of max K readings by more than 2 D, while the postoperative SEQ was reduced by an average of more than 1 D, and refractive cylinder decreased by about 1 D. No eyes lost any line of BCDVA. Moreover, there was no significant decrease in endothelial cell density. It was also found that CXL treatment was effective with reducing corneal and total wavefront aberrations. Corneal cross-linking has also led to an arrest and/or even a partial reversal of keratectasia in the treatment of iatrogenic ectasia after excimer laser ablation. A primary intervention such as CXL should be considered to potentially increase the biomechanical stability of the corneal tissue and postpone the need of lamellar or penetrating keratoplasty. PMID:21448301

  1. Corneal collagen cross-linking: a review.

    PubMed

    O'Brart, David P S

    2014-01-01

    The aim was to review the published literature on corneal collagen cross-linking. The emphasis was on the seminal publications, systemic reviews, meta-analyses and randomized controlled trials. Where such an evidence did not exist, selective large series cohort studies, case controlled studies and case series with follow-up preferably greater than 12 months were included. Riboflavin/Ultraviolet A (UVA) corneal collagen cross-linking appears to be the first treatment modality to halt the progression of keratoconus and other corneal ectatic disorders with improvement in visual, keratometric and topographic parameters documented by most investigators. Its precise mechanism of action at a molecular level is as yet not fully determined. Follow-up is limited to 4-6 years at present but suggests continued stability and improvement in corneal shape with time. Most published data are with epithelium-off techniques. Epithelium-on studies suggest some efficacy but less than with the epithelium-off procedures and long-term data are not currently available. The use of Riboflavin/UVA CXL for the management of infectious and non-infectious keratitis appears very promising. Its use in the management of bullous keratopathy is equivocal. Investigation of other methodologies for CXL are under investigation. PMID:25000866

  2. Corneal collagen cross-linking: A review

    PubMed Central

    O’Brart, David P.S.

    2014-01-01

    The aim was to review the published literature on corneal collagen cross-linking. The emphasis was on the seminal publications, systemic reviews, meta-analyses and randomized controlled trials. Where such an evidence did not exist, selective large series cohort studies, case controlled studies and case series with follow-up preferably greater than 12 months were included. Riboflavin/Ultraviolet A (UVA) corneal collagen cross-linking appears to be the first treatment modality to halt the progression of keratoconus and other corneal ectatic disorders with improvement in visual, keratometric and topographic parameters documented by most investigators. Its precise mechanism of action at a molecular level is as yet not fully determined. Follow-up is limited to 4–6 years at present but suggests continued stability and improvement in corneal shape with time. Most published data are with epithelium-off techniques. Epithelium-on studies suggest some efficacy but less than with the epithelium-off procedures and long-term data are not currently available. The use of Riboflavin/UVA CXL for the management of infectious and non-infectious keratitis appears very promising. Its use in the management of bullous keratopathy is equivocal. Investigation of other methodologies for CXL are under investigation. PMID:25000866

  3. To Cross-Link or Not to Cross-Link? Cross-Linking Associated Foreign Body Response of Collagen-Based Devices

    PubMed Central

    Delgado, Luis M.; Bayon, Yves; Pandit, Abhay

    2015-01-01

    Collagen-based devices, in various physical conformations, are extensively used for tissue engineering and regenerative medicine applications. Given that the natural cross-linking pathway of collagen does not occur in vitro, chemical, physical, and biological cross-linking methods have been assessed over the years to control mechanical stability, degradation rate, and immunogenicity of the device upon implantation. Although in vitro data demonstrate that mechanical properties and degradation rate can be accurately controlled as a function of the cross-linking method utilized, preclinical and clinical data indicate that cross-linking methods employed may have adverse effects on host response, especially when potent cross-linking methods are employed. Experimental data suggest that more suitable cross-linking methods should be developed to achieve a balance between stability and functional remodeling. PMID:25517923

  4. Regulation of water flow by actin-binding protein-induced actin gelatin.

    PubMed Central

    Ito, T; Suzuki, A; Stossel, T P

    1992-01-01

    Actin filaments inhibit osmotically driven water flow (Ito, T., K.S. Zaner, and T.P. Stossel. 1987. Biophys. J. 51: 745-753). Here we show that the actin gelation protein, actin-binding protein (ABP), impedes both osmotic shrinkage and swelling of an actin filament solution and reduces markedly the concentration of actin filaments required for this inhibition. These effects depend on actin filament immobilization, because the ABP concentration that causes initial impairment of water flow by actin filaments corresponds to the gel point measured viscometrically and because gelsolin, which noncovalently severs actin filaments, solates actin gels and restores water flow in a solution of actin cross-linked by ABP. Since ABP gels actin filaments in the periphery of many eukaryotic cells, such actin networks may contribute to physiological cell volume regulation. PMID:1318095

  5. Reversible and irreversible cross-linking of immunoglobulin heavy chains through their carbohydrate residues.

    PubMed Central

    Heimgartner, U; Kozulić, B; Mosbach, K

    1990-01-01

    After periodate oxidation and incubation with a dihydrazide, cross-linking of the two heavy chains of immunoglobulins G from several species proceeds specifically through their oligosaccharides. We have used malonic acid dihydrazide, adipic acid dihydrazide and dithiodipropionic acid dihydrazide. The last compound is introduced in this work as a cleavable-carbohydrate-specific cross-linker. It was found that in rabbit and human immunoglobulins the degree of cross-linking was strongly dependent on the oxidation conditions but only very weakly dependent on the concentration and size of the dihydrazides. Papain cleavage of the cross-linked rabbit IgG indicated that the cross-linking occurred predominantly, if not exclusively, in the Fc region, probably through the two glycans linked to Asn-297 in the CH2 domain of each of the two heavy chains. The immunoglobulins from sheep, pig, goat and guinea pig show a comparable cross-linking pattern, indicating that the sugar chains from these immunoglobulins have a spatial structure closely related to that of rabbit and human IgG. When dithiodipropionic acid dihydrazide was used as the cross-linker, the cross-link could be cleaved by mercaptoethanol. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:2111130

  6. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase*

    PubMed Central

    Bihan, Dominique; Bonna, Arkadiusz; Rubin, Kristofer; Farndale, Richard W.

    2016-01-01

    The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites. PMID:26893379

  7. Actin Filaments Are Involved in the Coupling of V0-V1 Domains of Vacuolar H+-ATPase at the Golgi Complex.

    PubMed

    Serra-Peinado, Carla; Sicart, Adrià; Llopis, Juan; Egea, Gustavo

    2016-04-01

    We previously reported that actin-depolymerizing agents promote the alkalization of the Golgi stack and thetrans-Golgi network. The main determinant of acidic pH at the Golgi is the vacuolar-type H(+)-translocating ATPase (V-ATPase), whose V1domain subunitsBandCbind actin. We have generated a GFP-tagged subunitB2construct (GFP-B2) that is incorporated into the V1domain, which in turn is coupled to the V0sector. GFP-B2 subunit is enriched at distal Golgi compartments in HeLa cells. Subcellular fractionation, immunoprecipitation, and inversal FRAP experiments show that the actin depolymerization promotes the dissociation of V1-V0domains, which entails subunitB2translocation from Golgi membranes to the cytosol. Moreover, molecular interaction between subunitsB2andC1and actin were detected. In addition, Golgi membrane lipid order disruption byd-ceramide-C6 causes Golgi pH alkalization. We conclude that actin regulates the Golgi pH homeostasis maintaining the coupling of V1-V0domains of V-ATPase through the binding of microfilaments to subunitsBandCand preserving the integrity of detergent-resistant membrane organization. These results establish the Golgi-associated V-ATPase activity as the molecular link between actin and the Golgi pH. PMID:26872971

  8. Function and Regulation Domains of a Newly Isolated Putative β-Actin Promoter from Pacific White Shrimp

    PubMed Central

    Xiang, Jianhai; Lu, Yuanan

    2015-01-01

    Current development of transgenic shrimp research has been hampered due to the lack of the suitable promoters and efficient transfection methods for crustaceans. A 1642 bp sequence, containing 5’-upstream sequence, exon 1, intron 1 and partial exon 2, which is responsible for transcriptional initiation of the newly reported shrimp β-actin (actinT1), has been isolated from the Pacific white shrimp (Litopenaeus vannamei) and named as SbaP. To determine its function and potential application in marine biotechnology, the sequence and functional domains were examined by constitutive expression of the luciferase reporter gene. We have identified 5’ regions that play a central role in the expression of the β-actin gene. The proximal promoter (-1642/-1325) contains two highly conserved transcriptional sites, CCAAT box and CArG motif. Two negative (-1140/-924, -222/-21) and one positive (-810/-425) regulatory elements have been identified in intron1. Transient transfection assay with a construct containing proximal promoter and enhancer (SbaPΔ-222/+1Δ-1325/-924) regions of the shrimp β-actin coupled with luciferase and EGFP (enhanced green fluorescent protein) showed that the promoter was not only functional in sf21 cells, but promoter activity was more than 8-fold higher than a viral-origin promoter (ie1, white spot syndrome virus immediate early gene promoter). Furthermore, SbaPΔ-222/+1Δ-1325/-924 drove a successful expression of luciferase injection assay in vivo injection and also showed higher promoter activity than the ie1 promoter, suggesting that the expression vectors constructed with SbaPΔ-222/+1Δ-1325/-924 have important potential in gene transfer studies for shrimp and other crustacean species. PMID:25835297

  9. Kojak: Efficient analysis of chemically cross-linked protein complexes

    PubMed Central

    Hoopmann, Michael R.; Zelter, Alex; Johnson, Richard S.; Riffle, Michael; MacCoss, Michael J.; Davis, Trisha N.; Moritz, Robert L.

    2015-01-01

    Protein chemical cross-linking and mass spectrometry enable the analysis of protein-protein interactions and protein topologies, however complicated cross-linked peptide spectra require specialized algorithms to identify interacting sites. The Kojak cross-linking software application is a new, efficient approach to identify cross-linked peptides, enabling large-scale analysis of protein-protein interactions by chemical cross-linking techniques. The algorithm integrates spectral processing and scoring schemes adopted from traditional database search algorithms, and can identify cross-linked peptides using many different chemical cross-linkers, with or without heavy isotope labels. Kojak was used to analyze both novel and existing datasets, and was compared with existing cross-linking algorithms. The algorithm provided increased cross-link identifications over existing algorithms, and equally importantly, the results in a fraction of computational time. The Kojak algorithm is open-source, cross-platform, and freely available. This software provides both existing and new cross-linking researchers alike an effective way to derive additional cross-link identifications from new or existing datasets. For new users, it provides a simple analytical resource resulting in more cross-link identifications than other methods. PMID:25812159

  10. Riboflavin for corneal cross-linking.

    PubMed

    O'Brart, D P S

    2016-06-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet A (UVA) radiation is the first therapeutic modality that appears to arrest the progression of keratoconus and other corneal ectasias. Riboflavin is central to the process, acting as a photosensitizer for the production of oxygen singlets and riboflavin triplets. These free radicals drive the CXL process within the proteins of the corneal stroma, altering its biomechanical properties. Riboflavin also absorbs the majority of the UVA radiation, which is potentially cytotoxic and mutagenic, within the anterior stroma, preventing damage to internal ocular structures, such as the corneal endothelium, lens and retina. Clinical studies report cessation of ectatic progression in over 90% of cases and the majority document significant improvements in visual, keratometric and topographic parameters. Clinical follow-up is limited to 5-10 years, but suggests sustained stability and enhancement in corneal shape. Sight-threatening complications are rare. The optimal stromal riboflavin dosage for CXL is as yet undetermined. PMID:27458610

  11. Quinone cross-linked polysaccharide hybrid fiber.

    PubMed

    Kuboe, Yoshiko; Tonegawa, Hitomi; Ohkawa, Kousaku; Yamamoto, Hiroyuki

    2004-01-01

    The present article describes the synthesis of the N-(Lys-Gly-Tyr-Gly)-chitosan using the water-soluble active ester method, the preparation of the N-(Lys-Gly-Tyr-Gly)-chitosan-gellan hybrid fibers, and the reinforcement of the hybrid fibers by enzymatic cross-linking between the N-grafted peptides chains of chitosan. The cationic polysaccharide chitosan was treated with Boc-Lys(Z)-Gly-Tyr(Bzl)-Gly (4-hydroxyphenyl)dimethylsulfonium methyl sulfate ester in DMF-0.15 M acetic acid to incorporate the peptides into the side chain amino groups of chitosan followed by the acidic removals of the Z and Bzl groups. The degrees of N substitution were estimated to be 2.0 and 10 molar % by changing the molar ratios of the amino groups of the parent chitosan and the active ester. The resulting cationic N-(Lys-Gly-Tyr-Gly)-chitosan was spun into the hybrid fibers with the anionic polysaccharide gellan in water. The tensile strengths of the N-(Lys-Gly-Tyr-Gly)-chitosan hybrid fibers were superior to those of the original chitosan-gellan fibers. The mechanical strengths of the hybrid fibers further increased upon enzymatic oxidation using tyrosinase. Based on these results, we concluded that the covalent cross-linking due to the enzyme oxidation between the grafted peptides significantly contributed to reinforcement of the polysaccharide hybrid fibers. The present results afford a new methodology for the reinforcement achieved by the polymer modification inspired by a biological process. PMID:15002994

  12. Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site.

    PubMed Central

    Gary, R; Bretscher, A

    1995-01-01

    Ezrin is a membrane-cytoskeletal linking protein that is concentrated in actin-rich surface structures. It is closely related to the microvillar proteins radixin and moesin and to the tumor suppressor merlin/schwannomin. Cell extracts contain ezrin dimers and ezrin-moesin heterodimers in addition to monomers. Truncated ezrin fusion proteins were assayed by blot overlay to determine which regions mediate self-association. Here we report that ezrin self-association occurs by head-to-tail joining of distinct N-terminal and C-terminal domains. It is likely that these domains, termed N- and C-ERMADs (ezrin-radixin-moesin association domain), are responsible for homotypic and heterotypic associations among ERM family members. The N-ERMAD of ezrin resided within amino acids 1-296; deletion of 10 additional residues resulted in loss of activity. The C-ERMAD was mapped to the last 107 amino acids of ezrin, residues 479-585. The two residues at the C-terminus were required for activity, and the region from 530-585 was insufficient. The C-ERMAD was masked in the native monomer. Exposure of this domain required unfolding ezrin with sodium dodecyl sulfate or expressing the domain as part of a truncated protein. Intermolecular association could not occur unless the C-ERMAD had been made accessible to its N-terminal partner. It can be inferred that dimerization in vivo requires an activation step that exposes this masked domain. The conformationally inaccessible C-terminal region included the F-actin binding site, suggesting that this activity is likewise regulated by masking. Images PMID:7579708

  13. Mutations in the N-terminal actin-binding domain of filamin C cause a distal myopathy.

    PubMed

    Duff, Rachael M; Tay, Valerie; Hackman, Peter; Ravenscroft, Gianina; McLean, Catriona; Kennedy, Paul; Steinbach, Alina; Schöffler, Wiebke; van der Ven, Peter F M; Fürst, Dieter O; Song, Jaeguen; Djinović-Carugo, Kristina; Penttilä, Sini; Raheem, Olayinka; Reardon, Katrina; Malandrini, Alessandro; Gambelli, Simona; Villanova, Marcello; Nowak, Kristen J; Williams, David R; Landers, John E; Brown, Robert H; Udd, Bjarne; Laing, Nigel G

    2011-06-10

    Linkage analysis of the dominant distal myopathy we previously identified in a large Australian family demonstrated one significant linkage region located on chromosome 7 and encompassing 18.6 Mbp and 151 genes. The strongest candidate gene was FLNC because filamin C, the encoded protein, is muscle-specific and associated with myofibrillar myopathy. Sequencing of FLNC cDNA identified a c.752T>C (p.Met251Thr) mutation in the N-terminal actin-binding domain (ABD); this mutation segregated with the disease and was absent in 200 controls. We identified an Italian family with the same phenotype and found a c.577G>A (p.Ala193Thr) filamin C ABD mutation that segregated with the disease. Filamin C ABD mutations have not been described, although filamin A and filamin B ABD mutations cause multiple musculoskeletal disorders. The distal myopathy phenotype and muscle pathology in the two families differ from myofibrillar myopathies caused by filamin C rod and dimerization domain mutations because of the distinct involvement of hand muscles and lack of pathological protein aggregation. Thus, like the position of FLNA and B mutations, the position of the FLNC mutation determines disease phenotype. The two filamin C ABD mutations increase actin-binding affinity in a manner similar to filamin A and filamin B ABD mutations. Cell-culture expression of the c.752T>C (p.Met251)Thr mutant filamin C ABD demonstrated reduced nuclear localization as did mutant filamin A and filamin B ABDs. Expression of both filamin C ABD mutants as full-length proteins induced increased aggregation of filamin. We conclude filamin C ABD mutations cause a recognizable distal myopathy, most likely through increased actin affinity, similar to the pathological mechanism of filamin A and filamin B ABD mutations. PMID:21620354

  14. Mutations in the N-terminal Actin-Binding Domain of Filamin C Cause a Distal Myopathy

    PubMed Central

    Duff, Rachael M.; Tay, Valerie; Hackman, Peter; Ravenscroft, Gianina; McLean, Catriona; Kennedy, Paul; Steinbach, Alina; Schöffler, Wiebke; van der Ven, Peter F.M.; Fürst, Dieter O.; Song, Jaeguen; Djinović-Carugo, Kristina; Penttilä, Sini; Raheem, Olayinka; Reardon, Katrina; Malandrini, Alessandro; Gambelli, Simona; Villanova, Marcello; Nowak, Kristen J.; Williams, David R.; Landers, John E.; Brown, Robert H.; Udd, Bjarne; Laing, Nigel G.

    2011-01-01

    Linkage analysis of the dominant distal myopathy we previously identified in a large Australian family demonstrated one significant linkage region located on chromosome 7 and encompassing 18.6 Mbp and 151 genes. The strongest candidate gene was FLNC because filamin C, the encoded protein, is muscle-specific and associated with myofibrillar myopathy. Sequencing of FLNC cDNA identified a c.752T>C (p.Met251Thr) mutation in the N-terminal actin-binding domain (ABD); this mutation segregated with the disease and was absent in 200 controls. We identified an Italian family with the same phenotype and found a c.577G>A (p.Ala193Thr) filamin C ABD mutation that segregated with the disease. Filamin C ABD mutations have not been described, although filamin A and filamin B ABD mutations cause multiple musculoskeletal disorders. The distal myopathy phenotype and muscle pathology in the two families differ from myofibrillar myopathies caused by filamin C rod and dimerization domain mutations because of the distinct involvement of hand muscles and lack of pathological protein aggregation. Thus, like the position of FLNA and B mutations, the position of the FLNC mutation determines disease phenotype. The two filamin C ABD mutations increase actin-binding affinity in a manner similar to filamin A and filamin B ABD mutations. Cell-culture expression of the c.752T>C (p.Met251)Thr mutant filamin C ABD demonstrated reduced nuclear localization as did mutant filamin A and filamin B ABDs. Expression of both filamin C ABD mutants as full-length proteins induced increased aggregation of filamin. We conclude filamin C ABD mutations cause a recognizable distal myopathy, most likely through increased actin affinity, similar to the pathological mechanism of filamin A and filamin B ABD mutations. PMID:21620354

  15. Energetic modeling and single-molecule verification of dynamic regulation on receptor complexes by actin corrals and lipid raft domains

    NASA Astrophysics Data System (ADS)

    Lin, Chien Y.; Huang, Jung Y.; Lo, Leu-Wei

    2014-12-01

    We developed an energetic model by integrating the generalized Langevin equation with the Cahn-Hilliard equation to simulate the diffusive behaviors of receptor proteins in the plasma membrane of a living cell. Simulation results are presented to elaborate the confinement effects from actin corrals and protein-induced lipid domains. Single-molecule tracking data of epidermal growth factor receptors (EGFR) acquired on live HeLa cells agree with the simulation results and the mechanism that controls the diffusion of single-molecule receptors is clarified. We discovered that after ligand binding, EGFR molecules move into lipid nanodomains. The transition rates between different diffusion states of liganded EGFR molecules are regulated by the lipid domains. Our method successfully captures dynamic interactions of receptors at the single-molecule level and provides insight into the functional architecture of both the diffusing EGFR molecules and their local cellular environment.

  16. Collagen cross-linking and resorption: effect of glutaraldehyde concentration.

    PubMed

    Roe, S C; Milthorpe, B K; Schindhelm, K

    1990-12-01

    Cross-linked collagen bioprostheses usually are designed to be inert and nonresorbable, resulting in fatigue and wear failure in high-stress environments. Eventual replacement of the implant, although minimizing strength loss during resorption, would result in a graft with reparative ability. Kangaroo tail tendon (KTT) partially cross-linked with glutaraldehyde (GA) was evaluated in vitro for resistance to bacterial collagenase digestion and in vivo for biocompatibility and resorbability in an intramuscular implant assay. Cross-linking was quantified by thermal denaturation studies. Incomplete cross-linking was achieved with concentrations of GA less than 0.1% (w/v). KTT cross-linked in greater than or equal to 0.05% GA were collagenase resistant being incompletely digested after 240 h. Cross-linking of KTT with low concentrations of GA resulted in partial collagenase resistance and slowed resorption. PMID:2126427

  17. Corneal Cross-Linking and Safety Issues

    PubMed Central

    Spoerl, Eberhard; Hoyer, Anne; Pillunat, Lutz E; Raiskup, Frederik

    2011-01-01

    Purpose: To compile the safety aspects of the corneal collagen cross-linking (CXL) by means of the riboflavin/UVA (370 nm) approach. Materials and Methodology: Analysis of the current treatment protocol with respect to safety during CXL. Results: The currently used UVA dose density of 5.4 J/cm2 and the corresponding irradiance of 3 mW/cm2 are below the known damage thresholds of UVA for the corneal endothelium, lens, and retina. Regarding the photochemical damages due to the free radicals the damage threshold for endothelial cells is 0.35 mW/cm2. In a 400μm thick corneal stroma saturated with riboflavin, the irradiance at the endothelial level is about 0.18 mW/cm2, which is a factor of 2 smaller than the damage threshold. Conclusion: As long as the corneal stroma treated has a minimal thickness of 400 microns (as recommended), neither corneal endothelium nor deeper structures such as lens and retina will suffer any damages. The light source should provide a homogenous irradiance avoiding hot spots. PMID:21399770

  18. Systematic mutational analysis of the amino-terminal domain of the Listeria monocytogenes ActA protein reveals novel functions in actin-based motility.

    PubMed

    Lauer, P; Theriot, J A; Skoble, J; Welch, M D; Portnoy, D A

    2001-12-01

    The Listeria monocytogenes ActA protein acts as a scaffold to assemble and activate host cell actin cytoskeletal factors at the bacterial surface, resulting in directional actin polymerization and propulsion of the bacterium through the cytoplasm. We have constructed 20 clustered charged-to-alanine mutations in the NH2-terminal domain of ActA and replaced the endogenous actA gene with these molecular variants. These 20 clones were evaluated in several biological assays for phenotypes associated with particular amino acid changes. Additionally, each protein variant was purified and tested for stimulation of the Arp2/3 complex, and a subset was tested for actin monomer binding. These specific mutations refined the two regions involved in Arp2/3 activation and suggest that the actin-binding sequence of ActA spans 40 amino acids. We also identified a 'motility rate and cloud-to-tail transition' region in which nine contiguous mutations spanning amino acids 165-260 caused motility rate defects and changed the ratio of intracellular bacteria associated with actin clouds and comet tails without affecting Arp2/3 activation. Several unusual motility phenotypes were associated with amino acid changes in this region, including altered paths through the cytoplasm, discontinuous actin tails in host cells and the tendency to 'skid' or dramatically change direction while moving. These unusual phenotypes illustrate the complexity of ActA functions that control the actin-based motility of L. monocytogenes. PMID:11886549

  19. Head-neck domain of Arabidopsis myosin XI, MYA2, fused with GFP produces F-actin patterns that coincide with fast organelle streaming in different plant cells

    PubMed Central

    Walter, Nadine; Holweg, Carola L

    2008-01-01

    Background The cytoskeletal mechanisms that underlie organelle transport in plants are intimately linked to acto-myosin function. This function is mediated by the attachment of myosin heads to F-actin and the binding of cargo to the tails. Acto-myosin also powers vigorous cytoplasmic streaming in plant cells. Class XI myosins exhibit strikingly fast velocities and may have extraordinary roles in cellular motility. Studies of the structural basis of organelle transport have focused on the cargo-binding tails of myosin XI, revealing a close relationship with the transport of peroxisomes, mitochondria, and Golgi-vesicles. Links between myosin heads and F-actin-based motility have been less investigated. To address this function, we performed localization studies using the head-neck domain of AtMYA2, a myosin XI from Arabidopsis. Results We expressed the GFP-fused head-neck domain of MYA2 in epidermal cells of various plant species and found that it associated with F-actin. By comparison to other markers such as fimbrin and talin, we revealed that the myosin-labeled F-actin was of a lower quality and absent from the fine microfilament arrays at the cell cortex. However, it colocalized with cytoplasmic (transvacuolar) F-actin in areas coinciding with the tracks of fast organelles. This observation correlates well with the proposed function of myosin XI in organelle trafficking. The fact that organelle streaming was reduced in cells expressing the GFP-MYA2-head6IQ indicated that the functionless motor protein inhibits endogenous myosins. Furthermore, co-expression of the GFP-MYA2-head6IQ with other F-actin markers disrupted its attachment to F-actin. In nuclei, the GFP-myosin associated with short bundles of F-actin. Conclusion The localization of the head of MYA2 in living plant cells, as investigated here for the first time, suggests a close linkage between this myosin XI and cytoplasmic microfilaments that support the rapid streaming of organelles such as peroxisomes

  20. Rhamnogalacturonan-II cross-linking of plant pectins via boron bridges occurs during polysaccharide synthesis and/or secretion

    PubMed Central

    Chormova, Dimitra; Messenger, David J; Fry, Stephen C

    2014-01-01

    Rhamnogalacturonan-II (RG-II), a domain of plant cell wall pectins, is able to cross-link with other RG-II domains through borate diester bridges. Although it is known to affect mechanical properties of the cell wall, the biochemical requirements and lifecycle of this cross-linking remain unclear. We developed a PAGE methodology to allow separation of monomeric and dimeric RG-II and used this to study the dynamics of cross-linking in vitro and in vivo. Rosa cells grown in medium with no added boron contained no RG-II dimers, although these re-appeared after addition of boron to the medium. However, other Rosa cultures which were unable to synthesize new polysaccharides did not show dimer formation. We conclude that RG-II normally becomes cross-linked intraprotoplasmically or during secretion, but not post-secretion. PMID:24603547

  1. The prototypical 4.1R-10-kDa domain and the 4.1g-10-kDa paralog mediate fodrin-actin complex formation.

    PubMed

    Kontrogianni-Konstantopoulos, A; Frye, C S; Benz, E J; Huang, S C

    2001-06-01

    A complex family of 4.1R isoforms has been identified in non-erythroid tissues. In this study we characterized the exonic composition of brain 4.1R-10-kDa or spectrin/actin binding (SAB) domain and identified the minimal sequences required to stimulate fodrin/F-actin association. Adult rat brain expresses predominantly 4.1R mRNAs that carry an extended SAB, consisting of the alternative exons 14/15/16 and part of the constitutive exon 17. Exon 16 along with sequences carried by exon 17 is necessary and sufficient to induce formation of fodrin-actin-4.1R ternary complexes. The ability of the respective SAB domains of 4.1 homologs to sediment fodrin/actin was also investigated. 4.1G-SAB stimulates association of fodrin/actin, although with an approximately 2-fold reduced efficiency compared with 4.1R-10-kDa, whereas 4.1N and 4.1B do not. Sequencing of the corresponding domains revealed that 4.1G-SAB carries a cassette that shares significant homology with 4.1R exon 16, whereas the respective sequence is divergent in 4.1N and absent from brain 4.1B. An approximately 150-kDa 4.1R and an approximately 160-kDa 4.1G isoforms are present in PC12 lysates that occur in vivo in a supramolecular complex with fodrin and F-actin. Moreover, proteins 4.1R and 4.1G are distributed underneath the plasma membrane in PC12 cells. Collectively, these observations suggest that brain 4.1R and 4.1G may modulate the membrane mechanical properties of neuronal cells by promoting fodrin/actin association. PMID:11274145

  2. A photolithographic approach to spatially resolved cross-linked nanolayers.

    PubMed

    Fuchise, Keita; Lindemann, Peter; Heißler, Stefan; Gliemann, Hartmut; Trouillet, Vanessa; Welle, Alexander; Berson, Jonathan; Walheim, Stefan; Schimmel, Thomas; Meier, Michael A R; Barner-Kowollik, Christopher

    2015-03-17

    The preparation of cross-linked nanosheets with 1-2 nm thickness and predefined shape was achieved by lithographic immobilization of trimethacryloyl thioalkanoates onto the surface of Si wafers, which were functionalized with 2-(phenacylthio)acetamido groups via a photoinduced reaction. Subsequent cross-linking via free radical polymerization as well as a phototriggered Diels-Alder reaction under mild conditions on the surface led to the desired nanosheets. Electrospray ionization mass spectrometry (ESI-MS), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), as well as infrared reflection-absorption spectroscopy (IRRAS) confirmed the success of individual surface-modification and cross-linking reactions. The thickness and lateral size of the cross-linked structures were determined by atomic force microscopy (AFM) for samples prepared on Si wafers functionalized with a self-assembled monolayer of 1H,1H,2H,2H-perfluorodecyl groups bearing circular pores obtained via a polymer blend lithographic approach, which led to the cross-linking reactions occurring in circular nanoareas (diameter of 50-640 nm) yielding an average thickness of 1.2 nm (radical cross-linking), 1.8 nm (radical cross-linking in the presence of 2,2,2-trifluoroethyl methacrylate as a comonomer), and 1.1 nm (photochemical cross-linking) of the nanosheets. PMID:25705846

  3. Multi-Scale Modeling of Cross-Linked Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Odegard, G. M.; Herzog, M. N.; Gates, T. S.; Fay, C. C.

    2005-01-01

    The effect of cross-linking single-walled carbon nanotubes on the Young's modulus of a nanotube-reinforced composite is modeled with a multi-scale method. The Young's modulus is predicted as a function of nanotube volume fraction and cross-link density. In this method, the constitutive properties of molecular representative volume elements are determined using molecular dynamics simulation and equivalent-continuum modeling. The Young's modulus is subsequently calculated for cross-linked nanotubes in a matrix which consists of the unreacted cross-linking agent. Two different cross-linking agents are used in this study, one that is short and rigid (Molecule A), and one that is long and flexible (Molecule B). Direct comparisons between the predicted elastic constants are made for the models in which the nanotubes are either covalently bonded or not chemically bonded to the cross-linking agent. At a nanotube volume fraction of 10%, the Young's modulus of Material A is not affected by nanotube crosslinking, while the Young's modulus of Material B is reduced by 64% when the nanotubes are cross-linked relative to the non-cross-linked material with the same matrix.

  4. Direct dynamin–actin interactions regulate the actin cytoskeleton

    PubMed Central

    Gu, Changkyu; Yaddanapudi, Suma; Weins, Astrid; Osborn, Teresia; Reiser, Jochen; Pollak, Martin; Hartwig, John; Sever, Sanja

    2010-01-01

    The large GTPase dynamin assembles into higher order structures that are thought to promote endocytosis. Dynamin also regulates the actin cytoskeleton through an unknown, GTPase-dependent mechanism. Here, we identify a highly conserved site in dynamin that binds directly to actin filaments and aligns them into bundles. Point mutations in the actin-binding domain cause aberrant membrane ruffling and defective actin stress fibre formation in cells. Short actin filaments promote dynamin assembly into higher order structures, which in turn efficiently release the actin-capping protein (CP) gelsolin from barbed actin ends in vitro, allowing for elongation of actin filaments. Together, our results support a model in which assembled dynamin, generated through interactions with short actin filaments, promotes actin polymerization via displacement of actin-CPs. PMID:20935625

  5. Vinculin Interacts with the Chlamydia Effector TarP Via a Tripartite Vinculin Binding Domain to Mediate Actin Recruitment and Assembly at the Plasma Membrane

    PubMed Central

    Thwaites, Tristan R.; Pedrosa, Antonio T.; Peacock, Thomas P.; Carabeo, Rey A.

    2015-01-01

    The mammalian protein vinculin is often a target of bacterial pathogens to subvert locally host cell actin dynamics. In Chlamydia infection, vinculin has been implicated in RNA interference screens, but the molecular basis for vinculin requirement has not been characterized. In this report, we show that vinculin was involved in the actin recruitment and F-actin assembly at the plasma membrane to facilitate invasion. Vinculin was recruited to the plasma membrane via its interaction with a specific tripartite motif within TarP that resembles the vinculin-binding domain (VBD) found in the Shigella invasion factor IpaA. The TarP-mediated plasma membrane recruitment of vinculin resulted in the localized recruitment of actin. In vitro pulldown assays for protein-protein interaction and imaging-based evaluation of recruitment to the plasma membrane demonstrated the essential role of the vinculin-binding site 1 (VBS1), and the dispensability of VBS2 and VBS3. As further support for the functionality of VBD-vinculin interaction, VBD-mediated actin recruitment required vinculin. Interestingly, while both vinculin and the focal adhesion kinase (FAK) colocalized at the sites of adhesion, the recruitment of one was independent of the other; and the actin recruitment function of the VBD/vinculin signaling axis was independent of the LD/FAK pathway. PMID:26649283

  6. Cross-linked polyvinyl alcohol and method of making same

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Sheibley, D. W.; Philipp, W. H. (Inventor)

    1981-01-01

    A film-forming polyvinyl alcohol polymer is mixed with a polyaldehyde-polysaccharide cross-linking agent having at least two monosaccharide units and a plurality of aldehyde groups per molecule, perferably an average of at least one aldehyde group per monosaccharide units. The cross-linking agent, such as a polydialdehyde starch, is used in an amount of about 2.5 to 20% of the theoretical amount required to cross-link all of the available hydroxyl groups of the polyvinyl alcohol polymer. Reaction between the polymer and cross-linking agent is effected in aqueous acidic solution to produce the cross-linked polymer. The polymer product has low electrical resistivity and other properties rendering it suitable for making separators for alkaline batteries.

  7. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1982-01-01

    Cross-linking methods were investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. The pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide - zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  8. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1983-01-01

    Cross-linking methods have been investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. Then pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide-zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  9. Rotational motion of rhodamine 6G tethered to actin through oligo(ethylene glycol) linkers studied by frequency-domain fluorescence anisotropy

    PubMed Central

    Wazawa, Tetsuichi; Morimoto, Nobuyuki; Nagai, Takeharu; Suzuki, Makoto

    2015-01-01

    Investigation of the rotational motion of a fluorescent probe tethered to a protein helps to elucidate the local properties of the solvent and protein near the conjugation site of the probe. In this study, we have developed an instrument for frequency-domain fluorescence (FDF) anisotropy measurements, and studied how the local properties around a protein, actin, can be elucidated from the rotational motion of a dye tethered to actin. Rhodamine 6G (R6G) was attached to Cys-374 using newly-synthesized R6G-maleimide with three different oligo(ethylene glycol) (OEG) linker lengths. The time-resolved anisotropy decay of R6G tethered to G-actin was revealed to be a combination of the two modes of the wobbling motion of R6G and the tumbling motion of G-actin. The rotational diffusion coefficient (RDC) of R6G wobbling was ~0.1 ns−1 at 20°C and increased with OEG linker length. The use of the three R6G-actin conjugates of different linker lengths was useful to not only figure out the linker length dependence of the rotational motion of R6G but also validate the analyses. In the presence of a cosolvent of glycerol, although the tumbling motion of G-actin was retarded in response to the bulk viscosity, the wobbling motion of R6G tethered to actin exhibited an increase of RDC as glycerol concentration increased. This finding suggests an intricate relationship between the fluid properties of the bulk solvent and the local environment around actin. PMID:27493858

  10. Comparison of cross-linked polyethylene materials for orthopaedic applications.

    PubMed

    Collier, John P; Currier, Barbara H; Kennedy, Francis E; Currier, John H; Timmins, Graham S; Jackson, Simon K; Brewer, Robin L

    2003-09-01

    Cross-linked polyethylenes are being marketed by orthopaedic manufacturers to address the problem of osteolysis caused by polyethylene particulate wear debris. Wear testing of these cross-linked polyethylenes in hip simulators has shown dramatic reduction in wear rate compared with standard ultrahigh molecular weight polyethylene, either gamma irradiated in air or nitrogen - or ethylene oxide-sterilized. However, this reduction in wear rate is not without cost. The cross-linking processes can result in materials with lower mechanical properties than standard ultrahigh molecular weight polyethylene. To evaluate the effect of the various cross-linking processes on physical and mechanical properties of ultrahigh molecular weight polyethylene, commercially available cross-linked polyethylenes from six orthopaedic manufacturers were tested. This study was the culmination of collaboration with these manufacturers, who provided cross-linked polyethylene for this study, wear characteristics of the material they provided, and review of the physical and mechanical properties measure for their polyethylene. Cross-linked materials were evaluated as received and after an accelerated aging protocol. Free radical identity and concentration, oxidation, crystallinity, melt temperature, ultimate tensile strength, elongation at break, tensile stress at yield, and toughness are reported for each material. By comparing these physical and mechanical properties, surgeons can evaluate the trade-off that results from developing materials with substantially lower wear rates. PMID:12966304

  11. Redox-Responsive, Core Cross-Linked Polyester Micelles

    PubMed Central

    Zhang, Zhonghai; Yin, Lichen; Tu, Chunlai; Song, Ziyuan; Zhang, Yanfeng; Xu, Yunxiang; Tong, Rong; Zhou, Qin; Ren, Jie; Cheng, Jianjun

    2013-01-01

    Monomethoxy poly(ethylene glycol)-b-poly(Tyr(alkynyl)-OCA), a biodegradable amphiphilic block copolymer, was synthesized by means of ring-opening polymerization of 5-(4-(prop-2-yn-1-yloxy)benzyl)-1,3-dioxolane-2,4-dione (Tyr(alkynyl)-OCA) and used to prepare core cross-linked polyester micelles via click chemistry. Core cross-linking not only improved the structural stability of the micelles but also allowed controlled release of cargo molecules in response to the reducing reagent. This new class of core cross-linked micelles can potentially be used in controlled release and drug delivery applications. PMID:23536920

  12. Cell response to RGD density in cross-linked artificial extracellular matrix protein films.

    PubMed

    Liu, Julie C; Tirrell, David A

    2008-11-01

    This study examines the adhesion, spreading, and migration of human umbilical vein endothelial cells on cross-linked films of artificial extracellular matrix (aECM) proteins. The aECM proteins described here were designed for application in small-diameter grafts and are composed of elastin-like structural repeats and fibronectin cell-binding domains. aECM-RGD contains the RGD sequence derived from fibronectin; the negative control protein aECM-RDG contains a scrambled cell-binding domain. The covalent attachment of poly(ethylene glycol) (PEG) to aECM substrates reduced nonspecific cell adhesion to aECM-RDG-PEG but did not preclude sequence-specific adhesion of endothelial cells to aECM-RGD-PEG. Variation in ligand density was accomplished by the mixing of aECM-RGD-PEG and aECM-RDG-PEG prior to cross-linking. Increasing the density of RGD domains in cross-linked films resulted in more robust cell adhesion and spreading but did not affect cell migration speed. Control of cell-binding domain density in aECM proteins can thus be used to modulate cell adhesion and spreading and will serve as an important design tool as these materials are further developed for use in surgery, tissue engineering, and regenerative medicine. PMID:18826275

  13. Actin Polymerization is Stimulated by Actin Crosslinking Protein Palladin

    PubMed Central

    Gurung, Ritu; Yadav, Rahul; Brungardt, Joseph G.; Orlova, Albina; Egelman, Edward H.; Beck, Moriah R.

    2016-01-01

    The actin scaffold protein palladin regulates both normal cell migration and invasive cell motility, processes that require the coordinated regulation of actin dynamics. However, the potential effect of palladin on actin dynamics has remained elusive. Here we show that the actin binding immunoglobulin-like domain of palladin, which is directly responsible for both actin binding and bundling, also stimulates actin polymerization in vitro. Palladin eliminated the lag phase that is characteristic of the slow nucleation step of actin polymerization. Furthermore, palladin dramatically reduced depolymerization, slightly enhanced the elongation rate, and did not alter the critical concentration. Microscopy and in vitro crosslinking assays reveal differences in actin bundle architecture when palladin is incubated with actin before or after polymerization. These results suggest a model whereby palladin stimulates a polymerization-competent form of G-actin, akin to metal ions, either through charge neutralization or conformational changes. PMID:26607837

  14. CsmA, a Class V Chitin Synthase with a Myosin Motor-like Domain, Is Localized through Direct Interaction with the Actin Cytoskeleton in Aspergillus nidulans

    PubMed Central

    Takeshita, Norio; Ohta, Akinori; Horiuchi, Hiroyuki

    2005-01-01

    One of the essential features of fungal morphogenesis is the polarized synthesis of cell wall components such as chitin. The actin cytoskeleton provides the structural basis for cell polarity in Aspergillus nidulans, as well as in most other eukaryotes. A class V chitin synthase, CsmA, which contains a myosin motor-like domain (MMD), is conserved among most filamentous fungi. The ΔcsmA null mutant showed remarkable abnormalities with respect to cell wall integrity and the establishment of polarity. In this study, we demonstrated that CsmA tagged with 9× HA epitopes localized near actin structures at the hyphal tips and septation sites and that its MMD was able to bind to actin. Characterization of mutants bearing a point mutation or deletion in the MMD suggests that the interaction between the MMD and actin is not only necessary for the proper localization of CsmA, but also for CsmA function. Thus, the finding of a direct interaction between the chitin synthase and the actin cytoskeleton provides new insight into the mechanisms of polarized cell wall synthesis and fungal morphogenesis. PMID:15703213

  15. Chemical Cross-linking of Neighboring Thylakoid Membrane Polypeptides 12

    PubMed Central

    Novak-Hofer, Ilse; Siegenthaler, Paul-Andre

    1978-01-01

    Cross-linking between protein components of whole spinach (Spinacia oleracea var. Nobel) thylakoids and of photosystem I- and II-enriched thylakoid fractions has been produced by reaction with the bifunctional imidoester dimethyl-3,3′-dithiobispropionimidate dihydrochloride as well as by the oxidation of intrinsic sulfydryl groups with an orthophenanthrolinecupric ion complex. The mixture of membrane proteins and their cross-linked products has been analyzed by two-dimensional sodium dodecyl sulfate electrophoresis, with a reductive cleavage step of the cross-linkages before the second dimension. Cross-linked aggregates up to a molecular weight of about 130 kilodaltons (kD) were analyzed, and it was inferred that the polypeptides appearing together in the same aggregates were neighbors within the membrane. In thylakoids as well as in isolated photosystem fractions, oligomers were formed by cross-linking polypeptides of the 60 to 90 kD range, among them the polypeptides of the chlorophyll-protein complex I. Polypeptides of 46, 19, and 12 kD were cross-linked to these complexes. Polypeptides of 25 and 22 kD, which are related to the chlorophyll-protein complex II, were cross-linked in thylakoids as well as in photosystem II fractions, suggesting that in the membrane these molecules are close together. In photosystem II fractions an oligomer having a molecular weight of about 60 kD was formed by cross-linking several polypeptides of different molecular weights: 40, 25, and 22 kD. Our cross-linking experiments show that protein interactions in the thylakoid membrane occurred mainly among the polypeptides of the two chlorophyll-protein complexes, thus suggesting an oligomeric nature of these apoproteins. ImagesFig. 1Fig. 2Fig. 3 PMID:16660519

  16. Large Scale Chemical Cross-linking Mass Spectrometry Perspectives

    PubMed Central

    Zybailov, Boris L.; Glazko, Galina V.; Jaiswal, Mihir; Raney, Kevin D.

    2014-01-01

    The spectacular heterogeneity of a complex protein mixture from biological samples becomes even more difficult to tackle when one’s attention is shifted towards different protein complex topologies, transient interactions, or localization of PPIs. Meticulous protein-by-protein affinity pull-downs and yeast-two-hybrid screens are the two approaches currently used to decipher proteome-wide interaction networks. Another method is to employ chemical cross-linking, which gives not only identities of interactors, but could also provide information on the sites of interactions and interaction interfaces. Despite significant advances in mass spectrometry instrumentation over the last decade, mapping Protein-Protein Interactions (PPIs) using chemical cross-linking remains time consuming and requires substantial expertise, even in the simplest of systems. While robust methodologies and software exist for the analysis of binary PPIs and also for the single protein structure refinement using cross-linking-derived constraints, undertaking a proteome-wide cross-linking study is highly complex. Difficulties include i) identifying cross-linkers of the right length and selectivity that could capture interactions of interest; ii) enrichment of the cross-linked species; iii) identification and validation of the cross-linked peptides and cross-linked sites. In this review we examine existing literature aimed at the large-scale protein cross-linking and discuss possible paths for improvement. We also discuss short-length cross-linkers of broad specificity such as formaldehyde and diazirine-based photo-cross-linkers. These cross-linkers could potentially capture many types of interactions, without strict requirement for a particular amino-acid to be present at a given protein-protein interface. How these shortlength, broad specificity cross-linkers be applied to proteome-wide studies? We will suggest specific advances in methodology, instrumentation and software that are needed to

  17. Photocontrolled Cargo Release from Dual Cross-Linked Polymer Particles.

    PubMed

    Tan, Shereen; Cui, Jiwei; Fu, Qiang; Nam, Eunhyung; Ladewig, Katharina; Ren, Jing M; Wong, Edgar H H; Caruso, Frank; Blencowe, Anton; Qiao, Greg G

    2016-03-01

    Burst release of a payload from polymeric particles upon photoirradiation was engineered by altering the cross-linking density. This was achieved via a dual cross-linking concept whereby noncovalent cross-linking was provided by cyclodextrin host-guest interactions, and irreversible covalent cross-linking was mediated by continuous assembly of polymers (CAP). The dual cross-linked particles (DCPs) were efficiently infiltrated (∼80-93%) by the biomacromolecule dextran (molecular weight up to 500 kDa) to provide high loadings (70-75%). Upon short exposure (5 s) to UV light, the noncovalent cross-links were disrupted resulting in increased permeability and burst release of the cargo (50 mol % within 1 s) as visualized by time-lapse fluorescence microscopy. As sunlight contains UV light at low intensities, the particles can potentially be incorporated into systems used in agriculture, environmental control, and food packaging, whereby sunlight could control the release of nutrients and antimicrobial agents. PMID:26862769

  18. Cross-linking and the molecular packing of corneal collagen

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.; Chandler, G. S.; Tanzawa, H.; Katz, E. P.

    1996-01-01

    We have quantitatively characterized, for the first time, the cross-linking in bovine cornea collagen as a function of age. The major iminium reducible cross-links were dehydro-hydroxylysinonorleucine (deH-HLNL) and dehydro-histidinohydroxymerodesmosine (deH-HHMD). The former rapidly diminished after birth; however, the latter persisted in mature animals at a level of 0.3 - 0.4 moles/mole of collagen. A nonreducible cross-link, histidinohydroxylysinonorleucine (HHL), previously found only in skin, was also found to be a major mature cross-link in cornea. The presence of HHL indicates that cornea fibrils have a molecular packing similar to skin collagen. However, like deH-HHMD, the HHL content in corneal fibrils only reaches a maximum value with time about half that of skin. These data suggest that the corneal fibrils are comprised of discrete filaments that are internally stabilized by HHL and deH-HHMD cross-links. This pattern of intermolecular cross-linking would facilitate the special collagen swelling property required for corneal transparency.

  19. COP9 limits dendritic branching via Cullin3-dependent degradation of the actin-crosslinking BTB-domain protein Kelch.

    PubMed

    Djagaeva, Inna; Doronkin, Sergey

    2009-01-01

    Components of the COP9 signalosome (CSN), a key member of the conserved 26S proteasome degradation pathway, have been detected to be altered in patients of several debilitating syndromes. These findings suggest that CSN acts in neural circuits, but the exact function of CSN in brain remains unidentified. Previously, using Drosophila peripheral nervous system (PNS) as a model system, we determined that CSN is a critical regulator of dendritic morphogenesis. We found that defects in CSN led to the strikingly contrast phenotype of either reducing or stimulating dendritic branching. In particular, we have reported that CSN stimulates dendritic branching via Cullin1-mediated proteolysis. Here we describe that CSN inhibits dendritic arborization in PNS neurons acting via control of Cullin3 function: loss of Cullin3 causes excessive dendritic branching. We also identified a downstream target for Cullin3-dependent degradation in neurons--the actin-crosslinking BTB-domain protein Kelch. Inappropriate accumulation of Kelch, either due to the impaired Cullin3-dependent turnover, or ectopic expression of Kelch, leads to uncontrolled dendritic branching. These findings indicate that the CSN pathway modulates neuronal network in a multilayer manner, providing the foundation for new insight into the CSN role in human mental retardation disorders and neurodegenerative disease. PMID:19859546

  20. Hekate: Software Suite for the Mass Spectrometric Analysis and Three-Dimensional Visualization of Cross-Linked Protein Samples

    PubMed Central

    2013-01-01

    Chemical cross-linking of proteins combined with mass spectrometry provides an attractive and novel method for the analysis of native protein structures and protein complexes. Analysis of the data however is complex. Only a small number of cross-linked peptides are produced during sample preparation and must be identified against a background of more abundant native peptides. To facilitate the search and identification of cross-linked peptides, we have developed a novel software suite, named Hekate. Hekate is a suite of tools that address the challenges involved in analyzing protein cross-linking experiments when combined with mass spectrometry. The software is an integrated pipeline for the automation of the data analysis workflow and provides a novel scoring system based on principles of linear peptide analysis. In addition, it provides a tool for the visualization of identified cross-links using three-dimensional models, which is particularly useful when combining chemical cross-linking with other structural techniques. Hekate was validated by the comparative analysis of cytochrome c (bovine heart) against previously reported data.1 Further validation was carried out on known structural elements of DNA polymerase III, the catalytic α-subunit of the Escherichia coli DNA replisome along with new insight into the previously uncharacterized C-terminal domain of the protein. PMID:24010795

  1. Actinic Keratosis

    MedlinePlus

    ... rashes clinical tools newsletter | contact Share | Actinic Keratosis (Solar Keratosis) Information for adults A A A Actinic ... the touch. Overview Actinic keratoses, also known as solar keratoses, are small rough or scaly areas of ...

  2. Collagen/elastin hydrogels cross-linked by squaric acid.

    PubMed

    Skopinska-Wisniewska, J; Kuderko, J; Bajek, A; Maj, M; Sionkowska, A; Ziegler-Borowska, M

    2016-03-01

    Hydrogels based on collagen and elastin are very valuable materials for medicine and tissue engineering. They are biocompatible; however their mechanical properties and resistance for enzymatic degradation need to be improved by cross-linking. Up to this point many reagents have been tested but more secure reactants are still sought. Squaric acid (SqAc), 3,4-dihydroxy 3-cyclobutene 1,2-dione, is a strong, cyclic acid, which reacts easily with amine groups. The properties of hydrogels based on collagen/elastin mixtures (95/5, 90/10) containing 5%, 10% and 20% of SqAc and neutralized via dialysis against deionized water were tested. Cross-linked, 3-D, transparent hydrogels were created. The cross-linked materials are stiffer and more resistant to enzymatic degradation than those that are unmodified. The pore size, swelling ability and surface polarity are reduced due to 5% and 10% of SqAc addition. At the same time, the cellular response is not significantly affected by the cross-linking. Therefore, squaric acid would be regarded as a safe, effective cross-linking agent. PMID:26706512

  3. Spectroscopic characterization of collagen cross-links in bone

    NASA Technical Reports Server (NTRS)

    Paschalis, E. P.; Verdelis, K.; Doty, S. B.; Boskey, A. L.; Mendelsohn, R.; Yamauchi, M.

    2001-01-01

    Collagen is the most abundant protein of the organic matrix in mineralizing tissues. One of its most critical properties is its cross-linking pattern. The intermolecular cross-linking provides the fibrillar matrices with mechanical properties such as tensile strength and viscoelasticity. In this study, Fourier transform infrared (FTIR) spectroscopy and FTIR imaging (FTIRI) analyses were performed in a series of biochemically characterized samples including purified collagen cross-linked peptides, demineralized bovine bone collagen from animals of different ages, collagen from vitamin B6-deficient chick homogenized bone and their age- and sex-matched controls, and histologically stained thin sections from normal human iliac crest biopsy specimens. One region of the FTIR spectrum of particular interest (the amide I spectral region) was resolved into its underlying components. Of these components, the relative percent area ratio of two subbands at approximately 1660 cm(-1) and approximately 1690 cm(-1) was related to collagen cross-links that are abundant in mineralized tissues (i.e., pyridinoline [Pyr] and dehydrodihydroxylysinonorleucine [deH-DHLNL]). This study shows that it is feasible to monitor Pyr and DHLNL collagen cross-links spatial distribution in mineralized tissues. The spectroscopic parameter established in this study may be used in FTIRI analyses, thus enabling the calculation of relative Pyr/DHLNL amounts in thin (approximately 5 microm) calcified tissue sections with a spatial resolution of approximately 7 microm.

  4. Modification of Cys-837 identifies an actin-binding site in the beta-propeller protein scruin.

    PubMed Central

    Sun, S; Footer, M; Matsudaira, P

    1997-01-01

    In the acrosomal process of Limulus sperm, the beta-propeller protein scruin cross-links actin into a crystalline bundle. To confirm that scruin has the topology of a beta-propeller protein and to understand how scruin binds actin, we compared the solvent accessibility of cysteine residues in scruin and the acrosomal process by chemical modification with (1,5-IAEDANS). In soluble scruin, the two most reactive cysteines of soluble scruin are C837 and C900, whereas C146, C333, and C683 are moderately reactive. This pattern of reactivity is consistent with the topology of a typical beta-propeller protein; all of the reactive cysteines map to putative loops and turns whereas the unreactive cysteines lie within the predicted interior of the protein. The chemical reactivities of cysteine in the acrosomal process implicate C837 at an actin-binding site. In contrast to soluble scruin, in the acrosomal process, C837 is completely unreactive while the other cysteines become less reactive. Binding studies of chemically modified scruin correlate the extent of modification at C837 with the extent of inhibition of actin binding. Furthermore, peptides corresponding to residues flanking C837 bind actin and narrow a possible actin-binding region to a KQK sequence. On the basis of these studies, our results suggest that an actin-binding site lies in the C-terminal domain of scruin and involves a putative loop defined by C837. Images PMID:9188095

  5. Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles.

    PubMed

    Fang, Youxing; Guo, Shaojun; Li, Dan; Zhu, Chengzhou; Ren, Wen; Dong, Shaojun; Wang, Erkang

    2012-01-24

    We propose an ingenious method for synthesizing cross-linked hollow fluorescent carbon nanoparticles (HFCNs) with green emission by simply mixing acetic acid, water, and diphosphorus pentoxide. This is an automatic method without external heat treatment to rapidly produce large quantities of HFCNs, in contrast to other syntheses of fluorescent carbon nanoparticles that required high temperature, complicated operations, or long reaction times. Characterizations of HFCNs through high-resolution transmission electron microscopy, infrared/Raman spectroscopy, and X-ray diffraction indicate that abundant small oxygenous graphite domains existed and endowed the HFCNs with fluorescent properties. After simple post-treatments, the cross-linked HFCNs can be used for cell-imaging applications. Compared with traditional dyes and CdTe quantum dots, HFCNs are the superior fluorescent bioimaging agent according to their low toxicity, stability, and resistance to photobleaching. The HFCNs were also applied to watermark ink and fluorescent powder, showing their promising potentials for further wide usage. PMID:22188541

  6. Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring

    PubMed Central

    1990-01-01

    Actin-binding protein (ABP-280, nonmuscle filamin) is a ubiquitous dimeric actin cross-linking phosphoprotein of peripheral cytoplasm, where it promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. The complete nucleotide sequence of human endothelial cell ABP cDNA predicts a polypeptide subunit chain of 2,647 amino acids, corresponding to 280 kD, also the mass derived from physical measurements of the native protein. The actin-binding domain is near the amino-terminus of the subunit where the amino acid sequence is similar to other actin filament binding proteins, including alpha-actinin, beta-spectrin, dystrophin, and Dictyostelium abp-120. The remaining 90% of the sequence comprises 24 repeats, each approximately 96 residues long, predicted to have stretches of beta-sheet secondary structure interspersed with turns. The first 15 repeats may have substantial intrachain hydrophobic interactions and overlap in a staggered fashion to yield a backbone with mechanical resilience. Sequence insertions immediately before repeats 16 and 24 predict two hinges in the molecule near points where rotary-shadowed molecules appear to swivel in electron micrographs. Both putative hinge regions are susceptible to cleavage by proteases and the second also contains the site that binds the platelet glycoprotein Ib/IX complex. Phosphorylation consensus sequences are also located in the hinges or near them. Degeneracy within every even- numbered repeat between 16 and 24 and the insertion before repeat 24 may convert interactions within chains to interactions between chains to account for dimer formation within a domain of 7 kD at the carboxy- terminus. The structure of ABP dimers resembles a leaf spring. Interchain interactions hold the leaves firmly together at one end, whereas intrachain hydrophobic bonds reinforce the arms of the spring where the leaves diverge, making it sufficiently stiff to promote high- angle branching of actin

  7. Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring.

    PubMed

    Gorlin, J B; Yamin, R; Egan, S; Stewart, M; Stossel, T P; Kwiatkowski, D J; Hartwig, J H

    1990-09-01

    Actin-binding protein (ABP-280, nonmuscle filamin) is a ubiquitous dimeric actin cross-linking phosphoprotein of peripheral cytoplasm, where it promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. The complete nucleotide sequence of human endothelial cell ABP cDNA predicts a polypeptide subunit chain of 2,647 amino acids, corresponding to 280 kD, also the mass derived from physical measurements of the native protein. The actin-binding domain is near the amino-terminus of the subunit where the amino acid sequence is similar to other actin filament binding proteins, including alpha-actinin, beta-spectrin, dystrophin, and Dictyostelium abp-120. The remaining 90% of the sequence comprises 24 repeats, each approximately 96 residues long, predicted to have stretches of beta-sheet secondary structure interspersed with turns. The first 15 repeats may have substantial intrachain hydrophobic interactions and overlap in a staggered fashion to yield a backbone with mechanical resilience. Sequence insertions immediately before repeats 16 and 24 predict two hinges in the molecule near points where rotary-shadowed molecules appear to swivel in electron micrographs. Both putative hinge regions are susceptible to cleavage by proteases and the second also contains the site that binds the platelet glycoprotein Ib/IX complex. Phosphorylation consensus sequences are also located in the hinges or near them. Degeneracy within every even-numbered repeat between 16 and 24 and the insertion before repeat 24 may convert interactions within chains to interactions between chains to account for dimer formation within a domain of 7 kD at the carboxy-terminus. The structure of ABP dimers resembles a leaf spring. Interchain interactions hold the leaves firmly together at one end, whereas intrachain hydrophobic bonds reinforce the arms of the spring where the leaves diverge, making it sufficiently stiff to promote high-angle branching of actin

  8. Leptospira Immunoglobulin-Like Protein B (LigB) Binds to Both the C-Terminal 23 Amino Acids of Fibrinogen αC Domain and Factor XIII: Insight into the Mechanism of LigB-Mediated Blockage of Fibrinogen α Chain Cross-Linking.

    PubMed

    Hsieh, Ching-Lin; Chang, Eric; Tseng, Andrew; Ptak, Christopher; Wu, Li-Chen; Su, Chun-Li; McDonough, Sean P; Lin, Yi-Pin; Chang, Yung-Fu

    2016-09-01

    The coagulation system provides a primitive but effective defense against hemorrhage. Soluble fibrinogen (Fg) monomers, composed of α, β and γ chains, are recruited to provide structural support for the formation of a hemostatic plug. Fg binds to platelets and is processed into a cross-linked fibrin polymer by the enzymatic clotting factors, thrombin and Factor XIII (FXIII). The newly formed fibrin-platelet clot can act as barrier to protect against pathogens from entering the bloodstream. Further, injuries caused by bacterial infections can be confined to the initial wound site. Many pathogenic bacteria have Fg-binding adhesins that can circumvent the coagulation pathway and allow the bacteria to sidestep containment. Fg expression is upregulated during lung infection providing an attachment surface for bacteria with the ability to produce Fg-binding adhesins. Fg binding by leptospira might play a crucial factor in Leptospira-associated pulmonary hemorrhage, the main factor contributing to lethality in severe cases of leptospirosis. The 12th domain of Leptospira immunoglobulin-like protein B (LigB12), a leptospiral adhesin, interacts with the C-terminus of FgαC (FgαCC). In this study, the binding site for LigB12 was mapped to the final 23 amino acids at the C-terminal end of FgαCC (FgαCC8). The association of FgαCC8 with LigB12 (ELISA, KD = 0.76 μM; SPR, KD = 0.96 μM) was reduced by mutations of both charged residues (R608, R611 and H614 from FgαCC8; D1061 from LigB12) and hydrophobic residues (I613 from FgαCC8; F1054 and A1065 from LigB12). Additionally, LigB12 bound strongly to FXIII and also inhibited fibrin formation, suggesting that LigB can disrupt coagulation by suppressing FXIII activity. Here, the detailed binding mechanism of a leptospiral adhesin to a host hemostatic factor is characterized for the first time and should provide better insight into the pathogenesis of leptospirosis. PMID:27622634

  9. Cross-Linked Nanotube Materials with Variable Stiffness Tethers

    NASA Technical Reports Server (NTRS)

    Frankland, Sarah-Jane V.; Odegard, Gregory M.; Herzog, Matthew N.; Gates, Thomas S.; Fay, Catherine C.

    2004-01-01

    The constitutive properties of a cross-linked single-walled carbon nanotube material are predicted with a multi-scale model. The material is modeled as a transversely isotropic solid using concepts from equivalent-continuum modeling. The elastic constants are determined using molecular dynamics simulation. Some parameters of the molecular force field are determined specifically for the cross-linker from ab initio calculations. A demonstration of how the cross-linked nanotubes may affect the properties of a nanotube/polyimide composite is included using a micromechanical analysis.

  10. Concentration-dependent oligomerization of cross-linked complexes between ferredoxin and ferredoxin–NADP{sup +} reductase

    SciTech Connect

    Kimata-Ariga, Yoko Kubota-Kawai, Hisako; Lee, Young-Ho; Muraki, Norifumi; Ikegami, Takahisa; Kurisu, Genji; Hase, Toshiharu

    2013-05-17

    Highlights: •Cross-linked complexes of ferredoxin (Fd) and Fd–NADP{sup +} reductase form oligomers. •In the crystal structures, Fd- and FNR moieties swap across the molecules. •The complexes exhibit concentration-dependent oligomerization at sub-milimolar order. -- Abstract: Ferredoxin–NADP{sup +} reductase (FNR) forms a 1:1 complex with ferredoxin (Fd), and catalyzes the electron transfer between Fd and NADP{sup +}. In our previous study, we prepared a series of site-specifically cross-linked complexes of Fd and FNR, which showed diverse electron transfer properties. Here, we show that X-ray crystal structures of the two different Fd–FNR cross-linked complexes form oligomers by swapping Fd and FNR moieties across the molecules; one complex is a dimer from, and the other is a successive multimeric form. In order to verify whether these oligomeric structures are formed only in crystal, we investigated the possibility of the oligomerization of these complexes in solution. The mean values of the particle size of these cross-linked complexes were shown to increase with the rise of protein concentration at sub-milimolar order, whereas the size of dissociable wild-type Fd:FNR complex was unchanged as analyzed by dynamic light scattering measurement. The oligomerization products were detected by SDS–PAGE after chemical cross-linking of these complexes at the sub-milimolar concentrations. The extent and concentration-dependent profile of the oligomerizaion were differentiated between the two cross-linked complexes. These results show that these Fd–FNR cross-linked complexes exhibit concentration-dependent oligomerization, possibly through swapping of Fd and FNR moieties also in solution. These findings lead to the possibility that some native multi-domain proteins may present similar phenomenon in vivo.

  11. Hypertrophic cardiomyopathy mutations in the calponin-homology domain of ACTN2 affect actin binding and cardiomyocyte Z-disc incorporation

    PubMed Central

    Haywood, Natalie J.; Wolny, Marcin; Rogers, Brendan; Trinh, Chi H.; Shuping, Yu; Edwards, Thomas A.; Peckham, Michelle

    2016-01-01

    α-Actinin-2 (ACTN2) is the only muscle isoform of α-actinin expressed in cardiac muscle. Mutations in this protein have been implicated in mild to moderate forms of hypertrophic cardiomyopathy (HCM). We have investigated the effects of two mutations identified from HCM patients, A119T and G111V, on the secondary and tertiary structure of a purified actin binding domain (ABD) of ACTN2 by circular dichroism and X-ray crystallography, and show small but distinct changes for both mutations. We also find that both mutants have reduced F-actin binding affinity, although the differences are not significant. The full length mEos2 tagged protein expressed in adult cardiomyocytes shows that both mutations additionally affect Z-disc localization and dynamic behaviour. Overall, these two mutations have small effects on structure, function and behaviour, which may contribute to a mild phenotype for this disease. PMID:27287556

  12. ACD toxin-produced actin oligomers poison formin-controlled actin polymerization

    PubMed Central

    Heisler, David B.; Kudryashova, Elena; Grinevich, Dmitry O.; Suarez, Cristian; Winkelman, Jonathan D.; Birukov, Konstantin G.; Kotha, Sainath R.; Parinandi, Narasimham L.; Vavylonis, Dimitrios; Kovar, David R.; Kudryashov, Dmitri S.

    2015-01-01

    The actin crosslinking domain (ACD) is an actin-specific toxin produced by several pathogens, including life-threatening spp. of Vibrio cholerae, Vibrio vulnificus, and Aeromonas hydrophila. Actin crosslinking by ACD is thought to lead to slow cytoskeleton failure owing to a gradual sequestration of actin in the form of nonfunctional oligomers. Here we found that ACD converted cytoplasmic actin into highly toxic oligomers that potently “poisoned” the ability of major actin assembly proteins, formins, to sustain actin polymerization. Thus, ACD can target the most abundant cellular protein by employing actin oligomers as secondary toxins to efficiently subvert cellular functions of actin while functioning at very low doses. PMID:26228148

  13. Characterization of the Raptor/4E-BP1 Interaction by Chemical Cross-linking Coupled with Mass Spectrometry Analysis*

    PubMed Central

    Coffman, Kimberly; Yang, Bing; Lu, Jie; Tetlow, Ashley L.; Pelliccio, Emelia; Lu, Shan; Guo, Da-Chuan; Tang, Chun; Dong, Meng-Qiu; Tamanoi, Fuyuhiko

    2014-01-01

    mTORC1 plays critical roles in the regulation of protein synthesis, growth, and proliferation in response to nutrients, growth factors, and energy conditions. One of the substrates of mTORC1 is 4E-BP1, whose phosphorylation by mTORC1 reverses its inhibitory action on eIF4E, resulting in the promotion of protein synthesis. Raptor in mTOR complex 1 is believed to recruit 4E-BP1, facilitating phosphorylation of 4E-BP1 by the kinase mTOR. We applied chemical cross-linking coupled with mass spectrometry analysis to gain insight into interactions between mTORC1 and 4E-BP1. Using the cross-linking reagent bis[sulfosuccinimidyl] suberate, we showed that Raptor can be cross-linked with 4E-BP1. Mass spectrometric analysis of cross-linked Raptor-4E-BP1 led to the identification of several cross-linked peptide pairs. Compilation of these peptides revealed that the most N-terminal Raptor N-terminal conserved domain (in particular residues from 89 to 180) of Raptor is the major site of interaction with 4E-BP1. On 4E-BP1, we found that cross-links with Raptor were clustered in the central region (amino acid residues 56–72) we call RCR (Raptor cross-linking region). Intramolecular cross-links of Raptor suggest the presence of two structured regions of Raptor: one in the N-terminal region and the other in the C-terminal region. In support of the idea that the Raptor N-terminal conserved domain and the 4E-BP1 central region are closely located, we found that peptides that encompass the RCR of 4E-BP1 inhibit cross-linking and interaction of 4E-BP1 with Raptor. Furthermore, mutations of residues in the RCR decrease the ability of 4E-BP1 to serve as a substrate for mTORC1 in vitro and in vivo. PMID:24403073

  14. Load transfer mechanisms in cross-linked DWNT fibers

    NASA Astrophysics Data System (ADS)

    Filleter, T.; Naraghi, M.; Moravsky, A.; Bernal, R.; Loutfy, R. O.; Espinosa, H. D.

    2011-03-01

    The application of carbon nanotubes (CNT) to macroscopic composite fibers has been limited by weak shear interfaces between adjacent CNT shells and composite matrix elements. A fundamental understanding of load transfer at multiple length-scales is needed to identify how the exceptional mechanical properties of CNTs can be scaled to produce high-performance fibers. Through in-situ electron microscopy tensile testing we have elucidated load transfer mechanisms across multiple scales of cross-linked double-walled nanotube (DWNT) fibers. A low density of polymer cross-links is found to increase the total energy dissipated at failure and ductility of fibers by 5 and 10X, respectively, without reducing strength. This mutiscale approach has identified a need to enhance shear interactions between individual DWNTs within the hierarchical DWNT fiber structures. Through in-situ TEM electron irradiation studies we have shown that load can be effectively transferred to inner DWNTs within bundles by covalently cross-linking the interfaces of adjacent DWNTs and shells. We have observed order of magnitude increases in strength and modulus and identified their dependence on irradiation dose. In future a combined approach of irradiation induced covalent and polymer cross-linking may lead to high-performance DWNT-based fibers and composites with tunable mechanical properties.

  15. Glutaraldehyde-cross-linked meniscal allografts: mechanical properties.

    PubMed

    Wisnewski, P J; Powers, D L; Kennedy, J M

    1988-01-01

    Removal of a severely damaged medial meniscus has been shown to lead to degradation of the articular cartilage and formation of degenerative arthritis. To counter this degenerative effect, meniscal prostheses, including glutaraldehyde-cross-linked allografts, have been evaluated in dogs. The purpose of this research was to quantify the mechanical properties of both fresh and glutaraldehyde-cross-linked canine medial menisci. Mechanical properties quantified were tensile strength, tensile modulus, and compressive stiffness. In addition, water content of compressive test samples was measured. Analysis of variance showed significantly lower tensile strength and tensile modulus and significantly higher compressive stiffness for the glutaraldehyde-cross-linked menisci, as compared to fresh specimens. Measurement of the weight percentage of water in fresh and cross-linked samples revealed no significant differences in water content. When implanted into a joint, the increased compressive stiffness could increase the peripheral tensile load. Due to the decreased tensile strength in this region, the prosthetic meniscus could be susceptible to peripheral tears. PMID:3155295

  16. Molecular mechanisms in deformation of cross-linked hydrogel nanocomposite.

    PubMed

    Mathesan, Santhosh; Rath, Amrita; Ghosh, Pijush

    2016-02-01

    The self-folding behavior in response to external stimuli observed in hydrogels is potentially used in biomedical applications. However, the use of hydrogels is limited because of its reduced mechanical properties. These properties are enhanced when the hydrogels are cross-linked and reinforced with nanoparticles. In this work, molecular dynamics (MD) simulation is applied to perform uniaxial tension and pull out tests to understand the mechanism contributing towards the enhanced mechanical properties. Also, nanomechanical characterization is performed using quasi static nanoindentation experiments to determine the Young's modulus of hydrogels in the presence of nanoparticles. The stress-strain responses for chitosan (CS), chitosan reinforced with hydroxyapatite (HAP) and cross-linked chitosan are obtained from uniaxial tension test. It is observed that the Young's modulus and maximum stress increase as the HAP content increases and also with cross-linking process. Load displacement plot from pullout test is compared for uncross-linked and cross-linked chitosan chains on hydroxyapatite surface. MD simulation reveals that the variation in the dihedral conformation of chitosan chains and the evolution of internal structural variables are associated with mechanical properties. Additional results reveal that the formation of hydrogen bonds and electrostatic interactions is responsible for the above variations in different systems. PMID:26652360

  17. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... weight of aqueous sodium chloride solution at 20 °C for 24 hours. The low molecular weight extractives... applied mass). The solvent used shall be at least 60 milliliters aqueous sodium chloride solution per gram... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified...

  18. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... weight of aqueous sodium chloride solution at 20 °C for 24 hours. The low molecular weight extractives... applied mass). The solvent used shall be at least 60 milliliters aqueous sodium chloride solution per gram... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified...

  19. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... weight of aqueous sodium chloride solution at 20 °C for 24 hours. The low molecular weight extractives... applied mass). The solvent used shall be at least 60 milliliters aqueous sodium chloride solution per gram... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified...

  20. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...). The solvent used shall be at least 60 milliliters aqueous sodium chloride solution per gram of... grafted copolymer of cross-linked sodium polyacrylate identified as 2-propenoic acid, polymers with N,N-di-2-propenyl-2-propen-1-amine and hydrolyzed polyvinyl acetate, sodium salts, graft (CAS Reg....

  1. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... weight of aqueous sodium chloride solution at 20 °C for 24 hours. The low molecular weight extractives... applied mass). The solvent used shall be at least 60 milliliters aqueous sodium chloride solution per gram... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified...

  2. Femtosecond laser collagen cross-linking without traditional photosensitizers

    NASA Astrophysics Data System (ADS)

    Guo, Yizang; Wang, Chao; Celi, Nicola; Vukelic, Sinisa

    2015-03-01

    Collagen cross-linking in cornea has the capability of enhancing its mechanical properties and thereby providing an alternative treatment for eye diseases such as keratoconus. Currently, riboflavin assisted UVA light irradiation is a method of choice for cross-link induction in eyes. However, ultrafast pulsed laser interactions may be a powerful alternative enabling in-depth treatment while simultaneously diminishing harmful side effects such as, keratocyte apoptosis. In this study, femtosecond laser is utilized for treatment of bovine cornea slices. It is hypothesized that nonlinear absorption of femtosecond laser pulses plays a major role in the maturation of immature cross-links and the promotion of their growth. Targeted irradiation with tightly focused laser pulses allows for the absence of a photosensitizing agent. Inflation test was conducted on half treated porcine cornea to identify the changes of mechanical properties due to laser treatment. Raman spectroscopy was utilized to study subtle changes in the chemical composition of treated cornea. The effects of treatment are analyzed by observing shifts in Amide I and Amide III bands, which suggest deformation of the collagen structure in cornea due to presence of newly formed cross-links.

  3. 21 CFR 177.2420 - Polyester resins, cross-linked.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyester resins, cross-linked. 177.2420 Section 177.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for...

  4. 21 CFR 177.2420 - Polyester resins, cross-linked.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyester resins, cross-linked. 177.2420 Section 177.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for...

  5. 21 CFR 177.2420 - Polyester resins, cross-linked.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyester resins, cross-linked. 177.2420 Section 177.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2420 Polyester...

  6. Viscoelastic Nanomechanics of Ionically Cross-linked Polyelectrolyte Networks

    NASA Astrophysics Data System (ADS)

    Han, Biao; Lee, Daeyeon; Han, Lin

    2015-03-01

    Understanding the mechanics of ionic polyelectrolyte networks is critical for applications where nm-to-um mechanics is the key to success. This study aims to reveal the roles of ionic cross-links and fixed charges in the viscoelasticity of layer-by-layer poly(allylamine hydrochloride)/poly(acrylic acid) microfilms, PAH/PAA, a complex held by pH-sensitive amine-carboxyl links. AFM-nanoindentation and force relaxation (tip R =12.5um) was performed at ionic strength(IS) =0.01-1.0M, pH =5.5-2.0 (pKa of PAA =2.3). When pH changes from 5.5 to 2.0, the films swell for 4x from densely linked, net neutral state to loosely linked, positively charged one. A >100x reduction in indentation modulus was observed at all IS, suggesting the dominance of decrease in cross-link density. In most states, more than 90% force relaxation was observed, where cross-link breaking/reformation likely dominates viscoelasticity. However, at pH =2.5 and IS =0.01M, when electrical double layer repulsion is important (Debye length =3nm), relaxation was about 60%, highlighting the contribution of fixed charges. In summary, this study revealed unique viscoelastic behaviors of PAH/PAA due to the pH- and IS-dependent cross-link and charge densities.

  7. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor)

    2016-01-01

    A method for creating a three dimensional cross-linked polyimide structure includes dissolving a diamine, a dianhydride, and a triamine in a solvent, imidizing a polyamic acid gel by heating the gel, extracting the gel in a second solvent, supercritically drying the gel, and removing the solvent to create a polyimide aerogel.

  8. Specific covalent immobilization of proteins through dityrosine cross-links.

    PubMed

    Endrizzi, Betsy J; Huang, Gang; Kiser, Patrick F; Stewart, Russell J

    2006-12-19

    Dityrosine cross-links are widely observed in nature in structural proteins such as elastin and silk. Natural oxidative cross-linking between tyrosine residues is catalyzed by a diverse group of metalloenzymes. Dityrosine formation is also catalyzed in vitro by metal-peptide complexes such as Gly-Gly-His-Ni(II). On the basis of these observations, a system was developed to specifically and covalently surface immobilize proteins through dityrosine cross-links. Methacrylate monomers of the catalytic peptide Gly-Gly-His-Tyr-OH (GGHY) and the Ni(II)-chelating group nitrilotriacetic acid (NTA) were copolymerized with acrylamide into microbeads. Green fluorescent protein (GFP), as a model protein, was genetically tagged with a tyrosine-modified His6 peptide on its carboxy terminus. GFP-YGH6, specifically associated with the NTA-Ni(II) groups, was covalently coupled to the bead surface through dityrosine bond formation catalyzed by the colocalized GGHY-Ni(II) complex. After extensive washing with EDTA to disrupt metal coordination bonds, we observed that up to 75% of the initially bound GFP-YGH6 remained covalently bound to the bead while retaining its structure and activity. Dityrosine cross-linking was confirmed by quenching the reaction with free tyrosine. The method may find particular utility in the construction and optimization of protein microarrays. PMID:17154619

  9. Porous Cross-Linked Polyimide-Urea Networks

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor)

    2015-01-01

    Porous cross-linked polyimide-urea networks are provided. The networks comprise a subunit comprising two anhydride end-capped polyamic acid oligomers in direct connection via a urea linkage. The oligomers (a) each comprise a repeating unit of a dianhydride and a diamine and a terminal anhydride group and (b) are formulated with 2 to 15 of the repeating units. The subunit was formed by reaction of the diamine and a diisocyanate to form a diamine-urea linkage-diamine group, followed by reaction of the diamine-urea linkage-diamine group with the dianhydride and the diamine to form the subunit. The subunit has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups. The subunit has been chemically imidized to yield the porous cross-linked polyimide-urea network. Also provided are wet gels, aerogels, and thin films comprising the networks, and methods of making the networks.

  10. Spectral Library Searching To Identify Cross-Linked Peptides.

    PubMed

    Schweppe, Devin K; Chavez, Juan D; Navare, Arti T; Wu, Xia; Ruiz, Bianca; Eng, Jimmy K; Lam, Henry; Bruce, James E

    2016-05-01

    Methods harnessing protein cross-linking and mass spectrometry (XL-MS) offer high-throughput means to identify protein-protein interactions (PPIs) and structural interfaces of protein complexes. Yet, specialized data dependent methods and search algorithms are often required to confidently assign peptide identifications to spectra. To improve the efficiency of matching high confidence spectra, we developed a spectral library based approach to search cross-linked peptide data derived from Protein Interaction Reporter (PIR) methods using the spectral library search algorithm, SpectraST. Spectral library matching of cross-linked peptide data from query spectra increased the absolute number of confident peptide relationships matched to spectra and thereby the number of PPIs identified. By matching library spectra from bona fide, previously established PIR-cross-linked peptide relationships, spectral library searching reduces the need for continued, complex mass spectrometric methods to identify peptide relationships, increases coverage of relationship identifications, and improves the accessibility of XL-MS technologies. PMID:27089058

  11. Density variant glycan microarray for evaluating cross-linking of mucin-like glycoconjugates by lectins.

    PubMed

    Godula, Kamil; Bertozzi, Carolyn R

    2012-09-26

    Interactions of mucin glycoproteins with cognate receptors are dictated by the structures and spatial organization of glycans that decorate the mucin polypeptide backbone. The glycan-binding proteins, or lectins, that interact with mucins are often oligomeric receptors with multiple ligand binding domains. In this work, we employed a microarray platform comprising synthetic glycopolymers that emulate natural mucins arrayed at different surface densities to evaluate how glycan valency and spatial separation affect the preferential binding mode of a particular lectin. We evaluated a panel of four lectins (Soybean agglutinin (SBA), Wisteria floribunda lectin (WFL), Vicia villosa-B-4 agglutinin (VVA), and Helix pomatia agglutin (HPA)) with specificity for α-N-acetylgalactosamine (α-GalNAc), an epitope displayed on mucins overexpressed in many adenocarcinomas. While these lectins possess the ability to agglutinate A(1)-blood cells carrying the α-GalNAc epitope and cross-link low valency glycoconjugates, only SBA showed a tendency to form intermolecular cross-links among the arrayed polyvalent mucin mimetics. These results suggest that glycopolymer microarrays can reveal discrete higher-order binding preferences beyond the recognition of individual glycan epitopes. Our findings indicate that glycan valency can set thresholds for cross-linking by lectins. More broadly, well-defined synthetic glycopolymers enable the integration of glycoconjugate structural and spatial diversity in a single microarray screening platform. PMID:22967056

  12. Thermodynamic origin of α-helix stabilization by side-chain cross-links in a small protein.

    PubMed

    Haney, Conor M; Werner, Halina M; McKay, James J; Horne, W Seth

    2016-06-15

    Peptide cross-linking has been widely explored as a means of constraining short sequences into stable folded conformations, most commonly α-helices. The prevailing hypothesis for the origin of helix stabilization is an entropic effect resulting from backbone pre-organization; however, obtaining direct evidence bearing on this hypothesis is challenging. Here, we compare the folding thermodynamics of a small helix-rich protein domain and analogues containing one of three common cross-linking motifs. Analysis of the folding free energy landscapes of linear vs. cyclized species reveal consistent trends in the effect of cyclization on folding energetics, as well as subtle differences based on the chemistry of the cross link. Stabilization in all three systems arises entirely from a reduction in the entropic penalty of folding that more than compensates for an enthalpic destabilization of the folded state. PMID:27006192

  13. Processing of targeted psoralen cross-links in Xenopus oocytes.

    PubMed Central

    Segal, D J; Faruqi, A F; Glazer, P M; Carroll, D

    1997-01-01

    Psoralen cross-links have been shown to be both mutagenic and recombinagenic in bacterial, yeast, and mammalian cells. Double-strand breaks (DSBs) have been implicated as intermediates in the removal of psoralen cross-links. Recent work has suggested that site-specific mutagenesis and recombination might be achieved through the use of targeted psoralen adducts. The fate of plasmids containing psoralen adducts was evaluated in Xenopus oocytes, an experimental system that has well-characterized recombination capabilities and advantages in the analysis of intermediates in DNA metabolism. Psoralen adducts were delivered to a specific site by a triplex-forming oligonucleotide. These lesions are clearly recognized and processed in oocytes, since mutagenesis was observed at the target site. The spectrum of induced mutations was compared with that found in similar studies in mammalian cells. Plasmids carrying multiple random adducts were preferentially degraded, perhaps due to the introduction of DSBs. However, when DNAs carrying site-specific adducts were examined, no plasmid loss was observed and removal of cross-links was found to be very slow. Sensitive assays for DSB-dependent homologous recombination were performed with substrates with one or two cross-link sites. No adduct-stimulated recombination was observed with a single lesion, and only very low levels were observed with paired lesions, even when a large proportion of the cross-links was removed by the oocytes. We conclude that DSBs or other recombinagenic structures are not efficiently formed at psoralen adducts in Xenopus oocytes. While psoralen is not a promising reagent for stimulating site-specific recombination, it is effective in inducing targeted mutations. PMID:9343428

  14. Cross-Linked Peptidoglycan Mediates Lysostaphin Binding to the Cell Wall Envelope of Staphylococcus aureus†

    PubMed Central

    Gründling, Angelika; Schneewind, Olaf

    2006-01-01

    Staphylococcus simulans bv. staphylolyticus secretes lysostaphin, a bacteriocin that cleaves pentaglycine cross bridges in the cell wall of Staphylococcus aureus. The C-terminal cell wall-targeting domain (CWT) of lysostaphin is required for selective binding of this bacteriocin to S. aureus cells; however, the molecular target for this was unknown. We used purified green fluorescent protein fused to CWT (GFP-CWT) to reveal species-specific association of the reporter with staphylococci. GFP-CWT bound S. aureus cells as well as purified peptidoglycan sacculi. The addition of cross-linked murein, disaccharides linked to interconnected wall peptides, blocked GFP-CWT binding to staphylococci, whereas murein monomers or lysostaphin-solubilized cell wall fragments did not. S. aureus strain Newman variants lacking the capacity for synthesizing polysaccharide capsule (capFO), poly-N-acetylglucosamine (icaAC), lipoprotein (lgt), cell wall-anchored proteins (srtA), or the glycolipid anchor of lipoteichoic acid (ypfP) bound GFP-CWT similar to wild-type staphylococci. A tagO mutant strain, defective in the synthesis of polyribitol wall teichoic acid attached to the cell wall envelope, displayed increased GFP-CWT binding. In contrast, a femAB mutation, reducing both the amount and the length of peptidoglycan cross-linking (monoglycine cross bridges), showed a dramatic reduction in GFP-CWT binding. Thus, the CWT domain of lysostaphin directs the bacteriocin to cross-linked peptidoglycan, which also serves as the substrate for its glycyl-glycine endopeptidase domain. PMID:16547033

  15. Actinic keratosis

    MedlinePlus

    Solar keratosis; Sun-induced skin changes - keratosis; Keratosis - actinic (solar) ... Some actinic keratoses become squamous cell skin cancer . Have your health care provider look at all skin growths as soon as you find them. Your provider will ...

  16. Cross-linking Measurements of In Vivo Protein Complex Topologies*

    PubMed Central

    Zheng, Chunxiang; Yang, Li; Hoopmann, Michael R.; Eng, Jimmy K.; Tang, Xiaoting; Weisbrod, Chad R.; Bruce, James E.

    2011-01-01

    Identification and measurement of in vivo protein interactions pose critical challenges in the goal to understand biological systems. The measurement of structures and topologies of proteins and protein complexes as they exist in cells is particularly challenging, yet critically important to improve understanding of biological function because proteins exert their intended function only through the structures and interactions they exhibit in vivo. In the present study, protein interactions in E. coli cells were identified in our unbiased cross-linking approach, yielding the first in vivo topological data on many interactions and the largest set of identified in vivo cross-linked peptides produced to date. These data show excellent agreement with protein and complex crystal structures where available. Furthermore, our unbiased data provide novel in vivo topological information that can impact understanding of biological function, even for cases where high resolution structures are not yet available. PMID:21697552

  17. Hydration and swelling of amorphous cross-linked starch microspheres.

    PubMed

    Wojtasz, Joanna; Carlstedt, Jonas; Fyhr, Peter; Kocherbitov, Vitaly

    2016-01-01

    Hydration of cross-linked starch microspheres, commercially available as a medical device, was investigated using a multi-method approach. We found that the uptake of water is accompanied by substantial swelling and changes of the polymer structure. Sorption calorimetry provided information about thermodynamics of water sorption, revealed presence of isothermal glass transition and absence of hydration-induced crystallization, observed in non-cross linked starch material. The changes in the surface and bulk properties of microspheres at different water-starch concentrations were investigated using synchrotron radiation X-ray scattering and analyzed using concept of fractals. The obtained information, combined with the results of differential scanning calorimetry, was used to construct a phase diagram of the studied material. Finally, hydration induced evolution of polymer structure revealed by the X-ray scattering was linked to the changes observed during swelling with optical microscopy. PMID:26453872

  18. Cross-Linked Fiber Network Embedded in Elastic Matrix

    PubMed Central

    Zhang, L.; Lake, S.P.; Barocas, V.H.; Shephard, M.S.; Picu, R.C.

    2013-01-01

    The mechanical behavior of a three-dimensional cross-linked fiber network embedded in matrix is studied in this work. The network is composed from linear elastic fibers which store energy only in the axial deformation mode, while the matrix is also isotropic and linear elastic. Such systems are encountered in a broad range of applications, from tissue to consumer products. As the matrix modulus increases, the network is constrained to deform more affinely. This leads to internal forces acting between the network and the matrix, which produce strong stress concentration at the network cross-links. This interaction increases the apparent modulus of the network and decreases the apparent modulus of the matrix. A model is developed to predict the effective modulus of the composite and its predictions are compared with numerical data for a variety of networks. PMID:24089623

  19. Reversible PH Lability of Cross-Linked Vault Nanocapsules

    SciTech Connect

    Yu, M.; Ng, B.C.; Rome, L.H.; Tolbert, S.H.; Monbouquette, H.G.

    2009-05-28

    Vaults are ubiquitous, self-assembled protein nanocapsules with dimension in the sub-100 nm range that are conserved across diverse phyla from worms to humans. Their normal presence in humans at a copy number of over 10 000/cell makes them attractive as potential drug delivery vehicles. Toward this goal, bifunctional amine-reactive reagents are shown to be useful for the reversible cross-linking of recombinant vaults such that they may be closed and opened in a controllable manner.

  20. Optimized Fragmentation Regime for Diazirine Photo-Cross-Linked Peptides.

    PubMed

    Giese, Sven H; Belsom, Adam; Rappsilber, Juri

    2016-08-16

    Cross-linking/mass spectrometry has evolved into a robust technology that reveals structural insights into proteins and protein complexes. We leverage a new tribrid instrument with improved fragmentation capacities in a systematic comparison to identify which fragmentation method would be best for the identification of cross-linked peptides. Specifically, we explored three fragmentation methods and two combinations: collision-induced dissociation (CID), beam-type CID (HCD), electron-transfer dissociation (ETD), ETciD, and EThcD. Trypsin-digested, SDA-cross-linked human serum albumin (HSA) served as a test sample, yielding over all methods and in triplicate analysis in total 2602 matched PSMs and 1390 linked residue pairs at 5% false discovery rate, as confirmed by the crystal structure. HCD wins in number of matched peptide-spectrum-matches (958 PSMs) and identified links (446). CID is most complementary, increasing the number of identified links by 13% (58 links). HCD wins together with EThcD in cross-link site calling precision, with approximately 62% of sites having adjacent backbone cleavages that unambiguously locate the link in both peptides, without assuming any cross-linker preference for amino acids. Overall quality of spectra, as judged by sequence coverage of both peptides, is best for EThcD for the majority of peptides. Sequence coverage might be of particular importance for complex samples, for which we propose a data dependent decision tree, else HCD is the method of choice. The mass spectrometric raw data has been deposited in PRIDE (PXD003737). PMID:27454319

  1. Physicochemical properties of collagen solutions cross-linked by glutaraldehyde.

    PubMed

    Tian, Zhenhua; Li, Conghu; Duan, Lian; Li, Guoying

    2014-06-01

    The physicochemical properties of collagen solutions (5 mg/ml) cross-linked by various amounts of glutaraldehyde (GTA) [GTA/collagen (w/w) = 0-0.5] under acidic condition (pH 4.00) were examined. Based on the results of the determination of residual amino group content, sodium dodecyl sulphate-polyacrylamide gel electrophoresis, dynamic rheological measurements, differential scanning calorimetry and atomic force microscopy (AFM), it was proved that the collagen solutions possessed strikingly different physicochemical properties depending on the amount of GTA. At low GTA amounts [GTA/collagen (w/w) ≤ 0.1], the residual amino group contents of the cross-linked collagens decreased largely from 100% to 32.76%, accompanied by an increase in the molecular weight. Additionally, increases of the fiber diameter and the values of G', G″ and η* were measured, while the thermal denaturation temperature (Td) did not change visibly and the fluidity of collagen samples was still retained with increasing the GTA amount. When the ratio of GTA to collagen exceeded 0.1, although the residual amino group content only decreased by ~8.2%, the cross-linked collagen solution [GTA/collagen (w/w) = 0.3] displayed a clear loss of flow and a sudden rise (~2.0 °C) of the Td value compared to the uncross-linked collagen solution, probably illustrating that the collagen solution was converted into a gel with mature network structure-containing nuclei observed in AFM image. It was conjectured that the physicochemical properties of the collagen solutions might be in connection with the cross-linking between collagen molecules from the same aggregate or different aggregates. PMID:24564765

  2. Cytokines and growth factors cross-link heparan sulfate

    PubMed Central

    Migliorini, Elisa; Thakar, Dhruv; Kühnle, Jens; Sadir, Rabia; Dyer, Douglas P.; Li, Yong; Sun, Changye; Volkman, Brian F.; Handel, Tracy M.; Coche-Guerente, Liliane; Fernig, David G.; Lortat-Jacob, Hugues; Richter, Ralf P.

    2015-01-01

    The glycosaminoglycan heparan sulfate (HS), present at the surface of most cells and ubiquitous in extracellular matrix, binds many soluble extracellular signalling molecules such as chemokines and growth factors, and regulates their transport and effector functions. It is, however, unknown whether upon binding HS these proteins can affect the long-range structure of HS. To test this idea, we interrogated a supramolecular model system, in which HS chains grafted to streptavidin-functionalized oligoethylene glycol monolayers or supported lipid bilayers mimic the HS-rich pericellular or extracellular matrix, with the biophysical techniques quartz crystal microbalance (QCM-D) and fluorescence recovery after photobleaching (FRAP). We were able to control and characterize the supramolecular presentation of HS chains—their local density, orientation, conformation and lateral mobility—and their interaction with proteins. The chemokine CXCL12α (or SDF-1α) rigidified the HS film, and this effect was due to protein-mediated cross-linking of HS chains. Complementary measurements with CXCL12α mutants and the CXCL12γ isoform provided insight into the molecular mechanism underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has three HS binding sites, was also found to cross-link HS, but FGF-9, which has just one binding site, did not. Based on these data, we propose that the ability to cross-link HS is a generic feature of many cytokines and growth factors, which depends on the architecture of their HS binding sites. The ability to change matrix organization and physico-chemical properties (e.g. permeability and rigidification) implies that the functions of cytokines and growth factors may not simply be confined to the activation of cognate cellular receptors. PMID:26269427

  3. Estimating the Degree of Cross-Linking in Rubber

    NASA Technical Reports Server (NTRS)

    Fedors, R. F.

    1983-01-01

    Degree of cross-linking or network chain concentration of rubber estimated with aid of new method. Quantity is needed in studies of mechanical behavior of rubber. New method is based on finding rubber follows different stress/ strain relationships in extension and retraction. When rubber specimen is stretched to given extension ration and released. Stress-vs-strain curve follows two paths: one for extension and other for retraction.

  4. Fiber optic immunosensor for cross-linked fibrin concentration

    NASA Astrophysics Data System (ADS)

    Moskowitz, Samuel E.

    2000-08-01

    Working with calcium ions in the blood, platelets produce thromboplastin which transforms prothrombin into thrombin. Removing peptides, thrombin changes fibrinogen into fibrin. Cross-linked insoluble fibrin polymers are solubilized by enzyme plasmin found in blood plasma. Resulting D-dimers are elevated in patients with intravascular coagulation, deep venous thrombosis, pulmonary embolism, myocardial infarction, multiple trauma, cancer, impaired renal and liver functions, and sepsis. Consisting principally of a NIR 780 nm GaAlAs laser diode and a 800 nm avalanche photodiode (APD), the fiber-optic immunosensor can determined D-dimer concentration to levels <0.1 ng/ml. A capture monoclonal antibody to the antigen soluble cross-linked fibrin is employed. Immobilized at the tip of an optical fiber by avidin-biotin, the captured antigen is detected by a second antibody which is labeled with NN 382 fluorescent dye. An evanescent wave traveling on an excitation optical fiber excites the antibody-antigen fluorophore complex. Concentration of cross-linked fibrin is directly proportional to the APD measured intensity of fluorescence. NIR fluorescence has advantages of low background interference, short fluorescence lifetime, and large difference between excitation and emission peaks. Competitive ELISA test for D-dimer concentration requires trained personnel performing a time consuming operation.

  5. Supersaturated lysozyme solution structure studied by chemical cross-linking.

    PubMed

    Hall, Clayton L; Clemens, John R; Brown, Amanda M; Wilson, Lori J

    2005-06-01

    Glutaraldehyde cross-linking followed by separation has been used to detect aggregates of chicken egg-white lysozyme (CEWL) in supersaturated solutions. In solutions of varying NaCl content, the number of aggregates was found to be related to the ionic strength of the solution. Separation by SDS-PAGE showed that percentage of dimer in solution ranged from 25.3% for no NaCl to 27.1% at 15% NaCl, and the aggregates larger than dimer increased from 1.9% for no NaCl to 36.8% at 15% NaCl. Conversely, the percentage of monomers decreased from 72.8% without NaCl to 36.1% at 15% NaCl. Molecular weights by capillary electrophoresis (SDS-CE) were found to be multiples of the monomer molecular weights, with the exception of trimer, which indicates a very compact structure. Native separation was accomplished using size-exclusion chromatography (SEC) and gave a lower monomer concentration and higher aggregate concentration than SDS-CE, which is a denaturing separation method. Most noticeably, trimers were absent in the SEC separation. The number of aggregates did not change with increased time between addition of NaCl and addition of cross-linking agent when separated by gel electrophoresis (SDS-PAGE). The results suggest that high ionic strength CEWL solutions are highly aggregated and that denaturing separation methods disrupt cross-linked products. PMID:15930646

  6. Homogeneous UVA system for corneal cross-linking treatment

    NASA Astrophysics Data System (ADS)

    Ayres Pereira, Fernando R.; Stefani, Mario A.; Otoboni, José A.; Richter, Eduardo H.; Ventura, Liliane

    2010-02-01

    The treatment of keratoconus and corneal ulcers by collagen cross-linking using ultraviolet type A irradiation, combined with photo-sensitizer Riboflavin (vitamin B2), is a promising technique. The standard protocol suggests instilling Riboflavin in the pre-scratched cornea every 5min for 30min, during the UVA irradiation of the cornea at 3mW/cm2 for 30 min. This process leads to an increase of the biomechanical strength of the cornea, stopping the progression, or sometimes, even reversing Keratoconus. The collagen cross-linking can be achieved by many methods, but the utilization of UVA light, for this purpose, is ideal because of its possibility of a homogeneous treatment leading to an equal result along the treated area. We have developed a system, to be clinically used for treatment of unhealthy corneas using the cross-linking technique, which consists of an UVA emitting delivery device controlled by a closed loop system with high homogeneity. The system is tunable and delivers 3-5 mW/cm2, at 365nm, for three spots (6mm, 8mm and 10mm in diameter). The electronics close loop presents 1% of precision, leading to an overall error, after the calibration, of less than 10% and approximately 96% of homogeneity.

  7. Magnetic macromolecular cross linked enzyme aggregates (CLEAs) of glucoamylase.

    PubMed

    Nadar, Shamraja S; Rathod, Virendra K

    2016-02-01

    This work illustrates the preparation of magnetic macromolecular glucoamylase CLEAs using dialdehydic pectin, as a cross linker instead of traditional glutaraldehyde. The effect of precipitators type and amount, cross linker concentration, cross linking time and amount of amino functionalized magnetic nanoparticles (AFMNs) on glucoamylase activity was studied. Glucoamylase magnetic macromolecular CLEAs prepared by precipitation in presence of AFMNs by ammonium sulfate were subsequently cross linked by dialdehydic pectin. After cross-linked by pectin, 95.4% activity recovery was achieved in magnetic macromolecular CLEAs, whereas in case of glutaraldehyde cross linker, 85.3% activity recovery was achieved. Magnetic macromolecular CLEAs showed 2.91 and 1.27 folds higher thermal stability as compared to free and magnetic glutaraldehyde CLEAs. In kinetics study, magnetic macromolecular CLEAs retained same Km values, whereas magnetic glutaraldehyde CLEAs showed higher Km value than free enzyme. The porous structure of magnetic macromolecular CLEAs was not only enhanced mass transfer toward macromolecular substrates, but also showed compression resistance for 5 consecutive cycles which was checked in terms of effectiveness factor. At the end, in reusability study; magnetic macromolecular CLEAs were retained 84% activity after 10(th) cycle without leaching of enzyme which is 22% higher than traditional magnetic CLEAs. PMID:26777253

  8. Ion exchange selectivity for cross-linked polyacrylic acid

    NASA Technical Reports Server (NTRS)

    May, C. E.; Philipp, W. H.

    1983-01-01

    The ion separation factors for 21 common metal ions with cross-linked polyacrylic acid were determined as a function of pH and the percent of the cross-linked polyacrylic acid neutralized. The calcium ion was used as a reference. At a pH of 5 the decreasing order of affinity of the ions for the cross-linked polyacrylic acid was found to be: Hg++, Fe+++, Pb++, Cr+++, Cu++, Cd++, Al+++, Ag+, Zn++, Ni++, Mn++, Co++, Ca++, Sr++, Ba++, Mg++, K+, Rb+, Cs+, Na+, and Li+. Members of a chemical family exhibited similar selectivities. The Hg++ ion appeared to be about a million times more strongly bound than the alkali metal ions. The relative binding of most of the metal ions varied with pH; the very tightly and very weakly bound ions showed the largest variations with pH. The calcium ion-hydrogen ion equilibrium was perturbed very little by the presence of the other ions. The separation factors and selectivity coefficients are discussed in terms of equilibrium and thermodynamic significance.

  9. Cross linking molecular systems to form ultrathin dielectric layers

    NASA Astrophysics Data System (ADS)

    Feng, Danqin

    Dehydrogenation leads to cross linking of polymer or polymer like formation in very different systems: self-assembled monolayers and in closo -carboranes leading to the formation of semiconducting and dielectric boron carbide. We find evidence of intermolecular interactions for a self-assembled monolayer (SAM) formed from a large molecular adsorbate, [1,1';4',1"-terphenyl]-4,4"-dimethanethiol, from the dispersion of the molecular orbitals with changing the wave vector k and from the changes with temperature. With the formation self assembled molecular (SAM) layer, the molecular orbitals hybridize to electronic bands, with indications of significant band dispersion of the unoccupied molecular orbitals. Although organic adsorbates and thin films are generally regarded as "soft" materials, the effective Debye temperature, indicative of the dynamic motion of the lattice normal to the surface, can be very high, e.g. in the multilayer film formed from [1,1'-biphenyl]-4,4'-dimethanethiol (BPDMT). Depending on molecular orientation, the effective Debye temperature can be comparable to that of graphite due to the 'stiffness' of the benzene rings, but follows the expected Debye-Waller behavior for the core level photoemission intensities with temperature. This is not always the case. We find that a monomolecular film formed from [1,1';4',1"-terphenyl]-4,4"-dimethanethiol deviates from Debye-Waller temperature behavior and is likely caused by temperature dependent changes in molecular orientation. We also find evidence for the increase in dielectric character with polymerization (cross-linking) in spite of the decrease in the HOMO-LUMO gap upon irradiation of TPDMT. The changes in the HOMO-LUMO gap, with cross-linking, are roughly consistent with the band dispersion. The decomposition and cross-linking processes are also accompanied by changes in molecular orientation. The energetics of the three isomeric carborane cage compounds [ closo-1,2-orthocarborane, closo-1

  10. Probing actin incorporation into myofibrils using Asp11 and His73 actin mutants.

    PubMed

    Xia, D; Peng, B; Sesok, D A; Peng, I

    1993-01-01

    We used a cell free system Bouché et al.: J. Cell Biol. 107:587-596, 1988] to study the incorporation of actin into myofibrils. We used alpha-skeletal muscle actin and actins with substitutions of either His73 [Solomon and Rubenstein: J. Biol.Chem. 262:11382, 1987], or Asp11 [Solomon et al.: J. Biol. Chem. 263:19662, 1988]. Actins were translated in reticulocyte lysate and incubated with myofibrils. The incorporated wild type actin could be cross-linked into dimers using N,N'-1,4-phenylenebismaleimide (PBM), indicating that the incorporated actin is actually inserted into the thin filaments of the myofibril. The His73 mutants incorporated to the same extent as wild type actin and was also cross-linked with PBM. Although some of the Asp11 mutants co-assembled with carrier actin, only 1-3% of the Asp11 mutant actins incorporated after 2 min and did not increase after 2 hr. Roughly 17% of wild type actin incorporated after 2 min and 31% after 2 hr. ATP increased the release of wild type actin from myofibrils, but did not increase the release of Asp11 mutants. We suggest that (1) the incorporation of wild type and His73 mutant actins was due to a physiological process whereas association of Asp11 mutants with myofibrils was non-specific, (2) the incorporation of wild type actin involved a rapid initial phase, followed by a slower phase, and (3) since some of the Asp11 mutants can co-assemble with wild type actin, the ability to self-assemble was not sufficient for incorporation into myofibrils. Thus, incorporation probably includes interaction between actin and a thin filament associated protein. We also showed that incorporation occurred at actin concentrations which would cause disassembly of F-actin. Since the myofibrils did not show large scale disassembly but incorporated actin, filament stability and monomer incorporation are likely to be mediated by actin associated proteins of the myofibril. PMID:8287497

  11. Actin-binding proteins: the long road to understanding the dynamic landscape of cellular actin networks.

    PubMed

    Lappalainen, Pekka

    2016-08-15

    The actin cytoskeleton supports a vast number of cellular processes in nonmuscle cells. It is well established that the organization and dynamics of the actin cytoskeleton are controlled by a large array of actin-binding proteins. However, it was only 40 years ago that the first nonmuscle actin-binding protein, filamin, was identified and characterized. Filamin was shown to bind and cross-link actin filaments into higher-order structures and contribute to phagocytosis in macrophages. Subsequently many other nonmuscle actin-binding proteins were identified and characterized. These proteins regulate almost all steps of the actin filament assembly and disassembly cycles, as well as the arrangement of actin filaments into diverse three-dimensional structures. Although the individual biochemical activities of most actin-regulatory proteins are relatively well understood, knowledge of how these proteins function together in a common cytoplasm to control actin dynamics and architecture is only beginning to emerge. Furthermore, understanding how signaling pathways and mechanical cues control the activities of various actin-binding proteins in different cellular, developmental, and pathological processes will keep researchers busy for decades. PMID:27528696

  12. Physicochemical, antimicrobial, and cytotoxic characteristics of a chitosan film cross-linked by a naturally occurring cross-linking agent, aglycone geniposidic acid.

    PubMed

    Mi, Fwu-Long; Huang, Chin-Tsung; Liang, Hsiang-Fa; Chen, Mei-Chin; Chiu, Ya-Ling; Chen, Chun-Hung; Sung, Hsing-Wen

    2006-05-01

    The purpose of this study was to evaluate the characteristics of a chitosan film cross-linked by a naturally occurring compound, aglycone geniposidic acid (aGSA). This newly developed aGSA-cross-linked chitosan film may be used as an edible film. The chitosan film without cross-linking (fresh) and the glutaraldehyde-cross-linked chitosan film were used as controls. The characteristics of test chitosan films evaluated were their degree of cross-linking, swelling ratio, mechanical properties, water vapor permeability, antimicrobial capability, cytotoxicity, and enzymatic degradability. It was found that cross-linking of chitosan films by aGSA (at a concentration up to 0.8 mM) significantly increased its ultimate tensile strength but reduced its strain at fracture and swelling ratio. There was no significant difference in the antimicrobial capability between the cross-linked chitosan films and their fresh counterpart. However, the aGSA-cross-linked chitosan film had a lower cytotoxicity, a slower degradation rate, and a relatively lower water vapor permeability as compared to the glutaraldehyde-cross-linked film. These results suggested that the aGSA-cross-linked chitosan film may be a promising material as an edible film. PMID:16637687

  13. Expression, cross-linking, and characterization of recombinant chitin binding resilin.

    PubMed

    Qin, Guokui; Lapidot, Shaul; Numata, Keiji; Hu, Xiao; Meirovitch, Sigal; Dekel, Mara; Podoler, Itai; Shoseyov, Oded; Kaplan, David L

    2009-12-14

    Resilin is a polymeric rubber-like protein secreted by insects to specialized cuticle regions, in areas where high resilience and low stiffness are required. Resilin binds to the cuticle polysaccharide chitin via a chitin binding domain and is further polymerized through oxidation of the tyrosine residues resulting in the formation of dityrosine bridges and assembly of a high-performance protein--carbohydrate composite material. We describe the mechanical, structural and biochemical function of chitin binding recombinant Drosophila melanogaster resilin. Various resilin constructs were cloned including the full length gene enabling Ni-NTA purification, as well as heat and salt precipitation for rapid and efficient purification. The binding isotherms and constants (K(d), B(max)) of resilin to chitin via its chitin binding domain were determined and displayed high affinity to chitin, implying its important role in the assembly of the resilin-chitin composite. The structural and elastic properties were investigated using Fourier transform infrared spectroscopy, circular dichroism, and atomic force microscopy with peroxidase cross-linked solid resilin materials. Generally, little structural organization was found by these biophysical methods, suggesting structural order was not induced by the dityrosine cross-links. Further, the elastomeric properties found from the full length protein compared favorably with the shorter resilin generated previously from exon 1. The unusual elastomeric behavior of this protein suggests possible utility in biomaterials applications. PMID:19928816

  14. Viability, Apoptosis, Proliferation, Activation, and Cytokine Secretion of Human Keratoconus Keratocytes after Cross-Linking

    PubMed Central

    Stachon, Tanja; Wang, Jiong; Seitz, Berthold; Szentmáry, Nóra

    2015-01-01

    Purpose. The purpose of this study was to determine the impact of cross-linking (CXL) on viability, apoptosis, proliferation, activation, and cytokine secretion of human keratoconus (KC) keratocytes, in vitro. Methods. Primary KC keratocytes were cultured in DMEM/Ham's F12 medium supplemented with 10% FCS and underwent UVA illumination (370 nm, 2 J/cm2) during exposure to 0.1% riboflavin and 20% Dextran in PBS. Twenty-four hours after CXL, viability was assessed using Alamar blue assay; apoptosis using APO-DIRECT Kit; proliferation using ELISA-BrdU kit; and CD34 and alpha-smooth muscle actin (α-SMA) expression using flow cytometry. Five and 24 hours after CXL, FGFb, HGF, TGFβ1, VEGF, KGF, IL-1β, IL-6, and IL-8 secretion was measured using enzyme-linked-immunoabsorbent assay (ELISA). Results. Following CXL, cell viability and proliferation decreased (P < 0.05; P = 0.009), the percentage of apoptotic keratocytes increased (P < 0.05) significantly, and CD34 and α-SMA expression remained unchanged (P > 0.06). Five hours after CXL, FGFb secretion increased significantly (P = 0.037); however no other cytokine secretion differed significantly from controls after 5 or 24 hours (P > 0.12). Conclusions. Cross-linking decreases viability, triggers apoptosis, and inhibits proliferation, without an impact on multipotent hematopoietic stem cell transformation and myofibroblastic transformation of KC keratocytes. CXL triggers FGFb secretion of KC keratocytes transiently (5 hours), normalizing after 24 hours. PMID:25699261

  15. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

    NASA Technical Reports Server (NTRS)

    Panek, John

    2010-01-01

    Polyimide aerogels with three-dimensional cross-linked structure are made using linear oligomeric segments of polyimide, and linked with one of the following into a 3D structure: trifunctional aliphatic or aromatic amines, latent reactive end caps such as nadic anhydride or phenylethynylphenyl amine, and silica or silsesquioxane cage structures decorated with amine. Drying the gels supercritically maintains the solid structure of the gel, creating a polyimide aerogel with improved mechanical properties over linear polyimide aerogels. Lightweight, low-density structures are desired for acoustic and thermal insulation for aerospace structures, habitats, astronaut equipment, and aeronautic applications. Aerogels are a unique material for providing such properties because of their extremely low density and small pore sizes. However, plain silica aerogels are brittle. Reinforcing the aerogel structure with a polymer (X-Aerogel) provides vast improvements in strength while maintaining low density and pore structure. However, degradation of polymers used in cross-linking tends to limit use temperatures to below 150 C. Organic aerogels made from linear polyimide have been demonstrated, but gels shrink substantially during supercritical fluid extraction and may have lower use temperature due to lower glass transition temperatures. The purpose of this innovation is to raise the glass transition temperature of all organic polyimide aerogel by use of tri-, tetra-, or poly-functional units in the structure to create a 3D covalently bonded network. Such cross-linked polyimides typically have higher glass transition temperatures in excess of 300 400 C. In addition, the reinforcement provided by a 3D network should improve mechanical stability, and prevent shrinkage on supercritical fluid extraction. The use of tri-functional aromatic or aliphatic amine groups in the polyimide backbone will provide such a 3D structure.

  16. Homologous Recombination Assay for Interstrand Cross-Link Repair

    PubMed Central

    Nakanishi, Koji; Cavallo, Francesca; Brunet, Erika; Jasin, Maria

    2012-01-01

    DNA interstrand cross-links (ICLs) covalently link both strands of the DNA duplex, impeding cellular processes like DNA replication. Homologous recombination (HR) is considered to be a major pathway for the repair of ICLs in mammalian cells as mutants for HR components are highly sensitive to DNA-damaging agents that cause ICLs. This chapter describes GFP assays to measure HR following site-specific ICL formation with psoralen through DNA triplex technology. This approach can be used to determine the genetic requirements for ICL-induced HR in relation to those involved in HR repair of other DNA lesions such as double-strand breaks. PMID:21660700

  17. LET dependence of DNA-protein cross-links

    SciTech Connect

    Blakely, E.A.; Chang, P.Y.; Bjornstad, K.A.

    1995-08-01

    We have preliminary data indicating a fluence-dependent yield of particle-induced protein cross-links (DPC`s) with a dependency on LET and particle residual energy. Our data indicate that the DPC yield for hamster fibroblasts in vitro irradiated at 32 keV/{mu}m is similar to that reported for hamster cells irradiated with cobalt-60 gamma rays. At 100-120 keV/{mu}m there is some evidence for an enhanced DPC yield with increasing particle fluence, but there are differences in the yields that are dependent on particle track structure.

  18. Mutations of the Mouse ELMO Domain Containing 1 Gene (Elmod1) Link Small GTPase Signaling to Actin Cytoskeleton Dynamics in Hair Cell Stereocilia

    PubMed Central

    Johnson, Kenneth R.; Longo-Guess, Chantal M.; Gagnon, Leona H.

    2012-01-01

    Stereocilia, the modified microvilli projecting from the apical surfaces of the sensory hair cells of the inner ear, are essential to the mechanoelectrical transduction process underlying hearing and balance. The actin-filled stereocilia on each hair cell are tethered together by fibrous links to form a highly patterned hair bundle. Although many structural components of hair bundles have been identified, little is known about the signaling mechanisms that regulate their development, morphology, and maintenance. Here, we describe two naturally occurring, allelic mutations that result in hearing and balance deficits in mice, named roundabout (rda) and roundabout-2J (rda2J). Positional cloning identified both as mutations of the mouse ELMO domain containing 1 gene (Elmod1), a poorly characterized gene with no previously reported mutant phenotypes. The rda mutation is a 138 kb deletion that includes exons 1–5 of Elmod1, and rda2J is an intragenic duplication of exons 3–8 of Elmod1. The deafness associated with these mutations is caused by cochlear hair cell dysfunction, as indicated by conspicuous elongations and fusions of inner hair cell stereocilia and progressive degeneration of outer hair cell stereocilia. Mammalian ELMO-family proteins are known to be involved in complexes that activate small GTPases to regulate the actin cytoskeleton during phagocytosis and cell migration. ELMOD1 and ELMOD2 recently were shown to function as GTPase-activating proteins (GAPs) for the Arf family of small G proteins. Our finding connecting ELMOD1 deficiencies with stereocilia dysmorphologies thus establishes a link between the Ras superfamily of small regulatory GTPases and the actin cytoskeleton dynamics of hair cell stereocilia. PMID:22558334

  19. Mutations of the mouse ELMO domain containing 1 gene (Elmod1) link small GTPase signaling to actin cytoskeleton dynamics in hair cell stereocilia.

    PubMed

    Johnson, Kenneth R; Longo-Guess, Chantal M; Gagnon, Leona H

    2012-01-01

    Stereocilia, the modified microvilli projecting from the apical surfaces of the sensory hair cells of the inner ear, are essential to the mechanoelectrical transduction process underlying hearing and balance. The actin-filled stereocilia on each hair cell are tethered together by fibrous links to form a highly patterned hair bundle. Although many structural components of hair bundles have been identified, little is known about the signaling mechanisms that regulate their development, morphology, and maintenance. Here, we describe two naturally occurring, allelic mutations that result in hearing and balance deficits in mice, named roundabout (rda) and roundabout-2J (rda(2J)). Positional cloning identified both as mutations of the mouse ELMO domain containing 1 gene (Elmod1), a poorly characterized gene with no previously reported mutant phenotypes. The rda mutation is a 138 kb deletion that includes exons 1-5 of Elmod1, and rda(2J) is an intragenic duplication of exons 3-8 of Elmod1. The deafness associated with these mutations is caused by cochlear hair cell dysfunction, as indicated by conspicuous elongations and fusions of inner hair cell stereocilia and progressive degeneration of outer hair cell stereocilia. Mammalian ELMO-family proteins are known to be involved in complexes that activate small GTPases to regulate the actin cytoskeleton during phagocytosis and cell migration. ELMOD1 and ELMOD2 recently were shown to function as GTPase-activating proteins (GAPs) for the Arf family of small G proteins. Our finding connecting ELMOD1 deficiencies with stereocilia dysmorphologies thus establishes a link between the Ras superfamily of small regulatory GTPases and the actin cytoskeleton dynamics of hair cell stereocilia. PMID:22558334

  20. Structural and mechanical properties of UV-photo-cross-linked poly(N-vinyl-2-pyrrolidone) hydrogels.

    PubMed

    D'Errico, Gerardino; De Lellis, Marco; Mangiapia, Gaetano; Tedeschi, Annamaria; Ortona, Ornella; Fusco, Sabato; Borzacchiello, Assunta; Ambrosio, Luigi

    2008-01-01

    Biocompatible poly( N-vinyl-2-pyrrolidone) (PVP) hydrogels have been produced by UV irradiation of aqueous polymer mixtures, using a high-pressure mercury lamp. The resulting materials have been characterized by a combination of experimental techniques, including rheology, small-angle neutron scattering (SANS), electron paramagnetic resonance (EPR), and pulsed gradient spin-echo nuclear magnetic resonance (PGSE-NMR), to put in evidence the relationship between the microstructural properties and the macrofunctional behavior of the gels. Viscoelastic measurements showed that UV photo-cross-linked PVP hydrogels present a strong gel mechanical behavior and viscoelastic moduli values similar to those of biological gels. The average distance between the cross-linking points of the polymer network was estimated from the hydrogels elastic modulus. However, SANS measurements showed that the network microstructure is highly inhomogeneous, presenting polymer-rich regions more densely cross-linked, surrounded by a water-rich environment. EPR and PGSE-NMR data further support the existence of these water-rich domains. Inclusion of a third component, such as glycerol, in the PVP aqueous mixture to be irradiated has been also investigated. A small amount of glycerol (<3% w/w) can be added keeping satisfactory properties of the hydrogel, while higher amounts significantly affect the cross-linking process. PMID:18163572

  1. Comprehensive Cross-Linking Mass Spectrometry Reveals Parallel Orientation and Flexible Conformations of Plant HOP2-MND1.

    PubMed

    Rampler, Evelyn; Stranzl, Thomas; Orban-Nemeth, Zsuzsanna; Hollenstein, David Maria; Hudecz, Otto; Schloegelhofer, Peter; Mechtler, Karl

    2015-12-01

    The HOP2-MND1 heterodimer is essential for meiotic homologous recombination in plants and other eukaryotes and promotes the repair of DNA double-strand breaks. We investigated the conformational flexibility of HOP2-MND1, important for understanding the mechanistic details of the heterodimer, with chemical cross-linking in combination with mass spectrometry (XL-MS). The final XL-MS workflow encompassed the use of complementary cross-linkers, quenching, digestion, size exclusion enrichment, and HCD-based LC-MS/MS detection prior to data evaluation. We applied two different homobifunctional amine-reactive cross-linkers (DSS and BS(2)G) and one zero-length heterobifunctional cross-linker (EDC). Cross-linked peptides of four biological replicates were analyzed prior to 3D structure prediction by protein threading and protein-protein docking for cross-link-guided molecular modeling. Miniaturization of the size-exclusion enrichment step reduced the required starting material, led to a high amount of cross-linked peptides, and allowed the analysis of replicates. The major interaction site of HOP2-MND1 was identified in the central coiled-coil domains, and an open colinear parallel arrangement of HOP2 and MND1 within the complex was predicted. Moreover, flexibility of the C-terminal capping helices of both complex partners was observed, suggesting the coexistence of a closed complex conformation in solution. PMID:26535604

  2. The Structurally Plastic CH2 Domain Is Linked to Distinct Functions of Fimbrins/Plastins.

    PubMed

    Zhang, Ruihui; Chang, Ming; Zhang, Meng; Wu, Youjun; Qu, Xiaolu; Huang, Shanjin

    2016-08-19

    Fimbrins/plastins have been implicated in the generation of distinct actin structures, which are linked to different cellular processes. Historically, fimbrins/plastins were mainly considered as generating tight actin bundles. Here, we demonstrate that different members of the fimbrin/plastin family have diverged biochemically during evolution to generate either tight actin bundles or loose networks with distinct biochemical and biophysical properties. Using the phylogenetically and functionally distinct Arabidopsis fimbrins FIM4 and FIM5 we found that FIM4 generates both actin bundles and cross-linked actin filaments, whereas FIM5 only generates actin bundles. The distinct functions of FIM4 and FIM5 are clearly observed at single-filament resolution. Domain swapping experiments showed that cooperation between the conformationally plastic calponin-homology domain 2 (CH2) and the N-terminal headpiece determines the function of the full-length protein. Our study suggests that the structural plasticity of fimbrins/plastins has biologically meaningful consequences, and provides novel insights into the structure-function relationship of fimbrins/plastins as well as shedding light on how cells generate distinct actin structures. PMID:27261463

  3. Cross-linking and 1H n.m.r. spectroscopy of the pyruvate dehydrogenase complex of Escherichia coli

    PubMed Central

    Packman, Leonard C.; Perham, Richard N.; Roberts, Gordon C. K.

    1982-01-01

    The pyruvate dehydrogenase complex of Escherichia coli was treated with o-phenylene bismaleimide in the presence of the substrate pyruvate, producing almost complete cross-linking of the lipoate acetyltransferase polypeptide chains as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. This took place without effect on the catalytic activities of the other two component enzymes and with little evidence of cross-links being formed with other types of protein subunit. Limited proteolysis with trypsin indicated that the cross-links were largely confined to the lipoyl domains of the lipoate acetyltransferase component of the same enzyme particle. This intramolecular cross-linking had no effect on the very sharp resonances observed in the 1H n.m.r. spectrum of the enzyme complex, which derive from regions of highly mobile polypeptide chain in the lipoyl domains. Comparison of the spin–spin relaxation times, T2, with the measured linewidths supported the idea that the highly mobile region is best characterized as a random coil. Intensity measurements in spin-echo spectra showed that it comprises a significant proportion (probably not less than one-third) of a lipoyl domain and is thus much more than a small hinge region, but there was insufficient intensity in the resonances to account for the whole lipoyl domain. On the other hand, no evidence was found in the 1H n.m.r. spectrum for a substantial structured region around the lipoyl-lysine residues that was free to move on the end of this highly flexible connection. If such a structured region were bound to other parts of the enzyme complex for a major part of its time, its resonances might be broadened sufficiently to evade detection by 1H n.m.r. spectroscopy. ImagesFig. 2.Fig. 3. PMID:6753833

  4. Troponin T cross-linking in human apoptotic cardiomyocytes.

    PubMed Central

    Gorza, L.; Menabó, R.; Di Lisa, F.; Vitadello, M.

    1997-01-01

    Intracellular calcium overload of guinea pig cardiomyocytes is accompanied by troponin T cross-linking, which is revealed by changes in immunoreactivity of anti-troponin T antibodies. We presently investigated whether the same process is detectable in the human heart. Immunohistochemistry shows myofibrillar staining with BN-59 anti-troponin T antibody with rare cardiomyocytes in samples obtained at surgery, whereas approximately 50% of myocytes are labeled in heart samples taken at autopsy within 3 hours of death, and every cardiomyocyte is stained after exposure of biopsy sections to 10 mmol/L calcium. Western blot analysis shows reactive polypeptides of approximately 70 and 85 to 90 kd in addition to troponin T in both treated and autopsy heart sections. Neither reactivity in immunohistochemistry nor additional reactive polypeptides in Western blot are detectable when calpain or transglutaminase is inhibited during exposure of sections to high calcium. Troponin T crosslinking occurs also in isolated myofibrils, which show staining with BN-59 at either sarcomeric A or I bands. Labeling with TdT-mediated dUTP nick and labeling (TUNEL) to demonstrate apoptosis reveals DNA fragmentation in BN-59-positive myocytes. Thus, troponin T cross-linking occurs in human cardiac myocytes concomitantly with apoptosis and autopsy autolysis, suggesting that similar cytosolic alterations can be produced by different types of myocyte death. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:9176400

  5. Collagen Cross-Linking: Current Status and Future Directions

    PubMed Central

    Hovakimyan, Marine; Guthoff, Rudolf F.; Stachs, Oliver

    2012-01-01

    Collagen cross-linking (CXL) using UVA light and riboflavin (vitamin B2) was introduced as a clinical application to stabilize the cornea by inducing cross-links within and between collagen fibers. CXL has been investigated extensively and has been shown clinically to arrest the progression of keratoconic or post-LASIK ectasia. With its minimal cost, simplicity, and proven positive clinical outcome, CXL can be regarded as a useful approach to reduce the number of penetrating keratoplasties performed. Small case series have also indicated that CXL is beneficial in corneal edema by reducing stromal swelling behavior and in keratitis by inhibiting pathogen growth. Despite these encouraging results, CXL remains a relatively new method that is potentially associated with complications. Aspects such as side effects and recurrence rates have still to be elucidated. In light of the growing interest in CXL, our paper summarizes present knowledge about this promising approach. We have intentionally endeavored to include the more relevant studies from the recent literature to provide an overview of the current status of CXL. PMID:22288005

  6. Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane.

    PubMed

    Guo, Haiquan; Meador, Mary Ann B; McCorkle, Linda; Quade, Derek J; Guo, Jiao; Hamilton, Bart; Cakmak, Miko; Sprowl, Guilherme

    2011-02-01

    We report the first synthesis of polyimide aerogels cross-linked through a polyhedral oligomeric silsesquioxane, octa(aminophenyl)silsesquioxane (OAPS). Gels formed from polyamic acid solutions of 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), bisaniline-p-xylidene (BAX) and OAPS were chemically imidized and dried using supercritical CO(2) extraction to give aerogels having density around 0.1 g/cm(3). The aerogels are greater than 90 % porous, have high surface areas (230 to 280 m(2)/g) and low thermal conductivity (14 mW/m-K at room temperature). Notably, the polyimide aerogels cross-linked with OAPS have higher modulus than polymer reinforced silica aerogels of similar density and can be fabricated as both monoliths and thin films. Thin films of the aerogel are flexible and foldable making them an ideal insulation for space suits, and inflatable structures for habitats or decelerators for planetary re-entry, as well as more down to earth applications. PMID:21294517

  7. Optimization model for UV-Riboflavin corneal cross-linking

    NASA Astrophysics Data System (ADS)

    Schumacher, S.; Wernli, J.; Scherrer, S.; Bueehler, M.; Seiler, T.; Mrochen, M.

    2011-03-01

    Nowadays UV-cross-linking is an established method for the treatment of keraectasia. Currently a standardized protocol is used for the cross-linking treatment. We will now present a theoretical model which predicts the number of induced crosslinks in the corneal tissue, in dependence of the Riboflavin concentration, the radiation intensity, the pre-treatment time and the treatment time. The model is developed by merging the difussion equation, the equation for the light distribution in dependence on the absorbers in the tissue and a rate equation for the polymerization process. A higher concentration of Riboflavin solution as well as a higher irradiation intensity will increase the number of induced crosslinks. However, performed stress-strain experiments which support the model showed that higher Riboflavin concentrations (> 0.125%) do not result in a further increase in stability of the corneal tissue. This is caused by the inhomogeneous distribution of induced crosslinks throughout the cornea due to the uneven absorption of the UV-light. The new model offers the possibility to optimize the treatment individually for every patient depending on their corneal thickness in terms of efficiency, saftey and treatment time.

  8. Tea derived galloylated polyphenols cross-link purified gastrointestinal mucins.

    PubMed

    Georgiades, Pantelis; Pudney, Paul D A; Rogers, Sarah; Thornton, David J; Waigh, Thomas A

    2014-01-01

    Polyphenols derived from tea are thought to be important for human health. We show using a combination of particle tracking microrheology and small-angle neutron scattering that polyphenols acts as cross-linkers for purified gastrointestinal mucin, derived from the stomach and the duodenum. Both naturally derived purified polyphenols, and green and black tea extracts are shown to act as cross-linkers. The main active cross-linking component is found to be the galloylated forms of catechins. The viscosity, elasticity and relaxation time of the mucin solutions experience an order of magnitude change in value upon addition of the polyphenol cross-linkers. Similarly small-angle neutron scattering experiments demonstrate a sol-gel transition with the addition of polyphenols, with a large increase in the scattering at low angles, which is attributed to the formation of large scale (>10 nm) heterogeneities during gelation. Cross-linking of mucins by polyphenols is thus expected to have an impact on the physicochemical environment of both the stomach and duodenum; polyphenols are expected to modulate the barrier properties of mucus, nutrient absorption through mucus and the viscoelastic microenvironments of intestinal bacteria. PMID:25162539

  9. Thermoset-cross-linked lignocellulose: a moldable plant biomass.

    PubMed

    Karumuri, Sriharsha; Hiziroglu, Salim; Kalkan, A Kaan

    2015-04-01

    The present work demonstrates a high biomass content (i.e., up to 90% by weight) and moldable material by controlled covalent cross-linking of lignocellulosic particles by a thermoset through epoxide-hydroxyl reactions. As an example for lignocellulosic biomass, Eastern redcedar was employed. Using scanning fluorescence microscopy and vibrational spectroscopy, macroscopic to molecular scale interactions of the thermoset with the lignocellulose have been revealed. Impregnation of the polymer resin into the biomass cellular network by capillary action as well as applied pressure results in a self-organizing structure in the form of thermoset microrods in a matrix of lignocellulose. We also infer permeation of the thermoset into the cell walls from the reaction of epoxides with the hydroxyls of the lignin. Compression tests reveal, at 30% thermoset content, thermoset-cross-linked lignocellulose has superior mechanical properties over a commercial wood plastic composite while comparable stiffness and strength to bulk epoxy and wood, respectively. The failure mechanism is understood to be crack propagation along the particle-thermoset interface and/or interparticle thermoset network. PMID:25734539

  10. One-step electrospinning of cross-linked chitosan fibers.

    PubMed

    Schiffman, Jessica D; Schauer, Caroline L

    2007-09-01

    Chitin is a nitrogen-rich polysaccharide that is abundant in crustaceans, mollusks, insects, and fungi and is the second most abundant organic material found in nature next to cellulose. Chitosan, the N-deacetylated derivative of chitin, is environmentally friendly, nontoxic, biodegradable, and antibacterial. Fibrous mats are typically used in industries for filter media, catalysis, and sensors. Decreasing fiber diameters within these mats causes many beneficial effects such as increased specific surface area to volume ratios. When the intrinsically beneficial effects of chitosan are combined with the enhanced properties of nanofibrous mats, applications arise in a wide range of fields, including medical, packaging, agricultural, and automotive. This is particularly important as innovative technologies that focus around bio-based materials are currently of high urgency, as they can decrease dependencies on fossil fuels. We have demonstrated that Schiff base cross-linked chitosan fibrous mats can be produced utilizing a one-step electrospinning process that is 25 times faster and, therefore, more economical than a previously reported two-step vapor-cross-linking method. These fibrous mats are insoluble in acidic, basic, and aqueous solutions for 72 h. Additionally, this improved production method results in a decreased average fiber diameter, which measures 128 +/- 40 nm. Chemical and structural analyses were conducted utilizing Fourier transform infrared spectroscopy, solubility studies, and scanning electron microscopy. PMID:17696400

  11. Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels.

    PubMed

    Gyarmati, Benjámin; Mészár, E Zsuzsanna; Kiss, Lóránd; Deli, Mária A; László, Krisztina; Szilágyi, András

    2015-08-01

    Chemically cross-linked poly(aspartic acid) (PASP) gels were prepared by a solid-liquid phase separation technique, cryogelation, to achieve a supermacroporous interconnected pore structure. The precursor polymer of PASP, polysuccinimide (PSI) was cross-linked below the freezing point of the solvent and the forming crystals acted as templates for the pores. Dimethyl sulfoxide was chosen as solvent instead of the more commonly used water. Thus larger temperatures could be utilized for the preparation and the drawback of increase in specific volume of water upon freezing could be eliminated. The morphology of the hydrogels was characterized by scanning electron microscopy and interconnectivity of the pores was proven by the small flow resistance of the gels. Compression tests also confirmed the interconnected porous structure and the complete re-swelling and shape recovery of the supermacroporous PASP hydrogels. The prepared hydrogels are of interest for several biomedical applications as scaffolding materials because of their cytocompatibility, controllable morphology and pH-responsive character. PMID:25922304

  12. Effects of processing conditions on the reliability of cross-linked polyethylene cable insulation. Progress report

    SciTech Connect

    Phillips, P.J.

    1981-03-01

    Crystallization and morphology were investigated in cross-linked PE. /sup 13/C NMR was used to quantify the cross-links. Production of cable is being studied. Dielectric constant and loss of cross-linked PE are being measured. (DLC)

  13. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes.

    PubMed

    Leitner, Alexander; Joachimiak, Lukasz A; Unverdorben, Pia; Walzthoeni, Thomas; Frydman, Judith; Förster, Friedrich; Aebersold, Ruedi

    2014-07-01

    The study of proteins and protein complexes using chemical cross-linking followed by the MS identification of the cross-linked peptides has found increasingly widespread use in recent years. Thus far, such analyses have used almost exclusively homobifunctional, amine-reactive cross-linking reagents. Here we report the development and application of an orthogonal cross-linking chemistry specific for carboxyl groups. Chemical cross-linking of acidic residues is achieved using homobifunctional dihydrazides as cross-linking reagents and a coupling chemistry at neutral pH that is compatible with the structural integrity of most protein complexes. In addition to cross-links formed through insertion of the dihydrazides with different spacer lengths, zero-length cross-link products are also obtained, thereby providing additional structural information. We demonstrate the application of the reaction and the MS identification of the resulting cross-linked peptides for the chaperonin TRiC/CCT and the 26S proteasome. The results indicate that the targeting of acidic residues for cross-linking provides distance restraints that are complementary and orthogonal to those obtained from lysine cross-linking, thereby expanding the yield of structural information that can be obtained from cross-linking studies and used in hybrid modeling approaches. PMID:24938783

  14. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes

    PubMed Central

    Leitner, Alexander; Joachimiak, Lukasz A.; Unverdorben, Pia; Walzthoeni, Thomas; Frydman, Judith; Förster, Friedrich; Aebersold, Ruedi

    2014-01-01

    The study of proteins and protein complexes using chemical cross-linking followed by the MS identification of the cross-linked peptides has found increasingly widespread use in recent years. Thus far, such analyses have used almost exclusively homobifunctional, amine-reactive cross-linking reagents. Here we report the development and application of an orthogonal cross-linking chemistry specific for carboxyl groups. Chemical cross-linking of acidic residues is achieved using homobifunctional dihydrazides as cross-linking reagents and a coupling chemistry at neutral pH that is compatible with the structural integrity of most protein complexes. In addition to cross-links formed through insertion of the dihydrazides with different spacer lengths, zero-length cross-link products are also obtained, thereby providing additional structural information. We demonstrate the application of the reaction and the MS identification of the resulting cross-linked peptides for the chaperonin TRiC/CCT and the 26S proteasome. The results indicate that the targeting of acidic residues for cross-linking provides distance restraints that are complementary and orthogonal to those obtained from lysine cross-linking, thereby expanding the yield of structural information that can be obtained from cross-linking studies and used in hybrid modeling approaches. PMID:24938783

  15. Effect of cross-link density and hydrophilicity of PU on blood compatibility of hydrophobic PS/hydrophilic PU IPNs.

    PubMed

    Roh, H W; Song, M J; Han, D K; Lee, D S; Ahn, J H; Kim, S C

    1999-01-01

    To investigate the effect of the hydrophilic and hydrophobic microdomain structure on blood compatibility, a series of interpenetrating polymer networks (IPNs) composed of hydrophilic polyurethane (PU) and hydrophobic polystyrene (PS) was prepared. One series was prepared with varying cross-link densities of each network, the other with varying hydrophilicity of the PU component. All PU/PS IPNs exhibited microphase-separated structures that had dispersed PS domains in the continuous PU matrix. The domain size decreased with decreasing the hydrophilicity of the PU component and increasing the cross-link density of each network. As the cross-link density and hydrophobicity of the PU component was increased, an inward shift of Tgs was observed, which was due to the decrease in phase separation between the hydrophobic PS component and hydrophilic PU component. In the in vitro platelet adhesion test, as the microdomain size of PU/PS IPN surface decreased, the number of adhered platelets on the PU/PS IPN surface was reduced and deformation of the adhered platelets decreased. It could be concluded that blood compatibility of PU/PS IPN was mainly affected by the degree of mixing between PU and PS component, which was reflected by the domain size of PS rich phase. PMID:10091927

  16. Structural dynamics of an actin spring.

    PubMed

    Mahadevan, L; Riera, C S; Shin, Jennifer H

    2011-02-16

    Actin-based motility in cells is usually associated with either polymerization/depolymerization in the presence of cross-linkers or contractility in the presence of myosin motors. Here, we focus on a third distinct mechanism involving actin in motility, seen in the dynamics of an active actin spring that powers the acrosomal reaction of the horseshoe crab (Limulus polyphemus) sperm. During this process, a 60-μm bent and twisted bundle of cross-linked actin uncoils and becomes straight in a few seconds in the presence of Ca(2+). This straightening, which occurs at a constant velocity, allows the acrosome to forcefully penetrate the egg. Synthesizing ultrastructural information with the kinetics, energetics, and imaging of calcium binding allows us to construct a dynamical theory for this mechanochemical engine consistent with our experimental observations. It also illuminates the general mechanism by which energy may be stored in conformational changes and released cooperatively in ordered macromolecular assemblies. PMID:21320427

  17. Thermally Reversible Physically Cross-Linked Hybrid Network Hydrogels Formed by Thermosensitive Hairy Nanoparticles.

    PubMed

    Wright, Roger A E; Henn, Daniel M; Zhao, Bin

    2016-08-18

    This Article reports on thermally induced reversible formation of physically cross-linked, three-dimensional network hydrogels from aqueous dispersions of thermosensitive diblock copolymer brush-grafted silica nanoparticles (hairy NPs). The hairy NPs consisted of a silica core, a water-soluble polyelectrolyte inner block of poly(2-(methacryloyloxy)ethyltrimethylammonium iodide), and a thermosensitive poly(methoxydi(ethylene glycol) methacrylate) (PDEGMMA) outer block synthesized by sequential surface-initiated atom transfer radical polymerizations and postpolymerization quaternization of tertiary amine moieties. Moderately concentrated dispersions of these hairy nanoparticles in water underwent thermally induced reversible transitions between flowing liquids to self-supporting gels upon heating. The gelation was driven by the lower critical solution temperature (LCST) transition of the PDEGMMA outer block, which upon heating self-associated into hydrophobic domains acting as physical cross-linking points for the gel network. Rheological studies showed that the sol-gel transition temperature decreased with increasing hairy NP concentration, and the gelation was achieved at concentrations as low as 3 wt %. PMID:27455167

  18. Interdomain conformational changes in Akt activation revealed by chemical cross-linking and tandem mass spectrometry.

    PubMed

    Huang, Bill X; Kim, Hee-Yong

    2006-06-01

    Akt, a serine/threonine kinase, plays a critical role in cell survival. Upon growth factor receptor stimulation, cytosolic Akt is recruited to the plasma membrane by phospholipid binding and activated through phosphorylation at Thr(308) and Ser(473). Although crystal structures for the parts of Akt have been reported, neither the three-dimensional structure of the whole molecule nor sequential conformational changes during activation have been demonstrated. In this study, we demonstrated that Akt undergoes dramatic interdomain conformational changes during activation processes by probing the three-dimensional structure of full-length Akt in solution using chemical cross-linking and tandem mass spectrometry. The cross-linking results not only provided new structural information but also revealed distinctive spatial arrangements of individual domains in the Akt molecule in resting, membrane-interacted, phosphorylated, and substrate-bound states. Our data allowed a new model for stepwise interdomain conformational changes in Akt activation sequence, setting a stage for the further investigation on Akt-membrane, Akt-protein, and/or Akt-drug interactions in solution to understand molecular mechanisms involved in physiological and pathophysiological processes of cell survival. PMID:16531397

  19. Analysis of Protein-protein Interaction Interface between Yeast Mitochondrial Proteins Rim1 and Pif1 Using Chemical Cross-linking Mass Spectrometry

    PubMed Central

    Zybailov, Boris; Gokulan, Kuppan; Wiese, Jadon; Ramanagoudr-Bhojappa, Ramanagouda; Byrd, Alicia K.; Glazko, Galina; Jaiswal, Mihir; Mackintosh, Samuel; Varughese, Kottayil I.; Raney, Kevin D.

    2015-01-01

    Defining protein-protein contacts is a challenging problem and cross-linking is a promising solution. Here, we present a case of mitochondrial single strand binding protein Rim1 and helicase Pif1, an interaction first observed in immuno-affinity pull-down from yeast cells using Pif1 bait. We found that only the short succinimidyl-diazirine cross-linker or formaldehyde captured the interaction between recombinant Rim1 and Pif1. In addition, Pif1 needed to be stripped of its N-terminal and C-terminal domains, and Rim1's C-terminus needed to be modified for the cross-linked product to become visible. Our report is an example of a non-trivial analysis, where a previously identified stable interaction escapes initial capture with cross-linking agents and requires substantial modification to recombinant proteins and fine-tuning of the mass spectrometry-based methods for the cross-links to become detectable. We used high resolution mass spectrometry to detect the cross-linked peptides. A 1:1 mixture of 15N and 14N-labeled Rim1 was used to validate the cross-links by their mass shift in the LC-MS profiles. Two sites on Rim1 were confirmed: 1) the N-terminus, and 2) the K29 residue. Performing cross-linking with a K29A variant visibly reduced the cross-linked product. Further, K29A-Rim1 showed a five-fold lower affinity to single stranded DNA compared to wild-type Rim1. Both the K29A variant and wild type Rim1 showed similar degrees of stimulation of Pif1 helicase activity. We propose structural models of the Pif1-Rim1 interaction and discuss its functional significance. Our work represents a non-trivial protein-protein interface analysis and demonstrates utility of short and non-specific cross-linkers. PMID:26807012

  20. Curcumin Cross-links Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Polypeptides and Potentiates CFTR Channel Activity by Distinct Mechanisms*

    PubMed Central

    Bernard, Karen; Wang, Wei; Narlawar, Rajeshwar; Schmidt, Boris; Kirk, Kevin L.

    2009-01-01

    Cystic fibrosis (CF) is caused by loss-of-function mutations in the CFTR chloride channel. Wild type and mutant CFTR channels can be activated by curcumin, a well tolerated dietary compound with some appeal as a prospective CF therapeutic. However, we show here that curcumin has the unexpected effect of cross-linking CFTR polypeptides into SDS-resistant oligomers. This effect occurred for CFTR channels in microsomes as well as in intact cells and at the same concentrations that are effective for promoting CFTR channel activity (5–50 μm). Both mature CFTR polypeptides at the cell surface and immature CFTR protein in the endoplasmic reticulum were cross-linked by curcumin, although the latter pool was more susceptible to this modification. Curcumin cross-linked two CF mutant channels (ΔF508 and G551D) as well as a variety of deletion constructs that lack the major cytoplasmic domains. In vitro cross-linking could be prevented by high concentrations of oxidant scavengers (i.e. reduced glutathione and sodium azide) indicating a possible oxidation reaction with the CFTR polypeptide. Importantly, cyclic derivatives of curcumin that lack the reactive β diketone moiety had no cross-linking activity. One of these cyclic derivatives stimulated the activities of wild type CFTR channels, Δ1198-CFTR channels, and G551D-CFTR channels in excised membrane patches. Like the parent compound, the cyclic derivative irreversibly activated CFTR channels in excised patches during prolonged exposure (>5 min). Our results raise a note of caution about secondary biochemical effects of reactive compounds like curcumin in the treatment of CF. Cyclic curcumin derivatives may have better therapeutic potential in this regard. PMID:19740743

  1. Studies on N-vinylformamide cross-linked copolymers

    NASA Astrophysics Data System (ADS)

    Świder, Joanna; Tąta, Agnieszka; Sokołowska, Katarzyna; Witek, Ewa; Proniewicz, Edyta

    2015-12-01

    Copolymers of N-vinylformamide (NVF) cross-linked with three multifunctional monomers, including divinylbenzene (DVB), ethylene glycol dimethacrylate (EGDMA), and N,N‧-methylenebisacrylamide (MBA) were synthetized by a three-dimensional free radical polymerization in inverse suspension using 2,2‧-azobis(2-methylpropionamide) dihydrochloride (AIBA) as an initiator. Methyl silicon oil was used as the continuous phase during the polymerization processes. Fourier-transform adsorption infrared (FT-IR) spectra revealed the presence of silicone oil traces and suggested that silicone oil strongly interacted with the copolymers surface. Purification procedure allowed to completely remove the silicon oil traces from P(NVF-co-DVB) only. The morphology and the structure of the investigated copolymers were examined by optical microscopy, FT-IR, and FT-Raman (Fourier-transform Raman spectroscopy) methods.

  2. Conventional Versus Cross-Linked Polyethylene for Total Hip Arthroplasty.

    PubMed

    Surace, Michele F; Monestier, Luca; Vulcano, Ettore; Harwin, Steven F; Cherubino, Paolo

    2015-09-01

    The clinical and radiographic outcomes of 88 patients who underwent primary total hip arthroplasty with either conventional polyethylene or cross-linked polyethylene (XLPE) from the same manufacturer were compared. There were no significant differences between the 2 subpopulations regarding average age, gender, side affected, or prosthetic stem and cup size. The average follow-up was 104 months (range, 55 to 131 months). To the authors' knowledge, this is the longest follow-up for this particular insert. Clinical and radiographic evaluations were performed at 1, 3, 6, and 12 months and then annually. Results showed that XLPE has a significantly greater wear reduction than that of standard polyethylene in primary total hip arthroplasty. At the longest available follow-up for these specific inserts, XLPE proved to be effective in reducing wear. PMID:26375527

  3. [Cross-links of collagen and bone quality].

    PubMed

    Banse, X

    2010-01-01

    Bone tissue is a marvellous material. Basic bone function is to be structurally stiff and strong. Stiffness allows vertebrates to maintain their shape, to protect the organs and to move. Being strong, bone only breaks in exceptional circumstances. Osteoporosis is a disease where fractures happen too often, because of abnormal bone fragility. In this situation, bone--especially cancellous bone--does not take up its first duty. Trabeculae are scarce and thin, leading to very low tissue density. Biomechanical tests and clinical evidence have shown that some subjects have, with equal bone density, stronger or weaker bone tissue. This led to the concept of bone quality. Even if other hypotheses have been systematically explored, it seems that bone collagen chemical nature, especially its cross-link profile, significantly influences human bone quality. PMID:21513097

  4. Protein cross-linking tools for the construction of nanomaterials.

    PubMed

    Domeradzka, Natalia E; Werten, Marc Wt; Wolf, Frits A de; de Vries, Renko

    2016-06-01

    Across bioengineering there is a need to couple proteins to other proteins, or to peptides. Although traditional chemical conjugations have dominated in the past, more and more highly specific coupling strategies are becoming available that are based on protein engineering. Here we review the use of protein modification approaches such as enzymatic and autocatalytic protein-protein coupling, as well as the use of hetero-dimerizing (or hetero-oligomerizing) modules, applied to the specific case of linking together de novo designed recombinant polypeptides into precisely structured nanomaterials. Such polypeptides are increasingly being investigated for biomedical and other applications. In this review, we describe the protein-engineering based cross-linking strategies that dramatically expand the repertoire of possible molecular structures and, hence, the range of materials that can be produced from them. PMID:26871735

  5. The Effect of Crosslinking on the Microscale Stress Response and Molecular Deformations in Actin Networks

    NASA Astrophysics Data System (ADS)

    Gurmessa, Bekele; Fitzpatrick, Robert; Valdivia, Jonathon; Anderson, Rae M. R.

    Actin, the most abundant protein in eukaryotic cells, is a semi-flexible biopolymer in the cytoskeleton that plays a crucial structural and mechanical role in cell stability, motion and replication, as well as muscle contraction. Most of these mechanically driven structural changes in cells stem from the complex viscoelastic nature of entangled actin networks and the presence of a myriad of proteins that cross-link actin filaments. Despite their importance, the mechanical response of actin networks is not yet well understood, particularly at the molecular level. Here, we use optical trapping - coupled with fluorescence microscopy - to characterize the microscale stress response and induced filament deformations in entangled and cross-linked actin networks subject to localized mechanical perturbations. In particular, we actively drive a microsphere 10 microns through an entangled or cross- linked actin network at a constant speed and measure the resistive force that the deformed actin filaments exert on the bead during and following strain. We simultaneously visualize and track individual sparsely-labeled actin filaments to directly link force response to molecular deformations, and map the propagation of the initially localized perturbation field throughout the rest of the network (~100 um). By varying the concentration of actin and cross-linkers we directly determine the role of crosslinking and entanglements on the length and time scales of stress propagation, molecular deformation and relaxation mechanisms in actin networks.

  6. Cross-linked polyethylenimine-tripolyphosphate nanoparticles for gene delivery.

    PubMed

    Huang, Xianzhang; Shen, Sujing; Zhang, Zhanfeng; Zhuang, Junhua

    2014-01-01

    The high transfection efficiency of polyethylenimine (PEI) makes it an attractive potential nonviral genetic vector for gene delivery and therapy. However, the highly positive charge of PEI leads to cytotoxicity and limits its application. To reduce the cytotoxicity of PEI, we prepared anion-enriched nanoparticles that combined PEI with tripolyphosphate (TPP). We then characterized the PEI-TPP nanoparticles in terms of size, zeta potential, and Fourier-transform infrared (FTIR) spectra, and assessed their transfection efficiency, cytotoxicity, and ability to resist deoxyribonuclease (DNase) I digestion. The cellular uptake of PEI-TPP with phosphorylated internal ribosome entry site-enhanced green fluorescent protein C1 or FAM (fluorouracil, Adriamycin [doxorubicin] and mitomycin)-labeled small interfering ribonucleic acids (siRNAs) was monitored by fluorescence microscopy and confocal laser microscopy. The efficiency of transfected delivery of plasmid deoxyribonucleic acid (DNA) and siRNA in vitro was 1.11- to 4.20-fold higher with the PEI-TPP particles (7.6% cross-linked) than with the PEI, at all N:P ratios (nitrogen in PEI to phosphorus in DNA) tested. The cell viability of different cell lines was more than 90% at the chosen N:P ratios of PEI-TPP/DNA complexes. Moreover, PEI-TPP nanoparticles resisted digestion by DNase I for more than 2 hours. The time-dependent absorption experiment showed that 7.6% of cross-linked PEI-TPP particles were internalized by 293T cells within 1 hour. In summary, PEI-TPP nanoparticles effectively transfected cells while conferring little or no toxicity, and thus have potential application in gene delivery. PMID:25342902

  7. Peptidoglycan cross-linking in glycopeptide-resistant Actinomycetales.

    PubMed

    Hugonnet, Jean-Emmanuel; Haddache, Nabila; Veckerlé, Carole; Dubost, Lionel; Marie, Arul; Shikura, Noriyasu; Mainardi, Jean-Luc; Rice, Louis B; Arthur, Michel

    2014-01-01

    Synthesis of peptidoglycan precursors ending in D-lactate (D-Lac) is thought to be responsible for glycopeptide resistance in members of the order Actinomycetales that produce these drugs and in related soil bacteria. More recently, the peptidoglycan of several members of the order Actinomycetales was shown to be cross-linked by L,D-transpeptidases that use tetrapeptide acyl donors devoid of the target of glycopeptides. To evaluate the contribution of these resistance mechanisms, we have determined the peptidoglycan structure of Streptomyces coelicolor A(3)2, which harbors a vanHAX gene cluster for the production of precursors ending in D-Lac, and Nonomuraea sp. strain ATCC 39727, which is devoid of vanHAX and produces the glycopeptide A40296. Vancomycin retained residual activity against S. coelicolor A(3)2 despite efficient incorporation of D-Lac into cytoplasmic precursors. This was due to a D,D-transpeptidase-catalyzed reaction that generated a stem pentapeptide recognized by glycopeptides by the exchange of D-Lac for D-Ala and Gly. The contribution of L,D-transpeptidases to resistance was limited by the supply of tetrapeptide acyl donors, which are essential for the formation of peptidoglycan cross-links by these enzymes. In the absence of a cytoplasmic metallo-D,D-carboxypeptidase, the tetrapeptide substrate was generated by hydrolysis of the C-terminal D-Lac residue of the stem pentadepsipeptide in the periplasm in competition with the exchange reaction catalyzed by D,D-transpeptidases. In Nonomuraea sp. strain ATCC 39727, the contribution of L,D-transpeptidases to glycopeptide resistance was limited by the incomplete conversion of pentapeptides into tetrapeptides despite the production of a cytoplasmic metallo-D,D-carboxypeptidase. Since the level of drug production exceeds the level of resistance, we propose that L,D-transpeptidases merely act as a tolerance mechanism in this bacterium. PMID:24395229

  8. Chemical cross-linking with thiol-cleavable reagents combined with differential mass spectrometric peptide mapping--a novel approach to assess intermolecular protein contacts.

    PubMed Central

    Bennett, K. L.; Kussmann, M.; Björk, P.; Godzwon, M.; Mikkelsen, M.; Sørensen, P.; Roepstorff, P.

    2000-01-01

    The intermolecular contact regions between monomers of the homodimeric DNA binding protein ParR and the interaction between the glycoproteins CD28 and CD80 were investigated using a strategy that combined chemical cross-linking with differential MALDI-MS analyses. ParR dimers were modified in vitro with the thiol-cleavable cross-linker 3,3'-dithio-bis(succinimidylproprionate) (DTSSP), proteolytically digested with trypsin and analyzed by MALDI-MS peptide mapping. Comparison of the peptide maps obtained from digested cross-linked ParR dimers in the presence and absence of a thiol reagent strongly supported a "head-to-tail" arrangement of the monomers in the dimeric complex. Glycoprotein fusion constructs CD28-IgG and CD80-Fab were cross-linked in vitro by DTSSP, characterized by nonreducing SDS-PAGE, digested in situ with trypsin and analyzed by MALDI-MS peptide mapping (+/- thiol reagent). The data revealed the presence of an intermolecular cross-link between the receptor regions of the glycoprotein constructs, as well as a number of unexpected but nonetheless specific interactions between the fusion domains of CD28-IgG and the receptor domain of CD80-Fab. The strategy of chemical cross-linking combined with differential MALDI-MS peptide mapping (+ thiol reagent) enabled localization of the interface region(s) of the complexes studied and clearly demonstrates the utility of such an approach to obtain structural information on interacting noncovalent complexes. PMID:10975572

  9. Cross-linking characterization of polymers based on their optical dispersion utilizing a white-light interferometer

    NASA Astrophysics Data System (ADS)

    Taudt, Ch.; Baselt, T.; Oreski, G.; Hirschl, Ch.; Koch, E.; Hartmann, P.

    2015-05-01

    This work analyses samples of the widely used encapsulant of photovoltaics modules, ethylene vinyl acetate (EVA). The samples were cross-linked using a lamination technique for different curing times (0 - 20 minutes). The cross-linking characterization is done by determinating the material dispersion with the aid of a combined temporal- and spectral domain white-light interferometer. With the proposed technique it was possible to discriminate the differences in crosslinking for the given curing times. One important feature of this approach is the possibility to perform space resolved measurements of the crosslinking state with μm-resolution. Furthermore the paper discusses the mathematical analysis and processing of measurement data and shows a prototype solution for the fast and automated data acquisition for industrial application.

  10. Actinic keratosis

    MedlinePlus

    ... example, if you work outdoors) Had many severe sunburns early in life Are older Symptoms Actinic keratosis ... and tanning salons. Other things to know about sun exposure: Sun exposure is stronger in or near surfaces ...

  11. Actinic Cheilitis

    MedlinePlus

    ... is a precancerous condition related to cumulative lifetime sun exposure. The lower lip is most often affected. Individuals ... Wearing barrier clothing (eg, wide-brimmed hats) and sunscreen-containing lip balms can aid in preventing actinic ...

  12. Energetic modeling and single-molecule verification of dynamic regulation on receptor protein diffusion by actin corrals and lipid raft domains receptor

    NASA Astrophysics Data System (ADS)

    Lin, Chien Yu; Huang, Jung Y.; Lo, Leu-Wei

    2015-03-01

    To faithfully estimate a signal that varies in both space and time, the optimization strategy used by a live cell is to organize a collection of distributed and mobile receptors into a mobile active clustering. However, living eukaryotic cells are highly heterogeneous and stochastically dynamic. It is therefore important to develop an energetic model based on fundamental laws to verify that the underlying processes are energetically favorable. We developed an energetic model based on the generalized Langevin equation and the Cahn-Hilliard equation to simulate the diffusive behaviors of receptor proteins in the plasma membrane with a hierarchical structure of actin corrals, lipid domains, and receptor proteins. Single-molecule tracking data of EGFR acquired on live HeLa cells agrees with the simulation results. We discovered that after ligand binding, EGFR molecules move into lipid nanodomains. The transition rates between different diffusion states of liganded EGFR molecules are regulated by the lipid domains. Our method captures both the sensitivity of single-molecule processes, statistic accuracy of data analysis, and the hierarchical structure of plasma membranes.

  13. Standard versus trans-epithelial collagen cross-linking in keratoconus patients suitable for standard collagen cross-linking

    PubMed Central

    Rossi, S; Orrico, A; Santamaria, C; Romano, V; De Rosa, L; Simonelli, F; De Rosa, G

    2015-01-01

    Purpose Evaluating the clinical results of trans-epithelial collagen cross-linking (CXL) and standard CXL in patients with progressive keratoconus. Methods This prospective study comprised 20 eyes of 20 patients with progressive keratoconus. Ten eyes were treated by standard CXL and ten by trans-epithelial cross-linking (TE-CXL, epithelium on) with 1 year of follow-up. All patients underwent complete ophthalmologic testing that included pre- and postoperative uncorrected visual acuity, corrected visual acuity, spherical error, spherical equivalent, corneal astigmatism, simulated maximum, minimum, and average keratometry, coma and spherical aberration, optical pachymetry, and endothelial cell density. Intra-and postoperative complications were recorded. The solution used for standard CXL comprised riboflavin 0.1% and dextran 20.0% (Ricrolin), while the solution for TE-CXL (Ricrolin, TE) comprised riboflavin 0.1%, dextran 15.0%, trometamol (Tris), and ethylenediaminetetraacetic acid. Ultraviolet-A treatment was performed with UV-X System at 3 mW/cm2. Results In both the standard CXL group (ten patients, ten eyes; mean age, 30.4±7.3 years) and the TE-CXL group (ten patients, ten eyes; mean age, 28±3.8 years), uncorrected visual acuity and corrected visual acuity improved significantly after treatment. Furthermore, a significant improvement in topographic outcomes, spherical error, and spherical equivalent was observed in both groups at month 12 posttreatment. No significant variations were recorded in other parameters. No complications were noted. Conclusion A 1-year follow-up showed stability of clinical and refractive outcomes after standard CXL and TE-CXL. PMID:25834386

  14. Ocular biocompatibility of carbodiimide cross-linked hyaluronic acid hydrogels for cell sheet delivery carriers.

    PubMed

    Lai, Jui-Yang; Ma, David Hui-Kang; Cheng, Hsiao-Yun; Sun, Chi-Chin; Huang, Shu-Jung; Li, Ya-Ting; Hsiue, Ging-Ho

    2010-01-01

    Due to its innocuous nature, hyaluronic acid (HA) is one of the most commonly used biopolymers for ophthalmic applications. We recently developed a cell sheet delivery system using carbodiimide cross-linked HA carriers. Chemical cross-linking provides an improvement in stability of polymer gels, but probably causes toxic side-effects. The aim of this study was to investigate the ocular biocompatibility of HA hydrogels cross-linked by 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC). HA discs without cross-linking and glutaraldehyde (GTA) cross-linked HA samples were used for comparison. The disc implants were inserted in the anterior chamber of rabbit eyes for 24 weeks and characterized by slit-lamp biomicroscopy, histology and scanning electron microscopy. The ophthalmic parameters obtained from biomicroscopic examinations were also scored to provide a quantitative grading system. Results of this study showed that the HA discs cross-linked with EDC had better ocular biocompatibility than those with GTA. The continued residence of GTA cross-linked HA implants in the intraocular cavity elicited severe tissue responses and significant foreign body reactions, whereas no adverse inflammatory reaction was observed after contact with non-cross-linked HA or EDC cross-linked HA samples. It is concluded that the cross-linking agent type gives influence on ocular biocompatibility of cell carriers and the EDC-HA hydrogel is an ideal candidate for use as an implantable material in cell sheet delivery applications. PMID:20178691

  15. Tuning nanoscale viscoelasticity of polyelectrolyte complexes with multiple types of cross-links

    NASA Astrophysics Data System (ADS)

    Ma, Tianzhu; Han, Biao; Lee, Daeyeon; Han, Lin

    Mechanical properties of hydrogels are manifestation of cross-link type and density, fixed charges and water-polymer interactions. In this study, we revealed how different types of cross-links regulate the nanoscale viscoelasticity of polyelectrolyte networks. Ionically cross-linked PAH/PAA layer-by-layer complexes were modified to include covalent cross-links using EDC. AFM-nanoindentation and force relaxation were performed at various ionic strength (0.01-1M) and pH (1.5-5.5). As-assembled networks, held only by ionic cross-links, underwent >95% relaxation, dominated by cross-link breaking and re-formation. Addition of covalent cross-links increased the instantaneous modulus by 1.6-fold and attenuated relaxation to ~80% of net neutral states (pH >=3.5), as covalent cross-links provide additional elastic components. The network remained stabilized when all ionic cross-links were dissociated at pH <=1.5, whereby further attenuation to 31% in relaxation could be due to viscoelastic polymer conformational changes and fluid flow-induced poroelasticity. Taken together, this study demonstrates the potential of using multiple cross-linking types to tune the viscoelastic mechanisms in polyelectrolyte complexes.

  16. Physicochemical properties and bioactivity of nisin-containing cross-linked hydroxypropylmethylcellulose films.

    PubMed

    Sebti, Issam; Delves-Broughton, John; Coma, Véronique

    2003-10-22

    Cross-linked hydroxypropylmethylcellulose (HPMC) cast films with citric acid as polycarboxylic cross-linker were elaborated to study the effect of cross-linking level on various properties. Increased amounts of cross-linking agent were not connected to statistically different tensile strength and Young's modulus. Whatever the cross-linking level of the film was, the ultimate elongation parameter decreased by approximately 60% compared to the HMPC control film. Moisture sorption isotherms and water contact angle meter showed that the effect of cross-linking degree tends to reduce the hygroscopic and hydrophilic characteristics of films. In addition, to control bacteria growth on food surfaces, the antimicrobial activity of both 98% cross-linked HPMC-nisin and control HPMC-nisin films was tested on Micrococcus luteus. Despite the incorporation of a significant content of nisin, cross-linked HPMC-nisin films were completely inactive on the microbial strain compared to the HPMC-nisin control films. Cross-linking conditions likely either denatured the nisin or irreversibly bound nisin to the cross-linked HPMC. However, nisin adsorbed into films made from previously cross-linked HPMC maintained its activity. PMID:14558764

  17. Development of a Novel Cross-linking Strategy for Fast and Accurate Identification of Cross-linked Peptides of Protein Complexes*

    PubMed Central

    Kao, Athit; Chiu, Chi-li; Vellucci, Danielle; Yang, Yingying; Patel, Vishal R.; Guan, Shenheng; Randall, Arlo; Baldi, Pierre; Rychnovsky, Scott D.; Huang, Lan

    2011-01-01

    Knowledge of elaborate structures of protein complexes is fundamental for understanding their functions and regulations. Although cross-linking coupled with mass spectrometry (MS) has been presented as a feasible strategy for structural elucidation of large multisubunit protein complexes, this method has proven challenging because of technical difficulties in unambiguous identification of cross-linked peptides and determination of cross-linked sites by MS analysis. In this work, we developed a novel cross-linking strategy using a newly designed MS-cleavable cross-linker, disuccinimidyl sulfoxide (DSSO). DSSO contains two symmetric collision-induced dissociation (CID)-cleavable sites that allow effective identification of DSSO-cross-linked peptides based on their distinct fragmentation patterns unique to cross-linking types (i.e. interlink, intralink, and dead end). The CID-induced separation of interlinked peptides in MS/MS permits MS3 analysis of single peptide chain fragment ions with defined modifications (due to DSSO remnants) for easy interpretation and unambiguous identification using existing database searching tools. Integration of data analyses from three generated data sets (MS, MS/MS, and MS3) allows high confidence identification of DSSO cross-linked peptides. The efficacy of the newly developed DSSO-based cross-linking strategy was demonstrated using model peptides and proteins. In addition, this method was successfully used for structural characterization of the yeast 20 S proteasome complex. In total, 13 non-redundant interlinked peptides of the 20 S proteasome were identified, representing the first application of an MS-cleavable cross-linker for the characterization of a multisubunit protein complex. Given its effectiveness and simplicity, this cross-linking strategy can find a broad range of applications in elucidating the structural topology of proteins and protein complexes. PMID:20736410

  18. mDia1 and formins: screw cap of the actin filament

    PubMed Central

    Mizuno, Hiroaki; Watanabe, Naoki

    2012-01-01

    Formin homology proteins (formins) are actin nucleation factors which remain bound to the growing barbed end and processively elongate actin filament (F-actin). Recently, we have demonstrated that a mammalian formin mDia1 rotates along the long-pitch helix of F-actin during processive elongation (helical rotation) by single-molecule fluorescence polarization. We have also shown processive depolymerization of mDia1-bound F-actin during which helical rotation was visualized. In the cell where F-actins are highly cross-linked, formins should rotate during filament elongation. Therefore, when formins are tightly anchored to cellular structures, formins may not elongate F-actin. Adversely, helical rotation of formins might affect the twist of F-actin. Formins could thus control actin elongation and regulate stability of cellular actin filaments through helical rotation. On the other hand, ADP-actin elongation at the mDia1-bound barbed end turned out to become decelerated by profilin, in marked contrast to its remarkably positive effect on mDia1-mediated ATP-actin elongation. This deceleration is caused by enhancement of the off-rate of ADP-actin. While mDia1 and profilin enhance the ADP-actin off-rate, they do not apparently increase the ADP-actin on-rate at the barbed end. These results imply that G-actin-bound ATP and its hydrolysis may be part of the acceleration mechanism of formin-mediated actin elongation.

  19. Cross-linking of initiation factor IF3 to Escherichia coli 30S ribosomal subunit by trans-diamminedichloroplatinum(II): characterization of two cross-linking sites in 16S rRNA; a possible way of functioning for IF3.

    PubMed Central

    Ehresmann, C; Moine, H; Mougel, M; Dondon, J; Grunberg-Manago, M; Ebel, J P; Ehresmann, B

    1986-01-01

    The initiation factor IF3 is platinated with trans-diamminedichloroplatinum(II) and cross-linked to Escherichia coli 30S ribosomal subunit. Two cross-linking sites are unambiguously identified on the 16S rRNA: a major one, in the region 819-859 in the central domain, and a minor one, in the region 1506-1529 in the 3'-terminal domain. Specific features of these sequences together with their particular location within the 30S subunit lead us to postulate a role for IF3, that conciliates topographical and functional observations made so far. Images PMID:2425339

  20. Effect of glucose content on thermally cross-linked fibrous gelatin scaffolds for tissue engineering.

    PubMed

    Siimon, Kaido; Reemann, Paula; Põder, Annika; Pook, Martin; Kangur, Triin; Kingo, Külli; Jaks, Viljar; Mäeorg, Uno; Järvekülg, Martin

    2014-09-01

    Thermally cross-linked glucose-containing electrospun gelatin meshes were studied as possible cell substrate materials. FTIR analysis was used to study the effect of glucose on cross-linking reactions. It was found that the presence of glucose increases the extent of cross-linking of fibrous gelatin scaffolds, which in return determines scaffold properties and their usability in tissue engineering applications. Easy to handle fabric-like scaffolds were obtained from blends containing up to 15% glucose. Maximum extent of cross-linking was reached at nearly 20% glucose content. Cross-linking effectively resulted in decreased solubility and increased resistance to enzymatic degradation. Preliminary short-term cell culture experiments indicate that such thermally cross-linked gelatin-glucose scaffolds are suitable for tissue engineering applications. PMID:25063151

  1. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Wu, Liming; Sessler, Gerhard M.

    2015-07-01

    Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young's modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d33 coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d33 ṡ g33) for a more typical d33 value of 400 pC/N is about 11.2 GPa-1. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm2 and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  2. Mechanical characterization of cross-linked serum albumin microcapsules.

    PubMed

    de Loubens, Clément; Deschamps, Julien; Georgelin, Marc; Charrier, Anne; Edwards-Levy, Florence; Leonetti, Marc

    2014-07-01

    Controlling the deformation of microcapsules and capsules is essential in numerous biomedical applications. The mechanical properties of the membrane of microcapsules made of cross-linked human serum albumin (HSA) are revealed by two complementary experiments in the linear elastic regime. The first provides the surfacic shear elastic modulus Gs by the study of small deformations of a single capsule trapped in an elongational flow: Gs varies from 0.002 to 5 N m(-1). The second gives the volumic Young's modulus E of the membrane by shallow and local indentations of the membrane with an AFM probe: E varies from 20 kPa to 1 MPa. The surfacic and volumic elastic moduli increase with the size of the capsule up to three orders of magnitude and with the protein concentration of the membrane. The membrane thickness is evaluated from these two membrane mechanical characteristics and increases with the size and the initial HSA concentration from 2 to 20 μm. PMID:24817568

  3. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    SciTech Connect

    Zhang, Xiaoqing; Wu, Liming; Sessler, Gerhard M.

    2015-07-15

    Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young’s modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d{sub 33} coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d{sub 33} ⋅ g{sub 33}) for a more typical d{sub 33} value of 400 pC/N is about 11.2 GPa{sup −1}. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm{sup 2} and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  4. Zinc cross-linked hydroxamated alginates for pulsed drug release

    PubMed Central

    Raut, Neha S; Deshmukh, Prasad R; Umekar, Milind J; Kotagale, Nandkishor R

    2013-01-01

    Introduction: Alginates can be tailored chemically to improve solubility, physicochemical, and biological properties and its complexation with metal ion is useful for controlling the drug release. Materials And Methods: Synthesized N,O-dimethyl, N-methyl, or N-Benzyl hydroxylamine derivatives of sodium alginate were subsequently complexed with zinc to form beads. Hydroxamation of sodium alginate was confirmed by Fourier transform infra-red spectroscopy (FTIR) and differential scanning calorimetry (DSC). Results: The synthesized polymeric material exhibited reduced aqueous, HCl and NaOH solubility. The hydroxamated derivatives demonstrated pulsed release where change in pH of the dissolution medium stimulated the atenolol release. Conclusion: Atenolol loaded Zn cross-linked polymeric beads demonstrated the sustained the plasma drug levels with increased half-life. Although the synthesized derivatives greatly altered the aqueous solubility of sodium alginate, no significant differences in in vitro and in vivo atenolol release behavior amongst the N,O-dimethyl, N-methyl, or N-Benzyl hydroxylamine derivatives of sodium alginate were observed. PMID:24350039

  5. Synthesis and Properties of Cross-Linked Polyamide Aerogels

    NASA Technical Reports Server (NTRS)

    Williams, Jarrod C.; Meador, Mary Ann; McCorkle, Linda

    2015-01-01

    We report the first synthesis of cross-linked polyamide aerogels through step growth polymerization using a combination of diamines, diacid chloride and triacid chloride. Polyamide oligomers endcapped with amines are prepared as stable solutions in N-methylpyrrolidinone from several different diamine precursors and 1,3-benzenedicarbonyl dichloride. Addition of 1,3,5-benzenetricarbonyl trichloride yields gels which form in under five minutes according to the scheme shown. Solvent exchange of the gels into ethanol, followed by drying using supercritical CO2 extraction gives colorless aerogels with densities around 0.1 to 0.2 gcm3. Thicker monolithes of the polyamide aerogels are stiff and strong, while thin films of certain formulations are highly flexible, durable, and even translucent. These materials may have use as insulation for deployable space structures, rovers, habitats or extravehicular activity suits as well as in many terrestrial applications. Strucure property relationships of the aerogels, including surface area, mechanical properties, and thermal conductivity will be discussed.

  6. Cross-linking of polytetrafluoroethylene during room-temperature irradiation

    SciTech Connect

    Pugmire, David L; Wetteland, Chris J; Duncan, Wanda S; Lakis, Rollin E; Schwartz, Daniel S

    2008-01-01

    Exposure of polytetrafluoroethylene (PTFE) to {alpha}-radiation was investigated to detennine the physical and chemical effects, as well as to compare and contrast the damage mechanisms with other radiation types ({beta}, {gamma}, or thermal neutron). A number of techniques were used to investigate the chemical and physical changes in PTFE after exposure to {alpha}-radiation. These techniques include: Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and fluorescence spectroscopy. Similar to other radiation types at low doses, the primary damage mechanism for the exposure of PTFE to {alpha}-radiation appears to be chain scission. Increased doses result in a change-over of the damage mechanism to cross-linking. This result is not observed for any radiation type other than {alpha} when irradiation is performed at room temperature. Finally, at high doses, PTFE undergoes mass-loss (via smallfluorocarbon species evolution) and defluorination. The amount and type of damage versus sample depth was also investigated. Other types of radiation yield damage at depths on the order of mm to cm into PTFE due to low linear energy transfer (LET) and the correspondingly large penetration depths. By contrast, the {alpha}-radiation employed in this study was shown to only induce damage to a depth of approximately 26 {mu}m, except at very high doses.

  7. Pyridinium cross-links in heritable disorders of collagen

    SciTech Connect

    Pasquali, M.; Still, M.J.; Dembure, P.P.

    1995-12-01

    Ehlers-Danlos syndrome (EDS) is a heterogeneous group of inherited disorders of collagen that is characterized by skin fragility, skin hyperextensibility, and joint hypermobility. EDS type VI is caused by impaired collagen lysyl hydroxylase (procollagen-lysine, 2-oxoglutarate 5-dioxygenase; E.C.1.14.11.4), the ascorbate-dependent enzyme that hydroxylates lysyl residues on collagen neopeptides. Different alterations in the gene for collagen lysyl hydroxylase have been reported in families with EDS type VI. In EDS type VI, impairment of collagen lysyl hydroxylase results in a low hydroxylysine content in mature collagen. Hydroxylysine is a precursor of the stable, covalent, intermolecular cross-links of collagen, pyridinoline (Pyr), and deoxypyridinoline (Dpyr). Elsewhere we reported in preliminary form that patients with EDS type VI had a distinctive alteration in the urinary excretion of Pyr and Dpyr. In the present study, we confirm that the increased Dpyr/Pyr ratio is specific for EDS type VI and is not observed in other inherited or acquired collagen disorders. In addition, we find that skin from patients with EDS type VI has reduced Pyr and increased Dpyr, which could account for the organ pathology. 19 refs., 1 tab.

  8. An overview of corneal collagen cross-linking (CXL).

    PubMed

    Kymionis, George D; Mikropoulos, Dimitrios G; Portaliou, Dimitra M; Voudouragkaki, Irini C; Kozobolis, Vassilios P; Konstas, Anastasios G P

    2013-10-01

    Corneal collagen cross-linking (CXL) was first described over a decade ago and is now considered to be one of the most important surgical innovations of modern ophthalmology. Prior to its introduction, no interventions were available to arrest, or slow down ectatic disease progression, with corneal transplantation required in the majority of cases. Unlike earlier treatments of corneal ectasias that attempted to only improve the consequences of the disease, CXL aims to address the corneal biomechanical weakening itself. The long-term safety and efficacy of CXL have been established in several studies that have documented significant improvements in all outcome measures (visual acuity, spherical equivalent, astigmatism, and keratometric findings). The emerging combination of CXL with other interventions (termed 'CXL plus') optimizes the visual and topographic outcomes. This, along with the expansion of the techniques' indications for other clinical conditions, such as microbial keratitis, highlights the continuous improvement of the initial technique and confirms its wide acceptance. Overall, CXL has already demonstrated much promise and has several clinical indications, representing a clear example of recent advances in ocular therapy. PMID:24170589

  9. Enzymatic cross-linking of carboxymethylpullulan grafted with ferulic acid.

    PubMed

    Dulong, Virginie; Hadrich, Ahdi; Picton, Luc; Le Cerf, Didier

    2016-10-20

    Carboxymethylpullulan (CMP) has been modified in a two-step grafting reaction of ferulic acid (FA). Acid adipic dihydrazyde (ADH) was first reacted with FA activated with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC). Then the product of this first reaction was reacted with CMP (activated with EDC). Grafted polysaccharides structure was confirmed by FTIR and (1)H NMR spectroscopy. Analyses by size-exclusion chromatography (SEC) coupling on-line with a multi-angle light scattering detector (MALS), a viscometer and a differential refractive index detector (DRI) (SEC/MALS/DRI/Visco) showed that associations between FA moieties occurred due to hydrophobic interactions. The grafting rates of FA were determined by the Folin-Ciocalteu method and were found between 1.0% and 11.2% (mol/mol anhydroglucose unit). The CMP-FA were then enzymatically cross-linked with laccase from Pleurotus ostreatus. The crosslinking reactions were followed by rheological measurements, demonstrating the influence of laccase concentration on kinetics. Elastic modulus and swelling rates of hydrogels depends on FA content only for low values. PMID:27474545

  10. Peroxidase induced oligo-tyrosine cross-links during polymerization of α-lactalbumin.

    PubMed

    Dhayal, Surender Kumar; Sforza, Stefano; Wierenga, Peter A; Gruppen, Harry

    2015-12-01

    Horseradish peroxidase (HRP) induced cross-linking of proteins has been reported to proceed through formation of di-tyrosine cross-links. In the case of low molar mass phenolic substrates, the enzymatic oxidation is reported to lead to polymerization of the phenols. The aim of this work was to investigate if during oxidative cross-linking of proteins oligo-tyrosine cross-links are formed in addition to dityrosine. To this end, α-lactalbumin (α-LA) was cross-linked using horseradish peroxidase (HRP) and hydrogen peroxide (H₂O₂). The reaction products were acid hydrolysed, after which the cross-linked amino acids were investigated by LC-MS and MALDI-MS. To test the effect of the size of the substrate, the cross-linking reaction was also performed with L-tyrosine, N-acetyl L-tyrosinamide and angiotensin. These products were analyzed by LC-MS directly, as well as after acid hydrolysis. In the acid hydrolysates of all samples oligo-tyrosine (Yn, n=3-8) was found in addition to di-tyrosine (Y2). Two stages of cross-linking of α-LA were identified: a) 1-2 cross-links were formed per monomer until the monomers were converted into oligomers, and b) subsequent cross-linking of oligomers formed in the first stage to form nanoparticles containing 3-4 cross-links per monomer. The transition from first stage to the second stage coincided with the point where di-tyrosine started to decrease and more oligo-tyrosines were formed. In conclusion, extensive polymerization of α-LA using HRP via oligo-tyrosine cross-links is possible, as is the case for low molar mass tyrosine containing substrates. PMID:26282909

  11. Synthesis of Cross-Linked DNA Containing Oxidized Abasic Site Analogues

    PubMed Central

    2015-01-01

    DNA interstrand cross-links are an important family of DNA damage that block replication and transcription. Recently, it was discovered that oxidized abasic sites react with the opposing strand of DNA to produce interstrand cross-links. Some of the cross-links between 2′-deoxyadenosine and the oxidized abasic sites, 5′-(2-phosphoryl-1,4-dioxobutane) (DOB) and the C4-hydroxylated abasic site (C4-AP), are formed reversibly. Chemical instability hinders biochemical, structural, and physicochemical characterization of these cross-linked duplexes. To overcome these limitations, we developed methods for preparing stabilized analogues of DOB and C4-AP cross-links via solid-phase oligonucleotide synthesis. Oligonucleotides of any sequence are attainable by synthesizing phosphoramidites in which the hydroxyl groups of the cross-linked product were orthogonally protected using photochemically labile and hydrazine labile groups. Selective unmasking of a single hydroxyl group precedes solid-phase synthesis of one arm of the cross-linked DNA. The method is compatible with commercially available phosphoramidites and other oligonucleotide synthesis reagents. Cross-linked duplexes containing as many as 54 nt were synthesized on solid-phase supports. Subsequent enzyme ligation of one cross-link product provided a 60 bp duplex, which is suitable for nucleotide excision repair studies. PMID:24949656

  12. Controlled sparse and percolating cross-linking in waterborne soft adhesives.

    PubMed

    Deplace, F; Carelli, C; Langenfeld, A; Rabjohns, M A; Foster, A B; Lovell, P A; Creton, C

    2009-09-01

    The effect of low levels of cross-linking on the adhesive and mechanical properties of waterborne pressure-sensitive adhesives was investigated. We have taken advantage of a core-shell latex particle morphology obtained by emulsion polymerization to create a heterogeneous structure of cross-links without major modification of the monomer composition. The latex particles comprise a shell containing cross-linkable diacetone acrylamide (DAAM) repeat units localized on the periphery of a slightly softer core copolymer of very similar composition. Adipic acid dihydrazide was added to the latex prior to film formation to react with DAAM repeat units and affect interfacial cross-linking between particles in the adhesive films. The honeycomb-like structure obtained after drying of the latex results in a good balance between the dissipative properties required for adhesion and the resistance to creep. The characterization of the mechanical properties of the films shows that the chosen cross-linking method creates a percolating lightly cross-linked network, swollen with a nearly un-cross-linked component. With this cross-linking method, the linear viscoelastic properties of the soft films are nearly unaffected by the cross-linking while the nonlinear tensile properties are greatly modified. As a result, the long-term shear resistance of the adhesive film improves very significantly while the peel force remains nearly the same. A simple rheological model is used to interpret qualitatively the changes in the material parameters induced by cross-linking. PMID:20355828

  13. Biologically relevant oxidants cause bound proteins to readily oxidatively cross-link at Guanine.

    PubMed

    Solivio, Morwena J; Nemera, Dessalegn B; Sallans, Larry; Merino, Edward J

    2012-02-20

    Oxidative DNA-protein cross-links have received less attention than other types of DNA damage and remain as one of the least understood types of oxidative lesion. A model system using ribonuclease A and a 27-nucleotide DNA was used to determine the propensity of oxidative cross-linking to occur in the presence of oxidants. Cross-link formation was examined using four different oxidation systems that generate singlet oxygen, superoxide, and metal-based Fenton reactions. It is shown that oxidative cross-linking occurs in yields ranging from 14% to a maximal yield of 61% in all oxidative systems when equivalent concentrations of DNA and protein are present. Because singlet oxygen is the most efficient oxidation system in generating DNA-protein cross-links, it was chosen for further analyses. Cross-linking occurred with single-stranded DNA binding protein and not with bovine serum albumin. Addition of salt lowered nonspecific binding affinity and lowered cross-link yield by up to 59%. The yield of cross-linking increased with increased ratios of protein compared with DNA. Cross-linking was highly dependent on the number of guanines in a DNA sequence. Loss of guanine content on the 27-nucleotide DNA led to nearly complete loss in cross-linking, while primer extension studies showed cross-links to predominantly occur at guanine base on a 100-nucleotide DNA. The chemical species generated were examined using two peptides derived from the ribonuclease A sequence, N-acetyl-AAAKF and N-acetyl-AYKTT, which were cross-linked to 2'-deoxyguanosine. The cross-link products were spiroiminodihydantoin, guanidinohydantoin, and tyrosyl-based adducts. Formation of tyrosine-based adducts may be competitive with the more well-studied lysine-based cross-links. We conclude that oxidative cross-links may be present at high levels in cells since the propensity to oxidatively cross-link is high and so much of the genomic DNA is coated with protein. PMID:22216745

  14. Covalent cross-links in polyampholytic chitosan fibers enhances bone regeneration in a rabbit model.

    PubMed

    Ghosh, Paulomi; Rameshbabu, Arun Prabhu; Das, Dipankar; Francis, Nimmy K; Pawar, Harpreet Singh; Subramanian, Bhuvaneshwaran; Pal, Sagar; Dhara, Santanu

    2015-01-01

    Chitosan fibers were prepared in citric acid bath, pH 7.4 and NaOH solution at pH 13, to form ionotropically cross-linked and uncross-linked fibers, respectively. The fibers formed in citric acid bath were further cross-linked via carbodiimide chemistry; wherein the pendant carboxyl moieties of citric acid were used for new amide bond formation. Moreover, upon covalent cross-linking in the ionically gelled citrate-chitosan fibers, incomplete conversion of the ion pairs to amide linkages took place resulting in the formation of a dual network structure. The dual cross-linked fibers displayed improved mechanical property, higher stability against enzymatic degradation, hydrophobicity and superior bio-mineralization compared to the uncross-linked and native citrate cross-linked fibers. Additionally, upon cyclic loading, the ion pairs in the dual cross-linked fibers dissociated by dissipating energy and reformed during the relaxation period. The twin property of elasticity and energy dissipation mechanism makes the dual cross-linked fiber unique under dynamic mechanical conditions. The differences in the physico-chemical characteristics were reflected in protein adsorption, which in turn influenced the cellular activities on the fibers. Compared to the uncross-linked and ionotropically cross-linked fibers, the dual cross-linked fibers demonstrated higher proliferation and osteogenic differentiation of the MSCs in vitro as well as better osseous tissue regeneration in a rabbit model. PMID:25483844

  15. Cross-linking measurements of the Potato leafroll virus reveal protein interaction topologies required for virion stability, aphid transmission, and virus-plant interactions

    PubMed Central

    Chavez, Juan D.; Cilia, Michelle; Weisbrod, Chad R.; Ju, Ho-Jong; Eng, Jimmy K.; Gray, Stewart M.; Bruce, James E.

    2012-01-01

    Protein interactions are critical determinants of insect-transmission for viruses in the family Luteoviridae. Two luteovirid structural proteins, the capsid protein (CP) and the readthrough protein (RTP), contain multiple functional domains that regulate virus transmission. There is no structural information available for these economically important viruses. We used Protein Interaction Reporter (PIR) technology, a strategy that uses chemical cross-linking and high resolution mass spectrometry, to discover topological features of the Potato leafroll virus (PLRV) CP and RTP that are required for the diverse biological functions of PLRV virions. Four cross-linked sites were repeatedly detected, one linking CP monomers, two within the RTP, and one linking the RTP and CP. Virus mutants with triple amino acid deletions immediately adjacent to or encompassing the cross-linked sites were defective in virion stability, RTP incorporation into the capsid, and aphid transmission. Plants infected with a new, infectious PLRV mutant lacking 26 amino acids encompassing a cross-linked site in the RTP exhibited a delay in the appearance of systemic infection symptoms. PIR technology provided the first structural insights into luteoviruses which are crucially lacking and that are involved in vector-virus and plant-virus interactions. These are the first cross-linking measurements on any infectious, insect-transmitted virus. PMID:22390342

  16. Caught in the act: covalent cross-linking captures activator-coactivator interactions in vivo.

    PubMed

    Krishnamurthy, Malathy; Dugan, Amanda; Nwokoye, Adaora; Fung, Yik-Hong; Lancia, Jody K; Majmudar, Chinmay Y; Mapp, Anna K

    2011-12-16

    Currently there are few methods suitable for the discovery and characterization of transient, moderate affinity protein-protein interactions in their native environment, despite their prominent role in a host of cellular functions including protein folding, signal transduction, and transcriptional activation. Here we demonstrate that a genetically encoded photoactivatable amino acid, p-benzoyl-l-phenylalanine, can be used to capture transient and/or low affinity binding partners in an in vivo setting. In this study, we focused on ensnaring the coactivator binding partners of the transcriptional activator VP16 in S. cerevisiae. The interactions between transcriptional activators and coactivators in eukaryotes are moderate in affinity and short-lived, and due in part to these characteristics, identification of the direct binding partners of activators in vivo has met with only limited success. We find through in vivo photo-cross-linking that VP16 contacts the Swi/Snf chromatin-remodeling complex through the ATPase Snf2(BRG1/BRM) and the subunit Snf5 with two distinct regions of the activation domain. An analogous experiment with Gal4 reveals that Snf2 is also a target of this activator. These results suggest that Snf2 may be a valuable target for small molecule probe discovery given the prominent role the Swi/Snf complex family plays in development and in disease. More significantly, the successful implementation of the in vivo cross-linking methodology in this setting demonstrates that it can be applied to the discovery and characterization of a broad range of transient and/or modest affinity protein-protein interactions. PMID:21977905

  17. Computer-assisted mass spectrometric analysis of naturally occurring and artificially introduced cross-links in proteins and protein complexes.

    PubMed

    de Koning, Leo J; Kasper, Piotr T; Back, Jaap Willem; Nessen, Merel A; Vanrobaeys, Frank; Van Beeumen, Jozef; Gherardi, Ermanno; de Koster, Chris G; de Jong, Luitzen

    2006-01-01

    A versatile software tool, VIRTUALMSLAB, is presented that can perform advanced complex virtual proteomic experiments with mass spectrometric analyses to assist in the characterization of proteins. The virtual experimental results allow rapid, flexible and convenient exploration of sample preparation strategies and are used to generate MS reference databases that can be matched with the real MS data obtained from the equivalent real experiments. Matches between virtual and acquired data reveal the identity and nature of reaction products that may lead to characterization of post-translational modification patterns, disulfide bond structures, and cross-linking in proteins or protein complexes. The most important unique feature of this program is the ability to perform multistage experiments in any user-defined order, thus allowing the researcher to vary experimental approaches that can be conducted in the laboratory. Several features of VIRTUALMSLAB are demonstrated by mapping both disulfide bonds and artificially introduced protein cross-links. It is shown that chemical cleavage at aspartate residues in the protease resistant RNase A, followed by tryptic digestion can be optimized so that the rigid protein breaks up into MALDI-MS detectable fragments, leaving the disulfide bonds intact. We also show the mapping of a number of chemically introduced cross-links in the NK1 domain of hepatocyte growth factor/scatter factor. The VIRTUALMSLAB program was used to explore the limitation and potential of mass spectrometry for cross-link studies of more complex biological assemblies, showing the value of high performance instruments such as a Fourier transform mass spectrometer. The program is freely available upon request. PMID:16403016

  18. Alkaline battery containing a separator of a cross-linked copolymer of vinyl alcohol and unsaturated carboxylic acid

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Philipp, W. H.; Sheibley, D. W.; Gonzalez-Sanabria, O. D. (Inventor)

    1985-01-01

    A battery separator for an alkaline battery is described. The separator comprises a cross linked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The cross linked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. Cross linking with a polyaldehyde cross linking agent is preferred.

  19. Simulation of the effect of confinement in actin ring formation

    NASA Astrophysics Data System (ADS)

    Adeli Koudehi, Maral; Vavylonis, Dimitrios; Haosu Tang Team; Dimitrios Vavylonis Team

    Actin filaments are vital for different network structures in living cells. During cytokinesis, they form a contractile ring containing myosin motor proteins and actin filament cross-linkers to separate one cell into two cells. Recent experimental studies have quantified the bundle, ring, and network structures that form when actin filaments polymerize in confined environments in vitro, in the presence of varying concentrations of cross-linkers. In this study, we performed numerical simulations to investigate the effect of actin spherical confinement and cross-linking in ring formation. We used a spring-bead model and Brownian dynamics to simulate semiflexible actin filaments that polymerize in a confining sphere with a rate proportional to the monomer concentration. Applying the model for different size of the confining spheres shows that the probability of ring formation decreases by increasing the radius (at fixed initial monomer concentration), in agreement with prior experimental data. We describe the effect of persistence length, orientation-dependent cross-linking, and initial actin monomer concentration. Simulations show that equilibrium configurations can be reached through zipping and unzipping of actin filaments in bundles and transient ring formation.

  20. Actinic reticuloid

    SciTech Connect

    Marx, J.L.; Vale, M.; Dermer, P.; Ragaz, A.; Michaelides, P.; Gladstein, A.H.

    1982-09-01

    A 58-year-old man has his condition diagnosed as actinic reticuloid on the basis of clinical and histologic findings and phototesting data. He had clinical features resembling mycosis fungoides in light-exposed areas. Histologic findings disclosed a bandlike infiltrate with atypical mononuclear cells in the dermis and scattered atypical cells in the epidermis. Electron microscopy disclosed mononuclear cells with bizarre, convoluted nuclei, resembling cerebriform cells of Lutzner. Phototesting disclosed a diminished minimal erythemal threshold to UV-B and UV-A. Microscopic changes resembling actinic reticuloid were reproduced in this patient 24 and 72 hours after exposure to 15 minimal erythemal doses of UV-B.

  1. Synthesis of borate cross-linked rhamnogalacturonan II

    PubMed Central

    Funakawa, Hiroya; Miwa, Kyoko

    2015-01-01

    In the present review, we describe current knowledge about synthesis of borate crosslinked rhamnogalacturonan II (RG-II) and it physiological roles. RG-II is a portion of pectic polysaccharide with high complexity, present in primary cell wall. It is composed of homogalacturonan backbone and four distinct side chains (A–D). Borate forms ester bonds with the apiosyl residues of side chain A of two RG-II monomers to generate borate dimerized RG-II, contributing for the formation of networks of pectic polysaccharides. In plant cell walls, more than 90% of RG-II are dimerized by borate under boron (B) sufficient conditions. Borate crosslinking of RG-II in primary cell walls, to our knowledge, is the only experimentally proven molecular function of B, an essential trace-element. Although abundance of RG-II and B is quite small in cell wall polysaccharides, increasing evidence supports that RG-II and its borate crosslinking are critical for plant growth and development. Significant advancement was made recently on the location and the mechanisms of RG-II synthesis and borate cross-linking. Molecular genetic studies have successfully identified key enzymes for RG-II synthesis and regulators including B transporters required for efficient formation of RG-II crosslinking and consequent normal plant growth. The present article focuses recent advances on (i) RG-II polysaccharide synthesis, (ii) occurrence of borate crosslinking and (iii) B transport for borate supply to RG-II. Molecular mechanisms underlying formation of borate RG-II crosslinking and the physiological impacts are discussed. PMID:25954281

  2. Encapsulation of volatiles by homogenized partially-cross linked alginates.

    PubMed

    Inguva, Pavan K; Ooi, Shing Ming; Desai, Parind M; Heng, Paul W S

    2015-12-30

    Cross-linked calcium alginate gels are too viscous to be efficaciously incorporated into spray dried formulations. Thus, viscosity reduction is essential to ensure the processability of calcium alginate gels to be sprayed. Viscosity reduction by high pressure homogenization can open new formulation possibilities. Presently, testing of microcapsule integrity is also limited because either single particle tests neglect collective particle behaviours in bulk or bulk testing methods are often associated with single compressions which may not fully characterize individual particle strengths. The aim of this study was sub-divided into three objectives. First objective was to evaluate the impact of high pressure homogenization on gel viscosity. Second objective was to explore the use of the homogenized gels with modified starch for microencapsulation by spray drying. The final objective was to develop a stamping system as microcapsule strength tester that can assess microcapsules in bulk and evaluate the impact of multiple compressions. Collectively, this study would lead towards developing a pressure-activated patch of microcapsules with encapsulated volatiles and the method to assess the patch efficacy. The alginate gels largely experienced an exponential decay in viscosity when homogenized. Furthermore, the homogenized gels were successfully incorporated in spray drying formulations for microencapsulation. The custom-designed microcapsule strength tester was successfully used and shown to possess the required sensitivity to discern batches of microcapsules containing volatiles to have different release profiles. Addition of homogenized gels strengthened the microcapsules only at high wall to core ratios with low mass-load alginate gels. High mass-load gels weaken the microcapsules, exhibiting a higher release at low stamping pressures and wrinkling on the microcapsules surface. PMID:26581772

  3. Corneal cross-linking in 9 horses with ulcerative keratitis

    PubMed Central

    2013-01-01

    Background Corneal ulcers are one of the most common eye problems in the horse and can cause varying degrees of visual impairment. Secondary infection and protease activity causing melting of the corneal stroma are always concerns in patients with corneal ulcers. Corneal collagen cross-linking (CXL), induced by illumination of the corneal stroma with ultraviolet light (UVA) after instillation of riboflavin (vitamin B2) eye drops, introduces crosslinks which stabilize melting corneas, and has been used to successfully treat infectious ulcerative keratitis in human patients. Therefore we decided to study if CXL can be performed in sedated, standing horses with ulcerative keratitis with or without stromal melting. Results Nine horses, aged 1 month to 16 years (median 5 years) were treated with a combination of CXL and medical therapy. Two horses were diagnosed with mycotic, 5 with bacterial and 2 with aseptic ulcerative keratitis. A modified Dresden-protocol for CXL could readily be performed in all 9 horses after sedation. Stromal melting, diagnosed in 4 horses, stopped within 24 h. Eight of nine eyes became fluorescein negative in 13.5 days (median time; range 4–26 days) days after CXL. One horse developed a bacterial conjunctivitis the day after CXL, which was successfully treated with topical antibiotics. One horse with fungal ulcerative keratitis and severe uveitis was enucleated 4 days after treatment due to panophthalmitis. Conclusions CXL can be performed in standing, sedated horses. We did not observe any deleterious effects attributed to riboflavin or UVA irradiation per se during the follow-up, neither in horses with infectious nor aseptic ulcerative keratitis. These data support that CXL can be performed in the standing horse, but further studies are required to compare CXL to conventional medical treatment in equine keratitis and to optimize the CXL protocol in this species. PMID:23803176

  4. Integrated Cryogenic Satellite Communications Cross-Link Receiver Experiment

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Bhasin, K. B.; Downey, A. N.; Jackson, C. J.; Silver, A. H.; Javadi, H. H. S.

    1995-01-01

    An experiment has been devised which will validate, in space, a miniature, high-performance receiver. The receiver blends three complementary technologies; high temperature superconductivity (HTS), pseudomorphic high electron mobility transistor (PHEMT) monolithic microwave integrated circuits (MMIC), and a miniature pulse tube cryogenic cooler. Specifically, an HTS band pass filter, InP MMIC low noise amplifier, HTS-sapphire resonator stabilized local oscillator (LO), and a miniature pulse tube cooler will be integrated into a complete 20 GHz receiver downconverter. This cooled downconverter will be interfaced with customized signal processing electronics and integrated onto the space shuttle's 'HitchHiker' carrier. A pseudorandom data sequence will be transmitted to the receiver, which is in low Earth orbit (LEO), via the Advanced Communication Technology Satellite (ACTS) on a 20 GHz carrier. The modulation format is QPSK and the data rate is 2.048 Mbps. The bit error rate (BER) will be measured in situ. The receiver is also equipped with a radiometer mode so that experiment success is not totally contingent upon the BER measurement. In this mode, the receiver uses the Earth and deep space as a hot and cold calibration source, respectively. The experiment closely simulates an actual cross-link scenario. Since the receiver performance depends on channel conditions, its true characteristics would be masked in a terrestrial measurement by atmospheric absorption and background radiation. Furthermore, the receiver's performance depends on its physical temperature, which is a sensitive function of platform environment, thermal design, and cryocooler performance. This empirical data is important for building confidence in the technology.

  5. Gelation of Covalently Cross-Linked PEG–Heparin Hydrogels

    PubMed Central

    Schultz, Kelly M.; Baldwin, Aaron D.; Kiick, Kristi L.; Furst, Eric M.

    2010-01-01

    We study PEG–heparin hydrogels to identify compositions that lead to gel formation and measure the corresponding gelation kinetics. The material consists of a maleimide-functionalized high molecular weight heparin (HMWH) backbone covalently cross-linked with bis-thiol poly(ethylene glycol) (PEG). Using multiple particle tracking microrheology, we investigate a broad composition space, defined by the number of maleimide functional sites per HMWH (f = 3.9–11.8), the molecular weight of the PEG cross-linker (Mn = 2000, 5000, and 10 000), and the concentrations of the heparin and PEG polymers. Gelation kinetics are characterized by time–cure superposition, yielding the gel time, tc, and the critical relaxation exponent, n. Gelation times range from 5 < tc ≤ 45 min, with the fastest kinetics occurring for the highest HMWH maleimide functionalities. tc depends nonmonotonically on the PEG cross-linker molecular weight, suggesting that gelation is affected by the length of the cross-linker relative to intermolecular interactions between heparin molecules. The critical relaxation exponent decreases from n = 0.52 for PEG 2000 to n = 0.39 for PEG 10 000. Finally, 219 equilibrated samples taken over the entire composition space are identified as liquid or solid, defining the “gelation envelope”. The boundaries of this empirical gelation envelope are in good agreement with Flory–Stockmayer theory. In all, microrheological measurements enable characterization over a large parameter space and provide crucial insight into the gelation of complex, multifunctional hydrogelators used in therapeutic applications. PMID:21494422

  6. Tandem Gramicidin Channels Cross-linked by Streptavidin

    PubMed Central

    Rokitskaya, Tatyana I.; Kotova, Elena A.; Antonenko, Yuri N.

    2003-01-01

    The interaction of biotin-binding proteins with biotinylated gramicidin (gA5XB) was studied by monitoring single-channel activity and sensitized photoinactivation kinetics. It was discovered that the addition of streptavidin or avidin to the bathing solutions of a bilayer lipid membrane (BLM) with incorporated gA5XB induced the opening of a channel characterized by approximately doubled single-channel conductance and extremely long open-state duration. We believe that the deceleration of the photoinactivation kinetics observed here with streptavidin and previously (Rokitskaya, T.I., Y.N. Antonenko, E.A. Kotova, A. Anastasiadis, and F. Separovic. 2000. Biochemistry. 39:13053–13058) with avidin reflects the formation of long-lived channels of this type. Both opening and closing of the double-conductance channels occurred via a transient sub-state of the conductance coinciding with that of the usual single-channel transition. The appearance of the double-conductance channels after the addition of streptavidin was preceded by bursts of fast fluctuations of the current with the open state duration of the individual events of 60 ms. The streptavidin-induced double-conductance channels appeared to be inherent only to the gramicidin analogue with a biotin group linked to the COOH terminus through a long linker arm. Including biotinylated phosphatidylethanolamine into the BLM prevented the formation of the double-conductance channels even with the excess streptavidin. In view of the results obtained here, it is suggested that the double-conductance channel represents a tandem of two neighboring gA5XB channels with their COOH termini being cross-linked by the bound streptavidin at both sides of the BLM. The finding that streptavidin induces the formation of the tandem gramicidin channel comprising two channels functioning in concert is considered to be relevant to the physiologically important phenomenon of ligand-induced receptor oligomerization. PMID:12719486

  7. Transepithelial corneal collagen cross-linking in ultrathin keratoconic corneas

    PubMed Central

    Spadea, Leopoldo; Mencucci, Rita

    2012-01-01

    Background The purpose of this paper was to report the results of transepithelial corneal collagen cross-linking (CXL) with modified riboflavin and ultraviolet A irradiation in patients affected by keratoconus, each with thinnest pachymetry values of less than 400 μm (with epithelium) and not treatable using standard de-epithelialization techniques. Methods Sixteen patients affected by progressive keratoconus with thinnest pachymetry values ranging from 331 μm to 389 μm underwent transepithelial CXL in one eye using a riboflavin 0.1% solution in 15% Dextran T500 containing ethylenediamine tetra-acetic acid 0.01% and trometamol to enhance epithelial penetration. The patients underwent complete ophthalmological examination, including endothelial cell density measurements and computerized videokeratography, before CXL and at one day, one week, and one, 6, and 12 months thereafter. Results Epithelial healing was complete in all patients after one day of use of a soft bandage contact lens. No side effects or damage to the limbal region was observed during the follow-up period. All patients showed slightly improved uncorrected and spectacle-corrected visual acuity; keratometric astigmatism showed reductions (up to 5.3 D) and apical ectasia power decreased (Kmax values reduced up to 4.3 D). Endothelial cell density was unchanged. Conclusion Application of transepithelial CXL using riboflavin with substances added to enhance epithelial permeability was safe, seemed to be moderately effective in keratoconic eyes with ultrathin corneas, and applications of the procedure could be extended to patients with advanced keratoconus. PMID:23152657

  8. Transglutaminases: Widespread Cross-linking Enzymes in Plants

    PubMed Central

    Serafini-Fracassini, Donatella; Del Duca, Stefano

    2008-01-01

    Background Transglutaminases have been studied in plants since 1987 in investigations aimed at interpreting some of the molecular mechanisms by which polyamines affect growth and differentiation. Transglutaminases are a widely distributed enzyme family catalysing a myriad of biological reactions in animals. In plants, the post-translational modification of proteins by polyamines forming inter- or intra-molecular cross-links has been the main transglutaminase reaction studied. Characteristics of Plant Transglutaminases The few plant transglutaminases sequenced so far have little sequence homology with the best-known animal enzymes, except for the catalytic triad; however, they share a possible structural homology. Proofs of their catalytic activity are: (a) their ability to produce glutamyl-polyamine derivatives; (b) their recognition by animal transglutaminase antibodies; and (c) biochemical features such as calcium-dependency, etc. However, many of their fundamental biochemical and physiological properties still remain elusive. Transglutaminase Activity is Ubiquitous It has been detected in algae and in angiosperms in different organs and sub-cellular compartments, chloroplasts being the best-studied organelles. Possible Roles Possible roles concern the structural modification of specific protein substrates. In chloroplasts, transglutaminases appear to stabilize the photosynthetic complexes and Rubisco, being regulated by light and other factors, and possibly exerting a positive effect on photosynthesis and photo-protection. In the cytosol, they modify cytoskeletal proteins. Preliminary reports suggest an involvement in the cell wall construction/organization. Other roles appear to be related to fertilization, abiotic and biotic stresses, senescence and programmed cell death, including the hypersensitive reaction. Conclusions The widespread occurrence of transglutaminases activity in all organs and cell compartments studied suggests a relevance for their still

  9. The interaction of vinculin with actin.

    PubMed

    Golji, Javad; Mofrad, Mohammad R K

    2013-04-01

    Vinculin can interact with F-actin both in recruitment of actin filaments to the growing focal adhesions and also in capping of actin filaments to regulate actin dynamics. Using molecular dynamics, both interactions are simulated using different vinculin conformations. Vinculin is simulated either with only its vinculin tail domain (Vt), with all residues in its closed conformation, with all residues in an open I conformation, and with all residues in an open II conformation. The open I conformation results from movement of domain 1 away from Vt; the open II conformation results from complete dissociation of Vt from the vinculin head domains. Simulation of vinculin binding along the actin filament showed that Vt alone can bind along the actin filaments, that vinculin in its closed conformation cannot bind along the actin filaments, and that vinculin in its open I conformation can bind along the actin filaments. The simulations confirm that movement of domain 1 away from Vt in formation of vinculin 1 is sufficient for allowing Vt to bind along the actin filament. Simulation of Vt capping actin filaments probe six possible bound structures and suggest that vinculin would cap actin filaments by interacting with both S1 and S3 of the barbed-end, using the surface of Vt normally occluded by D4 and nearby vinculin head domain residues. Simulation of D4 separation from Vt after D1 separation formed the open II conformation. Binding of open II vinculin to the barbed-end suggests this conformation allows for vinculin capping. Three binding sites on F-actin are suggested as regions that could link to vinculin. Vinculin is suggested to function as a variable switch at the focal adhesions. The conformation of vinculin and the precise F-actin binding conformation is dependent on the level of mechanical load on the focal adhesion. PMID:23633939

  10. Order-Disorder Transitions in Cross-Linked Block Copolymer Solids

    SciTech Connect

    Das, J.

    2005-01-12

    With a view toward creating solid block copolymers wherein the order-disorder transition can be accessed many times they investigated the nature of order-disorder transitions in cross-linked diblock copolymer melts using synergistic theory and experiment. A mean-field theory based on a coarse grained free-energy and the Random Phase Approximation (RPA) is developed for the system of interest. The quenched distribution of cross-links is averaged using the replica method. The phase behavior of a particular A-B block copolymer melt with a randomly cross-linked B-Block is determined as a function of the Florry-Huggins interaction parameter ({chi}) and the average number of cross-links per chain N{sub c}. They find for a cross-link density greater than N*{sub c} the B monomers are localized within a region of size {zeta} {approx} (N{sub c} - N*{sub c}){sup -1/2}. The cross-links strongly oppose ordering in the system as {zeta} becomes comparable to the radius of gyration of the block copolymer chain. As such the order-disorder transition temperature T{sub ODT} decreases precipitously when N{sub c} > N*{sub c}. When N{sub c} < N*{sub c}, T{sub ODT} increases weakly with N{sub c}. Experiments were conducted on cross-linked polystyrene-block-polyisoprene copolymer samples wherein the polyisoprene block was selectively cross-linked at a temperature well above the order-disorder transition temperature of the pure block copolymer. Small angle X-ray scattering (SAXS) and birefringence measurements on the cross-linked samples are consistent with the theoretical prediction. T{sub ODT} decreases rapidly when the cross-linking density exceeds the critical cross-linking density.

  11. Matching Cross-linked Peptide Spectra: Only as Good as the Worse Identification*

    PubMed Central

    Trnka, Michael J.; Baker, Peter R.; Robinson, Philip J. J.; Burlingame, A. L.; Chalkley, Robert J.

    2014-01-01

    Chemical cross-linking mass spectrometry identifies interacting surfaces within a protein assembly through labeling with bifunctional reagents and identifying the covalently modified peptides. These yield distance constraints that provide a powerful means to model the three-dimensional structure of the assembly. Bioinformatic analysis of cross-linked data resulting from large protein assemblies is challenging because each cross-linked product contains two covalently linked peptides, each of which must be correctly identified from a complex matrix of potential confounders. Protein Prospector addresses these issues through a complementary mass modification strategy in which each peptide is searched and identified separately. We demonstrate this strategy with an analysis of RNA polymerase II. False discovery rates (FDRs) are assessed via comparison of cross-linking data to crystal structure, as well as by using a decoy database strategy. Parameters that are most useful for positive identification of cross-linked spectra are explored. We find that fragmentation spectra generally contain more product ions from one of the two peptides constituting the cross-link. Hence, metrics reflecting the quality of the spectral match to the less confident peptide provide the most discriminatory power between correct and incorrect matches. A support vector machine model was built to further improve classification of cross-linked peptide hits. Furthermore, the frequency with which peptides cross-linked via common acylating reagents fragment to produce diagnostic, cross-linker-specific ions is assessed. The threshold for successful identification of the cross-linked peptide product depends upon the complexity of the sample under investigation. Protein Prospector, by focusing the reliability assessment on the least confident peptide, is better able to control the FDR for results as larger complexes and databases are analyzed. In addition, when FDR thresholds are calculated separately

  12. Isoforms of α-Actinin from Cardiac, Smooth, and Skeletal Muscle Form Polar Arrays of Actin Filaments

    PubMed Central

    Taylor, Kenneth A.; Taylor, Dianne W.; Schachat, Fred

    2000-01-01

    We have used a positively charged lipid monolayer to form two-dimensional bundles of F-actin cross-linked by α-actinin to investigate the relative orientation of the actin filaments within them. This method prevents growth of the bundles perpendicular to the monolayer plane, thereby facilitating interpretation of the electron micrographs. Using α-actinin isoforms isolated from the three types of vertebrate muscle, i.e., cardiac, skeletal, and smooth, we have observed almost exclusively cross-linking between polar arrays of filaments, i.e., actin filaments with their plus ends oriented in the same direction. One type of bundle can be classified as an Archimedian spiral consisting of a single actin filament that spirals inward as the filament grows and the bundle is formed. These spirals have a consistent hand and grow to a limiting internal diameter of 0.4–0.7 μm, where the filaments appear to break and spiral formation ceases. These results, using isoforms usually characterized as cross-linkers of bipolar actin filament bundles, suggest that α-actinin is capable of cross-linking actin filaments in any orientation. Formation of specifically bipolar or polar filament arrays cross-linked by α-actinin may require additional factors that either determine the filament orientation or restrict the cross-linking capabilities of α-actinin. PMID:10791977

  13. Demonstration of prominent actin filaments in the root columella

    NASA Technical Reports Server (NTRS)

    Collings, D. A.; Zsuppan, G.; Allen, N. S.; Blancaflor, E. B.; Brown, C. S. (Principal Investigator)

    2001-01-01

    The distribution of actin filaments within the gravity-sensing columella cells of plant roots remains poorly understood, with studies over numerous years providing inconsistent descriptions of actin organization in these cells. This uncertainty in actin organization, and thus in actin's role in graviperception and gravisignaling, has led us to investigate actin arrangements in the columella cells of Zea mays L., Medicago truncatula Gaertn., Linum usitatissiilium L. and Nicotianla benthamiana Domin. Actin organization was examined using a combination of optimized immunofluorescence techniques, and an improved fluorochrome-conjugated phalloidin labeling method reliant on 3-maleimidobenzoyl-N-hydroxy-succinimide ester (MBS) cross-linking combined with glycerol permeabilization. Confocal microscopy of root sections labeled with anti-actin antibodies revealed patterns suggestive of actin throughout the columella region. These patterns included short and fragmented actin bundles, fluorescent rings around amyloplasts and intense fluorescence originating from the nucleus. Additionally, confocal microscopy of MBS-stabilized and Alexa Fluor-phalloidin-labeled root sections revealed a previously undetected state of actin organization in the columella. Discrete actin structures surrounded the amyloplasts and prominent actin cables radiated from the nuclear surface toward the cell periphery. Furthermore, the cortex of the columella cells contained fine actin bundles (or single filaments) that had a predominant transverse orientation. We also used confocal microscopy of plant roots expressing endoplasmic reticulum (ER)-targeted green fluorescent protein to demonstrate rapid ER movements within the columella cells, suggesting that the imaged actin network is functional. The successful identification of discrete actin structures in the root columella cells forms the perception and signaling.

  14. Actin Cytoskeleton-Based Plant Synapse as Gravitransducer in the Transition Zone of the Root Apex

    NASA Astrophysics Data System (ADS)

    Baluska, Frantisek; Barlow, Peter; Volkmann, Dieter; Mancuso, Stefano

    The actin cytoskeleton was originally proposed to act as the signal transducer in the plant gravity sensory-motoric circuit. Surprisingly, however, several studies have documented that roots perfom gravisensing and gravitropism more effectively if exposed to diverse anti-F-actin drugs. Our study, using decapped maize root apices, has revealed that depolymerization of F-actin stimulates gravity perception in cells of the transition zone where root gravitropism is initiated (Mancuso et al. 2006). It has been proposed (Balǔka et al. 2005, 2009a) that s the non-growing adhesive end-poles, enriched with F-actin and myosin VIII, and active in endocytic recycling of both PIN transporters and cell wall pectins cross-linked with calcium and boron, act as the gravisensing domains, and that these impinge directly upon the root motoric responses via control of polar auxin transport. This model suggests that mechanical asymmetry at these plant synapses determines vectorial gravity-controlled auxin transport. Due to the gravity-imposed mechanical load upon the protoplast, a tensional stress is also imposed upon the plasma membrane of the physically lower synaptic cell pole. This stress is then relieved by shifting the endocytosis-exocytosis balance towards exocytosis (Balǔka et al. s 2005, 2009a,b). This `Synaptic Auxin Secretion' hypothesis does not conflict with the `Starch Statolith' hypothesis, which is based on amyloplast sedimentation. In fact, the `Synaptic Auxin Secretion' hypothesis has many elements which allow its unification with the Starch-Statolith model (Balǔka et al. 2005, 2009a,b). s References Balǔka F, Volkmann D, Menzel D (2005) Plant synapses: actin-based adhesion s domains for cell-to-cell communication. Trends Plant Sci 10: 106-111 Balǔka F, Schlicht M, s Wan Y-L, Burbach C, Volkmann D (2009a) Intracellular domains and polarity in root apices: from synaptic domains to plant neurobiology. Nova Acta Leopoldina 96: 103-122 Balǔka s F, Mancuso S

  15. Characterization of Aziridinylbenzoquinone DNA Cross-links by LC-IRMPD-MS

    PubMed Central

    Pierce, Sarah E.; Guziec, Lynn J.; Guziec, Frank S.; Brodbelt, Jennifer S.

    2010-01-01

    DNA cross-linking was evaluated by LC-MS/MS to determine the relative cross-linking abilities of two aziridinylbenzoquinones. Reactivities of RH1 (2,5-diaziridinyl-3-[hydroxymethyl]-6-methyl-1,4-benzoquinone), a clinically studied anti-tumor cross-linking agent, and an analog containing a phenyl group (PhRH1) rather than a methyl group was compared. The bulky phenyl substituent was added to determine the impact of steric hindrance on the formation of cross-links within a double helical structure. Cross-links formed by RH1 and PhRH1 (2,5-diaziridinyl-3-[hydroxymethyl]-6-phenyl-1,4-benzoquinone) were observed at 5’-dGNC sites as well as 5’-dGAAC/dGTTC sites. RH1 was more effective at forming cross-links than PhRH1 for a variety of duplexes. Infrared multiphoton dissociation (IRMPD) and collision induced dissociation (CID) results confirmed the presence and the location of the cross-links within the duplexes, and IRMPD was used to identify the dissociation pathways of the cross-linked duplexes. PMID:20369834

  16. NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES PREPARED UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    A facile microwave irradiation approach that results in a cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic and bimetallic systems is described. Nanocomposites of PVA cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-P...

  17. Cross-Linking Electrochemical Mass Spectrometry for Probing Protein Three-Dimensional Structures

    PubMed Central

    2015-01-01

    Chemical cross-linking combined with mass spectrometry (MS) is powerful to provide protein three-dimensional structure information but difficulties in identifying cross-linked peptides and elucidating their structures limit its usefulness. To tackle these challenges, this study presents a novel cross-linking MS in conjunction with electrochemistry using disulfide-bond-containing dithiobis[succinimidyl propionate] (DSP) as the cross-linker. In our approach, electrolysis of DSP-bridged protein/peptide products, as online monitored by desorption electrospray ionization mass spectrometry is highly informative. First, as disulfide bonds are electrochemically reducible, the cross-links are subject to pronounced intensity decrease upon electrolytic reduction, suggesting a new way to identify cross-links. Also, mass shift before and after electrolysis suggests the linkage pattern of cross-links. Electrochemical reduction removes disulfide bond constraints, possibly increasing sequence coverage for tandem MS analysis and yielding linear peptides whose structures are more easily determined than their cross-linked precursor peptides. Furthermore, this cross-linking electrochemical MS method is rapid, due to the fast nature of electrochemical conversion (much faster than traditional chemical reduction) and no need for chromatographic separation, which would be of high value for structural proteomics research. PMID:25141260

  18. Lamb and Cow Performance when Fed Corn Silage that has Reduced Ferulate Cross Linking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ferulate-mediated lignin/hemicellulose cross linking in grasses reduces in vitro NDF digestibility (IVNDFD). Impact of ferulate cross linking on animal performance was examined in lamb digestibility and dairy cow performance trials using the seedling ferulate ester (sfe) corn mutant that reduces cro...

  19. Electrospun zein fibers using glutaraldehyde as the cross-linking reagent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glutaraldehyde was used as a cross-linking reagent for zein (corn protein) to provide fibers with improved physical properties and solvent resistance. Glutaraldehyde was used at levels between 2 - 8%. The cross-linking reaction was carried out in acetic acid for twenty hours at room temperature. ...

  20. Electrospun zein fibers using glyoxal or formaldehyde as the cross-linking reagent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyoxal or formaldehyde was used as a cross-linking reagent for zein (corn protein) to provide electrospun fibers with improved physical properties and solvent resistance. These reagents were used between 2 and 6%. The cross-linking reaction was carried out in acetic acid for various lengths of ti...

  1. Chemistry and Physical Properties of Melt Processed- and Solution- Cross Linked Corn Zein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn zein was cross linked with the glutaraldehyde (GDA) using glacial acetic acid (HAc) as catalyst. The objectives are to enhance the mechanical properties of poured films and to compare them with compression molded tensile bars from melt processed zein. Chemistry of the cross linking reaction w...

  2. Persulfate initiated ultra-low cross-linked poly(N-isopropylacrylamide) microgels possess an unusual inverted cross-linking structure.

    PubMed

    Virtanen, O L J; Mourran, A; Pinard, P T; Richtering, W

    2016-05-01

    Cross-linking density and distribution are decisive for the mechanical and other properties of stimuli-sensitive poly(N-isopropylacrylamide) microgels. Here we investigate the structure of ultra-low cross-linked microgels by static light scattering and scanning force microscopy, and show that they have an inverted cross-linking structure with respect to conventional microgels, contrary to what has been assumed previously. The conventional microgels have the largest polymer volume fraction in the core from where the particle density decays radially outwards, whereas ultra-low cross-linked particles have the highest polymer volume fraction close to the surface. On a solid substrate these particles form buckled shapes at high surface coverage, as shown by scanning force micrographs. The special structure of ultra-low cross-linked microgels is attributed to cross-linking of the particle surface, which is exposed to hydrogen abstraction by radicals generated from persulfate initiators during and after polymerization. The particle core, which is less accessible to the diffusion of radicals, has consequently a lower polymer volume fraction in the swollen state. By systematic variation of the cross-linker concentration it is shown that the cross-linking contribution from peroxide under typical synthesis conditions is weaker than that from the use of 1 mol% N,N'-methylenebisacrylamide. Soft deformable hydrogel particles are of interest because they emulate biological tissues, and understanding the underlying synthesis principle enables tailoring the microgel structure for biomimetic applications. Deformability of microgels is usually controlled by the amount of added cross-linker; here we however highlight an alternative approach through structural softness. PMID:27033731

  3. Investigation of anisotropic thermal transport in cross-linked polymers

    NASA Astrophysics Data System (ADS)

    Simavilla, David Nieto

    Thermal transport in lightly cross-linked polyisoprene and polybutadine subjected to uniaxial elongation is investigated experimentally. We employ two experimental techniques to assess the effect that deformation has on this class of materials. The first technique, which is based on Forced Rayleigh Scattering (FRS), allows us to measure the two independent components of the thermal diffusivity tensor as a function of deformation. These measurements along with independent measurements of the tensile stress and birefringence are used to evaluate the stress-thermal and stress-optic rules. The stress-thermal rule is found to be valid for the entire range of elongations applied. In contrast, the stress-optic rule fails for moderate to large stretch ratios. This suggests that the degree of anisotropy in thermal conductivity depends on both orientation and tension in polymer chain segments. The second technique, which is based on infrared thermography (IRT), allows us to measure anisotropy in thermal conductivity and strain induced changes in heat capacity. We validate this method measurements of anisotropic thermal conductivity by comparing them with those obtained using FRS. We find excellent agreement between the two techniques. Uncertainty in the infrared thermography method measurements is estimated to be about 2-5 %. The accuracy of the method and its potential application to non-transparent materials makes it a good alternative to extend current research on anisotropic thermal transport in polymeric materials. A second IRT application allows us to investigate the dependence of heat capacity on deformation. We find that heat capacity increases with stretch ratio in polyisoprene specimens under uniaxial extension. The deviation from the equilibrium value of heat capacity is consistent with an independent set of experiments comparing anisotropy in thermal diffusivity and conductivity employing FRS and IRT techniques. We identify finite extensibility and strain

  4. Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility

    PubMed Central

    Kim, Min Hee; Park, Won Ho

    2016-01-01

    In this study, the synthesis of silk fibroin (SF) hydrogel via chemical cross-linking reactions of SF due to gamma-ray (γ-ray) irradiation was investigated, as were the resultant hydrogel’s properties. Two different hydrogels were investigated: physically cross-linked SF hydrogel and chemically cross-linked SF hydrogel irradiated at different doses of γ-rays. The effects of the irradiation dose and SF concentration on the hydrogelation of SF were examined. The chemically cross-linked SF hydrogel was compared with the physically cross-linked one with regard to secondary structure and gel strength. Furthermore, the swelling behavior, crystallinity, and biodegradation of the SF hydrogels were characterized. To assay cell proliferation, the cell viability of human mesenchymal stem cells on the lyophilized SF hydrogel scaffolds was evaluated, and no significant cytotoxicity against human mesenchymal stem cells was observed. PMID:27382283

  5. Cross-Linking the Surface of Cured Polydimethylsiloxane via Hyperthemal Hydrogen Projectile Bombardment.

    PubMed

    Bao, Chao; Xu, Ke-Qin; Tang, Chang-Yu; Lau, Woon-ming; Yin, Cong-Bin; Zhu, Yan; Mei, Jun; Lee, Jonathan; Hui, David; Nie, Heng-Yong; Liu, Yu

    2015-04-29

    Cross-linking of polydimethylsiloxane (PDMS) is increasingly important with recent focus on its top surface stiffness. In this paper, we demonstrate that hyperthermal hydrogen projectile bombardment, a surface sensitive cross-linking technology, is superior in enhancing the mechanical properties of a cured PDMS surface without significantly degrading its hydrophobicity. Both water contact angle measurements and time-of-flight secondary ion mass spectrometry are used to investigate the variations in surface chemistry and structure upon cross-linking. Using nanoindentation and atomic force microscopy, we confirm that the thickness of the cross-linked PDMS is controllable by the bombardment time, which opens opportunities for tuning cross-linking degree in compliance with arising requirements from the practice. PMID:25849306

  6. Collagen cross-linking of skin in patients with amyotrophic lateral sclerosis

    NASA Technical Reports Server (NTRS)

    Ono, S.; Yamauchi, M.

    1992-01-01

    Collagen cross-links of skin tissue (left upper arm) from 11 patients with amyotrophic lateral sclerosis (ALS) and 9 age-matched control subjects were quantified. It was found that patients with ALS had a significant reduction in the content of an age-related, stable cross-link, histidinohydroxylysinonorleucine, that was negatively correlated with the duration of illness. The contents of sodium borohydride-reducible labile cross-links, dehydro-hydroxylysinonorleucine and dehydro-histidinohydroxymerodesmosine, were significantly increased and were positively associated with the duration of illness (r = 0.703, p less than 0.05 and r = 0.684, p less than 0.05, respectively). The results clearly indicate that during the course of ALS, the cross-linking pathway of skin collagen runs counter to its normal aging, resulting in a "rejuvenation" phenomenon of skin collagen. Thus, cross-linking of skin collagen is affected in ALS.

  7. Photoinduced DNA Interstrand Cross-Link Formation by Naphthalene Boronates via a Carbocation.

    PubMed

    Wang, Yibin; Lin, Zechao; Fan, Heli; Peng, Xiaohua

    2016-07-18

    Most photoinduced DNA cross-link formation by a bifunctional aryl derivative is through a bisquinone methide. DNA cross-linking via a bisarylcarbocation remains a less explored area. We designed and synthesized a series of naphthalene boronates that produce DNA interstrand cross-links via a carbocation upon UV irradiation. A free radical was generated from the naphthalene boronates with 350 nm irradiation and further converted to a carbocation by electron transfer. The activation mechanism was determined using the orthogonal traps, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) and methoxyamine that react with either the free radical or the carbocation but not both. This represents a novel example of photoinduced DNA cross-link formation via carbocations generated from a bisaryl derivative. This work provides information useful for the design of novel photoactivated DNA cross-linking agents. PMID:27189512

  8. Carbodiimide cross-linking of amniotic membranes in the presence of amino acid bridges.

    PubMed

    Lai, Jui-Yang

    2015-06-01

    The purpose of this study was to investigate the carbodiimide cross-linking of amniotic membrane (AM) in the presence of amino acid bridges. The biological tissues were treated with glycine, lysine, or glutamic acid and chemically cross-linked to examine the role of amino acid types in collagenous biomaterial processing. Results of zeta potential measurements showed that the use of uncharged, positively and negatively charged amino acids dictates the charge state of membrane surface. Tensile strength and water content measurements demonstrated that the addition of lysine molecules to the cross-linking system can increase the cross-linking efficiency and dehydration degree while the introduction of glutamic acid in the AM samples decreases the number of cross-links per unit mass of chemically modified tissue collagen. The differences in the cross-linking density further determined the thermal and biological stability by differential scanning calorimetry and in vitro degradation tests. As demonstrated in matrix permeability studies, the improved formation of covalent cross-linkages imposed by lysine facilitated construction of stronger cross-linking structures. In contrast, the added glycine molecules were insufficient to enhance the resistances of the proteinaceous matrices to thermal denaturation and enzymatic degradation. The cytocompatibility of these biological tissue membranes was evaluated by using human corneal epithelial cell cultures. Results of cell viability, metabolic activity, and pro-inflammatory gene expression level showed that the AM materials cross-linked with carbodiimide in the presence of different types of amino acids are well tolerated without evidence of detrimental effect on cell growth. In addition, the amino acid treated and carbodiimide cross-linked AM implants had good biocompatibility in the anterior chamber of the rabbit eye model. Our findings suggest that amino acid type is a very important engineering parameter to mediate

  9. Identification of glucose-derived cross-linking sites in ribonuclease A.

    PubMed

    Dai, Zhenyu; Wang, Benlian; Sun, Gang; Fan, Xingjun; Anderson, Vernon E; Monnier, Vincent M

    2008-07-01

    The accumulation of glycation derived cross-links has been widely implicated in extracellular matrix damage in aging and diabetes, yet little information is available on the cross-linking sites in proteins and the intra- versus intermolecular character of cross-linking. Recently, glucosepane, a 7-membered heterocycle formed between lysine and arginine residues, has been found to be the single major cross-link known so far to accumulate during aging. As an approach toward identification of glucose derived cross-linking sites, we have preglycated ribonuclease A first for for 14 days with 500 mM glucose, followed by a 4-week incubation in absence of glucose. MALDI-TOF analysis of tryptic digests revealed the presence of Amadori products (Delta m/ z = 162) at K1, K7, K37 and K41, in accordance with previous studies. In addition, K66, K98 and K104 were also modified by Amadori products. Intramolecular glucosepane cross-links were observed at K41-R39 and K98-R85. Surprisingly, the only intermolecular cross-link observed was the 3-deoxyglucosone-derived DODIC at K1-R39. The identity of cross-linked peptides was confirmed by sequencing with tandem mass spectrometry. Recombinant ribonuclease A mutants R39A, R85A, and K91A were produced, purified, and glycated to further confirm the importance of these sites on protein cross-linking. These data provide the first documentation that both intramolecular and intermolecular cross-links form in glucose-incubated proteins. PMID:18500835

  10. Identification of Glucose-Derived Cross-Linking Sites in Ribonuclease A

    PubMed Central

    Dai, Zhenyu; Wang, Benlian; Sun, Gang; Fan, Xingjun; Anderson, Vernon E.; Monnier, Vincent M.

    2008-01-01

    The accumulation of glycation derived cross-links has been widely implicated in extracellular matrix damage in aging and diabetes, yet little information is available on the cross-linking sites in proteins and the intra- versus intermolecular character of cross-linking. Recently, glucosepane, a 7-membered heterocycle formed between lysine and arginine residues, has been found to be the single major cross-link known so far to accumulate during aging. As an approach toward identification of glucose derived cross-linking sites, we have preglycated ribonuclease A first for for 14 days with 500 mM glucose, followed by a 4-week incubation in absence of glucose. MALDI-TOF analysis of tryptic digests revealed the presence of Amadori products (Δm/z = 162) at K1, K7, K37 and K41, in accordance with previous studies. In addition, K66, K98 and K104 were also modified by Amadori products. Intramolecular glucosepane cross-links were observed at K41-R39 and K98-R85. Surprisingly, the only intermolecular cross-link observed was the 3-deoxyglucosone-derived DODIC at K1-R39. The identity of cross-linked peptides was confirmed by sequencing with tandem mass spectrometry. Recombinant ribonuclease A mutants R39A, R85A, and K91A were produced, purified, and glycated to further confirm the importance of these sites on protein cross-linking. These data provide the first documentation that both intramolecular and intermolecular cross-links form in glucose-incubated proteins. PMID:18500835

  11. A Study into the Collision-induced Dissociation (CID) Behavior of Cross-Linked Peptides*

    PubMed Central

    Giese, Sven H.; Fischer, Lutz; Rappsilber, Juri

    2016-01-01

    Cross-linking/mass spectrometry resolves protein–protein interactions or protein folds by help of distance constraints. Cross-linkers with specific properties such as isotope-labeled or collision-induced dissociation (CID)-cleavable cross-linkers are in frequent use to simplify the identification of cross-linked peptides. Here, we analyzed the mass spectrometric behavior of 910 unique cross-linked peptides in high-resolution MS1 and MS2 from published data and validate the observation by a ninefold larger set from currently unpublished data to explore if detailed understanding of their fragmentation behavior would allow computational delivery of information that otherwise would be obtained via isotope labels or CID cleavage of cross-linkers. Isotope-labeled cross-linkers reveal cross-linked and linear fragments in fragmentation spectra. We show that fragment mass and charge alone provide this information, alleviating the need for isotope-labeling for this purpose. Isotope-labeled cross-linkers also indicate cross-linker-containing, albeit not specifically cross-linked, peptides in MS1. We observed that acquisition can be guided to better than twofold enrich cross-linked peptides with minimal losses based on peptide mass and charge alone. By help of CID-cleavable cross-linkers, individual spectra with only linear fragments can be recorded for each peptide in a cross-link. We show that cross-linked fragments of ordinary cross-linked peptides can be linearized computationally and that a simplified subspectrum can be extracted that is enriched in information on one of the two linked peptides. This allows identifying candidates for this peptide in a simplified database search as we propose in a search strategy here. We conclude that the specific behavior of cross-linked peptides in mass spectrometers can be exploited to relax the requirements on cross-linkers. PMID:26719564

  12. Differential expression of human lysyl hydroxylase genes, lysine hydroxylation, and cross-linking of type I collagen during osteoblastic differentiation in vitro.

    PubMed

    Uzawa, K; Grzesik, W J; Nishiura, T; Kuznetsov, S A; Robey, P G; Brenner, D A; Yamauchi, M

    1999-08-01

    The pattern of lysyl hydroxylation in the nontriple helical domains of collagen is critical in determining the cross-linking pathways that are tissue specific. We hypothesized that the tissue specificity of type I collagen cross-linking is, in part, due to the differential expression of lysyl hydroxylase genes (Procollagen-lysine,2-oxyglutarate,5-dioxygenase 1, 2, and 3 [PLOD1, PLOD2, and PLOD3]). In this study, we have examined the expression patterns of these three genes during the course of in vitro differentiation of human osteoprogenitor cells (bone marrow stromal cells [BMSCs]) and normal skin fibroblasts (NSFs). In addition, using the medium and cell layer/matrix fractions in these cultures, lysine hydroxylation of type I collagen alpha chains and collagen cross-linking chemistries have been characterized. High levels of PLOD1 and PLOD3 genes were expressed in both BMSCs and NSFs, and the expression levels did not change in the course of differentiation. In contrast to the PLOD1 and PLOD3 genes, both cell types showed low PLOD2 gene expression in undifferentiated and early differentiated conditions. However, fully differentiated BMSCs, but not NSFs, exhibited a significantly elevated level (6-fold increase) of PLOD2 mRNA. This increase coincided with the onset of matrix mineralization and with the increase in lysyl hydroxylation in the nontriple helical domains of alpha chains of type I collagen molecule. Furthermore, the collagen cross-links that are derived from the nontriple helical hydroxylysine-aldehyde were found only in fully differentiated BMSC cultures. The data suggests that PLOD2 expression is associated with lysine hydroxylation in the nontriple helical domains of collagen and, thus, could be partially responsible for the tissue-specific collagen cross-linking pattern. PMID:10457259

  13. Differential expression of human lysyl hydroxylase genes, lysine hydroxylation, and cross-linking of type I collagen during osteoblastic differentiation in vitro

    NASA Technical Reports Server (NTRS)

    Uzawa, K.; Grzesik, W. J.; Nishiura, T.; Kuznetsov, S. A.; Robey, P. G.; Brenner, D. A.; Yamauchi, M.

    1999-01-01

    The pattern of lysyl hydroxylation in the nontriple helical domains of collagen is critical in determining the cross-linking pathways that are tissue specific. We hypothesized that the tissue specificity of type I collagen cross-linking is, in part, due to the differential expression of lysyl hydroxylase genes (Procollagen-lysine,2-oxyglutarate,5-dioxygenase 1, 2, and 3 [PLOD1, PLOD2, and PLOD3]). In this study, we have examined the expression patterns of these three genes during the course of in vitro differentiation of human osteoprogenitor cells (bone marrow stromal cells [BMSCs]) and normal skin fibroblasts (NSFs). In addition, using the medium and cell layer/matrix fractions in these cultures, lysine hydroxylation of type I collagen alpha chains and collagen cross-linking chemistries have been characterized. High levels of PLOD1 and PLOD3 genes were expressed in both BMSCs and NSFs, and the expression levels did not change in the course of differentiation. In contrast to the PLOD1 and PLOD3 genes, both cell types showed low PLOD2 gene expression in undifferentiated and early differentiated conditions. However, fully differentiated BMSCs, but not NSFs, exhibited a significantly elevated level (6-fold increase) of PLOD2 mRNA. This increase coincided with the onset of matrix mineralization and with the increase in lysyl hydroxylation in the nontriple helical domains of alpha chains of type I collagen molecule. Furthermore, the collagen cross-links that are derived from the nontriple helical hydroxylysine-aldehyde were found only in fully differentiated BMSC cultures. The data suggests that PLOD2 expression is associated with lysine hydroxylation in the nontriple helical domains of collagen and, thus, could be partially responsible for the tissue-specific collagen cross-linking pattern.

  14. Integration of linear and dendritic actin nucleation in Nck-induced actin comets

    PubMed Central

    Borinskaya, Sofya; Velle, Katrina B.; Campellone, Kenneth G.; Talman, Arthur; Alvarez, Diego; Agaisse, Hervé; Wu, Yi I.; Loew, Leslie M.; Mayer, Bruce J.

    2016-01-01

    The Nck adaptor protein recruits cytosolic effectors such as N-WASP that induce localized actin polymerization. Experimental aggregation of Nck SH3 domains at the membrane induces actin comet tails—dynamic, elongated filamentous actin structures similar to those that drive the movement of microbial pathogens such as vaccinia virus. Here we show that experimental manipulation of the balance between unbranched/branched nucleation altered the morphology and dynamics of Nck-induced actin comets. Inhibition of linear, formin-based nucleation with the small-molecule inhibitor SMIFH2 or overexpression of the formin FH1 domain resulted in formation of predominantly circular-shaped actin structures with low mobility (actin blobs). These results indicate that formin-based linear actin polymerization is critical for the formation and maintenance of Nck-dependent actin comet tails. Consistent with this, aggregation of an exclusively branched nucleation-promoting factor (the VCA domain of N-WASP), with density and turnover similar to those of N-WASP in Nck comets, did not reconstitute dynamic, elongated actin comets. Furthermore, enhancement of branched Arp2/3-mediated nucleation by N-WASP overexpression caused loss of the typical actin comet tail shape induced by Nck aggregation. Thus the ratio of linear to dendritic nucleation activity may serve to distinguish the properties of actin structures induced by various viral and bacterial pathogens. PMID:26609071

  15. Whirlin interacts with espin and modulates its actin-regulatory function: an insight into the mechanism of Usher syndrome type II.

    PubMed

    Wang, Le; Zou, Junhuang; Shen, Zuolian; Song, E; Yang, Jun

    2012-02-01

    Whirlin mutations cause retinal degeneration and hearing loss in Usher syndrome type II (USH2) and non-syndromic deafness, DFNB31. Its protein recruits other USH2 causative proteins to form a complex at the periciliary membrane complex in photoreceptors and the ankle link of the stereocilia in hair cells. However, the biological function of this USH2 protein complex is largely unknown. Using a yeast two-hybrid screen, we identified espin, an actin-binding/bundling protein involved in human deafness when defective, as a whirlin-interacting protein. The interaction between these two proteins was confirmed by their coimmunoprecipitation and colocalization in cultured cells. This interaction involves multiple domains of both proteins and only occurs when espin does not bind to actin. Espin was partially colocalized with whirlin in the retina and the inner ear. In whirlin knockout mice, espin expression changed significantly in these two tissues. Further studies found that whirlin increased the mobility of espin and actin at the actin bundles cross-linked by espin and, eventually, affected the dimension of these actin bundles. In whirlin knockout mice, the stereocilia were thickened in inner hair cells. We conclude that the interaction between whirlin and espin and the balance between their expressions are required to maintain the actin bundle network in photoreceptors and hair cells. Disruption of this actin bundle network contributes to the pathogenic mechanism of hearing loss and retinal degeneration caused by whirlin and espin mutations. Espin is a component of the USH2 protein complex and could be a candidate gene for Usher syndrome. PMID:22048959

  16. Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry.

    PubMed

    Liu, Fan; Rijkers, Dirk T S; Post, Harm; Heck, Albert J R

    2015-12-01

    We describe an integrated workflow that robustly identifies cross-links from endogenous protein complexes in human cellular lysates. Our approach is based on the application of mass spectrometry (MS)-cleavable cross-linkers, sequential collision-induced dissociation (CID)-tandem MS (MS/MS) and electron-transfer dissociation (ETD)-MS/MS acquisitions, and a dedicated search engine, XlinkX, which allows rapid cross-link identification against a complete human proteome database. This approach allowed us to detect 2,179 unique cross-links (1,665 intraprotein cross-links at a 5% false discovery rate (FDR) and 514 interprotein cross-links at 1% FDR) in HeLa cell lysates. We validated the confidence of our cross-linking results by using a target-decoy strategy and mapping the observed cross-link distances onto existing high-resolution structures. Our data provided new structural information about many protein assemblies and captured dynamic interactions of the ribosome in contact with different elongation factors. PMID:26414014

  17. Electrospun gelatin nanofibers: a facile cross-linking approach using oxidized sucrose.

    PubMed

    Jalaja, K; James, Nirmala R

    2015-02-01

    Gelatin nanofibers were fabricated via electrospinning with minimal toxicity from solvents and cross-linking agents. Electrospinning was carried out using a solvent system based on water and acetic acid (8:2, v/v). Acetic acid concentration was kept as minimum as possible to reduce the toxic effects. Electrospun gelatin nanofibers were cross-linked with oxidized sucrose. Sucrose was oxidized by periodate oxidation to introduce aldehyde functionality. Cross-linking with oxidized sucrose could be achieved without compromising the nanofibrous architecture. Cross-linked gelatin nanofibers maintained the fibrous morphology even after keeping in contact with aqueous medium. The morphology of the cross-linked nanofibrous mats was examined by scanning electron microscopy (SEM). Oxidized sucrose cross-linked gelatin nanofibers exhibited improved thermal and mechanical properties. The nanofibrous mats were evaluated for cytotoxicity and cell viability using L-929 fibroblast cells. The results confirmed that oxidized sucrose cross-linked gelatin nanofibers were non-cytotoxic towards L-929 cells with good cell viability. PMID:25478965

  18. Controlled degradation of hydrogels using multi-functional cross-linking molecules.

    PubMed

    Lee, Kuen Yong; Bouhadir, Kamal H; Mooney, David J

    2004-06-01

    Hydrogels, chemically cross-linked or physically entangled, have found a number of applications as novel delivery vehicles of drugs and cells. However, the narrow ranges of degradation rates and mechanical strength currently available from many hydrogels limits their applications. We have hypothesized that utilization of multi-functional cross-linking molecules to form hydrogels could provide a wider range and tighter control over the degradation rates and mechanical stiffness of gels than bi-functional cross-linking molecules. To address the possibility, we isolated alpha-L-guluronate residues of sodium alginate, and oxidized them to prepare poly(aldehyde guluronate) (PAG). Hydrogels were formed with either poly(acrylamide-co-hydrazide) (PAH) as a multi-functional cross-linking molecule or adipic acid dihydrazide (AAD) as a bi-functional cross-linking molecule. The initial properties and degradation behavior of both PAG gel types were monitored. PAG/PAH hydrogels showed higher mechanical stiffness before degradation and degraded more slowly than PAG/AAD gels, at the same concentration of cross-linking functional groups. The enhanced mechanical stiffness and prolonged degradation behavior could be attributed to the multiple attachment points of PAH in the gel at the same concentration of functional groups. This approach to regulating gel properties with multifunctional cross-linking molecules could be broadly used in hydrogels. PMID:14751730

  19. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma

    PubMed Central

    Chen, Yulong; Terajima, Masahiko; Yang, Yanan; Sun, Li; Ahn, Young-Ho; Pankova, Daniela; Puperi, Daniel S.; Watanabe, Takeshi; Kim, Min P.; Blackmon, Shanda H.; Rodriguez, Jaime; Liu, Hui; Behrens, Carmen; Wistuba, Ignacio I.; Minelli, Rosalba; Scott, Kenneth L.; Sanchez-Adams, Johannah; Guilak, Farshid; Pati, Debananda; Thilaganathan, Nishan; Burns, Alan R.; Creighton, Chad J.; Martinez, Elisabeth D.; Zal, Tomasz; Grande-Allen, K. Jane; Yamauchi, Mitsuo; Kurie, Jonathan M.

    2015-01-01

    Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde–derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde–derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma. PMID:25664850

  20. XLSearch: a Probabilistic Database Search Algorithm for Identifying Cross-Linked Peptides.

    PubMed

    Ji, Chao; Li, Sujun; Reilly, James P; Radivojac, Predrag; Tang, Haixu

    2016-06-01

    Chemical cross-linking combined with mass spectrometric analysis has become an important technique for probing protein three-dimensional structure and protein-protein interactions. A key step in this process is the accurate identification and validation of cross-linked peptides from tandem mass spectra. The identification of cross-linked peptides, however, presents challenges related to the expanded nature of the search space (all pairs of peptides in a sequence database) and the fact that some peptide-spectrum matches (PSMs) contain one correct and one incorrect peptide but often receive scores that are comparable to those in which both peptides are correctly identified. To address these problems and improve detection of cross-linked peptides, we propose a new database search algorithm, XLSearch, for identifying cross-linked peptides. Our approach is based on a data-driven scoring scheme that independently estimates the probability of correctly identifying each individual peptide in the cross-link given knowledge of the correct or incorrect identification of the other peptide. These conditional probabilities are subsequently used to estimate the joint posterior probability that both peptides are correctly identified. Using the data from two previous cross-link studies, we show the effectiveness of this scoring scheme, particularly in distinguishing between true identifications and those containing one incorrect peptide. We also provide evidence that XLSearch achieves more identifications than two alternative methods at the same false discovery rate (availability: https://github.com/COL-IU/XLSearch ). PMID:27068484

  1. Arabinosylation Plays a Crucial Role in Extensin Cross-linking In Vitro

    PubMed Central

    Chen, Yuning; Dong, Wen; Tan, Li; Held, Michael A; Kieliszewski, Marcia J

    2015-01-01

    Extensins (EXTs) are hydroxyproline-rich glycoproteins (HRGPs) that are structural components of the plant primary cell wall. They are basic proteins and are highly glycosylated with carbohydrate accounting for >50% of their dry weight. Carbohydrate occurs as monogalactosyl serine and arabinosyl hydroxyproline, with arabinosides ranging in size from ~1 to 4 or 5 residues. Proposed functions of EXT arabinosylation include stabilizing the polyproline II helix structure and facilitating EXT cross-linking. Here, the involvement of arabinosylation in EXT cross-linking was investigated by assaying the initial cross-linking rate and degree of cross-linking of partially or fully de-arabinosylated EXTs using an in vitro cross-linking assay followed by gel permeation chromatography. Our results indicate that EXT arabinosylation is required for EXT cross-linking in vitro and the fourth arabinosyl residue in the tetraarabinoside chain, which is uniquely α-linked, may determine the initial cross-linking rate. Our results also confirm the conserved structure of the oligoarabinosides across species, indicating an evolutionary significance for EXT arabinosylation. PMID:26568683

  2. Chemistry and physical properties of melt-processed and solution-cross-linked corn zein.

    PubMed

    Sessa, David J; Mohamed, Abdellatif; Byars, Jeffrey A

    2008-08-27

    Corn zein was cross-linked with glutaraldehyde (GDA) using glacial acetic acid (HAc) as catalyst. The objectives are to evaluate the swelling characteristics of GDA cross-linked zein gels in water, ethanol, and their combinations. Similar formulations, upon solvent evaporation, form films. The mechanical properties of the films are compared to compression molded tensile bars from GDA melt-processed zein as a second objective. Chemistry of the cross-linking reaction was based on the aldehyde binding characteristics defined by use of fluorescence spectroscopy; sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) to demonstrate the cross-linking reaction; FTIR to observe absorption differences of the cross-linked product; differential scanning calorimetry, dynamic mechanical analysis and thermogravimetric analysis to assess thermal properties; and the use of Instron Universal Testing Machine to evaluate mechanical properties. A reaction mechanism for acid catalyzed GDA cross-linking of zein is proposed. Thermal and mechanical properties of tensile bars cut from either film or formed by compression molding were similar, where both showed increased tensile strengths, ductility and stiffness when compared with unmodified controls. Samples that were reacted with 8% GDA by weight based on weight of zein from either process retained their integrity when tensile bars from each were subjected to boiling water for 10 min or soaking in either water or HAc for 24 h. The melt-processed, cross-linked zein is a more environmentally friendly method that would eliminate the need for HAc recovery. PMID:18636736

  3. Sulfhydryl site-specific cross-linking and labeling of monoclonal antibodies by a fluorescent equilibrium transfer alkylation cross-link reagent.

    PubMed

    del Rosario, R B; Wahl, R L; Brocchini, S J; Lawton, R G; Smith, R H

    1990-01-01

    The site-specific intramolecular cross-linking of sulfhydryls of monoclonal antibodies via a new class of "equilibrium transfer alkylation cross-link (ETAC) reagents" is described. Following complete or partial reduction of interchain disulfides with dithiothreitol (DTT), two murine IgG2a monoclonal antibodies, 225.28S and 5G6.4, were reacted with alpha,alpha-bis[(p-tolylsulfonyl)methyl]-m-aminoacetophenone (ETAC 1a) and a fluorescent conjugated derivative, sulforhodamine B m-(alpha,alpha-bis(p-tolysulfonylmethyl)acetyl)anilide derivative (ETAC 1b). Reducing SDS-polyacrylamide gel electrophoresis analysis of the products from 1b indicated the formation of S-ETAC-S interchain heavy and light chain cross-links (approximately 23-34% overall yield by video-camera densitometry) which do not undergo disulfide-thiol exchange with DTT at 100 degrees C. In contrast, no interchain cross-links were observed upon reaction of unreduced or reduced antibody wherein the thiols have been previously alkylated with iodoacetamide. These results indicated site-specific cross-linking of interchain sulfhydryls and places their distance within 3-4 A. Flow cytometry of the ETAC 1b 5G6.4 cross-linked product using 77 IP3 human ovarian carcinoma target cells showed positive binding and retention of immunoreactivity. The in vivo biodistributions of 131I-labeled intact 5G6.4 and 125I-labeled reduced 5G6.4 + ETAC 1a product in rats were essentially identical over a period of 24 h. The present study illustrates the potential applications of labelable ETAC reagents as thiol-specific probes for a wide variety of immunological studies. PMID:2128870

  4. Cross-linked Bioreducible Layer-by-layer Films for Increased Cell Adhesion and Transgene Expression

    PubMed Central

    Blacklock, Jenifer; Sievers, Torsten K.; Handa, Hitesh; You, Ye-Zi; Oupický, David; Mao, Guangzhao; Möhwald, Helmuth

    2010-01-01

    The effect of cross-linking layer-by-layer (LbL) films consisting of bioreducible poly(2-dimethylaminoethyl methacrylate) (rPDMAEMA) and DNA is examined with regards to rigidity, biodegradability, cell adhesion, and transfection activity using 1,5-diiodopentane (DIP) cross-linker. DIP chemically reacts with the tertiary amines of rPDMAEMA, altering the chemical composition of these LbL films. The result is a change in surface morphology, film swelling behavior and film rigidity, measured with AFM and ellipsometry. It is found that the apparent Young’s modulus is increased more than four times its original value upon cross-linking. Cross-linking mass is additionally confirmed with quartz crystal microbalance with dissipation (QCM-D). Comprehensive analyses of these experimental values were investigated to calculate the degree of cross-linking using the rubber elasticity theory and the Flory-Rehner theory. Additionally, the Flory-Huggins parameter, χ, was calculated. Good agreement in the two methods yields a cross-linking density of ~0.82 mmol/cm3. The Flory-Huggins parameter increased upon cross-linking from 1.07 to 1.2, indicating increased hydrophobicity of the network and formation of bulk water droplets within the films. In addition, the effects of cross-linking on film disassembly by 1,4-dithiothreitol (DTT) is found to be insignificant despite the alteration in film rigidity. Mouse fibroblast cells and smooth muscle cells are used to study the effect of cross-linking on cell adhesion and cell transfection activity. In vitro transfection activity up to seven days is quantified using secreted alkaline phosphatase (SEAP) DNA. Film cross-linking is found to enhance cell adhesion and prolong the duration of cellular transfection. These results contribute to the development of bioreducible polymer coatings for localized gene delivery. PMID:20369813

  5. Helical buckling of actin inside filopodia generates traction

    PubMed Central

    Leijnse, Natascha; Oddershede, Lene B.; Bendix, Poul M.

    2015-01-01

    Cells can interact with their surroundings via filopodia, which are membrane protrusions that extend beyond the cell body. Filopodia are essential during dynamic cellular processes like motility, invasion, and cell–cell communication. Filopodia contain cross-linked actin filaments, attached to the surrounding cell membrane via protein linkers such as integrins. These actin filaments are thought to play a pivotal role in force transduction, bending, and rotation. We investigated whether, and how, actin within filopodia is responsible for filopodia dynamics by conducting simultaneous force spectroscopy and confocal imaging of F-actin in membrane protrusions. The actin shaft was observed to periodically undergo helical coiling and rotational motion, which occurred simultaneously with retrograde movement of actin inside the filopodium. The cells were found to retract beads attached to the filopodial tip, and retraction was found to correlate with rotation and coiling of the actin shaft. These results suggest a previously unidentified mechanism by which a cell can use rotation of the filopodial actin shaft to induce coiling and hence axial shortening of the filopodial actin bundle. PMID:25535347

  6. Radiation cross-linking in ultra-high molecular weight polyethylene for orthopaedic applications

    PubMed Central

    Oral, Ebru; Muratoglu, Orhun K.

    2007-01-01

    The motivation for radiation cross-linking of ultra-high molecular weight polyethylene (UHMWPE) is to increase its wear resistance to be used as bearing surfaces for total joint arthroplasty. However, radiation also leaves behind long-lived residual free radicals in this polymer, the reactions of which can detrimentally affect mechanical properties. In this review, we focus on the radiation cross-linking and oxidative stability of first and second generation highly cross-linked UHMWPEs developed in our laboratory. PMID:19050735

  7. Crystal structure of a nuclear actin ternary complex.

    PubMed

    Cao, Tingting; Sun, Lingfei; Jiang, Yuxiang; Huang, Shanjin; Wang, Jiawei; Chen, Zhucheng

    2016-08-01

    Actin polymerizes and forms filamentous structures (F-actin) in the cytoplasm of eukaryotic cells. It also exists in the nucleus and regulates various nucleic acid transactions, particularly through its incorporation into multiple chromatin-remodeling complexes. However, the specific structure of actin and the mechanisms that regulate its polymeric nature inside the nucleus remain unknown. Here, we report the crystal structure of nuclear actin (N-actin) complexed with actin-related protein 4 (Arp4) and the helicase-SANT-associated (HSA) domain of the chromatin remodeler Swr1. The inner face and barbed end of N-actin are sequestered by interactions with Arp4 and the HSA domain, respectively, which prevents N-actin from polymerization and binding to many actin regulators. The two major domains of N-actin are more twisted than those of globular actin (G-actin), and its nucleotide-binding pocket is occluded, freeing N-actin from binding to and regulation by ATP. These findings revealed the salient structural features of N-actin that distinguish it from its cytoplasmic counterpart and provide a rational basis for its functions and regulation inside the nucleus. PMID:27457955

  8. Studying G protein-coupled receptors: immunoblotting, immunoprecipitation, phosphorylation, surface labeling, and cross-linking protocols.

    PubMed

    Pal, Kasturi; Badgandi, Hemant; Mukhopadhyay, Saikat

    2015-01-01

    Primary cilia are signaling organelles that have been shown to coordinate cellular responses to extracellular cues during physiological processes ranging from organ patterning to cell cycle regulation. A variety of receptors, including G protein-coupled receptors (GPCRs), downstream effectors (adenylyl cyclases), and second messengers, such as calcium, accumulate in the ciliary compartment. Isolation of GPCRs is essential for studying posttranslational modifications, intracellular trafficking, and protein-protein interactions that are important in downstream signaling. However, the presence of multiple hydrophobic transmembrane domains, and the inherent conformational flexibility of GPCRs make their extraction from membranes and solubilization particularly challenging. Here, we describe detailed methods for immunoblotting and immunoprecipitation of GPCRs from whole cell extracts. These methods are applicable for studying other multipass transmembrane proteins (such as adenylyl cyclases). We also describe methods for determining GPCR phosphorylation, surface labeling by biotinylation, and cross-linking to detect transient interactions with other proteins. These methods are amenable for studying both ciliary and nonciliary GPCRs in the context of cellular signaling pathways. PMID:25837398

  9. Gelatin hydrogels cross-linked with bis(vinylsulfonyl)methane (BVSM): 1. The chemical networks.

    PubMed

    Hellio-Serughetti, Dominique; Djabourov, Madeleine

    2006-09-26

    This paper deals with chemical gelation of gelatin in the presence of a cross-linker, bis(vinylsulfonyl)methane (BVSM), which is able to create covalent C-N bonds with amine groups. The investigation is performed at 40 degrees C, where no triple helices are present. Gelatin is in random coil conformation. The influence of various parameters (gelatin concentration, cross-linker concentration, and pH (number of reacting sites along the gelatin chain)) was examined. Gel formation was followed by rheological and thermodynamic measurements (microcalorimetry) versus time (kinetic measurements). Furthermore, the storage moduli were compared to the number of links formed in the course of gelation. The experiments show that, within the experimental range investigated, a fully homogeneous network is not reached; the chemical gels, even upon completion of the reactions, are still in the critical domain, near the threshold. A power law behavior was put in evidence for the shear modulus versus the distance to the gel point, expressed as the concentration of links per gelatin chain. The exponent (f = 3.4 +/- 0.3) is close to that expected for the vulcanization of long chains. The storage moduli can be superposed on a single curve where the abscissa is the product of the number of C-N links per unit volume and the gelatin concentration at an exponent equal to -0.76 +/- 0.03. This exponent suggests the role of entanglements for interchain cross-linking. PMID:16981770

  10. Analysis of protein-RNA interactions in CRISPR proteins and effector complexes by UV-induced cross-linking and mass spectrometry.

    PubMed

    Sharma, Kundan; Hrle, Ajla; Kramer, Katharina; Sachsenberg, Timo; Staals, Raymond H J; Randau, Lennart; Marchfelder, Anita; van der Oost, John; Kohlbacher, Oliver; Conti, Elena; Urlaub, Henning

    2015-11-01

    Ribonucleoprotein (RNP) complexes play important roles in the cell by mediating basic cellular processes, including gene expression and its regulation. Understanding the molecular details of these processes requires the identification and characterization of protein-RNA interactions. Over the years various approaches have been used to investigate these interactions, including computational analyses to look for RNA binding domains, gel-shift mobility assays on recombinant and mutant proteins as well as co-crystallization and NMR studies for structure elucidation. Here we report a more specialized and direct approach using UV-induced cross-linking coupled with mass spectrometry. This approach permits the identification of cross-linked peptides and RNA moieties and can also pin-point exact RNA contact sites within the protein. The power of this method is illustrated by the application to different single- and multi-subunit RNP complexes belonging to the prokaryotic adaptive immune system, CRISPR-Cas (CRISPR: clustered regularly interspaced short palindromic repeats; Cas: CRISPR associated). In particular, we identified the RNA-binding sites within three Cas7 protein homologs and mapped the cross-linking results to reveal structurally conserved Cas7 - RNA binding interfaces. These results demonstrate the strong potential of UV-induced cross-linking coupled with mass spectrometry analysis to identify RNA interaction sites on the RNA binding proteins. PMID:26071038

  11. Use of Protein Cross-Linking and Radiolytic Labeling To Elucidate the Structure of PsbO within Higher-Plant Photosystem II.

    PubMed

    Mummadisetti, Manjula P; Frankel, Laurie K; Bellamy, Henry D; Sallans, Larry; Goettert, Jost S; Brylinski, Michal; Bricker, Terry M

    2016-06-14

    We have used protein cross-linking with the zero-length cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, and radiolytic footprinting coupled with high-resolution tandem mass spectrometry, to examine the structure of higher-plant PsbO when it is bound to Photosystem II. Twenty intramolecular cross-linked residue pairs were identified. On the basis of this cross-linking data, spinach PsbO was modeled using the Thermosynechococcus vulcanus PsbO structure as a template, with the cross-linking distance constraints incorporated using the MODELLER program. Our model of higher-plant PsbO identifies several differences between the spinach and cyanobacterial proteins. The N-terminal region is particularly interesting, as this region has been suggested to be important for oxygen evolution and for the specific binding of PsbO to Photosystem II. Additionally, using radiolytic mapping, we have identified regions on spinach PsbO that are shielded from the bulk solvent. These domains may represent regions on PsbO that interact with other components, as yet unidentified, of the photosystem. PMID:27203407

  12. Visible-Light Photocatalyzed Cross-Linking of Diacetylene Ligands by Quantum Dots to Improve Their Aqueous Colloidal Stability

    PubMed Central

    2015-01-01

    Ligand cross-linking is known to improve the colloidal stability of nanoparticles, particularly in aqueous solutions. However, most cross-linking is performed chemically, in which it is difficult to limit interparticle cross-linking, unless performed at low concentrations. Photochemical cross-linking is a promising approach but usually requires ultraviolet (UV) light to initiate. Using such high-energy photons can be harmful to systems in which the ligand–nanoparticle bond is fairly weak, as is the case for the commonly used semiconductor quantum dots (QDs). Here, we introduce a novel approach to cross-link thiolated ligands on QDs by utilizing the photocatalytic activity of QDs upon absorbing visible light. We show that using visible light leads to better ligand cross-linking by avoiding the problem of ligand dissociation that occurs upon UV light exposure. Once cross-linked, the ligands significantly enhance the colloidal stability of those same QDs that facilitated cross-linking. PMID:25036275

  13. Cross-Linked Conjugated Polymer Fibrils: Robust Nanowires from Functional Polythiophene Diblock Copolymers

    SciTech Connect

    Hammer, Brenton A. G.; Bokel, Felicia A.; Hayward, Ryan C.; Emrick, Todd

    2011-09-27

    A series of poly(3-hexyl thiophene) (P3HT)-based diblock copolymers were prepared and examined in solution for their assembly into fibrils, and post-assembly cross-linking into robust nanowire structures. P3HT-b-poly(3-methanol thiophene) (P3MT), and P3HT-b-poly(3-aminopropyloxymethyl thiophene) (P3AmT) diblock copolymers were synthesized using Grignard metathesis (GRIM) polymerization. Fibrils formed from solution assembly of these copolymers are thus decorated with hydroxyl and amine functionality, and cross-linking is achieved by reaction of diisocyanates with the hydroxyl and amine groups. A variety of cross-linked structures, characterized by transmission electron microscopy (TEM), were produced by this method, including dense fibrillar sheets, fibril bundles, or predominately individual fibrils, depending on the chosen reaction conditions. In solution, the cross-linked fibrils maintained their characteristic vibronic structure in solvents that would normally disrupt (dissolve) the structures.

  14. Determination of the cross-linking effect of adipic acid dihydrazide on glycoconjugate preparation.

    PubMed

    Bystrický, S; Machová, E; Malovíková, A; Kogan, G

    1999-11-01

    The cross-linking effect of adipic acid dihydrazide (ADH) on polysaccharide derivatization can be evaluated by applying combination of elemental analysis and colorimetric assay. Elemental analysis is used for estimation of total ADH bound to polysaccharide and a colorimetric trinitrobenzene sulfonic acid assay is used to determine the part of ADH not involved in cross-linking. The difference of values expressed as molar ratios (per repeating unit) provides information on the amount of ADH involved in cross-linking the polysaccharides. Carboxymethylated polysaccharides were derivatized with different amounts of ADH to test the procedure. Analytical results showed that excess of ADH in the reaction only slightly decreased the cross-linking. The number of carboxyl groups remained unmodified even at high excess of ADH and high concentration of carbodiimide (EDC) coupling reagent. PMID:11003553

  15. Effect of cross-link density on carbon dioxide separation in polydimtheylsiloxane-norbornene membranes

    DOE PAGESBeta

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; Gmernicki, Kevin R.; Cheng, Shiwang; Fan, Fei; Johnson, Joseph C.; Hong, Eunice K.; Mahurin, Shannon Mark; Jiang, De-en; et al

    2015-10-01

    Here, the development of high-performance materials for carbon dioxide separation and capture will significantly contribute to a solution for climate change. Herein, (bicycloheptenyl)ethylterminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability ≈ 6800 Barrer; CO2/N2 selectivity ≈ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in situ cross-linking method for difunctional PDMS macromonomers, which provides lightly cross-linked membranes. By combining positron annihilationmore » lifetime spectroscopy, broadband dielectric spectroscopy, and gas solubility measurements, key parameters necessary for achieving excellent performance have been elucidated.« less

  16. Cross-linking proteins with bimetallic tetracarboxylate compounds of transition metals

    DOEpatents

    Kostic, N.M.; Chen, J.

    1991-03-05

    Stable cross-linked complexes of transition-metal tetracarboxylates and proteins are formed. The preferred transition-metal is rhodium. The protein may be collagen or an enzyme such as a proteolytic enzyme. No Drawings

  17. Cross-linking proteins with bimetallic tetracarboxylate compounds of transition metals

    DOEpatents

    Kostic, Nenad M.; Chen, Jian

    1991-03-05

    Stable cross-linked complexes of transition-metal tetracarboxylates and proteins are formed. The preferred transition-metal is rhodium. The protein may be collagen or an enzyme such as a proteolytic enzyme.

  18. Vapor deposition of cross-linked fluoropolymer barrier coatings onto pre-assembled microfluidic devices.

    PubMed

    Riche, Carson T; Marin, Brandon C; Malmstadt, Noah; Gupta, Malancha

    2011-09-21

    The interior surfaces of pre-assembled poly(dimethylsiloxane) (PDMS) microfluidic devices were modified with a cross-linked fluoropolymer barrier coating that significantly increased the chemical compatibility of the devices. PMID:21850298

  19. Microfabrication of Photo-Cross-Linked Hyaluronan Hydrogels by Single- and Two-Photon Tyramine Oxidation.

    PubMed

    Loebel, Claudia; Broguiere, Nicolas; Alini, Mauro; Zenobi-Wong, Marcy; Eglin, David

    2015-09-14

    Photo-cross-linking of tyramine-substituted hyaluronan (HA-Tyr) hydrogels is demonstrated for the first time. HA-Tyr hydrogels are fabricated via a rapid photosensitized process using visible light illumination. Nontoxic conditions offer photoencapsulation of human mesenchymal stromal cells (hMSCs) with high viability. Macroscopic gels can be formed in less than 10 s, and one- and two-photon photopatterning enable 2D and 3D microfabrication. Different degrees of cross-linking induce different swelling/shrinking, allowing for light-induced microactuation. These new tools are complementary to the previously reported horseradish peroxidase/hydrogen peroxide cross-linking and allow sequential cross-linking of HA-Tyr matrices. PMID:26222128

  20. Collagen type IX from human cartilage: a structural profile of intermolecular cross-linking sites.

    PubMed Central

    Diab, M; Wu, J J; Eyre, D R

    1996-01-01

    Type IX collagen, a quantitatively minor collagenous component of cartilage, is known to be associated with and covalently cross-linked to type II collagen fibrils in chick and bovine cartilage. Type IX collagen molecules have also been shown to form covalent cross-links with each other in bovine cartilage. In the present study we demonstrate by structural analysis and location of cross-linking sites that, in human cartilage, type IX collagen is covalently cross-linked to type II collagen and to other molecules of type IX collagen. We also present evidence that, if the proteoglycan form of type IX collagen is present in human cartilage, it can only be a minor component of the matrix, similar to findings with bovine cartilage. PMID:8660302

  1. Effect of cross-link density on carbon dioxide separation in polydimtheylsiloxane-norbornene membranes

    SciTech Connect

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; Gmernicki, Kevin R.; Cheng, Shiwang; Fan, Fei; Johnson, Joseph C.; Hong, Eunice K.; Mahurin, Shannon Mark; Jiang, De-en; Long, Brian K.; Mays, Jimmy; Sokolov, Alexei P.; Saito, Tomonori

    2015-01-01

    Here, the development of high-performance materials for carbon dioxide separation and capture will significantly contribute to a solution for climate change. Herein, (bicycloheptenyl)ethylterminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability ≈ 6800 Barrer; CO2/N2 selectivity ≈ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in situ cross-linking method for difunctional PDMS macromonomers, which provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy, and gas solubility measurements, key parameters necessary for achieving excellent performance have been elucidated.

  2. Characteristics, formation, and pathophysiology of glucosepane: a major protein cross-link.

    PubMed

    Sjöberg, Johan Svantesson; Bulterijs, Sven

    2009-04-01

    Advanced glycation end products are the results of a series of chemical reactions collectively known as the Maillard reaction, or nonenzymatic glycation, and sometimes cross-link proteins, thereby impairing their normal function. Glucosepane is the most abundant protein cross-link found in vivo so far and mainly has been shown to accumulate in the extracellular matrix, where it cross-links collagen. Levels of glucosepane increase with aging. By increasing collagen stiffness, glucosepane cross-links may have significant implications in several age-related diseases, such as cardiovascular disease, diabetes, and osteoporosis. Although the formation pathways for glucosepane are relatively well researched, much is still unknown about the accumulation and pathophysiology of glucosepane. PMID:19415980

  3. Effect of cross-link density on carbon dioxide separation in polydimethylsiloxane-norbornene membranes

    DOE PAGESBeta

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; Gmernicki, Kevin; Cheng, Shiwang; Fan, Fei; Johnson, J. Casey; Hong, Eunice; Mahurin, Shannon; Jiang, De -en; et al

    2015-01-01

    The development of high performance materials for CO2 separation and capture will significantly contribute to a solution for climate change. In this work, (bicycloheptenyl) ethyl terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability ~ 6800 Barrer and CO2/N2 selectivity ~ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in-situ cross-linking method of the difunctional PDMS macromonomers, which provides lightly cross-linked membranes.more » By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy and gas solubility measurements, we have elucidated the key parameters necessary for achieving their excellent performance.« less

  4. Effect of cross-link density on carbon dioxide separation in polydimtheylsiloxane-norbornene membranes

    SciTech Connect

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; Gmernicki, Kevin R.; Cheng, Shiwang; Fan, Fei; Johnson, Joseph C.; Hong, Eunice K.; Mahurin, Shannon Mark; Jiang, De-en; Long, Brian K.; Mays, Jimmy; Sokolov, Alexei P.; Saito, Tomonori

    2015-10-01

    Here, the development of high-performance materials for carbon dioxide separation and capture will significantly contribute to a solution for climate change. Herein, (bicycloheptenyl)ethylterminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability ≈ 6800 Barrer; CO2/N2 selectivity ≈ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in situ cross-linking method for difunctional PDMS macromonomers, which provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy, and gas solubility measurements, key parameters necessary for achieving excellent performance have been elucidated.

  5. Effect of cross-link density on carbon dioxide separation in polydimethylsiloxane-norbornene membranes

    SciTech Connect

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; Gmernicki, Kevin; Cheng, Shiwang; Fan, Fei; Johnson, J. Casey; Hong, Eunice; Mahurin, Shannon; Jiang, De -en; Long, Brian; Mays, Jimmy; Sokolov, Alexei; Saito, Tomonori

    2015-01-01

    The development of high performance materials for CO2 separation and capture will significantly contribute to a solution for climate change. In this work, (bicycloheptenyl) ethyl terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability ~ 6800 Barrer and CO2/N2 selectivity ~ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in-situ cross-linking method of the difunctional PDMS macromonomers, which provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy and gas solubility measurements, we have elucidated the key parameters necessary for achieving their excellent performance.

  6. Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer

    PubMed Central

    Udum, Yasemin; Denk, Patrick; Adam, Getachew; Apaydin, Dogukan H.; Nevosad, Andreas; Teichert, Christian; S. White, Matthew.; S. Sariciftci, Niyazi.; Scharber, Markus C.

    2014-01-01

    We have developed a hole-blocking layer for bulk-heterojunction solar cells based on cross-linked polyethylenimine (PEI). We tested five different ether-based cross-linkers and found that all of them give comparable solar cell efficiencies. The initial idea that a cross-linked layer is more solvent resistant compared to a pristine PEI layer could not be confirmed. With and without cross-linking, the PEI layer sticks very well to the surface of the indium–tin–oxide electrode and cannot be removed by solvents used to process PEI or common organic semiconductors. The cross-linked PEI hole-blocking layer functions for multiple donor–acceptor blends. We found that using cross-linkers improves the reproducibility of the device fabrication process. PMID:24817837

  7. Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer.

    PubMed

    Udum, Yasemin; Denk, Patrick; Adam, Getachew; Apaydin, Dogukan H; Nevosad, Andreas; Teichert, Christian; S White, Matthew; S Sariciftci, Niyazi; Scharber, Markus C

    2014-05-01

    We have developed a hole-blocking layer for bulk-heterojunction solar cells based on cross-linked polyethylenimine (PEI). We tested five different ether-based cross-linkers and found that all of them give comparable solar cell efficiencies. The initial idea that a cross-linked layer is more solvent resistant compared to a pristine PEI layer could not be confirmed. With and without cross-linking, the PEI layer sticks very well to the surface of the indium-tin-oxide electrode and cannot be removed by solvents used to process PEI or common organic semiconductors. The cross-linked PEI hole-blocking layer functions for multiple donor-acceptor blends. We found that using cross-linkers improves the reproducibility of the device fabrication process. PMID:24817837

  8. A Review of Collagen Cross-Linking in Cornea and Sclera

    PubMed Central

    Zhang, Xiao; Tao, Xiang-chen; Zhang, Jian; Li, Zhi-wei; Xu, Yan-yun; Wang, Yu-meng; Zhang, Chun-xiao; Mu, Guo-ying

    2015-01-01

    Riboflavin/UVA cross-linking is a technique introduced in the past decades for the treatment of keratoconus, keratectasia, and infectious keratitis. Its efficacy and safety have been investigated with clinical and laboratory studies since its first clinical application by Wollensak for the treatment of keratoconus. Although its complications are encountered during clinical practice, such as infection inducing risk, minimal invasion merits a further investigation on its future application in clinical practice. Recently, collagen cross-linking in sclera shows a promising prospect. In present study, we summarized the representative studies describing the clinical and laboratory application of collagen cross-linking published in past decades and provided our opinion on the positive and negative results of cross-linking in the treatment of ophthalmic disorders. PMID:25922758

  9. In Vivo Oxidative Stability Changes of Highly Cross-Linked Polyethylene Bearings: An Ex Vivo Investigation.

    PubMed

    Rowell, Shannon L; Reyes, Christopher R; Malchau, Henrik; Muratoglu, Orhun K

    2015-10-01

    The development of highly cross-linked UHMWPEs focused on stabilizing radiation-induced free radicals as the sole precursor to oxidative degradation. However, secondary in vivo oxidation mechanisms have been discovered. After a preliminary post-operative analysis, we subjected highly cross-linked retrievals with 1-4 years in vivo durations and never-implanted controls to accelerated aging to predict the extent to which their oxidative stability was compromised in vivo. Lipid absorption, oxidation, and hydroperoxides were measured using infrared spectroscopy. Gravimetric swelling was used to measure cross-link density. After aging, all retrievals, except vitamin E-stabilized components, regardless of initial lipid levels or oxidation, showed significant oxidative degradation, demonstrated by subsurface oxidative peaks, increased hydroperoxides and decreased cross-link density, compared to their post-operative material properties and never-implanted counterparts, confirming oxidative stability changes. PMID:26048729

  10. Anomalous cross-linking by mechlorethamine of DNA duplexes containing C-C mismatch pairs.

    PubMed

    Romero, R M; Mitas, M; Haworth, I S

    1999-03-23

    Nitrogen mustards such as mechlorethamine have previously been shown to covalently cross-link DNA through the N7 position of the two guanine bases of a d[GXC].d[GYC] duplex sequence, a so-called 1,3 G-G-cross-link, when X-Y = C-G or T-A. Here, we report the formation of a new mechlorethamine cross-link with the d[GXC].d[GYC] fragment when X-Y is a C-C mismatch pair. Mechlorethamine cross-links this fragment preferentially between the two mismatched cytosine bases, rather than between the guanine bases. The cross-link also forms when one or both of the guanine bases of the d[GCC].d[GCC] fragment are replaced by N7-deazaguanine, and, more generally, forms with any C-C mismatch, regardless of the flanking base pairs. Piperidine cleavage of the cross-link species containing the d[GCC].d[GCC] sequence gives DNA fragments consistent with alkylation at the mismatched cytosine bases. We also provide evidence that the cross-link reaction occurs between the N3 atoms of the two cytosine bases by showing that the formation of the C-C cross-link is pH dependent for both mechlorethamine and chlorambucil. Dimethyl sulfate (DMS) probing of the cross-linked d[GCC].d[GCC] fragment showed that the major groove of the guanine adjacent to the C-C mismatch is still accessible to DMS. In contrast, the known minor groove binder Hoechst 33258 inhibits the cross-link formation with a C-C mismatch pair flanked by A-T base pairs. These results suggest that the C-C mismatch is cross-linked by mechlorethamine in the minor groove. Since C-C pairs may be involved in unusual secondary structures formed by the trinucleotide repeat sequence d[CCG]n, and associated with triplet repeat expansion diseases, mechlorethamine may serve as a useful probe for these structures. PMID:10090751

  11. Intra-molecular cross-linking of acidic residues for protein structure studies.

    SciTech Connect

    Kruppa, Gary Hermann; Young, Malin M.; Novak, Petr; Schoeniger, Joseph S.

    2005-03-01

    Intra-molecular cross-linking has been suggested as a method of obtaining distance constraints that would be useful in developing structural models of proteins. Recent work published on intra-molecular cross-linking for protein structural studies has employed commercially available primary amine selective reagents that can cross-link lysine residues to other lysine residues or the amino terminus. Previous work using these cross-linkers has shown that for several proteins of known structure, the number of cross-links that can be obtained experimentally may be small compared to what would be expected from the known structure, due to the relative reactivity, distribution, and solvent accessibility of the lysines in the protein sequence. To overcome these limitations we have investigated the use of cross-linking reagents that can react with other reactive sidechains in proteins. We used 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) to activate the carboxylic acid containing residues, aspartic acid (D), glutamic acid (E), and the carboxy terminus (O), for cross-linking reactions. Once activated, the DEO sidechains can react to form 'zero-length' cross-links with nearby primary amine containing resides, lysines (K) and the amino terminus (X), via the formation of a new amide bond. We also show that the EDC-activated DEO sidechains can be cross-linked to each other using dihydrazides, two hydrazide moieties connected by an alkyl cross-linker ann of variable length. Using these reagents, we have found three new 'zero-length' cross-links in ubiquitin consistent with its known structure (M1-E16, M1-E18, and K63-E64). Using the dihydrazide cross-linkers, we have identified 2 new cross-links (D21-D32 and E24-D32) unambiguously. Using a library of dihydrazide cross-linkers with varying arm length, we have shown that there is a minimum arm length required for the DEO-DEO cross-links of 5.8 angstroms. These results show that additional structural information

  12. DNA-protein cross-links produced by various chemicals in cultured human lymphoma cells.

    PubMed

    Costa, M; Zhitkovich, A; Harris, M; Paustenbach, D; Gargas, M

    1997-04-11

    Chemicals such as cis-platinum, formaldehyde, chromate, copper, and certain arsenic compounds have been shown to produce DNA-protein cross-links in human in vitro cell systems at high doses, such as those in the cytotoxic range. Thus far there have only been a limited number of other chemicals evaluated for their ability to produce cross-links. The purpose of the work described here was to evaluate whether select industrial chemicals can form DNA-protein cross-links in human cells in vitro. We evaluated acetaldehyde, acrolein, diepoxybutane, paraformaldehyde, 2-furaldehyde, propionaldehyde, chloroacetaldehyde, sodium arsenite, and a deodorant tablet [Mega Blue; hazardous component listed as tris(hydroxymethyl)nitromethane]. Short- and long-term cytotoxicity was evaluated and used to select appropriate doses for in vitro testing. DNA-protein cross-linking was evaluated at no fewer than three doses and two cell lysate washing temperatures (45 and 65 degrees C) in Epstein-Barr virus (EBV) human Burkitt's lymphoma cells. The two washing temperatures were used to assess the heat stability of the DNA-protein cross-link, 2-Furaldehyde, acetaldehyde, and propionaldehyde produced statistically significant increases in DNA-protein cross-links at washing temperatures of 45 degrees C, but not 65 degrees C, and at or above concentrations of 5, 17.5, and 75 mM, respectively. Acrolein, diepoxybutane, paraformaldehyde, and Mega Blue produced statistically significant increases in DNA-protein cross-links washed at 45 and 65 degrees C at or above concentrations of 0.15 mM, 12.5 mM, 0.003%, and 0.1%, respectively. Sodium arsenite and chloroacetaldehyde did not produce significantly increased DNA-protein cross-links at either temperature nor at any dose tested. Excluding paraformaldehyde and 2-furaldehyde treatments, significant increases in DNA-protein cross-links were observed only at doses that resulted in complete cell death within 4 d following dosing. This work demonstrates that

  13. Nuclear alpha spectrin: Critical roles in DNA interstrand cross-link repair and genomic stability.

    PubMed

    Lambert, Muriel W

    2016-09-01

    Non-erythroid alpha spectrin (αIISp) is a structural protein which we have shown is present in the nucleus of human cells. It interacts with a number of nuclear proteins such as actin, lamin, emerin, chromatin remodeling factors, and DNA repair proteins. αIISp's interaction with DNA repair proteins has been extensively studied. We have demonstrated that nuclear αIISp is critical in DNA interstrand cross-link (ICL) repair in S phase, in both genomic (non-telomeric) and telomeric DNA, and in maintenance of genomic stability following ICL damage to DNA. We have proposed that αIISp acts as a scaffold aiding to recruit repair proteins to sites of damage. This involvement of αIISp in ICL repair and telomere maintenance after ICL damage represents new and critical functions for αIISp. These studies have led to development of a model for the role of αIISp in DNA ICL repair. They have been aided by examination of cells from patients with Fanconi anemia (FA), a repair-deficient genetic disorder in which a deficiency in αIISp leads to defective ICL repair in genomic and telomeric DNA, telomere dysfunction, and chromosome instability following DNA ICL damage. We have shown that loss of αIISp in FA cells is due to increased breakdown by the protease, µ-calpain. Importantly, we have demonstrated that this deficiency can be corrected by knockdown of µ-calpain and restoring αIISp levels to normal. This corrects a number of the phenotypic deficiencies in FA after ICL damage. These studies suggest a new and unexplored direction for therapeutically restoring genomic stability in FA cells and for correcting numerous phenotypic deficiencies occurring after ICL damage. Developing a more in-depth understanding of the importance of the interaction of αIISp with other nuclear proteins could significantly enhance our knowledge of the consequences of loss of αIISp on critical nuclear processes. PMID:27480253

  14. Computational exploration of polymer nanocomposite mechanical property modification via cross-linking topology

    SciTech Connect

    Lacevic, N; Gee, R; Saab, A; Maxwell, R

    2008-04-24

    Molecular dynamics simulations have been performed in order to study the effects of nanoscale filler cross-linking topologies and loading levels on the mechanical properties of a model elastomeric nanocomposite. The model system considered here is constructed from octa-functional polyhedral oligomeric silsesquioxane (POSS) dispersed in a poly(dimethylsiloxane) (PDMS) matrix. Shear moduli, G, have been computed for pure and for filled and unfilled PDMS as a function of cross-linking density, POSS fill loading level, and polymer network topology. The results reported here show that G increases as the cross-linking (covalent bonds formed between the POSS and the PDMS network) density increases. Further, G is found to have a strong dependence on cross-linking topology. The increase in shear modulus, G, for POSS filled PDMS is significantly higher than that for unfilled PDMS cross-linked with standard molecular species, suggesting an enhanced reinforcement mechanism for POSS. In contrast, in blended systems (POSS/PDMS mixture with no cross-linking) G was not observed to significantly increase with POSS loading. Finally, we find intriguing differences in the structural arrangement of bond strains between the cross-linked and the blended systems. In the unfilled PDMS the distribution of highly strained bonds appears to be random, while in the POSS filled system, the strained bonds form a net-like distribution that spans the network. Such a distribution may form a structural network 'holding' the composite together and resulting in increases in G compared to an unfilled, cross-linked system. These results are of importance for engineering of new POSS-based multifunctional materials with tailor-made mechanical properties.

  15. Structure of a Bud6/Actin Complex Reveals a Novel WH2-like Actin Monomer Recruitment Motif.

    PubMed

    Park, Eunyoung; Graziano, Brian R; Zheng, Wei; Garabedian, Mikael; Goode, Bruce L; Eck, Michael J

    2015-08-01

    In budding yeast, the actin-binding protein Bud6 cooperates with formins Bni1 and Bnr1 to catalyze the assembly of actin filaments. The nucleation-enhancing activity of Bud6 requires both a "core" domain that binds to the formin and a "flank" domain that binds monomeric actin. Here, we describe the structure of the Bud6 flank domain in complex with actin. Two helices in Bud6(flank) interact with actin; one binds in a groove at the barbed end of the actin monomer in a manner closely resembling the helix of WH2 domains, a motif found in many actin nucleation factors. The second helix rises along the face of actin. Mutational analysis verifies the importance of these Bud6-actin contacts for nucleation-enhancing activity. The Bud6 binding site on actin overlaps with that of the formin FH2 domain and is also incompatible with inter-subunit contacts in F-actin, suggesting that Bud6 interacts only transiently with actin monomers during filament nucleation. PMID:26118535

  16. Study of the effect of mixing approach on cross-linking efficiency of hyaluronic acid-based hydrogel cross-linked with 1,4-butanediol diglycidyl ether.

    PubMed

    Al-Sibani, Mohammed; Al-Harrasi, Ahmed; Neubert, Reinhard H H

    2016-08-25

    Regardless of various strategies reported for cross-linking hyaluronic acid (HA) with 1,4-butanediol diglycidyl ether (BDDE), seeking new strategies that enhance cross-linking efficiency with a low level of cross-linker is essential. In this work, we studied the influence of mixing approach on two cross-linked BDDE-HA hydrogels prepared by two different mixing approaches; the large-batch mixing approach in which the hydrogel quantities were all mixed as a single lump in one container (hydrogel 1), and the small-batches mixing approach in which the hydrogel quantities were divided into smaller batches, mixed separately at various HA/BDDE ratios then combined in one reaction mixture (hydrogel 2). The result showed that the cross-linking reaction was mixing process-dependent. Degradation tests proved that, in relation to hydrogel 1, hydrogel 2 was more stable, and exhibited a higher resistance towards hyaluronidase activity. The swelling ratio of hydrogel 1 was significantly higher than that of hydrogel 2 in distilled water; however, in phosphate buffer saline, both hydrogels showed no significant difference. SEM images demonstrated that hydrogel 2 composite showed a denser network structure and smaller pore-size than hydrogel 1. In comparison to native HA, the occurrence of chemical modification in the cross-linked hydrogels was confirmed by FTIR and NMR distinctive peaks. These peaks also provided evidence that hydrogel 2 exhibited a higher degree of modification than hydrogel 1. In conclusion, the small-batches mixing approach proved to be more effective than large-batch mixing in promoting HA-HA entanglement and increasing the probability of BDDE molecules for binding with HA chains. PMID:27312477

  17. A novel strategy for preparing mechanically robust ionically cross-linked alginate hydrogels.

    PubMed

    Jejurikar, Aparna; Lawrie, Gwen; Martin, Darren; Grøndahl, Lisbeth

    2011-04-01

    The properties of alginate films modified using two cross-linker ions (Ca(2+) and Ba(2+)), comparing two separate cross-linking techniques (the traditional immersion (IM) method and a new strategy in a pressure-assisted diffusion (PD) method), are evaluated. This was achieved through measuring metal ion content, water uptake and film stability in an ionic solution ([Ca(2+)] = 2 mM). Characterization of the internal structure and mechanical properties of hydrated films were established by cryogenic scanning electron microscopy and tensile testing, respectively. It was found that gels formed by the PD technique possessed greater stability and did not exhibit any delamination after 21 day immersion as compared to gels formed by the IM technique. The Ba(2+) cross-linked gels possessed significantly higher cross-linking density as reflected in lower water content, a more dense internal structure and higher Young's modulus compared to Ca(2+) cross-linked gels. For the Ca(2+) cross-linked gels, a large improvement in the mechanical properties was observed in gels produced by the PD technique and this was attributed to thicker pore walls observed within the hydrogel structure. In contrast, for the Ba(2+) cross-linked gels, the PD technique resulted in gels that had lower tensile strength and strain energy density and this was attributed to phase separation and larger macropores in this gel. PMID:21436510

  18. Synthesis of a duplex oligonucleotide containing a nitrogen mustard interstrand DNA-DNA cross-link.

    PubMed

    Ojwang, J O; Grueneberg, D A; Loechler, E L

    1989-12-01

    Many cancer chemotherapeutic agents react with DNA and give adducts that block DNA replication, which is thought to result in cytotoxicity, especially in rapidly proliferating cells such as cancer cells. One class of these agents is bifunctionally reactive (e.g., the nitrogen mustards) and forms DNA-DNA cross-links. It is unknown whether inter- or intrastrand cross-links are more effective at blocking DNA replication. To evaluate this, a DNA shuttle vector is being constructed with an interstrand cross-link at a unique site. In the first step of this project, a duplex oligonucleotide containing an interstrand cross-link is isolated by denaturing polyacrylamide gel electrophoresis from the reaction of nitrogen mustard with two partially complementary oligodeoxynucleotides. The purified oligonucleotide product is characterized and shown to be cross-linked in a 5'-GAC-3' 3'-CTG-5' sequence by a nitrogen mustard moiety that is bound at the N(7)-position of the guanines in the opposing strands; the glycosylic bonds of these guanine adducts are stabilized in their corresponding imidazole ring-opened form. Nitrogen mustard is shown to react with a variety of oligonucleotides and, based upon these results, its preferred targets for interstrand cross-linking are 5'-GXC-3' sequences, where X can be any of the four deoxyribonucleotide bases. PMID:2819709

  19. Current status of corneal collagen cross-linking for keratoconus: a review.

    PubMed

    Chan, Elsie; Snibson, Grant R

    2013-03-01

    Over the past decade, corneal collagen cross-linking has become commonplace as a treatment option for individuals with progressive keratoconus. This is based on laboratory data suggesting that cross-linking using riboflavin and ultraviolet-A irradiation increases collagen diameter and the biomechanical strength of the treated cornea. Case series and limited randomised controlled trials support these findings with data demonstrating that cross-linking slows and possibly halts the progression of keratoconus. In some patients cross-linking results in an improvement in maximum corneal curvature, visual acuity, spherical equivalent and higher-order aberrations. The number of reported complications is small. More recently, variations in the treatment protocol have been described, although they have not yet been subject to comparative studies. While the published data indicate cross-linking is effective in modifying the natural history of keratoconus, the long-term impact of this treatment is still unknown. This paper reviews the theoretical basis, pre-clinical research and clinical results of corneal collagen cross-linking in keratoconus. PMID:23414201

  20. Synchrotron Small-Angle X-ray Scattering Study of Cross-Linked Polymeric Micelles.

    PubMed

    Kim, Hyun-Chul; Jin, Kyeong Sik; Lee, Se Guen; Kim, Eunjoo; Lee, Sung Jun; Jeong, Sang Won; Lee, Seung Woo; Kim, Kwang-Woo

    2016-06-01

    Polymeric micelles of methoxypoly(ethylene glycol)-b-poly(lactide) containing lysine units (mPEG-PLA-Lys4) were cross-linked by reacting of lysine moieties with a bifunctional bis(N-hydroxy-succinimide ester). The micelles were characterized in aqueous solution using dynamic light scattering, transmission electron microscopy, and synchrotron small-angle X-ray scattering. The mPEG-PLA-Lys4 was synthesized through the ring-opening polymerization of N6-carbobenzyloxy-L-lysine N-carboxyanhydride with amine-terminated mPEG-PLA and subsequent deprotection. The polymeric micelles showed enhanced micelle stability after cross-linking, which was confirmed by adding sodium dodecyl sulfate as a destabilizing agent. The average diameters measured via dynamic light scattering were 19.1 nm and 29.2 nm for non-cross-linked polymeric micelles (NCPMs) and cross-linked polymeric micelles (CPMs), respectively. The transmission electron microscopy images showed that the size of the polymeric micelles increased slightly due to cross-linking, which was in good agreement with the DLS measurements. The overall structures and internal structural changes of NCPMs and CPMs in aqueous solution were studied in detail using synchrotron X-ray scattering method. According to the structural parameters of X-ray scattering analysis, CPMs with a more densely packed core structure were formed by reacting bifunctional cross-linking agents with lysine amino groups located in the innermost core of the polymeric micelles. PMID:27427731

  1. Exogenous collagen cross-linking recovers tendon functional integrity in an experimental model of partial tear.

    PubMed

    Fessel, Gion; Wernli, Jeremy; Li, Yufei; Gerber, Christian; Snedeker, Jess G

    2012-06-01

    We investigated the hypothesis that exogenous collagen cross-linking can augment intact regions of tendon to mitigate mechanical propagation of partial tears. We first screened the low toxicity collagen cross-linkers genipin, methylglyoxal and ultra-violet (UV) light for their ability to augment tendon stiffness and failure load in rat tail tendon fascicles (RTTF). We then investigated cross-linking effects in load bearing equine superficial digital flexor tendons (SDFT). Data indicated that all three cross-linking agents augmented RTTF mechanical properties but reduced native viscoelasticity. In contrast to effects observed in fascicles, methylglyoxal treatment of SDFT detrimentally affected tendon mechanical integrity, and in the case of UV did not alter tendon mechanics. As in the RTTF experiments, genipin cross-linking of SDFT resulted in increased stiffness, higher failure loads and reduced viscoelasticity. Based on this result we assessed the efficacy of genipin in arresting tendon tear propagation in cyclic loading to failure. Genipin cross-linking secondary to a mid-substance biopsy-punch significantly reduced tissue strains, increased elastic modulus and increased resistance to fatigue failure. We conclude that genipin cross-linking of injured tendons holds potential for arresting tendon tear progression, and that implications of the treatment on matrix remodeling in living tendons should now be investigated. PMID:22102295

  2. Food-contact epoxy resin: co-variation between migration and degree of cross-linking.

    PubMed

    Lambert, C; Larroque, M; Lebrun, J C; Gérard, J F

    1997-01-01

    In order to predict the behaviour towards foodstuffs of an epoxy resin composed of bisphenol A diglycidyl ether (BADGE), 4,4'-methylenedianiline (MDA) and additives (plasticizers: dibutylphthalate (DBP), dioctylphthalate (DOP); accelerator: salicylic acid; inorganic fillers), a co-variation was established between the parameters evaluating the degree of cross-linking of the three-dimensional network and the migration of constituent molecules into various food simulants (distilled water, distilled water/ethanol/acetic acid, distilled water/ethanol). Varied degrees of cross-linking were obtained by subjecting the resin to different curing temperatures: respectively, 5 degrees C, 20 degrees C, 50 degrees C and 90 degrees C for 7 days. Irrespective of the food stimulant tested, specific migrations (DBP, DOP, salicylic acid, primary aromatic amines) diminished greatly as the curing temperature increased. At the same time, the degree of cross-linking increased with curing temperature, as indicated by the increase in glass transition temperature, the decrease in residual reaction exotherms and increased stability of the rubber storage modulus E'rub (increase in cross-link nodes), the fall in relaxation enthalpies (reduction in physical ageing) and the decreased amplitude of the loss-factor, tan delta (reduction in chain mobility). Maximum cross-linking was obtained in the resin cured at 90 degrees C (temperature above Tg infinity). In contrast to the degree of cross-linking, evaporation contributed little to the reduction of migration due to the elevation of curing temperature. PMID:9102353

  3. Antifouling coatings based on covalently cross-linked agarose film via thermal azide-alkyne cycloaddition.

    PubMed

    Xu, Li Qun; Pranantyo, Dicky; Neoh, Koon-Gee; Kang, En-Tang; Teo, Serena Lay-Ming; Fu, Guo Dong

    2016-05-01

    Coatings based on thin films of agarose-poly(ethylene glycol) (Agr-PEG) cross-linked systems are developed as environmentally-friendly and fouling-resistant marine coatings. The Agr-PEG cross-linked systems were prepared via thermal azide-alkyne cycloaddition (AAC) using azido-functionalized Agr (AgrAz) and activated alkynyl-containing poly(2-propiolamidoethyl methacrylate-co-poly(ethylene glycol)methyl ether methacrylate) P(PEMA-co-PEGMEMA) random copolymers as the precursors. The Agr-PEG cross-linked systems were further deposited onto a SS surface, pre-functionalized with an alkynyl-containing biomimetic anchor, dopamine propiolamide, to form a thin film after thermal treatment. The thin film-coated SS surfaces can effectively reduce the adhesion of marine algae and the settlement of barnacle cyprids. Upon covalent cross-linking, the covalently cross-linked Agr-PEG films coated SS surfaces exhibit good stability in flowing artificial seawater, and enhanced resistance to the settlement of barnacle cyprids, in comparison to that of the surfaces coated with physically cross-linked AgrAz films. PMID:26836479

  4. Optical mechanical refinement of human amniotic membrane by dehydration and cross-linking.

    PubMed

    Tanaka, Yuji; Kubota, Akira; Yokokura, Shunji; Uematsu, Masafumi; Shi, Dong; Yamato, Masayuki; Okano, Teruo; Quantock, Andrew J; Nishida, Kohji

    2012-10-01

    The aim of this study was to develop a method for refining the optical and mechanical properties of human amniotic membrane (AM) to provide ophthalmic transparent implants for use during severe donor cornea shortages. AM was allowed to gradually dehydrate at 4-8 °C with and without chemical cross-linking. To improve the transparency of AM, a simple dehydration process using a refrigerator at 4-8 °C overnight was examined. For further improvements, dehydrated AM was then cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxy-succimide before rehydration. Light transmittance and tensile strength of individual specimens were evaluated. Light transmittance of AM improved from 50.9-77.7% at 550 nm by this simple low temperature dehydration process. Its high light transmittance was partially maintained at 70.1%, even after rehydration with normal saline. Interestingly, chemically cross-linked AM showed a significantly greater light transmittance of 81.5% under wet conditions. In addition, tensile strength was significantly increased after cross-linking from 2.32 N/mm(2) (native tissue) to 11.78 N/mm(2) (cross-linked specimens). Light transmittance and tensile strength were successfully improved by these approaches, including low temperature dehydration with and without chemical cross-linking. The use of refined AM could be feasible for use in current and future ophthalmic treatments. PMID:22489071

  5. Curcumin cross-linked collagen aerogels with controlled anti-proteolytic and pro-angiogenic efficacy.

    PubMed

    Dharunya, G; Duraipandy, N; Lakra, Rachita; Korapatti, Purna Sai; Jayavel, R; Kiran, Manikantan Syamala

    2016-01-01

    This paper elucidates the development of a curcumin cross-linked collagen aerogel system with controlled anti-proteolytic activity and pro-angiogenic efficacy. The results of this study showed that in situ cross-linking of curcumin with collagen leads to the development of aerogels with enhanced physical and mechanical properties. The integrity of collagen after cross-linking with curcumin was studied via FTIR spectroscopy. The results confirmed that the cross-linking with curcumin did not induce any structural changes in the collagen. The curcumin cross-linked collagen aerogels exhibited potent anti-proteolytic and anti-microbial activity. Scanning electron and atomic force microscopic analysis of curcumin cross-linked collagen aerogels showed a 3D microstructure that enhanced the adhesion and proliferation of cells. The highly organized geometry of collagen-curcumin aerogels enhanced the permeability and water-retaining ability required for the diffusion of nutrients that aid cellular growth. The pro-angiogenic properties of collagen-curcumin aerogels were ascribed to the cumulative effect of the nutraceutical and the collagen molecule, which augmented the restoration of damaged tissue. Further, these aerogels exhibited controlled anti-proteolytic activity, which makes them suitable 3D scaffolds for biomedical applications. This study provides scope for the development of biocompatible and bioresorbable collagen aerogel systems that use a nutraceutical as a cross-linker for biomedical applications. PMID:27509047

  6. Dual-Cross-Linked Methacrylated Alginate Sub-Microspheres for Intracellular Chemotherapeutic Delivery.

    PubMed

    Fenn, Spencer L; Miao, Tianxin; Scherrer, Ryan M; Oldinski, Rachael A

    2016-07-20

    Intracellular delivery vehicles comprised of methacrylated alginate (Alg-MA) were developed for the internalization and release of doxorubicin hydrochloride (DOX). Alg-MA was synthesized via an anhydrous reaction, and a mixture of Alg-MA and DOX was formed into sub-microspheres using a water/oil emulsion. Covalently cross-linked sub-microspheres were formed via exposure to green light, in order to investigate effects of cross-linking on drug release and cell internalization, compared to traditional techniques, such as ultraviolet (UV) light irradiation. Cross-linking was performed using light exposure alone or in combination with ionic cross-linking using calcium chloride (CaCl2). Alg-MA sub-microsphere diameters were between 88 and 617 nm, and ζ-potentials were between -20 and -37 mV. Using human lung epithelial carcinoma cells (A549) as a model, cellular internalization was confirmed using flow cytometry; different sub-microsphere formulations varied the efficiency of internalization, with UV-cross-linked sub-microspheres achieving the highest internalization percentages. While blank (nonloaded) Alg-MA submicrospheres were noncytotoxic to A549 cells, DOX-loaded sub-microspheres significantly reduced mitochondrial activity after 5 days of culture. Photo-cross-linked Alg-MA sub-microspheres may be a potential chemotherapeutic delivery system for cancer treatment. PMID:27378419

  7. Triple shape memory effects of cross-linked polyethylene/polypropylene blends with cocontinuous architecture.

    PubMed

    Zhao, Jun; Chen, Min; Wang, Xiaoyan; Zhao, Xiaodong; Wang, Zhenwen; Dang, Zhi-Min; Ma, Lan; Hu, Guo-Hua; Chen, Fenghua

    2013-06-26

    In this paper, the triple shape memory effects (SMEs) observed in chemically cross-linked polyethylene (PE)/polypropylene (PP) blends with cocontinuous architecture are systematically investigated. The cocontinuous window of typical immiscible PE/PP blends is the volume fraction of PE (v(PE)) of ca. 30-70 vol %. This architecture can be stabilized by chemical cross-linking. Different initiators, 2,5-dimethyl-2,5-di(tert-butylperoxy)-hexane (DHBP), dicumylperoxide (DCP) coupled with divinylbenzene (DVB) (DCP-DVB), and their mixture (DHBP/DCP-DVB), are used for the cross-linking. According to the differential scanning calorimetry (DSC) measurements and gel fraction calculations, DHBP produces the best cross-linking and DCP-DVB the worst, and the mixture, DHBP/DCP-DVB, is in between. The chemical cross-linking causes lower melting temperature (Tm) and smaller melting enthalpy (ΔHm). The prepared triple shape memory polymers (SMPs) by cocontinuous immiscible PE/PP blends with v(PE) of 50 vol % show pronounced triple SMEs in the dynamic mechanical thermal analysis (DMTA) and visual observation. This new strategy of chemically cross-linked immiscible blends with cocontinuous architecture can be used to design and prepare new SMPs with triple SMEs. PMID:23713446

  8. Characterization of receptors for VIP on pancreatic acinar cell plasma membranes using covalent cross-linking

    SciTech Connect

    McArthur, K.E.; Wood, C.L.; O'Dorisio, M.S.; Zhou, Z.C.; Gardner, J.D.; Jensen, R.T.

    1987-03-01

    Vasoactive intestinal peptide (VIP) receptors on guinea pig pancreatic acini differ from those on all other tissues in containing a high-affinity VIP receptor and a low-affinity VIP receptor that has a high affinity for secretin. To characterize the molecular components of these receptors, /sup 125/I-VIP was covalently cross-linked to these receptors by four different cross-linking agents: disuccinimidyl suberate, ethylene glycol bis (succinimidyl succinate), dithiobis (succinimidylpropionate), and m-maleimidobenzoyl N-hydroxysuccinimide ester. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated a single major polypeptide band of M/sub r/ 45,000 and a minor polypeptide band of M/sub r/ 30,000 were cross-linked to /sup 125/I-VIP. Covalent cross-linking only occurred when a cross-linking agent was added, was inhibited by GTP, was inhibited by VIP receptor agonist or antagonists that interact with VIP receptors, and not by other pancreatic secretagogues that interact with difference receptors. Thus the high-affinity VIP receptor on pancreatic acinar cell membranes consists of a single major polypeptide of M/sub r/ 45,000, and this polypeptide is not a subunit of a larger disulfide-linked structure. Furthermore, either the low-affinity VIP/secretin-preferring receptor was not covalently cross-linked under the experimental conditions or it consist of a major polypeptide with the same molecular weight as the high-affinity VIP receptor.

  9. Dynamic OCT measurements of corneal biomechanical properties after UV cross-linking in the rabbit

    NASA Astrophysics Data System (ADS)

    Twa, Michael D.; Li, Jiasong; Manapuram, Ravi K.; Menodiado, Floredes M.; Singh, Manmohan; Aglyamov, Salavat; Emelianov, Stanislav; Larin, Kirill V.

    2013-03-01

    Structural properties of the cornea determine the shape and optical quality of the eye. Keratoconus, a structural degeneration of the cornea, is often treated with UV-induced collagen cross-linking to increase tissue resistance to further deformation and degeneration. Optimal treatments would be customized to the individual and consider preexisting structural properties as well as the effects induced by treatment and this requires the capability to noninvasively measure tissue properties. The purpose of this study is to use novel methods of optical elastography to study the effects of UV-induced corneal collagen cross-linking in the rabbit eye. Low-amplitude (<1μm) elastic flexural waves were generated using focused air-pulse stimulation. Elastic wave propagation was measured over a 10x10mm area using Phase Stabilized Swept Source Optical Coherence Elastography (PhS-SSOCE) with a sensitivity of ~ 10 nm. Wave amplitude and velocity were computed and compared in tissues before and after UV cross-linking. Wave amplitude was decreased by the cross-linking treatment, while wave velocity was greater in cross-linked tissue than it was in the untreated cornea. Decreased wave amplitude and increased wave velocity after cross-linking is consistent with increased tissue stiffness. This was confirmed by conventional mechanical tension testing. These results demonstrate that the combination of the PhS-SSOCE and focused air pulse stimulation is capable of measuring low amplitude tissue motion and quantifying corneal stiffness.

  10. Actinic Prurigo.

    PubMed

    Rodríguez-Carreón, Alma Angélica; Rodríguez-Lobato, Erika; Rodríguez-Gutiérrez, Georgina; Cuevas-González, Juan Carlos; Mancheno-Valencia, Alexandra; Solís-Arias, Martha Patricia; Vega-Memije, María Elisa; Hojyo-Tomoka, María Teresa; Domínguez-Soto, Luciano

    2015-01-01

    Actinic prurigo is an idiopathic photodermatosis that affects the skin, as well as the labial and conjunctival mucosa in indigenous and mestizo populations of Latin America. It starts predominantly in childhood, has a chronic course, and is exacerbated with solar exposure. Little is known of its pathophysiology, including the known mechanisms of the participation of HLA-DR4 and an abnormal immunologic response with increase of T CD4+ lymphocytes. The presence of IgE, eosinophils, and mast cells suggests that it is a hypersensitivity reaction (likely type IVa or b). The diagnosis is clinical, and the presence of lymphoid follicles in the mucosal histopathologic study of mucosa is pathognomonic. The best available treatment to date is thalidomide, despite its secondary effects. PMID:26861426

  11. Building an artificial actin cortex on microscopic pillar arrays.

    PubMed

    Ayadi, R; Roos, W H

    2015-01-01

    Eukaryotic cells obtain their morphology and mechanical strength from the cytoskeleton and in particular from the cross-linked actin network that branches throughout the whole cell. This actin cortex lies like a quasi-two-dimensional (2D) biopolymer network just below the cell membrane, to which it is attached. In the quest for building an artificial cell, one needs to make a biomimetic model of the actin cortex and combine this in a bottom-up approach with other "synthetic" components. Here, we describe a reconstitution method for such an artificial actin cortex, which is freely suspended on top of a regular array of pillars. By this immobilization method, the actin network is only attached to a surface at discrete points and can fluctuate freely in between. By discussing the method to make the micropillars and the way to reconstitute a quasi-2D actin network on top, we show how one can study an isolated, reconstituted part of a cell. This allows the study of fundamental interaction mechanisms of actin networks, providing handles to design a functional actin cortex in an artificial cell. PMID:25997345

  12. [Actinic Keratosis].

    PubMed

    Dejaco, D; Hauser, U; Zelger, B; Riechelmann, H

    2015-07-01

    Actinic keratosis is a cutaneous lesion characterized by proliferation of atypical epidermal keratinocytes due to prolonged exposure to exogenous factors such as ultraviolet radiation. AKs are in-situ-squamous cell carcinomas (PEC) of the skin. AK typically presents as erythematous, scaly patch or papule (classic AK), occasionally as thick, adherent scale on an erythematous base. Mostly fair-skinned adults are affected. AKs typically occur in areas of frequent sun exposure (balding scalp, face, "H-region", lateral neck, décolleté, dorsum of the hand and lower extremities). Actinic Cheilitis is the term used for AKs appearing on the lips. The diagnosis of AK is based on clinical examination including inspection and palpation. The typical palpable rough surface of AK often precedes a visible lesion. Dermoscopy may provide additional information. If diagnosis is uncertain and invasion suspected, biopsy and histopathologic evaluation should be performed. The potential for progression to invasive PECs mandates therapeutic intervention. Treatment options include topical and systemic therapies. Topical therapies are classified into physical, medical and combined physical-chemical approaches and a sequential combination of treatment modalities is possible. Topical-physical cryotherapy is the treatment of choice for isolated, non-hypertrophic AK. Topical-medical treatment, e. g. 5-fluoruracil (5FU) cream or Imiquomod or Ingenolmebutat application is used for multiple, non-hypertrophic AKs. For hypertrophic AKs, a dehorning pretreatment with salicinated vaseline is recommended. Isolated hypertrophic AKs often need cryotherapy with prolonged freezing time or several consecutive applications. Sequentially combined approaches are recommended for multiple, hypertrophic AKs. Photodynamic therapy (PDT) as example for a combined physical-chemical approach is an established treatment for multiple, non-hypertrophic and hypertrophic AKs. Prevention includes avoidance of sun and

  13. Interstrand cross-link formation in duplex and triplex DNA by modified pyrimidines.

    PubMed

    Peng, Xiaohua; Hong, In Seok; Li, Hong; Seidman, Michael M; Greenberg, Marc M

    2008-08-01

    DNA interstrand cross-links have important biological consequences and are useful biotechnology tools. Phenylselenyl substituted derivatives of thymidine (1) and 5-methyl-2'-deoxycytidine (5) produce interstrand cross-links in duplex DNA when oxidized by NaIO4. The mechanism involves a [2,3]-sigmatropic rearrangement of the respective selenoxides to the corresponding methide type intermediates, which ultimately produce the interstrand cross-links. Determination of the rate constants for the selenoxide rearrangements indicates that the rate-determining step for cross-linking is after methide formation. Cross-linking by the thymidine derivative in duplex DNA shows a modest kinetic preference when flanked by pyrimidines as opposed to purines. In contrast, the rate constant for cross-link formation from 5 opposite dG in duplex DNA is strongly dependent upon the flanking sequence and, in general, is at least an order of magnitude slower than that for 1 in an otherwise identical sequence. Introduction of mispairs at the base pairs flanking 5 or substitution of the opposing dG by dI significantly increases the rate constant and yield for cross-linking, indicating that stronger hydrogen bonding between the methide derived from it and dG compared to dA and the respective electrophile derived from 1 limits reaction by increasing the barrier to rotation into the required syn-conformation. Incorporation of 1 or 5 in triplex forming oligonucleotides (TFOs) that utilize Hoogsteen base pairing also yields interstrand cross-links. The dC derivative produces ICLs approximately 10x faster than the thymidine derivative when incorporated at the 5'-termini of the TFOs and higher yields when incorporated at internal sites. The slower, less efficient ICL formation emanating from 1 is attributed to reaction at N1-dA, which requires local melting of the duplex. In contrast, 5 produces cross-links by reacting with N7-dG. The cross-linking reactions of 1 and 5 illustrate the versatility and

  14. Intra-molecular cross-linking of acidic residues for protein structure studies.

    PubMed

    Novak, Petr; Kruppa, Gary H

    2008-01-01

    Intra-molecular cross-linking has been suggested as a method of obtaining distance constraints that would help to develop structural models of proteins. Recent work published on intra-molecular cross-linking for protein structural studies has employed commercially available primary amine (lysine, the amino terminus) selective reagents. Previous work using these cross-linkers has shown that for several proteins of known structure, the number of cross-links that can be obtained experimentally may be small compared to what would be expected from the known structure, due to the relative reactivity, distribution and solvent accessibility of the lysines in the protein sequence. To overcome these limitations, we have investigated the use of cross-linking reagents that can react with other reactive side chains in proteins. We used 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) to activate the carboxylic acid containing residues, aspartic acid (D), glutamic acid (E) and the carboxy terminus (O), for cross-linking reactions. Once activated, the DEO side chains can react to form "zero-length" cross-links with nearby primary amine containing residues, lysines (K) and the amino terminus (X), via the formation of a new amide bond. We also show that the EDC-activated DEO side chains can be cross-linked to each other using dihydrazides, two hydrazide moieties connected by an alkyl cross-linker arm of variable length. Using these reagents, we have found three new "zero-length" cross-links in ubiquitin consistent with its known structure (M1-E16, M1-E18 and K63-E64). Using the dihydrazide cross-linkers, we have identified two new cross-links (D21-D32 and E24-D32) unambiguously. Using a library of dihydrazide cross-linkers with varying arm length, we have shown that there is a minimum arm length required for the DEO-DEO cross-links of 5.8 A. These results show that additional structural information can be obtained by exploiting new cross-linker chemistry

  15. Analysis of Nidogen-1/Laminin γ1 Interaction by Cross-Linking, Mass Spectrometry, and Computational Modeling Reveals Multiple Binding Modes

    PubMed Central

    Lössl, Philip; Kölbel, Knut; Tänzler, Dirk; Nannemann, David; Ihling, Christian H.; Keller, Manuel V.; Schneider, Marian; Zaucke, Frank; Meiler, Jens; Sinz, Andrea

    2014-01-01

    We describe the detailed structural investigation of nidogen-1/laminin γ1 complexes using full-length nidogen-1 and a number of laminin γ1 variants. The interactions of nidogen-1 with laminin variants γ1 LEb2–4, γ1 LEb2–4 N836D, γ1 short arm, and γ1 short arm N836D were investigated by applying a combination of (photo-)chemical cross-linking, high-resolution mass spectrometry, and computational modeling. In addition, surface plasmon resonance and ELISA studies were used to determine kinetic constants of the nidogen-1/laminin γ1 interaction. Two complementary cross-linking strategies were pursued to analyze solution structures of laminin γ1 variants and nidogen-1. The majority of distance information was obtained with the homobifunctional amine-reactive cross-linker bis(sulfosuccinimidyl)glutarate. In a second approach, UV-induced cross-linking was performed after incorporation of the diazirine-containing unnatural amino acids photo-leucine and photo-methionine into laminin γ1 LEb2–4, laminin γ1 short arm, and nidogen-1. Our results indicate that Asn-836 within laminin γ1 LEb3 domain is not essential for complex formation. Cross-links between laminin γ1 short arm and nidogen-1 were found in all protein regions, evidencing several additional contact regions apart from the known interaction site. Computational modeling based on the cross-linking constraints indicates the existence of a conformational ensemble of both the individual proteins and the nidogen-1/laminin γ1 complex. This finding implies different modes of interaction resulting in several distinct protein-protein interfaces. PMID:25387007

  16. A Mechanism for Actin Filament Severing by Malaria Parasite Actin Depolymerizing Factor 1 via a Low Affinity Binding Interface*

    PubMed Central

    Wong, Wilson; Webb, Andrew I.; Olshina, Maya A.; Infusini, Giuseppe; Tan, Yan Hong; Hanssen, Eric; Catimel, Bruno; Suarez, Cristian; Condron, Melanie; Angrisano, Fiona; NebI, Thomas; Kovar, David R.; Baum, Jake

    2014-01-01

    Actin depolymerizing factor (ADF)/cofilins are essential regulators of actin turnover in eukaryotic cells. These multifunctional proteins facilitate both stabilization and severing of filamentous (F)-actin in a concentration-dependent manner. At high concentrations ADF/cofilins bind stably to F-actin longitudinally between two adjacent actin protomers forming what is called a decorative interaction. Low densities of ADF/cofilins, in contrast, result in the optimal severing of the filament. To date, how these two contrasting modalities are achieved by the same protein remains uncertain. Here, we define the proximate amino acids between the actin filament and the malaria parasite ADF/cofilin, PfADF1 from Plasmodium falciparum. PfADF1 is unique among ADF/cofilins in being able to sever F-actin but do so without stable filament binding. Using chemical cross-linking and mass spectrometry (XL-MS) combined with structure reconstruction we describe a previously overlooked binding interface on the actin filament targeted by PfADF1. This site is distinct from the known binding site that defines decoration. Furthermore, total internal reflection fluorescence (TIRF) microscopy imaging of single actin filaments confirms that this novel low affinity site is required for F-actin severing. Exploring beyond malaria parasites, selective blocking of the decoration site with human cofilin (HsCOF1) using cytochalasin D increases its severing rate. HsCOF1 may therefore also use a decoration-independent site for filament severing. Thus our data suggest that a second, low affinity actin-binding site may be universally used by ADF/cofilins for actin filament severing. PMID:24371134

  17. Mass spectrometry evidence for cisplatin as a protein cross-linking reagent

    PubMed Central

    Li, Huilin; Zhao, Yao; Phillips, Hazel I. A.; Qi, Yulin; Lin, Tzu-Yung; Sadler, Peter J.; O’Connor, Peter B.

    2011-01-01

    Cisplatin is a potent anti-cancer drug, which functions by cross-linking adjacent DNA guanine residues. However within one day of injection, 65~98% of the platinum in the blood plasma is protein-bound. It is generally accepted that cisplatin binds to methionine and histidine residues, but what is often underappreciated is that platinum from cisplatin has a 2+ charge and can form up to four bonds. Thus, it has the potential to function as a cross-linker. In this report, the cross-linking ability of cisplatin is demonstrated by Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) with the use of standard peptides, the 16.8 kDa protein calmodulin (CaM), but was unsuccessful for the 64 kDa protein hemoglobin. The high resolution and mass accuracy of FTICR MS along with the high degree of fragmentation of large peptides afforded by collisionally activated dissociation (CAD) and electron capture dissociation (ECD) are shown to be a valuable means of characterizing cross-linking sites. Cisplatin is different from current cross-linking reagents by targeting new functional groups, thioethers, and imidazoles groups, which provides complementarity with existing cross-linkers. In addition, platinum(II) inherently has two positive charges which enhance the detection of cross-linked products. Higher charge states not only promote the detection of cross-linking products with less purification, but result in more comprehensive MS/MS fragmentation and can assist the assignment of modification sites. Moreover, the unique isotopic pattern of platinum flags cross-linking products and modification sites by mass spectrometry. PMID:21591778

  18. Mesoscopic simulations of hydrophilic cross-linked polycarbonate polyurethane networks: structure and morphology.

    PubMed

    Iype, E; Esteves, A C C; de With, G

    2016-06-14

    Polyurethane (PU) cross-linked networks are frequently used in biomedical and marine applications, e.g., as hydrophilic polymer coatings with antifouling or low-friction properties and have been reported to exhibit characteristic phase separation between soft and hard segments. Understanding this phase-separation behavior is critical to design novel hydrophilic polymer coatings. However, most of the studies on the structure and morphology of cross-linked coatings are experimental, which only assess the phase separation via indirect methods. Herein we present a mesoscopic simulation study of the network characteristics of model hydrophilic polymer networks, consisting of PU with and without methyl-polyethylene glycol (mPEG) dangling chains. The systems are analyzed using a number of tools, such as the radial distribution function, the cross-link point density distribution and the Voronoi volume distribution (of the cross-linking points). The combined results show that the cross-linked networks without dangling chains are rather homogeneous but contain a small amount of clustering of cross-linker molecules. A clear phase separation is observed when introducing the dangling chains. In spite of that, the amount of cross-linker molecules connected to dangling chains only, i.e., not connected to the main network, is relatively small, leading to about 3 wt% extractables. Thus, these cross-linked polymers consist of a phase-separated, yet highly connected network. This study provides valuable guidelines towards new self-healing hydrophilic coatings based on the molecular design of cross-linked networks in direct contact with water or aqueous fluids, e.g., as anti-fouling self-repairing coatings for marine applications. PMID:27174657

  19. Pharmacologic Alternatives to Riboflavin Photochemical Corneal Cross-Linking: A Comparison Study of Cell Toxicity Thresholds

    PubMed Central

    Kim, MiJung; Takaoka, Anna; Hoang, Quan V.; Trokel, Stephen L.; Paik, David C.

    2014-01-01

    Purpose. The efficacy of therapeutic cross-linking of the cornea using riboflavin photochemistry (commonly abbreviated as CXL) has caused its use to become widespread. Because there are known chemical agents that cross-link collagenous tissues, it may be possible to cross-link tissue pharmacologically. The present study was undertaken to compare the cell toxicity of such agents. Methods. Nine topical cross-linking agents (five nitroalcohols, glyceraldehyde [GLYC], genipin [GP], paraformaldehyde [FA], and glutaraldehyde [GLUT]) were tested with four different cell lines (immortalized human corneal epithelial cells, human skin fibroblasts, primary bovine corneal endothelial cells, and immortalized human retinal pigment epithelial cells [ARPE-19]). The cells were grown in planar culture and exposed to each agent in a range of concentrations (0.001 mM to 10 mM) for 24 hours followed by a 48-hour recovery phase. Toxicity thresholds were determined by using the trypan blue exclusion method. Results. A semiquantitative analysis using five categories of toxicity/fixation was carried out, based on plate attachment, uptake of trypan blue stain, and cellular fixation. The toxicity levels varied by a factor of 103 with the least toxic being mononitroalcohols and GLYC, intermediate toxicity for a nitrodiol and nitrotriol, and the most toxic being GLUT, FA, GP, and bronopol, a brominated nitrodiol. When comparing toxicity between different cell lines, the levels were generally in agreement. Conclusions. There are significant differences in cell toxicity among potential topical cross-linking compounds. The balance between cross-linking of tissue and cell toxicity should be borne in mind as compounds and strategies to improve mechanical tissue properties through therapeutic tissue cross-linking continue to develop. PMID:24722697

  20. Click Cross-Linking-Improved Waterborne Polymers for Environment-Friendly Coatings and Adhesives.

    PubMed

    Hu, Jianqing; Peng, Kaimei; Guo, Jinshan; Shan, Dingying; Kim, Gloria B; Li, Qiyao; Gerhard, Ethan; Zhu, Liang; Tu, Weiping; Lv, Weizhong; Hickner, Michael A; Yang, Jian

    2016-07-13

    Waterborne polymers, including waterborne polyurethanes (WPU), polyester dispersions (PED), and polyacrylate emulsions (PAE), are employed as environmentally friendly water-based coatings and adhesives. An efficient, fast, stable, and safe cross-linking strategy is always desirable to impart waterborne polymers with improved mechanical properties and water/solvent/thermal and abrasion resistance. For the first time, click chemistry was introduced into waterborne polymer systems as a cross-linking strategy. Click cross-linking rendered waterborne polymer films with significantly improved tensile strength, hardness, adhesion strength, and water/solvent resistance compared to traditional waterborne polymer films. For example, click cross-linked WPU (WPU-click) has dramatically improved the mechanical strength (tensile strength increased from 0.43 to 6.47 MPa, and Young's modulus increased from 3 to 40 MPa), hardness (increased from 59 to 73.1 MPa), and water resistance (water absorption percentage dropped from 200% to less than 20%); click cross-linked PED (PED-click) film also possessed more than 3 times higher tensile strength (∼28 MPa) than that of normal PED (∼8 MPa). The adhesion strength of click cross-linked PAE (PAE-click) to polypropylene (PP) was also improved (from 3 to 5.5 MPa). In addition, extra click groups can be preserved after click cross-linking for further functionalization of the waterborne polymeric coatings/adhesives. In this work, we have demonstrated that click modification could serve as a convenient and powerful approach to significantly improve the performance of a variety of traditional coatings and adhesives. PMID:27326894

  1. Immune Focusing and Enhanced Neutralization Induced by HIV-1 gp140 Chemical Cross-Linking

    PubMed Central

    Schiffner, T.; Kong, L.; Duncan, C. J. A.; Back, J. W.; Benschop, J. J.; Shen, X.; Huang, P. S.; Stewart-Jones, G. B.; DeStefano, J.; Seaman, M. S.; Tomaras, G. D.; Montefiori, D. C.; Schief, W. R.

    2013-01-01

    Experimental vaccine antigens based upon the HIV-1 envelope glycoproteins (Env) have failed to induce neutralizing antibodies (NAbs) against the majority of circulating viral strains as a result of antibody evasion mechanisms, including amino acid variability and conformational instability. A potential vaccine design strategy is to stabilize Env, thereby focusing antibody responses on constitutively exposed, conserved surfaces, such as the CD4 binding site (CD4bs). Here, we show that a largely trimeric form of soluble Env can be stably cross-linked with glutaraldehyde (GLA) without global modification of antigenicity. Cross-linking largely conserved binding of all potent broadly neutralizing antibodies (bNAbs) tested, including CD4bs-specific VRC01 and HJ16, but reduced binding of several non- or weakly neutralizing antibodies and soluble CD4 (sCD4). Adjuvanted administration of cross-linked or unmodified gp140 to rabbits generated indistinguishable total gp140-specific serum IgG binding titers. However, sera from animals receiving cross-linked gp140 showed significantly increased CD4bs-specific antibody binding compared to animals receiving unmodified gp140. Moreover, peptide mapping of sera from animals receiving cross-linked gp140 revealed increased binding to gp120 C1 and V1V2 regions. Finally, neutralization titers were significantly elevated in sera from animals receiving cross-linked gp140 rather than unmodified gp140. We conclude that cross-linking favors antigen stability, imparts antigenic modifications that selectively refocus antibody specificity and improves induction of NAbs, and might be a useful strategy for future vaccine design. PMID:23843636

  2. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications.

    PubMed

    Yan, Le-Ping; Wang, Ying-Jun; Ren, Li; Wu, Gang; Caridade, Sofia G; Fan, Jia-Bing; Wang, Ling-Yun; Ji, Pei-Hong; Oliveira, Joaquim M; Oliveira, João T; Mano, João F; Reis, Rui L

    2010-11-01

    In this study, genipin-cross-linked collagen/chitosan biodegradable porous scaffolds were prepared for articular cartilage regeneration. The influence of chitosan amount and genipin concentration on the scaffolds physicochemical properties was evaluated. The morphologies of the scaffolds were characterized by scanning electron microscope (SEM) and cross-linking degree was investigated by ninhydrin assay. Additionally, the mechanical properties of the scaffolds were assessed under dynamic compression. To study the swelling ratio and the biostability of the collagen/chitosan scaffold, in vitro tests were also carried out by immersion of the scaffolds in PBS solution or digestion in collagenase, respectively. The results showed that the morphologies of the scaffolds underwent a fiber-like to a sheet-like structural transition by increasing chitosan amount. Genipin cross-linking remarkably changed the morphologies and pore sizes of the scaffolds when chitosan amount was less than 25%. Either by increasing the chitosan ratio or performing cross-linking treatment, the swelling ratio of the scaffolds can be tailored. The ninhydrin assay demonstrated that the addition of chitosan could obviously increase the cross-linking efficiency. The degradation studies indicated that genipin cross-linking can effectively enhance the biostability of the scaffolds. The biocompatibility of the scaffolds was evaluated by culturing rabbit chondrocytes in vitro. This study demonstrated that a good viability of the chondrocytes seeded on the scaffold was achieved. The SEM analysis has revealed that the chondrocytes adhered well to the surface of the scaffolds and contacted each other. These results suggest that the genipin-cross-linked collagen/chitosan matrix may be a promising formulation for articular cartilage scaffolding. PMID:20648541

  3. Architecture of a Full-length Retroviral Integrase Monomer and Dimer, Revealed by Small Angle X-ray Scattering and Chemical Cross-linking

    SciTech Connect

    Bojja, Ravi S.; Andrake, Mark D.; Weigand, Steven; Merkel, George; Yarychkivska, Olya; Henderson, Adam; Kummerling, Marissa; Skalka, Anna Marie

    2012-02-07

    We determined the size and shape of full-length avian sarcoma virus (ASV) integrase (IN) monomers and dimers in solution using small angle x-ray scattering. The low resolution data obtained establish constraints for the relative arrangements of the three component domains in both forms. Domain organization within the small angle x-ray envelopes was determined by combining available atomic resolution data for individual domains with results from cross-linking coupled with mass spectrometry. The full-length dimer architecture so revealed is unequivocally different from that proposed from x-ray crystallographic analyses of two-domain fragments, in which interactions between the catalytic core domains play a prominent role. Core-core interactions are detected only in cross-linked IN tetramers and are required for concerted integration. The solution dimer is stabilized by C-terminal domain (CTD-CTD) interactions and by interactions of the N-terminal domain in one subunit with the core and CTD in the second subunit. These results suggest a pathway for formation of functional IN-DNA complexes that has not previously been considered and possible strategies for preventing such assembly.

  4. Cross-linker dynamics determine the mechanical properties of actin gels.

    PubMed Central

    Wachsstock, D H; Schwarz, W H; Pollard, T D

    1994-01-01

    To evaluate the contributions of cross-linker dynamics and polymer deformation to the frequency-dependent stiffness of actin filament gels, we compared the rheological properties of actin gels with three types of cross-linkers: a weak one, Acanthamoeba alpha-actinin (dissociation rate constant 5.2 s-1, association rate constant 1.1 x 10(6) M-1 s-1); a strong one, chicken smooth muscle alpha-actinin (dissociation rate constant 0.66 s-1, association rate constant 1.20 x 10(6) M-1 s-1); and an extremely strong one, biotin/avidin (dissociation rate constant approximately zero). The biotin/avidin cross-linked gel, whose behavior is determined by polymer bending alone, behaves like a solid and shows no frequency dependence. The amoeba alpha-actinin cross-linked gel behaves like a viscoelastic fluid, and the frequency dependence of the stiffness can be explained by a mathematical model for dynamically cross-linked gels. The stiffness of the chicken alpha-actinin cross-linked gel is independent of frequency, and has viscoelastic properties intermediate between the two. The two alpha-actinins have similar association rate constants for binding to actin filaments, consistent with a diffusion-limited reaction. Rigid cross-links make the gel stiff, but make it elastic without the ability to deform permanently. Dynamically cross-linked actin filaments should allow the cell to react passively to various outside forces without any sort of signaling. Slower, signal-mediated pathways, such as severing filaments or changing the affinity of cross-linkers, could alter the nature of these passive reactions. PMID:8011912

  5. Curvature and torsion in growing actin networks

    NASA Astrophysics Data System (ADS)

    Shaevitz, Joshua W.; Fletcher, Daniel A.

    2008-06-01

    Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque.

  6. Vitamin E-diffused highly cross-linked UHMWPE particles induce less osteolysis compared to highly cross-linked virgin UHMWPE particles in vivo.

    PubMed

    Bichara, David A; Malchau, Erik; Sillesen, Nanna H; Cakmak, Selami; Nielsen, G Petur; Muratoglu, Orhun K

    2014-09-01

    Recent in vitro findings suggest that UHMWPE wear particles containing vitamin E (VE) may have reduced biologic activity and decreased osteolytic potential. We hypothesized that particles from VE-stabilized, radiation cross-linked UHMWPE would cause less osteolysis in a murine calvarial bone model when compared to virgin gamma irradiated cross-linked UHMWPE. Groups received equal amount of particulate debris overlaying the calvarium for 10 days. Calvarial bone was examined using high resolution micro-CT and histomorphometric analyses. There was a statistically significant difference between virgin (12.2%±8%) and VE-UHMWPE (3%±1.4%) groups in regards to bone resorption (P=0.005) and inflammatory fibrous tissue overlaying the calvaria (0.48 vs. 0.20, P<0.0001). These results suggest that VE-UHMWPE particles have reduced osteolytic potential in vivo when compared to virgin UHMWPE. PMID:24998319

  7. [Cross-linking and neurodermitis: prolonged re-epithelisation with severe corneal vascularisation after cross-linking in a patient with neurodermitis and keratoconus].

    PubMed

    Görsch, I C; Steinberg, J; Richard, G; Katz, T; Linke, S

    2014-06-01

    This case report describes a patient with keratoconus and neurodermitis suffering from a significantly prolonged postoperative time interval to re-epithelisation after corneal cross-linking. The development of corneal calcifications and vascularisations additionally inhibited proper re-epithelisation. Therefore the patient received four subsequent subconjunctival injections of Bevacizumab and an additional keratectomy to remove the calcifications. This therapeutic scheme led to a significant reduction of corneal vascularisation and finally a full rehabilitation of the epithelium. PMID:24788604

  8. The effects of different crossing-linking conditions of genipin on type I collagen scaffolds: an in vitro evaluation.

    PubMed

    Zhang, Xiujie; Chen, Xueying; Yang, Ting; Zhang, Naili; Dong, Li; Ma, Shaoying; Liu, Xiaoming; Zhou, Mo; Li, Baoxing

    2014-12-01

    The purpose of this paper is to analyze the properties of fabricating rat tail type I collagen scaffolds cross-linked with genipin under different conditions. The porous genipin cross-linked scaffolds are obtained through a two step freeze-drying process. To find out the optimal cross-link condition, we used different genipin concentrations and various cross-linked temperatures to prepare the scaffolds in this study. The morphologies of the scaffolds were characterized by scanning electron microscope, and the mechanical properties of the scaffolds were evaluated under dynamic compression. Additionally, the cross-linking degree was assessed by ninhydrin assay. To investigate the swelling ratio and the in vitro degradation of the collagen scaffold, the tests were also carried out by immersion of the scaffolds in a PBS solution or digestion in a type I collagenase respectively. The morphologies of the non-cross-linked scaffolds presented a lattice-like structure while the cross-linked ones displayed a sheet-like framework. The morphology of the genipin cross-linked scaffolds could be significantly changed by either increasing genipin concentration or the temperature. The swelling ratio of each cross-linked scaffold was much lower than that of the control (non-cross-linked).The ninhydrin assay demonstrated that the higher temperature and genipin concentration could obviously increase the cross-linking efficiency. The in vitro degradation studies indicated that genipin cross-linking can effectively elevate the biostability of the scaffolds. The biocompatibility and cytotoxicity of the scaffolds was evaluated by culturing rat chondrocytes on the scaffold in vitro and by MTT. The results of MTT and the fact that the chondrocytes adhered well to the scaffolds demonstrated that genipin cross-linked scaffolds possessed an excellent biocompatibility and low cytotoxicity. Based on these results, 0.3 % genipin concentrations and 37 °C cross-linked temperatures are

  9. Molecular dynamics study on the tensile deformation of cross-linking epoxy resin.

    PubMed

    Xin, Dong R; Han, Qiang

    2015-01-01

    Various epoxy resins are used in the electronic industry as encapsulants, adhesive, printed wiring boards, electronic packagings, and so on. In this study, molecular dynamics method is employed to simulate the tensile deformation of the typical electronic epoxy resin. An efficient cross-linking procedure is developed to build the molecular model. Based on the cross-linking algorithm, the effects of moisture content, cross-linking conversion, strain rate, and temperature on the mechanical properties of epoxy resins are investigated. The stress-strain curves are plotted. Also the Young's modulus and Poisson ratio are calculated. The simulation results are compared with existing experimental data. Good agreements are observed. The results show that mechanical properties of epoxy resin decrease obviously with increasing moisture content and temperature. However the high cross-linking conversion and strain rate enhance the mechanical properties of resin. This study is significant to understanding the mechanical properties of cross-linking epoxies in high temperature and high humidity. PMID:25605604

  10. Synthesis of surface protein-imprinted nanoparticles endowed with reversible physical cross-links.

    PubMed

    Yang, Chongchong; Yan, Xianming; Guo, Hao; Fu, Guoqi

    2016-01-15

    Researches on protein molecularly imprinted polymers have been challenged by the difficulties in facilitating biomacromolecular transfer, in particular upon the template removal step, and enhancing their recognition performance. Addressing these issues, herein we report synthesis of core–shell structured surface protein-imprinted nanoparticles with reversible physical cross-links formed in the imprinted nanoshells. The imprinted layers over nanoparticle supports are fabricated via aqueous precipitation polymerization (PP) of di(ethylene glycol) methyl ether methacrylate (MEO2MA), a thermo-responsive monomer bearing no strong H-bond donor, and other functional and cross-linking monomers. During polymerization, physical cross-links together with chemical cross-links are in site produced within the imprinted shells based on hydrophobic association among the PMEO2MA, favoring formation of high-quality imprints. While cooled appropriately below the polymerization temperature, these physical cross-links can be dissociated rapidly, thus facilitating removal of the embedded template. For proof of this concept, lysozyme-imprinted nanoparticles were synthesized at 37 °C over the nanoparticles functionalized with carboxylic and vinyl groups. The template removal from the imprinted nanoparticles was readily achieved by washing with a dilute acidic detergent solution at 4 °C. As-prepared imprinted nanoparticles showed greatly higher imprinting factor and specific rebinding than obtained with the same recipe but by solution polymerization (SP). Moreover, such imprinted nanomaterials exhibited satisfactory rebinding selectivity, kinetics and reusability. PMID:26313422

  11. Glycation Cross-Linking Induced Mechanical-Enzymatic Cleavage of Microscale Tendon Fibers

    PubMed Central

    Bourne, Jonathan W.; Lippell, Jared M.; Torzilli, Peter A.

    2014-01-01

    Recent molecular modeling data using collagen peptides predicted that mechanical force transmitted through intermolecular cross-links resulted in collagen triple helix unwinding. These simulations further predicted that this unwinding, referred to as triple helical microunfolding, occurred at forces well below canonical collagen damage mechanisms. Based in large part on these data, we hypothesized that mechanical loading of glycation cross-linked tendon microfibers would result in accelerated collagenolytic enzyme damage. This hypothesis is in stark contrast to reports in literature that indicated that individually mechanical loading or cross-linking each retards enzymatic degradation of collagen substrates. Using our Collagen Enzyme Mechano-Kinetic Automated Testing (CEMKAT) System we mechanically loaded collagen-rich tendon microfibers that had been chemically cross-linked with sugar and tested for degrading enzyme susceptibility. Our results indicated that cross-linked fibers were >5 times more resistant to enzymatic degradation while unloaded but became highly susceptible to enzyme cleavage when they were stretched by an applied mechanical deformation. PMID:24316373

  12. Biodegradable chitosan-based ambroxol hydrochloride microspheres: effect of cross-linking agents.

    PubMed

    Gangurde, Hh; Chavan, Nv; Mundada, As; Derle, Dv; Tamizharasi, S

    2011-01-01

    The objective of this study was to investigate the influence of type of cross-linking method used on the properties of ambroxol hydrochloride microspheres such as encapsulation efficiency, particle size, and drug release. Microspheres were prepared by solvent evaporation technique using chitosan as a matrix-forming agent and cross-linked using formaldehyde and heat treatment. Morphological and physicochemical properties of microspheres were then investigated by scanning electron microscopy (SEM), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FTIR) spectroscopy. The cross-linking of chitosan takes place at the free amino group because of formation of imine bond as evidenced by FTIR. The DSC, XRD, and FTIR analysis showed that chitosan microspheres cross linked by heating were superior in properties and performance as compared to the microspheres cross-linked using formaldehyde. SEM results revealed that heat-treated microspheres were spherical, discrete having smooth, and porous structure. The particle size and encapsulation efficiencies of the prepared chitosan microspheres ranged between 10.83-24.11 μm and 39.73μ80.56%, respectively. The drug release was extended up to 12 h, and the kinetics of the drug release was obeying Higuchi kinetic proving diffusion-controlled drug release. PMID:21607049

  13. Cross-Linking Poly(lactic acid) Film Surface by Neutral Hyperthermal Hydrogen Molecule Bombardment.

    PubMed

    Du, Wangli; Shao, Hong; He, Zhoukun; Tang, Changyu; Liu, Yu; Shen, Tao; Zhu, Yan; Lau, Woon-ming; Hui, David

    2015-12-16

    Constructing a dense cross-linking layer on a polymer film surface is a good way to improve the water resistance of poly(lactic acid) (PLA). However, conventional plasma treatments have failed to achieve the aim as a result of the unavoidable surface damage arising from the charged species caused by the uncontrolled high energy coming from colliding ions and electrons. In this work, we report a modified plasma method called hyperthermal hydrogen-induced cross-linking (HHIC) technology to construct a dense cross-linking layer on PLA film surfaces. This method produces energy-controlled neutral hyperthermal hydrogen, which selectively cleaves C-H bonds by molecule collision from the PLA film without breaking other bonds (e.g., C-C bonds in the polymer backbone), and results in subsequent cross-linking of the carbon radicals generated from the organic molecules. The formation of a dense cross-linking layer can serve as a barrier layer to significantly improve both the hydrophobicity and water vapor barrier property of the PLA film. Because of the advantage of selective cleavage of C-H bonds by HHIC treatment, the original physical properties (e.g., mechanical strength and light transmittance) of the PLA films are well-preserved. PMID:26594874

  14. Effects of partial hydrolysis and subsequent cross-linking on wheat gluten physicochemical properties and structure.

    PubMed

    Wang, Kaiqiang; Luo, Shuizhong; Cai, Jing; Sun, Qiaoqiao; Zhao, Yanyan; Zhong, Xiyang; Jiang, Shaotong; Zheng, Zhi

    2016-04-15

    The rheological behavior and thermal properties of wheat gluten following partial hydrolysis using Alcalase and subsequent microbial transglutaminase (MTGase) cross-linking were investigated. The wheat gluten storage modulus (G') and thermal denaturation temperature (Tg) were significantly increased from 2.26 kPa and 54.43°C to 7.76 kPa and 57.69°C, respectively, by the combined action of partial hydrolysis (DH 0.187%) and cross-linking. The free SH content, surface hydrophobicity, and secondary structure analysis suggested that an appropriate degree of Alcalase-based hydrolysis allowed the compact wheat gluten structure to unfold, increasing the β-sheet content and surface hydrophobicity. This improved its molecular flexibility and exposed additional glutamine sites for MTGase cross-linking. SEM images showed that a compact 3D network formed, while SDS-PAGE profiles revealed that excessive hydrolysis resulted in high-molecular-weight subunits degrading to smaller peptides, unsuitable for cross-linking. It was also demonstrated that the combination of Alcalase-based partial hydrolysis with MTGase cross-linking might be an effective method for modifying wheat gluten rheological behavior and thermal properties. PMID:26616937

  15. Cross-linking connectivity in bone collagen fibrils: the COOH-terminal locus of free aldehyde

    NASA Technical Reports Server (NTRS)

    Otsubo, K.; Katz, E. P.; Mechanic, G. L.; Yamauchi, M.

    1992-01-01

    Quantitative analyses of the chemical state of the 16c residue of the alpha 1 chain of bone collagen were performed on samples from fetal (4-6-month embryo) and mature (2-3 year old) bovine animals. All of this residue could be accounted for in terms of three chemical states, in relative amounts which depended upon the age of the animal. Most of the residue was incorporated into either bifunctional or trifunctional cross-links. Some of it, however, was present as free aldehyde, and the content increased with maturation. This was established by isolating and characterizing the aldehyde-containing peptides generated by tryptic digestion of NaB3H4-reduced mature bone collagen. We have concluded that the connectivity of COOH-terminal cross-linking in bone collagen fibrils changes with maturation in the following way: at first, each 16c residue in each of the two alpha 1 chains of the collagen molecule is incorporated into a sheet-like pattern of intermolecular iminium cross-links, which stabilizes the young, nonmineralized fibril as a whole. In time, some of these labile cross-links maturate into pyridinoline while others dissociate back to their precursor form. The latter is likely due to changes in the molecular packing brought about by the mineralization of the collagen fibrils. The resultant reduction in cross-linking connectivity may provide a mechanism for enhancing certain mechanical characteristics of the skeleton of a mature animal.

  16. Nanoparticle cross-linked collagen shields for sustained delivery of pilocarpine hydrochloride.

    PubMed

    Agban, Yosra; Lian, Jiaxin; Prabakar, Sujay; Seyfoddin, Ali; Rupenthal, Ilva D

    2016-03-30

    Glaucoma is a common progressive eye disorder which remains the second leading cause of blindness worldwide. Current therapy involves frequent administration of eye drops which often results in poor patient adherence and therapeutic outcomes. The aim of this study was to overcome these limitations by developing a novel nanoparticle cross-linked collagen shield for sustained delivery of pilocarpine hydrochloride (PHCl). Three metal oxide nanoparticles (NPs); titanium dioxide (TiO2), zinc oxide (ZnO) and polyvinylpyrrolidone (PVP) capped zinc oxide (ZnO/PVP), were evaluated for their cytotoxicity as well as shield transparency before selecting ZnO/PVP NPs as the ideal candidate. Cross-linked collagen shields were then characterized for their mechanical strength, swelling capacity and bioadhesive properties, with ZnO/PVP NP cross-linked shields showing the most favorable characteristics compared to plain films. The shield with the best properties was then loaded with PHCl and in vitro release of zinc ions as well as PHCl was measured without and with further cross-linking by ultraviolet irradiation. The concentration of zinc ions released was well below the IC50 rendering them safe for ocular use. Moreover, collagen shields cross-linked with ZnO/PVP NPs released PHCl over a period of 14 days offering a promising sustained release treatment option for glaucoma. PMID:26828672

  17. Physical properties of pectin-high amylose starch mixtures cross-linked with sodium trimetaphosphate.

    PubMed

    Carbinatto, Fernanda M; de Castro, Ana Dóris; Cury, Beatriz S F; Magalhães, Alviclér; Evangelista, Raul C

    2012-02-28

    Pectin-high amylose starch mixtures (1:4; 1:1; 4:1) were cross-linked at different degrees and characterized by rheological, thermal, X-ray diffraction and NMR analyses. For comparison, samples without cross-linker addition were also prepared and characterized. Although all samples behaved as gels, the results evidenced that the phosphorylation reaction promotes the network strengthening, resulting in covalent gels (highest critical stress, G' and recovery %). Likewise, cross-linked samples presented the highest thermal stability. However, alkaline treatment without cross-linker allowed a structural reorganization of samples, as they also behaved as covalent gels, but weaker than those gels from cross-linked samples, and presented higher thermal stability than the physical mixtures. X-ray diffractograms also evidenced the occurrence of physical and chemical modifications due to the cross-linking process and indicated that samples without cross-linker underwent some structural reorganization, resulting in a decrease of crystallinity. The chemical shift of resonance signals corroborates the occurrence of structural modifications by both alkaline treatment and cross-linking reaction. PMID:22178896

  18. Orientation birefringence of cross-linked rubber containing low-mass compound

    NASA Astrophysics Data System (ADS)

    Kiyama, Ayumi; Nobukawa, Shogo; Yamauchi, Masayuki

    2015-05-01

    Molecular orientation of low-mass compounds (LMCs) in a cross-linked rubber is studied in order to obtain the basic information on the dynamics of LMC molecules in a polymer beyond the glass transition temperature. A small amount of LMCs such as 4-cyano-4'-pentylbiphenyl (5CB), tricresylphosphate (TCP), and styrene-based tackifier (TF) is added into polybutadiene rubber (BR). After cross-linking reaction, the sheet samples are used to evaluate the orientation birefringence during stretching and stress relaxation. The rectangular films, cut out from the cross-linked sheets, are set in a uniaxial stretching machine equipped with an optical system to measure both birefringence and tensile stress simultaneously. It is confirmed that orientation birefringence is proportional to the stress for not only pure cross-linked BR, but also cross-linked BR containing an LMC in a wide range of strain. Even after stretching, the birefringence does not change as far as the sample is kept at a constant strain. The results suggest that the LMC molecules are forced to orient with polymer chains by the strong intermolecular orientation correlation. Because of the LMC orientation, the stress-optical coefficient CR is enhanced by the addition of 5CB and TCP, but depressed by TF. Therefore, the LMC doping can be used to control the birefringence of a retardation film.

  19. Preparation and characterization of cross-linked collagen-phospholipid polymer hybrid gels.

    PubMed

    Nam, Kwangwoo; Kimura, Tsuyoshi; Kishida, Akio

    2007-01-01

    2-methacryloyloxyethyl phosphorylcholine (MPC)-immobilized collagen gel was developed. Using 1-ethyl-3-(3-dimethyl aminopropyl)-1-carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), we cross-linked a collagen film in 2-morpholinoethane sulfonic acid (MES) buffer (EN gel). EN gel was prepared under both pH 4.5 and pH 9.0 in order to observe changes in cross-linking ability. To cross-link MPC to collagen gel, poly(MPC-co-methacrylic acid) (PMA) having a carboxyl group side chain was chosen. E/N gel was added to the MES buffer having pre-NHS activated PMA to make MPC-immobilized collagen gel (MiC gel). MiC gel was prepared under both acidic and alkaline conditions to observe the changes in the cross-linking ability of PMA. X-ray photoelectron spectroscopy showed that the PMA was cross-linked with collagen under both acidic and alkaline conditions. Differential scanning calorimetry (DSC) results showed that the shrinkage temperature increased for the MiC gels and that the increase would be greater for the MiC gel prepared under alkaline conditions. The data showed that swelling would be less when the MiC gel was prepared under alkaline conditions. The biodegradation caused by collagenase was suppressed for the MiC gel prepared under alkaline conditions due to stable inter- and intrahelical networks. PMID:16959313

  20. Availability of fluorescence spectroscopic in the accompaniment of formation of corneal cross-linking

    NASA Astrophysics Data System (ADS)

    Costa, M. M.; Kurachi, C.; Bagnato, V. S.; Faria e Sousa, S. J.; Ventura, L.

    2010-02-01

    The corneal cross-linking is a method that associates riboflavin and ultraviolet light to induce a larger mechanical resistance at cornea. This method has been used for the treatment of Keratoconus. Since cross-linking is recent as treatment, there is a need to verify the effectiveness of the method. Therefore, the viability of the fluorescence spectroscopy technique to follow the cross-linking formation at cornea was studied. Corneas were divided in two measuring procedures: M1 (cornea + riboflavin), and M2 (cornea + riboflavina + light irradiation, 365nm). For fluorescence measurements, a spectrofluorimeter was used, where several wavelengths were selected (between 320nm and 370nm) for cornea excitation. Several fluorescence spectra were collected, at 10 min-interval, during 60 min. Spectra allowed one to observe two very well defined bands of fluorescence: the first one at 400nm (collagen), and the second one at 520nm (riboflavin). After spectra analyses, a decrease of collagen fluorescence was observed for both groups. For riboflavin, on the other hand, there was a fluorescence increase for M1, and a decrease for M2. Thus, it is possible to conclude that it this technique is sensitive for the detection of tissue structural changes during cross-linking treatment, encouraging subsequent studies on quantification of cross-linking promotion in tissue.

  1. Usage of polarization-sensitive optical coherence tomography for investigation of collagen cross-linking

    NASA Astrophysics Data System (ADS)

    Ju, Myeong Jin; Tang, Shuo

    2015-04-01

    To investigate morphological alternation in corneal stroma induced by collagen cross-linking (CXL) treatment, polarization-sensitive optical coherence tomography (PS-OCT) capable of providing scattering, phase retardation, and degree of polarization uniformity (DOPU) images were employed on fresh bovine cornea. Significant corneal thickness reduction was observed after the CXL procedure, and its variation was quantitatively analyzed. From the scattering contrast, a hyperscattering region was observed in the anterior of the cornea immediately after the CXL procedure and its range increased with time. Within the scattering region, a slow increase was observed in the phase retardation image, and a discriminable characteristic was found in the DOPU image. A global threshold value was empirically determined from the averaged DOPU depth profile in order to locate the effective cross-linking depth. In addition to the standard protocol, an accelerated CXL procedure shortening the treatment time with higher intensity of ultraviolet-A (UV-)A power was also performed. From the measurement results after the two different CXL protocols, different cross-linking aspects were found and their difference was discussed in terms of the effectiveness of cross-linking. Based on this study, we believe that PS-OCT could be a promising optical imaging modality to evaluate the progression and effectiveness of the riboflavin/UV-A induced corneal collagen cross-linking.

  2. Novel Technique of Transepithelial Corneal Cross-Linking Using Iontophoresis in Progressive Keratoconus.

    PubMed

    Lombardo, Marco; Serrao, Sebastiano; Raffa, Paolo; Rosati, Marianna; Lombardo, Giuseppe

    2016-01-01

    In this work, the authors presented the techniques and the preliminary results at 6 months of a randomized controlled trial (NCT02117999) comparing a novel transepithelial corneal cross-linking protocol using iontophoresis with the Dresden protocol for the treatment of progressive keratoconus. At 6 months, there was a significant average improvement with an average flattening of the maximum simulated keratometry reading of 0.72 ± 1.20 D (P = 0.01); in addition, corrected distance visual acuity improved significantly (P = 0.08) and spherical equivalent refraction was significantly less myopic (P = 0.02) 6 months after transepithelial corneal cross-linking with iontophoresis. The novel protocol using iontophoresis showed comparable results with standard corneal cross-linking to halt progression of keratoconus during 6-month follow-up. Investigation of the long-term RCT outcomes are ongoing to verify the efficacy of this transepithelial corneal cross-linking protocol and to determine if it may be comparable with standard corneal cross-linking in the management of progressive keratoconus. PMID:27597895

  3. Novel Technique of Transepithelial Corneal Cross-Linking Using Iontophoresis in Progressive Keratoconus

    PubMed Central

    Raffa, Paolo; Rosati, Marianna

    2016-01-01

    In this work, the authors presented the techniques and the preliminary results at 6 months of a randomized controlled trial (NCT02117999) comparing a novel transepithelial corneal cross-linking protocol using iontophoresis with the Dresden protocol for the treatment of progressive keratoconus. At 6 months, there was a significant average improvement with an average flattening of the maximum simulated keratometry reading of 0.72 ± 1.20 D (P = 0.01); in addition, corrected distance visual acuity improved significantly (P = 0.08) and spherical equivalent refraction was significantly less myopic (P = 0.02) 6 months after transepithelial corneal cross-linking with iontophoresis. The novel protocol using iontophoresis showed comparable results with standard corneal cross-linking to halt progression of keratoconus during 6-month follow-up. Investigation of the long-term RCT outcomes are ongoing to verify the efficacy of this transepithelial corneal cross-linking protocol and to determine if it may be comparable with standard corneal cross-linking in the management of progressive keratoconus. PMID:27597895

  4. Structure and pasting properties of alkaline-treated phosphorylated cross-linked waxy maize starches.

    PubMed

    Shukri, Radhiah; Shi, Yong-Cheng

    2017-01-01

    The objectives of this study were to determine the stability of cross-linked bonds of starch at different pH values and their effects on the pasting property of waxy maize starch cross-linked by 0.05% and 3% sodium trimetaphosphate/sodium tripolyphosphate. The cross-linked waxy maize starch (CLWMS) was slurried (40%, w/w) and subjected to alkali treatments of pH 9, 10, 11, and 12 at 40°C for 4h. The phosphorus in 3% CLWMS decreased with increasing pH and remained unchanged in 0.05% CLWMS for all pH treatments. Decreased settling volumes indicated the reduction of swelling power for the alkali-treated CLWMS at pH 11 and 12. The (31)P NMR spectra of 3% CLWMS at pH 12 showed decreased cyclic monostarch phosphate, monostarch monophosphate, and monostarch diphosphate, but significantly increased distarch monophosphate. Alkali treatments of phosphorylated cross-linked starches offer a way to manipulate the rheological properties of cross-linked starch for desired food applications. PMID:27507452

  5. Lignin cross-links with cysteine- and tyrosine-containing peptides under biomimetic conditions.

    PubMed

    Diehl, Brett G; Brown, Nicole R

    2014-10-22

    The work presented here investigates the cross-linking of various nucleophilic amino acids with lignin under aqueous conditions, thus providing insight as to which amino acids might cross-link with lignin in planta. Lignin dehydrogenation polymer (DHP) was prepared in aqueous solutions that contained tripeptides with the general structure XGG, where X represents an amino acid with a nucleophilic side chain. Fourier-transform infrared spectroscopy and energy dispersive X-ray spectroscopy showed that peptides containing cysteine and tyrosine were incorporated into the DHP to form DHP-CGG and DHP-YGG adducts, whereas peptides containing other nucleophilic amino acids were not incorporated. Scanning electron microscopy showed that the physical morphology of DHP was altered by the presence of peptides in the aqueous solution, regardless of peptide incorporation into the DHP. Nuclear magnetic resonance (NMR) spectroscopy showed that cysteine-containing peptide cross-linked with lignin at the lignin α-position, whereas in the case of the lignin-tyrosine adduct the exact cross-linking pathway could not be determined. This is the first study to use NMR to confirm cross-linking between lignin and peptides under biomimetic conditions. The results of this study may indicate the potential for lignin-protein linkage formation in planta, particularly between lignin and cysteine- and/or tyrosine-rich proteins. PMID:25275918

  6. Genipin cross-linked decellularized tracheal tubular matrix for tracheal tissue engineering applications

    PubMed Central

    Sun, Fei; Jiang, Yuan; Xu, Yanfei; Shi, Hongcan; Zhang, Siquan; Liu, Xingchen; Pan, Shu; Ye, Gang; Zhang, Weidong; Zhang, Fangbiao; Zhong, Chonghao

    2016-01-01

    Decellularization techniques have been widely used as an alternative strategy for organ reconstruction. This study investigated the mechanical, pro-angiogenic and in vivo biocompatibility properties of decellularized airway matrices cross-linked with genipin. New Zealand rabbit tracheae were decellularized and cross-linked with genipin, a naturally derived agent. The results demonstrated that, a significant (p < 0.05) increase in the secant modulus was computed for the cross-linked tracheae, compared to the decellularized samples. Angiogenic assays demonstrated that decellularized tracheal scaffolds and cross-linked tracheae treated with 1% genipin induce strong in vivo angiogenic responses (CAM analysis). Seven, 15 and 30 days after implantation, decreased (p < 0.01) inflammatory reactions were observed in the xenograft models for the genipin cross-linked tracheae matrices compared with control tracheae, and no increase in the IgM or IgG content was observed in rats. In conclusion, treatment with genipin improves the mechanical properties of decellularized airway matrices without altering the pro-angiogenic properties or eliciting an in vivo inflammatory response. PMID:27080716

  7. Organization of photosystem I polypeptides examined by chemical cross-linking

    NASA Technical Reports Server (NTRS)

    Armbrust, T. S.; Chitnis, P. R.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1996-01-01

    Photosystem I from the cyanobacterium Synechocystis sp. PCC 6803 was examined using the chemical cross-linkers glutaraldehyde and N-ethyl-1-3-[3-(dimethylamino)propyl]carbodiimide to investigate the organization of the polypeptide subunits. Thylakoid membranes and photosystem I, which was isolated by Triton X-100 fractionation, were treated with cross-linking reagents and were resolved using a Tricine/urea low-molecular-weight resolution gel system. Subunit-specific antibodies and western blotting analysis were used to identify the components of cross-linked species. These analyses identified glutaraldehyde-dependent cross-linking products composed of small amounts of PsaD and PsaC, PsaC and PsaE, and PsaE and PsaF. The novel cross-link between PsaE and PsaF was also observed following treatment with N-ethyl-1-3-[3-(dimethylamino)propyl]carbodiimide. These cross-linking results suggest a structural interaction between PsaE and PsaF and predict a transmembrane topology for PsaF.

  8. Biodegradable Chitosan-Based Ambroxol Hydrochloride Microspheres: Effect of Cross-Linking Agents

    PubMed Central

    Gangurde, HH; Chavan, NV; Mundada, AS; Derle, DV; Tamizharasi, S

    2011-01-01

    The objective of this study was to investigate the influence of type of cross-linking method used on the properties of ambroxol hydrochloride microspheres such as encapsulation efficiency, particle size, and drug release. Microspheres were prepared by solvent evaporation technique using chitosan as a matrix-forming agent and cross-linked using formaldehyde and heat treatment. Morphological and physicochemical properties of microspheres were then investigated by scanning electron microscopy (SEM), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FTIR) spectroscopy. The cross-linking of chitosan takes place at the free amino group because of formation of imine bond as evidenced by FTIR. The DSC, XRD, and FTIR analysis showed that chitosan microspheres cross linked by heating were superior in properties and performance as compared to the microspheres cross-linked using formaldehyde. SEM results revealed that heat-treated microspheres were spherical, discrete having smooth, and porous structure. The particle size and encapsulation efficiencies of the prepared chitosan microspheres ranged between 10.83–24.11 μm and 39.73μ80.56%, respectively. The drug release was extended up to 12 h, and the kinetics of the drug release was obeying Higuchi kinetic proving diffusion-controlled drug release. PMID:21607049

  9. Lipid Cross-Linking of Nanolipoprotein Particles Substantially Enhances Serum Stability and Cellular Uptake.

    PubMed

    Gilmore, Sean F; Blanchette, Craig D; Scharadin, Tiffany M; Hura, Greg L; Rasley, Amy; Corzett, Michele; Pan, Chong-Xian; Fischer, Nicholas O; Henderson, Paul T

    2016-08-17

    Nanolipoprotein particles (NLPs) consist of a discoidal phospholipid lipid bilayer confined by an apolipoprotein belt. NLPs are a promising platform for a variety of biomedical applications due to their biocompatibility, size, definable composition, and amphipathic characteristics. However, poor serum stability hampers the use of NLPs for in vivo applications such as drug formulation. In this study, NLP stability was enhanced upon the incorporation and subsequent UV-mediated intermolecular cross-linking of photoactive DiynePC phospholipids in the lipid bilayer, forming cross-linked nanoparticles (X-NLPs). Both the concentration of DiynePC in the bilayer and UV exposure time significantly affected the resulting X-NLP stability in 100% serum, as assessed by size exclusion chromatography (SEC) of fluorescently labeled particles. Cross-linking did not significantly impact the size of X-NLPs as determined by dynamic light scattering and SEC. X-NLPs had essentially no degradation over 48 h in 100% serum, which is a drastic improvement compared to non-cross-linked NLPs (50% degradation by ∼10 min). X-NLPs had greater uptake into the human ATCC 5637 bladder cancer cell line compared to non-cross-linked particles, indicating their potential utility for targeted drug delivery. X-NLPs also exhibited enhanced stability following intravenous administration in mice. These results collectively support the potential utility of X-NLPs for a variety of in vivo applications. PMID:27411034

  10. Modification mechanism of sesbania gum, and preparation, property, adsorption of dialdehyde cross-linked sesbania gum.

    PubMed

    Tang, Hongbo; Gao, Shiqi; Li, Yanping; Dong, Siqing

    2016-09-20

    This paper studied the modification mechanism of Sesbania gum (SG) by means of the variations in the numbers of surface hydroxyl groups on the granules, Schiff's agent coloration of aldehyde groups, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), energy dispersive spectrum (EDS), etc., and also examined the preparation, property and adsorption of dialdehyde cross-linked sesbania gum (DCLSG). The results showed that the surface hydroxyl numbers of cross-linked sesbania gum (CLSG) decreased with increasing the cross-linking degree. The distribution of the aldehyde groups on the DCLSG particles was nonuniform because most of aldehyde groups mainly located on the edge of particles. The cross-linking occurred only on the surface of SG particles. The oxidization occurred not only on the surface of SG particles, but also in the interior of particles. The cross-linking or oxidization changed the thermal properties, and reduced the swelling power, viscosity, alkali and acid resistance of SG. PMID:27261740

  11. Synthesis, Characterization, and Antibacterial Activity of Cross-Linked Chitosan-Glutaraldehyde

    PubMed Central

    Li, Bin; Shan, Chang-Lin; Zhou, Qing; Fang, Yuan; Wang, Yang-Li; Xu, Fei; Han, Li-Rong; Ibrahim, Muhammad; Guo, Long-Biao; Xie, Guan-Lin; Sun, Guo-Chang

    2013-01-01

    This present study deals with synthesis, characterization and antibacterial activity of cross-linked chitosan-glutaraldehyde. Results from this study indicated that cross-linked chitosan-glutaraldehyde markedly inhibited the growth of antibiotic-resistant Burkholderia cepacia complex regardless of bacterial species and incubation time while bacterial growth was unaffected by solid chitosan. Furthermore, high temperature treated cross-linked chitosan-glutaraldehyde showed strong antibacterial activity against the selected strain 0901 although the inhibitory effects varied with different temperatures. In addition, physical-chemical and structural characterization revealed that the cross-linking of chitosan with glutaraldehyde resulted in a rougher surface morphology, a characteristic Fourier transform infrared (FTIR) band at 1559 cm−1, a specific X-ray diffraction peak centered at 2θ = 15°, a lower contents of carbon, hydrogen and nitrogen, and a higher stability of glucose units compared to chitosan based on scanning electron microscopic observation, FTIR spectra, X-ray diffraction pattern, as well as elemental and thermo gravimetric analysis. Overall, this study indicated that cross-linked chitosan-glutaraldehyde is promising to be developed as a new antibacterial drug. PMID:23670533

  12. Bacterial Actins? An Evolutionary Perspective

    NASA Technical Reports Server (NTRS)

    Doolittle, Russell F.; York, Amanda L.

    2003-01-01

    According to the conventional wisdom, the existence of a cytoskeleton in eukaryotes and its absence in prokaryotes constitute a fundamental divide between the two domains of life. An integral part of the dogma is that a cytoskeleton enabled an early eukaryote to feed upon prokaryotes, a consequence of which was the occasional endosymbiosis and the eventual evolution of organelles. Two recent papers present compelling evidence that actin, one of the principal components of a cytoskeleton, has a homolog in Bacteria that behaves in many ways like eukaryotic actin. Sequence comparisons reveml that eukaryotic actin and the bacterial homolog (mreB protein), unlike many other proteins common to eukaryotes and Bacteria, have very different and more highly extended evolutionary histories.

  13. Preparation of cross-linked maize (Zea mays L.) starch in different reaction media.

    PubMed

    Hong, Jung Sun; Gomand, Sara V; Delcour, Jan A

    2015-06-25

    Granular normal maize starch was reacted with sodium trimetaphosphate in deionized water ( [Formula: see text] ), aqueous sodium sulfate solution ( [Formula: see text] ), aqueous ethanol (MSethanol) or aqueous acetone (MSacetone) under otherwise identical reaction conditions. Analysis of the resultant starches by Rapid Visco Analysis (RVA) showed that the starch was cross-linked to a higher degree in aqueous ethanol or aqueous acetone than in water or sodium sulfate solution, and with minimal starch leaching. While MSacetone and MSethanol had incorporated similar levels of phosphorous, RVA analysis and microscopic analysis showed that MSacetone granules were more effectively stabilized by cross-linking than MSethanol granules. Cross-linking in aqueous acetone is believed to either contain the greater numbers of distarch monophosphate (versus monostarch monophosphate), or occur more intensively at the granule outer layers than that in aqueous ethanol and, at the same time, to account for the greater granular strength of MSethanol than that of MSacetone. PMID:25839824

  14. A genetic anomaly of oriented collagen biosynthesis and cross-linking: Keratoconus.

    PubMed

    Bourges, J L; Robert, A M; Robert, L

    2015-02-01

    Oriented collagen biosynthesis is one of the major mechanisms involved in tissue and organ formation during development. Corneal biogenesis is one example. Defects in this process lead to anomalies in tissue structure and function. The transparency of cornea and its achievement are a good example as well as its pathological modifications. Keratoconus is one example of this type of pathologies, involving also inappropriate cross-linking of collagen fibers. Among the tentatives to correct this anomaly, the riboflavin-potentiated UV-cross-linking (CXL) of keratoconus corneas appears clinically satisfactory, although none of the experiments and clinical results published prove effective cross-linking. The published results are reviewed in this article. PMID:25468492

  15. Optimizing end-group cross-linking polymer electrolytes for fuel cell applications

    SciTech Connect

    Kim, Yu Seung; Lee, Kwan Soo; Jeong, Myung - Hwan; Lee, Jae - Suk

    2009-01-01

    This paper demonstrates the optimization of proton conductivity and water uptake for cross-linkable polymer electrolytes through synthesis and characterization of end-group cross-linkable sulfonated poly(arylene ether) copolymers (ESF-BPs). The extent of reaction of cross-linking was controlled by reaction time resulting in a series of polymers with two, independent tunable parameters, degree of sulfonation (DS) and degree of cross-linking (DC). For the polymers presented, cross-linking improved proton conductivity while reducing water uptake, an uncommon trend in polymer electrolytes where water is critical for proton conduction. Other trends relating to changes are reported and the results yield insight into the role of DS and DC and how to optimize electrochemical properties and performance of polymer electrolytes through these tunable parameters. Select polymer electrolytes were tested in fuel cells where performance and durability with accelerated relative humidity cycling were compared with Nafion{reg_sign}.

  16. In vitro degradation of covalently cross-linked arabinoxylan hydrogels by bifidobacteria.

    PubMed

    Martínez-López, Ana L; Carvajal-Millan, Elizabeth; Micard, Valérie; Rascón-Chu, Agustín; Brown-Bojorquez, Francisco; Sotelo-Cruz, Norberto; López-Franco, Yolanda L; Lizardi-Mendoza, Jaime

    2016-06-25

    Arabinoxylan gels with different cross-linking densities, swelling ratios, and rheological properties were obtained by increasing the concentration of arabinoxylan from 4 to 6% (w/v) during oxidative gelation by laccase. The degradation of these covalently cross-linked gels by a mixture of two Bifidobacterium strains (Bifidobacterium longum and Bifidobacterium adolescentis) was investigated. The kinetics of the evolution of structural morphology of the arabinoxylan gel, the carbohydrate utilization profiles and the bacterial production of short-acid fatty acid (SCFA) were measured. Scanning electron microscopy analysis of the degraded gels showed multiple cavity structures resulting from the bacterial action. The total SCFA decreased when the degree of cross-linking increased in the gels. A slower fermentation of arabinoxylan chains was obtained for arabinoxylan gels with more dense network structures. These results suggest that the differences in the structural features and properties studied in this work affect the degradation time of the arabinoxylan gels. PMID:27083795

  17. Amphiphilic polyphosphazenes as membrane materials: influence of side group on radiation cross-linking.

    PubMed

    Allcock, H R; Gebura, M; Kwon, S; Neenan, T X

    1988-11-01

    The amphiphilic mixed-substituent polyphosphazenes, [NP(OCH2CF3)x (NHCH3)y)]n and [NP(OC6H5)x (NHCH3)y]n, have been prepared by the sequential replacement of chlorine in [NPCI2]n by trifluorethoxide or phenoxide and methylamine. Thin films of these species were cross-linked by exposure to gamma radiation and the semipermeability of the resultant membranes was monitored. The radiation-induced cross-linking and membrane-forming properties of these polymers were compared with those of the single substituent polymers, [NP(OCH2CF3)2]n, [NP(OC6H5)2]n, and [NP(NHCH3)2]n. The radiation-cross-linking and appeared to involve free radical reactions at the methyl groups of the methylamino substituents. The possible utility of these materials in biomedical research is discussed. PMID:3224137

  18. Three-dimensional multimodal microscopy of rabbit cornea after cross-linking treatment

    NASA Astrophysics Data System (ADS)

    Krüger, A.; Hovakimyan, M.; Ramírez, D. F.; Lorbeer, R.-A.; Kröger, M.; Stachs, O.; Wree, A.; Guthoff, R. F.; Lubatschowski, H.; Heisterkamp, A.

    2010-02-01

    Cross-linking of stromal collagen with Riboflavin and UVA radiation is an alternative treatment of keratoconus. After the cross-linking a wound healing process starts with the regeneration of the abraded epithelial layer and the stromal keratocyte-network. To clarify possible side effects by visualization we established an imaging platform for the multimodal three-dimensional imaging of the cornea and looked for differences between normal and cross-linked rabbit corneae. The microscopy system utilizes femtosecond laser light for two photon excitation of autofluorescent metabolic compounds, second harmonic imaging in forward and backward direction for the study of stromal collagen-I structure and confocal detection of the backscattered femtosecond laser light for cell detection. Preliminary results show signatures of treatment 5 weeks after the intervention in all imaging modalities.

  19. Pinpointing RNA-Protein Cross-Links with Site-Specific Stable Isotope-Labeled Oligonucleotides

    PubMed Central

    2015-01-01

    High affinity RNA-protein interactions are critical to cellular function, but directly identifying the determinants of binding within these complexes is often difficult. Here, we introduce a stable isotope mass labeling technique to assign specific interacting nucleotides in an oligonucleotide-protein complex by photo-cross-linking. The method relies on generating site-specific oxygen-18-labeled phosphodiester linkages in oligonucleotides, such that covalent peptide-oligonucleotide cross-link sites arising from ultraviolet irradiation can be assigned to specific sequence positions in both RNA and protein simultaneously by mass spectrometry. Using Lin28A and a let-7 pre-element RNA, we demonstrate that mass labeling permits unambiguous identification of the cross-linked sequence positions in the RNA-protein complex. PMID:26583201

  20. Tuning of cross-linking and mechanical properties of laser-deposited poly (methyl methacrylate) films

    NASA Astrophysics Data System (ADS)

    Süske, Erik; Scharf, Thorsten; Krebs, Hans-Ulrich; Panchenko, Elena; Junkers, Thomas; Egorov, Mark; Buback, Michael; Kijewski, Harald

    2005-03-01

    The chemical composition, amount of cross-linking and its influence on the mechanical properties of poly(methyl methacrylate) (PMMA) thin films produced by pulsed laser deposition (PLD) at a wavelength of 248nm under ultrahigh vacuum were investigated by infrared spectroscopy, scanning electron microscopy, size-exclusion chromatography, thermogravimetric analysis, and nanoindentation experiments. The films consist of two components, one fraction with a molecular weight well below that of the target material and a second fraction, which is cross-linked. Compared to bulk material, the Young's modulus of the film is increased. The amount of cross-linking in the film can be tuned by the applied laser fluence leading to changes of the mechanical properties.

  1. Spray assembled, cross-linked polyelectrolyte multilayer membranes for salt removal.

    PubMed

    Cho, Kwun Lun; Lomas, Hannah; Hill, Anita J; Caruso, Frank; Kentish, Sandra E

    2014-07-29

    The present study reports the synthesis of spray-coated cross-linked polyelectrolyte multilayer membranes. Membrane cross-linking was performed using alkyne-azide "click" chemistry, where alkyne and azide functional groups were used to modify the poly(acrylic acid) (PAA) and the poly(allylamine) hydrochloride (PAH) polyelectrolytes. The results demonstrate that deposition at lower ionic strength produced smoother and denser membrane structures. Pore size analysis using neutral poly(ethylene glycol) revealed a decrease in the membrane pore size as the degree of cross-linking was increased, resulting in the membrane rejecting divalent CaCl2 at levels of up to 80%, and 50% rejection of monovalent NaCl. When poly(sodium-4-styrenesulfonate) (PSS) was combined with small amounts of cross-linkable PAA, significant flux increases were observed in the multilayer membranes with no observable reduction in ion rejection. PMID:25036367

  2. Tuning of cross-linking and mechanical properties of laser-deposited poly (methyl methacrylate) films

    SciTech Connect

    Sueske, Erik; Scharf, Thorsten; Krebs, Hans-Ulrich; Panchenko, Elena; Junkers, Thomas; Egorov, Mark; Buback, Michael; Kijewski, Harald

    2005-03-15

    The chemical composition, amount of cross-linking and its influence on the mechanical properties of poly(methyl methacrylate) (PMMA) thin films produced by pulsed laser deposition (PLD) at a wavelength of 248 nm under ultrahigh vacuum were investigated by infrared spectroscopy, scanning electron microscopy, size-exclusion chromatography, thermogravimetric analysis, and nanoindentation experiments. The films consist of two components, one fraction with a molecular weight well below that of the target material and a second fraction, which is cross-linked. Compared to bulk material, the Young's modulus of the film is increased. The amount of cross-linking in the film can be tuned by the applied laser fluence leading to changes of the mechanical properties.

  3. Cheese whey protein recovery by ultrafiltration through transglutaminase (TG) catalysis whey protein cross-linking.

    PubMed

    Wen-Qiong, Wang; Lan-Wei, Zhang; Xue, Han; Yi, Lu

    2017-01-15

    In whey ultrafiltration (UF) production, two main problems are whey protein recovery and membrane fouling. In this study, membrane coupling protein transglutaminase (TG) catalysis protein cross-linking was investigated under different conditions to find out the best treatment. We found that the optimal conditions for protein recovery involved catalyzing whey protein cross-linking with TG (40U/g whey proteins) at 40°C for 60min at pH 5.0. Under these conditions, the recovery rate was increased 15-20%, lactose rejection rate was decreased by 10%, and relative permeate flux was increase 30-40% compared to the sample without enzyme treatment (control). It was noticeable that the total resistance and cake resistance were decreased after enzyme catalysis. This was mainly due to the increased particle size and decreased zeta potential. Therefore, membrane coupling enzyme catalysis protein cross-linking is a potential means for further use. PMID:27542447

  4. Solution processed organic light-emitting diodes using the plasma cross-linking technology

    NASA Astrophysics Data System (ADS)

    He, Kongduo; Liu, Yang; Gong, Junyi; Zeng, Pan; Kong, Xun; Yang, Xilu; Yang, Cheng; Yu, Yan; Liang, Rongqing; Ou, Qiongrong

    2016-09-01

    Solution processed multilayer organic light-emitting diodes (OLEDs) present challenges, especially regarding dissolution of the first layer during deposition of a second layer. In this work, we first demonstrated a plasma cross-linking technology to produce a solution processed OLED. The surfaces of organic films can be cross-linked after mixed acetylene and Ar plasma treatment for several tens of seconds and resist corrosion of organic solvent. The film thickness and surface morphology of emissive layers (EMLs) with plasma treatment and subsequently spin-rinsed with chlorobenzene are nearly unchanged. The solution processed triple-layer OLED is successfully fabricated and the current efficiency increases 50% than that of the double-layer OLED. Fluorescent characteristics of EMLs are also observed to investigate factors influencing the efficiency of the triple-layer OLED. Plasma cross-linking technology may open up a new pathway towards fabrication of all-solution processed multilayer OLEDs and other soft electronic devices.

  5. Carbon Nanofiber Incorporated Silica Based Aerogels with Di-Isocyanate Cross-Linking

    NASA Technical Reports Server (NTRS)

    Vivod, Stephanie L.; Meador, Mary Ann B.; Capadona, Lynn A.; Sullivan, Roy M.; Ghosn, Louis J.; Clark, Nicholas; McCorkle, Linda

    2008-01-01

    Lightweight materials with excellent thermal insulating properties are highly sought after for a variety of aerospace and aeronautic applications. (1) Silica based aerogels with their high surface area and low relative densities are ideal for applications in extreme environments such as insulators for the Mars Rover battery. (2) However, the fragile nature of aerogel monoliths prevents their widespread use in more down to earth applications. We have shown that the fragile aerogel network can be cross-linked with a di-isocyanate via amine decorated surfaces to form a conformal coating. (3) This coating reinforces the neck regions between secondary silica particles and significantly strengthens the aerogels with only a small effect on density or porosity. Scheme 1 depicts the cross-linking reaction with the di-isocyanate and exhibits the stages that result in polymer cross-linked aerogel monoliths.

  6. Chemical cross-linking of mitochondrial NADH dehydrogenase from bovine heart.

    PubMed Central

    Cleeter, M W; Banister, S H; Ragan, C I

    1985-01-01

    The structure of bovine heart mitochondrial NADH dehydrogenase was investigated by using two cleavable cross-linking agents, disuccinimidyl tartrate and (ethylene glycol)yl bis-(succinimidyl succinate). Cross-linking was analysed primarily by immunoblotting to detect products containing subunits of the iron-protein fraction from chaotropic resolution of the enzyme, namely those of 75, 49, 30 and 13 kDa. By using both the isolated iron-protein fraction and the intact dehydrogenase, cross-links were identified between these four subunits, from these subunits to the largest subunit of the flavoprotein fraction, which contains the active site for NADH, and from these subunits to polypeptides in the hydrophobic shell, which surrounds the hydrophilic iron-protein and flavoprotein fractions. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:4004775

  7. A role for collagen IV cross-links in conferring immune privilege to the Goodpasture autoantigen: structural basis for the crypticity of B cell epitopes.

    PubMed

    Vanacore, Roberto M; Ham, Amy-Joan L; Cartailler, Jean-Philippe; Sundaramoorthy, Munirathinam; Todd, Parvin; Pedchenko, Vadim; Sado, Yoshikazu; Borza, Dorin-Bogdan; Hudson, Billy G

    2008-08-15

    The detailed structural basis for the cryptic nature (crypticity) of a B cell epitope harbored by an autoantigen is unknown. Because the immune system may be ignorant of the existence of such "cryptic" epitopes, their exposure could be an important feature in autoimmunity. Here we investigated the structural basis for the crypticity of the epitopes of the Goodpasture autoantigen, the alpha3alpha4alpha5 noncollagenous-1 (NC1) hexamer, a globular domain that connects two triple-helical molecules of the alpha3alpha4alpha5 collagen IV network. The NC1 hexamer occurs in two isoforms as follows: the M-isoform composed of monomer subunits in which the epitopes are accessible to autoantibodies, and the D-isoform composed of both monomer and dimer subunits in which the epitopes are cryptic. The D-isoform was characterized with respect to quaternary structure, as revealed by mass spectrometry of dimer subunits, homology modeling, and molecular dynamics simulation. The results revealed that the D-isoform contains two kinds of cross-links as follows: S-hydroxylysyl-methionine and S-lysyl-methionine cross-links, which stabilize the alpha3alpha5-heterodimers and alpha4alpha4-homodimers, respectively. Construction and analysis of a three-dimensional model of the D-isoform of the alpha3alpha4alpha5 NC1 hexamer revealed that crypticity is a consequence of the following: (a) sequestration of key residues between neighboring subunits that are stabilized by domain-swapping interactions, and (b) by cross-linking of subunits at the trimer-trimer interface, which stabilizes the structural integrity of the NC1 hexamer and protects against binding of autoantibodies. The sequestrated epitopes and cross-linked subunits represent a novel structural mechanism for conferring immune privilege at the level of quaternary structure. Perturbation of the quaternary structure may be a key factor in the etiology of Goodpasture disease. PMID:18499662

  8. Direct cross-linking of snRNP proteins F and 70K to snRNAs by ultra-violet radiation in situ.

    PubMed Central

    Woppmann, A; Rinke, J; Lührmann, R

    1988-01-01

    Protein-RNA interactions in small nuclear ribonucleoproteins (UsnRNPs) from HeLa cells were investigated by irradiation of purified nucleoplasmic snRNPs U1 to U6 with UV light at 254 nm. The cross-linked proteins were analyzed on one- and two-dimensional gel electrophoresis systems, and the existence of a stable cross-linkage was demonstrated by isolating protein-oligonucleotide complexes from snRNPs containing 32P-labelled snRNAs after exhaustive digestion with a mixture of RNases of different specificities. The primary target of the UV-light induced cross-linking reaction between protein and RNA was protein F. It was also found to be cross-linked to U1 snRNA in purified U1 snRNPs. Protein F is known to be one of the common snRNP proteins, which together with D, E and G protect a 15-25 nucleotide long stretch of snRNAs U1, U2, U4 and U5, the so-called domain A or Sm binding site against nuclease digestion (Liautard et al., 1982). It is therefore likely that the core-protein may bind directly and specifically to the common snRNA domain A, or else to a sub-region of this. The second protein which was demonstrated to be cross-linked to snRNA was the U1 specific protein 70K. Since it has been shown that binding of protein 70K to U1 RNP requires the presence of the 5' stem and loop of U1 RNA (Hamm et al., 1987) it is likely that the 70K protein directly interacts with a sub-region of the first stem loop structure. Images PMID:2974540

  9. Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction

    NASA Technical Reports Server (NTRS)

    Woodley, D. T.; Yamauchi, M.; Wynn, K. C.; Mechanic, G.; Briggaman, R. A.

    1991-01-01

    Solubilized interstitial collagens will form a fibrillar, gel-like lattice when brought to physiologic conditions. In the presence of human dermal fibroblasts the collagen lattice will contract. The rate of contraction can be determined by computer-assisted planemetry. The mechanisms involved in contraction are as yet unknown. Using this system it was found that the rate of contraction was markedly decreased when collagen lacking telopeptides was substituted for native collagen. Histidinohydroxylysinonorleucine (HHL) is a major stable trifunctional collagen cross-link in mature skin that involves a carboxyl terminal, telopeptide site 16c, the sixteenth amino acid residue from the carboxy terminal of the telopeptide region of alpha 1 (I) in type I collagen. Little, if any, HHL was present in native, purified, reconstituted, soluble collagen fibrils from 1% acetic acid-extracted 2-year-old bovine skin. In contrast, HHL cross-links were present (0.22 moles of cross-link per mole of collagen) in lattices of the same collagen contracted by fibroblasts. However, rat tail tendon does not contain HHL cross-links, and collagen lattices made of rat tail tendon collagen are capable of contraction. This suggests that telopeptide sites, and not mature HHL cross-links per se, are essential for fibroblasts to contract collagen lattices. Beta-aminopropionitrile fumarate (BAPN), a potent lathyrogen that perturbs collagen cross-linking by inhibition of lysyl oxidase, also inhibited the rate of lattice cell contraction in lattices composed of native collagen. However, the concentrations of BAPN that were necessary to inhibit the contraction of collagen lattices also inhibited fibroblast growth suggestive of cellular toxicity. In accordance with other studies, we found no inhibition of the rate of lattice contraction when fibronectin-depleted serum was used. Electron microscopy of contracted gels revealed typical collagen fibers with a characteristic axial periodicity. The data

  10. Efficient Gene Transfection into Mammalian Cells Mediated by Cross-linked Polyethylenimine

    PubMed Central

    Dong, Wei; Li, Shufeng; Jin, Guanghui; Sun, Qiming; Ma, Dingyuan; Hua, Zichun

    2007-01-01

    25 kDa branched polyethylenimine (PEI) has successfully been used for in vitro and in vivo gene delivery approaches, but it is cytotoxic. Smaller PEIs are usually non-cytotoxic but less efficient. In order to enhance the gene delivery efficiency and minimize cytotoxicity of PEI, we explored to synthesize cross-linked PEIs with degradable bonds by reacting amines of small branched 2000 Da PEI with small diacrylate (1,4-butanediol diacrylate or ethyleneglycol dimethacrylate) for 2–6 hours. The efficiency of the cross-linked PEIs during in vitro delivering plasmid containing enhanced green fluorescent protein (EGFP) gene reporter and their cytotoxicity were assessed in melanoma B16F10 cell and other cell lines. In vivo gene delivery efficiency was evaluated by direct injection delivery of the EGFP plasmid/cross-linked PEI complexes into mice and by estimating the EGFP expression in animal muscles. Compared to commercially available 25-kDa branched PEI, the cross-linked PEIs reported here could mediate more efficient expression of reporter gene than the 25-kDa PEI control, 19-fold more efficiently in B16F10 cells, 17-fold in 293T cells, 2.3-fold in 3T3 cells, and they exhibited essentially nontoxic at their optimized condition for gene delivery. Furthermore the transfection activity of polyplexs was preserved in the presence of serum proteins. The muscle transfected with the cross-linked PEI prepared here exhibited normal morphology and excellent gene expression. The cross-linked PEIs reported here were evidently more efficient than the commercial 25-kD PEI control and had less cytotoxicity in gene delivery in vitro and in vivo.

  11. Steric Effects Induce Geometric Remodeling of Actin Bundles in Filopodia.

    PubMed

    Dobramysl, Ulrich; Papoian, Garegin A; Erban, Radek

    2016-05-10

    Filopodia are ubiquitous fingerlike protrusions, spawned by many eukaryotic cells, to probe and interact with their environments. Polymerization dynamics of actin filaments, comprising the structural core of filopodia, largely determine their instantaneous lengths and overall lifetimes. The polymerization reactions at the filopodial tip require transport of G-actin, which enter the filopodial tube from the filopodial base and diffuse toward the filament barbed ends near the tip. Actin filaments are mechanically coupled into a tight bundle by cross-linker proteins. Interestingly, many of these proteins are relatively short, restricting the free diffusion of cytosolic G-actin throughout the bundle and, in particular, its penetration into the bundle core. To investigate the effect of steric restrictions on G-actin diffusion by the porous structure of filopodial actin filament bundle, we used a particle-based stochastic simulation approach. We discovered that excluded volume interactions result in partial and then full collapse of central filaments in the bundle, leading to a hollowed-out structure. The latter may further collapse radially due to the activity of cross-linking proteins, hence producing conical-shaped filament bundles. Interestingly, electron microscopy experiments on mature filopodia indeed frequently reveal actin bundles that are narrow at the tip and wider at the base. Overall, our work demonstrates that excluded volume effects in the context of reaction-diffusion processes in porous networks may lead to unexpected geometric growth patterns and complicated, history-dependent dynamics of intermediate metastable configurations. PMID:27166814

  12. Chemical and structural characterization of interstrand cross-links formed between abasic sites and adenine residues in duplex DNA

    PubMed Central

    Price, Nathan E.; Catalano, Michael J.; Liu, Shuo; Wang, Yinsheng; Gates, Kent S.

    2015-01-01

    A new type of interstrand DNA–DNA cross-link between abasic (Ap) sites and 2′-deoxyadenosine (dA) residues was recently reported, but the chemical structure and properties of this lesion were not rigorously established. Here we characterized the nucleoside cross-link remnant released by enzymatic digestion of duplex DNA containing the dA-Ap cross-link. A synthetic standard was prepared for the putative nucleoside cross-link remnant 6 in which the anomeric carbon of the 2-deoxyribose residue was connected to the exocyclic N6-amino group of dA. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that the synthetic material 6 matched the authentic cross-link remnant released by enzymatic digestion of cross-linked DNA. These findings establish the chemical structure of the dA-Ap cross-link released from duplex DNA and may provide methods for the detection of this lesion in cellular DNA. Both the nucleoside cross-link remnant 6 and the cross-link in duplex DNA were quite stable at pH 7 and 37°C, suggesting that the dA-Ap cross-link could be a persistent lesion with the potential to block the action of various DNA processing enzymes. PMID:25779045

  13. Increasing Thermal Stability of Gelatin by UV-Induced Cross-Linking with Glucose

    PubMed Central

    Masutani, Evan M.; Kinoshita, Christopher K.; Tanaka, Travis T.; Ellison, Andrew K. D.; Yoza, Brandon A.

    2014-01-01

    The effects of ultraviolet (254 nm) radiation on a hydrated gelatin-glucose matrix were investigated for the development of a physiologically thermostable substrate for potential use in cell scaffold production. Experiments conducted with a differential scanning calorimeter indicate that ultraviolet irradiation of gelatin-glucose hydrogels dramatically increases thermal stability such that no melting is observed at temperatures of at least 90°C. The addition of glucose significantly increases the yield of cross-linked product, suggesting that glucose has a role in cross-link formation. Comparisons of lyophilized samples using scanning electron microscopy show that irradiated materials have visibly different densities. PMID:24963297

  14. Immunogenic Display of Purified Chemically Cross-Linked HIV-1 Spikes

    PubMed Central

    Leaman, Daniel P.; Lee, Jeong Hyun; Ward, Andrew B.

    2015-01-01

    ABSTRACT HIV-1 envelope glycoprotein (Env) spikes are prime vaccine candidates, at least in principle, but suffer from instability, molecular heterogeneity and a low copy number on virions. We anticipated that chemical cross-linking of HIV-1 would allow purification and molecular characterization of trimeric Env spikes, as well as high copy number immunization. Broadly neutralizing antibodies bound tightly to all major quaternary epitopes on cross-linked spikes. Covalent cross-linking of the trimer also stabilized broadly neutralizing epitopes, although surprisingly some individual epitopes were still somewhat sensitive to heat or reducing agent. Immunodepletion using non-neutralizing antibodies to gp120 and gp41 was an effective method for removing non-native-like Env. Cross-linked spikes, purified via an engineered C-terminal tag, were shown by negative stain EM to have well-ordered, trilobed structure. An immunization was performed comparing a boost with Env spikes on virions to spikes cross-linked and captured onto nanoparticles, each following a gp160 DNA prime. Although differences in neutralization did not reach statistical significance, cross-linked Env spikes elicited a more diverse and sporadically neutralizing antibody response against Tier 1b and 2 isolates when displayed on nanoparticles, despite attenuated binding titers to gp120 and V3 crown peptides. Our study demonstrates display of cross-linked trimeric Env spikes on nanoparticles, while showing a level of control over antigenicity, purity and density of virion-associated Env, which may have relevance for Env based vaccine strategies for HIV-1. IMPORTANCE The envelope spike (Env) is the target of HIV-1 neutralizing antibodies, which a successful vaccine will need to elicit. However, native Env on virions is innately labile, as well as heterogeneously and sparsely displayed. We therefore stabilized Env spikes using a chemical cross-linker and removed non-native Env by immunodepletion with non

  15. Interplay of olefin metathesis and multiple hydrogen bonding interactions: covalently cross-linked zippers.

    PubMed

    Zeng, Jisen; Wang, Wei; Deng, Pengchi; Feng, Wen; Zhou, Jingjing; Yang, Yuanyou; Yuan, Lihua; Yamato, Kazuhiro; Gong, Bing

    2011-08-01

    Hydrogen-bonded zippers bearing terminal alkene groups were treated with Grubbs' catalyst, leading to covalently cross-linked zippers without violating H-bonding sequence specificity. The yield of a cross-linked zipper depended on the stability of its H-bonded precursor, with a weakly associating pair giving reasonable yields only at high concentrations while strongly associating pairs showed nearly quantitative yields. The integration of thermodynamic (H-bonding) and kinetic (irreversible C═C bond formation) processes suggests the possibility of developing many different covalent association units for constructing molecular structures based on a self-assembling way. PMID:21699249

  16. Method of Cross-Linking Aerogels Using a One-Pot Reaction Scheme

    NASA Technical Reports Server (NTRS)

    Meador, Ann B.; Capadona, Lynn A.

    2008-01-01

    A document discusses a new, simplified method for cross-linking silica and other oxide aerogels, with a polymeric material to increase strength of such materials without adversely affecting porosity or low density. This innovation introduces the polymer precursor into the sol before gelation either as an agent, which co-reacts with the oxide gel, or as soluble polymer precursors, which do not interact with the oxide gel in any way. Subsequent exposure to heat, light, catalyst or other method of promoting polymerization causes cross-linking without any additional infiltration steps.

  17. Cross-linking and modification of cytochrome c with redox-active metal complexes

    SciTech Connect

    Lukes, A.

    1991-05-02

    This thesis consists of two parts. The first part shows that a redox-active trinuclear metal cluster may be used as a cross-linking reagent for proteins. Electron transfer is observed in the protein oligomers. The second part involves labelling the cysteine residue of baker's yeast cytochrome c with chloromercuriferrocene. Chloromercuriferrocene reacts with cytochrome c in two interesting ways. Symmetrization produces two products; two proteins cross-linked with mercury and diferrocenylmercury. Simple substitution of FeHgCl onto the protein followed by the addition of a proton by electrophilic substitution affords ferrocene and the mercuric chloride modified protein. 16 refs., 3 figs.

  18. Photoinduced intermolecular cross-linking of gas phase triacylglycerol lipid ions.

    PubMed

    Nie, Shuai; Pham, Huong T; Blanksby, Stephen J; Reid, Gavin E

    2015-01-01

    Complex mixtures of plant derived triglycerol (TG) lipids are commonly used as feedstock components for the production of industrial polymers. However, there remains a need for the development of analytical strategies to investigate the intrinsic intermolecular cross-linking reactivity of individual TG molecules within these mixtures as a function of their structures and physicochemical properties, and for the characterization of the resultant products. Here, to address this need, we describe a novel multistage tandem mass spectrometry based method for intermolecular cross-linking and subsequent structural characterization of TG lipid ions in the gas phase. Cross-linking reactions were initiated using 266 nm ultraviolet photodissociation tandem mass spectrometry (UVPD-MS/MS) of saturated or unsaturated TG dimers introduced via electrospray ionization into a linear ion trap mass spectrometer as noncovalent complexes with protonated 3,4-, 2,4- or 3,5- diiodoaniline (diIA). UVPD resulted in the initial formation of an anilinyl biradical via the sequential loss of two iodine radicals, which underwent further reaction to yield multiple cross-linked TG products along with competing noncross-linking processes. These chemistries are proposed to occur via sequential combinations of hydrogen abstraction (H-abstraction), radical addition and radical recombination. Multistage collision induced dissociation tandem mass spectrometry (CID-MS(n)) was used to obtain evidence for the structures and mechanisms of formation for these products, as a function of both the TG lipid and diIA ion structures. The efficiency of the UVPD reaction was shown to be dependent on the number of unsaturation sites present within the TG lipids. However, when unsaturation sites were present, formation of the cross-linked and noncross-linked product ions via H-abstraction and radical addition mechanisms was found to be competitive. Finally, the identity of the anilinyl biradical (e.g., 3,4- versus 2

  19. Durability of highly cross-linked polyethylene in total hip and total knee arthroplasty.

    PubMed

    Dion, Neil T; Bragdon, Charles; Muratoglu, Orhun; Freiberg, Andrew A

    2015-07-01

    This article reviews the history of the development of highly cross-linked polyethylene and provides an in-depth review of the clinical results regarding the durability of highly cross-linked polyethylene (HXLPE) used in total hip arthroplasty (THA) and total knee arthroplasty (TKA). The use of polyethylene as a bearing surface has contributed to the success of THA and TKA; however, polyethylene wear and osteolysis can lead to failure. Ongoing clinical and retrieval studies are required to analyze outcomes at longer-term follow-up. PMID:26043046

  20. Protein cluster formation during enzymatic cross-linking of globular proteins.

    PubMed

    Saricay, Yunus; Dhayal, Surender Kumar; Wierenga, Peter Alexander; de Vries, Renko

    2012-01-01

    Work on enzymatic cross-linking of globular food proteins has mainly focused on food functional effects such as improvements of gelation and enhanced stabilization of emulsions and foams, and on the detailed biochemical characterization of the cross-linking chemistry. What is still lacking is a physical characterization of cluster formation and gelation, as has been done for example, for cluster formation and gelation during heat-induced protein aggregation. Here we present preliminary results along these lines. We propose that enzymatic cross-linking of apo-alpha-lactalbumin is a good model system for studying the problem of cluster formation and gelation during enzymatic cross-linking of globular proteins. We present initial results on cluster sizes produced when crosslinking dilute solutions of apo-alpha-lactalbumin with a range of cross-linking enzymes: microbial transglutaminase, horseradish peroxidase, and mushroom tyrosinase. These results are used to highlight similarities and differences between different enzymes, when acting on the same substrate. Next we consider cluster growth and gelation in somewhat more detail for the specific case of cross-linking by horseradish peroxidase, under the periodic addition of H2O2. Upon increasing the initial concentration of apo-alpha-lactalbumin, at a fixed enzyme-to-substrate ratio and fixed reaction time, the size of the clusters at the end of the reaction increases rapidly, and above a critical concentration, gelation occurs. For the conditions that we have used, gelation occurred at very low initial apo-alpha-lactalbumin concentrations of 34% (w/v), indicating a very dilute cross-linked protein network, with a low average number of cross-links per protein. It is found that reactive protein monomers are first rapidly (1-2 h) incorporated into small covalent clusters. This is followed by a much slower phase (up to about 12 h) in which the small clusters are coupled together to form much larger covalent protein

  1. Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase.

    PubMed

    Chen, Yukun; Yuan, Daosheng; Xu, Chuanhui

    2014-03-26

    We prepared a biobased material, dynamically vulcanized polylactide (PLA)/natural rubber (NR) blend in which the cross-linked NR phase owned a continuous network-like dispersion. This finding breaks the traditional concept of a sea-island morphology formed after dynamic vulcanization of the blends. The scan electron microscopy and dissolution/swell experiments provided the direct proof of the continuous cross-linked NR phase. This new biobased PLA/NR blend material with the novel structure is reported for the first time in the field of dynamic vulcanization and shows promise for development for various functional applications. PMID:24621374

  2. Analysis of rhodamine and fluorescein-labeled F-actin diffusion in vitro by fluorescence photobleaching recovery.

    PubMed Central

    Simon, J R; Gough, A; Urbanik, E; Wang, F; Lanni, F; Ware, B R; Taylor, D L

    1988-01-01

    Properties of filamentous acetamidofluorescein-labeled actin and acetamidotetramethylrhodamine-labeled actin (AF and ATR-actin, respectively) were examined to resolve discrepancies in the reported translational diffusion coefficients of F-actin measured in vitro by FPR and other techniques. Using falling-ball viscometry and two independent versions of fluorescence photobleaching recovery (FPR), the present data indicate that several factors are responsible for these discrepancies. Gel filtration chromatography profoundly affects the viscosity of actin solutions and filament diffusion coefficients. ATR-actin and, to a lesser degree, AF-actin show a reduction in viscosity in proportion to the fraction labeled, presumably due to filament shortening. Actin filaments containing AF-actin or ATR-actin are susceptible to photoinduced damage, including a covalent cross-linking of actin protomers within filaments and an apparent cleavage of filaments detected by a decrease of the measured viscosity and an increase in the measured filament diffusion coefficients. Quantum yields of the two photoinduced effects are quite different. Multiple cross-links are produced relative to each photobleaching event, whereas less than 1% filament cleavage occurs. Substantial differences in the filament diffusion coefficients measured by FPR are also the result of differences in illumination geometry and sampling time. However, under controlled conditions, FPR can be used as a quantitative tool for measuring the hydrodynamic properties of actin filaments. Incremented filament shortening caused by photoinduced cleavage or incremental addition of filament capping proteins produces a continuous and approximately linear increase of filament diffusion coefficients, indicating that filaments are not associated in solution. Our results indicate that actin filaments exhibit low mobilities and it is inferred that actin filaments formed in vitro by column-purified actin, under standard conditions, are

  3. Study of the influence of actin-binding proteins using linear analyses of cell deformability.

    PubMed

    Plaza, Gustavo R; Uyeda, Taro Q P; Mirzaei, Zahra; Simmons, Craig A

    2015-07-21

    The actin cytoskeleton plays a key role in the deformability of the cell and in mechanosensing. Here we analyze the contributions of three major actin cross-linking proteins, myosin II, α-actinin and filamin, to cell deformability, by using micropipette aspiration of Dictyostelium cells. We examine the applicability of three simple mechanical models: for small deformation, linear viscoelasticity and drop of liquid with a tense cortex; and for large deformation, a Newtonian viscous fluid. For these models, we have derived linearized equations and we provide a novel, straightforward methodology to analyze the experiments. This methodology allowed us to differentiate the effects of the cross-linking proteins in the different regimes of deformation. Our results confirm some previous observations and suggest important relations between the molecular characteristics of the actin-binding proteins and the cell behavior: the effect of myosin is explained in terms of the relation between the lifetime of the bond to actin and the resistive force; the presence of α-actinin obstructs the deformation of the cytoskeleton, presumably mainly due to the higher molecular stiffness and to the lower dissociation rate constants; and filamin contributes critically to the global connectivity of the network, possibly by rapidly turning over cross-links during the remodeling of the cytoskeletal network, thanks to the higher rate constants, flexibility and larger size. The results suggest a sophisticated relationship between the expression levels of actin-binding proteins, deformability and mechanosensing. PMID:26059185

  4. Solution structure of the calmodulin-like C-terminal domain of Entamoeba α-actinin2.

    PubMed

    Karlsson, Göran; Persson, Cecilia; Mayzel, Maxim; Hedenström, Mattias; Backman, Lars

    2016-04-01

    Cell motility is dependent on a dynamic meshwork of actin filaments that is remodelled continuously. A large number of associated proteins that are severs, cross-links, or caps the filament ends have been identified and the actin cross-linker α-actinin has been implied in several important cellular processes. In Entamoeba histolytica, the etiological agent of human amoebiasis, α-actinin is believed to be required for infection. To better understand the role of α-actinin in the infectious process we have determined the solution structure of the C-terminal calmodulin-like domain using NMR. The final structure ensemble of the apo form shows two lobes, that both resemble other pairs of calcium-binding EF-hand motifs, connected with a mobile linker. PMID:26800385

  5. A microstructurally informed model for the mechanical response of three-dimensional actin networks

    PubMed Central

    KWON, R.Y.; LEW, A.J.; JACOBS, C.R.

    2008-01-01

    We propose a class of microstructurally informed models for the linear elastic mechanical behavior of cross-linked polymer networks such as the actin cytoskeleton. Salient features of the models include the possibility to represent anisotropic mechanical behavior resulting from anisotropic filament distributions, and a power-law scaling of the mechanical properties with the filament density. Mechanical models within the class are parameterized by seven different constants. We demonstrate a procedure for determining these constants using finite element models of three-dimensional actin networks. Actin filaments and cross-links were modeled as elastic rods, and the networks were constructed at physiological volume fractions and at the scale of an image voxel. We show the performance of the model in estimating the mechanical behavior of the networks over a wide range of filament densities and degrees of anisotropy. PMID:18568835

  6. Use of Proteinase K Nonspecific Digestion for Selective and Comprehensive Identification of Interpeptide Cross-links: Application to Prion Proteins*

    PubMed Central

    Petrotchenko, Evgeniy V.; Serpa, Jason J.; Hardie, Darryl B.; Berjanskii, Mark; Suriyamongkol, Bow P.; Wishart, David S.; Borchers, Christoph H.

    2012-01-01

    Chemical cross-linking combined with mass spectrometry is a rapidly developing technique for structural proteomics. Cross-linked proteins are usually digested with trypsin to generate cross-linked peptides, which are then analyzed by mass spectrometry. The most informative cross-links, the interpeptide cross-links, are often large in size, because they consist of two peptides that are connected by a cross-linker. In addition, trypsin targets the same residues as amino-reactive cross-linkers, and cleavage will not occur at these cross-linker-modified residues. This produces high molecular weight cross-linked peptides, which complicates their mass spectrometric analysis and identification. In this paper, we examine a nonspecific protease, proteinase K, as an alternative to trypsin for cross-linking studies. Initial tests on a model peptide that was digested by proteinase K resulted in a “family” of related cross-linked peptides, all of which contained the same cross-linking sites, thus providing additional verification of the cross-linking results, as was previously noted for other post-translational modification studies. The procedure was next applied to the native (PrPC) and oligomeric form of prion protein (PrPβ). Using proteinase K, the affinity-purifiable CID-cleavable and isotopically coded cross-linker cyanurbiotindipropionylsuccinimide and MALDI-MS cross-links were found for all of the possible cross-linking sites. After digestion with proteinase K, we obtained a mass distribution of the cross-linked peptides that is very suitable for MALDI-MS analysis. Using this new method, we were able to detect over 60 interpeptide cross-links in the native PrPC and PrPβ prion protein. The set of cross-links for the native form was used as distance constraints in developing a model of the native prion protein structure, which includes the 90–124-amino acid N-terminal portion of the protein. Several cross-links were unique to each form of the prion protein

  7. Use of proteinase K nonspecific digestion for selective and comprehensive identification of interpeptide cross-links: application to prion proteins.

    PubMed

    Petrotchenko, Evgeniy V; Serpa, Jason J; Hardie, Darryl B; Berjanskii, Mark; Suriyamongkol, Bow P; Wishart, David S; Borchers, Christoph H

    2012-07-01

    Chemical cross-linking combined with mass spectrometry is a rapidly developing technique for structural proteomics. Cross-linked proteins are usually digested with trypsin to generate cross-linked peptides, which are then analyzed by mass spectrometry. The most informative cross-links, the interpeptide cross-links, are often large in size, because they consist of two peptides that are connected by a cross-linker. In addition, trypsin targets the same residues as amino-reactive cross-linkers, and cleavage will not occur at these cross-linker-modified residues. This produces high molecular weight cross-linked peptides, which complicates their mass spectrometric analysis and identification. In this paper, we examine a nonspecific protease, proteinase K, as an alternative to trypsin for cross-linking studies. Initial tests on a model peptide that was digested by proteinase K resulted in a "family" of related cross-linked peptides, all of which contained the same cross-linking sites, thus providing additional verification of the cross-linking results, as was previously noted for other post-translational modification studies. The procedure was next applied to the native (PrP(C)) and oligomeric form of prion protein (PrPβ). Using proteinase K, the affinity-purifiable CID-cleavable and isotopically coded cross-linker cyanurbiotindipropionylsuccinimide and MALDI-MS cross-links were found for all of the possible cross-linking sites. After digestion with proteinase K, we obtained a mass distribution of the cross-linked peptides that is very suitable for MALDI-MS analysis. Using this new method, we were able to detect over 60 interpeptide cross-links in the native PrP(C) and PrPβ prion protein. The set of cross-links for the native form was used as distance constraints in developing a model of the native prion protein structure, which includes the 90-124-amino acid N-terminal portion of the protein. Several cross-links were unique to each form of the prion protein, including

  8. Binding of WIP to Actin Is Essential for T Cell Actin Cytoskeleton Integrity and Tissue Homing

    PubMed Central

    Massaad, Michel J.; Oyoshi, Michiko K.; Kane, Jennifer; Koduru, Suresh; Alcaide, Pilar; Nakamura, Fumihiko; Ramesh, Narayanaswamy; Luscinskas, Francis W.; Hartwig, John

    2014-01-01

    The Wiskott-Aldrich syndrome protein (WASp) is important for actin polymerization in T cells and for their migration. WASp-interacting protein (WIP) binds to and stabilizes WASp and also interacts with actin. Cytoskeletal and functional defects are more severe in WIP−/− T cells, which lack WASp, than in WASp−/− T cells, suggesting that WIP interaction with actin may be important for T cell cytoskeletal integrity and function. We constructed mice that lack the actin-binding domain of WIP (WIPΔABD mice). WIPΔABD associated normally with WASp but not F-actin. T cells from WIPΔABD mice had normal WASp levels but decreased cellular F-actin content, a disorganized actin cytoskeleton, impaired chemotaxis, and defective homing to lymph nodes. WIPΔABD mice exhibited a T cell intrinsic defect in contact hypersensitivity and impaired responses to cutaneous challenge with protein antigen. Adoptively transferred antigen-specific CD4+ T cells from WIPΔABD mice had decreased homing to antigen-challenged skin of wild-type recipients. These findings show that WIP binding to actin, independently of its binding to WASp, is critical for the integrity of the actin cytoskeleton in T cells and for their migration into tissues. Disruption of WIP binding to actin could be of therapeutic value in T cell-driven inflammatory diseases. PMID:25246631

  9. Coactosin-like protein, a human F-actin-binding protein: critical role of lysine-75.

    PubMed Central

    Provost, P; Doucet, J; Stock, A; Gerisch, G; Samuelsson, B; Rådmark, O

    2001-01-01

    Coactosin-like protein (CLP) was recently identified in a yeast two-hybrid screen using 5-lipoxygenase as bait. In the present study, we report the functional characterization of CLP as a human filamentous actin (F-actin)-binding protein. CLP mRNA shows a wide tissue distribution and is predominantly expressed in placenta, lung, kidney and peripheral-blood leucocytes. Endogenous CLP is localized in the cytosol of myeloid cells. Using a two-hybrid approach, actin was identified as a CLP-interacting protein. Binding experiments indicated that CLP associates with F-actin, but does not form a stable complex with globular actin. In transfected mammalian cells, CLP co-localized with actin stress fibres. CLP bound to actin filaments with a stoichiometry of 1:2 (CLP: actin subunits), but could be cross-linked to only one subunit of actin. Site-directed mutagenesis revealed the involvement of Lys(75) of CLP in actin binding, a residue highly conserved in related proteins and supposed to be exposed on the surface of the CLP protein. Our results identify CLP as a new human protein that binds F-actin in vitro and in vivo, and indicate that Lys(75) is essential for this interaction. PMID:11583571

  10. The Structural Basis of Actin Organization by Vinculin and Metavinculin.

    PubMed

    Kim, Laura Y; Thompson, Peter M; Lee, Hyunna T; Pershad, Mihir; Campbell, Sharon L; Alushin, Gregory M

    2016-01-16

    Vinculin is an essential adhesion protein that links membrane-bound integrin and cadherin receptors through their intracellular binding partners to filamentous actin, facilitating mechanotransduction. Here we present an 8.5-Å-resolution cryo-electron microscopy reconstruction and pseudo-atomic model of the vinculin tail (Vt) domain bound to F-actin. Upon actin engagement, the N-terminal "strap" and helix 1 are displaced from the Vt helical bundle to mediate actin bundling. We find that an analogous conformational change also occurs in the H1' helix of the tail domain of metavinculin (MVt) upon actin binding, a muscle-specific splice isoform that suppresses actin bundling by Vt. These data support a model in which metavinculin tunes the actin bundling activity of vinculin in a tissue-specific manner, providing a mechanistic framework for understanding metavinculin mutations associated with hereditary cardiomyopathies. PMID:26493222

  11. Endogenous and enhanced oxidative cross-linking in wheat flour mill streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The oxidative cross-linking of arabinoxylan and protein polymers is partially responsible for variation in end-use quality of wheat flour; specifically, differences in batter viscosity as well as variation in bread and cookie quality. A better understanding of the variation in oxidative cross-linkin...

  12. Phase diagram of selectively cross-linked block copolymers shows chemically microstructured gel

    NASA Astrophysics Data System (ADS)

    von der Heydt, Alice; Zippelius, Annette

    2015-02-01

    We study analytically the intricate phase behavior of cross-linked AB diblock copolymer melts, which can undergo two main phase transitions due to quenched random constraints. Gelation, i.e., spatially random localisation of polymers forming a system-spanning cluster, is driven by increasing the number parameter μ of irreversible, type-selective cross-links between random pairs of A blocks. Self-assembly into a periodic pattern of A/B-rich microdomains (microphase separation) is controlled by the AB incompatibility χ inversely proportional to temperature. Our model aims to capture the system's essential microscopic features, including an ensemble of random networks that reflects spatial correlations at the instant of cross-linking. We identify suitable order parameters and derive a free-energy functional in the spirit of Landau theory that allows us to trace a phase diagram in the plane of μ and χ. Selective cross-links promote microphase separation at higher critical temperatures than in uncross-linked diblock copolymer melts. Microphase separation in the liquid state facilitates gelation, giving rise to a novel gel state whose chemical composition density mirrors the periodic AB pattern.

  13. Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin.

    PubMed

    Cui, Li; Jia, Junfang; Guo, Yi; Liu, Yun; Zhu, Ping

    2014-01-01

    The interpenetrating polymer networks (IPN) hydrogels based on chitosan and gelatin using genipin as the cross-linker were prepared and characterized. The IPN formation of the genipin-cross-linked chitosan/gelatin hydrogel was confirmed by means of the instrinsic viscosity measurement, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and the ninhydrin assays. The instrinsic viscosity measurement, FT-IR and SEM suggested that chitosan and gelatin were miscible in the molecular level. The miscibility leads to the formation of IPN after cross-linking. FT-IR also examined the cross-linking mechanism of genipin with primary amino groups. The degree of cross-linking increased with increase genipin concentration. Swelling results revealed that the IPN hydrogels are pH-sensitive, exhibiting reversibility and rather rapidly response in swelling to pH changes. It is expected this IPN hydrogel has potential as controlled drug delivery system or as alternative sorbents for biomedical and environmental use as pH altered. PMID:24274476

  14. Preparation and characterization of electrospun in-situ cross-linked gelatin-graphite oxide nanofibers.

    PubMed

    Zhan, Jianchao; Morsi, Yosry; Ei-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei

    2016-04-01

    Electrospun gelatin(Gel) nanofibers scaffold has such defects as poor mechanical property and quick degradation due to high solubility. In this study, the in situ cross-linked electrospinning technique was used for the production of gelatin nanofibers. Deionized water was chosen as the spinning solvent and graphite oxide (GO) was chosen as the enhancer. The morphological structure, porosity, thermal property, moisture absorption, and moisture retention performance, hydrolysis resistance, mechanical property, and biocompatibility of the produced nanofibers were investigated. Compared with in situ cross-linked gelatin nanofibers scaffold, in situ cross-linked Gel-GO nanofibers scaffold has the following features: (1) the hydrophilicity, moisture absorption, and moisture retention performance slightly reduce, while the hydrolysis resistance is improved; (2) the breaking strength, breaking elongation, and Young's modulus are significantly improved; (3) the porosity slightly reduces while the biocompatibility considerably increases. The in situ cross-linked Gel-GO nanofibers scaffold is likely to be applied in such fields as drug delivery and scaffold for skin tissue engineering. PMID:26733331

  15. Hierarchically porous polymers from hyper-cross-linked block polymer precursors.

    PubMed

    Seo, Myungeun; Kim, Soobin; Oh, Jaehoon; Kim, Sun-Jung; Hillmyer, Marc A

    2015-01-21

    We report synthesis of hierarchically porous polymers (HPPs) consisting of micropores and well-defined 3D continuous mesopores by combination of hyper-cross-linking and block polymer self-assembly. Copolymerization of 4-vinylbenzyl chloride (VBzCl) with divinylbenzene (DVB) in the presence of polylactide (PLA) macro-chain-transfer agent produced a cross-linked block polymer precursor PLA-b-P(VBzCl-co-DVB) via reversible addition-fragmentation chain transfer polymerization. A nanoscopic bicontinuous morphology containing PLA and P(VBzCl-co-DVB) microdomains was obtained as a result of polymerization-induced microphase separation. While a basic treatment of the precursor selectively removed PLA to yield a reticulated mesoporous polymer, hyper-cross-linking of the precursor by FeCl3 generated micropores in the P(VBzCl-co-DVB) microdomain via Friedel-Crafts alkylation and simultaneously degraded PLA to produce the HPP containing micropores in the mesoporous framework. The mesopore size of the HPP could be precisely controlled from 6 to 15 nm by controlling the molar mass of PLA. We demonstrate acceleration in adsorption rate in the HPP compared to a hyper-cross-linked microporous polymer. PMID:25551291

  16. Identification of disulfide cross-linked tau dimer responsible for tau propagation

    PubMed Central

    Kim, Dohee; Lim, Sungsu; Haque, Md. Mamunul; Ryoo, Nayeon; Hong, Hyun Seok; Rhim, Hyewhon; Lee, Dong-Eun; Chang, Young-Tae; Lee, Jun-Seok; Cheong, Eunji; Kim, Dong Jin; Kim, Yun Kyung

    2015-01-01

    Recent evidence suggests that tau aggregates are not only neurotoxic, but also propagate in neurons acting as a seed for native tau aggregation. Prion-like tau transmission is now considered as an important pathogenic mechanism driving the progression of tau pathology in the brain. However, prion-like tau species have not been clearly characterized. To identify infectious tau conformers, here we prepared diverse tau aggregates and evaluated the effect on inducing intracellular tau-aggregation. Among tested, tau dimer containing P301L-mutation is identified as the most infectious form to induce tau pathology. Biochemical analysis reveals that P301L-tau dimer is covalently cross-linked with a disulfide bond. The relatively small and covalently cross-linked tau dimer induced tau pathology efficiently in primary neurons and also in tau-transgenic mice. So far, the importance of tau disulfide cross-linking has been overlooked in the study of tau pathology. Here our results suggested that tau disulfide cross-linking might play critical role in tau propagation by producing structurally stable and small tau conformers. PMID:26470054

  17. Identification of disulfide cross-linked tau dimer responsible for tau propagation.

    PubMed

    Kim, Dohee; Lim, Sungsu; Haque, Md Mamunul; Ryoo, Nayeon; Hong, Hyun Seok; Rhim, Hyewhon; Lee, Dong-Eun; Chang, Young-Tae; Lee, Jun-Seok; Cheong, Eunji; Kim, Dong Jin; Kim, Yun Kyung

    2015-01-01

    Recent evidence suggests that tau aggregates are not only neurotoxic, but also propagate in neurons acting as a seed for native tau aggregation. Prion-like tau transmission is now considered as an important pathogenic mechanism driving the progression of tau pathology in the brain. However, prion-like tau species have not been clearly characterized. To identify infectious tau conformers, here we prepared diverse tau aggregates and evaluated the effect on inducing intracellular tau-aggregation. Among tested, tau dimer containing P301L-mutation is identified as the most infectious form to induce tau pathology. Biochemical analysis reveals that P301L-tau dimer is covalently cross-linked with a disulfide bond. The relatively small and covalently cross-linked tau dimer induced tau pathology efficiently in primary neurons and also in tau-transgenic mice. So far, the importance of tau disulfide cross-linking has been overlooked in the study of tau pathology. Here our results suggested that tau disulfide cross-linking might play critical role in tau propagation by producing structurally stable and small tau conformers. PMID:26470054

  18. In-vitro fermentability of cell walls as influenced by lignin composition and cross-linking.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We assessed how diverse modifications in lignin composition and reductions in ferulate-lignin cross-linking influence the degradability of cell walls. Cell walls from nonlignified maize cell suspensions were artificially lignified with varying ratios of normal monolignols (coniferyl and sinapyl alco...

  19. Cross-linking oppositely charged oil-in-water emulsions to enhance heteroaggregate stability.

    PubMed

    Maier, Christiane; Oechsle, Anja M; Weiss, Jochen

    2015-11-01

    The formation and subsequent enzymatic and chemical cross-linking of heteroaggregates from oppositely charged oil-in-water (O/W) emulsions was investigated. For this purpose, 10% (w/w) oil-in-water emulsions (d43<1 μm) were prepared at pH 4 using a positively charged emulsifier (Nα-lauroyl-L-arginine ethyl ester (LAE), cold water fish gelatin, or whey protein isolate) or a negatively charged one (sugar beet pectin or Quillaja saponins). The oppositely charged emulsions were then combined at a volume ratio of 1:1 and treated with laccase or glutaraldehyde in order to further stabilize the electrostatically attached aggregates by covalently cross-linking the oppositely charged membranes. Emulsions and heteroaggregates were characterized by their rheological properties, their surface charge, particle size distribution, and microstructure using dynamic and static light scattering as well as confocal laser scanning microscopy. Prior to cross-linking, the emulsifiers' stabilization mechanism were found to greatly influence the formation of heteroaggregates. Laccase treatment (1.34 mU/mL) increased aggregate expansion by ca. 30% for the combined emulsions stabilized by Quillaja saponins/whey protein isolate, while combined Quillaja saponins/fish gelatin stabilized emulsions remained unaffected. When combined emulsions were treated with 50mM glutaraldehyde, aggregate size significantly increased 2- and 3-fold, respectively. Thus, our study provides novel insights into the enzymatic and chemical cross-linking of heteroaggregates composed of oppositely charged O/W emulsions. PMID:26298085

  20. Cross-Linked Nanoporous Materials from Reactive and Multifunctional Block Polymers

    SciTech Connect

    Seo, Myungeun; Amendt, Mark A.; Hillmyer, Marc A.

    2012-10-10

    Polylactide-b-poly(styrene-co-2-hydroxyethylmethacrylate) (PLA-b-P(S-co-HEMA)) and polylactide-b-poly(styrene-co-2-hydroxyethylacrylate) (PLA-b-P(S-co-HEA)) were synthesized by combination of ring-opening polymerization and reversible addition-fragmentation chain transfer polymerization. {sup 1}H nuclear magnetic resonance spectroscopy and size exclusion chromatography data indicated that the polymerizations were controlled and that hydroxyl groups were successfully incorporated into the block polymers. The polymers were reacted with 4,4{prime}-methylenebis(phenyl isocyanate) (MDI) to form the corresponding cross-linked materials. The materials were annealed at 150 C to complete the coupling reaction. Robust nanoporous materials were obtained from the cross-linked polymers by treatment with aqueous base to hydrolyze the PLA phase. Small-angle X-ray scattering study combined with scanning electron microscopy showed that MDI-cross-linked PLA-b-P(S-co-HEMA)/PLA-b-P(S-co-HEA) can adopt lamellar, hexagonally perforated lamellar, and hexagonally packed cylindrical morphologies after annealing. In particular, the HPL morphology was found to evolve from lamellae due to increase in volume fraction of PS phase as MDI reacted with hydroxyl groups. The reaction also kinetically trapped the morphology by cross-linking. Bicontinuous morphologies were also observed when dibutyltin dilaurate was added to accelerate reaction between the polymer and MDI.

  1. Ultraweak chemiluminescence arising for glutaraldehyde-induced cross-linking reactions of biomolecules.

    PubMed

    Chwirot, B W

    1997-01-01

    Chemiluminescence arising from cross-linking reactions of glutaraldehyde was examined. Our findings indicate that: (i) new reactions not yet described in the literature may be responsible for a part of the observed emissions; and (ii) this chemiluminescence may offer a new way of optimizing procedures of fixing biological materials prepared for microscopic examinations. PMID:9509330

  2. Inhibiting Hexamer Disassembly of Human UDP-Glucose Dehydrogenase by Photoactivated Amino Acid Cross-Linking.

    PubMed

    Grady, George; Thelen, Ashley; Albers, Jaleen; Ju, Tong; Guo, Jiantao; Barycki, Joseph J; Simpson, Melanie A

    2016-06-01

    The enzyme UDP-glucose dehydrogenase (UGDH) catalyzes the reaction of UDP-glucose to UDP-glucuronate through two successive NAD(+)-dependent oxidation steps. Human UGDH apoprotein is purified as a mixture of dimeric and hexameric species. Addition of substrate and cofactor stabilizes the oligomeric state to primarily the hexameric form. To determine if the dynamic conformations of hUGDH are required for catalytic activity, we used site-specific unnatural amino acid incorporation to facilitate cross-linking of monomeric subunits into predominantly obligate oligomeric species. Optimal cross-linking was achieved by encoding p-benzoyl-l-phenylalanine at position 458, normally a glutamine located within the dimer-dimer interface, and exposing the enzyme to long wavelength ultraviolet (UV) radiation in the presence of substrate and cofactor. Hexameric complexes were purified by gel filtration chromatography and found to contain significant fractions of dimer and trimer (approximately 50%) along with another 10% higher-molecular mass species. The activity of the cross-linked enzyme was reduced by almost 60% relative to that of the un-cross-linked UGDH mutant, and UV exposure had no effect on the activity of the wild-type enzyme. These results support a model for catalysis in which the ability to dissociate the dimer-dimer interface is as important for maximal enzyme function as has been previously shown for the formation of the hexamer. PMID:27198584

  3. Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch.

    PubMed

    Hazarika, Bidyut Jyoti; Sit, Nandan

    2016-04-20

    Dual modification of taro starch by hydroxypropylation and cross-linking was carried out and the properties of the modified starches were investigated. Two different levels of hydroxypropylation (5 and 10%) and cross-linking (0.05 and 0.10%) were used in different sequences. The amylose contents of the starch decreased due to single and dual modification. For the dual-modified starches, the swelling, solubility and clarity was found to increase with level of hydroxypropylation and decrease with level of cross-linking. The freeze-thaw stability of the dual-modified starches was also affected by the sequence of modification. The viscosities of the cross-linked and dual-modified starches were more than native and hydroxypropylated starches. The firmness of the dual-modified starches was also higher than native and single modified starches. The dual-modified starches have benefits of both type of modifications and could be used for specific purposes e.g. food products requiring high viscosity as well as freeze-thaw stability. PMID:26876854

  4. Computational modeling of mechanical response of dual cross-linked polymer grafted nanoparticle networks

    NASA Astrophysics Data System (ADS)

    v S, Balaji; Yashin, Victor; Salib, Isaac; Kowalewski, Tomasz; Matyjaszewski, Krzystof; Balazs, Anna; Anna Balazs Collaboration; Krzystof Matyjaszewski Collaboration

    2013-03-01

    We develop a hybrid computational model for the behavior of a network of cross-linked polymer-grafted nanoparticles (PGNs). The individual nanoparticles are composed of a rigid core and a corona of grafted polymers that encompass reactive end groups. With the overlap of the coronas on adjacent particles, the reactive end groups can form permanent or labile bonds, which lead to the formation of a ``dual cross-linked'' network. To capture these multi-scale interactions, our approach integrates the essential structural features of the polymer grafted nanoparticles, the interactions between the overlapping coronas, and the kinetics of bond formation and rupture between the reactive groups on the chain ends. We investigate the mechanical response of the dual-cross linked network to an applied tensile deformation. We find that the response depends on the bond energies of the labile bonds, the fraction of permanent bonds in the network, and thickness of the corona. This model provides a powerful tool for the computational design of dual cross-linked PGN's by predicting how the structural features of the system affect the mechanical performance.

  5. Is dialdehyde starch a valuable cross-linking agent for collagen/elastin based materials?

    PubMed

    Skopinska-Wisniewska, J; Wegrzynowska-Drzymalska, K; Bajek, A; Maj, M; Sionkowska, A

    2016-04-01

    Collagen and elastin are the main structural proteins in mammal bodies. They provide mechanical support, strength, and elasticity to various organs and tissues, e.g. skin, tendons, arteries, and bones. They are readily available, biodegradable, biocompatible and they stimulate cell growth. The physicochemical properties of collagen and elastin-based materials can be modified by cross-linking. Glutaraldehyde is one of the most efficient cross-linking agents. However, the unreacted molecules can be released from the material and cause cytotoxic reactions. Thus, the aim of our work was to investigate the influence of a safer, macromolecular cross-linking agent-dialdehyde starch (DAS). The properties of hydrogels based on collagen/elastin mixtures (95/5, 90/10) containing 5 and 10 % of DAS and neutralized via dialysis against deionized water were tested. The homogenous, transparent, stiff hydrogels were obtained. The DAS addition causes the formation of intermolecular cross-linking bonds but does not affect the secondary structure of the proteins. As a result, the thermal stability, mechanical strength, and, surprisingly, swelling ability increased. At the same time, the surface properties test and in vitro study show that the materials are attractive for 3T3 cells. Moreover, the materials containing 10 % of DAS are more resistant to enzymatic degradation. PMID:26886815

  6. Vitamin C hinders radiation cross-linking in aqueous poly(vinyl alcohol) solutions

    NASA Astrophysics Data System (ADS)

    Oral, Ebru; Bodugoz-Senturk, Hatice; Macias, Celia; Muratoglu, Orhun K.

    2007-12-01

    Poly(vinyl alcohol) (PVA) is a promising semi-crystalline material for biomedical applications. It is soluble in water and can be formed into hydrogels by freezing and thawing or crystallizing from an aqueous theta solution such as that of polyethylene glycol (PEG). Radiation cross-linking caused by sterilization or high dose irradiation of concentrated PVA solutions could compromise some properties of these hydrogels. Therefore, we hypothesized that radiation cross-linking of PVA solutions and PVA-PEG theta gels could be prevented by using the antioxidant vitamin C as an anticross-linking agent. Our hypothesis tested positive. Vitamin C concentrations of 0.75 and 4.5 mol/mol of PVA repeating unit could prevent cross-linking in 17.5 wt/v% PVA solutions made with PVA molecular weight of 115,000 g/mol irradiated to 25 and 100 kGy, respectively. Vitamin C also prevented cross-linking in 25 kGy irradiated PVA-PEG theta gels containing up to 5 wt% PEG and decreased the viscosity of those up to 39 wt%.

  7. Genipin-cross-linked layer-by-layer assemblies: biocompatible microenvironments to direct bone cell fate.

    PubMed

    Gaudière, Fabien; Morin-Grognet, Sandrine; Bidault, Laurent; Lembré, Pierre; Pauthe, Emmanuel; Vannier, Jean-Pierre; Atmani, Hassan; Ladam, Guy; Labat, Béatrice

    2014-05-12

    The design of biomimetic coatings capable of improving the osseointegration of bone biomaterials is a current challenge in the field of bone repair. Toward this end, layer-by-layer (LbL) films composed of natural components are suitable candidates. Chondroitin sulfate A (CSA), a natural glycosaminoglycan (GAG), was used as the polyanionic component because it promotes osteoblast maturation in vivo. In their native state, GAG-containing LbL films are generally cytophobic because of their low stiffness. To stiffen our CSA-based LbL films, genipin (GnP) was used as a natural cross-linking agent, which is much less cytotoxic than conventional chemical cross-linkers. GnP-cross-linked films display an original combination of microscale topography and tunable mechanical properties. Structural characterization was partly based on a novel donor/acceptor Förster resonance energy transfer (FRET) couple, namely, FITC/GnP, which is a promising approach for further inspection of any GnP-cross-linked system. GnP-cross-linked films significantly promote adhesion, proliferation, and early and late differentiation of preosteoblasts. PMID:24666097

  8. 21 CFR 177.2710 - Styrene-divinylbenzene resins, cross-linked.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Styrene-divinylbenzene resins, cross-linked. 177.2710 Section 177.2710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS...

  9. 21 CFR 177.2710 - Styrene-divinylbenzene resins, cross-linked.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Styrene-divinylbenzene resins, cross-linked. 177.2710 Section 177.2710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS...

  10. Phase diagram of selectively cross-linked block copolymers shows chemically microstructured gel.

    PubMed

    von der Heydt, Alice; Zippelius, Annette

    2015-02-01

    We study analytically the intricate phase behavior of cross-linked AB diblock copolymer melts, which can undergo two main phase transitions due to quenched random constraints. Gelation, i.e., spatially random localisation of polymers forming a system-spanning cluster, is driven by increasing the number parameter μ of irreversible, type-selective cross-links between random pairs of A blocks. Self-assembly into a periodic pattern of A/B-rich microdomains (microphase separation) is controlled by the AB incompatibility χ inversely proportional to temperature. Our model aims to capture the system's essential microscopic features, including an ensemble of random networks that reflects spatial correlations at the instant of cross-linking. We identify suitable order parameters and derive a free-energy functional in the spirit of Landau theory that allows us to trace a phase diagram in the plane of μ and χ. Selective cross-links promote microphase separation at higher critical temperatures than in uncross-linked diblock copolymer melts. Microphase separation in the liquid state facilitates gelation, giving rise to a novel gel state whose chemical composition density mirrors the periodic AB pattern. PMID:25662662

  11. Experimental scleral cross-linking increases glaucoma damage in a mouse model

    PubMed Central

    Kimball, Elizabeth C.; Nguyen, Cathy; Steinhart, Matthew R.; Nguyen, Thao D.; Pease, Mary E.; Oglesby, Ericka N.; Oveson, Brian C.; Quigley, Harry A.

    2014-01-01

    The purpose of this study was to assess the effect of a scleral cross-linking agent on susceptibility to glaucoma damage in a mouse model. CD1 mice underwent 3 subconjunctival injections of 0.5 M glyceraldehyde (GA) in 1 week, then had elevated intraocular pressure (IOP) induced by bead injection. Degree of cross-linking was measured by enzyme-linked immunosorbent assay (ELISA), scleral permeability was measured by fluorescence recovery after photobleaching (FRAP), and the mechanical effects of GA exposure were measured by inflation testing. Control mice had buffer injection or no injection in 2 separate glaucoma experiments. IOP was monitored by Tonolab and retinal ganglion cell (RGC) loss was measured by histological axon counting. To rule out undesirable effects of GA, we performed electroretinography and detailed histology of the retina. GA exposure had no detectable effects on RGC number, retinal structure or function either histologically or electrophysiologically. GA increased cross-linking of sclera by 37% in an ELISA assay, decreased scleral permeability (FRAP, p = 0.001), and produced a steeper pressure—strain behavior by in vitro inflation testing. In two experimental glaucoma experiments, GA-treated eyes had greater RGC axon loss from elevated IOP than either buffer-injected or control eyes, controlling for level of IOP exposure over time (p = 0.01, and 0.049, multivariable regression analyses). This is the first report that experimental alteration of the sclera, by cross-linking, increases susceptibility to RGC damage in mice. PMID:25285424

  12. CHEMISTRY AND PHYSICAL PROPERTIES OF MELT PROCESSED- AND SOLUTION-CROSS LINKED CORN ZEIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn zein was cross linked with glutaraldehyde (GDA) and with glacial acetic acid (HAc) as catalyst with the objective to enhance the mechanical properties of poured films which were compared with the physical properties of compression molded tensile bars from melt processed zein with GDA. A reacti...

  13. ROMP-based thermosetting polymers from modified castor oil with various cross-linking agents

    NASA Astrophysics Data System (ADS)

    Ding, Rui

    Polymers derived from bio-renewable resources are finding an increase in global demand. In addition, polymers with distinctive functionalities are required in certain advanced fields, such as aerospace and civil engineering. In an attempt to meet both these needs, the goal of this work aims to develop a range of bio-based thermosetting matrix polymers for potential applications in multifunctional composites. Ring-opening metathesis polymerization (ROMP), which recently has been explored as a powerful method in polymer chemistry, was employed as a unique pathway to polymerize agricultural oil-based reactants. Specifically, a novel norbornyl-functionalized castor oil alcohol (NCA) was investigated to polymerize different cross-linking agents using ROMP. The effects of incorporating dicyclopentadiene (DCPD) and a norbornene-based crosslinker (CL) were systematically evaluated with respect to curing behavior and thermal mechanical properties of the polymers. Isothermal differential scanning calorimetry (DSC) was used to investigate the conversion during cure. Dynamic DSC scans at multiple heating rates revealed conversion-dependent activation energy by Ozawa-Flynn-Wall analysis. The glass transition temperature, storage modulus, and loss modulus for NCA/DCPD and NCA/CL copolymers with different cross-linking agent loading were compared using dynamic mechanical analysis. Cross-link density was examined to explain the very different dynamic mechanical behavior. Mechanical stress-strain curves were developed through tensile test, and thermal stability of the cross-linked polymers was evaluated by thermogravimetric analysis to further investigate the structure-property relationships in these systems.

  14. Functional cross-linked hemoglobin bis-tetramers: geometry and cooperativity.

    PubMed

    Hu, Dongxin; Kluger, Ronald

    2008-11-25

    Hemoglobin-based oxygen carriers have been sought as stable, sterile alternatives to red cells in transfusions. Problems in clinical trials using cross-linked tetramers have led to proposals that larger assemblies of tetramers may alleviate some of the problems. A study of such assemblies requires materials with defined structures and physical properties. Evaluation of cross-linked bis-tetramers with inflexible linear links between the tetramers revealed that these have very low cooperativity in oxygen binding and would thus be inefficient as oxygen carriers. New, more flexible reagents were designed to cross-link and connect tetramers in two modes: with angular connectors that permit torsional movement (1-3) and with linear connectors that resemble previously studied systems (4-6). The resulting cross-linked bis-tetramers were produced in high yield and were isolated and characterized. Digest mapping showed that modifications were specifically introduced as expected at amino groups in the 2,3-bisphosphoglycerate binding sites within beta subunits. Circular dichroism showed that the secondary structure of the globin chains is maintained while the microenvironment of the hemes is altered. The bis-tetramers derived from 1-3 have oxygen affinity (P(50) = 3.6-4.7) and cooperativity (n(50) = 2.2-2.7) that appear to be suitable for efficient oxygen delivery to hypoxic regions along with increased mass that is expected to minimize extravasation. PMID:18956893

  15. Temperature dependence of creep compliance of highly cross-linked epoxy: A molecular simulation study

    SciTech Connect

    Khabaz, Fardin Khare, Ketan S. Khare, Rajesh

    2014-05-15

    We have used molecular dynamics (MD) simulations to study the effect of temperature on the creep compliance of neat cross-linked epoxy. Experimental studies of mechanical behavior of cross-linked epoxy in literature commonly report creep compliance values, whereas molecular simulations of these systems have primarily focused on the Young’s modulus. In this work, in order to obtain a more direct comparison between experiments and simulations, atomistically detailed models of the cross-linked epoxy are used to study their creep compliance as a function of temperature using MD simulations. The creep tests are performed by applying a constant tensile stress and monitoring the resulting strain in the system. Our results show that simulated values of creep compliance increase with an increase in both time and temperature. We believe that such calculations of the creep compliance, along with the use of time temperature superposition, hold great promise in connecting the molecular insight obtained from molecular simulation at small length- and time-scales with the experimental behavior of such materials. To the best of our knowledge, this work is the first reported effort that investigates the creep compliance behavior of cross-linked epoxy using MD simulations.

  16. Can para-aryl-dithiols cross-link two plasmonic noble nanoparticles as monolayer dithiolate spacers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Para-aryl-dithiols (PADTs, HS-(C6H4)n-SH, n = 1, 2, and 3) have been used extensively in molecular electronics, surface-enhanced Raman spectroscopy (SERS), and quantum electron tunneling between two gold or silver nanoparticles (AuNPs and AgNPs). One popular belief is that these dithiols cross-link ...

  17. Cytotoxicity and internalization of Pluronic micelles stabilized by core cross-linking.

    PubMed

    Arranja, Alexandra; Schroder, André P; Schmutz, Marc; Waton, Gilles; Schosseler, François; Mendes, Eduardo

    2014-12-28

    A UV-cross-linkable agent was incorporated and polymerized in Pluronic micelle core to create an interpenetrating polymer network (IPN) of poly(pentaerythritol tetraacrylate). This stabilization prevented micelle disruption below the critical micelle temperature (CMT) and concentration (CMC), while maintaining the integrity of the PEO corona and the hydrophobic properties of the PPO core. The prepared stabilized spherical micelles of Pluronic P94 and F127 presented hydrodynamic diameters ranging from 40 to 50 nm. The stability of cross-linked Pluronic micelles at 37 °C in the presence of serum proteins was studied and no aggregation of the micelles was observed, revealing the colloidal stability of the system. Cytotoxicity experiments in NIH/3T3 mouse fibroblasts revealed that the presence of the cross-linking agent did not induce any further toxicity in comparison to the respective pure polymer solutions. Furthermore, stabilized micelles of Pluronic P94 were shown to be less toxic than the polymer itself. A hydrophobic fluorescent probe (Nile red) was absorbed in the cross-linked core of pre-stabilized micelles to mimic the incorporation of a poorly water-soluble drug, and the internalization and intracellular localization of Nile red was studied by confocal microscopy at different incubation times. Overall, the results indicate that Pluronic micelles stabilized by core cross-linking are capable of delivering hydrophobic components physically entrapped in the micelles, thus making them a potential candidate as a delivery platform for imaging or therapy of cancer. PMID:25307996

  18. Preferential sites for intramolecular glucosepane cross-link formation in type I collagen: A thermodynamic study.

    PubMed

    Collier, Thomas A; Nash, Anthony; Birch, Helen L; de Leeuw, Nora H

    2015-10-01

    The extracellular matrix (ECM) undergoes progressive age-related stiffening and loss of proteolytic digestibility due to an increase in concentration of advanced glycation end products (AGEs). The most abundant AGE, glucosepane, accumulates in collagen with concentrations over 100 times greater than all other AGEs. Detrimental collagen stiffening properties are believed to play a significant role in several age-related diseases such as osteoporosis and cardiovascular disease. Currently little is known of the potential location of covalently cross-linked glucosepane formation within collagen molecules; neither are there reports on how the respective cross-link sites affect the physical and biochemical properties of collagen. Using fully atomistic molecular dynamics simulations (MD) we have identified six sites where the formation of a covalent intra-molecular glucosepane cross-link within a single collagen molecule in a fibrillar environment is energetically favourable. Identification of these favourable sites enables us to align collagen cross-linking with experimentally observed changes to the ECM. For example, formation of glucosepane was found to be energetically favourable within close proximity of the Matrix Metalloproteinase-1 (MMP1) binding site, which could potentially disrupt collagen degradation. PMID:26049074

  19. Design of phosphated cross-linked microspheres of bael fruit gum as a biodegradable carrier.

    PubMed

    Mahammed, Nawaz; Gowda, D V; Deshpande, Rohan D; Thirumaleshwar, Shailesh

    2015-01-01

    Present work was aimed at designing of phosphated cross-linked microspheres of bael fruit gum (BFG) by emulsification method using sodium-tri-meta phosphate as a cross-linking agent for treatment of colon cancer using 5-fluorouracil as model drug. Stirring speed was found to be 1,000 rpm for about 5 h to be optimal to obtain reproducible microspheres. It was found that there is an increase in particle size as polymer concentration is increased whereas a reduction in particle size was observed as there is increase in stirring speed. Cross-linked BFG microspheres were successfully prepared by emulsification method. Optimum surfactant concentration was found to be 2 % w/w. Scanning electron microscopy studies showed that the drug-loaded microspheres were non-aggregated and in spherical shape. Differential scanning calorimetry and Fourier transform infrared-spectroscopy studies showed that drug and excipients are compatible. Release studies showed that drug release was more profound in cecal medium induced with enzymes causing degradation of the cross linked BFG than that of the release showed in simulated intestinal fluid. Stability studies showed that there were no significant changes in the drug content and physical appearance of microspheres. PMID:24668152

  20. Isolation and removal of proteolytic enzymes with magnetic cross-linked erythrocytes

    NASA Astrophysics Data System (ADS)

    Šafařík, Ivo; Šafaříková, Mirka

    2001-01-01

    New magnetic adsorbents for batch isolation and removal of various proteolytic enzymes were prepared by glutaraldehyde cross-linking of bovine, porcine and human erythrocytes in the presence of fine magnetic particles. Trypsin, chymotrypsin, alkaline bacterial protease and proteases present in various commercial enzyme preparations were efficiently adsorbed on these adsorbents; on the contrary, proteins without proteolytic activity were not adsorbed.

  1. Preferential sites for intramolecular glucosepane cross-link formation in type I collagen: A thermodynamic study

    PubMed Central

    Collier, Thomas A.; Nash, Anthony; Birch, Helen L.; de Leeuw, Nora H.

    2015-01-01

    The extracellular matrix (ECM) undergoes progressive age-related stiffening and loss of proteolytic digestibility due to an increase in concentration of advanced glycation end products (AGEs). The most abundant AGE, glucosepane, accumulates in collagen with concentrations over 100 times greater than all other AGEs. Detrimental collagen stiffening properties are believed to play a significant role in several age-related diseases such as osteoporosis and cardiovascular disease. Currently little is known of the potential location of covalently cross-linked glucosepane formation within collagen molecules; neither are there reports on how the respective cross-link sites affect the physical and biochemical properties of collagen. Using fully atomistic molecular dynamics simulations (MD) we have identified six sites where the formation of a covalent intra-molecular glucosepane cross-link within a single collagen molecule in a fibrillar environment is energetically favourable. Identification of these favourable sites enables us to align collagen cross-linking with experimentally observed changes to the ECM. For example, formation of glucosepane was found to be energetically favourable within close proximity of the Matrix Metalloproteinase-1 (MMP1) binding site, which could potentially disrupt collagen degradation. PMID:26049074

  2. Base excision repair enzymes protect abasic sites in duplex DNA from interstrand cross-links.

    PubMed

    Admiraal, Suzanne J; O'Brien, Patrick J

    2015-03-10

    Hydrolysis of the N-glycosyl bond between a nucleobase and deoxyribose leaves an abasic site within duplex DNA. The abasic site can react with exocyclic amines of nucleobases on the complementary strand to form interstrand DNA-DNA cross-links (ICLs). We find that several enzymes from the base excision repair (BER) pathway protect an abasic site on one strand of a DNA duplex from cross-linking with an amine on the opposing strand. Human alkyladenine DNA glycosylase (AAG) and Escherichia coli 3-methyladenine DNA glycosylase II (AlkA) accomplish this by binding tightly to the abasic site and sequestering it. AAG protects an abasic site opposite T, the product of its canonical glycosylase reaction, by a factor of ∼10-fold, as estimated from its inhibition of the reaction of an exogenous amine with the damaged DNA. Human apurinic/apyrimidinic site endonuclease 1 and E. coli endonuclease III both decrease the amount of ICL at equilibrium by generating a single-strand DNA nick at the abasic position as it is liberated from the cross-link. The reversibility of the reaction between amines and abasic sites allows BER enzymes to counter the potentially disruptive effects of this type of cross-link on DNA transactions. PMID:25679877

  3. Baking Performance of Phosphorylated Cross-Linked Resistant Starch in Low-Moisture Bakery Goods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorylated cross-linked resistant starch (RS) is a type 4 RS, which can be used for enhancing the benefits of dietary fiber. The baking performance of the RS was explored using wire-cut cookie baking and benchtop chemically-leavened cracker baking methods to produce low-moisture baked goods (coo...

  4. Direct Patterning of Organic Functional Polymers through Conventional Photolithography and Noninvasive Cross-Link Agents.

    PubMed

    Squillaci, Marco A; Qiu, Feng; Aliprandi, Alessandro; Zhang, Fan; Feng, Xinliang; Samorì, Paolo

    2016-07-01

    A new technique for direct patterning of functional organic polymers using commercial photolithography setups with a minimal loss of the materials' performances is reported. This result is achieved through novel cross-link agents made by boron- and fluorine-containing heterocycles that can react between themselves upon UV- and white-light exposure. PMID:27153351

  5. An unprecedented single platform via cross-linking of zeolite and MOFs.

    PubMed

    Lim, Dae-Woon; Lee, Heeju; Kim, Sungjune; Cho, In Hwa; Yoon, Minyoung; Choi, Yong Nam

    2016-05-21

    The unprecedented ternary nanocomposites have been synthesized as a single platform via cross-linking of two nanoporous materials, MOFs and Pt nanoparticle (NP) loaded zeolite. The heterojunction of the novel nanocomposites is anticipated to work as a chemical platform for size selective catalytic hydrogenation or deuteration of small molecules. PMID:27086901

  6. Photoswitchable formation of a DNA interstrand cross-link by a coumarin-modified nucleotide.

    PubMed

    Haque, Mohammad Mojibul; Sun, Huabing; Liu, Shuo; Wang, Yinsheng; Peng, Xiaohua

    2014-07-01

    A coumarin-modified pyrimidine nucleoside (1) has been synthesized using a Cu(I)-catalyzed click reaction and incorporated into oligodeoxynucleotides (ODNs). Interstrand cross-links are produced upon irradiation of ODNs containing 1 at 350 nm. Cross-linking occurs through a [2+2] cycloaddition reaction with the opposing thymidine, 2'-deoxycytidine, or 2'-deoxyadenosine. A much higher reactivity was observed with dT than dC or dA. Irradiation of the dT-1 and dC-1 cross-linked products at 254 nm leads to a reversible ring-opening reaction, while such phenomena were not observed with dA-1 adducts. The reversible reaction is ultrafast and complete within 50-90 s. Consistent photoswitching behavior was observed over 6 cycles of irradiation at 350 nm and 254 nm. To the best of our knowledge, this is the first example of photoswitchable interstrand cross-linking formation induced by a modified pyrimidine nucleoside. PMID:24840115

  7. Dephosphorylated synapsin I anchors synaptic vesicles to actin cytoskeleton: an analysis by videomicroscopy.

    PubMed

    Ceccaldi, P E; Grohovaz, F; Benfenati, F; Chieregatti, E; Greengard, P; Valtorta, F

    1995-03-01

    Synapsin I is a synaptic vesicle-associated protein which inhibits neurotransmitter release, an effect which is abolished upon its phosphorylation by Ca2+/calmodulin-dependent protein kinase II (CaM kinase II). Based on indirect evidence, it was suggested that this effect on neurotransmitter release may be achieved by the reversible anchoring of synaptic vesicles to the actin cytoskeleton of the nerve terminal. Using video-enhanced microscopy, we have now obtained experimental evidence in support of this model: the presence of dephosphorylated synapsin I is necessary for synaptic vesicles to bind actin; synapsin I is able to promote actin polymerization and bundling of actin filaments in the presence of synaptic vesicles; the ability to cross-link synaptic vesicles and actin is specific for synapsin I and is not shared by other basic proteins; the cross-linking between synaptic vesicles and actin is specific for the membrane of synaptic vesicles and does not reflect either a non-specific binding of membranes to the highly surface active synapsin I molecule or trapping of vesicles within the thick bundles of actin filaments; the formation of the ternary complex is virtually abolished when synapsin I is phosphorylated by CaM kinase II. The data indicate that synapsin I markedly affects synaptic vesicle traffic and cytoskeleton assembly in the nerve terminal and provide a molecular basis for the ability of synapsin I to regulate the availability of synaptic vesicles for exocytosis and thereby the efficiency of neurotransmitter release. PMID:7876313

  8. Monitoring the internal structure of poly(N-vinylcaprolactam) microgels with variable cross-link concentration.

    PubMed

    Schneider, Florian; Balaceanu, Andreea; Feoktystov, Artem; Pipich, Vitaliy; Wu, Yaodong; Allgaier, Jürgen; Pyckhout-Hintzen, Wim; Pich, Andrij; Schneider, Gerald J

    2014-12-23

    The combination of a set of complementary techniques allows us to construct an unprecedented and comprehensive picture of the internal structure, temperature dependent swelling behavior, and the dependence of these properties on the cross-linker concentration of microgel particles based on N-vinylcaprolactam (VCL). The microgels were synthesized by precipitation polymerization using different amounts of cross-linking agent. Characterization was performed by small-angle neutron scattering (SANS) using two complementary neutron instruments to cover a uniquely broad Q-range with one probe. Additionally we used dynamic light scattering (DLS), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). Previously obtained nuclear magnetic resonance spectroscopy (NMR) results on the same PVCL particles are utilized to round the picture off. Our study shows that both the particle radius and the cross-link density and therefore also the stiffness of the microgels rises with increasing cross-linker content. Hence, more cross-linker reduces the swelling capability distinctly. These findings are supported by SANS and AFM measurements. Independent DLS experiments also found the increase in particle size but suggest an unchanged cross-link density. The reason for the apparent contradiction is the indirect extraction of the parameters via a model in the evaluation of DLS measurements. The more direct approach in AFM by evaluating the cross section profiles of observed microgel particles gives evidence of significantly softer and more deformable particles at lower cross-linker concentrations and therefore verifies the change in cross-link density. DSC data indicate a minor but unexpected shift of the volume phase transition temperature (VPTT) to higher temperatures and exposes a more heterogeneous internal structure of the microgels with increasing cross-link density. Moreover, a change in the total energy transfer during the VPT gives evidence that the strength

  9. Cross-linking of glycoprotein oligomers during herpes simplex virus type 1 entry.

    PubMed

    Handler, C G; Cohen, G H; Eisenberg, R J

    1996-09-01

    Herpes simplex virus (HSV) has 10 glycoproteins in its envelope. Glycoprotein B (gB), gC, gD, gH, and gL have been implicated in virus entry. We previously used chemical cross-linking to show that these five glycoproteins were close enough to each other to be cross-linked into homodimeric and hetero-oligomeric forms; hetero-oligomers of gB-gC, gC-gD, gD-gB, gH-gL, gC-gL and gD-gL were found in purified virions. To better understand the roles of these glycoproteins in viral entry, we have modified a standard HSV penetration assay to include cross-linkers. This allowed us to examine changes in associations of viral glycoproteins during the entry process. HSV-1(KOS) was adsorbed at 4 degrees C to human neuroblastoma cells (SY5Y). The temperature was raised to 37 degrees C and cells were treated with cross-linker at various times after the temperature shift. Cytoplasmic extracts were examined by Western blotting (immunoblotting) for viral glycoproteins. We found that (i) as in virus alone, the length and concentration of the cross-linking agent affected the number of specific complexes isolated; (ii) the same glycoprotein patterns found in purified virions were also present after attachment of virions to cells; and (iii) the ability to cross-link HSV glycoproteins changed as virus penetration proceeded, e.g., gB and gD complexes which were present during attachment disappeared with increasing time, and their disappearance paralleled the kinetics of penetration. However, this phenomenon appeared to be selective since it was not observed with gC oligomers. In addition, we examined the cross-linking patterns of gB and gD in null viruses K082 and KOSgD beta. Neither of these mutants, which attach but cannot penetrate, showed changes in glycoprotein cross-linking over time. We speculate that these changes are due to conformational changes which preclude cross-linking or spatial alterations which dissociate the glycoprotein interactions during the penetration events. PMID

  10. Identification of the bombesin receptor on murine and human cells by cross-linking experiments

    SciTech Connect

    Kris, R.M.; Hazan, R.; Villines, J.; Moody, T.W.; Schlessinger, J.

    1987-08-15

    The bombesin receptor present on the surface of murine and human cells was identified using /sup 125/I-labeled gastrin-releasing peptide as a probe, the cross-linking agent disuccinimidyl suberate, and sodium dodecyl sulfate gels. A clone of NIH-3T3 cells which possesses approximately 80,000 bombesin receptors/cell with a single binding constant of approximately 1.9 X 10(-9) M was used in these studies. In addition, we used Swiss 3T3 cells and a human glioma cell line which possesses approximately 100,000 and approximately 55,000 bombesin receptors/cell, respectively. Under conditions found optimal for binding, it is demonstrated that /sup 125/I-labeled gastrin-releasing peptide can be cross-linked specifically to a glycoprotein of apparent molecular mass of 65,000 daltons on the surface of the NIH-3T3 cells. Similar results were obtained when the cross-linked product was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing or non-reducing conditions. Moreover, the cross-linking reaction is specific and saturable and the 65,000-dalton polypeptide is not observed when the cross-linking experiments were performed with a NIH-3T3 cell line which is devoid of bombesin receptors. Interestingly, glycoproteins with apparent molecular weights of 75,000 were labeled specifically by /sup 125/I-labeled gastrin-releasing peptide when similar experiments were performed with Swiss 3T3 cells and with human glioma cell line GM-340. These different molecular weights may indicate differential glycosylation as treatment with the enzyme N-glycanase reduced the apparent molecular weight of the cross-linked polypeptide to 45,000. On the basis of these results it is concluded that the cross-linked polypeptides represent the bombesin receptor or the ligand-binding subunit of a putative larger bombesin receptor expressed on the surface of these cells.

  11. Bone fracture toughness and strength correlate with collagen cross-link maturity in a dose-controlled lathyrism mouse model

    PubMed Central

    McNerny, Erin M. B.; Gong, Bo; Morris, Michael D.; Kohn, David H.

    2014-01-01

    Collagen cross-linking is altered in many diseases of bone, and enzymatic collagen cross-links are important to bone quality as evidenced by losses of strength following lysyl oxidase inhibition (lathyrism). We hypothesized that cross-links also contribute directly to bone fracture toughness. A mouse model of lathyrism using subcutaneous injection of up to 500mg/kg β-aminopropionitrile (BAPN) was developed and characterized (60 animals across 4 dosage groups). Three weeks of 150 or 350 mg/kg BAPN treatment in young growing mice significantly reduced cortical bone fracture toughness, strength, and pyridinoline cross-link content. Ratios reflecting relative cross-link maturity were positive regressors of fracture toughness (HP/[DHLNL+HLNL] r2=0.208, p<0.05; [HP+LP]/[DHNL+HLNL] r2=0.196, p<0.1), whereas quantities of mature pyridinoline cross-links were significant positive regressors of tissue strength (lysyl pyridinoline r2=0.159, p=0.014; hydroxylysyl pyridinoline r2=0.112, p<0.05). Immature and pyrrole cross-links, which were not significantly reduced by BAPN, did not correlate with mechanical properties. The effect of BAPN treatment on mechanical properties was dose specific, with the greatest impact found at the intermediate (350mg/kg) dose. Calcein labeling was used to define locations of new bone formation, allowing for the identification of regions of normally cross-linked (preexisting) and BAPN treated (newly formed, cross-link-deficient) bone. Raman spectroscopy revealed spatial differences due to relative tissue age and effects of cross-link inhibition. Newly deposited tissues had lower mineral/matrix, carbonate/phosphate and Amide I cross-link (matrix maturity) ratios compared to preexisting tissues. BAPN treatment did not affect mineral measures, but significantly increased the cross-link (matrix maturity) ratio compared to newly formed control tissue. Our study reveals that spatially localized effects of short term BAPN cross-link inhibition can alter

  12. Role of collagen content and cross-linking in large pulmonary arterial stiffening after chronic hypoxia.

    PubMed

    Wang, Zhijie; Chesler, Naomi C

    2012-01-01

    Chronic hypoxic pulmonary hypertension (HPH) is associated with large pulmonary artery (PA) stiffening, which is correlated with collagen accumulation. However, the mechanisms by which collagen contributes to PA stiffening remain largely unexplored. Moreover, HPH may alter mechanical properties other than stiffness, such as pulse damping capacity, which also affects ventricular workload but is rarely quantified. We hypothesized that collagen content and cross-linking differentially regulate the stiffness and damping capacity of large PAs during HPH progression. The hypothesis was tested with transgenic mice that synthesize collagen type I resistant to collagenase degradation (Col1a1(R/R)). These mice and littermate controls (Col1a1(+/+)) were exposed to hypoxia for 10 days; some were treated with β-aminopropionitrile (BAPN), which prevents new cross-link formation. Isolated PA dynamic mechanical tests were performed, and collagen content and cross-linking were measured. In Col1a1(+/+) mice, HPH increased both collagen content and cross-linking, and BAPN treatment prevented these increases. Similar trends were observed in Col1a1(R/R) mice except that collagen content further increased with BAPN treatment. Mechanical tests showed that in Col1a1(+/+) mice, HPH increased PA stiffness and damping capacity, and these increases were impeded by BAPN treatment. In Col1a1(R/R) mice, HPH led to a smaller but significant increase in PA stiffness and a decrease in damping capacity. These mechanical changes were not affected by BAPN treatment. Vessel-specific correlations for each strain showed that the stiffness and damping capacity were correlated with the total content rather than cross-linking of collagen. Our results suggest that collagen total content is critical to extralobar PA stiffening during HPH. PMID:21538012

  13. Development and evaluation of cross-linked collagen-hydroxyapatite scaffolds for tissue engineering.

    PubMed

    Panda, Niladri Nath; Jonnalagadda, Sriramakamal; Pramanik, Krishna

    2013-01-01

    This study examines the tissue engineering potential of type I collagen cross-linked in the presence of hydroxyapatite (HAp). Scaffolds were prepared by controlled freezing followed by lyophilization of composite mixtures of collagen and HAp in acetic acid, followed by cross-linking with 0.3% glutaraldehyde. Scaffolds of three ratios were prepared, corresponding to collagen/HAp ratios of 1:2, 1:4, and 1:6. The scaffolds were evaluated for their microstructure, chemical and physical properties, swelling behavior, mechanical strength, biodegradability hemocompatability, cytocompatibility, and histopathology following subcutaneous implantation in Sprague Dawley rats. The collagen/HAp matrices showed a smaller pore size of 10-40 μm compared to 50-100 μm for pure collagen scaffolds. Pure collagen showed a mechanical strength of 0.25 MPa, and the value almost doubled for cross-linked composites with collagen/HAp ratio 1:6. The improvement in mechanical strength corresponded to a decrease in swelling and enzymatic degradation (measured by resistance to collagenases). FTIR spectra results in conjunction with scanning electron micrographs showed that cross-linking in the presence of HAp did not significantly alter the structure of collagen. MTT assay and calcein AM staining revealed prominent and healthy growth of mesenchymal stem cells in both the pure collagen as well as collagen:HAp composites of ratio 1:2. In vivo implantation in Sprague Dawley rats showed an initial acute inflammatory response during days 3 and 7, followed by a chronic, macrophage-mediated inflammatory response on days 14 and 28. Overall, a cross-linked collagen/HAp composite scaffold of ratio 1:2 was identified as having potential for further development in tissue engineering. PMID:23905722

  14. Developing functional musculoskeletal tissues through hypoxia and lysyl oxidase-induced collagen cross-linking

    PubMed Central

    Makris, Eleftherios A.; Responte, Donald J.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2014-01-01

    The inability to recapitulate native tissue biomechanics, especially tensile properties, hinders progress in regenerative medicine. To address this problem, strategies have focused on enhancing collagen production. However, manipulating collagen cross-links, ubiquitous throughout all tissues and conferring mechanical integrity, has been underinvestigated. A series of studies examined the effects of lysyl oxidase (LOX), the enzyme responsible for the formation of collagen cross-links. Hypoxia-induced endogenous LOX was applied in multiple musculoskeletal tissues (i.e., cartilage, meniscus, tendons, ligaments). Results of these studies showed that both native and engineered tissues are enhanced by invoking a mechanism of hypoxia-induced pyridinoline (PYR) cross-links via intermediaries like LOX. Hypoxia was shown to enhance PYR cross-linking 1.4- to 6.4-fold and, concomitantly, to increase the tensile properties of collagen-rich tissues 1.3- to 2.2-fold. Direct administration of exogenous LOX was applied in native cartilage and neocartilage generated using a scaffold-free, self-assembling process of primary chondrocytes. Exogenous LOX was found to enhance native tissue tensile properties 1.9-fold. LOX concentration- and time-dependent increases in PYR content (∼16-fold compared with controls) and tensile properties (approximately fivefold compared with controls) of neocartilage were also detected, resulting in properties on par with native tissue. Finally, in vivo subcutaneous implantation of LOX-treated neocartilage in nude mice promoted further maturation of the neotissue, enhancing tensile and PYR content approximately threefold and 14-fold, respectively, compared with in vitro controls. Collectively, these results provide the first report, to our knowledge, of endogenous (hypoxia-induced) and exogenous LOX applications for promoting collagen cross-linking and improving the tensile properties of a spectrum of native and engineered tissues both in vitro and in

  15. Glutaraldehyde-cross-linked meniscal allografts: clinical, gross, and histological results.

    PubMed

    Powers, D L; Davenport, M E; Wisnewski, P J

    1988-01-01

    Osteoarthritic changes in the knee are often a late result of total meniscectomy. In cases of total resection, availability of a prosthetic meniscus might limit development of these changes. The objective of this research was to evaluate a glutaraldehyde-cross-linked medial meniscus as a morphologically and biologically compatible prosthesis in a canine model. Medial and lateral menisci were harvested from donor dogs, frozen in saline, and cross-linked with glutaraldehyde. Five host animals were selected and matched with donors. Glutaraldehyde-cross-linked medial menisci were implanted bilaterally in the stifle joints and one glutaraldehyde cross-linked lateral meniscus was implanted subcutaneously. Clinical results showed asymptomatic limb and joint usage during the 12 postoperative weeks. Gross and histological evaluations indicated acceptable biocompatibility. The subcutaneous implants were encapsulated with a thin fibrous tissue capsule that was only mildly inflamed. Within the joints, the anterior attachment and periphery were maintained in position by their sutures; however, there was dehiscence of the posterior suture in all cases. The articulating surfaces of the implants were intact. There was an initial loss in the quantity of proteoglycans following glutaraldehyde treatment, with significant recovery after implantation into the joints. There were significant degenerative changes (loss of proteoglycans and fibrillation) in the articular cartilage on the femoral condyle and tibial plateau most likely a result of the posterior attachment failure. It was concluded that glutaraldehyde-cross-linked meniscal allografts showed an acceptable degree of histocompatibility. However, failure of the posterior attachment interfered with testing the efficacy of the prosthesis.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3155294

  16. Role of collagen content and cross-linking in large pulmonary arterial stiffening after chronic hypoxia

    PubMed Central

    Wang, Zhijie; Chesler, Naomi C.

    2011-01-01

    Chronic hypoxic pulmonary hypertension (HPH) is associated with large pulmonary artery (PA) stiffening, which is correlated with collagen accumulation. However, the mechanisms by which collagen contributes to PA stiffening remain largely unexplored. Moreover, HPH may alter mechanical properties other than stiffness, such as pulse damping capacity, which also affects ventricular workload but is rarely quantified. We hypothesized that collagen content and cross-linking differentially regulate the stiffness and damping capacity of large PAs during HPH progression. The hypothesis was tested with transgenic mice that synthesize collagen type I resistant to collagenase degradation (Col1a1R/R). These mice and littermate controls (Col1a1+/+) were exposed to hypoxia for 10 days; some were treated with β-animopropionitrile (BAPN), which prevents new cross-link formation. Isolated PA dynamic mechanical tests were performed and collagen content and cross-linking were measured. In Col1a1+/+ mice, HPH increased both collagen content and cross-linking and BAPN treatment prevented these increases. Similar trends were observed in Col1a1R/R mice except that collagen content further increased with BAPN treatment. Mechanical tests showed that in Col1a1+/+ mice, HPH increased PA stiffness and damping capacity and these increases were impeded by BAPN treatment. In Col1a1R/R mice, HPH led to a smaller but significant increase in PA stiffness and a decrease in damping capacity. These mechanical changes were not affected by BAPN treatment. Vessel-specific correlations for each strain showed that the stiffness and damping capacity were correlated with the total content rather than cross-linking of collagen. Our results suggest that collagen total content is critical to extralobar PA stiffening during HPH. PMID:21538012

  17. Protein Cross-Linking Capillary Electrophoresis for Protein-Protein Interaction Analysis.

    PubMed

    Ouimet, Claire M; Shao, Hao; Rauch, Jennifer N; Dawod, Mohamed; Nordhues, Bryce; Dickey, Chad A; Gestwicki, Jason E; Kennedy, Robert T

    2016-08-16

    Capillary electrophoresis (CE) has been identified as a useful platform for detecting, quantifying, and screening for modulators of protein-protein interactions (PPIs). In this method, one protein binding partner is labeled with a fluorophore, the protein binding partners are mixed, and then, the complex is separated from free protein to allow direct determination of bound to free ratios. Although it possesses many advantages for PPI studies, the method is limited by the need to have separation conditions that both prevent protein adsorption to capillary and maintain protein interactions during the separation. In this work, we use protein cross-linking capillary electrophoresis (PXCE) to overcome this limitation. In PXCE, the proteins are cross-linked under binding conditions and then separated. This approach eliminates the need to maintain noncovalent interactions during electrophoresis and facilitates method development. We report PXCE methods for an antibody-antigen interaction and heterodimer and homodimer heat shock protein complexes. Complexes are cross-linked by short treatments with formaldehyde after reaching binding equilibrium. Cross-linked complexes are separated by electrophoretic mobility using free solution CE or by size using sieving electrophoresis of SDS complexes. The method gives good quantitative results; e.g., a lysozyme-antibody interaction was found to have Kd = 24 ± 3 nM by PXCE and Kd = 17 ± 2 nM using isothermal calorimetry (ITC). Heat shock protein 70 (Hsp70) in complex with bcl2 associated athanogene 3 (Bag3) was found to have Kd = 25 ± 5 nM by PXCE which agrees with Kd values reported without cross-linking. Hsp70-Bag3 binding site mutants and small molecule inhibitors of Hsp70-Bag3 were characterized by PXCE with good agreement to inhibitory constants and IC50 values obtained by a bead-based flow cytometry protein interaction assay (FCPIA). PXCE allows rapid method development for quantitative analysis of PPIs. PMID:27434096

  18. Mitochondrial permeability transition as induced by cross-linking of the adenine nucleotide translocase.

    PubMed

    Zazueta, C; Reyes-Vivas, H; Zafra, G; Sánchez, C A; Vera, G; Chávez, E

    1998-04-01

    Mitochondrial permeability transition is caused by the opening of a transmembrane pore whose chemical nature has not been well established yet. The present work was aimed to further contribute to the knowledge of the membrane entity comprised in the formation of the non-specific channel. The increased permeability was established by analyzing the inability of rat kidney mitochondria to take up and accumulate Ca2+, as well as their failure to build up a transmembrane potential, after the cross-linking of membrane proteins by copper plus ortho-phenanthroline. To identify the cross-linked proteins, polyacrylamide gel electrophoresis was performed. The results are representative of at least three separate experiments. It is indicated that 30 microM Cu2+ induced the release of 4.3 nmol Ca2+ per mg protein. However, in the presence of 100 microM ortho-phenanthroline only 2 microM Cu2+ was required to attain the total release of the accumulated Ca2+; it should be noted that such a reaction is not inhibited by cyclosporin. The increased permeability corresponds to cross-linking of membrane proteins in which approximately 4 nmol thiol groups per mg protein appear to be involved. Such a linking process is inhibited by carboxyatractyloside. By using the fluorescent probe eosin-5-maleimide the label was found in a cross-linking 60 kDa dimer of two 30 kDa monomers. From the data presented it is concluded that copper-o-phenanthroline induces the intermolecular cross-linking of the adenine nucleotide translocase which in turn is converted to non-specific pore. PMID:9675885

  19. Amino Acid Proximities in Two Sup35 Prion Strains Revealed by Chemical Cross-linking.

    PubMed

    Wong, Shenq-Huey; King, Chih-Yen

    2015-10-01

    Strains of the yeast prion [PSI] are different folding patterns of the same Sup35 protein, which stacks up periodically to form a prion fiber. Chemical cross-linking is employed here to probe different fiber structures assembled with a mutant Sup35 fragment. The photo-reactive cross-linker, p-benzoyl-l-phenylalanine (pBpa), was biosynthetically incorporated into bacterially prepared recombinant Sup(1-61)-GFP, containing the first 61 residues of Sup35, followed by the green fluorescent protein. Four methionine substitutions and two alanine substitutions were introduced at fixed positions in Sup(1-61) to allow cyanogen bromide cleavage to facilitate subsequent mass spectrometry analysis. Amyloid fibers of pBpa and Met/Ala-substituted Sup(1-61)-GFP were nucleated from purified yeast prion particles of two different strains, namely VK and VL, and shown to faithfully transmit specific strain characteristics to yeast expressing the wild type Sup35 protein. Intra- and intermolecular cross-linking were distinguished by tandem mass spectrometry analysis on fibers seeded from solutions containing equal amounts of (14)N- and (15)N-labeled protein. Fibers propagating the VL strain type exhibited intra- and intermolecular cross-linking between amino acid residues 3 and 28, as well as intra- and intermolecular linking between 32 and 55. Inter- and intramolecular cross-linking between residues 32 and 55 were detected in fibers propagating the VK strain type. Adjacencies of amino acid residues in space revealed by cross-linking were used to constrain possible chain folds of different [PSI] strains. PMID:26265470

  20. Complementation analysis demonstrates that insulin cross-links both alpha subunits in a truncated insulin receptor dimer.

    PubMed

    Chan, Shu Jin; Nakagawa, Satoe; Steiner, Donald F

    2007-05-01

    The insulin receptor is a homodimer composed of two alphabeta half receptors. Scanning mutagenesis studies have identified key residues important for insulin binding in the L1 domain (amino acids 1-150) and C-terminal region (amino acids 704-719) of the alpha subunit. However, it has not been shown whether insulin interacts with these two sites within the same alpha chain or whether it cross-links a site from each alpha subunit in the dimer to achieve high affinity binding. Here we have tested the contralateral binding mechanism by analyzing truncated insulin receptor dimers (midi-hIRs) that contain complementary mutations in each alpha subunit. Midi-hIRs containing Ala(14), Ala(64), or Gly(714) mutations were fused with Myc or FLAG epitopes at the C terminus and were expressed separately by transient transfection. Immunoblots showed that R14A+FLAG, F64A+FLAG, and F714G+Myc mutant midi-hIRs were expressed in the medium but insulin binding activity was not detected. However, after co-transfection with R14A+FLAG/F714G+Myc or F64A+FLAG/F714G+Myc, hybrid dimers were obtained with a marked increase in insulin binding activity. Competitive displacement assays revealed that the hybrid mutant receptors bound insulin with the same affinity as wild type and also displayed curvilinear Scatchard plots. In addition, when hybrid mutant midi-hIR was covalently cross-linked with (125)I(A14)-insulin and reduced, radiolabeled monomer was immunoprecipitated only with anti-FLAG, demonstrating that insulin was bound asymmetrically. These results demonstrate that a single insulin molecule can contact both alpha subunits in the insulin receptor dimer during high affinity binding and this property may be an important feature for receptor signaling. PMID:17339314

  1. Filament assembly by Spire: key residues and concerted actin binding.

    PubMed

    Rasson, Amy S; Bois, Justin S; Pham, Duy Stephen L; Yoo, Haneul; Quinlan, Margot E

    2015-02-27

    The most recently identified class of actin nucleators, WASp homology domain 2 (WH2) nucleators, use tandem repeats of monomeric actin-binding WH2 domains to facilitate actin nucleation. WH2 domains are involved in a wide variety of actin regulatory activities. Structurally, they are expected to clash with interprotomer contacts within the actin filament. Thus, the discovery of their role in nucleation was surprising. Here we use Drosophila Spire (Spir) as a model system to investigate both how tandem WH2 domains can nucleate actin and what differentiates nucleating WH2-containing proteins from their non-nucleating counterparts. We found that the third WH2 domain in Spir (Spir-C or SC) plays a unique role. In the context of a short nucleation construct (containing only two WH2 domains), placement of SC in the N-terminal position was required for the most potent nucleation. We found that the native organization of the WH2 domains with respect to each other is necessary for binding to actin with positive cooperativity. We identified two residues within SC that are critical for its activity. Using this information, we were able to convert a weak synthetic nucleator into one with activity equal to a native Spir construct. Lastly, we found evidence that SC binds actin filaments, in addition to monomers. PMID:25234086

  2. Filament Assembly by Spire: Key Residues and Concerted Actin Binding

    PubMed Central

    Rasson, Amy S.; Bois, Justin S.; Pham, Duy Stephen L.; Yoo, Haneul; Quinlan, Margot E.

    2014-01-01

    The most recently identified class of actin nucleators, WASp Homology domain 2 (WH2) – nucleators, use tandem repeats of monomeric actin-binding WH2 domains to facilitate actin nucleation. WH2 domains are involved in a wide variety of actin regulatory activities. Structurally, they are expected to clash with interprotomer contacts within the actin filament. Thus, the discovery of their role in nucleation was surprising. Here we use Drosophila Spire (Spir) as a model system to investigate both how tandem WH2 domains can nucleate actin and what differentiates nucleating WH2-containing proteins from their non-nucleating counterparts. We found that the third WH2 domain in Spir (Spir-C or Sc), plays a unique role. In the context of a short nucleation construct (containing only two WH2 domains), placement of Sc in the N-terminal position was required for the most potent nucleation. We found that the native organization of the WH2 domains with respect to each other is necessary for binding to actin with positive cooperativity. We identified two residues within Sc that are critical for its activity. Using this information we were able to convert a weak synthetic nucleator into one with activity equal to a native Spir construct. Lastly, we found evidence that Sc binds actin filaments, in addition to monomers. PMID:25234086

  3. ProXL (Protein Cross-Linking Database): A Platform for Analysis, Visualization, and Sharing of Protein Cross-Linking Mass Spectrometry Data

    PubMed Central

    2016-01-01

    ProXL is a Web application and accompanying database designed for sharing, visualizing, and analyzing bottom-up protein cross-linking mass spectrometry data with an emphasis on structural analysis and quality control. ProXL is designed to be independent of any particular software pipeline. The import process is simplified by the use of the ProXL XML data format, which shields developers of data importers from the relative complexity of the relational database schema. The database and Web interfaces function equally well for any software pipeline and allow data from disparate pipelines to be merged and contrasted. ProXL includes robust public and private data sharing capabilities, including a project-based interface designed to ensure security and facilitate collaboration among multiple researchers. ProXL provides multiple interactive and highly dynamic data visualizations that facilitate structural-based analysis of the observed cross-links as well as quality control. ProXL is open-source, well-documented, and freely available at https://github.com/yeastrc/proxl-web-app. PMID:27302480

  4. ProXL (Protein Cross-Linking Database): A Platform for Analysis, Visualization, and Sharing of Protein Cross-Linking Mass Spectrometry Data.

    PubMed

    Riffle, Michael; Jaschob, Daniel; Zelter, Alex; Davis, Trisha N

    2016-08-01

    ProXL is a Web application and accompanying database designed for sharing, visualizing, and analyzing bottom-up protein cross-linking mass spectrometry data with an emphasis on structural analysis and quality control. ProXL is designed to be independent of any particular software pipeline. The import process is simplified by the use of the ProXL XML data format, which shields developers of data importers from the relative complexity of the relational database schema. The database and Web interfaces function equally well for any software pipeline and allow data from disparate pipelines to be merged and contrasted. ProXL includes robust public and private data sharing capabilities, including a project-based interface designed to ensure security and facilitate collaboration among multiple researchers. ProXL provides multiple interactive and highly dynamic data visualizations that facilitate structural-based analysis of the observed cross-links as well as quality control. ProXL is open-source, well-documented, and freely available at https://github.com/yeastrc/proxl-web-app . PMID:27302480

  5. Static and dynamic properties of model elastomer with various cross-linking densities: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Cao, Dapeng; Zhang, Liqun

    2009-07-01

    The effects of the cross-linking density on the static and dynamic properties of polymer networks are examined by using a molecular dynamics simulation based on a simple elastomer model. Simulation results indicate that the introduced cross-linking junctions show almost no effect on the static structure factor. The glass transition temperature Tg increases slightly with the cross-linking density. By analyzing the mean square displacement of the monomers, the chain diffusion, and the incoherent intermediate dynamic structure factor ϕqs(t) at the chain and segmental length scales, it is found that the mobilities of the monomers and chains are retarded and the relaxation behavior is hindered by the cross linking of polymers. Furthermore, the spatial localization of the monomers is also observed at a long time period for a highly cross-linked system. For the cross-linked system, the time-temperature superposition principle is valid at the segmental length scale but breaks down at the chain length scale. The effect of the cross-linking density on the terminal relaxation is investigated by the end-to-end vector correlation, which is well fitted to the Kohlrauch-William-Watts (KWW) or modified KWW functions. The characteristic relaxation time shows an approximately linear relationship with the cross-linking density. It is demonstrated that the relaxation behavior tends to broaden, attributed to the stronger intermolecular coupling or cooperativity induced by the cross linking, suggesting that the system with a higher cross-linking degree becomes more fragile. For the dynamic properties, the bond orientation and the end-to-end distance along the deformed direction, which is an indicator of the entropic change, and the nonbonded energy are examined during the deformation and relaxation processes, respectively. The results explore the molecular mechanism accounting for the residual stress in the stress relaxation of cross-linked elastomer networks.

  6. Static and dynamic properties of model elastomer with various cross-linking densities: a molecular dynamics study.

    PubMed

    Liu, Jun; Cao, Dapeng; Zhang, Liqun

    2009-07-21

    The effects of the cross-linking density on the static and dynamic properties of polymer networks are examined by using a molecular dynamics simulation based on a simple elastomer model. Simulation results indicate that the introduced cross-linking junctions show almost no effect on the static structure factor. The glass transition temperature T(g) increases slightly with the cross-linking density. By analyzing the mean square displacement of the monomers, the chain diffusion, and the incoherent intermediate dynamic structure factor phi(q)(s)(t) at the chain and segmental length scales, it is found that the mobilities of the monomers and chains are retarded and the relaxation behavior is hindered by the cross linking of polymers. Furthermore, the spatial localization of the monomers is also observed at a long time period for a highly cross-linked system. For the cross-linked system, the time-temperature superposition principle is valid at the segmental length scale but breaks down at the chain length scale. The effect of the cross-linking density on the terminal relaxation is investigated by the end-to-end vector correlation, which is well fitted to the Kohlrauch-William-Watts (KWW) or modified KWW functions. The characteristic relaxation time shows an approximately linear relationship with the cross-linking density. It is demonstrated that the relaxation behavior tends to broaden, attributed to the stronger intermolecular coupling or cooperativity induced by the cross linking, suggesting that the system with a higher cross-linking degree becomes more fragile. For the dynamic properties, the bond orientation and the end-to-end distance along the deformed direction, which is an indicator of the entropic change, and the nonbonded energy are examined during the deformation and relaxation processes, respectively. The results explore the molecular mechanism accounting for the residual stress in the stress relaxation of cross-linked elastomer networks. PMID:19624229

  7. Well-defined, Reversible Disulfide Cross-linked Micelles for On-demand Paclitaxel Delivery

    PubMed Central

    Li, Yuanpei; Xiao, Kai; Luo, Juntao; Xiao, Wenwu; Lee, Joyce S.; Gonik, Abby M.; Kato, Jason; Dong, Tiffany; Lam, Kit S.

    2011-01-01

    To minimize premature release of drugs from their carriers during circulation in the blood stream, we have recently developed reversible disulfide cross-linked micelles (DCMs) that can be triggered to release drug at the tumor site or in cancer cells. We designed and synthesized thiolated linear-dendritic polymers (telodendrimers) by introducing cysteines to the dendritic oligo-lysine backbone of our previously reported telodendrimers comprised of linear polyethylene glycol (PEG) and a dendritic cluster of cholic acids. Reversibly cross-linked micelles were then prepared by the oxidization of thiol groups to disulfide bond in the core of micelles after the self-assembly of thiolated telodendrimers. The DCMs were spherical with a uniform size of 28 nm, and were able to load paclitaxel (PTX) in the core with superior loading capacity up to 35.5% (w/w, drug/micelle). Cross-linking of the micelles within the core reduced their apparent critical micelle concentration and greatly enhanced their stability in non-reductive physiological conditions as well as severe micelle-disrupting conditions. The release of PTX from the DCMs was significantly slower than that from non-cross-linked micelles (NCMs), but can be gradually facilitated by increasing the concentration of reducing agent (glutathione) to an intracellular reductive level. The DCMs demonstrated a longer in vivo blood circulation time, less hemolytic activities, and superior toxicity profiles in nude mice, when compared to NCMs. DCMs were found to be able to preferentially accumulate at the tumor site in nude mice bearing SKOV-3 ovarian cancer xenograft. We also demonstrated that the disulfide cross-linked micellar formulation of PTX (PTX-DCMs) was more efficacious than both free drug and the non-cross-linked formulation of PTX at equivalent doses of PTX in the ovarian canc