Science.gov

Sample records for actin cross-linking factor

  1. Microtubule-Actin Cross-Linking Factor 1: Domains, Interaction Partners, and Tissue-Specific Functions.

    PubMed

    Goryunov, Dmitry; Liem, Ronald K H

    2016-01-01

    The cytoskeleton of most eukaryotic cells is composed of three principal filamentous components: actin filaments, microtubules (MTs), and intermediate filaments. It is a highly dynamic system that plays crucial roles in a wide range of cellular processes, including migration, adhesion, cytokinesis, morphogenesis, intracellular traffic and signaling, and structural flexibility. Among the large number of cytoskeleton-associated proteins characterized to date, microtubule-actin cross-linking factor 1 (MACF1) is arguably the most versatile integrator and modulator of cytoskeleton-related processes. MACF1 belongs to the plakin family of proteins, and within it, to the spectraplakin subfamily. These proteins are characterized by the ability to bridge MT and actin cytoskeletal networks in a dynamic fashion, which underlies their involvement in the regulation of cell migration, axonal extension, and vesicular traffic. Studying MACF1 functions has provided insights not only into the regulation of the cytoskeleton but also into molecular mechanisms of both normal cellular physiology and cellular pathology. Multiple MACF1 isoforms exist, composed of a large variety of alternatively spliced domains. Each of these domains mediates a specific set of interactions and functions. These functions are manifested in tissue and cell-specific phenotypes observed in conditional MACF1 knockout mice. The conditional models described to date reveal critical roles of MACF1 in mammalian skin, nervous system, heart muscle, and intestinal epithelia. Complete elimination of MACF1 is early embryonic lethal, indicating an essential role for MACF1 in early development. Further studies of MACF1 domains and their interactions will likely reveal multiple new roles of this protein in various tissues.

  2. Duplication in the microtubule-actin cross-linking factor 1 gene causes a novel neuromuscular condition.

    PubMed

    Jørgensen, Louise H; Mosbech, Mai-Britt; Færgeman, Nils J; Graakjaer, Jesper; Jacobsen, Søren V; Schrøder, Henrik D

    2014-06-05

    Spectrins and plakins are important communicators linking cytoskeletal components to each other and to cellular junctions. Microtubule-actin cross-linking factor 1 (MACF1) belongs to the spectraplakin family and is involved in control of microtubule dynamics. Complete knock out of MACF1 in mice is associated with developmental retardation and embryonic lethality. Here we present a family with a novel neuromuscular condition. Genetic analyses show a heterozygous duplication resulting in reduced MACF1 gene product. The functional consequence is affected motility observed as periodic hypotonia, lax muscles and diminished motor skills, with heterogeneous presentation among the affected family members. To corroborate these findings we used RNA interference to knock down the VAB-10 locus containing the MACF1 homologue in C. elegans, and we could show that this also causes movement disturbances. These findings suggest that changes in the MACF1 gene is implicated in this neuromuscular condition, which is an important observation since MACF1 has not previously been associated with any human disease and thus presents a key to understanding the essential nature of this gene.

  3. Human Muscle LIM Protein Dimerizes along the Actin Cytoskeleton and Cross-Links Actin Filaments

    PubMed Central

    Hoffmann, Céline; Moreau, Flora; Moes, Michèle; Luthold, Carole; Dieterle, Monika; Goretti, Emeline; Neumann, Katrin; Steinmetz, André

    2014-01-01

    The muscle LIM protein (MLP) is a nucleocytoplasmic shuttling protein playing important roles in the regulation of myocyte remodeling and adaptation to hypertrophic stimuli. Missense mutations in human MLP or its ablation in transgenic mice promotes cardiomyopathy and heart failure. The exact function(s) of MLP in the cytoplasmic compartment and the underlying molecular mechanisms remain largely unknown. Here, we provide evidence that MLP autonomously binds to, stabilizes, and bundles actin filaments (AFs) independently of calcium and pH. Using total internal reflection fluorescence microscopy, we have shown how MLP cross-links actin filaments into both unipolar and mixed-polarity bundles. Quantitative analysis of the actin cytoskeleton configuration confirmed that MLP substantially promotes actin bundling in live myoblasts. In addition, bimolecular fluorescence complementation (BiFC) assays revealed MLP self-association. Remarkably, BiFC complexes mostly localize along actin filament-rich structures, such as stress fibers and sarcomeres, supporting a functional link between MLP self-association and actin cross-linking. Finally, we have demonstrated that MLP self-associates through its N-terminal LIM domain, whereas it binds to AFs through its C-terminal LIM domain. Together our data support that MLP contributes to the maintenance of cardiomyocyte cytoarchitecture by a mechanism involving its self-association and actin filament cross-linking. PMID:24934443

  4. Characterization of the Enzymatic Activity of the Actin Cross-Linking Domain from the Vibrio cholerae MARTXVc Toxin

    PubMed Central

    Kudryashov, Dmitri S.; Cordero, Christina L.; Reisler, Emil; Fullner Satchell, Karla J.

    2008-01-01

    Vibrio cholerae is a Gram-negative bacterial pathogen that exports enterotoxins which alter host cells through a number of mechanisms resulting in diarrheal disease. Among the secreted toxins is the multifunctional, autoprocessing RTX toxin (MARTXVc), which disrupts actin cytoskeleton by covalently cross-linking actin monomers into oligomers. The region of the toxin responsible for cross-linking activity is the actin cross-linking domain (ACD). In this study, we demonstrate unambiguously that ACD utilizes G- and not F-actin as a substrate for the cross-linking reaction and hydrolyzes one molecule of ATP per cross-linking event. Furthermore, major actin binding proteins that regulate actin cytoskeleton in vivo do not block the cross-linking reaction in vitro. Cofilin inhibits the cross-linking of G- and F-actin at high mole ratio to actin, but accelerates F-actin cross-linking at low mole ratios. DNase I blocks completely the cross-linking of actin, likely due to steric hindrance with one of the cross-linking sites on actin. In the context of the holotoxin, the inhibition of Rho by the Rho-inactivating domain of MARTXVc (Sheahan, K.L., Satchell, K.J.F. 2007 Cellular Microbiology 9:1324-1335) would accelerate F-actin depolymerization and provide G-actin, alone or in complex with actin binding proteins, for cross-linking by ACD, ultimately leading to the observed rapid cell rounding. PMID:17951576

  5. F actin bundles in Drosophila bristles. I. Two filament cross-links are involved in bundling

    PubMed Central

    1995-01-01

    Transverse sections though Drosophila bristles reveal 7-11 nearly round, plasma membrane-associated bundles of actin filaments. These filaments are hexagonally packed and in a longitudinal section they show a 12-nm periodicity in both the 1.1 and 1.0 views. From earlier studies this periodicity is attributable to cross-links and indicates that the filaments are maximally cross-linked, singed mutants also have 7-11 bundles, but the bundles are smaller, flattened, and the filaments within the bundles are randomly packed (not hexagonal); no periodicity can be detected in longitudinal sections. Another mutant, forked (f36a), also has 7-11 bundles but even though the bundles are very small, the filaments within them are hexagonally packed and display a 12-nm periodicity in longitudinal section. The singed-forked double mutant lacks filament bundles. Thus there are at least two species of cross-links between adjacent actin filaments. Hints of why two species of cross-links are necessary can be gleaned by studying bristle formation. Bristles sprout with only microtubules within them. A little later in development actin filaments appear. At early stages the filaments in the bundles are randomly packed. Later the filaments in the bundles become hexagonally packed and maximally cross-linked. We consider that the forked proteins may be necessary early in development to tie the filaments together in a bundle so that they can be subsequently zippered together by fascin (the singed gene product). PMID:7622563

  6. A Combination of Actin Treadmilling and Cross-Linking Drives Contraction of Random Actomyosin Arrays.

    PubMed

    Oelz, Dietmar B; Rubinstein, Boris Y; Mogilner, Alex

    2015-11-01

    We investigate computationally the self-organization and contraction of an initially random actomyosin ring. In the framework of a detailed physical model for a ring of cross-linked actin filaments and myosin-II clusters, we derive the force balance equations and solve them numerically. We find that to contract, actin filaments have to treadmill and to be sufficiently cross linked, and myosin has to be processive. The simulations reveal how contraction scales with mechanochemical parameters. For example, they show that the ring made of longer filaments generates greater force but contracts slower. The model predicts that the ring contracts with a constant rate proportional to the initial ring radius if either myosin is released from the ring during contraction and actin filaments shorten, or if myosin is retained in the ring, while the actin filament number decreases. We demonstrate that a balance of actin nucleation and compression-dependent disassembly can also sustain contraction. Finally, the model demonstrates that with time pattern formation takes place in the ring, worsening the contractile process. The more random the actin dynamics are, the higher the contractility will be. PMID:26536259

  7. Molecular origin of strain softening in cross-linked F-actin networks

    NASA Astrophysics Data System (ADS)

    Lee, Hyungsuk; Ferrer, Jorge M.; Lang, Matthew J.; Kamm, Roger D.

    2010-07-01

    Two types of measurement are presented that relate molecular events to macroscopic behavior of F-actin networks. First, shear modulus is measured by oscillating an embedded microbead. Second, a microbead is translated at constant rate and transitions in the resisting force are observed. The loading rate dependence of the force at the transitions is similar to that of the molecular unbinding force, suggesting that they share a common origin. Reversibility tests of shear modulus provide further evidence that strain softening of F-actin networks is caused by force-induced rupture of cross-links.

  8. Intrastrand cross-linked actin between Gln-41 and Cys-374. I. Mapping of sites cross-linked in F-actin by N-(4-azido-2-nitrophenyl) putrescine.

    PubMed

    Hegyi, G; Mák, M; Kim, E; Elzinga, M; Muhlrad, A; Reisler, E

    1998-12-22

    A new heterobifunctional photo-cross-linking reagent, N-(4-azido-2-nitrophenyl)-putrescine (ANP), was synthesized and covalently bound to Gln-41 of rabbit skeletal muscle actin by a bacterial transglutaminase-mediated reaction. Up to 1.0 mol of the reagent was incorporated per mole of G-actin; at least 90% of it was bound to Gln-41 while a minor fraction (about 8%) was attached to Gln-59. The labeled G-actin was polymerized, and the resulting F-actin was intermolecularly cross-linked by irradiation with UV light. The labeled and cross-linked peptides were isolated from either a complete or limited tryptic digest of cross-linked actin. In the limited digest the tryptic cleavage was restricted to arginine by succinylation of the lysyl residues. N-terminal sequencing and mass spectrometry indicated that the cross-linked peptides contained residues 40-50 (or 40-62 in the arginine limited digest) and residues 373-375, and that the actual cross-linking took place between Gln-41 and Cys-374. This latter finding was also supported by the inhibition of Cys-374 labeling with a fluorescent probe in the cross-linked actin. The dynamic length of ANP, between 11.1 and 12.5 A, constrains to that range the distance between the gamma-carboxyl group of Gln-41 in one monomer and the sulfur atom of Cys-374 in an adjacent monomer. This is consistent with the distances between these two residues on adjacent monomers of the same strand in the long-pitch helix in the structural models of F-actin [Holmes, K. C., Popp, D., Gebhard, W., and Kabsch, W. (1990) Nature 347, 44-49 and Lorenz, M., Popp, D., and Holmes, K. C. (1993) J. Mol. Biol. 234, 826-836]. The effect of cross-linking on the function of actin is described in the companion papers. PMID:9922144

  9. Myosin III-mediated cross-linking and stimulation of actin bundling activity of Espin

    PubMed Central

    Liu, Haiyang; Li, Jianchao; Raval, Manmeet H; Yao, Ningning; Deng, Xiaoying; Lu, Qing; Nie, Si; Feng, Wei; Wan, Jun; Yengo, Christopher M; Liu, Wei; Zhang, Mingjie

    2016-01-01

    Class III myosins (Myo3) and actin-bundling protein Espin play critical roles in regulating the development and maintenance of stereocilia in vertebrate hair cells, and their defects cause hereditary hearing impairments. Myo3 interacts with Espin1 through its tail homology I motif (THDI), however it is not clear how Myo3 specifically acts through Espin1 to regulate the actin bundle assembly and stabilization. Here we discover that Myo3 THDI contains a pair of repeat sequences capable of independently and strongly binding to the ankyrin repeats of Espin1, revealing an unexpected Myo3-mediated cross-linking mechanism of Espin1. The structures of Myo3 in complex with Espin1 not only elucidate the mechanism of the binding, but also reveal a Myo3-induced release of Espin1 auto-inhibition mechanism. We also provide evidence that Myo3-mediated cross-linking can further promote actin fiber bundling activity of Espin1. DOI: http://dx.doi.org/10.7554/eLife.12856.001 PMID:26785147

  10. Polymorphism of highly cross-linked F-actin networks: Probing multiple length scales

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam T.; Hirst, Linda S.

    2011-03-01

    The assembly properties of F-actin filaments in the presence of different biological cross-linker concentrations and types have been investigated using a combined approach of fluorescence confocal microscopy and coarse-grained molecular dynamics simulation. In particular for highly cross-linked regimes, new network morphologies are observed. Complex network formation and the details of the resulting structure are strongly dependent on the ratio of cross-linkers to actin monomers and cross-linker shape but only weakly dependent on overall actin concentration and filament length. The work presented here may help to provide some fundamental understanding of how excessive cross-linkers interact with the actin filament solution, creating different structures in the cell under high cross-linker concentrations. F-actin is not only of biological importance but also, as an example of a semiflexible polymer, has attracted significant interest in its physical behavior. In combination with different cross-linkers semiflexible filaments may provide new routes to bio-materials development and act as the inspiration for new hierarchical network-based materials.

  11. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells

    NASA Astrophysics Data System (ADS)

    Gardel, M. L.; Nakamura, F.; Hartwig, J. H.; Crocker, J. C.; Stossel, T. P.; Weitz, D. A.

    2006-02-01

    We show that actin filaments, shortened to physiological lengths by gelsolin and cross-linked with recombinant human filamins (FLNs), exhibit dynamic elastic properties similar to those reported for live cells. To achieve elasticity values of comparable magnitude to those of cells, the in vitro network must be subjected to external prestress, which directly controls network elasticity. A molecular requirement for the strain-related behavior at physiological conditionsis a flexible hinge found in FLNa and some FLNb molecules. Basic physical properties of the in vitro filamin-F-actin network replicate the essential mechanical properties of living cells. This physical behavior could accommodate passive deformation and internal organelle trafficking at low strains yet resist externally or internally generated high shear forces. cytoskeleton | cell mechanics | nonlinear rheology

  12. Cytokines and growth factors cross-link heparan sulfate

    PubMed Central

    Migliorini, Elisa; Thakar, Dhruv; Kühnle, Jens; Sadir, Rabia; Dyer, Douglas P.; Li, Yong; Sun, Changye; Volkman, Brian F.; Handel, Tracy M.; Coche-Guerente, Liliane; Fernig, David G.; Lortat-Jacob, Hugues; Richter, Ralf P.

    2015-01-01

    The glycosaminoglycan heparan sulfate (HS), present at the surface of most cells and ubiquitous in extracellular matrix, binds many soluble extracellular signalling molecules such as chemokines and growth factors, and regulates their transport and effector functions. It is, however, unknown whether upon binding HS these proteins can affect the long-range structure of HS. To test this idea, we interrogated a supramolecular model system, in which HS chains grafted to streptavidin-functionalized oligoethylene glycol monolayers or supported lipid bilayers mimic the HS-rich pericellular or extracellular matrix, with the biophysical techniques quartz crystal microbalance (QCM-D) and fluorescence recovery after photobleaching (FRAP). We were able to control and characterize the supramolecular presentation of HS chains—their local density, orientation, conformation and lateral mobility—and their interaction with proteins. The chemokine CXCL12α (or SDF-1α) rigidified the HS film, and this effect was due to protein-mediated cross-linking of HS chains. Complementary measurements with CXCL12α mutants and the CXCL12γ isoform provided insight into the molecular mechanism underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has three HS binding sites, was also found to cross-link HS, but FGF-9, which has just one binding site, did not. Based on these data, we propose that the ability to cross-link HS is a generic feature of many cytokines and growth factors, which depends on the architecture of their HS binding sites. The ability to change matrix organization and physico-chemical properties (e.g. permeability and rigidification) implies that the functions of cytokines and growth factors may not simply be confined to the activation of cognate cellular receptors. PMID:26269427

  13. Stress Enhanced Gelation in α-Actinin-4 Cross-linked Actin Networks

    NASA Astrophysics Data System (ADS)

    Yao, Norman; Broedersz, Chase; Depken, Martin; Becker, Daniel; Pollak, Martin; Mackintosh, Frederick; Weitz, David

    2012-02-01

    A hallmark of biopolymer networks is their exquisite sensitivity to stress, demonstrated for example, by pronounced nonlinear elastic stiffening. Typically, they also yield under increased static load, providing a mechanism to achieve fluid-like behavior. In this talk, I will demonstrate an unexpected dynamical behavior in biopolymer networks consisting of F-actin cross-linked by a physiological actin binding protein, α-Actinin-4. Applied stress actually enhances gelation of these networks by delaying the onset of structural relaxation and network flow, thereby extending the regime of solid-like behavior to much lower frequencies. By using human kidney disease-associated mutant cross-linkers with varying binding affinities, we propose a molecular origin for this stress-enhanced gelation: It arises from the increased binding affinity of the cross-linker under load, characteristic of catch-bond-like behavior. This property may have important biological implications for intracellular mechanics, representing as it does a qualitatively new class of material behavior.

  14. Cross-linking of fibrinogen and fibrin by fibrin-stablizing factor (factor XIIIa).

    PubMed

    Kanaide, H; Shainoff, J R

    1975-04-01

    Factor XIIIa catalyzed intermolecular cross-linking of fibrinogen at initial rates that varied in direct (first order) proportion to the fibrinogen concentration, which differed from the well known zero order relationship in fibrin cross-linking. Preferential cross-linking of gamma-chains occurred with both substrates. The differences in rates and order of reaction were attributed mainly to effect of self-alignment of the gamma-chains in fibrin which enabled the cross-linking enzyme to interact with paired chains as a single rather than two independent entities. Studies on mixtures of fibrinogen and fibrin indicated factor XIIIa had near equal affinities for the two substrates. At low concentrations with which cross-linking of fibrinogen proceeded sluggishly compared to fibrin, fibrinogen inhibited stabilization of fibrin clots by competitively partitioning factor XIIIa away from the fribin. Additional inhibition arose from cross-linking of fibrin in soluble combination with fibrinogen in mixtures containing fibrinogen in large excess over fibrin. The observations demonstrate ways in which fibrinogen normally helps to suppress both polymerization and cross-linking of small amounts of fibrin produced within the circulation. At very high concentrations above 30 mg. per milliliter, fibrinogen underwent cross-linking at faster initial rates than the cross-linking of fibrin. Rapid cross-linking of concentrated fibrogen raises the possibility that filtration enrichment may be a factor contributing to abnormal formation of the highly insoluble fibrinogen deposits occurring in atheromatous tissue.

  15. An affine continuum mechanical model for cross-linked F-actin networks with compliant linker proteins.

    PubMed

    Holzapfel, Gerhard A; Unterberger, Michael J; Ogden, Ray W

    2014-10-01

    Cross-linked actin networks are important building blocks of the cytoskeleton. In order to gain deeper insight into the interpretation of experimental data on actin networks, adequate models are required. In this paper we introduce an affine constitutive network model for cross-linked F-actin networks based on nonlinear continuum mechanics, and specialize it in order to reproduce the experimental behavior of in vitro reconstituted model networks. The model is based on the elastic properties of single filaments embedded in an isotropic matrix such that the overall properties of the composite are described by a free-energy function. In particular, we are able to obtain the experimentally determined shear and normal stress responses of cross-linked actin networks typically observed in rheometer tests. In the present study an extensive analysis is performed by applying the proposed model network to a simple shear deformation. The single filament model is then extended by incorporating the compliance of cross-linker proteins and further extended by including viscoelasticity. All that is needed for the finite element implementation is the constitutive model for the filaments, the linkers and the matrix, and the associated elasticity tensor in either the Lagrangian or Eulerian formulation. The model facilitates parameter studies of experimental setups such as micropipette aspiration experiments and we present such studies to illustrate the efficacy of this modeling approach. PMID:25043658

  16. The actin-microtubule cross-linking activity of Drosophila Short stop is regulated by intramolecular inhibition.

    PubMed

    Applewhite, Derek A; Grode, Kyle D; Duncan, Mara C; Rogers, Stephen L

    2013-09-01

    Actin and microtubule dynamics must be precisely coordinated during cell migration, mitosis, and morphogenesis--much of this coordination is mediated by proteins that physically bridge the two cytoskeletal networks. We have investigated the regulation of the Drosophila actin-microtubule cross-linker Short stop (Shot), a member of the spectraplakin family. Our data suggest that Shot's cytoskeletal cross-linking activity is regulated by an intramolecular inhibitory mechanism. In its inactive conformation, Shot adopts a "closed" conformation through interactions between its NH(2)-terminal actin-binding domain and COOH-terminal EF-hand-GAS2 domain. This inactive conformation is targeted to the growing microtubule plus end by EB1. On activation, Shot binds along the microtubule through its COOH-terminal GAS2 domain and binds to actin with its NH(2)-terminal tandem CH domains. We propose that this mechanism allows Shot to rapidly cross-link dynamic microtubules in response to localized activating signals at the cell cortex.

  17. Passive and active microrheology for cross-linked F-actin networks in vitro.

    PubMed

    Lee, Hyungsuk; Ferrer, Jorge M; Nakamura, Fumihiko; Lang, Matthew J; Kamm, Roger D

    2010-04-01

    Actin filament (F-actin) is one of the dominant structural constituents in the cytoskeleton. Orchestrated by various actin-binding proteins (ABPs), F-actin is assembled into higher-order structures such as bundles and networks that provide mechanical support for the cell and play important roles in numerous cellular processes. Although mechanical properties of F-actin networks have been extensively studied, the underlying mechanisms for network elasticity are not fully understood, in part because different measurements probe different length and force scales. Here, we developed both passive and active microrheology techniques using optical tweezers to estimate the mechanical properties of F-actin networks at a length scale comparable to cells. For the passive approach we tracked the motion of a thermally fluctuating colloidal sphere to estimate the frequency-dependent complex shear modulus of the network. In the active approach, we used an optical trap to oscillate an embedded microsphere and monitored the response in order to obtain network viscoelasticity over a physiologically relevant force range. While both active and passive measurements exhibit similar results at low strain, the F-actin network subject to high strain exhibits non-linear behavior which is analogous to the strain-hardening observed in macroscale measurements. Using confocal and total internal reflection fluorescent microscopy, we also characterize the microstructure of reconstituted F-actin networks in terms of filament length, mesh size and degree of bundling. Finally, we propose a model of network connectivity by investigating the effect of filament length on the mechanical properties and structure. PMID:19883801

  18. A chemo-mechanical constitutive model for transiently cross-linked actin networks and a theoretical assessment of their viscoelastic behaviour.

    PubMed

    Fallqvist, B; Kroon, M

    2013-04-01

    Biological materials can undergo large deformations and also show viscoelastic behaviour. One such material is the network of actin filaments found in biological cells, giving the cell much of its mechanical stiffness. A theory for predicting the relaxation behaviour of actin networks cross-linked with the cross-linker α-actinin is proposed. The constitutive model is based on a continuum approach involving a neo-Hookean material model, modified in terms of concentration of chemically activated cross-links. The chemical model builds on work done by Spiros (Doctoral thesis, University of British Columbia, Vancouver, Canada, 1998) and has been modified to respond to mechanical stress experienced by the network. The deformation is split into a viscous and elastic part, and a thermodynamically motivated rate equation is assigned for the evolution of viscous deformation. The model predictions were evaluated for stress relaxation tests at different levels of strain and found to be in good agreement with experimental results for actin networks cross-linked with α-actinin. PMID:22623110

  19. Growth Factors Cross-Linked to Collagen Microcarriers Promote Expansion and Chondrogenic Differentiation of Human Mesenchymal Stem Cells.

    PubMed

    Bertolo, Alessandro; Arcolino, Fanny; Capossela, Simona; Taddei, Anna Rita; Baur, Martin; Pötzel, Tobias; Stoyanov, Jivko

    2015-10-01

    Tissue engineering is a field in progressive expansion and requires constant updates in methods and devices. One of the central fields is the development of biocompatible, biodegradable, and injectable scaffolds, such as collagen microcarriers. To enhance cell attachment and produce a cost-effective cell culture solution with local stimulation of cells, basic fibroblast growth factor (bFGF) or transforming growth factor-β1 (TGF-β1) was covalently immobilized on microcarriers either by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) or riboflavin/UV (RB/UV) light-mediated cross-linking. Collagen microcarriers cross-linked with bFGF or TGF-β1 were used for expansion and chondrogenic differentiation of human mesenchymal stem cells (MSCs). Evaluation methods included cell viability test, chondrogenic marker expression (aggrecan and collagen type I and type II), histological detection of proteoglycans, and immunohistochemical analysis. Cross-linking strengthened the collagen structure of the microcarriers and reduced collagenase-mediated degradation. MSCs effectively proliferated on microcarriers cross-linked with bFGF, especially by EDC/NHS cross-linking. Chondrogenic differentiation of MSCs was induced by TGF-β1 cross-linked on microcarriers, promoting gene expression and protein accumulation of aggrecan and collagen type I and type II, as well as proteoglycans. Cross-linking by RB/UV enhanced chondrogenesis more than any other group. In addition, cross-linking reduced scaffold shrinkage exerted by MSCs during chondrogenesis, a desirable feature for microcarriers if used as tissue defect filler. In conclusion, cross-linking of bFGF or TGF-β1 to collagen microcarriers supported in vitro proliferation and chondrogenesis, respectively. If translated in vivo and in clinical practice, such approach might lead a step closer to development of a cost-effective and locally acting device for cell-based therapy. PMID:26222829

  20. β1 and β3 Integrins Cooperate to Induce Syndecan-4-Containing Cross-linked Actin Networks in Human Trabecular Meshwork Cells

    PubMed Central

    Filla, Mark S.; Woods, Anne; Kaufman, Paul L.; Peters, Donna M.

    2006-01-01

    Purpose To characterize the molecular composition of cross-linked actin networks (CLANs) and the regulation of their formation by integrins in normal human trabecular meshwork (TM) cells. CLANs have been observed in steroid-treated and glaucomatous TM cells and have been suggested to contribute to decreased outflow facility by altering the contractility of the TM. Methods Immunofluorescence microscopy was used to identify molecular components of CLANs and quantitate CLAN formation in HTM cells plated on coverslips coated with various extracellular matrix (ECM) proteins (fibronectin, types I and IV collagen, and vitronectin), vascular cell adhesion molecule (VCAM)-1, or activating antibodies against β1, β3, or α2β1 integrins. These integrin antibodies were also used as soluble ligands. Results CLAN vertices contained the actin-binding proteins α-actinin and filamin and the signaling molecules syndecan-4 and PIP2. CLANs lacked Arp3 and cortactin. CLAN formation was dependent on the ECM substrate and was significantly higher on fibronectin and VCAM-1 compared with vitronectin, types I or IV collagen. Adsorbed β1 integrin antibodies also induced CLANs, whereas adsorbed β3 or α2β1 integrin antibodies did not. Soluble β3 integrin antibodies, however, induced CLANs and actually enhanced CLAN formation in cells spread on fibronectin, VCAM-1, type I or type IV collagen, or β1 integrin antibodies. Conclusions CLANs are unique actin-branched networks whose formation can be regulated by β1 and β3 integrin signaling pathways. Thus, integrin-mediated signaling events can modulate the organization of the actin cytoskeleton in TM cells and hence could participate in regulating cytoskeletal events previously demonstrated to be involved in controlling outflow facility. PMID:16639003

  1. A Mechanism for Actin Filament Severing by Malaria Parasite Actin Depolymerizing Factor 1 via a Low Affinity Binding Interface*

    PubMed Central

    Wong, Wilson; Webb, Andrew I.; Olshina, Maya A.; Infusini, Giuseppe; Tan, Yan Hong; Hanssen, Eric; Catimel, Bruno; Suarez, Cristian; Condron, Melanie; Angrisano, Fiona; NebI, Thomas; Kovar, David R.; Baum, Jake

    2014-01-01

    Actin depolymerizing factor (ADF)/cofilins are essential regulators of actin turnover in eukaryotic cells. These multifunctional proteins facilitate both stabilization and severing of filamentous (F)-actin in a concentration-dependent manner. At high concentrations ADF/cofilins bind stably to F-actin longitudinally between two adjacent actin protomers forming what is called a decorative interaction. Low densities of ADF/cofilins, in contrast, result in the optimal severing of the filament. To date, how these two contrasting modalities are achieved by the same protein remains uncertain. Here, we define the proximate amino acids between the actin filament and the malaria parasite ADF/cofilin, PfADF1 from Plasmodium falciparum. PfADF1 is unique among ADF/cofilins in being able to sever F-actin but do so without stable filament binding. Using chemical cross-linking and mass spectrometry (XL-MS) combined with structure reconstruction we describe a previously overlooked binding interface on the actin filament targeted by PfADF1. This site is distinct from the known binding site that defines decoration. Furthermore, total internal reflection fluorescence (TIRF) microscopy imaging of single actin filaments confirms that this novel low affinity site is required for F-actin severing. Exploring beyond malaria parasites, selective blocking of the decoration site with human cofilin (HsCOF1) using cytochalasin D increases its severing rate. HsCOF1 may therefore also use a decoration-independent site for filament severing. Thus our data suggest that a second, low affinity actin-binding site may be universally used by ADF/cofilins for actin filament severing. PMID:24371134

  2. Cytoskeletal social networking in the growth cone: How +TIPs mediate microtubule-actin cross-linking to drive axon outgrowth and guidance.

    PubMed

    Cammarata, Garrett M; Bearce, Elizabeth A; Lowery, Laura Anne

    2016-09-01

    The growth cone is a unique structure capable of guiding axons to their proper destinations. Within the growth cone, extracellular guidance cues are interpreted and then transduced into physical changes in the actin filament (F-actin) and microtubule cytoskeletons, providing direction and movement. While both cytoskeletal networks individually possess important growth cone-specific functions, recent data over the past several years point towards a more cooperative role between the two systems. Facilitating this interaction between F-actin and microtubules, microtubule plus-end tracking proteins (+TIPs) have been shown to link the two cytoskeletons together. Evidence suggests that many +TIPs can couple microtubules to F-actin dynamics, supporting both microtubule advance and retraction in the growth cone periphery. In addition, growing in vitro and in vivo data support a secondary role for +TIPs in which they may participate as F-actin nucleators, thus directly influencing F-actin dynamics and organization. This review focuses on how +TIPs may link F-actin and microtubules together in the growth cone, and how these interactions may influence axon guidance. © 2016 Wiley Periodicals, Inc.

  3. A syndecan-4 binding peptide derived from laminin 5 uses a novel PKCε pathway to induce cross-linked actin network (CLAN) formation in human trabecular meshwork (HTM) cells.

    PubMed

    Filla, Mark S; Clark, Ross; Peters, Donna M

    2014-10-01

    In this study, we examined the role(s) of syndecan-4 in regulating the formation of an actin geodesic dome structure called a cross-linked actin network (CLAN) in which syndecan-4 has previously been localized. CLANs have been described in several different cell types, but they have been most widely studied in human trabecular meshwork (HTM) cells where they may play a key role in controlling intraocular pressure by regulating aqueous humor outflow from the eye. In this study we show that a loss of cell surface synedcan-4 significantly reduces CLAN formation in HTM cells. Analysis of HTM cultures treated with or without dexamethasone shows that laminin 5 deposition within the extracellular matrix is increased by glucocorticoid treatment and that a laminin 5-derived, syndecan-4-binding peptide (PEP75), induces CLAN formation in TM cells. This PEP75-induced CLAN formation was inhibited by heparin and the broad spectrum PKC inhibitor Ro-31-7549. In contrast, the more specific PKCα inhibitor Gö 6976 had no effect, thus excluding PKCα as a downstream effector of syndecan-4 signaling. Analysis of PKC isozyme expression showed that HTM cells also expressed both PKCγ and PKCε. Cells treated with a PKCε agonist formed CLANs while a PKCα/γ agonist had no effect. These data suggest that syndecan-4 is essential for CLAN formation in HTM cells and that a novel PKCε-mediated signaling pathway can regulate formation of this unique actin structure. PMID:25128150

  4. A syndecan-4 binding peptide derived from laminin 5 uses a novel PKCε pathway to induce cross-linked actin network (CLAN) formation in human trabecular meshwork (HTM) cells

    PubMed Central

    Filla, Mark S.; Clark, Ross; Peters, Donna M.

    2014-01-01

    In this study, we examined the role(s) of syndecan-4 in regulating the formation of an actin geodesic dome structure called a cross-linked actin network (CLAN) in which syndecan-4 has previously been localized. CLANs have been described in several different cell types, but they have been most widely studied in human trabecular meshwork (HTM) cells where they may play a key role in controlling intraocular pressure by regulating aqueous humor outflow from the eye. In this study we show that a loss of cell surface synedcan-4 significantly reduces CLAN formation in HTM cells. Analysis of HTM cultures treated with or without dexamethasone shows that laminin 5 deposition within the extracellular matrix is increased by glucocorticoid treatment and that a laminin 5-derived, syndecan-4-binding peptide (PEP75), induces CLAN formation in TM cells. This PEP75-induced CLAN formation was inhibited by heparin and the broad spectrum PKC inhibitor Ro-31-7549. In contrast, the more specific PKCα inhibitor Go 6976 had no effect, thus excluding PKCα as a downstream effector of syndecan-4 signaling. Analysis of PKC isozyme expression showed that HTM cells also expressed both PKCγ and PKCε. Cells treated with a PKCε agonist formed CLANs while a PKCα/γ agonist had no effect. These data suggest that syndecan-4 is essential for CLAN formation in HTM cells and that a novel PKCε-mediated signaling pathway can regulate formation of this unique actin structure. PMID:25128150

  5. Factors essential for L,D-transpeptidase-mediated peptidoglycan cross-linking and β-lactam resistance in Escherichia coli

    PubMed Central

    Hugonnet, Jean-Emmanuel; Mengin-Lecreulx, Dominique; Monton, Alejandro; den Blaauwen, Tanneke; Carbonnelle, Etienne; Veckerlé, Carole; Brun, Yves, V.; van Nieuwenhze, Michael; Bouchier, Christiane; Tu, Kuyek; Rice, Louis B; Arthur, Michel

    2016-01-01

    The target of β-lactam antibiotics is the D,D-transpeptidase activity of penicillin-binding proteins (PBPs) for synthesis of 4→3 cross-links in the peptidoglycan of bacterial cell walls. Unusual 3→3 cross-links formed by L,D-transpeptidases were first detected in Escherichia coli more than four decades ago, however no phenotype has previously been associated with their synthesis. Here we show that production of the L,D-transpeptidase YcbB in combination with elevated synthesis of the (p)ppGpp alarmone by RelA lead to full bypass of the D,D-transpeptidase activity of PBPs and to broad-spectrum β-lactam resistance. Production of YcbB was therefore sufficient to switch the role of (p)ppGpp from antibiotic tolerance to high-level β-lactam resistance. This observation identifies a new mode of peptidoglycan polymerization in E. coli that relies on an unexpectedly small number of enzyme activities comprising the glycosyltransferase activity of class A PBP1b and the D,D-carboxypeptidase activity of DacA in addition to the L,D-transpeptidase activity of YcbB. DOI: http://dx.doi.org/10.7554/eLife.19469.001 PMID:27767957

  6. Actin nucleation and elongation factors: mechanisms and interplay.

    PubMed

    Chesarone, Melissa A; Goode, Bruce L

    2009-02-01

    Cells require actin nucleators to catalyze the de novo assembly of filaments and actin elongation factors to control the rate and extent of polymerization. Nucleation and elongation factors identified to date include Arp2/3 complex, formins, Ena/VASP, and newcomers Spire, Cobl, and Lmod. Here, we discuss recent advances in understanding their activities and mechanisms and new evidence for their cooperation and interaction in vivo. Earlier models had suggested that different nucleators function independently to assemble distinct actin arrays. However, more recent observations indicate that the construction of most cellular actin networks depends on the activities of multiple actin assembly-promoting factors working in concert.

  7. Actin depolymerizing factor controls actin turnover and gliding motility in Toxoplasma gondii

    PubMed Central

    Mehta, Simren; Sibley, L. David

    2011-01-01

    Apicomplexan parasites rely on actin-based gliding motility to move across the substratum, cross biological barriers, and invade their host cells. Gliding motility depends on polymerization of parasite actin filaments, yet ∼98% of actin is nonfilamentous in resting parasites. Previous studies suggest that the lack of actin filaments in the parasite is due to inherent instability, leaving uncertain the role of actin-binding proteins in controlling dynamics. We have previously shown that the single allele of Toxoplasma gondii actin depolymerizing factor (TgADF) has strong actin monomer–sequestering and weak filament-severing activities in vitro. Here we used a conditional knockout strategy to investigate the role of TgADF in vivo. Suppression of TgADF led to accumulation of actin-rich filaments that were detected by immunofluorescence and electron microscopy. Parasites deficient in TgADF showed reduced speed of motility, increased aberrant patterns of motion, and inhibition of sustained helical gliding. Lack of TgADF also led to severe defects in entry and egress from host cells, thus blocking infection in vitro. These studies establish that the absence of stable actin structures in the parasite are not simply the result of intrinsic instability, but that TgADF is required for the rapid turnover of parasite actin filaments, gliding motility, and cell invasion. PMID:21346192

  8. Alteration of mineral crystallinity and collagen cross-linking of bones in osteopetrotic toothless (tl/tl) rats and their improvement after treatment with colony stimulating factor-1

    NASA Technical Reports Server (NTRS)

    Wojtowicz, A.; Dziedzic-Goclawska, A.; Kaminski, A.; Stachowicz, W.; Wojtowicz, K.; Marks, S. C. Jr; Yamauchi, M.

    1997-01-01

    A common feature of various types of mammalian osteopetroses is a marked increase in bone mass accompanied by spontaneous bone fractures. The toothless (tl/tl) rat osteopetrotic mutation is characterized by drastically reduced bone resorption due to a profound deficiency of osteoclasts and their precursors. An altered bone morphology has also been observed. The mutants cannot be cured by bone marrow transplantation, but skeletal defects are greatly reduced after treatment with colony stimulating factor 1 (CSF-1). The objectives of this study were to characterize mineral and collagen matrices in cancellous and compact bone isolated from long bones of 6-week-old normal littermates, tl/tl osteopetrotic mutants and mutants (tl/tl) treated with CSF-1. There were no differences in bone mineral content, but a significant decrease in the crystallinity of mineral evaluated by the method based on electron paramagnetic resonance spectrometry was observed in all bones of tl/tl mutants as compared to that of controls. Within the collagen matrix, slight decreases in the labile cross-links, but significant increases in the content of the stable cross-links, pyridinoline, and deoxypyridinoline, were observed in both cancellous and compact bone of osteopetrotic mutants. In tl/tl mutants treated with human recombinant CSF-1, the normalization of the crystallinity of bone mineral as well as collagen cross-links was found. Our results indicate that remodeling of bone matrix in tl/tl mutants is highly suppressed, but that after treatment with CSF-1, this activity recovers significantly. Taken together, these data provide further support for the hypothesis that CSF-1 is an essential factor for normal osteoclast differentiation and bone remodelling.

  9. Cross-linking of epidermal growth factor receptors in intact cells: detection of initial stages of receptor clustering and determination of molecular weight of high-affinity receptors

    SciTech Connect

    Fanger, B.O.; Austin, K.S.; Earp, H.S.; Cidlowski, J.A.

    1986-10-21

    A method was developed to label epidermal growth factor (EGF) receptors with /sup 125/I-EGF in whole cells using chemical cross-linking reagents. Polyacrylamide gel electrophoresis resolved an M/sub r/ approx. 180,000 EGF-receptor complex and larger M/sub r/ greater than or equal to 360,000 aggregates. The formation of the larger complexes was timed and temperature dependent and appeared to represent the initial events of EGF receptor clustering. Alteration of the ratio of /sup 125/I-EGF-labeled high- and low- affinity complexes by competition with unlabeled EGF or by induction of additional high-affinity sites with dexamethasone suggested that both sites were represented by the M/sub r/ approx. 180,000 /sup 125/I-EGF-receptor complexes. Digestion of cells before cross-linking detected a small population of trypsin-resistant M/sub r/ approx. 180,000 receptors, which could represent previously described cryptic and/or high-affinity receptors. Few of the M/sub r/ approx. 360,000 receptors were trypsin resistant. Glucocorticoid induction of high-affinity EGF receptors failed to induce detectable changes in the microclustering of EGF receptors but did result in a 50% increase in EGF-induced receptor phosphorylation in HeLa S/sub 3/ cell membranes at 4/sup 0/C. Thus, glucocorticoids increase high-affinity EGF binding sites, EGF-induced receptor phosphorylation, and cell growth.

  10. Cofilin-mediated actin dynamics promotes actin bundle formation during Drosophila bristle development

    PubMed Central

    Wu, Jing; Wang, Heng; Guo, Xuan; Chen, Jiong

    2016-01-01

    The actin bundle is an array of linear actin filaments cross-linked by actin-bundling proteins, but its assembly and dynamics are not as well understood as those of the branched actin network. Here we used the Drosophila bristle as a model system to study actin bundle formation. We found that cofilin, a major actin disassembly factor of the branched actin network, promotes the formation and positioning of actin bundles in the developing bristles. Loss of function of cofilin or AIP1, a cofactor of cofilin, each resulted in increased F-actin levels and severe defects in actin bundle organization, with the defects from cofilin deficiency being more severe. Further analyses revealed that cofilin likely regulates actin bundle formation and positioning by the following means. First, cofilin promotes a large G-actin pool both locally and globally, likely ensuring rapid actin polymerization for bundle initiation and growth. Second, cofilin limits the size of a nonbundled actin-myosin network to regulate the positioning of actin bundles. Third, cofilin prevents incorrect assembly of branched and myosin-associated actin filament into bundles. Together these results demonstrate that the interaction between the dynamic dendritic actin network and the assembling actin bundles is critical for actin bundle formation and needs to be closely regulated. PMID:27385345

  11. Cofilin-mediated actin dynamics promotes actin bundle formation during Drosophila bristle development.

    PubMed

    Wu, Jing; Wang, Heng; Guo, Xuan; Chen, Jiong

    2016-08-15

    The actin bundle is an array of linear actin filaments cross-linked by actin-bundling proteins, but its assembly and dynamics are not as well understood as those of the branched actin network. Here we used the Drosophila bristle as a model system to study actin bundle formation. We found that cofilin, a major actin disassembly factor of the branched actin network, promotes the formation and positioning of actin bundles in the developing bristles. Loss of function of cofilin or AIP1, a cofactor of cofilin, each resulted in increased F-actin levels and severe defects in actin bundle organization, with the defects from cofilin deficiency being more severe. Further analyses revealed that cofilin likely regulates actin bundle formation and positioning by the following means. First, cofilin promotes a large G-actin pool both locally and globally, likely ensuring rapid actin polymerization for bundle initiation and growth. Second, cofilin limits the size of a nonbundled actin-myosin network to regulate the positioning of actin bundles. Third, cofilin prevents incorrect assembly of branched and myosin-associated actin filament into bundles. Together these results demonstrate that the interaction between the dynamic dendritic actin network and the assembling actin bundles is critical for actin bundle formation and needs to be closely regulated.

  12. Actin filament nucleation and elongation factors--structure-function relationships.

    PubMed

    Dominguez, Roberto

    2009-01-01

    The spontaneous and unregulated polymerization of actin filaments is inhibited in cells by actin monomer-binding proteins such as profilin and Tbeta4. Eukaryotic cells and certain pathogens use filament nucleators to stabilize actin polymerization nuclei, whose formation is rate-limiting. Known filament nucleators include the Arp2/3 complex and its large family of nucleation promoting factors (NPFs), formins, Spire, Cobl, VopL/VopF, TARP and Lmod. These molecules control the time and location for polymerization, and additionally influence the structures of the actin networks that they generate. Filament nucleators are generally unrelated, but with the exception of formins they all use the WASP-Homology 2 domain (WH2 or W), a small and versatile actin-binding motif, for interaction with actin. A common architecture, found in Spire, Cobl and VopL/VopF, consists of tandem W domains that bind three to four actin subunits to form a nucleus. Structural considerations suggest that NPFs-Arp2/3 complex can also be viewed as a specialized form of tandem W-based nucleator. Formins are unique in that they use the formin-homology 2 (FH2) domain for interaction with actin and promote not only nucleation, but also processive barbed end elongation. In contrast, the elongation function among W-based nucleators has been "outsourced" to a dedicated family of proteins, Eva/VASP, which are related to WASP-family NPFs.

  13. Arabidopsis ACTIN-DEPOLYMERIZING FACTOR7 Severs Actin Filaments and Regulates Actin Cable Turnover to Promote Normal Pollen Tube Growth[W

    PubMed Central

    Zheng, Yiyan; Xie, Yurong; Jiang, Yuxiang; Qu, Xiaolu; Huang, Shanjin

    2013-01-01

    Actin filaments are often arranged into higher-order structures, such as the longitudinal actin cables that generate the reverse fountain cytoplasmic streaming pattern present in pollen tubes. While several actin binding proteins have been implicated in the generation of these cables, the mechanisms that regulate their dynamic turnover remain largely unknown. Here, we show that Arabidopsis thaliana ACTIN-DEPOLYMERIZING FACTOR7 (ADF7) is required for turnover of longitudinal actin cables. In vitro biochemical analyses revealed that ADF7 is a typical ADF that prefers ADP-G-actin over ATP-G-actin. ADF7 inhibits nucleotide exchange on actin and severs filaments, but its filament severing and depolymerizing activities are less potent than those of the vegetative ADF1. ADF7 primarily decorates longitudinal actin cables in the shanks of pollen tubes. Consistent with this localization pattern, the severing frequency and depolymerization rate of filaments significantly decreased, while their maximum lifetime significantly increased, in adf7 pollen tube shanks. Furthermore, an ADF7–enhanced green fluorescent protein fusion with defective severing activity but normal G-actin binding activity could not complement adf7, providing compelling evidence that the severing activity of ADF7 is vital for its in vivo functions. These observations suggest that ADF7 evolved to promote turnover of longitudinal actin cables by severing actin filaments in pollen tubes. PMID:24058157

  14. A membrane cytoskeleton from Dictyostelium discoideum. I. Identification and partial characterization of an actin-binding activity

    PubMed Central

    1981-01-01

    Dictyostelium discoideum plasma membranes isolated by each of three procedures bind F-actin. The interactions between these membranes and actin are examined by a novel application of falling ball viscometry. Treating the membranes as multivalent actin-binding particles analogous to divalent actin-gelation factors, we observe large increases in viscosity (actin cross-linking) when membranes of depleted actin and myosin are incubated with rabbit skeletal muscle F-actin. Pre- extraction of peripheral membrane proteins with chaotropes or the inclusion of Triton X-100 during the assay does not appreciably diminish this actin cross-linking activity. Lipid vesicles, heat- denatured membranes, proteolyzed membranes, or membranes containing endogenous actin show minimal actin cross-linking activity. Heat- denatured, but not proteolyzed, membranes regain activity when assayed in the presence of Triton X-100. Thus, integral membrane proteins appear to be responsible for some or all of the actin cross-linking activity of D. discoideum membranes. In the absence of MgATP, Triton X- 100 extraction of isolated D. discoideum membranes results in a Triton- insoluble residue composed of actin, myosin, and associated membrane proteins. The inclusion of MgATP before and during Triton extraction greatly diminishes the amount of protein in the Triton-insoluble residue without appreciably altering its composition. Our results suggest the existence of a protein complex stabilized by actin and/or myosin (membrane cytoskeleton) associated with the D. discoideum plasma membrane. PMID:6894148

  15. Single-Molecule Studies of Actin Assembly and Disassembly Factors

    PubMed Central

    Smith, Benjamin A.; Gelles, Jeff; Goode, Bruce L.

    2014-01-01

    The actin cytoskeleton is very dynamic and highly regulated by multiple associated proteins in vivo. Understanding how this system of proteins functions in the processes of actin network assembly and disassembly requires methods to dissect the mechanisms of activity of individual factors and of multiple factors acting in concert. The advent of single-filament and single-molecule fluorescence imaging methods has provided a powerful new approach to discovering actin-regulatory activities and obtaining direct, quantitative insights into the pathways of molecular interactions that regulate actin network architecture and dynamics. Here we describe techniques for acquisition and analysis of single-molecule data, applied to the novel challenges of studying the filament assembly and disassembly activities of actin-associated proteins in vitro. We discuss the advantages of single-molecule analysis in directly visualizing the order of molecular events, measuring the kinetic rates of filament binding and dissociation, and studying the coordination among multiple factors. The methods described here complement traditional biochemical approaches in elucidating actin-regulatory mechanisms in reconstituted filamentous networks. PMID:24630103

  16. Interfacial Bioorthogonal Cross-Linking

    PubMed Central

    2015-01-01

    Described herein is interfacial bioorthogonal cross-linking, the use of bioorthogonal chemistry to create and pattern biomaterials through diffusion-controlled gelation at the liquid-gel interface. The basis is a rapid (k2 284000 M–1 s–1) reaction between strained trans-cyclooctene (TCO) and tetrazine (Tz) derivatives. Syringe delivery of Tz-functionalized hyaluronic acid (HA-Tz) to a bath of bis-TCO cross-linker instantly creates microspheres with a cross-linked shell through which bis-TCO diffuses freely to introduce further cross-linking at the interface. Tags can be introduced with 3D resolution without external triggers or templates. Water-filled hydrogel channels were prepared by simply reversing the order of addition. Prostate cancer cells encapsulated in the microspheres have 99% viability, proliferate readily, and form aggregated clusters. This process is projected to be useful in the fabrication of cell-instructive matrices for in vitro tissue models. PMID:25177528

  17. Computational Study of the Binding Mechanism of Actin-Depolymerizing Factor 1 with Actin in Arabidopsis thaliana

    PubMed Central

    Wang, Xue; Dong, Chun-Hai; Yang, Jian Ming; Yao, Xiao Jun

    2016-01-01

    Actin is a highly conserved protein. It plays important roles in cellular function and exists either in the monomeric (G-actin) or polymeric form (F-actin). Members of the actin-depolymerizing factor (ADF)/cofilin protein family bind to both G-actin and F-actin and play vital roles in actin dynamics by manipulating the rates of filament polymerization and depolymerization. It has been reported that the S6D and R98A/K100A mutants of actin-depolymerizing factor 1 (ADF1) in Arabidopsis thaliana decreased the binding affinity of ADF for the actin monomer. To investigate the binding mechanism and dynamic behavior of the ADF1–actin complex, we constructed a homology model of the AtADF1–actin complex based on the crystal structure of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with a mouse actin monomer. The model was then refined for subsequent molecular dynamics simulations. Increased binding energy of the mutated system was observed using the Molecular Mechanics Generalized Born Surface Area and Poisson–Boltzmann Surface Area (MM-GB/PBSA) methods. To determine the residues that make decisive contributions to the ADF1 actin-binding affinity, per-residue decomposition and computational alanine scanning analyses were performed, which provided more detailed information on the binding mechanism. Root-mean-square fluctuation and principal component analyses confirmed that the S6D and R98A/K100A mutants induced an increased conformational flexibility. The comprehensive molecular insight gained from this study is of great importance for understanding the binding mechanism of ADF1 and G-actin. PMID:27414648

  18. Computational Study of the Binding Mechanism of Actin-Depolymerizing Factor 1 with Actin in Arabidopsis thaliana.

    PubMed

    Du, Juan; Wang, Xue; Dong, Chun-Hai; Yang, Jian Ming; Yao, Xiao Jun

    2016-01-01

    Actin is a highly conserved protein. It plays important roles in cellular function and exists either in the monomeric (G-actin) or polymeric form (F-actin). Members of the actin-depolymerizing factor (ADF)/cofilin protein family bind to both G-actin and F-actin and play vital roles in actin dynamics by manipulating the rates of filament polymerization and depolymerization. It has been reported that the S6D and R98A/K100A mutants of actin-depolymerizing factor 1 (ADF1) in Arabidopsis thaliana decreased the binding affinity of ADF for the actin monomer. To investigate the binding mechanism and dynamic behavior of the ADF1-actin complex, we constructed a homology model of the AtADF1-actin complex based on the crystal structure of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with a mouse actin monomer. The model was then refined for subsequent molecular dynamics simulations. Increased binding energy of the mutated system was observed using the Molecular Mechanics Generalized Born Surface Area and Poisson-Boltzmann Surface Area (MM-GB/PBSA) methods. To determine the residues that make decisive contributions to the ADF1 actin-binding affinity, per-residue decomposition and computational alanine scanning analyses were performed, which provided more detailed information on the binding mechanism. Root-mean-square fluctuation and principal component analyses confirmed that the S6D and R98A/K100A mutants induced an increased conformational flexibility. The comprehensive molecular insight gained from this study is of great importance for understanding the binding mechanism of ADF1 and G-actin. PMID:27414648

  19. CASEIN KINASE1-LIKE PROTEIN2 Regulates Actin Filament Stability and Stomatal Closure via Phosphorylation of Actin Depolymerizing Factor.

    PubMed

    Zhao, Shuangshuang; Jiang, Yuxiang; Zhao, Yang; Huang, Shanjin; Yuan, Ming; Zhao, Yanxiu; Guo, Yan

    2016-06-01

    The opening and closing of stomata are crucial for plant photosynthesis and transpiration. Actin filaments undergo dynamic reorganization during stomatal closure, but the underlying mechanism for this cytoskeletal reorganization remains largely unclear. In this study, we identified and characterized Arabidopsis thaliana casein kinase 1-like protein 2 (CKL2), which responds to abscisic acid (ABA) treatment and participates in ABA- and drought-induced stomatal closure. Although CKL2 does not bind to actin filaments directly and has no effect on actin assembly in vitro, it colocalizes with and stabilizes actin filaments in guard cells. Further investigation revealed that CKL2 physically interacts with and phosphorylates actin depolymerizing factor 4 (ADF4) and inhibits its activity in actin filament disassembly. During ABA-induced stomatal closure, deletion of CKL2 in Arabidopsis alters actin reorganization in stomata and renders stomatal closure less sensitive to ABA, whereas deletion of ADF4 impairs the disassembly of actin filaments and causes stomatal closure to be more sensitive to ABA Deletion of ADF4 in the ckl2 mutant partially recues its ABA-insensitive stomatal closure phenotype. Moreover, Arabidopsis ADFs from subclass I are targets of CKL2 in vitro. Thus, our results suggest that CKL2 regulates actin filament reorganization and stomatal closure mainly through phosphorylation of ADF. PMID:27268429

  20. Viral Replication Protein Inhibits Cellular Cofilin Actin Depolymerization Factor to Regulate the Actin Network and Promote Viral Replicase Assembly

    PubMed Central

    Kovalev, Nikolay; de Castro Martín, Isabel Fernández; Barajas, Daniel; Risco, Cristina; Nagy, Peter D.

    2016-01-01

    RNA viruses exploit host cells by co-opting host factors and lipids and escaping host antiviral responses. Previous genome-wide screens with Tomato bushy stunt virus (TBSV) in the model host yeast have identified 18 cellular genes that are part of the actin network. In this paper, we show that the p33 viral replication factor interacts with the cellular cofilin (Cof1p), which is an actin depolymerization factor. Using temperature-sensitive (ts) Cof1p or actin (Act1p) mutants at a semi-permissive temperature, we find an increased level of TBSV RNA accumulation in yeast cells and elevated in vitro activity of the tombusvirus replicase. We show that the large p33 containing replication organelle-like structures are located in the close vicinity of actin patches in yeast cells or around actin cable hubs in infected plant cells. Therefore, the actin filaments could be involved in VRC assembly and the formation of large viral replication compartments containing many individual VRCs. Moreover, we show that the actin network affects the recruitment of viral and cellular components, including oxysterol binding proteins and VAP proteins to form membrane contact sites for efficient transfer of sterols to the sites of replication. Altogether, the emerging picture is that TBSV, via direct interaction between the p33 replication protein and Cof1p, controls cofilin activities to obstruct the dynamic actin network that leads to efficient subversion of cellular factors for pro-viral functions. In summary, the discovery that TBSV interacts with cellular cofilin and blocks the severing of existing filaments and the formation of new actin filaments in infected cells opens a new window to unravel the way by which viruses could subvert/co-opt cellular proteins and lipids. By regulating the functions of cofilin and the actin network, which are central nodes in cellular pathways, viruses could gain supremacy in subversion of cellular factors for pro-viral functions. PMID:26863541

  1. Elasticity of cross-linked semiflexible biopolymers under tension.

    PubMed

    von der Heydt, Alice; Wilkin, Daniel; Benetatos, Panayotis; Zippelius, Annette

    2013-09-01

    Aiming at the mechanical properties of cross-linked biopolymers, we set up and analyze a model of two weakly bending wormlike chains subjected to a tensile force, with regularly spaced inter-chain bonds (cross-links) represented by harmonic springs. Within this model, we compute the force-extension curve and the differential stiffness exactly and discuss several limiting cases. Cross-links effectively stiffen the chain pair by reducing thermal fluctuations transverse to the force and alignment direction. The extra alignment due to cross-links increases both with growing number and with growing strength of the cross-links, and is most prominent for small force f. For large f, the additional, cross-link-induced extension is subdominant except for the case of linking the chains rigidly and continuously along their contour. In this combined limit, we recover asymptotically the elasticity of a weakly bending wormlike chain without constraints, stiffened by a factor of 4. The increase in differential stiffness can be as large as 100% for small f or large numbers of cross-links.

  2. Electrospinning formaldehyde cross-linked zein solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to develop zein fibers with improved physical properties and solvent resistance, formaldehyde was used as the cross-linking reagent before spinning. The cross-linking reaction was carried out in either acetic acid or ethanolic-HCl where the amount of cross-linking reagent was between 1 and...

  3. Bundling of actin filaments by elongation factor 1 alpha inhibits polymerization at filament ends

    PubMed Central

    1996-01-01

    Elongation factor 1 alpha (EF1 alpha) is an abundant protein that binds aminoacyl-tRNA and ribosomes in a GTP-dependent manner. EF1 alpha also interacts with the cytoskeleton by binding and bundling actin filaments and microtubules. In this report, the effect of purified EF1 alpha on actin polymerization and depolymerization is examined. At molar ratios present in the cytosol, EF1 alpha significantly blocks both polymerization and depolymerization of actin filaments and increases the final extent of actin polymer, while at high molar ratios to actin, EF1 alpha nucleates actin polymerization. Although EF1 alpha binds actin monomer, this monomer-binding activity does not explain the effects of EF1 alpha on actin polymerization at physiological molar ratios. The mechanism for the inhibition of polymerization is related to the actin-bundling activity of EF1 alpha. Both ends of the actin filament are inhibited for polymerization and both bundling and the inhibition of actin polymerization are affected by pH within the same physiological range; at high pH both bundling and the inhibition of actin polymerization are reduced. Additionally, it is seen that the binding of aminoacyl-tRNA to EF1 alpha releases EF1 alpha's inhibiting effect on actin polymerization. These data demonstrate that EF1 alpha can alter the assembly of F-actin, a filamentous scaffold on which non- membrane-associated protein translation may be occurring in vivo. PMID:8947553

  4. Cross-linking of IgGs bound on circulating neutrophils leads to an activation of endothelial cells: possible role of rheumatoid factors in rheumatoid arthritis-associated vascular dysfunction

    PubMed Central

    2013-01-01

    Background Rheumatoid arthritis is characterized by the presence of circulating auto-antibodies, including rheumatoid factors, which recognize the Fc portion of IgGs. The neutrophil is the most abundant circulating leukocyte and it expresses high levels of FcγRs on its surface. The aim of the present study was to examine the capacity of circulating human neutrophils to be activated by rheumatoid factors and the consequences of these events on endothelium. Methods Neutrophil-bound IgGs were cross-linked with anti-human IgGs to mimick the presence of circulating rheumatoid factors and FcγRs-dependent signalling events and functions were examined. The IgG and IgM composition of rheumatoid factors isolated from the serum of RA patients was characterized. Adhesion of neutrophils to endothelial cells was quantified in response to the addition of rheumatoid factors. Results Cross-linking of IgGs bound on neutrophils leads to FcγRs-dependent tyrosine phosphorylation, mobilisation of intracellular calcium and the extracellular release of superoxide anions and lysozyme. Incubation of endothelial cells with the supernatant of activated neutrophils increases ICAM-1 expression and IL-8 production by endothelial cells. Finally, rheumatoid factors enhance neutrophil adhesion to endothelial cells. Conclusions Our results show that activation of neutrophils’ FcγRs by rheumatoid factors could participate in rheumatoid arthritis-associated vascular damage. PMID:23902799

  5. Corneal Collagen Cross-Linking

    PubMed Central

    Jankov II, Mirko R.; Jovanovic, Vesna; Nikolic, Ljubisa; Lake, Jonathan C.; Kymionis, Georgos; Coskunseven, Efekan

    2010-01-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet-A (UVA) is a new technique of corneal tissue strengthening by using riboflavin as a photosensitizer and UVA to increase the formation of intra and interfibrillar covalent bonds by photosensitized oxidation. Keratocyte apoptosis in the anterior segment of the corneal stroma all the way down to a depth of about 300 microns has been described and a demarcation line between the treated and untreated cornea has been clearly shown. It is important to ensure that the cytotoxic threshold for the endothelium has not been exceeded by strictly respecting the minimal corneal thickness. Confocal microscopy studies show that repopulation of keratocytes is already visible 1 month after the treatment, reaching its pre-operative quantity and quality in terms of functional morphology within 6 months after the treatment. The major indication for the use of CXL is to inhibit the progression of corneal ectasias, such as keratoconus and pellucid marginal degeneration. CXL may also be effective in the treatment and prophylaxis of iatrogenic keratectasia, resulting from excessively aggressive photoablation. This treatment has also been used to treat infectious corneal ulcers with apparent favorable results. Combination with other treatments, such as intracorneal ring segment implantation, limited topography-guided photoablation and conductive keratoplasty have been used with different levels of success. PMID:20543933

  6. Is actin a transcription initiation factor for RNA polymerase B?

    PubMed Central

    Egly, J M; Miyamoto, N G; Moncollin, V; Chambon, P

    1984-01-01

    We have previously reported that two fractions derived from HeLa cell S100 extracts, the heparin flow-through and the heparin 0.6 M KCl eluate are required in vitro for efficient and accurate transcription by RNA polymerase class B (II). We have further purified a factor present in the heparin flow-through fraction, which markedly stimulates specific transcription catalyzed by the heparin 0.6 M KCl eluate. We report here that some of the properties of the stimulatory factor present in our most purified fractions are strikingly similar to those of actin. We demonstrate also that this factor acts at the pre-initiation level of the transcription reaction. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 7. Fig. 8. Fig. 9. Fig. 10. Fig. 11. Fig. 12. Fig. 13. PMID:6499833

  7. Thermo-cross-linked elastomeric opal films.

    PubMed

    Schäfer, Christian G; Viel, Benjamin; Hellmann, Goetz P; Rehahn, Matthias; Gallei, Markus

    2013-11-13

    An efficient and convenient thermal cross-linking protocol in elastomeric opal films leading to fully reversible and stretch-tunable optical materials is reported. In this study, functional monodisperse core-shell particles were arranged in a face-centered cubic (fcc) lattice structure by a melt flow process. A problem up to now was that un-cross-linked films could not be drawn fully reversibly and hence lost their optical and mechanical performance. After thermal cross-linking reaction, the obtained films can be drawn like rubbers and the color of their Bragg reflection changes because of controlled lattice deformation, which makes the cross-linked films mechanochromic sensors. Different techniques were developed for the cross-linking of the films a posteriori, after their preparation in the melt flow process. A photo-cross-linking approach was reported earlier. This study now deals with a very efficient thermo-cross-linking approach based on the chemistry of hydroxyl- and isocyanate-functionalities that form urethane bridges. The focus of the present work is the mechanism and efficiency of this cross-linking process for elastomeric opal films with excellent mechanical and optical properties. PMID:24134322

  8. Nicotiana tabacum actin-depolymerizing factor 2 is involved in actin-driven, auxin-dependent patterning.

    PubMed

    Durst, Steffen; Nick, Peter; Maisch, Jan

    2013-08-15

    Polar transport of auxin has been identified as a central element of pattern formation. To address the underlying cellular mechanisms, we use the tobacco cell line (Nicotiana tabacum L. cv. Bright Yellow 2; BY-2) as model. We showed previously that cell divisions within a cell file are synchronized by polar auxin flow, linked to the organization of actin filaments (AF) which, in turn, is modified via actin-binding proteins (ABPs). From a preparatory study for disturbed division synchrony in cell lines overexpressing different ABPs, we identified the actin depolymerizing factor 2 (ADF2). A cell line overexpressing GFP-NtADF2 was specifically affected in division synchrony. The cell division pattern could be rescued by addition of Phosphatidylinositol 4,5-bisphosphate (PIP2) or by phalloidin. These observations allow to draw first conclusions on the pathway linking auxin signalling via actin reorganization to synchronized cell division placing the regulation of cortical actin turnover by ADF2 into the focus. PMID:23545293

  9. Porous Cross-Linked Polyimide Networks

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Guo, Haiquan (Inventor)

    2015-01-01

    Porous cross-linked polyimide networks are provided. The networks comprise an anhydride end-capped polyamic acid oligomer. The oligomer (i) comprises a repeating unit of a dianhydride and a diamine and terminal anhydride groups, (ii) has an average degree of polymerization of 10 to 50, (iii) has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups, and (iv) has been chemically imidized to yield the porous cross-linked polyimide network. Also provided are porous cross-linked polyimide aerogels comprising a cross-linked and imidized anhydride end-capped polyamic acid oligomer, wherein the oligomer comprises a repeating unit of a dianhydride and a diamine, and the aerogel has a density of 0.10 to 0.333 g/cm.sup.3 and a Young's modulus of 1.7 to 102 MPa. Also provided are thin films comprising aerogels, and methods of making porous cross-linked polyimide networks.

  10. The effect of cross-link distributions in axially-ordered, cross-linked networks

    PubMed Central

    Bennett, C. Brad; Kruczek, James; Rabson, D. A.; Matthews, W. Garrett; Pandit, Sagar A.

    2013-01-01

    Cross-linking between the constituent chains of biopolymers has a marked effect on their materials properties. In certain of these materials, such as fibrillar collagen, increases in cross-linking lead to an increase in the melting temperature. Fibrillar collagen is an axially-ordered network of cross-linked polymer chains exhibiting a broadened denaturation transition, which has been explained in terms of the successive denaturation with temperature of multiple species. We model axially-ordered cross-linked materials as stiff chains with distinct arrangements of cross-link-forming sites. Simulations suggest that systems composed of chains with identical arrangements of cross-link-forming sites exhibit critical behavior. In contrast, systems composed of non-identical chains undergo a crossover. This model suggests that the arrangement of cross-link-forming sites may contribute to the broadening of the denaturation transition in fibrillar collagen. PMID:23751928

  11. Pollen specific expression of maize genes encoding actin depolymerizing factor-like proteins.

    PubMed Central

    Lopez, I; Anthony, R G; Maciver, S K; Jiang, C J; Khan, S; Weeds, A G; Hussey, P J

    1996-01-01

    In pollen development, a dramatic reorganization of the actin cytoskeleton takes place during the passage of the pollen grain into dormancy and on activation of pollen tube growth. A role for actin-binding proteins is implicated and we report here the identification of a small gene family in maize that encodes actin depolymerizing factor (ADF)-like proteins. The ADF group of proteins are believed to control actin polymerization and depolymerization in response to both intracellular and extracellular signals. Two of the maize genes ZmABP1 and ZmABP2 are expressed specifically in pollen and germinating pollen suggesting that the protein products may be involved in pollen actin reorganization. A third gene, ZmABP3, encodes a protein only 56% and 58% identical to ZmABP1 and ZmABP2, respectively, and its expression is suppressed in pollen and germinated pollen. The fundamental biochemical characteristics of the ZmABP proteins has been elucidated using bacterially expressed ZmABP3 protein. This has the ability to bind monomeric actin (G-actin) and filamentous actin (F-actin). Moreover, it decreases the viscosity of polymerized actin solutions consistent with an ability to depolymerize filaments. These biochemical characteristics, taken together with the sequence comparisons, support the inclusion of the ZmABP proteins in the ADF group. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8693008

  12. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1997-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  13. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1998-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  14. Cross-linked biopolymer bundles: Cross-link reversibility leads to cooperative binding/unbinding phenomena

    NASA Astrophysics Data System (ADS)

    Vink, Richard L. C.; Heussinger, Claus

    2012-01-01

    We consider a biopolymer bundle consisting of filaments that are cross-linked together. The cross-links are reversible: they can dynamically bind and unbind adjacent filament pairs as controlled by a binding enthalpy. The bundle is subjected to a bending deformation and the corresponding distribution of cross-links is measured. For a bundle consisting of two filaments, upon increasing the bending amplitude, a first-order transition is observed. The transition is from a state where the filaments are tightly coupled by many bound cross-links, to a state of nearly independent filaments with only a few bound cross-links. For a bundle consisting of more than two filaments, a series of first-order transitions is observed. The transitions are connected with the formation of an interface between regions of low and high cross-link densities. Combining umbrella sampling Monte Carlo simulations with analytical calculations, we present a detailed picture of how the competition between cross-link shearing and filament stretching drives the transitions. We also find that, when the cross-links become soft, collective behavior is not observed: the cross-links then unbind one after the other leading to a smooth decrease of the average cross-link density.

  15. Cross-linking reconsidered: binding and cross-linking fields and the cellular response.

    PubMed Central

    Sulzer, B; De Boer, R J; Perelson, A S

    1996-01-01

    We analyze a model for the reversible cross-linking of cell surface receptors by a collection of bivalent ligands with different affinities for the receptor as would be found in a polyclonal anti-receptor serum. We assume that the amount of cross-linking determines, via a monotonic function, the rate at which cells become activated and divide. In addition to the density of receptors on the cell surface, two quantities, the binding field and the cross-linking field, are needed to characterize the cross-linking curve, i.e., the equilibrium concentration of cross-linked receptors plotted as a function of the total ligand site concentration. The binding field is the sum of all ligand site concentrations weighted by their respective binding affinities, and the cross-linking field is the sum of all ligand site concentrations weighted by the product of their respective binding and cross-linking affinity and the total receptor density. Assuming that the cross-linking affinity decreases if the binding affinity decreases, we find that the height of the cross-linking curve decreases, its width narrows, and its center shifts to higher ligand site concentrations as the affinities decrease. Moreover, when we consider cross-linking-induced proliferation, we find that there is a minimum cross-linking affinity that must be surpassed before a clone can expand. We also show that under many circumstances a polyclonal antiserum would be more likely than a monoclonal antibody to lead to cross-linking-induced proliferation. Images FIGURE 1 FIGURE 2 FIGURE 5 PMID:8785275

  16. Corneal Cross-Linking and Safety Issues

    PubMed Central

    Spoerl, Eberhard; Hoyer, Anne; Pillunat, Lutz E; Raiskup, Frederik

    2011-01-01

    Purpose: To compile the safety aspects of the corneal collagen cross-linking (CXL) by means of the riboflavin/UVA (370 nm) approach. Materials and Methodology: Analysis of the current treatment protocol with respect to safety during CXL. Results: The currently used UVA dose density of 5.4 J/cm2 and the corresponding irradiance of 3 mW/cm2 are below the known damage thresholds of UVA for the corneal endothelium, lens, and retina. Regarding the photochemical damages due to the free radicals the damage threshold for endothelial cells is 0.35 mW/cm2. In a 400μm thick corneal stroma saturated with riboflavin, the irradiance at the endothelial level is about 0.18 mW/cm2, which is a factor of 2 smaller than the damage threshold. Conclusion: As long as the corneal stroma treated has a minimal thickness of 400 microns (as recommended), neither corneal endothelium nor deeper structures such as lens and retina will suffer any damages. The light source should provide a homogenous irradiance avoiding hot spots. PMID:21399770

  17. Arabidopsis Actin Depolymerizing Factor4 Modulates the Stochastic Dynamic Behavior of Actin Filaments in the Cortical Array of Epidermal Cells[C][W

    PubMed Central

    Henty, Jessica L.; Bledsoe, Samuel W.; Khurana, Parul; Meagher, Richard B.; Day, Brad; Blanchoin, Laurent; Staiger, Christopher J.

    2011-01-01

    Actin filament arrays are constantly remodeled as the needs of cells change as well as during responses to biotic and abiotic stimuli. Previous studies demonstrate that many single actin filaments in the cortical array of living Arabidopsis thaliana epidermal cells undergo stochastic dynamics, a combination of rapid growth balanced by disassembly from prolific severing activity. Filament turnover and dynamics are well understood from in vitro biochemical analyses and simple reconstituted systems. However, the identification in living cells of the molecular players involved in controlling actin dynamics awaits the use of model systems, especially ones where the power of genetics can be combined with imaging of individual actin filaments at high spatial and temporal resolution. Here, we test the hypothesis that actin depolymerizing factor (ADF)/cofilin contributes to stochastic filament severing and facilitates actin turnover. A knockout mutant for Arabidopsis ADF4 has longer hypocotyls and epidermal cells when compared with wild-type seedlings. This correlates with a change in actin filament architecture; cytoskeletal arrays in adf4 cells are significantly more bundled and less dense than in wild-type cells. Several parameters of single actin filament turnover are also altered. Notably, adf4 mutant cells have a 2.5-fold reduced severing frequency as well as significantly increased actin filament lengths and lifetimes. Thus, we provide evidence that ADF4 contributes to the stochastic dynamic turnover of actin filaments in plant cells. PMID:22010035

  18. Actin dynamics tune the integrated stress response by regulating eukaryotic initiation factor 2α dephosphorylation

    PubMed Central

    Chambers, Joseph E; Dalton, Lucy E; Clarke, Hanna J; Malzer, Elke; Dominicus, Caia S; Patel, Vruti; Moorhead, Greg; Ron, David; Marciniak, Stefan J

    2015-01-01

    Four stress-sensing kinases phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α) to activate the integrated stress response (ISR). In animals, the ISR is antagonised by selective eIF2α phosphatases comprising a catalytic protein phosphatase 1 (PP1) subunit in complex with a PPP1R15-type regulatory subunit. An unbiased search for additional conserved components of the PPP1R15-PP1 phosphatase identified monomeric G-actin. Like PP1, G-actin associated with the functional core of PPP1R15 family members and G-actin depletion, by the marine toxin jasplakinolide, destabilised the endogenous PPP1R15A-PP1 complex. The abundance of the ternary PPP1R15-PP1-G-actin complex was responsive to global changes in the polymeric status of actin, as was its eIF2α-directed phosphatase activity, while localised G-actin depletion at sites enriched for PPP1R15 enhanced eIF2α phosphorylation and the downstream ISR. G-actin's role as a stabilizer of the PPP1R15-containing holophosphatase provides a mechanism for integrating signals regulating actin dynamics with stresses that trigger the ISR. DOI: http://dx.doi.org/10.7554/eLife.04872.001 PMID:25774599

  19. Actin dynamics tune the integrated stress response by regulating eukaryotic initiation factor 2α dephosphorylation.

    PubMed

    Chambers, Joseph E; Dalton, Lucy E; Clarke, Hanna J; Malzer, Elke; Dominicus, Caia S; Patel, Vruti; Moorhead, Greg; Ron, David; Marciniak, Stefan J

    2015-01-01

    Four stress-sensing kinases phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α) to activate the integrated stress response (ISR). In animals, the ISR is antagonised by selective eIF2α phosphatases comprising a catalytic protein phosphatase 1 (PP1) subunit in complex with a PPP1R15-type regulatory subunit. An unbiased search for additional conserved components of the PPP1R15-PP1 phosphatase identified monomeric G-actin. Like PP1, G-actin associated with the functional core of PPP1R15 family members and G-actin depletion, by the marine toxin jasplakinolide, destabilised the endogenous PPP1R15A-PP1 complex. The abundance of the ternary PPP1R15-PP1-G-actin complex was responsive to global changes in the polymeric status of actin, as was its eIF2α-directed phosphatase activity, while localised G-actin depletion at sites enriched for PPP1R15 enhanced eIF2α phosphorylation and the downstream ISR. G-actin's role as a stabilizer of the PPP1R15-containing holophosphatase provides a mechanism for integrating signals regulating actin dynamics with stresses that trigger the ISR.

  20. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, W.P. Jr.; Apen, P.G.; Mitchell, M.A.

    1998-01-20

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes. 1 fig.

  1. Cross-linked structure of network evolution

    SciTech Connect

    Bassett, Danielle S.; Wymbs, Nicholas F.; Grafton, Scott T.; Porter, Mason A.; Mucha, Peter J.

    2014-03-15

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  2. How actin binds and assembles onto plasma membranes from Dictyostelium discoideum

    PubMed Central

    1988-01-01

    We have shown previously (Schwartz, M. A., and E. J. Luna. 1986. J. Cell Biol. 102: 2067-2075) that actin binds with positive cooperativity to plasma membranes from Dictyostelium discoideum. Actin is polymerized at the membrane surface even at concentrations well below the critical concentration for polymerization in solution. Low salt buffer that blocks actin polymerization in solution also prevents actin binding to membranes. To further explore the relationship between actin polymerization and binding to membranes, we prepared four chemically modified actins that appear to be incapable of polymerizing in solution. Three of these derivatives also lost their ability to bind to membranes. The fourth derivative (EF actin), in which histidine-40 is labeled with ethoxyformic anhydride, binds to membranes with reduced affinity. Binding curves exhibit positive cooperativity, and cross- linking experiments show that membrane-bound actin is multimeric. Thus, binding and polymerization are tightly coupled, and the ability of these membranes to polymerize actin is dramatically demonstrated. EF actin coassembles weakly with untreated actin in solution, but coassembles well on membranes. Binding by untreated actin and EF actin are mutually competitive, indicating that they bind to the same membrane sites. Hill plots indicate that an actin trimer is the minimum assembly state required for tight binding to membranes. The best explanation for our data is a model in which actin oligomers assemble by binding to clustered membrane sites with successive monomers on one side of the actin filament bound to the membrane. Individual binding affinities are expected to be low, but the overall actin-membrane avidity is high, due to multivalency. Our results imply that extracellular factors that cluster membrane proteins may create sites for the formation of actin nuclei and thus trigger actin polymerization in the cell. PMID:3392099

  3. Cross-Linking Studies of Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc

    2000-01-01

    Tetragonal chicken egg white crystals consist of 4(sub 3) helices running in alternating directions, the helix rows having a two fold symmetry with each other. The unit cell consists of one complete tetrameric turn from each of two adjacent helices (an octamer). PBC analysis indicates that the helix intermolecular bonds are the strongest in the crystal, therefore likely formed first. AFM analysis of the (110) surface shows only complete helices, no half steps or bisected helices being found, while AFM line scans to measure the growth step increments show that they are multiples of the 4(sub 3) helix tetramer dimensions. This supports our thesis that the growth units are in fact multiples of the four molecule 4(sub 3) helix unit, the "average" growth unit size for the (110) face being an octamer (two turns about the helix) and the (101) growth unit averaging about the size of a hexamer. In an effort to better understand the species involved in the crystal nucleation and growth process, we have initiated an experimental program to study the species formed in solution compared to what is found in the crystal through covalent cross-linking studies. These experiments use the heterobifunctional cross-linking agent aminoethyl-4-azidonitroanaline (AEANA). An aliphatic amine at one end is covalently attached to the protein by a carbodiimide-mediated reaction, and a photo reactive group at the other can be used to initiate crosslinking. Modifications to the parent structure can be used to alter the distance between the two reactive groups and thus the cross-linking agents "reach". In practice, the cross-linking agent is first coupled to the asp101 side chain through the amine group. Asp101 lies within the active site cleft, and previous work with fluorescent probes had shown that derivatives at this site still crystallize in the tetragonal space group. This was also found to be the case with the AEANA derivative, which gave red tetragonal crystals. The protein now has a

  4. Ion exchange selectivity for cross-linked polyacrylic acid

    NASA Technical Reports Server (NTRS)

    May, C. E.; Philipp, W. H.

    1983-01-01

    The ion separation factors for 21 common metal ions with cross-linked polyacrylic acid were determined as a function of pH and the percent of the cross-linked polyacrylic acid neutralized. The calcium ion was used as a reference. At a pH of 5 the decreasing order of affinity of the ions for the cross-linked polyacrylic acid was found to be: Hg++, Fe+++, Pb++, Cr+++, Cu++, Cd++, Al+++, Ag+, Zn++, Ni++, Mn++, Co++, Ca++, Sr++, Ba++, Mg++, K+, Rb+, Cs+, Na+, and Li+. Members of a chemical family exhibited similar selectivities. The Hg++ ion appeared to be about a million times more strongly bound than the alkali metal ions. The relative binding of most of the metal ions varied with pH; the very tightly and very weakly bound ions showed the largest variations with pH. The calcium ion-hydrogen ion equilibrium was perturbed very little by the presence of the other ions. The separation factors and selectivity coefficients are discussed in terms of equilibrium and thermodynamic significance.

  5. Transcription factor binding and spacing constraints in the human beta-actin proximal promoter.

    PubMed Central

    Danilition, S L; Frederickson, R M; Taylor, C Y; Miyamoto, N G

    1991-01-01

    The human beta-actin promoter, including its 5' flanking region and 5' untranslated region, is ubiquitously active in mammalian cells in culture. In this report we investigated the transcriptional activity of, and the protein-DNA interactions that occur within, the proximal region of the human beta-actin promoter. Efficient beta-actin promoter activity in transfected human HeLa cells requires only 114bp of 5' flanking sequences. Two of the cis-actin regulatory elements within this region of the beta-actin promoter, the CCAAT box and proximal CCArGG box, are specific in vitro binding sites for the transcription factors, nuclear factor Y (NF-Y) and serum response factor (p67SRF), respectively. These two elements are required together to stimulate in vivo transcription from the homologous as well as a heterologous promoter. Finally, a particular spatial alignment between the CCAAT box and proximal CCArGG box is required for trans-activation in vivo. The above provides strong evidence for a functional interaction between NF-Y and p67SRF when bound to their respective binding sites in the beta-actin promoter. Images PMID:1762920

  6. Complications of Corneal Collagen Cross-Linking

    PubMed Central

    Dhawan, Shikha; Rao, Kavita; Natrajan, Sundaram

    2011-01-01

    Cross-linking of corneal collagen (CXL) is a promising approach for the treatment of keratoconus and secondary ectasia. Several long-term and short-term complications of CXL have been studied and documented. The possibility of a secondary infection after the procedure exists because the patient is subjected to epithelial debridement and the application of a soft contact lens. Formation of temporary corneal haze, permanent scars, endothelial damage, treatment failure, sterile infiltrates, and herpes reactivation are the other reported complications of this procedure. Cross-linking is a low-invasive procedure with low complication and failure rate but it may have direct or primary complications due to incorrect technique application or incorrect patient's inclusion and indirect or secondary complications related to therapeutic soft contact lens, patient's poor hygiene, and undiagnosed concomitant ocular surface diseases. PMID:22254130

  7. Positive tone cross-linked resists based on photoacid inhibition of cross linking

    NASA Astrophysics Data System (ADS)

    Lawson, Richard A.; Chun, Jun Sung; Neisser, Mark; Tolbert, Laren M.; Henderson, Clifford L.

    2014-03-01

    A resist imaging design that utilizes photoacid inhibition of cationic polymerization and cross-linking during a postexposure bake step has been studied. The key to the design approach is the use of two different polymerization catalysts/initiators: (1) a photoacid produced from a photoacid generator (PAG) upon exposure of the resist that can result in polymerization and cross-linking of the resist matrix and (2) a thermal cross-linking catalyst (TCC) designed to thermally catalyze epoxide-phenol cross-linking. The TCC can be chosen from a variety of compounds such as triphenylphosphine (TPP) or imidazole. When only one of these catalysts (e.g TPP or photoacid) is present in an epoxide and phenol containing resist matrix, it will individually catalyze cross-linking. When they are present together, they effectively quench one another and little to no cross-linking occurs. This approach can be used to switch the tone of a resist from negative (photoacid catalyzed) to positive (TCC catalyzed and photoacid inhibited). The effect of the ratio of TCC:PAG was examined and the optimal ratio for positive tone behavior was determined. Resist contrast can be modified by optimization of epoxide:phenol ratio in the formulation. Dual tone behavior with positive tone at low dose and negative tone at higher doses can be observed in certain formulation conditions. Initial EUV patterning shows poor results, but the source of the poor imaging is not yet understood.

  8. Collagen cross-linking in thin corneas

    PubMed Central

    Padmanabhan, Prema; Dave, Abhishek

    2013-01-01

    Collagen cross-linking (CXL) has become the standard of care for progressive keratoconus, after numerous clinical studies have established its efficacy and safety in suitably selected eyes. The standard protocol is applicable in eyes which have a minimum corneal thickness of 400 μm after epithelial debridement. This prerequisite was stipulated to protect the corneal endothelium and intraocular tissues from the deleterious effect of ultraviolet-A (UVA) radiation. However, patients with keratoconus often present with corneal thickness of less than 400 μm and could have otherwise benefited from this procedure. A few modifications of the standard procedure have been suggested to benefit these patients without a compromise in safety. Transepithelial cross-linking, pachymetry-guided epithelial debridement before cross-linking, and the use of hypoosmolar riboflavin are some of the techniques that have been attempted. Although clinical data is limited at the present time, these techniques are worth considering in patients with thin corneas. Further studies are needed to scientifically establish their efficacy and safety. PMID:23925328

  9. The Actin Depolymerizing Factor (ADF)/Cofilin Signaling Pathway and DNA Damage Responses in Cancer

    PubMed Central

    Chang, Chun-Yuan; Leu, Jyh-Der; Lee, Yi-Jang

    2015-01-01

    The actin depolymerizing factor (ADF)/cofilin protein family is essential for actin dynamics, cell division, chemotaxis and tumor metastasis. Cofilin-1 (CFL-1) is a primary non-muscle isoform of the ADF/cofilin protein family accelerating the actin filamental turnover in vitro and in vivo. In response to environmental stimulation, CFL-1 enters the nucleus to regulate the actin dynamics. Although the purpose of this cytoplasm-nucleus transition remains unclear, it is speculated that the interaction between CFL-1 and DNA may influence various biological responses, including DNA damage repair. In this review, we will discuss the possible involvement of CFL-1 in DNA damage responses (DDR) induced by ionizing radiation (IR), and the implications for cancer radiotherapy. PMID:25689427

  10. Analysis of rhodamine and fluorescein-labeled F-actin diffusion in vitro by fluorescence photobleaching recovery.

    PubMed Central

    Simon, J R; Gough, A; Urbanik, E; Wang, F; Lanni, F; Ware, B R; Taylor, D L

    1988-01-01

    Properties of filamentous acetamidofluorescein-labeled actin and acetamidotetramethylrhodamine-labeled actin (AF and ATR-actin, respectively) were examined to resolve discrepancies in the reported translational diffusion coefficients of F-actin measured in vitro by FPR and other techniques. Using falling-ball viscometry and two independent versions of fluorescence photobleaching recovery (FPR), the present data indicate that several factors are responsible for these discrepancies. Gel filtration chromatography profoundly affects the viscosity of actin solutions and filament diffusion coefficients. ATR-actin and, to a lesser degree, AF-actin show a reduction in viscosity in proportion to the fraction labeled, presumably due to filament shortening. Actin filaments containing AF-actin or ATR-actin are susceptible to photoinduced damage, including a covalent cross-linking of actin protomers within filaments and an apparent cleavage of filaments detected by a decrease of the measured viscosity and an increase in the measured filament diffusion coefficients. Quantum yields of the two photoinduced effects are quite different. Multiple cross-links are produced relative to each photobleaching event, whereas less than 1% filament cleavage occurs. Substantial differences in the filament diffusion coefficients measured by FPR are also the result of differences in illumination geometry and sampling time. However, under controlled conditions, FPR can be used as a quantitative tool for measuring the hydrodynamic properties of actin filaments. Incremented filament shortening caused by photoinduced cleavage or incremental addition of filament capping proteins produces a continuous and approximately linear increase of filament diffusion coefficients, indicating that filaments are not associated in solution. Our results indicate that actin filaments exhibit low mobilities and it is inferred that actin filaments formed in vitro by column-purified actin, under standard conditions, are

  11. Magnetic macromolecular cross linked enzyme aggregates (CLEAs) of glucoamylase.

    PubMed

    Nadar, Shamraja S; Rathod, Virendra K

    2016-02-01

    This work illustrates the preparation of magnetic macromolecular glucoamylase CLEAs using dialdehydic pectin, as a cross linker instead of traditional glutaraldehyde. The effect of precipitators type and amount, cross linker concentration, cross linking time and amount of amino functionalized magnetic nanoparticles (AFMNs) on glucoamylase activity was studied. Glucoamylase magnetic macromolecular CLEAs prepared by precipitation in presence of AFMNs by ammonium sulfate were subsequently cross linked by dialdehydic pectin. After cross-linked by pectin, 95.4% activity recovery was achieved in magnetic macromolecular CLEAs, whereas in case of glutaraldehyde cross linker, 85.3% activity recovery was achieved. Magnetic macromolecular CLEAs showed 2.91 and 1.27 folds higher thermal stability as compared to free and magnetic glutaraldehyde CLEAs. In kinetics study, magnetic macromolecular CLEAs retained same Km values, whereas magnetic glutaraldehyde CLEAs showed higher Km value than free enzyme. The porous structure of magnetic macromolecular CLEAs was not only enhanced mass transfer toward macromolecular substrates, but also showed compression resistance for 5 consecutive cycles which was checked in terms of effectiveness factor. At the end, in reusability study; magnetic macromolecular CLEAs were retained 84% activity after 10(th) cycle without leaching of enzyme which is 22% higher than traditional magnetic CLEAs.

  12. Immunofluoresence of rabbit corneas following collagen cross-linking treatment with Riboflavin and Ultraviolet A

    PubMed Central

    Esquenazi, Salomon; He, Jiucheng; Li, Na; Bazan, Haydee E.P.

    2009-01-01

    Purpose To assess ultrastructural modifications in keratocytes and inflammatory cell response in rabbit corneas after riboflavin and ultraviolet A (UVA) exposure using immunoflurescence microscopy. Methods Twenty adult New Zealand albino rabbits weighing 2.0 to 3.0 kg were used in this study. Two rabbits served as controls. The animals had their epithelia removed and were cross-linked with riboflavin 0.1% solution (10mgs riboflavin-5-phosphate in 10ml 20% dextran-T-500) applied every 3 minutes for 30 minutes, and exposed to UVA (360 nm, 3 mW/cm2) for 30 minutes. Four rabbits were humanely euthanized at each time point of 1, 3 and 11 days and at 3 and 5 weeks after the procedure. Immunohistochemestry studies of thin sections of each cornea were performed using TUNEL staining, Alpha smooth muscle actin (α-SMA), CD-3, myeloperoxidase (MPO) antibodies and DAPI counterstaining. In another experiment six additional rabbits were treated as above, and after 10 days of cross-linking, 5 μl of lipopolysaccharide (LPS) endotoxin (1μg/ml) was injected in the mid stroma. Results Cross-linked corneas showed early stromal edema. By 5 weeks, complete resolution of the edema and a pronounced highly organized anterior 200 μm fluorescent zone was observed. TUNEL staining showed keratocyte death by both necrosis and apoptosis between day 1 and 3 after cross-linking. At day 1 the limbal area close to the cross linking zone showed some inflammatory cells as well as α-SMA positive cells, indicative of the presence of myofibroblasts. By day 3 some myofibroblasts had migrated to the area beneath the cross linked stroma. Between day 3 and 5 weeks there was an increase in α-SMA staining in the area surrounding the cross linked stroma. The area of cross linking remained acellular up to 5 weeks. Conclusions Collagen cross-linking results in early edema, keratocyte apoptosis and necrosis, appearance of inflammatory cells in the surrounding area of treatment and transformation of

  13. Combinatorial genetic analysis of a network of actin disassembly‐promoting factors

    PubMed Central

    Ydenberg, Casey A.; Johnston, Adam; Weinstein, Jaclyn; Bellavance, Danielle; Jansen, Silvia

    2015-01-01

    The patterning of actin cytoskeleton structures in vivo is a product of spatially and temporally regulated polymer assembly balanced by polymer disassembly. While in recent years our understanding of actin assembly mechanisms has grown immensely, our knowledge of actin disassembly machinery and mechanisms has remained comparatively sparse. Saccharomyces cerevisiae is an ideal system to tackle this problem, both because of its amenabilities to genetic manipulation and live‐cell imaging and because only a single gene encodes each of the core disassembly factors: cofilin (COF1), Srv2/CAP (SRV2), Aip1 (AIP1), GMF (GMF1/AIM7), coronin (CRN1), and twinfilin (TWF1). Among these six factors, only the functions of cofilin are essential and have been well defined. Here, we investigated the functions of the nonessential actin disassembly factors by performing genetic and live‐cell imaging analyses on a combinatorial set of isogenic single, double, triple, and quadruple mutants in S. cerevisiae. Our results show that each disassembly factor makes an important contribution to cell viability, actin organization, and endocytosis. Further, our data reveal new relationships among these factors, providing insights into how they work together to orchestrate actin turnover. Finally, we observe specific combinations of mutations that are lethal, e.g., srv2Δ aip1Δ and srv2Δ crn1Δ twf1Δ, demonstrating that while cofilin is essential, it is not sufficient in vivo, and that combinations of the other disassembly factors perform vital functions. © 2015 The Authors. Cytoskeleton Published by Wiley Periodicals, Inc. PMID:26147656

  14. Control of dehydrodiferulate cross-linking in pectins from sugar-beet tissues.

    PubMed

    Baydoun, Elias A -H; Pavlencheva, Natalie; Cumming, Carol M; Waldron, Keith W; Brett, Christopher T

    2004-04-01

    Pectins were extracted from roots, petioles and leaves of sugar beet, and cross-linked using hydrogen peroxide and peroxidase. The effects on dehydrodiferulate formation were monitored by HPLC and TLC. Dehydrodimers were formed in different proportions to those found in vivo. There was a net loss of around 50% of the phenolic groups (monomers plus dimers) during dimerisation. Gel filtration showed that root and petiole pectin, but not leaf pectin, increased in molecular weight during cross-linking. The effects of varying the cross-linking conditions were investigated, and it was found that hydrogen peroxide concentration was the most important factor in controlling both the type and amount of dehydrodiferulate formed.

  15. Contraction of cross-linked actomyosin bundles

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Natsuhiko; Marcq, Philippe

    2012-08-01

    Cross-linked actomyosin bundles retract when severed in vivo by laser ablation, or when isolated from the cell and micromanipulated in vitro in the presence of ATP. We identify the timescale for contraction as a viscoelastic time τ, where the viscosity is due to (internal) protein friction. We obtain an estimate of the order of magnitude of the contraction time τ ≈ 10-100 s, consistent with available experimental data for circumferential microfilament bundles and stress fibers. Our results are supported by an exactly solvable, hydrodynamic model of a retracting bundle as a cylinder of isotropic, active matter, from which the order of magnitude of the active stress is estimated.

  16. Identification of Arabidopsis Cyclase-associated Protein 1 as the First Nucleotide Exchange Factor for Plant Actin

    PubMed Central

    Chaudhry, Faisal; Guérin, Christophe; von Witsch, Matthias

    2007-01-01

    The actin cytoskeleton powers organelle movements, orchestrates responses to abiotic stresses, and generates an amazing array of cell shapes. Underpinning these diverse functions of the actin cytoskeleton are several dozen accessory proteins that coordinate actin filament dynamics and construct higher-order assemblies. Many actin-binding proteins from the plant kingdom have been characterized and their function is often surprisingly distinct from mammalian and fungal counterparts. The adenylyl cyclase-associated protein (CAP) has recently been shown to be an important regulator of actin dynamics in vivo and in vitro. The disruption of actin organization in cap mutant plants indicates defects in actin dynamics or the regulated assembly and disassembly of actin subunits into filaments. Current models for actin dynamics maintain that actin-depolymerizing factor (ADF)/cofilin removes ADP–actin subunits from filament ends and that profilin recharges these monomers with ATP by enhancing nucleotide exchange and delivery of subunits onto filament barbed ends. Plant profilins, however, lack the essential ability to stimulate nucleotide exchange on actin, suggesting that there might be a missing link yet to be discovered from plants. Here, we show that Arabidopsis thaliana CAP1 (AtCAP1) is an abundant cytoplasmic protein; it is present at a 1:3 M ratio with total actin in suspension cells. AtCAP1 has equivalent affinities for ADP– and ATP–monomeric actin (Kd ∼ 1.3 μM). Binding of AtCAP1 to ATP–actin monomers inhibits polymerization, consistent with AtCAP1 being an actin sequestering protein. However, we demonstrate that AtCAP1 is the first plant protein to increase the rate of nucleotide exchange on actin. Even in the presence of ADF/cofilin, AtCAP1 can recharge actin monomers and presumably provide a polymerizable pool of subunits to profilin for addition onto filament ends. In turnover assays, plant profilin, ADF, and CAP act cooperatively to promote flux of

  17. Corneal collagen cross-linking: A review

    PubMed Central

    O’Brart, David P.S.

    2014-01-01

    The aim was to review the published literature on corneal collagen cross-linking. The emphasis was on the seminal publications, systemic reviews, meta-analyses and randomized controlled trials. Where such an evidence did not exist, selective large series cohort studies, case controlled studies and case series with follow-up preferably greater than 12 months were included. Riboflavin/Ultraviolet A (UVA) corneal collagen cross-linking appears to be the first treatment modality to halt the progression of keratoconus and other corneal ectatic disorders with improvement in visual, keratometric and topographic parameters documented by most investigators. Its precise mechanism of action at a molecular level is as yet not fully determined. Follow-up is limited to 4–6 years at present but suggests continued stability and improvement in corneal shape with time. Most published data are with epithelium-off techniques. Epithelium-on studies suggest some efficacy but less than with the epithelium-off procedures and long-term data are not currently available. The use of Riboflavin/UVA CXL for the management of infectious and non-infectious keratitis appears very promising. Its use in the management of bullous keratopathy is equivocal. Investigation of other methodologies for CXL are under investigation. PMID:25000866

  18. Phylogeny of the Glomerales and Diversisporales (fungi: Glomeromycota) from actin and elongation factor 1-alpha sequences.

    PubMed

    Helgason, Thorunn; Watson, Irene J; Young, J Peter W

    2003-12-01

    The arbuscular mycorrhizal (AM) fungi have been elevated to the phylum Glomeromycota based on a ribosomal gene phylogeny. In order to test this phylogeny, we amplified and sequenced small subunit ribosomal RNA (SSUrRNA), actin and elongation factor 1 (EF1)-alpha gene fragments from single spores of Acaulospora laevis, Glomus caledonium, Gigaspora margarita, and Scutellospora dipurpurescens. Sequence variation within and among spores of an isolate was low except for SSUrRNA in S. dipurpurescens, and the actin amino acid sequence was more conserved than that of EF1-alpha. The AM fungal sequences were more similar to one another than to any other fungal group. Joint phylogenetic analysis of the actin and EF1-alpha sequences suggested that the sister group to the AM fungi was a Zygomycete order, the Mortierellales.

  19. G-actin sequestering protein thymosin-β4 regulates the activity of myocardin-related transcription factor

    SciTech Connect

    Morita, Tsuyoshi Hayashi, Ken’ichiro

    2013-08-02

    Highlights: •Tβ4 competed with MRTF-A for G-actin binding. •Tβ4 activated the MRTF–SRF signaling pathway. •Tβ4 increased the endogenous expression of SRF-dependent genes. -- Abstract: Myocardin-related transcription factors (MRTFs) are robust coactivators of serum response factor (SRF). MRTFs contain three copies of the RPEL motif at their N-terminus, and they bind to monomeric globular actin (G-actin). Previous studies illustrate that G-actin binding inhibits MRTF activity by preventing the MRTFs nuclear accumulation. In the living cells, the majority of G-actin is sequestered by G-actin binding proteins that prevent spontaneous actin polymerization. Here, we demonstrate that the most abundant G-actin sequestering protein thymosin-β4 (Tβ4) was involved in the regulation of subcellular localization and activity of MRTF-A. Tβ4 competed with MRTF-A for G-actin binding; thus, interfering with G-actin–MRTF-A complex formation. Tβ4 overexpression induced the MRTF-A nuclear accumulation and activation of MRTF–SRF signaling. The activation rate of MRTF-A by the Tβ4 mutant L17A, whose affinity for G-actin is very low, was lower than that by wild-type Tβ4. In contrast, the β-actin mutant 3DA, which has a lower affinity for Tβ4, more effectively suppressed MRTF-A activity than wild-type β-actin. Furthermore, ectopic Tβ4 increased the endogenous expression of SRF-dependent actin cytoskeletal genes. Thus, Tβ4 is an important MRTF regulator that controls the G-actin–MRTFs interaction.

  20. [Riboflavin UVA cross-linking for keratoconus].

    PubMed

    Maier, P; Reinhard, T

    2013-09-01

    Keratoconus is a progressive, ectatic disease of the cornea leading to thinning and highly irregular astigmatism. Until recently all treatment options, such as prescription of glasses or contact lenses were symptomatic and neither keratoplasty nor the implantation of intracorneal rings can heal the disease. Riboflavin ultraviolet A (UVA) collagen cross-linking (CXL) cannot heal keratoconus either but promises to halt the progression. The therapeutic principle is a photochemical reaction of riboflavin and UVA light leading to free oxygen radicals in the corneal stroma that induce covalent linking of the collagen fibrils. This stiffening effect should stop the progression. After the first reports at the end of the 1990s the treatment was widely used and many case series show that CXL can be effective in stopping disease progression in some patients. However, randomized, controlled multicenter trials showing high evidence of the treatment effectiveness are rare. This report includes a review of the literature regarding treatment effectiveness, indications and new developments. PMID:23760423

  1. Corneal cross-linking treatment of keratoconus

    PubMed Central

    Farjadnia, Mahgol; Naderan, Mohammad

    2015-01-01

    Keratoconus as the most common cause of ectasia is one of the leading cause of corneal transplants worldwide. The current available therapies do not modify the underlying pathogenesis of the disease, and none of the available approaches but corneal transplant hinder the ongoing ectasia. Several studies document Crosslink defect between collagen fibrils in the pathogenesis of keratoconus. Collagen cross link is a relatively new approach that with the application of the riboflavin and ultraviolet A, new covalent bands reform. Subjective and objective results following this method seem to be promising. Endothelial damage besides other deep structural injury, which is the major concern of this technique have not yet been reported, when applying the standard method. PMID:26622134

  2. Riboflavin for corneal cross-linking.

    PubMed

    O'Brart, D P S

    2016-06-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet A (UVA) radiation is the first therapeutic modality that appears to arrest the progression of keratoconus and other corneal ectasias. Riboflavin is central to the process, acting as a photosensitizer for the production of oxygen singlets and riboflavin triplets. These free radicals drive the CXL process within the proteins of the corneal stroma, altering its biomechanical properties. Riboflavin also absorbs the majority of the UVA radiation, which is potentially cytotoxic and mutagenic, within the anterior stroma, preventing damage to internal ocular structures, such as the corneal endothelium, lens and retina. Clinical studies report cessation of ectatic progression in over 90% of cases and the majority document significant improvements in visual, keratometric and topographic parameters. Clinical follow-up is limited to 5-10 years, but suggests sustained stability and enhancement in corneal shape. Sight-threatening complications are rare. The optimal stromal riboflavin dosage for CXL is as yet undetermined. PMID:27458610

  3. Cross-links between stereocilia in the guinea pig cochlea.

    PubMed

    Furness, D N; Hackney, C M

    1985-05-01

    Cross-links between stereocilia on guinea pig cochlear hair cells have been examined using high resolution scanning (SEM) and transmission electron microscopy (TEM), confirming recent descriptions of these structures. Links from the tips of shorter stereocilia to the sides of the adjacent taller stereocilia (upward-pointing links), between stereocilia of the same row (side-to-side links) and between adjacent rows (row-to-row links), have been observed on inner and outer hair cells. These links have been seen in material fixed using (1) glutaraldehyde only, (2) glutaraldehyde/osmium and (3) glutaraldehyde/osmium/thiocarbohydrazide (a technique which makes gold coating unnecessary). Upward-pointing links were seen less frequently, and the surfaces of stereocilia and microvilli were smoother after fixation (3) compared with fixations (1) and (2) in which they were usually roughened in appearance. In TEM, side-to-side and row-to-row links form a regular lattice between stereocilia, and consist of a number of strands. Upward-pointing links consist of a single strand, the ends of which are associated with electron-dense material. This lies between the stereociliary membrane and the actin filament bundle, at the tip of the shorter stereocilium and the side of the taller stereocilium.

  4. Cross-link guided molecular modeling with ROSETTA.

    PubMed

    Kahraman, Abdullah; Herzog, Franz; Leitner, Alexander; Rosenberger, George; Aebersold, Ruedi; Malmström, Lars

    2013-01-01

    Chemical cross-links identified by mass spectrometry generate distance restraints that reveal low-resolution structural information on proteins and protein complexes. The technology to reliably generate such data has become mature and robust enough to shift the focus to the question of how these distance restraints can be best integrated into molecular modeling calculations. Here, we introduce three workflows for incorporating distance restraints generated by chemical cross-linking and mass spectrometry into ROSETTA protocols for comparative and de novo modeling and protein-protein docking. We demonstrate that the cross-link validation and visualization software Xwalk facilitates successful cross-link data integration. Besides the protocols we introduce XLdb, a database of chemical cross-links from 14 different publications with 506 intra-protein and 62 inter-protein cross-links, where each cross-link can be mapped on an experimental structure from the Protein Data Bank. Finally, we demonstrate on a protein-protein docking reference data set the impact of virtual cross-links on protein docking calculations and show that an inter-protein cross-link can reduce on average the RMSD of a docking prediction by 5.0 Å. The methods and results presented here provide guidelines for the effective integration of chemical cross-link data in molecular modeling calculations and should advance the structural analysis of particularly large and transient protein complexes via hybrid structural biology methods. PMID:24069194

  5. Food-contact epoxy resin: co-variation between migration and degree of cross-linking.

    PubMed

    Lambert, C; Larroque, M; Lebrun, J C; Gérard, J F

    1997-01-01

    In order to predict the behaviour towards foodstuffs of an epoxy resin composed of bisphenol A diglycidyl ether (BADGE), 4,4'-methylenedianiline (MDA) and additives (plasticizers: dibutylphthalate (DBP), dioctylphthalate (DOP); accelerator: salicylic acid; inorganic fillers), a co-variation was established between the parameters evaluating the degree of cross-linking of the three-dimensional network and the migration of constituent molecules into various food simulants (distilled water, distilled water/ethanol/acetic acid, distilled water/ethanol). Varied degrees of cross-linking were obtained by subjecting the resin to different curing temperatures: respectively, 5 degrees C, 20 degrees C, 50 degrees C and 90 degrees C for 7 days. Irrespective of the food stimulant tested, specific migrations (DBP, DOP, salicylic acid, primary aromatic amines) diminished greatly as the curing temperature increased. At the same time, the degree of cross-linking increased with curing temperature, as indicated by the increase in glass transition temperature, the decrease in residual reaction exotherms and increased stability of the rubber storage modulus E'rub (increase in cross-link nodes), the fall in relaxation enthalpies (reduction in physical ageing) and the decreased amplitude of the loss-factor, tan delta (reduction in chain mobility). Maximum cross-linking was obtained in the resin cured at 90 degrees C (temperature above Tg infinity). In contrast to the degree of cross-linking, evaporation contributed little to the reduction of migration due to the elevation of curing temperature.

  6. Static and dynamic properties of model elastomer with various cross-linking densities: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Cao, Dapeng; Zhang, Liqun

    2009-07-01

    The effects of the cross-linking density on the static and dynamic properties of polymer networks are examined by using a molecular dynamics simulation based on a simple elastomer model. Simulation results indicate that the introduced cross-linking junctions show almost no effect on the static structure factor. The glass transition temperature Tg increases slightly with the cross-linking density. By analyzing the mean square displacement of the monomers, the chain diffusion, and the incoherent intermediate dynamic structure factor ϕqs(t) at the chain and segmental length scales, it is found that the mobilities of the monomers and chains are retarded and the relaxation behavior is hindered by the cross linking of polymers. Furthermore, the spatial localization of the monomers is also observed at a long time period for a highly cross-linked system. For the cross-linked system, the time-temperature superposition principle is valid at the segmental length scale but breaks down at the chain length scale. The effect of the cross-linking density on the terminal relaxation is investigated by the end-to-end vector correlation, which is well fitted to the Kohlrauch-William-Watts (KWW) or modified KWW functions. The characteristic relaxation time shows an approximately linear relationship with the cross-linking density. It is demonstrated that the relaxation behavior tends to broaden, attributed to the stronger intermolecular coupling or cooperativity induced by the cross linking, suggesting that the system with a higher cross-linking degree becomes more fragile. For the dynamic properties, the bond orientation and the end-to-end distance along the deformed direction, which is an indicator of the entropic change, and the nonbonded energy are examined during the deformation and relaxation processes, respectively. The results explore the molecular mechanism accounting for the residual stress in the stress relaxation of cross-linked elastomer networks.

  7. Static and dynamic properties of model elastomer with various cross-linking densities: a molecular dynamics study.

    PubMed

    Liu, Jun; Cao, Dapeng; Zhang, Liqun

    2009-07-21

    The effects of the cross-linking density on the static and dynamic properties of polymer networks are examined by using a molecular dynamics simulation based on a simple elastomer model. Simulation results indicate that the introduced cross-linking junctions show almost no effect on the static structure factor. The glass transition temperature T(g) increases slightly with the cross-linking density. By analyzing the mean square displacement of the monomers, the chain diffusion, and the incoherent intermediate dynamic structure factor phi(q)(s)(t) at the chain and segmental length scales, it is found that the mobilities of the monomers and chains are retarded and the relaxation behavior is hindered by the cross linking of polymers. Furthermore, the spatial localization of the monomers is also observed at a long time period for a highly cross-linked system. For the cross-linked system, the time-temperature superposition principle is valid at the segmental length scale but breaks down at the chain length scale. The effect of the cross-linking density on the terminal relaxation is investigated by the end-to-end vector correlation, which is well fitted to the Kohlrauch-William-Watts (KWW) or modified KWW functions. The characteristic relaxation time shows an approximately linear relationship with the cross-linking density. It is demonstrated that the relaxation behavior tends to broaden, attributed to the stronger intermolecular coupling or cooperativity induced by the cross linking, suggesting that the system with a higher cross-linking degree becomes more fragile. For the dynamic properties, the bond orientation and the end-to-end distance along the deformed direction, which is an indicator of the entropic change, and the nonbonded energy are examined during the deformation and relaxation processes, respectively. The results explore the molecular mechanism accounting for the residual stress in the stress relaxation of cross-linked elastomer networks. PMID:19624229

  8. Collagen cross-linking and resorption: effect of glutaraldehyde concentration.

    PubMed

    Roe, S C; Milthorpe, B K; Schindhelm, K

    1990-12-01

    Cross-linked collagen bioprostheses usually are designed to be inert and nonresorbable, resulting in fatigue and wear failure in high-stress environments. Eventual replacement of the implant, although minimizing strength loss during resorption, would result in a graft with reparative ability. Kangaroo tail tendon (KTT) partially cross-linked with glutaraldehyde (GA) was evaluated in vitro for resistance to bacterial collagenase digestion and in vivo for biocompatibility and resorbability in an intramuscular implant assay. Cross-linking was quantified by thermal denaturation studies. Incomplete cross-linking was achieved with concentrations of GA less than 0.1% (w/v). KTT cross-linked in greater than or equal to 0.05% GA were collagenase resistant being incompletely digested after 240 h. Cross-linking of KTT with low concentrations of GA resulted in partial collagenase resistance and slowed resorption. PMID:2126427

  9. Cross-Linking Aromatic Polymers With Ionizing Radiation

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L.; Havens, Stephen J.

    1987-01-01

    Resistance to heat and solvents increased. Certain aromatic polymers containing radiation-sensitive methylene groups cross-linked through methylene groups upon exposure to ionizing radiation. Cross-linked polymers resistant to most organic solvents and generally more resistant to high temperatures, with less tendency to creep under load. No significant embrittlement of parts fabricated from these polymers when degree of cross-linking, as controlled by irradiation dose, kept at moderate level.

  10. Actin Recruitment to the Chlamydia Inclusion Is Spatiotemporally Regulated by a Mechanism That Requires Host and Bacterial Factors

    PubMed Central

    Chin, Elizabeth; Kirker, Kelly; Zuck, Meghan; James, Garth; Hybiske, Kevin

    2012-01-01

    The ability to exit host cells at the end of their developmental growth is a critical step for the intracellular bacterium Chlamydia. One exit strategy, extrusion, is mediated by host signaling pathways involved with actin polymerization. Here, we show that actin is recruited to the chlamydial inclusion as a late event, occurring after 20 hours post-infection (hpi) and only within a subpopulation of cells. This event increases significantly in prevalence and extent from 20 to 68 hpi, and actin coats strongly correlated with extrusions. In contrast to what has been reported for other intracellular pathogens, actin nucleation on Chlamydia inclusions did not ‘flash’, but rather exhibited moderate depolymerization dynamics. By using small molecule agents to selectively disrupt host signaling pathways involved with actin nucleation, modulate actin polymerization dynamics and also to disable the synthesis and secretion of chlamydial proteins, we further show that host and bacterial proteins are required for actin coat formation. Transient disruption of either host or bacterial signaling pathways resulted in rapid loss of coats in all infected cells and a reduction in extrusion formation. Inhibition of Chlamydia type III secretion also resulted in rapid loss of actin association on inclusions, thus implicating chlamydial effector proteins(s) as being central factors for engaging with host actin nucleating factors, such as formins. In conclusion, our data illuminate the host and bacterial driven process by which a dense actin matrix is dynamically nucleated and maintained on the Chlamydia inclusion. This late stage event is not ubiquitous for all infected cells in a population, and escalates in prevalence and extent throughout the developmental cycle of Chlamydia, culminating with their exit from the host cell by extrusion. The initiation of actin recruitment by Chlamydia appears to be novel, and may serve as an upstream determinant of the extrusion mechanism. PMID

  11. TaADF3, an Actin-Depolymerizing Factor, Negatively Modulates Wheat Resistance Against Puccinia striiformis.

    PubMed

    Tang, Chunlei; Deng, Lin; Chang, Dan; Chen, Shuntao; Wang, Xiaojie; Kang, Zhensheng

    2015-01-01

    The actin cytoskeleton has been implicated in plant defense against pathogenic fungi, oomycetes, and bacteria. Actin depolymerizing factors (ADFs) are stimulus responsive actin cytoskeleton modulators. However, there is limited evidence linking ADFs with plant defense against pathogens. In this study, we have isolated and functionally characterized a stress-responsive ADF gene (TaADF3) from wheat, which was detectable in all examined wheat tissues. TaADF3 is a three-copy gene located on chromosomes 5AL, 5BL, and 5DL. A particle bombardment assay in onion epidermal cells revealed the cytoplasmic and nuclear localization of TaADF3. The expression of TaADF3 was inducible by abscisic acid (ABA), as well as various abiotic stresses (drought and cold) and virulent Puccinia striiformis f. sp. tritici (Pst) but was down regulated in response to avirulent Pst. Virus-induced silencing of TaADF3 copies enhanced wheat resistance to avirulent Pst, with decreased reactive oxygen species (ROS) accumulation and hypersensitive response (HR). Upon treatment with virulent Pst, TaADF3-knockdown plants exhibited reduced susceptibility, which was accompanied by increased ROS production and HR. Interestingly, the silencing of TaADF3 resulted in hindered pathogen penetration and haustoria formation for both avirulent and virulent Pst. Moreover, the array and distribution of actin filaments was transformed in TaADF3-knockdown epidermal cells, which possibly facilitated attenuating the fungus penetration. Thus, our findings suggest that TaADF3 positively regulates wheat tolerance to abiotic stresses and negatively regulates wheat resistance to Pst in an ROS-dependent manner, possibly underlying the mechanism of impeding fungal penetration dependent on the actin architecture dynamics. PMID:26834758

  12. TaADF3, an Actin-Depolymerizing Factor, Negatively Modulates Wheat Resistance Against Puccinia striiformis

    PubMed Central

    Tang, Chunlei; Deng, Lin; Chang, Dan; Chen, Shuntao; Wang, Xiaojie; Kang, Zhensheng

    2016-01-01

    The actin cytoskeleton has been implicated in plant defense against pathogenic fungi, oomycetes, and bacteria. Actin depolymerizing factors (ADFs) are stimulus responsive actin cytoskeleton modulators. However, there is limited evidence linking ADFs with plant defense against pathogens. In this study, we have isolated and functionally characterized a stress-responsive ADF gene (TaADF3) from wheat, which was detectable in all examined wheat tissues. TaADF3 is a three-copy gene located on chromosomes 5AL, 5BL, and 5DL. A particle bombardment assay in onion epidermal cells revealed the cytoplasmic and nuclear localization of TaADF3. The expression of TaADF3 was inducible by abscisic acid (ABA), as well as various abiotic stresses (drought and cold) and virulent Puccinia striiformis f. sp. tritici (Pst) but was down regulated in response to avirulent Pst. Virus-induced silencing of TaADF3 copies enhanced wheat resistance to avirulent Pst, with decreased reactive oxygen species (ROS) accumulation and hypersensitive response (HR). Upon treatment with virulent Pst, TaADF3-knockdown plants exhibited reduced susceptibility, which was accompanied by increased ROS production and HR. Interestingly, the silencing of TaADF3 resulted in hindered pathogen penetration and haustoria formation for both avirulent and virulent Pst. Moreover, the array and distribution of actin filaments was transformed in TaADF3-knockdown epidermal cells, which possibly facilitated attenuating the fungus penetration. Thus, our findings suggest that TaADF3 positively regulates wheat tolerance to abiotic stresses and negatively regulates wheat resistance to Pst in an ROS-dependent manner, possibly underlying the mechanism of impeding fungal penetration dependent on the actin architecture dynamics. PMID:26834758

  13. Stromal cell-derived factor 1 regulates the actin organization of chondrocytes and chondrocyte hypertrophy.

    PubMed

    Murata, Koichi; Kitaori, Toshiyuki; Oishi, Shinya; Watanabe, Naoki; Yoshitomi, Hiroyuki; Tanida, Shimei; Ishikawa, Masahiro; Kasahara, Takashi; Shibuya, Hideyuki; Fujii, Nobutaka; Nagasawa, Takashi; Nakamura, Takashi; Ito, Hiromu

    2012-01-01

    Stromal cell-derived factor 1 (SDF-1/CXCL12/PBSF) plays important roles in the biological and physiological functions of haematopoietic and mesenchymal stem cells. This chemokine regulates the formation of multiple organ systems during embryogenesis. However, its roles in skeletal development remain unclear. Here we investigated the roles of SDF-1 in chondrocyte differentiation. We demonstrated that SDF-1 protein was expressed at pre-hypertrophic and hypertrophic chondrocytes in the newly formed endochondral callus of rib fracture as well as in the growth plate of normal mouse tibia by immunohistochemical analysis. Using SDF-1(-/-) mouse embryo, we histologically showed that the total length of the whole humeri of SDF-1(-/-) mice was significantly shorter than that of wild-type mice, which was contributed mainly by shorter hypertrophic and calcified zones in SDF-1(-/-) mice. Actin cytoskeleton of hypertrophic chondrocytes in SDF-1(-/-) mouse humeri showed less F-actin and rounder shape than that of wild-type mice. Primary chondrocytes from SDF-1(-/-) mice showed the enhanced formation of philopodia and loss of F-actin. The administration of SDF-1 to primary chondrocytes of wild-type mice and SDF-1(-/-) mice promoted the formation of actin stress fibers. Organ culture of embryonic metatarsals from SDF-1(-/-) mice showed the growth delay, which was recovered by an exogenous administration of SDF-1. mRNA expression of type X collagen in metatarsals and in primary chondrocytes of SDF-1(-/-) mouse embryo was down-regulated while the administration of SDF-1 to metatarsals recovered. These data suggests that SDF-1 regulates the actin organization and stimulates bone growth by mediating chondrocyte hypertrophy.

  14. X-Ray Diffraction Studies of Cross Linked Chitosan With Different Cross Linking Agents For Waste Water Treatment Application

    NASA Astrophysics Data System (ADS)

    Julkapli, Nurhidayatullaili Muhd; Ahmad, Zulkifli; Akil, Hazizan Md

    2010-01-01

    Chitosan is a polysaccharide derived from N-deacetylation of chitin and receiving increased attention as metal ion absorbent in wastewater treatment application. To improve the performance of chitosan as an absorbent, the cross linking approach was applied. Introduction of cross-linking agent would break the crystal zone in chitosan system, making it less crystal and consequently enhanced the absorption area. Therefore, in this study, cross-linked chitosan were prepared using different of cross-linking agents. The chitosan powder was weighed, dissolved in acetic acid (0.1 M), and dropped slowly into absolute N-methyl pyyrolidone solvent containing cross-linking agent. The cross linking reaction was carried out in N2 environment at 150° C for 6 hours. X-ray diffraction (XRD) analysis was applied to characterize the crystallinity of native and cross linked chitosan. Generally, the XRD patterns of all types of chitosan show two crystalline peaks approximately at 10° and 20° (2θ). However, the cross linked chitosan with longer length of cross linking agents show lower and broader crystalline peaks as compare to those with shorter length. Similarly, the calculated crystalline index (Cr I) also showed this decreasing tendency.

  15. Radiation cross-linked polyolefin-insulated wire

    NASA Astrophysics Data System (ADS)

    Sano, K.; Ishitani, H.

    Because radiation cross-linked polyolefin has excellent mechanical heat resistance, its application limit can be expanded extremely by improving the resistance against heat oxidation and flame. This paper is concerning a halogen free radiation cross-linked polyolefin-insulated wire having excellent heat resistance and flameretardant property, which is used for appliances.

  16. Multi-Scale Modeling of Cross-Linked Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Odegard, G. M.; Herzog, M. N.; Gates, T. S.; Fay, C. C.

    2005-01-01

    The effect of cross-linking single-walled carbon nanotubes on the Young's modulus of a nanotube-reinforced composite is modeled with a multi-scale method. The Young's modulus is predicted as a function of nanotube volume fraction and cross-link density. In this method, the constitutive properties of molecular representative volume elements are determined using molecular dynamics simulation and equivalent-continuum modeling. The Young's modulus is subsequently calculated for cross-linked nanotubes in a matrix which consists of the unreacted cross-linking agent. Two different cross-linking agents are used in this study, one that is short and rigid (Molecule A), and one that is long and flexible (Molecule B). Direct comparisons between the predicted elastic constants are made for the models in which the nanotubes are either covalently bonded or not chemically bonded to the cross-linking agent. At a nanotube volume fraction of 10%, the Young's modulus of Material A is not affected by nanotube crosslinking, while the Young's modulus of Material B is reduced by 64% when the nanotubes are cross-linked relative to the non-cross-linked material with the same matrix.

  17. Pharmacologic Alternatives to Riboflavin Photochemical Corneal Cross-Linking: A Comparison Study of Cell Toxicity Thresholds

    PubMed Central

    Kim, MiJung; Takaoka, Anna; Hoang, Quan V.; Trokel, Stephen L.; Paik, David C.

    2014-01-01

    Purpose. The efficacy of therapeutic cross-linking of the cornea using riboflavin photochemistry (commonly abbreviated as CXL) has caused its use to become widespread. Because there are known chemical agents that cross-link collagenous tissues, it may be possible to cross-link tissue pharmacologically. The present study was undertaken to compare the cell toxicity of such agents. Methods. Nine topical cross-linking agents (five nitroalcohols, glyceraldehyde [GLYC], genipin [GP], paraformaldehyde [FA], and glutaraldehyde [GLUT]) were tested with four different cell lines (immortalized human corneal epithelial cells, human skin fibroblasts, primary bovine corneal endothelial cells, and immortalized human retinal pigment epithelial cells [ARPE-19]). The cells were grown in planar culture and exposed to each agent in a range of concentrations (0.001 mM to 10 mM) for 24 hours followed by a 48-hour recovery phase. Toxicity thresholds were determined by using the trypan blue exclusion method. Results. A semiquantitative analysis using five categories of toxicity/fixation was carried out, based on plate attachment, uptake of trypan blue stain, and cellular fixation. The toxicity levels varied by a factor of 103 with the least toxic being mononitroalcohols and GLYC, intermediate toxicity for a nitrodiol and nitrotriol, and the most toxic being GLUT, FA, GP, and bronopol, a brominated nitrodiol. When comparing toxicity between different cell lines, the levels were generally in agreement. Conclusions. There are significant differences in cell toxicity among potential topical cross-linking compounds. The balance between cross-linking of tissue and cell toxicity should be borne in mind as compounds and strategies to improve mechanical tissue properties through therapeutic tissue cross-linking continue to develop. PMID:24722697

  18. Tip-localized actin polymerization and remodeling, reflected by the localization of ADF, profilin and villin, are fundamental for gravity-sensing and polar growth in characean rhizoids.

    PubMed

    Braun, Markus; Hauslage, Jens; Czogalla, Aleksander; Limbach, Christoph

    2004-07-01

    Polar organization and gravity-oriented, polarized growth of characean rhizoids are dependent on the actin cytoskeleton. In this report, we demonstrate that the prominent center of the Spitzenkörper serves as the apical actin polymerization site in the extending tip. After cytochalasin D-induced disruption of the actin cytoskeleton, the regeneration of actin microfilaments (MFs) starts with the reappearance of a flat, brightly fluorescing actin array in the outermost tip. The actin array rounds up, produces actin MFs that radiate in all directions and is then relocated into its original central position in the center of the Spitzenkörper. The emerging actin MFs rearrange and cross-link to form the delicate, subapical meshwork, which then controls the statolith positioning, re-establishes the tip-high calcium gradient and mediates the reorganization of the Spitzenkörper with its central ER aggregate and the accumulation of secretory vesicles. Tip growth and gravitropic sensing, which includes control of statolith positioning and gravity-induced sedimentation, are not resumed until the original polar actin organization is completely restored. Immunolocalization of the actin-binding proteins, actin-depolymerizing factor (ADF) and profilin, which both accumulate in the center of the Spitzenkörper, indicates high actin turnover and gives additional support for the actin-polymerizing function of this central, apical area. Association of villin immunofluorescence with two populations of thick undulating actin cables with uniform polarity underlying rotational cytoplasmic streaming in the basal region suggests that villin is the major actin-bundling protein in rhizoids. Our results provide evidence that the precise coordination of apical actin polymerization and dynamic remodeling of actin MFs by actin-binding proteins play a fundamental role in cell polarization, gravity sensing and gravity-oriented polarized growth of characean rhizoids.

  19. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1982-01-01

    Cross-linking methods were investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. The pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide - zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  20. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1983-01-01

    Cross-linking methods have been investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. Then pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide-zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  1. Cross-linked polyvinyl alcohol and method of making same

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Sheibley, D. W.; Philipp, W. H. (Inventor)

    1981-01-01

    A film-forming polyvinyl alcohol polymer is mixed with a polyaldehyde-polysaccharide cross-linking agent having at least two monosaccharide units and a plurality of aldehyde groups per molecule, perferably an average of at least one aldehyde group per monosaccharide units. The cross-linking agent, such as a polydialdehyde starch, is used in an amount of about 2.5 to 20% of the theoretical amount required to cross-link all of the available hydroxyl groups of the polyvinyl alcohol polymer. Reaction between the polymer and cross-linking agent is effected in aqueous acidic solution to produce the cross-linked polymer. The polymer product has low electrical resistivity and other properties rendering it suitable for making separators for alkaline batteries.

  2. G-actin provides substrate-specificity to eukaryotic initiation factor 2α holophosphatases

    PubMed Central

    Chen, Ruming; Rato, Cláudia; Yan, Yahui; Crespillo-Casado, Ana; Clarke, Hanna J; Harding, Heather P; Marciniak, Stefan J; Read, Randy J; Ron, David

    2015-01-01

    Dephosphorylation of eukaryotic translation initiation factor 2a (eIF2a) restores protein synthesis at the waning of stress responses and requires a PP1 catalytic subunit and a regulatory subunit, PPP1R15A/GADD34 or PPP1R15B/CReP. Surprisingly, PPP1R15-PP1 binary complexes reconstituted in vitro lacked substrate selectivity. However, selectivity was restored by crude cell lysate or purified G-actin, which joined PPP1R15-PP1 to form a stable ternary complex. In crystal structures of the non-selective PPP1R15B-PP1G complex, the functional core of PPP1R15 made multiple surface contacts with PP1G, but at a distance from the active site, whereas in the substrate-selective ternary complex, actin contributes to one face of a platform encompassing the active site. Computational docking of the N-terminal lobe of eIF2a at this platform placed phosphorylated serine 51 near the active site. Mutagenesis of predicted surface-contacting residues enfeebled dephosphorylation, suggesting that avidity for the substrate plays an important role in imparting specificity on the PPP1R15B-PP1G-actin ternary complex. DOI: http://dx.doi.org/10.7554/eLife.04871.001 PMID:25774600

  3. Isolation and characterization of a regulated form of actin depolymerizing factor.

    PubMed

    Morgan, T E; Lockerbie, R O; Minamide, L S; Browning, M D; Bamburg, J R

    1993-08-01

    Actin depolymerizing factor (ADF) is an 18.5-kD protein with pH-dependent reciprocal F-actin binding and severing/depolymerizing activities. We previously showed developing muscle down-regulates ADF (J. R. Bamburg and D. Bray. 1987. J. Cell Biol. 105: 2817-2825). To further study this process, we examined ADF expression in chick myocytes cultured in vitro. Surprisingly, ADF immunoreactivity increases during the first 7-10 d in culture. This increase is due to the presence of a new ADF species with higher relative molecular weight which reacts identically to brain ADF with antisera raised against either brain ADF or recombinant ADF. We have purified both ADF isoforms from myocytes and have shown by peptide mapping and partial sequence analysis that the new isoform is structurally related to ADF. Immunoprecipitation of both isoforms from extracts of cells prelabeled with [32P]orthophosphate showed that the new isoform is radiolabeled, predominantly on a serine residue, and hence is called pADF. pADF can be converted into a form which comigrates with ADF on 1-D and 2-D gels by treatment with alkaline phosphatase. pADF has been quantified in a number of cells and tissues where it is present from approximately 18% to 150% of the amount of unphosphorylated ADF. pADF, unlike ADF, does not bind to G-actin, or affect the rate or extent of actin assembly. Four ubiquitous protein kinases failed to phosphorylate ADF in vitro suggesting that ADF phosphorylation in vivo is catalyzed by a more specific kinase. We conclude that the ability to regulate ADF activity is important to muscle development since myocytes have both pre- and posttranslational mechanisms for regulating ADF activity. The latter mechanism is apparently a general one for cell regulation of ADF activity.

  4. Isolation and characterization of a regulated form of actin depolymerizing factor

    PubMed Central

    1993-01-01

    Actin depolymerizing factor (ADF) is an 18.5-kD protein with pH- dependent reciprocal F-actin binding and severing/depolymerizing activities. We previously showed developing muscle down-regulates ADF (J. R. Bamburg and D. Bray. 1987. J. Cell Biol. 105: 2817-2825). To further study this process, we examined ADF expression in chick myocytes cultured in vitro. Surprisingly, ADF immunoreactivity increases during the first 7-10 d in culture. This increase is due to the presence of a new ADF species with higher relative molecular weight which reacts identically to brain ADF with antisera raised against either brain ADF or recombinant ADF. We have purified both ADF isoforms from myocytes and have shown by peptide mapping and partial sequence analysis that the new isoform is structurally related to ADF. Immunoprecipitation of both isoforms from extracts of cells prelabeled with [32P]orthophosphate showed that the new isoform is radiolabeled, predominantly on a serine residue, and hence is called pADF. pADF can be converted into a form which comigrates with ADF on 1-D and 2-D gels by treatment with alkaline phosphatase. pADF has been quantified in a number of cells and tissues where it is present from approximately 18% to 150% of the amount of unphosphorylated ADF. pADF, unlike ADF, does not bind to G-actin, or affect the rate or extent of actin assembly. Four ubiquitous protein kinases failed to phosphorylate ADF in vitro suggesting that ADF phosphorylation in vivo is catalyzed by a more specific kinase. We conclude that the ability to regulate ADF activity is important to muscle development since myocytes have both pre- and posttranslational mechanisms for regulating ADF activity. The latter mechanism is apparently a general one for cell regulation of ADF activity. PMID:7687605

  5. Surface characteristics determining the cell compatibility of ionically cross-linked alginate gels.

    PubMed

    Machida-Sano, Ikuko; Hirakawa, Makoto; Matsumoto, Hiroki; Kamada, Mitsuki; Ogawa, Sakito; Satoh, Nao; Namiki, Hideo

    2014-04-01

    In this study we investigated differences in the characteristics determining the suitability of five types of ion (Fe(3+), Al(3+), Ca(2+), Ba(2+) and Sr(2+))-cross-linked alginate films as culture substrates for cells. Human dermal fibroblasts were cultured on each alginate film to examine the cell affinity of the alginates. Since cell behavior on the surface of a material is dependent on the proteins adsorbed to it, we investigated the protein adsorption ability and surface features (wettability, morphology and charge) related to the protein adsorption abilities of alginate films. We observed that ferric, aluminum and barium ion-cross-linked alginate films supported better cell growth and adsorbed higher amounts of serum proteins than other types. Surface wettability analysis demonstrated that ferric and aluminum ion-cross-linked alginates had moderate hydrophilic surfaces, while other types showed highly hydrophilic surfaces. The roughness was exhibited only on barium ion-cross-linked alginate surface. Surface charge measurements revealed that alginate films had negatively charged surfaces, and showed little difference among the five types of gel. These results indicate that the critical factors of ionically cross-linked alginate films determining the protein adsorption ability required for their cell compatibility may be surface wettability and morphology. PMID:24496019

  6. Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering.

    PubMed

    Jang, Jinah; Seol, Young-Joon; Kim, Hyeon Ji; Kundu, Joydip; Kim, Sung Won; Cho, Dong-Woo

    2014-09-01

    An effective cross-linking of alginate gel was made through reaction with calcium carbonate (CaCO3). We used human chondrocytes as a model cell to study the effects of cross-linking density. Three different pore size ranges of cross-linked alginate hydrogels were fabricated. The morphological, mechanical, and rheological properties of various alginate hydrogels were characterized and responses of biosynthesis of cells encapsulated in each gel to the variation in cross-linking density were investigated. Desired outer shape of structure was maintained when the alginate solution was cross-linked with the applied method. The properties of alginate hydrogel could be tailored through applying various concentrations of CaCO3. The rate of synthesized GAGs and collagens was significantly higher in human chondrocytes encapsulated in the smaller pore structure than that in the larger pore structure. The expression of chondrogenic markers, including collagen type II and aggrecan, was enhanced in the smaller pore structure. It was found that proper structural morphology is a critical factor to enhance the performance and tissue regeneration.

  7. Solution processed organic light-emitting diodes using the plasma cross-linking technology

    NASA Astrophysics Data System (ADS)

    He, Kongduo; Liu, Yang; Gong, Junyi; Zeng, Pan; Kong, Xun; Yang, Xilu; Yang, Cheng; Yu, Yan; Liang, Rongqing; Ou, Qiongrong

    2016-09-01

    Solution processed multilayer organic light-emitting diodes (OLEDs) present challenges, especially regarding dissolution of the first layer during deposition of a second layer. In this work, we first demonstrated a plasma cross-linking technology to produce a solution processed OLED. The surfaces of organic films can be cross-linked after mixed acetylene and Ar plasma treatment for several tens of seconds and resist corrosion of organic solvent. The film thickness and surface morphology of emissive layers (EMLs) with plasma treatment and subsequently spin-rinsed with chlorobenzene are nearly unchanged. The solution processed triple-layer OLED is successfully fabricated and the current efficiency increases 50% than that of the double-layer OLED. Fluorescent characteristics of EMLs are also observed to investigate factors influencing the efficiency of the triple-layer OLED. Plasma cross-linking technology may open up a new pathway towards fabrication of all-solution processed multilayer OLEDs and other soft electronic devices.

  8. Redox-Responsive, Core Cross-Linked Polyester Micelles

    PubMed Central

    Zhang, Zhonghai; Yin, Lichen; Tu, Chunlai; Song, Ziyuan; Zhang, Yanfeng; Xu, Yunxiang; Tong, Rong; Zhou, Qin; Ren, Jie; Cheng, Jianjun

    2013-01-01

    Monomethoxy poly(ethylene glycol)-b-poly(Tyr(alkynyl)-OCA), a biodegradable amphiphilic block copolymer, was synthesized by means of ring-opening polymerization of 5-(4-(prop-2-yn-1-yloxy)benzyl)-1,3-dioxolane-2,4-dione (Tyr(alkynyl)-OCA) and used to prepare core cross-linked polyester micelles via click chemistry. Core cross-linking not only improved the structural stability of the micelles but also allowed controlled release of cargo molecules in response to the reducing reagent. This new class of core cross-linked micelles can potentially be used in controlled release and drug delivery applications. PMID:23536920

  9. 21 CFR 177.2420 - Polyester resins, cross-linked.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... following prescribed conditions: (a) The cross-linked polyester resins are produced by the condensation of... fiber Polyester fiber produced by the condensation of one or more of the acids listed in paragraph...

  10. Spectral Library Searching To Identify Cross-Linked Peptides.

    PubMed

    Schweppe, Devin K; Chavez, Juan D; Navare, Arti T; Wu, Xia; Ruiz, Bianca; Eng, Jimmy K; Lam, Henry; Bruce, James E

    2016-05-01

    Methods harnessing protein cross-linking and mass spectrometry (XL-MS) offer high-throughput means to identify protein-protein interactions (PPIs) and structural interfaces of protein complexes. Yet, specialized data dependent methods and search algorithms are often required to confidently assign peptide identifications to spectra. To improve the efficiency of matching high confidence spectra, we developed a spectral library based approach to search cross-linked peptide data derived from Protein Interaction Reporter (PIR) methods using the spectral library search algorithm, SpectraST. Spectral library matching of cross-linked peptide data from query spectra increased the absolute number of confident peptide relationships matched to spectra and thereby the number of PPIs identified. By matching library spectra from bona fide, previously established PIR-cross-linked peptide relationships, spectral library searching reduces the need for continued, complex mass spectrometric methods to identify peptide relationships, increases coverage of relationship identifications, and improves the accessibility of XL-MS technologies.

  11. Large Scale Chemical Cross-linking Mass Spectrometry Perspectives.

    PubMed

    Zybailov, Boris L; Glazko, Galina V; Jaiswal, Mihir; Raney, Kevin D

    2013-02-01

    The spectacular heterogeneity of a complex protein mixture from biological samples becomes even more difficult to tackle when one's attention is shifted towards different protein complex topologies, transient interactions, or localization of PPIs. Meticulous protein-by-protein affinity pull-downs and yeast-two-hybrid screens are the two approaches currently used to decipher proteome-wide interaction networks. Another method is to employ chemical cross-linking, which gives not only identities of interactors, but could also provide information on the sites of interactions and interaction interfaces. Despite significant advances in mass spectrometry instrumentation over the last decade, mapping Protein-Protein Interactions (PPIs) using chemical cross-linking remains time consuming and requires substantial expertise, even in the simplest of systems. While robust methodologies and software exist for the analysis of binary PPIs and also for the single protein structure refinement using cross-linking-derived constraints, undertaking a proteome-wide cross-linking study is highly complex. Difficulties include i) identifying cross-linkers of the right length and selectivity that could capture interactions of interest; ii) enrichment of the cross-linked species; iii) identification and validation of the cross-linked peptides and cross-linked sites. In this review we examine existing literature aimed at the large-scale protein cross-linking and discuss possible paths for improvement. We also discuss short-length cross-linkers of broad specificity such as formaldehyde and diazirine-based photo-cross-linkers. These cross-linkers could potentially capture many types of interactions, without strict requirement for a particular amino-acid to be present at a given protein-protein interface. How these shortlength, broad specificity cross-linkers be applied to proteome-wide studies? We will suggest specific advances in methodology, instrumentation and software that are needed to make

  12. Cross-linking and the molecular packing of corneal collagen

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.; Chandler, G. S.; Tanzawa, H.; Katz, E. P.

    1996-01-01

    We have quantitatively characterized, for the first time, the cross-linking in bovine cornea collagen as a function of age. The major iminium reducible cross-links were dehydro-hydroxylysinonorleucine (deH-HLNL) and dehydro-histidinohydroxymerodesmosine (deH-HHMD). The former rapidly diminished after birth; however, the latter persisted in mature animals at a level of 0.3 - 0.4 moles/mole of collagen. A nonreducible cross-link, histidinohydroxylysinonorleucine (HHL), previously found only in skin, was also found to be a major mature cross-link in cornea. The presence of HHL indicates that cornea fibrils have a molecular packing similar to skin collagen. However, like deH-HHMD, the HHL content in corneal fibrils only reaches a maximum value with time about half that of skin. These data suggest that the corneal fibrils are comprised of discrete filaments that are internally stabilized by HHL and deH-HHMD cross-links. This pattern of intermolecular cross-linking would facilitate the special collagen swelling property required for corneal transparency.

  13. Xenopus laevis actin-depolymerizing factor/cofilin: a phosphorylation- regulated protein essential for development

    PubMed Central

    1996-01-01

    Two cDNAs, isolated from a Xenopus laevis embryonic library, encode proteins of 168 amino acids, both of which are 77% identical to chick cofilin and 66% identical to chick actin-depolymerizing factor (ADF), two structurally and functionally related proteins. These Xenopus ADF/cofilins (XADs) differ from each other in 12 residues spread throughout the sequence but do not differ in charge. Purified GST- fusion proteins have pH-dependent actin-depolymerizing and F-actin- binding activities similar to chick ADF and cofilin. Similarities in the developmental and tissue specific expression, embryonic localization, and in the cDNA sequence of the noncoding regions, suggest that the two XACs arise from allelic variants of the pseudotetraploid X. laevis. Immunofluorescence localization of XAC in oocyte sections with an XAC-specific monoclonal antibody shows it to be diffuse in the cortical cytoplasm. After fertilization, increased immunostaining is observed in two regions: along the membrane, particularly that of the vegetal hemisphere, and at the interface between the cortical and animal hemisphere cytoplasm. The cleavage furrow and the mid-body structure are stained at the end of first cleavage. Neuroectoderm derived tissues, notochord, somites, and epidermis stain heavily either continuously or transiently from stages 18-34. A phosphorylated form of XAC (pXAC) was identified by 2D Western blotting, and it is the only species found in oocytes. Dephosphorylation of >60% of the pXAC occurs within 30 min after fertilization. Injection of one blastomere at the 2 cell stage, either with constitutively active XAC or with an XAC inhibitory antibody, blocked cleavage of only the injected blastomere in a concentration- dependent manner without inhibiting nuclear division. The cleavage furrow of eggs injected with constitutively active XAC completely regressed. Blastomeres injected with neutralized antibody developed normally. These results suggest that XAC is necessary for

  14. Elasticity of F-actin networks

    NASA Astrophysics Data System (ADS)

    Gardel, Margaret Lise

    This thesis presents a study of the elasticity and microstructure of three filamentous actin (F-actin) based materials. Using bulk rheology, microrheology, multiple particle tracking and imaging techniques, we study the microscopic origins of the mechanical properties of F-actin networks. We briefly introduce aspects of F-actin and rheology essential to provide a background for and motivate this thesis in Chapter 1. In Chapter 2, we describe the materials and methods used. An introduction to microrheology is given in Chapter 3. In Chapter 4, we study solutions of entangled F-actin. We elucidate the microscopic origins of bulk elasticity using microrheology techniques. We also show that multiple particle tracking can also probe the dynamics of the F-actin solution microstructure. We explore the effect of rigid, incompliant chemical cross-links between actin filaments in Chapter 5. We explore changes in the network microstructure as the concentration of cross-links is varied. We find that the elastic stiffness of these networks is extremely sensitive to small changes in cross-link density. Despite this large variation, the linear viscoelasticity of all networks can be scaled onto a universal master curve; this scaling reveals that the mechanical dissipation of the networks is due to thermal fluctuations of F-actin. At large stresses, the mechanical stiffness of these networks diverges. The form of this stress stiffening response is consistent with the non-linear force extension of a single semi-flexible polymer. Thus, over a large range of conditions, the linear and nonlinear mechanical response of rigidly cross-linked networks is entropic in origin. Finally, at very low cross-link and filament densities, we observe a transition to a qualitatively different type of elasticity; this is consistent with a transition to an enthalpic network elasticity dominated by bending of F-actin. In Chapter 6, we study the elastic properties of F-actin networks assembled with a

  15. 1,2,3,4-Diepoxybutane-Induced DNA-Protein Cross-Linking in Human Fibrosarcoma (HT1080) Cells

    PubMed Central

    Gherezghiher, Teshome B.; Ming, Xun; Villalta, Peter; Campbell, Colin; Tretyakova, Natalia Y.

    2013-01-01

    1,2,3,4-diepoxybutane (DEB) is the key carcinogenic metabolite of 1,3-butadiene (BD), an important industrial and environmental chemical present in urban air and in cigarette smoke. DEB is a genotoxic bis-electrophile capable of cross-linking cellular biomolecules to form DNA-DNA and DNA-protein cross-links (DPCs). In the present work, mass spectrometry-based proteomics was employed to characterize DEB-mediated DNA-protein cross-linking in human fibrosarcoma (HT1080) cells. Over 150 proteins including histones, high mobility group proteins, transcription factors, splicing factors, and tubulins were found among those covalently cross-linked to chromosomal DNA in the presence of DEB. A large portion of the cross-linked proteins are known factors involved in DNA binding, transcriptional regulation, cell signaling, DNA repair, and DNA damage response. HPLC-ESI+-MS/MS analysis of total proteolytic digests revealed the presence of 1-(S-cysteinyl)-4-(guan-7-yl)-2,3-butanediol conjugates, confirming that DEB forms DPCs between cysteine thiols within proteins and the N-7 guanine positions within DNA. However, relatively high concentrations of DEB were required to achieve significant DPC formation, indicating that it is a poor cross-linking agent as compared to antitumor nitrogen mustards and platinum compounds. PMID:23506368

  16. Spectroscopic characterization of collagen cross-links in bone

    NASA Technical Reports Server (NTRS)

    Paschalis, E. P.; Verdelis, K.; Doty, S. B.; Boskey, A. L.; Mendelsohn, R.; Yamauchi, M.

    2001-01-01

    Collagen is the most abundant protein of the organic matrix in mineralizing tissues. One of its most critical properties is its cross-linking pattern. The intermolecular cross-linking provides the fibrillar matrices with mechanical properties such as tensile strength and viscoelasticity. In this study, Fourier transform infrared (FTIR) spectroscopy and FTIR imaging (FTIRI) analyses were performed in a series of biochemically characterized samples including purified collagen cross-linked peptides, demineralized bovine bone collagen from animals of different ages, collagen from vitamin B6-deficient chick homogenized bone and their age- and sex-matched controls, and histologically stained thin sections from normal human iliac crest biopsy specimens. One region of the FTIR spectrum of particular interest (the amide I spectral region) was resolved into its underlying components. Of these components, the relative percent area ratio of two subbands at approximately 1660 cm(-1) and approximately 1690 cm(-1) was related to collagen cross-links that are abundant in mineralized tissues (i.e., pyridinoline [Pyr] and dehydrodihydroxylysinonorleucine [deH-DHLNL]). This study shows that it is feasible to monitor Pyr and DHLNL collagen cross-links spatial distribution in mineralized tissues. The spectroscopic parameter established in this study may be used in FTIRI analyses, thus enabling the calculation of relative Pyr/DHLNL amounts in thin (approximately 5 microm) calcified tissue sections with a spatial resolution of approximately 7 microm.

  17. Collagen/elastin hydrogels cross-linked by squaric acid.

    PubMed

    Skopinska-Wisniewska, J; Kuderko, J; Bajek, A; Maj, M; Sionkowska, A; Ziegler-Borowska, M

    2016-03-01

    Hydrogels based on collagen and elastin are very valuable materials for medicine and tissue engineering. They are biocompatible; however their mechanical properties and resistance for enzymatic degradation need to be improved by cross-linking. Up to this point many reagents have been tested but more secure reactants are still sought. Squaric acid (SqAc), 3,4-dihydroxy 3-cyclobutene 1,2-dione, is a strong, cyclic acid, which reacts easily with amine groups. The properties of hydrogels based on collagen/elastin mixtures (95/5, 90/10) containing 5%, 10% and 20% of SqAc and neutralized via dialysis against deionized water were tested. Cross-linked, 3-D, transparent hydrogels were created. The cross-linked materials are stiffer and more resistant to enzymatic degradation than those that are unmodified. The pore size, swelling ability and surface polarity are reduced due to 5% and 10% of SqAc addition. At the same time, the cellular response is not significantly affected by the cross-linking. Therefore, squaric acid would be regarded as a safe, effective cross-linking agent.

  18. Gamma Interferon-Induced Guanylate Binding Protein 1 Is a Novel Actin Cytoskeleton Remodeling Factor

    PubMed Central

    Ostler, Nicole; Britzen-Laurent, Nathalie; Liebl, Andrea; Naschberger, Elisabeth; Lochnit, Günter; Ostler, Markus; Forster, Florian; Kunzelmann, Peter; Ince, Semra; Supper, Verena; Praefcke, Gerrit J. K.; Schubert, Dirk W.; Stockinger, Hannes; Herrmann, Christian

    2014-01-01

    Gamma interferon (IFN-γ) regulates immune defenses against viruses, intracellular pathogens, and tumors by modulating cell proliferation, migration, invasion, and vesicle trafficking processes. The large GTPase guanylate binding protein 1 (GBP-1) is among the cellular proteins that is the most abundantly induced by IFN-γ and mediates its cell biologic effects. As yet, the molecular mechanisms of action of GBP-1 remain unknown. Applying an interaction proteomics approach, we identified actin as a strong and specific binding partner of GBP-1. Furthermore, GBP-1 colocalized with actin at the subcellular level and was both necessary and sufficient for the extensive remodeling of the fibrous actin structure observed in IFN-γ-exposed cells. These effects were dependent on the oligomerization and the GTPase activity of GBP-1. Purified GBP-1 and actin bound to each other, and this interaction was sufficient to impair the formation of actin filaments in vitro, as demonstrated by atomic force microscopy, dynamic light scattering, and fluorescence-monitored polymerization. Cosedimentation and band shift analyses demonstrated that GBP-1 binds robustly to globular actin and slightly to filamentous actin. This indicated that GBP-1 may induce actin remodeling via globular actin sequestering and/or filament capping. These results establish GBP-1 as a novel member within the family of actin-remodeling proteins specifically mediating IFN-γ-dependent defense strategies. PMID:24190970

  19. Extreme dryness and DNA-protein cross-links

    NASA Astrophysics Data System (ADS)

    Bieger-Dose, A.; Dose, K.; Meffert, R.; Mehler, M.; Risi, S.

    Exposure of fungal conidia (Aspergillus ochraceus) or spores of Bacillus subtilis to extreme dryness or vacuum induces DNA lesions, including strand breaks and the formation of DNA-protein cross-links. In wet cells only a small amount of protein is bound to DNA, but exposure to conditions of lowered water activity results in an increasing number of cross-links between DNA and proteins. In fungal conidia these cross-links are detected after selective iodination (125J) of the DNA-bound proteins followed by gel electrophoresis and subsequent autoradiography. Another approach is the labelling of DNA with 32p by means of nick translation and the detection of differences in the electrophoretic mobility of DNA before and after digestion with proteinase K of proteins bound to DNA.

  20. Mixed-Isotope Labeling with LC-IMS-MS for Characterization of Protein–Protein Interactions by Chemical Cross-Linking

    SciTech Connect

    Merkley, Eric D.; Baker, Erin S.; Crowell, Kevin L.; Orton, Daniel J.; Taverner, Thomas; Ansong, Charles; Ibrahim, Yehia M.; Burnet, Meagan C.; Cort, John R.; Anderson, Gordon A.; Smith, Richard D.; Adkins, Joshua N.

    2013-02-20

    Chemical cross-linking of proteins followed by proteolysis and mass spectrometric analysis of the resulting cross-linked peptides can provide insights into protein structure and protein-protein interactions. However, cross-linked peptides are by necessity of low stoichometry and have different physicochemical properties than linear peptides, routine unambiguous identification of the cross-linked peptides has remained difficult. To address this challenge, we demonstrated the use of liquid chromatography and ion mobility separations coupled with mass spectrometry in combination with a heavy-isotope labeling method. The combination of mixed-isotope cross-linking and ion mobility provided unique and easily interpretable spectral multiplet features for the intermolecular cross-linked peptides. Application of the method to two different homodimeric proteins - SrfN, a virulence factor from Salmonella Typhimurium and SO_2176, a protein of unknown function from Shewanella oneidensis- revealed several cross-linked peptides from both proteins that were identified with a low false discovery rate (estimated using a decoy approach). A greater number of cross-linked peptides were identified using ion mobility drift time information in the analysis than when the data were summed across the drift time dimension before analysis. The identified cross-linked peptides migrated more quickly in the ion mobility drift tube than the unmodified peptides.

  1. Actinic Keratosis

    MedlinePlus

    ... rashes clinical tools newsletter | contact Share | Actinic Keratosis (Solar Keratosis) Information for adults A A A Actinic ... the touch. Overview Actinic keratoses, also known as solar keratoses, are small rough or scaly areas of ...

  2. In vitro expression of the alpha-smooth muscle actin isoform by rat lung mesenchymal cells: regulation by culture condition and transforming growth factor-beta.

    PubMed

    Mitchell, J J; Woodcock-Mitchell, J L; Perry, L; Zhao, J; Low, R B; Baldor, L; Absher, P M

    1993-07-01

    alpha-Smooth muscle actin (alpha SM actin)-containing cells recently have been demonstrated in intraalveolar lesions in both rat and human tissues following lung injury. In order to develop model systems for the study of such cells, we examined cultured lung cell lines for this phenotype. The adult rat lung fibroblast-like "RL" cell lines were found to express alpha SM actin mRNA and protein and to organize this actin into stress fiber-like structures. Immunocytochemical staining of subclones of the RL87 line demonstrated the presence in the cultures of at least four cell phenotypes, one that fails to express alpha SM actin and three distinct morphologic types that do express alpha SM actin. The proportion of cellular actin that is the alpha-isoform was modulated by the culture conditions. RL cells growing at low density expressed minimal alpha SM actin. On reaching confluent densities, however, alpha SM actin increased to at least 20% of the total actin content. This effect, combined with the observation that the most immunoreactive cells were those that displayed overlapping cell processes in culture, suggests that cell-cell contact may be involved in actin isoform regulation in these cells. Similar to the response of some smooth muscle cell lines, alpha SM actin expression in RL cells also was promoted by conditions, e.g., maintenance in low serum medium, which minimize cell division. alpha SM actin expression was modulated in RL cells by the growth factor transforming growth factor-beta. Addition of this cytokine to growing cells substantially elevated the proportion of alpha SM actin protein.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. FTIR Spectroscopic Studies on Cross Linking of SU-8 Photoresist

    NASA Astrophysics Data System (ADS)

    Kalaiselvi, S. M. P.; Tan, T. L.; Rawat, R. S.; Lee, P.; Heussler, S. P.; Breese, M. B. H.

    2013-11-01

    The usage of chemically-amplified, negative tone SU-8 photoresist is numerous, spanning industrial, scientific and medical fields. Hence, in this study, some preliminary studies were conducted to understand the dosage and heat treatment requirements of the SU-8 photoresist essential for pattern generation using X-ray lithography. In this work, using Synchrotron as the X-ray source, SU-8 photoresist was characterized for X-ray lithography in terms of its process parameters such as X-ray exposure dose, post exposure bake (PEB) time and temperature for various photoresist thicknesses which is considered worthwhile in view of applications of SU-8 for the fabrication of very high aspect ratio micro structures. The process parameters were varied and the resultant cross linking of the molecular chains of the photoresist was accurately monitored using a Fourier Transform Infra-Red (FTIR) spectrometer and the results are discussed. The infrared absorption peak at 914 cm-1 in the spectrum of the SU-8 photoresist was found to be a useful indicator for the completion of cross linking in the SU-8 photoresist. Results show that the cross linking of the SU-8 photoresist is at a higher rate from 0 J/cm3 to 30 J/cm3 after which the peak almost saturates regardless of the PEB time. It is a good evidence for the validation of dosage requirement of SU-8 photoresist for effective completion of cross linking, which in turn is a requirement for efficient fabrication of micro and nano structures. An analogous behavior was also observed between the extent of cross linking and the PEB time and temperature. The rate of cross linking declines after a certain period of PEB time regardless of PEB temperature. The obtained results also show a definite relation between variation of the absorbance area of the peak at 914 cm-1 and the X-ray exposure dose.

  4. Enhanced retention of encapsulated ions in cross-linked polymersomes.

    PubMed

    Wang, Guanglin; Hoornweg, Arentien; Wolterbeek, Hubert T; Franken, Linda E; Mendes, Eduardo; Denkova, Antonia G

    2015-03-19

    Polymer vesicles (polymersomes) composed of poly(butadiene-b-poly(ethylene oxide)) (PB-b-PEO) are known for their stability and limited permeability. However, when these vesicles are diluted, substances, such as ions, encapsulated in the aqueous cavity can be released due to vesicle disruption. In previous studies, we have shown that these vesicles can be loaded efficiently with sufficient quantities of radionuclides to allow application in radionuclide therapy and pharmacokinetics evaluation, provided that there is no loss of the encapsulated radionuclides when diluted in the bloodstream. In this paper, in order to stabilize the carriers, we propose to cross-link the hydrophobic part of the polymersome membrane and to investigate whether such cross-linking induced by γ radiation can enhance the retention of ions (radionuclides). Retention of ions encapsulated in the lumen in such cross-linked carriers has not been previously quantitatively evaluated, although it is of ultimate importance in any medical application. Here, we also investigate how cross-linking affects the transport of radionuclides (loading) through the membrane of the vesicles. The integrity of the vesicles as a function of the radiation dose is also investigated, including morphological changes. The results show that cross-linking hinders the transport of ions through the membrane, which also leads to higher retention of ions encapsulated prior to cross-linking in the vesicles. Electron micrographs show that the shape of the polymersomes is not greatly affected by γ radiation when left in the original solvent (phosphate buffered saline (PBS) or Milli-Q water), but when diluted in a good solvent for both blocks, i.e., tetrahydrofuran (THF), disintegration of the vesicles and the appearance of droplet-like structures is observed, which had not been reported previously. The results of the present study help to formulate polymersomes as carriers for radionuclide therapy, demonstrating a way to

  5. Swelling of cross-linked polystyrene spheres in toluene vapor

    SciTech Connect

    Zhang, R.; Graf, K.; Berger, R.

    2006-11-27

    The swelling behavior of individual micron-sized polystyrene (PS) spheres in toluene vapor was studied via mass loading by means of micromechanical cantilever sensors. For 4%-8% cross-linked PS a mass increase of 180% in saturated toluene vapor was measured. The mass of the swollen PS sphere decreases with increasing exposure time to ultraviolet light. In addition, the swelling response is significantly different between the first and the second exposure to toluene vapor. This is attributed to the formation of a cross-linked shell at the surface of the PS spheres. Shape persistent parts were observed for locally irradiated PS spheres.

  6. Cross-Linked Nanotube Materials with Variable Stiffness Tethers

    NASA Technical Reports Server (NTRS)

    Frankland, Sarah-Jane V.; Odegard, Gregory M.; Herzog, Matthew N.; Gates, Thomas S.; Fay, Catherine C.

    2004-01-01

    The constitutive properties of a cross-linked single-walled carbon nanotube material are predicted with a multi-scale model. The material is modeled as a transversely isotropic solid using concepts from equivalent-continuum modeling. The elastic constants are determined using molecular dynamics simulation. Some parameters of the molecular force field are determined specifically for the cross-linker from ab initio calculations. A demonstration of how the cross-linked nanotubes may affect the properties of a nanotube/polyimide composite is included using a micromechanical analysis.

  7. A gel network constituted by rigid schizophyllan chains and nonpermanent cross-links.

    PubMed

    Fang, Yapeng; Takahashi, Rheo; Nishinari, Katsuyoshi

    2004-01-01

    This work reports a gel network formed by rigid schizophyllan (SPG) chains with Borax as a cross-linking agent. The formed cross-links are non-permanent and somewhat dynamic in nature because the cross-linking reaction is governed by a complexation equilibrium. Gelation processes are traced by dynamic viscoelastic measurements to examine the effects of Borax content, SPG concentration, temperature, salt concentration, salt type, and strain. The first-order kinetic model containing three parameters, t(0) (induction time), 1/tau(c) (gelation rate), and (saturated storage modulus), is successfully applied to describe the gelation of the SPG-Borax system. Gelation occurs faster at higher Borax content, higher SPG concentration, higher salt concentration, or lower temperature. Moreover the gelation is cation-type-specific. Storage modulus is a linear function of both Borax content and SPG concentration. The linear relationship between storage modulus and Borax content can be explained by a modified ideal rubber elasticity theory with a front factor alpha to take into account the presence of ineffective cross-links and the effect of SPG chain rigidity. On the other hand, the linear dependence of storage modulus on SPG concentration could be explained on the basis of chain-chain contacting behavior of extended SPG chains. Apparent activation energy and cross-linking enthalpy are calculated to be -74.5 and -32.4 kJ/mol for the present system. Strain sweep measurements manifest that the elasticity behavior of this gel starts to deviate from Gaussian-chain network at a small strain of 10%.

  8. Actin polymerization and intracellular solvent flow in cell surface blebbing

    PubMed Central

    1995-01-01

    The cortical actin gel of eukaryotic cells is postulated to control cell surface activity. One type of protrusion that may offer clues to this regulation are the spherical aneurysms of the surface membrane known as blebs. Blebs occur normally in cells during spreading and alternate with other protrusions, such as ruffles, suggesting similar protrusive machinery is involved. We recently reported that human melanoma cell lines deficient in the actin filament cross-linking protein, ABP-280, show prolonged blebbing, thus allowing close study of blebs and their dynamics. Blebs expand at different rates of volume increase that directly predict the final size achieved by each bleb. These rates decrease as the F-actin concentration of the cells increase over time after plating on a surface, but do so at lower concentrations in ABP-280 expressing cells. Fluorescently labeled actin and phalloidin injections of blebbing cells indicate that a polymerized actin structure is not present initially, but appears later and is responsible for stopping further bleb expansion. Therefore, it is postulated that blebs occur when the fluid-driven expansion of the cell membrane is sufficiently rapid to initially outpace the local rate of actin polymerization. In this model, the rate of intracellular solvent flow driving this expansion decreases as cortical gelation is achieved, whether by factors such as ABP-280, or by concentrated actin polymers alone, thereby leading to decreased size and occurrence of blebs. Since the forces driving bleb extension would always be present in a cell, this process may influence other cell protrusions as well. PMID:7790356

  9. Characterization of a novel cross-linked lipase: impact of cross-linking on solubility and release from drug product.

    PubMed

    Hetrick, Evan M; Sperry, David C; Nguyen, Hung K; Strege, Mark A

    2014-04-01

    Liprotamase is a novel non-porcine pancreatic enzyme replacement therapy containing purified biotechnology-derived lipase, protease, and amylase together with excipients in a capsule formulation. To preserve the structural integrity and biological activity of lipase (the primary drug substance) through exposure of the drug product to the low-pH gastric environment, the enzyme was processed through the use of cross-linked enzyme crystal (CLEC) technology, making the lipase-CLEC drug substance insoluble under acidic conditions but fully soluble at neutral pH and in alkaline environments. In this report we characterize the degree of cross-linking for lipase-CLEC and demonstrate its impact on lipase-CLEC solubility and release from the drug product under relevant physiological pH conditions. Cross-linked lipase-CLEC was characterized via size exclusion chromatography (SEC) and capillary electrophoresis sodium dodecyl sulfate polyacrylamide gel electrophoresis (CE-SDS-PAGE). A combination of methodologies was developed to understand the impact of cross-linking on drug product release. Dissolution evaluation using USP Apparatus 2 at pH 5.0 with an enzyme activity-based end point demonstrated solubility discrimination based on degree of cross-linking, while full release was demonstrated at pH 6.5. The dissolution of the drug product was also evaluated using a dual-stage test employing a USP Apparatus 4 flow-through system to mimic the changing pH environments experienced in the stomach and intestine to understand the impact of cross-linking on drug product performance. Use of USP Apparatus 4 to characterize the pH-dependent release of lipase-CLEC represents a novel approach compared to the Apparatus 1 test employing an acid-challenge stage outlined in the USP for delayed-release pancrelipase, and the advantages of this approach may prove useful for understanding the pH-dependence of release for other drug products. Collectively, these studies confirmed that degree of

  10. DNA-binding site for two skeletal actin promoter factors is important for expression in muscle cells

    SciTech Connect

    Walsh, K.; Schimmel, P.

    1988-04-01

    Two nuclear factors bind to the same site in the chicken skeletal actin promoter. Mutations in the footprint sequence which eliminate detectable binding decrease expression in transfected skeletal muscle cells by a factor of 25 to 50 and do not elevate the flow expression in nonmuscle cells. These results show that the factor-binding site contributes to the activation of expression in muscle cells and that it alone does not contribute significantly to repress expression in nonmuscle cells.

  11. Transglutaminases: Widespread Cross-linking Enzymes in Plants

    PubMed Central

    Serafini-Fracassini, Donatella; Del Duca, Stefano

    2008-01-01

    Background Transglutaminases have been studied in plants since 1987 in investigations aimed at interpreting some of the molecular mechanisms by which polyamines affect growth and differentiation. Transglutaminases are a widely distributed enzyme family catalysing a myriad of biological reactions in animals. In plants, the post-translational modification of proteins by polyamines forming inter- or intra-molecular cross-links has been the main transglutaminase reaction studied. Characteristics of Plant Transglutaminases The few plant transglutaminases sequenced so far have little sequence homology with the best-known animal enzymes, except for the catalytic triad; however, they share a possible structural homology. Proofs of their catalytic activity are: (a) their ability to produce glutamyl-polyamine derivatives; (b) their recognition by animal transglutaminase antibodies; and (c) biochemical features such as calcium-dependency, etc. However, many of their fundamental biochemical and physiological properties still remain elusive. Transglutaminase Activity is Ubiquitous It has been detected in algae and in angiosperms in different organs and sub-cellular compartments, chloroplasts being the best-studied organelles. Possible Roles Possible roles concern the structural modification of specific protein substrates. In chloroplasts, transglutaminases appear to stabilize the photosynthetic complexes and Rubisco, being regulated by light and other factors, and possibly exerting a positive effect on photosynthesis and photo-protection. In the cytosol, they modify cytoskeletal proteins. Preliminary reports suggest an involvement in the cell wall construction/organization. Other roles appear to be related to fertilization, abiotic and biotic stresses, senescence and programmed cell death, including the hypersensitive reaction. Conclusions The widespread occurrence of transglutaminases activity in all organs and cell compartments studied suggests a relevance for their still

  12. Specific covalent immobilization of proteins through dityrosine cross-links.

    PubMed

    Endrizzi, Betsy J; Huang, Gang; Kiser, Patrick F; Stewart, Russell J

    2006-12-19

    Dityrosine cross-links are widely observed in nature in structural proteins such as elastin and silk. Natural oxidative cross-linking between tyrosine residues is catalyzed by a diverse group of metalloenzymes. Dityrosine formation is also catalyzed in vitro by metal-peptide complexes such as Gly-Gly-His-Ni(II). On the basis of these observations, a system was developed to specifically and covalently surface immobilize proteins through dityrosine cross-links. Methacrylate monomers of the catalytic peptide Gly-Gly-His-Tyr-OH (GGHY) and the Ni(II)-chelating group nitrilotriacetic acid (NTA) were copolymerized with acrylamide into microbeads. Green fluorescent protein (GFP), as a model protein, was genetically tagged with a tyrosine-modified His6 peptide on its carboxy terminus. GFP-YGH6, specifically associated with the NTA-Ni(II) groups, was covalently coupled to the bead surface through dityrosine bond formation catalyzed by the colocalized GGHY-Ni(II) complex. After extensive washing with EDTA to disrupt metal coordination bonds, we observed that up to 75% of the initially bound GFP-YGH6 remained covalently bound to the bead while retaining its structure and activity. Dityrosine cross-linking was confirmed by quenching the reaction with free tyrosine. The method may find particular utility in the construction and optimization of protein microarrays. PMID:17154619

  13. Potential Effects of Corneal Cross-Linking upon the Limbus

    PubMed Central

    2016-01-01

    Corneal cross-linking is nowadays the most used strategy for the treatment of keratoconus and recently it has been exploited for an increasing number of different corneal pathologies, from other ectatic disorders to keratitis. The safety of this technique has been widely assessed, but clinical complications still occur. The potential effects of cross-linking treatment upon the limbus are incompletely understood; it is important therefore to investigate the effect of UV exposure upon the limbal niche, particularly as UV is known to be mutagenic to cellular DNA and the limbus is where ocular surface tumors can develop. The risk of early induction of ocular surface cancer is undoubtedly rare and has to date not been published other than in one case after cross-linking. Nevertheless it is important to further assess, understand, and reduce where possible any potential risk. The aim of this review is to summarize all the reported cases of a pathological consequence for the limbal cells, possibly induced by cross-linking UV exposure, the studies done in vitro or ex vivo, the theoretical bases for the risks due to UV exposure, and which aspects of the clinical treatment may produce higher risk, along with what possible mechanisms could be utilized to protect the limbus and the delicate stem cells present within it. PMID:27689081

  14. Cross-linking of dithiols by mitomycin C.

    PubMed

    Paz, Manuel M

    2010-08-16

    Upon reduction, the antitumor drug mitomycin C undergoes a cascade of reactions to give a bis-electrophile that alkylates cellular nucleophiles. We recently reported that dithiols activate mitomycin C by reduction, and we report here that dithiols, after executing the reductive activation of mitomycin C, are bis-alkylated by the activated drug to form S,S'-cross-links as the predominant end products. The diastereomeric pair of adducts formed by 1,3-propanedithiol has been fully characterized by UV, HRMS, CD, and NMR experiments. Racemic dithiol (+/-)-dithiothreitol gave four diastereomeric cross-links, and (+/-)-dihydrolipoic acid gave eight cross-links (two regioisomers with four diastereomers each) that were partially characterized by UV and MS. The observed dependence of cross-link formation on dithiol concentration indicated the requirement of a second reduction step by dithiol, prior to the alkylation of the second arm of the dithiol. The existence of unidentified reaction pathways was manifested by the formation of unexpected intermediates during the course of the reaction of mitomycin C with dithiols and by the formation of unsoluble mitosene derivatives in the reaction between equimolar amounts of dithiol and mitomycin C. Mechanistic details of the reaction are addressed in light of these results. Finally, we discuss the potential relevance of our findings for the interaction of mitomycin C with dithiol-containing proteins.

  15. Porous Cross-Linked Polyimide-Urea Networks

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor)

    2015-01-01

    Porous cross-linked polyimide-urea networks are provided. The networks comprise a subunit comprising two anhydride end-capped polyamic acid oligomers in direct connection via a urea linkage. The oligomers (a) each comprise a repeating unit of a dianhydride and a diamine and a terminal anhydride group and (b) are formulated with 2 to 15 of the repeating units. The subunit was formed by reaction of the diamine and a diisocyanate to form a diamine-urea linkage-diamine group, followed by reaction of the diamine-urea linkage-diamine group with the dianhydride and the diamine to form the subunit. The subunit has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups. The subunit has been chemically imidized to yield the porous cross-linked polyimide-urea network. Also provided are wet gels, aerogels, and thin films comprising the networks, and methods of making the networks.

  16. Femtosecond laser collagen cross-linking without traditional photosensitizers

    NASA Astrophysics Data System (ADS)

    Guo, Yizang; Wang, Chao; Celi, Nicola; Vukelic, Sinisa

    2015-03-01

    Collagen cross-linking in cornea has the capability of enhancing its mechanical properties and thereby providing an alternative treatment for eye diseases such as keratoconus. Currently, riboflavin assisted UVA light irradiation is a method of choice for cross-link induction in eyes. However, ultrafast pulsed laser interactions may be a powerful alternative enabling in-depth treatment while simultaneously diminishing harmful side effects such as, keratocyte apoptosis. In this study, femtosecond laser is utilized for treatment of bovine cornea slices. It is hypothesized that nonlinear absorption of femtosecond laser pulses plays a major role in the maturation of immature cross-links and the promotion of their growth. Targeted irradiation with tightly focused laser pulses allows for the absence of a photosensitizing agent. Inflation test was conducted on half treated porcine cornea to identify the changes of mechanical properties due to laser treatment. Raman spectroscopy was utilized to study subtle changes in the chemical composition of treated cornea. The effects of treatment are analyzed by observing shifts in Amide I and Amide III bands, which suggest deformation of the collagen structure in cornea due to presence of newly formed cross-links.

  17. Citric-acid-derived photo-cross-linked biodegradable elastomers.

    PubMed

    Gyawali, Dipendra; Tran, Richard T; Guleserian, Kristine J; Tang, Liping; Yang, Jian

    2010-01-01

    Citric-acid-derived thermally cross-linked biodegradable elastomers (CABEs) have recently received significant attention in various biomedical applications, including tissue-engineering orthopedic devices, bioimaging and implant coatings. However, citric-acid-derived photo-cross-linked biodegradable elastomers are rarely reported. Herein, we report a novel photo-cross-linked biodegradable elastomer, referred to as poly(octamethylene maleate citrate) (POMC), which preserves pendant hydroxyl and carboxylic functionalities after cross-linking for the potential conjugation of biologically active molecules. Pre-POMC is a low-molecular-mass pre-polymer with an average molecular mass between 701 and 1291 Da. POMC networks are soft and elastic with an initial modulus of 0.07 to 1.3 MPa and an elongation-at-break between 38 and 382%. FT-IR-ATR results confirmed the successful surface immobilization of type-I collagen onto POMC films, which enhanced in vitro cellular attachment and proliferation. Photo-polymerized POMC films implanted subcutaneously into Sprague-Dawley rats demonstrated minimal in vivo inflammatory responses. The development of POMC enriches the family of citric-acid-derived biodegradable elastomers and expands the available biodegradable polymers for versatile needs in biomedical applications.

  18. Citric-Acid-Derived Photo-cross-Linked Biodegradable Elastomers

    PubMed Central

    Gyawali, Dipendra; Tran, Richard T.; Guleserian, Kristine J.; Tang, Liping; Yang, Jian

    2010-01-01

    Citric-acid-derived thermally cross-linked biodegradable elastomers (CABEs) have recently received significant attention in various biomedical applications, including tissue-engineering orthopedic devices, bioimaging and implant coatings. However, citric-acid-derived photo-cross-linked biodegradable elastomers are rarely reported. Herein, we report a novel photo-cross-linked biodegradable elastomer, referred to as poly(octamethylene maleate citrate) (POMC), which preserves pendant hydroxyl and carboxylic functionalities after cross-linking for the potential conjugation of biologically active molecules. POMC is a low-molecular-mass pre-polymer with a molecular mass average between 701 and 1291 Da. POMC networks are soft and elastic with an initial modulus of 0.07 to 1.3 MPa and an elongation at break between 38 and 382%. FT-IR–ATR results confirmed the successful surface immobilization of type-I collagen onto POMC films, which enhanced in vitro cellular attachment and proliferation. Photo-polymerized POMC films implanted subcutaneously into Sprague–Dawley rats demonstrated minimal in vivo inflammatory responses. The development of POMC enriches the family of citric-acid-derived biodegradable elastomers and expands the available biodegradable polymers for versatile needs in biomedical applications. PMID:20557687

  19. Potential Effects of Corneal Cross-Linking upon the Limbus

    PubMed Central

    2016-01-01

    Corneal cross-linking is nowadays the most used strategy for the treatment of keratoconus and recently it has been exploited for an increasing number of different corneal pathologies, from other ectatic disorders to keratitis. The safety of this technique has been widely assessed, but clinical complications still occur. The potential effects of cross-linking treatment upon the limbus are incompletely understood; it is important therefore to investigate the effect of UV exposure upon the limbal niche, particularly as UV is known to be mutagenic to cellular DNA and the limbus is where ocular surface tumors can develop. The risk of early induction of ocular surface cancer is undoubtedly rare and has to date not been published other than in one case after cross-linking. Nevertheless it is important to further assess, understand, and reduce where possible any potential risk. The aim of this review is to summarize all the reported cases of a pathological consequence for the limbal cells, possibly induced by cross-linking UV exposure, the studies done in vitro or ex vivo, the theoretical bases for the risks due to UV exposure, and which aspects of the clinical treatment may produce higher risk, along with what possible mechanisms could be utilized to protect the limbus and the delicate stem cells present within it.

  20. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor)

    2016-01-01

    A method for creating a three dimensional cross-linked polyimide structure includes dissolving a diamine, a dianhydride, and a triamine in a solvent, imidizing a polyamic acid gel by heating the gel, extracting the gel in a second solvent, supercritically drying the gel, and removing the solvent to create a polyimide aerogel.

  1. The actin cytoskeleton in endothelial cell phenotypes

    PubMed Central

    Prasain, Nutan; Stevens, Troy

    2009-01-01

    Endothelium forms a semi-permeable barrier that separates blood from the underlying tissue. Barrier function is largely determined by cell-cell and cell-matrix adhesions that define the limits of cell borders. Yet, such cell-cell and cell-matrix tethering is critically reliant upon the nature of adherence within the cell itself. Indeed, the actin cytoskeleton fulfills this essential function, to provide a strong, dynamic intracellular scaffold that organizes integral membrane proteins with the cell’s interior, and responds to environmental cues to orchestrate appropriate cell shape. The actin cytoskeleton is comprised of three distinct, but interrelated structures, including actin cross-linking of spectrin within the membrane skeleton, the cortical actin rim, and actomyosin-based stress fibers. This review addresses each of these actin-based structures, and discusses cellular signals that control the disposition of actin in different endothelial cell phenotypes. PMID:19028505

  2. Nanoscale segregation of actin nucleation and elongation factors determines dendritic spine protrusion

    PubMed Central

    Chazeau, Anaël; Mehidi, Amine; Nair, Deepak; Gautier, Jérémie J; Leduc, Cécile; Chamma, Ingrid; Kage, Frieda; Kechkar, Adel; Thoumine, Olivier; Rottner, Klemens; Choquet, Daniel; Gautreau, Alexis; Sibarita, Jean-Baptiste; Giannone, Grégory

    2014-01-01

    Actin dynamics drive morphological remodeling of neuronal dendritic spines and changes in synaptic transmission. Yet, the spatiotemporal coordination of actin regulators in spines is unknown. Using single protein tracking and super-resolution imaging, we revealed the nanoscale organization and dynamics of branched F-actin regulators in spines. Branched F-actin nucleation occurs at the PSD vicinity, while elongation occurs at the tip of finger-like protrusions. This spatial segregation differs from lamellipodia where both branched F-actin nucleation and elongation occur at protrusion tips. The PSD is a persistent confinement zone for IRSp53 and the WAVE complex, an activator of the Arp2/3 complex. In contrast, filament elongators like VASP and formin-like protein-2 move outwards from the PSD with protrusion tips. Accordingly, Arp2/3 complexes associated with F-actin are immobile and surround the PSD. Arp2/3 and Rac1 GTPase converge to the PSD, respectively, by cytosolic and free-diffusion on the membrane. Enhanced Rac1 activation and Shank3 over-expression, both associated with spine enlargement, induce delocalization of the WAVE complex from the PSD. Thus, the specific localization of branched F-actin regulators in spines might be reorganized during spine morphological remodeling often associated with synaptic plasticity. PMID:25293574

  3. Wear of PEEK-OPTIMA® and PEEK-OPTIMA®-Wear Performance articulating against highly cross-linked polyethylene.

    PubMed

    East, Rebecca H; Briscoe, Adam; Unsworth, Anthony

    2015-03-01

    The idea of all polymer artificial joints, particularly for the knee and finger, has been raised several times in the past 20 years. This is partly because of weight but also to reduce stress shielding in the bone when stiffer materials such as metals or ceramics are used. With this in mind, pin-on-plate studies of various polyetheretherketone preparations against highly cross-linked polyethylene were conducted to investigate the possibility of using such a combination in the design of a new generation of artificial joints. PEEK-OPTIMA(®) (no fibre) against highly cross-linked polyethylene gave very low wear factors of 0.0384 × 10(-6) mm(3)/N m for the polyetheretherketone pins and -0.025 × 10(-6) mm(3)/N m for the highly cross-linked polyethylene plates. The carbon-fibre-reinforced polyetheretherketone (PEEK-OPTIMA(®)-Wear Performance) also produced very low wear rates in the polyetheretherketone pins but produced very high wear in the highly cross-linked polyethylene, as might have been predicted since the carbon fibres are quite abrasive. When the fibres were predominantly tangential to the sliding plane, the mean wear factor was 0.052 × 10(-6) mm(3)/N m for the pins and 49.3 × 10(-6) mm(3)/N m for the highly cross-linked polyethylene plates; a half of that when the fibres ran axially in the pins (0.138 × 10(-6) mm(3)/N m for the pins and 97.5 × 10(-6) mm/ N m for the cross-linked polyethylene plates). PEEK-OPTIMA(®) against highly cross-linked polyethylene merits further investigation.

  4. Wear of PEEK-OPTIMA® and PEEK-OPTIMA®-Wear Performance articulating against highly cross-linked polyethylene.

    PubMed

    East, Rebecca H; Briscoe, Adam; Unsworth, Anthony

    2015-03-01

    The idea of all polymer artificial joints, particularly for the knee and finger, has been raised several times in the past 20 years. This is partly because of weight but also to reduce stress shielding in the bone when stiffer materials such as metals or ceramics are used. With this in mind, pin-on-plate studies of various polyetheretherketone preparations against highly cross-linked polyethylene were conducted to investigate the possibility of using such a combination in the design of a new generation of artificial joints. PEEK-OPTIMA(®) (no fibre) against highly cross-linked polyethylene gave very low wear factors of 0.0384 × 10(-6) mm(3)/N m for the polyetheretherketone pins and -0.025 × 10(-6) mm(3)/N m for the highly cross-linked polyethylene plates. The carbon-fibre-reinforced polyetheretherketone (PEEK-OPTIMA(®)-Wear Performance) also produced very low wear rates in the polyetheretherketone pins but produced very high wear in the highly cross-linked polyethylene, as might have been predicted since the carbon fibres are quite abrasive. When the fibres were predominantly tangential to the sliding plane, the mean wear factor was 0.052 × 10(-6) mm(3)/N m for the pins and 49.3 × 10(-6) mm(3)/N m for the highly cross-linked polyethylene plates; a half of that when the fibres ran axially in the pins (0.138 × 10(-6) mm(3)/N m for the pins and 97.5 × 10(-6) mm/ N m for the cross-linked polyethylene plates). PEEK-OPTIMA(®) against highly cross-linked polyethylene merits further investigation. PMID:25833994

  5. Longitudinal orientation of cross-linked polypeptide γ chains in fibrin fibrils.

    PubMed

    Rosenfeld, M A; Leonova, V B; Bychkova, A V; Kostanova, E A; Biryukova, M I

    2015-01-01

    The crosslinking of fibrin γ-polypeptide chains under the influence of the plasma fibrin-stabilizing factor (FXIIIa), which causes their conversion to γ-γ dimers, is the major enzyme reaction of covalent fibrin stabilization. We studied the self-assembly of soluble cross-linked fibrin oligomers. The results of analytical ultracentrifugation as well as elastic and dynamic light scattering showed that the double-stranded fibrin oligomers formed under the influence of moderate concentrations of urea are cross-linked only due to formation of γ-γ dimers, which can dissociate into single-stranded structure when the concentration of urea increases. This fact proves that γ-γ dimers are formed in the end-to-end manner. PMID:26518549

  6. Photo-induced cross-linking of unmodified proteins (PICUP) applied to amyloidogenic peptides.

    PubMed

    Rahimi, Farid; Maiti, Panchanan; Bitan, Gal

    2009-01-01

    -order oligomers. Advantages of PICUP relative to other photo- or chemical cross-linking methods(3,4) include short (cross-linking. In addition, PICUP enables cross-linking of proteins within wide pH and temperature ranges, including physiologic parameters. Here, we demonstrate application of PICUP to cross-linking of three amyloidogenic proteins the 40- and 42-residue amyloid beta-protein variants (Abeta40 and Abeta42), and calcitonin, and a control protein, growth-hormone releasing factor (GRF). PMID:19229175

  7. Analysis of the effective dose of ultraviolet light in corneal cross-linking

    PubMed Central

    Zhang, Yong; Wang, Kuan-Chen; Chang, Chao-Kai; Lin, Jui-Teng

    2016-01-01

    AIM To analyze the efficacy of ultraviolet (UV) light initiating corneal cross-linking (CXL). METHODS The time-dependent absorption of UV light due to the depletion of the initiator (riboflavin) was calculated. The effective dose of CXL with corneal surface covered by a thin layer of riboflavin was derived analytically. The cross linking time was calculated by the depletion level of the riboflavin concentration. A comprehensive method was used to derive analytic formulas. RESULTS The effective dose of CXL was reduced by a factor (R) which was proportional to the thickness (d) and concentrations (C0) of the riboflavin surface layer. Our calculations showed that the conventional dose of 5.4 J/cm2 had a reduced effective dose of 4.3 and 3.45 J/cm2, for d was 100 and 200 µm, respectively, and C0=0.1%. The surface cross linking time was calculated to be T*=10.75s, for a depletion level of 0.135 and UV initial intensity of 30 mW/cm2. The volume T* was exponentially increasing and proportional to exp (bdC0), with b being the steady state absorption coefficient. CONCLUSION The effective dose of CXL is reduced by a factor proportional to the thickness and concentrations of the riboflavin surface layer. The wasted dose should be avoided by washing out the extra riboflavin surface layer prior to the UV light exposure. PMID:27588260

  8. Model selection for athermal cross-linked fiber networks.

    PubMed

    Shahsavari, A; Picu, R C

    2012-07-01

    Athermal random fiber networks are usually modeled by representing each fiber as a truss, a Euler-Bernoulli or a Timoshenko beam, and, in the case of cross-linked networks, each cross-link as a pinned, rotating, or welded joint. In this work we study the effect of these various modeling options on the dependence of the overall network stiffness on system parameters. We conclude that Timoshenko beams can be used for the entire range of density and beam stiffness parameters, while the Euler-Bernoulli model can be used only at relatively low network densities. In the high density-high bending stiffness range, strain energy is stored predominantly in the axial and shear deformation modes, while in the other extreme range of parameters, the energy is stored in the bending mode. The effect of the model size on the network stiffness is also discussed. PMID:23005468

  9. [Cross-linking and intrastromal corneal ring segment].

    PubMed

    Renesto, Adimara da Candelaria; Sartori, Marta; Campos, Mauro

    2011-01-01

    Corneal cross-linking is a procedure used for stabilizing the cornea in patients with progressive keratoconus by increasing corneal rigidity, and it is also used in corneal inflammatory melting process. The intrastromal corneal ring segments act by flattening the center of the cornea. Originally designed for the correction of mild myopia, the segments are now being used for reduction of keratoconus in order to improve the uncorrected visual acuity, the best spectacle corrected visual acuity, to allow good tolerance to the use of contact lenses and delay the need for corneal grafting procedures. The present text presents a review of corneal cross-linking and insertion of intrastromal corneal ring segments, emphasizing their indications, results and complications related until now. PMID:21670914

  10. Collagen cross-linking: Strengthening the unstable cornea

    PubMed Central

    Tomkins, Oren; Garzozi, Hanna J

    2008-01-01

    Corneal ectasia, a weakening of corneal integrity, occurs both due to acquired and congenital conditions such as keratoconus. It is a progressing condition that affects both visual acuity, and corneal stability. Various methods exist for correcting this impairment, however none address the inherit pathology, an increase laxity of the corneal stroma. Collagen cross-linking, a new, minimally invasive method, aims to strengthen the stroma by inducing cross links between neighboring collagen fibers. This method results in an increase in corneal tensile strength, with no medium term adverse effects on its normal architecture. Clinically, treated patients display improvement in both visual acuity and keratometric readings. This method may provide clinicians with easily accessible tools to stop the progression, and even correct visual deterioration due to corneal ectasia. Here we review the current information regarding this new method, as well as discuss its potential benefits and downfalls. PMID:19668440

  11. IDENTIFICATION OF NOVEL FIBROBLAST GROWTH FACTOR RECEPTOR 3 GENE MUTATIONS IN ACTINIC CHEILITIS

    PubMed Central

    Chou, Annie; Dekker, Nusi; Jordan, Richard C.K.

    2009-01-01

    Objective Activating mutations in the fibroblast growth factor receptor 3 (FGFR3) gene are responsible for several craniosynostosis and chondrodysplasia syndromes as well as some human cancers including bladder and cervical carcinoma. Despite a high frequency in some benign skin disorders, FGFR3 mutations have not been reported in cutaneous malignancies. Actinic cheilitis (AC) is a sun-induced premalignancy affecting the lower lip that frequently progresses to squamous cell carcinoma (SCC). The objective of this study was to determine if FGFR3 gene mutations are present in AC and SCC of the lip. Study Design DNA was extracted and purified from micro-dissected, formalin-fixed, paraffin-embedded tissue sections of 20 cases of AC and SCC arising in AC. Exons 7, 15, and 17 were PCR amplified and direct sequenced. Results Four novel somatic mutations in the FGFR3 gene were identified: exon 7 mutation 742C→T (amino acid change R248C), exon 15 mutations 1850A→G (D617G) and 1888G→A (V630M), and exon 17 mutation 2056G→A (E686K). Grade of dysplasia did not correlate with presence of mutations. Conclusion The frequency of FGFR3 receptor mutations suggests a functional role for the FGFR3 receptor in the development of epithelial disorders and perhaps a change may contribute to the pathogenesis of some AC and SCC. PMID:19327639

  12. Estimating the Degree of Cross-Linking in Rubber

    NASA Technical Reports Server (NTRS)

    Fedors, R. F.

    1983-01-01

    Degree of cross-linking or network chain concentration of rubber estimated with aid of new method. Quantity is needed in studies of mechanical behavior of rubber. New method is based on finding rubber follows different stress/ strain relationships in extension and retraction. When rubber specimen is stretched to given extension ration and released. Stress-vs-strain curve follows two paths: one for extension and other for retraction.

  13. Optimized Fragmentation Regime for Diazirine Photo-Cross-Linked Peptides

    PubMed Central

    2016-01-01

    Cross-linking/mass spectrometry has evolved into a robust technology that reveals structural insights into proteins and protein complexes. We leverage a new tribrid instrument with improved fragmentation capacities in a systematic comparison to identify which fragmentation method would be best for the identification of cross-linked peptides. Specifically, we explored three fragmentation methods and two combinations: collision-induced dissociation (CID), beam-type CID (HCD), electron-transfer dissociation (ETD), ETciD, and EThcD. Trypsin-digested, SDA-cross-linked human serum albumin (HSA) served as a test sample, yielding over all methods and in triplicate analysis in total 2602 matched PSMs and 1390 linked residue pairs at 5% false discovery rate, as confirmed by the crystal structure. HCD wins in number of matched peptide-spectrum-matches (958 PSMs) and identified links (446). CID is most complementary, increasing the number of identified links by 13% (58 links). HCD wins together with EThcD in cross-link site calling precision, with approximately 62% of sites having adjacent backbone cleavages that unambiguously locate the link in both peptides, without assuming any cross-linker preference for amino acids. Overall quality of spectra, as judged by sequence coverage of both peptides, is best for EThcD for the majority of peptides. Sequence coverage might be of particular importance for complex samples, for which we propose a data dependent decision tree, else HCD is the method of choice. The mass spectrometric raw data has been deposited in PRIDE (PXD003737). PMID:27454319

  14. Newer protocols and future in collagen cross-linking.

    PubMed

    Cummings, Arthur B; McQuaid, Rebecca; Mrochen, Michael

    2013-08-01

    Corneal Cross-Linking (CXL) is an established surgical procedure for the treatment of corneal disorders such as corneal ectasia and keratoconus. This method of treatment stabilises the corneal structure and increases rigidity, reducing the requirement for corneal transplantation. Since its development, many scientific studies have been conducted to investigate ways of improving the procedure. Biomechanical stability of the cornea after exposure to UV-A light, and the effect of shortening procedure time has been some of the many topics explored.

  15. Optimized Fragmentation Regime for Diazirine Photo-Cross-Linked Peptides.

    PubMed

    Giese, Sven H; Belsom, Adam; Rappsilber, Juri

    2016-08-16

    Cross-linking/mass spectrometry has evolved into a robust technology that reveals structural insights into proteins and protein complexes. We leverage a new tribrid instrument with improved fragmentation capacities in a systematic comparison to identify which fragmentation method would be best for the identification of cross-linked peptides. Specifically, we explored three fragmentation methods and two combinations: collision-induced dissociation (CID), beam-type CID (HCD), electron-transfer dissociation (ETD), ETciD, and EThcD. Trypsin-digested, SDA-cross-linked human serum albumin (HSA) served as a test sample, yielding over all methods and in triplicate analysis in total 2602 matched PSMs and 1390 linked residue pairs at 5% false discovery rate, as confirmed by the crystal structure. HCD wins in number of matched peptide-spectrum-matches (958 PSMs) and identified links (446). CID is most complementary, increasing the number of identified links by 13% (58 links). HCD wins together with EThcD in cross-link site calling precision, with approximately 62% of sites having adjacent backbone cleavages that unambiguously locate the link in both peptides, without assuming any cross-linker preference for amino acids. Overall quality of spectra, as judged by sequence coverage of both peptides, is best for EThcD for the majority of peptides. Sequence coverage might be of particular importance for complex samples, for which we propose a data dependent decision tree, else HCD is the method of choice. The mass spectrometric raw data has been deposited in PRIDE (PXD003737). PMID:27454319

  16. Reversible PH Lability of Cross-Linked Vault Nanocapsules

    SciTech Connect

    Yu, M.; Ng, B.C.; Rome, L.H.; Tolbert, S.H.; Monbouquette, H.G.

    2009-05-28

    Vaults are ubiquitous, self-assembled protein nanocapsules with dimension in the sub-100 nm range that are conserved across diverse phyla from worms to humans. Their normal presence in humans at a copy number of over 10 000/cell makes them attractive as potential drug delivery vehicles. Toward this goal, bifunctional amine-reactive reagents are shown to be useful for the reversible cross-linking of recombinant vaults such that they may be closed and opened in a controllable manner.

  17. Electrochemical Characterization of Ultrathin Cross-Linked Metal Nanoparticle Films.

    PubMed

    Han, Chu; Percival, Stephen J; Zhang, Bo

    2016-09-01

    Here we report the preparation, characterization, and electrochemical study of conductive, ultrathin films of cross-linked metal nanoparticles (NPs). Nanoporous films ranging from 40 to 200 nm in thickness composed of gold and platinum NPs of ∼5 nm were fabricated via a powerful layer-by-layer spin coating process. This process allows preparation of uniform NP films as large as 2 × 2 cm(2) with precise control over thickness, structure, and electrochemical and electrocatalytic properties. Gold, platinum, and bimetallic NP films were fabricated and characterized using cyclic voltammetry, scanning electron microscopy, and conductance measurements. Their electrocatalytic activity toward the oxygen reduction reaction (ORR) was investigated. Our results show that the electrochemical activity of such NP films is initially hindered by the presence of dense thiolate cross-linking ligands. Both electrochemical cycling and oxygen plasma cleaning are effective means in restoring their electrochemical activity. Gold NP films have higher electric conductivity than platinum possibly due to more uniform film structure and closer particle-particle distance. The electrochemical and electrocatalytic performance of platinum NP films can be greatly enhanced by the incorporation of gold NPs. This work focuses on electrochemical characterization of cross-linked NP films and demonstrates several unique properties. These include quick and easy preparation, ultrathin and uniform film thickness, tunable structure and composition, and transferability to many other substrates.

  18. Homogeneous UVA system for corneal cross-linking treatment

    NASA Astrophysics Data System (ADS)

    Ayres Pereira, Fernando R.; Stefani, Mario A.; Otoboni, José A.; Richter, Eduardo H.; Ventura, Liliane

    2010-02-01

    The treatment of keratoconus and corneal ulcers by collagen cross-linking using ultraviolet type A irradiation, combined with photo-sensitizer Riboflavin (vitamin B2), is a promising technique. The standard protocol suggests instilling Riboflavin in the pre-scratched cornea every 5min for 30min, during the UVA irradiation of the cornea at 3mW/cm2 for 30 min. This process leads to an increase of the biomechanical strength of the cornea, stopping the progression, or sometimes, even reversing Keratoconus. The collagen cross-linking can be achieved by many methods, but the utilization of UVA light, for this purpose, is ideal because of its possibility of a homogeneous treatment leading to an equal result along the treated area. We have developed a system, to be clinically used for treatment of unhealthy corneas using the cross-linking technique, which consists of an UVA emitting delivery device controlled by a closed loop system with high homogeneity. The system is tunable and delivers 3-5 mW/cm2, at 365nm, for three spots (6mm, 8mm and 10mm in diameter). The electronics close loop presents 1% of precision, leading to an overall error, after the calibration, of less than 10% and approximately 96% of homogeneity.

  19. Fiber optic immunosensor for cross-linked fibrin concentration

    NASA Astrophysics Data System (ADS)

    Moskowitz, Samuel E.

    2000-08-01

    Working with calcium ions in the blood, platelets produce thromboplastin which transforms prothrombin into thrombin. Removing peptides, thrombin changes fibrinogen into fibrin. Cross-linked insoluble fibrin polymers are solubilized by enzyme plasmin found in blood plasma. Resulting D-dimers are elevated in patients with intravascular coagulation, deep venous thrombosis, pulmonary embolism, myocardial infarction, multiple trauma, cancer, impaired renal and liver functions, and sepsis. Consisting principally of a NIR 780 nm GaAlAs laser diode and a 800 nm avalanche photodiode (APD), the fiber-optic immunosensor can determined D-dimer concentration to levels <0.1 ng/ml. A capture monoclonal antibody to the antigen soluble cross-linked fibrin is employed. Immobilized at the tip of an optical fiber by avidin-biotin, the captured antigen is detected by a second antibody which is labeled with NN 382 fluorescent dye. An evanescent wave traveling on an excitation optical fiber excites the antibody-antigen fluorophore complex. Concentration of cross-linked fibrin is directly proportional to the APD measured intensity of fluorescence. NIR fluorescence has advantages of low background interference, short fluorescence lifetime, and large difference between excitation and emission peaks. Competitive ELISA test for D-dimer concentration requires trained personnel performing a time consuming operation.

  20. Drug-Triggered and Cross-Linked Self-Assembling Nanofibrous Hydrogels

    PubMed Central

    Kumar, Vivek A.; Shi, Siyu; Wang, Benjamin K.; Li, I-Che; Jalan, Abhishek A.; Sarkar, Biplab; Wickremasinghe, Navindee C.; Hartgerink, Jeffrey D.

    2015-01-01

    Self-assembly of multidomain peptides (MDP) can be tailored to carry payloads that modulate the extracellular environment. Controlled release of growth factors, cytokines, and small-molecule drugs allows for unique control of in vitro and in vivo responses. In this study, we demonstrate this process of ionic cross-linking of peptides using multivalent drugs to create hydrogels for sustained long-term delivery of drugs. Using phosphate, heparin, clodronate, trypan, and suramin, we demonstrate the utility of this strategy. Although all multivalent anions result in good hydrogel formation, demonstrating the generality of this approach, suramin led to the formation of the best hydrogels per unit concentration and was studied in greater detail. Suramin ionically cross-linked MDP into a fibrous meshwork as determined by scanning and transmission electron microscopy. We measured material storage and loss modulus using rheometry and showed a distinct increase in G′ and G″ as a function of suramin concentration. Release of suramin from scaffolds was determined using UV spectroscopy and showed prolonged release over a 30 day period. Suramin bioavailability and function were demonstrated by attenuated M1 polarization of THP-1 cells compared to positive control. Overall, this design strategy has allowed for the development of a novel class of polymeric delivery vehicles with generally long-term release and, in the case of suramin, cross-linked hydrogels that can modulate cellular phenotype. PMID:25831137

  1. DNA Polymerase POLN Participates in Cross-Link Repair and Homologous Recombination ▿ †

    PubMed Central

    Moldovan, George-Lucian; Madhavan, Mahesh V.; Mirchandani, Kanchan D.; McCaffrey, Ryan M.; Vinciguerra, Patrizia; D'Andrea, Alan D.

    2010-01-01

    All cells rely on DNA polymerases to duplicate their genetic material and to repair or bypass DNA lesions. In humans, 16 polymerases have been identified, and each bears specific functions in genome maintenance. We identified here the recently discovered polymerase POLN to be involved in repair of DNA cross-links. Such DNA lesions are highly toxic and are believed to be repaired by the sequential activity of nucleotide excision repair, translesion synthesis, and homologous recombination mechanisms. By functionally assaying its role in these processes, we unraveled an unexpected involvement of POLN in homologous recombination. Moreover, we obtained evidence for physical and functional interaction of POLN with factors belonging to the Fanconi anemia pathway, a master regulator of cross-link repair. Finally, we show that POLN interacts and cooperates in DNA repair with the helicase HEL308, which shares a common origin with POLN in the Drosophila mus308 gene. Our data indicate that this novel polymerase-helicase complex participates in homologous recombination repair and is essential for cellular protection against DNA cross-links. PMID:19995904

  2. Fabrication, characterization and cytotoxicity studies of ionically cross-linked docetaxel loaded chitosan nanoparticles.

    PubMed

    Jain, Ankit; Thakur, Kanika; Sharma, Gajanand; Kush, Preeti; Jain, Upendra K

    2016-02-10

    The present investigation aimed at the fabrication and characterization of ionically cross-linked docetaxel (DTX) loaded chitosan nanoparticles (DTX-CH-NP) using ionic gelation technique with sodium tripolyphosphate (TPP) as the cross-linking agent. The formulated nanoparticles were characterized in terms of particle size, drug entrapment efficiency (EE), scanning electron microscopy (SEM), in vitro release and cytotoxicity studies. Formulation factors (chitosan, TPP and drug concentration) were examined systematically for their effects on size of the nanoparticles. The average size of the nanoparticles was observed to be in the range of 159.2 ± 3.31 to 220.7 ± 2.23 nm with 78-92% encapsulation efficiency (EE). The in vitro cytotoxicity studies on breast cancer cell lines (MDA-MB-231) revealed the advantages of DTX-CH-NP over pure DTX with approximately 85% cell viability reduction. The results indicate that systematic modulation of the surface charge and particle size of ionically cross-linked nanoparticles can be readily achieved with the right control of critical processing parameters. Thus, DTX-CH-NP presents a promising delivery alternative for breast cancer treatment.

  3. Corneal Cross-Linking: Evaluating the Potential for a Lower Power, Shorter Duration Treatment

    PubMed Central

    Caruso, Ciro; Barbaro, Gaetano; Tronino, Diana; Ostacolo, Carmine; Sacchi, Antonia; Pacente, Luigi; Del Prete, Antonio; Sala, Marina; Troisi, Salvatore

    2016-01-01

    Purpose: To determine the cross-linking effect of a riboflavin ultraviolet-A (UV-A) corneal cross-linking treatment that is both shorter and has lower energy than the Dresden protocol. Methods: In a first experiment, 12 human corneas were presoaked with riboflavin and then irradiated with UV-A at 3 mW/cm2 after clearing the surface of riboflavin, with no added riboflavin during irradiation. Percent UV-A transmission through the corneas was measured at intervals up to 30 minutes. A second experiment involved 24 porcine corneas. Eight were de-epithelialized, presoaked in riboflavin for 30 minutes, and irradiated at 1.5 mW/cm2 for 10 minutes. An additional 8 were riboflavin treated and similarly irradiated, but with epithelium intact and a final 8 corneas were not treated. Young modulus was measured in all 24 corneas at the end of the experiment. Results: The first experiment showed essentially complete riboflavin oxidation after only 10 minutes. Based on these results, a shortened UV-A exposure cross-linking experiment was designed using a reduced UV-A fluence of 1.5 mW/cm2, an endothelial exposure within safety limits in humans. With this protocol Young modulus was the same in the irradiated porcine corneas but with epithelium intact as in the untreated corneas. In contrast, Young modulus increased by a factor of 1.99 in the UV-A cross-linked corneas at 1.5 mW/cm2 for 10 minutes with the epithelium removed. Conclusions: A shorter, lower energy protocol than the Dresden protocol seems to provide a significant increase in Young modulus, similar to published results with higher energy, longer exposure protocols. PMID:26989958

  4. Cross linking molecular systems to form ultrathin dielectric layers

    NASA Astrophysics Data System (ADS)

    Feng, Danqin

    Dehydrogenation leads to cross linking of polymer or polymer like formation in very different systems: self-assembled monolayers and in closo -carboranes leading to the formation of semiconducting and dielectric boron carbide. We find evidence of intermolecular interactions for a self-assembled monolayer (SAM) formed from a large molecular adsorbate, [1,1';4',1"-terphenyl]-4,4"-dimethanethiol, from the dispersion of the molecular orbitals with changing the wave vector k and from the changes with temperature. With the formation self assembled molecular (SAM) layer, the molecular orbitals hybridize to electronic bands, with indications of significant band dispersion of the unoccupied molecular orbitals. Although organic adsorbates and thin films are generally regarded as "soft" materials, the effective Debye temperature, indicative of the dynamic motion of the lattice normal to the surface, can be very high, e.g. in the multilayer film formed from [1,1'-biphenyl]-4,4'-dimethanethiol (BPDMT). Depending on molecular orientation, the effective Debye temperature can be comparable to that of graphite due to the 'stiffness' of the benzene rings, but follows the expected Debye-Waller behavior for the core level photoemission intensities with temperature. This is not always the case. We find that a monomolecular film formed from [1,1';4',1"-terphenyl]-4,4"-dimethanethiol deviates from Debye-Waller temperature behavior and is likely caused by temperature dependent changes in molecular orientation. We also find evidence for the increase in dielectric character with polymerization (cross-linking) in spite of the decrease in the HOMO-LUMO gap upon irradiation of TPDMT. The changes in the HOMO-LUMO gap, with cross-linking, are roughly consistent with the band dispersion. The decomposition and cross-linking processes are also accompanied by changes in molecular orientation. The energetics of the three isomeric carborane cage compounds [ closo-1,2-orthocarborane, closo-1

  5. Characterization of the Raptor/4E-BP1 Interaction by Chemical Cross-linking Coupled with Mass Spectrometry Analysis*

    PubMed Central

    Coffman, Kimberly; Yang, Bing; Lu, Jie; Tetlow, Ashley L.; Pelliccio, Emelia; Lu, Shan; Guo, Da-Chuan; Tang, Chun; Dong, Meng-Qiu; Tamanoi, Fuyuhiko

    2014-01-01

    mTORC1 plays critical roles in the regulation of protein synthesis, growth, and proliferation in response to nutrients, growth factors, and energy conditions. One of the substrates of mTORC1 is 4E-BP1, whose phosphorylation by mTORC1 reverses its inhibitory action on eIF4E, resulting in the promotion of protein synthesis. Raptor in mTOR complex 1 is believed to recruit 4E-BP1, facilitating phosphorylation of 4E-BP1 by the kinase mTOR. We applied chemical cross-linking coupled with mass spectrometry analysis to gain insight into interactions between mTORC1 and 4E-BP1. Using the cross-linking reagent bis[sulfosuccinimidyl] suberate, we showed that Raptor can be cross-linked with 4E-BP1. Mass spectrometric analysis of cross-linked Raptor-4E-BP1 led to the identification of several cross-linked peptide pairs. Compilation of these peptides revealed that the most N-terminal Raptor N-terminal conserved domain (in particular residues from 89 to 180) of Raptor is the major site of interaction with 4E-BP1. On 4E-BP1, we found that cross-links with Raptor were clustered in the central region (amino acid residues 56–72) we call RCR (Raptor cross-linking region). Intramolecular cross-links of Raptor suggest the presence of two structured regions of Raptor: one in the N-terminal region and the other in the C-terminal region. In support of the idea that the Raptor N-terminal conserved domain and the 4E-BP1 central region are closely located, we found that peptides that encompass the RCR of 4E-BP1 inhibit cross-linking and interaction of 4E-BP1 with Raptor. Furthermore, mutations of residues in the RCR decrease the ability of 4E-BP1 to serve as a substrate for mTORC1 in vitro and in vivo. PMID:24403073

  6. Effect of ATP analogues on the actin-myosin interface.

    PubMed

    Van Dijk, J; Fernandez, C; Chaussepied, P

    1998-06-01

    The interaction between skeletal myosin subfragment 1 (S1) and filamentous actin was examined at various intermediate states of the actomyosin ATPase cycle by chemical cross-linking experiments. Reaction of the actin-S1 complex with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide and N-hydroxysuccinimide generated products with molecular masses of 165 and 175 kDa, in which S1 loops of residues 626-647 and 567-578 were cross-linked independently to the N-terminal segment of residues 1-12 of one actin monomer, and of 265 kDa, in which the two loops were bound to the N termini of two adjacent monomers. In strong-binding complexes, i.e., without nucleotide or with ADP, S1 was sequentially cross-linked to one and then to two actin monomers. In the weak-binding complexes, two types of cross-linking pattern were observed. First, during steady-state hydrolysis of ATP or ATPgammaS at 20 degreesC, the cross-linking reaction gave rise to a small amount of unknown 200 kDa product. Second, in the presence of AMPPNP, ADP.BeFx, ADP.AlF4-, or ADP.VO43- or with S1 internally cross-linked by N,N'-p-phenylenedimaleimide, only the 265 kDa product was obtained. The presence of 200 mM salt inhibited cross-linking reactions in both weak- and strong-binding states, while it dissociated only weak-binding complexes. These results indicate that, in the weak-binding state populated with the ADP.Pi analogues, skeletal S1 interacts predominantly and with an apparent equal affinity with the N termini of two adjacent actin monomers, while these ionic contacts are much less significant in stabilizing the rigor actin-S1 complexes. They also suggest that the electrostatic actin-S1 interface is not influenced by the type of ADP.Pi analogue bound to the active site.

  7. Probing actin incorporation into myofibrils using Asp11 and His73 actin mutants.

    PubMed

    Xia, D; Peng, B; Sesok, D A; Peng, I

    1993-01-01

    We used a cell free system Bouché et al.: J. Cell Biol. 107:587-596, 1988] to study the incorporation of actin into myofibrils. We used alpha-skeletal muscle actin and actins with substitutions of either His73 [Solomon and Rubenstein: J. Biol.Chem. 262:11382, 1987], or Asp11 [Solomon et al.: J. Biol. Chem. 263:19662, 1988]. Actins were translated in reticulocyte lysate and incubated with myofibrils. The incorporated wild type actin could be cross-linked into dimers using N,N'-1,4-phenylenebismaleimide (PBM), indicating that the incorporated actin is actually inserted into the thin filaments of the myofibril. The His73 mutants incorporated to the same extent as wild type actin and was also cross-linked with PBM. Although some of the Asp11 mutants co-assembled with carrier actin, only 1-3% of the Asp11 mutant actins incorporated after 2 min and did not increase after 2 hr. Roughly 17% of wild type actin incorporated after 2 min and 31% after 2 hr. ATP increased the release of wild type actin from myofibrils, but did not increase the release of Asp11 mutants. We suggest that (1) the incorporation of wild type and His73 mutant actins was due to a physiological process whereas association of Asp11 mutants with myofibrils was non-specific, (2) the incorporation of wild type actin involved a rapid initial phase, followed by a slower phase, and (3) since some of the Asp11 mutants can co-assemble with wild type actin, the ability to self-assemble was not sufficient for incorporation into myofibrils. Thus, incorporation probably includes interaction between actin and a thin filament associated protein. We also showed that incorporation occurred at actin concentrations which would cause disassembly of F-actin. Since the myofibrils did not show large scale disassembly but incorporated actin, filament stability and monomer incorporation are likely to be mediated by actin associated proteins of the myofibril. PMID:8287497

  8. Autoclavable highly cross-linked polyurethane networks in ophthalmology.

    PubMed

    Bruin, P; Meeuwsen, E A; van Andel, M V; Worst, J G; Pennings, A J

    1993-11-01

    Highly cross-linked aliphatic polyurethane networks have been prepared by the bulk step reaction of low molecular weight polyols and hexamethylenediisocyanate (HDI). These polyurethane networks are optically transparent, colourless and autoclavable amorphous glassy thermosets, which are suited for use in ophthalmic applications such as intraocular lenses and keratoprostheses. The properties of these glassy polyurethanes, obtained from the reaction of the low molecular weight polyols triisopropanolamine (TIPA) or tetrakis (2-hydroxypropyl)ethylenediamine (Quadrol) and HDI in stoichiometric proportions, have been investigated in more detail. The glassy Quadrol/HDI-based polyurethane exhibits a reduction in ultimate glass transition temperature from 85 to 48 degrees C by uptake of 1% of water, and good ultimate mechanical properties (tensile strength 80-85 MPa, elongation at break ca 15%, modulus ca 1.5 GPa). IR spectra of these hydrophobic polyurethane networks revealed the absence of an isocyanate absorption, indicating that all isocyanates, apparently, had reacted during the cross-linking reaction. The biocompatibility could be increased by grafting tethered polyacrylamide chains onto the surface during network formation. These transparent cross-linked polyurethanes did not transmit UV light up to 400 nm, by incorporation of a small amount of the UV absorbing chromophore Coumarin 102, and could be sterilized simply by autoclaving. They were implanted in rabbit eyes, either in the form of small circular disks or in the form of a keratoprosthesis (artificial cornea). It was shown that the material was well tolerated by the rabbit eyes. Serious opacification of the cornea, a direct result of an adverse reaction to the implant, was never seen. Even 1 yr after implantation of a polyurethane keratoprosthesis the eye was still 'quiet'. PMID:7508760

  9. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

    NASA Technical Reports Server (NTRS)

    Panek, John

    2010-01-01

    Polyimide aerogels with three-dimensional cross-linked structure are made using linear oligomeric segments of polyimide, and linked with one of the following into a 3D structure: trifunctional aliphatic or aromatic amines, latent reactive end caps such as nadic anhydride or phenylethynylphenyl amine, and silica or silsesquioxane cage structures decorated with amine. Drying the gels supercritically maintains the solid structure of the gel, creating a polyimide aerogel with improved mechanical properties over linear polyimide aerogels. Lightweight, low-density structures are desired for acoustic and thermal insulation for aerospace structures, habitats, astronaut equipment, and aeronautic applications. Aerogels are a unique material for providing such properties because of their extremely low density and small pore sizes. However, plain silica aerogels are brittle. Reinforcing the aerogel structure with a polymer (X-Aerogel) provides vast improvements in strength while maintaining low density and pore structure. However, degradation of polymers used in cross-linking tends to limit use temperatures to below 150 C. Organic aerogels made from linear polyimide have been demonstrated, but gels shrink substantially during supercritical fluid extraction and may have lower use temperature due to lower glass transition temperatures. The purpose of this innovation is to raise the glass transition temperature of all organic polyimide aerogel by use of tri-, tetra-, or poly-functional units in the structure to create a 3D covalently bonded network. Such cross-linked polyimides typically have higher glass transition temperatures in excess of 300 400 C. In addition, the reinforcement provided by a 3D network should improve mechanical stability, and prevent shrinkage on supercritical fluid extraction. The use of tri-functional aromatic or aliphatic amine groups in the polyimide backbone will provide such a 3D structure.

  10. Cross-linking of Newcastle disease virus (NDV) proteins.

    PubMed

    Nagai, Y; Yoshida, T; Hamaguchi, M; Iinuma, M; Maeno, K; Matsumoto, T

    1978-01-01

    The proxomity and spatial relationships of the structural proteins of Newcastle disease virus (NDV) were studied by chemical cross-linking with a series of imidoesters. When the virions were reacted by the cross-linker with a distance 6.1A or longer between the functional groups and analyzed by polyacrylamide gel electrophoresis, remarkable changes were observed in the migration patterns of the viral proteins. The most striking one was the extensive decrease in the intensity of the M protein band, and although not so strikingly, glycoprotein and nucleocapsid protein bands were reduced significantly. Instead, several protein complexes appeared at and near the top of the gels. The protein complexes formed by a reversible cross-linker, dimethyl-3,3'-dithiobispropionimidate (DTBP), were analyzed by two dimensional electrophoresis; the complexes on the first-dimension cylindrical gels were cleaved by reduction with 2-mercaptoethanol and electrophoresed laterally on the second-dimension slab gels. The results indicated that homodimers of glycoprotein, nucleocapsid protein and M protein were generated under the condition of the most gentle cross-linking employed. At the same time, however, trimer and higher homopolymers of M protein were already detectable. Under the more extensive conditions, the bulk of M protein was cross-linked to form a large protein complex with very high molecular weight. Further, small but significant amounts of glycoprotein and nucleocapsid protein were always detected in this complex. These results suggest that M protein may be present in the virion in close enough proximity to interact with each other and may further have some interactions with glycoprotein and nucleocapsid protein. On the basis of these findings possible roles of M protein in virus assembly were discussed.

  11. Newer protocols and future in collagen cross-linking

    PubMed Central

    Cummings, Arthur B; McQuaid, Rebecca; Mrochen, Michael

    2013-01-01

    Corneal Cross-Linking (CXL) is an established surgical procedure for the treatment of corneal disorders such as corneal ectasia and keratoconus. This method of treatment stabilises the corneal structure and increases rigidity, reducing the requirement for corneal transplantation. Since its development, many scientific studies have been conducted to investigate ways of improving the procedure. Biomechanical stability of the cornea after exposure to UV-A light, and the effect of shortening procedure time has been some of the many topics explored PMID:23925329

  12. LET dependence of DNA-protein cross-links

    SciTech Connect

    Blakely, E.A.; Chang, P.Y.; Bjornstad, K.A.

    1995-08-01

    We have preliminary data indicating a fluence-dependent yield of particle-induced protein cross-links (DPC`s) with a dependency on LET and particle residual energy. Our data indicate that the DPC yield for hamster fibroblasts in vitro irradiated at 32 keV/{mu}m is similar to that reported for hamster cells irradiated with cobalt-60 gamma rays. At 100-120 keV/{mu}m there is some evidence for an enhanced DPC yield with increasing particle fluence, but there are differences in the yields that are dependent on particle track structure.

  13. Actin-binding proteins: the long road to understanding the dynamic landscape of cellular actin networks.

    PubMed

    Lappalainen, Pekka

    2016-08-15

    The actin cytoskeleton supports a vast number of cellular processes in nonmuscle cells. It is well established that the organization and dynamics of the actin cytoskeleton are controlled by a large array of actin-binding proteins. However, it was only 40 years ago that the first nonmuscle actin-binding protein, filamin, was identified and characterized. Filamin was shown to bind and cross-link actin filaments into higher-order structures and contribute to phagocytosis in macrophages. Subsequently many other nonmuscle actin-binding proteins were identified and characterized. These proteins regulate almost all steps of the actin filament assembly and disassembly cycles, as well as the arrangement of actin filaments into diverse three-dimensional structures. Although the individual biochemical activities of most actin-regulatory proteins are relatively well understood, knowledge of how these proteins function together in a common cytoplasm to control actin dynamics and architecture is only beginning to emerge. Furthermore, understanding how signaling pathways and mechanical cues control the activities of various actin-binding proteins in different cellular, developmental, and pathological processes will keep researchers busy for decades. PMID:27528696

  14. CRP2, a new invadopodia actin bundling factor critically promotes breast cancer cell invasion and metastasis

    PubMed Central

    Dieterle, Monika; Moreau, Flora; Al Absi, Antoun; Steinmetz, André; Oudin, Anaïs; Berchem, Guy; Janji, Bassam; Thomas, Clément

    2016-01-01

    A critical process underlying cancer metastasis is the acquisition by tumor cells of an invasive phenotype. At the subcellular level, invasion is facilitated by actin-rich protrusions termed invadopodia, which direct extracellular matrix (ECM) degradation. Here, we report the identification of a new cytoskeletal component of breast cancer cell invadopodia, namely cysteine-rich protein 2 (CRP2). We found that CRP2 was not or only weakly expressed in epithelial breast cancer cells whereas it was up-regulated in mesenchymal/invasive breast cancer cells. In addition, high expression of the CRP2 encoding gene CSRP2 was associated with significantly increased risk of metastasis in basal-like breast cancer patients. CRP2 knockdown significantly reduced the invasive potential of aggressive breast cancer cells, whereas it did not impair 2D cell migration. In keeping with this, CRP2-depleted breast cancer cells exhibited a reduced capacity to promote ECM degradation, and to secrete and express MMP-9, a matrix metalloproteinase repeatedly associated with cancer progression and metastasis. In turn, ectopic expression of CRP2 in weakly invasive cells was sufficient to stimulate cell invasion. Both GFP-fused and endogenous CRP2 localized to the extended actin core of invadopodia, a structure primarily made of actin bundles. Purified recombinant CRP2 autonomously crosslinked actin filaments into thick bundles, suggesting that CRP2 contributes to the formation/maintenance of the actin core. Finally, CRP2 depletion significantly reduced the incidence of lung metastatic lesions in two xenograft mouse models of breast cancer. Collectively, our data identify CRP2 as a new cytoskeletal component of invadopodia that critically promotes breast cancer cell invasion and metastasis. PMID:26883198

  15. A copper sulfate and hydroxylysine treatment regimen for enhancing collagen cross-linking and biomechanical properties in engineered neocartilage

    PubMed Central

    Makris, Eleftherios A.; MacBarb, Regina F.; Responte, Donald J.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2013-01-01

    The objective of this study was to improve the biomechanical properties of engineered neotissues through promoting the development of collagen cross-links. It was hypothesized that supplementing medium with copper sulfate and the amino acid hydroxylysine would enhance the activity of lysyl oxidase enzyme to form collagen cross-links, increasing the strength and integrity of the neotissue. Neocartilage constructs were generated using a scaffoldless, self-assembling process and treated with copper sulfate and hydroxylysine, either alone or in combination, following a 2-factor, full-factorial study design. Following a 6-wk culture period, the biomechanical and biochemical properties of the constructs were measured. Results found copper sulfate to significantly increase pyridinoline (PYR) cross-links in all copper sulfate-containing groups over controls. When copper sulfate and hydroxylysine were combined, the result was synergistic, with a 10-fold increase in PYR content over controls. This increase in PYR cross-links manifested in a 3.3-fold significant increase in the tensile properties of the copper sulfate + hydroxylysine group. In addition, an 123% increase over control values was detected in the copper sulfate group in terms of the aggregate modulus. These data elucidate the role of copper sulfate and hydroxylysine toward improving the biomechanical properties of neotissues through collagen cross-linking enhancement.—Makris, E. A., MacBarb, R. F., Responte, D. J., Hu, J. C., Athanasiou, K. A. A copper sulfate and hydroxylysine treatment regimen for enhancing collagen cross-linking and biomechanical properties in engineered neocartilage. PMID:23457219

  16. Cross-linking of membrane immunoglobulin D, in the absence of T cell help, kills mature B cells in vivo

    PubMed Central

    1995-01-01

    In vivo experiments were performed to determine whether the cross- linking of membrane immunoglobulin (mIg) D on mature B cells, in the absence of T cell help, leads to B cell death. Mice were injected with either a monoclonal antibody (mAb) that cross-links mIgD effectively or a mAb that binds to mIgD avidly but cross-links it to a limited extent, and effects on B cell number and B cell Ia, mIgM, and mIgD expression were observed. In most experiments, mice were pretreated with anti- interleukin 7 mAb to prevent the generation of new bone marrow B cells, and with anti-CD4 mAb to prevent the generation of T cell help. In some experiments, mice also received anti-Fc gamma RII mAb to prevent cross- linking of mIgD with Fc gamma RII, and cobra venom factor to prevent possible mIg-complement receptor interactions and complement-mediated killing of B cells. The results of these studies demonstrate that (a) even limited cross-linking of mIgD on mature B cells can lead to B cell death; (b) increased cross-linking of mIgD leads to increased B cell death; (c) the loss of B cells is first detected 2 d after anti-IgD mAb injection and increases during the subsequent 3 d; (d) sustained modulation of mIgD may be necessary to cause B cell death; (e) mIgMdull but not mIgMbright B cells are lost in mice injected with anti-IgD mAbs; and (f) T cell help prevents or minimizes B cell death. PMID:7836908

  17. One-step electrospinning of cross-linked chitosan fibers.

    PubMed

    Schiffman, Jessica D; Schauer, Caroline L

    2007-09-01

    Chitin is a nitrogen-rich polysaccharide that is abundant in crustaceans, mollusks, insects, and fungi and is the second most abundant organic material found in nature next to cellulose. Chitosan, the N-deacetylated derivative of chitin, is environmentally friendly, nontoxic, biodegradable, and antibacterial. Fibrous mats are typically used in industries for filter media, catalysis, and sensors. Decreasing fiber diameters within these mats causes many beneficial effects such as increased specific surface area to volume ratios. When the intrinsically beneficial effects of chitosan are combined with the enhanced properties of nanofibrous mats, applications arise in a wide range of fields, including medical, packaging, agricultural, and automotive. This is particularly important as innovative technologies that focus around bio-based materials are currently of high urgency, as they can decrease dependencies on fossil fuels. We have demonstrated that Schiff base cross-linked chitosan fibrous mats can be produced utilizing a one-step electrospinning process that is 25 times faster and, therefore, more economical than a previously reported two-step vapor-cross-linking method. These fibrous mats are insoluble in acidic, basic, and aqueous solutions for 72 h. Additionally, this improved production method results in a decreased average fiber diameter, which measures 128 +/- 40 nm. Chemical and structural analyses were conducted utilizing Fourier transform infrared spectroscopy, solubility studies, and scanning electron microscopy. PMID:17696400

  18. Collagen Cross-Linking: Current Status and Future Directions

    PubMed Central

    Hovakimyan, Marine; Guthoff, Rudolf F.; Stachs, Oliver

    2012-01-01

    Collagen cross-linking (CXL) using UVA light and riboflavin (vitamin B2) was introduced as a clinical application to stabilize the cornea by inducing cross-links within and between collagen fibers. CXL has been investigated extensively and has been shown clinically to arrest the progression of keratoconic or post-LASIK ectasia. With its minimal cost, simplicity, and proven positive clinical outcome, CXL can be regarded as a useful approach to reduce the number of penetrating keratoplasties performed. Small case series have also indicated that CXL is beneficial in corneal edema by reducing stromal swelling behavior and in keratitis by inhibiting pathogen growth. Despite these encouraging results, CXL remains a relatively new method that is potentially associated with complications. Aspects such as side effects and recurrence rates have still to be elucidated. In light of the growing interest in CXL, our paper summarizes present knowledge about this promising approach. We have intentionally endeavored to include the more relevant studies from the recent literature to provide an overview of the current status of CXL. PMID:22288005

  19. Covalently Cross-Linked Arabinoxylans Films for Debaryomyces hansenii Entrapment.

    PubMed

    González-Estrada, Ramsés; Calderón-Santoyo, Montserrat; Carvajal-Millan, Elizabeth; Ascencio Valle, Felipe de Jesús; Ragazzo-Sánchez, Juan Arturo; Brown-Bojorquez, Francisco; Rascón-Chu, Agustín

    2015-01-01

    In the present study, wheat water extractable arabinoxylans (WEAX) were isolated and characterized, and their capability to form covalently cross-linked films in presence of Debaryomyces hansenii was evaluated. WEAX presented an arabinose to xylose ratio of 0.60, a ferulic acid and diferulic acid content of 2.1 and 0.04 µg∙mg(-1) WEAX, respectively and a Fourier Transform Infra-Red (FT-IR) spectrum typical of WEAX. The intrinsic viscosity and viscosimetric molecular weight values for WEAX were 3.6 dL∙g(-1) and 440 kDa, respectively. The gelation of WEAX (1% w/v) with and without D. hansenii (1 × 10(7) CFU∙cm(-2)) was rheologically investigated by small amplitude oscillatory shear. The entrapment of D. hansenii decreased gel elasticity from 1.4 to 0.3 Pa, probably by affecting the physical interactions between WEAX chains. Covalently cross-linked WEAX films containing D. hansenii were prepared by casting. Scanning electron microscopy images show that WEAX films containing D. hansenii were porous and consisted of granular-like and fibre microstructures. Average tensile strength, elongation at break and Young's modulus values dropped when D. hansenii was present in the film. Covalently cross-lined WEAX containing D. hansenii could be a suitable as a functional entrapping film. PMID:26102070

  20. Optimization model for UV-Riboflavin corneal cross-linking

    NASA Astrophysics Data System (ADS)

    Schumacher, S.; Wernli, J.; Scherrer, S.; Bueehler, M.; Seiler, T.; Mrochen, M.

    2011-03-01

    Nowadays UV-cross-linking is an established method for the treatment of keraectasia. Currently a standardized protocol is used for the cross-linking treatment. We will now present a theoretical model which predicts the number of induced crosslinks in the corneal tissue, in dependence of the Riboflavin concentration, the radiation intensity, the pre-treatment time and the treatment time. The model is developed by merging the difussion equation, the equation for the light distribution in dependence on the absorbers in the tissue and a rate equation for the polymerization process. A higher concentration of Riboflavin solution as well as a higher irradiation intensity will increase the number of induced crosslinks. However, performed stress-strain experiments which support the model showed that higher Riboflavin concentrations (> 0.125%) do not result in a further increase in stability of the corneal tissue. This is caused by the inhomogeneous distribution of induced crosslinks throughout the cornea due to the uneven absorption of the UV-light. The new model offers the possibility to optimize the treatment individually for every patient depending on their corneal thickness in terms of efficiency, saftey and treatment time.

  1. Thermoset-cross-linked lignocellulose: a moldable plant biomass.

    PubMed

    Karumuri, Sriharsha; Hiziroglu, Salim; Kalkan, A Kaan

    2015-04-01

    The present work demonstrates a high biomass content (i.e., up to 90% by weight) and moldable material by controlled covalent cross-linking of lignocellulosic particles by a thermoset through epoxide-hydroxyl reactions. As an example for lignocellulosic biomass, Eastern redcedar was employed. Using scanning fluorescence microscopy and vibrational spectroscopy, macroscopic to molecular scale interactions of the thermoset with the lignocellulose have been revealed. Impregnation of the polymer resin into the biomass cellular network by capillary action as well as applied pressure results in a self-organizing structure in the form of thermoset microrods in a matrix of lignocellulose. We also infer permeation of the thermoset into the cell walls from the reaction of epoxides with the hydroxyls of the lignin. Compression tests reveal, at 30% thermoset content, thermoset-cross-linked lignocellulose has superior mechanical properties over a commercial wood plastic composite while comparable stiffness and strength to bulk epoxy and wood, respectively. The failure mechanism is understood to be crack propagation along the particle-thermoset interface and/or interparticle thermoset network. PMID:25734539

  2. Effects of processing conditions on the reliability of cross-linked polyethylene cable insulation. Progress report

    SciTech Connect

    Phillips, P.J.

    1981-03-01

    Crystallization and morphology were investigated in cross-linked PE. /sup 13/C NMR was used to quantify the cross-links. Production of cable is being studied. Dielectric constant and loss of cross-linked PE are being measured. (DLC)

  3. 21 CFR 177.2710 - Styrene-divinylbenzene resins, cross-linked.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Styrene-divinylbenzene resins, cross-linked. 177... resins, cross-linked. Styrene-divinylbenzene cross-linked copolymer resins may be safely used as articles... conditions: (a) The resins are produced by the copolymerization of styrene with divinylbenzene. (b)...

  4. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes.

    PubMed

    Leitner, Alexander; Joachimiak, Lukasz A; Unverdorben, Pia; Walzthoeni, Thomas; Frydman, Judith; Förster, Friedrich; Aebersold, Ruedi

    2014-07-01

    The study of proteins and protein complexes using chemical cross-linking followed by the MS identification of the cross-linked peptides has found increasingly widespread use in recent years. Thus far, such analyses have used almost exclusively homobifunctional, amine-reactive cross-linking reagents. Here we report the development and application of an orthogonal cross-linking chemistry specific for carboxyl groups. Chemical cross-linking of acidic residues is achieved using homobifunctional dihydrazides as cross-linking reagents and a coupling chemistry at neutral pH that is compatible with the structural integrity of most protein complexes. In addition to cross-links formed through insertion of the dihydrazides with different spacer lengths, zero-length cross-link products are also obtained, thereby providing additional structural information. We demonstrate the application of the reaction and the MS identification of the resulting cross-linked peptides for the chaperonin TRiC/CCT and the 26S proteasome. The results indicate that the targeting of acidic residues for cross-linking provides distance restraints that are complementary and orthogonal to those obtained from lysine cross-linking, thereby expanding the yield of structural information that can be obtained from cross-linking studies and used in hybrid modeling approaches. PMID:24938783

  5. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes

    PubMed Central

    Leitner, Alexander; Joachimiak, Lukasz A.; Unverdorben, Pia; Walzthoeni, Thomas; Frydman, Judith; Förster, Friedrich; Aebersold, Ruedi

    2014-01-01

    The study of proteins and protein complexes using chemical cross-linking followed by the MS identification of the cross-linked peptides has found increasingly widespread use in recent years. Thus far, such analyses have used almost exclusively homobifunctional, amine-reactive cross-linking reagents. Here we report the development and application of an orthogonal cross-linking chemistry specific for carboxyl groups. Chemical cross-linking of acidic residues is achieved using homobifunctional dihydrazides as cross-linking reagents and a coupling chemistry at neutral pH that is compatible with the structural integrity of most protein complexes. In addition to cross-links formed through insertion of the dihydrazides with different spacer lengths, zero-length cross-link products are also obtained, thereby providing additional structural information. We demonstrate the application of the reaction and the MS identification of the resulting cross-linked peptides for the chaperonin TRiC/CCT and the 26S proteasome. The results indicate that the targeting of acidic residues for cross-linking provides distance restraints that are complementary and orthogonal to those obtained from lysine cross-linking, thereby expanding the yield of structural information that can be obtained from cross-linking studies and used in hybrid modeling approaches. PMID:24938783

  6. 21 CFR 177.2710 - Styrene-divinylbenzene resins, cross-linked.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Styrene-divinylbenzene resins, cross-linked. 177... resins, cross-linked. Styrene-divinylbenzene cross-linked copolymer resins may be safely used as articles... conditions: (a) The resins are produced by the copolymerization of styrene with divinylbenzene. (b)...

  7. Phylogenetic Patterns of Codon Evolution in the ACTIN-DEPOLYMERIZING FACTOR/COFILIN (ADF/CFL) Gene Family

    PubMed Central

    Roy-Zokan, Eileen M.; Dyer, Kelly A.; Meagher, Richard B.

    2015-01-01

    The actin-depolymerizing factor/cofilin (ADF/CFL) gene family encodes a diverse group of relatively small proteins. Once known strictly as modulators of actin filament dynamics, recent research has demonstrated that these proteins are involved in a variety of cellular processes, from signal transduction to the cytonuclear trafficking of actin. In both plant and animal lineages, expression patterns of paralogs in the ADF/CFL gene family vary among tissue types and developmental stages. In this study we use computational approaches to investigate the evolutionary forces responsible for the diversification of the ADF/CFL gene family. Estimating the rate of non-synonymous to synonymous mutations (dN/dS) across phylogenetic lineages revealed that the majority of ADF/CFL codon positions were under strong purifying selection, with rare episodic events of accelerated protein evolution. In both plants and animals these instances of accelerated evolution were ADF/CFL subclass specific, and all of the sites under selection were located in regions of the protein that could serve in new functional roles. We suggest these sites may have been important in the functional diversification of ADF/CFL proteins. PMID:26717562

  8. Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts.

    PubMed

    Chu, Chenyu; Deng, Jia; Xiang, Lin; Wu, Yingying; Wei, Xiawei; Qu, Yili; Man, Yi

    2016-10-01

    Collagen membranes have ideal biological and mechanical properties for supporting infiltration and proliferation of osteoblasts and play a vital role in guided bone regeneration (GBR). However, pure collagen can lead to inflammation, resulting in progressive bone resorption. Therefore, a method for regulating the level of inflammatory cytokines at surgical sites is paramount for the healing process. Epigallocatechin-3-gallate (EGCG) is a component extracted from green tea with numerous biological activities including an anti-inflammatory effect. Herein, we present a novel cross-linked collagen membrane containing different concentrations of EGCG (0.0064%, 0.064%, and 0.64%) to regulate the level of inflammatory factors secreted by pre-osteoblast cells; improve cell proliferation; and increase the tensile strength, wettability, and thermal stability of collagen membranes. Scanning electron microscope images show that the surfaces of collagen membranes became smoother and the collagen fiber diameters became larger with EGCG treatment. Measurement of the water contact angle demonstrated that introducing EGCG improved membrane wettability. Fourier transform infrared spectroscopy analyses indicated that the backbone of collagen was intact, and the thermal stability was significant improved in differential scanning calorimetry. The mechanical properties of 0.064% and 0.64% EGCG-treated collagen membranes were 1.5-fold greater than those of the control. The extent of cross-linking was significantly increased, as determined by a 2,4,6-trinitrobenzenesulfonic acid solution assay. The Cell Counting Kit-8 (CCK-8) and live/dead assays revealed that collagen membrane cross-linked by 0.0064% EGCG induced greater cell proliferation than pure collagen membranes. Additionally, real-time polymerase chain reaction and enzyme-linked immunosorbent assay results showed that EGCG significantly affected the production of inflammatory factors secreted by MC3T3-E1 cells. Taken together, our

  9. Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts.

    PubMed

    Chu, Chenyu; Deng, Jia; Xiang, Lin; Wu, Yingying; Wei, Xiawei; Qu, Yili; Man, Yi

    2016-10-01

    Collagen membranes have ideal biological and mechanical properties for supporting infiltration and proliferation of osteoblasts and play a vital role in guided bone regeneration (GBR). However, pure collagen can lead to inflammation, resulting in progressive bone resorption. Therefore, a method for regulating the level of inflammatory cytokines at surgical sites is paramount for the healing process. Epigallocatechin-3-gallate (EGCG) is a component extracted from green tea with numerous biological activities including an anti-inflammatory effect. Herein, we present a novel cross-linked collagen membrane containing different concentrations of EGCG (0.0064%, 0.064%, and 0.64%) to regulate the level of inflammatory factors secreted by pre-osteoblast cells; improve cell proliferation; and increase the tensile strength, wettability, and thermal stability of collagen membranes. Scanning electron microscope images show that the surfaces of collagen membranes became smoother and the collagen fiber diameters became larger with EGCG treatment. Measurement of the water contact angle demonstrated that introducing EGCG improved membrane wettability. Fourier transform infrared spectroscopy analyses indicated that the backbone of collagen was intact, and the thermal stability was significant improved in differential scanning calorimetry. The mechanical properties of 0.064% and 0.64% EGCG-treated collagen membranes were 1.5-fold greater than those of the control. The extent of cross-linking was significantly increased, as determined by a 2,4,6-trinitrobenzenesulfonic acid solution assay. The Cell Counting Kit-8 (CCK-8) and live/dead assays revealed that collagen membrane cross-linked by 0.0064% EGCG induced greater cell proliferation than pure collagen membranes. Additionally, real-time polymerase chain reaction and enzyme-linked immunosorbent assay results showed that EGCG significantly affected the production of inflammatory factors secreted by MC3T3-E1 cells. Taken together, our

  10. [Actinic Keratosis].

    PubMed

    Dejaco, D; Hauser, U; Zelger, B; Riechelmann, H

    2015-07-01

    Actinic keratosis is a cutaneous lesion characterized by proliferation of atypical epidermal keratinocytes due to prolonged exposure to exogenous factors such as ultraviolet radiation. AKs are in-situ-squamous cell carcinomas (PEC) of the skin. AK typically presents as erythematous, scaly patch or papule (classic AK), occasionally as thick, adherent scale on an erythematous base. Mostly fair-skinned adults are affected. AKs typically occur in areas of frequent sun exposure (balding scalp, face, "H-region", lateral neck, décolleté, dorsum of the hand and lower extremities). Actinic Cheilitis is the term used for AKs appearing on the lips. The diagnosis of AK is based on clinical examination including inspection and palpation. The typical palpable rough surface of AK often precedes a visible lesion. Dermoscopy may provide additional information. If diagnosis is uncertain and invasion suspected, biopsy and histopathologic evaluation should be performed. The potential for progression to invasive PECs mandates therapeutic intervention. Treatment options include topical and systemic therapies. Topical therapies are classified into physical, medical and combined physical-chemical approaches and a sequential combination of treatment modalities is possible. Topical-physical cryotherapy is the treatment of choice for isolated, non-hypertrophic AK. Topical-medical treatment, e. g. 5-fluoruracil (5FU) cream or Imiquomod or Ingenolmebutat application is used for multiple, non-hypertrophic AKs. For hypertrophic AKs, a dehorning pretreatment with salicinated vaseline is recommended. Isolated hypertrophic AKs often need cryotherapy with prolonged freezing time or several consecutive applications. Sequentially combined approaches are recommended for multiple, hypertrophic AKs. Photodynamic therapy (PDT) as example for a combined physical-chemical approach is an established treatment for multiple, non-hypertrophic and hypertrophic AKs. Prevention includes avoidance of sun and

  11. Change in the actin-myosin subfragment 1 interaction during actin polymerization.

    PubMed

    Chaussepied, P; Kasprzak, A A

    1989-12-01

    To better characterize the conformational differences of G- and F-actin, we have compared the interaction between G- and F-actin with myosin subfragment 1 (S1) which had part of its F-actin binding site (residues 633-642) blocked by a complementary peptide or "antipeptide" (Chaussepied, P., and Morales, M. F. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 7471-7475). Light scattering, sedimentation, and electron microscopy measurements showed that, with the antipeptide covalently attached to the S1 heavy chain, S1 was not capable of inducing G-actin polymerization in the absence of salt. Moreover, the antipeptide-carrying S1 did not change the fluorescence polarization of 5-[2-(iodoacetyl)-aminoethyl]aminonaphthalene-1-sulfonic acid (1,5-IAEDANS)-labeled G-actin or of 1,5-IAEDANS-labeled actin dimer, compared to the control S1. This result, interpreted as a lack of interaction between G-actin and antipeptide-carrying S1, was confirmed further by the following experiments: in the presence of G-actin, antipeptide.S1 heavy chain was not protected against trypsin and papain proteolysis, and G-actin could not be cross-linked to antipeptide.S1 by 1-ethyl-3[-3-(dimethylamino)propyl]carbodiimide. In contrast, similar experiments showed that antipeptide.S1 was able to interact with nascent F-actin and with F-actin. Thus, blocking the stretch 633-642 of S1 heavy chain by the antipeptide strongly inhibits G-actin-S1 interaction but only slightly alters F-actin-S1 contact. We, therefore postulate that this stretch of skeletal S1 heavy chain is essential for G-actin-S1 interaction and that the G-F transformation generates new S1 binding site(s) on the actin molecule.

  12. Leptospira Immunoglobulin-Like Protein B (LigB) Binds to Both the C-Terminal 23 Amino Acids of Fibrinogen αC Domain and Factor XIII: Insight into the Mechanism of LigB-Mediated Blockage of Fibrinogen α Chain Cross-Linking

    PubMed Central

    Hsieh, Ching-Lin; Chang, Eric; Tseng, Andrew; Ptak, Christopher; Wu, Li-Chen; Su, Chun-Li; McDonough, Sean P.; Lin, Yi-Pin; Chang, Yung-Fu

    2016-01-01

    The coagulation system provides a primitive but effective defense against hemorrhage. Soluble fibrinogen (Fg) monomers, composed of α, β and γ chains, are recruited to provide structural support for the formation of a hemostatic plug. Fg binds to platelets and is processed into a cross-linked fibrin polymer by the enzymatic clotting factors, thrombin and Factor XIII (FXIII). The newly formed fibrin-platelet clot can act as barrier to protect against pathogens from entering the bloodstream. Further, injuries caused by bacterial infections can be confined to the initial wound site. Many pathogenic bacteria have Fg-binding adhesins that can circumvent the coagulation pathway and allow the bacteria to sidestep containment. Fg expression is upregulated during lung infection providing an attachment surface for bacteria with the ability to produce Fg-binding adhesins. Fg binding by leptospira might play a crucial factor in Leptospira-associated pulmonary hemorrhage, the main factor contributing to lethality in severe cases of leptospirosis. The 12th domain of Leptospira immunoglobulin-like protein B (LigB12), a leptospiral adhesin, interacts with the C-terminus of FgαC (FgαCC). In this study, the binding site for LigB12 was mapped to the final 23 amino acids at the C-terminal end of FgαCC (FgαCC8). The association of FgαCC8 with LigB12 (ELISA, KD = 0.76 μM; SPR, KD = 0.96 μM) was reduced by mutations of both charged residues (R608, R611 and H614 from FgαCC8; D1061 from LigB12) and hydrophobic residues (I613 from FgαCC8; F1054 and A1065 from LigB12). Additionally, LigB12 bound strongly to FXIII and also inhibited fibrin formation, suggesting that LigB can disrupt coagulation by suppressing FXIII activity. Here, the detailed binding mechanism of a leptospiral adhesin to a host hemostatic factor is characterized for the first time and should provide better insight into the pathogenesis of leptospirosis. PMID:27622634

  13. Leptospira Immunoglobulin-Like Protein B (LigB) Binds to Both the C-Terminal 23 Amino Acids of Fibrinogen αC Domain and Factor XIII: Insight into the Mechanism of LigB-Mediated Blockage of Fibrinogen α Chain Cross-Linking.

    PubMed

    Hsieh, Ching-Lin; Chang, Eric; Tseng, Andrew; Ptak, Christopher; Wu, Li-Chen; Su, Chun-Li; McDonough, Sean P; Lin, Yi-Pin; Chang, Yung-Fu

    2016-09-01

    The coagulation system provides a primitive but effective defense against hemorrhage. Soluble fibrinogen (Fg) monomers, composed of α, β and γ chains, are recruited to provide structural support for the formation of a hemostatic plug. Fg binds to platelets and is processed into a cross-linked fibrin polymer by the enzymatic clotting factors, thrombin and Factor XIII (FXIII). The newly formed fibrin-platelet clot can act as barrier to protect against pathogens from entering the bloodstream. Further, injuries caused by bacterial infections can be confined to the initial wound site. Many pathogenic bacteria have Fg-binding adhesins that can circumvent the coagulation pathway and allow the bacteria to sidestep containment. Fg expression is upregulated during lung infection providing an attachment surface for bacteria with the ability to produce Fg-binding adhesins. Fg binding by leptospira might play a crucial factor in Leptospira-associated pulmonary hemorrhage, the main factor contributing to lethality in severe cases of leptospirosis. The 12th domain of Leptospira immunoglobulin-like protein B (LigB12), a leptospiral adhesin, interacts with the C-terminus of FgαC (FgαCC). In this study, the binding site for LigB12 was mapped to the final 23 amino acids at the C-terminal end of FgαCC (FgαCC8). The association of FgαCC8 with LigB12 (ELISA, KD = 0.76 μM; SPR, KD = 0.96 μM) was reduced by mutations of both charged residues (R608, R611 and H614 from FgαCC8; D1061 from LigB12) and hydrophobic residues (I613 from FgαCC8; F1054 and A1065 from LigB12). Additionally, LigB12 bound strongly to FXIII and also inhibited fibrin formation, suggesting that LigB can disrupt coagulation by suppressing FXIII activity. Here, the detailed binding mechanism of a leptospiral adhesin to a host hemostatic factor is characterized for the first time and should provide better insight into the pathogenesis of leptospirosis. PMID:27622634

  14. Studies on N-vinylformamide cross-linked copolymers

    NASA Astrophysics Data System (ADS)

    Świder, Joanna; Tąta, Agnieszka; Sokołowska, Katarzyna; Witek, Ewa; Proniewicz, Edyta

    2015-12-01

    Copolymers of N-vinylformamide (NVF) cross-linked with three multifunctional monomers, including divinylbenzene (DVB), ethylene glycol dimethacrylate (EGDMA), and N,N‧-methylenebisacrylamide (MBA) were synthetized by a three-dimensional free radical polymerization in inverse suspension using 2,2‧-azobis(2-methylpropionamide) dihydrochloride (AIBA) as an initiator. Methyl silicon oil was used as the continuous phase during the polymerization processes. Fourier-transform adsorption infrared (FT-IR) spectra revealed the presence of silicone oil traces and suggested that silicone oil strongly interacted with the copolymers surface. Purification procedure allowed to completely remove the silicon oil traces from P(NVF-co-DVB) only. The morphology and the structure of the investigated copolymers were examined by optical microscopy, FT-IR, and FT-Raman (Fourier-transform Raman spectroscopy) methods.

  15. Tough Stretchable Physically-Cross-linked Electrospun Hydrogel Fiber Mats.

    PubMed

    Yang, Yiming; Wang, Chao; Wiener, Clinton G; Hao, Jinkun; Shatas, Sophia; Weiss, R A; Vogt, Bryan D

    2016-09-01

    Nature uses supramolecular interactions and hierarchical structures to produce water-rich materials with combinations of properties that are challenging to obtain in synthetic systems. Here, we demonstrate hierarchical supramolecular hydrogels from electrospun, self-associated copolymers with unprecedented elongation and toughness for high porosity hydrogels. Hydrophobic association of perfluoronated comonomers provides the physical cross-links for these hydrogels based on copolymers of dimethyl acrylamide and 2-(N-ethylperfluorooctane sulfonamido)ethyl methacrylate (FOSM). Intriguingly, the hydrogel fiber mats show an enhancement in toughness in comparison to compression molded bulk hydrogels. This difference is attributed to the size distribution of the hydrophobic aggregates where narrowing the distribution in the electrospun material enhances the toughness of the hydrogel. These hydrogel fiber mats exhibit extensibility more than double that of the bulk hydrogel and a comparable modulus despite the porosity of the fiber mat leading to >25 wt % increase in water content. PMID:27548013

  16. Conventional Versus Cross-Linked Polyethylene for Total Hip Arthroplasty.

    PubMed

    Surace, Michele F; Monestier, Luca; Vulcano, Ettore; Harwin, Steven F; Cherubino, Paolo

    2015-09-01

    The clinical and radiographic outcomes of 88 patients who underwent primary total hip arthroplasty with either conventional polyethylene or cross-linked polyethylene (XLPE) from the same manufacturer were compared. There were no significant differences between the 2 subpopulations regarding average age, gender, side affected, or prosthetic stem and cup size. The average follow-up was 104 months (range, 55 to 131 months). To the authors' knowledge, this is the longest follow-up for this particular insert. Clinical and radiographic evaluations were performed at 1, 3, 6, and 12 months and then annually. Results showed that XLPE has a significantly greater wear reduction than that of standard polyethylene in primary total hip arthroplasty. At the longest available follow-up for these specific inserts, XLPE proved to be effective in reducing wear. PMID:26375527

  17. Protein cross-linking tools for the construction of nanomaterials.

    PubMed

    Domeradzka, Natalia E; Werten, Marc Wt; Wolf, Frits A de; de Vries, Renko

    2016-06-01

    Across bioengineering there is a need to couple proteins to other proteins, or to peptides. Although traditional chemical conjugations have dominated in the past, more and more highly specific coupling strategies are becoming available that are based on protein engineering. Here we review the use of protein modification approaches such as enzymatic and autocatalytic protein-protein coupling, as well as the use of hetero-dimerizing (or hetero-oligomerizing) modules, applied to the specific case of linking together de novo designed recombinant polypeptides into precisely structured nanomaterials. Such polypeptides are increasingly being investigated for biomedical and other applications. In this review, we describe the protein-engineering based cross-linking strategies that dramatically expand the repertoire of possible molecular structures and, hence, the range of materials that can be produced from them. PMID:26871735

  18. Structural Dynamics of an Actin Spring

    PubMed Central

    Mahadevan, L.; Riera, C.S.; Shin, Jennifer H.

    2011-01-01

    Actin-based motility in cells is usually associated with either polymerization/depolymerization in the presence of cross-linkers or contractility in the presence of myosin motors. Here, we focus on a third distinct mechanism involving actin in motility, seen in the dynamics of an active actin spring that powers the acrosomal reaction of the horseshoe crab (Limulus polyphemus) sperm. During this process, a 60-μm bent and twisted bundle of cross-linked actin uncoils and becomes straight in a few seconds in the presence of Ca2+. This straightening, which occurs at a constant velocity, allows the acrosome to forcefully penetrate the egg. Synthesizing ultrastructural information with the kinetics, energetics, and imaging of calcium binding allows us to construct a dynamical theory for this mechanochemical engine consistent with our experimental observations. It also illuminates the general mechanism by which energy may be stored in conformational changes and released cooperatively in ordered macromolecular assemblies. PMID:21320427

  19. Collagen Cross-Linking Using Rose Bengal and Green Light to Increase Corneal Stiffness

    PubMed Central

    Cherfan, Daniel; Verter, E. Eri; Melki, Samir; Gisel, Thomas E.; Doyle, Francis J.; Scarcelli, Giuliano; Yun, Seok Hyun; Redmond, Robert W.; Kochevar, Irene E.

    2013-01-01

    Purpose. Photochemical cross-linking of corneal collagen is an evolving treatment for keratoconus and other ectatic disorders. We evaluated collagen cross-linking by rose bengal plus green light (RGX) in rabbit eyes and investigated factors important for clinical application. Methods. Rose bengal (RB, 0.1%) was applied to deepithelialized corneas of enucleated rabbit eyes for 2 minutes. The diffusion distance of RB into the stroma was measured by fluorescence microscopy on frozen sections. RB-stained corneas were exposed to green (532-nm) light for 3.3 to 9.9 minutes (50–150 J/cm2). Changes in the absorption spectrum during the irradiation were recorded. Corneal stiffness was measured by uniaxial tensiometry. The spatial distribution of the stromal elastic modulus was assessed by Brillouin microscopy. Viable keratocytes were counted on H&E-stained sections 24 hours posttreatment. Results. RB penetrated approximately 100 μm into the corneal stroma and absorbed >90% of the incident green light. RGX (150 J/cm2) increased stromal stiffness by 3.8-fold. The elastic modulus increased in the anterior approximately 120 μm of stroma. RB was partially photobleached during the 2-minute irradiation, but reapplication of RB blocked light transmission by >70%. Spectral measurements suggested that RGX initiated cross-linking by an oxygen-dependent mechanism. RGX did not decrease keratocyte viability. Conclusions. RGX significantly increases cornea stiffness in a rapid treatment (≅12 minutes total time), does not cause toxicity to keratocytes and may be used to stiffen corneas thinner than 400 μm. Thus, RGX may provide an attractive approach to inhibit progression of keratoconus and other ectatic disorders. PMID:23599326

  20. Enzymatically cross-linked injectable alginate-g-pyrrole hydrogels for neovascularization.

    PubMed

    Devolder, Ross; Antoniadou, Eleni; Kong, Hyunjoon

    2013-11-28

    Microparticles capable of releasing protein drugs are often incorporated into injectable hydrogels to minimize their displacement at an implantation site, reduce initial drug burst, and further control drug release rates over a broader range. However, there is still a need to develop methods for releasing drug molecules over extended periods of time, in order to sustain the bioactivity of drug molecules at an implantation site. In this study, we hypothesized that a hydrogel formed through the cross-linking of pyrrole units linked to a hydrophilic polymer would release protein drugs in a more sustained manner, because of an enhanced association between cross-linked pyrrole groups and the drug molecules. To examine this hypothesis, we prepared hydrogels of alginate substituted with pyrrole groups, alginate-g-pyrrole, through a horse-radish peroxidase (HRP)-activated cross-linking of the pyrrole groups. The hydrogels were encapsulated with poly(lactic-co-glycolic acid) (PLGA) microparticles loaded with vascular endothelial growth factor (VEGF). The resulting hydrogel system released VEGF in a more sustained manner than Ca(2+) alginate or Ca(2+) alginate-g-pyrrole gel systems. Finally, implantations of the VEGF-releasing HRP-activated alginate-g-pyrrole hydrogel system on chicken chorioallantoic membranes resulted in the formation of blood vessels in higher densities and with larger diameters, compared to other control conditions. Overall, the drug releasing system developed in this study will be broadly useful for regulating release rates of a wide array of protein drugs, and further enhance the quality of protein drug-based therapies. PMID:23886705

  1. [A Method for Protein Photo-cross-linking in Living Cells Facilitating Analysis of Physiological Interactions of Proteins].

    PubMed

    Hino, Nobumasa

    2015-01-01

    In living cells, most proteins form complexes with other proteins to exert their functions. Since protein functions are regulated in response to changes in the cellular environment, the components of the complexes can vary; therefore, proteins often interact in a weak and transient manner. To capture such labile protein interactions, we have developed a method for photo-cross-linking of proteins directly interacting in mammalian cells; this method involves expansion of the genetic code and site-specific incorporation of photoreactive amino acids into proteins. Upon cross-linking, protein complexes are stabilized by a covalent bond and can be readily isolated from cell extracts without the problems usually associated with simple affinity purification methods such as co-immunoprecipitation. Photo-cross-linkers have another benefit: they react exclusively with molecules within a range defined by the linker length. This property becomes useful for determining the binding interface of two proteins because the linkers can be introduced in a site-directed manner with our method. In this review, we first describe the expansion of the genetic code of mammalian cells for the incorporation of non-natural amino acids into proteins. Then, we introduce our recent applications and developments of the cross-linking method: identification of intracellular binding partners of the signaling protein growth factor receptor binding protein 2; analysis of the binding between membrane proteins on the cell surface; and a novel photoreactive amino acid that enables wide-ranging photo-cross-linking.

  2. Actinic keratosis

    MedlinePlus

    Solar keratosis; Sun-induced skin changes - keratosis; Keratosis - actinic (solar) ... Actinic keratosis is caused by exposure to sunlight. You are more likely to develop it if you: Have fair skin, blue or green eyes, or blond or red hair Had a ...

  3. Ultrathin, biomimetic, superhydrophilic layers of cross-linked poly(phosphobetaine) on polyethylene by photografting.

    PubMed

    Yang, Biao; Duan, Xiaobo; Huang, Jijun

    2015-01-27

    Ultrathin, biomimetic, superhydrophilic hydrogel layers, composed of cross-linked poly(2-methacryloyloxyethyl phosphorylcholine), are formed on low-density polyethylene films via ultraviolet-initiated surface graft polymerization. The layers are 19-58 nm thick as revealed by electron microscopy and have three-dimensional networks; the unique network structure, along with its zwitterionic nature, rather than surface roughness results in superhydrophilicity, that is, the water contact angle around 5°. This superhydrophilicity depends on a variety of factors, including the concentration of the monomer and cross-linker, the type of reaction solvents, the reaction and drying time, the intensity of UV light, and the way of measurement of water contact angles. Superhydrophilicity is obtained under a fixed ratio (e.g., 1/1) of the monomer to cross-linker, a reaction time over 120 s, a short drying time, (75%) ethanol as the reaction solvent, and low-intensity UV light, largely because these factors together generate optimal three-dimensional networks of cross-links.

  4. Inactivation of Matrix-bound MMPs by Cross-linking Agents in Acid Etched Dentin

    PubMed Central

    Scheffel, Débora Lopes Salles; Hebling, Josimeri; Scheffel, Régis Henke; Agee, Kelly A.; Turco, Gianluca; de Souza Costa, Carlos Alberto; Pashley, David H.

    2014-01-01

    Objectives Published TEM analysis of in vivo resin-dentin bonds shows that in 44 months almost 70% of collagen fibrils from the hybrid layer disappear. Matrix metalloproteinases (MMPs) play an important role in that process and are thought to be the main factor responsible for the solubitization of dentin collagen. Therefore, this study aimed to evaluate the inactivation of matrix-bound MMPs by carbodiimide (EDC) or proanthocyanidin (PA) both cross-linking agents, or the MMP-inhibitor, chlorhexidine (CHX), on acid-etched dentin using a simplified MMP assay method. Methods Dentin beams (1×1×6mm) were obtained from mid-coronal dentin of sound third molars and randomly divided into 6 groups (G) according to the dentin treatment: G1: Deionized water (control), G2: 0.1M EDC, G3: 0.5M EDC, G4: 0.5M EDC+35% HEMA, G5: 5% Proanthocyanidin (PA) and G6: 2% CHX. The beams were etched for 15s with 37% phosphoric acid, rinsed and then immersed for 60s in one of the treatment solutions. The total MMP activity of dentin was analyzed for 1 h by colorimetric assay (Sensolyte). Data were submitted to Wilcoxon non-parametric test and Mann-Whitney tests (p>0.05). Results All experimental cross-linking solutions significantly reduced MMP activity compared to control, except 0.1M EDC (53.6% ±16.1). No difference was observed between cross-linking agents and 2% CHX 0.5M EDC + 35% HEMA (92.3% ±8.0) was similar to 0.5M EDC (89.1% ±6.4), 5% PA (100.8% ±10.9) and 2% CHX (83.4% ±10.9). Conclusion Dentin treatment with cross-linking agents is effective to significantly reduce MMP activity. Mixing 0.5M EDC and 35% HEMA did not influence EDC inhibitor potential. PMID:23786610

  5. Standard versus trans-epithelial collagen cross-linking in keratoconus patients suitable for standard collagen cross-linking

    PubMed Central

    Rossi, S; Orrico, A; Santamaria, C; Romano, V; De Rosa, L; Simonelli, F; De Rosa, G

    2015-01-01

    Purpose Evaluating the clinical results of trans-epithelial collagen cross-linking (CXL) and standard CXL in patients with progressive keratoconus. Methods This prospective study comprised 20 eyes of 20 patients with progressive keratoconus. Ten eyes were treated by standard CXL and ten by trans-epithelial cross-linking (TE-CXL, epithelium on) with 1 year of follow-up. All patients underwent complete ophthalmologic testing that included pre- and postoperative uncorrected visual acuity, corrected visual acuity, spherical error, spherical equivalent, corneal astigmatism, simulated maximum, minimum, and average keratometry, coma and spherical aberration, optical pachymetry, and endothelial cell density. Intra-and postoperative complications were recorded. The solution used for standard CXL comprised riboflavin 0.1% and dextran 20.0% (Ricrolin), while the solution for TE-CXL (Ricrolin, TE) comprised riboflavin 0.1%, dextran 15.0%, trometamol (Tris), and ethylenediaminetetraacetic acid. Ultraviolet-A treatment was performed with UV-X System at 3 mW/cm2. Results In both the standard CXL group (ten patients, ten eyes; mean age, 30.4±7.3 years) and the TE-CXL group (ten patients, ten eyes; mean age, 28±3.8 years), uncorrected visual acuity and corrected visual acuity improved significantly after treatment. Furthermore, a significant improvement in topographic outcomes, spherical error, and spherical equivalent was observed in both groups at month 12 posttreatment. No significant variations were recorded in other parameters. No complications were noted. Conclusion A 1-year follow-up showed stability of clinical and refractive outcomes after standard CXL and TE-CXL. PMID:25834386

  6. Structural insights into de novo actin polymerization

    PubMed Central

    Dominguez, Roberto

    2010-01-01

    Summary Many cellular functions depend on rapid and localized actin polymerization/depolymerization. Yet, the de novo polymerization of actin in cells is kinetically unfavorable because of the instability of polymerization intermediates (small actin oligomers) and the actions of actin monomer binding proteins. Cells use filament nucleation and elongation factors to initiate and sustain polymerization. Structural biology is beginning to shed light on the diverse mechanisms by which these unrelated proteins initiate polymerization, undergo regulation, and mediate the transition of monomeric actin onto actin filaments. A prominent role is played by the W domain, which in some of these proteins occurs in tandem repeats that recruit multiple actin subunits. Pro-rich regions are also abundant and mediate the binding of profilin-actin complexes, which are the main source of polymerization competent actin in cells. Filament nucleation and elongation factors frequently interact with Rho family GTPases, which relay signals from membrane receptors to regulate actin cytoskeleton remodeling. PMID:20096561

  7. The Effect of Crosslinking on the Microscale Stress Response and Molecular Deformations in Actin Networks

    NASA Astrophysics Data System (ADS)

    Gurmessa, Bekele; Fitzpatrick, Robert; Valdivia, Jonathon; Anderson, Rae M. R.

    Actin, the most abundant protein in eukaryotic cells, is a semi-flexible biopolymer in the cytoskeleton that plays a crucial structural and mechanical role in cell stability, motion and replication, as well as muscle contraction. Most of these mechanically driven structural changes in cells stem from the complex viscoelastic nature of entangled actin networks and the presence of a myriad of proteins that cross-link actin filaments. Despite their importance, the mechanical response of actin networks is not yet well understood, particularly at the molecular level. Here, we use optical trapping - coupled with fluorescence microscopy - to characterize the microscale stress response and induced filament deformations in entangled and cross-linked actin networks subject to localized mechanical perturbations. In particular, we actively drive a microsphere 10 microns through an entangled or cross- linked actin network at a constant speed and measure the resistive force that the deformed actin filaments exert on the bead during and following strain. We simultaneously visualize and track individual sparsely-labeled actin filaments to directly link force response to molecular deformations, and map the propagation of the initially localized perturbation field throughout the rest of the network (~100 um). By varying the concentration of actin and cross-linkers we directly determine the role of crosslinking and entanglements on the length and time scales of stress propagation, molecular deformation and relaxation mechanisms in actin networks.

  8. Tuning nanoscale viscoelasticity of polyelectrolyte complexes with multiple types of cross-links

    NASA Astrophysics Data System (ADS)

    Ma, Tianzhu; Han, Biao; Lee, Daeyeon; Han, Lin

    Mechanical properties of hydrogels are manifestation of cross-link type and density, fixed charges and water-polymer interactions. In this study, we revealed how different types of cross-links regulate the nanoscale viscoelasticity of polyelectrolyte networks. Ionically cross-linked PAH/PAA layer-by-layer complexes were modified to include covalent cross-links using EDC. AFM-nanoindentation and force relaxation were performed at various ionic strength (0.01-1M) and pH (1.5-5.5). As-assembled networks, held only by ionic cross-links, underwent >95% relaxation, dominated by cross-link breaking and re-formation. Addition of covalent cross-links increased the instantaneous modulus by 1.6-fold and attenuated relaxation to ~80% of net neutral states (pH >=3.5), as covalent cross-links provide additional elastic components. The network remained stabilized when all ionic cross-links were dissociated at pH <=1.5, whereby further attenuation to 31% in relaxation could be due to viscoelastic polymer conformational changes and fluid flow-induced poroelasticity. Taken together, this study demonstrates the potential of using multiple cross-linking types to tune the viscoelastic mechanisms in polyelectrolyte complexes.

  9. Reactive electrospinning and biodegradation of cross-linked methacrylated polycarbonate nanofibers.

    PubMed

    Wu, Ruizhi; Zhang, Jian-Feng; Fan, Yuwei; Stoute, Diana; Lallier, Thomas; Xu, Xiaoming

    2011-06-01

    The objectives of this study were to fabricate cross-linked biodegradable polycarbonate nanofibers and to investigate their biodegradability by different enzymes. Poly(2,3-dihydroxycarbonate) was synthesized from naturally occurring l-tartaric acid. The hydroxyl groups on the functional polycarbonate were converted to methacrylate groups to enable the polymer to cross-link under UV irradiation. Smooth cross-linked methacrylated polycarbonate nanofibers (300-1800 nm) were fabricated by a reactive electrospinning process with in situ UV radiation from a mixed solution of linear methacrylated polycarbonate (MPC) and poly(ethylene oxide) (PEO) (MPC:PEO = 9:1) in methanol/chloroform (50/50). These cross-linked nanofibers have shown excellent solvent resistance and their solubility decreases with increasing degree of cross-linking. The thermal properties of linear and cross-linked polycarbonate nanofibers were investigated by differential scanning calorimetry and thermogravimetric analysis. The cross-linked polycarbonate nanofibers show no melting point below 200 °C and their decomposition temperature increases with increasing cross-linking degree. Their biodegradation products by five different enzymes were analyzed using liquid chromatography-mass spectrometry (LC-MS). The biodegradability of the polycarbonate nanofibers decreases with increasing cross-linking degree. These nanofibers were found to support human fibroblast survival and to promote cell attachment. This study demonstrates that cross-linked biodegradable polycarbonate nanofibers with different chemical properties and biodegradability can be fabricated using the novel reactive electrospinning technology to meet the needs of different biomedical applications.

  10. Characterization of Interstrand DNA-DNA Cross-Links Using the α-Hemolysin Protein Nanopore.

    PubMed

    Zhang, Xinyue; Price, Nathan E; Fang, Xi; Yang, Zhiyu; Gu, Li-Qun; Gates, Kent S

    2015-12-22

    Nanopore-based sensors have been studied extensively as potential tools for DNA sequencing, characterization of epigenetic modifications such as 5-methylcytosine, and detection of microRNA biomarkers. In the studies described here, the α-hemolysin protein nanopore embedded in a lipid bilayer was used for the detection and characterization of interstrand cross-links in duplex DNA. Interstrand cross-links are important lesions in medicinal chemistry and toxicology because they prevent the strand separation that is required for read-out of genetic information from DNA in cells. In addition, interstrand cross-links are used for the stabilization of duplex DNA in structural biology and materials science. Cross-linked DNA fragments produced unmistakable current signatures in the nanopore experiment. Some cross-linked substrates gave irreversible current blocks of >10 min, while others produced long current blocks (10-100 s) before the double-stranded DNA cross-link translocated through the α-hemolysin channel in a voltage-driven manner. The duration of the current block for the different cross-linked substrates examined here may be dictated by the stability of the duplex region left in the vestibule of the nanopore following partial unzipping of the cross-linked DNA. Construction of calibration curves measuring the frequency of cross-link blocking events (1/τon) as a function of cross-link concentration enabled quantitative determination of the amounts of cross-linked DNA present in samples. The unique current signatures generated by cross-linked DNA in the α-HL nanopore may enable the detection and characterization of DNA cross-links that are important in toxicology, medicine, and materials science.

  11. Biomechanical Properties of Human Corneas Following Low- and High-Intensity Collagen Cross-Linking Determined With Scanning Acoustic Microscopy

    PubMed Central

    Beshtawi, Ithar M.; Akhtar, Riaz; Hillarby, M. Chantal; O'Donnell, Clare; Zhao, Xuegen; Brahma, Arun; Carley, Fiona; Derby, Brian; Radhakrishnan, Hema

    2013-01-01

    Purpose. To assess and compare changes in the biomechanical properties of the cornea following different corneal collagen cross-linking protocols using scanning acoustic microscopy (SAM). Methods. Ten donor human corneal pairs were divided into two groups consisting of five corneal pairs in each group. In group A, five corneas were treated with low-fluence (370 nm, 3 mW/cm2) cross-linking (CXL) for 30 minutes. In group B, five corneas were treated with high-fluence (370 nm, 9 mW/cm2) CXL for 10 minutes. The contralateral control corneas in both groups had similar treatment but without ultraviolet A. The biomechanical properties of all corneas were tested using SAM. Results. In group A, the mean speed of sound in the treated corneas was 1677.38 ± 10.70 ms−1 anteriorly and 1603.90 ± 9.82 ms−1 posteriorly, while it was 1595.23 ± 9.66 ms−1 anteriorly and 1577.13 ± 8.16 ms−1 posteriorly in the control corneas. In group B, the mean speed of sound of the treated corneas was 1665.06 ± 9.54 ms−1 anteriorly and 1589.89 ± 9.73 ms−1 posteriorly, while it was 1583.55 ± 8.22 ms−1 anteriorly and 1565.46 ± 8.13 ms−1 posteriorly in the untreated control corneas. The increase in stiffness between the cross-linked and control corneas in both groups was by a factor of 1.051×. Conclusions. SAM successfully detected changes in the corneal stiffness after application of collagen cross-linking. A higher speed-of-sound value was found in the treated corneas when compared with the controls. No significant difference was found in corneal stiffness between the corneas cross-linked with low- and high-intensity protocols. PMID:23847309

  12. Gel-based chemical cross-linking analysis of 20S proteasome subunit-subunit interactions in breast cancer.

    PubMed

    Song, Hai; Xiong, Hua; Che, Jing; Xi, Qing-Song; Huang, Liu; Xiong, Hui-Hua; Zhang, Peng

    2016-08-01

    The ubiquitin-proteasome system plays a pivotal role in breast tumorigenesis by controlling transcription factors, thus promoting cell cycle growth, and degradation of tumor suppressor proteins. However, breast cancer patients have failed to benefit from proteasome inhibitor treatment partially due to proteasome heterogeneity, which is poorly understood in malignant breast neoplasm. Chemical crosslinking is an increasingly important tool for mapping protein three-dimensional structures and proteinprotein interactions. In the present study, two cross-linkers, bis (sulfosuccinimidyl) suberate (BS(3)) and its water-insoluble analog disuccinimidyl suberate (DSS), were used to map the subunit-subunit interactions in 20S proteasome core particle (CP) from MDA-MB-231 cells. Different types of gel electrophoresis technologies were used. In combination with chemical cross-linking and mass spectrometry, we applied these gel electrophoresis technologies to the study of the noncovalent interactions among 20S proteasome subunits. Firstly, the CP subunit isoforms were profiled. Subsequently, using native/SDSPAGE, it was observed that 0.5 mmol/L BS(3) was a relatively optimal cross-linking concentration for CP subunit-subunit interaction study. 2-DE analysis of the cross-linked CP revealed that α1 might preinteract with α2, and α3 might pre-interact with α4. Moreover, there were different subtypes of α1α2 and α3α4 due to proteasome heterogeneity. There was no significant difference in cross-linking pattern for CP subunits between BS(3) and DSS. Taken together, the gel-based characterization in combination with chemical cross-linking could serve as a tool for the study of subunit interactions within a multi-subunit protein complex. The heterogeneity of 20S proteasome subunit observed in breast cancer cells may provide some key information for proteasome inhibition strategy. PMID:27465334

  13. The Nf-actin gene is an important factor for food-cup formation and cytotoxicity of pathogenic Naegleria fowleri.

    PubMed

    Sohn, Hae-Jin; Kim, Jong-Hyun; Shin, Myeong-Heon; Song, Kyoung-Ju; Shin, Ho-Joon

    2010-03-01

    Naegleria fowleri destroys target cells by trogocytosis, a phagocytosis mechanism, and a process of piecemeal ingestion of target cells by food-cups. Phagocytosis is an actin-dependent process that involves polymerization of monomeric G-actin into filamentous F-actin. However, despite the numerous studies concerning phagocytosis, its role in the N. fowleri food-cup formation related with trogocytosis has been poorly reported. In this study, we cloned and characterized an Nf-actin gene to elucidate the role of Nf-actin gene in N. fowleri pathogenesis. The Nf-actin gene is composed of 1,128-bp and produced a 54.1-kDa recombinant protein (Nf-actin). The sequence identity was 82% with nonpathogenic Naegleria gruberi but has no sequence identity with other mammals or human actin gene. Anti-Nf-actin polyclonal antibody was produced in BALB/c mice immunized with recombinant Nf-actin. The Nf-actin was localized on the cytoplasm, pseudopodia, and especially, food-cup structure (amoebastome) in N. fowleri trophozoites using immunofluorescence assay. When N. fowleri co-cultured with Chinese hamster ovary cells, Nf-actin was observed to localize around on phagocytic food-cups. We also observed that N. fowleri treated with cytochalasin D as actin polymerization inhibitor or transfected with antisense oligomer of Nf-actin gene had shown the reduced ability of food-cup formation and in vitro cytotoxicity. Finally, it suggests that Nf-actin plays an important role in phagocytic activity of pathogenic N. fowleri.

  14. Development of a novel cross-linking strategy for fast and accurate identification of cross-linked peptides of protein complexes.

    PubMed

    Kao, Athit; Chiu, Chi-li; Vellucci, Danielle; Yang, Yingying; Patel, Vishal R; Guan, Shenheng; Randall, Arlo; Baldi, Pierre; Rychnovsky, Scott D; Huang, Lan

    2011-01-01

    Knowledge of elaborate structures of protein complexes is fundamental for understanding their functions and regulations. Although cross-linking coupled with mass spectrometry (MS) has been presented as a feasible strategy for structural elucidation of large multisubunit protein complexes, this method has proven challenging because of technical difficulties in unambiguous identification of cross-linked peptides and determination of cross-linked sites by MS analysis. In this work, we developed a novel cross-linking strategy using a newly designed MS-cleavable cross-linker, disuccinimidyl sulfoxide (DSSO). DSSO contains two symmetric collision-induced dissociation (CID)-cleavable sites that allow effective identification of DSSO-cross-linked peptides based on their distinct fragmentation patterns unique to cross-linking types (i.e. interlink, intralink, and dead end). The CID-induced separation of interlinked peptides in MS/MS permits MS(3) analysis of single peptide chain fragment ions with defined modifications (due to DSSO remnants) for easy interpretation and unambiguous identification using existing database searching tools. Integration of data analyses from three generated data sets (MS, MS/MS, and MS(3)) allows high confidence identification of DSSO cross-linked peptides. The efficacy of the newly developed DSSO-based cross-linking strategy was demonstrated using model peptides and proteins. In addition, this method was successfully used for structural characterization of the yeast 20 S proteasome complex. In total, 13 non-redundant interlinked peptides of the 20 S proteasome were identified, representing the first application of an MS-cleavable cross-linker for the characterization of a multisubunit protein complex. Given its effectiveness and simplicity, this cross-linking strategy can find a broad range of applications in elucidating the structural topology of proteins and protein complexes.

  15. Riboflavin-Ultraviolet A Corneal Cross-linking for Keratoconus

    PubMed Central

    El-Raggal, Tamer M.

    2009-01-01

    Purpose: To evaluate the safety, efficacy of riboflavin-ultraviolet A irradiation (UVA) corneal cross-linking and present refractive changes induced by the treatment in cases of keratoconus. Materials and Methods: The study includes 15 eyes of 9 patients with keratoconus with an average keratometric (K) reading less than 54 D and minimal corneal thickness greater than 420 microns. The corneal epithelium was removed manually within the central 8.5 mm diameter area and the cornea was soaked with riboflavin eye drops (0.1% in 20% dextran τ-500) for 30 minutes followed by exposure to UVA radiation (365 nm, 3 mW/cm2) for 30 minutes. During the follow-up period, uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity (BSCVA), manifest refraction, slit lamp examination and topographic changes were recorded at the first week, first month, 3 and 6 months. Results: There was statistically significant improvement of UCVA from a preoperative mean of 0.11 ± 0.07 (range 0.05–0.3) to a postoperative mean of 0.15 ± 0.06 (range 0.1–0.3) (P < 0.05). None of the eyes lost lines of preoperative UCVA but 1 eye lost 1 line of preoperative BSCVA. The preoperative mean K of 49.97 ± 2.81 D (range 47.20–51.75) changed to 48.34 ± 2.64 D (range 45.75–50.40). This decrease in K readings was statistically significant (P < 0.05). All eyes developed minimal faint stromal haze that cleared in 14 eyes within 1 month. In only 1 eye, this resulted in a very faint corneal scar. Other sight threatening complications were not encountered in this series. Progression of the original disease was not seen in any of the treated eyes within 6 months of follow-up. Conclusion: Riboflavin-UVA corneal cross-linking is a safe and promising method for keratoconus. Larger studies with longer follow up are recommended. PMID:20404993

  16. Covalent cross-links in oxygen free radical altered human immunoglobulin G.

    PubMed

    Kleinveld, H A; Hack, C E; Swaak, A J; van Noort, W L; van Eijk, H G; Koster, J F

    1988-01-01

    The damaging effect of an oxygen free radical generating system, i.e. ultraviolet irradiation, on human immunoglobulin G (IgG) was studied. The free radical altered IgG was analysed by a high performance liquid chromatograph equipped with a TSK G 3000 SW-column. Gel filtration of 120 min UV-irradiated IgG resulted in three clearly distinguished peaks corresponding to polymer IgG (MW greater than 500 kD), dimer IgG (MW 300 kD) and monomer IgG (MW 150 kD). Analysis of oxygen free radical altered and aggregated IgG by SDS-PAGE and subsequent silver-staining revealed inter- and intra-molecular reduction (by beta-mercaptoethanol)-resistant cross-links between IgG-molecules were formed. Comparison of amino acid analyses of native IgG with oxygen free radical aggregated polymer IgG showed significant reductions in tyrosine- (7.0%) and histidine- (6.5%) content. These findings suggest that tyrosine and histidine are involved in covalent cross-linking between IgG-molecules caused by oxygen free radicals. These alterations on IgG induced by free radical-activity might render it antigenic, and could initiate the production of rheumatoid factors (RF).

  17. Enzymatically cross-linked bovine lactoferrin as injectable hydrogel for cell delivery.

    PubMed

    Amini, Ashley A; Kan, Ho-Man; Cui, Zhanwu; Maye, Peter; Nair, Lakshmi S

    2014-11-01

    Lactoferrin (LF), a 78 kDa glycoprotein, has recently been recognized as an effector molecule in the skeleton due to its ability to decrease osteoclastogenesis and increase osteoblast proliferation, survival, and differentiation. The objective of the study is to investigate the feasibility of developing an injectable hydrogel from bovine lactoferrin (bLF) as a cell delivery vehicle. The study demonstrated the feasibility of cross-linking tyramine substituted bLF in the presence of horse radish peroxidase and hydrogen peroxide (H2O2). The gel presented a mild environment to maintain mouse bone marrow-derived stromal cell (mBMSC) viability and proliferation. Stromal cells derived from multiple gene reporter transgenic mouse (Ibsp-Topaz/Dmp1-mCherry) line showed the ability of the cells to undergo osteogenic differentiation in the hydrogel when cultured in mineralization media. The cross-linked gel supported protein phosphorylation/de-phosphorylation in the encapsulated MC3T3-E1 cells. bLF and bLF gel also showed the ability to modulate growth factor production in mBMSCs. PMID:24802947

  18. Controlled Release of Salicylic Acid from Biodegradable Cross-Linked Polyesters.

    PubMed

    Dasgupta, Queeny; Chatterjee, Kaushik; Madras, Giridhar

    2015-09-01

    The purpose of this work was to develop a family of cross-linked poly(xylitol adipate salicylate)s with a wide range of tunable release properties for delivering pharmacologically active salicylic acid. The synthesis parameters and release conditions were varied to modulate polyester properties and to understand the mechanism of release. Varying release rates were obtained upon longer curing (35% in the noncured polymer to 10% in the cured polymer in 7 days). Differential salicylic acid loading led to the synthesis of polymers with variable cross-linking and the release could be tuned (100% release for the lowest loading to 30% in the highest loading). Controlled release was monitored by changing various factors, and the release profiles were dependent on the stoichiometric composition, pH, curing time, and presence of enzyme. The polymer released a combination of salicylic acid and disalicylic acid, and the released products were found to be nontoxic. Minimal hemolysis and platelet activation indicated good blood compatibility. These polymers qualify as "bioactive" and "resorbable" and can, therefore, find applications as immunomodulatory resorbable biomaterials with tunable release properties.

  19. Application of photochemical cross-linking to the study of oligomerization of amyloidogenic proteins.

    PubMed

    Lopes, Dahabada H J; Sinha, Sharmistha; Rosensweig, Clark; Bitan, Gal

    2012-01-01

    Assembly of amyloidogenic proteins into toxic oligomers and fibrils is an important pathogenic feature of over 30 amyloid-related diseases. Understanding the structures and mechanisms involved in the assembly process is necessary for rational approaches geared at inhibiting formation of these toxic species. Here, we review the application of photo-induced cross-linking of unmodified proteins (PICUP) to two disease-related amyloidogenic proteins (1) islet amyloid polypeptide (IAPP), whose toxic oligomers are thought to cause the demise of pancreatic β-cells in type-2 diabetes mellitus and (2) α-synuclein, which aggregates into toxic oligomers and precipitates in Lewy bodies in Parkinson's disease. PICUP is an effective method allowing chemical "freezing" of dynamically changing oligomers and subsequent study of the oligomer size distribution that existed before cross-linking. The method has provided insights into the factors controlling early oligomerization, which could not be obtained by other means. We discuss sample preparation, experimental details, optimization of parameters, and troubleshooting. PMID:22528080

  20. A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells.

    PubMed

    Chakraborty, T; Ebel, F; Domann, E; Niebuhr, K; Gerstel, B; Pistor, S; Temm-Grove, C J; Jockusch, B M; Reinhard, M; Walter, U

    1995-04-01

    The surface-bound ActA polypeptide of the intracellular bacterial pathogen Listeria monocytogenes is the sole listerial factor needed for recruitment of host actin filaments by intracellularly motile bacteria. Here we report that following Listeria infection the host vasodilator-stimulated phosphoprotein (VASP), a microfilament- and focal adhesion-associated substrate of both the cAMP- and cGMP-dependent protein kinases, accumulates on the surface of intracytoplasmic bacteria prior to the detection of F-actin 'clouds'. VASP remains associated with the surface of highly motile bacteria, where it is polarly located, juxtaposed between one extremity of the bacterial surface and the front of the actin comet tail. Since actin filament polymerization occurs only at the very front of the tail, VASP exhibits properties of a host protein required to promote actin polymerization. Purified VASP binds directly to the ActA polypeptide in vitro. A ligand-overlay blot using purified radiolabelled VASP enabled us to identify the ActA homologue of the related intracellular motile pathogen, Listeria ivanovii, as a protein with a molecular mass of approximately 150 kDa. VASP also associates with actin filaments recruited by another intracellularly motile bacterial pathogen, Shigella flexneri. Hence, by the simple expedient of expressing surface-bound attractor molecules, bacterial pathogens effectively harness cytoskeletal components to achieve intracellular movement.

  1. Zinc cross-linked hydroxamated alginates for pulsed drug release

    PubMed Central

    Raut, Neha S; Deshmukh, Prasad R; Umekar, Milind J; Kotagale, Nandkishor R

    2013-01-01

    Introduction: Alginates can be tailored chemically to improve solubility, physicochemical, and biological properties and its complexation with metal ion is useful for controlling the drug release. Materials And Methods: Synthesized N,O-dimethyl, N-methyl, or N-Benzyl hydroxylamine derivatives of sodium alginate were subsequently complexed with zinc to form beads. Hydroxamation of sodium alginate was confirmed by Fourier transform infra-red spectroscopy (FTIR) and differential scanning calorimetry (DSC). Results: The synthesized polymeric material exhibited reduced aqueous, HCl and NaOH solubility. The hydroxamated derivatives demonstrated pulsed release where change in pH of the dissolution medium stimulated the atenolol release. Conclusion: Atenolol loaded Zn cross-linked polymeric beads demonstrated the sustained the plasma drug levels with increased half-life. Although the synthesized derivatives greatly altered the aqueous solubility of sodium alginate, no significant differences in in vitro and in vivo atenolol release behavior amongst the N,O-dimethyl, N-methyl, or N-Benzyl hydroxylamine derivatives of sodium alginate were observed. PMID:24350039

  2. Pyridinium cross-links in heritable disorders of collagen

    SciTech Connect

    Pasquali, M.; Still, M.J.; Dembure, P.P.

    1995-12-01

    Ehlers-Danlos syndrome (EDS) is a heterogeneous group of inherited disorders of collagen that is characterized by skin fragility, skin hyperextensibility, and joint hypermobility. EDS type VI is caused by impaired collagen lysyl hydroxylase (procollagen-lysine, 2-oxoglutarate 5-dioxygenase; E.C.1.14.11.4), the ascorbate-dependent enzyme that hydroxylates lysyl residues on collagen neopeptides. Different alterations in the gene for collagen lysyl hydroxylase have been reported in families with EDS type VI. In EDS type VI, impairment of collagen lysyl hydroxylase results in a low hydroxylysine content in mature collagen. Hydroxylysine is a precursor of the stable, covalent, intermolecular cross-links of collagen, pyridinoline (Pyr), and deoxypyridinoline (Dpyr). Elsewhere we reported in preliminary form that patients with EDS type VI had a distinctive alteration in the urinary excretion of Pyr and Dpyr. In the present study, we confirm that the increased Dpyr/Pyr ratio is specific for EDS type VI and is not observed in other inherited or acquired collagen disorders. In addition, we find that skin from patients with EDS type VI has reduced Pyr and increased Dpyr, which could account for the organ pathology. 19 refs., 1 tab.

  3. Enzymatic cross-linking of carboxymethylpullulan grafted with ferulic acid.

    PubMed

    Dulong, Virginie; Hadrich, Ahdi; Picton, Luc; Le Cerf, Didier

    2016-10-20

    Carboxymethylpullulan (CMP) has been modified in a two-step grafting reaction of ferulic acid (FA). Acid adipic dihydrazyde (ADH) was first reacted with FA activated with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC). Then the product of this first reaction was reacted with CMP (activated with EDC). Grafted polysaccharides structure was confirmed by FTIR and (1)H NMR spectroscopy. Analyses by size-exclusion chromatography (SEC) coupling on-line with a multi-angle light scattering detector (MALS), a viscometer and a differential refractive index detector (DRI) (SEC/MALS/DRI/Visco) showed that associations between FA moieties occurred due to hydrophobic interactions. The grafting rates of FA were determined by the Folin-Ciocalteu method and were found between 1.0% and 11.2% (mol/mol anhydroglucose unit). The CMP-FA were then enzymatically cross-linked with laccase from Pleurotus ostreatus. The crosslinking reactions were followed by rheological measurements, demonstrating the influence of laccase concentration on kinetics. Elastic modulus and swelling rates of hydrogels depends on FA content only for low values. PMID:27474545

  4. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    SciTech Connect

    Zhang, Xiaoqing; Wu, Liming; Sessler, Gerhard M.

    2015-07-15

    Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young’s modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d{sub 33} coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d{sub 33} ⋅ g{sub 33}) for a more typical d{sub 33} value of 400 pC/N is about 11.2 GPa{sup −1}. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm{sup 2} and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  5. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Wu, Liming; Sessler, Gerhard M.

    2015-07-01

    Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young's modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d33 coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d33 ṡ g33) for a more typical d33 value of 400 pC/N is about 11.2 GPa-1. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm2 and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  6. Synthesis and Properties of Cross-Linked Polyamide Aerogels

    NASA Technical Reports Server (NTRS)

    Williams, Jarrod C.; Meador, Mary Ann; McCorkle, Linda

    2015-01-01

    We report the first synthesis of cross-linked polyamide aerogels through step growth polymerization using a combination of diamines, diacid chloride and triacid chloride. Polyamide oligomers endcapped with amines are prepared as stable solutions in N-methylpyrrolidinone from several different diamine precursors and 1,3-benzenedicarbonyl dichloride. Addition of 1,3,5-benzenetricarbonyl trichloride yields gels which form in under five minutes according to the scheme shown. Solvent exchange of the gels into ethanol, followed by drying using supercritical CO2 extraction gives colorless aerogels with densities around 0.1 to 0.2 gcm3. Thicker monolithes of the polyamide aerogels are stiff and strong, while thin films of certain formulations are highly flexible, durable, and even translucent. These materials may have use as insulation for deployable space structures, rovers, habitats or extravehicular activity suits as well as in many terrestrial applications. Strucure property relationships of the aerogels, including surface area, mechanical properties, and thermal conductivity will be discussed.

  7. An Open Data Format for Visualization and Analysis of Cross-Linked Mass Spectrometry Results

    NASA Astrophysics Data System (ADS)

    Hoopmann, Michael R.; Mendoza, Luis; Deutsch, Eric W.; Shteynberg, David; Moritz, Robert L.

    2016-11-01

    Protein-protein interactions are an important element in the understanding of protein function, and chemical cross-linking shotgun mass spectrometry is rapidly becoming a routine approach to identify these specific interfaces and topographical interactions. Protein cross-link data analysis is aided by dozens of algorithm choices, but hindered by a lack of a common format for representing results. Consequently, interoperability between algorithms and pipelines utilizing chemical cross-linking remains a challenge. pepXML is an open, widely-used format for representing spectral search algorithm results that has facilitated information exchange and pipeline development for typical shotgun mass spectrometry analyses. We describe an extension of this format to incorporate cross-linking spectral search results. We demonstrate application of the extension by representing results of multiple cross-linking search algorithms. In addition, we demonstrate adapting existing pepXML-supporting software pipelines to analyze protein cross-linking results formatted in pepXML.

  8. Effect of glucose content on thermally cross-linked fibrous gelatin scaffolds for tissue engineering.

    PubMed

    Siimon, Kaido; Reemann, Paula; Põder, Annika; Pook, Martin; Kangur, Triin; Kingo, Külli; Jaks, Viljar; Mäeorg, Uno; Järvekülg, Martin

    2014-09-01

    Thermally cross-linked glucose-containing electrospun gelatin meshes were studied as possible cell substrate materials. FTIR analysis was used to study the effect of glucose on cross-linking reactions. It was found that the presence of glucose increases the extent of cross-linking of fibrous gelatin scaffolds, which in return determines scaffold properties and their usability in tissue engineering applications. Easy to handle fabric-like scaffolds were obtained from blends containing up to 15% glucose. Maximum extent of cross-linking was reached at nearly 20% glucose content. Cross-linking effectively resulted in decreased solubility and increased resistance to enzymatic degradation. Preliminary short-term cell culture experiments indicate that such thermally cross-linked gelatin-glucose scaffolds are suitable for tissue engineering applications. PMID:25063151

  9. Characterization of the Deoxyguanosine–Lysine Cross-Link of Methylglyoxal

    PubMed Central

    2015-01-01

    Methylglyoxal is a mutagenic bis-electrophile that is produced endogenously from carbohydrate precursors. Methylglyoxal has been reported to induce DNA–protein cross-links (DPCs) in vitro and in cultured cells. Previous work suggests that these cross-links are formed between guanine and either lysine or cysteine side chains. However, the chemical nature of the methylglyoxal induced DPC have not been determined. We have examined the reaction of methylglyoxal, deoxyguanosine (dGuo), and Nα-acetyllysine (AcLys) and determined the structure of the cross-link to be the N2-ethyl-1-carboxamide with the lysine side chain amino group (1). The cross-link was identified by mass spectrometry and the structure confirmed by comparison to a synthetic sample. Further, the cross-link between methylglyoxal, dGuo, and a peptide (AcAVAGKAGAR) was also characterized. The mechanism of cross-link formation is likely to involve an Amadori rearrangement. PMID:24801980

  10. Isolation of a strawberry gene fragment encoding an actin depolymerizing factor-like protein from genotypes resistant to Colletotrichum acutatum.

    PubMed

    Ontivero, Marta; Zamora, Gustavo Martínez; Salazar, Sergio; Ricci, Juan Carlos Díaz; Castagnaro, Atilio Pedro

    2011-12-01

    Actin depolymerizing factors (ADFs) have been recently implicated in plant defense against pathogenic fungi, associated with the cytoskeletal rearrangements that contribute to establish an effective barrier against fungal ingress. In this work, we identified a DNA fragment corresponding to a part of a gene predicted to encode an ADF-like protein in genotypes of Fragaria ananassa resistant to the fungus Colletotrichum acutatum. Bulked segregant analysis combined with AFLP was used to identify polymorphisms linked to resistance in hybrids derived from the cross between the resistant cultivar 'Sweet Charlie' and the susceptible cultivar 'Pájaro'. The sequence of one out of three polymorphic bands detected showed significant BLASTX hits to ADF proteins from other plants. Two possible exons were identified and bioinformatic analysis revealed the presence of the ADF homology domain with two actin-binding sites, an N-terminal phosphorylation site, and a nuclear localization signal. In addition to its possible application in strawberry breeding programs, these finding may contribute to investigate the role of ADFs in plant resistance against fungi. PMID:22107362

  11. DNA-Protein Cross-Links: Formation, Structural Identities, and Biological Outcomes.

    PubMed

    Tretyakova, Natalia Y; Groehler, Arnold; Ji, Shaofei

    2015-06-16

    Noncovalent DNA-protein interactions are at the heart of normal cell function. In eukaryotic cells, genomic DNA is wrapped around histone octamers to allow for chromosomal packaging in the nucleus. Binding of regulatory protein factors to DNA directs replication, controls transcription, and mediates cellular responses to DNA damage. Because of their fundamental significance in all cellular processes involving DNA, dynamic DNA-protein interactions are required for cell survival, and their disruption is likely to have serious biological consequences. DNA-protein cross-links (DPCs) form when cellular proteins become covalently trapped on DNA strands upon exposure to various endogenous, environmental and chemotherapeutic agents. DPCs progressively accumulate in the brain and heart tissues as a result of endogenous exposure to reactive oxygen species and lipid peroxidation products, as well as normal cellular metabolism. A range of structurally diverse DPCs are found following treatment with chemotherapeutic drugs, transition metal ions, and metabolically activated carcinogens. Because of their considerable size and their helix-distorting nature, DPCs interfere with the progression of replication and transcription machineries and hence hamper the faithful expression of genetic information, potentially contributing to mutagenesis and carcinogenesis. Mass spectrometry-based studies have identified hundreds of proteins that can become cross-linked to nuclear DNA in the presence of reactive oxygen species, carcinogen metabolites, and antitumor drugs. While many of these proteins including histones, transcription factors, and repair proteins are known DNA binding partners, other gene products with no documented affinity for DNA also participate in DPC formation. Furthermore, multiple sites within DNA can be targeted for cross-linking including the N7 of guanine, the C-5 methyl group of thymine, and the exocyclic amino groups of guanine, cytosine, and adenine. This structural

  12. Actinic Cheilitis

    MedlinePlus

    ... is a precancerous condition related to cumulative lifetime sun exposure. The lower lip is most often affected. Individuals ... Wearing barrier clothing (eg, wide-brimmed hats) and sunscreen-containing lip balms can aid in preventing actinic ...

  13. Peroxidase induced oligo-tyrosine cross-links during polymerization of α-lactalbumin.

    PubMed

    Dhayal, Surender Kumar; Sforza, Stefano; Wierenga, Peter A; Gruppen, Harry

    2015-12-01

    Horseradish peroxidase (HRP) induced cross-linking of proteins has been reported to proceed through formation of di-tyrosine cross-links. In the case of low molar mass phenolic substrates, the enzymatic oxidation is reported to lead to polymerization of the phenols. The aim of this work was to investigate if during oxidative cross-linking of proteins oligo-tyrosine cross-links are formed in addition to dityrosine. To this end, α-lactalbumin (α-LA) was cross-linked using horseradish peroxidase (HRP) and hydrogen peroxide (H₂O₂). The reaction products were acid hydrolysed, after which the cross-linked amino acids were investigated by LC-MS and MALDI-MS. To test the effect of the size of the substrate, the cross-linking reaction was also performed with L-tyrosine, N-acetyl L-tyrosinamide and angiotensin. These products were analyzed by LC-MS directly, as well as after acid hydrolysis. In the acid hydrolysates of all samples oligo-tyrosine (Yn, n=3-8) was found in addition to di-tyrosine (Y2). Two stages of cross-linking of α-LA were identified: a) 1-2 cross-links were formed per monomer until the monomers were converted into oligomers, and b) subsequent cross-linking of oligomers formed in the first stage to form nanoparticles containing 3-4 cross-links per monomer. The transition from first stage to the second stage coincided with the point where di-tyrosine started to decrease and more oligo-tyrosines were formed. In conclusion, extensive polymerization of α-LA using HRP via oligo-tyrosine cross-links is possible, as is the case for low molar mass tyrosine containing substrates. PMID:26282909

  14. Self-beating artificial cells: design of cross-linked polymersomes showing self-oscillating motion.

    PubMed

    Tamate, Ryota; Ueki, Takeshi; Yoshida, Ryo

    2015-02-01

    Biomimetic cross-linked polymersomes that exhibit a self-beating motion without any on-off switching are developed. The polymersomes are made from a well-defined synthetic thermoresponsive diblock copolymer, and the thermoresponsive segment includes ruthenium catalysts for the oscillatory chemical reaction and vinylidene groups to cross-link the polymersomes. Autonomous volume and shape oscillations of the cross-linked polymersomes are realized following redox changes of the catalysts.

  15. Actin stress in cell reprogramming

    PubMed Central

    Guo, Jun; Wang, Yuexiu; Sachs, Frederick; Meng, Fanjie

    2014-01-01

    Cell mechanics plays a role in stem cell reprogramming and differentiation. To understand this process better, we created a genetically encoded optical probe, named actin–cpstFRET–actin (AcpA), to report forces in actin in living cells in real time. We showed that stemness was associated with increased force in actin. We reprogrammed HEK-293 cells into stem-like cells using no transcription factors but simply by softening the substrate. However, Madin-Darby canine kidney (MDCK) cell reprogramming required, in addition to a soft substrate, Harvey rat sarcoma viral oncogene homolog expression. Replating the stem-like cells on glass led to redifferentiation and reduced force in actin. The actin force probe was a FRET sensor, called cpstFRET (circularly permuted stretch sensitive FRET), flanked by g-actin subunits. The labeled actin expressed efficiently in HEK, MDCK, 3T3, and bovine aortic endothelial cells and in multiple stable cell lines created from those cells. The viability of the cell lines demonstrated that labeled actin did not significantly affect cell physiology. The labeled actin distribution was similar to that observed with GFP-tagged actin. We also examined the stress in the actin cross-linker actinin. Actinin force was not always correlated with actin force, emphasizing the need for addressing protein specificity when discussing forces. Because actin is a primary structural protein in animal cells, understanding its force distribution is central to understanding animal cell physiology and the many linked reactions such as stress-induced gene expression. This new probe permits measuring actin forces in a wide range of experiments on preparations ranging from isolated proteins to transgenic animals. PMID:25422450

  16. UV cross-linking identifies four polypeptides that require the TATA box to bind to the Drosophila hsp70 promoter

    SciTech Connect

    Gilmour, D.S.; Dietz, T.J.; Elgin, S.C. )

    1990-08-01

    A protein fraction that requires the TATA sequence to bind to the hsp70 promoter has been partially purified from nuclear extracts of Drosophila embryos. This TATA factor produces a large DNase I footprint that extends from -44 to +35 on the promoter. A mutation that changes TATA to TATG interferes both with the binding of this complex and with the transcription of the hsp70 promoter in vitro, indicating that this interaction is important for transcriptional activity. Using a highly specific protein-DNA cross-linking assay, we have identified four polypeptides that require the TATA sequence to bind to the hsp70 promoter. Polypeptides of 26 and 42 kilodaltons are in intimate contact with the TATA sequence. Polypeptides of 150 and 60 kilodaltons interact within the region from +24 to +47 in a TATA-dependent manner. Both the extended footprint and the polypeptides identified by UV cross-linking indicate that the Drosophila TATA factor is a multicomponent complex.

  17. Effect of radiation cross-linking on the abrasive wear behaviour of polyethylenes

    NASA Astrophysics Data System (ADS)

    Gul, Rizwan M.; Khan, Tahir I.

    2014-06-01

    This study explores the differences in the dry abrasive wear behavior of different polyethylenes, and compares the effect of radiation cross-linking on the wear behavior. Four different types of polyethylenes: LDPE, LLDPE, HDPE and UHMWPE were studied. Cross-linking was carried out by high energy electron beam with radiation dose of 200 kGy. The results show that in unirradiated state UHMWPE has excellent wear resistance, with HDPE showing comparable wear properties; both LDPE and LLDPE exhibit high wear rate. Cross-linking improves wear rate of LDPE and UHMWPE, however, the wear rate of HDPE and LLDPE increases with cross-linking.

  18. Method for the manufacture of cross-linked and optionally foamed polypropylene

    SciTech Connect

    Lohmar, E.; Wenneis, W.

    1984-04-10

    Disclosed herein is a process for producing cross-linked polypropylene by subjecting a homogenous mixture of a polypropylene with from about 2 to about 20 weight percent, based upon the weight of the polypropylene, of polybutadiene with a molecular weight of from about 500 to about 10,000 to conditions sufficient to effect cross-linking, for example, through the use of cross-linking agents and/or irradiation. In addition, the process disclosed herein may be utilized to produce cross-linked and foamed polypropylenes.

  19. Methylglyoxal-induced DNA-protein cross-links and cytotoxicity in Chinese hamster ovary cells.

    PubMed

    Brambilla, G; Sciabà, L; Faggin, P; Finollo, R; Bassi, A M; Ferro, M; Marinari, U M

    1985-05-01

    The technique of alkaline elution was applied to study the capacity of methylglyoxal to induce DNA damage and repair in Chinese hamster ovary cells. DNA cross-linking was observed after a 90-min exposure to a subtoxic dose (1.5 mM), and the cross-links were fully repaired by 24 h. The cross-linking appeared to be DNA-protein in nature, since proteinase treatment removed the effect. When the same cells were exposed to methylglyoxal in the presence of a rat liver metabolic system, both cytotoxicity and cross-linking frequency were significantly reduced.

  20. Covalent cross-links in polyampholytic chitosan fibers enhances bone regeneration in a rabbit model.

    PubMed

    Ghosh, Paulomi; Rameshbabu, Arun Prabhu; Das, Dipankar; Francis, Nimmy K; Pawar, Harpreet Singh; Subramanian, Bhuvaneshwaran; Pal, Sagar; Dhara, Santanu

    2015-01-01

    Chitosan fibers were prepared in citric acid bath, pH 7.4 and NaOH solution at pH 13, to form ionotropically cross-linked and uncross-linked fibers, respectively. The fibers formed in citric acid bath were further cross-linked via carbodiimide chemistry; wherein the pendant carboxyl moieties of citric acid were used for new amide bond formation. Moreover, upon covalent cross-linking in the ionically gelled citrate-chitosan fibers, incomplete conversion of the ion pairs to amide linkages took place resulting in the formation of a dual network structure. The dual cross-linked fibers displayed improved mechanical property, higher stability against enzymatic degradation, hydrophobicity and superior bio-mineralization compared to the uncross-linked and native citrate cross-linked fibers. Additionally, upon cyclic loading, the ion pairs in the dual cross-linked fibers dissociated by dissipating energy and reformed during the relaxation period. The twin property of elasticity and energy dissipation mechanism makes the dual cross-linked fiber unique under dynamic mechanical conditions. The differences in the physico-chemical characteristics were reflected in protein adsorption, which in turn influenced the cellular activities on the fibers. Compared to the uncross-linked and ionotropically cross-linked fibers, the dual cross-linked fibers demonstrated higher proliferation and osteogenic differentiation of the MSCs in vitro as well as better osseous tissue regeneration in a rabbit model. PMID:25483844

  1. Controlled sparse and percolating cross-linking in waterborne soft adhesives.

    PubMed

    Deplace, F; Carelli, C; Langenfeld, A; Rabjohns, M A; Foster, A B; Lovell, P A; Creton, C

    2009-09-01

    The effect of low levels of cross-linking on the adhesive and mechanical properties of waterborne pressure-sensitive adhesives was investigated. We have taken advantage of a core-shell latex particle morphology obtained by emulsion polymerization to create a heterogeneous structure of cross-links without major modification of the monomer composition. The latex particles comprise a shell containing cross-linkable diacetone acrylamide (DAAM) repeat units localized on the periphery of a slightly softer core copolymer of very similar composition. Adipic acid dihydrazide was added to the latex prior to film formation to react with DAAM repeat units and affect interfacial cross-linking between particles in the adhesive films. The honeycomb-like structure obtained after drying of the latex results in a good balance between the dissipative properties required for adhesion and the resistance to creep. The characterization of the mechanical properties of the films shows that the chosen cross-linking method creates a percolating lightly cross-linked network, swollen with a nearly un-cross-linked component. With this cross-linking method, the linear viscoelastic properties of the soft films are nearly unaffected by the cross-linking while the nonlinear tensile properties are greatly modified. As a result, the long-term shear resistance of the adhesive film improves very significantly while the peel force remains nearly the same. A simple rheological model is used to interpret qualitatively the changes in the material parameters induced by cross-linking. PMID:20355828

  2. Alkaline battery containing a separator of a cross-linked copolymer of vinyl alcohol and unsaturated carboxylic acid

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Philipp, W. H.; Sheibley, D. W.; Gonzalez-Sanabria, O. D. (Inventor)

    1985-01-01

    A battery separator for an alkaline battery is described. The separator comprises a cross linked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The cross linked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. Cross linking with a polyaldehyde cross linking agent is preferred.

  3. Dynacortin is a novel actin bundling protein that localizes to dynamic actin structures.

    PubMed

    Robinson, Douglas N; Ocon, Stephani S; Rock, Ronald S; Spudich, James A

    2002-03-15

    Dynacortin is a novel protein that was discovered in a genetic suppressor screen of a Dictyostelium discoideum cytokinesis-deficient mutant cell line devoid of the cleavage furrow actin bundling protein, cortexillin I. While dynacortin is highly enriched in the cortex, particularly in cell-surface protrusions, it is excluded from the cleavage furrow cortex during cytokinesis. Here, we describe the biochemical characterization of this new protein. Purified dynacortin is an 80-kDa dimer with a large 5.7-nm Stokes radius. Dynacortin cross-links actin filaments into parallel arrays with a mole ratio of one dimer to 1.3 actin monomers and a 3.1 microm K(d). Using total internal reflection fluorescence microscopy, GFP-dynacortin and the actin bundling protein coronin-GFP are seen to concentrate in highly dynamic cortical structures with assembly and disassembly half-lives of about 15 s. These results indicate that cells have evolved different actin-filament cross-linking proteins with complementary cellular distributions that collaborate to orchestrate complex cell shape changes.

  4. A genome-wide analysis reveals that the Drosophila transcription factor Lola promotes axon growth in part by suppressing expression of the actin nucleation factor Spire

    PubMed Central

    2011-01-01

    Background The phylogenetically conserved transcription factor Lola is essential for many aspects of axon growth and guidance, synapse formation and neural circuit development in Drosophila. To date it has been difficult, however, to obtain an overall view of Lola functions and mechanisms. Results We use expression microarrays to identify the lola-dependent transcriptome in the Drosophila embryo. We find that lola regulates the expression of a large selection of genes that are known to affect each of several lola-dependent developmental processes. Among other loci, we find lola to be a negative regulator of spire, an actin nucleation factor that has been studied for its essential role in oogenesis. We show that spire is expressed in the nervous system and is required for a known lola-dependent axon guidance decision, growth of ISNb motor axons. We further show that reducing spire gene dosage suppresses this aspect of the lola phenotype, verifying that derepression of spire is an important contributor to the axon stalling phenotype of embryonic motor axons in lola mutants. Conclusions These data shed new light on the molecular mechanisms of many lola-dependent processes, and also identify several developmental processes not previously linked to lola that are apt to be regulated by this transcription factor. These data further demonstrate that excessive expression of the actin nucleation factor Spire is as deleterious for axon growth in vivo as is the loss of Spire, thus highlighting the need for a balance in the elementary steps of actin dynamics to achieve effective neuronal morphogenesis. PMID:22129300

  5. Septin 9 Exhibits Polymorphic Binding to F-Actin and Inhibits Myosin and Cofilin Activity.

    PubMed

    Smith, Clayton; Dolat, Lee; Angelis, Dimitrios; Forgacs, Eva; Spiliotis, Elias T; Galkin, Vitold E

    2015-10-01

    Septins are a highly conserved family of proteins in eukaryotes that is recognized as a novel component of the cytoskeleton. Septin 9 (SEPT9) interacts directly with actin filaments and functions as an actin stress fiber cross-linking protein that promotes the maturation of nascent focal adhesions and cell migration. However, the molecular details of how SEPT9 interacts with F-actin remain unknown. Here, we use electron microscopy and image analysis to show that SEPT9 binds to F-actin in a highly polymorphic fashion. We demonstrate that the basic domain (B-domain) of the N-terminal tail of SEPT9 is responsible for actin cross-linking, while the GTP-binding domain (G-domain) does not bundle F-actin. We show that the B-domain of SEPT9 binds to three sites on F-actin, and the two of these sites overlap with the binding regions of myosin and cofilin. SEPT9 inhibits actin-dependent ATPase activity of myosin and competes with the weakly bound state of myosin for binding to F-actin. At the same time, SEPT9 significantly reduces the extent of F-actin depolymerization by cofilin. Taken together, these data suggest that SEPT9 protects actin filaments from depolymerization by cofilin and myosin and indicate a mechanism by which SEPT9 could maintain the integrity of growing and contracting actin filaments.

  6. Synthesis of borate cross-linked rhamnogalacturonan II.

    PubMed

    Funakawa, Hiroya; Miwa, Kyoko

    2015-01-01

    In the present review, we describe current knowledge about synthesis of borate crosslinked rhamnogalacturonan II (RG-II) and it physiological roles. RG-II is a portion of pectic polysaccharide with high complexity, present in primary cell wall. It is composed of homogalacturonan backbone and four distinct side chains (A-D). Borate forms ester bonds with the apiosyl residues of side chain A of two RG-II monomers to generate borate dimerized RG-II, contributing for the formation of networks of pectic polysaccharides. In plant cell walls, more than 90% of RG-II are dimerized by borate under boron (B) sufficient conditions. Borate crosslinking of RG-II in primary cell walls, to our knowledge, is the only experimentally proven molecular function of B, an essential trace-element. Although abundance of RG-II and B is quite small in cell wall polysaccharides, increasing evidence supports that RG-II and its borate crosslinking are critical for plant growth and development. Significant advancement was made recently on the location and the mechanisms of RG-II synthesis and borate cross-linking. Molecular genetic studies have successfully identified key enzymes for RG-II synthesis and regulators including B transporters required for efficient formation of RG-II crosslinking and consequent normal plant growth. The present article focuses recent advances on (i) RG-II polysaccharide synthesis, (ii) occurrence of borate crosslinking and (iii) B transport for borate supply to RG-II. Molecular mechanisms underlying formation of borate RG-II crosslinking and the physiological impacts are discussed. PMID:25954281

  7. The theory and art of corneal cross-linking.

    PubMed

    McQuaid, Rebecca; Cummings, Arthur B; Mrochen, Michael

    2013-08-01

    Before the discovery of corneal cross-linking (CXL), patients with keratoconus would have had to undergo corneal transplantation, or wear rigid gas permeable lenses (RGPs) that would temporarily flatten the cone, thereby improving the vision. The RGP contact lens (CL) would not however alter the corneal stability and if the keratoconus was progressive, the continued steepening of the cone would occur under the RGP CL. To date, the Siena Eye has been the largest study to investigate long term effects of standard CXL. Three hundred and sixty-three eyes were treated and monitored over 4 years, producing reliable long-term results proving long-term stability of the cornea by halting the progression of keratoconus, and proving the safety of the procedure. Traditionally, CXL requires epithelial removal prior to corneal soakage of a dextran-based 0.1% riboflavin solution, followed by exposure of ultraviolet-A (UV-A) light for 30 min with an intensity of 3 mW/cm2. A series of in vitro investigations on human and porcine corneas examined the best treatment parameters for standard CXL, such as riboflavin concentration, intensity, wavelength of UV-A light, and duration of treatment. Photochemically, CXL is achieved by the generation of chemical bonds within the corneal stroma through localized photopolymerization, strengthening the cornea whilst minimizing exposure to the surrounding structures of the eye. In vitro studies have shown that CXL has an effect on the biomechanical properties of the cornea, with an increased corneal rigidity of approximately 70%. This is a result of the creation of new chemical bonds within the stroma. PMID:23925326

  8. Integrated Cryogenic Satellite Communications Cross-Link Receiver Experiment

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Bhasin, K. B.; Downey, A. N.; Jackson, C. J.; Silver, A. H.; Javadi, H. H. S.

    1995-01-01

    An experiment has been devised which will validate, in space, a miniature, high-performance receiver. The receiver blends three complementary technologies; high temperature superconductivity (HTS), pseudomorphic high electron mobility transistor (PHEMT) monolithic microwave integrated circuits (MMIC), and a miniature pulse tube cryogenic cooler. Specifically, an HTS band pass filter, InP MMIC low noise amplifier, HTS-sapphire resonator stabilized local oscillator (LO), and a miniature pulse tube cooler will be integrated into a complete 20 GHz receiver downconverter. This cooled downconverter will be interfaced with customized signal processing electronics and integrated onto the space shuttle's 'HitchHiker' carrier. A pseudorandom data sequence will be transmitted to the receiver, which is in low Earth orbit (LEO), via the Advanced Communication Technology Satellite (ACTS) on a 20 GHz carrier. The modulation format is QPSK and the data rate is 2.048 Mbps. The bit error rate (BER) will be measured in situ. The receiver is also equipped with a radiometer mode so that experiment success is not totally contingent upon the BER measurement. In this mode, the receiver uses the Earth and deep space as a hot and cold calibration source, respectively. The experiment closely simulates an actual cross-link scenario. Since the receiver performance depends on channel conditions, its true characteristics would be masked in a terrestrial measurement by atmospheric absorption and background radiation. Furthermore, the receiver's performance depends on its physical temperature, which is a sensitive function of platform environment, thermal design, and cryocooler performance. This empirical data is important for building confidence in the technology.

  9. Corneal cross-linking in 9 horses with ulcerative keratitis

    PubMed Central

    2013-01-01

    Background Corneal ulcers are one of the most common eye problems in the horse and can cause varying degrees of visual impairment. Secondary infection and protease activity causing melting of the corneal stroma are always concerns in patients with corneal ulcers. Corneal collagen cross-linking (CXL), induced by illumination of the corneal stroma with ultraviolet light (UVA) after instillation of riboflavin (vitamin B2) eye drops, introduces crosslinks which stabilize melting corneas, and has been used to successfully treat infectious ulcerative keratitis in human patients. Therefore we decided to study if CXL can be performed in sedated, standing horses with ulcerative keratitis with or without stromal melting. Results Nine horses, aged 1 month to 16 years (median 5 years) were treated with a combination of CXL and medical therapy. Two horses were diagnosed with mycotic, 5 with bacterial and 2 with aseptic ulcerative keratitis. A modified Dresden-protocol for CXL could readily be performed in all 9 horses after sedation. Stromal melting, diagnosed in 4 horses, stopped within 24 h. Eight of nine eyes became fluorescein negative in 13.5 days (median time; range 4–26 days) days after CXL. One horse developed a bacterial conjunctivitis the day after CXL, which was successfully treated with topical antibiotics. One horse with fungal ulcerative keratitis and severe uveitis was enucleated 4 days after treatment due to panophthalmitis. Conclusions CXL can be performed in standing, sedated horses. We did not observe any deleterious effects attributed to riboflavin or UVA irradiation per se during the follow-up, neither in horses with infectious nor aseptic ulcerative keratitis. These data support that CXL can be performed in the standing horse, but further studies are required to compare CXL to conventional medical treatment in equine keratitis and to optimize the CXL protocol in this species. PMID:23803176

  10. Transepithelial corneal collagen cross-linking in ultrathin keratoconic corneas

    PubMed Central

    Spadea, Leopoldo; Mencucci, Rita

    2012-01-01

    Background The purpose of this paper was to report the results of transepithelial corneal collagen cross-linking (CXL) with modified riboflavin and ultraviolet A irradiation in patients affected by keratoconus, each with thinnest pachymetry values of less than 400 μm (with epithelium) and not treatable using standard de-epithelialization techniques. Methods Sixteen patients affected by progressive keratoconus with thinnest pachymetry values ranging from 331 μm to 389 μm underwent transepithelial CXL in one eye using a riboflavin 0.1% solution in 15% Dextran T500 containing ethylenediamine tetra-acetic acid 0.01% and trometamol to enhance epithelial penetration. The patients underwent complete ophthalmological examination, including endothelial cell density measurements and computerized videokeratography, before CXL and at one day, one week, and one, 6, and 12 months thereafter. Results Epithelial healing was complete in all patients after one day of use of a soft bandage contact lens. No side effects or damage to the limbal region was observed during the follow-up period. All patients showed slightly improved uncorrected and spectacle-corrected visual acuity; keratometric astigmatism showed reductions (up to 5.3 D) and apical ectasia power decreased (Kmax values reduced up to 4.3 D). Endothelial cell density was unchanged. Conclusion Application of transepithelial CXL using riboflavin with substances added to enhance epithelial permeability was safe, seemed to be moderately effective in keratoconic eyes with ultrathin corneas, and applications of the procedure could be extended to patients with advanced keratoconus. PMID:23152657

  11. The theory and art of corneal cross-linking.

    PubMed

    McQuaid, Rebecca; Cummings, Arthur B; Mrochen, Michael

    2013-08-01

    Before the discovery of corneal cross-linking (CXL), patients with keratoconus would have had to undergo corneal transplantation, or wear rigid gas permeable lenses (RGPs) that would temporarily flatten the cone, thereby improving the vision. The RGP contact lens (CL) would not however alter the corneal stability and if the keratoconus was progressive, the continued steepening of the cone would occur under the RGP CL. To date, the Siena Eye has been the largest study to investigate long term effects of standard CXL. Three hundred and sixty-three eyes were treated and monitored over 4 years, producing reliable long-term results proving long-term stability of the cornea by halting the progression of keratoconus, and proving the safety of the procedure. Traditionally, CXL requires epithelial removal prior to corneal soakage of a dextran-based 0.1% riboflavin solution, followed by exposure of ultraviolet-A (UV-A) light for 30 min with an intensity of 3 mW/cm2. A series of in vitro investigations on human and porcine corneas examined the best treatment parameters for standard CXL, such as riboflavin concentration, intensity, wavelength of UV-A light, and duration of treatment. Photochemically, CXL is achieved by the generation of chemical bonds within the corneal stroma through localized photopolymerization, strengthening the cornea whilst minimizing exposure to the surrounding structures of the eye. In vitro studies have shown that CXL has an effect on the biomechanical properties of the cornea, with an increased corneal rigidity of approximately 70%. This is a result of the creation of new chemical bonds within the stroma.

  12. The theory and art of corneal cross-linking

    PubMed Central

    McQuaid, Rebecca; Cummings, Arthur B; Mrochen, Michael

    2013-01-01

    Before the discovery of corneal cross-linking (CXL), patients with keratoconus would have had to undergo corneal transplantation, or wear rigid gas permeable lenses (RGPs) that would temporarily flatten the cone, thereby improving the vision. The RGP contact lens (CL) would not however alter the corneal stability and if the keratoconus was progressive, the continued steepening of the cone would occur under the RGP CL. To date, the Siena Eye has been the largest study to investigate long term effects of standard CXL. Three hundred and sixty-three eyes were treated and monitored over 4 years, producing reliable long-term results proving long-term stability of the cornea by halting the progression of keratoconus, and proving the safety of the procedure. Traditionally, CXL requires epithelial removal prior to corneal soakage of a dextran-based 0.1% riboflavin solution, followed by exposure of ultraviolet-A (UV-A) light for 30 min with an intensity of 3 mW/cm2. A series of in vitro investigations on human and porcine corneas examined the best treatment parameters for standard CXL, such as riboflavin concentration, intensity, wavelength of UV-A light, and duration of treatment. Photochemically, CXL is achieved by the generation of chemical bonds within the corneal stroma through localized photopolymerization, strengthening the cornea whilst minimizing exposure to the surrounding structures of the eye. In vitro studies have shown that CXL has an effect on the biomechanical properties of the cornea, with an increased corneal rigidity of approximately 70%. This is a result of the creation of new chemical bonds within the stroma. PMID:23925326

  13. Matching cross-linked peptide spectra: only as good as the worse identification.

    PubMed

    Trnka, Michael J; Baker, Peter R; Robinson, Philip J J; Burlingame, A L; Chalkley, Robert J

    2014-02-01

    Chemical cross-linking mass spectrometry identifies interacting surfaces within a protein assembly through labeling with bifunctional reagents and identifying the covalently modified peptides. These yield distance constraints that provide a powerful means to model the three-dimensional structure of the assembly. Bioinformatic analysis of cross-linked data resulting from large protein assemblies is challenging because each cross-linked product contains two covalently linked peptides, each of which must be correctly identified from a complex matrix of potential confounders. Protein Prospector addresses these issues through a complementary mass modification strategy in which each peptide is searched and identified separately. We demonstrate this strategy with an analysis of RNA polymerase II. False discovery rates (FDRs) are assessed via comparison of cross-linking data to crystal structure, as well as by using a decoy database strategy. Parameters that are most useful for positive identification of cross-linked spectra are explored. We find that fragmentation spectra generally contain more product ions from one of the two peptides constituting the cross-link. Hence, metrics reflecting the quality of the spectral match to the less confident peptide provide the most discriminatory power between correct and incorrect matches. A support vector machine model was built to further improve classification of cross-linked peptide hits. Furthermore, the frequency with which peptides cross-linked via common acylating reagents fragment to produce diagnostic, cross-linker-specific ions is assessed. The threshold for successful identification of the cross-linked peptide product depends upon the complexity of the sample under investigation. Protein Prospector, by focusing the reliability assessment on the least confident peptide, is better able to control the FDR for results as larger complexes and databases are analyzed. In addition, when FDR thresholds are calculated separately

  14. Collagen Cross-Linking Using Riboflavin and Ultraviolet-A for Corneal Thinning Disorders

    PubMed Central

    Pron, G; Ieraci, L; Kaulback, K

    2011-01-01

    , watching television or reading, difficult to perform. Keratoconus is the most common form of corneal thinning disorder and involves a noninflammatory chronic disease process of progressive corneal thinning. Although the specific cause for the biomechanical alterations in the corneal stroma is unknown, there is a growing body of evidence suggesting that genetic factors may play an important role. Keratoconus is a rare disease (< 0.05% of the population) and is unique among chronic eye diseases because it has an early onset, with a median age of 25 years. Disease management for this condition follows a step-wise approach depending on disease severity. Contact lenses are the primary treatment of choice when there is irregular astigmatism associated with the disease. Patients are referred for corneal transplants as a last option when they can no longer tolerate contact lenses or when lenses no longer provide adequate vision. Keratoconus is one of the leading indications for corneal transplants and has been so for the last 3 decades. Despite the high success rate of corneal transplants (up to 20 years) there are reasons to defer it as long as possible. Patients with keratoconus are generally young and a longer-term graft survival of at least 30 or 40 years may be necessary. The surgery itself involves lengthy time off work and postsurgery, while potential complications include long-term steroid use, secondary cataracts, and glaucoma. After a corneal transplant, keratoconus may recur resulting in a need for subsequent interventions. Residual refractive errors and astigmatism can remain challenges after transplantation, and high refractive surgery and regraft rates in KC patients have been reported. Visual rehabilitation or recovery of visual acuity after transplant may be slow and/or unsatisfactory to patients. Description of Technology/Therapy Corneal cross-linking involves the use of riboflavin (vitamin B2) and ultraviolet-A (UVA) radiation. A UVA irradiation device known as

  15. Cortactin involvement in the keratinocyte growth factor and fibroblast growth factor 10 promotion of migration and cortical actin assembly in human keratinocytes

    SciTech Connect

    Ceccarelli, Simona; Cardinali, Giorgia; Aspite, Nicaela; Picardo, Mauro; Marchese, Cinzia; Torrisi, Maria Rosaria; Mancini, Patrizia . E-mail: patrizia.mancini@uniroma1.it

    2007-05-15

    Keratinocyte growth factor (KGF/FGF7) and fibroblast growth factor 10 (FGF10/KGF2) regulate keratinocyte proliferation and differentiation by binding to the tyrosine kinase KGF receptor (KGFR). KGF induces keratinocyte motility and cytoskeletal rearrangement, whereas a direct role of FGF10 on keratinocyte migration is not clearly established. Here we analyzed the motogenic activity of FGF10 and KGF on human keratinocytes. Migration assays and immunofluorescence of actin cytoskeleton revealed that FGF10 is less efficient than KGF in promoting migration and exerts a delayed effect in inducing lamellipodia and ruffles formation. Both growth factors promoted phosphorylation and subsequent membrane translocation of cortactin, an F-actin binding protein involved in cell migration; however, FGF10-induced cortactin phosphorylation was reduced, more transient and delayed with respect to that promoted by KGF. Cortactin phosphorylation induced by both growth factors was Src-dependent, while its membrane translocation and cell migration were blocked by either Src and PI3K inhibitors, suggesting that both pathways are involved in KGF- and FGF10-dependent motility. Furthermore, siRNA-mediated downregulation of cortactin inhibited KGF- and FGF10-induced migration. These results indicate that cortactin is involved in keratinocyte migration promoted by both KGF and FGF10.

  16. Acute Corneal Hydrops 3 Years after Intra-corneal Ring Segments and Corneal Collagen Cross-linking

    PubMed Central

    Antonios, Rafic; Dirani, Ali; Fadlallah, Ali; Chelala, Elias; Hamadeh, Adib; Jarade, Elias

    2016-01-01

    This case report describes a 15-year-old male with allergic conjunctivitis and keratoconus, who underwent uneventful intra-corneal ring segment (ICRS) implantation and corneal collagen cross-linking (CXL) in the right eye. During the follow-up periods, the patient was noted to have several episodes of allergic conjunctivitis that were treated accordingly. At the 2 years postoperatively, he presented with another episode of allergic conjunctivitis and progression of keratoconus was suspected on topography. However, the patient was lost to follow-up, until he presented with acute hydrops at 3 years postoperatively. There are no reported cases of acute corneal hydrops in cross-linked corneas. We suspect the young age, allergic conjunctivitis and eye rubbing may be a risk factors associated with possible progression of keratoconus after CXL. Prolonged follow-up and aggressive control of the allergy might be necessary in similar cases. PMID:26957859

  17. Simulation of the effect of confinement in actin ring formation

    NASA Astrophysics Data System (ADS)

    Adeli Koudehi, Maral; Vavylonis, Dimitrios; Haosu Tang Team; Dimitrios Vavylonis Team

    Actin filaments are vital for different network structures in living cells. During cytokinesis, they form a contractile ring containing myosin motor proteins and actin filament cross-linkers to separate one cell into two cells. Recent experimental studies have quantified the bundle, ring, and network structures that form when actin filaments polymerize in confined environments in vitro, in the presence of varying concentrations of cross-linkers. In this study, we performed numerical simulations to investigate the effect of actin spherical confinement and cross-linking in ring formation. We used a spring-bead model and Brownian dynamics to simulate semiflexible actin filaments that polymerize in a confining sphere with a rate proportional to the monomer concentration. Applying the model for different size of the confining spheres shows that the probability of ring formation decreases by increasing the radius (at fixed initial monomer concentration), in agreement with prior experimental data. We describe the effect of persistence length, orientation-dependent cross-linking, and initial actin monomer concentration. Simulations show that equilibrium configurations can be reached through zipping and unzipping of actin filaments in bundles and transient ring formation.

  18. MicroRNA-584 and the Protein Phosphatase and Actin Regulator 1 (PHACTR1), a New Signaling Route through Which Transforming Growth Factor-β Mediates the Migration and Actin Dynamics of Breast Cancer Cells*

    PubMed Central

    Fils-Aimé, Nadège; Dai, Meiou; Guo, Jimin; El-Mousawi, Mayada; Kahramangil, Bora; Neel, Jean-Charles; Lebrun, Jean-Jacques

    2013-01-01

    TGF-β plays an important role in breast cancer progression as a prometastatic factor, notably through enhancement of cell migration. It is becoming clear that microRNAs, a new class of small regulatory molecules, also play crucial roles in mediating tumor formation and progression. We found TGF-β to down-regulate the expression of the microRNA miR-584 in breast cancer cells. Furthermore, we identified PHACTR1, an actin-binding protein, to be positively regulated by TGF-β in a miR-584-dependent manner. Moreover, we found TGF-β-mediated down-regulation of miR-584 and increased expression of PHACTR1 to be required for TGF-β-induced cell migration of breast cancer cells. Indeed, both overexpression of miR-584 and knockdown of PHACTR1 resulted in a drastic reorganization of the actin cytoskeleton and reduced TGF-β-induced cell migration. Our data highlight a novel signaling route whereby TGF-β silences the expression of miR-584, resulting in enhanced PHACTR1 expression, and further leading to actin rearrangement and breast cancer cell migration. PMID:23479725

  19. NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES PREPARED UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    A facile microwave irradiation approach that results in a cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic and bimetallic systems is described. Nanocomposites of PVA cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-P...

  20. PREPARATION OF NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    A facile method utilizing microwave irradiation is described that accomplishes the cross-linking reaction of PVA with metallic and bimetallic systems. Nanocomposites of PVA-cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-Pt, Pt-Fe, Cu...

  1. Computer-assisted mass spectrometric analysis of naturally occurring and artificially introduced cross-links in proteins and protein complexes.

    PubMed

    de Koning, Leo J; Kasper, Piotr T; Back, Jaap Willem; Nessen, Merel A; Vanrobaeys, Frank; Van Beeumen, Jozef; Gherardi, Ermanno; de Koster, Chris G; de Jong, Luitzen

    2006-01-01

    A versatile software tool, VIRTUALMSLAB, is presented that can perform advanced complex virtual proteomic experiments with mass spectrometric analyses to assist in the characterization of proteins. The virtual experimental results allow rapid, flexible and convenient exploration of sample preparation strategies and are used to generate MS reference databases that can be matched with the real MS data obtained from the equivalent real experiments. Matches between virtual and acquired data reveal the identity and nature of reaction products that may lead to characterization of post-translational modification patterns, disulfide bond structures, and cross-linking in proteins or protein complexes. The most important unique feature of this program is the ability to perform multistage experiments in any user-defined order, thus allowing the researcher to vary experimental approaches that can be conducted in the laboratory. Several features of VIRTUALMSLAB are demonstrated by mapping both disulfide bonds and artificially introduced protein cross-links. It is shown that chemical cleavage at aspartate residues in the protease resistant RNase A, followed by tryptic digestion can be optimized so that the rigid protein breaks up into MALDI-MS detectable fragments, leaving the disulfide bonds intact. We also show the mapping of a number of chemically introduced cross-links in the NK1 domain of hepatocyte growth factor/scatter factor. The VIRTUALMSLAB program was used to explore the limitation and potential of mass spectrometry for cross-link studies of more complex biological assemblies, showing the value of high performance instruments such as a Fourier transform mass spectrometer. The program is freely available upon request.

  2. Investigation of anisotropic thermal transport in cross-linked polymers

    NASA Astrophysics Data System (ADS)

    Simavilla, David Nieto

    Thermal transport in lightly cross-linked polyisoprene and polybutadine subjected to uniaxial elongation is investigated experimentally. We employ two experimental techniques to assess the effect that deformation has on this class of materials. The first technique, which is based on Forced Rayleigh Scattering (FRS), allows us to measure the two independent components of the thermal diffusivity tensor as a function of deformation. These measurements along with independent measurements of the tensile stress and birefringence are used to evaluate the stress-thermal and stress-optic rules. The stress-thermal rule is found to be valid for the entire range of elongations applied. In contrast, the stress-optic rule fails for moderate to large stretch ratios. This suggests that the degree of anisotropy in thermal conductivity depends on both orientation and tension in polymer chain segments. The second technique, which is based on infrared thermography (IRT), allows us to measure anisotropy in thermal conductivity and strain induced changes in heat capacity. We validate this method measurements of anisotropic thermal conductivity by comparing them with those obtained using FRS. We find excellent agreement between the two techniques. Uncertainty in the infrared thermography method measurements is estimated to be about 2-5 %. The accuracy of the method and its potential application to non-transparent materials makes it a good alternative to extend current research on anisotropic thermal transport in polymeric materials. A second IRT application allows us to investigate the dependence of heat capacity on deformation. We find that heat capacity increases with stretch ratio in polyisoprene specimens under uniaxial extension. The deviation from the equilibrium value of heat capacity is consistent with an independent set of experiments comparing anisotropy in thermal diffusivity and conductivity employing FRS and IRT techniques. We identify finite extensibility and strain

  3. Modified gum arabic cross-linked gelatin scaffold for biomedical applications.

    PubMed

    Sarika, P R; Cinthya, Kuriakose; Jayakrishnan, A; Anilkumar, P R; James, Nirmala Rachel

    2014-10-01

    The present work deals with development of modified gum arabic cross-linked gelatin scaffold for cell culture. A new biocompatible scaffold was developed by cross-linking gelatin (Gel) with gum arabic, a polysaccharide. Gum arabic was subjected to periodate oxidation to obtain gum arabic aldehyde (GAA). GAA was reacted with gelatin under appropriate pH to prepare the cross-linked hydrogel. Cross-linking occurred due to Schiff's base reaction between aldehyde groups of oxidized gum arabic and amino groups of gelatin. The scaffold prepared from the hydrogel was characterized by swelling properties, degree of cross-linking, in vitro degradation and scanning electron microscopy (SEM). Cytocompatibility evaluation using L-929 and HepG2 cells confirmed non-cytotoxic and non-adherent nature of the scaffold. These properties are essential for generating multicellular spheroids and hence the scaffold is proposed to be a suitable candidate for spheroid cell culture. PMID:25175214

  4. Collagen cross-linking of skin in patients with amyotrophic lateral sclerosis

    NASA Technical Reports Server (NTRS)

    Ono, S.; Yamauchi, M.

    1992-01-01

    Collagen cross-links of skin tissue (left upper arm) from 11 patients with amyotrophic lateral sclerosis (ALS) and 9 age-matched control subjects were quantified. It was found that patients with ALS had a significant reduction in the content of an age-related, stable cross-link, histidinohydroxylysinonorleucine, that was negatively correlated with the duration of illness. The contents of sodium borohydride-reducible labile cross-links, dehydro-hydroxylysinonorleucine and dehydro-histidinohydroxymerodesmosine, were significantly increased and were positively associated with the duration of illness (r = 0.703, p less than 0.05 and r = 0.684, p less than 0.05, respectively). The results clearly indicate that during the course of ALS, the cross-linking pathway of skin collagen runs counter to its normal aging, resulting in a "rejuvenation" phenomenon of skin collagen. Thus, cross-linking of skin collagen is affected in ALS.

  5. Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility

    PubMed Central

    Kim, Min Hee; Park, Won Ho

    2016-01-01

    In this study, the synthesis of silk fibroin (SF) hydrogel via chemical cross-linking reactions of SF due to gamma-ray (γ-ray) irradiation was investigated, as were the resultant hydrogel’s properties. Two different hydrogels were investigated: physically cross-linked SF hydrogel and chemically cross-linked SF hydrogel irradiated at different doses of γ-rays. The effects of the irradiation dose and SF concentration on the hydrogelation of SF were examined. The chemically cross-linked SF hydrogel was compared with the physically cross-linked one with regard to secondary structure and gel strength. Furthermore, the swelling behavior, crystallinity, and biodegradation of the SF hydrogels were characterized. To assay cell proliferation, the cell viability of human mesenchymal stem cells on the lyophilized SF hydrogel scaffolds was evaluated, and no significant cytotoxicity against human mesenchymal stem cells was observed. PMID:27382283

  6. Characterization of the bombesin receptor on mouse pancreatic acini by chemical cross-linking

    SciTech Connect

    Huang, S.C.; Yu, D.H.; Wank, S.A.; Gardner, J.D.; Jensen, R.T. )

    1990-11-01

    Bombesin (BN), gastrin-releasing peptide (GRP) and GRP(18-27) (neuromedin C) were equipotent and 30-fold more potent than neuromedin B (NMB) in inhibiting binding of {sup 125}I-GRP to and in stimulating amylase release from mouse pancreatic acini. In the present study we used {sup 125}I-GRP and chemical cross-linking techniques to characterize the mouse pancreatic BN receptor. After binding of {sup 125}I-GRP to membranes, and incubation with various chemical cross-linking agents, cross-linked radioactivity was analyzed by SDS-PAG electrophoresis and autoradiography. With each of 4 different chemical cross-linking agents, there was a single broad polypeptide band of Mr 80,000. Cross-linking did not occur in the absence of the cross-linking agent. Cross-linking was inhibited only by peptides that interact with the BN receptor such as GRP, NMB, GRP(18-27) or BN. Dose-inhibition curves for the ability of BN or NMB to inhibit binding of {sup 125}I-GRP to membranes or cross-linking to the 80,000 polypeptide demonstrated for both that BN was 15-fold more potent than NMB. The apparent molecular weight of the cross-linked polypeptide was unchanged by adding dithiothreitol. N-Glycanase treatment reduced the molecular weight of the cross-linked peptide to 40,000. The present results indicate that the BN receptor on mouse pancreatic acinar cell membranes resembles that recently described on various tumor cells in being a single glycoprotein with a molecular weight of 76,000. Because dithiothreitol had no effect, this glycoprotein is not a subunit of a larger disulfide-linked structure.

  7. A Study into the Collision-induced Dissociation (CID) Behavior of Cross-Linked Peptides*

    PubMed Central

    Giese, Sven H.; Fischer, Lutz; Rappsilber, Juri

    2016-01-01

    Cross-linking/mass spectrometry resolves protein–protein interactions or protein folds by help of distance constraints. Cross-linkers with specific properties such as isotope-labeled or collision-induced dissociation (CID)-cleavable cross-linkers are in frequent use to simplify the identification of cross-linked peptides. Here, we analyzed the mass spectrometric behavior of 910 unique cross-linked peptides in high-resolution MS1 and MS2 from published data and validate the observation by a ninefold larger set from currently unpublished data to explore if detailed understanding of their fragmentation behavior would allow computational delivery of information that otherwise would be obtained via isotope labels or CID cleavage of cross-linkers. Isotope-labeled cross-linkers reveal cross-linked and linear fragments in fragmentation spectra. We show that fragment mass and charge alone provide this information, alleviating the need for isotope-labeling for this purpose. Isotope-labeled cross-linkers also indicate cross-linker-containing, albeit not specifically cross-linked, peptides in MS1. We observed that acquisition can be guided to better than twofold enrich cross-linked peptides with minimal losses based on peptide mass and charge alone. By help of CID-cleavable cross-linkers, individual spectra with only linear fragments can be recorded for each peptide in a cross-link. We show that cross-linked fragments of ordinary cross-linked peptides can be linearized computationally and that a simplified subspectrum can be extracted that is enriched in information on one of the two linked peptides. This allows identifying candidates for this peptide in a simplified database search as we propose in a search strategy here. We conclude that the specific behavior of cross-linked peptides in mass spectrometers can be exploited to relax the requirements on cross-linkers. PMID:26719564

  8. Demonstration of prominent actin filaments in the root columella.

    PubMed

    Collings, D A; Zsuppan, G; Allen, N S; Blancaflor, E B

    2001-02-01

    The distribution of actin filaments within the gravity-sensing columella cells of plant roots remains poorly understood, with studies over numerous years providing inconsistent descriptions of actin organization in these cells. This uncertainty in actin organization, and thus in actin's role in graviperception and gravisignaling, has led us to investigate actin arrangements in the columella cells of Zea mays L., Medicago truncatula Gaertn., Linum usitatissiilium L. and Nicotianla benthamiana Domin. Actin organization was examined using a combination of optimized immunofluorescence techniques, and an improved fluorochrome-conjugated phalloidin labeling method reliant on 3-maleimidobenzoyl-N-hydroxy-succinimide ester (MBS) cross-linking combined with glycerol permeabilization. Confocal microscopy of root sections labeled with anti-actin antibodies revealed patterns suggestive of actin throughout the columella region. These patterns included short and fragmented actin bundles, fluorescent rings around amyloplasts and intense fluorescence originating from the nucleus. Additionally, confocal microscopy of MBS-stabilized and Alexa Fluor-phalloidin-labeled root sections revealed a previously undetected state of actin organization in the columella. Discrete actin structures surrounded the amyloplasts and prominent actin cables radiated from the nuclear surface toward the cell periphery. Furthermore, the cortex of the columella cells contained fine actin bundles (or single filaments) that had a predominant transverse orientation. We also used confocal microscopy of plant roots expressing endoplasmic reticulum (ER)-targeted green fluorescent protein to demonstrate rapid ER movements within the columella cells, suggesting that the imaged actin network is functional. The successful identification of discrete actin structures in the root columella cells forms the perception and signaling. PMID:11289604

  9. Demonstration of prominent actin filaments in the root columella

    NASA Technical Reports Server (NTRS)

    Collings, D. A.; Zsuppan, G.; Allen, N. S.; Blancaflor, E. B.; Brown, C. S. (Principal Investigator)

    2001-01-01

    The distribution of actin filaments within the gravity-sensing columella cells of plant roots remains poorly understood, with studies over numerous years providing inconsistent descriptions of actin organization in these cells. This uncertainty in actin organization, and thus in actin's role in graviperception and gravisignaling, has led us to investigate actin arrangements in the columella cells of Zea mays L., Medicago truncatula Gaertn., Linum usitatissiilium L. and Nicotianla benthamiana Domin. Actin organization was examined using a combination of optimized immunofluorescence techniques, and an improved fluorochrome-conjugated phalloidin labeling method reliant on 3-maleimidobenzoyl-N-hydroxy-succinimide ester (MBS) cross-linking combined with glycerol permeabilization. Confocal microscopy of root sections labeled with anti-actin antibodies revealed patterns suggestive of actin throughout the columella region. These patterns included short and fragmented actin bundles, fluorescent rings around amyloplasts and intense fluorescence originating from the nucleus. Additionally, confocal microscopy of MBS-stabilized and Alexa Fluor-phalloidin-labeled root sections revealed a previously undetected state of actin organization in the columella. Discrete actin structures surrounded the amyloplasts and prominent actin cables radiated from the nuclear surface toward the cell periphery. Furthermore, the cortex of the columella cells contained fine actin bundles (or single filaments) that had a predominant transverse orientation. We also used confocal microscopy of plant roots expressing endoplasmic reticulum (ER)-targeted green fluorescent protein to demonstrate rapid ER movements within the columella cells, suggesting that the imaged actin network is functional. The successful identification of discrete actin structures in the root columella cells forms the perception and signaling.

  10. A supracellular system of actin-lined canals controls biogenesis and release of virulence factors in parasitoid venom glands.

    PubMed

    Ferrarese, Roberto; Morales, Jorge; Fimiarz, Daniel; Webb, Bruce A; Govind, Shubha

    2009-07-01

    Parasitoid wasps produce virulence factors that bear significant resemblance to viruses and have the ability to block host defense responses. The function of these virulence factors, produced predominantly in wasp venom glands, and the ways in which they interfere with host development and physiology remain mysterious. Here, we report the discovery of a specialized system of canals in venom glands of five parasitoid wasps that differ in their infection strategies. This supracellular canal system is made up of individual secretory units, one per secretory cell. Individual units merge into the canal lumen. The membrane surface of the proximal end of each canal within the secretory cell assumes brush border morphology, lined with bundles of F-actin. Systemic administration of cytochalasin D compromises the integrity of the secretory unit. We show a dynamic and continuous association of p40, a protein of virus-like particles from a Drosophila parasitoid, L. heterotoma, with the canal and venom gland lumen. Similar structures in three Leptopilina species and Ganaspis xanthopoda, parasitoids of Drosophila spp., and Campoletis sonorenesis, a parasitoid of Heliothis virescens, suggest that this novel supracellular canal system is likely to be a common trait of parasitoid venom glands that is essential for efficient biogenesis and delivery of virulence factors. PMID:19561216

  11. A supracellular system of actin-lined canals controls biogenesis and release of virulence factors in parasitoid venom glands

    PubMed Central

    Ferrarese, Roberto; Morales, Jorge; Fimiarz, Daniel; Webb, Bruce A.; Govind, Shubha

    2009-01-01

    Summary Parasitoid wasps produce virulence factors that bear significant resemblance to viruses and have the ability to block host defense responses. The function of these virulence factors, produced predominantly in wasp venom glands, and the ways in which they interfere with host development and physiology remain mysterious. Here, we report the discovery of a specialized system of canals in venom glands of five parasitoid wasps that differ in their infection strategies. This supracellular canal system is made up of individual secretory units, one per secretory cell. Individual units merge into the canal lumen. The membrane surface of the proximal end of each canal within the secretory cell assumes brush border morphology, lined with bundles of F-actin. Systemic administration of cytochalasin D compromises the integrity of the secretory unit. We show a dynamic and continuous association of p40, a protein of virus-like particles from a Drosophila parasitoid, L. heterotoma, with the canal and venom gland lumen. Similar structures in three Leptopilina species and Ganaspis xanthopoda, parasitoids of Drosophila spp., and Campoletis sonorenesis, a parasitoid of Heliothis virescens, suggest that this novel supracellular canal system is likely to be a common trait of parasitoid venom glands that is essential for efficient biogenesis and delivery of virulence factors. PMID:19561216

  12. Synthetic cinchonidine receptors obtained by cross-linking linear poly(methacrylic acid) derivatives as an alternative molecular imprinting technique.

    PubMed

    Matsui, Jun; Minamimura, Norihito; Nishimoto, Kenji; Tamaki, Katsuyuki; Sugimoto, Naoki

    2004-05-01

    A molecular imprinting approach to construct synthetic receptors was examined, wherein a linear pre-polymer bearing functional groups for intermolecular interaction with a given molecule is cross-linked in the presence of the molecule as a template, and subsequent removal of the template from the resultant network-polymer is expected to leave a complementary binding site. Poly(methacrylic acid) (PMAA) derivatized with a vinylbenzyl group as a cross-linkable side chain was utilized as the pre-polymer for the molecular imprinting of a model template, (-)-cinchonidine. Selectivity of the imprinted polymer was evaluated by comparing the retentions of the original template, (-)-cinchonidine and its antipode (+)-cinchonine in chromatographic tests, exhibiting a selectivity factor up to 2.4. By assessment of the imprinted polymers in a batch mode, a dissociation constant at 20 degrees C for (-)-cinchonidine was estimated to be K (d) = 2.35 x 10(-6) M (the number of binding sites: 4.54 x 10(-6) mol/g-dry polymer). The displayed affinity and selectivity appeared comparable to those of an imprinted polymer prepared by a conventional monomer-based protocol, thus showing that the pre-polymer, which can be densely cross-linked, is an alternative imprinter for developing template-selective materials. (-)-Cinchonidine-imprinted polymers were prepared and assessed using the pre-polymers bearing different densities of the vinylbenzyl group and different amounts of the cross-linking agent to examine the appropriate density of the cross-linking side chain that was crucial for developing the high affinity and selectivity of the imprinted polymers.

  13. Determination of protein conformation by isotopically labelled cross-linking and dedicated software

    NASA Astrophysics Data System (ADS)

    Nielsen, Tina; Thaysen-Andersen, Morten; Larsen, Nanna; Jørgensen, Flemming S.; Houen, Gunnar; Højrup, Peter

    2007-12-01

    Chemical cross-linking in conjunction with mass spectrometry (MS) can be used for sensitive and rapid investigation of the three-dimensional structure of proteins at low resolution. However, the resulting data are very complex, and on the bioinformatic side, there still exists an urgent need for improving computer software for (semi-) automated cross-linking data analysis. In this study, we have developed dedicated software for rapid and confident identification and validation of cross-linked species using an isotopic labelled cross-linker approach in combination with MS. Deuterated (+4 Da) and non-deuterated (+0 Da) bis(sulfosuccinimidyl)suberate, BS3, was used as homobifunctional cross-linker to tag the cross-linked regions. Peptides generated from proteolysis were separated using high performance liquid chromatography, and peptide mass fingerprinting was obtained for the individual fractions using matrix-assisted laser-desorption ionisation time-of-flight (MALDI TOF) MS. The resulting peptide mass lists were combined and transferred to the program, ProteinXXX, which generated the theoretical mass values of all combinations of cross-linked peptides and dead-end cross-links and compared this to the obtained mass lists. In addition, screening for 4 Da-separated signals aided the identification of potential cross-linked species. Sequence information of these candidates was then obtained using MALDI TOF TOF. The cross-linked peptides could then be validated based on the match of the fragmentation pattern and the theoretical values produced by ProteinXXX. This semi-automated interpretation provided a high analysis speed of cross-linking data, with efficient and confident identification of cross-linked species. Four experiments using different conditions showed a high degree of reproducibility as only 1 and 2 cross-links out of 36 identified was not observed in two experiments. The method was tested using human placenta calreticulin (CRT). Based on the identified cross-links

  14. Phosphorylation of actin-depolymerizing factor/cofilin by LIM-kinase mediates amyloid beta-induced degeneration: a potential mechanism of neuronal dystrophy in Alzheimer's disease.

    PubMed

    Heredia, Lorena; Helguera, Pablo; de Olmos, Soledad; Kedikian, Gabriela; Solá Vigo, Francisco; LaFerla, Frank; Staufenbiel, Matthias; de Olmos, José; Busciglio, Jorge; Cáceres, Alfredo; Lorenzo, Alfredo

    2006-06-14

    Deposition of fibrillar amyloid beta (fAbeta) plays a critical role in Alzheimer's disease (AD). We have shown recently that fAbeta-induced dystrophy requires the activation of focal adhesion proteins and the formation of aberrant focal adhesion structures, suggesting the activation of a mechanism of maladaptative plasticity in AD. Focal adhesions are actin-based structures that provide a structural link between the extracellular matrix and the cytoskeleton. To gain additional insight in the molecular mechanism of neuronal degeneration in AD, here we explored the involvement of LIM kinase 1 (LIMK1), actin-depolymerizing factor (ADF), and cofilin in Abeta-induced dystrophy. ADF/cofilin are actin-binding proteins that play a central role in actin filament dynamics, and LIMK1 is the kinase that phosphorylates and thereby inhibits ADF/cofilin. Our data indicate that treatment of hippocampal neurons with fAbeta increases the level of Ser3-phosphorylated ADF/cofilin and Thr508-phosphorylated LIMK1 (P-LIMK1), accompanied by a dramatic remodeling of actin filaments, neuritic dystrophy, and neuronal cell death. A synthetic peptide, S3 peptide, which acts as a specific competitor for ADF/cofilin phosphorylation by LIMK1, inhibited fAbeta-induced ADF/cofilin phosphorylation, preventing actin filament remodeling and neuronal degeneration, indicating the involvement of LIMK1 in Abeta-induced neuronal degeneration in vitro. Immunofluorescence analysis of AD brain showed a significant increase in the number of P-LIMK1-positive neurons in areas affected with AD pathology. P-LIMK1-positive neurons also showed early signs of AD pathology, such as intracellular Abeta and pretangle phosphorylated tau. Thus, LIMK1 activation may play a key role in AD pathology. PMID:16775141

  15. Novel antimicrobial superporous cross-linked chitosan/pyromellitimide benzoyl thiourea hydrogels.

    PubMed

    Mohamed, Nadia A; Abd El-Ghany, Nahed A; Fahmy, Mona M

    2016-01-01

    In this work, chitosan (CS) was cross-linked with different amounts of pyromellitimide benzoyl thiourea moieties. The structure of the cross-linked CS was confirmed by elemental analyses, FTIR and (1)H- NMR spectroscopy. The cross-linking process proceeds via reacting of the amino groups of CS with the isothiocyanate groups of the N,N'-bis [4-(isothiocyanate carbonyl)phenyl] pyromellitimide cross-linker. The amount of the cross-linker was varied with respect to CS to produce four new pyromellitimide benzoyl thiourea cross-linked CS (PIBTU-CS) hydrogels designated as PIBTU-CS-1, PIBTU-CS-2, PIBTU-CS-3, and PIBTU-CS-4 of increasing cross-linking degree percent of 11, 22, 44 and 88%, respectively. The scanning electron microscopy observation indicates the extremely porous structure of the hydrogels. XRD results showed that the crystallinity of CS was decreased upon cross-linking. The four hydrogels exhibit a higher antibacterial activity on Bacillus subtilis and Streptococcus pneumoniae as Gram positive bacteria and against Escherichia coli as Gram negative bacteria and higher antifungal activity on Aspergillus fumigatus, Syncephalastrum racemosum and Geotricum candidum than that of the parent CS as shown from their higher inhibition zone diameters and their lower MIC values. The swell ability of the hydrogel as well as their antimicrobial activity increased with increasing cross-linking density. PMID:26388182

  16. Electrospun gelatin nanofibers: a facile cross-linking approach using oxidized sucrose.

    PubMed

    Jalaja, K; James, Nirmala R

    2015-02-01

    Gelatin nanofibers were fabricated via electrospinning with minimal toxicity from solvents and cross-linking agents. Electrospinning was carried out using a solvent system based on water and acetic acid (8:2, v/v). Acetic acid concentration was kept as minimum as possible to reduce the toxic effects. Electrospun gelatin nanofibers were cross-linked with oxidized sucrose. Sucrose was oxidized by periodate oxidation to introduce aldehyde functionality. Cross-linking with oxidized sucrose could be achieved without compromising the nanofibrous architecture. Cross-linked gelatin nanofibers maintained the fibrous morphology even after keeping in contact with aqueous medium. The morphology of the cross-linked nanofibrous mats was examined by scanning electron microscopy (SEM). Oxidized sucrose cross-linked gelatin nanofibers exhibited improved thermal and mechanical properties. The nanofibrous mats were evaluated for cytotoxicity and cell viability using L-929 fibroblast cells. The results confirmed that oxidized sucrose cross-linked gelatin nanofibers were non-cytotoxic towards L-929 cells with good cell viability.

  17. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma.

    PubMed

    Chen, Yulong; Terajima, Masahiko; Yang, Yanan; Sun, Li; Ahn, Young-Ho; Pankova, Daniela; Puperi, Daniel S; Watanabe, Takeshi; Kim, Min P; Blackmon, Shanda H; Rodriguez, Jaime; Liu, Hui; Behrens, Carmen; Wistuba, Ignacio I; Minelli, Rosalba; Scott, Kenneth L; Sanchez-Adams, Johannah; Guilak, Farshid; Pati, Debananda; Thilaganathan, Nishan; Burns, Alan R; Creighton, Chad J; Martinez, Elisabeth D; Zal, Tomasz; Grande-Allen, K Jane; Yamauchi, Mitsuo; Kurie, Jonathan M

    2015-03-01

    Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde-derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde-derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma. PMID:25664850

  18. Chemical and thermal cross-linking of collagen and elastin hydrolysates.

    PubMed

    Sionkowska, A; Skopinska-Wisniewska, J; Gawron, M; Kozlowska, J; Planecka, A

    2010-11-01

    Chemical and thermal cross-linking of collagen soluble in acetic acid and elastin hydrolysates soluble in water have been studied. Solutions of collagen and elastin hydrolysates were treated using variable concentrations of 1-ethyl-3(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). Moreover, diepoxypropylether (DEPE) has been used as cross-linking agent. Films made of collagen and elastin hydrolysates were also treated with temperature at 60°C and 100°C to get additional cross-links. The effect of cross-linking has been studied using FTIR spectroscopy, thermal analysis, AFM and SEM microscopy. Mechanical and surface properties of materials have been studied after cross-linking. It was found that thermal and mechanical properties of collagen and elastin materials have been altered after thermal treatment and after the reactions with EDC/NHS and/or DEPE. Surface properties of collagen materials after chemical cross-linking have been modified. Thermal and chemical cross-linking of collagen films lead to alteration of polarity of the surface.

  19. FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde.

    PubMed

    Chang, Myung Chul; Tanaka, Junzo

    2002-12-01

    FT-IR analysis was performed for the hydroxyapatite (HAp)/collagen (COL) nanocomposite cross-linked by glutaraldehyde (GA). The amide bands I, II and III from COL matrix, and phosphate and carbonate bands from HAp were identified. The amide B band arising from C-H stretching mode showed a sensitive conformation by the degree of cross-linking. The amide I band showed a complicate conformational change by the degree of cross-linking. The characteristic amide I band at 1685 cm(-1), which is known as an aging parameter in the biological bone, did not show a monotonous tendency by the degree of cross-linking. The relative contents of the organics in the cross-linked HAp/COL nanocomposite were evaluated as an integration ratio between the amide I band at 1600-1700 cm(-1) and PO(4)(3-) band at 900-1200 cm(-1). The increase of the organics content by the cross-linking is enabled by the further organization of Ca(2+) ions of HAp crystals in HAp/COL nanocomposite. The complicate conformational behavior in the amide I, II and III bands seems to be affected by the cross-linking induced directional arrangement of HAp/COL nanocomposite fibrils.

  20. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma.

    PubMed

    Chen, Yulong; Terajima, Masahiko; Yang, Yanan; Sun, Li; Ahn, Young-Ho; Pankova, Daniela; Puperi, Daniel S; Watanabe, Takeshi; Kim, Min P; Blackmon, Shanda H; Rodriguez, Jaime; Liu, Hui; Behrens, Carmen; Wistuba, Ignacio I; Minelli, Rosalba; Scott, Kenneth L; Sanchez-Adams, Johannah; Guilak, Farshid; Pati, Debananda; Thilaganathan, Nishan; Burns, Alan R; Creighton, Chad J; Martinez, Elisabeth D; Zal, Tomasz; Grande-Allen, K Jane; Yamauchi, Mitsuo; Kurie, Jonathan M

    2015-03-01

    Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde-derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde-derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma.

  1. Genipin cross-linked nanocomposite films for the immobilization of antimicrobial agent.

    PubMed

    Khan, Avik; Salmieri, Stéphane; Fraschini, Carole; Bouchard, Jean; Riedl, Bernard; Lacroix, Monique

    2014-09-10

    Cellulose nanocrystal (CNC) reinforced chitosan based antimicrobial films were prepared by immobilizing nisin on the surface of the films. Nanocomposite films containing 18.65 μg/cm(2) of nisin reduced the count of L. monocytogenes by 6.73 log CFU/g, compared to the control meat samples (8.54 log CFU/g) during storage at 4 °C in a Ready-To-Eat (RTE) meat system. Film formulations containing 9.33 μg/cm(2) of nisin increased the lag phase of L. monocytogenes on meat by more than 21 days, whereas formulations with 18.65 μg/cm(2) completely inhibited the growth of L. monocytogenes during storage. Genipin was used to cross-link and protect the activity of nisin during storage. Nanocomposite films cross-linked with 0.05% w/v genipin exhibited the highest bioactivity (10.89 μg/cm(2)) during the storage experiment, as compared to that of the un-cross-linked films (7.23 μg/cm(2)). Genipin cross-linked films were able to reduce the growth rate of L. monocytogenes on ham samples by 21% as compared to the un-cross-linked films. Spectroscopic analysis confirmed the formation of genipin-nisin-chitosan heterocyclic cross-linked network. Genipin cross-linked films also improved the swelling, water solubility, and mechanical properties of the nanocomposite films. PMID:25140839

  2. Novel antimicrobial superporous cross-linked chitosan/pyromellitimide benzoyl thiourea hydrogels.

    PubMed

    Mohamed, Nadia A; Abd El-Ghany, Nahed A; Fahmy, Mona M

    2016-01-01

    In this work, chitosan (CS) was cross-linked with different amounts of pyromellitimide benzoyl thiourea moieties. The structure of the cross-linked CS was confirmed by elemental analyses, FTIR and (1)H- NMR spectroscopy. The cross-linking process proceeds via reacting of the amino groups of CS with the isothiocyanate groups of the N,N'-bis [4-(isothiocyanate carbonyl)phenyl] pyromellitimide cross-linker. The amount of the cross-linker was varied with respect to CS to produce four new pyromellitimide benzoyl thiourea cross-linked CS (PIBTU-CS) hydrogels designated as PIBTU-CS-1, PIBTU-CS-2, PIBTU-CS-3, and PIBTU-CS-4 of increasing cross-linking degree percent of 11, 22, 44 and 88%, respectively. The scanning electron microscopy observation indicates the extremely porous structure of the hydrogels. XRD results showed that the crystallinity of CS was decreased upon cross-linking. The four hydrogels exhibit a higher antibacterial activity on Bacillus subtilis and Streptococcus pneumoniae as Gram positive bacteria and against Escherichia coli as Gram negative bacteria and higher antifungal activity on Aspergillus fumigatus, Syncephalastrum racemosum and Geotricum candidum than that of the parent CS as shown from their higher inhibition zone diameters and their lower MIC values. The swell ability of the hydrogel as well as their antimicrobial activity increased with increasing cross-linking density.

  3. Controlled degradation of hydrogels using multi-functional cross-linking molecules.

    PubMed

    Lee, Kuen Yong; Bouhadir, Kamal H; Mooney, David J

    2004-06-01

    Hydrogels, chemically cross-linked or physically entangled, have found a number of applications as novel delivery vehicles of drugs and cells. However, the narrow ranges of degradation rates and mechanical strength currently available from many hydrogels limits their applications. We have hypothesized that utilization of multi-functional cross-linking molecules to form hydrogels could provide a wider range and tighter control over the degradation rates and mechanical stiffness of gels than bi-functional cross-linking molecules. To address the possibility, we isolated alpha-L-guluronate residues of sodium alginate, and oxidized them to prepare poly(aldehyde guluronate) (PAG). Hydrogels were formed with either poly(acrylamide-co-hydrazide) (PAH) as a multi-functional cross-linking molecule or adipic acid dihydrazide (AAD) as a bi-functional cross-linking molecule. The initial properties and degradation behavior of both PAG gel types were monitored. PAG/PAH hydrogels showed higher mechanical stiffness before degradation and degraded more slowly than PAG/AAD gels, at the same concentration of cross-linking functional groups. The enhanced mechanical stiffness and prolonged degradation behavior could be attributed to the multiple attachment points of PAH in the gel at the same concentration of functional groups. This approach to regulating gel properties with multifunctional cross-linking molecules could be broadly used in hydrogels. PMID:14751730

  4. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma

    PubMed Central

    Chen, Yulong; Terajima, Masahiko; Yang, Yanan; Sun, Li; Ahn, Young-Ho; Pankova, Daniela; Puperi, Daniel S.; Watanabe, Takeshi; Kim, Min P.; Blackmon, Shanda H.; Rodriguez, Jaime; Liu, Hui; Behrens, Carmen; Wistuba, Ignacio I.; Minelli, Rosalba; Scott, Kenneth L.; Sanchez-Adams, Johannah; Guilak, Farshid; Pati, Debananda; Thilaganathan, Nishan; Burns, Alan R.; Creighton, Chad J.; Martinez, Elisabeth D.; Zal, Tomasz; Grande-Allen, K. Jane; Yamauchi, Mitsuo; Kurie, Jonathan M.

    2015-01-01

    Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde–derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde–derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma. PMID:25664850

  5. Arabinosylation Plays a Crucial Role in Extensin Cross-linking In Vitro

    PubMed Central

    Chen, Yuning; Dong, Wen; Tan, Li; Held, Michael A; Kieliszewski, Marcia J

    2015-01-01

    Extensins (EXTs) are hydroxyproline-rich glycoproteins (HRGPs) that are structural components of the plant primary cell wall. They are basic proteins and are highly glycosylated with carbohydrate accounting for >50% of their dry weight. Carbohydrate occurs as monogalactosyl serine and arabinosyl hydroxyproline, with arabinosides ranging in size from ~1 to 4 or 5 residues. Proposed functions of EXT arabinosylation include stabilizing the polyproline II helix structure and facilitating EXT cross-linking. Here, the involvement of arabinosylation in EXT cross-linking was investigated by assaying the initial cross-linking rate and degree of cross-linking of partially or fully de-arabinosylated EXTs using an in vitro cross-linking assay followed by gel permeation chromatography. Our results indicate that EXT arabinosylation is required for EXT cross-linking in vitro and the fourth arabinosyl residue in the tetraarabinoside chain, which is uniquely α-linked, may determine the initial cross-linking rate. Our results also confirm the conserved structure of the oligoarabinosides across species, indicating an evolutionary significance for EXT arabinosylation. PMID:26568683

  6. XLSearch: a Probabilistic Database Search Algorithm for Identifying Cross-Linked Peptides.

    PubMed

    Ji, Chao; Li, Sujun; Reilly, James P; Radivojac, Predrag; Tang, Haixu

    2016-06-01

    Chemical cross-linking combined with mass spectrometric analysis has become an important technique for probing protein three-dimensional structure and protein-protein interactions. A key step in this process is the accurate identification and validation of cross-linked peptides from tandem mass spectra. The identification of cross-linked peptides, however, presents challenges related to the expanded nature of the search space (all pairs of peptides in a sequence database) and the fact that some peptide-spectrum matches (PSMs) contain one correct and one incorrect peptide but often receive scores that are comparable to those in which both peptides are correctly identified. To address these problems and improve detection of cross-linked peptides, we propose a new database search algorithm, XLSearch, for identifying cross-linked peptides. Our approach is based on a data-driven scoring scheme that independently estimates the probability of correctly identifying each individual peptide in the cross-link given knowledge of the correct or incorrect identification of the other peptide. These conditional probabilities are subsequently used to estimate the joint posterior probability that both peptides are correctly identified. Using the data from two previous cross-link studies, we show the effectiveness of this scoring scheme, particularly in distinguishing between true identifications and those containing one incorrect peptide. We also provide evidence that XLSearch achieves more identifications than two alternative methods at the same false discovery rate (availability: https://github.com/COL-IU/XLSearch ). PMID:27068484

  7. Sulfhydryl site-specific cross-linking and labeling of monoclonal antibodies by a fluorescent equilibrium transfer alkylation cross-link reagent.

    PubMed

    del Rosario, R B; Wahl, R L; Brocchini, S J; Lawton, R G; Smith, R H

    1990-01-01

    The site-specific intramolecular cross-linking of sulfhydryls of monoclonal antibodies via a new class of "equilibrium transfer alkylation cross-link (ETAC) reagents" is described. Following complete or partial reduction of interchain disulfides with dithiothreitol (DTT), two murine IgG2a monoclonal antibodies, 225.28S and 5G6.4, were reacted with alpha,alpha-bis[(p-tolylsulfonyl)methyl]-m-aminoacetophenone (ETAC 1a) and a fluorescent conjugated derivative, sulforhodamine B m-(alpha,alpha-bis(p-tolysulfonylmethyl)acetyl)anilide derivative (ETAC 1b). Reducing SDS-polyacrylamide gel electrophoresis analysis of the products from 1b indicated the formation of S-ETAC-S interchain heavy and light chain cross-links (approximately 23-34% overall yield by video-camera densitometry) which do not undergo disulfide-thiol exchange with DTT at 100 degrees C. In contrast, no interchain cross-links were observed upon reaction of unreduced or reduced antibody wherein the thiols have been previously alkylated with iodoacetamide. These results indicated site-specific cross-linking of interchain sulfhydryls and places their distance within 3-4 A. Flow cytometry of the ETAC 1b 5G6.4 cross-linked product using 77 IP3 human ovarian carcinoma target cells showed positive binding and retention of immunoreactivity. The in vivo biodistributions of 131I-labeled intact 5G6.4 and 125I-labeled reduced 5G6.4 + ETAC 1a product in rats were essentially identical over a period of 24 h. The present study illustrates the potential applications of labelable ETAC reagents as thiol-specific probes for a wide variety of immunological studies. PMID:2128870

  8. Riboflavin/UVA Collagen Cross-Linking-Induced Changes in Normal and Keratoconus Corneal Stroma

    PubMed Central

    Hayes, Sally; Boote, Craig; Kamma-Lorger, Christina S.; Rajan, Madhavan S.; Harris, Jonathan; Dooley, Erin; Hawksworth, Nicholas; Hiller, Jennifer; Terill, Nick J.; Hafezi, Farhad; Brahma, Arun K.; Quantock, Andrew J.; Meek, Keith M.

    2011-01-01

    Purpose To determine the effect of Ultraviolet-A collagen cross-linking with hypo-osmolar and iso-osmolar riboflavin solutions on stromal collagen ultrastructure in normal and keratoconus ex vivo human corneas. Methods Using small-angle X-ray scattering, measurements of collagen D-periodicity, fibril diameter and interfibrillar spacing were made at 1 mm intervals across six normal post-mortem corneas (two above physiological hydration (swollen) and four below (unswollen)) and two post-transplant keratoconus corneal buttons (one swollen; one unswollen), before and after hypo-osmolar cross-linking. The same parameters were measured in three other unswollen normal corneas before and after iso-osmolar cross-linking and in three pairs of swollen normal corneas, in which only the left was cross-linked (with iso-osmolar riboflavin). Results Hypo-osmolar cross-linking resulted in an increase in corneal hydration in all corneas. In the keratoconus corneas and unswollen normal corneas, this was accompanied by an increase in collagen interfibrillar spacing (p<0.001); an increase in fibril diameter was also seen in two out of four unswollen normal corneas and one unswollen keratoconus cornea (p<0.001). Iso-osmolar cross-linking resulted in a decrease in tissue hydration in the swollen normal corneas only. Although there was no consistent treatment-induced change in hydration in the unswollen normal samples, iso-osmolar cross-linking of these corneas did result in a compaction of collagen fibrils and a reduced fibril diameter (p<0.001); these changes were not seen in the swollen normal corneas. Collagen D-periodicity was not affected by either treatment. Conclusion The observed structural changes following Ultraviolet-A cross-linking with hypo-osmolar or iso-osmolar riboflavin solutions are more likely a consequence of treatment-induced changes in tissue hydration rather than cross-linking. PMID:21850225

  9. Cross-reactivity of antibodies to actin- depolymerizing factor/cofilin family proteins and identification of the major epitope recognized by a mammalian actin-depolymerizing factor/cofilin antibody.

    PubMed

    Shaw, Alisa E; Minamide, Laurie S; Bill, Christine L; Funk, Janel D; Maiti, Sankar; Bamburg, James R

    2004-08-01

    Members of the actin-depolymerizing factor (ADF)/cofilin family of proteins are expressed in all eukaryotic cells. In higher vertebrates, cells often express as many as three different ADF/cofilin genes and each of these proteins may be phosphorylated on serine 3, giving rise to up to six different species. Also, many avian, amphibian, and invertebrate systems have been useful in studying different aspects of ADF/cofilin function. Antibodies have been prepared against different members of the ADF/cofilin family, but no systematic examination of their cross-reactivity has been reported. Although ADF and cofilins within a single vertebrate species have about a 70% sequence homology, antibodies often differentiate between these proteins. Here, Western blotting was used with chemiluminescence substrates of different sensitivities to determine the relative immunoreactivities of different polyclonal rabbit antibodies and a mouse monoclonal antibody to purified ADF/cofilins from plants, protists, nematodes, insects, echinoderms, birds, and mammals. From immunocross-reactivities and sequence alignments, the principal epitope in mammalian ADF and cofilin-1 recognized by an antibody raised against avian ADF was identified. The specificity of an antibody to the phosphopeptide epitope of metazoan ADF/cofilins was confirmed by two-dimensional (2-D) immunoblot analysis. Futhermore, this bank of antibodies was used to identify by Western blotting a putative member of the ADF/cofilin family in the sea slug, Aplysia californica.

  10. Chitosan-cross-linked osmium polymer composites as an efficient platform for electrochemical biosensors.

    PubMed

    Jirimali, Harishchandra Digambar; Nagarale, Rajaram Krishna; Lee, Jong Myung; Saravanakumar, Durai; Shin, Woonsup

    2013-07-22

    A new family of chitosan-cross-linked osmium polymer composites was prepared and its electrochemical properties were examined. The composites were prepared by quaternization of the poly(4-vinylpyridine) osmium bipyridyl polymer (PVP-Os) which was then cross-linked with chitosan, yielding PVP-Os/chitosan. Films made of the composites showed improved mass and electron transport owing to the porous and hydrophilic structure which is derived from the cross-links between the Os polymer and chitosan. The rate for glucose oxidation was enhanced four times when glucose oxidase (GOx) was immobilized on PVP-Os/chitosan compared immobilization on PVP-Os.

  11. Actinic Keratoses

    PubMed Central

    Brown, Marc D.

    2009-01-01

    Actinic keratoses are common intra-epidermal neoplasms that lie on a continuum with squamous cell carcinoma. Tightly linked to ultraviolet irradiation, they occur in areas of chronic sun exposure, and early treatment of these lesions may prevent their progression to invasive disease. A large variety of effective treatment modalities exist, and the optimal therapeutic choice is dependent on a variety of patient- and physician-associated variables. Many established and more recent approaches are discussed in this review with a focus on efficacy and administration techniques. Several previously experimental options, such as imiquimod and photodynamic therapy, have become incorporated as first-line options for the treatment of actinic keratoses, while combination treatment strategies have been gaining in popularity. The goal of all therapies is to ultimately limit the morbidity and mortality of squamous cell carcinoma. (J Clin Aesthetic Dermatol. 2009;2(7):43–48.) PMID:20729970

  12. Fascin regulates nuclear actin during Drosophila oogenesis.

    PubMed

    Kelpsch, Daniel J; Groen, Christopher M; Fagan, Tiffany N; Sudhir, Sweta; Tootle, Tina L

    2016-10-01

    Drosophila oogenesis provides a developmental system with which to study nuclear actin. During Stages 5-9, nuclear actin levels are high in the oocyte and exhibit variation within the nurse cells. Cofilin and Profilin, which regulate the nuclear import and export of actin, also localize to the nuclei. Expression of GFP-tagged Actin results in nuclear actin rod formation. These findings indicate that nuclear actin must be tightly regulated during oogenesis. One factor mediating this regulation is Fascin. Overexpression of Fascin enhances nuclear GFP-Actin rod formation, and Fascin colocalizes with the rods. Loss of Fascin reduces, whereas overexpression of Fascin increases, the frequency of nurse cells with high levels of nuclear actin, but neither alters the overall nuclear level of actin within the ovary. These data suggest that Fascin regulates the ability of specific cells to accumulate nuclear actin. Evidence indicates that Fascin positively regulates nuclear actin through Cofilin. Loss of Fascin results in decreased nuclear Cofilin. In addition, Fascin and Cofilin genetically interact, as double heterozygotes exhibit a reduction in the number of nurse cells with high nuclear actin levels. These findings are likely applicable beyond Drosophila follicle development, as the localization and functions of Fascin and the mechanisms regulating nuclear actin are widely conserved.

  13. Fascin regulates nuclear actin during Drosophila oogenesis.

    PubMed

    Kelpsch, Daniel J; Groen, Christopher M; Fagan, Tiffany N; Sudhir, Sweta; Tootle, Tina L

    2016-10-01

    Drosophila oogenesis provides a developmental system with which to study nuclear actin. During Stages 5-9, nuclear actin levels are high in the oocyte and exhibit variation within the nurse cells. Cofilin and Profilin, which regulate the nuclear import and export of actin, also localize to the nuclei. Expression of GFP-tagged Actin results in nuclear actin rod formation. These findings indicate that nuclear actin must be tightly regulated during oogenesis. One factor mediating this regulation is Fascin. Overexpression of Fascin enhances nuclear GFP-Actin rod formation, and Fascin colocalizes with the rods. Loss of Fascin reduces, whereas overexpression of Fascin increases, the frequency of nurse cells with high levels of nuclear actin, but neither alters the overall nuclear level of actin within the ovary. These data suggest that Fascin regulates the ability of specific cells to accumulate nuclear actin. Evidence indicates that Fascin positively regulates nuclear actin through Cofilin. Loss of Fascin results in decreased nuclear Cofilin. In addition, Fascin and Cofilin genetically interact, as double heterozygotes exhibit a reduction in the number of nurse cells with high nuclear actin levels. These findings are likely applicable beyond Drosophila follicle development, as the localization and functions of Fascin and the mechanisms regulating nuclear actin are widely conserved. PMID:27535426

  14. Assembly Kinetics Determine the Architecture of α-actinin Crosslinked F-actin Networks

    PubMed Central

    Falzone, Tobias T.; Lenz, Martin; Kovar, David R.; Gardel, Margaret L.

    2013-01-01

    The actin cytoskeleton is organized into diverse meshworks and bundles that support many aspects of cell physiology. Understanding the self-assembly of these actin-based structures is essential for developing predictive models of cytoskeletal organization. Here we show that the competing kinetics of bundle formation with the onset of dynamic arrest arising from filament entanglements and cross-linking determine the architecture of reconstituted actin networks formed with α-actinin cross-links. Cross-link mediated bundle formation only occurs in dilute solutions of highly mobile actin filaments. As actin polymerization proceeds, filament mobility and bundle formation are arrested concomitantly. By controlling the onset of dynamic arrest, perturbations to actin assembly kinetics dramatically alter the architecture of biochemically identical samples. Thus, the morphology of reconstituted F-actin networks is a kinetically determined structure similar to those formed by physical gels and glasses. These results establish mechanisms controlling the structure and mechanics in diverse semi-flexible biopolymer networks. PMID:22643888

  15. Tissue-specific effects of aldose reductase inhibition on fluorescence and cross-linking of extracellular matrix in chronic galactosemia. Relationship to pentosidine cross-links.

    PubMed

    Richard, S; Tamas, C; Sell, D R; Monnier, V M

    1991-08-01

    Chronic experimental hyperglycemia mediated by galactose has been shown to induce browning and cross-linking of rat tail tendon collagen that could be duplicated in vitro by nonenzymatic galactosylation. To investigate the nature of these changes, Sprague-Dawley rats were placed on a 33% galactose diet without and with sorbinil for 6 and 12 mo. Collagen-linked fluorescence and pentosidine cross-links increased with age and galactosemia in tail tendons (P less than 0.001) and skin but were essentially unresponsive to aldose reductase inhibition (ARI). In contrast, tendon breaking time in urea, a likely parameter of cross-linking, was markedly improved (P less than 0.001) by ARI. Fluorescence that was inhibited by sorbinil treatment was increased in pepsin and proteinase K digest of aortic tissue from galactosemic rats (P less than 0.001), but impaired enzymatic digestibility was not observed. Systolic blood pressure as potential consequence of aortic stiffening was not increased in galactosemia. These data suggest that fluorescence in skin and tendon might be in part due to advanced glycosylation and pentosidine formation because these were not decreased by ARI. However, they also suggest that nonfluorescent cross-links may also be forming because, in contrast to fluorescence, tail tendon breaking time was partly corrected by ARI. Thus, it appears that extracellular matrix changes in chronic galactosemia are complex, being partly attributable to advanced glycosylation and partly to polyol-pathway activation.

  16. Cross-Linked Conjugated Polymer Fibrils: Robust Nanowires from Functional Polythiophene Diblock Copolymers

    SciTech Connect

    Hammer, Brenton A. G.; Bokel, Felicia A.; Hayward, Ryan C.; Emrick, Todd

    2011-09-27

    A series of poly(3-hexyl thiophene) (P3HT)-based diblock copolymers were prepared and examined in solution for their assembly into fibrils, and post-assembly cross-linking into robust nanowire structures. P3HT-b-poly(3-methanol thiophene) (P3MT), and P3HT-b-poly(3-aminopropyloxymethyl thiophene) (P3AmT) diblock copolymers were synthesized using Grignard metathesis (GRIM) polymerization. Fibrils formed from solution assembly of these copolymers are thus decorated with hydroxyl and amine functionality, and cross-linking is achieved by reaction of diisocyanates with the hydroxyl and amine groups. A variety of cross-linked structures, characterized by transmission electron microscopy (TEM), were produced by this method, including dense fibrillar sheets, fibril bundles, or predominately individual fibrils, depending on the chosen reaction conditions. In solution, the cross-linked fibrils maintained their characteristic vibronic structure in solvents that would normally disrupt (dissolve) the structures.

  17. Determination of the cross-linking effect of adipic acid dihydrazide on glycoconjugate preparation.

    PubMed

    Bystrický, S; Machová, E; Malovíková, A; Kogan, G

    1999-11-01

    The cross-linking effect of adipic acid dihydrazide (ADH) on polysaccharide derivatization can be evaluated by applying combination of elemental analysis and colorimetric assay. Elemental analysis is used for estimation of total ADH bound to polysaccharide and a colorimetric trinitrobenzene sulfonic acid assay is used to determine the part of ADH not involved in cross-linking. The difference of values expressed as molar ratios (per repeating unit) provides information on the amount of ADH involved in cross-linking the polysaccharides. Carboxymethylated polysaccharides were derivatized with different amounts of ADH to test the procedure. Analytical results showed that excess of ADH in the reaction only slightly decreased the cross-linking. The number of carboxyl groups remained unmodified even at high excess of ADH and high concentration of carbodiimide (EDC) coupling reagent. PMID:11003553

  18. Collagen type IX from human cartilage: a structural profile of intermolecular cross-linking sites.

    PubMed Central

    Diab, M; Wu, J J; Eyre, D R

    1996-01-01

    Type IX collagen, a quantitatively minor collagenous component of cartilage, is known to be associated with and covalently cross-linked to type II collagen fibrils in chick and bovine cartilage. Type IX collagen molecules have also been shown to form covalent cross-links with each other in bovine cartilage. In the present study we demonstrate by structural analysis and location of cross-linking sites that, in human cartilage, type IX collagen is covalently cross-linked to type II collagen and to other molecules of type IX collagen. We also present evidence that, if the proteoglycan form of type IX collagen is present in human cartilage, it can only be a minor component of the matrix, similar to findings with bovine cartilage. PMID:8660302

  19. Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer

    PubMed Central

    Udum, Yasemin; Denk, Patrick; Adam, Getachew; Apaydin, Dogukan H.; Nevosad, Andreas; Teichert, Christian; S. White, Matthew.; S. Sariciftci, Niyazi.; Scharber, Markus C.

    2014-01-01

    We have developed a hole-blocking layer for bulk-heterojunction solar cells based on cross-linked polyethylenimine (PEI). We tested five different ether-based cross-linkers and found that all of them give comparable solar cell efficiencies. The initial idea that a cross-linked layer is more solvent resistant compared to a pristine PEI layer could not be confirmed. With and without cross-linking, the PEI layer sticks very well to the surface of the indium–tin–oxide electrode and cannot be removed by solvents used to process PEI or common organic semiconductors. The cross-linked PEI hole-blocking layer functions for multiple donor–acceptor blends. We found that using cross-linkers improves the reproducibility of the device fabrication process. PMID:24817837

  20. Vapor deposition of cross-linked fluoropolymer barrier coatings onto pre-assembled microfluidic devices.

    PubMed

    Riche, Carson T; Marin, Brandon C; Malmstadt, Noah; Gupta, Malancha

    2011-09-21

    The interior surfaces of pre-assembled poly(dimethylsiloxane) (PDMS) microfluidic devices were modified with a cross-linked fluoropolymer barrier coating that significantly increased the chemical compatibility of the devices. PMID:21850298

  1. Activation energies control the macroscopic properties of physically cross-linked materials.

    PubMed

    Appel, Eric A; Forster, Rebecca A; Koutsioubas, Alexandros; Toprakcioglu, Chris; Scherman, Oren A

    2014-09-15

    Here we show the preparation of a series of water-based physically cross-linked polymeric materials utilizing cucurbit[8]uril (CB[8]) ternary complexes displaying a range of binding, and therefore cross-linking, dynamics. We determined that the mechanical strength of these materials is correlated directly with a high energetic barrier for the dissociation of the CB[8] ternary complex cross-links, whereas facile and rapid self-healing requires a low energetic barrier to ternary complex association. The versatile CB[8] ternary complex has, therefore, proven to be a powerful asset for improving our understanding of challenging property-structure relationships in supramolecular systems and their associated influence on the bulk behavior of dynamically cross-linked materials.

  2. Effect of cross-link density on carbon dioxide separation in polydimethylsiloxane-norbornene membranes

    DOE PAGES

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; Gmernicki, Kevin; Cheng, Shiwang; Fan, Fei; Johnson, J. Casey; Hong, Eunice; Mahurin, Shannon; Jiang, De -en; et al

    2015-01-01

    The development of high performance materials for CO2 separation and capture will significantly contribute to a solution for climate change. In this work, (bicycloheptenyl) ethyl terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability ~ 6800 Barrer and CO2/N2 selectivity ~ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in-situ cross-linking method of the difunctional PDMS macromonomers, which provides lightly cross-linked membranes.more » By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy and gas solubility measurements, we have elucidated the key parameters necessary for achieving their excellent performance.« less

  3. A Review of Collagen Cross-Linking in Cornea and Sclera

    PubMed Central

    Zhang, Xiao; Tao, Xiang-chen; Zhang, Jian; Li, Zhi-wei; Xu, Yan-yun; Wang, Yu-meng; Zhang, Chun-xiao; Mu, Guo-ying

    2015-01-01

    Riboflavin/UVA cross-linking is a technique introduced in the past decades for the treatment of keratoconus, keratectasia, and infectious keratitis. Its efficacy and safety have been investigated with clinical and laboratory studies since its first clinical application by Wollensak for the treatment of keratoconus. Although its complications are encountered during clinical practice, such as infection inducing risk, minimal invasion merits a further investigation on its future application in clinical practice. Recently, collagen cross-linking in sclera shows a promising prospect. In present study, we summarized the representative studies describing the clinical and laboratory application of collagen cross-linking published in past decades and provided our opinion on the positive and negative results of cross-linking in the treatment of ophthalmic disorders. PMID:25922758

  4. In Vivo Oxidative Stability Changes of Highly Cross-Linked Polyethylene Bearings: An Ex Vivo Investigation.

    PubMed

    Rowell, Shannon L; Reyes, Christopher R; Malchau, Henrik; Muratoglu, Orhun K

    2015-10-01

    The development of highly cross-linked UHMWPEs focused on stabilizing radiation-induced free radicals as the sole precursor to oxidative degradation. However, secondary in vivo oxidation mechanisms have been discovered. After a preliminary post-operative analysis, we subjected highly cross-linked retrievals with 1-4 years in vivo durations and never-implanted controls to accelerated aging to predict the extent to which their oxidative stability was compromised in vivo. Lipid absorption, oxidation, and hydroperoxides were measured using infrared spectroscopy. Gravimetric swelling was used to measure cross-link density. After aging, all retrievals, except vitamin E-stabilized components, regardless of initial lipid levels or oxidation, showed significant oxidative degradation, demonstrated by subsurface oxidative peaks, increased hydroperoxides and decreased cross-link density, compared to their post-operative material properties and never-implanted counterparts, confirming oxidative stability changes.

  5. Cross-linking proteins with bimetallic tetracarboxylate compounds of transition metals

    DOEpatents

    Kostic, N.M.; Chen, J.

    1991-03-05

    Stable cross-linked complexes of transition-metal tetracarboxylates and proteins are formed. The preferred transition-metal is rhodium. The protein may be collagen or an enzyme such as a proteolytic enzyme. No Drawings

  6. Cross-linking proteins with bimetallic tetracarboxylate compounds of transition metals

    DOEpatents

    Kostic, Nenad M.; Chen, Jian

    1991-03-05

    Stable cross-linked complexes of transition-metal tetracarboxylates and proteins are formed. The preferred transition-metal is rhodium. The protein may be collagen or an enzyme such as a proteolytic enzyme.

  7. Effect of cross-link density on carbon dioxide separation in polydimethylsiloxane-norbornene membranes

    SciTech Connect

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; Gmernicki, Kevin; Cheng, Shiwang; Fan, Fei; Johnson, J. Casey; Hong, Eunice; Mahurin, Shannon; Jiang, De -en; Long, Brian; Mays, Jimmy; Sokolov, Alexei; Saito, Tomonori

    2015-01-01

    The development of high performance materials for CO2 separation and capture will significantly contribute to a solution for climate change. In this work, (bicycloheptenyl) ethyl terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability ~ 6800 Barrer and CO2/N2 selectivity ~ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in-situ cross-linking method of the difunctional PDMS macromonomers, which provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy and gas solubility measurements, we have elucidated the key parameters necessary for achieving their excellent performance.

  8. Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer.

    PubMed

    Udum, Yasemin; Denk, Patrick; Adam, Getachew; Apaydin, Dogukan H; Nevosad, Andreas; Teichert, Christian; S White, Matthew; S Sariciftci, Niyazi; Scharber, Markus C

    2014-05-01

    We have developed a hole-blocking layer for bulk-heterojunction solar cells based on cross-linked polyethylenimine (PEI). We tested five different ether-based cross-linkers and found that all of them give comparable solar cell efficiencies. The initial idea that a cross-linked layer is more solvent resistant compared to a pristine PEI layer could not be confirmed. With and without cross-linking, the PEI layer sticks very well to the surface of the indium-tin-oxide electrode and cannot be removed by solvents used to process PEI or common organic semiconductors. The cross-linked PEI hole-blocking layer functions for multiple donor-acceptor blends. We found that using cross-linkers improves the reproducibility of the device fabrication process. PMID:24817837

  9. Effect of Cross-Link Density on Carbon Dioxide Separation in Polydimethylsiloxane-Norbornene Membranes.

    PubMed

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; Gmernicki, Kevin; Cheng, Shiwang; Fan, Fei; Johnson, J Casey; Hong, Eunice; Mahurin, Shannon; Jiang, De-en; Long, Brian; Mays, Jimmy; Sokolov, Alexei; Saito, Tomonori

    2015-11-01

    The development of high-performance materials for carbon dioxide separation and capture will significantly contribute to a solution for climate change. Herein, (bicycloheptenyl)ethyl-terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability≈6800 Barrer; CO2 /N2 selectivity≈14) is very promising for practical applications. The key to achieving this high performance is the use of an in situ cross-linking method for difunctional PDMS macromonomers, which provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy, and gas solubility measurements, key parameters necessary for achieving excellent performance have been elucidated.

  10. Biological relevance and consequences of chemical- or metal-induced DNA cross-linking

    SciTech Connect

    Paustenbach, D.J.; Finley, B.L.

    1996-03-01

    A vast number of chemicals are known to induce mutagenesis and/or carcinogenesis in mammals. Although disruption of cellular nuclear material resulting ultimately in mutagenesis/carcinogenesis can be accomplished by various mechanisms, the search for biomarkers of chemical-induced toxicity continues. This review focuses on the ability of certain metals or chemicals to bind to DNA in a cross-link fashion in whole animal as well as under in vitro conditions. The methodologies currently used to determine DNA cross-linking are described. The biological relevance of the presence of chemical- or metal-induced DNA cross-linking as a measure of carcinogenesis in humans is still under debate, as there is no clear correlation between the disease and the DNA cross-link reaction. 62 refs., 3 tabs.

  11. Enhanced mechanical properties and blood compatibility of PDMS/liquid crystal cross-linked membrane materials.

    PubMed

    Rao, Huaxin; Zhang, Ziyong; Liu, Fanna

    2013-04-01

    A novel polydimethylsiloxane/liquid crystal cross-linked membrane (PDMS/LC) was prepared by using PDMS containing vinyl groups and LCs containing unsaturated linkages as matrix materials. Mechanical properties, liquid crystalline performance and blood compatibility of the PDMS/LC cross-linked membrane containing different LC contents and LC groups were investigated, respectively. The results showed that mechanical properties of the membrane increased more significantly than those of pure PDMS membranes. The PDMS/LC cross-linked membrane also possessed better membrane-forming ability, lower hemolysis rate, less platelets adhesion and more favorable anti-coagulant properties. Additionally, mechanical properties and blood compatibility of the membrane can be enhanced simultaneously and obviously due to the introduction of the cholesteric liquid crystals and the application of the preferred cross-linked reaction without byproducts.

  12. Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer.

    PubMed

    Udum, Yasemin; Denk, Patrick; Adam, Getachew; Apaydin, Dogukan H; Nevosad, Andreas; Teichert, Christian; S White, Matthew; S Sariciftci, Niyazi; Scharber, Markus C

    2014-05-01

    We have developed a hole-blocking layer for bulk-heterojunction solar cells based on cross-linked polyethylenimine (PEI). We tested five different ether-based cross-linkers and found that all of them give comparable solar cell efficiencies. The initial idea that a cross-linked layer is more solvent resistant compared to a pristine PEI layer could not be confirmed. With and without cross-linking, the PEI layer sticks very well to the surface of the indium-tin-oxide electrode and cannot be removed by solvents used to process PEI or common organic semiconductors. The cross-linked PEI hole-blocking layer functions for multiple donor-acceptor blends. We found that using cross-linkers improves the reproducibility of the device fabrication process.

  13. Streamlined discovery of cross-linked chromatin complexes and associated histone modifications by mass spectrometry

    PubMed Central

    Zee, Barry M.; Alekseyenko, Artyom A.; McElroy, Kyle A.; Kuroda, Mitzi I.

    2016-01-01

    Posttranslational modifications (PTMs) are key contributors to chromatin function. The ability to comprehensively link specific histone PTMs with specific chromatin factors would be an important advance in understanding the functions and genomic targeting mechanisms of those factors. We recently introduced a cross-linked affinity technique, BioTAP-XL, to identify chromatin-bound protein interactions that can be difficult to capture with native affinity techniques. However, BioTAP-XL was not strictly compatible with similarly comprehensive analyses of associated histone PTMs. Here we advance BioTAP-XL by demonstrating the ability to quantify histone PTMs linked to specific chromatin factors in parallel with the ability to identify nonhistone binding partners. Furthermore we demonstrate that the initially published quantity of starting material can be scaled down orders of magnitude without loss in proteomic sensitivity. We also integrate hydrophilic interaction chromatography to mitigate detergent carryover and improve liquid chromatography-mass spectrometric performance. In summary, we greatly extend the practicality of BioTAP-XL to enable comprehensive identification of protein complexes and their local chromatin environment. PMID:26831069

  14. DNA-protein cross-links produced by various chemicals in cultured human lymphoma cells.

    PubMed

    Costa, M; Zhitkovich, A; Harris, M; Paustenbach, D; Gargas, M

    1997-04-11

    Chemicals such as cis-platinum, formaldehyde, chromate, copper, and certain arsenic compounds have been shown to produce DNA-protein cross-links in human in vitro cell systems at high doses, such as those in the cytotoxic range. Thus far there have only been a limited number of other chemicals evaluated for their ability to produce cross-links. The purpose of the work described here was to evaluate whether select industrial chemicals can form DNA-protein cross-links in human cells in vitro. We evaluated acetaldehyde, acrolein, diepoxybutane, paraformaldehyde, 2-furaldehyde, propionaldehyde, chloroacetaldehyde, sodium arsenite, and a deodorant tablet [Mega Blue; hazardous component listed as tris(hydroxymethyl)nitromethane]. Short- and long-term cytotoxicity was evaluated and used to select appropriate doses for in vitro testing. DNA-protein cross-linking was evaluated at no fewer than three doses and two cell lysate washing temperatures (45 and 65 degrees C) in Epstein-Barr virus (EBV) human Burkitt's lymphoma cells. The two washing temperatures were used to assess the heat stability of the DNA-protein cross-link, 2-Furaldehyde, acetaldehyde, and propionaldehyde produced statistically significant increases in DNA-protein cross-links at washing temperatures of 45 degrees C, but not 65 degrees C, and at or above concentrations of 5, 17.5, and 75 mM, respectively. Acrolein, diepoxybutane, paraformaldehyde, and Mega Blue produced statistically significant increases in DNA-protein cross-links washed at 45 and 65 degrees C at or above concentrations of 0.15 mM, 12.5 mM, 0.003%, and 0.1%, respectively. Sodium arsenite and chloroacetaldehyde did not produce significantly increased DNA-protein cross-links at either temperature nor at any dose tested. Excluding paraformaldehyde and 2-furaldehyde treatments, significant increases in DNA-protein cross-links were observed only at doses that resulted in complete cell death within 4 d following dosing. This work demonstrates that

  15. Intra-molecular cross-linking of acidic residues for protein structure studies.

    SciTech Connect

    Kruppa, Gary Hermann; Young, Malin M.; Novak, Petr; Schoeniger, Joseph S.

    2005-03-01

    Intra-molecular cross-linking has been suggested as a method of obtaining distance constraints that would be useful in developing structural models of proteins. Recent work published on intra-molecular cross-linking for protein structural studies has employed commercially available primary amine selective reagents that can cross-link lysine residues to other lysine residues or the amino terminus. Previous work using these cross-linkers has shown that for several proteins of known structure, the number of cross-links that can be obtained experimentally may be small compared to what would be expected from the known structure, due to the relative reactivity, distribution, and solvent accessibility of the lysines in the protein sequence. To overcome these limitations we have investigated the use of cross-linking reagents that can react with other reactive sidechains in proteins. We used 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) to activate the carboxylic acid containing residues, aspartic acid (D), glutamic acid (E), and the carboxy terminus (O), for cross-linking reactions. Once activated, the DEO sidechains can react to form 'zero-length' cross-links with nearby primary amine containing resides, lysines (K) and the amino terminus (X), via the formation of a new amide bond. We also show that the EDC-activated DEO sidechains can be cross-linked to each other using dihydrazides, two hydrazide moieties connected by an alkyl cross-linker ann of variable length. Using these reagents, we have found three new 'zero-length' cross-links in ubiquitin consistent with its known structure (M1-E16, M1-E18, and K63-E64). Using the dihydrazide cross-linkers, we have identified 2 new cross-links (D21-D32 and E24-D32) unambiguously. Using a library of dihydrazide cross-linkers with varying arm length, we have shown that there is a minimum arm length required for the DEO-DEO cross-links of 5.8 angstroms. These results show that additional structural information

  16. Helical buckling of actin inside filopodia generates traction

    PubMed Central

    Leijnse, Natascha; Oddershede, Lene B.; Bendix, Poul M.

    2015-01-01

    Cells can interact with their surroundings via filopodia, which are membrane protrusions that extend beyond the cell body. Filopodia are essential during dynamic cellular processes like motility, invasion, and cell–cell communication. Filopodia contain cross-linked actin filaments, attached to the surrounding cell membrane via protein linkers such as integrins. These actin filaments are thought to play a pivotal role in force transduction, bending, and rotation. We investigated whether, and how, actin within filopodia is responsible for filopodia dynamics by conducting simultaneous force spectroscopy and confocal imaging of F-actin in membrane protrusions. The actin shaft was observed to periodically undergo helical coiling and rotational motion, which occurred simultaneously with retrograde movement of actin inside the filopodium. The cells were found to retract beads attached to the filopodial tip, and retraction was found to correlate with rotation and coiling of the actin shaft. These results suggest a previously unidentified mechanism by which a cell can use rotation of the filopodial actin shaft to induce coiling and hence axial shortening of the filopodial actin bundle. PMID:25535347

  17. False discovery rate estimation for cross-linked peptides identified by mass spectrometry.

    PubMed

    Walzthoeni, Thomas; Claassen, Manfred; Leitner, Alexander; Herzog, Franz; Bohn, Stefan; Förster, Friedrich; Beck, Martin; Aebersold, Ruedi

    2012-09-01

    The mass spectrometric identification of chemically cross-linked peptides (CXMS) specifies spatial restraints of protein complexes; these values complement data obtained from common structure-determination techniques. Generic methods for determining false discovery rates of cross-linked peptide assignments are currently lacking, thus making data sets from CXMS studies inherently incomparable. Here we describe an automated target-decoy strategy and the software tool xProphet, which solve this problem for large multicomponent protein complexes.

  18. Porphyrin-induced photodynamic cross-linking of hepatic heme-binding proteins.

    PubMed

    Vincent, S H; Holeman, B; Cully, B C; Muller-Eberhard, U

    1986-01-27

    Three types of hepatic proteins, a heme-binding Z protein, a mixture of the glutathione S-transferases and a cytochrome P450 isozyme, were shown to be susceptible to photodynamic cross-linking and loss in antigenicity by naturally occurring porphyrins. At 50 microM, uroporphyrin caused the most and protoporphyrin the least photodecomposition. Hemopexin, a specific serum heme carrier, was photodecomposed but no cross-linking was detected. Heme and scavengers of singlet oxygen partially prevented protein photodecomposition.

  19. Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia.

    PubMed

    Mižíková, Ivana; Ruiz-Camp, Jordi; Steenbock, Heiko; Madurga, Alicia; Vadász, István; Herold, Susanne; Mayer, Konstantin; Seeger, Werner; Brinckmann, Jürgen; Morty, Rory E

    2015-06-01

    Maturation of the lung extracellular matrix (ECM) plays an important role in the formation of alveolar gas exchange units. A key step in ECM maturation is cross-linking of collagen and elastin, which imparts stability and functionality to the ECM. During aberrant late lung development in bronchopulmonary dysplasia (BPD) patients and animal models of BPD, alveolarization is blocked, and the function of ECM cross-linking enzymes is deregulated, suggesting that perturbed ECM cross-linking may impact alveolarization. In a hyperoxia (85% O2)-based mouse model of BPD, blunted alveolarization was accompanied by alterations to lung collagen and elastin levels and cross-linking. Total collagen levels were increased (by 63%). The abundance of dihydroxylysinonorleucine collagen cross-links and the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio were increased by 11 and 18%, respectively, suggestive of a profibrotic state. In contrast, insoluble elastin levels and the abundance of the elastin cross-links desmosine and isodesmosine in insoluble elastin were decreased by 35, 30, and 21%, respectively. The lung collagen-to-elastin ratio was threefold increased. Treatment of hyperoxia-exposed newborn mice with the lysyl oxidase inhibitor β-aminopropionitrile partially restored normal collagen levels, normalized the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio, partially normalized desmosine and isodesmosine cross-links in insoluble elastin, and partially restored elastin foci structure in the developing septa. However, β-aminopropionitrile administration concomitant with hyperoxia exposure did not improve alveolarization, evident from unchanged alveolar surface area and alveoli number, and worsened septal thickening (increased by 12%). These data demonstrate that collagen and elastin cross-linking are perturbed during the arrested alveolarization of developing mouse lungs exposed to hyperoxia.

  20. Computational exploration of polymer nanocomposite mechanical property modification via cross-linking topology

    SciTech Connect

    Lacevic, N; Gee, R; Saab, A; Maxwell, R

    2008-04-24

    Molecular dynamics simulations have been performed in order to study the effects of nanoscale filler cross-linking topologies and loading levels on the mechanical properties of a model elastomeric nanocomposite. The model system considered here is constructed from octa-functional polyhedral oligomeric silsesquioxane (POSS) dispersed in a poly(dimethylsiloxane) (PDMS) matrix. Shear moduli, G, have been computed for pure and for filled and unfilled PDMS as a function of cross-linking density, POSS fill loading level, and polymer network topology. The results reported here show that G increases as the cross-linking (covalent bonds formed between the POSS and the PDMS network) density increases. Further, G is found to have a strong dependence on cross-linking topology. The increase in shear modulus, G, for POSS filled PDMS is significantly higher than that for unfilled PDMS cross-linked with standard molecular species, suggesting an enhanced reinforcement mechanism for POSS. In contrast, in blended systems (POSS/PDMS mixture with no cross-linking) G was not observed to significantly increase with POSS loading. Finally, we find intriguing differences in the structural arrangement of bond strains between the cross-linked and the blended systems. In the unfilled PDMS the distribution of highly strained bonds appears to be random, while in the POSS filled system, the strained bonds form a net-like distribution that spans the network. Such a distribution may form a structural network 'holding' the composite together and resulting in increases in G compared to an unfilled, cross-linked system. These results are of importance for engineering of new POSS-based multifunctional materials with tailor-made mechanical properties.

  1. Computational exploration of polymer nanocomposite mechanical property modification via cross-linking topology.

    PubMed

    Lacevic, Naida; Gee, Richard H; Saab, Andrew; Maxwell, Robert

    2008-09-28

    Molecular dynamics simulations have been performed in order to study the effects of nanoscale filler cross-linking topologies and loading levels on the mechanical properties of a model elastomeric nanocomposite. The model system considered here is constructed from octafunctional polyhedral oligomeric silsesquioxane (POSS) dispersed in a poly(dimethylsiloxane) (PDMS) matrix. Shear moduli, G, have been computed for pure and for filled and unfilled PDMS as a function of cross-linking density, POSS fill loading level, and polymer network topology. The results reported here show that G increases as the cross-linking (covalent bonds formed between the POSS and the PDMS network) density increases. Further, G is found to have a strong dependence on cross-linking topology. The increase in shear modulus, G, for POSS filled PDMS is significantly higher than that for unfilled PDMS cross-linked with standard molecular species, suggesting an enhanced reinforcement mechanism for POSS. In contrast, in blended systems (POSS/PDMS mixture with no cross-linking) G was not observed to significantly increase with POSS loading. Finally, we find intriguing differences in the structural arrangement of bond strains between the cross-linked and the blended systems. In the unfilled PDMS the distribution of highly strained bonds appears to be random, while in the POSS filled system, the strained bonds form a netlike distribution that spans the network. Such a distribution may form a structural network "holding" the composite together and resulting in increases in G compared to an unfilled, cross-linked system. These results are of importance for engineering of new POSS-based multifunctional materials with tailor-made mechanical properties. PMID:19045061

  2. Elucidation of protein-protein interactions using chemical cross-linking or label transfer techniques.

    PubMed

    Fancy, D A

    2000-02-01

    Understanding the architectures of multiprotein complexes is a central problem in biology. Of the many chemical methods available, label transfer and cross-linking are becoming more popular. Recently, label transfer has been applied to very large protein complexes with great success, and new oxidative methods for protein cross-linking have been developed that are fast and highly efficient. Advances in these techniques should increase the understanding of biological structures and mechanisms.

  3. Triple shape memory effects of cross-linked polyethylene/polypropylene blends with cocontinuous architecture.

    PubMed

    Zhao, Jun; Chen, Min; Wang, Xiaoyan; Zhao, Xiaodong; Wang, Zhenwen; Dang, Zhi-Min; Ma, Lan; Hu, Guo-Hua; Chen, Fenghua

    2013-06-26

    In this paper, the triple shape memory effects (SMEs) observed in chemically cross-linked polyethylene (PE)/polypropylene (PP) blends with cocontinuous architecture are systematically investigated. The cocontinuous window of typical immiscible PE/PP blends is the volume fraction of PE (v(PE)) of ca. 30-70 vol %. This architecture can be stabilized by chemical cross-linking. Different initiators, 2,5-dimethyl-2,5-di(tert-butylperoxy)-hexane (DHBP), dicumylperoxide (DCP) coupled with divinylbenzene (DVB) (DCP-DVB), and their mixture (DHBP/DCP-DVB), are used for the cross-linking. According to the differential scanning calorimetry (DSC) measurements and gel fraction calculations, DHBP produces the best cross-linking and DCP-DVB the worst, and the mixture, DHBP/DCP-DVB, is in between. The chemical cross-linking causes lower melting temperature (Tm) and smaller melting enthalpy (ΔHm). The prepared triple shape memory polymers (SMPs) by cocontinuous immiscible PE/PP blends with v(PE) of 50 vol % show pronounced triple SMEs in the dynamic mechanical thermal analysis (DMTA) and visual observation. This new strategy of chemically cross-linked immiscible blends with cocontinuous architecture can be used to design and prepare new SMPs with triple SMEs.

  4. Reversible and irreversible cross-linking of immunoglobulin heavy chains through their carbohydrate residues.

    PubMed Central

    Heimgartner, U; Kozulić, B; Mosbach, K

    1990-01-01

    After periodate oxidation and incubation with a dihydrazide, cross-linking of the two heavy chains of immunoglobulins G from several species proceeds specifically through their oligosaccharides. We have used malonic acid dihydrazide, adipic acid dihydrazide and dithiodipropionic acid dihydrazide. The last compound is introduced in this work as a cleavable-carbohydrate-specific cross-linker. It was found that in rabbit and human immunoglobulins the degree of cross-linking was strongly dependent on the oxidation conditions but only very weakly dependent on the concentration and size of the dihydrazides. Papain cleavage of the cross-linked rabbit IgG indicated that the cross-linking occurred predominantly, if not exclusively, in the Fc region, probably through the two glycans linked to Asn-297 in the CH2 domain of each of the two heavy chains. The immunoglobulins from sheep, pig, goat and guinea pig show a comparable cross-linking pattern, indicating that the sugar chains from these immunoglobulins have a spatial structure closely related to that of rabbit and human IgG. When dithiodipropionic acid dihydrazide was used as the cross-linker, the cross-link could be cleaved by mercaptoethanol. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:2111130

  5. Synchrotron Small-Angle X-ray Scattering Study of Cross-Linked Polymeric Micelles.

    PubMed

    Kim, Hyun-Chul; Jin, Kyeong Sik; Lee, Se Guen; Kim, Eunjoo; Lee, Sung Jun; Jeong, Sang Won; Lee, Seung Woo; Kim, Kwang-Woo

    2016-06-01

    Polymeric micelles of methoxypoly(ethylene glycol)-b-poly(lactide) containing lysine units (mPEG-PLA-Lys4) were cross-linked by reacting of lysine moieties with a bifunctional bis(N-hydroxy-succinimide ester). The micelles were characterized in aqueous solution using dynamic light scattering, transmission electron microscopy, and synchrotron small-angle X-ray scattering. The mPEG-PLA-Lys4 was synthesized through the ring-opening polymerization of N6-carbobenzyloxy-L-lysine N-carboxyanhydride with amine-terminated mPEG-PLA and subsequent deprotection. The polymeric micelles showed enhanced micelle stability after cross-linking, which was confirmed by adding sodium dodecyl sulfate as a destabilizing agent. The average diameters measured via dynamic light scattering were 19.1 nm and 29.2 nm for non-cross-linked polymeric micelles (NCPMs) and cross-linked polymeric micelles (CPMs), respectively. The transmission electron microscopy images showed that the size of the polymeric micelles increased slightly due to cross-linking, which was in good agreement with the DLS measurements. The overall structures and internal structural changes of NCPMs and CPMs in aqueous solution were studied in detail using synchrotron X-ray scattering method. According to the structural parameters of X-ray scattering analysis, CPMs with a more densely packed core structure were formed by reacting bifunctional cross-linking agents with lysine amino groups located in the innermost core of the polymeric micelles. PMID:27427731

  6. Curcumin cross-linked collagen aerogels with controlled anti-proteolytic and pro-angiogenic efficacy.

    PubMed

    Dharunya, G; Duraipandy, N; Lakra, Rachita; Korapatti, Purna Sai; Jayavel, R; Kiran, Manikantan Syamala

    2016-01-01

    This paper elucidates the development of a curcumin cross-linked collagen aerogel system with controlled anti-proteolytic activity and pro-angiogenic efficacy. The results of this study showed that in situ cross-linking of curcumin with collagen leads to the development of aerogels with enhanced physical and mechanical properties. The integrity of collagen after cross-linking with curcumin was studied via FTIR spectroscopy. The results confirmed that the cross-linking with curcumin did not induce any structural changes in the collagen. The curcumin cross-linked collagen aerogels exhibited potent anti-proteolytic and anti-microbial activity. Scanning electron and atomic force microscopic analysis of curcumin cross-linked collagen aerogels showed a 3D microstructure that enhanced the adhesion and proliferation of cells. The highly organized geometry of collagen-curcumin aerogels enhanced the permeability and water-retaining ability required for the diffusion of nutrients that aid cellular growth. The pro-angiogenic properties of collagen-curcumin aerogels were ascribed to the cumulative effect of the nutraceutical and the collagen molecule, which augmented the restoration of damaged tissue. Further, these aerogels exhibited controlled anti-proteolytic activity, which makes them suitable 3D scaffolds for biomedical applications. This study provides scope for the development of biocompatible and bioresorbable collagen aerogel systems that use a nutraceutical as a cross-linker for biomedical applications. PMID:27509047

  7. Dual-Cross-Linked Methacrylated Alginate Sub-Microspheres for Intracellular Chemotherapeutic Delivery.

    PubMed

    Fenn, Spencer L; Miao, Tianxin; Scherrer, Ryan M; Oldinski, Rachael A

    2016-07-20

    Intracellular delivery vehicles comprised of methacrylated alginate (Alg-MA) were developed for the internalization and release of doxorubicin hydrochloride (DOX). Alg-MA was synthesized via an anhydrous reaction, and a mixture of Alg-MA and DOX was formed into sub-microspheres using a water/oil emulsion. Covalently cross-linked sub-microspheres were formed via exposure to green light, in order to investigate effects of cross-linking on drug release and cell internalization, compared to traditional techniques, such as ultraviolet (UV) light irradiation. Cross-linking was performed using light exposure alone or in combination with ionic cross-linking using calcium chloride (CaCl2). Alg-MA sub-microsphere diameters were between 88 and 617 nm, and ζ-potentials were between -20 and -37 mV. Using human lung epithelial carcinoma cells (A549) as a model, cellular internalization was confirmed using flow cytometry; different sub-microsphere formulations varied the efficiency of internalization, with UV-cross-linked sub-microspheres achieving the highest internalization percentages. While blank (nonloaded) Alg-MA submicrospheres were noncytotoxic to A549 cells, DOX-loaded sub-microspheres significantly reduced mitochondrial activity after 5 days of culture. Photo-cross-linked Alg-MA sub-microspheres may be a potential chemotherapeutic delivery system for cancer treatment.

  8. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase*

    PubMed Central

    Bihan, Dominique; Bonna, Arkadiusz; Rubin, Kristofer; Farndale, Richard W.

    2016-01-01

    The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites. PMID:26893379

  9. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase.

    PubMed

    Kalamajski, Sebastian; Bihan, Dominique; Bonna, Arkadiusz; Rubin, Kristofer; Farndale, Richard W

    2016-04-01

    The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites.

  10. Cross-linked chitosan improves the mechanical properties of calcium phosphate-chitosan cement

    PubMed Central

    Aryaei, Ashkan; Liu, Jason; Jayatissa, Ahalapitiya. H.; Jayasuriya, A. Champa

    2015-01-01

    Calcium phosphate (CaP) cements are highly applicable and valuable materials for filling bone defects by minimally invasive procedures. Chitosan (CS) biopolymer is also considered as one of the promising biomaterial candidates in bone tissue engineering. In the present study, some key features of CaP-CS were significantly improved by developing a novel CaP-CS composite. For this purpose, CS was the first cross-linked with tripolyphosphate (TPP) and then mixed with CaP matrix. A group of CaP-CS samples without cross-linking was also prepared. Samples were fabricated and tested based on the known standards. Additionally, the effect of different powder (P) to liquid (L) ratios was also investigated. Both cross-linked and uncross-linked CaP-CS samples showed excellent washout resistance. The most significant effects were observed on Young's modulus and compressive strength in wet condition as well as surface hardness. In dry conditions, the Young's modulus of cross-linked samples were slightly improved. Based on the presented results, cross-linking does not have significant effect on porosity. As expected, by increasing the P/L ratio of sample, ductility and injectabilty were decreased. However, in the most cases, mechanical properties were enhanced. The results have shown that cross-linking can be improved the mechanical properties of CaP-CS and hence it can be used for bone tissue engineering applications. PMID:26046262

  11. Directing the oligomer size distribution of peroxidase-mediated cross-linked bovine alpha-lactalbumin.

    PubMed

    Heijnis, Walter H; Wierenga, Peter A; van Berkel, Willem J H; Gruppen, Harry

    2010-05-12

    Enzymatic protein cross-linking is a powerful tool to change protein functionality. For optimal functionality in gel formation, the size of the cross-linked proteins needs to be controlled, prior to heating. In the current study, we addressed the optimization of the horseradish peroxidase-mediated cross-linking of calcium-depleted bovine alpha-lactalbumin. To characterize the formed products, the molecular weight distribution of the cross-linked protein was determined by size exclusion chromatography. At low ionic strength, more dimers of alpha-lactalbumin are formed than at high ionic strength, while the same conversion of monomers is observed. Similarly, at pH 5.9 more higher oligomers are formed than at pH 6.8. This is proposed to be caused by local changes in apo alpha-lactalbumin conformation as indicated by circular dichroism spectroscopy. A gradual supply of hydrogen peroxide improves the yield of cross-linked products and increases the proportion of higher oligomers. In conclusion, this study shows that the size distribution of peroxidase-mediated cross-linked alpha-lactalbumin can be directed toward the protein oligomers desired.

  12. xComb: a cross-linked peptide database approach to protein-protein interaction analysis

    PubMed Central

    Panchaud, Alexandre; Singh, Pragya; Shaffer, Scott A.; Goodlett, David R.

    2010-01-01

    We developed an informatic method to identify tandem mass spectra composed of chemically cross-linked peptides from those of linear peptides and to assign sequence to each of the two unique peptide sequences. For a given set of proteins the key software tool, xComb, combs through all theoretically feasible cross-linked peptides to create a database consisting of a subset of all combinations represented as peptide FASTA files. The xComb library of select theoretical cross-linked peptides may then be used as a database that is examined by a standard proteomic search engine to match tandem mass spectral datasets to identify cross-linked peptides. The database search may be conducted against as many as 50 proteins with a number of common proteomic search engines, e.g. Phenyx, Sequest, OMSSA, Mascot and X!Tandem. By searching against a peptide library of linearized, cross-linked peptides, rather than a linearized protein library, search times are decreased and the process is decoupled from any specific search engine. A further benefit of decoupling from the search engine is that protein cross-linking studies may be conducted with readily available informatics tools for which scoring routines already exist within the proteomic community. PMID:20302351

  13. Facile fabrication of core cross-linked micelles by RAFT polymerization and enzyme-mediated reaction.

    PubMed

    Wu, Yukun; Lai, Quanyong; Lai, Shuqi; Wu, Jing; Wang, Wei; Yuan, Zhi

    2014-06-01

    Polymeric micelles formed in aqueous solution by assembly of amphiphilic block copolymers have been extensively investigated due to their great potential as drug carriers. However, the stability of polymeric assembly is still one of the major challenges in delivering drugs to tissues and cells. Here, we report a facile route to fabricate core cross-linked (CCL) micelles using an enzymatic polymerization as the cross-linking method. We present synthesis of poly(ethylene glycol)-block-poly(N-isopropyl acrylamide-co-N-(4-hydroxyphenethyl) acrylamide) diblock copolymer PEG-b-P(NIPAAm-co-NHPAAm) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The diblock copolymer was then self-assembled into non-cross-linked (NCL) micelles upon heating above the lower critical solution temperature (LCST), and subsequently cross-linked using horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) as enzyme and oxidant. The characterization of the diblock copolymer and micelles were studied by NMR, DLS, UV-vis, and fluorescence spectroscopy. The fluorescence study reveals that the cross-linking process endows the micelles with much lower critical micelle concentration (CMC). In addition, the drug release study shows that the CCL micelles have lower release amount of doxorubicin (DOX) than the NCL micelles due to the enhanced stability of the CCL micelles by core cross-linking process. PMID:24768266

  14. Collagen Cross-Linking Using Riboflavin and Ultraviolet-A for Corneal Thinning Disorders

    PubMed Central

    Pron, G; Ieraci, L; Kaulback, K

    2011-01-01

    Executive Summary Objective The main objectives for this evidence-based analysis were to determine the safety and effectiveness of photochemical corneal collagen cross-linking with riboflavin (vitamin B2) and ultraviolet-A radiation, referred to as CXL, for the management of corneal thinning disease conditions. The comparative safety and effectiveness of corneal cross-linking with other minimally invasive treatments such as intrastromal corneal rings was also reviewed. The Medical Advisory Secretariat (MAS) evidence-based analysis was performed to support public financing decisions. Subject of the Evidence-Based Analysis The primary treatment objective for corneal cross-linking is to increase the strength of the corneal stroma, thereby stabilizing the underlying disease process. At the present time, it is the only procedure that treats the underlying disease condition. The proposed advantages for corneal cross-linking are that the procedure is minimally invasive, safe and effective, and it can potentially delay or defer the need for a corneal transplant. In addition, corneal cross-linking does not adversely affect subsequent surgical approaches, if they are necessary, or interfere with corneal transplants. The evidence for these claims for corneal cross-linking in the management of corneal thinning disorders such as keratoconus will be the focus of this review. The specific research questions for the evidence review were as follows: Technical: How technically demanding is corneal cross-linking and what are the operative risks? Safety: What is known about the broader safety profile of corneal cross-linking? Effectiveness - Corneal Surface Topographic Affects: What are the corneal surface remodeling effects of corneal cross-linking? Do these changes interfere with subsequent interventions, particularly corneal transplant known as penetrating keratoplasty (PKP)? Effectiveness -Visual Acuity: What impacts does the remodeling have on visual acuity? Are these impacts

  15. Persistence of betapapillomavirus infections as a risk factor for actinic keratoses, precursor to cutaneous squamous cell carcinoma.

    PubMed

    Plasmeijer, Elsemieke I; Neale, Rachel E; de Koning, Maurits N C; Quint, Wim G V; McBride, Penelope; Feltkamp, Mariet C W; Green, Adele C

    2009-12-01

    Human papillomaviruses from the beta genus (betaPV) are a possible cause of cutaneous squamous cell carcinoma (SCC). We assessed the extent to which betaPV infections persisted long-term in a subtropical Australian community and whether betaPV persistence is positively associated with actinic keratoses, precursor for SCC. Eyebrow hairs were collected from 171 participants of the community-based Nambour Skin Cancer Study in 1996 and 2003. Hair samples were tested for the presence of DNA from 25 different betaPV types and assessed in relation to actinic keratosis presence in 2007. In 1996, a total of 413 betaPV infections were found in 73% of participants, increasing to 490 infections among 85% in 2003. Of the total betaPV infections detected, 211 (30%) were found to persist. Age was significantly associated with betaPV persistence: those ages >60 years had 1.5-fold (95% confidence interval, 1.1-1.9) increased risk of type-specific viral persistence than those ages <40 years. After accounting for actinic keratoses at baseline, persistence of betaPV DNA resulted in a 1.4-fold (95% confidence interval, 1.0-1.9) increase in risk of having actinic keratoses on the face in 2007. In conclusion, persistent betaPV infections in this population were associated with an increased occurrence of actinic keratosis. Additional studies are needed to determine the possible association of betaPV persistence with SCC.

  16. Intra-molecular cross-linking of acidic residues for protein structure studies.

    PubMed

    Novak, Petr; Kruppa, Gary H

    2008-01-01

    Intra-molecular cross-linking has been suggested as a method of obtaining distance constraints that would help to develop structural models of proteins. Recent work published on intra-molecular cross-linking for protein structural studies has employed commercially available primary amine (lysine, the amino terminus) selective reagents. Previous work using these cross-linkers has shown that for several proteins of known structure, the number of cross-links that can be obtained experimentally may be small compared to what would be expected from the known structure, due to the relative reactivity, distribution and solvent accessibility of the lysines in the protein sequence. To overcome these limitations, we have investigated the use of cross-linking reagents that can react with other reactive side chains in proteins. We used 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) to activate the carboxylic acid containing residues, aspartic acid (D), glutamic acid (E) and the carboxy terminus (O), for cross-linking reactions. Once activated, the DEO side chains can react to form "zero-length" cross-links with nearby primary amine containing residues, lysines (K) and the amino terminus (X), via the formation of a new amide bond. We also show that the EDC-activated DEO side chains can be cross-linked to each other using dihydrazides, two hydrazide moieties connected by an alkyl cross-linker arm of variable length. Using these reagents, we have found three new "zero-length" cross-links in ubiquitin consistent with its known structure (M1-E16, M1-E18 and K63-E64). Using the dihydrazide cross-linkers, we have identified two new cross-links (D21-D32 and E24-D32) unambiguously. Using a library of dihydrazide cross-linkers with varying arm length, we have shown that there is a minimum arm length required for the DEO-DEO cross-links of 5.8 A. These results show that additional structural information can be obtained by exploiting new cross-linker chemistry

  17. Actin filament bundling by fimbrin is important for endocytosis, cytokinesis, and polarization in fission yeast.

    PubMed

    Skau, Colleen T; Courson, David S; Bestul, Andrew J; Winkelman, Jonathan D; Rock, Ronald S; Sirotkin, Vladimir; Kovar, David R

    2011-07-29

    Through the coordinated action of diverse actin-binding proteins, cells simultaneously assemble actin filaments with distinct architectures and dynamics to drive different processes. Actin filament cross-linking proteins organize filaments into higher order networks, although the requirement of cross-linking activity in cells has largely been assumed rather than directly tested. Fission yeast Schizosaccharomyces pombe assembles actin into three discrete structures: endocytic actin patches, polarizing actin cables, and the cytokinetic contractile ring. The fission yeast filament cross-linker fimbrin Fim1 primarily localizes to Arp2/3 complex-nucleated branched filaments of the actin patch and by a lesser amount to bundles of linear antiparallel filaments in the contractile ring. It is unclear whether Fim1 associates with bundles of parallel filaments in actin cables. We previously discovered that a principal role of Fim1 is to control localization of tropomyosin Cdc8, thereby facilitating cofilin-mediated filament turnover. Therefore, we hypothesized that the bundling ability of Fim1 is dispensable for actin patches but is important for the contractile ring and possibly actin cables. By directly visualizing actin filament assembly using total internal reflection fluorescence microscopy, we determined that Fim1 bundles filaments in both parallel and antiparallel orientations and efficiently bundles Arp2/3 complex-branched filaments in the absence but not the presence of actin capping protein. Examination of cells exclusively expressing a truncated version of Fim1 that can bind but not bundle actin filaments revealed that bundling activity of Fim1 is in fact important for all three actin structures. Therefore, fimbrin Fim1 has diverse roles as both a filament "gatekeeper" and as a filament cross-linker.

  18. Immune Focusing and Enhanced Neutralization Induced by HIV-1 gp140 Chemical Cross-Linking

    PubMed Central

    Schiffner, T.; Kong, L.; Duncan, C. J. A.; Back, J. W.; Benschop, J. J.; Shen, X.; Huang, P. S.; Stewart-Jones, G. B.; DeStefano, J.; Seaman, M. S.; Tomaras, G. D.; Montefiori, D. C.; Schief, W. R.

    2013-01-01

    Experimental vaccine antigens based upon the HIV-1 envelope glycoproteins (Env) have failed to induce neutralizing antibodies (NAbs) against the majority of circulating viral strains as a result of antibody evasion mechanisms, including amino acid variability and conformational instability. A potential vaccine design strategy is to stabilize Env, thereby focusing antibody responses on constitutively exposed, conserved surfaces, such as the CD4 binding site (CD4bs). Here, we show that a largely trimeric form of soluble Env can be stably cross-linked with glutaraldehyde (GLA) without global modification of antigenicity. Cross-linking largely conserved binding of all potent broadly neutralizing antibodies (bNAbs) tested, including CD4bs-specific VRC01 and HJ16, but reduced binding of several non- or weakly neutralizing antibodies and soluble CD4 (sCD4). Adjuvanted administration of cross-linked or unmodified gp140 to rabbits generated indistinguishable total gp140-specific serum IgG binding titers. However, sera from animals receiving cross-linked gp140 showed significantly increased CD4bs-specific antibody binding compared to animals receiving unmodified gp140. Moreover, peptide mapping of sera from animals receiving cross-linked gp140 revealed increased binding to gp120 C1 and V1V2 regions. Finally, neutralization titers were significantly elevated in sera from animals receiving cross-linked gp140 rather than unmodified gp140. We conclude that cross-linking favors antigen stability, imparts antigenic modifications that selectively refocus antibody specificity and improves induction of NAbs, and might be a useful strategy for future vaccine design. PMID:23843636

  19. Click Cross-Linking-Improved Waterborne Polymers for Environment-Friendly Coatings and Adhesives.

    PubMed

    Hu, Jianqing; Peng, Kaimei; Guo, Jinshan; Shan, Dingying; Kim, Gloria B; Li, Qiyao; Gerhard, Ethan; Zhu, Liang; Tu, Weiping; Lv, Weizhong; Hickner, Michael A; Yang, Jian

    2016-07-13

    Waterborne polymers, including waterborne polyurethanes (WPU), polyester dispersions (PED), and polyacrylate emulsions (PAE), are employed as environmentally friendly water-based coatings and adhesives. An efficient, fast, stable, and safe cross-linking strategy is always desirable to impart waterborne polymers with improved mechanical properties and water/solvent/thermal and abrasion resistance. For the first time, click chemistry was introduced into waterborne polymer systems as a cross-linking strategy. Click cross-linking rendered waterborne polymer films with significantly improved tensile strength, hardness, adhesion strength, and water/solvent resistance compared to traditional waterborne polymer films. For example, click cross-linked WPU (WPU-click) has dramatically improved the mechanical strength (tensile strength increased from 0.43 to 6.47 MPa, and Young's modulus increased from 3 to 40 MPa), hardness (increased from 59 to 73.1 MPa), and water resistance (water absorption percentage dropped from 200% to less than 20%); click cross-linked PED (PED-click) film also possessed more than 3 times higher tensile strength (∼28 MPa) than that of normal PED (∼8 MPa). The adhesion strength of click cross-linked PAE (PAE-click) to polypropylene (PP) was also improved (from 3 to 5.5 MPa). In addition, extra click groups can be preserved after click cross-linking for further functionalization of the waterborne polymeric coatings/adhesives. In this work, we have demonstrated that click modification could serve as a convenient and powerful approach to significantly improve the performance of a variety of traditional coatings and adhesives. PMID:27326894

  20. The Effect of Substrate Stiffness, Thickness, and Cross-Linking Density on Osteogenic Cell Behavior

    PubMed Central

    Mullen, Conleth A.; Vaughan, Ted J.; Billiar, Kristen L.; McNamara, Laoise M.

    2015-01-01

    Osteogenic cells respond to mechanical changes in their environment by altering their spread area, morphology, and gene expression profile. In particular, the bulk modulus of the substrate, as well as its microstructure and thickness, can substantially alter the local stiffness experienced by the cell. Although bone tissue regeneration strategies involve culture of bone cells on various biomaterial scaffolds, which are often cross-linked to enhance their physical integrity, it is difficult to ascertain and compare the local stiffness experienced by cells cultured on different biomaterials. In this study, we seek to characterize the local stiffness at the cellular level for MC3T3-E1 cells plated on biomaterial substrates of varying modulus, thickness, and cross-linking concentration. Cells were cultured on flat and wedge-shaped gels made from polyacrylamide or cross-linked collagen. The cross-linking density of the collagen gels was varied to investigate the effect of fiber cross-linking in conjunction with substrate thickness. Cell spread area was used as a measure of osteogenic differentiation. Finite element simulations were used to examine the effects of fiber cross-linking and substrate thickness on the resistance of the gel to cellular forces, corresponding to the equivalent shear stiffness for the gel structure in the region directly surrounding the cell. The results of this study show that MC3T3 cells cultured on a soft fibrous substrate attain the same spread cell area as those cultured on a much higher modulus, but nonfibrous substrate. Finite element simulations predict that a dramatic increase in the equivalent shear stiffness of fibrous collagen gels occurs as cross-linking density is increased, with equivalent stiffness also increasing as gel thickness is decreased. These results provide an insight into the response of osteogenic cells to individual substrate parameters and have the potential to inform future bone tissue regeneration strategies that

  1. Mesoscopic simulations of hydrophilic cross-linked polycarbonate polyurethane networks: structure and morphology.

    PubMed

    Iype, E; Esteves, A C C; de With, G

    2016-06-14

    Polyurethane (PU) cross-linked networks are frequently used in biomedical and marine applications, e.g., as hydrophilic polymer coatings with antifouling or low-friction properties and have been reported to exhibit characteristic phase separation between soft and hard segments. Understanding this phase-separation behavior is critical to design novel hydrophilic polymer coatings. However, most of the studies on the structure and morphology of cross-linked coatings are experimental, which only assess the phase separation via indirect methods. Herein we present a mesoscopic simulation study of the network characteristics of model hydrophilic polymer networks, consisting of PU with and without methyl-polyethylene glycol (mPEG) dangling chains. The systems are analyzed using a number of tools, such as the radial distribution function, the cross-link point density distribution and the Voronoi volume distribution (of the cross-linking points). The combined results show that the cross-linked networks without dangling chains are rather homogeneous but contain a small amount of clustering of cross-linker molecules. A clear phase separation is observed when introducing the dangling chains. In spite of that, the amount of cross-linker molecules connected to dangling chains only, i.e., not connected to the main network, is relatively small, leading to about 3 wt% extractables. Thus, these cross-linked polymers consist of a phase-separated, yet highly connected network. This study provides valuable guidelines towards new self-healing hydrophilic coatings based on the molecular design of cross-linked networks in direct contact with water or aqueous fluids, e.g., as anti-fouling self-repairing coatings for marine applications. PMID:27174657

  2. Conformational Transitions of the Cross-linking Domains of Elastin during Self-assembly*

    PubMed Central

    Reichheld, Sean E.; Muiznieks, Lisa D.; Stahl, Richard; Simonetti, Karen; Sharpe, Simon; Keeley, Fred W.

    2014-01-01

    Elastin is the intrinsically disordered polymeric protein imparting the exceptional properties of extension and elastic recoil to the extracellular matrix of most vertebrates. The monomeric precursor of elastin, tropoelastin, as well as polypeptides containing smaller subsets of the tropoelastin sequence, can self-assemble through a colloidal phase separation process called coacervation. Present understanding suggests that self-assembly is promoted by association of hydrophobic domains contained within the tropoelastin sequence, whereas polymerization is achieved by covalent joining of lysine side chains within distinct alanine-rich, α-helical cross-linking domains. In this study, model elastin polypeptides were used to determine the structure of cross-linking domains during the assembly process and the effect of sequence alterations in these domains on assembly and structure. CD temperature melts indicated that partial α-helical structure in cross-linking domains at lower temperatures was absent at physiological temperature. Solid-state NMR demonstrated that β-strand structure of the cross-linking domains dominated in the coacervate state, although α-helix was predominant after subsequent cross-linking of lysine side chains with genipin. Mutation of lysine residues to hydrophobic amino acids, tyrosine or alanine, leads to increased propensity for β-structure and the formation of amyloid-like fibrils, characterized by thioflavin-T binding and transmission electron microscopy. These findings indicate that cross-linking domains are structurally labile during assembly, adapting to changes in their environment and aggregated state. Furthermore, the sequence of cross-linking domains has a dramatic effect on self-assembly properties of elastin-like polypeptides, and the presence of lysine residues in these domains may serve to prevent inappropriate ordered aggregation. PMID:24550393

  3. Mesoscopic simulations of hydrophilic cross-linked polycarbonate polyurethane networks: structure and morphology.

    PubMed

    Iype, E; Esteves, A C C; de With, G

    2016-06-14

    Polyurethane (PU) cross-linked networks are frequently used in biomedical and marine applications, e.g., as hydrophilic polymer coatings with antifouling or low-friction properties and have been reported to exhibit characteristic phase separation between soft and hard segments. Understanding this phase-separation behavior is critical to design novel hydrophilic polymer coatings. However, most of the studies on the structure and morphology of cross-linked coatings are experimental, which only assess the phase separation via indirect methods. Herein we present a mesoscopic simulation study of the network characteristics of model hydrophilic polymer networks, consisting of PU with and without methyl-polyethylene glycol (mPEG) dangling chains. The systems are analyzed using a number of tools, such as the radial distribution function, the cross-link point density distribution and the Voronoi volume distribution (of the cross-linking points). The combined results show that the cross-linked networks without dangling chains are rather homogeneous but contain a small amount of clustering of cross-linker molecules. A clear phase separation is observed when introducing the dangling chains. In spite of that, the amount of cross-linker molecules connected to dangling chains only, i.e., not connected to the main network, is relatively small, leading to about 3 wt% extractables. Thus, these cross-linked polymers consist of a phase-separated, yet highly connected network. This study provides valuable guidelines towards new self-healing hydrophilic coatings based on the molecular design of cross-linked networks in direct contact with water or aqueous fluids, e.g., as anti-fouling self-repairing coatings for marine applications.

  4. Disulphide cross linked pullulan based cationic polymer for improved gene delivery and efflux pump inhibition.

    PubMed

    S, Priya S; R, Rekha M

    2016-10-01

    Multidrug resistance is a hurdle to successful cancer chemotherapy. Over expression of P-glycoprotein (P-gp) is a prime contributing factor for drug resistance. In this study, a disulphide cross-linked pullulan-based cationic polymer (PPSS) was synthesized to act simultaneously as gene delivery vehicle and efflux pump inhibitor. The PPSS nanoplexes were of size <200nm with the zeta potential of +15 to +20mV. The cytotoxicity studies using C6 and L929 cells showed that PPSS polymers are non-toxic even at high polymer concentrations. The PPSS/pDNA nanoplex showed superior uptake in confocal microscopy with 97% uptake by flow cytometry. The efficacy of efflux pump inhibition by the PPSS nanoplex was established by the enhanced intracellular retention of DOX. The enhanced cell death by p53/PPSS/DOX nanoplexes was attributed to the synergistic effect of P-gp inhibition and p53 transfection efficiency. Therefore, this multifunctional polymeric system may have significant promise for therapeutic application against cancer drug resistance. PMID:27459414

  5. Electrostatically driven drumhead resonators based on freestanding membranes of cross-linked gold nanoparticles.

    PubMed

    Schlicke, Hendrik; Schröter, Clemens J; Vossmeyer, Tobias

    2016-09-21

    Freestanding, nanometer-thin membranes of alkanedithiol cross-linked gold nanoparticles represent elastic, mechanically robust and electrically conductive materials, which are interesting for the fabrication of novel nano- and microelectromechanical devices. In this work we present the first electrostatically driven drumhead resonators based on such nanoparticle membranes. These circular membranes have a thickness of 33 to 52 nm, a diameter of either 50 μm or 100 μm, and are equally spaced from their back electrode by ∼10 μm. Using an interferometric nanovibration analyzer various vibrational modes with resonance amplitudes of up to several 100 nm could be detected when the membranes are excited by applying AC voltages (<30 V) with drive frequencies of up to 2 MHz. Further, spatial amplitude distributions of different vibrational modes could be imaged. The devices showed fundamental resonance frequencies in the high kHz range and quality factors Q up to ∼2000. Finally, vibrational spectra and observed mode patterns could be well interpreted using the theory for a clamped circular membrane with negligible bending stiffness. Our findings mark an important step towards the integration of freestanding gold nanoparticle composite membranes into electromechanical devices with various applications, such as novel types of pressure or mass sensors. PMID:27471074

  6. Preparation and characterization of resistant starch type IV nanoparticles through ultrasonication and miniemulsion cross-linking.

    PubMed

    Ding, Yongbo; Zheng, Jiong; Xia, Xuejuan; Ren, Tingyuan; Kan, Jianquan

    2016-05-01

    This study aimed to assess the properties of resistant starch type IV (chemically modified starch, RS4) prepared from a new and convenient synthesis route by using ultrasonication combined with water-in-oil miniemulsion cross-linking technique. A three-factor Box-Behnken design and optimization was used to minimize particle size through the developed RS4 nanoparticles. The predicted minimized Z-Avel (576.1nm) under the optimum conditions of the process variables (ultrasonic power, 214.57W; sonication time, 114.73min; and oil/water ratio, 10.54:1) was very close to the experimental value (651.0nm) determined in a batch experiment. After preparing the RS4 nanoparticles, morphological, physical, chemical, and functional properties were assessed. Results revealed that RS4 nanoparticle size reached about 600nm. Scanning electron microscopy images showed that ultrasonication induced notches and grooves on the surface. Under polarized light, the polarized cross was impaired. X-ray diffraction results revealed that the crystalline structure was disrupted. Smaller or no endotherms were exhibited in DSC analysis. In the FTIR graph, new peaks at 1532.91 and 1451.50cm(-1) were observed, and pasting properties were reduced. Amylose content, solubility, and SP increased, but RS content decreased. Anti-digestibility remained after ultrasonication. The prepared RS4 nanoparticles could be extensively used in biomedical applications and in the development of new medical materials.

  7. Electrostatically driven drumhead resonators based on freestanding membranes of cross-linked gold nanoparticles.

    PubMed

    Schlicke, Hendrik; Schröter, Clemens J; Vossmeyer, Tobias

    2016-09-21

    Freestanding, nanometer-thin membranes of alkanedithiol cross-linked gold nanoparticles represent elastic, mechanically robust and electrically conductive materials, which are interesting for the fabrication of novel nano- and microelectromechanical devices. In this work we present the first electrostatically driven drumhead resonators based on such nanoparticle membranes. These circular membranes have a thickness of 33 to 52 nm, a diameter of either 50 μm or 100 μm, and are equally spaced from their back electrode by ∼10 μm. Using an interferometric nanovibration analyzer various vibrational modes with resonance amplitudes of up to several 100 nm could be detected when the membranes are excited by applying AC voltages (<30 V) with drive frequencies of up to 2 MHz. Further, spatial amplitude distributions of different vibrational modes could be imaged. The devices showed fundamental resonance frequencies in the high kHz range and quality factors Q up to ∼2000. Finally, vibrational spectra and observed mode patterns could be well interpreted using the theory for a clamped circular membrane with negligible bending stiffness. Our findings mark an important step towards the integration of freestanding gold nanoparticle composite membranes into electromechanical devices with various applications, such as novel types of pressure or mass sensors.

  8. Novel enzymatically cross-linked hyaluronan hydrogels support the formation of 3D neuronal networks.

    PubMed

    Broguiere, Nicolas; Isenmann, Luca; Zenobi-Wong, Marcy

    2016-08-01

    Hyaluronan (HA) is an essential component of the central nervous system's extracellular matrix and its high molecular weight (MW) form has anti-inflammatory and anti-fibrotic properties relevant for regenerative medicine. Here, we introduce a new hydrogel based on high MW HA which is cross-linked using the transglutaminase (TG) activity of the activated blood coagulation factor XIII (FXIIIa). These HA-TG gels have significant advantages for neural tissue engineering compared to previous HA gels. Due to their chemical inertness in the absence of FXIIIa, the material can be stored long-term, is stable in solution, and shows no cytotoxicity. The gelation is completely cell-friendly due to the specificity of the enzyme and the gelation rate can be tuned from seconds to hours at physiological pH and independently of stiffness. The gels are injectable, and attach covalently to fibrinogen and fibrin, two common bioactive components in in vitro tissue engineering, as well as proteins present in vivo, allowing the gels to covalently bind to brain or spinal cord defects. These optimal chemical and bioactive properties of HA-TG gels enabled the formation of 3D neuronal cultures of unprecedented performance, showing fast neurite outgrowth, axonal and dendritic speciation, strong synaptic connectivity in 3D networks, and rapidly-occurring and long-lasting coordinated electrical activity.

  9. Preparation and characterization of resistant starch type IV nanoparticles through ultrasonication and miniemulsion cross-linking.

    PubMed

    Ding, Yongbo; Zheng, Jiong; Xia, Xuejuan; Ren, Tingyuan; Kan, Jianquan

    2016-05-01

    This study aimed to assess the properties of resistant starch type IV (chemically modified starch, RS4) prepared from a new and convenient synthesis route by using ultrasonication combined with water-in-oil miniemulsion cross-linking technique. A three-factor Box-Behnken design and optimization was used to minimize particle size through the developed RS4 nanoparticles. The predicted minimized Z-Avel (576.1nm) under the optimum conditions of the process variables (ultrasonic power, 214.57W; sonication time, 114.73min; and oil/water ratio, 10.54:1) was very close to the experimental value (651.0nm) determined in a batch experiment. After preparing the RS4 nanoparticles, morphological, physical, chemical, and functional properties were assessed. Results revealed that RS4 nanoparticle size reached about 600nm. Scanning electron microscopy images showed that ultrasonication induced notches and grooves on the surface. Under polarized light, the polarized cross was impaired. X-ray diffraction results revealed that the crystalline structure was disrupted. Smaller or no endotherms were exhibited in DSC analysis. In the FTIR graph, new peaks at 1532.91 and 1451.50cm(-1) were observed, and pasting properties were reduced. Amylose content, solubility, and SP increased, but RS content decreased. Anti-digestibility remained after ultrasonication. The prepared RS4 nanoparticles could be extensively used in biomedical applications and in the development of new medical materials. PMID:26877007

  10. Vitamin E-diffused highly cross-linked UHMWPE particles induce less osteolysis compared to highly cross-linked virgin UHMWPE particles in vivo.

    PubMed

    Bichara, David A; Malchau, Erik; Sillesen, Nanna H; Cakmak, Selami; Nielsen, G Petur; Muratoglu, Orhun K

    2014-09-01

    Recent in vitro findings suggest that UHMWPE wear particles containing vitamin E (VE) may have reduced biologic activity and decreased osteolytic potential. We hypothesized that particles from VE-stabilized, radiation cross-linked UHMWPE would cause less osteolysis in a murine calvarial bone model when compared to virgin gamma irradiated cross-linked UHMWPE. Groups received equal amount of particulate debris overlaying the calvarium for 10 days. Calvarial bone was examined using high resolution micro-CT and histomorphometric analyses. There was a statistically significant difference between virgin (12.2%±8%) and VE-UHMWPE (3%±1.4%) groups in regards to bone resorption (P=0.005) and inflammatory fibrous tissue overlaying the calvaria (0.48 vs. 0.20, P<0.0001). These results suggest that VE-UHMWPE particles have reduced osteolytic potential in vivo when compared to virgin UHMWPE.

  11. [Cross-linking and neurodermitis: prolonged re-epithelisation with severe corneal vascularisation after cross-linking in a patient with neurodermitis and keratoconus].

    PubMed

    Görsch, I C; Steinberg, J; Richard, G; Katz, T; Linke, S

    2014-06-01

    This case report describes a patient with keratoconus and neurodermitis suffering from a significantly prolonged postoperative time interval to re-epithelisation after corneal cross-linking. The development of corneal calcifications and vascularisations additionally inhibited proper re-epithelisation. Therefore the patient received four subsequent subconjunctival injections of Bevacizumab and an additional keratectomy to remove the calcifications. This therapeutic scheme led to a significant reduction of corneal vascularisation and finally a full rehabilitation of the epithelium. PMID:24788604

  12. The effects of different crossing-linking conditions of genipin on type I collagen scaffolds: an in vitro evaluation.

    PubMed

    Zhang, Xiujie; Chen, Xueying; Yang, Ting; Zhang, Naili; Dong, Li; Ma, Shaoying; Liu, Xiaoming; Zhou, Mo; Li, Baoxing

    2014-12-01

    The purpose of this paper is to analyze the properties of fabricating rat tail type I collagen scaffolds cross-linked with genipin under different conditions. The porous genipin cross-linked scaffolds are obtained through a two step freeze-drying process. To find out the optimal cross-link condition, we used different genipin concentrations and various cross-linked temperatures to prepare the scaffolds in this study. The morphologies of the scaffolds were characterized by scanning electron microscope, and the mechanical properties of the scaffolds were evaluated under dynamic compression. Additionally, the cross-linking degree was assessed by ninhydrin assay. To investigate the swelling ratio and the in vitro degradation of the collagen scaffold, the tests were also carried out by immersion of the scaffolds in a PBS solution or digestion in a type I collagenase respectively. The morphologies of the non-cross-linked scaffolds presented a lattice-like structure while the cross-linked ones displayed a sheet-like framework. The morphology of the genipin cross-linked scaffolds could be significantly changed by either increasing genipin concentration or the temperature. The swelling ratio of each cross-linked scaffold was much lower than that of the control (non-cross-linked).The ninhydrin assay demonstrated that the higher temperature and genipin concentration could obviously increase the cross-linking efficiency. The in vitro degradation studies indicated that genipin cross-linking can effectively elevate the biostability of the scaffolds. The biocompatibility and cytotoxicity of the scaffolds was evaluated by culturing rat chondrocytes on the scaffold in vitro and by MTT. The results of MTT and the fact that the chondrocytes adhered well to the scaffolds demonstrated that genipin cross-linked scaffolds possessed an excellent biocompatibility and low cytotoxicity. Based on these results, 0.3 % genipin concentrations and 37 °C cross-linked temperatures are

  13. Effects of partial hydrolysis and subsequent cross-linking on wheat gluten physicochemical properties and structure.

    PubMed

    Wang, Kaiqiang; Luo, Shuizhong; Cai, Jing; Sun, Qiaoqiao; Zhao, Yanyan; Zhong, Xiyang; Jiang, Shaotong; Zheng, Zhi

    2016-04-15

    The rheological behavior and thermal properties of wheat gluten following partial hydrolysis using Alcalase and subsequent microbial transglutaminase (MTGase) cross-linking were investigated. The wheat gluten storage modulus (G') and thermal denaturation temperature (Tg) were significantly increased from 2.26 kPa and 54.43°C to 7.76 kPa and 57.69°C, respectively, by the combined action of partial hydrolysis (DH 0.187%) and cross-linking. The free SH content, surface hydrophobicity, and secondary structure analysis suggested that an appropriate degree of Alcalase-based hydrolysis allowed the compact wheat gluten structure to unfold, increasing the β-sheet content and surface hydrophobicity. This improved its molecular flexibility and exposed additional glutamine sites for MTGase cross-linking. SEM images showed that a compact 3D network formed, while SDS-PAGE profiles revealed that excessive hydrolysis resulted in high-molecular-weight subunits degrading to smaller peptides, unsuitable for cross-linking. It was also demonstrated that the combination of Alcalase-based partial hydrolysis with MTGase cross-linking might be an effective method for modifying wheat gluten rheological behavior and thermal properties.

  14. Cross-Linking Poly(lactic acid) Film Surface by Neutral Hyperthermal Hydrogen Molecule Bombardment.

    PubMed

    Du, Wangli; Shao, Hong; He, Zhoukun; Tang, Changyu; Liu, Yu; Shen, Tao; Zhu, Yan; Lau, Woon-ming; Hui, David

    2015-12-16

    Constructing a dense cross-linking layer on a polymer film surface is a good way to improve the water resistance of poly(lactic acid) (PLA). However, conventional plasma treatments have failed to achieve the aim as a result of the unavoidable surface damage arising from the charged species caused by the uncontrolled high energy coming from colliding ions and electrons. In this work, we report a modified plasma method called hyperthermal hydrogen-induced cross-linking (HHIC) technology to construct a dense cross-linking layer on PLA film surfaces. This method produces energy-controlled neutral hyperthermal hydrogen, which selectively cleaves C-H bonds by molecule collision from the PLA film without breaking other bonds (e.g., C-C bonds in the polymer backbone), and results in subsequent cross-linking of the carbon radicals generated from the organic molecules. The formation of a dense cross-linking layer can serve as a barrier layer to significantly improve both the hydrophobicity and water vapor barrier property of the PLA film. Because of the advantage of selective cleavage of C-H bonds by HHIC treatment, the original physical properties (e.g., mechanical strength and light transmittance) of the PLA films are well-preserved. PMID:26594874

  15. Synthesis, Characterization, and Antibacterial Activity of Cross-Linked Chitosan-Glutaraldehyde

    PubMed Central

    Li, Bin; Shan, Chang-Lin; Zhou, Qing; Fang, Yuan; Wang, Yang-Li; Xu, Fei; Han, Li-Rong; Ibrahim, Muhammad; Guo, Long-Biao; Xie, Guan-Lin; Sun, Guo-Chang

    2013-01-01

    This present study deals with synthesis, characterization and antibacterial activity of cross-linked chitosan-glutaraldehyde. Results from this study indicated that cross-linked chitosan-glutaraldehyde markedly inhibited the growth of antibiotic-resistant Burkholderia cepacia complex regardless of bacterial species and incubation time while bacterial growth was unaffected by solid chitosan. Furthermore, high temperature treated cross-linked chitosan-glutaraldehyde showed strong antibacterial activity against the selected strain 0901 although the inhibitory effects varied with different temperatures. In addition, physical-chemical and structural characterization revealed that the cross-linking of chitosan with glutaraldehyde resulted in a rougher surface morphology, a characteristic Fourier transform infrared (FTIR) band at 1559 cm−1, a specific X-ray diffraction peak centered at 2θ = 15°, a lower contents of carbon, hydrogen and nitrogen, and a higher stability of glucose units compared to chitosan based on scanning electron microscopic observation, FTIR spectra, X-ray diffraction pattern, as well as elemental and thermo gravimetric analysis. Overall, this study indicated that cross-linked chitosan-glutaraldehyde is promising to be developed as a new antibacterial drug. PMID:23670533

  16. Lignin cross-links with cysteine- and tyrosine-containing peptides under biomimetic conditions.

    PubMed

    Diehl, Brett G; Brown, Nicole R

    2014-10-22

    The work presented here investigates the cross-linking of various nucleophilic amino acids with lignin under aqueous conditions, thus providing insight as to which amino acids might cross-link with lignin in planta. Lignin dehydrogenation polymer (DHP) was prepared in aqueous solutions that contained tripeptides with the general structure XGG, where X represents an amino acid with a nucleophilic side chain. Fourier-transform infrared spectroscopy and energy dispersive X-ray spectroscopy showed that peptides containing cysteine and tyrosine were incorporated into the DHP to form DHP-CGG and DHP-YGG adducts, whereas peptides containing other nucleophilic amino acids were not incorporated. Scanning electron microscopy showed that the physical morphology of DHP was altered by the presence of peptides in the aqueous solution, regardless of peptide incorporation into the DHP. Nuclear magnetic resonance (NMR) spectroscopy showed that cysteine-containing peptide cross-linked with lignin at the lignin α-position, whereas in the case of the lignin-tyrosine adduct the exact cross-linking pathway could not be determined. This is the first study to use NMR to confirm cross-linking between lignin and peptides under biomimetic conditions. The results of this study may indicate the potential for lignin-protein linkage formation in planta, particularly between lignin and cysteine- and/or tyrosine-rich proteins. PMID:25275918

  17. Genipin cross-linked decellularized tracheal tubular matrix for tracheal tissue engineering applications

    PubMed Central

    Sun, Fei; Jiang, Yuan; Xu, Yanfei; Shi, Hongcan; Zhang, Siquan; Liu, Xingchen; Pan, Shu; Ye, Gang; Zhang, Weidong; Zhang, Fangbiao; Zhong, Chonghao

    2016-01-01

    Decellularization techniques have been widely used as an alternative strategy for organ reconstruction. This study investigated the mechanical, pro-angiogenic and in vivo biocompatibility properties of decellularized airway matrices cross-linked with genipin. New Zealand rabbit tracheae were decellularized and cross-linked with genipin, a naturally derived agent. The results demonstrated that, a significant (p < 0.05) increase in the secant modulus was computed for the cross-linked tracheae, compared to the decellularized samples. Angiogenic assays demonstrated that decellularized tracheal scaffolds and cross-linked tracheae treated with 1% genipin induce strong in vivo angiogenic responses (CAM analysis). Seven, 15 and 30 days after implantation, decreased (p < 0.01) inflammatory reactions were observed in the xenograft models for the genipin cross-linked tracheae matrices compared with control tracheae, and no increase in the IgM or IgG content was observed in rats. In conclusion, treatment with genipin improves the mechanical properties of decellularized airway matrices without altering the pro-angiogenic properties or eliciting an in vivo inflammatory response. PMID:27080716

  18. Mechanical and biocompatible characterization of a cross-linked collagen-hyaluronic acid wound dressing.

    PubMed

    Kirk, James F; Ritter, Gregg; Finger, Isaac; Sankar, Dhyana; Reddy, Joseph D; Talton, James D; Nataraj, Chandra; Narisawa, Sonoko; Millán, José Luis; Cobb, Ronald R

    2013-01-01

    Collagen scaffolds have been widely employed as a dermal equivalent to induce fibroblast infiltrations and dermal regeneration in the treatment of chronic wounds and diabetic foot ulcers. Cross-linking methods have been developed to address the disadvantages of the rapid degradation associated with collagen-based scaffolds. To eliminate the potential drawbacks associated with glutaraldehyde cross-linking, methods using a water soluble carbodiimide have been developed. In the present study, the glycosaminoglycan (GAG) hyaluronic acid (HA), was covalently attached to an equine tendon derived collagen scaffold using 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) to create ntSPONGE The HA was shown to be homogeneously distributed throughout the collagen matrix. In vitro analyses of the scaffold indicated that the cross-linking enhanced the biological stability by decreasing the enzymatic degradation and increasing the thermal denaturation temperature. The material was shown to support the attachment and proliferation of mouse L929 fibroblast cells. In addition, the cross-linking decreased the resorption rate of the collagen as measured in an intramuscular implant model in rabbits. The material was also shown to be biocompatible in a variety of in vitro and in vivo assays. These results indicate that this cross-linked collagen-HA scaffold, ntSPONGE has the potential for use in chronic wound healing.

  19. Organization of photosystem I polypeptides examined by chemical cross-linking

    NASA Technical Reports Server (NTRS)

    Armbrust, T. S.; Chitnis, P. R.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1996-01-01

    Photosystem I from the cyanobacterium Synechocystis sp. PCC 6803 was examined using the chemical cross-linkers glutaraldehyde and N-ethyl-1-3-[3-(dimethylamino)propyl]carbodiimide to investigate the organization of the polypeptide subunits. Thylakoid membranes and photosystem I, which was isolated by Triton X-100 fractionation, were treated with cross-linking reagents and were resolved using a Tricine/urea low-molecular-weight resolution gel system. Subunit-specific antibodies and western blotting analysis were used to identify the components of cross-linked species. These analyses identified glutaraldehyde-dependent cross-linking products composed of small amounts of PsaD and PsaC, PsaC and PsaE, and PsaE and PsaF. The novel cross-link between PsaE and PsaF was also observed following treatment with N-ethyl-1-3-[3-(dimethylamino)propyl]carbodiimide. These cross-linking results suggest a structural interaction between PsaE and PsaF and predict a transmembrane topology for PsaF.

  20. Cross-linking connectivity in bone collagen fibrils: the COOH-terminal locus of free aldehyde

    NASA Technical Reports Server (NTRS)

    Otsubo, K.; Katz, E. P.; Mechanic, G. L.; Yamauchi, M.

    1992-01-01

    Quantitative analyses of the chemical state of the 16c residue of the alpha 1 chain of bone collagen were performed on samples from fetal (4-6-month embryo) and mature (2-3 year old) bovine animals. All of this residue could be accounted for in terms of three chemical states, in relative amounts which depended upon the age of the animal. Most of the residue was incorporated into either bifunctional or trifunctional cross-links. Some of it, however, was present as free aldehyde, and the content increased with maturation. This was established by isolating and characterizing the aldehyde-containing peptides generated by tryptic digestion of NaB3H4-reduced mature bone collagen. We have concluded that the connectivity of COOH-terminal cross-linking in bone collagen fibrils changes with maturation in the following way: at first, each 16c residue in each of the two alpha 1 chains of the collagen molecule is incorporated into a sheet-like pattern of intermolecular iminium cross-links, which stabilizes the young, nonmineralized fibril as a whole. In time, some of these labile cross-links maturate into pyridinoline while others dissociate back to their precursor form. The latter is likely due to changes in the molecular packing brought about by the mineralization of the collagen fibrils. The resultant reduction in cross-linking connectivity may provide a mechanism for enhancing certain mechanical characteristics of the skeleton of a mature animal.

  1. Orientation birefringence of cross-linked rubber containing low-mass compound

    NASA Astrophysics Data System (ADS)

    Kiyama, Ayumi; Nobukawa, Shogo; Yamauchi, Masayuki

    2015-05-01

    Molecular orientation of low-mass compounds (LMCs) in a cross-linked rubber is studied in order to obtain the basic information on the dynamics of LMC molecules in a polymer beyond the glass transition temperature. A small amount of LMCs such as 4-cyano-4'-pentylbiphenyl (5CB), tricresylphosphate (TCP), and styrene-based tackifier (TF) is added into polybutadiene rubber (BR). After cross-linking reaction, the sheet samples are used to evaluate the orientation birefringence during stretching and stress relaxation. The rectangular films, cut out from the cross-linked sheets, are set in a uniaxial stretching machine equipped with an optical system to measure both birefringence and tensile stress simultaneously. It is confirmed that orientation birefringence is proportional to the stress for not only pure cross-linked BR, but also cross-linked BR containing an LMC in a wide range of strain. Even after stretching, the birefringence does not change as far as the sample is kept at a constant strain. The results suggest that the LMC molecules are forced to orient with polymer chains by the strong intermolecular orientation correlation. Because of the LMC orientation, the stress-optical coefficient CR is enhanced by the addition of 5CB and TCP, but depressed by TF. Therefore, the LMC doping can be used to control the birefringence of a retardation film.

  2. Novel Technique of Transepithelial Corneal Cross-Linking Using Iontophoresis in Progressive Keratoconus

    PubMed Central

    Raffa, Paolo; Rosati, Marianna

    2016-01-01

    In this work, the authors presented the techniques and the preliminary results at 6 months of a randomized controlled trial (NCT02117999) comparing a novel transepithelial corneal cross-linking protocol using iontophoresis with the Dresden protocol for the treatment of progressive keratoconus. At 6 months, there was a significant average improvement with an average flattening of the maximum simulated keratometry reading of 0.72 ± 1.20 D (P = 0.01); in addition, corrected distance visual acuity improved significantly (P = 0.08) and spherical equivalent refraction was significantly less myopic (P = 0.02) 6 months after transepithelial corneal cross-linking with iontophoresis. The novel protocol using iontophoresis showed comparable results with standard corneal cross-linking to halt progression of keratoconus during 6-month follow-up. Investigation of the long-term RCT outcomes are ongoing to verify the efficacy of this transepithelial corneal cross-linking protocol and to determine if it may be comparable with standard corneal cross-linking in the management of progressive keratoconus. PMID:27597895

  3. Novel Technique of Transepithelial Corneal Cross-Linking Using Iontophoresis in Progressive Keratoconus.

    PubMed

    Lombardo, Marco; Serrao, Sebastiano; Raffa, Paolo; Rosati, Marianna; Lombardo, Giuseppe

    2016-01-01

    In this work, the authors presented the techniques and the preliminary results at 6 months of a randomized controlled trial (NCT02117999) comparing a novel transepithelial corneal cross-linking protocol using iontophoresis with the Dresden protocol for the treatment of progressive keratoconus. At 6 months, there was a significant average improvement with an average flattening of the maximum simulated keratometry reading of 0.72 ± 1.20 D (P = 0.01); in addition, corrected distance visual acuity improved significantly (P = 0.08) and spherical equivalent refraction was significantly less myopic (P = 0.02) 6 months after transepithelial corneal cross-linking with iontophoresis. The novel protocol using iontophoresis showed comparable results with standard corneal cross-linking to halt progression of keratoconus during 6-month follow-up. Investigation of the long-term RCT outcomes are ongoing to verify the efficacy of this transepithelial corneal cross-linking protocol and to determine if it may be comparable with standard corneal cross-linking in the management of progressive keratoconus. PMID:27597895

  4. Knee-simulator testing of conventional and cross-linked polyethylene tibial inserts.

    PubMed

    Muratoglu, Orhun K; Bragdon, Charles R; Jasty, Murali; O'Connor, Daniel O; Von Knoch, Rebecca S; Harris, William H

    2004-10-01

    We compared the resistance to delamination and to adhesive/abrasive wear of conventional and highly cross-linked polyethylene tibial inserts of a cruciate-retaining total knee design using a knee simulator. Both groups were tested after aggressive, accelerated aging, and 1 set of conventional inserts was studied without aging. Aging oxidized the conventional, but not the highly cross-linked, inserts. The simulated normal gait testing lasted for 5 and 10 million cycles for the conventional and highly cross-linked inserts, respectively. Aged conventional inserts showed delaminations, whereas none were observed in the unaged conventional and aged cross-linked inserts. Wear rates measured by the gravimetric method were 9 +/- 2 mm3, 10 +/- 4 mm3, and 1 +/- 0 mm3 per million cycles; by the metrologic method, they were 8 +/- 1 mm3, 9 +/- 2 mm3, and 3 +/- 0 mm3 for the unaged conventional, aged conventional, and aged highly crosslinked inserts, respectively. In the test model used, oxidation led to delamination, whereas increased cross-link density resulted in reduced adhesive/abrasive wear of tibial inserts.

  5. Site-specific cross-linking of proteins through tyrosine hexahistidine tags.

    PubMed

    Stayner, R Scott; Min, Dong-Joon; Kiser, Patrick F; Stewart, Russell J

    2005-01-01

    The genetic addition of hexahistidine (H(6)) tags is widely used to isolate recombinant proteins by immobilized metal-affinity chromatography (IMAC). Addition of a tyrosine residue to H(6) tags enabled proteins to be covalently cross-linked under mild conditions in a manner similar to the natural, site-specific cross-linking of tyrosines into dityrosine. A series of seven hexahistidine tags with tyrosines placed in various positions (H(6)Y tags) were added to the amino terminus of the I28 immunoglobulin domain of the human cardiac titin. The H(6)Y-tagged I28 dimerized in the presence of excess Ni(2+) with a K(D) of 200 microM. Treatment of Ni(2+)-dimerized H(6)Y-I28 with an oxidant, monoperoxyphthalic acid (MMPP) or sodium sulfite, resulted in covalent protein multimerization through chelated Ni(2+)-catalyzed cross-linking of the Y residues engineered into the H(6) tag. The protein oligomerization was observed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE). The presence of dityrosine in the cross-linked proteins was confirmed by fluorescence emission at 410 nm. Proteins lacking the Y residue in the H(6) tag treated with the same oxidative conditions did not cross-link or exhibit dityrosine fluorescence, despite the presence of an endogenous Y residue. The method may have potential uses in other protein conjugation applications such as protein labeling and interfacial immobilization of proteins on artificial surfaces. PMID:16287262

  6. Preparation of cross-linked hen-egg white lysozyme crystals free of cracks

    PubMed Central

    Yan, Er-Kai; Lu, Qin-Qin; Zhang, Chen-Yan; Liu, Ya-Li; He, Jin; Chen, Da; Wang, Bo; Zhou, Ren-Bin; Wu, Ping; Yin, Da-Chuan

    2016-01-01

    Cross-linked protein crystals (CLPCs) are very useful materials in applications such as biosensors, catalysis, and X-ray crystallography. Hence, preparation of CLPCs is an important research direction. During the preparation of CLPCs, an often encountered problem is that cracks may appear in the crystals, which may finally lead to shattering of the crystals into small pieces and cause problem in practical applications. To avoid cross-link induced cracking, it is necessary to study the cracking phenomenon in the preparation process. In this paper, we present an investigation on how to avoid cracking during preparation of CLPCs. An orthogonal experiment was designed to study the phenomenon of cross-link induced cracking of hen-egg white lysozyme (HEWL) crystals against five parameters (temperature, solution pH, crystal growth time, glutaraldehyde concentration, and cross-linking time). The experimental results showed that, the solution pH and crystal growth time can significantly affect cross-link induced cracking. The possible mechanism was studied, and optimized conditions for obtaining crack-free CLPCs were obtained and experimentally verified. PMID:27703210

  7. Lipid Cross-Linking of Nanolipoprotein Particles Substantially Enhances Serum Stability and Cellular Uptake.

    PubMed

    Gilmore, Sean F; Blanchette, Craig D; Scharadin, Tiffany M; Hura, Greg L; Rasley, Amy; Corzett, Michele; Pan, Chong-Xian; Fischer, Nicholas O; Henderson, Paul T

    2016-08-17

    Nanolipoprotein particles (NLPs) consist of a discoidal phospholipid lipid bilayer confined by an apolipoprotein belt. NLPs are a promising platform for a variety of biomedical applications due to their biocompatibility, size, definable composition, and amphipathic characteristics. However, poor serum stability hampers the use of NLPs for in vivo applications such as drug formulation. In this study, NLP stability was enhanced upon the incorporation and subsequent UV-mediated intermolecular cross-linking of photoactive DiynePC phospholipids in the lipid bilayer, forming cross-linked nanoparticles (X-NLPs). Both the concentration of DiynePC in the bilayer and UV exposure time significantly affected the resulting X-NLP stability in 100% serum, as assessed by size exclusion chromatography (SEC) of fluorescently labeled particles. Cross-linking did not significantly impact the size of X-NLPs as determined by dynamic light scattering and SEC. X-NLPs had essentially no degradation over 48 h in 100% serum, which is a drastic improvement compared to non-cross-linked NLPs (50% degradation by ∼10 min). X-NLPs had greater uptake into the human ATCC 5637 bladder cancer cell line compared to non-cross-linked particles, indicating their potential utility for targeted drug delivery. X-NLPs also exhibited enhanced stability following intravenous administration in mice. These results collectively support the potential utility of X-NLPs for a variety of in vivo applications. PMID:27411034

  8. Availability of fluorescence spectroscopic in the accompaniment of formation of corneal cross-linking

    NASA Astrophysics Data System (ADS)

    Costa, M. M.; Kurachi, C.; Bagnato, V. S.; Faria e Sousa, S. J.; Ventura, L.

    2010-02-01

    The corneal cross-linking is a method that associates riboflavin and ultraviolet light to induce a larger mechanical resistance at cornea. This method has been used for the treatment of Keratoconus. Since cross-linking is recent as treatment, there is a need to verify the effectiveness of the method. Therefore, the viability of the fluorescence spectroscopy technique to follow the cross-linking formation at cornea was studied. Corneas were divided in two measuring procedures: M1 (cornea + riboflavin), and M2 (cornea + riboflavina + light irradiation, 365nm). For fluorescence measurements, a spectrofluorimeter was used, where several wavelengths were selected (between 320nm and 370nm) for cornea excitation. Several fluorescence spectra were collected, at 10 min-interval, during 60 min. Spectra allowed one to observe two very well defined bands of fluorescence: the first one at 400nm (collagen), and the second one at 520nm (riboflavin). After spectra analyses, a decrease of collagen fluorescence was observed for both groups. For riboflavin, on the other hand, there was a fluorescence increase for M1, and a decrease for M2. Thus, it is possible to conclude that it this technique is sensitive for the detection of tissue structural changes during cross-linking treatment, encouraging subsequent studies on quantification of cross-linking promotion in tissue.

  9. Usage of polarization-sensitive optical coherence tomography for investigation of collagen cross-linking

    NASA Astrophysics Data System (ADS)

    Ju, Myeong Jin; Tang, Shuo

    2015-04-01

    To investigate morphological alternation in corneal stroma induced by collagen cross-linking (CXL) treatment, polarization-sensitive optical coherence tomography (PS-OCT) capable of providing scattering, phase retardation, and degree of polarization uniformity (DOPU) images were employed on fresh bovine cornea. Significant corneal thickness reduction was observed after the CXL procedure, and its variation was quantitatively analyzed. From the scattering contrast, a hyperscattering region was observed in the anterior of the cornea immediately after the CXL procedure and its range increased with time. Within the scattering region, a slow increase was observed in the phase retardation image, and a discriminable characteristic was found in the DOPU image. A global threshold value was empirically determined from the averaged DOPU depth profile in order to locate the effective cross-linking depth. In addition to the standard protocol, an accelerated CXL procedure shortening the treatment time with higher intensity of ultraviolet-A (UV-)A power was also performed. From the measurement results after the two different CXL protocols, different cross-linking aspects were found and their difference was discussed in terms of the effectiveness of cross-linking. Based on this study, we believe that PS-OCT could be a promising optical imaging modality to evaluate the progression and effectiveness of the riboflavin/UV-A induced corneal collagen cross-linking.

  10. Physical properties of pectin-high amylose starch mixtures cross-linked with sodium trimetaphosphate.

    PubMed

    Carbinatto, Fernanda M; de Castro, Ana Dóris; Cury, Beatriz S F; Magalhães, Alviclér; Evangelista, Raul C

    2012-02-28

    Pectin-high amylose starch mixtures (1:4; 1:1; 4:1) were cross-linked at different degrees and characterized by rheological, thermal, X-ray diffraction and NMR analyses. For comparison, samples without cross-linker addition were also prepared and characterized. Although all samples behaved as gels, the results evidenced that the phosphorylation reaction promotes the network strengthening, resulting in covalent gels (highest critical stress, G' and recovery %). Likewise, cross-linked samples presented the highest thermal stability. However, alkaline treatment without cross-linker allowed a structural reorganization of samples, as they also behaved as covalent gels, but weaker than those gels from cross-linked samples, and presented higher thermal stability than the physical mixtures. X-ray diffractograms also evidenced the occurrence of physical and chemical modifications due to the cross-linking process and indicated that samples without cross-linker underwent some structural reorganization, resulting in a decrease of crystallinity. The chemical shift of resonance signals corroborates the occurrence of structural modifications by both alkaline treatment and cross-linking reaction. PMID:22178896

  11. Cross-Linking Poly(lactic acid) Film Surface by Neutral Hyperthermal Hydrogen Molecule Bombardment.

    PubMed

    Du, Wangli; Shao, Hong; He, Zhoukun; Tang, Changyu; Liu, Yu; Shen, Tao; Zhu, Yan; Lau, Woon-ming; Hui, David

    2015-12-16

    Constructing a dense cross-linking layer on a polymer film surface is a good way to improve the water resistance of poly(lactic acid) (PLA). However, conventional plasma treatments have failed to achieve the aim as a result of the unavoidable surface damage arising from the charged species caused by the uncontrolled high energy coming from colliding ions and electrons. In this work, we report a modified plasma method called hyperthermal hydrogen-induced cross-linking (HHIC) technology to construct a dense cross-linking layer on PLA film surfaces. This method produces energy-controlled neutral hyperthermal hydrogen, which selectively cleaves C-H bonds by molecule collision from the PLA film without breaking other bonds (e.g., C-C bonds in the polymer backbone), and results in subsequent cross-linking of the carbon radicals generated from the organic molecules. The formation of a dense cross-linking layer can serve as a barrier layer to significantly improve both the hydrophobicity and water vapor barrier property of the PLA film. Because of the advantage of selective cleavage of C-H bonds by HHIC treatment, the original physical properties (e.g., mechanical strength and light transmittance) of the PLA films are well-preserved.

  12. Biodegradable Chitosan-Based Ambroxol Hydrochloride Microspheres: Effect of Cross-Linking Agents

    PubMed Central

    Gangurde, HH; Chavan, NV; Mundada, AS; Derle, DV; Tamizharasi, S

    2011-01-01

    The objective of this study was to investigate the influence of type of cross-linking method used on the properties of ambroxol hydrochloride microspheres such as encapsulation efficiency, particle size, and drug release. Microspheres were prepared by solvent evaporation technique using chitosan as a matrix-forming agent and cross-linked using formaldehyde and heat treatment. Morphological and physicochemical properties of microspheres were then investigated by scanning electron microscopy (SEM), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FTIR) spectroscopy. The cross-linking of chitosan takes place at the free amino group because of formation of imine bond as evidenced by FTIR. The DSC, XRD, and FTIR analysis showed that chitosan microspheres cross linked by heating were superior in properties and performance as compared to the microspheres cross-linked using formaldehyde. SEM results revealed that heat-treated microspheres were spherical, discrete having smooth, and porous structure. The particle size and encapsulation efficiencies of the prepared chitosan microspheres ranged between 10.83–24.11 μm and 39.73μ80.56%, respectively. The drug release was extended up to 12 h, and the kinetics of the drug release was obeying Higuchi kinetic proving diffusion-controlled drug release. PMID:21607049

  13. Structure and pasting properties of alkaline-treated phosphorylated cross-linked waxy maize starches.

    PubMed

    Shukri, Radhiah; Shi, Yong-Cheng

    2017-01-01

    The objectives of this study were to determine the stability of cross-linked bonds of starch at different pH values and their effects on the pasting property of waxy maize starch cross-linked by 0.05% and 3% sodium trimetaphosphate/sodium tripolyphosphate. The cross-linked waxy maize starch (CLWMS) was slurried (40%, w/w) and subjected to alkali treatments of pH 9, 10, 11, and 12 at 40°C for 4h. The phosphorus in 3% CLWMS decreased with increasing pH and remained unchanged in 0.05% CLWMS for all pH treatments. Decreased settling volumes indicated the reduction of swelling power for the alkali-treated CLWMS at pH 11 and 12. The (31)P NMR spectra of 3% CLWMS at pH 12 showed decreased cyclic monostarch phosphate, monostarch monophosphate, and monostarch diphosphate, but significantly increased distarch monophosphate. Alkali treatments of phosphorylated cross-linked starches offer a way to manipulate the rheological properties of cross-linked starch for desired food applications. PMID:27507452

  14. Cryo-imaging and modeling of the super molecular structure of cross-linked gelatin and its applications

    NASA Astrophysics Data System (ADS)

    Marmorat, Clement; Arinstein, Arkadi; Koifman, Naama; Talmon, Yeshayahu; Zussman, Eyal; Rafailovich, Miriam

    The need for naturally derived materials to synthetize bio-compatible scaffolds is growing. In its natural state, gelatin derives its properties from a network of structured, intertwined, triple helical chains. The mechanical properties can be further controlled by additional enzymatic cross-linking. But, in contrast to simple polymer systems, the response to an imposed deformation is then determined by two competing factors, the establishment of the cross-linked mesh vs. the self-assembly of the fibrils into larger and therefore stronger hierarchical structures. Properties deduced from the response functions to measurements; such as rheology or swelling, are then a combination of these two very different factors, hence impossible to model unless more precise knowledge is available regarding the internal structure. We applied cryogenic-temperature scanning electron microscopy (cryo-SEM) to image the networks. Based on these images, a theoretical model was developed, for which we obtained excellent agreement for the mesh size of both networks, and their mechanical properties. We then used these controlled scaffolds, embedding them with fluorescent beads, to image live cells traction forces at stake during cell migration.

  15. Quantifying actin wave modulation on periodic topography

    NASA Astrophysics Data System (ADS)

    Guven, Can; Driscoll, Meghan; Sun, Xiaoyu; Parker, Joshua; Fourkas, John; Carlsson, Anders; Losert, Wolfgang

    2014-03-01

    Actin is the essential builder of the cell cytoskeleton, whose dynamics are responsible for generating the necessary forces for the formation of protrusions. By exposing amoeboid cells to periodic topographical cues, we show that actin can be directionally guided via inducing preferential polymerization waves. To quantify the dynamics of these actin waves and their interaction with the substrate, we modify a technique from computer vision called ``optical flow.'' We obtain vectors that represent the apparent actin flow and cluster these vectors to obtain patches of newly polymerized actin, which represent actin waves. Using this technique, we compare experimental results, including speed distribution of waves and distance from the wave centroid to the closest ridge, with actin polymerization simulations. We hypothesize the modulation of the activity of nucleation promotion factors on ridges (elevated regions of the surface) as a potential mechanism for the wave-substrate coupling. Funded by NIH grant R01GM085574.

  16. Vault-poly-ADP-ribose polymerase in the Octopus vulgaris brain: a regulatory factor of actin polymerization dynamic.

    PubMed

    De Maio, Anna; Natale, Emiliana; Rotondo, Sergio; Di Cosmo, Anna; Faraone-Mennella, Maria Rosaria

    2013-09-01

    Our previous behavioural, biochemical and immunohistochemical analyses conducted in selected regions (supra/sub oesophageal masses) of the Octopus vulgaris brain detected a cytoplasmic poly-ADP-ribose polymerase (more than 90% of total enzyme activity). The protein was identified as the vault-free form of vault-poly-ADP-ribose polymerase. The present research extends and integrates the biochemical characterization of poly-ADP-ribosylation system, namely, reaction product, i.e., poly-ADP-ribose, and acceptor proteins, in the O. vulgaris brain. Immunochemical analyses evidenced that the sole poly-ADP-ribose acceptor was the octopus cytoskeleton 50-kDa actin. It was present in both free, endogenously poly-ADP-ribosylated form (70kDa) and in complex with V-poly-ADP-ribose polymerase and poly-ADP-ribose (260kDa). The components of this complex, alkali and high salt sensitive, were purified and characterized. The kind and the length of poly-ADP-ribose corresponded to linear chains of 30-35 ADP-ribose units, in accordance with the features of the polymer synthesized by the known vault-poly-ADP-ribose polymerase. In vitro experiments showed that V-poly-ADP-ribose polymerase activity of brain cytoplasmic fraction containing endogenous actin increased upon the addition of commercial actin and was highly reduced by ATP. Anti-actin immunoblot of the mixture in the presence and absence of ATP showed that the poly-ADP-ribosylation of octopus actin is a dynamic process balanced by the ATP-dependent polymerization of the cytoskeleton protein, a fundamental mechanism for synaptic plasticity.

  17. Colour stability, opacity and cross-link density of composites submitted to accelerated artificial aging.

    PubMed

    Mundim, Fabrício Mariano; Pires-de-Souza, Fernanda de Carvalho Panzeri; Garcia, Lucas da Fonseca Roberti; Consani, Simonides

    2010-06-01

    The study evaluated the influence of accelerated artificial aging on colour stability, opacity and cross-link density of resin-based composites (RBCs). Seven specimens were obtained of five RBCs (Heliomolar, 4 Seasons, Tetric Evo Ceram, SR Adoro), which were submitted to colour stability and opacity analysis and cross-link density evaluation. All tests were performed before and after aging. After statistical analysis (one-way ANOVA; Tukey; p<0.05), it was observed that QuiXfil and SR Adoro presented colour alteration values above those that are clinically acceptable (deltaE=5.77 and 4.34 respectively) and the variation in opacity was lowest for SR Adoro. There was an increase in the cross-link density of all studied materials after aging.

  18. Laccase-catalyzed cross-linking of amino acids and peptides with dihydroxylated aromatic compounds.

    PubMed

    Mikolasch, Annett; Hahn, Veronika; Manda, Katrin; Pump, Judith; Illas, Nicole; Gördes, Dirk; Lalk, Michael; Gesell Salazar, Manuela; Hammer, Elke; Jülich, Wolf-Dieter; Rawer, Stephan; Thurow, Kerstin; Lindequist, Ulrike; Schauer, Frieder

    2010-08-01

    In order to design potential biomaterials, we investigated the laccase-catalyzed cross-linking between L-lysine or lysine-containing peptides and dihydroxylated aromatics. L-Lysine is one of the major components of naturally occurring mussel adhesive proteins (MAPs). Dihydroxylated aromatics are structurally related to 3,4-dihydroxyphenyl-L-alanine, another main component of MAPs. Mass spectrometry and nuclear magnetic resonance analyses show that the epsilon-amino group of L-lysine is able to cross-link dihydroxylated aromatics. Additional oligomer and polymer cross-linked products were obtained from di- and oligopeptides containing L-lysine. Potential applications in medicine or industry for biomaterials synthesised via the three component system consisting of the oligopeptide [Tyr-Lys]10, dihydroxylated aromatics and laccase are discussed.

  19. Cheese whey protein recovery by ultrafiltration through transglutaminase (TG) catalysis whey protein cross-linking.

    PubMed

    Wen-Qiong, Wang; Lan-Wei, Zhang; Xue, Han; Yi, Lu

    2017-01-15

    In whey ultrafiltration (UF) production, two main problems are whey protein recovery and membrane fouling. In this study, membrane coupling protein transglutaminase (TG) catalysis protein cross-linking was investigated under different conditions to find out the best treatment. We found that the optimal conditions for protein recovery involved catalyzing whey protein cross-linking with TG (40U/g whey proteins) at 40°C for 60min at pH 5.0. Under these conditions, the recovery rate was increased 15-20%, lactose rejection rate was decreased by 10%, and relative permeate flux was increase 30-40% compared to the sample without enzyme treatment (control). It was noticeable that the total resistance and cake resistance were decreased after enzyme catalysis. This was mainly due to the increased particle size and decreased zeta potential. Therefore, membrane coupling enzyme catalysis protein cross-linking is a potential means for further use.

  20. xiNET: Cross-link Network Maps With Residue Resolution*

    PubMed Central

    Combe, Colin W.; Fischer, Lutz; Rappsilber, Juri

    2015-01-01

    xiNET is a visualization tool for exploring cross-linking/mass spectrometry results. The interactive maps of the cross-link network that it generates are a type of node-link diagram. In these maps xiNET displays: (1) residue resolution positional information including linkage sites and linked peptides; (2) all types of cross-linking reaction product; (3) ambiguous results; and, (4) additional sequence information such as domains. xiNET runs in a browser and exports vector graphics which can be edited in common drawing packages to create publication quality figures. Availability: xiNET is open source, released under the Apache version 2 license. Results can be viewed by uploading data to http://crosslinkviewer.org/ or by downloading the software from http://github.com/colin-combe/crosslink-viewer and running it locally. PMID:25648531

  1. Carbon Nanofiber Incorporated Silica Based Aerogels with Di-Isocyanate Cross-Linking

    NASA Technical Reports Server (NTRS)

    Vivod, Stephanie L.; Meador, Mary Ann B.; Capadona, Lynn A.; Sullivan, Roy M.; Ghosn, Louis J.; Clark, Nicholas; McCorkle, Linda

    2008-01-01

    Lightweight materials with excellent thermal insulating properties are highly sought after for a variety of aerospace and aeronautic applications. (1) Silica based aerogels with their high surface area and low relative densities are ideal for applications in extreme environments such as insulators for the Mars Rover battery. (2) However, the fragile nature of aerogel monoliths prevents their widespread use in more down to earth applications. We have shown that the fragile aerogel network can be cross-linked with a di-isocyanate via amine decorated surfaces to form a conformal coating. (3) This coating reinforces the neck regions between secondary silica particles and significantly strengthens the aerogels with only a small effect on density or porosity. Scheme 1 depicts the cross-linking reaction with the di-isocyanate and exhibits the stages that result in polymer cross-linked aerogel monoliths.

  2. Fracture Behavior of High-Toughness, Ionically Cross-linked Triblock Copolymer Hydrogels

    NASA Astrophysics Data System (ADS)

    Henderson, Kevin; Otim, Kathryn; Shull, Kenneth

    2011-03-01

    Mechanisms for enhancing energy dissipation and hence toughness are important for the generation of robust synthetic soft materials for biomedical applications. Ionic cross-linking in particular has been explored in triblock copolymer hydrogels and affords a remarkable change in mechanical performance comparable to non-cross-linked analogs. Here we employ a physically associated base triblock copolymer network composed of hydrophobic poly(methyl methacrylate) endblocks and a hydrophilic poly(methacrylic acid) midblock capable of complexing with divalent cations. Increases in stiffness and strength have previously been reported, with the extent dependent upon the identity, concentration, and pH of a cross-linking cation solution. We delineate the measured toughness in such systems using tensile tear tests and relate the mechanical performance to a damage zone model reminiscent of loading behavior observed in double network hydrogels.

  3. Tuning of cross-linking and mechanical properties of laser-deposited poly (methyl methacrylate) films

    NASA Astrophysics Data System (ADS)

    Süske, Erik; Scharf, Thorsten; Krebs, Hans-Ulrich; Panchenko, Elena; Junkers, Thomas; Egorov, Mark; Buback, Michael; Kijewski, Harald

    2005-03-01

    The chemical composition, amount of cross-linking and its influence on the mechanical properties of poly(methyl methacrylate) (PMMA) thin films produced by pulsed laser deposition (PLD) at a wavelength of 248nm under ultrahigh vacuum were investigated by infrared spectroscopy, scanning electron microscopy, size-exclusion chromatography, thermogravimetric analysis, and nanoindentation experiments. The films consist of two components, one fraction with a molecular weight well below that of the target material and a second fraction, which is cross-linked. Compared to bulk material, the Young's modulus of the film is increased. The amount of cross-linking in the film can be tuned by the applied laser fluence leading to changes of the mechanical properties.

  4. Three-dimensional multimodal microscopy of rabbit cornea after cross-linking treatment

    NASA Astrophysics Data System (ADS)

    Krüger, A.; Hovakimyan, M.; Ramírez, D. F.; Lorbeer, R.-A.; Kröger, M.; Stachs, O.; Wree, A.; Guthoff, R. F.; Lubatschowski, H.; Heisterkamp, A.

    2010-02-01

    Cross-linking of stromal collagen with Riboflavin and UVA radiation is an alternative treatment of keratoconus. After the cross-linking a wound healing process starts with the regeneration of the abraded epithelial layer and the stromal keratocyte-network. To clarify possible side effects by visualization we established an imaging platform for the multimodal three-dimensional imaging of the cornea and looked for differences between normal and cross-linked rabbit corneae. The microscopy system utilizes femtosecond laser light for two photon excitation of autofluorescent metabolic compounds, second harmonic imaging in forward and backward direction for the study of stromal collagen-I structure and confocal detection of the backscattered femtosecond laser light for cell detection. Preliminary results show signatures of treatment 5 weeks after the intervention in all imaging modalities.

  5. Localization of the dominant non-enzymatic intermolecular cross-linking sites on fibrous collagen.

    PubMed

    Chiue, Hiroko; Yamazoye, Tsutako; Matsumura, Sueo

    2015-06-01

    Previous studies have shown that fibrous collagen undergoes intermolecular cross-linking at multiple sites of the elongated triple-helical regions among adjacent juxtaposed collagen molecules on incubation with a very high concentration of reducing sugar such as 200 mM ribose, and the similarity of the changes in its physicochemical properties to that of senescent collagen aged in vivo has been emphasized. In the present study, however, it was found that when incubated with less than 30 mM ribose, fibrous collagen underwent intermolecular cross-linking primarily between the telopeptide region of a collagen molecule and the triple-helical region of another adjacent collagen molecule, and intermolecular cross-linking between the triple-helical regions of adjacent collagen molecules was very small. Physiological significance of the previous studies thus needs to be reevaluated.

  6. Cheese whey protein recovery by ultrafiltration through transglutaminase (TG) catalysis whey protein cross-linking.

    PubMed

    Wen-Qiong, Wang; Lan-Wei, Zhang; Xue, Han; Yi, Lu

    2017-01-15

    In whey ultrafiltration (UF) production, two main problems are whey protein recovery and membrane fouling. In this study, membrane coupling protein transglutaminase (TG) catalysis protein cross-linking was investigated under different conditions to find out the best treatment. We found that the optimal conditions for protein recovery involved catalyzing whey protein cross-linking with TG (40U/g whey proteins) at 40°C for 60min at pH 5.0. Under these conditions, the recovery rate was increased 15-20%, lactose rejection rate was decreased by 10%, and relative permeate flux was increase 30-40% compared to the sample without enzyme treatment (control). It was noticeable that the total resistance and cake resistance were decreased after enzyme catalysis. This was mainly due to the increased particle size and decreased zeta potential. Therefore, membrane coupling enzyme catalysis protein cross-linking is a potential means for further use. PMID:27542447

  7. Preparation of cross-linked maize (Zea mays L.) starch in different reaction media.

    PubMed

    Hong, Jung Sun; Gomand, Sara V; Delcour, Jan A

    2015-06-25

    Granular normal maize starch was reacted with sodium trimetaphosphate in deionized water ( [Formula: see text] ), aqueous sodium sulfate solution ( [Formula: see text] ), aqueous ethanol (MSethanol) or aqueous acetone (MSacetone) under otherwise identical reaction conditions. Analysis of the resultant starches by Rapid Visco Analysis (RVA) showed that the starch was cross-linked to a higher degree in aqueous ethanol or aqueous acetone than in water or sodium sulfate solution, and with minimal starch leaching. While MSacetone and MSethanol had incorporated similar levels of phosphorous, RVA analysis and microscopic analysis showed that MSacetone granules were more effectively stabilized by cross-linking than MSethanol granules. Cross-linking in aqueous acetone is believed to either contain the greater numbers of distarch monophosphate (versus monostarch monophosphate), or occur more intensively at the granule outer layers than that in aqueous ethanol and, at the same time, to account for the greater granular strength of MSethanol than that of MSacetone. PMID:25839824

  8. In vitro degradation of covalently cross-linked arabinoxylan hydrogels by bifidobacteria.

    PubMed

    Martínez-López, Ana L; Carvajal-Millan, Elizabeth; Micard, Valérie; Rascón-Chu, Agustín; Brown-Bojorquez, Francisco; Sotelo-Cruz, Norberto; López-Franco, Yolanda L; Lizardi-Mendoza, Jaime

    2016-06-25

    Arabinoxylan gels with different cross-linking densities, swelling ratios, and rheological properties were obtained by increasing the concentration of arabinoxylan from 4 to 6% (w/v) during oxidative gelation by laccase. The degradation of these covalently cross-linked gels by a mixture of two Bifidobacterium strains (Bifidobacterium longum and Bifidobacterium adolescentis) was investigated. The kinetics of the evolution of structural morphology of the arabinoxylan gel, the carbohydrate utilization profiles and the bacterial production of short-acid fatty acid (SCFA) were measured. Scanning electron microscopy analysis of the degraded gels showed multiple cavity structures resulting from the bacterial action. The total SCFA decreased when the degree of cross-linking increased in the gels. A slower fermentation of arabinoxylan chains was obtained for arabinoxylan gels with more dense network structures. These results suggest that the differences in the structural features and properties studied in this work affect the degradation time of the arabinoxylan gels. PMID:27083795

  9. Optimizing end-group cross-linking polymer electrolytes for fuel cell applications

    SciTech Connect

    Kim, Yu Seung; Lee, Kwan Soo; Jeong, Myung - Hwan; Lee, Jae - Suk

    2009-01-01

    This paper demonstrates the optimization of proton conductivity and water uptake for cross-linkable polymer electrolytes through synthesis and characterization of end-group cross-linkable sulfonated poly(arylene ether) copolymers (ESF-BPs). The extent of reaction of cross-linking was controlled by reaction time resulting in a series of polymers with two, independent tunable parameters, degree of sulfonation (DS) and degree of cross-linking (DC). For the polymers presented, cross-linking improved proton conductivity while reducing water uptake, an uncommon trend in polymer electrolytes where water is critical for proton conduction. Other trends relating to changes are reported and the results yield insight into the role of DS and DC and how to optimize electrochemical properties and performance of polymer electrolytes through these tunable parameters. Select polymer electrolytes were tested in fuel cells where performance and durability with accelerated relative humidity cycling were compared with Nafion{reg_sign}.

  10. Chloroacetamide-Linked Nucleotides and DNA for Cross-Linking with Peptides and Proteins.

    PubMed

    Olszewska, Agata; Pohl, Radek; Brázdová, Marie; Fojta, Miroslav; Hocek, Michal

    2016-09-21

    Nucleotides, 2'-deoxyribonucleoside triphosphates (dNTPs), and DNA probes bearing reactive chloroacetamido group linked to nucleobase (cytosine or 7-deazadaenine) through a propargyl tether were prepared and tested in cross-linking with cysteine- or histidine-containing peptides and proteins. The chloroacetamide-modifed dNTPs proved to be good substrates for DNA polymerases in the enzymatic synthesis of modified DNA probes. Modified nucleotides and DNA reacted efficiently with cysteine and cysteine-containing peptides, whereas the reaction with histidine was sluggish and low yielding. The modified DNA efficiently cross-linked with p53 protein through alkylation of cysteine and showed potential for cross-linking with histidine (in C277H mutant of p53).

  11. Comparison of Wear and Oxidation in Retrieved Conventional and Highly Cross-Linked UHMWPE Tibial Inserts.

    PubMed

    Currier, Barbara H; Currier, John H; Franklin, Katherine J; Mayor, Michael B; Reinitz, Steven D; Van Citters, Douglas W

    2015-12-01

    Two groups of retrieved tibial inserts from one manufacturer's knee system were analyzed to evaluate the effect of a highly cross-linked bearing surface on wear and in vivo oxidation. The two groups ((1) conventional gamma-inert sterilized and (2) highly cross-linked, coupled with the same rough (Ra=0.25) Ti-6Al-4V tray) were matched with statistically similar in vivo duration and patient variables. The retrieved inserts were analyzed for ketone oxidation and wear in the form of dimensional change. The difference in oxidation rate between highly cross-linked and conventional gamma-inert sterilized inserts did not reach statistical significance. Observations suggest that the majority of wear can be accounted for by the backside interface with the rough Ti-6Al-4V tray; however, wear measured by thickness-change rate was statistically indistinguishable between the two bearing materials.

  12. Synthesis of acrylic and allylic bifunctional cross-linking monomers derived from PET waste

    NASA Astrophysics Data System (ADS)

    Cruz-Aguilar, A.; Herrera-González, A. M.; Vázquez-García, R. A.; Navarro-Rodríguez, D.; Coreño, J.

    2013-06-01

    An acrylic and two novel allylic monomers synthesized from bis (hydroxyethyl) terephthalate, BHET, are reported. This was obtained by glycolysis of post-consumer PET with boiling ethylene glycol. The bifunctional monomer bis(2-(acryloyloxy)ethyl) terephthalate was obtained from acryloyl chloride, while the allylic monomers 2-(((allyloxi)carbonyl)oxy) ethyl (2-hydroxyethyl) terephthalate and bis(2-(((allyloxi)carbonyl)oxy)ethyl) terephthalate, from allyl chloroformate. Cross-linking was studied in bulk polymerization using two different thermal initiators. Monomers were analyzed by means of 1H NMR and the cross-linked polymers by infrared spectroscopy. Gel content higher than 90% was obtained for the acrylic monomer. In the case of the mixture of the allylic monomers, the cross-linked polymer was 80 % using BPO initiator, being this mixture 24 times less reactive than the acrylic monomer.

  13. Cross-linked block copolymer templated assembly of nanoparticle arrays with high density and position selectivity

    NASA Astrophysics Data System (ADS)

    Liu, Zhicheng; Chang, Tongxin; Huang, Haiying; Bai, Lu

    2016-10-01

    Patterning ordered nanoparticle arrays is crucial for the fascinating collective properties of nanoparticles. Block copolymer template provides us a platform for the simple and efficient assembly of nanoparticle arrays. In this work, cylinder-forming poly(styrene-block-2-vinylpyridine) thin film was firstly plasma-etched to expose poly(2-vinylpyridine) cylinders. Then the templates were cross-linked by small molecules so as to access gold nanoparticle arrays with both high density and excellent position selectivity. The cross-linking process significantly restrains the unfavorable surface reconstruction of the thin film. It is demonstrated that the quality of the nanoparticle array was affected by the degree of the cross-linking and the immersion time in nanoparticle solution. The highly ordered gold nanoparticle arrays are promising in several fields such as optics and surface enhanced Raman scattering (SERS).

  14. Curvature and torsion in growing actin networks

    NASA Astrophysics Data System (ADS)

    Shaevitz, Joshua W.; Fletcher, Daniel A.

    2008-06-01

    Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque.

  15. Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction

    NASA Technical Reports Server (NTRS)

    Woodley, D. T.; Yamauchi, M.; Wynn, K. C.; Mechanic, G.; Briggaman, R. A.

    1991-01-01

    Solubilized interstitial collagens will form a fibrillar, gel-like lattice when brought to physiologic conditions. In the presence of human dermal fibroblasts the collagen lattice will contract. The rate of contraction can be determined by computer-assisted planemetry. The mechanisms involved in contraction are as yet unknown. Using this system it was found that the rate of contraction was markedly decreased when collagen lacking telopeptides was substituted for native collagen. Histidinohydroxylysinonorleucine (HHL) is a major stable trifunctional collagen cross-link in mature skin that involves a carboxyl terminal, telopeptide site 16c, the sixteenth amino acid residue from the carboxy terminal of the telopeptide region of alpha 1 (I) in type I collagen. Little, if any, HHL was present in native, purified, reconstituted, soluble collagen fibrils from 1% acetic acid-extracted 2-year-old bovine skin. In contrast, HHL cross-links were present (0.22 moles of cross-link per mole of collagen) in lattices of the same collagen contracted by fibroblasts. However, rat tail tendon does not contain HHL cross-links, and collagen lattices made of rat tail tendon collagen are capable of contraction. This suggests that telopeptide sites, and not mature HHL cross-links per se, are essential for fibroblasts to contract collagen lattices. Beta-aminopropionitrile fumarate (BAPN), a potent lathyrogen that perturbs collagen cross-linking by inhibition of lysyl oxidase, also inhibited the rate of lattice cell contraction in lattices composed of native collagen. However, the concentrations of BAPN that were necessary to inhibit the contraction of collagen lattices also inhibited fibroblast growth suggestive of cellular toxicity. In accordance with other studies, we found no inhibition of the rate of lattice contraction when fibronectin-depleted serum was used. Electron microscopy of contracted gels revealed typical collagen fibers with a characteristic axial periodicity. The data

  16. Proteomic analysis of DNA-protein cross-linking by antitumor nitrogen mustards.

    PubMed

    Loeber, Rachel L; Michaelson-Richie, Erin D; Codreanu, Simona G; Liebler, Daniel C; Campbell, Colin R; Tretyakova, Natalia Y

    2009-06-01

    Nitrogen mustards are antitumor agents used clinically for the treatment of a variety of neoplastic conditions. The biological activity of these compounds is typically attributed to their ability to induce DNA-DNA cross-links. However, nitrogen mustards are able to produce a variety of other lesions, including DNA-protein cross-links (DPCs). DPCs induced by nitrogen mustards are not well-characterized because of their structural complexity and the insufficient specificity and sensitivity of previously available experimental methodologies. In the present work, affinity capture methodology in combination with mass spectrometry-based proteomics was employed to identify mammalian proteins that form covalent cross-links to DNA in the presence of a simple nitrogen mustard, mechlorethamine. Following incubation of 5'-biotinylated DNA duplexes with nuclear protein extracts, DPCs were isolated by affinity capture on streptavidin beads, and the cross-linked proteins were identified by high-performance liquid chromatography-electrospray tandem mass spectrometry of tryptic peptides. Mechlorethamine treatment resulted in the formation of DPCs with nuclear proteins involved in chromatin regulation, DNA replication and repair, cell cycle control, transcriptional regulation, and cell architecture. Western blot analysis was employed to confirm protein identification and to quantify the extent of drug-mediated cross-linking. Mass spectrometry of amino acid-nucleobase conjugates found in total proteolytic digests revealed that mechlorethamine-induced DPCs are formed via alkylation of the N7 position of guanine in duplex DNA and cysteine thiols within the proteins to give N-[2-[S-cysteinyl]ethyl]-N-[2-(guan-7-yl)ethyl]methylamine lesions. The results described herein suggest that cellular exposure to nitrogen mustards leads to cross-linking of a large spectrum of nuclear proteins to chromosomal DNA, potentially contributing to the cytotoxic and mutagenic effects of these drugs.

  17. Enzymatic cross-linking of human recombinant elastin (HELP) as biomimetic approach in vascular tissue engineering.

    PubMed

    Bozzini, Sabrina; Giuliano, Liliana; Altomare, Lina; Petrini, Paola; Bandiera, Antonella; Conconi, Maria Teresa; Farè, Silvia; Tanzi, Maria Cristina

    2011-12-01

    The use of polymers naturally occurring in the extracellular matrix (ECM) is a promising strategy in regenerative medicine. If compared to natural ECM proteins, proteins obtained by recombinant DNA technology have intrinsic advantages including reproducible macromolecular composition, sequence and molecular mass, and overcoming the potential pathogens transmission related to polymers of animal origin. Among ECM-mimicking materials, the family of recombinant elastin-like polymers is proposed for drug delivery applications and for the repair of damaged elastic tissues. This work aims to evaluate the potentiality of a recombinant human elastin-like polypeptide (HELP) as a base material of cross-linked matrices for regenerative medicine. The cross-linking of HELP was accomplished by the insertion of cross-linking sites, glutamine and lysine, in the recombinant polymer and generating ε-(γ-glutamyl) lysine links through the enzyme transglutaminase. The cross-linking efficacy was estimated by infrared spectroscopy. Freeze-dried cross-linked matrices showed swelling ratios in deionized water (≈2500%) with good structural stability up to 24 h. Mechanical compression tests, performed at 37°C in wet conditions, in a frequency sweep mode, indicated a storage modulus of 2/3 kPa, with no significant changes when increasing number of cycles or frequency. These results demonstrate the possibility to obtain mechanically resistant hydrogels via enzymatic crosslinking of HELP. Cytotoxicity tests of cross-linked HELP were performed with human umbilical vein endothelial cells, by use of transwell filter chambers for 1-7 days, or with its extracts in the opportune culture medium for 24 h. In both cases no cytotoxic effects were observed in comparison with the control cultures. On the whole, the results suggest the potentiality of this genetically engineered HELP for regenerative medicine applications, particularly for vascular tissue regeneration.

  18. Cross-linked Compared with Historical Polyethylene in THA: An 8-year Clinical Study

    PubMed Central

    Grimm, Bernd; Vencken, Wendy; Heyligers, Ide C.; Tonino, Alphons J.

    2008-01-01

    Wear particle-induced osteolysis is a major cause of aseptic loosening in THA. Increasing wear resistance of polyethylene (PE) occurs by increasing the cross-link density and early reports document low wear rates with such implants. To confirm longer-term reductions in wear we compared cross-linked polyethylene (irradiation in nitrogen, annealing) with historical polyethylene (irradiation in air) in a prospective, randomized clinical study involving 48 patients who underwent THAs with a minimum followup of 7 years (mean, 8 years; range, 7–9 years). The insert material was the only variable. The Harris hip score, radiographic signs of osteolysis, and polyethylene wear were recorded annually. Twenty-three historical and 17 moderately cross-linked polyethylene inserts were analyzed (five patients died, three were lost to followup). At 8 years, the wear rate was lower for cross-linked polyethylene (0.088 ± 0.03 mm/year) than for the historical polyethylene (0.142 ± 0.07 mm/year). This reduction (38%) did not diminish with time (33% at 5 years). Acetabular cyst formation was less frequent (39% versus 12%), affected fewer DeLee and Charnley zones (17% versus 4%), and was less severe for the cross-linked polyethylene. The only revision was for an aseptically loose cup in the historical polyethylene group. Moderately cross-linked polyethylene maintained its wear advantage with time and produced less osteolysis, showing no signs of aging at mid-term followup. Level of Evidence: Level I, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence. PMID:19030941

  19. Chemical and structural characterization of interstrand cross-links formed between abasic sites and adenine residues in duplex DNA

    PubMed Central

    Price, Nathan E.; Catalano, Michael J.; Liu, Shuo; Wang, Yinsheng; Gates, Kent S.

    2015-01-01

    A new type of interstrand DNA–DNA cross-link between abasic (Ap) sites and 2′-deoxyadenosine (dA) residues was recently reported, but the chemical structure and properties of this lesion were not rigorously established. Here we characterized the nucleoside cross-link remnant released by enzymatic digestion of duplex DNA containing the dA-Ap cross-link. A synthetic standard was prepared for the putative nucleoside cross-link remnant 6 in which the anomeric carbon of the 2-deoxyribose residue was connected to the exocyclic N6-amino group of dA. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that the synthetic material 6 matched the authentic cross-link remnant released by enzymatic digestion of cross-linked DNA. These findings establish the chemical structure of the dA-Ap cross-link released from duplex DNA and may provide methods for the detection of this lesion in cellular DNA. Both the nucleoside cross-link remnant 6 and the cross-link in duplex DNA were quite stable at pH 7 and 37°C, suggesting that the dA-Ap cross-link could be a persistent lesion with the potential to block the action of various DNA processing enzymes. PMID:25779045

  20. Multilayer structured polymer light emitting diodes with cross-linked polymer matrices

    NASA Astrophysics Data System (ADS)

    Zhou, Zhang-Lin; Sheng, Xia; Nauka, K.; Zhao, Lihua; Gibson, Gary; Lam, Sity; Yang, Chung Ching; Brug, James; Elder, Rich

    2010-01-01

    Currently, there is great interest in manufacturing multilayer polymer light emitting diode (PLED) structures via low-cost solution-based spin-casting or printing methods. The difficulty with this approach is that solvent from freshly deposited films often dissolves the underlying layers. This letter demonstrates that fully operational multilayer PLED structures can be fabricated via a solution process by embedding the hole transport material in cross-linked inert polymer matrices that protect the functional material while subsequent layers are deposited using the same solvent. The resulting devices exhibited greatly improved quantum efficiency compared with devices that did not employ cross-linked polymer matrices.

  1. Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase.

    PubMed

    Chen, Yukun; Yuan, Daosheng; Xu, Chuanhui

    2014-03-26

    We prepared a biobased material, dynamically vulcanized polylactide (PLA)/natural rubber (NR) blend in which the cross-linked NR phase owned a continuous network-like dispersion. This finding breaks the traditional concept of a sea-island morphology formed after dynamic vulcanization of the blends. The scan electron microscopy and dissolution/swell experiments provided the direct proof of the continuous cross-linked NR phase. This new biobased PLA/NR blend material with the novel structure is reported for the first time in the field of dynamic vulcanization and shows promise for development for various functional applications. PMID:24621374

  2. Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase.

    PubMed

    Chen, Yukun; Yuan, Daosheng; Xu, Chuanhui

    2014-03-26

    We prepared a biobased material, dynamically vulcanized polylactide (PLA)/natural rubber (NR) blend in which the cross-linked NR phase owned a continuous network-like dispersion. This finding breaks the traditional concept of a sea-island morphology formed after dynamic vulcanization of the blends. The scan electron microscopy and dissolution/swell experiments provided the direct proof of the continuous cross-linked NR phase. This new biobased PLA/NR blend material with the novel structure is reported for the first time in the field of dynamic vulcanization and shows promise for development for various functional applications.

  3. Method of Cross-Linking Aerogels Using a One-Pot Reaction Scheme

    NASA Technical Reports Server (NTRS)

    Meador, Ann B.; Capadona, Lynn A.

    2008-01-01

    A document discusses a new, simplified method for cross-linking silica and other oxide aerogels, with a polymeric material to increase strength of such materials without adversely affecting porosity or low density. This innovation introduces the polymer precursor into the sol before gelation either as an agent, which co-reacts with the oxide gel, or as soluble polymer precursors, which do not interact with the oxide gel in any way. Subsequent exposure to heat, light, catalyst or other method of promoting polymerization causes cross-linking without any additional infiltration steps.

  4. Durability of highly cross-linked polyethylene in total hip and total knee arthroplasty.

    PubMed

    Dion, Neil T; Bragdon, Charles; Muratoglu, Orhun; Freiberg, Andrew A

    2015-07-01

    This article reviews the history of the development of highly cross-linked polyethylene and provides an in-depth review of the clinical results regarding the durability of highly cross-linked polyethylene (HXLPE) used in total hip arthroplasty (THA) and total knee arthroplasty (TKA). The use of polyethylene as a bearing surface has contributed to the success of THA and TKA; however, polyethylene wear and osteolysis can lead to failure. Ongoing clinical and retrieval studies are required to analyze outcomes at longer-term follow-up.

  5. Cross-linking and modification of cytochrome c with redox-active metal complexes

    SciTech Connect

    Lukes, A.

    1991-05-02

    This thesis consists of two parts. The first part shows that a redox-active trinuclear metal cluster may be used as a cross-linking reagent for proteins. Electron transfer is observed in the protein oligomers. The second part involves labelling the cysteine residue of baker's yeast cytochrome c with chloromercuriferrocene. Chloromercuriferrocene reacts with cytochrome c in two interesting ways. Symmetrization produces two products; two proteins cross-linked with mercury and diferrocenylmercury. Simple substitution of FeHgCl onto the protein followed by the addition of a proton by electrophilic substitution affords ferrocene and the mercuric chloride modified protein. 16 refs., 3 figs.

  6. Photoinduced intermolecular cross-linking of gas phase triacylglycerol lipid ions.

    PubMed

    Nie, Shuai; Pham, Huong T; Blanksby, Stephen J; Reid, Gavin E

    2015-01-01

    Complex mixtures of plant derived triglycerol (TG) lipids are commonly used as feedstock components for the production of industrial polymers. However, there remains a need for the development of analytical strategies to investigate the intrinsic intermolecular cross-linking reactivity of individual TG molecules within these mixtures as a function of their structures and physicochemical properties, and for the characterization of the resultant products. Here, to address this need, we describe a novel multistage tandem mass spectrometry based method for intermolecular cross-linking and subsequent structural characterization of TG lipid ions in the gas phase. Cross-linking reactions were initiated using 266 nm ultraviolet photodissociation tandem mass spectrometry (UVPD-MS/MS) of saturated or unsaturated TG dimers introduced via electrospray ionization into a linear ion trap mass spectrometer as noncovalent complexes with protonated 3,4-, 2,4- or 3,5- diiodoaniline (diIA). UVPD resulted in the initial formation of an anilinyl biradical via the sequential loss of two iodine radicals, which underwent further reaction to yield multiple cross-linked TG products along with competing noncross-linking processes. These chemistries are proposed to occur via sequential combinations of hydrogen abstraction (H-abstraction), radical addition and radical recombination. Multistage collision induced dissociation tandem mass spectrometry (CID-MS(n)) was used to obtain evidence for the structures and mechanisms of formation for these products, as a function of both the TG lipid and diIA ion structures. The efficiency of the UVPD reaction was shown to be dependent on the number of unsaturation sites present within the TG lipids. However, when unsaturation sites were present, formation of the cross-linked and noncross-linked product ions via H-abstraction and radical addition mechanisms was found to be competitive. Finally, the identity of the anilinyl biradical (e.g., 3,4- versus 2

  7. Chemical cross-linking of polypropylenes towards new shape memory polymers.

    PubMed

    Raidt, Thomas; Hoeher, Robin; Katzenberg, Frank; Tiller, Joerg C

    2015-04-01

    In this work, syndiotactic polypropylene (sPP) as well as isotactic polypropylene (iPP) are cross-linked to gain a shape memory effect. Both prepared PP networks exhibit maximum strains of 700%, stored strains of up to 680%, and recoveries of nearly 100%. While x-iPP is stable for many cycles, x-sPP ruptures after the first shape-memory cycle. It is shown by wide-angle X-ray scattering (WAXS) experiments that cross-linked iPP exhibits homoepitaxy in the temporary, stretched shape but in contrast to previous reports it contains a higher amount of daughter than mother crystals.

  8. Durability of highly cross-linked polyethylene in total hip and total knee arthroplasty.

    PubMed

    Dion, Neil T; Bragdon, Charles; Muratoglu, Orhun; Freiberg, Andrew A

    2015-07-01

    This article reviews the history of the development of highly cross-linked polyethylene and provides an in-depth review of the clinical results regarding the durability of highly cross-linked polyethylene (HXLPE) used in total hip arthroplasty (THA) and total knee arthroplasty (TKA). The use of polyethylene as a bearing surface has contributed to the success of THA and TKA; however, polyethylene wear and osteolysis can lead to failure. Ongoing clinical and retrieval studies are required to analyze outcomes at longer-term follow-up. PMID:26043046

  9. Sterile keratitis after combined riboflavin-UVA corneal collagen cross-linking for keratoconus

    PubMed Central

    Lam, F C; Geourgoudis, P; Nanavaty, M A; Khan, S; Lake, D

    2014-01-01

    Purpose To investigate patient risk factors and to look for potential causes of sterile infiltrates following an unexpected cluster of sterile keratitis after a routine collagen cross-linking (CXL) list. Methods The records of all 148 cases of CXL were reviewed retrospectively. The equipment and solutions used and our clinic's standard operating procedure for CXL were reviewed. An in-vitro experiment to explore the variation in ultraviolet A (UVA) irradiance from fluctuations in the working distance of the UVA lamp was conducted. Results The four patients who developed sterile infiltrates had steeper maximum corneal curvatures (68.0±7.3 D) and thinner pachymetry (389.9±49.0 μm) than the 144 who did not (57.0±8.2 D, P=0.05; 454.6±45.4 μm, P=0.08). A corneal curvature of >60 Dand a pachymetry of <425 μm were significant risk factors. All four affected cases obtained a complete resolution with topical antibiotics and steroids. The unaided VA and the maximum K improved from their pre-operative levels in three out of four patients. A 2-mm reduction in distance of the VEGA C.B.M. X-Linker from a treated surface increased irradiance to 3.5–3.7 mW/cm2, which is above the threshold for endothelial toxicity. Conclusion Patients with thinner and steeper corneas are at an increased risk of developing sterile keratitis. The visual outcomes despite this complication are good. PMID:25104740

  10. 'Strengthening the fungal cell wall through chitin-glucan cross-links: effects on morphogenesis and cell integrity'.

    PubMed

    Arroyo, Javier; Farkaš, Vladimír; Sanz, Ana Belén; Cabib, Enrico

    2016-09-01

    The cross-linking of polysaccharides to assemble new cell wall in fungi requires transglycosylation mechanisms by which preexisting glycosidic linkages are broken and new linkages are created between the polysaccharides. The molecular mechanisms for these processes, which are essential for fungal cell biology, are only now beginning to be elucidated. Recent development of in vivo and in vitro biochemical approaches has allowed characterization of important aspects about the formation of chitin-glucan covalent cell wall cross-links by cell wall transglycosylases of the CRH family and their biological function. Covalent linkages between chitin and glucan mediated by Crh proteins control morphogenesis and also play important roles in the remodeling of the fungal cell wall as part of the compensatory responses necessary to counterbalance cell wall stress. These enzymes are encoded by multigene families of redundant proteins very well conserved in fungal genomes but absent in mammalian cells. Understanding the molecular basis of fungal adaptation to cell wall stress through these and other cell wall remodeling enzymatic activities offers an opportunity to explore novel antifungal treatments and to identify potential fungal virulence factors.

  11. 'Strengthening the fungal cell wall through chitin-glucan cross-links: effects on morphogenesis and cell integrity'.

    PubMed

    Arroyo, Javier; Farkaš, Vladimír; Sanz, Ana Belén; Cabib, Enrico

    2016-09-01

    The cross-linking of polysaccharides to assemble new cell wall in fungi requires transglycosylation mechanisms by which preexisting glycosidic linkages are broken and new linkages are created between the polysaccharides. The molecular mechanisms for these processes, which are essential for fungal cell biology, are only now beginning to be elucidated. Recent development of in vivo and in vitro biochemical approaches has allowed characterization of important aspects about the formation of chitin-glucan covalent cell wall cross-links by cell wall transglycosylases of the CRH family and their biological function. Covalent linkages between chitin and glucan mediated by Crh proteins control morphogenesis and also play important roles in the remodeling of the fungal cell wall as part of the compensatory responses necessary to counterbalance cell wall stress. These enzymes are encoded by multigene families of redundant proteins very well conserved in fungal genomes but absent in mammalian cells. Understanding the molecular basis of fungal adaptation to cell wall stress through these and other cell wall remodeling enzymatic activities offers an opportunity to explore novel antifungal treatments and to identify potential fungal virulence factors. PMID:27185288

  12. IDENTIFYING GENES CONTROLLING FERULATE CROSS-LINKING FORMATION IN GRASS CELL WALLS

    SciTech Connect

    de O Buanafina, Marcia Maria

    2013-10-16

    DESCRIPTION/ABSTRACT This proposal focuses on cell wall feruloylation and our long term goal is to identify and isolate novel genes controlling feruloylation and to characterize the phenotype of mutants in this pathway, with a spotlight on cell wall properties. Currently, the genes underlying AX feruloylation have not been identified and the isolation of such genes could be of great importance in manipulating ferulates accretion to the wall. Mutation of the feruloyl transferase gene(s) should lead to less ferulates secreted to the cell wall and reduced ferulate cross-linking. Our current research is based on the hypothesis that controlling the level of total feruloylation will have a direct impact on the level of cross-linking and in turn impact biomass utility for forage and biofuel production. Our results/accomplishments for this project so far include: 1. Mutagenised Brachypodium population. We have developed EMS mutagenized populations of model grass species Brachypodium distachyon. EMS populations have been developed from over 28,000 mutagenized seeds generating 5,184 M2 families. A total of 20,793 plants have been screened and 1,233 were originally selected. 2. Selected Brachypodium mutants: Potential mutants on their levels of cell wall ferulates and cell wall AX ? have been selected from 708 M2 families. A total of 303 back-crosses to no-mutagenized parental stock have been done, followed by selfing selected genotypes in order to confirm heritability of traits and to remove extraneous mutations generated by EMS mutagenesis. We are currently growing 12 F5 and F6 populations in order to assess CW composition. If low level of ferulates are confirmed in the candidate lines selected the mutation could be altered in different in one or several kinds of genes such as genes encoding an AX feruloyl transferase; genes encoding the arabinosyl transferase; genes encoding the synthesis of the xylan backbone; genes encoding enzymes of the monolignol pathway affecting FA

  13. Use of Proteinase K Nonspecific Digestion for Selective and Comprehensive Identification of Interpeptide Cross-links: Application to Prion Proteins*

    PubMed Central

    Petrotchenko, Evgeniy V.; Serpa, Jason J.; Hardie, Darryl B.; Berjanskii, Mark; Suriyamongkol, Bow P.; Wishart, David S.; Borchers, Christoph H.

    2012-01-01

    Chemical cross-linking combined with mass spectrometry is a rapidly developing technique for structural proteomics. Cross-linked proteins are usually digested with trypsin to generate cross-linked peptides, which are then analyzed by mass spectrometry. The most informative cross-links, the interpeptide cross-links, are often large in size, because they consist of two peptides that are connected by a cross-linker. In addition, trypsin targets the same residues as amino-reactive cross-linkers, and cleavage will not occur at these cross-linker-modified residues. This produces high molecular weight cross-linked peptides, which complicates their mass spectrometric analysis and identification. In this paper, we examine a nonspecific protease, proteinase K, as an alternative to trypsin for cross-linking studies. Initial tests on a model peptide that was digested by proteinase K resulted in a “family” of related cross-linked peptides, all of which contained the same cross-linking sites, thus providing additional verification of the cross-linking results, as was previously noted for other post-translational modification studies. The procedure was next applied to the native (PrPC) and oligomeric form of prion protein (PrPβ). Using proteinase K, the affinity-purifiable CID-cleavable and isotopically coded cross-linker cyanurbiotindipropionylsuccinimide and MALDI-MS cross-links were found for all of the possible cross-linking sites. After digestion with proteinase K, we obtained a mass distribution of the cross-linked peptides that is very suitable for MALDI-MS analysis. Using this new method, we were able to detect over 60 interpeptide cross-links in the native PrPC and PrPβ prion protein. The set of cross-links for the native form was used as distance constraints in developing a model of the native prion protein structure, which includes the 90–124-amino acid N-terminal portion of the protein. Several cross-links were unique to each form of the prion protein

  14. Use of proteinase K nonspecific digestion for selective and comprehensive identification of interpeptide cross-links: application to prion proteins.

    PubMed

    Petrotchenko, Evgeniy V; Serpa, Jason J; Hardie, Darryl B; Berjanskii, Mark; Suriyamongkol, Bow P; Wishart, David S; Borchers, Christoph H

    2012-07-01

    Chemical cross-linking combined with mass spectrometry is a rapidly developing technique for structural proteomics. Cross-linked proteins are usually digested with trypsin to generate cross-linked peptides, which are then analyzed by mass spectrometry. The most informative cross-links, the interpeptide cross-links, are often large in size, because they consist of two peptides that are connected by a cross-linker. In addition, trypsin targets the same residues as amino-reactive cross-linkers, and cleavage will not occur at these cross-linker-modified residues. This produces high molecular weight cross-linked peptides, which complicates their mass spectrometric analysis and identification. In this paper, we examine a nonspecific protease, proteinase K, as an alternative to trypsin for cross-linking studies. Initial tests on a model peptide that was digested by proteinase K resulted in a "family" of related cross-linked peptides, all of which contained the same cross-linking sites, thus providing additional verification of the cross-linking results, as was previously noted for other post-translational modification studies. The procedure was next applied to the native (PrP(C)) and oligomeric form of prion protein (PrPβ). Using proteinase K, the affinity-purifiable CID-cleavable and isotopically coded cross-linker cyanurbiotindipropionylsuccinimide and MALDI-MS cross-links were found for all of the possible cross-linking sites. After digestion with proteinase K, we obtained a mass distribution of the cross-linked peptides that is very suitable for MALDI-MS analysis. Using this new method, we were able to detect over 60 interpeptide cross-links in the native PrP(C) and PrPβ prion protein. The set of cross-links for the native form was used as distance constraints in developing a model of the native prion protein structure, which includes the 90-124-amino acid N-terminal portion of the protein. Several cross-links were unique to each form of the prion protein, including

  15. State-dependent diffusion of actin-depolymerizing factor/cofilin underlies the enlargement and shrinkage of dendritic spines

    PubMed Central

    Noguchi, Jun; Hayama, Tatsuya; Watanabe, Satoshi; Ucar, Hasan; Yagishita, Sho; Takahashi, Noriko; Kasai, Haruo

    2016-01-01

    Dendritic spines are the postsynaptic sites of most excitatory synapses in the brain, and spine enlargement and shrinkage give rise to long-term potentiation and depression of synapses, respectively. Because spine structural plasticity is accompanied by remodeling of actin scaffolds, we hypothesized that the filamentous actin regulatory protein cofilin plays a crucial role in this process. Here we investigated the diffusional properties of cofilin, the actin-severing and depolymerizing actions of which are activated by dephosphorylation. Cofilin diffusion was measured using fluorescently labeled cofilin fusion proteins and two-photon imaging. We show that cofilins are highly diffusible along dendrites in the resting state. However, during spine enlargement, wild-type cofilin and a phosphomimetic cofilin mutant remain confined to the stimulated spine, whereas a nonphosphorylatable mutant does not. Moreover, inhibition of cofilin phosphorylation with a competitive peptide disables spine enlargement, suggesting that phosphorylated-cofilin accumulation is a key regulator of enlargement, which is localized to individual spines. Conversely, spine shrinkage spreads to neighboring spines, even though triggered by weaker stimuli than enlargement. Diffusion of exogenous cofilin injected into a pyramidal neuron soma causes spine shrinkage and reduced PSD95 in spines, suggesting that diffusion of dephosphorylated endogenous cofilin underlies the spreading of spine shrinkage and long-term depression. PMID:27595610

  16. State-dependent diffusion of actin-depolymerizing factor/cofilin underlies the enlargement and shrinkage of dendritic spines.

    PubMed

    Noguchi, Jun; Hayama, Tatsuya; Watanabe, Satoshi; Ucar, Hasan; Yagishita, Sho; Takahashi, Noriko; Kasai, Haruo

    2016-01-01

    Dendritic spines are the postsynaptic sites of most excitatory synapses in the brain, and spine enlargement and shrinkage give rise to long-term potentiation and depression of synapses, respectively. Because spine structural plasticity is accompanied by remodeling of actin scaffolds, we hypothesized that the filamentous actin regulatory protein cofilin plays a crucial role in this process. Here we investigated the diffusional properties of cofilin, the actin-severing and depolymerizing actions of which are activated by dephosphorylation. Cofilin diffusion was measured using fluorescently labeled cofilin fusion proteins and two-photon imaging. We show that cofilins are highly diffusible along dendrites in the resting state. However, during spine enlargement, wild-type cofilin and a phosphomimetic cofilin mutant remain confined to the stimulated spine, whereas a nonphosphorylatable mutant does not. Moreover, inhibition of cofilin phosphorylation with a competitive peptide disables spine enlargement, suggesting that phosphorylated-cofilin accumulation is a key regulator of enlargement, which is localized to individual spines. Conversely, spine shrinkage spreads to neighboring spines, even though triggered by weaker stimuli than enlargement. Diffusion of exogenous cofilin injected into a pyramidal neuron soma causes spine shrinkage and reduced PSD95 in spines, suggesting that diffusion of dephosphorylated endogenous cofilin underlies the spreading of spine shrinkage and long-term depression. PMID:27595610

  17. The architecture of actin filaments and the ultrastructural location of actin-binding protein in the periphery of lung macrophages.

    PubMed

    Hartwig, J H; Shevlin, P

    1986-09-01

    cell cytoskeletons and of an actin gel made with actin-binding protein with anti-actin-binding protein IgG and anti-IgG-coated gold beads resulted in the deposition of clusters of gold at points where filaments intersect and at the ends of filaments that may have been in contact with the membrane before its removal with detergent. In the actin gel made with actin-binding protein, 75% of actin-fiber intersections labeled, and the filament spacing between intersections is consistent with that predicted on theoretical grounds if each added actin-binding protein molecule cross-links two filaments to form an intersection in the gel.(ABSTRACT TRUNCATED AT 400 WORDS)

  18. Reconstitution and regulation of actin gel-sol transformation with purified filamin and villin.

    PubMed

    Nunnally, M H; Powell, L D; Craig, S W

    1981-03-10

    Gel-sol transformation of actin filaments, a process essential for cell motility, can be reconstituted in vitro and regulated in a predictable fashion by the combined action of villin and filamin. Measurements made in a low shear falling ball viscometer show that mixtures of actin, villin, and filamin exist either as a gel (yield point greater than or equal to 140 dynes/cm2) or as a low viscosity liquid depending on the relative ration of villin:actin. Filamin induces gelation of F-actin by forming stable cross-links between actin filaments. Villin inhibits filamin-induced F-actin gelation, but the effect can be overcome by increasing the amount of filamin. Sedimentation assays show that villin does not inhibit gelation of actin by preventing filamin from binding to F-actin. Results from viscosity measurements and filament length determinations show that villin increases actin filament number by reducing the average filament length without altering the total amount of polymer. Because the gel point of a fixed amount of polymer is sharply dependent on the ratio of cross-links to number of polymers, the solation effect of villin might be explained by its effect on filament number. Based on the network theory of gel formation, calculations of the amount of additional cross-linker required to overcome the effect of a known increase in the number of actin filaments agree reasonably well with experimental findings. These results document the existence of cellular proteins which could regulate gel-sol transformation in vivo by their effect on actin polymer length and, therefore, on actin filament number.

  19. Nuclear Function of Subclass I Actin-Depolymerizing Factor Contributes to Susceptibility in Arabidopsis to an Adapted Powdery Mildew Fungus1[OPEN

    PubMed Central

    Inada, Noriko; Higaki, Takumi; Hasezawa, Seiichiro

    2016-01-01

    Actin-depolymerizing factors (ADFs) are conserved proteins that function in regulating the structure and dynamics of actin microfilaments in eukaryotes. In this study, we present evidence that Arabidopsis (Arabidopsis thaliana) subclass I ADFs, particularly ADF4, functions as a susceptibility factor for an adapted powdery mildew fungus. The null mutant of ADF4 significantly increased resistance against the adapted powdery mildew fungus Golovinomyces orontii. The degree of resistance was further enhanced in transgenic plants in which the expression of all subclass I ADFs (i.e. ADF1–ADF4) was suppressed. Microscopic observations revealed that the enhanced resistance of adf4 and ADF1-4 knockdown plants (ADF1-4Ri) was associated with the accumulation of hydrogen peroxide and cell death specific to G. orontii-infected cells. The increased resistance and accumulation of hydrogen peroxide in ADF1-4Ri were suppressed by the introduction of mutations in the salicylic acid- and jasmonic acid-signaling pathways but not by a mutation in the ethylene-signaling pathway. Quantification by microscopic images detected an increase in the level of actin microfilament bundling in ADF1-4Ri but not in adf4 at early G. orontii infection time points. Interestingly, complementation analysis revealed that nuclear localization of ADF4 was crucial for susceptibility to G. orontii. Based on its G. orontii-infected-cell-specific phenotype, we suggest that subclass I ADFs are susceptibility factors that function in a direct interaction between the host plant and the powdery mildew fungus. PMID:26747284

  20. Inter-α-inhibitor Impairs TSG-6-induced Hyaluronan Cross-linking*

    PubMed Central

    Baranova, Natalia S.; Foulcer, Simon J.; Briggs, David C.; Tilakaratna, Viranga; Enghild, Jan J.; Milner, Caroline M.; Day, Anthony J.; Richter, Ralf P.

    2013-01-01

    Under inflammatory conditions and in the matrix of the cumulus-oocyte complex, the polysaccharide hyaluronan (HA) becomes decorated covalently with heavy chains (HCs) of the serum glycoprotein inter-α-inhibitor (IαI). This alters the functional properties of the HA as well as its structural role within extracellular matrices. The covalent transfer of HCs from IαI to HA is catalyzed by TSG-6 (tumor necrosis factor-stimulated gene-6), but TSG-6 is also known as a HA cross-linker that induces condensation of the HA matrix. Here, we investigate the interplay of these two distinct functions of TSG-6 by studying the ternary interactions of IαI and TSG-6 with well defined films of end-grafted HA chains. We demonstrate that TSG-6-mediated cross-linking of HA films is impaired in the presence of IαI and that this effect suppresses the TSG-6-mediated enhancement of HA binding to CD44-positive cells. Furthermore, we find that the interaction of TSG-6 and IαI in the presence of HA gives rise to two types of complexes that independently promote the covalent transfer of heavy chains to HA. One type of complex interacts very weakly with HA and is likely to correspond to the previously reported covalent HC·TSG-6 complexes. The other type of complex is novel and binds stably but noncovalently to HA. Prolonged incubation with TSG-6 and IαI leads to HA films that contain, in addition to covalently HA-bound HCs, several tightly but noncovalently bound molecular species. These findings have important implications for understanding how the biological activities of TSG-6 are regulated, such that the presence or absence of IαI will dictate its function. PMID:24005673

  1. Vascular peroxidase-1 is rapidly secreted, circulates in plasma, and supports dityrosine cross-linking reactions.

    PubMed

    Cheng, Guangjie; Li, Hong; Cao, Zehong; Qiu, Xiaoyun; McCormick, Sally; Thannickal, Victor J; Nauseef, William M

    2011-10-01

    Members of the peroxidase-cyclooxygenase superfamily catalyze biochemical reactions essential to a broad spectrum of biological processes, including host defense, thyroid hormone biosynthesis, and modification of extracellular matrix, as well as contributing to the pathogenesis of chronic inflammatory diseases. We recently identified a novel member of this family, vascular peroxidase-1 (VPO1), that is highly expressed in the human cardiovascular system. Its biosynthesis and enzymatic properties are largely unknown. Here, we report that VPO1 was rapidly and efficiently secreted into the extracellular space when the gene was stably expressed in human embryonic kidney (HEK) cells. Secreted VPO1 is a monomer with complex N-linked oligosaccharides and exhibits peroxidase activity. Biosynthesis of endogenous VPO1 by cultured human umbilical vein endothelial cells (HUVECs) shares features exhibited by heterologous expression of recombinant VPO1 (rVPO1) in HEK cells. The proinflammatory agents lipopolysaccharide and tumor necrosis factor-α induce expression of VPO1 mRNA and protein in HUVECs. Furthermore, murine and bovine sera and human plasma contain enzymatically active VPO1. rVPO1 exhibits spectral and enzymatic properties characteristic of the peroxidase-cyclooxygenase family, except with regard to its heat stability. rVPO1 catalyzes tyrosyl radical formation and promotes dityrosine cross-linking. Taken together, these data demonstrate that VPO1 is a glycosylated heme peroxidase that is actively secreted into circulating plasma by vascular endothelial cells and shares several features with other members of the peroxidase-cyclooxygenase family, including the catalysis of dityrosine formation. PMID:21798344

  2. Protein cross-linking and oligomerization through dityrosine formation upon exposure to ozone

    NASA Astrophysics Data System (ADS)

    Liu, Fobang; Kampf, Christopher; Reinmuth-Selzle, Kathrin; Berkemeier, Thomas; Shiraiwa, Manabu; Pöschl, Ulrich

    2015-04-01

    Air pollution is a potential factor for the increasing prevalence of allergic diseases. Airborne allergenic proteins can be directly exposed to air pollution promoting post-translational modifications, which can enhance the allergenic potential of proteins. The formation of dimers or oligomers of allergenic proteins has been reported to result in an enhanced allergenicity. However, the oligomerization process for proteins at atmospherically relevant concentration of O3 is still largely unknown. In this study, the kinetics and reaction mechanism of protein oligomerization upon ozone exposure were studied at atmospherically relevant ozone concentrations and relative humidity (RH) in coated-wall flow tube experiments. Bovine Serum Albumin (BSA) was used as a model protein. Protein ozone exposure was studied for different protein phase-states, i.e. amorphous solid (45% RH experiments), semi-solid (96% RH experiments) and liquid (bulk solution experiments) to account for the differences of phase in atmospheric particulates, e.g., aerosol particles and cloud droplets. Product analysis was performed using a size exclusion chromatography-high performance liquid chromatography-diode array detector (SEC-HPLC-DAD). We demonstrate that protein cross-linking upon ozone exposure can be attributed to the formation of covalent intermolecular dityrosine species by gel electrophoretic and fluorescence spectroscopic methods. The exposure experiments indicate that in addition to ozone concentration, the oligomerization process was depending on the phase-state of protein. In liquid-phase experiments, dimer formation was significantly enhanced, thus indicating a potential relevance of in-cloud processes for protein oligomerization. The reactive turnover is higher at 96% RH compared to 45% RH, indicating a higher bulk diffusion coefficient at high RH, which is explicitly resolved by kinetic modeling. Further, the reactive turnover showed a strong correlation to particle surface

  3. Gauging and Tuning Cross-Linking Kinetics of Catechol-PEG Adhesives via Catecholamine Functionalization.

    PubMed

    Paez, Julieta I; Ustahüseyin, Oya; Serrano, Cristina; Ton, Xuan-Anh; Shafiq, Zahid; Auernhammer, Günter K; d'Ischia, Marco; del Campo, Aránzazu

    2015-12-14

    The curing time of an adhesive material is determined by the polymerization and cross-linking kinetics of the adhesive formulation and needs to be optimized for the particular application. Here, we explore the possibility of tuning the polymerization kinetics and final mechanical properties of tissue-adhesive PEG gels formed by polymerization of end-functionalized star-PEGs with catecholamines with varying substituents. We show strong differences in cross-linking time and cohesiveness of the final gels among the catecholamine-PEG variants. Installation of an electron-withdrawing but π-electron donating chloro substituent on the catechol ring resulted in faster and more efficient cross-linking, while opposite effects were observed with the strongly electron-withdrawing nitro group. Chain substitution slowed down the kinetics and hindered cross-linking due either to chain breakdown (β-OH group, in norepinephrine) or intramolecular cyclization (α-carboxyl group, in DOPA). Interesting perspectives derive from use of mixtures of catecholamine-PEG precursors offering further opportunities for fine-tuning of the curing parameters. These are interesting properties for the application of catecholamine-PEG gels as tissue glues or biomaterials for cell encapsulation. PMID:26583428

  4. Cytotoxicity and internalization of Pluronic micelles stabilized by core cross-linking.

    PubMed

    Arranja, Alexandra; Schroder, André P; Schmutz, Marc; Waton, Gilles; Schosseler, François; Mendes, Eduardo

    2014-12-28

    A UV-cross-linkable agent was incorporated and polymerized in Pluronic micelle core to create an interpenetrating polymer network (IPN) of poly(pentaerythritol tetraacrylate). This stabilization prevented micelle disruption below the critical micelle temperature (CMT) and concentration (CMC), while maintaining the integrity of the PEO corona and the hydrophobic properties of the PPO core. The prepared stabilized spherical micelles of Pluronic P94 and F127 presented hydrodynamic diameters ranging from 40 to 50 nm. The stability of cross-linked Pluronic micelles at 37 °C in the presence of serum proteins was studied and no aggregation of the micelles was observed, revealing the colloidal stability of the system. Cytotoxicity experiments in NIH/3T3 mouse fibroblasts revealed that the presence of the cross-linking agent did not induce any further toxicity in comparison to the respective pure polymer solutions. Furthermore, stabilized micelles of Pluronic P94 were shown to be less toxic than the polymer itself. A hydrophobic fluorescent probe (Nile red) was absorbed in the cross-linked core of pre-stabilized micelles to mimic the incorporation of a poorly water-soluble drug, and the internalization and intracellular localization of Nile red was studied by confocal microscopy at different incubation times. Overall, the results indicate that Pluronic micelles stabilized by core cross-linking are capable of delivering hydrophobic components physically entrapped in the micelles, thus making them a potential candidate as a delivery platform for imaging or therapy of cancer.

  5. Effect of the cross-linking density on the thermoresponsive behavior of hollow PNIPAM microgels.

    PubMed

    Contreras-Cáceres, Rafael; Schellkopf, Leonard; Fernández-López, Cristina; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge; Stamm, Manfred

    2015-01-27

    We report on the fabrication of thermally responsive hollow pNIPAM particles through the oxidation of the metal core in an Au@pNIPAM system. The selective oxidation of the Au core is achieved by addition of AuCl4(-) to an aqueous dispersion of Au@pNIPAM particles in the presence of cetyltrimethylammonium bromide (CTAB). We fabricate hollow pNIPAM particles with three cross-linking densities (N,N'-methylenebis(acrylamide), BA, at 5%, 10%, and 17.5%). The study of the effect of the amount of BA within the microgel network was performed by dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM), showing its key role in determining the final hollow structure and thermal response. While the thermal responsiveness is largely achieved at low cross-linking densities, the hollow structure only remains at larger cross-linking densities. This was further confirmed by cryo-TEM analysis of hollow pNIPAM particles below and above the volume phase transition temperature (VPTT). Thus, it clearly shows (i) the shrinking of particle size with the temperature at low cross-linking density and (ii) the dependence of particle size on the amount of cross-linker for the final hollow pNIPAM structure. Observed differences in the hollow pNIPAM structure are attributed to different elastic contributions (Π(elas)), showing higher elasticity for microgels synthesized at lower amount of BA.

  6. Direct Patterning of Organic Functional Polymers through Conventional Photolithography and Noninvasive Cross-Link Agents.

    PubMed

    Squillaci, Marco A; Qiu, Feng; Aliprandi, Alessandro; Zhang, Fan; Feng, Xinliang; Samorì, Paolo

    2016-07-01

    A new technique for direct patterning of functional organic polymers using commercial photolithography setups with a minimal loss of the materials' performances is reported. This result is achieved through novel cross-link agents made by boron- and fluorine-containing heterocycles that can react between themselves upon UV- and white-light exposure.

  7. Cross-linking oppositely charged oil-in-water emulsions to enhance heteroaggregate stability.

    PubMed

    Maier, Christiane; Oechsle, Anja M; Weiss, Jochen

    2015-11-01

    The formation and subsequent enzymatic and chemical cross-linking of heteroaggregates from oppositely charged oil-in-water (O/W) emulsions was investigated. For this purpose, 10% (w/w) oil-in-water emulsions (d43<1 μm) were prepared at pH 4 using a positively charged emulsifier (Nα-lauroyl-L-arginine ethyl ester (LAE), cold water fish gelatin, or whey protein isolate) or a negatively charged one (sugar beet pectin or Quillaja saponins). The oppositely charged emulsions were then combined at a volume ratio of 1:1 and treated with laccase or glutaraldehyde in order to further stabilize the electrostatically attached aggregates by covalently cross-linking the oppositely charged membranes. Emulsions and heteroaggregates were characterized by their rheological properties, their surface charge, particle size distribution, and microstructure using dynamic and static light scattering as well as confocal laser scanning microscopy. Prior to cross-linking, the emulsifiers' stabilization mechanism were found to greatly influence the formation of heteroaggregates. Laccase treatment (1.34 mU/mL) increased aggregate expansion by ca. 30% for the combined emulsions stabilized by Quillaja saponins/whey protein isolate, while combined Quillaja saponins/fish gelatin stabilized emulsions remained unaffected. When combined emulsions were treated with 50mM glutaraldehyde, aggregate size significantly increased 2- and 3-fold, respectively. Thus, our study provides novel insights into the enzymatic and chemical cross-linking of heteroaggregates composed of oppositely charged O/W emulsions.

  8. The counterbend phenomenon in flagellar axonemes and cross-linked filament bundles.

    PubMed

    Gadêlha, Hermes; Gaffney, Eamonn A; Goriely, Alain

    2013-07-23

    Recent observations of flagellar counterbend in sea urchin sperm show that the mechanical induction of curvature in one part of a passive flagellum induces a compensatory countercurvature elsewhere. This apparent paradoxical effect cannot be explained using the standard elastic rod theory of Euler and Bernoulli, or even the more general Cosserat theory of rods. Here, we develop a geometrically exact mechanical model to describe the statics of microtubule bundles that is capable of predicting the curvature reversal events observed in eukaryotic flagella. This is achieved by allowing the interaction of deformations in different material directions, by accounting not only for structural bending, but also for the elastic forces originating from the internal cross-linking mechanics. Large-amplitude static configurations can be described analytically, and an excellent match between the model and the observed counterbend deformation was found. This allowed a simultaneous estimation of multiple sperm flagellum material parameters, namely the cross-linking sliding resistance, the bending stiffness, and the sperm head junction compliance ratio. We further show that small variations on the empirical conditions may induce discrepancies for the evaluation of the flagellar material quantities, so that caution is required when interpreting experiments. Finally, our analysis demonstrates that the counterbend emerges as a fundamental property of sliding resistance in cross-linked filamentous polymer bundles, which also suggests that cross-linking proteins may contribute to the regulation of the flagellar waveform in swimming sperm via counterbend mechanics. PMID:23824293

  9. Stabilization of soybean oil bodies by enzyme (laccase) cross-linking of adsorbed beet pectin coatings.

    PubMed

    Chen, Bingcan; McClements, David Julian; Gray, David A; Decker, Eric Andrew

    2010-08-25

    Soybean oil bodies are naturally coated by a layer of phospholipids and oleosin proteins, which protect them from in vivo environmental stresses. When oil bodies are incorporated into food products, they encounter new environmental stresses such as changes in pH, ionic strength, and temperature. Consequently, additional protection mechanisms are often needed to stabilize them. The purpose of this study was to determine whether soybean oil bodies could be stabilized by coating them with a layer of cross-linked anionic polysaccharide (beet pectin). The beet pectin layer was cross-linked via its ferulic acid groups using laccase (an enzyme that catalyzes the oxidation of phenolic groups). Oil body suspensions were prepared that contained 1 wt % oil and 0.06 wt % beet pectin at pH 7 and were then adjusted to pH 4.5 to promote electrostatic deposition of the beet pectin molecules onto the surfaces of the oil bodies. Laccase was then added to promote cross-linking of the adsorbed beet pectin layer. Cross-linked pectin-coated oil bodies had similar or better stability than uncoated oil bodies to pH changes (3 to 7), NaCl addition (0 to 500 mM), and freeze-thaw cycling (-20 °C for 22 h; +40 °C for 2 h). These pectin-coated oil bodies may provide a convenient means of incorporating soybean oil into food and other products.

  10. Endogenous and enhanced oxidative cross-linking in wheat flour mill streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The oxidative cross-linking of arabinoxylan and protein polymers is partially responsible for variation in end-use quality of wheat flour; specifically, differences in batter viscosity as well as variation in bread and cookie quality. A better understanding of the variation in oxidative cross-linkin...

  11. Baking Performance of Phosphorylated Cross-Linked Resistant Starch in Low-Moisture Bakery Goods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorylated cross-linked resistant starch (RS) is a type 4 RS, which can be used for enhancing the benefits of dietary fiber. The baking performance of the RS was explored using wire-cut cookie baking and benchtop chemically-leavened cracker baking methods to produce low-moisture baked goods (coo...

  12. A minimal model for stabilization of biomolecules by hydrocarbon cross-linking.

    PubMed

    Hamacher, K; Hübsch, A; McCammon, J A

    2006-04-28

    Programmed cell death regulating protein motifs play an essential role in the development of an organism, its immune response, and disease-related cellular mechanisms. Among those motifs the BH3 domain of the BCL-2 family is found to be of crucial importance. Recent experiments showed how the isolated, otherwise unstructured BH3 peptide can be modified by a hydrocarbon linkage to regain function. We parametrized a reduced, dynamic model for the stability effects of such covalent cross-linking and confirmed that the model reproduces the reinforcement of the structural stability of the BH3 motif by cross-linking. We show that an analytically solvable model for thermostability around the native state is not capable of reproducing the stabilization effect. This points to the crucial importance of the peptide dynamics and the fluctuations neglected in the analytic model for the cross-linking system to function properly. This conclusion is supported by a thorough analysis of a simulated Go model. The resulting model is suitable for rational design of generic cross-linking systems in silicio.

  13. Is dialdehyde starch a valuable cross-linking agent for collagen/elastin based materials?

    PubMed

    Skopinska-Wisniewska, J; Wegrzynowska-Drzymalska, K; Bajek, A; Maj, M; Sionkowska, A

    2016-04-01

    Collagen and elastin are the main structural proteins in mammal bodies. They provide mechanical support, strength, and elasticity to various organs and tissues, e.g. skin, tendons, arteries, and bones. They are readily available, biodegradable, biocompatible and they stimulate cell growth. The physicochemical properties of collagen and elastin-based materials can be modified by cross-linking. Glutaraldehyde is one of the most efficient cross-linking agents. However, the unreacted molecules can be released from the material and cause cytotoxic reactions. Thus, the aim of our work was to investigate the influence of a safer, macromolecular cross-linking agent--dialdehyde starch (DAS). The properties of hydrogels based on collagen/elastin mixtures (95/5, 90/10) containing 5 and 10% of DAS and neutralized via dialysis against deionized water were tested. The homogenous, transparent, stiff hydrogels were obtained. The DAS addition causes the formation of intermolecular cross-linking bonds but does not affect the secondary structure of the proteins. As a result, the thermal stability, mechanical strength, and, surprisingly, swelling ability increased. At the same time, the surface properties test and in vitro study show that the materials are attractive for 3T3 cells. Moreover, the materials containing 10% of DAS are more resistant to enzymatic degradation.

  14. Cross-linking carbon nanotubes by glycidyl azide polymer via click chemistry.

    PubMed

    Wei, Zhong; Du, Liang; Wang, Lin

    2012-01-01

    Functionalization and cross linking of carbon nanotubes was necessary to fabricate nanotube composites with good interfacial properties and mechanical performance. Glycidyl azide polymer was used as cross-linker of carbon nanotubes via a simple clickable one step reaction initiated by decomposition of azide groups. Both heating and UV irradiation were used to carry out the reaction. FTIR and Raman spectra confirmed the decomposition of azide groups and the anchoring of glycidyl azide polymer onto the surface of carbon nanotubes. Thermal gravity analysis showed that the polymer anchored onto carbon nanotubes was about 10% of the total mass in the solid product, but the efficiency of the reaction was low. The result of tensile test using bulky paper infiltrated with 10% GAP showed that cross linking could bring forth a higher strength, about 4 times higher than the not cross linked. The success of cross linking carbon nanotubes by glycidyl azide polymer paves a new way to fabrication of ultra strong carbon nanotube composites.

  15. ROMP-based thermosetting polymers from modified castor oil with various cross-linking agents

    NASA Astrophysics Data System (ADS)

    Ding, Rui

    Polymers derived from bio-renewable resources are finding an increase in global demand. In addition, polymers with distinctive functionalities are required in certain advanced fields, such as aerospace and civil engineering. In an attempt to meet both these needs, the goal of this work aims to develop a range of bio-based thermosetting matrix polymers for potential applications in multifunctional composites. Ring-opening metathesis polymerization (ROMP), which recently has been explored as a powerful method in polymer chemistry, was employed as a unique pathway to polymerize agricultural oil-based reactants. Specifically, a novel norbornyl-functionalized castor oil alcohol (NCA) was investigated to polymerize different cross-linking agents using ROMP. The effects of incorporating dicyclopentadiene (DCPD) and a norbornene-based crosslinker (CL) were systematically evaluated with respect to curing behavior and thermal mechanical properties of the polymers. Isothermal differential scanning calorimetry (DSC) was used to investigate the conversion during cure. Dynamic DSC scans at multiple heating rates revealed conversion-dependent activation energy by Ozawa-Flynn-Wall analysis. The glass transition temperature, storage modulus, and loss modulus for NCA/DCPD and NCA/CL copolymers with different cross-linking agent loading were compared using dynamic mechanical analysis. Cross-link density was examined to explain the very different dynamic mechanical behavior. Mechanical stress-strain curves were developed through tensile test, and thermal stability of the cross-linked polymers was evaluated by thermogravimetric analysis to further investigate the structure-property relationships in these systems.

  16. Cross-Linked Nanoporous Materials from Reactive and Multifunctional Block Polymers

    SciTech Connect

    Seo, Myungeun; Amendt, Mark A.; Hillmyer, Marc A.

    2012-10-10

    Polylactide-b-poly(styrene-co-2-hydroxyethylmethacrylate) (PLA-b-P(S-co-HEMA)) and polylactide-b-poly(styrene-co-2-hydroxyethylacrylate) (PLA-b-P(S-co-HEA)) were synthesized by combination of ring-opening polymerization and reversible addition-fragmentation chain transfer polymerization. {sup 1}H nuclear magnetic resonance spectroscopy and size exclusion chromatography data indicated that the polymerizations were controlled and that hydroxyl groups were successfully incorporated into the block polymers. The polymers were reacted with 4,4{prime}-methylenebis(phenyl isocyanate) (MDI) to form the corresponding cross-linked materials. The materials were annealed at 150 C to complete the coupling reaction. Robust nanoporous materials were obtained from the cross-linked polymers by treatment with aqueous base to hydrolyze the PLA phase. Small-angle X-ray scattering study combined with scanning electron microscopy showed that MDI-cross-linked PLA-b-P(S-co-HEMA)/PLA-b-P(S-co-HEA) can adopt lamellar, hexagonally perforated lamellar, and hexagonally packed cylindrical morphologies after annealing. In particular, the HPL morphology was found to evolve from lamellae due to increase in volume fraction of PS phase as MDI reacted with hydroxyl groups. The reaction also kinetically trapped the morphology by cross-linking. Bicontinuous morphologies were also observed when dibutyltin dilaurate was added to accelerate reaction between the polymer and MDI.

  17. Surface fabrication of hollow microspheres from N-methylated chitosan cross-linked with glutaraldehyde.

    PubMed

    Peng, Xianghong; Zhang, Lina

    2005-02-01

    We have successfully prepared biocompatible and biodegradable hollow microspheres with sizes between 2 and 5 mum using cyclohexane droplets as a template and the N-methylated chitosan (NMC) cross-linked with glutaraldehyde (GA) as the shell. The structure, morphology, and formation process of the hollow microspheres were characterized by FT-IR, (1)H and (13)C NMR, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results revealed that the microspheres exhibited a very smooth and hollow structure. This work confirmed that the hollow microspheres were accomplished by fabricating on the basis of chemical cross-linking on the surface of the emulsion droplets and by removing cyclohexane as core. The results from SEM and TEM indicated that the emulsion droplets covered with cross-linked NMC in the oil-in-water system aggregated together to form a precipitate of microspheres by coagulating with acetone. Moreover, the cross-linked NMC on the surface of the microspheres continuously cured to form the tight shell, whereas the inner area became a cavity with increase of the aging time, leading to the hollow microspheres. In addition, an anti-infective drug, ofloxacin (Floxin), encapsulated in the microspheres more rapidly released to reach 90 wt % at pH 7.4 within 8 h than at pH 1.2.

  18. Aggressive wear testing of a cross-linked polyethylene in total knee arthroplasty.

    PubMed

    Muratoglu, Orhun K; Bragdon, Charles R; O'Connor, Daniel O; Perinchief, Rebecca S; Jasty, Murali; Harris, William H

    2002-11-01

    Recently, highly cross-linked polyethylenes with high wear and oxidation resistance have been developed. These materials may improve the in vivo performance of polyethylene components used in total knee arthroplasty. To date, the in vitro knee wear testing of these new polyethylenes has been done under conditions of normal gait. However, their critical assessment also must include aggressive in vitro fatigue and wear testing. In the current study, an aggressive in vitro knee wear and device fatigue model simulating a tight posterior cruciate ligament balance during stair climbing was developed and used to assess the performance of one type of highly cross-linked polyethylene tibial knee insert in comparison with conventional polyethylene. The highly cross-linked inserts and one group of conventional inserts were tested after sterilization. One additional group of conventional inserts was subjected to accelerated aging before testing. The articular surfaces of the inserts were inspected visually for surface delamination, cracking, and pitting at regular intervals during the test. The aged conventional polyethylene inserts showed extensive delamination and cracking as early as 50,000 cycles. In contrast, the unaged conventional and highly cross-linked polyethylene inserts did not show any subsurface cracking or delamination at 0.5 million cycles. The appearance and location of delamination that occurred in the aged conventional inserts tested with the current model previously have been observed in vivo with posterior cruciate-sparing design knee arthroplasties with a tight posterior cruciate ligament.

  19. Dynamic Heterogeneity in Highly Cross-linked Epoxy in the Vicinity of Glass Transition

    NASA Astrophysics Data System (ADS)

    Lin, Po-Han; Khare, Rajesh

    2010-03-01

    Cross-linked epoxy has been widely used in aerospace and electronics industries. The highly cross-linked nature of these systems leads to different chain dynamics as compared to the linear polymeric systems. In this work, we have used molecular dynamics (MD) simulations to study the dynamic heterogeneity in cross-linked epoxy near the glass transition temperature. Well-relaxed atomistic models of cross-linked epoxy were first created by employing the simulated annealing polymerization approach. The specific epoxy system studied consisted of diglycidyl ether of bisphenol-A (DGEBA) as the epoxy monomer and trimethylene glycol di-p-aminobenzoate (TMAB) as the cross-linker. The glass transition temperature of these model structures was determined from MD simulation by monitoring their volume-temperature behaviour in a stepwise cooling run. The chain dynamics of these systems were characterized by their local translational and orientational mobility. Furthermore, dynamic heterogeneity was studied by analyzing the spatial distribution of the mobile and immobile atoms in the system near the glass transition temperature.

  20. Preferential sites for intramolecular glucosepane cross-link formation in type I collagen: A thermodynamic study

    PubMed Central

    Collier, Thomas A.; Nash, Anthony; Birch, Helen L.; de Leeuw, Nora H.

    2015-01-01

    The extracellular matrix (ECM) undergoes progressive age-related stiffening and loss of proteolytic digestibility due to an increase in concentration of advanced glycation end products (AGEs). The most abundant AGE, glucosepane, accumulates in collagen with concentrations over 100 times greater than all other AGEs. Detrimental collagen stiffening properties are believed to play a significant role in several age-related diseases such as osteoporosis and cardiovascular disease. Currently little is known of the potential location of covalently cross-linked glucosepane formation within collagen molecules; neither are there reports on how the respective cross-link sites affect the physical and biochemical properties of collagen. Using fully atomistic molecular dynamics simulations (MD) we have identified six sites where the formation of a covalent intra-molecular glucosepane cross-link within a single collagen molecule in a fibrillar environment is energetically favourable. Identification of these favourable sites enables us to align collagen cross-linking with experimentally observed changes to the ECM. For example, formation of glucosepane was found to be energetically favourable within close proximity of the Matrix Metalloproteinase-1 (MMP1) binding site, which could potentially disrupt collagen degradation. PMID:26049074

  1. Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin.

    PubMed

    Cui, Li; Jia, Junfang; Guo, Yi; Liu, Yun; Zhu, Ping

    2014-01-01

    The interpenetrating polymer networks (IPN) hydrogels based on chitosan and gelatin using genipin as the cross-linker were prepared and characterized. The IPN formation of the genipin-cross-linked chitosan/gelatin hydrogel was confirmed by means of the instrinsic viscosity measurement, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and the ninhydrin assays. The instrinsic viscosity measurement, FT-IR and SEM suggested that chitosan and gelatin were miscible in the molecular level. The miscibility leads to the formation of IPN after cross-linking. FT-IR also examined the cross-linking mechanism of genipin with primary amino groups. The degree of cross-linking increased with increase genipin concentration. Swelling results revealed that the IPN hydrogels are pH-sensitive, exhibiting reversibility and rather rapidly response in swelling to pH changes. It is expected this IPN hydrogel has potential as controlled drug delivery system or as alternative sorbents for biomedical and environmental use as pH altered. PMID:24274476

  2. Spine fusion cross-link causing delayed dural erosion and CSF leak: case report.

    PubMed

    Rahmathulla, Gazanfar; Deen, H Gordon

    2015-04-01

    The past 2 decades have seen a considerable increase in the number of lumbar spinal fusion surgeries. To enhance spinal stabilization and fusion, make the construct resistant to or stiffer for axial stress loading, lateral bending, and torsional stresses, cross-links and connectors were designed and included in a rod-screw construct. The authors present the case of a 49-year-old woman who presented 11 years after undergoing an L4-5 decompression and fusion in which a pedicle screw-rod construct with an integrated cross-link was designed to attach onto the pedicle screws. The patient's response at the time to the initial surgery was excellent; however, at the time of presentation 11 years later, she had significant postural headaches, severe neurogenic claudication, and radiculopathy. Imaging revealed canal compression across the instrumented levels and a possible thickened adherent filum terminale. Reexploration of the level revealed a large erosive dural defect with a CSF leak, spinal canal compression, and a thickened filum at the level of the cross-link. To the author's knowledge, such complications have not been reported in literature. The authors discuss this rare complication of spinal fusion and the need to avoid dural compression when cross-links are used. PMID:25635637

  3. Effects of mechanical stretch on collagen and cross-linking in engineered blood vessels.

    PubMed

    Solan, Amy; Dahl, Shannon L M; Niklason, Laura E

    2009-01-01

    It has been shown that mechanical stimulation affects the physical properties of multiple types of engineered tissues. However, the optimum regimen for applying cyclic radial stretch to engineered arteries is not well understood. To this end, the effect of mechanical stretch on the development of engineered blood vessels was analyzed in constructs grown from porcine vascular smooth muscle cells. Cyclic radial distension was applied during vessel culture at three rates: 0 beats per minute (bpm), 90 bpm, and 165 bpm. At the end of the 7-week culture period, harvested vessels were analyzed with respect to physical characteristics. Importantly, mechanical stretch at 165 bpm resulted in a significant increase in rupture strength in engineered constructs over nonstretched controls. Stress-strain data and maximal elastic moduli from vessels grown at the three stretch rates indicate enhanced physical properties with increasing pulse rate. In order to investigate the role of collagen cross-linking in the improved mechanical characteristics, collagen cross-link density was quantified by HPLC. Vessels grown with mechanical stretch had somewhat more collagen and higher burst pressures than nonpulsed control vessels. Pulsation did not increase collagen cross-link density. Thus, increased wall thickness and somewhat elevated collagen concentrations, but not collagen cross-link density, appeared to be responsible for increased burst strength.

  4. Phase diagram of selectively cross-linked block copolymers shows chemically microstructured gel.

    PubMed

    von der Heydt, Alice; Zippelius, Annette

    2015-02-01

    We study analytically the intricate phase behavior of cross-linked AB diblock copolymer melts, which can undergo two main phase transitions due to quenched random constraints. Gelation, i.e., spatially random localisation of polymers forming a system-spanning cluster, is driven by increasing the number parameter μ of irreversible, type-selective cross-links between random pairs of A blocks. Self-assembly into a periodic pattern of A/B-rich microdomains (microphase separation) is controlled by the AB incompatibility χ inversely proportional to temperature. Our model aims to capture the system's essential microscopic features, including an ensemble of random networks that reflects spatial correlations at the instant of cross-linking. We identify suitable order parameters and derive a free-energy functional in the spirit of Landau theory that allows us to trace a phase diagram in the plane of μ and χ. Selective cross-links promote microphase separation at higher critical temperatures than in uncross-linked diblock copolymer melts. Microphase separation in the liquid state facilitates gelation, giving rise to a novel gel state whose chemical composition density mirrors the periodic AB pattern. PMID:25662662

  5. Experimental scleral cross-linking increases glaucoma damage in a mouse model

    PubMed Central

    Kimball, Elizabeth C.; Nguyen, Cathy; Steinhart, Matthew R.; Nguyen, Thao D.; Pease, Mary E.; Oglesby, Ericka N.; Oveson, Brian C.; Quigley, Harry A.

    2014-01-01

    The purpose of this study was to assess the effect of a scleral cross-linking agent on susceptibility to glaucoma damage in a mouse model. CD1 mice underwent 3 subconjunctival injections of 0.5 M glyceraldehyde (GA) in 1 week, then had elevated intraocular pressure (IOP) induced by bead injection. Degree of cross-linking was measured by enzyme-linked immunosorbent assay (ELISA), scleral permeability was measured by fluorescence recovery after photobleaching (FRAP), and the mechanical effects of GA exposure were measured by inflation testing. Control mice had buffer injection or no injection in 2 separate glaucoma experiments. IOP was monitored by Tonolab and retinal ganglion cell (RGC) loss was measured by histological axon counting. To rule out undesirable effects of GA, we performed electroretinography and detailed histology of the retina. GA exposure had no detectable effects on RGC number, retinal structure or function either histologically or electrophysiologically. GA increased cross-linking of sclera by 37% in an ELISA assay, decreased scleral permeability (FRAP, p = 0.001), and produced a steeper pressure—strain behavior by in vitro inflation testing. In two experimental glaucoma experiments, GA-treated eyes had greater RGC axon loss from elevated IOP than either buffer-injected or control eyes, controlling for level of IOP exposure over time (p = 0.01, and 0.049, multivariable regression analyses). This is the first report that experimental alteration of the sclera, by cross-linking, increases susceptibility to RGC damage in mice. PMID:25285424

  6. Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch.

    PubMed

    Hazarika, Bidyut Jyoti; Sit, Nandan

    2016-04-20

    Dual modification of taro starch by hydroxypropylation and cross-linking was carried out and the properties of the modified starches were investigated. Two different levels of hydroxypropylation (5 and 10%) and cross-linking (0.05 and 0.10%) were used in different sequences. The amylose contents of the starch decreased due to single and dual modification. For the dual-modified starches, the swelling, solubility and clarity was found to increase with level of hydroxypropylation and decrease with level of cross-linking. The freeze-thaw stability of the dual-modified starches was also affected by the sequence of modification. The viscosities of the cross-linked and dual-modified starches were more than native and hydroxypropylated starches. The firmness of the dual-modified starches was also higher than native and single modified starches. The dual-modified starches have benefits of both type of modifications and could be used for specific purposes e.g. food products requiring high viscosity as well as freeze-thaw stability. PMID:26876854

  7. Design of phosphated cross-linked microspheres of bael fruit gum as a biodegradable carrier.

    PubMed

    Mahammed, Nawaz; Gowda, D V; Deshpande, Rohan D; Thirumaleshwar, Shailesh

    2015-01-01

    Present work was aimed at designing of phosphated cross-linked microspheres of bael fruit gum (BFG) by emulsification method using sodium-tri-meta phosphate as a cross-linking agent for treatment of colon cancer using 5-fluorouracil as model drug. Stirring speed was found to be 1,000 rpm for about 5 h to be optimal to obtain reproducible microspheres. It was found that there is an increase in particle size as polymer concentration is increased whereas a reduction in particle size was observed as there is increase in stirring speed. Cross-linked BFG microspheres were successfully prepared by emulsification method. Optimum surfactant concentration was found to be 2 % w/w. Scanning electron microscopy studies showed that the drug-loaded microspheres were non-aggregated and in spherical shape. Differential scanning calorimetry and Fourier transform infrared-spectroscopy studies showed that drug and excipients are compatible. Release studies showed that drug release was more profound in cecal medium induced with enzymes causing degradation of the cross linked BFG than that of the release showed in simulated intestinal fluid. Stability studies showed that there were no significant changes in the drug content and physical appearance of microspheres.

  8. Is dialdehyde starch a valuable cross-linking agent for collagen/elastin based materials?

    PubMed

    Skopinska-Wisniewska, J; Wegrzynowska-Drzymalska, K; Bajek, A; Maj, M; Sionkowska, A

    2016-04-01

    Collagen and elastin are the main structural proteins in mammal bodies. They provide mechanical support, strength, and elasticity to various organs and tissues, e.g. skin, tendons, arteries, and bones. They are readily available, biodegradable, biocompatible and they stimulate cell growth. The physicochemical properties of collagen and elastin-based materials can be modified by cross-linking. Glutaraldehyde is one of the most efficient cross-linking agents. However, the unreacted molecules can be released from the material and cause cytotoxic reactions. Thus, the aim of our work was to investigate the influence of a safer, macromolecular cross-linking agent--dialdehyde starch (DAS). The properties of hydrogels based on collagen/elastin mixtures (95/5, 90/10) containing 5 and 10% of DAS and neutralized via dialysis against deionized water were tested. The homogenous, transparent, stiff hydrogels were obtained. The DAS addition causes the formation of intermolecular cross-linking bonds but does not affect the secondary structure of the proteins. As a result, the thermal stability, mechanical strength, and, surprisingly, swelling ability increased. At the same time, the surface properties test and in vitro study show that the materials are attractive for 3T3 cells. Moreover, the materials containing 10% of DAS are more resistant to enzymatic degradation. PMID:26886815

  9. Vitamin C hinders radiation cross-linking in aqueous poly(vinyl alcohol) solutions

    NASA Astrophysics Data System (ADS)

    Oral, Ebru; Bodugoz-Senturk, Hatice; Macias, Celia; Muratoglu, Orhun K.

    2007-12-01

    Poly(vinyl alcohol) (PVA) is a promising semi-crystalline material for biomedical applications. It is soluble in water and can be formed into hydrogels by freezing and thawing or crystallizing from an aqueous theta solution such as that of polyethylene glycol (PEG). Radiation cross-linking caused by sterilization or high dose irradiation of concentrated PVA solutions could compromise some properties of these hydrogels. Therefore, we hypothesized that radiation cross-linking of PVA solutions and PVA-PEG theta gels could be prevented by using the antioxidant vitamin C as an anticross-linking agent. Our hypothesis tested positive. Vitamin C concentrations of 0.75 and 4.5 mol/mol of PVA repeating unit could prevent cross-linking in 17.5 wt/v% PVA solutions made with PVA molecular weight of 115,000 g/mol irradiated to 25 and 100 kGy, respectively. Vitamin C also prevented cross-linking in 25 kGy irradiated PVA-PEG theta gels containing up to 5 wt% PEG and decreased the viscosity of those up to 39 wt%.

  10. Cross-linking oppositely charged oil-in-water emulsions to enhance heteroaggregate stability.

    PubMed

    Maier, Christiane; Oechsle, Anja M; Weiss, Jochen

    2015-11-01

    The formation and subsequent enzymatic and chemical cross-linking of heteroaggregates from oppositely charged oil-in-water (O/W) emulsions was investigated. For this purpose, 10% (w/w) oil-in-water emulsions (d43<1 μm) were prepared at pH 4 using a positively charged emulsifier (Nα-lauroyl-L-arginine ethyl ester (LAE), cold water fish gelatin, or whey protein isolate) or a negatively charged one (sugar beet pectin or Quillaja saponins). The oppositely charged emulsions were then combined at a volume ratio of 1:1 and treated with laccase or glutaraldehyde in order to further stabilize the electrostatically attached aggregates by covalently cross-linking the oppositely charged membranes. Emulsions and heteroaggregates were characterized by their rheological properties, their surface charge, particle size distribution, and microstructure using dynamic and static light scattering as well as confocal laser scanning microscopy. Prior to cross-linking, the emulsifiers' stabilization mechanism were found to greatly influence the formation of heteroaggregates. Laccase treatment (1.34 mU/mL) increased aggregate expansion by ca. 30% for the combined emulsions stabilized by Quillaja saponins/whey protein isolate, while combined Quillaja saponins/fish gelatin stabilized emulsions remained unaffected. When combined emulsions were treated with 50mM glutaraldehyde, aggregate size significantly increased 2- and 3-fold, respectively. Thus, our study provides novel insights into the enzymatic and chemical cross-linking of heteroaggregates composed of oppositely charged O/W emulsions. PMID:26298085

  11. Effect of different cross-linking methods and processing parameters on drug release from hydrogel beads.

    PubMed

    Mitra, Shataneek; Maity, Siddhartha; Sa, Biswanath

    2015-03-01

    The purpose of this work was to evaluate different methods of cross-linking for developing diltiazem-resin complex loaded carboxymethyl xanthan gum (CMXG) hydrogel beads to achieve highest possible drug entrapment and extended release for effective cardio-protection. The hydrogel beads were prepared by ionic cross-linking and dual cross-linking using simultaneous (SIM) and sequential (SEQ) methods. Among the three methods, SEQ method produced smaller sized beads having higher drug entrapment efficacy and prolonged release characteristics as evidenced from mean dissolution time and diffusion coefficient of drug. Keeping the concentration of ionic cross-linker constant, increase in the amount of covalent cross-linker and cross-linking time decreased the drug release. Higher release of the drug in acid solution was attributed to the higher solubility of the basic drug and higher swelling of the matrices in acid solution. Comparison of FTIR spectra, drug content and dissolution profiles indicated that the drug was stable in the beads when kept under stress condition up to 3 months. In conclusion, the sequential method was found superior for producing CMXG hydrogel beads as a prolonged release delivery device in cardiovascular diseases. PMID:25576745

  12. Temperature dependence of creep compliance of highly cross-linked epoxy: A molecular simulation study

    SciTech Connect

    Khabaz, Fardin Khare, Ketan S. Khare, Rajesh

    2014-05-15

    We have used molecular dynamics (MD) simulations to study the effect of temperature on the creep compliance of neat cross-linked epoxy. Experimental studies of mechanical behavior of cross-linked epoxy in literature commonly report creep compliance values, whereas molecular simulations of these systems have primarily focused on the Young’s modulus. In this work, in order to obtain a more direct comparison between experiments and simulations, atomistically detailed models of the cross-linked epoxy are used to study their creep compliance as a function of temperature using MD simulations. The creep tests are performed by applying a constant tensile stress and monitoring the resulting strain in the system. Our results show that simulated values of creep compliance increase with an increase in both time and temperature. We believe that such calculations of the creep compliance, along with the use of time temperature superposition, hold great promise in connecting the molecular insight obtained from molecular simulation at small length- and time-scales with the experimental behavior of such materials. To the best of our knowledge, this work is the first reported effort that investigates the creep compliance behavior of cross-linked epoxy using MD simulations.

  13. Hierarchically porous polymers from hyper-cross-linked block polymer precursors.

    PubMed

    Seo, Myungeun; Kim, Soobin; Oh, Jaehoon; Kim, Sun-Jung; Hillmyer, Marc A

    2015-01-21

    We report synthesis of hierarchically porous polymers (HPPs) consisting of micropores and well-defined 3D continuous mesopores by combination of hyper-cross-linking and block polymer self-assembly. Copolymerization of 4-vinylbenzyl chloride (VBzCl) with divinylbenzene (DVB) in the presence of polylactide (PLA) macro-chain-transfer agent produced a cross-linked block polymer precursor PLA-b-P(VBzCl-co-DVB) via reversible addition-fragmentation chain transfer polymerization. A nanoscopic bicontinuous morphology containing PLA and P(VBzCl-co-DVB) microdomains was obtained as a result of polymerization-induced microphase separation. While a basic treatment of the precursor selectively removed PLA to yield a reticulated mesoporous polymer, hyper-cross-linking of the precursor by FeCl3 generated micropores in the P(VBzCl-co-DVB) microdomain via Friedel-Crafts alkylation and simultaneously degraded PLA to produce the HPP containing micropores in the mesoporous framework. The mesopore size of the HPP could be precisely controlled from 6 to 15 nm by controlling the molar mass of PLA. We demonstrate acceleration in adsorption rate in the HPP compared to a hyper-cross-linked microporous polymer. PMID:25551291

  14. A minimal model for stabilization of biomolecules by hydrocarbon cross-linking

    NASA Astrophysics Data System (ADS)

    Hamacher, K.; Hübsch, A.; McCammon, J. A.

    2006-04-01

    Programmed cell death regulating protein motifs play an essential role in the development of an organism, its immune response, and disease-related cellular mechanisms. Among those motifs the BH3 domain of the BCL-2 family is found to be of crucial importance. Recent experiments showed how the isolated, otherwise unstructured BH3 peptide can be modified by a hydrocarbon linkage to regain function. We parametrized a reduced, dynamic model for the stability effects of such covalent cross-linking and confirmed that the model reproduces the reinforcement of the structural stability of the BH3 motif by cross-linking. We show that an analytically solvable model for thermostability around the native state is not capable of reproducing the stabilization effect. This points to the crucial importance of the peptide dynamics and the fluctuations neglected in the analytic model for the cross-linking system to function properly. This conclusion is supported by a thorough analysis of a simulated Gō model. The resulting model is suitable for rational design of generic cross-linking systems in silicio.

  15. Can para-aryl-dithiols cross-link two plasmonic noble nanoparticles as monolayer dithiolate spacers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Para-aryl-dithiols (PADTs, HS-(C6H4)n-SH, n = 1, 2, and 3) have been used extensively in molecular electronics, surface-enhanced Raman spectroscopy (SERS), and quantum electron tunneling between two gold or silver nanoparticles (AuNPs and AgNPs). One popular belief is that these dithiols cross-link ...

  16. Reversible Inter- and Intra-Microgel Cross-Linking using Disulfides

    PubMed Central

    Gaulding, Jeffrey C.; Smith, Michael H.; Hyatt, John S.; Fernandez-Nieves, Alberto; Lyon, L. Andrew

    2012-01-01

    Thermoresponsive hydrogel nanoparticles composed of poly(N-isopropylmethacrylamide) (pNIPMAm) and the disulfide-based cross-linker N,N’-bis(acryloyl)cystamine (BAC) have been prepared using a redox-initiated, aqueous precipitation polymerization approach, leading to improved stability of the disulfide bond compared to traditional thermally-initiated methods. The resultant particles demonstrate complete erosion in response to reducing conditions or thiol competition. This stands in contrast to the behavior of thermally-initiated particles, which retain a cross-linked network following disulfide cleavage due to uncontrolled chain-branching and self-cross-linking side reactions. The synthetic strategy has also been combined with the non-degradable cross-linker N,N-methylenebisacrylamide (BIS) to generate “co-cross-linked” pNIPMAm-BAC-BIS microgels. These particles are redox-responsive, swell upon BAC cross-link scission and present reactive thiols. This pendant thiol functionality was demonstrated to be useful for conjugation of thiol-reactive probes and in reversible network formation by assembling particles cross-linked by disulfide linkages. PMID:22287810

  17. Polymers and Cross-Linking: A CORE Experiment to Help Students Think on the Submicroscopic Level

    ERIC Educational Resources Information Center

    Bruce, Mitchell R. M.; Bruce, Alice E.; Avargil, Shirly; Amar, Francois G.; Wemyss, Thomas M.; Flood, Virginia J.

    2016-01-01

    The Polymers and Cross-Linking experiment is presented via a new three phase learning cycle: CORE (Chemical Observations, Representations, Experimentation), which is designed to model productive chemical inquiry and to promote a deeper understanding about the chemistry operating at the submicroscopic level. The experiment is built on two familiar…

  18. Identification of disulfide cross-linked tau dimer responsible for tau propagation

    PubMed Central

    Kim, Dohee; Lim, Sungsu; Haque, Md. Mamunul; Ryoo, Nayeon; Hong, Hyun Seok; Rhim, Hyewhon; Lee, Dong-Eun; Chang, Young-Tae; Lee, Jun-Seok; Cheong, Eunji; Kim, Dong Jin; Kim, Yun Kyung

    2015-01-01

    Recent evidence suggests that tau aggregates are not only neurotoxic, but also propagate in neurons acting as a seed for native tau aggregation. Prion-like tau transmission is now considered as an important pathogenic mechanism driving the progression of tau pathology in the brain. However, prion-like tau species have not been clearly characterized. To identify infectious tau conformers, here we prepared diverse tau aggregates and evaluated the effect on inducing intracellular tau-aggregation. Among tested, tau dimer containing P301L-mutation is identified as the most infectious form to induce tau pathology. Biochemical analysis reveals that P301L-tau dimer is covalently cross-linked with a disulfide bond. The relatively small and covalently cross-linked tau dimer induced tau pathology efficiently in primary neurons and also in tau-transgenic mice. So far, the importance of tau disulfide cross-linking has been overlooked in the study of tau pathology. Here our results suggested that tau disulfide cross-linking might play critical role in tau propagation by producing structurally stable and small tau conformers. PMID:26470054

  19. Design of phosphated cross-linked microspheres of bael fruit gum as a biodegradable carrier.

    PubMed

    Mahammed, Nawaz; Gowda, D V; Deshpande, Rohan D; Thirumaleshwar, Shailesh

    2015-01-01

    Present work was aimed at designing of phosphated cross-linked microspheres of bael fruit gum (BFG) by emulsification method using sodium-tri-meta phosphate as a cross-linking agent for treatment of colon cancer using 5-fluorouracil as model drug. Stirring speed was found to be 1,000 rpm for about 5 h to be optimal to obtain reproducible microspheres. It was found that there is an increase in particle size as polymer concentration is increased whereas a reduction in particle size was observed as there is increase in stirring speed. Cross-linked BFG microspheres were successfully prepared by emulsification method. Optimum surfactant concentration was found to be 2 % w/w. Scanning electron microscopy studies showed that the drug-loaded microspheres were non-aggregated and in spherical shape. Differential scanning calorimetry and Fourier transform infrared-spectroscopy studies showed that drug and excipients are compatible. Release studies showed that drug release was more profound in cecal medium induced with enzymes causing degradation of the cross linked BFG than that of the release showed in simulated intestinal fluid. Stability studies showed that there were no significant changes in the drug content and physical appearance of microspheres. PMID:24668152

  20. Light-scattering thermal cross-linking material using morphology of nanoparticle free polymer blends

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi

    2015-03-01

    A newly light-scattering thermal cross-linking material based on self-assembly for forming the morphology of nanoparticle free polymer blends was reported. The material design concept to use light-scattering thermal cross-linking material with high uniformity of light on display panel from LED for high quality such as brightness and evenness, mechanical properties, and gas and water barrier properties. The high light scattering rate of 8 % at 350-450 nm of wavelength, fast cure film at 140 ºC and 120 s, and thermal stability at 190 ºC in bake condition for high productivity were indicated in the light-scattering thermal cross-linking material using the nanoparticle free polymers with carboxylic acid functional groups. These novel system using morphology of nanoparticle free polymer blends in light-scattering package material for a LCD using LED was a valuable approach to the design of material formulations for newly light-scattering thermal cross-linking material.

  1. Highly conductive carbon nanotube buckypapers with improved doping stability via conjugational cross-linking

    NASA Astrophysics Data System (ADS)

    Chen, I.-Wen Peter; Liang, Richard; Zhao, Haibo; Wang, Ben; Zhang, Chuck

    2011-12-01

    Carbon nanotube (CNT) sheets or buckypapers have demonstrated promising electrical conductivity and mechanical performance. However, their electrical conductivity is still far below the requirements for engineering applications, such as using as a substitute for copper mesh, which is currently used in composite aircraft structures for lightning strike protection. In this study, different CNT buckypapers were stretched to increase their alignment, and then subjected to conjugational cross-linking via chemical functionalization. The conjugationally cross-linked buckypapers (CCL-BPs) demonstrated higher electrical conductivity of up to 6200 S cm - 1, which is more than one order increase compared to the pristine buckypapers. The CCL-BPs also showed excellent doping stability in over 300 h in atmosphere and were resistant to degradation at elevated temperatures. The tensile strength of the stretched CCL-BPs reached 220 MPa, which is about three times that of pristine buckypapers. We attribute these property improvements to the effective and stable conjugational cross-links of CNTs, which can simultaneously improve the electrical conductivity, doping stability and mechanical properties. Specifically, the electrical conductivity increase resulted from improving the CNT alignment and inter-tube electron transport capability. The conjugational cross-links provide effective 3D conductive paths to increase the mobility of electrons among individual nanotubes. The stable covalent bonding also enhances the thermal stability and load transfer. The significant electrical and mechanical property improvement renders buckypaper a multifunctional material for various applications, such as conducting composites, battery electrodes, capacitors, etc.

  2. Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch.

    PubMed

    Hazarika, Bidyut Jyoti; Sit, Nandan

    2016-04-20

    Dual modification of taro starch by hydroxypropylation and cross-linking was carried out and the properties of the modified starches were investigated. Two different levels of hydroxypropylation (5 and 10%) and cross-linking (0.05 and 0.10%) were used in different sequences. The amylose contents of the starch decreased due to single and dual modification. For the dual-modified starches, the swelling, solubility and clarity was found to increase with level of hydroxypropylation and decrease with level of cross-linking. The freeze-thaw stability of the dual-modified starches was also affected by the sequence of modification. The viscosities of the cross-linked and dual-modified starches were more than native and hydroxypropylated starches. The firmness of the dual-modified starches was also higher than native and single modified starches. The dual-modified starches have benefits of both type of modifications and could be used for specific purposes e.g. food products requiring high viscosity as well as freeze-thaw stability.

  3. ChIP bias as a function of cross-linking time.

    PubMed

    Baranello, Laura; Kouzine, Fedor; Sanford, Suzanne; Levens, David

    2016-05-01

    The chromatin immunoprecipitation (ChIP) assay is widely used to capture interactions between chromatin and regulatory proteins in vivo. Formaldehyde cross-linking of DNA and proteins is a critical step required to trap their interactions inside the cells before immunoprecipitation and analysis. Yet insufficient attention has been given to variables that might give rise to artifacts in this procedure, such as the duration of cross-linking. We analyzed the dependence of the ChIP signal on the duration of formaldehyde cross-linking time for two proteins: DNA topoisomerase 1 (Top1) that is functionally associated with the double helix in vivo, especially with active chromatin, and green fluorescent protein (GFP) that has no known bona fide interactions with DNA. With short time of formaldehyde fixation, only Top1 immunoprecipation efficiently recovered DNA from active promoters, whereas prolonged fixation augmented non-specific recovery of GFP dramatizing the need to optimize ChIP protocols to minimize the time of cross-linking, especially for abundant nuclear proteins. Thus, ChIP is a powerful approach to study the localization of protein on the genome when care is taken to manage potential artifacts. PMID:26685864

  4. An unprecedented single platform via cross-linking of zeolite and MOFs.

    PubMed

    Lim, Dae-Woon; Lee, Heeju; Kim, Sungjune; Cho, In Hwa; Yoon, Minyoung; Choi, Yong Nam

    2016-05-21

    The unprecedented ternary nanocomposites have been synthesized as a single platform via cross-linking of two nanoporous materials, MOFs and Pt nanoparticle (NP) loaded zeolite. The heterojunction of the novel nanocomposites is anticipated to work as a chemical platform for size selective catalytic hydrogenation or deuteration of small molecules. PMID:27086901

  5. Membrane Ig cross-linking regulates phosphatidylinositol 3-kinase in B lymphocytes.

    PubMed

    Gold, M R; Chan, V W; Turck, C W; DeFranco, A L

    1992-04-01

    Cross-linking of the B cell AgR results in activation of mature B cells and tolerization of immature B cells. The initial signaling events stimulated by membrane immunoglobulin (mIg) cross-linking are tyrosine phosphorylation of a number of proteins. Among the targets of mIg-induced tyrosine phosphorylation are the tyrosine kinases encoded by the lyn, blk, fyn, and syk genes, the mIg-associated proteins MB-1 and Ig-beta, phospholipase C-gamma 1 and -gamma 2, as well as many unidentified proteins. In this report we show that mIg cross-linking also regulates phosphatidylinositol 3-kinase (PtdIns 3-kinase), an enzyme that phosphorylates inositol phospholipids and plays a key role in mediating the effects of tyrosine kinases on growth control in fibroblasts. Cross-linking mIg on B lymphocytes greatly increased the amount of PtdIns 3-kinase activity which could be immunoprecipitated with anti-phosphotyrosine (anti-tyr(P) antibodies. This response was observed after mIg cross-linking in mIgM- and mIgG-bearing B cell lines and after cross-linking either mIgM or mIgD in murine splenic B cells. Thus, regulation of PtdIns 3-kinase is a common feature of signaling by several different isotypes of mIg. This response was rapid and peaked 2 to 3 min after the addition of anti-Ig antibodies. The anti-Ig-stimulated increase in PtdIns 3-kinase activity associated with anti-Tyr(P) immunoprecipitates could reflect increased tyrosine phosphorylation of PtdIns 3-kinase, increased activity of the enzyme, or both. In favor of the first possibility, the tyrosine kinase inhibitor herbimycin A blocked the increase in ant-Tyr(P)-immunoprecipitated PtdIns 3-kinase activity as well as the anti-Ig-induced tyrosine phosphorylation. Moreover, this response was not secondary to phospholipase C activation but rather seemed to be a direct consequence of mIg-induced tyrosine phosphorylation. Activation of the phosphoinositide pathway by a transfected M1 muscarinic acetylcholine receptor expressed in

  6. Initial Studies Using Aliphatic β-Nitro Alcohols for Therapeutic Corneal Cross-Linking

    PubMed Central

    Paik, David C.; Wen, Quan; Braunstein, Richard E.; Airiani, Suzanna; Trokel, Stephen L.

    2009-01-01

    Purpose Corneal collagen cross-linking through UVA-riboflavin photochemistry (UVAR) has been shown to be an effective treatment for keratoconus and related keratectasias. In recent studies using sclera, the authors observed that short-chain aliphatic β-nitro alcohols can cross-link collagenous tissue under physiologic conditions. Thus, this study was undertaken to evaluate these agents as potential pharmacologic alternatives to UVAR. Methods Porcine corneal strips (8 × 4 mm) and corneoscleral complexes were cross-linked using 1 to 100 mM 2-nitroethanol (2ne), 2-nitro-1-propanol (2nprop), and 3-nitro-2-pentanol (3n2pent) at pH 7.4, 34°C. Cross-linking by UVAR was carried out for comparison. Thermal shrinkage temperature analysis was used to evaluate cross-linking effects, and changes in corneal light transmission were determined with a fiber-optic spectrophotometer. Results At 10 and 100 mM for 96 hours, initial shrinkage temperature (Ti) was shifted by 3.3°C (P < 0.001) and 9.8°C (P < 0.001) for 2ne, 2.9°C (P = 0.008) and 4.9°C (P < 0.001) for 2nprop, and 3.8°C (P = 0.003) and 4.9°C (P < 0.001) for 3n2pent. Reacting at 1 mM through daily exchange of fluid over 7 days shifted Ti by 3.8°C (P < 0.001), 4.4°C (P = 0.002), and 3.2°C (P = 0.005), for 2ne, 2nprop, and 3n2pent, respectively. These shifts were greater than cross-linking using UVAR (Ti = 1.9°C; P = 0.012). In the blue light region (400−500 nm), transmission was decreased by 5.6% (P = 0.003), 2.1% (P = 0.260), and 0% (P = 0.428) for 2ne, 2nprop, and 3n2pent, respectively. Conclusions β-Nitro alcohols can induce corneal cross-linking in vitro better than the UVAR technique and can induce negligible effects on light transmission. These early results suggest that such compounds could be used as topical stiffening agents for keratoconus and related disorders. PMID:18836172

  7. Monitoring the internal structure of poly(N-vinylcaprolactam) microgels with variable cross-link concentration.

    PubMed

    Schneider, Florian; Balaceanu, Andreea; Feoktystov, Artem; Pipich, Vitaliy; Wu, Yaodong; Allgaier, Jürgen; Pyckhout-Hintzen, Wim; Pich, Andrij; Schneider, Gerald J

    2014-12-23

    The combination of a set of complementary techniques allows us to construct an unprecedented and comprehensive picture of the internal structure, temperature dependent swelling behavior, and the dependence of these properties on the cross-linker concentration of microgel particles based on N-vinylcaprolactam (VCL). The microgels were synthesized by precipitation polymerization using different amounts of cross-linking agent. Characterization was performed by small-angle neutron scattering (SANS) using two complementary neutron instruments to cover a uniquely broad Q-range with one probe. Additionally we used dynamic light scattering (DLS), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). Previously obtained nuclear magnetic resonance spectroscopy (NMR) results on the same PVCL particles are utilized to round the picture off. Our study shows that both the particle radius and the cross-link density and therefore also the stiffness of the microgels rises with increasing cross-linker content. Hence, more cross-linker reduces the swelling capability distinctly. These findings are supported by SANS and AFM measurements. Independent DLS experiments also found the increase in particle size but suggest an unchanged cross-link density. The reason for the apparent contradiction is the indirect extraction of the parameters via a model in the evaluation of DLS measurements. The more direct approach in AFM by evaluating the cross section profiles of observed microgel particles gives evidence of significantly softer and more deformable particles at lower cross-linker concentrations and therefore verifies the change in cross-link density. DSC data indicate a minor but unexpected shift of the volume phase transition temperature (VPTT) to higher temperatures and exposes a more heterogeneous internal structure of the microgels with increasing cross-link density. Moreover, a change in the total energy transfer during the VPT gives evidence that the strength

  8. Cross-linking of glycoprotein oligomers during herpes simplex virus type 1 entry.

    PubMed

    Handler, C G; Cohen, G H; Eisenberg, R J

    1996-09-01

    Herpes simplex virus (HSV) has 10 glycoproteins in its envelope. Glycoprotein B (gB), gC, gD, gH, and gL have been implicated in virus entry. We previously used chemical cross-linking to show that these five glycoproteins were close enough to each other to be cross-linked into homodimeric and hetero-oligomeric forms; hetero-oligomers of gB-gC, gC-gD, gD-gB, gH-gL, gC-gL and gD-gL were found in purified virions. To better understand the roles of these glycoproteins in viral entry, we have modified a standard HSV penetration assay to include cross-linkers. This allowed us to examine changes in associations of viral glycoproteins during the entry process. HSV-1(KOS) was adsorbed at 4 degrees C to human neuroblastoma cells (SY5Y). The temperature was raised to 37 degrees C and cells were treated with cross-linker at various times after the temperature shift. Cytoplasmic extracts were examined by Western blotting (immunoblotting) for viral glycoproteins. We found that (i) as in virus alone, the length and concentration of the cross-linking agent affected the number of specific complexes isolated; (ii) the same glycoprotein patterns found in purified virions were also present after attachment of virions to cells; and (iii) the ability to cross-link HSV glycoproteins changed as virus penetration proceeded, e.g., gB and gD complexes which were present during attachment disappeared with increasing time, and their disappearance paralleled the kinetics of penetration. However, this phenomenon appeared to be selective since it was not observed with gC oligomers. In addition, we examined the cross-linking patterns of gB and gD in null viruses K082 and KOSgD beta. Neither of these mutants, which attach but cannot penetrate, showed changes in glycoprotein cross-linking over time. We speculate that these changes are due to conformational changes which preclude cross-linking or spatial alterations which dissociate the glycoprotein interactions during the penetration events. PMID

  9. Tissue-specific distribution of cross-linked somatostatin receptor proteins in the rat.

    PubMed

    Srikant, C B; Murthy, K K; Patel, Y C

    1992-03-01

    Pharmacological studies have suggested that the somatostatin (SS) receptor is heterogeneous and exhibits SS-14-and SS-28-selective subtypes. Whether such subtypes arise from molecular heterogeneity of the receptor protein has not been definitively established. Previous reports characterizing the molecular properties of the SS receptor by the cross-linking approach have yielded divergent size estimates ranging from 27 kDa to 200 kDa. In order to resolve this discrepancy, as well as to determine whether SS-14 and SS-28 interact with specific receptor proteins, we have cross-linked radioiodinated derivatives of [125I-Tyr11]SS-14 (T*-SS-14) and [Leu8,D-Trp22,125I-Tyr25]SS-28 (LTT*-SS-28) to membrane SS receptors in rat brain, pituitary, exocrine pancreas and adrenal cortex using a number of chemical and photoaffinity cross-linking agents. The labelled cross-linked receptor proteins were analysed by SDS/PAGE under reducing conditions followed by autoradiography. Our findings indicate that the pattern of specifically labelled cross-linked SS receptor proteins is sensitive to the concentration of chemical cross-linking agents such as disuccinimidyl suberate and dithiobis-(succinimidyl propionate). Labelled high-molecular-mass complexes of cross-linked receptor-ligand proteins were observed only when high concentrations of these cross-linkers were employed. Using optimized low concentrations of cross-linkers, however, two major labelled bands of 58 +/- 3 kDa and 27 +/- 2 kDa were detected. These two bands were identified as specifically labelled SS receptor proteins subsequent to cross-linking with a number of photoaffinity cross-linking agents as well. We demonstrate here that the 58 kDa protein is the major SS receptor protein in the rat pituitary, adrenal and exocrine pancreas, whereas the 27 kDa moiety represents the principal form in the brain. Additionally, the presence of a minor specifically labelled band of 32 kDa was detected uniquely in the brain, and a minor

  10. Tissue-specific distribution of cross-linked somatostatin receptor proteins in the rat.

    PubMed Central

    Srikant, C B; Murthy, K K; Patel, Y C

    1992-01-01

    Pharmacological studies have suggested that the somatostatin (SS) receptor is heterogeneous and exhibits SS-14-and SS-28-selective subtypes. Whether such subtypes arise from molecular heterogeneity of the receptor protein has not been definitively established. Previous reports characterizing the molecular properties of the SS receptor by the cross-linking approach have yielded divergent size estimates ranging from 27 kDa to 200 kDa. In order to resolve this discrepancy, as well as to determine whether SS-14 and SS-28 interact with specific receptor proteins, we have cross-linked radioiodinated derivatives of [125I-Tyr11]SS-14 (T*-SS-14) and [Leu8,D-Trp22,125I-Tyr25]SS-28 (LTT*-SS-28) to membrane SS receptors in rat brain, pituitary, exocrine pancreas and adrenal cortex using a number of chemical and photoaffinity cross-linking agents. The labelled cross-linked receptor proteins were analysed by SDS/PAGE under reducing conditions followed by autoradiography. Our findings indicate that the pattern of specifically labelled cross-linked SS receptor proteins is sensitive to the concentration of chemical cross-linking agents such as disuccinimidyl suberate and dithiobis-(succinimidyl propionate). Labelled high-molecular-mass complexes of cross-linked receptor-ligand proteins were observed only when high concentrations of these cross-linkers were employed. Using optimized low concentrations of cross-linkers, however, two major labelled bands of 58 +/- 3 kDa and 27 +/- 2 kDa were detected. These two bands were identified as specifically labelled SS receptor proteins subsequent to cross-linking with a number of photoaffinity cross-linking agents as well. We demonstrate here that the 58 kDa protein is the major SS receptor protein in the rat pituitary, adrenal and exocrine pancreas, whereas the 27 kDa moiety represents the principal form in the brain. Additionally, the presence of a minor specifically labelled band of 32 kDa was detected uniquely in the brain, and a minor

  11. Bone fracture toughness and strength correlate with collagen cross-link maturity in a dose-controlled lathyrism mouse model

    PubMed Central

    McNerny, Erin M. B.; Gong, Bo; Morris, Michael D.; Kohn, David H.

    2014-01-01

    Collagen cross-linking is altered in many diseases of bone, and enzymatic collagen cross-links are important to bone quality as evidenced by losses of strength following lysyl oxidase inhibition (lathyrism). We hypothesized that cross-links also contribute directly to bone fracture toughness. A mouse model of lathyrism using subcutaneous injection of up to 500mg/kg β-aminopropionitrile (BAPN) was developed and characterized (60 animals across 4 dosage groups). Three weeks of 150 or 350 mg/kg BAPN treatment in young growing mice significantly reduced cortical bone fracture toughness, strength, and pyridinoline cross-link content. Ratios reflecting relative cross-link maturity were positive regressors of fracture toughness (HP/[DHLNL+HLNL] r2=0.208, p<0.05; [HP+LP]/[DHNL+HLNL] r2=0.196, p<0.1), whereas quantities of mature pyridinoline cross-links were significant positive regressors of tissue strength (lysyl pyridinoline r2=0.159, p=0.014; hydroxylysyl pyridinoline r2=0.112, p<0.05). Immature and pyrrole cross-links, which were not significantly reduced by BAPN, did not correlate with mechanical properties. The effect of BAPN treatment on mechanical properties was dose specific, with the greatest impact found at the intermediate (350mg/kg) dose. Calcein labeling was used to define locations of new bone formation, allowing for the identification of regions of normally cross-linked (preexisting) and BAPN treated (newly formed, cross-link-deficient) bone. Raman spectroscopy revealed spatial differences due to relative tissue age and effects of cross-link inhibition. Newly deposited tissues had lower mineral/matrix, carbonate/phosphate and Amide I cross-link (matrix maturity) ratios compared to preexisting tissues. BAPN treatment did not affect mineral measures, but significantly increased the cross-link (matrix maturity) ratio compared to newly formed control tissue. Our study reveals that spatially localized effects of short term BAPN cross-link inhibition can alter

  12. Role of collagen content and cross-linking in large pulmonary arterial stiffening after chronic hypoxia.

    PubMed

    Wang, Zhijie; Chesler, Naomi C

    2012-01-01

    Chronic hypoxic pulmonary hypertension (HPH) is associated with large pulmonary artery (PA) stiffening, which is correlated with collagen accumulation. However, the mechanisms by which collagen contributes to PA stiffening remain largely unexplored. Moreover, HPH may alter mechanical properties other than stiffness, such as pulse damping capacity, which also affects ventricular workload but is rarely quantified. We hypothesized that collagen content and cross-linking differentially regulate the stiffness and damping capacity of large PAs during HPH progression. The hypothesis was tested with transgenic mice that synthesize collagen type I resistant to collagenase degradation (Col1a1(R/R)). These mice and littermate controls (Col1a1(+/+)) were exposed to hypoxia for 10 days; some were treated with β-aminopropionitrile (BAPN), which prevents new cross-link formation. Isolated PA dynamic mechanical tests were performed, and collagen content and cross-linking were measured. In Col1a1(+/+) mice, HPH increased both collagen content and cross-linking, and BAPN treatment prevented these increases. Similar trends were observed in Col1a1(R/R) mice except that collagen content further increased with BAPN treatment. Mechanical tests showed that in Col1a1(+/+) mice, HPH increased PA stiffness and damping capacity, and these increases were impeded by BAPN treatment. In Col1a1(R/R) mice, HPH led to a smaller but significant increase in PA stiffness and a decrease in damping capacity. These mechanical changes were not affected by BAPN treatment. Vessel-specific correlations for each strain showed that the stiffness and damping capacity were correlated with the total content rather than cross-linking of collagen. Our results suggest that collagen total content is critical to extralobar PA stiffening during HPH. PMID:21538012

  13. Probabilistic cross-link analysis and experiment planning for high-throughput elucidation of protein structure.

    PubMed

    Ye, Xiaoduan; O'Neil, Patrick K; Foster, Adrienne N; Gajda, Michal J; Kosinski, Jan; Kurowski, Michal A; Bujnicki, Janusz M; Friedman, Alan M; Bailey-Kellogg, Chris

    2004-12-01

    Emerging high-throughput techniques for the characterization of protein and protein-complex structures yield noisy data with sparse information content, placing a significant burden on computation to properly interpret the experimental data. One such technique uses cross-linking (chemical or by cysteine oxidation) to confirm or select among proposed structural models (e.g., from fold recognition, ab initio prediction, or docking) by testing the consistency between cross-linking data and model geometry. This paper develops a probabilistic framework for analyzing the information content in cross-linking experiments, accounting for anticipated experimental error. This framework supports a mechanism for planning experiments to optimize the information gained. We evaluate potential experiment plans using explicit trade-offs among key properties of practical importance: discriminability, coverage, balance, ambiguity, and cost. We devise a greedy algorithm that considers those properties and, from a large number of combinatorial possibilities, rapidly selects sets of experiments expected to discriminate pairs of models efficiently. In an application to residue-specific chemical cross-linking, we demonstrate the ability of our approach to plan experiments effectively involving combinations of cross-linkers and introduced mutations. We also describe an experiment plan for the bacteriophage lambda Tfa chaperone protein in which we plan dicysteine mutants for discriminating threading models by disulfide formation. Preliminary results from a subset of the planned experiments are consistent and demonstrate the practicality of planning. Our methods provide the experimenter with a valuable tool (available from the authors) for understanding and optimizing cross-linking experiments. PMID:15557270

  14. Collagen cross-linking treatment effects on corneal dynamic biomechanical properties.

    PubMed

    Hatami-Marbini, Hamed; Rahimi, Abdolrasol

    2015-06-01

    Cornea is a soft tissue with the principal function of transmitting and refracting light rays. The objective of the current study was to characterize possible effects of the riboflavin/UVA collagen cross-linking on corneal dynamic properties. The original corneal cross-linking protocol was used to induce cross-links in the anterior portion of the bovine cornea. A DMA machine was used to conduct mechanical tensile experiments at different levels of tensile strains. The samples were divided into a control group (n = 5) and a treated group (n = 5). All specimens were first stretched to a strain of 5% and allowed to relax for twenty minutes. After completion of the stress-relaxation experiment, a frequency sweep test with oscillations ranging from 0.01 to 10 Hz was performed. The same procedure was repeated to obtain the stress-relaxation and dynamic properties at 10% strain. It was observed that the collagen cross-linking therapy significantly increased the immediate and equilibrium tensile behavior of the bovine cornea (P < 0.05). Furthermore, for all samples in control and treated groups and throughout the whole range of frequencies, a significantly larger tensile storage modulus was measured at an axial strain of 10% compared to what was obtained at a tensile strain of 5%. Finally, it was noted that although this treatment procedure resulted in a significant increase in the storage and loss modulus at any axial strain and frequency (P < 0.05), it significantly reduced the ratio of the dissipated and stored energy during a single cycle of deformation. Therefore, it was concluded that while the riboflavin/UVA collagen cross-linking increased significantly corneal stiffness, it decreased significantly its damping capability and deformability. This reduced damping ability might adversely interfere with corneal mechanical performance.

  15. Mitochondrial permeability transition as induced by cross-linking of the adenine nucleotide translocase.

    PubMed

    Zazueta, C; Reyes-Vivas, H; Zafra, G; Sánchez, C A; Vera, G; Chávez, E

    1998-04-01

    Mitochondrial permeability transition is caused by the opening of a transmembrane pore whose chemical nature has not been well established yet. The present work was aimed to further contribute to the knowledge of the membrane entity comprised in the formation of the non-specific channel. The increased permeability was established by analyzing the inability of rat kidney mitochondria to take up and accumulate Ca2+, as well as their failure to build up a transmembrane potential, after the cross-linking of membrane proteins by copper plus ortho-phenanthroline. To identify the cross-linked proteins, polyacrylamide gel electrophoresis was performed. The results are representative of at least three separate experiments. It is indicated that 30 microM Cu2+ induced the release of 4.3 nmol Ca2+ per mg protein. However, in the presence of 100 microM ortho-phenanthroline only 2 microM Cu2+ was required to attain the total release of the accumulated Ca2+; it should be noted that such a reaction is not inhibited by cyclosporin. The increased permeability corresponds to cross-linking of membrane proteins in which approximately 4 nmol thiol groups per mg protein appear to be involved. Such a linking process is inhibited by carboxyatractyloside. By using the fluorescent probe eosin-5-maleimide the label was found in a cross-linking 60 kDa dimer of two 30 kDa monomers. From the data presented it is concluded that copper-o-phenanthroline induces the intermolecular cross-linking of the adenine nucleotide translocase which in turn is converted to non-specific pore. PMID:9675885

  16. Thermogelling and Chemoselectively Cross-Linked Hydrogels with Controlled Mechanical Properties and Degradation Behavior.

    PubMed

    Boere, Kristel W M; van den Dikkenberg, Joep; Gao, Yuan; Visser, Jetze; Hennink, Wim E; Vermonden, Tina

    2015-09-14

    Chemoselectively cross-linked hydrogels have recently gained increasing attention for the development of novel, injectable biomaterials given their limited side reactions. In this study, we compared the properties of hydrogels obtained by native chemical ligation (NCL) and its recently described variation termed oxo-ester-mediated native chemical ligation (OMNCL) in combination with temperature-induced physical gelation. Triblock copolymers consisting of cysteine functionalities, thermoresponsive N-isopropylacrylamide (NIPAAm) units and degradable moieties were mixed with functionalized poly(ethylene glycol) (PEG) cross-linkers. Thioester or N-hydroxysuccinimide (NHS) functionalities attached to PEG reacted with cysteine residues of the triblock copolymers via either an NCL or OMNCL pathway. The combined physical and chemical cross-linking resulted in rapid network formation and mechanically strong hydrogels. Stiffness of the hydrogels was highest for thermogels that were covalently linked via OMNCL. Specifically, the storage modulus after 4 h reached a value of 26 kPa, which was over a 100 times higher than hydrogels formed by solely thermal physical interactions. Endothelial cells showed high cell viability of 98 ± 2% in the presence of OMNCL cross-linked hydrogels after 16 h of incubation, in contrast to a low cell viability (13 ± 7%) for hydrogels obtained by NCL cross-linking. Lysozyme was loaded in the gels and after 2 days more than 90% was released, indicating that the cross-linking reaction was indeed chemoselective as the protein was not covalently grafted to the hydrogel network. Moreover, the degradation rates of these hydrogels under physiological conditions could be tailored from 12 days up to 6 months by incorporation of a monomer containing a hydrolyzable lactone ring in the thermosensitive triblock copolymer. These results demonstrate a high tunability of mechanical properties and degradation rates of these in situ forming hydrogels that could be

  17. Developing functional musculoskeletal tissues through hypoxia and lysyl oxidase-induced collagen cross-linking

    PubMed Central

    Makris, Eleftherios A.; Responte, Donald J.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2014-01-01

    The inability to recapitulate native tissue biomechanics, especially tensile properties, hinders progress in regenerative medicine. To address this problem, strategies have focused on enhancing collagen production. However, manipulating collagen cross-links, ubiquitous throughout all tissues and conferring mechanical integrity, has been underinvestigated. A series of studies examined the effects of lysyl oxidase (LOX), the enzyme responsible for the formation of collagen cross-links. Hypoxia-induced endogenous LOX was applied in multiple musculoskeletal tissues (i.e., cartilage, meniscus, tendons, ligaments). Results of these studies showed that both native and engineered tissues are enhanced by invoking a mechanism of hypoxia-induced pyridinoline (PYR) cross-links via intermediaries like LOX. Hypoxia was shown to enhance PYR cross-linking 1.4- to 6.4-fold and, concomitantly, to increase the tensile properties of collagen-rich tissues 1.3- to 2.2-fold. Direct administration of exogenous LOX was applied in native cartilage and neocartilage generated using a scaffold-free, self-assembling process of primary chondrocytes. Exogenous LOX was found to enhance native tissue tensile properties 1.9-fold. LOX concentration- and time-dependent increases in PYR content (∼16-fold compared with controls) and tensile properties (approximately fivefold compared with controls) of neocartilage were also detected, resulting in properties on par with native tissue. Finally, in vivo subcutaneous implantation of LOX-treated neocartilage in nude mice promoted further maturation of the neotissue, enhancing tensile and PYR content approximately threefold and 14-fold, respectively, compared with in vitro controls. Collectively, these results provide the first report, to our knowledge, of endogenous (hypoxia-induced) and exogenous LOX applications for promoting collagen cross-linking and improving the tensile properties of a spectrum of native and engineered tissues both in vitro and in

  18. Vitamin C status and collagen cross-link ratios in Gambian children.

    PubMed

    Munday, K; Fulford, A; Bates, C J

    2005-04-01

    Vitamin C (ascorbate) is essential for hydroxylation of prolyl and lysyl residues in nascent collagen, the failure of which leads to connective tissue lesions of scurvy. Of the pyridinium-type cross-links in mature collagen, pyridinoline requires more hydroxylysyl residues than does deoxypyridinoline. Our study tested the hypothesis that pyridinoline:deoxypyridinoline ratios in urinary degradation products may vary with ascorbate status in man. These ratios were compared between British and Gambian prepubertal boys, mean age 8.3 years, and in Gambian boys between two seasons with contrasting ascorbate availability. The mean cross-links ratio in 216 British boys was 4.36 (SD 0.71), significantly greater (P<0.0001) than in sixty-two Gambian boys: 3.83 (SD 0.52). In the Gambians the cross-links ratio was significantly higher in the dry season (with high ascorbate intake and status) than in the rains (with low intake and status). A 7-week controlled intervention was carried out in Gambian boys during the rainy season (the 'hungry' season, when vitamin C-containing foods are virtually unavailable): 100 mg ascorbate/d was given to one group of thirty-two Gambian boys and placebo to another group. The intervention did not, however, significantly alter the cross-link ratio, possibly because the response time and/or intervention-response delay is >7 weeks. If confirmed, the putative association between ascorbate and collagen cross-link ratios in man could become the basis for a functional test for adequacy of ascorbate status.

  19. Developing functional musculoskeletal tissues through hypoxia and lysyl oxidase-induced collagen cross-linking.

    PubMed

    Makris, Eleftherios A; Responte, Donald J; Paschos, Nikolaos K; Hu, Jerry C; Athanasiou, Kyriacos A

    2014-11-11

    The inability to recapitulate native tissue biomechanics, especially tensile properties, hinders progress in regenerative medicine. To address this problem, strategies have focused on enhancing collagen production. However, manipulating collagen cross-links, ubiquitous throughout all tissues and conferring mechanical integrity, has been underinvestigated. A series of studies examined the effects of lysyl oxidase (LOX), the enzyme responsible for the formation of collagen cross-links. Hypoxia-induced endogenous LOX was applied in multiple musculoskeletal tissues (i.e., cartilage, meniscus, tendons, ligaments). Results of these studies showed that both native and engineered tissues are enhanced by invoking a mechanism of hypoxia-induced pyridinoline (PYR) cross-links via intermediaries like LOX. Hypoxia was shown to enhance PYR cross-linking 1.4- to 6.4-fold and, concomitantly, to increase the tensile properties of collagen-rich tissues 1.3- to 2.2-fold. Direct administration of exogenous LOX was applied in native cartilage and neocartilage generated using a scaffold-free, self-assembling process of primary chondrocytes. Exogenous LOX was found to enhance native tissue tensile properties 1.9-fold. LOX concentration- and time-dependent increases in PYR content (∼ 16-fold compared with controls) and tensile properties (approximately fivefold compared with controls) of neocartilage were also detected, resulting in properties on par with native tissue. Finally, in vivo subcutaneous implantation of LOX-treated neocartilage in nude mice promoted further maturation of the neotissue, enhancing tensile and PYR content approximately threefold and 14-fold, respectively, compared with in vitro controls. Collectively, these results provide the first report, to our knowledge, of endogenous (hypoxia-induced) and exogenous LOX applications for promoting collagen cross-linking and improving the tensile properties of a spectrum of native and engineered tissues both in vitro and in

  20. Tuning chemical and physical cross-links in silk electrogels for morphological analysis and mechanical reinforcement.

    PubMed

    Lin, Yinan; Xia, Xiaoxia; Shang, Ke; Elia, Roberto; Huang, Wenwen; Cebe, Peggy; Leisk, Gary; Omenetto, Fiorenzo; Kaplan, David L

    2013-08-12

    Electrochemically controlled, reversible assembly of biopolymers into hydrogel structures is a promising technique for on-demand cell or drug encapsulation and release systems. An electrochemically sol-gel transition has been demonstrated in regenerated Bombyx mori silk fibroin, offering a controllable way to generate biocompatible and reversible adhesives and other biomedical materials. Despite the involvement of an electrochemically triggered electrophoretic migration of the silk molecules, the mechanism of the reversible electrogelation remains unclear. It is, however, known that the freshly prepared silk electrogels (e-gels) adopt a predominantly random coil conformation, indicating a lack of cross-linking as well as thermal, mechanical, and morphological stabilities. In the present work, the tuning of covalent and physical β-sheet cross-links in silk hydrogels was studied for programming the structural properties. Scanning electron microscopy (SEM) revealed delicate morphology, including locally aligned fibrillar structures, in silk e-gels, preserved by combining glutaraldehyde-cross-linking and ethanol dehydration. Fourier transform infrared (FTIR) spectroscopic analysis of either electrogelled, vortex-induced or spontaneously formed silk hydrogels showed that the secondary structure of silk e-gels was tunable between non-β-sheet-dominated and β-sheet-dominated states. Dynamic oscillatory rheology confirmed the mechanical reinforcement of silk e-gels provided by controlled chemical and physical cross-links. The selective incorporation of either chemical or physical or both cross-links into the electrochemically responsive, originally unstructured silk e-gel should help in the design for electrochemically responsive protein polymers. PMID:23859710

  1. Role of collagen content and cross-linking in large pulmonary arterial stiffening after chronic hypoxia

    PubMed Central

    Wang, Zhijie; Chesler, Naomi C.

    2011-01-01

    Chronic hypoxic pulmonary hypertension (HPH) is associated with large pulmonary artery (PA) stiffening, which is correlated with collagen accumulation. However, the mechanisms by which collagen contributes to PA stiffening remain largely unexplored. Moreover, HPH may alter mechanical properties other than stiffness, such as pulse damping capacity, which also affects ventricular workload but is rarely quantified. We hypothesized that collagen content and cross-linking differentially regulate the stiffness and damping capacity of large PAs during HPH progression. The hypothesis was tested with transgenic mice that synthesize collagen type I resistant to collagenase degradation (Col1a1R/R). These mice and littermate controls (Col1a1+/+) were exposed to hypoxia for 10 days; some were treated with β-animopropionitrile (BAPN), which prevents new cross-link formation. Isolated PA dynamic mechanical tests were performed and collagen content and cross-linking were measured. In Col1a1+/+ mice, HPH increased both collagen content and cross-linking and BAPN treatment prevented these increases. Similar trends were observed in Col1a1R/R mice except that collagen content further increased with BAPN treatment. Mechanical tests showed that in Col1a1+/+ mice, HPH increased PA stiffness and damping capacity and these increases were impeded by BAPN treatment. In Col1a1R/R mice, HPH led to a smaller but significant increase in PA stiffness and a decrease in damping capacity. These mechanical changes were not affected by BAPN treatment. Vessel-specific correlations for each strain showed that the stiffness and damping capacity were correlated with the total content rather than cross-linking of collagen. Our results suggest that collagen total content is critical to extralobar PA stiffening during HPH. PMID:21538012

  2. Evaluation of the Efficacy of Excimer Laser Ablation of Cross-Linked Porcine Cornea

    PubMed Central

    Chen, Shihao; Li, Yini; Stojanovic, Aleksander; Zhang, Jia; Wang, Yibo; Wang, Qinmei; Seiler, Theo

    2012-01-01