Science.gov

Sample records for actin cytoskeletal network

  1. Buckling-induced F-actin fragmentation modulates the contraction of active cytoskeletal networks.

    PubMed

    Li, Jing; Biel, Thomas; Lomada, Pranith; Yu, Qilin; Kim, Taeyoon

    2017-04-11

    Actomyosin contractility originating from interactions between F-actin and myosin facilitates various structural reorganizations of the actin cytoskeleton. Cross-linked actomyosin networks show a tendency to contract to single or multiple foci, which has been investigated extensively in numerous studies. Recently, it was suggested that suppression of F-actin buckling via an increase in bending rigidity significantly reduces network contraction. In this study, we demonstrate that networks may show the largest contraction at intermediate bending rigidity, not at the lowest rigidity, if filaments are severed by buckling arising from myosin activity as demonstrated in recent experiments; if filaments are very flexible, frequent severing events can severely deteriorate network connectivity, leading to the formation of multiple small foci and low network contraction. By contrast, if filaments are too stiff, the networks exhibit minimal contraction due to the inhibition of filament buckling. This study reveals that buckling-induced filament severing can modulate the contraction of active cytoskeletal networks, which has been neglected to date.

  2. Cytoskeletal actin networks in motile cells are critically self-organized systems synchronized by mechanical interactions.

    PubMed

    Cardamone, Luca; Laio, Alessandro; Torre, Vincent; Shahapure, Rajesh; DeSimone, Antonio

    2011-08-23

    Growing networks of actin fibers are able to organize into compact, stiff two-dimensional structures inside lamellipodia of crawling cells. We put forward the hypothesis that the growing actin network is a critically self-organized system, in which long-range mechanical stresses arising from the interaction with the plasma membrane provide the selective pressure leading to organization. We show that a simple model based only on this principle reproduces the stochastic nature of lamellipodia protrusion (growth periods alternating with fast retractions) and several of the features observed in experiments: a growth velocity initially insensitive to the external force; the capability of the network to organize its orientation; a load-history-dependent growth velocity. Our model predicts that the spectrum of the time series of the height of a growing lamellipodium decays with the inverse of the frequency. This behavior is a well-known signature of self-organized criticality and is confirmed by unique optical tweezer measurements performed in vivo on neuronal growth cones.

  3. Quantitative Evaluation of Plant Actin Cytoskeletal Organization During Immune Signaling.

    PubMed

    Lu, Yi-Ju; Day, Brad

    2017-01-01

    High spatial and temporal resolution microscopy-based methods are valuable tools for the precise real-time imaging of changes in cellular organization in response to stimulus perception. Here, we describe a quantitative method for the evaluation of the plant actin cytoskeleton during immune stimulus perception and the activation of defense signaling. As a measure of the biotic stress-induced changes in actin filament organization, we present methods for analyzing changes in actin filament organization following elicitation of pattern-triggered immunity and effector-triggered immunity. Using these methods, it is possible to not only quantitatively evaluate changes in actin cytoskeletal organization following biotic stress perception, but to also use these protocols to assess changes in actin filament organization following perception of a wide range of stimuli, including abiotic and developmental cues. As described herein, we present an example application of this method, designed to evaluate changes in actin cytoskeletal organization following pathogen perception and immune signaling.

  4. Visualization of Actin Cytoskeletal Dynamics in Fixed and Live Drosophila Egg Chambers.

    PubMed

    Groen, Christopher M; Tootle, Tina L

    2015-01-01

    Visualization of actin cytoskeletal dynamics is critical for understanding the spatial and temporal regulation of actin remodeling. Drosophila oogenesis provides an excellent model system for visualizing the actin cytoskeleton. Here, we present methods for imaging the actin cytoskeleton in Drosophila egg chambers in both fixed samples by phalloidin staining and in live egg chambers using transgenic actin labeling tools.

  5. ZEB1 drives prometastatic actin cytoskeletal remodeling by downregulating miR-34a expression

    PubMed Central

    Ahn, Young-Ho; Gibbons, Don L.; Chakravarti, Deepavali; Creighton, Chad J.; Rizvi, Zain H.; Adams, Henry P.; Pertsemlidis, Alexander; Gregory, Philip A.; Wright, Josephine A.; Goodall, Gregory J.; Flores, Elsa R.; Kurie, Jonathan M.

    2012-01-01

    Metastatic cancer is extremely difficult to treat, and the presence of metastases greatly reduces a cancer patient’s likelihood of long-term survival. The ZEB1 transcriptional repressor promotes metastasis through downregulation of microRNAs (miRs) that are strong inducers of epithelial differentiation and inhibitors of stem cell factors. Given that each miR can target multiple genes with diverse functions, we posited that the prometastatic network controlled by ZEB1 extends beyond these processes. We tested this hypothesis using a mouse model of human lung adenocarcinoma metastasis driven by ZEB1, human lung carcinoma cells, and human breast carcinoma cells. Transcriptional profiling studies revealed that ZEB1 controls the expression of numerous oncogenic and tumor-suppressive miRs, including miR-34a. Ectopic expression of miR-34a decreased tumor cell invasion and metastasis, inhibited the formation of promigratory cytoskeletal structures, suppressed activation of the RHO GTPase family, and regulated a gene expression signature enriched in cytoskeletal functions and predictive of outcome in human lung adenocarcinomas. We identified several miR-34a target genes, including Arhgap1, which encodes a RHO GTPase activating protein that was required for tumor cell invasion. These findings demonstrate that ZEB1 drives prometastatic actin cytoskeletal remodeling by downregulating miR-34a expression and provide a compelling rationale to develop miR-34a as a therapeutic agent in lung cancer patients. PMID:22850877

  6. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics.

    PubMed

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-10-20

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design.

  7. A Legionella Effector Disrupts Host Cytoskeletal Structure by Cleaving Actin

    PubMed Central

    Liu, Yao; Zhu, Wenhan; Tan, Yunhao; Nakayasu, Ernesto S.; Staiger, Christopher J.

    2017-01-01

    Legionella pneumophila, the etiological agent of Legionnaires’ disease, replicates intracellularly in protozoan and human hosts. Successful colonization and replication of this pathogen in host cells requires the Dot/Icm type IVB secretion system, which translocates approximately 300 effector proteins into the host cell to modulate various cellular processes. In this study, we identified RavK as a Dot/Icm substrate that targets the host cytoskeleton and reduces actin filament abundance in mammalian cells upon ectopic expression. RavK harbors an H95EXXH99 motif associated with diverse metalloproteases, which is essential for the inhibition of yeast growth and for the induction of cell rounding in HEK293T cells. We demonstrate that the actin protein itself is the cellular target of RavK and that this effector cleaves actin at a site between residues Thr351 and Phe352. Importantly, RavK-mediated actin cleavage also occurs during L. pneumophila infection. Cleavage by RavK abolishes the ability of actin to form polymers. Furthermore, an F352A mutation renders actin resistant to RavK-mediated cleavage; expression of the mutant in mammalian cells suppresses the cell rounding phenotype caused by RavK, further establishing that actin is the physiological substrate of RavK. Thus, L. pneumophila exploits components of the host cytoskeleton by multiple effectors with distinct mechanisms, highlighting the importance of modulating cellular processes governed by the actin cytoskeleton in the intracellular life cycle of this pathogen. PMID:28129393

  8. Formins: Actin nucleators that regulate cytoskeletal dynamics during spermatogenesis

    PubMed Central

    Li, Nan; Mruk, Dolores D; Tang, Elizabeth I; Wong, Chris KC; Lee, Will M; Silvestrini, Bruno; Cheng, C Yan

    2015-01-01

    Formins are a growing class of actin nucleation proteins that promote the polymerization of actin microfilaments, forming long stretches of actin microfilaments to confer actin filament bundling in mammalian cells. As such, microfilament bundles can be formed in specific cellular domains, in particular in motile mammalian cells, such as filopodia. Since ectoplasmic specialization (ES), a testis-specific adherens junction (AJ), at the Sertoli cell-cell and Sertoli-spermatid interface is constituted by arrays of actin microfilament bundles, it is likely that formins are playing a significant physiological role on the homeostasis of ES during the epithelial cycle of spermatogenesis. In this Commentary, we provide a timely discussion on formin 1 which was recently shown to be a crucial regulator of actin microfilaments at the ES in the rat testis (Li N et al. Endocrinology, 2015, in press; DOI: 10.1210/en.2015-1161, PMID:25901598). We also highlight research that is needed to unravel the functional significance of formins in spermatogenesis. PMID:26413414

  9. Formins: Actin nucleators that regulate cytoskeletal dynamics during spermatogenesis.

    PubMed

    Li, Nan; Mruk, Dolores D; Tang, Elizabeth I; Wong, Chris Kc; Lee, Will M; Silvestrini, Bruno; Cheng, C Yan

    2015-01-01

    Formins are a growing class of actin nucleation proteins that promote the polymerization of actin microfilaments, forming long stretches of actin microfilaments to confer actin filament bundling in mammalian cells. As such, microfilament bundles can be formed in specific cellular domains, in particular in motile mammalian cells, such as filopodia. Since ectoplasmic specialization (ES), a testis-specific adherens junction (AJ), at the Sertoli cell-cell and Sertoli-spermatid interface is constituted by arrays of actin microfilament bundles, it is likely that formins are playing a significant physiological role on the homeostasis of ES during the epithelial cycle of spermatogenesis. In this Commentary, we provide a timely discussion on formin 1 which was recently shown to be a crucial regulator of actin microfilaments at the ES in the rat testis (Li N et al. Endocrinology, 2015, in press; DOI: 10.1210/en.2015-1161, PMID:25901598). We also highlight research that is needed to unravel the functional significance of formins in spermatogenesis.

  10. α-Synuclein and Its A30P Mutant Affect Actin Cytoskeletal Structure and Dynamics

    PubMed Central

    Sousa, Vítor L.; Bellani, Serena; Giannandrea, Maila; Yousuf, Malikmohamed; Valtorta, Flavia; Meldolesi, Jacopo

    2009-01-01

    The function of α-synuclein, a soluble protein abundant in the brain and concentrated at presynaptic terminals, is still undefined. Yet, α-synuclein overexpression and the expression of its A30P mutant are associated with familial Parkinson's disease. Working in cell-free conditions, in two cell lines as well as in primary neurons we demonstrate that α-synuclein and its A30P mutant have different effects on actin polymerization. Wild-type α-synuclein binds actin, slows down its polymerization and accelerates its depolymerization, probably by monomer sequestration; A30P mutant α-synuclein increases the rate of actin polymerization and disrupts the cytoskeleton during reassembly of actin filaments. Consequently, in cells expressing mutant α-synuclein, cytoskeleton-dependent processes, such as cell migration, are inhibited, while exo- and endocytic traffic is altered. In hippocampal neurons from mice carrying a deletion of the α-synuclein gene, electroporation of wild-type α-synuclein increases actin instability during remodeling, with growth of lamellipodia-like structures and apparent cell enlargement, whereas A30P α-synuclein induces discrete actin-rich foci during cytoskeleton reassembly. In conclusion, α-synuclein appears to play a major role in actin cytoskeletal dynamics and various aspects of microfilament function. Actin cytoskeletal disruption induced by the A30P mutant might alter various cellular processes and thereby play a role in the pathogenesis of neurodegeneration. PMID:19553474

  11. Hierarchical self-organization of cytoskeletal active networks

    NASA Astrophysics Data System (ADS)

    Gordon, Daniel; Bernheim-Groswasser, Anne; Keasar, Chen; Farago, Oded

    2012-04-01

    The structural reorganization of the actin cytoskeleton is facilitated through the action of motor proteins that crosslink the actin filaments and transport them relative to each other. Here, we present a combined experimental-computational study that probes the dynamic evolution of mixtures of actin filaments and clusters of myosin motors. While on small spatial and temporal scales the system behaves in a very noisy manner, on larger scales it evolves into several well distinct patterns such as bundles, asters and networks. These patterns are characterized by junctions with high connectivity, whose formation is possible due to the organization of the motors in ‘oligoclusters’ (intermediate-size aggregates). The simulations reveal that the self-organization process proceeds through a series of hierarchical steps, starting from local microscopic moves and ranging up to the macroscopic large scales where the steady-state structures are formed. Our results shed light on the mechanisms involved in processes such as cytokinesis and cellular contractility, where myosin motors organized in clusters operate cooperatively to induce the structural organization of cytoskeletal networks.

  12. Phosphocreatine as an energy source for actin cytoskeletal rearrangements during myoblast fusion.

    PubMed

    O'Connor, Roddy S; Steeds, Craig M; Wiseman, Robert W; Pavlath, Grace K

    2008-06-15

    Myoblast fusion is essential for muscle development, postnatal growth and muscle repair after injury. Recent studies have demonstrated roles for actin polymerization during myoblast fusion. Dynamic cytoskeletal assemblies directing cell-cell contact, membrane coalescence and ultimately fusion require substantial cellular energy demands. Various energy generating systems exist in cells but the partitioning of energy sources during myoblast fusion is unknown. Here, we demonstrate a novel role for phosphocreatine (PCr) as a spatiotemporal energy buffer during primary mouse myoblast fusion with nascent myotubes. Creatine treatment enhanced cell fusion in a creatine kinase (CK)-dependent manner suggesting that ATP-consuming reactions are replenished through the PCr/CK system. Furthermore, selective inhibition of actin polymerization prevented myonuclear addition following creatine treatment. As myotube formation is dependent on cytoskeletal reorganization, our findings suggest that PCr hydrolysis is coupled to actin dynamics during myoblast fusion. We conclude that myoblast fusion is a high-energy process, and can be enhanced by PCr buffering of energy demands during actin cytoskeletal rearrangements in myoblast fusion. These findings implicate roles for PCr as a high-energy phosphate buffer in the fusion of multiple cell types including sperm/oocyte, trophoblasts and macrophages. Furthermore, our results suggest the observed beneficial effects of oral creatine supplementation in humans may result in part from enhanced myoblast fusion.

  13. Mechanics of composite cytoskeletal and extracellular networks

    NASA Astrophysics Data System (ADS)

    Das, Moumita

    2014-03-01

    Living cells sense and respond to mechanical forces in their surroundings. This mechanical response is mainly due to the cell cytoskeleton, and its interaction with the extracellular matrix (ECM). The cell cytoskeleton is a composite polymeric scaffold made of many different types of protein filaments and crosslinking proteins. Two major filament systems in the cytoskeleton are actin filaments (F-actin) and microtubules (MTs). Actin filaments are semiflexible, while the much stiffer MTs behave as rigid rods. I shall discuss theories that help understand how the direct coupling to the surrounding F-actin matrix allows intracellular MTs to bear large compressive forces and controls the range of force transmission along the MTs, and how the MTs not only enhance the stiffness of the cell cytoskeleton, but can also dramatically endow an initially nearly incompressible F-actin matrix with enhanced compressibility relative to its shear compliance. A second source of compositeness in the cytoskeleton is the presences of different types of crosslinkers that can interact cooperatively leading to enhanced mechanical rigidity and tunable response. Like the cytoskeleton, the ECM is also a polymeric composite. It is primarily composed of a mesh of fibrous proteins, mainly stiff collagen filaments, and a comparatively flexible gel of proteoglycans and hyaluronan. I shall discuss a model that shows how the interplay between the collagen network and the background elastic gel leads to a mechanically robust ECM.

  14. Labeling cytoskeletal F-actin with rhodamine phalloidin or fluorescein phalloidin for imaging.

    PubMed

    Chazotte, Brad

    2010-05-01

    The eukaryotic cell has evolved to compartmentalize its functions and transport various metabolites among cellular compartments. Therefore, in cell biology, the study of organization and structure/function relationships is of great importance. The cytoskeleton is composed of a series of filamentous structures, including intermediate filaments, actin filaments, and microtubules. Immunofluorescent staining has been most frequently used to study cytoskeletal components. However, it is also possible to fluorescently label isolated cytoskeletal proteins and either microinject them back into the cell or add them to fixed, permeabilized cells. Alternatively, it is possible to use the mushroom-derived fluorescinated toxins, phalloidin or phallacidin, to label F-actin of the cytoskeleton, as is described in this article. Phalloidin is available labeled with different fluorophores. The choice of the specific fluorophore should depend on whether phalloidin labeling for actin is part of a double-label experiment. In most cells, the abundance of actin filaments should provide a very strong signal. In double-label experiments, the fluorophore should be chosen to take this into account. In general, rhodamine labels are more resistant to photobleaching and can be subjected to the longer exposures required for finer structures.

  15. Neuroprotective effects of hypothermia on synaptic actin cytoskeletal changes induced by perinatal asphyxia.

    PubMed

    Muñiz, Javier; Romero, Juan; Holubiec, Mariana; Barreto, George; González, Janneth; Saint-Martin, Madeleine; Blanco, Eduardo; Carlos Cavicchia, Juan; Castilla, Rocío; Capani, Francisco

    2014-05-14

    Cerebral hypoxia-ischemia damages synaptic proteins, resulting in cytoskeletal alterations, protein aggregation and neuronal death. In the previous works, we have shown neuronal and synaptic changes in rat neostriatum subjected to hypoxia that leads to ubi-protein accumulation. Recently, we also showed that, changes in F-actin organization could be related to early alterations induced by hypoxia in the Central Nervous System. However, little is known about effective treatment to diminish the damage. The main aim of this work is to study the effects of birth hypothermia on the actin cytoskeleton of neostriatal post-synaptic densities (PSD) in 60 days olds rats by immunohistochemistry, photooxidation and western blot. We used 2 different protocols of hypothermia: (a) intrahypoxic hypothermia at 15°C and (b) post-hypoxia hypothermia at 32°C. Consistent with previous data at 30 days, staining with phalloidin-Alexa(488) followed by confocal microscopy analysis showed an increase of F-actin fluorescent staining in the neostriatum of hypoxic animals. Correlative photooxidation electron microscopy confirmed these observations showing an increment in the number of mushroom-shaped F-actin staining spines in neostriatal excitatory synapses in rats subjected to hypoxia. In addition, western blot revealed β-actin increase in PSDs in hypoxic animals. The optic relative density measurement showed a significant difference between controls and hypoxic animals. When hypoxia was induced under hypothermic conditions, the changes observed in actin cytoskeleton were blocked. Post-hypoxic hypothermia showed similar answer but actin cytoskeleton modifications were not totally reverted as we observed at 15°C. These data suggest that the decrease of the body temperature decreases the actin modifications in dendritic spines preventing the neuronal death.

  16. 3D actin network centerline extraction with multiple active contours.

    PubMed

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-02-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and actin cables. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we propose a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D Total Internal Reflection Fluorescence Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy. Quantitative evaluation of the method using synthetic images shows that for images with SNR above 5.0, the average vertex error measured by the distance between our result and ground truth is 1 voxel, and the average Hausdorff distance is below 10 voxels.

  17. The formation of cortical actin arrays in human trabecular meshwork cells in response to cytoskeletal disruption.

    PubMed

    Murphy, Kaitlin C; Morgan, Joshua T; Wood, Joshua A; Sadeli, Adeline; Murphy, Christopher J; Russell, Paul

    2014-10-15

    The cytoskeleton of human trabecular meshwork (HTM) cells is known to be altered in glaucoma and has been hypothesized to reduce outflow facility through contracting the HTM tissue. Latrunculin B (Lat-B) and Rho-associated protein kinase (ROCK) inhibitors disrupt the actin cytoskeleton and are in clinical trials as glaucoma therapeutics. We have previously reported a transient increase in HTM cell stiffness peaking at 90 min after Lat-B treatment with a return to pretreatment values after 270 min. We hypothesize that changes in actin morphology correlate with alterations in cell stiffness induced by Lat-B but this is not a general consequence of other cytoskeletal disrupting agents such as Rho kinase inhibitors. We treated HTM cells with 2 µM Lat-B or 100 µM Y-27632 and allowed the cells to recover for 30-270 min. While examining actin morphology in Lat-B treated cells, we observed striking cortical actin arrays (CAAs). The percentage of CAA positive cells (CPCs) was time dependent and exceeded 30% at 90 min and decreased after 270 min. Y-27632 treated cells exhibited few CAAs and no changes in cell stiffness. Together, these data suggest that the increase in cell stiffness after Lat-B treatment is correlated with CAAs.

  18. Actin cytoskeletal remodeling with protrusion formation is essential for heart regeneration in Hippo-deficient mice

    PubMed Central

    Morikawa, Yuka; Zhang, Min; Heallen, Todd; Leach, John; Tao, Ge; Xiao, Yang; Bai, Yan; Li, Wei; Willerson, James T.; Martin, James F.

    2015-01-01

    The mammalian heart regenerates poorly, and damage commonly leads to heart failure. Hippo signaling is an evolutionarily conserved kinase cascade that regulates organ size during development and prevents adult mammalian cardiomyocyte regeneration by inhibiting the transcriptional coactivator Yap, which also responds to mechanical signaling in cultured cells to promote cell proliferation. To identify Yap target genes that are activated during cardiomyocyte renewal and regeneration, we performed Yap chromatin immunoprecipitation sequencing (ChIP-Seq) and mRNA expression profiling in Hippo signaling-deficient mouse hearts. We found that Yap directly regulated genes encoding cell cycle progression proteins, as well as genes encoding proteins that promote F-actin polymerization and that link the actin cytoskeleton to the extracellular matrix. Included in the latter group were components of the dystrophin glycoprotein complex (DGC), a large molecular complex that, when defective, results in muscular dystrophy in humans. Cardiomyocytes near scar tissue of injured Hippo signaling-deficient mouse hearts showed cellular protrusions suggestive of cytoskeletal remodeling. The hearts of mdx mutant mice, which lack functional dystrophin and are a model for muscular dystrophy, showed impaired regeneration and cytoskeleton remodeling, but normal cardiomyocyte proliferation after injury. Our data showed that, in addition to genes encoding cell cycle progression proteins, Yap regulated genes that enhance cytoskeletal remodeling Thus, blocking the Hippo pathway input to Yap may tip the balance so that Yap responds to the mechanical changes associated with heart injury to promote repair. PMID:25943351

  19. Structure, chromosome location, and expression of the human. gamma. -actin gene: Differential evolution, location, and expression of the cytoskeletal BETA- and. gamma. -actin genes

    SciTech Connect

    Erba, H.P.; Eddy, R.; Shows, T.; Kedes, L.; Gunning, P.

    1988-04-01

    The accumulation of the cytoskeletal ..beta..-and ..gamma..-actin mRNAs was determined in a variety of mouse tissues and organs. The ..beta..-iosform is always expressed in excess of the ..gamma..-isoform. However, the molar ratio of ..beta..- to ..gamma..-actin mRNA varies from 1.7 in kidney and testis to 12 in sarcomeric muscle to 114 in liver. The authors conclude that, whereas the cytoskeletal ..beta..- and ..gamma..-actins are truly coexpressed, their mRNA levels are subject to differential regulation between different cell types. The human ..gamma..-actin gene has been cloned and sequenced, and its chromosome location has been determined. The gene is located on human chromosome 17, unlike ..beta..-actin which is on chromosome 7. Thus, if these genes are also unlinked in the mouse, the coexpression of the ..beta..- and ..gamma..-actin genes in rodent tissues cannot be determined by gene linkage. Comparison of the human ..beta..- and ..gamma..-actin genes reveals that noncoding sequences in the 5'-flanking region and in intron III have been conserved since the duplication that gave rise to these two genes. In contrast, there are sequences in intron III and the 3'-untranslated region which are not present in the ..beta..-actin gene but are conserved between the human ..gamma..-actin and the Xenopus borealis type 1 actin genes. Such conserved noncoding sequences may contribute to the coexpression of ..beta..- and ..gamma..-actin or to the unique regulation and function of the ..gamma..-actin gene. Finally, the authors demonstrate that the human ..gamma..-actin gene is expressed after introduction into mouse L cells and C2 myoblasts and that, upon fusion of C2 cells to form myotubes, the human ..gamma..-actin gene is appropriately regulated.

  20. A dynamic formin-dependent deep F-actin network in axons

    PubMed Central

    Ganguly, Archan; Tang, Yong; Wang, Lina; Ladt, Kelsey; Loi, Jonathan; Dargent, Bénédicte; Leterrier, Christophe

    2015-01-01

    Although actin at neuronal growth cones is well-studied, much less is known about actin organization and dynamics along axon shafts and presynaptic boutons. Using probes that selectively label filamentous-actin (F-actin), we found focal “actin hotspots” along axons—spaced ∼3–4 µm apart—where actin undergoes continuous assembly/disassembly. These foci are a nidus for vigorous actin polymerization, generating long filaments spurting bidirectionally along axons—a phenomenon we call “actin trails.” Super-resolution microscopy reveals intra-axonal deep actin filaments in addition to the subplasmalemmal “actin rings” described recently. F-actin hotspots colocalize with stationary axonal endosomes, and blocking vesicle transport diminishes the actin trails, suggesting mechanistic links between vesicles and F-actin kinetics. Actin trails are formin—but not Arp2/3—dependent and help enrich actin at presynaptic boutons. Finally, formin inhibition dramatically disrupts synaptic recycling. Collectively, available data suggest a two-tier F-actin organization in axons, with stable “actin rings” providing mechanical support to the plasma membrane and dynamic "actin trails" generating a flexible cytoskeletal network with putative physiological roles. PMID:26216902

  1. Damage effects of protoporphyrin IX - sonodynamic therapy on the cytoskeletal F-actin of Ehrlich ascites carcinoma cells.

    PubMed

    Zhao, Xia; Liu, Quanhong; Tang, Wei; Wang, Xiaobing; Wang, Pan; Gong, Liyan; Wang, Yuan

    2009-01-01

    In this study, we report evidence of the damage effects of sonodynamic therapy (SDT) on a novel intracellular target, cytoskeletal F-actin, that has great importance for cancer treatment. Ehrlich ascites carcinoma (EAC) cells suspended in PBS were exposed to ultrasound at 1.34 MHz for up to 60s in the presence and absence of protoporphyrin IX (PPIX). To evaluate the polymeric state and distribution of actin filaments (AF) we employed FITC-Phalloidin staining. The percentage of cells with intact AF was decreased with 10-80 microM PPIX after ultrasonic exposure, while only few cells with disturbed F-actin were observed with 80 microM PPIX alone. The fluorescence intensity of FITC-Phalloidin labeled cells was detected by flow cytometry. The morphological changes of EAC cells were observed by scanning electron microscope (SEM). The nuclei were stained with Hoechst 33258 to determine apoptosis. Cytoskeletal F-actin and cell morphological changes were dependent on the time after SDT. Some cells suffered deformations of plasma membrane as blebs that reacted positively to FITC-Phalloidin at 2h after SDT treatment. Many of the cells showed the typically apoptotic chromatin fragmentation. The alterations were more significant 4h later. Our results showed that cytoskeletal F-actin might represent an important target for the SDT treatment and the observed effect on F-actin and the subsequent bleb formation mainly due to apoptosis formation due to the treatment.

  2. Identification and immunolocalization of actin cytoskeletal components in light- and dark-adapted octopus retinas.

    PubMed

    De Velasco, B; Martinez, J M; Ochoa, G H; Miller, A M; Clark, Y M; Matsumoto, B; Robles, L J

    1999-06-01

    speculate that these proteins and actin remain associated with an avillar membrane that connects opposing sets of rhabdomeres in light-adapted retinas. Association of these cytoskeletal proteins with the avillar membrane would constitute a pool of proteins that could be recruited for rapid microvillus formation from the previously avillar region.

  3. Ginsenoside Rg1 Protects against Oxidative Stress-induced Neuronal Apoptosis through Myosin IIA-actin Related Cytoskeletal Reorganization

    PubMed Central

    Wang, Yan; Liu, Qian; Xu, Yingqiong; Zhang, Yuanyuan; Lv, Yanni; Tan, Yisha; Jiang, Nan; Cao, Guosheng; Ma, Xiaonan; Wang, Jingrong; Cao, Zhengyu; Yu, Boyang; Kou, Junping

    2016-01-01

    Oxidative stress-induced cytoskeletal dysfunction of neurons has been implicated as a crucial cause of cell apoptosis or death in the central nervous system (CNS) diseases, such as neurodegenerative and psychiatric diseases. The application of neuroprotectants rescuing the neurons from cytoskeletal damage and apoptosis can be a potential treatment for these CNS diseases. Ginsenoside Rg1 (Rg1), one of the major active components of ginseng, has been reported possessing notable neuroprotective activities. However, there is rare report about its effect on cytoskeleton and its undergoing mechanism. The current study is to reveal the regulatory effects of Rg1 on cytoskeletal and morphological lesion in oxidative stress-induced neuronal apoptosis. The results demonstrated that pre-treatment with Rg1 (0.1-10 μM) attenuated hydrogen peroxide (H2O2)-induced neuronal apoptosis and oxidative stress through reducing the intracellular reactive oxygen species (ROS) production and methane dicarboxylic aldehyde (MDA) level. The Rg1 treatment also abolished H2O2-induced morphological changes, including cell rounding, membrane blebbing, neurite retraction and nuclei condensation, which were generated by myosin IIA-actin interaction. These effects were mediated via the down-regulation of caspase-3, ROCK1 (Rho-associated kinase1) activation and myosin light chain (MLC, Ser-19) phosphorylation. Furthermore, inhibiting myosin II activity with blebbistatin partly blocked the neuroprotective effects of Rg1. The computer-aided homology modelling revealed that Rg1 preferentially positioned in the actin binding cleft of myosin IIA and might block the binding of myosin IIA to actin filaments. Accordingly, the neuroprotective mechanism of Rg1 is related to the activity that inhibits myosin IIA-actin interaction and the caspase-3/ROCK1/MLC signaling pathway. These findings put some insights into the unique neuroprotective properties of Rg1 associated with the regulation of myosin IIA-actin

  4. Dexamethasone alters F-actin architecture and promotes cross-linked actin network formation in human trabecular meshwork tissue.

    PubMed

    Clark, Abbot F; Brotchie, Daniel; Read, A Thomas; Hellberg, Peggy; English-Wright, Sherry; Pang, Iok-Hou; Ethier, C Ross; Grierson, Ian

    2005-02-01

    Elevated intraocular pressure is an important risk factor for the development of glaucoma, a leading cause of irreversible blindness. This ocular hypertension is due to increased hydrodynamic resistance to the drainage of aqueous humor through specialized outflow tissues, including the trabecular meshwork (TM) and the endothelial lining of Schlemm's canal. We know that glucocorticoid therapy can cause increased outflow resistance and glaucoma in susceptible individuals, that the cytoskeleton helps regulate aqueous outflow resistance, and that glucocorticoid treatment alters the actin cytoskeleton of cultured TM cells. Our purpose was to characterize the actin cytoskeleton of cells in outflow pathway tissues in situ, to characterize changes in the cytoskeleton due to dexamethasone treatment in situ, and to compare these with changes observed in cell culture. Human ocular anterior segments were perfused with or without 10(-7) M dexamethasone, and F-actin architecture was investigated by confocal laser scanning microscopy. We found that outflow pathway cells contained stress fibers, peripheral actin staining, and occasional actin "tangles." Dexamethasone treatment caused elevated IOP in several eyes and increased overall actin staining, with more actin tangles and the formation of cross-linked actin networks (CLANs). The actin architecture in TM tissues was remarkably similar to that seen in cultured TM cells. Although CLANs have been reported previously in cultured cells, this is the first report of CLANs in tissue. These cytoskeletal changes may be associated with increased aqueous humor outflow resistance after ocular glucocorticoid treatment.

  5. Viscoelastic properties of actin networks influence material transport

    NASA Astrophysics Data System (ADS)

    Stam, Samantha; Weirich, Kimberly; Gardel, Margaret

    2015-03-01

    Directed flows of cytoplasmic material are important in a variety of biological processes including assembly of a mitotic spindle, retraction of the cell rear during migration, and asymmetric cell division. Networks of cytoskeletal polymers and molecular motors are known to be involved in these events, but how the network mechanical properties are tuned to perform such functions is not understood. Here, we construct networks of either semiflexible actin filaments or rigid bundles with varying connectivity. We find that solutions of rigid rods, where unimpeded sliding of filaments may enhance transport in comparison to unmoving tracks, are the fastest at transporting network components. Entangled solutions of semiflexible actin filaments also transport material, but the entanglements provide resistance. Increasing the elasticity of the actin networks with crosslinking proteins slows network deformation further. However, the length scale of correlated transport in these networks is increased. Our results reveal how the rigidity and connectivity of biopolymers allows material transport to occur over time and length scales required for physiological processes. This work was supported by the U. Chicago MRSEC

  6. The dynamics of filament assembly define cytoskeletal network morphology

    PubMed Central

    Foffano, Giulia; Levernier, Nicolas; Lenz, Martin

    2016-01-01

    The actin cytoskeleton is a key component in the machinery of eukaryotic cells, and it self-assembles out of equilibrium into a wide variety of biologically crucial structures. Although the molecular mechanisms involved are well characterized, the physical principles governing the spatial arrangement of actin filaments are not understood. Here we propose that the dynamics of actin network assembly from growing filaments results from a competition between diffusion, bundling and steric hindrance, and is responsible for the range of observed morphologies. Our model and simulations thus predict an abrupt dynamical transition between homogeneous and strongly bundled networks as a function of the actin polymerization rate. This suggests that cells may effect dramatic changes to their internal architecture through minute modifications of their nonequilibrium dynamics. Our results are consistent with available experimental data. PMID:28000681

  7. The dynamics of filament assembly define cytoskeletal network morphology

    NASA Astrophysics Data System (ADS)

    Foffano, Giulia; Levernier, Nicolas; Lenz, Martin

    2016-12-01

    The actin cytoskeleton is a key component in the machinery of eukaryotic cells, and it self-assembles out of equilibrium into a wide variety of biologically crucial structures. Although the molecular mechanisms involved are well characterized, the physical principles governing the spatial arrangement of actin filaments are not understood. Here we propose that the dynamics of actin network assembly from growing filaments results from a competition between diffusion, bundling and steric hindrance, and is responsible for the range of observed morphologies. Our model and simulations thus predict an abrupt dynamical transition between homogeneous and strongly bundled networks as a function of the actin polymerization rate. This suggests that cells may effect dramatic changes to their internal architecture through minute modifications of their nonequilibrium dynamics. Our results are consistent with available experimental data.

  8. Architecture and Connectivity Govern Actin Network Contractility.

    PubMed

    Ennomani, Hajer; Letort, Gaëlle; Guérin, Christophe; Martiel, Jean-Louis; Cao, Wenxiang; Nédélec, François; De La Cruz, Enrique M; Théry, Manuel; Blanchoin, Laurent

    2016-03-07

    Actomyosin contractility plays a central role in a wide range of cellular processes, including the establishment of cell polarity, cell migration, tissue integrity, and morphogenesis during development. The contractile response is variable and depends on actomyosin network architecture and biochemical composition. To determine how this coupling regulates actomyosin-driven contraction, we used a micropatterning method that enables the spatial control of actin assembly. We generated a variety of actin templates and measured how defined actin structures respond to myosin-induced forces. We found that the same actin filament crosslinkers either enhance or inhibit the contractility of a network, depending on the organization of actin within the network. Numerical simulations unified the roles of actin filament branching and crosslinking during actomyosin contraction. Specifically, we introduce the concept of "network connectivity" and show that the contractions of distinct actin architectures are described by the same master curve when considering their degree of connectivity. This makes it possible to predict the dynamic response of defined actin structures to transient changes in connectivity. We propose that, depending on the connectivity and the architecture, network contraction is dominated by either sarcomeric-like or buckling mechanisms. More generally, this study reveals how actin network contractility depends on its architecture under a defined set of biochemical conditions.

  9. The role of actin networks in cellular mechanosensing

    NASA Astrophysics Data System (ADS)

    Azatov, Mikheil

    behavior as in cancer metastasis. In addition to stiffness, the local geometry or topography of the surface has been shown to modulate the movement, morphology, and cytoskeletal organization of cells. However, the effect of topography on fluctuations of intracellular structures, which arise from motor driven activity on a viscoelastic actin network are not known. I have used nanofabricated substrates with parallel ridges to show that the cell shape, the actin cytoskeleton and focal adhesions all align along the direction of the ridges, exhibiting a biphasic dependence on the spacing between ridges. I further demonstrated that palladin bands along actin stress fibers undergo a complex diffusive motion with velocities aligned along the direction of ridges. These results provide insight into the mechanisms of cellular mechanosensing of the environment, suggesting a complex interplay between the actin cytoskeleton and cellular adhesions in coordinating cellular response to surface topography. Overall, this work has advanced our understanding of mechanisms that govern cellular responses to their physical environment.

  10. Quantification and cluster analysis of actin cytoskeletal structures in plant cells: role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells.

    PubMed

    Higaki, Takumi; Kutsuna, Natsumaro; Sano, Toshio; Kondo, Noriaki; Hasezawa, Seiichiro

    2010-01-01

    Manual evaluation of cellular structures is a popular approach in cell biological studies. However, such approaches are laborious and are prone to error, especially when large quantities of image data need to be analyzed. Here, we introduce an image analysis framework that overcomes these limitations by semi-automatic quantification and clustering of cytoskeletal structures. In our framework, cytoskeletal orientation, bundling and density are quantified by measurement of newly-developed, robust metric parameters from microscopic images. Thereafter, the microscopic images are classified without supervision by clustering based on the metric patterns. Clustering allows us to collectively investigate the large number of cytoskeletal structure images without laborious inspection. Application of this framework to images of GFP-actin binding domain 2 (GFP-ABD2)-labeled actin cytoskeletons in Arabidopsis guard cells determined that microfilaments (MFs) are radially oriented and transiently bundled in the process of diurnal stomatal opening. The framework also revealed that the expression of mouse talin GFP-ABD (GFP-mTn) continuously induced MF bundling and suppressed the diurnal patterns of stomatal opening, suggesting that changes in the level of MF bundling are crucial for promoting stomatal opening. These results clearly demonstrate the utility of our image analysis framework.

  11. Hic-5 Regulates Actin Cytoskeletal Reorganization and Expression of Fibrogenic Markers and Myocilin in Trabecular Meshwork Cells

    PubMed Central

    Pattabiraman, Padmanabhan Paranji; Rao, Ponugoti Vasantha

    2015-01-01

    Purpose To explore the role of inducible focal adhesion (FA) protein Hic-5 in actin cytoskeletal reorganization, FA formation, fibrogenic activity, and expression of myocilin in trabecular meshwork (TM) cells. Methods Using primary cultures of human TM (HTM) cells, the effects of various external factors on Hic-5 protein levels, as well as the effects of recombinant Hic-5 and Hic-5 small interfering RNA (siRNA) on actin cytoskeleton, FAs, myocilin, α-smooth muscle actin (αSMA), and collagen-1 were determined by immunofluorescence and immunoblot analyses. Results Hic-5 distributes discretely to the FAs in HTM cells and throughout the TM and Schlemm's canal of the human aqueous humor (AH) outflow pathway. Transforming growth factor-β2 (TGF-β2), endothelin-1, lysophosphatidic acid, hydrogen peroxide, and RhoA significantly increased Hic-5 protein levels in HTM cells in association with reorganization of actin cytoskeleton and FAs. While recombinant Hic-5 induced actin stress fibers, FAs, αv integrin redistribution to the FAs, increased levels of αSMA, collagen-1, and myocilin, Hic-5 siRNA suppressed most of these responses in HTM cells. Hic-5 siRNA also suppressed TGF-β2-induced fibrogenic activity and dexamethasone-induced myocilin expression in HTM cells. Conclusions Taken together, these results reveal that Hic-5, whose levels were increased by various external factors implicated in elevated intraocular pressure, induces actin cytoskeletal reorganization, FAs, expression of fibrogenic markers, and myocilin in HTM cells. These characteristics of Hic-5 in TM cells indicate its importance in regulation of AH outflow through the TM in both normal and glaucomatous eyes. PMID:26313302

  12. Characterization and phylogeny of two beta-cytoskeletal actins from Hemibarbus mylodon (Cyprinidae, Cypriniformes), a threatened fish species in Korea.

    PubMed

    Kim, Keun-Yong; Lee, Sang Yoon; Cho, Young Sun; Bang, In Chul; Kim, Dong Soo; Nam, Yoon Kwon

    2008-04-01

    Complementary DNA and genomic sequences representing two different beta-actins were isolated from a threatened freshwater fish species Hemibarbus mylodon. The beta-actin 1 and 2 encoded an identical number of amino acids (375 aa), and shared 88.8 and 99.7% of identity at coding nucleotide and amino acid levels, respectively. Genomic open reading frame (ORF) sequences of both isoforms contained five translated exons interrupted by four introns with conserved GT/AG exon/intron boundary rule. Semi-quantitative RT-PCR showed that the two isoform mRNAs were ubiquitously detected in all tissues tested, but transcript levels were variable across tissues. Phylogenetic analysis showed that H. mylodon beta-actin 1 and 2 were clustered into two distinct major and minor branches of Cypriniformes, respectively. Comparisons of the 5'-upstream region and 3'-UTR of H. mylodon beta-actin 1 also showed a high degree of homology with those of the major teleost beta-actins and warmblooded vertebrate beta-cytoskeletal actins, suggesting their more recent common origin.

  13. Cytoskeletal remodeling in differentiated vascular smooth muscle is actin isoform dependent and stimulus dependent.

    PubMed

    Kim, Hak Rim; Gallant, Cynthia; Leavis, Paul C; Gunst, Susan J; Morgan, Kathleen G

    2008-09-01

    Dynamic remodeling of the actin cytoskeleton plays an essential role in the migration and proliferation of vascular smooth muscle cells. It has been suggested that actin remodeling may also play an important functional role in nonmigrating, nonproliferating differentiated vascular smooth muscle (dVSM). In the present study, we show that contractile agonists increase the net polymerization of actin in dVSM, as measured by the differential ultracentrifugation of vascular smooth muscle tissue and the costaining of single freshly dissociated cells with fluorescent probes specific for globular and filamentous actin. Furthermore, induced alterations of the actin polymerization state, as well as actin decoy peptides, inhibit contractility in a stimulus-dependent manner. Latrunculin pretreatment or actin decoy peptides significantly inhibit contractility induced by a phorbol ester or an alpha-agonist, but these procedures have no effect on contractions induced by KCl. Aorta dVSM expresses alpha-smooth muscle actin, beta-actin, nonmuscle gamma-actin, and smooth muscle gamma-actin. The incorporation of isoform-specific cell-permeant synthetic actin decoy peptides, as well as isoform-specific probing of cell fractions and two-dimensional gels, demonstrates that actin remodeling during alpha-agonist contractions involves the remodeling of primarily gamma-actin and, to a lesser extent, beta-actin. Taken together, these results show that net isoform- and agonist-dependent increases in actin polymerization regulate vascular contractility.

  14. Three-dimensional Organization of Layered Apical Cytoskeletal Networks Associated with Mouse Airway Tissue Development

    PubMed Central

    Tateishi, Kazuhiro; Nishida, Tomoki; Inoue, Kanako; Tsukita, Sachiko

    2017-01-01

    The cytoskeleton is an essential cellular component that enables various sophisticated functions of epithelial cells by forming specialized subcellular compartments. However, the functional and structural roles of cytoskeletons in subcellular compartmentalization are still not fully understood. Here we identified a novel network structure consisting of actin filaments, intermediate filaments, and microtubules directly beneath the apical membrane in mouse airway multiciliated cells and in cultured epithelial cells. Three-dimensional imaging by ultra-high voltage electron microscopy and immunofluorescence revealed that the morphological features of each network depended on the cell type and were spatiotemporally integrated in association with tissue development. Detailed analyses using Odf2 mutant mice, which lack ciliary basal feet and apical microtubules, suggested a novel contribution of the intermediate filaments to coordinated ciliary beating. These findings provide a new perspective for viewing epithelial cell differentiation and tissue morphogenesis through the structure and function of apical cytoskeletal networks. PMID:28272499

  15. Three-dimensional Organization of Layered Apical Cytoskeletal Networks Associated with Mouse Airway Tissue Development

    NASA Astrophysics Data System (ADS)

    Tateishi, Kazuhiro; Nishida, Tomoki; Inoue, Kanako; Tsukita, Sachiko

    2017-03-01

    The cytoskeleton is an essential cellular component that enables various sophisticated functions of epithelial cells by forming specialized subcellular compartments. However, the functional and structural roles of cytoskeletons in subcellular compartmentalization are still not fully understood. Here we identified a novel network structure consisting of actin filaments, intermediate filaments, and microtubules directly beneath the apical membrane in mouse airway multiciliated cells and in cultured epithelial cells. Three-dimensional imaging by ultra-high voltage electron microscopy and immunofluorescence revealed that the morphological features of each network depended on the cell type and were spatiotemporally integrated in association with tissue development. Detailed analyses using Odf2 mutant mice, which lack ciliary basal feet and apical microtubules, suggested a novel contribution of the intermediate filaments to coordinated ciliary beating. These findings provide a new perspective for viewing epithelial cell differentiation and tissue morphogenesis through the structure and function of apical cytoskeletal networks.

  16. Reversible stress softening of actin networks

    PubMed Central

    Chaudhuri, Ovijit; Parekh, Sapun H.; Fletcher, Daniel A.

    2011-01-01

    The mechanical properties of cells play an essential role in numerous physiological processes. Organized networks of semiflexible actin filaments determine cell stiffness and transmit force during mechanotransduction, cytokinesis, cell motility and other cellular shape changes1–3. Although numerous actin-binding proteins have been identified that organize networks, the mechanical properties of actin networks with physiological architectures and concentrations have been difficult to measure quantitatively. Studies of mechanical properties in vitro have found that crosslinked networks of actin filaments formed in solution exhibit stress stiffening arising from the entropic elasticity of individual filaments or crosslinkers resisting extension4–8. Here we report reversible stress-softening behaviour in actin networks reconstituted in vitro that suggests a critical role for filaments resisting compression. Using a modified atomic force microscope to probe dendritic actin networks (like those formed in the lamellipodia of motile cells), we observe stress stiffening followed by a regime of reversible stress softening at higher loads. This softening behaviour can be explained by elastic buckling of individual filaments under compression that avoids catastrophic fracture of the network. The observation of both stress stiffening and softening suggests a complex interplay between entropic and enthalpic elasticity in determining the mechanical properties of actin networks. PMID:17230186

  17. Morphological Transformation and Force Generation of Active Cytoskeletal Networks

    PubMed Central

    Maruri, Daniel; Kamm, Roger D.

    2017-01-01

    Cells assemble numerous types of actomyosin bundles that generate contractile forces for biological processes, such as cytokinesis and cell migration. One example of contractile bundles is a transverse arc that forms via actomyosin-driven condensation of actin filaments in the lamellipodia of migrating cells and exerts significant forces on the surrounding environments. Structural reorganization of a network into a bundle facilitated by actomyosin contractility is a physiologically relevant and biophysically interesting process. Nevertheless, it remains elusive how actin filaments are reoriented, buckled, and bundled as well as undergo tension buildup during the structural reorganization. In this study, using an agent-based computational model, we demonstrated how the interplay between the density of myosin motors and cross-linking proteins and the rigidity, initial orientation, and turnover of actin filaments regulates the morphological transformation of a cross-linked actomyosin network into a bundle and the buildup of tension occurring during the transformation. PMID:28114384

  18. The cortical cytoskeletal network and cell-wall dynamics in the unicellular charophycean green alga Penium margaritaceum

    PubMed Central

    Ochs, Julie; LaRue, Therese; Tinaz, Berke; Yongue, Camille; Domozych, David S.

    2014-01-01

    Background and Aims Penium margaritaceum is a unicellular charophycean green alga with a unique bi-directional polar expansion mechanism that occurs at the central isthmus zone prior to cell division. This entails the focused deposition of cell-wall polymers coordinated by the activities of components of the endomembrane system and cytoskeletal networks. The goal of this study was to elucidate the structural organization of the cortical cytoskeletal network during the cell cycle and identify its specific functional roles during key cell-wall developmental events: pre-division expansion and cell division. Methods Microtubules and actin filaments were labelled during various cell cycle phases with an anti-tubulin antibody and rhodamine phalloidin, respectively. Chemically induced disruption of the cytoskeleton was used to elucidate specific functional roles of microtubules and actin during cell expansion and division. Correlation of cytoskeletal dynamics with cell-wall development included live cell labelling with wall polymer-specific antibodies and electron microscopy. Key Results The cortical cytoplasm of Penium is highlighted by a band of microtubules found at the cell isthmus, i.e. the site of pre-division wall expansion. This band, along with an associated, transient band of actin filaments, probably acts to direct the deposition of new wall material and to mark the plane of the future cell division. Two additional bands of microtubules, which we identify as satellite bands, arise from the isthmus microtubular band at the onset of expansion and displace toward the poles during expansion, ultimately marking the isthmus of future daughter cells. Treatment with microtubule and actin perturbation agents reversibly stops cell division. Conclusions The cortical cytoplasm of Penium contains distinct bands of microtubules and actin filaments that persist through the cell cycle. One of these bands, termed the isthmus microtubule band, or IMB, marks the site of both pre

  19. Beta-Actin Deficiency with Oxidative Posttranslational Modifications in Rett Syndrome Erythrocytes: Insights into an Altered Cytoskeletal Organization

    PubMed Central

    Pecorelli, Alessandra; Belmonte, Giuseppe; Signorini, Cinzia; Leoncini, Silvia; Zollo, Gloria; Capone, Antonietta; Giovampaola, Cinzia Della; Sticozzi, Claudia; Valacchi, Giuseppe; Ciccoli, Lucia; Guerranti, Roberto; Hayek, Joussef

    2014-01-01

    Beta-actin, a critical player in cellular functions ranging from cell motility and the maintenance of cell shape to transcription regulation, was evaluated in the erythrocyte membranes from patients with typical Rett syndrome (RTT) and methyl CpG binding protein 2 (MECP2) gene mutations. RTT, affecting almost exclusively females with an average frequency of 1∶10,000 female live births, is considered the second commonest cause of severe cognitive impairment in the female gender. Evaluation of beta-actin was carried out in a comparative cohort study on red blood cells (RBCs), drawn from healthy control subjects and RTT patients using mass spectrometry-based quantitative analysis. We observed a decreased expression of the beta-actin isoforms (relative fold changes for spots 1, 2 and 3: −1.82±0.15, −2.15±0.06, and −2.59±0.48, respectively) in pathological RBCs. The results were validated by western blotting and immunofluorescence microscopy. In addition, beta-actin from RTT patients also showed a dramatic increase in oxidative posttranslational modifications (PTMs) as the result of its binding with the lipid peroxidation product 4-hydroxy-2-nonenal (4-HNE). Our findings demonstrate, for the first time, a beta-actin down-regulation and oxidative PTMs for RBCs of RTT patients, thus indicating an altered cytoskeletal organization. PMID:24671107

  20. Quantifying the contribution of actin networks to the elastic strength of fibroblasts.

    PubMed

    Ananthakrishnan, Revathi; Guck, Jochen; Wottawah, Falk; Schinkinger, Stefan; Lincoln, Bryan; Romeyke, Maren; Moon, Tess; Käs, Josef

    2006-09-21

    The structural models created to understand the cytoskeletal mechanics of cells in suspension are described here. Suspended cells can be deformed by well-defined surface stresses in an Optical Stretcher [Guck, J., Ananthakrishnan, R., Mahmood, H., Moon, T.J., Cunningham, C.C., Käs, J., 2001. The optical stretcher: a novel laser tool to micromanipulate cells. Biophys. J. 81(2), 767-784], a two-beam optical trap designed for the contact-free deformation of cells. Suspended cells have a well-defined cytoskeleton, displaying a radially symmetric actin cortical network underlying the cell membrane with no actin stress fibers, and microtubules and intermediate filaments in the interior. Based on experimental data using suspended fibroblasts, we create two structural models: a thick shell actin cortex model that describes cell deformation for a localized stress distribution on these cells and a three-layered model that considers the entire cytoskeleton when a broad stress distribution is applied. Applying the models to data, we obtain a (actin) cortical shear moduli G of approximately 220 Pa for normal fibroblasts and approximately 185 Pa for malignantly transformed fibroblasts. Additionally, modeling the cortex as a transiently crosslinked isotropic actin network, we show that actin and its crosslinkers must be co-localized into a tight shell to achieve these cortical strengths. The similar moduli values and cortical actin and crosslinker densities but different deformabilities of the normal and cancerous cells suggest that a cell's structural strength is not solely determined by cytoskeletal composition but equally importantly by (actin) cytoskeletal architecture via differing cortical thicknesses. We also find that although the interior structural elements (microtubules, nucleus) contribute to the deformed cell's exact shape via their loose coupling to the cortex, it is the outer actin cortical shell (and its thickness) that mainly determines the cell's structural

  1. Visualization of antigens attached to cytoskeletal framework in animal cells: colocalization of simian virus 40 Vp1 polypeptide and actin in TC7 cells.

    PubMed Central

    Kasamatsu, H; Lin, W; Edens, J; Revel, J P

    1983-01-01

    Actin and the simian virus 40 viral structural polypeptide Vp1 are observed to be present on cytoskeletal fibers of virus-infected TC7 cells, when these antigens in detergent-extracted whole cell mounts were labeled by specific antibodies and colloidal gold particles coated with a second antibody. In both cases, actin and Vp1 were found associated with fibers and fiber-associated electron-dense materials. Patches or clusters of colloidal gold particles denoting the presence of either Vp1 or actin were found on fibers uniformly distributed throughout the cytoplasm. By using simultaneous decoration of the two antigens with colloidal gold particles of different diameters, it was shown that the majority of Vp1 appears attached to cytoskeletal fibers in association with cellular actin. When Vp1 and actin were decorated with Imposil and ferritin simultaneously in infected cells that were fixed first and then permeabilized with saponin, both labels were found in the same spatial domain of the cell cytoplasm. Thus, the colocalization of Vp1 and actin on the cytoskeletal framework seems to reflect their actual state in the living cells. The electron-dense material to which colloidal gold particles localize in our cytoskeletal preparations may be the remnants of subcellular structures with which actin and Vp1 are both associated in intact cells. Images PMID:6308616

  2. Role of Cyclic Nucleotide-Dependent Actin Cytoskeletal Dynamics: [Ca2+]i and Force Suppression in Forskolin-Pretreated Porcine Coronary Arteries

    PubMed Central

    Hocking, Kyle M.; Baudenbacher, Franz J.; Putumbaka, Gowthami; Venkatraman, Sneha; Cheung-Flynn, Joyce; Brophy, Colleen M.; Komalavilas, Padmini

    2013-01-01

    Initiation of force generation during vascular smooth muscle contraction involves a rise in intracellular calcium ([Ca2+]i) and phosphorylation of myosin light chains (MLC). However, reversal of these two processes alone does not account for the force inhibition that occurs during relaxation or inhibition of contraction, implicating that other mechanisms, such as actin cytoskeletal rearrangement, play a role in the suppression of force. In this study, we hypothesize that forskolin-induced force suppression is dependent upon changes in actin cytoskeletal dynamics. To focus on the actin cytoskeletal changes, a physiological model was developed in which forskolin treatment of intact porcine coronary arteries (PCA) prior to treatment with a contractile agonist resulted in complete suppression of force. Pretreatment of PCA with forskolin suppressed histamine-induced force generation but did not abolish [Ca2+]i rise or MLC phosphorylation. Additionally, forskolin pretreatment reduced filamentous actin in histamine-treated tissues, and prevented histamine-induced changes in the phosphorylation of the actin-regulatory proteins HSP20, VASP, cofilin, and paxillin. Taken together, these results suggest that forskolin-induced complete force suppression is dependent upon the actin cytoskeletal regulation initiated by the phosphorylation changes of the actin regulatory proteins and not on the MLC dephosphorylation. This model of complete force suppression can be employed to further elucidate the mechanisms responsible for smooth muscle tone, and may offer cues to pathological situations, such as hypertension and vasospasm. PMID:23593369

  3. Role of cyclic nucleotide-dependent actin cytoskeletal dynamics:Ca(2+)](i) and force suppression in forskolin-pretreated porcine coronary arteries.

    PubMed

    Hocking, Kyle M; Baudenbacher, Franz J; Putumbaka, Gowthami; Venkatraman, Sneha; Cheung-Flynn, Joyce; Brophy, Colleen M; Komalavilas, Padmini

    2013-01-01

    Initiation of force generation during vascular smooth muscle contraction involves a rise in intracellular calcium ([Ca(2+)]i) and phosphorylation of myosin light chains (MLC). However, reversal of these two processes alone does not account for the force inhibition that occurs during relaxation or inhibition of contraction, implicating that other mechanisms, such as actin cytoskeletal rearrangement, play a role in the suppression of force. In this study, we hypothesize that forskolin-induced force suppression is dependent upon changes in actin cytoskeletal dynamics. To focus on the actin cytoskeletal changes, a physiological model was developed in which forskolin treatment of intact porcine coronary arteries (PCA) prior to treatment with a contractile agonist resulted in complete suppression of force. Pretreatment of PCA with forskolin suppressed histamine-induced force generation but did not abolish [Ca(2+)]i rise or MLC phosphorylation. Additionally, forskolin pretreatment reduced filamentous actin in histamine-treated tissues, and prevented histamine-induced changes in the phosphorylation of the actin-regulatory proteins HSP20, VASP, cofilin, and paxillin. Taken together, these results suggest that forskolin-induced complete force suppression is dependent upon the actin cytoskeletal regulation initiated by the phosphorylation changes of the actin regulatory proteins and not on the MLC dephosphorylation. This model of complete force suppression can be employed to further elucidate the mechanisms responsible for smooth muscle tone, and may offer cues to pathological situations, such as hypertension and vasospasm.

  4. RefilinB (FAM101B) targets FilaminA to organize perinuclear actin networks and regulates nuclear shape

    PubMed Central

    Gay, Olivia; Gilquin, Benoît; Nakamura, Fumihiko; Jenkins, Zandra A.; McCartney, Rosannah; Krakow, Deborah; Deshiere, Alexandre; Assard, Nicole; Hartwig, John H.; Robertson, Stephen P.; Baudier, Jacques

    2011-01-01

    The intracellular localization and shape of the nucleus plays a central role in cellular and developmental processes. In fibroblasts, nuclear movement and shape are controlled by a specific perinuclear actin network made of contractile actin filament bundles called transmembrane actin-associated nuclear (TAN) lines that form a structure called the actin cap. The identification of regulatory proteins associated with this specific actin cytoskeletal dynamic is a priority for understanding actin-based changes in nuclear shape and position in normal and pathological situations. Here, we first identify a unique family of actin regulators, the refilin proteins (RefilinA and RefilinB), that stabilize specifically perinuclear actin filament bundles. We next identify the actin-binding filamin A (FLNA) protein as the downstream effector of refilins. Refilins act as molecular switches to convert FLNA from an actin branching protein into one that bundles. In NIH 3T3 fibroblasts, the RefilinB/FLNA complex organizes the perinuclear actin filament bundles forming the actin cap. Finally, we demonstrate that in epithelial normal murine mammary gland (NmuMG) cells, the RefilinB/FLNA complex controls formation of a new perinuclear actin network that accompanies nuclear shape changes during the epithelial–mesenchymal transition (EMT). Our studies open perspectives for further functional analyses of this unique actin-based network and shed light on FLNA function during development and in human syndromes associated with FLNA mutations. PMID:21709252

  5. Simultaneous Visualization of Peroxisomes and Cytoskeletal Elements Reveals Actin and Not Microtubule-Based Peroxisome Motility in Plants1[w

    PubMed Central

    Mathur, Jaideep; Mathur, Neeta; Hülskamp, Martin

    2002-01-01

    Peroxisomes were visualized in living plant cells using a yellow fluorescent protein tagged with a peroxisomal targeting signal consisting of the SKL motif. Simultaneous visualization of peroxisomes and microfilaments/microtubules was accomplished in onion (Allium cepa) epidermal cells transiently expressing the yellow fluorescent protein-peroxi construct, a green fluorescent protein-mTalin construct that labels filamentous-actin filaments, and a green fluorescent protein-microtubule-binding domain construct that labels microtubules. The covisualization of peroxisomes and cytoskeletal elements revealed that, contrary to the reports from animal cells, peroxisomes in plants appear to associate with actin filaments and not microtubules. That peroxisome movement is actin based was shown by pharmacological studies. For this analysis we used onion epidermal cells and various cell types of Arabidopsis including trichomes, root hairs, and root cortex cells exhibiting different modes of growth. In transient onion epidermis assay and in transgenic Arabidopsis plants, an interference with the actin cytoskeleton resulted in progressive loss of saltatory movement followed by the aggregation and a complete cessation of peroxisome motility within 30 min of drug application. Microtubule depolymerization or stabilization had no effect. PMID:11891258

  6. Biogenesis of actin-like bacterial cytoskeletal filaments destined for positioning prokaryotic magnetic organelles.

    PubMed

    Pradel, Nathalie; Santini, Claire-Lise; Bernadac, Alain; Fukumori, Yoshihiro; Wu, Long-Fei

    2006-11-14

    Magnetosomes comprise a magnetic nanocrystal surrounded by a lipid bilayer membrane. These unique prokaryotic organelles align inside magnetotactic bacterial cells and serve as an intracellular compass allowing the bacteria to navigate along the geomagnetic field in aquatic environments. Cryoelectron tomography of Magnetospirillum strains has revealed that the magnetosome chain is surrounded by a network of filaments that may be composed of MamK given that the filaments are absent in the mamK mutant cells. The process of the MamK filament assembly is unknown. Here we prove the authenticity of the MamK filaments and show that MamK exhibits linear distribution inside Magnetospirillum sp. cells even in the area without magnetosomes. The mamK gene alone is sufficient to direct the synthesis of straight filaments in Escherichia coli, and one extremity of the MamK filaments is located at the cellular pole. By using dual fluorescent labeling of MamK, we found that MamK nucleates at multiple sites and assembles into mosaic filaments. Time-lapse experiments reveal that the assembly of the MamK filaments is a highly dynamic and kinetically asymmetrical process. MamK bundles might initiate the formation of a new filament or associate to one preexistent filament. Our results demonstrate the mechanism of biogenesis of prokaryotic cytoskeletal filaments that are structurally and functionally distinct from the known MreB and ParM filaments. In addition to positioning magnetosomes, other hypothetical functions of the MamK filaments in magnetotaxis might include anchoring magnetosomes and being involved in magnetic reception.

  7. Phosphorylation of the cytoskeletal protein CAP1 controls its association with cofilin and actin

    PubMed Central

    Zhou, Guo-Lei; Zhang, Haitao; Wu, Huhehasi; Ghai, Pooja; Field, Jeffrey

    2014-01-01

    ABSTRACT Cell signaling can control the dynamic balance between filamentous and monomeric actin by modulating actin regulatory proteins. One family of actin regulating proteins that controls actin dynamics comprises cyclase-associated proteins 1 and 2 (CAP1 and 2, respectively). However, cell signals that regulate CAPs remained unknown. We mapped phosphorylation sites on mouse CAP1 and found S307 and S309 to be regulatory sites. We further identified glycogen synthase kinase 3 as a kinase phosphorylating S309. The phosphomimetic mutant S307D/S309D lost binding to its partner cofilin and, when expressed in cells, caused accumulation of actin stress fibers similar to that in cells with reduced CAP expression. In contrast, the non-phosphorylatable S307A/S309A mutant showed drastically increased cofilin binding and reduced binding to actin. These results suggest that the phosphorylation serves to facilitate release of cofilin for a subsequent cycle of actin filament severing. Moreover, our results suggest that S307 and S309 function in tandem; neither the alterations in binding cofilin and/or actin, nor the defects in rescuing the phenotype of the enlarged cell size in CAP1 knockdown cells was observed in point mutants of either S307 or S309. In summary, we identify a novel regulatory mechanism of CAP1 through phosphorylation. PMID:25315833

  8. Phosphorylation of the cytoskeletal protein CAP1 controls its association with cofilin and actin.

    PubMed

    Zhou, Guo-Lei; Zhang, Haitao; Wu, Huhehasi; Ghai, Pooja; Field, Jeffrey

    2014-12-01

    Cell signaling can control the dynamic balance between filamentous and monomeric actin by modulating actin regulatory proteins. One family of actin regulating proteins that controls actin dynamics comprises cyclase-associated proteins 1 and 2 (CAP1 and 2, respectively). However, cell signals that regulate CAPs remained unknown. We mapped phosphorylation sites on mouse CAP1 and found S307 and S309 to be regulatory sites. We further identified glycogen synthase kinase 3 as a kinase phosphorylating S309. The phosphomimetic mutant S307D/S309D lost binding to its partner cofilin and, when expressed in cells, caused accumulation of actin stress fibers similar to that in cells with reduced CAP expression. In contrast, the non-phosphorylatable S307A/S309A mutant showed drastically increased cofilin binding and reduced binding to actin. These results suggest that the phosphorylation serves to facilitate release of cofilin for a subsequent cycle of actin filament severing. Moreover, our results suggest that S307 and S309 function in tandem; neither the alterations in binding cofilin and/or actin, nor the defects in rescuing the phenotype of the enlarged cell size in CAP1 knockdown cells was observed in point mutants of either S307 or S309. In summary, we identify a novel regulatory mechanism of CAP1 through phosphorylation.

  9. Structural and viscoelastic properties of actin networks formed by espin or pathologically relevant espin mutants.

    PubMed

    Lieleg, Oliver; Schmoller, Kurt M; Purdy Drew, Kirstin R; Claessens, Mireille M A E; Semmrich, Christine; Zheng, Lili; Bartles, James R; Bausch, Andreas R

    2009-11-09

    The structural organization of the cytoskeleton determines its viscoelastic response which is crucial for the correct functionality of living cells. Both the mechanical response and microstructure of the cytoskeleton are regulated on a microscopic level by the local activation of different actin binding and/or bundling proteins (ABPs). Misregulations in the expression of these ABPs or mutations in their sequence can entail severe cellular dysfunctions and diseases. Here, we study the structural and viscoelastic properties of reconstituted actin networks cross-linked by the ABP espin and compare the obtained network properties to those of other bundled actin networks. Moreover, we quantify the impact of pathologically relevant espin mutations on the viscoelastic properties of these cytoskeletal networks.

  10. Nano-ZnO leads to tubulin macrotube assembly and actin bundling, triggering cytoskeletal catastrophe and cell necrosis

    NASA Astrophysics Data System (ADS)

    García-Hevia, Lorena; Valiente, Rafael; Martín-Rodríguez, Rosa; Renero-Lecuna, Carlos; González, Jesús; Rodríguez-Fernández, Lidia; Aguado, Fernando; Villegas, Juan C.; Fanarraga, Mónica L.

    2016-05-01

    Zinc is a crucial element in biology that plays chief catalytic, structural and protein regulatory roles. Excess cytoplasmic zinc is toxic to cells so there are cell-entry and intracellular buffering mechanisms that control intracellular zinc availability. Tubulin and actin are two zinc-scavenging proteins that are essential components of the cellular cytoskeleton implicated in cell division, migration and cellular architecture maintenance. Here we demonstrate how exposure to different ZnO nanostructures, namely ZnO commercial nanoparticles and custom-made ZnO nanowires, produce acute cytotoxic effects in human keratinocytes (HaCat) and epithelial cells (HeLa) triggering a dose-dependent cell retraction and collapse. We show how engulfed ZnO nanoparticles dissolve intracellularly, triggering actin filament bundling and structural changes in microtubules, transforming these highly dynamic 25 nm diameter polymers into rigid macrotubes of tubulin, severely affecting cell proliferation and survival. Our results demonstrate that nano-ZnO causes acute cytoskeletal collapse that triggers necrosis, followed by a late reactive oxygen species (ROS)-dependent apoptotic process.Zinc is a crucial element in biology that plays chief catalytic, structural and protein regulatory roles. Excess cytoplasmic zinc is toxic to cells so there are cell-entry and intracellular buffering mechanisms that control intracellular zinc availability. Tubulin and actin are two zinc-scavenging proteins that are essential components of the cellular cytoskeleton implicated in cell division, migration and cellular architecture maintenance. Here we demonstrate how exposure to different ZnO nanostructures, namely ZnO commercial nanoparticles and custom-made ZnO nanowires, produce acute cytotoxic effects in human keratinocytes (HaCat) and epithelial cells (HeLa) triggering a dose-dependent cell retraction and collapse. We show how engulfed ZnO nanoparticles dissolve intracellularly, triggering actin

  11. Actin Cytoskeletal Organization in Drosophila Germline Ring Canals Depends on Kelch Function in a Cullin-RING E3 Ligase

    PubMed Central

    Hudson, Andrew M.; Mannix, Katelynn M.; Cooley, Lynn

    2015-01-01

    The Drosophila Kelch protein is required to organize the ovarian ring canal cytoskeleton. Kelch binds and cross-links F-actin in vitro, and it also functions with Cullin 3 (Cul3) as a component of a ubiquitin E3 ligase. How these two activities contribute to cytoskeletal remodeling in vivo is not known. We used targeted mutagenesis to investigate the mechanism of Kelch function. We tested a model in which Cul3-dependent degradation of Kelch is required for its function, but we found no evidence to support this hypothesis. However, we found that mutant Kelch deficient in its ability to interact with Cul3 failed to rescue the kelch cytoskeletal defects, suggesting that ubiquitin ligase activity is the principal activity required in vivo. We also determined that the proteasome is required with Kelch to promote the ordered growth of the ring canal cytoskeleton. These results indicate that Kelch organizes the cytoskeleton in vivo by targeting a protein substrate for degradation by the proteasome. PMID:26384358

  12. Nano-ZnO leads to tubulin macrotube assembly and actin bundling, triggering cytoskeletal catastrophe and cell necrosis.

    PubMed

    García-Hevia, Lorena; Valiente, Rafael; Martín-Rodríguez, Rosa; Renero-Lecuna, Carlos; González, Jesús; Rodríguez-Fernández, Lidia; Aguado, Fernando; Villegas, Juan C; Fanarraga, Mónica L

    2016-06-07

    Zinc is a crucial element in biology that plays chief catalytic, structural and protein regulatory roles. Excess cytoplasmic zinc is toxic to cells so there are cell-entry and intracellular buffering mechanisms that control intracellular zinc availability. Tubulin and actin are two zinc-scavenging proteins that are essential components of the cellular cytoskeleton implicated in cell division, migration and cellular architecture maintenance. Here we demonstrate how exposure to different ZnO nanostructures, namely ZnO commercial nanoparticles and custom-made ZnO nanowires, produce acute cytotoxic effects in human keratinocytes (HaCat) and epithelial cells (HeLa) triggering a dose-dependent cell retraction and collapse. We show how engulfed ZnO nanoparticles dissolve intracellularly, triggering actin filament bundling and structural changes in microtubules, transforming these highly dynamic 25 nm diameter polymers into rigid macrotubes of tubulin, severely affecting cell proliferation and survival. Our results demonstrate that nano-ZnO causes acute cytoskeletal collapse that triggers necrosis, followed by a late reactive oxygen species (ROS)-dependent apoptotic process.

  13. Initiation of Chondrocyte Self-Assembly Requires an Intact Cytoskeletal Network

    PubMed Central

    Lee, Jennifer K.; Hu, Jerry C.Y.

    2016-01-01

    Self-assembly and self-organization have recently emerged as robust scaffold-free tissue engineering methodologies that can be used to generate various tissues, including cartilage, vessel, and liver. Self-assembly, in particular, is a scaffold-free platform for tissue engineering that does not require the input of exogenous energy to the system. Although self-assembly can generate functional tissues, most notably neocartilage, the mechanisms of self-assembly remain unclear. To study the self-assembling process, we used articular chondrocytes as a model to identify parameters that can affect this process. Specifically, the roles of cell–cell and cell–matrix adhesion molecules, surface-bound collagen, and the actin cytoskeletal network were investigated. Using time-lapse imaging, we analyzed the early stages of chondrocyte self-assembly. Within hours, chondrocytes rapidly coalesced into cell clusters before compacting to form tight cellular structures. Chondrocyte self-assembly was found to depend primarily on integrin function and secondarily on cadherin function. In addition, actin or myosin II inhibitors prevented chondrocyte self-assembly, suggesting that cell adhesion alone is not sufficient, but rather the active contractile actin cytoskeleton is essential for proper chondrocyte self-assembly and the formation of neocartilage. Better understanding of the self-assembly mechanisms allows for the rational modulation of this process toward generating neocartilages with improved properties. These findings are germane to understanding self-assembly, an emerging platform for tissue engineering of a plethora of tissues, especially as these neotissues are poised for translation. PMID:26729374

  14. Growth of branched actin networks against obstacles.

    PubMed Central

    Carlsson, A E

    2001-01-01

    A method for simulating the growth of branched actin networks against obstacles has been developed. The method is based on simple stochastic events, including addition or removal of monomers at filament ends, capping of filament ends, nucleation of branches from existing filaments, and detachment of branches; the network structure for several different models of the branching process has also been studied. The models differ with regard to their inclusion of effects such as preferred branch orientations, filament uncapping at the obstacle, and preferential branching at filament ends. The actin ultrastructure near the membrane in lamellipodia is reasonably well produced if preferential branching in the direction of the obstacle or barbed-end uncapping effects are included. Uncapping effects cause the structures to have a few very long filaments that are similar to those seen in pathogen-induced "actin tails." The dependence of the growth velocity, branch spacing, and network density on the rate parameters for the various processes is quite different among the branching models. An analytic theory of the growth velocity and branch spacing of the network is described. Experiments are suggested that could distinguish among some of the branching models. PMID:11566765

  15. Curvature and torsion in growing actin networks

    PubMed Central

    Shaevitz, Joshua W; Fletcher, Daniel A

    2011-01-01

    Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque. PMID:18560043

  16. Curvature and torsion in growing actin networks

    NASA Astrophysics Data System (ADS)

    Shaevitz, Joshua W.; Fletcher, Daniel A.

    2008-06-01

    Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque.

  17. Effects of novel ethacrynic acid derivatives on human trabecular meshwork cell shape, actin cytoskeletal organization, and transcellular fluid flow.

    PubMed

    Rao, Ponugoti Vasantha; Shimazaki, Atsushi; Ichikawa, Masaki; Franse-Carman, Linda; Alvarado, Jorge A; Epstein, David L

    2005-12-01

    To determine efficacy and therapeutic index in the context of ocular hypotensive activity of the new ethacrynic acid (ECA) derivatives of the series (SA8,248 and SA8,389), 9,000 series (SA9,000, SA9,622 and SA9,995) and ticrynafen, we undertook a comparative evaluation of the dose-dependent effects of these compounds on human trabecular meshwork (HTM) cell shape, actin cytoskeletal organization, focal adhesions and transcellular fluid flow. Responses were either scored using an arbitrary scale of 1-5 or quantified. Compounds of the 9000 series (SA9,995>SA9,000>SA9,622) were found to be 14- to 20-fold more potent than ECA, ticrynafen or analogs from the 8,000 series (SA8,389>SA8,248) in terms of ability to induce cell shape alterations in HTM cells. Similarly, compounds of the 9,000 series (SA9,995>SA9,622>SA9,000) were found to be much stronger (2 to 20 fold) than ECA, ticrynafen or analogs of the 8000 series in terms of affecting decreases in actin stress fiber content in HTM cells. Analogs of the 9000 series (SA9,622>SA9,995>SA9,000) were also observed to be 8 to 10 fold more potent than ECA (SA8,389>ECA>SA8,248>ticrynafen) at eliciting decreases in cellular focal adhesions. Interestingly, analogs of the 9000 series (SA9,000>SA9,622>SA9,995) and SA8,248 demonstrated a huge increase (by many folds) in transcellular fluid flow of HTM cell monolayers as compared to ECA and ticrynafen. Collectively, these analyses revealed that the structural modification of ECA improves its ocular hypotensive efficacy, indicating that the SA9,000 series compounds might be promising novel ocular hypotensive drugs.

  18. Actin cytoskeletal control during epithelial to mesenchymal transition: focus on the pancreas and intestinal tract

    PubMed Central

    Morris, H T; Machesky, L M

    2015-01-01

    The formation of epithelial tissues allows organisms to specialise and form tissues with diverse functions and compartmentalised environments. The tight controls on cell growth and migration required to maintain epithelia can present problems such as the development and spread of cancer when normal pathways are disrupted. By attaining a deeper understanding of how cell migration is suppressed to maintain the epithelial organisation and how it is reactivated when epithelial tissues become mesenchymal, new insights into both cancer and development can be gained. Here we discuss recent developments in our understanding of epithelial and mesenchymal regulation of the actin cytoskeleton in normal and cancerous tissue, with a focus on the pancreas and intestinal tract. PMID:25611303

  19. Surface adsorption and hopping cause probe-size-dependent microrheology of actin networks

    NASA Astrophysics Data System (ADS)

    He, Jun; Tang, Jay X.

    2011-04-01

    A network of filaments formed primarily by the abundant cytoskeletal protein actin gives animal cells their shape and elasticity. The rheological properties of reconstituted actin networks have been studied by tracking micron-sized probe beads embedded within the networks. We investigate how microrheology depends on surface properties of probe particles by varying the stickiness of their surface. For this purpose, we chose carboxylate polystyrene (PS) beads, silica beads, bovine serum albumin (BSA) -coated PS beads, and polyethylene glycol (PEG) -grafted PS beads, which show descending stickiness to actin filaments, characterized by confocal imaging and microrheology. Probe size dependence of microrheology is observed for all four types of beads. For the slippery PEG beads, particle-tracking microrheology detects weaker networks using smaller beads, which tend to diffuse through the network by hopping from one confinement “cage” to another. This trend is reversed for the other three types of beads, for which microrheology measures stiffer networks for smaller beads due to physisorption of nearby filaments to the bead surface. We explain the probe size dependence with two simple models. We also evaluate depletion effect near nonadsorption bead surface using quantitative image analysis and discuss the possible impact of depletion on microrheology. Analysis of these effects is necessary in order to accurately define the actin network rheology both in vitro and in vivo.

  20. Auxins and Cytokinins as Antipodal Modulators of Elasticity within the Actin Network of Plant Cells.

    PubMed Central

    Grabski, S.; Schindler, M.

    1996-01-01

    The cytoskeleton of plant and animal cells serves as a transmitter, transducer, and effector of cell signaling mechanisms. In plants, pathways for proliferation, differentiation, intracellular vesicular transport, cell-wall biosynthesis, symbiosis, secretion, and membrane recycling depend on the organization and dynamic properties of actin- and tubulin-based structures that are either associated with the plasma membrane or traverse the cytoplasm. Recently, a new in vivo cytoskeletal assay (cell optical displacement assay) was introduced to measure the tension within subdomains (cortical, transvacuolar, and perinuclear) of the actin network in living plant cells. Cell optical displacement assay measurements within soybean (Glycine max [L.]) root cells previously demonstrated that lipophilic signals, e.g. linoleic acid and arachidonic acid or changes in cytoplasmic pH gradients, could induce significant reductions in the tension within the actin network of transvacuolar strands. In contrast, enhancement of cytoplasmic free Ca2+ resulted in an increase in tension. In the present communication we have used these measurements to show that a similar antipodal pattern of activity exists for auxins and cytokinins (in their ability to modify the tension within the actin network of plant cells). It is suggested that these growth substances exert their effect on the cytoskeleton through the activation of signaling cascades, which result in the production of lipophilic and ionic second messengers, both of which have been demonstrated to directly effect the tension within the actin network of soybean root cells. PMID:12226233

  1. Cyclic hardening in bundled actin networks.

    PubMed

    Schmoller, K M; Fernández, P; Arevalo, R C; Blair, D L; Bausch, A R

    2010-01-01

    Nonlinear deformations can irreversibly alter the mechanical properties of materials. Most soft materials, such as rubber and living tissues, display pronounced softening when cyclically deformed. Here we show that, in contrast, reconstituted networks of crosslinked, bundled actin filaments harden when subject to cyclical shear. As a consequence, they exhibit a mechano-memory where a significant stress barrier is generated at the maximum of the cyclic shear strain. This unique response is crucially determined by the network architecture: at lower crosslinker concentrations networks do not harden, but soften showing the classic Mullins effect known from rubber-like materials. By simultaneously performing macrorheology and confocal microscopy, we show that cyclic shearing results in structural reorganization of the network constituents such that the maximum applied strain is encoded into the network architecture.

  2. Formin DAAM1 Organizes Actin Filaments in the Cytoplasmic Nodal Actin Network

    PubMed Central

    Luo, Weiwei; Lieu, Zi Zhao; Manser, Ed; Bershadsky, Alexander D.; Sheetz, Michael P.

    2016-01-01

    A nodal cytoplasmic actin network underlies actin cytoplasm cohesion in the absence of stress fibers. We previously described such a network that forms upon Latrunculin A (LatA) treatment, in which formin DAAM1 was localized at these nodes. Knock down of DAAM1 reduced the mobility of actin nodes but the nodes remained. Here we have investigated DAAM1 containing nodes after LatA washout. DAAM1 was found to be distributed between the cytoplasm and the plasma membrane. The membrane binding likely occurs through an interaction with lipid rafts, but is not required for F-actin assembly. Interesting the forced interaction of DAAM1 with plasma membrane through a rapamycin-dependent linkage, enhanced F-actin assembly at the cell membrane (compared to the cytoplasm) after the LatA washout. However, immediately after addition of both rapamycin and LatA, the cytoplasmic actin nodes formed transiently, before DAAM1 moved to the membrane. This was consistent with the idea that DAAM1 was initially anchored to cytoplasmic actin nodes. Further, photoactivatable tracking of DAAM1 showed DAAM1 was immobilized at these actin nodes. Thus, we suggest that DAAM1 organizes actin filaments into a nodal complex, and such nodal complexes seed actin network recovery after actin depolymerization. PMID:27760153

  3. Actin network architecture can determine myosin motor activity.

    PubMed

    Reymann, Anne-Cécile; Boujemaa-Paterski, Rajaa; Martiel, Jean-Louis; Guérin, Christophe; Cao, Wenxiang; Chin, Harvey F; De La Cruz, Enrique M; Théry, Manuel; Blanchoin, Laurent

    2012-06-08

    The organization of actin filaments into higher-ordered structures governs eukaryotic cell shape and movement. Global actin network size and architecture are maintained in a dynamic steady state through regulated assembly and disassembly. Here, we used experimentally defined actin structures in vitro to investigate how the activity of myosin motors depends on network architecture. Direct visualization of filaments revealed myosin-induced actin network deformation. During this reorganization, myosins selectively contracted and disassembled antiparallel actin structures, while parallel actin bundles remained unaffected. The local distribution of nucleation sites and the resulting orientation of actin filaments appeared to regulate the scalability of the contraction process. This "orientation selection" mechanism for selective contraction and disassembly suggests how the dynamics of the cellular actin cytoskeleton can be spatially controlled by actomyosin contractility.

  4. Encoding Mechano-Memories in Actin Networks

    NASA Astrophysics Data System (ADS)

    Foucard, Louis; Majumdar, Sayantan; Levine, Alex; Gardel, Margaret

    The ability of cells to sense and adapt to external mechanical stimuli is vital to many of its biological functions. A critical question is therefore to understand how mechanosensory mechanisms arise in living matter, with implications in both cell biology and smart materials design. Experimental work has demonstrated that the mechanical properties of semiflexible actin networks in Eukaryotic cells can be modulated (either transiently or irreversibly) via the application of external forces. Previous work has also shown with a combination of numerical simulations and analytic calculations shows that the broken rotational symmetry of the filament orientational distribution in semiflexible networks leads to dramatic changes in the mechanical response. Here we demonstrate with a combination of numerical and analytic calculations that the observed long-lived mechano-memory in the actin networks arise from changes in the nematic order of the constituent filaments. These stress-induced changes in network topology relax slowly under zero stress and can be observed through changes in the nonlinear mechanics. Our results provide a strategy for designing a novel class of materials and demonstrate a new putative mechanism of mechanical sensing in eukaryotic cells.

  5. Pattern formation in actin gels: A study in the mechanics of gels formed by the important cytoskeletal protein actin, especially as applied to cellular motility

    NASA Astrophysics Data System (ADS)

    Balter, Ariel

    We have studied pattern formation in actin gels to better understand how they function in biological systems, especially in the motility mechanism used by some pathogenic bacteria such as Listeria. By coating themselves with certain enzymes, these bacteria appropriate actin (a protein) from the surrounding host cell's cytoplasm and cause a network or "gel" of actin filaments to grow on their outer surface. As the resulting "comet tail" shaped protrusion grows, it pushes the bacterium away. In experiments, polystyrene beads coated with the same enzymes will also generate comet tails and swim in a very similar manner. However, these bead experiments have also generated anomalous results such as the formation of many comet tails. In some experiments, when two comet tails formed they systematically grew into regular, oppositely handed helices. The formation of any comet tails on a bead poses a physical conundrum. The bacterial enzyme coating is asymmetrical so the comet tail forms in a particular place. But the beads are symmetrical, so comet tails formation constitutes symmetry breaking and spontaneous pattern formation. We have modeled this process as a competition between elastic energy (which favors many tails) and chemical energy (which favors few tails). Our analytical model explains the factors that experimentally determine the number of tails, and numerical simulations confirm these predictions. To understand the helical tails, we did extensive data analysis involving image processing, statistical analysis and mathematical modeling of images of the helical tails. We identified some important features of how the twin tails form. For instance, the tail growth rate is independent of drag force, and bead rotation must accompany helical tail formation. We also created a physical model for helical growth. Numerical simulations of our model show that at very low Reynolds number, a cylindrical object growing under the conditions of an actin comet tail can spontaneously

  6. Actin-myosin network influences morphological response of neuronal cells to altered osmolarity.

    PubMed

    Bober, Brian G; Love, James M; Horton, Steven M; Sitnova, Mariya; Shahamatdar, Sina; Kannan, Ajay; Shah, Sameer B

    2015-04-01

    Acute osmotic fluctuations in the brain occur during a number of clinical conditions and can result in a variety of adverse neurological symptoms. Osmotic perturbation can cause changes in the volumes of intra- and extracellular fluid and, due to the rigidity of the skull, can alter intracranial pressure thus making it difficult to analyze purely osmotic effects in vivo. The present study aims to determine the effects of changes in osmolarity on SH-SY5Y human neuroblastoma cells in vitro, and the role of the actin-myosin network in regulating this response. Cells were exposed to hyper- or hypoosmotic media and morphological and cytoskeletal responses were recorded. Hyperosmotic shock resulted in a drop in cell body volume and planar area, a persisting shape deformation, and increases in cellular translocation. Hypoosmotic shock did not significantly alter planar area, but caused a transient increase in cell body volume and an increase in cellular translocation via the development of small protrusions rich in actin. Disruption of the actin-myosin network with latrunculin and blebbistatin resulted in changes to volume and shape regulation, and a decrease in cellular translocation. In both osmotic perturbations, no apparent disruptions to cytoskeletal integrity were observed by light microscopy. Overall, because osmotically induced changes persisted even after volume regulation occurred, it is possible that osmotic stress may play a larger role in neurological dysfunction than currently believed.

  7. Resemblance of actin-binding protein/actin gels to covalently crosslinked networks

    NASA Astrophysics Data System (ADS)

    Janmey, Paul A.; Hvidt, Søren; Lamb, Jennifer; Stossel, Thomas P.

    1990-05-01

    THE maintainance of the shape of cells is often due to their surface elasticity, which arises mainly from an actin-rich cytoplasmic cortex1,2. On locomotion, phagocytosis or fission, however, these cells become partially fluid-like. The finding of proteins that can bind to actin and control the assembly of, or crosslink, actin filaments, and of intracellular messages that regulate the activities of some of these actin-binding proteins, indicates that such 'gel sol' transformations result from the rearrangement of cortical actin-rich networks3. Alternatively, on the basis of a study of the mechanical properties of mixtures of actin filaments and an Acanthamoeba actin-binding protein, α-actinin, it has been proposed that these transformations can be accounted for by rapid exchange of crosslinks between actin filaments4: the cortical network would be solid when the deformation rate is greater than the rate of crosslink exchange, but would deform or 'creep' when deformation is slow enough to permit crosslinker molecules to rearrange. Here we report, however, that mixtures of actin filaments and actin-binding protein (ABP), an actin crosslinking protein of many higher eukaryotes, form gels Theologically equivalent to covalently crosslinked networks. These gels do not creep in response to applied stress on a time scale compatible with most cell-surface movements. These findings support a more complex and controlled mechanism underlying the dynamic mechanical properties of cortical cytoplasm, and can explain why cells do not collapse under the constant shear forces that often exist in tissues.

  8. A structural study of F-actin - filamin networks

    NASA Astrophysics Data System (ADS)

    Ahrens-Braunstein, Ashley; Nguyen, Lam; Hirst, Linda

    2010-03-01

    The cell's ability to move and contract is attributed to the semi-flexible filamentous protein, F -actin, one of the three filaments in the cytoskeleton. Actin bundling can be formed by a cross-linking actin binding protein (ABP) filamin. By examining filamin's cross-linking abilities at different concentrations and molar ratios, we can study the flexibility, structure and multiple network formations created when cross-linking F-actin with this protein. We have studied the phase diagram of this protein system using fluorescence microscopy, analyzing the network structures observed in the context of a coarse grained molecular dynamics simulation carried out by our group.

  9. Myotonic dystrophy protein kinase (DMPK) induces actin cytoskeletal reorganization and apoptotic-like blebbing in lens cells

    NASA Technical Reports Server (NTRS)

    Jin, S.; Shimizu, M.; Balasubramanyam, A.; Epstein, H. F.

    2000-01-01

    DMPK, the product of the DM locus, is a member of the same family of serine-threonine protein kinases as the Rho-associated enzymes. In DM, membrane inclusions accumulate in lens fiber cells producing cataracts. Overexpression of DMPK in cultured lens epithelial cells led to apoptotic-like blebbing of the plasma membrane and reorganization of the actin cytoskeleton. Enzymatically active DMPK was necessary for both effects; inactive mutant DMPK protein did not produce either effect. Active RhoA but not constitutive GDP-state mutant protein produced similar effects as DMPK. The similar actions of DMPK and RhoA suggest that they may function in the same regulatory network. The observed effects of DMPK may be relevant to the removal of membrane organelles during normal lens differentiation and the retention of intracellular membranes in DM lenses. Copyright 2000 Wiley-Liss, Inc.

  10. Reorganization of the actin cytoskeleton via transcriptional regulation of cytoskeletal/focal adhesion genes by myocardin-related transcription factors (MRTFs/MAL/MKLs)

    SciTech Connect

    Morita, Tsuyoshi; Mayanagi, Taira; Sobue, Kenji

    2007-10-01

    RhoA is a crucial regulator of stress fiber and focal adhesion formation through the activation of actin nucleation and polymerization. It also regulates the nuclear translocation of myocardin-related transcription factor-A and -B (MRTF-A/B, MAL or MKL 1/2), which are co-activators of serum response factor (SRF). In dominant-negative MRTF-A (DN-MRTF-A)-expressing NIH 3T3 cell lines, the expressions of several cytoskeletal/focal adhesion genes were down-regulated, and the formation of stress fiber and focal adhesion was severely diminished. MRTF-A/B-knockdown cells also exhibited such cytoskeletal defects. In reporter assays, both RhoA and MRTF-A enhanced promoter activities of these genes in a CArG-box-dependent manner, and DN-MRTF-A inhibited the RhoA-mediated activation of these promoters. In dominant-negative RhoA (RhoA-N19)-expressing NIH 3T3 cell lines, the nuclear translocation of MRTF-A/B was predominantly prevented, resulting in the reduced expression of cytoskeletal/focal adhesion proteins. Further, constitutive-active MRTF-A/B increased the expression of endogenous cytoskeletal/focal adhesion proteins, and thereby rescued the defective phenotype of stress fibers and focal adhesions in RhoA-N19 expressing cells. These results indicate that MRTF-A/B act as pivotal mediators of stress fiber and focal adhesion formation via the transcriptional regulation of a subset of cytoskeletal/focal adhesion genes.

  11. Mechanics of composite actin networks: in vitro and cellular perspectives

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Arpita

    2014-03-01

    Actin filaments and associated actin binding proteins play an essential role in governing the mechanical properties of eukaryotic cells. Even though cells have multiple actin binding proteins (ABPs) that exist simultaneously to maintain the structural and mechanical integrity of the cellular cytoskeleton, how these proteins work together to determine the properties of actin networks is not well understood. The ABP, palladin, is essential for the integrity of cell morphology and movement during development. Palladin coexists with alpha-actinin in stress fibers and focal adhesions and binds to both actin and alpha-actinin. To obtain insight into how mutually interacting actin crosslinking proteins modulate the properties of actin networks, we have characterized the micro-structure and mechanics of actin networks crosslinked with palladin and alpha-actinin. Our studies on composite networks of alpha-actinin/palladin/actin show that palladin and alpha-actinin synergistically determine network viscoelasticity. We have further examined the role of palladin in cellular force generation and mechanosensing. Traction force microscopy revealed that TAFs are sensitive to substrate stiffness as they generate larger forces on substrates of increased stiffness. Contrary to expectations, knocking down palladin increased the forces generated by cells, and also inhibited the ability to sense substrate stiffness for very stiff gels. This was accompanied by significant differences in the actin organization and adhesion dynamics of palladin knock down cells. Perturbation experiments also suggest altered myosin activity in palladin KD cells. Our results suggest that the actin crosslinkers such as palladin and myosin motors coordinate for optimal cell function and to prevent aberrant behavior as in cancer metastasis.

  12. Cross-Linking Molecules Modify Composite Actin Networks Independently

    NASA Astrophysics Data System (ADS)

    Schmoller, K. M.; Lieleg, O.; Bausch, A. R.

    2008-09-01

    While cells make use of many actin binding proteins (ABPs) simultaneously to tailor the mechanical properties of the cytoskeleton, the detailed interplay of different ABPs is not understood. By a combination of macrorheological measurements and confocal microscopy, we show that the ABPs fascin and filamin modify the structural and viscoelastic properties of composite in vitro actin networks independently. The outnumbering ABP dictates the local network structure and therefore also dominates the macromechanical network response.

  13. Diffusing wave spectroscopy microrheology of actin filament networks.

    PubMed Central

    Palmer, A; Xu, J; Kuo, S C; Wirtz, D

    1999-01-01

    Filamentous actin (F-actin), one of the constituents of the cytoskeleton, is believed to be the most important participant in the motion and mechanical integrity of eukaryotic cells. Traditionally, the viscoelastic moduli of F-actin networks have been measured by imposing a small mechanical strain and quantifying the resulting stress. The magnitude of the viscoelastic moduli, their concentration dependence and strain dependence, as well as the viscoelastic nature (solid-like or liquid-like) of networks of uncross-linked F-actin, have been the subjects of debate. Although this paper helps to resolve the debate and establishes the extent of the linear regime of F-actin networks' rheology, we report novel measurements of the high-frequency behavior of networks of F-actin, using a noninvasive light-scattering based technique, diffusing wave spectroscopy (DWS). Because no external strain is applied, our optical assay generates measurements of the mechanical properties of F-actin networks that avoid many ambiguities inherent in mechanical measurements. We observe that the elastic modulus has a small magnitude, no strain dependence, and a weak concentration dependence. Therefore, F-actin alone is not sufficient to generate the elastic modulus necessary to sustain the structural rigidity of most cells or support new cellular protrusions. Unlike previous studies, our measurements show that the mechanical properties of F-actin are highly dependent on the frequency content of the deformation. We show that the loss modulus unexpectedly dominates the elastic modulus at high frequencies, which are key for fast transitions. Finally, the measured mean square displacement of the optical probes, which is also generated by DWS measurements, offers new insight into the local bending fluctuations of the individual actin filaments and shows how they generate enhanced dissipation at short time scales. PMID:9916038

  14. Growing actin networks regulated by obstacle size and shape

    NASA Astrophysics Data System (ADS)

    Gong, Bo; Lin, Ji; Qian, Jin

    2017-01-01

    Growing actin networks provide the driving force for the motility of cells and intracellular pathogens. Based on the molecular-level processes of actin polymerization, branching, capping, and depolymerization, we have developed a modeling framework to simulate the stochastic and cooperative behaviors of growing actin networks in propelling obstacles, with an emphasis on the size and shape effects on work capacity and filament orientation in the growing process. Our results show that the characteristic size of obstacles changes the protrusion power per unit length, without influencing the orientation distribution of actin filaments in growing networks. In contrast, the geometry of obstacles has a profound effect on filament patterning, which influences the orientation of filaments differently when the drag coefficient of environment is small, intermediate, or large. We also discuss the role of various parameters, such as the aspect ratio of obstacles, branching rate, and capping rate, in affecting the protrusion power of network growth.

  15. Cytoskeletal mechanics: Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Bausch, Andreas

    2008-03-01

    The actin cytoskeleton, a dynamic network of semiflexible filaments and associated regulatory proteins, is responsible for the extraordinary viscoelastic properties of cells. Especially for cellular motility the controlled self assembly to defined structures and the dynamic reorganization on different time scales are of outstanding importance. A prominent example for the controlled self assembly are actin bundles: in many cytoskeletal processes cells rely on the tight control of the structural and mechanical properties of the actin bundles. Using an in vitro model system we show that size control relies on a mismatch between the helical structure of individual actin filaments and the packing symmetry within bundles. While such self assembled structure may evoke the picture of a static network the contrary is the case: the cytoskeleton is highly dynamic and a constant remodeling takes place in vivo. Such dynamic reorganization of the cytoskeleton relies on the non-static nature of single actin/ABP bonds. Here, we study the thermal and forced unbinding events of individual ABP in such in vitro networks. The binding kinetics of the transient crosslinkers determines the mechanical response of such networks -- in the linear as well in the non-linear regime. These effects are important prerequisites for the high adaptability of cells and at the same time might be the molecular mechanism employed by them for mechanosensing.

  16. Cross-Linker Unbinding and Self-Similarity in Bundled Cytoskeletal Networks

    NASA Astrophysics Data System (ADS)

    Lieleg, O.; Bausch, A. R.

    2007-10-01

    The macromechanical properties of purely bundled in vitro actin networks are not only determined by the micromechanical properties of individual bundles but also by molecular unbinding events of the actin-binding protein (ABP) fascin. Under high mechanical load the network elasticity depends on the forced unbinding of individual ABPs in a rate dependent manner. Cross-linker unbinding in combination with the structural self-similarity of the network enables the introduction of a concentration-time superposition principle—broadening the mechanically accessible frequency range over 8 orders of magnitude.

  17. Microrheology of single microtubule filaments and synthesized cytoskeletal networks

    NASA Astrophysics Data System (ADS)

    Koch, Matthias; Rohrbach, Alexander

    2015-03-01

    The ability to sense and respond to external mechanical forces is crucial for cells in many processes such as cell growth and division. Common models on mechanotransduction rely on the conversion of mechanical stimuli to chemical signals in the cell periphery and their translocation by diffusion (passive) or molecular motors (active). These processes are rather slow (~ seconds) and it has been argued that the cytoskeleton itself might be able to transport a mechanical signal within microseconds via stress waves. Microtubules are the stiffest component of the cytoskeleton and thus ideal candidates for this purpose. We study the frequency dependent response of single microtubule filaments and small networks thereof in a bottom-up approach using several (N =2-10) time-multiplexed optical tweezers together with back focal plane interferometry. Small synthesized networks with a defined geometry are constructed using trapped Neutravidin beads as anchor points for biotinylated filaments. The network is then probed by a defined oscillation of one anchor (actor). The frequency dependent response of the remaining beads (sensors) is analyzed experimentally and modeled theoretically over a wide frequency range.

  18. Global treadmilling coordinates actin turnover and controls the size of actin networks.

    PubMed

    Carlier, Marie-France; Shekhar, Shashank

    2017-03-01

    Various cellular processes (including cell motility) are driven by the regulated, polarized assembly of actin filaments into distinct force-producing arrays of defined size and architecture. Branched, linear, contractile and cytosolic arrays coexist in vivo, and cells intricately control the number, length and assembly rate of filaments in these arrays. Recent in vitro and in vivo studies have revealed novel molecular mechanisms that regulate the number of filament barbed and pointed ends and their respective assembly and disassembly rates, thus defining classes of dynamically different filaments, which coexist in the same cell. We propose that a global treadmilling process, in which a steady-state amount of polymerizable actin monomers is established by the dynamics of each network, is responsible for defining the size and turnover of coexisting actin networks. Furthermore, signal-induced changes in the partitioning of actin to distinct arrays (mediated by RHO GTPases) result in the establishment of various steady-state concentrations of polymerizable monomers, thereby globally influencing the growth rate of actin filaments.

  19. The alternatively-included 11a sequence modifies the effects of Mena on actin cytoskeletal organization and cell behavior

    PubMed Central

    Balsamo, Michele; Mondal, Chandrani; Carmona, Guillaume; McClain, Leslie M.; Riquelme, Daisy N.; Tadros, Jenny; Ma, Duan; Vasile, Eliza; Condeelis, John S.; Lauffenburger, Douglas A.; Gertler, Frank B.

    2016-01-01

    During tumor progression, alternative splicing gives rise to different Mena protein isoforms. We analyzed how Mena11a, an isoform enriched in epithelia and epithelial-like cells, affects Mena-dependent regulation of actin dynamics and cell behavior. While other Mena isoforms promote actin polymerization and drive membrane protrusion, we find that Mena11a decreases actin polymerization and growth factor-stimulated membrane protrusion at lamellipodia. Ectopic Mena11a expression slows mesenchymal-like cell motility, while isoform-specific depletion of endogenous Mena11a in epithelial-like tumor cells perturbs cell:cell junctions and increases membrane protrusion and overall cell motility. Mena11a can dampen membrane protrusion and reduce actin polymerization in the absence of other Mena isoforms, indicating that it is not simply an inactive Mena isoform. We identify a phosphorylation site within 11a that is required for some Mena11a-specific functions. RNA-seq data analysis from patient cohorts demonstrates that the difference between mRNAs encoding constitutive Mena sequences and those containing the 11a exon correlates with metastasis in colorectal cancer, suggesting that 11a exon exclusion contributes to invasive phenotypes and leads to poor clinical outcomes. PMID:27748415

  20. The alternatively-included 11a sequence modifies the effects of Mena on actin cytoskeletal organization and cell behavior.

    PubMed

    Balsamo, Michele; Mondal, Chandrani; Carmona, Guillaume; McClain, Leslie M; Riquelme, Daisy N; Tadros, Jenny; Ma, Duan; Vasile, Eliza; Condeelis, John S; Lauffenburger, Douglas A; Gertler, Frank B

    2016-10-17

    During tumor progression, alternative splicing gives rise to different Mena protein isoforms. We analyzed how Mena11a, an isoform enriched in epithelia and epithelial-like cells, affects Mena-dependent regulation of actin dynamics and cell behavior. While other Mena isoforms promote actin polymerization and drive membrane protrusion, we find that Mena11a decreases actin polymerization and growth factor-stimulated membrane protrusion at lamellipodia. Ectopic Mena11a expression slows mesenchymal-like cell motility, while isoform-specific depletion of endogenous Mena11a in epithelial-like tumor cells perturbs cell:cell junctions and increases membrane protrusion and overall cell motility. Mena11a can dampen membrane protrusion and reduce actin polymerization in the absence of other Mena isoforms, indicating that it is not simply an inactive Mena isoform. We identify a phosphorylation site within 11a that is required for some Mena11a-specific functions. RNA-seq data analysis from patient cohorts demonstrates that the difference between mRNAs encoding constitutive Mena sequences and those containing the 11a exon correlates with metastasis in colorectal cancer, suggesting that 11a exon exclusion contributes to invasive phenotypes and leads to poor clinical outcomes.

  1. Self-organization of actin networks by a monomeric myosin

    PubMed Central

    Saczko-Brack, Dario; Warchol, Ewa; Rogez, Benoit; Kröss, Markus; Heissler, Sarah M.; Sellers, James R.; Batters, Christopher; Veigel, Claudia

    2016-01-01

    The organization of actomyosin networks lies at the center of many types of cellular motility, including cell polarization and collective cell migration during development and morphogenesis. Myosin-IXa is critically involved in these processes. Using total internal reflection fluorescence microscopy, we resolved actin bundles assembled by myosin-IXa. Electron microscopic data revealed that the bundles consisted of highly ordered lattices with parallel actin polarity. The myosin-IXa motor domains aligned across the network, forming cross-links at a repeat distance of precisely 36 nm, matching the helical repeat of actin. Single-particle image processing resolved three distinct conformations of myosin-IXa in the absence of nucleotide. Using cross-correlation of a modeled actomyosin crystal structure, we identified sites of additional mass, which can only be accounted for by the large insert in loop 2 exclusively found in the motor domain of class IX myosins. We show that the large insert in loop 2 binds calmodulin and creates two coordinated actin-binding sites that constrain the actomyosin interactions generating the actin lattices. The actin lattices introduce orientated tracks at specific sites in the cell, which might install platforms allowing Rho-GTPase–activating protein (RhoGAP) activity to be focused at a definite locus. In addition, the lattices might introduce a myosin-related, force-sensing mechanism into the cytoskeleton in cell polarization and collective cell migration. PMID:27956608

  2. Microstructure and Mechanical Properties of Composite Actin Networks

    NASA Astrophysics Data System (ADS)

    Gardel, Margaret; Shin, Jennifer; Mahadevan, L.; Matsudaira, Paul; Weitz, D. A.

    2003-03-01

    There exits a family of actin-binding proteins (ABPs) and each protein has a distinct function for bundling, networking, gelating, capping, or simply binding to actin. Whether actin serves as a structural or motile component, its mechanical properties are determined by its degree and kinds of association with different ABPs and these properties are often closely related to its functional needs. For instance, in a cell actin is highly crosslinked with multiple ABPs (fimbrin, alpha-actinin, etc.) to generate thrust and strength for locomotion. In the acrosomal reaction of horseshoe crab sperm, actin exists as a bundle of preassembled filaments crosslinked with scruin to form a rigid structure to penetrate into an egg without yielding. We study the effects three different ABPs (scruin,fimbrin and alpha-actinin) have on the rheology and microstructure of actin networks using multiparticle tracking, imaging, and bulk rheology. From these experiments we can deduce how an evolving microstructure affects the bulk rheological properties and the role different concentrations and kinds of ABPs have in these changes.

  3. Nonsteroidal anti-inflammatory drugs attenuate amyloid-β protein-induced actin cytoskeletal reorganization through Rho signaling modulation.

    PubMed

    Ferrera, Patricia; Zepeda, Angélica; Arias, Clorinda

    2017-01-25

    Amyloid-β protein (Aβ) neurotoxicity occurs along with the reorganization of the actin-cytoskeleton through the activation of the Rho GTPase pathway. In addition to the classical mode of action of the non-steroidal anti-inflammatory drugs (NSAIDs), indomethacin, and ibuprofen have Rho-inhibiting effects. In order to evaluate the role of the Rho GTPase pathway on Aβ-induced neuronal death and on neuronal morphological modifications in the actin cytoskeleton, we explored the role of NSAIDS in human-differentiated neuroblastoma cells exposed to Aβ. We found that Aβ induced neurite retraction and promoted the formation of different actin-dependent structures such as stress fibers, filopodia, lamellipodia, and ruffles. In the presence of Aβ, both NSAIDs prevented neurite collapse and formation of stress fibers without affecting the formation of filopodia and lamellipodia. Similar results were obtained when the downstream effector, Rho kinase inhibitor Y27632, was applied in the presence of Aβ. These results demonstrate the potential benefits of the Rho-inhibiting NSAIDs in reducing Aβ-induced effects on neuronal structural alterations.

  4. Disruption of the three cytoskeletal networks in mammalian cells does not affect transcription, translation, or protein translocation changes induced by heat shock.

    PubMed Central

    Welch, W J; Feramisco, J R

    1985-01-01

    Mammalian cells show a complex series of transcriptional and translational switching events in response to heat shock treatment which ultimately lead to the production and accumulation of a small number of proteins, the so-called heat shock (or stress) proteins. We investigated the heat shock response in both qualitative and quantitative ways in cells that were pretreated with drugs that specifically disrupt one or more of the three major cytoskeletal networks. (These drugs alone, cytochalasin E and colcemid, do not result in induction of the heat shock response.) Our results indicated that disruption of the actin microfilaments, the vimentin-containing intermediate filaments, or the microtubules in living cells does not hinder the ability of the cell to undergo an apparently normal heat shock response. Even when all three networks were simultaneously disrupted (resulting in a loose, baglike appearance of the cells), the cells still underwent a complete heat shock response as assayed by the appearance of the heat shock proteins. In addition, the major induced 72-kilodalton heat shock protein was efficiently translocated from the cytoplasm into its proper location in the nucleus and nucleolus irrespective of the condition of the three cytoskeletal elements. Images PMID:4040602

  5. Mechanical models of the cellular cytoskeletal network for the analysis of intracellular mechanical properties and force distributions: a review.

    PubMed

    Chen, Ting-Jung; Wu, Chia-Ching; Su, Fong-Chin

    2012-12-01

    The cytoskeleton, which is the major mechanical component of cells, supports the cell body and regulates the cellular motility to assist the cell in performing its biological functions. Several cytoskeletal network models have been proposed to investigate the mechanical properties of cells. This review paper summarizes these models with a focus on the prestressed cable network, the semi-flexible chain network, the open-cell foam, the tensegrity, and the granular models. The components, material parameters, types of connection joints, tension conditions, and the advantages and disadvantages of each model are evaluated from a structural and biological point of view. The underlying mechanisms that are associated with the morphological changes of spreading cells are expected to be simulated using a cytoskeletal model; however, it is still paid less attention most likely due to the lack of a suitable cytoskeletal model that can accurately model the spreading process. In this review article, the established cytoskeletal models are hoped to provide useful information for the development of future cytoskeletal models with different degrees of cell attachment for the study of the mechanical mechanisms underlying the cellular behaviors in response to external stimulations.

  6. Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission–fusion balance within mitochondrial networks

    PubMed Central

    Moore, Andrew S.; Wong, Yvette C.; Simpson, Cory L.; Holzbaur, Erika L. F.

    2016-01-01

    Mitochondria form interconnected networks that dynamically remodel in response to cellular needs. Using live-cell imaging, we investigate the role of the actin cytoskeleton in regulating mitochondrial fission and fusion. We identify cycling of actin filaments onto and off of subsets of cellular mitochondria. The association of actin filaments with mitochondrial subpopulations is transient; actin quickly disassembles, then reassembles around a distinct subpopulation, efficiently cycling through all cellular mitochondria within 14 min. The focal assembly of actin induces local, Drp1-dependent fragmentation of the mitochondrial network. On actin disassembly, fragmented mitochondria undergo rapid fusion, leading to regional recovery of the tubular mitochondrial network. Cycling requires dynamic actin polymerization and is blocked by inhibitors of both Arp2/3 and formins. We propose that cyclic assembly of actin onto mitochondria modulates the fission/fusion balance, promotes network remodelling and content mixing, and thus may serve as an essential mechanism regulating mitochondrial network homeostasis. PMID:27686185

  7. Viral Replication Protein Inhibits Cellular Cofilin Actin Depolymerization Factor to Regulate the Actin Network and Promote Viral Replicase Assembly

    PubMed Central

    Kovalev, Nikolay; de Castro Martín, Isabel Fernández; Barajas, Daniel; Risco, Cristina; Nagy, Peter D.

    2016-01-01

    RNA viruses exploit host cells by co-opting host factors and lipids and escaping host antiviral responses. Previous genome-wide screens with Tomato bushy stunt virus (TBSV) in the model host yeast have identified 18 cellular genes that are part of the actin network. In this paper, we show that the p33 viral replication factor interacts with the cellular cofilin (Cof1p), which is an actin depolymerization factor. Using temperature-sensitive (ts) Cof1p or actin (Act1p) mutants at a semi-permissive temperature, we find an increased level of TBSV RNA accumulation in yeast cells and elevated in vitro activity of the tombusvirus replicase. We show that the large p33 containing replication organelle-like structures are located in the close vicinity of actin patches in yeast cells or around actin cable hubs in infected plant cells. Therefore, the actin filaments could be involved in VRC assembly and the formation of large viral replication compartments containing many individual VRCs. Moreover, we show that the actin network affects the recruitment of viral and cellular components, including oxysterol binding proteins and VAP proteins to form membrane contact sites for efficient transfer of sterols to the sites of replication. Altogether, the emerging picture is that TBSV, via direct interaction between the p33 replication protein and Cof1p, controls cofilin activities to obstruct the dynamic actin network that leads to efficient subversion of cellular factors for pro-viral functions. In summary, the discovery that TBSV interacts with cellular cofilin and blocks the severing of existing filaments and the formation of new actin filaments in infected cells opens a new window to unravel the way by which viruses could subvert/co-opt cellular proteins and lipids. By regulating the functions of cofilin and the actin network, which are central nodes in cellular pathways, viruses could gain supremacy in subversion of cellular factors for pro-viral functions. PMID:26863541

  8. Microtubules Remodel Actomyosin Networks in Xenopus Egg Extracts via Two Mechanisms of F-Actin Transport

    PubMed Central

    Waterman-Storer, Clare; Duey, Devin Y.; Weber, Kari L.; Keech, John; Cheney, Richard E.; Salmon, E.D.; Bement, William M.

    2000-01-01

    Interactions between microtubules and filamentous actin (F-actin) are crucial for many cellular processes, including cell locomotion and cytokinesis, but are poorly understood. To define the basic principles governing microtubule/F-actin interactions, we used dual-wavelength digital fluorescence and fluorescent speckle microscopy to analyze microtubules and F-actin labeled with spectrally distinct fluorophores in interphase Xenopus egg extracts. In the absence of microtubules, networks of F-actin bundles zippered together or exhibited serpentine gliding along the coverslip. When microtubules were nucleated from Xenopus sperm centrosomes, they were released and translocated away from the aster center. In the presence of microtubules, F-actin exhibited two distinct, microtubule-dependent motilities: rapid (∼250–300 nm/s) jerking and slow (∼50 nm/s), straight gliding. Microtubules remodeled the F-actin network, as F-actin jerking caused centrifugal clearing of F-actin from around aster centers. F-actin jerking occurred when F-actin bound to motile microtubules powered by cytoplasmic dynein. F-actin straight gliding occurred when F-actin bundles translocated along the microtubule lattice. These interactions required Xenopus cytosolic factors. Localization of myosin-II to F-actin suggested it may power F-actin zippering, while localization of myosin-V on microtubules suggested it could mediate interactions between microtubules and F-actin. We examine current models for cytokinesis and cell motility in light of these findings. PMID:10908578

  9. Myosin lever arm directs collective motion on cellular actin network.

    PubMed

    Hariadi, Rizal F; Cale, Mario; Sivaramakrishnan, Sivaraj

    2014-03-18

    The molecular motor myosin teams up to drive muscle contraction, membrane traffic, and cell division in biological cells. Myosin function in cells emerges from the interaction of multiple motors tethered to a scaffold, with surrounding actin filaments organized into 3D networks. Despite the importance of myosin function, the influence of intermotor interactions on collective motion remains poorly understood. In this study, we used precisely engineered myosin assemblies to examine emergence in collective myosin movement. We report that tethering multiple myosin VI motors, but not myosin V motors, modifies their movement trajectories on keratocyte actin networks. Single myosin V and VI dimers display similar skewed trajectories, albeit in opposite directions, when traversing the keratocyte actin network. In contrast, tethering myosin VI motors, but not myosin V motors, progressively straightens the trajectories with increasing myosin number. Trajectory shape of multimotor scaffolds positively correlates with the stiffness of the myosin lever arm. Swapping the flexible myosin VI lever arm for the relatively rigid myosin V lever increases trajectory skewness, and vice versa. A simplified model of coupled motor movement demonstrates that the differences in flexural rigidity of the two myosin lever arms is sufficient to account for the differences in observed behavior of groups of myosin V and VI motors. In accordance with this model trajectory, shapes for scaffolds containing both myosin V and VI are dominated by the myosin with a stiffer lever arm. Our findings suggest that structural features unique to each myosin type may confer selective advantages in cellular functions.

  10. Criticalities in crosslinked actin networks due to myosin activity

    NASA Astrophysics Data System (ADS)

    Sheinman, Michael

    2013-03-01

    Many essential processes in cells and tissues, like motility and morphogenesis, are orchestrated by molecular motors applying internal, active stresses on crosslinked networks of actin filaments. Using scaling analysis, mean-field calculation, numerical modelling and in vitro experiments of such active networks we predict and observe different mechanical regimes exhibiting interesting critical behaviours with non-trivial power-law dependencies. Firstly, we find that the presence of active stresses can dramatically increase the stiffness of a floppy network, as was observed in reconstituted intracellular F-actin networks with myosin motors and extracellular gels with contractile cells. Uniform internal stress results in an anomalous, critical mechanical regime only in the vicinity of the rigidity percolation points of the network. However, taking into account heterogeneity of motors, we demonstrate that the motors, stiffening any floppy network, induce large non-affine fluctuations, giving rise to a critical mechanical regime. Secondly, upon increasing motor concentration, the resulting large internal stress is able to significantly enhance unbinding of the network's crosslinks and, therefore, disconnect the initially well-connected network to isolated clusters. However, during this process, when the network approaches marginal connectivity the internal stresses are expected to drop drastically such that the connectivity stabilizes. This general argument and detailed numerical simulations show that motors should drive a well connected network to a close vicinity of a critical point of marginal connectivity. Experiments clearly confirm this conclusion and demonstrate robust critical connectivity of initially well-connected networks, ruptured by the motor activity for a wide range of parameters. M. Sheinman, C.P. Broedersz and F.C. MacKintosh, Phys. Rev. Lett, in press. J. Alvarado, M. Sheinman, A. Sharma, F.C. MacKintosh and G. Koenderink, in preparation.

  11. The use of neural networks and texture analysis for rapid objective selection of regions of interest in cytoskeletal images.

    PubMed

    Derkacs, Amanda D Felder; Ward, Samuel R; Lieber, Richard L

    2012-02-01

    Understanding cytoskeletal dynamics in living tissue is prerequisite to understanding mechanisms of injury, mechanotransduction, and mechanical signaling. Real-time visualization is now possible using transfection with plasmids that encode fluorescent cytoskeletal proteins. Using this approach with the muscle-specific intermediate filament protein desmin, we found that a green fluorescent protein-desmin chimeric protein was unevenly distributed throughout the muscle fiber, resulting in some image areas that were saturated as well as others that lacked any signal. Our goal was to analyze the muscle fiber cytoskeletal network quantitatively in an unbiased fashion. To objectively select areas of the muscle fiber that are suitable for analysis, we devised a method that provides objective classification of regions of images of striated cytoskeletal structures into "usable" and "unusable" categories. This method consists of a combination of spatial analysis of the image using Fourier methods along with a boosted neural network that "decides" on the quality of the image based on previous training. We trained the neural network using the expert opinion of three scientists familiar with these types of images. We found that this method was over 300 times faster than manual classification and that it permitted objective and accurate classification of image regions.

  12. Cooperativity and redundancy in the mechanics of compositely crosslinked branched anisotropic cytoskeletal networks

    NASA Astrophysics Data System (ADS)

    Schwarz, J. M.; Zhang, Tao; Das, Moumita

    2013-03-01

    At the leading edge of a crawling cell, the actin cytoskeleton extends itself in a particular direction via a branched crosslinked network of actin filaments with some overall alignment. This network is known as the lamellipodium. Branching via the complex Arp2/3 occurs at a reasonably well-defined angle of 70 degrees from the plus end of the mother filament such that Arp2/3 can be modeled as an angle-constraining crosslinker. Freely-rotating crosslinkers, such as alpha-actinin, are also present in lamellipodia. Therefore, we study the interplay between these two types of crosslinkers, angle-constraining and free-rotating, both analytically and numerically, to begin to quantify the mechanics of lamellipodia. We also investigate how the orientational ordering of the filaments affects this interplay. Finally, while role of Arp2/3 as a nucleator for filaments along the leading edge of a crawling cell has been studied intensely, much less is known about its mechanical contribution. Our work seeks to fill in this important gap in modeling the mechanics of lamellipodia.

  13. Mechanical detection of a long-range actin network emanating from a biomimetic cortex.

    PubMed

    Bussonnier, Matthias; Carvalho, Kevin; Lemière, Joël; Joanny, Jean-François; Sykes, Cécile; Betz, Timo

    2014-08-19

    Actin is ubiquitous globular protein that polymerizes into filaments and forms networks that participate in the force generation of eukaryotic cells. Such forces are used for cell motility, cytokinesis, and tissue remodeling. Among those actin networks, we focus on the actin cortex, a dense branched network beneath the plasma membrane that is of particular importance for the mechanical properties of the cell. Here we reproduce the cellular cortex by activating actin filament growth on a solid surface. We unveil the existence of a sparse actin network that emanates from the surface and extends over a distance that is at least 10 times larger than the cortex itself. We call this sparse actin network the "actin cloud" and characterize its mechanical properties with optical tweezers. We show, both experimentally and theoretically, that the actin cloud is mechanically relevant and that it should be taken into account because it can sustain forces as high as several picoNewtons (pN). In particular, it is known that in plant cells, actin networks similar to the actin cloud have a role in positioning the nucleus; in large oocytes, they play a role in driving chromosome movement. Recent evidence shows that such networks even prevent granule condensation in large cells.

  14. Functional synergy of actin filament cross-linking proteins.

    PubMed

    Tseng, Yiider; Schafer, Benjamin W; Almo, Steven C; Wirtz, Denis

    2002-07-12

    The organization of filamentous actin (F-actin) in resilient networks is coordinated by various F-actin cross-linking proteins. The relative tolerance of cells to null mutations of genes that code for a single actin cross-linking protein suggests that the functions of those proteins are highly redundant. This apparent functional redundancy may, however, reflect the limited resolution of available assays in assessing the mechanical role of F-actin cross-linking/bundling proteins. Using reconstituted F-actin networks and rheological methods, we demonstrate how alpha-actinin and fascin, two F-actin cross-linking/bundling proteins that co-localize along stress fibers and in lamellipodia, could synergistically enhance the resilience of F-actin networks in vitro. These two proteins can generate microfilament arrays that "yield" at a strain amplitude that is much larger than each one of the proteins separately. F-actin/alpha-actinin/fascin networks display strain-induced hardening, whereby the network "stiffens" under shear deformations, a phenomenon that is non-existent in F-actin/fascin networks and much weaker in F-actin/alpha-actinin networks. Strain-hardening is further enhanced at high rates of deformation and high concentrations of actin cross-linking proteins. A simplified model suggests that the optimum results of the competition between the increased stiffness of bundles and their decreased density of cross-links. Our studies support a re-evaluation of the notion of functional redundancy among cytoskeletal regulatory proteins.

  15. Alternative cytoskeletal landscapes: cytoskeletal novelty and evolution in basal excavate protists

    PubMed Central

    Dawson, Scott C.; Paredez, Alexander R.

    2016-01-01

    Microbial eukaryotes encompass the majority of eukaryotic evolutionary and cytoskeletal diversity. The cytoskeletal complexity observed in multicellular organisms appears to be an expansion of components present in genomes of diverse microbial eukaryotes such as the basal lineage of flagellates, the Excavata. Excavate protists have complex and diverse cytoskeletal architectures and life cycles – essentially alternative cytoskeletal “landscapes” – yet still possess conserved microtubule- and actin-associated proteins. Comparative genomic analyses have revealed that a subset of excavates, however, lack many canonical actin-binding proteins central to actin cytoskeleton function in other eukaryotes. Overall, excavates possess numerous uncharacterized and “hypothetical” genes, and may represent an undiscovered reservoir of novel cytoskeletal genes and cytoskeletal mechanisms. The continued development of molecular genetic tools in these complex microbial eukaryotes will undoubtedly contribute to our overall understanding of cytoskeletal diversity and evolution. PMID:23312067

  16. The Effect of Crosslinking on the Microscale Stress Response and Molecular Deformations in Actin Networks

    NASA Astrophysics Data System (ADS)

    Gurmessa, Bekele; Fitzpatrick, Robert; Valdivia, Jonathon; Anderson, Rae M. R.

    Actin, the most abundant protein in eukaryotic cells, is a semi-flexible biopolymer in the cytoskeleton that plays a crucial structural and mechanical role in cell stability, motion and replication, as well as muscle contraction. Most of these mechanically driven structural changes in cells stem from the complex viscoelastic nature of entangled actin networks and the presence of a myriad of proteins that cross-link actin filaments. Despite their importance, the mechanical response of actin networks is not yet well understood, particularly at the molecular level. Here, we use optical trapping - coupled with fluorescence microscopy - to characterize the microscale stress response and induced filament deformations in entangled and cross-linked actin networks subject to localized mechanical perturbations. In particular, we actively drive a microsphere 10 microns through an entangled or cross- linked actin network at a constant speed and measure the resistive force that the deformed actin filaments exert on the bead during and following strain. We simultaneously visualize and track individual sparsely-labeled actin filaments to directly link force response to molecular deformations, and map the propagation of the initially localized perturbation field throughout the rest of the network (~100 um). By varying the concentration of actin and cross-linkers we directly determine the role of crosslinking and entanglements on the length and time scales of stress propagation, molecular deformation and relaxation mechanisms in actin networks.

  17. Competition between Tropomyosin, Fimbrin, and ADF/Cofilin drives their sorting to distinct actin filament networks.

    PubMed

    Christensen, Jenna R; Hocky, Glen M; Homa, Kaitlin E; Morganthaler, Alisha N; Hitchcock-DeGregori, Sarah E; Voth, Gregory A; Kovar, David R

    2017-03-10

    The fission yeast actin cytoskeleton is an ideal, simplified system to investigate fundamental mechanisms behind cellular self-organization. By focusing on the stabilizing protein tropomyosin Cdc8, bundling protein fimbrin Fim1, and severing protein coffin Adf1, we examined how their pairwise and collective interactions with actin filaments regulate their activity and segregation to functionally diverse F-actin networks. Utilizing multi-color TIRF microscopy of in vitro reconstituted F-actin networks, we observed and characterized two distinct Cdc8 cables loading and spreading cooperatively on individual actin filaments. Furthermore, Cdc8, Fim1, and Adf1 all compete for association with F-actin by different mechanisms, and their cooperative association with actin filaments affects their ability to compete. Finally, competition between Fim1 and Adf1 for F-actin synergizes their activities, promoting rapid displacement of Cdc8 from a dense F-actin network. Our findings reveal that competitive and cooperative interactions between actin binding proteins help define their associations with different F-actin networks.

  18. Proteomic and Microscopic Strategies towards the Analysis of the Cytoskeletal Networks in Major Neuropsychiatric Disorders

    PubMed Central

    Coumans, Joëlle V. F.; Palanisamy, Suresh K. A.; McFarlane, Jim; Moens, Pierre D. J.

    2016-01-01

    Mental health disorders have become worldwide health priorities. It is estimated that in the next 20 years they will account for a 16 trillion United State dollars (US$) loss. Up to now, the underlying pathophysiology of psychiatric disorders remains elusive. Altered cytoskeleton proteins expression that may influence the assembly, organization and maintenance of cytoskeletal integrity has been reported in major depressive disorders, schizophrenia and to some extent bipolar disorders. The use of quantitative proteomics, dynamic microscopy and super-resolution microscopy to investigate disease-specific protein signatures holds great promise to improve our understanding of these disorders. In this review, we present the currently available quantitative proteomic approaches use in neurology, gel-based, stable isotope-labelling and label-free methodologies and evaluate their strengths and limitations. We also reported on enrichment/subfractionation methods that target the cytoskeleton associated proteins and discuss the need of alternative methods for further characterization of the neurocytoskeletal proteome. Finally, we present live cell imaging approaches and emerging dynamic microscopy technology that will provide the tools necessary to investigate protein interactions and their dynamics in the whole cells. While these areas of research are still in their infancy, they offer huge potential towards the understanding of the neuronal network stability and its modification across neuropsychiatric disorders. PMID:27104521

  19. Actin-myosin network is required for proper assembly of influenza virus particles

    SciTech Connect

    Kumakura, Michiko; Kawaguchi, Atsushi Nagata, Kyosuke

    2015-02-15

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network.

  20. Avalanches, hardening and softening in dense cross-linked actin networks

    NASA Astrophysics Data System (ADS)

    Astrom, Jan; Kumar, Sunil; Vattulainen, Ilpo; Karttunen, Mikko

    2008-03-01

    Actin filament networks enable the cytoskeleton to adjust to internal and external forcing. These active networks can adapt to changes by dynamically adjusting their crosslinks. Here, we study actin filaments as elastic fibers having finite dimensions. We employ a full three-dimensional model to study the elastic properties of actin networks by computer simulations. We model a dense actin network with the crosslinks being approximately 1μm apart. The results show that dense actin networks, without any pre-straining, are characterized by (a) strain hardening without entropic elasticity, (b) 'viscotic' hysteresis in the case of strong crosslinks, (c) avalanches of crosslink slippage leading to strain softening in the case of breakable crosslinks, and (d) spontaneous formation of stress fibers in the case of active crosslink formation and destruction. We will discuss the relation to recent experimental observations.

  1. Effects of filament rigidity in myosin II-induced actin network contractility and dynamics

    NASA Astrophysics Data System (ADS)

    Weirich, Kimberly; Gardel, Margaret

    2014-03-01

    Cells change shape, deforming to move and divide. The dynamic protein scaffold that shapes the cell is the cortex, a disordered, thin network of actin filaments. Random, local stresses generated by myosin II in the network create cellular-scale deformations. Myosin induced buckling and severing of actin filaments has been shown to underlie the contractility of two-dimensional disordered actin networks. This non-linear elastic response of actin filaments is thought to be an essential symmetry breaking mechanism to produce robust contractility in disordered actomyosin networks. To test this idea, we explore the effects of an actin bundling protein fascin, a crosslinker which induces polarity specific bundling of actin filaments, to create a network of F-actin bundles. We investigate myosin-induced stresses in a network of randomly oriented actin filaments, confined to a thin sheet at a supported lipid bilayer surface through a crowding agent. We find fascin-bundled filaments are less prone to filament buckling and show increased filament sliding, causing the myosin activity to induce network reorganization rather than contraction. Thus, changes in the filament bending rigidity in motor-filament systems can drive the system between distinct states with unique dynamic and mechanical signatures.

  2. Cytoskeletal Expression and Remodeling in Pluripotent Stem Cells

    PubMed Central

    Boraas, Liana C.; Guidry, Julia B.; Pineda, Emma T.; Ahsan, Tabassum

    2016-01-01

    Many emerging cell-based therapies are based on pluripotent stem cells, though complete understanding of the properties of these cells is lacking. In these cells, much is still unknown about the cytoskeletal network, which governs the mechanoresponse. The objective of this study was to determine the cytoskeletal state in undifferentiated pluripotent stem cells and remodeling with differentiation. Mouse embryonic stem cells (ESCs) and reprogrammed induced pluripotent stem cells (iPSCs), as well as the original un-reprogrammed embryonic fibroblasts (MEFs), were evaluated for expression of cytoskeletal markers. We found that pluripotent stem cells overall have a less developed cytoskeleton compared to fibroblasts. Gene and protein expression of smooth muscle cell actin, vimentin, lamin A, and nestin were markedly lower for ESCs than MEFs. Whereas, iPSC samples were heterogeneous with most cells expressing patterns of cytoskeletal proteins similar to ESCs with a small subpopulation similar to MEFs. This indicates that dedifferentiation during reprogramming is associated with cytoskeletal remodeling to a less developed state. In differentiation studies, it was found that shear stress-mediated differentiation resulted in an increase in expression of cytoskeletal intermediate filaments in ESCs, but not in iPSC samples. In the embryoid body model of spontaneous differentiation of pluripotent stem cells, however, both ESCs and iPSCs had similar gene expression for cytoskeletal proteins during early differentiation. With further differentiation, however, gene levels were significantly higher for iPSCs compared to ESCs. These results indicate that reprogrammed iPSCs more readily reacquire cytoskeletal proteins compared to the ESCs that need to form the network de novo. The strategic selection of the parental phenotype is thus critical not only in the context of reprogramming but also the ultimate functionality of the iPSC-differentiated cell population. Overall, this

  3. Quasi-3D Cytoskeletal Dynamics of Osteocytes under Fluid Flow

    PubMed Central

    Baik, Andrew D.; Lu, X. Lucas; Qiu, Jun; Huo, Bo; Hillman, Elizabeth M.C.; Dong, Cheng; Guo, X. Edward

    2010-01-01

    Osteocytes respond to dynamic fluid shear loading by activating various biochemical pathways, mediating a dynamic process of bone formation and resorption. Whole-cell deformation and regional deformation of the cytoskeleton may be able to directly regulate this process. Attempts to image cellular deformation by conventional microscopy techniques have been hindered by low temporal or spatial resolution. In this study, we developed a quasi-three-dimensional microscopy technique that enabled us to simultaneously visualize an osteocyte's traditional bottom-view profile and a side-view profile at high temporal resolution. Quantitative analysis of the plasma membrane and either the intracellular actin or microtubule (MT) cytoskeletal networks provided characterization of their deformations over time. Although no volumetric dilatation of the whole cell was observed under flow, both the actin and MT networks experienced primarily tensile strains in all measured strain components. Regional heterogeneity in the strain field of normal strains was observed in the actin networks, especially in the leading edge to flow, but not in the MT networks. In contrast, side-view shear strains exhibited similar subcellular distribution patterns in both networks. Disruption of MT networks caused actin normal strains to decrease, whereas actin disruption had little effect on the MT network strains, highlighting the networks' mechanical interactions in osteocytes. PMID:21044578

  4. Comparative analysis of tools for live cell imaging of actin network architecture.

    PubMed

    Belin, Brittany J; Goins, Lauren M; Mullins, R Dyche

    2014-01-01

    Fluorescent derivatives of actin and actin-binding domains are powerful tools for studying actin filament architecture and dynamics in live cells. Growing evidence, however, indicates that these probes are biased, and their cellular distribution does not accurately reflect that of the cytoskeleton. To understand the strengths and weaknesses of commonly used live-cell probes--fluorescent protein fusions of actin, Lifeact, F-tractin, and actin-binding domains from utrophin--we compared their distributions in cells derived from various model organisms. We focused on five actin networks: the peripheral cortex, lamellipodial and lamellar networks, filopodial bundles, and stress fibers. Using phalloidin as a standard, we identified consistent biases in the distribution of each probe. The localization of F-tractin is the most similar to that of phalloidin but induces organism-specific changes in cell morphology. Both Lifeact and GFP-actin concentrate in lamellipodial actin networks but are excluded from lamellar networks and filopodia. In contrast, the full utrophin actin-binding domain (Utr261) binds filaments of the lamellum but only weakly localizes to lamellipodia, while a shorter variant (Utr230) is restricted to the most stable subpopulations of actin filaments: cortical networks and stress fibers. In some cells, Utr230 also detects Golgi-associated filaments, previously detected by immunofluorescence but not visible by phalloidin staining. Consistent with its localization, Utr230 exhibits slow rates of fluorescence recovery after photobleaching (FRAP) compared to F-tractin, Utr261 and Lifeact, suggesting that it may be more useful for FRAP- and photo-activation-based studies of actin network dynamics.

  5. Comparative analysis of tools for live cell imaging of actin network architecture

    PubMed Central

    Belin, Brittany J; Goins, Lauren M; Mullins, R Dyche

    2014-01-01

    Abstract Fluorescent derivatives of actin and actin-binding domains are powerful tools for studying actin filament architecture and dynamics in live cells. Growing evidence, however, indicates that these probes are biased, and their cellular distribution does not accurately reflect that of the cytoskeleton. To understand the strengths and weaknesses of commonly used live-cell probes—fluorescent protein fusions of actin, Lifeact, F-tractin, and actin-binding domains from utrophin—we compared their distributions in cells derived from various model organisms. We focused on five actin networks: the peripheral cortex, lamellipodial and lamellar networks, filopodial bundles, and stress fibers. Using phalloidin as a standard, we identified consistent biases in the distribution of each probe. The localization of F-tractin is the most similar to that of phalloidin but induces organism-specific changes in cell morphology. Both Lifeact and GFP-actin concentrate in lamellipodial actin networks but are excluded from lamellar networks and filopodia. In contrast, the full utrophin actin-binding domain (Utr261) binds filaments of the lamellum but only weakly localizes to lamellipodia, while a shorter variant (Utr230) is restricted to the most stable subpopulations of actin filaments: cortical networks and stress fibers. In some cells, Utr230 also detects Golgi-associated filaments, previously detected by immunofluorescence but not visible by phalloidin staining. Consistent with its localization, Utr230 exhibits slow rates of fluorescence recovery after photobleaching (FRAP) compared to F-tractin, Utr261 and Lifeact, suggesting that it may be more useful for FRAP- and photo-activation-based studies of actin network dynamics. PMID:26317264

  6. Self-organized DNA/F-actin gels: entangled networks of nematic domains with tunable density

    NASA Astrophysics Data System (ADS)

    Butler, John; Zribi, Olena; Smalyukh, Ivan; Hwee Lai, Ghee; Golestanian, Ramin; Angelini, Thomas; Wong, Gerard

    2008-03-01

    We examine mixtures of DNA and F-actin as a model system of like-charged rigid rods and flexible chains. Confocal microscopy reveals the formation of elongated nematic F-actin domains reticulated via defect-free vertices into a network, all embedded in a mesh of random DNA. Synchrotron x-ray scattering results indicate that the DNA mesh squeezes the F-actin domains into a nematic state via the osmotic pressure of uncondensed counterions, so that the inter-actin spacing within the domains decreases with increasing DNA concentration. These observations are consistent with arguments based on electrostatics and nematic elasticity.

  7. Aggregatibacter actinomycetemcomitans lipopolysaccharide affects human gingival fibroblast cytoskeletal organization.

    PubMed

    Gutiérrez-Venegas, Gloria; Contreras-Marmolejo, Luis Arturo; Román-Alvárez, Patricia; Barajas-Torres, Carolina

    2008-04-01

    The cytoskeleton is a dynamic structure that plays a key role in maintaining cell morphology and function. This study investigates the effect of bacterial wall lipopolysaccharide (LPS), a strong inflammatory agent, on the dynamics and organization of actin, tubulin, vimentin, and vinculin proteins in human gingival fibroblasts (HGF). A time-dependent study showed a noticeable change in actin architecture after 1.5 h of incubation with LPS (1 microg/ml) with the formation of orthogonal fibers and further accumulation of actin filament at the cell periphery by 24 h. When 0.01-10 microg/ml of LPS was added to human gingival fibroblast cultures, cells acquired a round, flat shape and gradually developed cytoplasmic ruffling. Lipopolysaccharides extracted from Aggregatibacter actinomycetemcomitans periodontopathogenic bacteria promoted alterations in F-actin stress fibres of human gingival cells. Normally, human gingival cells have F-actin fibres that are organized in linear distribution throughout the cells, extending along the cell's length. LPS-treated cells exhibited changes in cytoskeletal protein organization, and F-actin was reorganized by the formation of bundles underneath and parallel to the cell membrane. We also found the reorganization of the vimentin network into vimentin bundling after 1.5 h of treatment. HGF cells exhibited diffuse and granular gamma-tubulin stain. There was no change in LPS-treated HGF. However, vinculin plaques distributed in the cell body diminished after LPS treatment. We conclude that the dynamic and structured organization of cytoskeletal filaments and actin assembly in human gingival fibroblasts is altered by LPS treatment and is accompanied by a decrease in F-actin pools.

  8. EF-1[alpha] Is Associated with a Cytoskeletal Network Surrounding Protein Bodies in Maize Endosperm Cells.

    PubMed Central

    Clore, A. M.; Dannenhoffer, J. M.; Larkins, B. A.

    1996-01-01

    By using indirect immunofluorescence and confocal microscopy, we documented changes in the distribution of elongation factor-1[alpha] (EF-1[alpha]), actin, and microtubules during the development of maize endosperm cells. In older interphase cells actively forming starch grains and protein bodies, the protein bodies are enmeshed in EF-1[alpha] and actin and are found juxtaposed with a multidirectional array of microtubules. Actin and EF-1[alpha] appear to exist in a complex, because we observed that the two are colocalized, and treatment with cytochalasin D resulted in the redistribution of EF-1[alpa]. These data suggest that EF-1[alpha] and actin are associated in maize endosperm cells and may help to explain the basis of the correlation we found between the concentration of EF-1[alpha] and lysine content. The data also support the hypothesis that the cytoskeleton plays a role in storage protein deposition. The distributions of EF-1[alpha] actin, and microtubules change during development. We observed that in young cells before the accumulation of starch and storage protein, EF-1[alpha], actin, and microtubules are found mainly in the cell cortex or in association with nuclei. PMID:12239373

  9. Passive and active microrheology for cross-linked F-actin networks in vitro.

    PubMed

    Lee, Hyungsuk; Ferrer, Jorge M; Nakamura, Fumihiko; Lang, Matthew J; Kamm, Roger D

    2010-04-01

    Actin filament (F-actin) is one of the dominant structural constituents in the cytoskeleton. Orchestrated by various actin-binding proteins (ABPs), F-actin is assembled into higher-order structures such as bundles and networks that provide mechanical support for the cell and play important roles in numerous cellular processes. Although mechanical properties of F-actin networks have been extensively studied, the underlying mechanisms for network elasticity are not fully understood, in part because different measurements probe different length and force scales. Here, we developed both passive and active microrheology techniques using optical tweezers to estimate the mechanical properties of F-actin networks at a length scale comparable to cells. For the passive approach we tracked the motion of a thermally fluctuating colloidal sphere to estimate the frequency-dependent complex shear modulus of the network. In the active approach, we used an optical trap to oscillate an embedded microsphere and monitored the response in order to obtain network viscoelasticity over a physiologically relevant force range. While both active and passive measurements exhibit similar results at low strain, the F-actin network subject to high strain exhibits non-linear behavior which is analogous to the strain-hardening observed in macroscale measurements. Using confocal and total internal reflection fluorescent microscopy, we also characterize the microstructure of reconstituted F-actin networks in terms of filament length, mesh size and degree of bundling. Finally, we propose a model of network connectivity by investigating the effect of filament length on the mechanical properties and structure.

  10. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases.

    PubMed Central

    Miki, H; Miura, K; Takenawa, T

    1996-01-01

    Here we identify a 65 kDa protein (N-WASP) from brain that binds the SH3 domains of Ash/Grb2. The sequence is homologous to Wiskott-Aldrich syndrome protein (WASP). N-WASP has several functional motifs, such as a pleckstrin homology (PH) domain and cofilin-homologous region, through which N-WASP depolymerizes actin filaments. When overexpressed in COS 7 cells, the wild-type N-WASP causes several surface protrusions where N-WASP co-localizes with actin filaments. Epidermal growth factor (EGF) treatment induces the complex formation of EGF receptors and N-WASP, and produces microspikes. On the other hand, two mutants, C38W (a point mutation in the PH domain) and deltaVCA (deletion of the actin binding domain), localize predominantly in the nucleus and do not cause a change in the cytoskeleton, irrespective of EGF treatment. Interestingly, the C38W PH domain binds less effectively to phosphatidylinositol 4,5-bisphosphate (PIP2) than the wild-type PH domain. These results suggest the importance of the PIP2 binding ability of the PH domain and the actin binding for retention in membranes. Collectively, we conclude that N-WASP transmits signals from tyrosine kinases to cause a polarized rearrangement of cortical actin filaments dependent on PIP2. Images PMID:8895577

  11. Relating microstructure to rheology of a bundled and cross-linked F-actin network in vitro

    NASA Astrophysics Data System (ADS)

    Shin, J. H.; Gardel, M. L.; Mahadevan, L.; Matsudaira, P.; Weitz, D. A.

    2004-06-01

    The organization of individual actin filaments into higher-order structures is controlled by actin-binding proteins (ABPs). Although the biological significance of the ABPs is well documented, little is known about how bundling and cross-linking quantitatively affect the microstructure and mechanical properties of actin networks. Here we quantify the effect of the ABP scruin on actin networks by using imaging techniques, cosedimentation assays, multiparticle tracking, and bulk rheology. We show how the structure of the actin network is modified as the scruin concentration is varied, and we correlate these structural changes to variations in the resultant network elasticity.

  12. Cell Forces and Cytoskeletal Order Parameters

    NASA Astrophysics Data System (ADS)

    Discher, Dennis

    2012-02-01

    Nematic, Smectic and Isotropic Order parameters have found wide-spread use in characterizing all manner of soft matter systems, but have not yet been applied to characterize and understand the structures within living cells, particularly cytoskeletal structures. Several examples will be used to illustrate the utility of such analyses, ranging from experiments on stem cells attached to or in various elastic matrices to embryonic heart tissue and simulations of membrane cytoskeletons under all manner of stressing. Recently developed theory will be shown to apply in general with account of cell contractility, matrix elasticity and dimensionality as well as cell shape and a newly defined ``cytoskeletal polarizability.'' The latter property of cells is likely different between different cell types due to different amounts of key cytoskeletal components with some types of stem cells being more polarizable than others. Evidence of coupling to the nucleus as a viscoelastic inclusion will also be presented. [4pt] References: (1) P. Dalhaimer, D.E. Discher, T. Lubensky. Crosslinked actin networks exhibit liquid crystal elastomer behavior, including soft-mode elasticity. Nature Physics 3: 354-360 (2007). (2) A. Zemel, F.Rehfeldt, A.E.X. Brown, D.E. Discher, and S.A. Safran. Optimal matrix rigidity in the self-polarization of stem cells. Nature Physics 6: 468 - 473 (2010).

  13. Morphology and viscoelasticity of actin networks formed with the mutually interacting crosslinkers: palladin and alpha-actinin.

    PubMed

    Grooman, Brian; Fujiwara, Ikuko; Otey, Carol; Upadhyaya, Arpita

    2012-01-01

    Actin filaments and associated actin binding proteins play an essential role in governing the mechanical properties of eukaryotic cells. Even though cells have multiple actin binding proteins (ABPs) that exist simultaneously to maintain the structural and mechanical integrity of the cellular cytoskeleton, how these proteins work together to determine the properties of actin networks is not clearly understood. The ABP, palladin, is essential for the maintenance of cell morphology and the regulation of cell movement. Palladin coexists with α-actinin in stress fibers and focal adhesions and binds to both actin and α-actinin. To obtain insight into how mutually interacting actin crosslinking proteins modulate the properties of actin networks, we characterized the micro-structure and mechanics of actin networks crosslinked with palladin and α-actinin. We first showed that palladin crosslinks actin filaments into bundled networks which are viscoelastic in nature. Our studies also showed that composite networks of α-actinin/palladin/actin behave very similar to pure palladin or pure [Formula: see text]-actinin networks. However, we found evidence that palladin and α-actinin synergistically modify network viscoelasticity. To our knowledge, this is the first quantitative characterization of the physical properties of actin networks crosslinked with two mutually interacting crosslinkers.

  14. Biophysical models of length control of cytoskeletal structures

    NASA Astrophysics Data System (ADS)

    Mohapatra, Lishibanya

    Cells contain elaborate and interconnected networks of protein polymers which make up the cytoskeleton. The cytoskeleton governs the internal positioning and movement of vesicles and organelles, and controls dynamic changes in cell polarity, shape and movement. Many of these processes require tight control of the size and shape of these cytoskeletal structures. A key question in cell biology is how these structures maintain a particular size and shape despite the rapid turnover of their components. In this thesis I show that the emerging mechanisms by which cells control and regulate the size of filamentous cytoskeletal structures can be classified using key parameters related to their assembly and disassembly kinetics. First, I examine quantitative models based on these specific molecular mechanisms of length control and make experimentally testable predictions that can be used to distinguish different mechanisms of length-control. Second, I study the length control of actin cables in budding yeast cells. Inspired by recent experimental observations in cells, I propose a novel antenna mechanism for cable length control which involves three key proteins: formins, which polymerize actin, Smy1 proteins, which bind formins and inhibit actin polymerization, and myosin motors, which deliver Smy1 to formins, leading to a length-dependent actin polymerization rate. My results provide testable predictions of the antenna mechanism of actin-cable length control. Next I consider the question of how different sized structures can co-exist in the same cytoplasm while making use of the same building blocks. Using theory, I discover limitations imposed by physics on the finite monomer pool as a mechanism of size control and conclude that additional length control mechanisms are required if a cell is to maintain multiple structures. While the primary focus of this thesis is on cytoskeletal structures, the broader principles and mechanisms discussed herein will apply to a range of

  15. Actin kinetics shapes cortical network structure and mechanics

    PubMed Central

    Fritzsche, Marco; Erlenkämper, Christoph; Moeendarbary, Emad; Charras, Guillaume; Kruse, Karsten

    2016-01-01

    The actin cortex of animal cells is the main determinant of cellular mechanics. The continuous turnover of cortical actin filaments enables cells to quickly respond to stimuli. Recent work has shown that most of the cortical actin is generated by only two actin nucleators, the Arp2/3 complex and the formin Diaph1. However, our understanding of their interplay, their kinetics, and the length distribution of the filaments that they nucleate within living cells is poor. Such knowledge is necessary for a thorough comprehension of cellular processes and cell mechanics from basic polymer physics principles. We determined cortical assembly rates in living cells by using single-molecule fluorescence imaging in combination with stochastic simulations. We find that formin-nucleated filaments are, on average, 10 times longer than Arp2/3-nucleated filaments. Although formin-generated filaments represent less than 10% of all actin filaments, mechanical measurements indicate that they are important determinants of cortical elasticity. Tuning the activity of actin nucleators to alter filament length distribution may thus be a mechanism allowing cells to adjust their macroscopic mechanical properties to their physiological needs. PMID:27152338

  16. Transcriptional networks regulating the costamere, sarcomere, and other cytoskeletal structures in striated muscle.

    PubMed

    Estrella, Nelsa L; Naya, Francisco J

    2014-05-01

    Structural abnormalities in striated muscle have been observed in numerous transcription factor gain- and loss-of-function phenotypes in animal and cell culture model systems, indicating that transcription is important in regulating the cytoarchitecture. While most characterized cytoarchitectural defects are largely indistinguishable by histological and ultrastructural criteria, analysis of dysregulated gene expression in each mutant phenotype has yielded valuable information regarding specific structural gene programs that may be uniquely controlled by each of these transcription factors. Linking the formation and maintenance of each subcellular structure or subset of proteins within a cytoskeletal compartment to an overlapping but distinct transcription factor cohort may enable striated muscle to control cytoarchitectural function in an efficient and specific manner. Here we summarize the available evidence that connects transcription factors, those with established roles in striated muscle such as MEF2 and SRF, as well as other non-muscle transcription factors, to the regulation of a defined cytoskeletal structure. The notion that genes encoding proteins localized to the same subcellular compartment are coordinately transcriptionally regulated may prompt rationally designed approaches that target specific transcription factor pathways to correct structural defects in muscle disease.

  17. Orientational Order of the Lamellipodial Actin Network as Demonstrated in Living Motile CellsV⃞

    PubMed Central

    Verkhovsky, Alexander B.; Chaga, Oleg Y.; Schaub, Sébastien; Svitkina, Tatyana M.; Meister, Jean-Jacques; Borisy, Gary G.

    2003-01-01

    Lamellipodia of crawling cells represent both the motor for cell advance and the primary building site for the actin cytoskeleton. The organization of actin in the lamellipodium reflects actin dynamics and is of critical importance for the mechanism of cell motility. In previous structural studies, the lamellipodial actin network was analyzed primarily by electron microscopy (EM). An understanding of lamellipodial organization would benefit significantly if the EM data were complemented and put into a kinetic context by establishing correspondence with structural features observable at the light microscopic level in living cells. Here, we use an enhanced phase contrast microscopy technique to visualize an apparent long-range diagonal actin meshwork in the advancing lamellipodia of living cells. Visualization of this meshwork permitted a correlative light and electron microscopic approach that validated the underlying organization of lamellipodia. The linear features in the light microscopic meshwork corresponded to regions of greater actin filament density. Orientation of features was analyzed quantitatively and compared with the orientation of actin filaments at the EM level. We infer that the light microscopic meshwork reflects the orientational order of actin filaments which, in turn, is related to their branching angle. PMID:13679520

  18. In vitro studies of actin filament and network dynamics

    PubMed Central

    Mullins, R Dyche; Hansen, Scott D

    2013-01-01

    Now that many genomes have been sequenced, a central concern of cell biology is to understand how the proteins they encode work together to create living matter. In vitro studies form an essential part of this program because understanding cellular functions of biological molecules often requires isolating them and reconstituting their activities. In particular, many elements of the actin cytoskeleton were first discovered by biochemical methods and their cellular functions deduced from in vitro experiments. We highlight recent advances that have come from in vitro studies, beginning with studies of actin filaments, and ending with multi-component reconstitutions of complex actin-based processes, including force-generation and cell spreading. We describe both scientific results and the technical innovations that made them possible. PMID:23267766

  19. A single charge in the actin binding domain of fascin can independently tune the linear and non-linear response of an actin bundle network.

    PubMed

    Maier, M; Müller, K W; Heussinger, C; Köhler, S; Wall, W A; Bausch, A R; Lieleg, O

    2015-05-01

    Actin binding proteins (ABPs) not only set the structure of actin filament assemblies but also mediate the frequency-dependent viscoelastic moduli of cross-linked and bundled actin networks. Point mutations in the actin binding domain of those ABPs can tune the association and dissociation dynamics of the actin/ABP bond and thus modulate the network mechanics both in the linear and non-linear response regime. We here demonstrate how the exchange of a single charged amino acid in the actin binding domain of the ABP fascin triggers such a modulation of the network rheology. Whereas the overall structure of the bundle networks is conserved, the transition point from strain-hardening to strain-weakening sensitively depends on the cross-linker off-rate and the applied shear rate. Our experimental results are consistent both with numerical simulations of a cross-linked bundle network and a theoretical description of the bundle network mechanics which is based on non-affine bending deformations and force-dependent cross-link dynamics.

  20. Elevated Glucose Levels Promote Contractile and Cytoskeletal Gene Expression in Vascular Smooth Muscle via Rho/Protein Kinase C and Actin Polymerization*

    PubMed Central

    Hien, Tran Thi; Turczyńska, Karolina M.; Dahan, Diana; Ekman, Mari; Grossi, Mario; Sjögren, Johan; Nilsson, Johan; Braun, Thomas; Boettger, Thomas; Garcia-Vaz, Eliana; Stenkula, Karin; Swärd, Karl; Gomez, Maria F.; Albinsson, Sebastian

    2016-01-01

    Both type 1 and type 2 diabetes are associated with increased risk of cardiovascular disease. This is in part attributed to the effects of hyperglycemia on vascular endothelial and smooth muscle cells, but the underlying mechanisms are not fully understood. In diabetic animal models, hyperglycemia results in hypercontractility of vascular smooth muscle possibly due to increased activation of Rho-kinase. The aim of the present study was to investigate the regulation of contractile smooth muscle markers by glucose and to determine the signaling pathways that are activated by hyperglycemia in smooth muscle cells. Microarray, quantitative PCR, and Western blot analyses revealed that both mRNA and protein expression of contractile smooth muscle markers were increased in isolated smooth muscle cells cultured under high compared with low glucose conditions. This effect was also observed in hyperglycemic Akita mice and in diabetic patients. Elevated glucose activated the protein kinase C and Rho/Rho-kinase signaling pathways and stimulated actin polymerization. Glucose-induced expression of contractile smooth muscle markers in cultured cells could be partially or completely repressed by inhibitors of advanced glycation end products, L-type calcium channels, protein kinase C, Rho-kinase, actin polymerization, and myocardin-related transcription factors. Furthermore, genetic ablation of the miR-143/145 cluster prevented the effects of glucose on smooth muscle marker expression. In conclusion, these data demonstrate a possible link between hyperglycemia and vascular disease states associated with smooth muscle contractility. PMID:26683376

  1. Piracy of decay-accelerating factor (CD55) signal transduction by the diffusely adhering strain Escherichia coli C1845 promotes cytoskeletal F-actin rearrangements in cultured human intestinal INT407 cells.

    PubMed

    Peiffer, I; Servin, A L; Bernet-Camard, M F

    1998-09-01

    Diffusely adhering Escherichia coli (DAEC) C1845 (clinical isolate) harboring the fimbrial adhesin F1845 can infect cultured human differentiated intestinal epithelial cells; this process is followed by the disassembly of the actin network in the apical domain. The aim of this study was to examine the mechanism by which DAEC C1845 promotes F-actin rearrangements. For this purpose, we used a human embryonic intestinal cell line (INT407) expressing the membrane-associated glycosylphosphatidylinositol (GPI) protein-anchored decay-accelerating factor (DAF), the receptor of the F1845 adhesin. We show here that infection of INT407 cells by DAEC C1845 can provoke dramatic F-actin rearrangements without cell entry. Clustering of phosphotyrosines was observed, revealing that the DAEC C1845-DAF interaction involves the recruitment of signal transduction molecules. A pharmacological approach with a subset of inhibitors of signal transduction molecules was used to identify the cascade of signal transduction molecules that are coupled to the DAF, that are activated upon infection, and that promote the F-actin rearrangements. DAEC C1845-induced F-actin rearrangements can be blocked dose dependently by protein tyrosine kinase, phospholipase Cgamma, phosphatidylinositol 3-kinase, protein kinase C, and Ca2+ inhibitors. F-actin rearrangements and blocking by inhibitors were observed after infection of the cells with two E. coli recombinants carrying the plasmids containing the fimbrial adhesin F1845 or the fimbrial hemagglutinin Dr, belonging to the same family of adhesins. These findings show that the DAEC Dr family of pathogens promotes alterations in the intestinal cell cytoskeleton by piracy of the DAF-GPI signal cascade without bacterial cell entry.

  2. F-actin waves, actin cortex disassembly and focal exocytosis driven by actin-phosphoinositide positive feedback.

    PubMed

    Masters, Thomas A; Sheetz, Michael P; Gauthier, Nils C

    2016-04-01

    Actin polymerization is controlled by the phosphoinositide composition of the plasma membrane. However, the molecular mechanisms underlying the spatiotemporal regulation of actin network organization over extended length scales are still unclear. To observe phosphoinositide-dependent cytoskeletal dynamics we combined the model system of frustrated phagocytosis, total internal reflection microscopy and manipulation of the buffer tonicity. We found that macrophages interacting with IgG-coated glass substrates formed circular F-actin waves on their ventral surface enclosing a region of plasma membrane devoid of cortical actin. Plasma membrane free of actin cortex was strongly depleted of PI(4,5)P2 , but enriched in PI(3,4)P2 and displayed a fivefold increase in exocytosis. Wave formation could be promoted by application of a hypotonic shock. The actin waves were characteristic of a bistable wavefront at the boundary between the regions of membrane containing and lacking cortical actin. Phosphoinositide modifiers and RhoGTPase activities dramatically redistributed with respect to the wavefronts, which often exhibited spatial oscillations. Perturbation of either lipid or actin cytoskeleton-related pathways led to rapid loss of both the polarized lipid distribution and the wavefront. As waves travelled over the plasma membrane, wavefront actin was seen to rapidly polymerize and depolymerize at pre-existing clusters of FcγRIIA, coincident with rapid changes in lipid composition. Thus the potential of receptors to support rapid F-actin polymerization appears to depend acutely on the local concentrations of multiple lipid species. We propose that interdependence through positive feedback from the cytoskeleton to lipid modifiers leads to coordinated local cortex remodeling, focal exocytosis, and organizes extended actin networks.

  3. HSF-1 mediated cytoskeletal integrity determines thermotolerance and lifespan

    PubMed Central

    Baird, Nathan A.; Douglas, Peter M.; Simic, Milos S.; Grant, Ana R.; Moresco, James J.; Wolff, Suzanne C.; Yates, John R.; Manning, Gerard; Dillin, Andrew

    2015-01-01

    The conserved transcription factor HSF-1 is essential to cellular stress resistance and organismal lifespan determination. The canonical function of HSF-1 is to regulate a network of molecular chaperones that maintain protein homeostasis during extrinsic environmental stresses or intrinsic age related deterioration. In the metazoan C. elegans, we engineered a modified HSF-1 strain that increases stress resistance and longevity without enhancing chaperone induction. This HSF-1 dependent health assurance acts through the regulation of pat-10. Upon heat stress pat-10 upregulation maintains a functional actin cytoskeleton and endocytic network. Loss of pat-10 causes a collapse of organismal health and failure of stress resistance. Furthermore, overexpression of pat-10 is sufficient to increase both thermotolerance and longevity by mechanisms that affect actin stability. Our findings indicate that in addition to chaperone induction, HSF-1 plays a prominent role in cytoskeletal integrity to ensure proper cellular function during times of stress and aging. PMID:25324391

  4. Purification of Tetrahymena cytoskeletal proteins.

    PubMed

    Honts, Jerry E

    2012-01-01

    Like all eukaryotic cells, Tetrahymena thermophila contains a rich array of cytoskeletal proteins, some familiar and some novel. A detailed analysis of the structure, function, and interactions of these proteins requires procedures for purifying the individual protein components. Procedures for the purification of actin and tubulin from Tetrahymena are reviewed, followed by a description of a procedure that yields proteins from the epiplasmic layer and associated structures, including the tetrins. Finally, the challenges and opportunities for future advances are assessed.

  5. Strain hardening, avalanches, and strain softening in dense cross-linked actin networks

    NASA Astrophysics Data System (ADS)

    Åström, Jan A.; Kumar, P. B. Sunil; Vattulainen, Ilpo; Karttunen, Mikko

    2008-05-01

    Actin filament networks enable the cytoskeleton to adjust to internal and external forcing. These dynamic networks can adapt to changes by dynamically adjusting their cross-links. Here, we model actin filaments as cross-linked elastic fibers of finite dimensions, with the cross-links being approximately 1μm apart, and employ a full three-dimensional model to study their elastic properties by computer simulations. The results show compelling evidence that dense actin networks are characterized by (a) strain hardening without entropic elasticity, (b) avalanches of cross-link slippage leading to strain softening in the case of breakable cross-links, and (c) spontaneous formation of stress fibers in the case of dynamic cross-link formation and destruction.

  6. Mechanics of actin networks crosslinked with mutant human α-actinin-4

    NASA Astrophysics Data System (ADS)

    Volkmer, Sabine; Blair, Daniel; Kasza, Karen; Weitz, David

    2007-03-01

    Globular actin can be polymerized in vitro to form F-actin in the presence of various binding proteins. These networks often exhibit dramatic nonlinear rheological response to imposed strains. We study the rheological properties of F-actin networks crosslinked with human α-actinin-4. A single genetic mutation of the α-actinin-4 protein is associated with focal and segmented glomerulosclerosis (FSGS), a genetic disorder which leads to renal failure. Mechanically, the mutant crosslinker has an increased binding strength compared to the wild type. We will show that human α-actinin-4, displays a unique stiffening response. Moreover, we also demonstrate that a single point mutation dramatically effects the inherent relaxation time of the crosslinked network.

  7. Structure of Cytoskeletal Supramolecular Assemblies in the Nerve Cell Axon

    NASA Astrophysics Data System (ADS)

    Ojeda-López, Miguel A.; Case, Ryan; Miller, Herb P.; Wilson, Leslie; Safinya, Cyrus R.

    2001-03-01

    The cytoskeleton of eucaryotic cells is an intricate network of supramolecular assemblies of protein filaments, e.g., actin, intermediate filaments (IFs), tubulin, and a multi-associated family of cross-linking proteins. Most of its multiple functions rely on its structural stability, which depends on a variety of specific interactions of the subunit proteins and its local physico-chemical environment. In neurodegenerative diseases the cytoskeletal supramolecular structure is almost universally altered. Preliminary results on the supramolecular structure of cytoskeletal filaments in isolated axons from bovine white matter will be presented as obtained using synchrotron small angle x-ray diffraction. These results will be compared to our ongoing cell-free studies on the structures formed by neurofilaments in vitro. Supported by NIH GM59288, NSF-DMR-9972246, and University of California Biotechnology Grant 99-14 & UC.

  8. Implementing cell contractility in filament-based cytoskeletal models.

    PubMed

    Fallqvist, B

    2016-02-01

    Cells are known to respond over time to mechanical stimuli, even actively generating force at longer times. In this paper, a microstructural filament-based cytoskeletal network model is extended to incorporate this active response, and a computational study to assess the influence on relaxation behaviour was performed. The incorporation of an active response was achieved by including a strain energy function of contractile activity from the cross-linked actin filaments. A four-state chemical model and strain energy function was adopted, and generalisation to three dimensions and the macroscopic deformation field was performed by integration over the unit sphere. Computational results in MATLAB and ABAQUS/Explicit indicated an active cellular response over various time-scales, dependent on contractile parameters. Important features such as force generation and increasing cell stiffness due to prestress are qualitatively predicted. The work in this paper can easily be extended to encompass other filament-based cytoskeletal models as well.

  9. PEGylated-thymoquinone-nanoparticle mediated retardation of breast cancer cell migration by deregulation of cytoskeletal actin polymerization through miR-34a.

    PubMed

    Bhattacharya, Saurav; Ahir, Manisha; Patra, Prasun; Mukherjee, Sudeshna; Ghosh, Swatilekha; Mazumdar, Minakshi; Chattopadhyay, Sreya; Das, Tanya; Chattopadhyay, Dhrubajyoti; Adhikary, Arghya

    2015-05-01

    Thymoquinone (TQ), a major active constituent of black seeds of Nigella sativa, has potential medical applications including spectrum of therapeutic properties against different cancers. However, little is known about their effect on breast cancer cell migration, which is the cause of over 90% of deaths worldwide. Herein, we have synthesized TQ-encapsulated nanoparticles using biodegradable, hydrophilic polymers like polyvinylpyrrolidone (PVP) and polyethyleneglycol (PEG) to overcome TQ's poor aqueous solubility, thermal and light sensitivity as well as consequently, minimal systemic bioavailability which can greatly improve the cancer treatment efficiency. Sizes of synthesized TQ-Nps were found to be below 50 nm and they were mostly spherical in shape with smooth surface texture. Estimation of the zeta potential also revealed that all the three TQ-Nps were negatively charged which also facilitated their cellular uptake. In the present investigation, we provide direct evidence that TQ-Nps showed more efficiency in killing cancer cells as well as proved to be less toxic to normal cells at a significantly lower dose than TQ. Interestingly, evaluation of the anti-migratory effect of the TQ-Nps, revealed that PEG4000-TQ-Nps showed much potent anti-migratory properties than the other types. Further studies indicated that PEG4000-TQ-Nps could significantly increase the expression of miR-34a through p53. Moreover, NPs mediated miR-34a up-regulation directly down-regulated Rac1 expression followed by actin depolymerisation thereby disrupting the actin cytoskeleton which leads to significant reduction in the lamellipodia and filopodia formation on cell surfaces thus retarding cell migration. Considering the biodegradability, non-toxicity and effectivity of PEG4000-TQ-Nps against cancer cell migration, TQ-Nps may provide new insights into specific therapeutic approach for cancer treatment.

  10. The connection of cytoskeletal network with plasma membrane and the cell wall

    PubMed Central

    Liu, Zengyu; Persson, Staffan; Zhang, Yi

    2015-01-01

    The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosynthesis and modifications, and aim to provide a platform for further studies in this field. PMID:25693826

  11. Espin actin-cytoskeletal proteins are in rat type I spiral ganglion neurons and include splice-isoforms with a functional nuclear localization signal.

    PubMed

    Sekerková, Gabriella; Zheng, Lili; Mugnaini, Enrico; Bartles, James R

    2008-08-20

    The espins are Ca(2+)-resistant actin-bundling proteins that are enriched in hair cell stereocilia and sensory cell microvilli. Here, we report a novel localization of espins to a large proportion of rat type I spiral ganglion neurons (SGNs) and their projections to the cochlear nucleus (CN). Moreover, we show that a fraction of these espins is in the nucleus of SGNs owing to the presence of splice-isoforms that contain a functional nuclear localization signal (NLS). Espin antibody labeled approximately 83% of type I SGNs, and the labeling intensity increased dramatically during early postnatal development. Type II SGNs and vestibular ganglion neurons were unlabeled. In the CN, espin-positive auditory nerve fibers showed a projection pattern typical of type I SGNs, with intense labeling in the nerve root region and posteroventral CN (PVCN). The anteroventral CN (AVCN) showed moderate labeling, whereas the dorsal CN showed weak labeling that was restricted to the deep layer. Espin-positive synaptic terminals were enriched around nerve root neurons and octopus cells in the PVCN and were also found on globular bushy cells and multipolar neurons in the PVCN and AVCN. SGNs expressed multiple espin transcripts and proteins, including splice-isoforms that contain a nonapeptide, which is rich in positively charged amino acids and creates a bipartite NLS. The nonapeptide was necessary to target espin isoforms to the nucleus and was sufficient to target an unrelated protein to the nucleus when joined with the upstream di-arginine-containing octapeptide. The presence of cytoplasmic and nuclear espins in SGNs suggests additional roles for espins in auditory neuroscience.

  12. Analysis of microtubule growth dynamics arising from altered actin network structure and contractility in breast tumor cells.

    PubMed

    Ory, Eleanor; Bhandary, Lekhana; Boggs, Amanda; Chakrabarti, Kristi; Parker, Joshua; Losert, Wolfgang; Martin, Stuart S

    2017-01-16

    The periphery of epithelial cells is shaped by opposing cytoskeletal physical forces generated predominately by two dynamic force generating systems - growing microtubule ends push against the boundary from the cell center, and the actin cortex contracts the attached plasma membrane. Here we investigate how changes to the structure and dynamics of the actin cortex alter the dynamics of microtubules. Current drugs target actin polymerization and contraction to reduce cell division and invasiveness; however, the impacts on microtubule dynamics remain incompletely understood. Using human MCF-7 breast tumor cells expressing GFP-tagged microtubule end-binding-protein-1 (EB1) and coexpression of cytoplasmic fluorescent protein mCherry, we map the trajectories of growing microtubule ends and cytoplasmic boundary respectively. Based on EB1 tracks and cytoplasmic boundary outlines, we calculate the speed, distance from cytoplasmic boundary, and straightness of microtubule growth. Actin depolymerization with Latrunculin-A reduces EB1 growth speed as well as allows the trajectories to extend beyond the cytoplasmic boundary. Blebbistatin, a direct myosin-II inhibitor, reduced EB1 speed and yielded less straight EB1 trajectories. Inhibiting signaling upstream of myosin-II contractility via the Rho-kinase inhibitor, Y-27632, altered EB1 dynamics differently from Blebbistatin. These results indicate that reduced actin cortex integrity can induce distinct alterations in microtubule dynamics. Given recent findings that tumor stem cell characteristics are increased by drugs which reduce actin contractility or stabilize microtubules, it remains important to clearly define how cytoskeletal drugs alter the interactions between these two filament systems in tumor cells.

  13. Action of the mechanical disruption of the actin network on the gravisensitivity of the root statocyte

    NASA Astrophysics Data System (ADS)

    Lefranc, A.; Jeune, B.; Driss-Ecole, D.; Perbal, G.

    The effects of the mechanical disruption of the thin actin network of statocytes on gravisensitivity have been studied on lentil roots. Seedling roots were first inverted for 7 min (root tip upward) and then placed in the downward (normal) position for 7 min before gravitropic stimulation in the horizontal position. The period of inversion allowed the amyloplasts to move from the distal part to the proximal part of the statocyte, but did not fully sediment. When the roots were returned to the tip down position, the amyloplasts moved toward the distal part, but also did not completely sediment by the time the roots were placed horizontally. Thus, in these roots the amyloplasts could be still moving toward the distal wall after they had been replaced in the normal position and the actin network should not be fully restored. Gravisensitivity was estimated by the analysis of the dose-response curves of vertical and treated (inverted and returned to downward position) roots. The only effect, which has been observed on treated roots, was a delay of graviresponse for about 1 min. Our interpretation of this result is that in vertical roots the amyloplasts can exert tensions in the actin network that are directly transmitted to mechanoreceptors located in the plasma membrane. In roots with a partially disrupted actin network, a delay of 1 min is necessary for the amyloplasts to activate mechanoreceptors.

  14. What we talk about when we talk about nuclear actin

    PubMed Central

    Belin, Brittany J; Mullins, R Dyche

    2013-01-01

    In the cytoplasm, actin filaments form crosslinked networks that enable eukaryotic cells to transport cargo, change shape, and move. Actin is also present in the nucleus but, in this compartment, its functions are more cryptic and controversial. If we distill the substantial literature on nuclear actin down to its essentials, we find four, recurring, and more-or-less independent, claims: (1) crosslinked networks of conventional actin filaments span the nucleus and help maintain its structure and organize its contents; (2) assembly or contraction of filaments regulates specific nuclear events; (3) actin monomers moonlight as subunits of chromatin remodeling complexes, independent of their ability to form filaments; and (4) modified actin monomers or oligomers, structurally distinct from canonical, cytoskeletal filaments, mediate nuclear events by unknown mechanisms. We discuss the evidence underlying these claims and as well as their strengths and weaknesses. Next, we describe our recent work, in which we built probes specific for nuclear actin and used them to describe the form and distribution of actin in somatic cell nuclei. Finally, we discuss how different forms of nuclear actin may play different roles in different cell types and physiological contexts. PMID:23934079

  15. HSF-1-mediated cytoskeletal integrity determines thermotolerance and life span.

    PubMed

    Baird, Nathan A; Douglas, Peter M; Simic, Milos S; Grant, Ana R; Moresco, James J; Wolff, Suzanne C; Yates, John R; Manning, Gerard; Dillin, Andrew

    2014-10-17

    The conserved heat shock transcription factor-1 (HSF-1) is essential to cellular stress resistance and life-span determination. The canonical function of HSF-1 is to regulate a network of genes encoding molecular chaperones that protect proteins from damage caused by extrinsic environmental stress or intrinsic age-related deterioration. In Caenorhabditis elegans, we engineered a modified HSF-1 strain that increased stress resistance and longevity without enhanced chaperone induction. This health assurance acted through the regulation of the calcium-binding protein PAT-10. Loss of pat-10 caused a collapse of the actin cytoskeleton, stress resistance, and life span. Furthermore, overexpression of pat-10 increased actin filament stability, thermotolerance, and longevity, indicating that in addition to chaperone regulation, HSF-1 has a prominent role in cytoskeletal integrity, ensuring cellular function during stress and aging.

  16. Generation of membrane structures during phagocytosis and chemotaxis of macrophages: role and regulation of the actin cytoskeleton

    PubMed Central

    Rougerie, Pablo; Miskolci, Veronika; Cox, Dianne

    2013-01-01

    Summary Macrophages are best known for their protective search and destroy functions against invading micro-organisms. These processes are commonly known as chemotaxis and phagocytosis. Both of these processes require actin cytoskeletal remodeling to produce distinct F-actin rich membrane structures called lamellipodia and phagocytic cups. This review will focus on the mechanisms by which macrophages regulate actin polymerization through initial receptor signaling and subsequent Arp2/3 activation by nucleation promoting factors like the WASP/WAVE family, followed by remodeling of actin networks to produce these very distinct structures. PMID:24117824

  17. Toxoplasma gondii F-actin forms an extensive filamentous network required for material exchange and parasite maturation

    PubMed Central

    Periz, Javier; Whitelaw, Jamie; Harding, Clare; Gras, Simon; Del Rosario Minina, Mario Igor; Latorre-Barragan, Fernanda; Lemgruber, Leandro; Reimer, Madita Alice; Insall, Robert; Heaslip, Aoife; Meissner, Markus

    2017-01-01

    Apicomplexan actin is important during the parasite's life cycle. Its polymerization kinetics are unusual, permitting only short, unstable F-actin filaments. It has not been possible to study actin in vivo and so its physiological roles have remained obscure, leading to models distinct from conventional actin behaviour. Here a modified version of the commercially available actin-chromobody was tested as a novel tool for visualising F-actin dynamics in Toxoplasma gondii. Cb labels filamentous actin structures within the parasite cytosol and labels an extensive F-actin network that connects parasites within the parasitophorous vacuole and allows vesicles to be exchanged between parasites. In the absence of actin, parasites lack a residual body and inter-parasite connections and grow in an asynchronous and disorganized manner. Collectively, these data identify new roles for actin in the intracellular phase of the parasites lytic cycle and provide a robust new tool for imaging parasitic F-actin dynamics. DOI: http://dx.doi.org/10.7554/eLife.24119.001 PMID:28322189

  18. The murine Nck SH2/SH3 adaptors are important for the development of mesoderm-derived embryonic structures and for regulating the cellular actin network.

    PubMed

    Bladt, Friedhelm; Aippersbach, Elke; Gelkop, Sigal; Strasser, Geraldine A; Nash, Piers; Tafuri, Anna; Gertler, Frank B; Pawson, Tony

    2003-07-01

    Mammalian Nck1 and Nck2 are closely related adaptor proteins that possess three SH3 domains, followed by an SH2 domain, and are implicated in coupling phosphotyrosine signals to polypeptides that regulate the actin cytoskeleton. However, the in vivo functions of Nck1 and Nck2 have not been defined. We have mutated the murine Nck1 and Nck2 genes and incorporated beta-galactosidase reporters into the mutant loci. In mouse embryos, the two Nck genes have broad and overlapping expression patterns. They are functionally redundant in the sense that mice deficient for either Nck1 or Nck2 are viable, whereas inactivation of both Nck1 and Nck2 results in profound defects in mesoderm-derived notochord and embryonic lethality at embryonic day 9.5. Fibroblast cell lines derived from Nck1(-/-) Nck2(-/-) embryos have defects in cell motility and in the organization of the lamellipodial actin network. These data suggest that the Nck SH2/SH3 adaptors have important functions in the development of mesodermal structures during embryogenesis, potentially linked to a role in cell movement and cytoskeletal organization.

  19. Interaction between Calcium and Actin in Guard Cell and Pollen Signaling Networks

    PubMed Central

    Chen, Dong-Hua; Acharya, Biswa R.; Liu, Wei; Zhang, Wei

    2013-01-01

    Calcium (Ca2+) plays important roles in plant growth, development, and signal transduction. It is a vital nutrient for plant physical design, such as cell wall and membrane, and also serves as a counter-cation for biochemical, inorganic, and organic anions, and more particularly, its concentration change in cytosol is a ubiquitous second messenger in plant physiological signaling in responses to developmental and environmental stimuli. Actin cytoskeleton is well known for its importance in cellular architecture maintenance and its significance in cytoplasmic streaming and cell division. In plant cell system, the actin dynamics is a process of polymerization and de-polymerization of globular actin and filamentous actin and that acts as an active regulator for calcium signaling by controlling calcium evoked physiological responses. The elucidation of the interaction between calcium and actin dynamics will be helpful for further investigation of plant cell signaling networks at molecular level. This review mainly focuses on the recent advances in understanding the interaction between the two aforementioned signaling components in two well-established model systems of plant, guard cell, and pollen. PMID:27137395

  20. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells

    NASA Astrophysics Data System (ADS)

    Gardel, M. L.; Nakamura, F.; Hartwig, J. H.; Crocker, J. C.; Stossel, T. P.; Weitz, D. A.

    2006-02-01

    We show that actin filaments, shortened to physiological lengths by gelsolin and cross-linked with recombinant human filamins (FLNs), exhibit dynamic elastic properties similar to those reported for live cells. To achieve elasticity values of comparable magnitude to those of cells, the in vitro network must be subjected to external prestress, which directly controls network elasticity. A molecular requirement for the strain-related behavior at physiological conditionsis a flexible hinge found in FLNa and some FLNb molecules. Basic physical properties of the in vitro filamin-F-actin network replicate the essential mechanical properties of living cells. This physical behavior could accommodate passive deformation and internal organelle trafficking at low strains yet resist externally or internally generated high shear forces. cytoskeleton | cell mechanics | nonlinear rheology

  1. The Eps8/IRSp53/VASP Network Differentially Controls Actin Capping and Bundling in Filopodia Formation

    PubMed Central

    Milanesi, Francesca; Di Fiore, Pier Paolo; Menna, Elisabetta; Matteoli, Michela; Gov, Nir S.; Scita, Giorgio; Ciliberto, Andrea

    2011-01-01

    There is a body of literature that describes the geometry and the physics of filopodia using either stochastic models or partial differential equations and elasticity and coarse-grained theory. Comparatively, there is a paucity of models focusing on the regulation of the network of proteins that control the formation of different actin structures. Using a combination of in-vivo and in-vitro experiments together with a system of ordinary differential equations, we focused on a small number of well-characterized, interacting molecules involved in actin-dependent filopodia formation: the actin remodeler Eps8, whose capping and bundling activities are a function of its ligands, Abi-1 and IRSp53, respectively; VASP and Capping Protein (CP), which exert antagonistic functions in controlling filament elongation. The model emphasizes the essential role of complexes that contain the membrane deforming protein IRSp53, in the process of filopodia initiation. This model accurately accounted for all observations, including a seemingly paradoxical result whereby genetic removal of Eps8 reduced filopodia in HeLa, but increased them in hippocampal neurons, and generated quantitative predictions, which were experimentally verified. The model further permitted us to explain how filopodia are generated in different cellular contexts, depending on the dynamic interaction established by Eps8, IRSp53 and VASP with actin filaments, thus revealing an unexpected plasticity of the signaling network that governs the multifunctional activities of its components in the formation of filopodia. PMID:21814501

  2. Photoelectron microscopy and immunofluorescence microscopy of cytoskeletal elements in the same cells.

    PubMed Central

    Nadakavukaren, K K; Chen, L B; Habliston, D L; Griffith, O H

    1983-01-01

    Pt K2 rat kangaroo epithelial cells and Rat-1 fibroblasts were grown on conductive glass discs, fixed, and permeabilized, and the cytoskeletal elements actin, keratin, and vimentin were visualized by indirect immunofluorescence. After the fluorescence microscopy, the cells were postfixed and dehydrated for photoelectron microscopy. The contrast in these photoelectron micrographs is primarily topographical in origin, and the presence of fluorescent dyes at low density does not contribute significantly to the material contrast. By comparison with fluorescence micrographs obtained on the same individual cells, actin-containing stress fibers, keratin filaments, and vimentin filaments were identified in the photoelectron micrographs. The apparent volume occupied by the cytoskeletal network in the cells as judged from the photoelectron micrographs is much less than it appears to be from the fluorescence micrographs because the higher resolution of photoelectron microscopy shows the fibers closer to their true dimensions. Photoelectron microscopy is a surface technique, and the images highlight the exposed cytoskeletal structures and suppress those extending along the substrate below the nuclei. The results reported here show marked improvement in image quality of photoelectron micrographs and that this technique has the potential of contributing to higher resolution studies of cytoskeletal structures. Images PMID:6191327

  3. Branching influences force-velocity curves and length fluctuations in actin networks

    NASA Astrophysics Data System (ADS)

    Hansda, Deepak Kumar; Sen, Shamik; Padinhateeri, Ranjith

    2014-12-01

    We investigate collective dynamics of branched actin networks growing against a rigid movable wall constrained by a resistive force. Computing the force velocity relations, we show that the stall force of such networks depends not only on the average number of filaments touching the wall, but also on the amount of fluctuation of the leading edge of the network. These differences arise due to differences in the network architecture, namely, distance between two adjacent branching points and the initial distance of the starting filament from the wall, with their relative magnitudes influencing the nature of the force velocity curves (convex versus concave). We also show that the introduction of branching results in nonmonotonic diffusion constant, a quantity that measures the growth in length fluctuation of the leading edge of the network, as a function of externally applied force. Together our results demonstrate how the collective dynamics of a branched network differs from that of a parallel filament network.

  4. Mesoscopic model for filament orientation in growing actin networks: the role of obstacle geometry

    NASA Astrophysics Data System (ADS)

    Weichsel, Julian; Schwarz, Ulrich S.

    2013-03-01

    Propulsion by growing actin networks is a universal mechanism used in many different biological systems, ranging from the sheet-like lamellipodium of crawling animal cells to the actin comet tails induced by certain bacteria and viruses in order to move within their host cells. Although the core molecular machinery for actin network growth is well preserved in all of these cases, the geometry of the propelled obstacle varies considerably. During recent years, filament orientation distribution has emerged as an important observable characterizing the structure and dynamical state of the growing network. Here we derive several continuum equations for the orientation distribution of filaments growing behind stiff obstacles of various shapes and validate the predicted steady state orientation patterns by stochastic computer simulations based on discrete filaments. We use an ordinary differential equation approach to demonstrate that for flat obstacles of finite size, two fundamentally different orientation patterns peaked at either ±35° or +70°/0°/ - 70° exhibit mutually exclusive stability, in agreement with earlier results for flat obstacles of very large lateral extension. We calculate and validate phase diagrams as a function of model parameters and show how this approach can be extended to obstacles with piecewise straight contours. For curved obstacles, we arrive at a partial differential equation in the continuum limit, which again is in good agreement with the computer simulations. In all cases, we can identify the same two fundamentally different orientation patterns, but only within an appropriate reference frame, which is adjusted to the local orientation of the obstacle contour. Our results suggest that two fundamentally different network architectures compete with each other in growing actin networks, irrespective of obstacle geometry, and clarify how simulated and electron tomography data have to be analyzed for non-flat obstacle geometries.

  5. Crosslinked actin networks show liquid crystal elastomer behaviour, including soft-mode elasticity

    NASA Astrophysics Data System (ADS)

    Dalhaimer, Paul; Discher, Dennis E.; Lubensky, Tom C.

    2007-05-01

    Actin filament networks with protein crosslinks of distinct length and flexibility resemble liquid crystal elastomers. We simulate actin filament systems with flexible crosslinkers of varying length and connectivity to understand general phase behaviour and elasticity. Simulated networks with very short filaments and long crosslinkers resemble the cytoskeleton of the red blood cell and remain isotropic in compression and shear, seeming well-suited to blood flow. In contrast, networks with longer filaments as found in many cell types show three regimes of nematic phase behaviour dependent on crosslinker length: (1) `loose' networks are isotropic at zero stress but align under compression or shear; (2) `semi-loose' networks are nematic at low stress but become isotropic under dilation and (3) `tight' networks possess a locked-in nematic order as represented by the cytoskeleton of the outer hair cell in the ear, for which anisotropic compliance directs sound propagation. Furthermore, for a subset of loose networks with `periodic' connections among filaments, extremely soft stress-strain behaviour is found, as predicted for liquid crystal elastomers.

  6. The spatial response of nonlinear strain propagation in response to actively driven microspheres through entangled actin networks

    NASA Astrophysics Data System (ADS)

    Falzone, Tobias; Blair, Savanna; Robertson-Anderson, Rae

    2015-03-01

    The semiflexible biopolymer actin, a ubiquitous component of nearly all biological organisms, plays an important role in many mechanically-driven processes such as muscle contraction, cancer invasion and cell motility. As such, entangled actin networks, which possess unique and complex viscoelastic properties, have been the subject of much theoretical and experimental work. However, due to this viscoelastic complexity, much is still unknown regarding the correlation of the applied stress on actin networks to the induced filament strain at the molecular and micro scale. Here, we use simultaneous optical trapping and fluorescence microscopy to characterize the link between applied microscopic forces and strain propagation as a function of strain rate and concentration. Specifically, we track fiduciary markers on entangled actin filaments before, during and after actively driving embedded microspheres through the network. These measurements provide much needed insight into the molecular-level dynamics connecting stress and strain in semiflexible polymer networks.

  7. Distribution of actin of the human erythrocyte membrane cytoskeleton after interaction with radiographic contrast media.

    PubMed

    Franke, R P; Scharnweber, T; Fuhrmann, R; Krüger, A; Wenzel, F; Mrowietz, C; Jung, F

    2013-01-01

    A type-dependent chemotoxic effect of radiographic contrast media on erythrocytes and endothelial cells was reported several times. While mechanisms of toxicity are still unclear the cellular reactions e.g. echinocyte formation in erythrocytes and the buckling of endothelial cells coincided with deterioration of capillary perfusion (in patients with coronary artery disease) and tissue oxygen tension (in the myocardium of pigs). Whether the shape changes in erythrocytes coincide with changes in the arrangement of actin, the core of the actin-spectrin cytoskeletal network and possible actor in membrane stresses and deformation is not known until now. To get specific informations actin was stained using two different staining methods (antibodies to β-actin staining oligomeric G-actin and polymeric F-actin and Phalloidin-Rhodamin staining polymeric F-actin only). In addition, an advanced version of confocal laser scanning microscopes was used enabling the display of the actin arrangement near substrate surfaces. Blood smears were produced after erythrocyte suspension in autologous plasma or in two different plasma/RCM mixtures. In this study an even homogenous distribution of fine grained globular actin in the normal human erythrocyte could be demonstrated. After suspension of erythrocytes in a plasma/Iodixanol mixture an increased number of membrane protrusions appeared densely filled with intensely stained actin similar to cells suspended in autologous plasma, however, there in less numbers. Suspension in Iopromide, in contrast, induced a complete reorganization of the cytoskeletal actin: the fine grained globular actin distribution disappeared and only few, long and thick actin filaments bundled and possibly polymerized appeared, instead, shown here for the first time.

  8. AKAP220 manages apical actin networks that coordinate aquaporin-2 location and renal water reabsorption

    PubMed Central

    Whiting, Jennifer L.; Ogier, Leah; Forbush, Katherine A.; Bucko, Paula; Gopalan, Janani; Seternes, Ole-Morten; Langeberg, Lorene K.; Scott, John D.

    2016-01-01

    Filtration through the kidney eliminates toxins, manages electrolyte balance, and controls water homeostasis. Reabsorption of water from the luminal fluid of the nephron occurs through aquaporin-2 (AQP2) water pores in principal cells that line the kidney-collecting duct. This vital process is impeded by formation of an “actin barrier” that obstructs the passive transit of AQP2 to the plasma membrane. Bidirectional control of AQP2 trafficking is managed by hormones and signaling enzymes. We have discovered that vasopressin-independent facets of this homeostatic mechanism are under the control of A-Kinase Anchoring Protein 220 (AKAP220; product of the Akap11 gene). CRISPR/Cas9 gene editing and imaging approaches show that loss of AKAP220 disrupts apical actin networks in organoid cultures. Similar defects are evident in tissue sections from AKAP220-KO mice. Biochemical analysis of AKAP220-null kidney extracts detected reduced levels of active RhoA GTPase, a well-known modulator of the actin cytoskeleton. Fluorescent imaging of kidney sections from these genetically modified mice revealed that RhoA and AQP2 accumulate at the apical surface of the collecting duct. Consequently, these animals are unable to appropriately dilute urine in response to overhydration. We propose that membrane-proximal signaling complexes constrained by AKAP220 impact the actin barrier dynamics and AQP2 trafficking to ensure water homeostasis. PMID:27402760

  9. Competition for actin between two distinct F-actin networks defines a bistable switch for cell polarization.

    PubMed

    Lomakin, Alexis J; Lee, Kun-Chun; Han, Sangyoon J; Bui, Duyen A; Davidson, Michael; Mogilner, Alex; Danuser, Gaudenz

    2015-11-01

    Symmetry-breaking polarization enables functional plasticity of cells and tissues and is yet not well understood. Here we show that epithelial cells, hard-wired to maintain a static morphology and to preserve tissue organization, can spontaneously switch to a migratory polarized phenotype after relaxation of the actomyosin cytoskeleton. We find that myosin II engages actin in the formation of cortical actomyosin bundles and thus makes it unavailable for deployment in the process of dendritic growth normally driving cell motility. Under low-contractility regimes, epithelial cells polarize in a front-back manner owing to the emergence of actin retrograde flows powered by dendritic polymerization of actin. Coupled to cell movement, the flows transport myosin II from the front to the back of the cell, where the motor locally 'locks' actin in contractile bundles. This polarization mechanism could be employed by embryonic and cancer epithelial cells in microenvironments where high-contractility-driven cell motion is inefficient.

  10. Mechanical output of myosin II motors is regulated by myosin filament size and actin network mechanics

    NASA Astrophysics Data System (ADS)

    Stam, Samantha; Alberts, Jonathan; Gardel, Margaret; Munro, Edwin

    2013-03-01

    The interactions of bipolar myosin II filaments with actin arrays are a predominate means of generating forces in numerous physiological processes including muscle contraction and cell migration. However, how the spatiotemporal regulation of these forces depends on motor mechanochemistry, bipolar filament size, and local actin mechanics is unknown. Here, we simulate myosin II motors with an agent-based model in which the motors have been benchmarked against experimental measurements. Force generation occurs in two distinct regimes characterized either by stable tension maintenance or by stochastic buildup and release; transitions between these regimes occur by changes to duty ratio and myosin filament size. The time required for building force to stall scales inversely with the stiffness of a network and the actin gliding speed of a motor. Finally, myosin motors are predicted to contract a network toward stiffer regions, which is consistent with experimental observations. Our representation of myosin motors can be used to understand how their mechanical and biochemical properties influence their observed behavior in a variety of in vitro and in vivo contexts.

  11. Cytoskeletal regulation of calcium-permeable cation channels in the human syncytiotrophoblast: role of gelsolin

    PubMed Central

    Montalbetti, Nicolás; Li, Qiang; Timpanaro, Gustavo A; González-Perrett, Silvia; Dai, Xiao-Qing; Chen, Xing-Zhen; Cantiello, Horacio F

    2005-01-01

    The human syncytiotrophoblast (hST) is the most apical epithelial barrier that covers the villous tree of the human placenta. An intricate and highly organized network of cytoskeletal structures supports the hST. Recently, polycystin-2 (PC2), a TRP-type nonselective cation channel, was functionally observed in hST, where it may be an important player to Ca2+ transport. Little is known, however, about channel regulation in hST. In this report, the regulatory role of actin dynamics on PC2 channels reconstituted from hST apical membranes was explored. Acute addition of cytochalasin D (CD, 5 μg ml−1) to reconstituted hST apical membranes transiently increased K+-permeable channel activity. The actin-binding proteins α-actinin and gelsolin, as well as PC2, were observed by Western blot and immunofluorescence analyses in hST vesicles. CD treatment of hST vesicles resulted in a re-distribution of actin filaments, in agreement with the effect of CD on K+ channel activity. In contrast, addition of exogenous monomeric actin, but not prepolymerized actin, induced a rapid inhibition of channel function in hST. This inhibition was obliterated by the presence of CD in the medium. The acute (<15 min) CD stimulation of K+ channel activity was mimicked by addition of the actin-severing protein gelsolin in the presence, but not in the absence, of micromolar Ca2+. Ca2+ transport through PC2 triggers a regulatory feedback mechanism, which is based on the severing and re-formation of filamentous actin near the channels. Cytoskeletal structures may thus be relevant to ion transport regulation in the human placenta. PMID:15845576

  12. Self-organized gels in DNA/F-actin mixtures without crosslinkers: networks of induced nematic domains with tunable density.

    PubMed

    Lai, Ghee Hwee; Butler, John C; Zribi, Olena V; Smalyukh, Ivan I; Angelini, Thomas E; Purdy, Kirstin R; Golestanian, Ramin; Wong, Gerard C L

    2008-11-21

    We examine mixtures of DNA and filamentous actin (F-actin) as a model system of like-charged rigid rods and flexible chains. Confocal microscopy reveals the formation of elongated nematic F-actin domains reticulated via defect-free vertices into a network embedded in a mesh of random DNA. Synchrotron x-ray scattering results indicate that the DNA mesh squeezes the F-actin domains into a nematic state with an interactin spacing that decreases with increasing DNA concentration as d(actin) proportional, variantrho(DNA)(-1/2). Interestingly, the system changes from a counterion-controlled regime to a depletion-controlled regime with added salt, with drastic consequences for the osmotic pressure induced phase behavior.

  13. Two Distinct Actin Networks Mediate Traction Oscillations to Confer Focal Adhesion Mechanosensing.

    PubMed

    Wu, Zhanghan; Plotnikov, Sergey V; Moalim, Abdiwahab Y; Waterman, Clare M; Liu, Jian

    2017-02-28

    Focal adhesions (FAs) are integrin-based transmembrane assemblies that connect a cell to its extracellular matrix (ECM). They are mechanosensors through which cells exert actin cytoskeleton-mediated traction forces to sense the ECM stiffness. Interestingly, FAs themselves are dynamic structures that adapt their growth in response to mechanical force. It is unclear how the cell manages the plasticity of the FA structure and the associated traction force to accurately sense ECM stiffness. Strikingly, FA traction forces oscillate in time and space, and govern the cell mechanosensing of ECM stiffness. However, precisely how and why the FA traction oscillates is unknown. We developed a model of FA growth that integrates the contributions of the branched actin network and stress fibers (SFs). Using the model in combination with experimental tests, we show that the retrograde flux of the branched actin network promotes the proximal growth of the FA and contributes to a traction peak near the FA's distal tip. The resulting traction gradient within the growing FA favors SF formation near the FA's proximal end. The SF-mediated actomyosin contractility further stabilizes the FA and generates a second traction peak near the center of the FA. Formin-mediated SF elongation negatively feeds back with actomyosin contractility, resulting in central traction peak oscillation. This underpins the observed FA traction oscillation and, importantly, broadens the ECM stiffness range over which FAs can accurately adapt to traction force generation. Actin cytoskeleton-mediated FA growth and maturation thus culminate with FA traction oscillation to drive efficient FA mechanosensing.

  14. Microstructural model for cyclic hardening in F-actin networks crosslinked by α-actinin

    NASA Astrophysics Data System (ADS)

    López-Menéndez, Horacio; Rodríguez, José Félix

    2016-06-01

    The rheology of F-actin networks has attracted a great attention during the last years. In order to gain a complete understanding of the rheological properties of these novel materials, it is necessary the study in a large deformations regime to alter their internal structure. In this sense, Schmoller et al. (2010) showed that the reconstituted networks of F-actin crosslinked with α-actinin unexpectedly harden when they are subjected to a cyclical shear. This observation contradicts the expected Mullins effect observed in most soft materials, such as rubber and living tissues, where a pronounced softening is observed when they are cyclically deformed. We think that the key to understand this stunning effect is the gelation process. To define it, the most relevant constituents are the chemical crosslinks - α-actinin -, the physical crosslinks - introduced by the entanglement of the semiflexible network - and the interaction between them. As a consequence of this interaction, a pre-stressed network emerges and introduces a feedback effect, where the pre-stress also regulates the adhesion energy of the α-actinin, setting the structure in a metastable reference configuration. Therefore, the external loads and the evolvement of the trapped stress drive the microstructural changes during the cyclic loading protocol. In this work, we propose a micromechanical model into the framework of nonlinear continuum mechanics. The mechanics of the F-actin filaments is modelled using the wormlike chain model for semiflexible filaments and the gelation process is modelled as mesoscale dynamics for the α-actinin and physical crosslink. The model has been validated with reported experimental results.

  15. Axonal actin in action: Imaging actin dynamics in neurons.

    PubMed

    Ladt, Kelsey; Ganguly, Archan; Roy, Subhojit

    2016-01-01

    Actin is a highly conserved, key cytoskeletal protein involved in numerous structural and functional roles. In neurons, actin has been intensively investigated in axon terminals-growth cones-and dendritic spines, but details about actin structure and dynamics in axon shafts have remained obscure for decades. A major barrier in the field has been imaging actin. Actin exists as soluble monomers (G-actin) as well as actin filaments (F-actin), and labeling actin with conventional fluorescent probes like GFP/RFP typically leads to a diffuse haze that makes it difficult to discern kinetic behaviors. In a recent publication, we used F-actin selective probes to visualize actin dynamics in axons, resolving striking actin behaviors that have not been described before. However, using these probes to visualize actin dynamics is challenging as they can cause bundling of actin filaments; thus, experimental parameters need to be strictly optimized. Here we describe some practical methodological details related to using these probes for visualizing F-actin dynamics in axons.

  16. Unconventional myosin traffic in cells reveals a selective actin cytoskeleton

    PubMed Central

    Brawley, Crista M.; Rock, Ronald S.

    2009-01-01

    Eukaryotic cells have a self-organizing cytoskeleton where motors transport cargoes along cytoskeletal tracks. To understand the sorting process, we developed a system to observe single-molecule motility in a cellular context. We followed myosin classes V, VI, and X on triton-extracted actin cytoskeletons from Drosophila S2, mammalian COS-7, and mammalian U2OS cells. We find that these cells vary considerably in their global traffic patterns. The S2 and U2OS cells have regions of actin that either enhance or inhibit specific myosin classes. U2OS cells allow for 1 motor class, myosin VI, to move along stress fiber bundles, while motility of myosin V and X are suppressed. Myosin X motors are recruited to filopodia and the lamellar edge in S2 cells, whereas myosin VI motility is excluded from the same regions. Furthermore, we also see different velocities of myosin V motors in central regions of S2 cells, suggesting regional control of motor motility by the actin cytoskeleton. We also find unexpected features of the actin cytoskeletal network, including a population of reversed filaments with the barbed-end toward the cell center. This myosin motor regulation demonstrates that native actin cytoskeletons are more than just a collection of filaments. PMID:19478066

  17. Slow down of actin depolymerization by cross-linking molecules.

    PubMed

    Schmoller, Kurt M; Semmrich, Christine; Bausch, Andreas R

    2011-02-01

    The ability to control the assembly and disassembly dynamics of actin filaments is an essential property of the cellular cytoskeleton. While many different proteins are known which accelerate the polymerization of monomers into filaments or promote their disintegration, much less is known on mechanisms which guarantee the kinetic stability of the cytoskeletal filaments. Previous studies indicate that cross-linking molecules might fulfill these stabilizing tasks, which in addition facilitates their ability to regulate the organization of cytoskeletal structures in vivo. The effect of depolymerization factors on such structures or the mechanism which leads finally to their disintegration remain unknown. Here, we use multiple depolymerization methods in order to directly demonstrate that cross-linking and bundling proteins effectively suppress the actin depolymerization in a concentration dependent manner. Even the actin depolymerizing factor cofilin is not sufficient to facilitate a fast disintegration of highly cross-linked actin networks unless molecular motors are used simultaneously. The drastic modification of actin kinetics by cross-linking molecules can be expected to have wide-ranging implications for our understanding of the cytoskeleton, where cross-linking molecules are omnipresent and essential.

  18. F-actin cross-linking enhances the stability of force generation in disordered actomyosin networks

    NASA Astrophysics Data System (ADS)

    Jung, Wonyeong; Murrell, Michael P.; Kim, Taeyoon

    2015-12-01

    Myosin molecular motors and actin cross-linking proteins (ACPs) are known to mediate the generation and transmission of mechanical forces within the cortical F-actin cytoskeleton that drive major cellular processes such as cell division and migration. However, how motors and ACPs interact collectively over diverse timescales to modulate the time-dependent mechanical properties of the cytoskeleton remains unclear. In this study, we present a three-dimensional agent-based computational model of the cortical actomyosin network to quantitatively determine the effects of motor activity and the density and kinetics of ACPs on the accumulation and maintenance of mechanical tension within a disordered actomyosin network. We found that motors accumulate large stress quickly by behaving as temporary cross-linkers although this stress is relaxed over time unless there are sufficient passive ACPs to stabilize the network. Stabilization by ACPs helps motors to generate forces up to their maximum potential, leading to significant enhancement of the efficiency and stability of stress generation. Thus, we demonstrated that the force-dependent kinetics of ACP dissociation plays a critical role for the accumulation and sustainment of stress and the structural remodeling of networks.

  19. Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis.

    PubMed

    Korobova, Farida; Svitkina, Tatyana

    2010-01-01

    Excitatory synapses in the brain play key roles in learning and memory. The formation and functions of postsynaptic mushroom-shaped structures, dendritic spines, and possibly of presynaptic terminals, rely on actin cytoskeleton remodeling. However, the cytoskeletal architecture of synapses remains unknown hindering the understanding of synapse morphogenesis. Using platinum replica electron microscopy, we characterized the cytoskeletal organization and molecular composition of dendritic spines, their precursors, dendritic filopodia, and presynaptic boutons. A branched actin filament network containing Arp2/3 complex and capping protein was a dominant feature of spine heads and presynaptic boutons. Surprisingly, the spine necks and bases, as well as dendritic filopodia, also contained a network, rather than a bundle, of branched and linear actin filaments that was immunopositive for Arp2/3 complex, capping protein, and myosin II, but not fascin. Thus, a tight actin filament bundle is not necessary for structural support of elongated filopodia-like protrusions. Dynamically, dendritic filopodia emerged from densities in the dendritic shaft, which by electron microscopy contained branched actin network associated with dendritic microtubules. We propose that dendritic spine morphogenesis begins from an actin patch elongating into a dendritic filopodium, which tip subsequently expands via Arp2/3 complex-dependent nucleation and which length is modulated by myosin II-dependent contractility.

  20. Control of developmental networks by Rac/Rho small GTPases: How cytoskeletal changes during embryogenesis are orchestrated

    PubMed Central

    Sáenz‐Narciso, Beatriz; Gómez‐Orte, Eva; Zheleva, Angelina; Gastaca, Irene

    2016-01-01

    Small GTPases in the Rho family act as major nodes with functions beyond cytoskeletal rearrangements shaping the Caenorhabditis elegans embryo during development. These small GTPases are key signal transducers that integrate diverse developmental signals to produce a coordinated response in the cell. In C. elegans, the best studied members of these highly conserved Rho family small GTPases, RHO‐1/RhoA, CED‐10/Rac, and CDC‐42, are crucial in several cellular processes dealing with cytoskeletal reorganization. In this review, we update the functions described for the Rho family small GTPases in spindle orientation and cell division, engulfment, and cellular movements during C. elegans embryogenesis, focusing on the Rho subfamily Rac. Please also see the video abstract here PMID:27790724

  1. Actin restructuring during Salmonella typhimurium infection investigated by confocal and super-resolution microscopy

    NASA Astrophysics Data System (ADS)

    Han, Jason J.; Kunde, Yuliya A.; Hong-Geller, Elizabeth; Werner, James H.

    2014-01-01

    We have used super-resolution optical microscopy and confocal microscopy to visualize the cytoskeletal restructuring of HeLa cells that accompanies and enables Salmonella typhimurium internalization. Herein, we report the use of confocal microscopy to verify and explore infection conditions that would be compatible with super-resolution optical microscopy, using Alexa-488 labeled phalloidin to stain the actin cytoskeletal network. While it is well known that actin restructuring and cytoskeletal rearrangements often accompany and assist in bacterial infection, most studies have employed conventional diffraction-limited fluorescence microscopy to explore these changes. Here we show that the superior spatial resolution provided by single-molecule localization methods (such as direct stochastic optical reconstruction microscopy) enables more precise visualization of the nanoscale changes in the actin cytoskeleton that accompany bacterial infection. In particular, we found that a thin (100-nm) ring of actin often surrounds an invading bacteria 10 to 20 min postinfection, with this ring being transitory in nature. We estimate that a few hundred monofilaments of actin surround the S. typhimurium in this heretofore unreported bacterial internalization intermediate.

  2. Actin restructuring during Salmonella typhimurium infection investigated by confocal and super-resolution microscopy.

    PubMed

    Han, Jason J; Kunde, Yuliya A; Hong-Geller, Elizabeth; Werner, James H

    2014-01-01

    We have used super-resolution optical microscopy and confocal microscopy to visualize the cytoskeletal restructuring of HeLa cells that accompanies and enables Salmonella typhimurium internalization. Herein, we report the use of confocal microscopy to verify and explore infection conditions that would be compatible with super-resolution optical microscopy, using Alexa-488 labeled phalloidin to stain the actin cytoskeletal network. While it is well known that actin restructuring and cytoskeletal rearrangements often accompany and assist in bacterial infection, most studies have employed conventional diffraction-limited fluorescence microscopy to explore these changes. Here we show that the superior spatial resolution provided by single-molecule localization methods (such as direct stochastic optical reconstruction microscopy) enables more precise visualization of the nanoscale changes in the actin cytoskeleton that accompany bacterial infection. In particular, we found that a thin (100-nm) ring of actin often surrounds an invading bacteria 10 to 20 min postinfection, with this ring being transitory in nature. We estimate that a few hundred monofilaments of actin surround the S. typhimurium in this heretofore unreported bacterial internalization intermediate.

  3. Form-Finding Model Shows How Cytoskeleton Network Stiffness Is Realized

    PubMed Central

    Gong, Jinghai; Zhang, Daxu; Tseng, Yiider; Li, Baolong; Wirtz, Denis; Schafer, Benjamin William

    2013-01-01

    In eukaryotic cells the actin-cytoskeletal network provides stiffness and the driving force that contributes to changes in cell shape and cell motility, but the elastic behavior of this network is not well understood. In this paper a two dimensional form-finding model is proposed to investigate the elasticity of the actin filament network. Utilizing an initially random array of actin filaments and actin-cross-linking proteins the form-finding model iterates until the random array is brought into a stable equilibrium configuration. With some care given to actin filament density and length, distance between host sites for cross-linkers, and overall domain size the resulting configurations from the form-finding model are found to be topologically similar to cytoskeletal networks in real cells. The resulting network may then be mechanically exercised to explore how the actin filaments deform and align under load and the sensitivity of the network’s stiffness to actin filament density, length, etc. Results of the model are consistent with the experimental literature, e.g. actin filaments tend to re-orient in the direction of stretching; and the filament relative density, filament length, and actin-cross-linking protein’s relative density, control the actin-network stiffness. The model provides a ready means of extension to more complicated domains and a three-dimensional form-finding model is under development as well as models studying the formation of actin bundles. PMID:24146992

  4. Actin-mediated motion of meiotic chromosomes

    PubMed Central

    Koszul, R.; Kim, K. P.; Prentiss, M.; Kleckner, N.; Kameoka, S.

    2008-01-01

    Summary Chromosome movement is prominent during meiosis. Here, using a combination of in vitro and in vivo approaches, we elucidate the basis for dynamic mid-prophase chromosome movement in budding yeast. Diverse finding reveal a process in which, at the pachytene stage, individual telomere/nuclear envelope (NE) ensembles attach passively to, and then move in concert with, nucleus-hugging actin cables that are continuous with the global cytoskeletal actin network. Other chromosomes move in concert with lead chromosome(s). The same process, in modulated form, explains the zygotene "bouquet" configuration in which, immediately preceding pachytene, chromosome ends colocalize dynamically in a restricted region of the NE. Mechanical properties of the system and biological roles of mid-prophase movement for meiosis, including recombination, are discussed. PMID:18585353

  5. STAR syndrome-associated CDK10/Cyclin M regulates actin network architecture and ciliogenesis.

    PubMed

    Guen, Vincent J; Gamble, Carly; Perez, Dahlia E; Bourassa, Sylvie; Zappel, Hildegard; Gärtner, Jutta; Lees, Jacqueline A; Colas, Pierre

    2016-01-01

    CDK10/CycM is a protein kinase deficient in STAR (toe Syndactyly, Telecanthus and Anogenital and Renal malformations) syndrome, which results from mutations in the X-linked FAM58A gene encoding Cyclin M. The biological functions of CDK10/CycM and etiology of STAR syndrome are poorly understood. Here, we report that deficiency of CDK10/Cyclin M promotes assembly and elongation of primary cilia. We establish that this reflects a key role for CDK10/Cyclin M in regulation of actin network organization, which is known to govern ciliogenesis. In an unbiased screen, we identified the RhoA-associated kinase PKN2 as a CDK10/CycM phosphorylation substrate. We establish that PKN2 is a bone fide regulator of ciliogenesis, acting in a similar manner to CDK10/CycM. We discovered that CDK10/Cyclin M binds and phosphorylates PKN2 on threonines 121 and 124, within PKN2's core RhoA-binding domain. Furthermore, we demonstrate that deficiencies in CDK10/CycM or PKN2, or expression of a non-phosphorylatable version of PKN2, destabilize both the RhoA protein and the actin network architecture. Importantly, we established that ectopic expression of RhoA is sufficient to override the induction of ciliogenesis resulting from CDK10/CycM knockdown, indicating that RhoA regulation is critical for CDK10/CycM's negative effect on ciliogenesis. Finally, we show that kidney sections from a STAR patient display dilated renal tubules and abnormal, elongated cilia. Altogether, these results reveal CDK10/CycM as a key regulator of actin dynamics and a suppressor of ciliogenesis through phosphorylation of PKN2 and promotion of RhoA signaling. Moreover, they suggest that STAR syndrome is a ciliopathy.

  6. A variational approach to the growth dynamics of pre-stressed actin filament networks

    NASA Astrophysics Data System (ADS)

    John, Karin; Stöter, Thomas; Misbah, Chaouqi

    2016-09-01

    In order to model the growth dynamics of elastic bodies with residual stresses a thermodynamically consistent approach is needed such that the cross-coupling between growth and mechanics can be correctly described. In the present work we apply a variational principle to the formulation of the interfacial growth dynamics of dendritic actin filament networks growing from biomimetic beads, an experimentally well studied system, where the buildup of residual stresses governs the network growth. We first introduce the material model for the network via a strain energy density for an isotropic weakly nonlinear elastic material and then derive consistently from this model the dynamic equations for the interfaces, i.e. for a polymerizing internal interface in contact with the bead and a depolymerizing external interface directed towards the solvent. We show that (i) this approach automatically preserves thermodynamic symmetry-properties, which is not the case for the often cited ‘rubber-band-model’ (Sekimoto et al 2004 Eur. Phys. J. E 13 247-59, Plastino et al 2004 Eur. Biophys. J. 33 310-20) and (ii) leads to a robust morphological instability of the treadmilling network interfaces. The nature of the instability depends on the interplay of the two dynamic interfaces. Depending on the biochemical conditions the network envelope evolves into a comet-like shape (i.e. the actin envelope thins out at one side and thickens on the opposite side of the bead) via a varicose instability or it breaks the symmetry via higher order zigzag modes. We conclude that morphological instabilities due to mechano-chemical coupling mechanisms and the presences of mechancial pre-stresses can play a major role in locally organizing the cytoskeleton of living cells.

  7. The degree of resistance of erythrocyte membrane cytoskeletal proteins to supra-physiologic concentrations of calcium: an in vitro study.

    PubMed

    Mostafavi, Ebrahim; Nargesi, Arash Aghajani; Ghazizadeh, Zaniar; Larry, Mehrdad; Farahani, Roya Horabad; Morteza, Afsaneh; Esteghamati, Alireza; Vigneron, Claude; Nakhjavani, Manouchehr

    2014-08-01

    Calcium is a key regulator of cell dynamics. Dysregulation of its cytosolic concentration is implicated in the pathophysiology of several diseases. This study aimed to assess the effects of calcium on the network of membrane cytoskeletal proteins. Erythrocyte membranes were obtained from eight healthy donors and incubated with 250 µM and 1.25 mM calcium solutions. Membrane cytoskeletal proteins were quantified using SDS-PAGE at baseline and after 3 and 5 days of incubation. Supra-physiologic concentrations of calcium (1.25 mM) induced a significant proteolysis in membrane cytoskeletal proteins, compared with magnesium (p < 0.001). Actin exhibited the highest sensitivity to calcium-induced proteolysis (6.8 ± 0.3 vs. 5.3 ± 0.6, p < 0.001), while spectrin (39.9 ± 1.0 vs. 40.3 ± 2.0, p = 0.393) and band-6 (6.3 ± 0.3 vs. 6.8 ± 0.8, p = 0.191) were more resistant to proteolysis after incubation with calcium in the range of endoplasmic reticulum concentrations (250 µM). Aggregation of membrane cytoskeletal proteins was determined after centrifugation and was significantly higher after incubation with calcium ions compared with control, EDTA and magnesium solutions (p < 0.001). In a supra-physiologic range of 1.25-10 mM of calcium ions, there was a nearly perfect linear relationship between calcium concentration and aggregation of erythrocyte membrane cytoskeletal proteins (R(2) = 0.971, p < 0.001). Our observation suggests a strong interaction between calcium ions and membrane cytoskeletal network. Cumulative effects of disrupted calcium homeostasis on cytoskeletal proteins need to be further investigated at extended periods of time in disease states.

  8. Elastic coupling of nascent apCAM adhesions to flowing actin networks.

    PubMed

    Mejean, Cecile O; Schaefer, Andrew W; Buck, Kenneth B; Kress, Holger; Shundrovsky, Alla; Merrill, Jason W; Dufresne, Eric R; Forscher, Paul

    2013-01-01

    Adhesions are multi-molecular complexes that transmit forces generated by a cell's acto-myosin networks to external substrates. While the physical properties of some of the individual components of adhesions have been carefully characterized, the mechanics of the coupling between the cytoskeleton and the adhesion site as a whole are just beginning to be revealed. We characterized the mechanics of nascent adhesions mediated by the immunoglobulin-family cell adhesion molecule apCAM, which is known to interact with actin filaments. Using simultaneous visualization of actin flow and quantification of forces transmitted to apCAM-coated beads restrained with an optical trap, we found that adhesions are dynamic structures capable of transmitting a wide range of forces. For forces in the picoNewton scale, the nascent adhesions' mechanical properties are dominated by an elastic structure which can be reversibly deformed by up to 1 µm. Large reversible deformations rule out an interface between substrate and cytoskeleton that is dominated by a number of stiff molecular springs in parallel, and favor a compliant cross-linked network. Such a compliant structure may increase the lifetime of a nascent adhesion, facilitating signaling and reinforcement.

  9. Self-Organized Gels in DNA/F-Actin Mixtures without Crosslinkers: Networks of Induced Nematic Domains with Tunable Density

    NASA Astrophysics Data System (ADS)

    Lai, Ghee Hwee; Butler, John C.; Zribi, Olena V.; Smalyukh, Ivan I.; Angelini, Thomas E.; Purdy, Kirstin R.; Golestanian, Ramin; Wong, Gerard C. L.

    2008-11-01

    We examine mixtures of DNA and filamentous actin (F-actin) as a model system of like-charged rigid rods and flexible chains. Confocal microscopy reveals the formation of elongated nematic F-actin domains reticulated via defect-free vertices into a network embedded in a mesh of random DNA. Synchrotron x-ray scattering results indicate that the DNA mesh squeezes the F-actin domains into a nematic state with an interactin spacing that decreases with increasing DNA concentration as dactin∝ρDNA-1/2. Interestingly, the system changes from a counterion-controlled regime to a depletion-controlled regime with added salt, with drastic consequences for the osmotic pressure induced phase behavior.

  10. p-Chloromercuribenzoate-induced dissociation of cytoskeletal proteins in red blood cells of rats.

    PubMed

    Kunimoto, M; Shibata, K; Miura, T

    1987-12-11

    Effects of p-chloromercuribenzoate (PCMB) on the cytoskeletal organization of rat red blood cells were studied. Upon incubation with 50 microM PCMB in 10 mM Tris-HCl (pH 7.4) at 37 degrees C for 30 min, 80% of actin and 45% of spectrin were released from the ghosts, resulting in the fragmentation of ghost membranes. Addition of 2 mM Mg2+ or 0.1 M KCl, or lowering incubation temperature to 0 degree C substantially inhibited the solubilization of the cytoskeletal proteins and the fragmentation of ghost membranes, which enable to examine the effects of PCMB on the interaction between transmembrane proteins and the peripheral cytoskeletal network. Decreased recoveries of transmembrane proteins, such as band 3 and glycophorin, in Triton shell fraction were observed in the ghosts incubated with PCMB either in the presence of Mg2+ or at 0 degree C. PCMB also inhibited the in vitro association of purified spectrin with spectrin-depleted inside-out vesicles through interaction with proteins in the vesicle, such as bands 2.1 and 3. In the PCMB-treated ghosts, intramembrane particles were highly aggregated, which further supports the PCMB-induced dissociation of the transmembrane proteins from the cytoskeletal network. The decreased recovery of glycophorin in the Triton shell fraction also observed in intact red blood cells upon incubation with PCMB. These results suggest that the main action of PCMB on red cell membranes under physiological condition, at higher ionic strength and in the presence of Mg2+, is to dissociate transmembrane proteins from the peripheral cytoskeletal network, which may modify functions of these proteins.

  11. Temporal changes in cytoskeletal organisation within isolated chondrocytes quantified using a novel image analysis technique.

    PubMed

    Knight, M M; Idowu, B D; Lee, D A; Bader, D L

    2001-05-01

    This paper examines temporal changes in the organisation of the cytoskeleton within isolated articular chondrocytes cultured for up to 7 days in agarose constructs. Fluorescent labelling and confocal microscopy were employed to visualise microtubules (MT), vimentin intermediate filaments (VIF) and actin microfilaments (AMF). To quantify the degree of cytoskeletal organisation within populations of cells, a novel image analysis technique has been developed and fully characterised. Organisation was quantified in terms of an Edge Index, which reflects the density of 'edges' present within the confocal images as defined by a Sobel digital filter. This parameter was shown to be independent of image intensity and, for all three cytoskeletal components, was validated statistically against a visual assessment of organisation. Both MT and VIF exhibited fibrous networks extending throughout the cytoplasm, while AMF appeared as punctate units associated with the cell membrane. The use of the Edge Index parameter revealed statistical significant temporal variation, in particular associated with VIF and AMF. These findings indicate the possibility of cytoskeletal mediated temporal variation in many aspects of cell behaviour following isolation from the intact tissue. Furthermore, the image analysis techniques are likely to be useful for future studies aiming to quantify changes in cytoskeletal organisation.

  12. On the significance of microtubule flexural behavior in cytoskeletal mechanics.

    PubMed

    Mehrbod, Mehrdad; Mofrad, Mohammad R K

    2011-01-01

    Quantitative description of cell mechanics has challenged biological scientists for the past two decades. Various structural models have been attempted to analyze the structure of the cytoskeleton. One important aspect that has been largely ignored in all these modeling approaches is related to the flexural and buckling behavior of microtubular filaments. The objective of this paper is to explore the influence of this flexural and buckling behavior in cytoskeletal mechanics.In vitro the microtubules are observed to buckle in the first mode, reminiscent of a free, simply-supported beam. In vivo images of microtubules, however, indicate that the buckling mostly occurs in higher modes. This buckling mode switch takes place mostly because of the lateral support of microtubules via their connections to actin and intermediate filaments. These lateral loads are exerted throughout the microtubule length and yield a considerable bending behavior that, unless properly accounted for, would produce erroneous results in the modeling and analysis of the cytoskeletal mechanics.One of the promising attempts towards mechanical modeling of the cytoskeleton is the tensegrity model, which simplifies the complex network of cytoskeletal filaments into a combination merely of tension-bearing actin filaments and compression-bearing microtubules. Interestingly, this discrete model can qualitatively explain many experimental observations in cell mechanics. However, evidence suggests that the simplicity of this model may undermine the accuracy of its predictions, given the model's underlying assumption that "every single member bears solely either tensile or compressive behavior," i.e. neglecting the flexural behavior of the microtubule filaments. We invoke an anisotropic continuum model for microtubules and compare the bending energy stored in a single microtubule with its axial strain energy at the verge of buckling. Our results suggest that the bending energy can exceed the axial energy

  13. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins.

    PubMed

    Blanchoin, L; Amann, K J; Higgs, H N; Marchand, J B; Kaiser, D A; Pollard, T D

    2000-04-27

    Most nucleated cells crawl about by extending a pseudopod that is driven by the polymerization of actin filaments in the cytoplasm behind the leading edge of the plasma membrane. These actin filaments are linked into a network by Y-branches, with the pointed end of each filament attached to the side of another filament and the rapidly growing barbed end facing forward. Because Arp2/3 complex nucleates actin polymerization and links the pointed end to the side of another filament in vitro, a dendritic nucleation model has been proposed in which Arp2/3 complex initiates filaments from the sides of older filaments. Here we report, by using a light microscopy assay, many new features of the mechanism. Branching occurs during, rather than after, nucleation by Arp2/3 complex activated by the Wiskott-Aldrich syndrome protein (WASP) or Scar protein; capping protein and profilin act synergistically with Arp2/3 complex to favour branched nucleation; phosphate release from aged actin filaments favours dissociation of Arp2/3 complex from the pointed ends of filaments; and branches created by Arp2/3 complex are relatively rigid. These properties result in the automatic assembly of the branched actin network after activation by proteins of the WASP/Scar family and favour the selective disassembly of proximal regions of the network.

  14. Convergence and extension at gastrulation require a myosin IIB dependent cortical actin network

    PubMed Central

    Skoglund, Paul; Rolo, Ana; Chen, Xuejun; Gumbiner, Barry M.; Keller, Ray

    2009-01-01

    Summary Force-producing convergence (narrowing) and extension (lengthening) of tissues by active intercalation of cells along the axis of convergence play a major role in axial morphogenesis during development of both vertebrate and invertebrate embryos, and failure of these processes in human embryos leads to embryonic defects including spina bifida and anencephaly. Here we use Xenopus laevis, a system in which the polarized cell motility that drives this active cell intercalation has been related to development of forces that close the blastopore and elongate the body axis, to examine the role of myosin IIB in convergence and extension. We find that myosin IIB is localized in the cortex of intercalating cells, and that morpholino knockdown of this myosin isoform shows that it is essential for maintenance of a stereotypical, cortical actin cytoskeleton that we visualize with time-lapse fluorescent confocal microscopy. We show that this actin network consists of foci or nodes connected by cables and is polarized relative to the embryonic axis, preferentially cyclically shortening and lengthening parallel to the axis of cell polarization, elongation, and intercalation, and also parallel to the axis of convergence forces during gastrulation. MHC-B-depletion results in disruption of this polarized cytoskeleton, loss of the polarized protrusive activity characteristic of intercalating cells, eventual loss of cell-cell and cell matrix adhesion, and dose-dependent failure of blastopore closure, arguably because of failure to develop convergence forces parallel to the myosin IIB-dependent dynamics of the actin cytoskeleton. These findings bridge the gap between a molecular-scale motor protein and tissue-scale embryonic morphogenesis. PMID:18550716

  15. [The reorganization of actin cytoskeleton and microtubule system of human endothelial vein in the intercellular contacts formation].

    PubMed

    Shahov, A S; Dugina, V B; Alieva, I B

    2015-01-01

    Endothelial cells are tightly fitted to each other and lining the interior surface of all vessels of living organism to provide vascular permeability regulation and interchange between the blood circulating in vessels and tissue fluids of those organs in which these vessels are located. In vitro endothelial monolayer conserve it's basic barrier function which is native for vessels endothelium. Based on this fact we used endothelial cells growing in vitro as a model system in experimental studies of cytoskeletal and adhesion cell components interaction. In current paper, cultured human vein endothelial cells monolayer was used to quantify cytoskeleton alterations in the of endothelial cells from spreading and formation of the first cell-cell contacts to confluent monolayer formation. The system of actin filaments formed two different cytoskeletal structures in the cells of venous endothelium: 1) cortical actin network; 2) actin stress fibers (bundles) arranged parallel to the substrate. Two actin isoforms, β- and γ-cytoplasmic (non-muscle) actins, are expressed in endothelial cells. The bundles of actin stress fibers were detected by immunofluorescent staining with antibody against β-actin, whereas antibodies against γ-actin identified cortical and lamellar networks. For assessment of the actin cytoskeleton organization it's fluorescence intensity on the area of 10 μM2 located (1) near the free edge, and (2) in the zone of cell-cell contacts were analyzed. Fluorescence intensity of β-actin structures was higher in the areas of cell-cell contact. The fluorescence of γ-actin structures was more intensive at the leading edges of the lamellae, and was the lowest on the stable edges of the cells with formed cell-cell contacts. The endothelial monolayer formation was accompanied by microtubule system alteration: the number of microtubules increased at the cell edge, and besides the microtubules quantity in the area of already formed cell-cell contact was always

  16. Chemotaxis and Actin Oscillations

    NASA Astrophysics Data System (ADS)

    Bodenschatz, Eberhard; Hsu, Hsin-Fang; Negrete, Jose; Beta, Carsten; Pumir, Alain; Gholami, Azam; Tarantola, Marco; Westendorf, Christian; Zykov, Vladimir

    Recently, self-oscillations of the cytoskeletal actin have been observed in Dictyostelium, a model system for studying chemotaxis. Here we report experimental results on the self-oscillation mechanism and the role of regulatory proteins and myosin II. We stimulate cells rapidly and periodically by using photo un-caging of the chemoattractant in a micro-fluidic device and measured the cellular responses. We found that the response amplitude grows with stimulation strength only in a very narrow region of stimulation, after which the response amplitude reaches a plateau. Moreover, the frequency-response is not constant but rather varies with the strength of external stimuli. To understand the underlying mechanism, we analyzed the polymerization and de-polymerization time in the single cell level. Despite of the large cell-to-cell variability, we found that the polymerization time is independent of external stimuli and the de-polymerization time is prolonged as the stimulation strength increases. Our conclusions will be summarized and the role of noise in the signaling network will be discussed. German Science Foundation CRC 937.

  17. Cytoskeletal organization by motor and polymerization forces

    NASA Astrophysics Data System (ADS)

    Koenderink, Gijsje

    2014-03-01

    Cells need to constantly change their change to perform vital functions, such as growth, division, and movement. Dysregulation of cell shape can have severe consequences such as cancer. Our goal is to resolve physical mechanisms that contribute to cell shape control. For this purpose, we study simplified experimental model systems reconstituted from purified cellular components. In this talk, I will give two examples of our recent work. The first example concerns active contractility of the actin cortex, which lies underneath the cell membrane and drives shape changes by means of myosin motors. Using in vitro models, we studied how myosin motors and actin filaments collectively self-organize into force-generating arrays. I will show that motors contract actin networks only above a sharp threshold in crosslink density. We discovered that right at this threshold, the motors rupture the network into clusters that exhibit a broad distribution of sizes, as expected in filamentous networks near a percolation threshold. The second example I will discuss concerns cell shape polarization directed by interactions between the actin and microtubule (MT) cytoskeletons. A prominent example is the guidance of MT growth along F-actin bundles towards specific targets, i.e. focal adhesions. It has been suggested that MT end-tracking proteins (+TIPs) that also bind F-actin are responsible for this process. We built an in vitro system involving a simplified actin-MT crosslinker molecule and could show that the interaction between MT ends and actin is sufficient to capture and re-direct MT growth along actin bundles. By keeping MT growth tightly coupled to F-actin, this mechanism allows linear arrays of actin bundles to act as templates for MT organization. Instead, when interacting with single actin filaments, MT ends become the dominant organizing factor, exerting forces that align, pull and even transport actin filaments in the direction of MT growth. We conclude that actin and MTs

  18. Accelerated actin filament polymerization from microtubule plus-ends

    PubMed Central

    Henty-Ridilla, Jessica L.; Rankova, Aneliya; Eskin, Julian A.; Kenny, Katelyn; Goode, Bruce L.

    2016-01-01

    Microtubules govern actin network remodeling in a wide range of biological processes, yet the mechanisms underlying this cytoskeletal crosstalk have remained obscure. Here we used single-molecule fluorescence microscopy to show that the microtubule plus-end associated protein CLIP-170 binds tightly to formins to accelerate actin filament elongation. Furthermore, we observed mDia1 dimers and CLIP-170 dimers co-tracking growing filament ends for minutes. CLIP-170-mDia1 complexes promoted actin polymerization approximately 18 times faster than free barbed end growth, while simultaneously enhancing protection from capping protein. We used a microtubule-actin dynamics co-reconstitution system to observe CLIP-170-mDia1 complexes being recruited to growing microtubule ends by EB1. The complexes triggered rapid growth of actin filaments that remained attached to the microtubule surface. These activities of CLIP-170 were required in primary neurons for normal dendritic morphology. Thus, our results reveal a cellular mechanism whereby growing microtubule plus-ends direct rapid actin assembly. PMID:27199431

  19. Actin polymerization machinery: the finish line of signaling networks, the starting point of cellular movement.

    PubMed

    Disanza, A; Steffen, A; Hertzog, M; Frittoli, E; Rottner, K; Scita, G

    2005-05-01

    Dynamic assembly of actin filaments generates the forces supporting cell motility. Several recent biochemical and genetic studies have revealed a plethora of different actin binding proteins whose coordinated activity regulates the turnover of actin filaments, thus controlling a variety of actin-based processes, including cell migration. Additionally, emerging evidence is highlighting a scenario whereby the same basic set of actin regulatory proteins is also the convergent node of different signaling pathways emanating from extracellular stimuli, like those from receptor tyrosine kinases. Here, we will focus on the molecular mechanisms of how the machinery of actin polymerization functions and is regulated, in a signaling-dependent mode, to generate site-directed actin assembly leading to cell motility.

  20. Actin Polymerization Driven Mitochondrial Transport in Mating S. cerevisiae by Fourier Imaging Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Senning, Eric; Marcus, Andrew

    2010-03-01

    The dynamic microenvironment of cells depends on macromolecular architecture, equilibrium fluctuations, and non-equilibrium forces generated by cytoskeletal proteins. We studied the influence of these factors on the motions of mitochondria in mating S. cerevisiae using Fourier imaging correlation spectroscopy (FICS). Our measurements provide detailed, length scale dependent information about the dynamic behavior of mitochondria. We investigate the influence of the actin cytoskeleton on mitochondrial motion, and make comparisons between conditions in which actin network assembly and disassembly is varied, either by using disruptive pharmacological agents, or mutations that alter the rates of actin polymerization. We find that non-equilibrium forces associated with actin polymerization lead to a 1.5-fold enhancement of the long-time mitochondrial diffusion coefficient, and a transient sub-diffusive temporal scaling of the mean-square displacement. Our results lend support to an existing model in which these forces are directly coupled to mitochondrial membrane surfaces.

  1. Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones

    PubMed Central

    Garcia, Mikael; Leduc, Cécile; Lagardère, Matthieu; Argento, Amélie; Sibarita, Jean-Baptiste; Thoumine, Olivier

    2015-01-01

    Neuronal growth cones move forward by dynamically connecting actin-based motility to substrate adhesion, but the mechanisms at the individual molecular level remain unclear. We cultured primary neurons on N-cadherin–coated micropatterned substrates, and imaged adhesion and cytoskeletal proteins at the ventral surface of growth cones using single particle tracking combined to photoactivated localization microscopy (sptPALM). We demonstrate transient interactions in the second time scale between flowing actin filaments and immobilized N-cadherin/catenin complexes, translating into a local reduction of the actin retrograde flow. Normal actin flow on micropatterns was rescued by expression of a dominant negative N-cadherin construct competing for the coupling between actin and endogenous N-cadherin. Fluorescence recovery after photobleaching (FRAP) experiments confirmed the differential kinetics of actin and N-cadherin, and further revealed a 20% actin population confined at N-cadherin micropatterns, contributing to local actin accumulation. Computer simulations with relevant kinetic parameters modeled N-cadherin and actin turnover well, validating this mechanism. Such a combination of short- and long-lived interactions between the motile actin network and spatially restricted adhesive complexes represents a two-tiered clutch mechanism likely to sustain dynamic environment sensing and provide the force necessary for growth cone migration. PMID:26038554

  2. Biotechnological aspects of cytoskeletal regulation in plants.

    PubMed

    Komis, George; Luptovciak, Ivan; Doskocilova, Anna; Samaj, Jozef

    2015-11-01

    The cytoskeleton is a protein-based intracellular superstructure that evolved early after the appearance of bacterial prokaryotes. Eventually cytoskeletal proteins and their macromolecular assemblies were established in eukaryotes and assumed critical roles in cell movements, intracellular organization, cell division and cell differentiation. In biomedicine the small-molecules targeting cytoskeletal elements are in the frontline of anticancer research with plant-derived cytoskeletal drugs such as Vinca alkaloids and toxoids, being routinely used in the clinical practice. Moreover, plants are also major material, food and energy resources for human activities ranging from agriculture, textile industry, carpentry, energy production and new material development to name some few. Most of these inheritable traits are associated with cell wall synthesis and chemical modification during primary and secondary plant growth and inevitably are associated with the dynamics, organization and interactions of the plant cytoskeleton. Taking into account the vast intracellular spread of microtubules and actin microfilaments the cytoskeleton collectively assumed central roles in plant growth and development, in determining the physical stance of plants against the forces of nature and becoming a battleground between pathogenic invaders and the defense mechanisms of plant cells. This review aims to address the role of the plant cytoskeleton in manageable features of plants including cellulose biosynthesis with implications in wood and fiber properties, in biofuel production and the contribution of plant cytoskeletal elements in plant defense responses against pathogens or detrimental environmental conditions. Ultimately the present work surveys the potential of cytoskeletal proteins as platforms of plant genetic engineering, nominating certain cytoskeletal proteins as vectors of favorable traits in crops and other economically important plants.

  3. Direct interaction of microtubule- and actin-based transport motors

    NASA Technical Reports Server (NTRS)

    Huang, J. D.; Brady, S. T.; Richards, B. W.; Stenolen, D.; Resau, J. H.; Copeland, N. G.; Jenkins, N. A.

    1999-01-01

    The microtubule network is thought to be used for long-range transport of cellular components in animal cells whereas the actin network is proposed to be used for short-range transport, although the mechanism(s) by which this transport is coordinated is poorly understood. For example, in sea urchins long-range Ca2+-regulated transport of exocytotic vesicles requires a microtubule-based motor, whereas an actin-based motor is used for short-range transport. In neurons, microtubule-based kinesin motor proteins are used for long-range vesicular transport but microtubules do not extend into the neuronal termini, where actin filaments form the cytoskeletal framework, and kinesins are rapidly degraded upon their arrival in neuronal termini, indicating that vesicles may have to be transferred from microtubules to actin tracks to reach their final destination. Here we show that an actin-based vesicle-transport motor, MyoVA, can interact directly with a microtubule-based transport motor, KhcU. As would be expected if these complexes were functional, they also contain kinesin light chains and the localization of MyoVA and KhcU overlaps in the cell. These results indicate that cellular transport is, in part, coordinated through the direct interaction of different motor molecules.

  4. A Gβγ effector, ElmoE, transduces GPCR signaling to the actin network during chemotaxis.

    PubMed

    Yan, Jianshe; Mihaylov, Vassil; Xu, Xuehua; Brzostowski, Joseph A; Li, Hongyan; Liu, Lunhua; Veenstra, Timothy D; Parent, Carole A; Jin, Tian

    2012-01-17

    Activation of G protein-coupled receptors (GPCRs) leads to the dissociation of heterotrimeric G-proteins into Gα and Gβγ subunits, which go on to regulate various effectors involved in a panoply of cellular responses. During chemotaxis, Gβγ subunits regulate actin assembly and migration, but the protein(s) linking Gβγ to the actin cytoskeleton remains unknown. Here, we identified a Gβγ effector, ElmoE in Dictyostelium, and demonstrated that it is required for GPCR-mediated chemotaxis. Remarkably, ElmoE associates with Gβγ and Dock-like proteins to activate the small GTPase Rac, in a GPCR-dependent manner, and also associates with Arp2/3 complex and F-actin. Thus, ElmoE serves as a link between chemoattractant GPCRs, G-proteins and the actin cytoskeleton. The pathway, consisting of GPCR, Gβγ, Elmo/Dock, Rac, and Arp2/3, spatially guides the growth of dendritic actin networks in pseudopods of eukaryotic cells during chemotaxis.

  5. Nuclei migrate through constricted spaces using microtubule motors and actin networks in C. elegans hypodermal cells.

    PubMed

    Bone, Courtney R; Chang, Yu-Tai; Cain, Natalie E; Murphy, Shaun P; Starr, Daniel A

    2016-11-15

    Cellular migrations through constricted spaces are a crucial aspect of many developmental and disease processes including hematopoiesis, inflammation and metastasis. A limiting factor in these events is nuclear deformation. Here, we establish an in vivo model in which nuclei can be visualized while moving through constrictions and use it to elucidate mechanisms for nuclear migration. C. elegans hypodermal P-cell larval nuclei traverse a narrow space that is about 5% their width. This constriction is blocked by fibrous organelles, structures that pass through P cells to connect the muscles to cuticle. Fibrous organelles are removed just prior to nuclear migration, when nuclei and lamins undergo extreme morphological changes to squeeze through the space. Both actin and microtubule networks are organized to mediate nuclear migration. The LINC complex, consisting of the SUN protein UNC-84 and the KASH protein UNC-83, recruits dynein and kinesin-1 to the nuclear surface. Both motors function in P-cell nuclear migration, but dynein, functioning through UNC-83, plays a more central role as nuclei migrate towards minus ends of polarized microtubule networks. Thus, the nucleoskeleton and cytoskeleton are coordinated to move nuclei through constricted spaces.

  6. Directed actin assembly and motility.

    PubMed

    Boujemaa-Paterski, Rajaa; Galland, Rémi; Suarez, Cristian; Guérin, Christophe; Théry, Manuel; Blanchoin, Laurent

    2014-01-01

    The actin cytoskeleton is a key component of the cellular architecture. However, understanding actin organization and dynamics in vivo is a complex challenge. Reconstitution of actin structures in vitro, in simplified media, allows one to pinpoint the cellular biochemical components and their molecular interactions underlying the architecture and dynamics of the actin network. Previously, little was known about the extent to which geometrical constraints influence the dynamic ultrastructure of these networks. Therefore, in order to study the balance between biochemical and geometrical control of complex actin organization, we used the innovative methodologies of UV and laser patterning to design a wide repertoire of nucleation geometries from which we assembled branched actin networks. Using these methods, we were able to reconstitute complex actin network organizations, closely related to cellular architecture, to precisely direct and control their 3D connections. This methodology mimics the actin networks encountered in cells and can serve in the fabrication of innovative bioinspired systems.

  7. Non-lytic, actin-based exit of intracellular parasites from C. elegans intestinal cells.

    PubMed

    Estes, Kathleen A; Szumowski, Suzannah C; Troemel, Emily R

    2011-09-01

    The intestine is a common site for invasion by intracellular pathogens, but little is known about how pathogens restructure and exit intestinal cells in vivo. The natural microsporidian parasite N. parisii invades intestinal cells of the nematode C. elegans, progresses through its life cycle, and then exits cells in a transmissible spore form. Here we show that N. parisii causes rearrangements of host actin inside intestinal cells as part of a novel parasite exit strategy. First, we show that N. parisii infection causes ectopic localization of the normally apical-restricted actin to the basolateral side of intestinal cells, where it often forms network-like structures. Soon after this actin relocalization, we find that gaps appear in the terminal web, a conserved cytoskeletal structure that could present a barrier to exit. Reducing actin expression creates terminal web gaps in the absence of infection, suggesting that infection-induced actin relocalization triggers gap formation. We show that terminal web gaps form at a distinct stage of infection, precisely timed to precede spore exit, and that all contagious animals exhibit gaps. Interestingly, we find that while perturbations in actin can create these gaps, actin is not required for infection progression or spore formation, but actin is required for spore exit. Finally, we show that despite large numbers of spores exiting intestinal cells, this exit does not cause cell lysis. These results provide insight into parasite manipulation of the host cytoskeleton and non-lytic escape from intestinal cells in vivo.

  8. Intracellular cytoskeletal elements and cytoskeletons in bacteria.

    PubMed

    Madkour, Mohamed H F; Mayer, Frank

    2007-01-01

    Within a short period of time after the discovery of bacterial cytoskletons, major progress had been made in areas such as general spatial layout of cytoskeletons, their involvement in a variety of cellfunctions (shape control, cell division, chromosome segregation, cell motility). This progress was achieved by application of advanced investigation techniques. Homologs of eukaryotic actin, tubulin, and intermediate filaments were found in bacteria; cytoskeletal proteins not closely or not at all related to any of these major cytoskeletal proteins were discovered in a number of bacteria such as Mycoplasmas, Spiroplasmas, Spirochetes, Treponema, Caulobacter. A structural role for bacterial elongation factor Tu was indicated. On the basis of this new thinking, new approaches in biotechnology and new drugs are on the way.

  9. Networks Models of Actin Dynamics during Spermatozoa Postejaculatory Life: A Comparison among Human-Made and Text Mining-Based Models

    PubMed Central

    Ordinelli, Alessandra; Ramal Sanchez, Marina; Mattioli, Mauro; Barboni, Barbara

    2016-01-01

    Here we realized a networks-based model representing the process of actin remodelling that occurs during the acquisition of fertilizing ability of human spermatozoa (HumanMade_ActinSpermNetwork, HM_ASN). Then, we compared it with the networks provided by two different text mining tools: Agilent Literature Search (ALS) and PESCADOR. As a reference, we used the data from the online repository Kyoto Encyclopaedia of Genes and Genomes (KEGG), referred to the actin dynamics in a more general biological context. We found that HM_ALS and the networks from KEGG data shared the same scale-free topology following the Barabasi-Albert model, thus suggesting that the information is spread within the network quickly and efficiently. On the contrary, the networks obtained by ALS and PESCADOR have a scale-free hierarchical architecture, which implies a different pattern of information transmission. Also, the hubs identified within the networks are different: HM_ALS and KEGG networks contain as hubs several molecules known to be involved in actin signalling; ALS was unable to find other hubs than “actin,” whereas PESCADOR gave some nonspecific result. This seems to suggest that the human-made information retrieval in the case of a specific event, such as actin dynamics in human spermatozoa, could be a reliable strategy. PMID:27642606

  10. Characterization and dynamics of cytoplasmic F-actin in higher plant endosperm cells during interphase, mitosis, and cytokinesis

    PubMed Central

    1987-01-01

    We have identified an F-actin cytoskeletal network that remains throughout interphase, mitosis, and cytokinesis of higher plant endosperm cells. Fluorescent labeling was obtained using actin monoclonal antibodies and/or rhodamine-phalloidin. Video-enhanced microscopy and ultrastructural observations of immunogold-labeled preparations illustrated microfilament-microtubule co-distribution and interactions. Actin was also identified in cell crude extract with Western blotting. During interphase, microfilament and microtubule arrays formed two distinct networks that intermingled. At the onset of mitosis, when microtubules rearranged into the mitotic spindle, microfilaments were redistributed to the cell cortex, while few microfilaments remained in the spindle. During mitosis, the cortical actin network remained as an elastic cage around the mitotic apparatus and was stretched parallel to the spindle axis during poleward movement of chromosomes. This suggested the presence of dynamic cross-links that rearrange when they are submitted to slow and regular mitotic forces. At the poles, the regular network is maintained. After midanaphase, new, short microfilaments invaded the equator when interzonal vesicles were transported along the phragmoplast microtubules. Colchicine did not affect actin distribution, and cytochalasin B or D did not inhibit chromosome transport. Our data on endosperm cells suggested that plant cytoplasmic actin has an important role in the cell cortex integrity and in the structural dynamics of the poorly understood cytoplasm- mitotic spindle interface. F-actin may contribute to the regulatory mechanisms of microtubule-dependent or guided transport of vesicles during mitosis and cytokinesis in higher plant cells. PMID:3680376

  11. Reversible mechano-memory in sheared cross-linked actin networks

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayantan; Gardel, Margaret L.

    2015-03-01

    Is it possible to control the shear modulus of a material mechanically? We reconstitute a network of actin filaments cross-linked with Filamin A and show that the system has remarkable property to respond under shear in a deformation history dependent manner. When a large shear stress pulse is applied to the system, the system remembers the direction of deformation long after the stress pulse is removed. For the next loading cycle, shear response of the system becomes anisotropic; if the applied pulse direction is same as the previous one, the system behaves like a viscoelastic solid but a transient liquefaction is observed if the pulse direction is reversed. Imaging and normal force measurements under shear suggest that this anisotropic response comes from stretching and bending dominated deformation directions induced by the large shear deformation giving rise to a direction dependent mechano-memory. The long time scale over which the memory effect persists has relevance in various deformations in cellular and multicellular systems. S.M. acknowledges support from a Kadanoff-Rice Post Doctoral fellowship from MRSEC, University of Chicago.

  12. Why is Actin Patchy?

    NASA Astrophysics Data System (ADS)

    Carlsson, Anders

    2009-03-01

    The intracellular protein actin, by reversibly polymerizing into filaments, generates forces for motion and shape changes of many types of biological cells. Fluorescence imaging studies show that actin often occurs in the form of localized patches of size roughly one micrometer at the cell membrane. Patch formation is most prevalent when the free-actin concentration is low. I investigate possible mechanisms for the formation of actin patches by numerically simulating the ``dendritic nucleation'' model of actin network growth. The simulations include filament growth, capping, branching, severing, and debranching. The attachment of membrane-bound activators to actin filaments, and subsequent membrane diffusion of unattached activators, are also included. It is found that as the actin concentration increases from zero, the actin occurs in patches at lower actin concentrations, and the size of the patches increases with increasing actin concentration. At a critical value of the actin concentration, the system undergoes a transition to complete coverage. The results are interpreted within the framework of reaction-diffusion equations in two dimensions.

  13. Cytoskeletal architecture and motility in a giant freshwater amoeba, Reticulomyxa.

    PubMed

    Koonce, M P; Euteneuer, U; McDonald, K L; Menzel, D; Schliwa, M

    1986-01-01

    Reticulomyxa is a large, multinucleated freshwater protozoan with striking intracellular transport. Cytoplasmic streaming and saltatory movements of individual organelles (at rates of up to 25 micron/sec) are observed within the naked cell body and the extensive reticulate peripheral network of fine cytoplasmic strands. As demonstrated by video-enhanced light microscopy, individual organelles move only when associated with cytoskeletal linear elements. The linear elements are composed of mixed colinear bundles of microtubules and actin filaments, which form the backbone of the reticulopodial network. The constant branching, sprouting, and fusion of network strands suggest unique membrane properties and an unusually dynamic cytoskeleton. The electrophoretic mobility of Reticulomyxa tubulins and the lack of crossreactivity with several antibodies known to react with many plant and animal tubulins suggest that they may differ from other tubulins more widely than might be expected. Reticulomyxa's large size, the rapidity and pervasiveness of the two forms of transport, and the simple and ordered cytoskeleton make the organism well suited for future studies on the mechanisms of intracellular transport.

  14. Computational Tension Mapping of Adherent Cells Based on Actin Imaging.

    PubMed

    Manifacier, Ian; Milan, Jean-Louis; Jeanneau, Charlotte; Chmilewsky, Fanny; Chabrand, Patrick; About, Imad

    2016-01-01

    Forces transiting through the cytoskeleton are known to play a role in adherent cell activity. Up to now few approaches haves been able to determine theses intracellular forces. We thus developed a computational mechanical model based on a reconstruction of the cytoskeleton of an adherent cell from fluorescence staining of the actin network and focal adhesions (FA). Our custom made algorithm converted the 2D image of an actin network into a map of contractile interactions inside a 2D node grid, each node representing a group of pixels. We assumed that actin filaments observed under fluorescence microscopy, appear brighter when thicker, we thus presumed that nodes corresponding to pixels with higher actin density were linked by stiffer interactions. This enabled us to create a system of heterogeneous interactions which represent the spatial organization of the contractile actin network. The contractility of this interaction system was then adapted to match the level of force the cell truly exerted on focal adhesions; forces on focal adhesions were estimated from their vinculin expressed size. This enabled the model to compute consistent mechanical forces transiting throughout the cell. After computation, we applied a graphical approach on the original actin image, which enabled us to calculate tension forces throughout the cell, or in a particular region or even in single stress fibers. It also enabled us to study different scenarios which may indicate the mechanical role of other cytoskeletal components such as microtubules. For instance, our results stated that the ratio between intra and extra cellular compression is inversely proportional to intracellular tension.

  15. Computational Tension Mapping of Adherent Cells Based on Actin Imaging

    PubMed Central

    Manifacier, Ian; Milan, Jean-Louis; Jeanneau, Charlotte; Chmilewsky, Fanny; Chabrand, Patrick; About, Imad

    2016-01-01

    Forces transiting through the cytoskeleton are known to play a role in adherent cell activity. Up to now few approaches haves been able to determine theses intracellular forces. We thus developed a computational mechanical model based on a reconstruction of the cytoskeleton of an adherent cell from fluorescence staining of the actin network and focal adhesions (FA). Our custom made algorithm converted the 2D image of an actin network into a map of contractile interactions inside a 2D node grid, each node representing a group of pixels. We assumed that actin filaments observed under fluorescence microscopy, appear brighter when thicker, we thus presumed that nodes corresponding to pixels with higher actin density were linked by stiffer interactions. This enabled us to create a system of heterogeneous interactions which represent the spatial organization of the contractile actin network. The contractility of this interaction system was then adapted to match the level of force the cell truly exerted on focal adhesions; forces on focal adhesions were estimated from their vinculin expressed size. This enabled the model to compute consistent mechanical forces transiting throughout the cell. After computation, we applied a graphical approach on the original actin image, which enabled us to calculate tension forces throughout the cell, or in a particular region or even in single stress fibers. It also enabled us to study different scenarios which may indicate the mechanical role of other cytoskeletal components such as microtubules. For instance, our results stated that the ratio between intra and extra cellular compression is inversely proportional to intracellular tension. PMID:26812601

  16. Cardiac actin is the major actin gene product in skeletal muscle cell differentiation in vitro.

    PubMed Central

    Bains, W; Ponte, P; Blau, H; Kedes, L

    1984-01-01

    We examined the expression of alpha-skeletal, alpha-cardiac, and beta- and gamma-cytoskeletal actin genes in a mouse skeletal muscle cell line (C2C12) during differentiation in vitro. Using isotype-specific cDNA probes, we showed that the alpha-skeletal actin mRNA pool reached only 15% of the level reached in adult skeletal muscle and required several days to attain this peak, which was then stably maintained. However, these cells accumulated a pool of alpha-cardiac actin six times higher than the alpha-skeletal actin mRNA peak within 24 h of the initiation of differentiation. After cells had been cultured for an additional 3 days, this pool declined to 10% of its peak level. In contrast, over 95% of the actin mRNA in adult skeletal muscle coded for alpha-actin. This suggests that C2C12 cells express a pattern of sarcomeric actin genes typical of either muscle development or regeneration and distinct from that seen in mature, adult tissue. Concurrently in the course of differentiation the beta- and gamma-cytoskeletal actin mRNA pools decreased to less than 10% of their levels in proliferating cells. The decreases in beta- and gamma-cytoskeletal actin mRNAs are apparently not coordinately regulated. Images PMID:6493226

  17. The yeast gene, MDM20, is necessary for mitochondrial inheritance and organization of the actin cytoskeleton.

    PubMed

    Hermann, G J; King, E J; Shaw, J M

    1997-04-07

    In Saccharomyces cerevisiae, the growing bud inherits a portion of the mitochondrial network from the mother cell soon after it emerges. Although this polarized transport of mitochondria is thought to require functions of the cytoskeleton, there are conflicting reports concerning the nature of the cytoskeletal element involved. Here we report the isolation of a yeast mutant, mdm20, in which both mitochondrial inheritance and actin cables (bundles of actin filaments) are disrupted. The MDM20 gene encodes a 93-kD polypeptide with no homology to other characterized proteins. Extra copies of TPM1, a gene encoding the actin filament-binding protein tropomyosin, suppress mitochondrial inheritance defects and partially restore actin cables in mdm20 delta cells. Synthetic lethality is also observed between mdm20 and tpm1 mutant strains. Overexpression of a second yeast tropomyosin, Tpm2p, rescues mutant phenotypes in the mdm20 strain to a lesser extent. Together, these results provide compelling evidence that mitochondrial inheritance in yeast is an actin-mediated process. MDM20 and TPM1 also exhibit the same pattern of genetic interactions; mutations in MDM20 are synthetically lethal with mutations in BEM2 and MYO2 but not SAC6. Although MDM20 and TPM1 are both required for the formation and/or stabilization of actin cables, mutations in these genes disrupt mitochondrial inheritance and nuclear segregation to different extents. Thus, Mdm20p and Tpm1p may act in vivo to establish molecular and functional heterogeneity of the actin cytoskeleton.

  18. Calcineurin-dependent cofilin activation and increased retrograde actin flow drive 5-HT-dependent neurite outgrowth in Aplysia bag cell neurons.

    PubMed

    Zhang, Xiao-Feng; Hyland, Callen; Van Goor, David; Forscher, Paul

    2012-12-01

    Neurite outgrowth in response to soluble growth factors often involves changes in intracellular Ca(2+); however, mechanistic roles for Ca(2+) in controlling the underlying dynamic cytoskeletal processes have remained enigmatic. Bag cell neurons exposed to serotonin (5-hydroxytryptamine [5-HT]) respond with a threefold increase in neurite outgrowth rates. Outgrowth depends on phospholipase C (PLC) → inositol trisphosphate → Ca(2+) → calcineurin signaling and is accompanied by increased rates of retrograde actin network flow in the growth cone P domain. Calcineurin inhibitors had no effect on Ca(2+) release or basal levels of retrograde actin flow; however, they completely suppressed 5-HT-dependent outgrowth and F-actin flow acceleration. 5-HT treatments were accompanied by calcineurin-dependent increases in cofilin activity in the growth cone P domain. 5-HT effects were mimicked by direct activation of PLC, suggesting that increased actin network treadmilling may be a widespread mechanism for promoting neurite outgrowth in response to neurotrophic factors.

  19. Capping protein regulatory cycle driven by CARMIL and V-1 may promote actin network assembly at protruding edges.

    PubMed

    Fujiwara, Ikuko; Remmert, Kirsten; Piszczek, Grzegorz; Hammer, John A

    2014-05-13

    Although capping protein (CP) terminates actin filament elongation, it promotes Arp2/3-dependent actin network assembly and accelerates actin-based motility both in vitro and in vivo. In vitro, capping protein Arp2/3 myosin I linker (CARMIL) antagonizes CP by reducing its affinity for the barbed end and by uncapping CP-capped filaments, whereas the protein V-1/myotrophin sequesters CP in an inactive complex. Previous work showed that CARMIL can readily retrieve CP from the CP:V-1 complex, thereby converting inactive CP into a version with moderate affinity for the barbed end. Here we further clarify the mechanism of this exchange reaction, and we demonstrate that the CP:CARMIL complex created by complex exchange slows the rate of barbed-end elongation by rapidly associating with, and dissociating from, the barbed end. Importantly, the cellular concentrations of V-1 and CP determined here argue that most CP is sequestered by V-1 at steady state in vivo. Finally, we show that CARMIL is recruited to the plasma membrane and only at cell edges undergoing active protrusion. Assuming that CARMIL is active only at this location, our data argue that a large pool of freely diffusing, inactive CP (CP:V-1) feeds, via CARMIL-driven complex exchange, the formation of weak-capping complexes (CP:CARMIL) at the plasma membrane of protruding edges. In vivo, therefore, CARMIL should promote Arp2/3-dependent actin network assembly at the leading edge by promoting barbed-end capping there.

  20. Capping protein regulatory cycle driven by CARMIL and V-1 may promote actin network assembly at protruding edges

    PubMed Central

    Fujiwara, Ikuko; Remmert, Kirsten; Piszczek, Grzegorz; Hammer, John A.

    2014-01-01

    Although capping protein (CP) terminates actin filament elongation, it promotes Arp2/3-dependent actin network assembly and accelerates actin-based motility both in vitro and in vivo. In vitro, capping protein Arp2/3 myosin I linker (CARMIL) antagonizes CP by reducing its affinity for the barbed end and by uncapping CP-capped filaments, whereas the protein V-1/myotrophin sequesters CP in an inactive complex. Previous work showed that CARMIL can readily retrieve CP from the CP:V-1 complex, thereby converting inactive CP into a version with moderate affinity for the barbed end. Here we further clarify the mechanism of this exchange reaction, and we demonstrate that the CP:CARMIL complex created by complex exchange slows the rate of barbed-end elongation by rapidly associating with, and dissociating from, the barbed end. Importantly, the cellular concentrations of V-1 and CP determined here argue that most CP is sequestered by V-1 at steady state in vivo. Finally, we show that CARMIL is recruited to the plasma membrane and only at cell edges undergoing active protrusion. Assuming that CARMIL is active only at this location, our data argue that a large pool of freely diffusing, inactive CP (CP:V-1) feeds, via CARMIL-driven complex exchange, the formation of weak-capping complexes (CP:CARMIL) at the plasma membrane of protruding edges. In vivo, therefore, CARMIL should promote Arp2/3-dependent actin network assembly at the leading edge by promoting barbed-end capping there. PMID:24778263

  1. Live Cell Imaging Reveals Structural Associations between the Actin and Microtubule Cytoskeleton in Arabidopsis [W] [OA

    PubMed Central

    Sampathkumar, Arun; Lindeboom, Jelmer J.; Debolt, Seth; Gutierrez, Ryan; Ehrhardt, David W.; Ketelaar, Tijs; Persson, Staffan

    2011-01-01

    In eukaryotic cells, the actin and microtubule (MT) cytoskeletal networks are dynamic structures that organize intracellular processes and facilitate their rapid reorganization. In plant cells, actin filaments (AFs) and MTs are essential for cell growth and morphogenesis. However, dynamic interactions between these two essential components in live cells have not been explored. Here, we use spinning-disc confocal microscopy to dissect interaction and cooperation between cortical AFs and MTs in Arabidopsis thaliana, utilizing fluorescent reporter constructs for both components. Quantitative analyses revealed altered AF dynamics associated with the positions and orientations of cortical MTs. Reorganization and reassembly of the AF array was dependent on the MTs following drug-induced depolymerization, whereby short AFs initially appeared colocalized with MTs, and displayed motility along MTs. We also observed that light-induced reorganization of MTs occurred in concert with changes in AF behavior. Our results indicate dynamic interaction between the cortical actin and MT cytoskeletons in interphase plant cells. PMID:21693695

  2. Amplification of actin polymerization forces

    PubMed Central

    Dmitrieff, Serge; Nédélec, François

    2016-01-01

    The actin cytoskeleton drives many essential processes in vivo, using molecular motors and actin assembly as force generators. We discuss here the propagation of forces caused by actin polymerization, highlighting simple configurations where the force developed by the network can exceed the sum of the polymerization forces from all filaments. PMID:27002174

  3. Amplification of actin polymerization forces.

    PubMed

    Dmitrieff, Serge; Nédélec, François

    2016-03-28

    The actin cytoskeleton drives many essential processes in vivo, using molecular motors and actin assembly as force generators. We discuss here the propagation of forces caused by actin polymerization, highlighting simple configurations where the force developed by the network can exceed the sum of the polymerization forces from all filaments.

  4. Nucleocapsid of Tomato spotted wilt tospovirus forms mobile particles that traffic on an actin/endoplasmic reticulum network driven by myosin XI-K.

    PubMed

    Feng, Zhike; Chen, Xiaojiao; Bao, Yiqun; Dong, Jiahong; Zhang, Zhongkai; Tao, Xiaorong

    2013-12-01

    A number of viral proteins from plant viruses, other than movement proteins, have been shown to traffic intracellularly along actin filaments and to be involved in viral infection. However, there has been no report that a viral capsid protein may traffic within a cell by utilizing the actin/endoplasmic reticulum (ER) network. We used Tomato spotted wilt tospovirus (TSWV) as a model virus to study the cell biological properties of a nucleocapsid (N) protein. We found that TSWV N protein was capable of forming highly motile cytoplasmic inclusions that moved along the ER and actin network. The disruption of actin filaments by latrunculin B, an actin-depolymerizing agent, almost stopped the intracellular movement of N inclusions, whereas treatment with a microtubule-depolymerizing reagent, oryzalin, did not. The over-expression of a myosin XI-K tail, functioning in a dominant-negative manner, completely halted the movement of N inclusions. Latrunculin B treatment strongly inhibited the formation of TSWV local lesions in Nicotiana tabacum cv Samsun NN and delayed systemic infection in N. benthamiana. Collectively, our findings provide the first evidence that the capsid protein of a plant virus has the novel property of intracellular trafficking. The findings add capsid protein as a new class of viral protein that traffics on the actin/ER system.

  5. Combinatorial genetic analysis of a network of actin disassembly‐promoting factors

    PubMed Central

    Ydenberg, Casey A.; Johnston, Adam; Weinstein, Jaclyn; Bellavance, Danielle; Jansen, Silvia

    2015-01-01

    The patterning of actin cytoskeleton structures in vivo is a product of spatially and temporally regulated polymer assembly balanced by polymer disassembly. While in recent years our understanding of actin assembly mechanisms has grown immensely, our knowledge of actin disassembly machinery and mechanisms has remained comparatively sparse. Saccharomyces cerevisiae is an ideal system to tackle this problem, both because of its amenabilities to genetic manipulation and live‐cell imaging and because only a single gene encodes each of the core disassembly factors: cofilin (COF1), Srv2/CAP (SRV2), Aip1 (AIP1), GMF (GMF1/AIM7), coronin (CRN1), and twinfilin (TWF1). Among these six factors, only the functions of cofilin are essential and have been well defined. Here, we investigated the functions of the nonessential actin disassembly factors by performing genetic and live‐cell imaging analyses on a combinatorial set of isogenic single, double, triple, and quadruple mutants in S. cerevisiae. Our results show that each disassembly factor makes an important contribution to cell viability, actin organization, and endocytosis. Further, our data reveal new relationships among these factors, providing insights into how they work together to orchestrate actin turnover. Finally, we observe specific combinations of mutations that are lethal, e.g., srv2Δ aip1Δ and srv2Δ crn1Δ twf1Δ, demonstrating that while cofilin is essential, it is not sufficient in vivo, and that combinations of the other disassembly factors perform vital functions. © 2015 The Authors. Cytoskeleton Published by Wiley Periodicals, Inc. PMID:26147656

  6. Memo-RhoA-mDia1 signaling controls microtubules, the actin network, and adhesion site formation in migrating cells.

    PubMed

    Zaoui, Kossay; Honoré, Stéphane; Isnardon, Daniel; Braguer, Diane; Badache, Ali

    2008-11-03

    Actin assembly at the cell front drives membrane protrusion and initiates the cell migration cycle. Microtubules (MTs) extend within forward protrusions to sustain cell polarity and promote adhesion site turnover. Memo is an effector of the ErbB2 receptor tyrosine kinase involved in breast carcinoma cell migration. However, its mechanism of action remained unknown. We report in this study that Memo controls ErbB2-regulated MT dynamics by altering the transition frequency between MT growth and shortening phases. Moreover, although Memo-depleted cells can assemble the Rac1-dependent actin meshwork and form lamellipodia, they show defective localization of lamellipodial markers such as alpha-actinin-1 and a reduced number of short-lived adhesion sites underlying the advancing edge of migrating cells. Finally, we demonstrate that Memo is required for the localization of the RhoA guanosine triphosphatase and its effector mDia1 to the plasma membrane and that Memo-RhoA-mDia1 signaling coordinates the organization of the lamellipodial actin network, adhesion site formation, and MT outgrowth within the cell leading edge to sustain cell motility.

  7. A close relationship between Cercozoa and Foraminifera supported by phylogenetic analyses based on combined amino acid sequences of three cytoskeletal proteins (actin, alpha-tubulin, and beta-tubulin).

    PubMed

    Takishita, Kiyotaka; Inagaki, Yuji; Tsuchiya, Masashi; Sakaguchi, Miako; Maruyama, Tadashi

    2005-12-05

    Recently, there has been increasing molecular evidence of phylogenetic affinity between Cercozoa and Foraminifera in the eukaryotic lineage. We performed phylogenetic analyses based on the combined (concatenated) amino acid sequence data of actin, alpha-tubulin, and beta-tubulin from a wide variety of eukaryotes, including the foraminifers Planoglabratella opercularis and Reticulomyxa filosa, as well as cercomonad and chlorarachniophyte members of Cercozoa. A monophyletic lineage composed of two foraminiferan species branched with the centroheliozoan species Raphidiophrys contractilis was reconstructed in both Bayesian and maximum-likelihood (ML) analyses under 'linked' models, enforcing a single set of the parameters (the parameter for among-site rate variation and branch lengths) on the entire combined alignment. Considering the extremely divergent nature of Foraminifera and Raphidiophyrs tubulins, the union of these lineages recovered is most probably a long-branch attraction artifact due to ignoring gene-specific evolutionary processes. On the other hand, the foraminiferan lineage was within the radiation of Cercozoa in Bayesian analyses under 'unlinked' model conditions, accommodating differences in evolutionary processes across the three genes in the combined alignment. The Foraminifera+Cercozoa affinity recovered in the latter multi-gene analyses is most likely genuine, and thus our data presented here provide further support for the close relationship between these two protist lineages.

  8. Cofilin-mediated actin dynamics promotes actin bundle formation during Drosophila bristle development

    PubMed Central

    Wu, Jing; Wang, Heng; Guo, Xuan; Chen, Jiong

    2016-01-01

    The actin bundle is an array of linear actin filaments cross-linked by actin-bundling proteins, but its assembly and dynamics are not as well understood as those of the branched actin network. Here we used the Drosophila bristle as a model system to study actin bundle formation. We found that cofilin, a major actin disassembly factor of the branched actin network, promotes the formation and positioning of actin bundles in the developing bristles. Loss of function of cofilin or AIP1, a cofactor of cofilin, each resulted in increased F-actin levels and severe defects in actin bundle organization, with the defects from cofilin deficiency being more severe. Further analyses revealed that cofilin likely regulates actin bundle formation and positioning by the following means. First, cofilin promotes a large G-actin pool both locally and globally, likely ensuring rapid actin polymerization for bundle initiation and growth. Second, cofilin limits the size of a nonbundled actin-myosin network to regulate the positioning of actin bundles. Third, cofilin prevents incorrect assembly of branched and myosin-associated actin filament into bundles. Together these results demonstrate that the interaction between the dynamic dendritic actin network and the assembling actin bundles is critical for actin bundle formation and needs to be closely regulated. PMID:27385345

  9. MicroFilament Analyzer identifies actin network organizations in epidermal cells of Arabidopsis thaliana roots

    PubMed Central

    Jacques, Eveline; Lewandowski, Michal; Buytaert, Jan; Fierens, Yves; Verbelen, Jean-Pierre; Vissenberg, Kris

    2013-01-01

    The plant cytoskeleton plays a crucial role in the cells’ growth and development during different developmental stages and it undergoes many rearrangements. In order to describe the arrangements of the F-actin cytoskeleton in root epidermal cells of Arabidopsis thaliana, the recently developed software MicroFilament Analyzer (MFA) was exploited. This software enables high-throughput identification and quantification of the orientation of filamentous structures on digital images in a highly standardized and fast way. Using confocal microscopy and transgenic GFP-FABD2-GFP plants the actin cytoskeleton was visualized in the root epidermis. MFA analysis revealed that during the early stages of cell development F-actin is organized in a mainly random pattern. As the cells grow, they preferentially adopt a longitudinal organization, a pattern that is also preserved in the largest cells. In the evolution from young to old cells, an approximately even distribution of transverse, oblique or combined orientations is always present besides the switch from random to a longitudinal oriented actin cytoskeleton. PMID:23656865

  10. Modulation of cargo release from dense core granules by size and actin network.

    PubMed

    Felmy, Felix

    2007-08-01

    During regulated fusion of secretory granules with the plasma membrane, a fusion pore first opens and then dilates. The dilating pore allows cargo proteins from the dense core to be released into the extracellular space. Using real-time evanescent field fluorescence microscopy of live PC12 cells, it was determined how rapidly proteins of different sizes escape from single granules after fusion. Tissue plasminogen activator (tPA)-Venus is released 40-fold slower than the three times smaller neuropeptide Y [NPY-monomeric GFP (mGFP)]. An NPY bearing two mGFPs in tandem [NPY-(mGFP)(2)] as an intermediate-sized fusion probe is released most slowly. Although, the time-course of release varies substantially for a given probe. Coexpression of beta-actin, actin-related protein 3 or mAbp1 slowed the release of the two larger cargo molecules but did not affect release of NPY-mGFP or of the granule-membrane-bound probe Vamp-pHluorin. Additionally, high concentrations of cytochalasin D slowed release of the tPA-Venus. Together these results suggest that fusion pore dilation is not the only determinate of release time-course and that actin rearrangements similar to those mediating actin-mediated motility influences the time-course of release without directly interfering with the granule membrane to cell membrane connection.

  11. Chlamydia trachomatis Tarp harbors distinct G and F actin binding domains that bundle actin filaments.

    PubMed

    Jiwani, Shahanawaz; Alvarado, Stephenie; Ohr, Ryan J; Romero, Adriana; Nguyen, Brenda; Jewett, Travis J

    2013-02-01

    All species of Chlamydia undergo a unique developmental cycle that transitions between extracellular and intracellular environments and requires the capacity to invade new cells for dissemination. A chlamydial protein called Tarp has been shown to nucleate actin in vitro and is implicated in bacterial entry into human cells. Colocalization studies of ectopically expressed enhanced green fluorescent protein (EGFP)-Tarp indicate that actin filament recruitment is restricted to the C-terminal half of the effector protein. Actin filaments are presumably associated with Tarp via an actin binding alpha helix that is also required for actin nucleation in vitro, but this has not been investigated. Tarp orthologs from C. pneumoniae, C. muridarum, and C. caviae harbor between 1 and 4 actin binding domains located in the C-terminal half of the protein, but C. trachomatis serovar L2 has only one characterized domain. In this work, we examined the effects of domain-specific mutations on actin filament colocalization with EGFP-Tarp. We now demonstrate that actin filament colocalization with Tarp is dependent on two novel F-actin binding domains that endow the Tarp effector with actin-bundling activity. Furthermore, Tarp-mediated actin bundling did not require actin nucleation, as the ability to bundle actin filaments was observed in mutant Tarp proteins deficient in actin nucleation. These data shed molecular insight on the complex cytoskeletal rearrangements required for C. trachomatis entry into host cells.

  12. Cytoskeletal architecture and immunocytochemical localization of fodrin in the terminal web of the ciliated epithelial cell.

    PubMed

    Kobayashi, N; Hirokawa, N

    1988-01-01

    In order to understand the cytoskeletal architecture at the terminal web of the ciliated cell, we examined chicken tracheal epithelium by quick-freeze deep-etch (QFDE) electron microscopy combined with immunocytochemistry of fodrin. At the terminal web, the cilia ended into the basal bodies and then to the rootlets. The rootlets were composed of several filaments and globular structures attached regularly to them. Decoration with myosin subfragment 1 (S1) revealed that some actin filaments ran parallel to the apical plasma membrane between the basal bodies, and other population traveled perpendicularly or obliquely, i.e., along the rootlets. Some actin filaments were connected to the surface of the basal bodies and the basal feet. Among the basal bodies and the rootlets there existed three kinds of fine crossbridges, which were not decorated with S1. In the deeper part of the terminal web, intermediate filaments were observed between the rootlets and were sometimes crosslinked with the rootlets. Immunocytochemistry combined with the QFDE method revealed that fodrin was a component of fine crossbridges associated with the basal bodies. We concluded that an extensive crosslinker system among the basal bodies and the rootlets along with networks of actin and intermediate filaments formed a structural basis for the effective beating of cilia.

  13. Kv3.3 Channels Bind Hax-1 and Arp2/3 to Assemble a Stable Local Actin Network that Regulates Channel Gating.

    PubMed

    Zhang, Yalan; Zhang, Xiao-Feng; Fleming, Matthew R; Amiri, Anahita; El-Hassar, Lynda; Surguchev, Alexei A; Hyland, Callen; Jenkins, David P; Desai, Rooma; Brown, Maile R; Gazula, Valeswara-Rao; Waters, Michael F; Large, Charles H; Horvath, Tamas L; Navaratnam, Dhasakumar; Vaccarino, Flora M; Forscher, Paul; Kaczmarek, Leonard K

    2016-04-07

    Mutations in the Kv3.3 potassium channel (KCNC3) cause cerebellar neurodegeneration and impair auditory processing. The cytoplasmic C terminus of Kv3.3 contains a proline-rich domain conserved in proteins that activate actin nucleation through Arp2/3. We found that Kv3.3 recruits Arp2/3 to the plasma membrane, resulting in formation of a relatively stable cortical actin filament network resistant to cytochalasin D that inhibits fast barbed end actin assembly. These Kv3.3-associated actin structures are required to prevent very rapid N-type channel inactivation during short depolarizations of the plasma membrane. The effects of Kv3.3 on the actin cytoskeleton are mediated by the binding of the cytoplasmic C terminus of Kv3.3 to Hax-1, an anti-apoptotic protein that regulates actin nucleation through Arp2/3. A human Kv3.3 mutation within a conserved proline-rich domain produces channels that bind Hax-1 but are impaired in recruiting Arp2/3 to the plasma membrane, resulting in growth cones with deficient actin veils in stem cell-derived neurons.

  14. Bacterial actin and tubulin homologs in cell growth and division.

    PubMed

    Busiek, Kimberly K; Margolin, William

    2015-03-16

    In contrast to the elaborate cytoskeletal machines harbored by eukaryotic cells, such as mitotic spindles, cytoskeletal structures detectable by typical negative stain electron microscopy are generally absent from bacterial cells. As a result, for decades it was thought that bacteria lacked cytoskeletal machines. Revolutions in genomics and fluorescence microscopy have confirmed the existence not only of smaller-scale cytoskeletal structures in bacteria, but also of widespread functional homologs of eukaryotic cytoskeletal proteins. The presence of actin, tubulin, and intermediate filament homologs in these relatively simple cells suggests that primitive cytoskeletons first arose in bacteria. In bacteria such as Escherichia coli, homologs of tubulin and actin directly interact with each other and are crucial for coordinating cell growth and division. The function and direct interactions between these proteins will be the focus of this review.

  15. Actinic keratosis

    MedlinePlus

    Solar keratosis; Sun-induced skin changes - keratosis; Keratosis - actinic (solar); Skin lesion - actinic keratosis ... likely to develop it if you: Have fair skin, blue or green eyes, or blond or red ...

  16. The Interaction of Arp2/3 Complex with Actin: Nucleation, High Affinity Pointed End Capping, and Formation of Branching Networks of Filaments

    NASA Astrophysics Data System (ADS)

    Dyche Mullins, R.; Heuser, John A.; Pollard, Thomas D.

    1998-05-01

    The Arp2/3 complex is a stable assembly of seven protein subunits including two actin-related proteins (Arp2 and Arp3) and five novel proteins. Previous work showed that this complex binds to the sides of actin filaments and is concentrated at the leading edges of motile cells. Here, we show that Arp2/3 complex purified from Acanthamoeba caps the pointed ends of actin filaments with high affinity. Arp2/3 complex inhibits both monomer addition and dissociation at the pointed ends of actin filaments with apparent nanomolar affinity and increases the critical concentration for polymerization at the pointed end from 0.6 to 1.0 μ M. The high affinity of Arp2/3 complex for pointed ends and its abundance in amoebae suggest that in vivo all actin filament pointed ends are capped by Arp2/3 complex. Arp2/3 complex also nucleates formation of actin filaments that elongate only from their barbed ends. From kinetic analysis, the nucleation mechanism appears to involve stabilization of polymerization intermediates (probably actin dimers). In electron micrographs of quick-frozen, deep-etched samples, we see Arp2/3 bound to sides and pointed ends of actin filaments and examples of Arp2/3 complex attaching pointed ends of filaments to sides of other filaments. In these cases, the angle of attachment is a remarkably constant 70 ± 7 degrees. From these in vitro biochemical properties, we propose a model for how Arp2/3 complex controls the assembly of a branching network of actin filaments at the leading edge of motile cells.

  17. Coupled biopolymer networks

    NASA Astrophysics Data System (ADS)

    Schwarz, J. M.; Zhang, Tao

    2015-03-01

    The actin cytoskeleton provides the cell with structural integrity and allows it to change shape to crawl along a surface, for example. The actin cytoskeleton can be modeled as a semiflexible biopolymer network that modifies its morphology in response to both external and internal stimuli. Just inside the inner nuclear membrane of a cell exists a network of filamentous lamin that presumably protects the heart of the cell nucleus--the DNA. Lamins are intermediate filaments that can also be modeled as semiflexible biopolymers. It turns out that the actin cytoskeletal biopolymer network and the lamin biopolymer network are coupled via a sequence of proteins that bridge the outer and inner nuclear membranes. We, therefore, probe the consequences of such a coupling via numerical simulations to understand the resulting deformations in the lamin network in response to perturbations in the cytoskeletal network. Such study could have implications for mechanical mechanisms of the regulation of transcription, since DNA--yet another semiflexible polymer--contains lamin-binding domains, and, thus, widen the field of epigenetics.

  18. Effects of polymerization and nucleotide identity on the conformational dynamics of the bacterial actin homolog MreB.

    PubMed

    Colavin, Alexandre; Hsin, Jen; Huang, Kerwyn Casey

    2014-03-04

    The assembly of protein filaments drives many cellular processes, from nucleoid segregation, growth, and division in single cells to muscle contraction in animals. In eukaryotes, shape and motility are regulated through cycles of polymerization and depolymerization of actin cytoskeletal networks. In bacteria, the actin homolog MreB forms filaments that coordinate the cell-wall synthesis machinery to regulate rod-shaped growth and contribute to cellular stiffness through unknown mechanisms. Like actin, MreB is an ATPase and requires ATP to polymerize, and polymerization promotes nucleotide hydrolysis. However, it is unclear whether other similarities exist between MreB and actin because the two proteins share low sequence identity and have distinct cellular roles. Here, we use all-atom molecular dynamics simulations to reveal surprising parallels between MreB and actin structural dynamics. We observe that MreB exhibits actin-like polymerization-dependent structural changes, wherein polymerization induces flattening of MreB subunits, which restructures the nucleotide-binding pocket to favor hydrolysis. MreB filaments exhibited nucleotide-dependent intersubunit bending, with hydrolyzed polymers favoring a straighter conformation. We use steered simulations to demonstrate a coupling between intersubunit bending and the degree of flattening of each subunit, suggesting cooperative bending along a filament. Taken together, our results provide molecular-scale insight into the diversity of structural states of MreB and the relationships among polymerization, hydrolysis, and filament properties, which may be applicable to other members of the broad actin family.

  19. Actin Mechanics and Fragmentation*

    PubMed Central

    De La Cruz, Enrique M.; Gardel, Margaret L.

    2015-01-01

    Cell physiological processes require the regulation and coordination of both mechanical and dynamical properties of the actin cytoskeleton. Here we review recent advances in understanding the mechanical properties and stability of actin filaments and how these properties are manifested at larger (network) length scales. We discuss how forces can influence local biochemical interactions, resulting in the formation of mechanically sensitive dynamic steady states. Understanding the regulation of such force-activated chemistries and dynamic steady states reflects an important challenge for future work that will provide valuable insights as to how the actin cytoskeleton engenders mechanoresponsiveness of living cells. PMID:25957404

  20. Purinoreceptor P2X7 Regulation of Ca2+ Mobilization and Cytoskeletal Rearrangement Is Required for Corneal Reepithelialization after Injury

    PubMed Central

    Minns, Martin S.; Teicher, Gregory; Rich, Celeste B.; Trinkaus-Randall, Vickery

    2017-01-01

    The process of wound healing involves a complex network of signaling pathways working to promote rapid cell migration and wound closure. Activation of purinergic receptors by secreted nucleotides plays a major role in calcium mobilization and the subsequent calcium-dependent signaling that is essential for proper healing. The role of the purinergic receptor P2X7 in wound healing is still relatively unknown. We demonstrate that P2X7 expression increases at the leading edge of corneal epithelium after injury in an organ culture model, and that this change occurs despite an overall decrease in P2X7 expression throughout the epithelium. Inhibition of P2X7 prevents this change in localization after injury and impairs wound healing. In cell culture, P2X7 inhibition attenuates the amplitude and duration of injury-induced calcium mobilization in cells at the leading edge. Immunofluorescence analysis of scratch-wounded cells reveals that P2X7 inhibition results in an overall decrease in the number of focal adhesions along with a concentration of focal adhesions at the wound margin. Live cell imaging of green fluorescent protein–labeled actin and talin shows that P2X7 inhibition alters actin cytoskeletal rearrangements and focal adhesion dynamics after injury. Together, these data demonstrate that P2X7 plays a critical role in mediating calcium signaling and coordinating cytoskeletal rearrangement at the leading edge, both of which processes are early signaling events necessary for proper epithelial wound healing. PMID:26683661

  1. X-ray radiation promotes the metastatic potential of tongue squamous cell carcinoma cells via modulation of biomechanical and cytoskeletal properties.

    PubMed

    Zheng, Q; Liu, Y; Zhou, H J; Du, Y T; Zhang, B P; Zhang, J; Miao, G Y; Liu, B; Zhang, H

    2015-09-01

    This study investigated the metastatic potential of tongue squamous cell carcinoma (TSCC) cells after X-ray irradiation as well as radiation-induced changes in the biomechanical properties and cytoskeletal structure that are relevant to metastasis. Tca-8113 TSCC cells were X-ray-irradiated at increasing doses (0, 1, 2, or 4 Gy), and 24 h later, migration was evaluated with the wound healing and transwell migration assays, while invasion was assessed with the Matrigel invasion assay. Confocal and atomic force microscopy were used to examine changes in the structure of the actin cytoskeleton and Young's modulus (cell stiffness), respectively. X-ray radiation induced dose-dependent increases in invasive and migratory potentials of cells relative to unirradiated control cells (p < 0.05). The Young's modulus of irradiated cells was decreased by radiation exposure (p < 0.05), which was accompanied by alterations in the integrity and organization of the cytoskeletal network, as evidenced by a decrease in the signal intensity of actin fibers (p < 0.05). X-ray irradiation enhanced migration and invasiveness in Tca-8113 TSCC cells by altering their biomechanical properties and the organization of the actin cytoskeleton. A biomechanics-based analysis can provide an additional platform for assessing tumor response to radiation and optimization of cancer therapies.

  2. Cytoskeletal Proteins of Actinobacteria

    PubMed Central

    Letek, Michal; Fiuza, María; Villadangos, Almudena F.; Mateos, Luís M.; Gil, José A.

    2012-01-01

    Although bacteria are considered the simplest life forms, we are now slowly unraveling their cellular complexity. Surprisingly, not only do bacterial cells have a cytoskeleton but also the building blocks are not very different from the cytoskeleton that our own cells use to grow and divide. Nonetheless, despite important advances in our understanding of the basic physiology of certain bacterial models, little is known about Actinobacteria, an ancient group of Eubacteria. Here we review current knowledge on the cytoskeletal elements required for bacterial cell growth and cell division, focusing on actinobacterial genera such as Mycobacterium, Corynebacterium, and Streptomyces. These include some of the deadliest pathogens on earth but also some of the most prolific producers of antibiotics and antitumorals. PMID:22481946

  3. Thermally Driven and Cytoskeletal-Assisted Dynamics of the Mitochondrial Reticulum

    NASA Astrophysics Data System (ADS)

    Knowles, Michelle K.; Marcus, Andrew H.

    2003-05-01

    We report Fourier imaging correlation spectroscopy (FICS) and digital video fluorescence microscopy (DVFM) measurements of the dynamics of the mitochondrial reticulum in living osteosarcoma cells. Mitochondrial dynamics are strongly influenced by interactions with cytoskeletal filaments and their associated motor proteins, which lead to complex multi-exponential relaxations that occur over a wide range of spatial and temporal scales. The cytoskeleton consists of an interconnected polymer network whose primary components are microfilaments (actin) and microtubules (tubulin). These filaments work with motor proteins to translate organelles through the cell. We studied the dynamics of osteosarcoma cells labeled with red fluorescent protein in the mitochondrial matrix space using DVFM and FICS. Cells were then treated with cytoskeletal destabilizing drugs. Analysis of microscopy data allows for us to determine whether dynamic processes are diffusive or driven (by the cytoskeleton or collective dynamics). In FICS experiments, the control cells exhibit a unique pattern of dynamics that are then simplified when the cytoskeleton is depolymerized. Upon depolymerization, the dynamics of the organelle appear primarily diffusive.

  4. Cytoskeletal elements in the bacterium Mycoplasma pneumoniae

    NASA Astrophysics Data System (ADS)

    Hegermann, Jan; Herrmann, Richard; Mayer, Frank

    2002-09-01

    Mycoplasma pneumoniae is a pathogenic eubacterium lacking a cell wall. Three decades ago, a "rod", an intracellular cytoskeletal structure, was discovered that was assumed to define and stabilize the elongated cell shape. Later, by treatment with detergent, a "Triton shell" (i.e. a fraction of detergent-insoluble cell material) could be obtained, believed to contain additional cytoskeletal elements. Now, by application of a modified Triton X-100 treatment, we are able to demonstrate that M. pneumoniae possesses a cytoskeleton consisting of a blade-like rod and a peripheral lining located close to the inner face of the cytoplasmic membrane, exhibiting features of a highly regular network. Attached "stalks" may support the cytoplasmic membrane. The rod was connected to the cell periphery by "spokes" and showed a defined ultrastructure. Its proximal end was found to be attached to a wheel-like complex. Fibrils extended from the proximal end of the rod into the cytoplasm.

  5. Actin Out: Regulation of the Synaptic Cytoskeleton

    PubMed Central

    Spence, Erin F.; Soderling, Scott H.

    2015-01-01

    The small size of dendritic spines belies the elaborate role they play in excitatory synaptic transmission and ultimately complex behaviors. The cytoskeletal architecture of the spine is predominately composed of actin filaments. These filaments, which at first glance might appear simple, are also surprisingly complex. They dynamically assemble into different structures and serve as a platform for orchestrating the elaborate responses of the spine during spinogenesis and experience-dependent plasticity. Multiple mutations associated with human neurodevelopmental and psychiatric disorders involve genes that encode regulators of the synaptic cytoskeleton. A major, unresolved question is how the disruption of specific actin filament structures leads to the onset and progression of complex synaptic and behavioral phenotypes. This review will cover established and emerging mechanisms of actin cytoskeletal remodeling and how this influences specific aspects of spine biology that are implicated in disease. PMID:26453304

  6. Intracellular transport driven by cytoskeletal motors: General mechanisms and defects

    NASA Astrophysics Data System (ADS)

    Appert-Rolland, C.; Ebbinghaus, M.; Santen, L.

    2015-09-01

    Cells are the elementary units of living organisms, which are able to carry out many vital functions. These functions rely on active processes on a microscopic scale. Therefore, they are strongly out-of-equilibrium systems, which are driven by continuous energy supply. The tasks that have to be performed in order to maintain the cell alive require transportation of various ingredients, some being small, others being large. Intracellular transport processes are able to induce concentration gradients and to carry objects to specific targets. These processes cannot be carried out only by diffusion, as cells may be crowded, and quite elongated on molecular scales. Therefore active transport has to be organized. The cytoskeleton, which is composed of three types of filaments (microtubules, actin and intermediate filaments), determines the shape of the cell, and plays a role in cell motion. It also serves as a road network for a special kind of vehicles, namely the cytoskeletal motors. These molecules can attach to a cytoskeletal filament, perform directed motion, possibly carrying along some cargo, and then detach. It is a central issue to understand how intracellular transport driven by molecular motors is regulated. The interest for this type of question was enhanced when it was discovered that intracellular transport breakdown is one of the signatures of some neuronal diseases like the Alzheimer. We give a survey of the current knowledge on microtubule based intracellular transport. Our review includes on the one hand an overview of biological facts, obtained from experiments, and on the other hand a presentation of some modeling attempts based on cellular automata. We present some background knowledge on the original and variants of the TASEP (Totally Asymmetric Simple Exclusion Process), before turning to more application oriented models. After addressing microtubule based transport in general, with a focus on in vitro experiments, and on cooperative effects in the

  7. Fragility of foot process morphology in kidney podocytes arises from chaotic spatial propagation of cytoskeletal instability

    PubMed Central

    Deerinck, Thomas J.; Chen, Yibang; He, John C.; Ellisman, Mark H.; Iyengar, Ravi

    2017-01-01

    Kidney podocytes’ function depends on fingerlike projections (foot processes) that interdigitate with those from neighboring cells to form the glomerular filtration barrier. The integrity of the barrier depends on spatial control of dynamics of actin cytoskeleton in the foot processes. We determined how imbalances in regulation of actin cytoskeletal dynamics could result in pathological morphology. We obtained 3-D electron microscopy images of podocytes and used quantitative features to build dynamical models to investigate how regulation of actin dynamics within foot processes controls local morphology. We find that imbalances in regulation of actin bundling lead to chaotic spatial patterns that could impair the foot process morphology. Simulation results are consistent with experimental observations for cytoskeletal reconfiguration through dysregulated RhoA or Rac1, and they predict compensatory mechanisms for biochemical stability. We conclude that podocyte morphology, optimized for filtration, is intrinsically fragile, whereby local transient biochemical imbalances may lead to permanent morphological changes associated with pathophysiology. PMID:28301477

  8. Computational model of polarized actin cables and cytokinetic actin ring formation in budding yeast

    PubMed Central

    Tang, Haosu; Bidone, Tamara C.

    2015-01-01

    The budding yeast actin cables and contractile ring are important for polarized growth and division, revealing basic aspects of cytoskeletal function. To study these formin-nucleated structures, we built a 3D computational model with actin filaments represented as beads connected by springs. Polymerization by formins at the bud tip and bud neck, crosslinking, severing, and myosin pulling, are included. Parameter values were estimated from prior experiments. The model generates actin cable structures and dynamics similar to those of wild type and formin deletion mutant cells. Simulations with increased polymerization rate result in long, wavy cables. Simulated pulling by type V myosin stretches actin cables. Increasing the affinity of actin filaments for the bud neck together with reduced myosin V pulling promotes the formation of a bundle of antiparallel filaments at the bud neck, which we suggest as a model for the assembly of actin filaments to the contractile ring. PMID:26538307

  9. Chlamydial TARP is a bacterial nucleator of actin.

    PubMed

    Jewett, Travis J; Fischer, Elizabeth R; Mead, David J; Hackstadt, Ted

    2006-10-17

    Chlamydia trachomatis entry into host cells results from a parasite-directed remodeling of the actin cytoskeleton. A type III secreted effector, TARP (translocated actin recruiting phosphoprotein), has been implicated in the recruitment of actin to the site of internalization. To elucidate the role of TARP in actin recruitment, we identified host cell proteins that associated with recombinant GST-TARP fusions. TARP directly associated with actin, and this interaction promoted actin nucleation as determined by in vitro polymerization assays. Domain analysis of TARP identified an actin-binding domain that bears structural and primary amino acid sequence similarity to WH2 domain family proteins. In addition, a proline-rich domain was found to promote TARP oligomerization and was required for TARP-dependent nucleation of new actin filaments. Our findings reveal a mechanism by which chlamydiae induce localized cytoskeletal changes by the translocated effector TARP during entry into host cells.

  10. Carbonylation and disassembly of the F-actin cytoskeleton in oxidant induced barrier dysfunction and its prevention by epidermal growth factor and transforming growth factor α in a human colonic cell line

    PubMed Central

    Banan, A; Zhang, Y; Losurdo, J; Keshavarzian, A

    2000-01-01

    BACKGROUND—Intestinal barrier dysfunction concomitant with high levels of reactive oxygen metabolites (ROM) in the inflamed mucosa have been observed in inflammatory bowel disease (IBD). The cytoskeletal network has been suggested to be involved in the regulation of barrier function. Growth factors (epidermal growth factor (EGF) and transforming growth factor α (TGF-α)) protect gastrointestinal barrier integrity against a variety of noxious agents. However, the underlying mechanisms of oxidant induced disruption and growth factor mediated protection remain elusive.
AIMS—To determine: (1) if oxidation and disassembly of actin (a key cytoskeletal component) plays a major role in ROM induced epithelial monolayer barrier dysfunction; and (2) if growth factor mediated protection involves prevention of theses alterations.
METHODS—Caco-2 monolayers were preincubated with EGF, TGF-α, or vehicle before incubation with ROM (H2O2 or HOCl). Effects on cell integrity, barrier function, and G- and F-actin (oxidation, disassembly, and assembly) were determined.
RESULTS—ROM dose dependently and significantly increased F- and G-actin oxidation (carbonylation), decreased the stable F-actin fraction (index of stability), and increased the monomeric G-actin fraction (index of disassembly). Concomitant with these changes were disruption of the actin cytoskeleton and loss of the monolayer barrier function. In contrast, growth factor pretreatment decreased actin oxidation and enhanced the stable F-actin, while in concert prevented actin disruption and restored normal barrier function of monolayers exposed to ROM. Cytochalasin-D, an inhibitor of actin assembly, not only caused actin disassembly and barrier dysfunction but also abolished the protective action of growth factors. Moreover, an actin stabilising agent, phalloidin, mimicked the protective actions of the growth factors.
CONCLUSIONS—Oxidation, disassembly, and instability of the actin cytoskeleton appears to

  11. Actin dynamics and cofilin-actin rods in Alzheimer disease

    PubMed Central

    Bamburg, James R.; Bernstein, Barbara W.

    2017-01-01

    Cytoskeletal abnormalities and synaptic loss, typical of both familial and sporadic Alzheimer disease (AD), are induced by diverse stresses such as neuroinflammation, oxidative stress, and energetic stress, each of which may be initiated or enhanced by proinflammatory cytokines or amyloid-β (Aβ) peptides. Extracellular Aβ-containing plaques and intracellular phospho-tau-containing neurofibrillary tangles are postmortem pathologies required to confirm AD and have been the focus of most studies. However, AD brain, but not normal brain, also have increased levels of cytoplasmic rod-shaped bundles of filaments composed of ADF/cofilin-actin in a 1:1 complex (rods). Cofilin, the major ADF/cofilin isoform in mammalian neurons, severs actin filaments at low cofilin/actin ratios and stabilizes filaments at high cofilin/actin ratios. It binds cooperatively to ADP-actin subunits in F-actin. Cofilin is activated by dephosphorylation and may be oxidized in stressed neurons to form disulfide-linked dimers, required for bundling cofilin-actin filaments into stable rods. Rods form within neurites causing synaptic dysfunction by sequestering cofilin, disrupting normal actin dynamics, blocking transport, and exacerbating mitochondrial membrane potential loss. Aβ and proinflammatory cytokines induce rods through a cellular prion protein-dependent activation of NADPH oxidase and production of reactive oxygen species. Here we review recent advances in our understanding of cofilin biochemistry, rod formation, and the development of cognitive deficits. We will then discuss rod formation as a molecular pathway for synapse loss that may be common between all three prominent current AD hypotheses, thus making rods an attractive therapeutic target. PMID:26873625

  12. Bacterial nucleators: actin' on actin

    PubMed Central

    Bugalhão, Joana N.; Mota, Luís Jaime; Franco, Irina S.

    2015-01-01

    The actin cytoskeleton is a key target of numerous microbial pathogens, including protozoa, fungi, bacteria and viruses. In particular, bacterial pathogens produce and deliver virulence effector proteins that hijack actin dynamics to enable bacterial invasion of host cells, allow movement within the host cytosol, facilitate intercellular spread or block phagocytosis. Many of these effector proteins directly or indirectly target the major eukaryotic actin nucleator, the Arp2/3 complex, by either mimicking nucleation promoting factors or activating upstream small GTPases. In contrast, this review is focused on a recently identified class of effector proteins from Gram-negative bacteria that function as direct actin nucleators. These effector proteins mimic functional activities of formins, WH2-nucleators and Ena/VASP assembly promoting factors demonstrating that bacteria have coopted the complete set of eukaryotic actin assembly pathways. Structural and functional analyses of these nucleators have revealed several motifs and/or mechanistic activities that are shared with eukaryotic actin nucleators. However, functional effects of these proteins during infection extend beyond plain actin polymerization leading to interference with other host cell functions such as vesicle trafficking, cell cycle progression and cell death. Therefore, their use as model systems could not only help in the understanding of the mechanistic details of actin polymerization but also provide novel insights into the connection between actin dynamics and other cellular pathways. PMID:26416078

  13. MIEN1 drives breast tumor cell migration by regulating cytoskeletal-focal adhesion dynamics

    PubMed Central

    Van Treuren, Timothy; Vishwanatha, Jamboor K.

    2016-01-01

    Migration and invasion enhancer 1 (MIEN1) is an important regulator of cell migration and invasion. MIEN1 overexpression represents an oncogenic event that promotes tumor cell dissemination and metastasis. The underlying mechanism by which MIEN1 regulates migration and invasion has yet to be deciphered. Here, we demonstrate that MIEN1 acts as a cytoskeletal-signaling adapter protein to drive breast cancer cell migration. MIEN1 localization is concentrated underneath the actin-enriched protrusive structures of the migrating breast cancer cells. Depletion of MIEN1 led to the loss of actin-protrusive structures whereas the over-expression of MIEN1 resulted in rich and thick membrane extensions. Knockdown of MIEN1 also decreased the cell-substratum adhesion, suggesting a role for MIEN1 in actin cytoskeletal dynamics. Our results show that MIEN1 supports the transition of G-actin to F-actin polymerization and stabilizes F-actin polymers. Additionally, MIEN1 promotes cellular adhesion and actin dynamics by inducing phosphorylation of FAK at Tyr-925 and reducing phosphorylation of cofilin at Ser-3, which results in breast cancer cell migration. Collectively, our data show that MIEN1 plays an essential role in maintaining the plasticity of the dynamic membrane-associated actin cytoskeleton, which leads to an increase in cell motility. Hence, targeting MIEN1 might represent a promising means to prevent breast tumor metastasis. PMID:27462783

  14. Actinous enigma or enigmatic actin

    PubMed Central

    Povarova, Olga I; Uversky, Vladimir N; Kuznetsova, Irina M; Turoverov, Konstantin K

    2014-01-01

    Being the most abundant protein of the eukaryotic cell, actin continues to keep its secrets for more than 60 years. Everything about this protein, its structure, functions, and folding, is mysteriously counterintuitive, and this review represents an attempt to solve some of the riddles and conundrums commonly found in the field of actin research. In fact, actin is a promiscuous binder with a wide spectrum of biological activities. It can exist in at least three structural forms, globular, fibrillar, and inactive (G-, F-, and I-actin, respectively). G-actin represents a thermodynamically instable, quasi-stationary state, which is formed in vivo as a result of the energy-intensive, complex posttranslational folding events controlled and driven by cellular folding machinery. The G-actin structure is dependent on the ATP and Mg2+ binding (which in vitro is typically substituted by Ca2+) and protein is easily converted to the I-actin by the removal of metal ions and by action of various denaturing agents (pH, temperature, and chemical denaturants). I-actin cannot be converted back to the G-form. Foldable and “natively folded” forms of actin are always involved in interactions either with the specific protein partners, such as Hsp70 chaperone, prefoldin, and the CCT chaperonin during the actin folding in vivo or with Mg2+ and ATP as it takes place in the G-form. We emphasize that the solutions for the mysteries of actin multifunctionality, multistructurality, and trapped unfolding can be found in the quasi-stationary nature of this enigmatic protein, which clearly possesses many features attributed to both globular and intrinsically disordered proteins.

  15. The role of cytoskeletal elements in shaping bacterial cells.

    PubMed

    Cho, Hongbaek

    2015-03-01

    Beginning from the recognition of FtsZ as a bacterial tubulin homolog in the early 1990s, many bacterial cytoskeletal elements have been identified, including homologs to the major eukaryotic cytoskeletal elements (tubulin, actin, and intermediate filament) and the elements unique in prokaryotes (ParA/MinD family and bactofilins). The discovery and functional characterization of the bacterial cytoskeleton have revolutionized our understanding of bacterial cells, revealing their elaborate and dynamic subcellular organization. As in eukaryotic systems, the bacterial cytoskeleton participates in cell division, cell morphogenesis, DNA segregation, and other important cellular processes. However, in accordance with the vast difference between bacterial and eukaryotic cells, many bacterial cytoskeletal proteins play distinct roles from their eukaryotic counterparts; for example, control of cell wall synthesis for cell division and morphogenesis. This review is aimed at providing an overview of the bacterial cytoskeleton, and discussing the roles and assembly dynamics of bacterial cytoskeletal proteins in more detail in relation to their most widely conserved functions, DNA segregation and coordination of cell wall synthesis.

  16. Bistability in the Rac1, PAK, and RhoA Signaling Network Drives Actin Cytoskeleton Dynamics and Cell Motility Switches

    PubMed Central

    Byrne, Kate M.; Monsefi, Naser; Dawson, John C.; Degasperi, Andrea; Bukowski-Wills, Jimi-Carlo; Volinsky, Natalia; Dobrzyński, Maciej; Birtwistle, Marc R.; Tsyganov, Mikhail A.; Kiyatkin, Anatoly; Kida, Katarzyna; Finch, Andrew J.; Carragher, Neil O.; Kolch, Walter; Nguyen, Lan K.; von Kriegsheim, Alex; Kholodenko, Boris N.

    2016-01-01

    Summary Dynamic interactions between RhoA and Rac1, members of the Rho small GTPase family, play a vital role in the control of cell migration. Using predictive mathematical modeling, mass spectrometry-based quantitation of network components, and experimental validation in MDA-MB-231 mesenchymal breast cancer cells, we show that a network containing Rac1, RhoA, and PAK family kinases can produce bistable, switch-like responses to a graded PAK inhibition. Using a small chemical inhibitor of PAK, we demonstrate that cellular RhoA and Rac1 activation levels respond in a history-dependent, bistable manner to PAK inhibition. Consequently, we show that downstream signaling, actin dynamics, and cell migration also behave in a bistable fashion, displaying switches and hysteresis in response to PAK inhibition. Our results demonstrate that PAK is a critical component in the Rac1-RhoA inhibitory crosstalk that governs bistable GTPase activity, cell morphology, and cell migration switches. PMID:27136688

  17. Accumulation of Glucosylceramide in the Absence of the Beta-Glucosidase GBA2 Alters Cytoskeletal Dynamics

    PubMed Central

    Raju, Diana; Schonauer, Sophie; Hamzeh, Hussein; Flynn, Kevin C.; Bradke, Frank; vom Dorp, Katharina; Dörmann, Peter; Yildiz, Yildiz; Trötschel, Christian; Poetsch, Ansgar; Breiden, Bernadette; Sandhoff, Konrad; Körschen, Heinz G.; Wachten, Dagmar

    2015-01-01

    Glycosphingolipids are key elements of cellular membranes, thereby, controlling a variety of cellular functions. Accumulation of the simple glycosphingolipid glucosylceramide results in life-threatening lipid storage-diseases or in male infertility. How glucosylceramide regulates cellular processes is ill defined. Here, we reveal that glucosylceramide accumulation in GBA2 knockout-mice alters cytoskeletal dynamics due to a more ordered lipid organization in the plasma membrane. In dermal fibroblasts, accumulation of glucosylceramide augments actin polymerization and promotes microtubules persistence, resulting in a higher number of filopodia and lamellipodia and longer microtubules. Similar cytoskeletal defects were observed in male germ and Sertoli cells from GBA2 knockout-mice. In particular, the organization of F-actin structures in the ectoplasmic specialization and microtubules in the sperm manchette is affected. Thus, glucosylceramide regulates cytoskeletal dynamics, providing mechanistic insights into how glucosylceramide controls signaling pathways not only during sperm development, but also in other cell types. PMID:25803043

  18. Membrane Tension Acts Through PLD2 and mTORC2 to Limit Actin Network Assembly During Neutrophil Migration

    PubMed Central

    Diz-Muñoz, Alba; Thurley, Kevin; Chintamen, Sana; Altschuler, Steven J.; Fletcher, Daniel A.; Weiner, Orion D.

    2016-01-01

    For efficient polarity and migration, cells need to regulate the magnitude and spatial distribution of actin assembly. This process is coordinated by reciprocal interactions between the actin cytoskeleton and mechanical forces. Actin polymerization-based protrusion increases tension in the plasma membrane, which in turn acts as a long-range inhibitor of actin assembly. These interactions form a negative feedback circuit that limits the magnitude of membrane tension in neutrophils and prevents expansion of the existing front and the formation of secondary fronts. It has been suggested that the plasma membrane directly inhibits actin assembly by serving as a physical barrier that opposes protrusion. Here we show that efficient control of actin polymerization-based protrusion requires an additional mechanosensory feedback cascade that indirectly links membrane tension with actin assembly. Specifically, elevated membrane tension acts through phospholipase D2 (PLD2) and the mammalian target of rapamycin complex 2 (mTORC2) to limit actin nucleation. In the absence of this pathway, neutrophils exhibit larger leading edges, higher membrane tension, and profoundly defective chemotaxis. Mathematical modeling suggests roles for both the direct (mechanical) and indirect (biochemical via PLD2 and mTORC2) feedback loops in organizing cell polarity and motility—the indirect loop is better suited to enable competition between fronts, whereas the direct loop helps spatially organize actin nucleation for efficient leading edge formation and cell movement. This circuit is essential for polarity, motility, and the control of membrane tension. PMID:27280401

  19. GhCFE1A, a dynamic linker between the ER network and actin cytoskeleton, plays an important role in cotton fibre cell initiation and elongation.

    PubMed

    Lv, Fenni; Wang, Haihai; Wang, Xinyu; Han, Libo; Ma, Yinping; Wang, Sen; Feng, Zhidi; Niu, Xiaowei; Cai, Caiping; Kong, Zhaosheng; Zhang, Tianzhen; Guo, Wangzhen

    2015-04-01

    Fibre cell initiation and elongation is critical for cotton fibre development. However, little is known about the regulation of initiation and elongation during fibre cell development. Here, the regulatory role of a novel protein GhCFE1A was uncovered. GhCFE1A is preferentially expressed at initiation and rapid elongation stages during fibre development; in addition, much higher expression of GhCFE1A was detected at the fibre initiation stage in fibreless cotton mutants than in the fibre-bearing TM-1 wild-type. Importantly, overexpression of GhCFE1A in cotton not only delayed fibre cell elongation but also significantly reduced the density of lint and fuzz fibre initials and stem trichomes. Yeast two-hybrid assay showed that GhCFE1A interacted with several actin proteins, and the interaction was further confirmed by co-sedimentation assay. Interestingly, a subcellular localization assay showed that GhCFE1A resided on the cortical endoplasmic reticulum (ER) network and co-localized with actin cables. Moreover, the density of F-actin filaments was shown to be reduced in GhCFE1A-overexpressing fibres at the rapid elongation stage compared with the wild-type control. Taken together, the results demonstrate that GhCFE1A probably functions as a dynamic linker between the actin cytoskeleton and the ER network, and plays an important role in fibre cell initiation and elongation during cotton fibre development.

  20. Processive cytoskeletal motors studied with single-molecule fluorescence techniques.

    PubMed

    Belyy, Vladislav; Yildiz, Ahmet

    2014-10-01

    Processive cytoskeletal motors from the myosin, kinesin, and dynein families walk on actin filaments and microtubules to drive cellular transport and organization in eukaryotic cells. These remarkable molecular machines are able to take hundreds of successive steps at speeds of up to several microns per second, allowing them to effectively move vesicles and organelles throughout the cytoplasm. Here, we focus on single-molecule fluorescence techniques and discuss their wide-ranging applications to the field of cytoskeletal motor research. We cover both traditional fluorescence and sub-diffraction imaging of motors, providing examples of how fluorescence data can be used to measure biophysical parameters of motors such as coordination, stepping mechanism, gating, and processivity. We also outline some remaining challenges in the field and suggest future directions.

  1. Actin-binding proteins sensitively mediate F-actin bundle stiffness

    NASA Astrophysics Data System (ADS)

    Claessens, Mireille M. A. E.; Bathe, Mark; Frey, Erwin; Bausch, Andreas R.

    2006-09-01

    Bundles of filamentous actin (F-actin) form primary structural components of a broad range of cytoskeletal processes including filopodia, sensory hair cell bristles and microvilli. Actin-binding proteins (ABPs) allow the cell to tailor the dimensions and mechanical properties of the bundles to suit specific biological functions. Therefore, it is important to obtain quantitative knowledge on the effect of ABPs on the mechanical properties of F-actin bundles. Here we measure the bending stiffness of F-actin bundles crosslinked by three ABPs that are ubiquitous in eukaryotes. We observe distinct regimes of bundle bending stiffness that differ by orders of magnitude depending on ABP type, concentration and bundle size. The behaviour observed experimentally is reproduced quantitatively by a molecular-based mechanical model in which ABP shearing competes with F-actin extension/compression. Our results shed new light on the biomechanical function of ABPs and demonstrate how single-molecule properties determine mesoscopic behaviour. The bending mechanics of F-actin fibre bundles are general and have implications for cytoskeletal mechanics and for the rational design of functional materials.

  2. c-myc mRNA in cytoskeletal-bound polysomes in fibroblasts.

    PubMed

    Hesketh, J E; Campbell, G P; Whitelaw, P F

    1991-03-01

    3T3 fibroblasts were treated sequentially with 25 mM-KCl/0.05% Nonidet P40, 130 mM-KCl/0.05% Nonidet P40 and finally with 1% Nonidet P40/1% deoxycholate in order to release free, cytoskeletal-bound and membrane-bound polysomes respectively. The membrane-bound fraction was enriched in the mRNA for the membrane protein beta 2-microglobulin, whereas the cytoskeletal-bound polysomes were enriched in c-myc mRNA. Actin mRNA was present in both free and cytoskeletal-bound polysomes. The results suggest that cytoskeletal-bound polysomes are involved in the translation of specific mRNA species.

  3. Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking

    PubMed Central

    Wilson, Carlos; González-Billault, Christian

    2015-01-01

    A proper balance between chemical reduction and oxidation (known as redox balance) is essential for normal cellular physiology. Deregulation in the production of oxidative species leads to DNA damage, lipid peroxidation and aberrant post-translational modification of proteins, which in most cases induces injury, cell death and disease. However, physiological concentrations of oxidative species are necessary to support important cell functions, such as chemotaxis, hormone synthesis, immune response, cytoskeletal remodeling, Ca2+ homeostasis and others. Recent evidence suggests that redox balance regulates actin and microtubule dynamics in both physiological and pathological contexts. Microtubules and actin microfilaments contain certain amino acid residues that are susceptible to oxidation, which reduces the ability of microtubules to polymerize and causes severing of actin microfilaments in neuronal and non-neuronal cells. In contrast, inhibited production of reactive oxygen species (ROS; e.g., due to NOXs) leads to aberrant actin polymerization, decreases neurite outgrowth and affects the normal development and polarization of neurons. In this review, we summarize emerging evidence suggesting that both general and specific enzymatic sources of redox species exert diverse effects on cytoskeletal dynamics. Considering the intimate relationship between cytoskeletal dynamics and trafficking, we also discuss the potential effects of redox balance on intracellular transport via regulation of the components of the microtubule and actin cytoskeleton as well as cytoskeleton-associated proteins, which may directly impact localization of proteins and vesicles across the soma, dendrites and axon of neurons. PMID:26483635

  4. Simulated Microgravity Induced Cytoskeletal Rearrangements are Modulated by Protooncogenes

    NASA Technical Reports Server (NTRS)

    Melhado, C. D.; Sanford, G. L.; Bosah, F.; Harris-Hooker, S.

    1998-01-01

    Microgravity is the environment living systems encounter during space flight and gravitational unloading is the effect of this environment on living systems. The cell, being a multiphasic chemical system, is a useful starting point to study the potential impact of gravity unloading on physiological function. In the absence of gravity, sedimentation of organelles including chromosomes, mitochondria, nuclei, the Golgi apparatus, vacuoles, and the endoplasmic reticulum may be affected. Most of these organelles, however, are somewhat held in place by cytoskeleton. Hansen and Igber suggest that intermediate filaments act to stabilize the nuleus against rotational movement, and integrate cell and nuclear structure. The tensegrity theory supports the idea that mechanical or physical forces alters the cytoskeletal structures of a cell resulting in the changes in cell: matrix interactions and receptor-signaling coupling. This type of stress to the cytoskeleton may be largely responsible regulating cell shape, growth, movement and metabolism. Mouse MC3T3 El cells under microgravity exhibited significant cytoskeletal changes and alterations in cell growth. The alterations in cytoskeleton architecture may be due to changes in the expression of actin related proteins or integrins. Philopott and coworkers reported on changes in the distribution of microtubule and cytoskeleton elements in the cells of heart tissue from space flight rats and those centrifuged at 1.7g. Other researchers have showed that microgravity reduced EGF-induced c-fos and c-jun expression compared to 1 g controls. Since c-fos and c-jun are known regulators of cell growth, it is likely that altered signal transduction involving protooncogenes may play a crucial role in the reduced growth and alterations in cytoskeletal arrangements found during space flight. It is clear that a microgravity environment induces a number of changes in cell shape, cell surface molecules, gene expression, and cytoskeletal

  5. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis.

    PubMed

    Spracklen, Andrew J; Fagan, Tiffany N; Lovander, Kaylee E; Tootle, Tina L

    2014-09-15

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools--Utrophin, Lifeact, and F-tractin--for characterizing the actin remodeling events occurring within the germline-derived nurse cells during Drosophila mid-oogenesis or follicle development. Specifically, we used the UAS/GAL4 system to express these tools at different levels and in different cells, and analyzed these tools for effects on fertility, alterations in the actin cytoskeleton, and ability to label filamentous actin (F-actin) structures by both fixed and live imaging. While both Utrophin and Lifeact robustly label F-actin structures within the Drosophila germline, when strongly expressed they cause sterility and severe actin defects including cortical actin breakdown resulting in multi-nucleate nurse cells, early F-actin filament and aggregate formation during stage 9 (S9), and disorganized parallel actin filament bundles during stage 10B (S10B). However, by using a weaker germline GAL4 driver in combination with a higher temperature, Utrophin can label F-actin with minimal defects. Additionally, strong Utrophin expression within the germline causes F-actin formation in the nurse cell nuclei and germinal vesicle during mid-oogenesis. Similarly, Lifeact expression results in nuclear F-actin only within the germinal vesicle. F-tractin expresses at a lower level than the other two labeling tools, but labels cytoplasmic F-actin structures well without causing sterility or striking actin defects. Together these studies reveal how critical it is to evaluate the utility of each actin labeling tool

  6. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis

    PubMed Central

    Spracklen, Andrew J.; Fagan, Tiffany N.; Lovander, Kaylee E.; Tootle, Tina L.

    2015-01-01

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools – Utrophin, Lifeact, and F-tractin – for characterizing the actin remodeling events occurring within the germline-derived nurse cells during Drosophila mid-oogenesis or follicle development. Specifically, we used the UAS/GAL4 system to express these tools at different levels and in different cells, and analyzed these tools for effects on fertility, alterations in the actin cytoskeleton, and ability to label filamentous actin (F-actin) structures by both fixed and live imaging. While both Utrophin and Lifeact robustly label F-actin structures within the Drosophila germline, when strongly expressed they cause sterility and severe actin defects including cortical actin breakdown resulting in multi-nucleate nurse cells, early F-actin filament and aggregate formation during stage 9 (S9), and disorganized parallel actin filament bundles during stage 10B (S10B). However, by using a weaker germline GAL4 driver in combination with a higher temperature, Utrophin can label F-actin with minimal defects. Additionally, strong Utrophin expression within the germline causes F-actin formation in the nurse cell nuclei and germinal vesicle during mid-oogenesis. Similarly, Lifeact expression results in nuclear F-actin only within the germinal vesicle. F-tractin expresses at a lower level than the other two labeling tools, but labels cytoplasmic F-actin structures well without causing sterility or striking actin defects. Together these studies reveal how critical it is to evaluate the utility of each actin labeling

  7. Coiled coils and SAH domains in cytoskeletal molecular motors.

    PubMed

    Peckham, Michelle

    2011-10-01

    Cytoskeletal motors include myosins, kinesins and dyneins. Myosins move along tracks of actin filaments, whereas kinesins and dyneins move along microtubules. Many of these motors are involved in trafficking cargo in cells. However, myosins are mostly monomeric, whereas kinesins are mostly dimeric, owing to the presence of a coiled coil. Some myosins (myosins 6, 7 and 10) contain an SAH (single α-helical) domain, which was originally thought to be a coiled coil. These myosins are now known to be monomers, not dimers. The differences between SAH domains and coiled coils are described and the potential roles of SAH domains in molecular motors are discussed.

  8. Building Blocks of Functioning Brain: Cytoskeletal Dynamics in Neuronal Development

    PubMed Central

    Menon, Shalini; Gupton, Stephanie L.

    2016-01-01

    Neural connectivity requires proper polarization of neurons, guidance to appropriate target locations, and establishment of synaptic connections. From when neurons are born to when they finally reach their synaptic partners, neurons undergo constant rearrangment of the cytoskeleton to achieve appropriate shape and polarity. Of particular importance to neuronal guidance to target locations is the growth cone at the tip of the axon. Growth-cone steering is also dictated by the underlying cytoskeleton. All these changes require spatiotemporal control of the cytoskeletal machinery. This review summarizes the proteins that are involved in modulating the actin and microtubule cytoskeleton during the various stages of neuronal development. PMID:26940519

  9. Corticosterone treatment results in enhanced release of peptidergic vesicles in astrocytes via cytoskeletal rearrangements.

    PubMed

    Chatterjee, Sreejata; Sikdar, Sujit K

    2013-12-01

    While the effect of stress on neuronal physiology is widely studied, its effect on the functionality of astrocytes is not well understood. We studied the effect of high doses of stress hormone corticosterone, on two physiological properties of astrocytes, i.e., gliotransmission and interastrocytic calcium waves. To study the release of peptidergic vesicles from astrocytes, hippocampal astrocyte cultures were transfected with a plasmid to express pro-atrial natriuretic peptide (ANP) fused with the emerald green fluorescent protein (ANP.emd). The rate of decrease in fluorescence of ANP.emd on application of ionomycin, a calcium ionophore was monitored. Significant increase in the rate of calcium-dependent exocytosis of ANP.emd was observed with the 100 nM and 1 μM corticosterone treatments for 3 h, which depended on the activation of the glucocorticoid receptor. ANP.emd tagged vesicles exhibited increased mobility in astrocyte culture upon corticosterone treatment. Increasing corticosterone concentrations also resulted in concomitant increase in the calcium wave propagation velocity, initiated by focal ATP application. Corticosterone treatment also resulted in increased GFAP expression and F-actin rearrangements. FITC-Phalloidin immunostaining revealed increased formation of cross linked F-actin networks with the 100 nM and 1 μM corticosterone treatment. Alternatively, blockade of actin polymerization and disruption of microtubules prevented the corticosterone-mediated increase in ANP.emd release kinetics. This study reports for the first time the effect of corticosterone on gliotransmission via modulation of cytoskeletal elements. As ANP acts on both neurons and blood vessels, modulation of its release could have functional implications in neurovascular coupling under pathophysiological conditions of stress.

  10. Three-dimensional structure of actin filaments and of an actin gel made with actin-binding protein.

    PubMed

    Niederman, R; Amrein, P C; Hartwig, J

    1983-05-01

    Purified muscle actin and mixtures of actin and actin-binding protein were examined in the transmission electron microscope after fixation, critical point drying, and rotary shadowing. The three-dimensional structure of the protein assemblies was analyzed by a computer-assisted graphic analysis applicable to generalized filament networks. This analysis yielded information concerning the frequency of filament intersections, the filament length between these intersections, the angle at which filaments branch at these intersections, and the concentration of filaments within a defined volume. Purified actin at a concentration of 1 mg/ml assembled into a uniform mass of long filaments which overlap at random angles between 0 degrees and 90 degrees. Actin in the presence of macrophage actin-binding protein assembled into short, straight filaments, organized in a perpendicular branching network. The distance between branch points was inversely related to the molar ratio of actin-binding protein to actin. This distance was what would be predicted if actin filaments grew at right angles off of nucleation sites on the two ends of actin-binding protein dimers, and then annealed. The results suggest that actin in combination with actin-binding protein self-assembles to form a three-dimensional network resembling the peripheral cytoskeleton of motile cells.

  11. Tristetraprolin functions in cytoskeletal organization during mouse oocyte maturation

    PubMed Central

    Liu, Xiaohui; Li, Xiaoyan; Ma, Rujun; Xiong, Bo; Sun, Shao-Chen; Liu, Honglin; Gu, Ling

    2016-01-01

    Tristetraprolin (TTP), a member of TIS11 family containing CCCH tandem zinc finger, is one of the best characterized RNA-binding proteins. However, to date, the role of TTP in mammalian oocytes remains completely unknown. In the present study, we report the altered maturational progression and cytokinesis, upon specific knockdown of TTP in mouse oocytes. Furthermore, by confocal scanning, we observe the failure to form cortical actin cap during meiosis of TTP-depleted oocytes. Loss of TTP in oocytes also results in disruption of meiotic spindle morphology and chromosome alignment. In support of these findings, incidence of aneuploidy is accordingly increased when TTP is abated in oocytes. Our results suggest that TTP as a novel cytoskeletal regulator is required for spindle morphology/chromosome alignment and actin polymerization in oocytes. PMID:27458159

  12. Concerted upregulation of CLP36 and smooth muscle actin protein expression in human endometrium during decidualization.

    PubMed

    Miehe, Ulrich; Neumaier-Wagner, Peruka; Kadyrov, Mamed; Goyal, Pankaj; Alfer, Joachim; Rath, Werner; Huppertz, Berthold

    2005-01-01

    The human endometrium prepares for implantation of the blastocyst by reorganization of its whole cellular network. Endometrial stroma cells change their phenotype starting around the 23rd day of the menstrual cycle. These predecidual stroma cells first appear next to spiral arteries, and after implantation these cells further differentiate into decidual stroma cells. The phenotypical changes in these cells during decidualization are characterized by distinct changes in the actin filaments and filament-related proteins such as alpha-actinin. The carboxy-terminal LIM domain protein with a molecular weight of 36 kDa (CLP36) is a cytoskeletal component that has been shown to associate with contractile actin filaments and to bind to alpha-actinin supporting a role for CLP36 in cytoskeletal reorganization and signal transduction by binding to signaling proteins. The expression patterns of CLP36, alpha-actinin and actin were studied in endometrial stroma cells from different stages of the menstrual cycle and in decidual stroma cells from the 6th week of gestation until the end of pregnancy. During the menstrual cycle, CLP36 is only expressed in the luminal and glandular epithelium but not in endometrial stroma cells. During decidualization and throughout pregnancy, a parallel upregulation of CLP36 and smooth muscle actin, an early marker of decidualization in the baboon, was observed in endometrial decidual cells. Since both proteins maintain a high expression level throughout pregnancy, a role of both proteins is suggested in the stabilization of the cytoskeleton of these cells that come into close contact with invading trophoblast cells.

  13. Pilocarpine-induced epilepsy is associated with actin cytoskeleton reorganization in the mossy fiber-CA3 synapses.

    PubMed

    Zhang, Yan-Feng; Xiong, Tian-Qing; Tan, Bai-Hong; Song, Yan; Li, Shu-Lei; Yang, Li-Bin; Li, Yan-Chao

    2014-03-01

    Dramatic structural changes have been demonstrated in the mossy fiber-CA3 synapses in the post status epilepticus (SE) animals, suggesting a potential reorganization of filamentous actin (F-actin) network occurring in the hippocampus. However, until now the long-term effects of SE on the synaptic F-actin have still not been reported. In this study, phalloidin labeling combined with confocal microscopy and protein analyses were adopted to investigate the effects of pilocarpine treatment on the F-actin in the C57BL/6 mice. As compared to the controls, there was ∼ 43% reduction in F-actin density in the post SE mice. Quantitative analysis showed that the labeling density and the puncta number were significantly decreased after pilocarpine treatment (p<0.01, n=5 mice per group, Student's t-test). The puncta of F-actin in the post SE group tended to be highly clustered, while those in the controls were generally distributed evenly. The mean puncta size of F-actin puncta was 0.73±0.19μm(2) (n=1102 puncta from 5 SE mice) in the experimental group, significantly larger than that in the controls (0.51±0.10μm(2), n=1983 puncta from 5 aged-matched control mice, p<0.01, Student's t-test). These observations were well consistent with the alterations of postsynaptic densities in the same region, revealed by immunostaining of PSD95, suggesting the reorganization of F-actin occurred mainly postsynaptically. Our results are indicative of important cytoskeletal changes in the mossy fiber-CA3 synapses after pilocarpine treatment, which may contribute to the excessive excitatory output in the hippocampal trisynaptic circuit.

  14. Temperature-induced sol-gel transition and microgel formation in α-actinin cross-linked actin networks: A rheological study

    NASA Astrophysics Data System (ADS)

    Tempel, M.; Isenberg, G.; Sackmann, E.

    1996-08-01

    We have studied the sol-gel transition, the viscoelastic and the structural properties of networks constituted of semiflexible actin filaments cross-linked by α-actinin. Cross-linking was regulated in a reversible way by varying the temperature through the association-dissociation equilibrium of the actin-α-actinin system. Viscoelastic parameters [shear storage modulus G'(ω), phase shift tan(Φ)(ω), creep compliance J(t)] were measured as a function of temperature and actin-to-cross-linker ratio by a magnetically driven rotating disc rheometer. G'(ω) and tan(Φ)(ω) were studied at a frequency ω corresponding to the elastic plateau regime of the G'(ω) versus ω spectrum of the purely entangled solution. The microstructure of the networks was viewed by negative staining electron microscopy (EM). The phase shift tan(Φ) (or equivalently the viscosity η) diverges and reaches a maximum when approaching the apparent gel point from lower and higher temperatures, and the maximum defines the gel point (temperature Tg). The elastic plateau modulus G'N diverges at temperatures beyond this gel point TTg. The cross-linking transition (corresponding to a sol-gel transition at zero frequency) is interpreted in terms of a percolation model and the divergence of G'N at TTg), (2) that microscopic segregation takes place at T<=Tg leading to local formation of clusters (a state termed microgel), and (3) that at low actin-α-actinin ratios (rAα<=10) and low temperatures (T<=10 °C) macroscopic segregation into bundles of cross-linked actin filaments and a diluted solution of actin filaments is observed. The three regimes of network structure are represented by an

  15. ACTIN DEPOLYMERIZING FACTOR4 regulates actin dynamics during innate immune signaling in Arabidopsis.

    PubMed

    Henty-Ridilla, Jessica L; Li, Jiejie; Day, Brad; Staiger, Christopher J

    2014-01-01

    Conserved microbe-associated molecular patterns (MAMPs) are sensed by pattern recognition receptors (PRRs) on cells of plants and animals. MAMP perception typically triggers rearrangements to actin cytoskeletal arrays during innate immune signaling. However, the signaling cascades linking PRR activation by MAMPs to cytoskeleton remodeling are not well characterized. Here, we developed a system to dissect, at high spatial and temporal resolution, the regulation of actin dynamics during innate immune signaling in plant cells. Within minutes of MAMP perception, we detected changes to single actin filament turnover in epidermal cells treated with bacterial and fungal MAMPs. These MAMP-induced alterations phenocopied an ACTIN DEPOLYMERIZING FACTOR4 (ADF4) knockout mutant. Moreover, actin arrays in the adf4 mutant were unresponsive to a bacterial MAMP, elf26, but responded normally to the fungal MAMP, chitin. Together, our data provide strong genetic and cytological evidence for the inhibition of ADF activity regulating actin remodeling during innate immune signaling. This work is the first to directly link an ADF/cofilin to the cytoskeletal rearrangements elicited directly after pathogen perception in plant or mammalian cells.

  16. Kinetic Proofreading of Cytoskeletal Structures

    NASA Astrophysics Data System (ADS)

    Swanson, Douglas; Wingreen, Ned

    2010-03-01

    Cytoskeletal polymer dynamics play a role in cellular processes as varied as reproduction, locomotion, and intracellular transport. Microtubules are cytoskeletal biopolymers that grow by accumulating tubulin subunits bound to guanosine triphosphate (GTP). The subunits hydrolyze GTP to guanosine diphosphate (GDP), causing a conformational change in the protein that destabilizes the microtubule. GDP-bound subunits tend to depolymerize, leading to stochastic microtubule disassembly in a process known as dynamic instability. Over time polymerization and depolymerization come to steady state, leading to a local steady-state concentration of tubulin subunits. This may be viewed as a kind of ``kinetic proofreading,'' in which the system consumes energy actively to ``proofread'' the steady-state subunit concentration. We suggest that the same mechanism could also ``proofread'' between different cytoskeletal structures. For example, we show that a small free-energy difference between two polymer orientations, combined with dynamic instability, can strongly drive the system towards the lower free-energy state. This might help to explain the long-time stability of many cytoskeletal structures despite the short-time rapid turnover of the individual subunits.

  17. Inhibition of cytoskeletal protein carbonylation may protect against oxidative damage in traumatic brain injury

    PubMed Central

    Zhang, Qiusheng; Zhang, Meng; Huang, Xianjian; Liu, Xiaojia; Li, Weiping

    2016-01-01

    Oxidative stress is the principal factor in traumatic brain injury (TBI) that initiates protracted neuronal dysfunction and remodeling. Cytoskeletal proteins are known to be carbonylated under oxidative stress; however, the complex molecular and cellular mechanisms of cytoskeletal protein carbonylation remain poorly understood. In the present study, the expression levels of glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) were investigated in PC12 cells treated with H2O2. Western blot analysis was used to monitor the carbonylation levels of β-actin and β-tubulin. The results indicated that oxidative stress was increased in PC12 cells that were treated with H2O2 for 24 or 48 h. In addition, increased carbonylation levels of β-actin and β-tubulin were detected in H2O2-treated cells. However, these carbonylation levels were reduced by pretreatment with aminoguanidine, a type of reactive carbonyl species chelating agent, and a similar trend was observed following overexpression of proteasome β5 via transgenic technology. In conclusion, the present study results suggested that the development of TBI may cause carbonylation of cytoskeletal proteins, which would then undermine the stability of cytoskeletal proteins. Thus, the development of TBI may be improved via the inhibition of cytoskeletal protein carbonylation. PMID:28101189

  18. Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins

    PubMed Central

    Alonso, Annabel; Greenlee, Matt; Matts, Jessica; Kline, Jake; Davis, Kayla J.

    2015-01-01

    Sumoylation is a powerful regulatory system that controls many of the critical processes in the cell, including DNA repair, transcriptional regulation, nuclear transport, and DNA replication. Recently, new functions for SUMO have begun to emerge. SUMO is covalently attached to components of each of the four major cytoskeletal networks, including microtubule‐associated proteins, septins, and intermediate filaments, in addition to nuclear actin and actin‐regulatory proteins. However, knowledge of the mechanisms by which this signal transduction system controls the cytoskeleton is still in its infancy. One story that is beginning to unfold is that SUMO may regulate the microtubule motor protein dynein by modification of its adaptor Lis1. In other instances, cytoskeletal elements can both bind to SUMO non‐covalently and also be conjugated by it. The molecular mechanisms for many of these new functions are not yet clear, but are under active investigation. One emerging model links the function of MAP sumoylation to protein degradation through SUMO‐targeted ubiquitin ligases, also known as STUbL enzymes. Other possible functions for cytoskeletal sumoylation are also discussed. © 2015 The Authors. Cytoskeleton Published by Wiley Periodicals, Inc. PMID:26033929

  19. Actinic reticuloid

    SciTech Connect

    Marx, J.L.; Vale, M.; Dermer, P.; Ragaz, A.; Michaelides, P.; Gladstein, A.H.

    1982-09-01

    A 58-year-old man has his condition diagnosed as actinic reticuloid on the basis of clinical and histologic findings and phototesting data. He had clinical features resembling mycosis fungoides in light-exposed areas. Histologic findings disclosed a bandlike infiltrate with atypical mononuclear cells in the dermis and scattered atypical cells in the epidermis. Electron microscopy disclosed mononuclear cells with bizarre, convoluted nuclei, resembling cerebriform cells of Lutzner. Phototesting disclosed a diminished minimal erythemal threshold to UV-B and UV-A. Microscopic changes resembling actinic reticuloid were reproduced in this patient 24 and 72 hours after exposure to 15 minimal erythemal doses of UV-B.

  20. Ponticulin is the major high affinity link between the plasma membrane and the cortical actin network in Dictyostelium

    PubMed Central

    1994-01-01

    Interactions between the plasma membrane and underlying actin-based cortex have been implicated in membrane organization and stability, the control of cell shape, and various motile processes. To ascertain the function of high affinity actin-membrane associations, we have disrupted by homologous recombination the gene encoding ponticulin, the major high affinity actin-membrane link in Dictyostelium discoideum amoebae. Cells lacking detectable amounts of ponticulin message and protein also are deficient in high affinity actin-membrane binding by several criteria. First, only 10-13% as much endogenous actin cosediments through sucrose and crude plasma membranes from ponticulin- minus cells, as compared with membranes from the parental strain. Second, purified plasma membranes exhibit little or no binding or nucleation of exogenous actin in vitro. Finally, only 10-30% as much endogenous actin partitions with plasma membranes from ponticulin-minus cells after these cells are mechanically unroofed with polylysine- coated coverslips. The loss of the cell's major actin-binding membrane protein appears to be surprisingly benign under laboratory conditions. Ponticulin-minus cells grow normally in axenic culture and pinocytose FITC-dextran at the same rate as do parental cells. The rate of phagocytosis of particles by ponticulin-minus cells in growth media also is unaffected. By contrast, after initiation of development, cells lacking ponticulin aggregate faster than the parental cells. Subsequent morphogenesis proceeds asynchronously, but viable spores can form. These results indicate that ponticulin is not required for cellular translocation, but apparently plays a role in cell patterning during development. PMID:8089176

  1. Microtubule-dependent transport of vimentin filament precursors is regulated by actin and by the concerted action of Rho- and p21-activated kinases.

    PubMed

    Robert, Amélie; Herrmann, Harald; Davidson, Michael W; Gelfand, Vladimir I

    2014-07-01

    Intermediate filaments (IFs) form a dense and dynamic network that is functionally associated with microtubules and actin filaments. We used the GFP-tagged vimentin mutant Y117L to study vimentin-cytoskeletal interactions and transport of vimentin filament precursors. This mutant preserves vimentin interaction with other components of the cytoskeleton, but its assembly is blocked at the unit-length filament (ULF) stage. ULFs are easy to track, and they allow a reliable and quantifiable analysis of movement. Our results show that in cultured human vimentin-negative SW13 cells, 2% of vimentin-ULFs move along microtubules bidirectionally, while the majority are stationary and tightly associated with actin filaments. Rapid motor-dependent transport of ULFs along microtubules is enhanced ≥ 5-fold by depolymerization of actin cytoskeleton with latrunculin B. The microtubule-dependent transport of vimentin ULFs is further regulated by Rho-kinase (ROCK) and p21-activated kinase (PAK): ROCK inhibits ULF transport, while PAK stimulates it. Both kinases act on microtubule transport independently of their effects on actin cytoskeleton. Our study demonstrates the importance of the actin cytoskeleton to restrict IF transport and reveals a new role for PAK and ROCK in the regulation of IF precursor transport.-Robert, A., Herrmann, H., Davidson, M. W., and Gelfand, V. I. Microtubule-dependent transport of vimentin filament precursors is regulated by actin and by the concerted action of Rho- and p21-activated kinases.

  2. Electrophoretic pattern and distribution of cytoskeletal proteins in flat-epitheloid and stellate process-bearing astrocytes in primary culture.

    PubMed

    Ciesielski-Treska, J; Ulrich, G; Mensch, C; Aunis, D

    1984-01-01

    One- and two-dimensional electrophoresis patterns and distribution of major cytoskeletal proteins were studied in primary astrocytes with either flat-epitheloid or stellate appearance. No major differences in the electrophoretic patterns of actin, tubulin, glial fibrillary acidic protein (GFAP) and vimentin were detected between flat-epitheloid and stellate process-bearing astrocytes produced by the exposure of cultures to dibutyryl cyclic AMP (dBcAMP). However the morphological changes of astrocytes were accompanied by marked changes in the quantitative distribution of cytoskeletal proteins. The most prominent change was a large and specific decrease in the amount of actin, detected by [(35)S]methionine incorporation, densitometric scanning of one-dimensional gels and DNase inhibition assay. In stellate astrocytes produced by a 4 day treatment with dibutyryl cyclic AMP, the amount of actin decreased by 50%. This decrease was not apparently related to the depolymerization of actin.

  3. Cdk6 contributes to cytoskeletal stability in erythroid cells.

    PubMed

    Uras, Iris Z; Scheicher, Ruth M; Kollmann, Karoline; Glösmann, Martin; Prchal-Murphy, Michaela; Tigan, Anca S; Fux, Daniela A; Altamura, Sandro; Neves, Joana; Muckenthaler, Martina; Bennett, Keiryn L; Kubicek, Stefan; Hinds, Philip W; von Lindern, Marieke; Sexl, Veronika

    2017-03-02

    Mice lacking Cdk6 kinase activity suffer from mild anemia accompanied by elevated numbers of Ter119+ cells in the bone marrow. The animals show hardly any alterations in erythroid development, indicating that Cdk6 is not required for proliferation and maturation of erythroid cells. There is also no difference in stress erythropoiesis following hemolysis in vivo. However, Cdk6-/- erythrocytes have a shortened lifespan and are more sensitive to mechanical stress in vitro, suggesting differences in the cytoskeletal architecture. Erythroblasts contain both Cdk4 and Cdk6, while mature erythrocytes apparently lack Cdk4 and their Cdk6 is partly associated with the cytoskeleton. We used mass spectrometry to show that Cdk6 interacts with a number of proteins involved in cytoskeletal organization. Cdk6-/- erythroblasts show impaired F-actin formation and lower levels of gelsolin, which interacts with Cdk6. We show further that Cdk6 regulates the transcription of a panel of genes involved in actin (de-) polymerization. Cdk6-deficient cells are sensitive to drugs that interfere with the cytoskeleton, suggesting that our findings are relevant to the treatment of patients with anemia and may be relevant to cancer patients treated with the new generation of CDK6 inhibitors.

  4. Impact of actin filament stabilization on adult hippocampal and olfactory bulb neurogenesis.

    PubMed

    Kronenberg, Golo; Gertz, Karen; Baldinger, Tina; Kirste, Imke; Eckart, Sarah; Yildirim, Ferah; Ji, Shengbo; Heuser, Isabella; Schröck, Helmut; Hörtnagl, Heide; Sohr, Reinhard; Djoufack, Pierre Chryso; Jüttner, René; Glass, Rainer; Przesdzing, Ingo; Kumar, Jitender; Freyer, Dorette; Hellweg, Rainer; Kettenmann, Helmut; Fink, Klaus Benno; Endres, Matthias

    2010-03-03

    Rearrangement of the actin cytoskeleton is essential for dynamic cellular processes. Decreased actin turnover and rigidity of cytoskeletal structures have been associated with aging and cell death. Gelsolin is a Ca(2+)-activated actin-severing protein that is widely expressed throughout the adult mammalian brain. Here, we used gelsolin-deficient (Gsn(-/-)) mice as a model system for actin filament stabilization. In Gsn(-/-) mice, emigration of newly generated cells from the subventricular zone into the olfactory bulb was slowed. In vitro, gelsolin deficiency did not affect proliferation or neuronal differentiation of adult neural progenitors cells (NPCs) but resulted in retarded migration. Surprisingly, hippocampal neurogenesis was robustly induced by gelsolin deficiency. The ability of NPCs to intrinsically sense excitatory activity and thereby implement coupling between network activity and neurogenesis has recently been established. Depolarization-induced [Ca(2+)](i) increases and exocytotic neurotransmitter release were enhanced in Gsn(-/-) synaptosomes. Importantly, treatment of Gsn(-/-) synaptosomes with mycotoxin cytochalasin D, which, like gelsolin, produces actin disassembly, decreased enhanced Ca(2+) influx and subsequent exocytotic norepinephrine release to wild-type levels. Similarly, depolarization-induced glutamate release from Gsn(-/-) brain slices was increased. Furthermore, increased hippocampal neurogenesis in Gsn(-/-) mice was associated with a special microenvironment characterized by enhanced density of perfused vessels, increased regional cerebral blood flow, and increased endothelial nitric oxide synthase (NOS-III) expression in hippocampus. Together, reduced filamentous actin turnover in presynaptic terminals causes increased Ca(2+) influx and, subsequently, elevated exocytotic neurotransmitter release acting on neural progenitors. Increased neurogenesis in Gsn(-/-) hippocampus is associated with a special vascular niche for neurogenesis.

  5. Estradiol influences the mechanical properties of human fetal osteoblasts through cytoskeletal changes

    SciTech Connect

    Muthukumaran, Padmalosini; Lim, Chwee Teck; Lee, Taeyong

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Estradiol induced stiffness changes of osteoblasts were quantified using AFM. Black-Right-Pointing-Pointer Estradiol causes significant decrease in the stiffness of osteoblasts. Black-Right-Pointing-Pointer Decreased stiffness was caused by decreased density of f-actin network. Black-Right-Pointing-Pointer Stiffness changes were not associated with mineralized matrix of osteoblasts. Black-Right-Pointing-Pointer Estradiol increases inherent alkaline phosphatase activity of osteoblasts. -- Abstract: Estrogen is known to have a direct effect on bone forming osteoblasts and bone resorbing osteoclasts. The cellular and molecular effects of estrogen on osteoblasts and osteoblasts-like cells have been extensively studied. However, the effect of estrogen on the mechanical property of osteoblasts has not been studied yet. It is important since mechanical property of the mechanosensory osteoblasts could be pivotal to its functionality in bone remodeling. This is the first study aimed to assess the direct effect of estradiol on the apparent elastic modulus (E{sup Asterisk-Operator }) and corresponding cytoskeletal changes of human fetal osteoblasts (hFOB 1.19). The cells were cultured in either medium alone or medium supplemented with {beta}-estradiol and then subjected to Atomic Force Microscopy indentation (AFM) to determine E{sup Asterisk-Operator }. The underlying changes in cytoskeleton were studied by staining the cells with TRITC-Phalloidin. Following estradiol treatment, the cells were also tested for proliferation, alkaline phosphatase activity and mineralization. With estradiol treatment, E{sup Asterisk-Operator} of osteoblasts significantly decreased by 43-46%. The confocal images showed that the changes in f-actin network observed in estradiol treated cells can give rise to the changes in the stiffness of the cells. Estradiol also increases the inherent alkaline phosphatase activity of the cells. Estradiol induced stiffness

  6. Arp2/3 complex and actin dynamics are required for actin-based mitochondrial motility in yeast

    PubMed Central

    Boldogh, Istvan R.; Yang, Hyeong-Cheol; Nowakowski, W. Dan; Karmon, Sharon L.; Hays, Lara G.; Yates, John R.; Pon, Liza A.

    2001-01-01

    The Arp2/3 complex is implicated in actin polymerization-driven movement of Listeria monocytogenes. Here, we find that Arp2p and Arc15p, two subunits of this complex, show tight, actin-independent association with isolated yeast mitochondria. Arp2p colocalizes with mitochondria. Consistent with this result, we detect Arp2p-dependent formation of actin clouds around mitochondria in intact yeast. Cells bearing mutations in ARP2 or ARC15 genes show decreased velocities of mitochondrial movement, loss of all directed movement and defects in mitochondrial morphology. Finally, we observe a decrease in the velocity and extent of mitochondrial movement in yeast in which actin dynamics are reduced but actin cytoskeletal structure is intact. These results support the idea that the movement of mitochondria in yeast is actin polymerization driven and that this movement requires Arp2/3 complex. PMID:11248049

  7. Exploring the roles of integrin binding and cytoskeletal reorganization during mesenchymal stem cell mechanotransduction in soft and stiff hydrogels subjected to dynamic compression.

    PubMed

    Steward, Andrew J; Wagner, Diane R; Kelly, Daniel J

    2014-10-01

    The objective of this study was to explore how the response of mesenchymal stem cells (MSCs) to dynamic compression (DC) depends on their pericellular environment and the development of their cytoskeleton. MSCs were first seeded into 3% agarose hydrogels, stimulated with the chondrogenic growth factor TGF-β3 and exposed to DC (~10% strain at 1Hz) for 1h on either day 7, 14, or 21 of culture. At each time point, the actin, vimentin and tubulin networks of the MSCs were assessed using confocal microscopy. Similar to previous results, MSCs displayed a temporal response to DC; however, no dramatic changes in gross cytoskeletal organization were observed with time in culture. Vinculin (a membrane-cytoskeletal protein in focal adhesions) staining appeared more intense with time in culture. We next aimed to explore how changes to the pericellular environment, independent of the duration of exposure to TGF-β3, would influence the response of MSCs to DC. To this end, MSCs were encapsulated into either 'soft' or 'stiff' agarose hydrogels that are known to differentially support pericellular matrix (PCM) development. The application of DC led to greater relative increases in the expression of chondrogenic marker genes in the stiffer hydrogels, where the MSCs were found to have a more well developed PCM. These increases in gene expression were not observed following the addition of RGDS, an integrin blocker, suggesting that integrin binding plays a role in determining the response of MSCs to DC. Microtubule organization in MSCs was found to adapt in response to DC, but this effect was not integrin mediated, as this cytoskeletal reorganization was also observed in the presence of RGDS. In conclusion, although the PCM, integrin binding, and cytoskeletal reorganization are all involved in mechanotransduction of DC, none of these factors in isolation was able to completely explain the temporal mechanosensitivity of MSCs to dynamic compression.

  8. The polarity protein Inturned links NPHP4 to Daam1 to control the subapical actin network in multiciliated cells.

    PubMed

    Yasunaga, Takayuki; Hoff, Sylvia; Schell, Christoph; Helmstädter, Martin; Kretz, Oliver; Kuechlin, Sebastian; Yakulov, Toma A; Engel, Christina; Müller, Barbara; Bensch, Robert; Ronneberger, Olaf; Huber, Tobias B; Lienkamp, Soeren S; Walz, Gerd

    2015-12-07

    Motile cilia polarization requires intracellular anchorage to the cytoskeleton; however, the molecular machinery that supports this process remains elusive. We report that Inturned plays a central role in coordinating the interaction between cilia-associated proteins and actin-nucleation factors. We observed that knockdown of nphp4 in multiciliated cells of the Xenopus laevis epidermis compromised ciliogenesis and directional fluid flow. Depletion of nphp4 disrupted the subapical actin layer. Comparison to the structural defects caused by inturned depletion revealed striking similarities. Furthermore, coimmunoprecipitation assays demonstrated that the two proteins interact with each other and that Inturned mediates the formation of ternary protein complexes between NPHP4 and DAAM1. Knockdown of daam1, but not formin-2, resulted in similar disruption of the subapical actin web, whereas nphp4 depletion prevented the association of Inturned with the basal bodies. Thus, Inturned appears to function as an adaptor protein that couples cilia-associated molecules to actin-modifying proteins to rearrange the local actin cytoskeleton.

  9. The polarity protein Inturned links NPHP4 to Daam1 to control the subapical actin network in multiciliated cells

    PubMed Central

    Yasunaga, Takayuki; Hoff, Sylvia; Schell, Christoph; Helmstädter, Martin; Kretz, Oliver; Kuechlin, Sebastian; Yakulov, Toma A.; Engel, Christina; Müller, Barbara; Bensch, Robert; Ronneberger, Olaf; Huber, Tobias B.; Lienkamp, Soeren S.

    2015-01-01

    Motile cilia polarization requires intracellular anchorage to the cytoskeleton; however, the molecular machinery that supports this process remains elusive. We report that Inturned plays a central role in coordinating the interaction between cilia-associated proteins and actin-nucleation factors. We observed that knockdown of nphp4 in multiciliated cells of the Xenopus laevis epidermis compromised ciliogenesis and directional fluid flow. Depletion of nphp4 disrupted the subapical actin layer. Comparison to the structural defects caused by inturned depletion revealed striking similarities. Furthermore, coimmunoprecipitation assays demonstrated that the two proteins interact with each other and that Inturned mediates the formation of ternary protein complexes between NPHP4 and DAAM1. Knockdown of daam1, but not formin-2, resulted in similar disruption of the subapical actin web, whereas nphp4 depletion prevented the association of Inturned with the basal bodies. Thus, Inturned appears to function as an adaptor protein that couples cilia-associated molecules to actin-modifying proteins to rearrange the local actin cytoskeleton. PMID:26644512

  10. IQGAP and mitotic exit network (MEN) proteins are required for cytokinesis and re-polarization of the actin cytoskeleton in the budding yeast, Saccharomyces cerevisiae.

    PubMed

    Corbett, Mark; Xiong, Yulan; Boyne, James R; Wright, Daniel J; Munro, Ewen; Price, Clive

    2006-11-01

    In budding yeast the final stages of the cell division cycle, cytokinesis and cell separation, are distinct events that require to be coupled, both together and with mitotic exit. Here we demonstrate that mutations in genes of the mitotic exit network (MEN) prevent cell separation and are synthetically lethal in combination with both cytokinesis and septation defective mutations. Analysis of the synthetic lethal phenotypes reveals that Iqg1p functions in combination with the MEN components, Tem1p, Cdc15p Dbf20p and Dbf2p to govern the re-polarization of the actin cytoskeleton to either side of the bud neck. In addition phosphorylation of the conserved PCH protein, Hof1p, is dependent upon these activities and requires actin ring assembly. Recruitment of Dbf2p to the bud neck is dependent upon actin ring assembly and correlates with Hof1p phosphorylation. Failure to phosphorylate Hof1p results in the increased stability of the protein and its persistence at the bud neck. These data establish a mechanistic dependency of cell separation upon an intermediate step requiring actomyosin ring assembly.

  11. Actin-binding proteins take the reins in growth cones.

    PubMed

    Pak, Chi W; Flynn, Kevin C; Bamburg, James R

    2008-02-01

    Higher-order actin-based networks (actin superstructures) are important for growth-cone motility and guidance. Principles for generating, organizing and remodelling actin superstructures have emerged from recent findings in cell-free systems, non-neuronal cells and growth cones. This Review examines how actin superstructures are initiated de novo at the leading-edge membrane and how the spontaneous organization of actin superstructures is driven by ensembles of actin-binding proteins. How the regulation of actin-binding proteins can affect growth-cone turning and axonal regeneration is also discussed.

  12. Cytoskeletal changes in Eimeria bovis-infected host endothelial cells during first merogony.

    PubMed

    Hermosilla, Carlos; Schröpfer, Elmar; Stowasser, Michael; Eckstein-Ludwig, Ursula; Behrendt, Jan Hillern; Zahner, Horst

    2008-10-01

    The first merogony of Eimeria bovis takes place in lymphatic endothelial cells of the ileum, resulting in the formation of macromeronts up to 250 microm. In this study, we investigated the host cell cytoskeleton (actin filaments, microtubules, spectrin, vimentin intermediate filaments) associated with parasitic development in vitro by confocal laser scanning microscopy (CLSM) using primary bovine umbilical vein endothelial cells (BUVEC) and bovine spleen lymphatic endothelial cells (BSLEC) as host cells. No prominent changes in the host cell cytoskeleton were detected 1-3 days after E. bovis sporozoite invasion. With ongoing meront maturation a significant increase in microtubules and actin filaments close to the parasitophorous vacuole (PV) was found. Mature macromeronts within the PV were completely enclosed by these cytoskeletal elements. Our findings suggest, that in order to guarantee the survival of the host cell on the enlargement of macromeronts, E. bovis needs not only to augment but also to rearrange its cytoskeletal system.

  13. Actin interaction and regulation of cyclin-dependent kinase 5/p35 complex activity.

    PubMed

    Xu, Jiqing; Tsutsumi, Koji; Tokuraku, Kiyotaka; Estes, Katherine A; Hisanaga, Shin-ichi; Ikezu, Tsuneya

    2011-01-01

    Cyclin-dependent kinase 5 (Cdk5) plays a critical role during neurodevelopment, synaptic plasticity, and neurodegeneration. Cdk5 activity depends on association with neuronal proteins p35 and p25, a proteolytic product of p35. Cdk5 regulates the actin cytoskeletal dynamics that are essential for neuronal migration, neuritic growth, and synaptogenesis. However, little is known about the interaction of actin and Cdk5 and its effect on neuronal Cdk5 activity. In a previous study, we observed that Cdk5/p35 activity is negatively correlated with co-immunoprecipitated F-actin (filamentous actin) amounts in the mouse brain, and suggested that F-actin inhibits the formation of the Cdk5/p35 complex [Journal of Neuroscience (2008) vol. 28, p. 14511]. The experiments reported here were undertaken to elucidate the relationship between actin and the formation of the Cdk5/p35 complex and its activity. Instead of an F-actin-mediated inhibition, we propose that G-actin (globular actin) in the F-actin preparations is responsible for inhibiting Cdk5/p35 and Cdk5/p25 kinase activity. We found that F-actin binds to p35 but not p25 or Cdk5. We have shown that G-actin binds directly to Cdk5 without disrupting the formation of the Cdk5/p35 or Cdk5/p25 complexes. G-actin potently suppressed Cdk5/p35 and Cdk5/p25 activity when either histone H1 or purified human tau protein were used as substrates, indicating a substrate-independent inhibitory effect of G-actin on Cdk5 activity. Finally, G-actin suppressed the activity of Cdk5 immunoprecipitated from wild type and p35-deficient mouse brain, suggesting that G-actin suppresses endogenous Cdk5 activity in a p35-independent manner. Together, these results suggest a novel mechanism of actin cytoskeletal regulation of Cdk5/p35 activity.

  14. Tropomyosin - master regulator of actin filament function in the cytoskeleton.

    PubMed

    Gunning, Peter W; Hardeman, Edna C; Lappalainen, Pekka; Mulvihill, Daniel P

    2015-08-15

    Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition.

  15. PTP-PEST controls EphA3 activation and ephrin-induced cytoskeletal remodelling.

    PubMed

    Mansour, Mariam; Nievergall, Eva; Gegenbauer, Kristina; Llerena, Carmen; Atapattu, Lakmali; Hallé, Maxime; Tremblay, Michel L; Janes, Peter W; Lackmann, Martin

    2016-01-15

    Eph receptors and their corresponding membrane-bound ephrin ligands regulate cell positioning and establish tissue patterns during embryonic and oncogenic development. Emerging evidence suggests that assembly of polymeric Eph signalling clusters relies on cytoskeletal reorganisation and underlies regulation by protein tyrosine phosphatases (PTPs). PTP-PEST (also known as PTPN12) is a central regulator of actin cytoskeletal dynamics. Here, we demonstrate that an N-terminal fragment of PTP-PEST, generated through an ephrinA5-triggered and spatially confined cleavage mediated by caspase-3, attenuates EphA3 receptor activation and its internalisation. Isolation of EphA3 receptor signalling clusters within intact plasma membrane fragments obtained by detergent-free cell fractionation reveals that stimulation of cells with ephrin triggers effective recruitment of this catalytically active truncated form of PTP-PEST together with key cytoskeletal and focal adhesion proteins. Importantly, modulation of actin polymerisation using pharmacological and dominant-negative approaches affects EphA3 phosphorylation in a similar manner to overexpression of PTP-PEST. We conclude that PTP-PEST regulates EphA3 activation both by affecting cytoskeletal remodelling and through its direct action as a PTP controlling EphA3 phosphorylation, indicating its multifaceted regulation of Eph signalling.

  16. Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac myocytes.

    PubMed

    Lee, Hyungsuk; Adams, William J; Alford, Patrick W; McCain, Megan L; Feinberg, Adam W; Sheehy, Sean P; Goss, Josue A; Parker, Kevin Kit

    2015-11-01

    Mechanical stresses on the myocyte nucleus have been associated with several diseases and potentially transduce mechanical stimuli into cellular responses. Although a number of physical links between the nuclear envelope and cytoplasmic filaments have been identified, previous studies have focused on the mechanical properties of individual components of the nucleus, such as the nuclear envelope and lamin network. The mechanical interaction between the cytoskeleton and chromatin on nuclear deformability remains elusive. Here, we investigated how cytoskeletal and chromatin structures influence nuclear mechanics in cardiac myocytes. Rapid decondensation of chromatin and rupture of the nuclear membrane caused a sudden expansion of DNA, a consequence of prestress exerted on the nucleus. To characterize the prestress exerted on the nucleus, we measured the shape and the stiffness of isolated nuclei and nuclei in living myocytes during disruption of cytoskeletal, myofibrillar, and chromatin structure. We found that the nucleus in myocytes is subject to both tensional and compressional prestress and its deformability is determined by a balance of those opposing forces. By developing a computational model of the prestressed nucleus, we showed that cytoskeletal and chromatin prestresses create vulnerability in the nuclear envelope. Our studies suggest the cytoskeletal-nuclear-chromatin interconnectivity may play an important role in mechanics of myocyte contraction and in the development of laminopathies by lamin mutations.

  17. The Role of the Actin Cytoskeleton in Regulating Drosophila Behavior

    PubMed Central

    Ojelade, Shamsideen A.; Acevedo, Summer F.; Rothenfluh, Adrian

    2014-01-01

    Over the past decade, the function of the cytoskeleton has been extensively studied in developing and in mature neurons. Actin, a major cytoskeletal protein, is indispensable for the structural integrity and plasticity of neurons and their synapses. Disruption of actin dynamics has significant consequence for neurons, neuronal circuits, and the functions they govern. In particular, cell adhesion molecules (CAMs), members of the Rho family of GTPases, and actin binding proteins (ABPs) are important modulators of actin dynamics and neuronal as well as behavioral plasticity. In this review, we discuss recent advances in Drosophila that highlight the importance of actin regulatory proteins in mediating fly behaviors such as circadian rhythm, courtship behavior, learning and memory, and the development of drug addiction. PMID:24077615

  18. Actin-associated Proteins in the Pathogenesis of Podocyte Injury.

    PubMed

    He, Fang-Fang; Chen, Shan; Su, Hua; Meng, Xian-Fang; Zhang, Chun

    2013-11-01

    Podocytes have a complex cellular architecture with interdigitating processes maintained by a precise organization of actin filaments. The actin-based foot processes of podocytes and the interposed slit diaphragm form the final barrier to proteinuria. The function of podocytes is largely based on the maintenance of the normal foot process structure with actin cytoskeleton. Cytoskeletal dynamics play important roles during normal podocyte development, in maintenance of the healthy glomerular filtration barrier, and in the pathogenesis of glomerular diseases. In this review, we focused on recent findings on the mechanisms of organization and reorganization of these actin-related molecules in the pathogenesis of podocyte injury and potential therapeutics targeting the regulation of actin cytoskeleton in podocytopathies.

  19. F5-peptide induces aspermatogenesis by disrupting organization of actin- and microtubule-based cytoskeletons in the testis

    PubMed Central

    Gao, Ying; Mruk, Dolores D.; Lui, Wing-yee; Lee, Will M.; Cheng, C. Yan

    2016-01-01

    During the release of sperm at spermiation, a biologically active F5-peptide, which can disrupt the Sertoli cell tight junction (TJ) permeability barrier, is produced at the site of the degenerating apical ES (ectoplasmic specialization). This peptide coordinates the events of spermiation and blood-testis barrier (BTB) remodeling at stage VIII of the epithelial cycle, creating a local apical ES-BTB axis to coordinate cellular events across the epithelium. The mechanism(s) by which F5-peptide perturbs BTB restructuring, and its involvement in apical ES dynamics remain unknown. F5-peptide, besides perturbing BTB integrity, was shown to induce germ cell release from the epithelium following its efficient in vivo overexpression in the testis. Overexpression of F5-peptide caused disorganization of actin- and microtubule (MT)-based cytoskeletons, mediated by altering the spatiotemporal expression of actin binding/regulatory proteins in the seminiferous epithelium. F5-peptide perturbed the ability of actin microfilaments and/or MTs from converting between their bundled and unbundled/defragmented configuration, thereby perturbing adhesion between spermatids and Sertoli cells. Since apical ES and basal ES/BTB are interconnected through the underlying cytoskeletal networks, this thus provides an efficient and novel mechanism to coordinate different cellular events across the epithelium during spermatogenesis through changes in the organization of actin microfilaments and MTs. These findings also illustrate the potential of F5-peptide being a male contraceptive peptide for men. PMID:27611949

  20. Cytoskeletal Mechanisms for Breaking Cellular Symmetry

    PubMed Central

    Mullins, R. Dyche

    2010-01-01

    Cytoskeletal systems are networks of polymers found in all eukaryotic and many prokaryotic cells. Their purpose is to transmit and integrate information across cellular dimensions and help turn a disorderly mob of macromolecules into a spatially organized, living cell. Information, in this context, includes physical and chemical properties relevant to cellular physiology, including: the number and activity of macromolecules, cell shape, and mechanical force. Most animal cells are 10–50 microns in diameter, whereas the macromolecules that comprise them are 10,000-fold smaller (2–20 nm). To establish long-range order over cellular length scales, individual molecules must, therefore, self-assemble into larger polymers, with lengths (0.1–20 m) comparable to the size of a cell. These polymers must then be cross-linked into organized networks that fill the cytoplasm. Such cell-spanning polymer networks enable different parts of the cytoplasm to communicate directly with each other, either by transmitting forces or by carrying cargo from one spot to another. PMID:20182610

  1. Sensing actin dynamics: Structural basis for G-actin-sensitive nuclear import of MAL

    SciTech Connect

    Hirano, Hidemi; Matsuura, Yoshiyuki

    2011-10-22

    Highlights: {yields} MAL has a bipartite NLS that binds to Imp{alpha} in an extended conformation. {yields} Mutational analyses verified the functional significance of MAL-Imp{alpha} interactions. {yields} Induced folding and NLS-masking by G-actins inhibit nuclear import of MAL. -- Abstract: The coordination of cytoskeletal actin dynamics with gene expression reprogramming is emerging as a crucial mechanism to control diverse cellular processes, including cell migration, differentiation and neuronal circuit assembly. The actin-binding transcriptional coactivator MAL (also known as MRTF-A/MKL1/BSAC) senses G-actin concentration and transduces Rho GTPase signals to serum response factor (SRF). MAL rapidly shuttles between the cytoplasm and the nucleus in unstimulated cells but Rho-induced depletion of G-actin leads to MAL nuclear accumulation and activation of transcription of SRF:MAL-target genes. Although the molecular and structural basis of actin-regulated nucleocytoplasmic shuttling of MAL is not understood fully, it is proposed that nuclear import of MAL is mediated by importin {alpha}/{beta} heterodimer, and that G-actin competes with importin {alpha}/{beta} for the binding to MAL. Here we present structural, biochemical and cell biological evidence that MAL has a classical bipartite nuclear localization signal (NLS) in the N-terminal 'RPEL' domain containing Arg-Pro-X-X-X-Glu-Leu (RPEL) motifs. The NLS residues of MAL adopt an extended conformation and bind along the surface groove of importin-{alpha}, interacting with the major- and minor-NLS binding sites. We also present a crystal structure of wild-type MAL RPEL domain in complex with five G-actins. Comparison of the importin-{alpha}- and actin-complexes revealed that the binding of G-actins to MAL is associated with folding of NLS residues into a helical conformation that is inappropriate for importin-{alpha} recognition.

  2. Complex roles of filamin-A mediated cytoskeleton network in cancer progression

    PubMed Central

    2013-01-01

    Filamin-A (FLNA), also called actin-binding protein 280 (ABP-280), was originally identified as a non-muscle actin binding protein, which organizes filamentous actin into orthogonal networks and stress fibers. Filamin-A also anchors various transmembrane proteins to the actin cytoskeleton and provides a scaffold for a wide range of cytoplasmic and nuclear signaling proteins. Intriguingly, several studies have revealed that filamin-A associates with multiple non-cytoskeletal proteins of diverse function and is involved in several unrelated pathways. Mutations and aberrant expression of filamin-A have been reported in human genetic diseases and several types of cancer. In this review, we discuss the implications of filamin-A in cancer progression, including metastasis and DNA damage response. PMID:23388158

  3. Cytoskeletal reorganization by mycophenolic acid alters mesangial cell migration and contractility.

    PubMed

    Dubus, Isabelle; L'Azou, Beatrice; Gordien, Myriam; Delmas, Yahsou; Labouyrie, Jean-Pierre; Bonnet, Jacques; Combe, Christian

    2003-11-01

    Cytoskeleton alterations are a hallmark of mesangial cell activation during glomerulosclerosis. The aim of this study was to investigate whether mycophenolic acid (MPA) affects cytoskeletal organization and motility of human mesangial cells. Using the IP15 cell line, we found that treatment with 1 micromol/L MPA inhibited both receptor-dependent (angiotensin II) and receptor-independent (KCl) contractile responses, as well as serum-induced migration activity, suggesting alterations in the intracellular mechanisms that control mesangial cell motility. Immunofluorescence studies of MPA-treated cells provided evidence for decreased membrane disassembly/reassembly of alpha-smooth muscle actin and F-actin fibers, which was correlated with sustained quantitative and qualitative modifications of actin-associated proteins: calponin was overexpressed and became associated with actin fibers, whereas phosphorylation levels of cofilin and myosin light chain increased, suggesting both an activation of the mechanisms responsible for actin polymerization and an inhibition of actin-depolymerizing processes. These observations support a stabilizing effect of MPA on the mesangial actin cytoskeleton, which constitutes an additive action by which MPA, beyond its anti-inflammatory, antiproliferative and antifibrotic properties, might protect against excessive mesangial activation in the context of various glomerulopathies and kidney transplantation.

  4. In vitro and in vivo evidence for actin association of the naphthylphthalamic acid-binding protein from zucchini hypocotyls

    NASA Technical Reports Server (NTRS)

    Butler, J. H.; Hu, S.; Brady, S. R.; Dixon, M. W.; Muday, G. K.

    1998-01-01

    The N-1-naphthylphthalamic acid (NPA)-binding protein is part of the auxin efflux carrier, the protein complex that controls polar auxin transport in plant tissues. This study tested the hypothesis that the NPA-binding protein (NBP) is associated with the actin cytoskeleton in vitro and that an intact actin cytoskeleton is required for polar auxin transport in vivo. Cytoskeletal polymerization was altered in extracts of zucchini hypocotyls with reagents that stabilized either the polymeric or monomeric forms of actin or tubulin. Phalloidin treatment altered actin polymerization, as demonstrated by immunoblot analyses following native and denaturing electrophoresis. Phalloidin increased both filamentous actin (F-actin) and NPA-binding activity, while cytochalasin D and Tris decreased both F-actin and NPA-binding activity in cytoskeletal pellets. The microtubule stabilizing drug taxol increased pelletable tubulin, but did not alter either the amount of pelletable actin or NPA-binding activity. Treatment of etiolated zucchini hypocotyls with cytochalasin D decreased the amount of auxin transport and its regulation by NPA. These experimental results are consistent with an in vitro actin cytoskeletal association of the NPA-binding protein and with the requirement of an intact actin cytoskeleton for maximal polar auxin transport in vivo.

  5. Actinic Prurigo.

    PubMed

    Rodríguez-Carreón, Alma Angélica; Rodríguez-Lobato, Erika; Rodríguez-Gutiérrez, Georgina; Cuevas-González, Juan Carlos; Mancheno-Valencia, Alexandra; Solís-Arias, Martha Patricia; Vega-Memije, María Elisa; Hojyo-Tomoka, María Teresa; Domínguez-Soto, Luciano

    2015-01-01

    Actinic prurigo is an idiopathic photodermatosis that affects the skin, as well as the labial and conjunctival mucosa in indigenous and mestizo populations of Latin America. It starts predominantly in childhood, has a chronic course, and is exacerbated with solar exposure. Little is known of its pathophysiology, including the known mechanisms of the participation of HLA-DR4 and an abnormal immunologic response with increase of T CD4+ lymphocytes. The presence of IgE, eosinophils, and mast cells suggests that it is a hypersensitivity reaction (likely type IVa or b). The diagnosis is clinical, and the presence of lymphoid follicles in the mucosal histopathologic study of mucosa is pathognomonic. The best available treatment to date is thalidomide, despite its secondary effects.

  6. TGFβ2 Induces the Formation of Cross-Linked Actin Networks (CLANs) in Human Trabecular Meshwork Cells Through the Smad and Non-Smad Dependent Pathways

    PubMed Central

    Montecchi-Palmer, Michela; Bermudez, Jaclyn Y.; Webber, Hannah C.; Patel, Gaurang C.; Clark, Abbot F.; Mao, Weiming

    2017-01-01

    Purpose Increased intraocular pressure results from increased aqueous humor (AH) outflow resistance at the trabecular meshwork (TM) due to pathologic changes including the formation of cross-linked actin networks (CLANs). Transforming growth factor β2 (TGFβ2) is elevated in the AH and TM of primary open angle glaucoma (POAG) patients and induces POAG-associated TM changes, including CLANs. We determined the role of individual TGFβ2 signaling pathways in CLAN formation. Methods Cultured nonglaucomatous human TM (NTM) cells were treated with control or TGFβ2, with or without the inhibitors of TGFβ receptor, Smad3, c-Jun N-terminal kinases (JNK), extracellular signal regulated kinase (ERK), P38, or Rho-associated protein kinase (ROCK). NTM cells were cotreated with TGFβ2 plus inhibitors for 10 days or pretreated with TGFβ2 for 10 days followed by 1-hour inhibitor treatment. NTM cells were immunostained with phalloidin-Alexa-488 and 4′,6-diamidino-2-phenylindole (DAPI). Data were analyzed using 1-way ANOVA and Dunnett's post hoc test. Results TGFβ2 significantly induced CLAN formation (n = 6 to 12, P < 0.05), which was completely inhibited by TGFβ receptor, Smad3, and ERK inhibitors, as well as completely or partially inhibited by JNK, P38, and ROCK inhibitors, depending on cell strains. One-hour exposure to ROCK inhibitor completely resolved formed CLANs (P < 0.05), whereas TGFβ receptor, Smad3 inhibitor, and ERK inhibitors resulted in partial or complete resolution. The JNK and P38 inhibitors showed partial or no resolution. Among these inhibitors, the ROCK inhibitor was the most disruptive to the actin stress fibers, whereas ERK inhibition showed the least disruption. Conclusions TGFβ2-induced CLANs in NTM cells were prevented and resolved using various pathway inhibitors. Apart from CLAN inhibition, some of these inhibitors also had different effects on actin stress fibers. PMID:28241317

  7. Closure of supporting cell scar formations requires dynamic actin mechanisms

    PubMed Central

    Hordichok, Andrew J.; Steyger, Peter S.

    2007-01-01

    In many vertebrate inner ear sensory epithelia, dying sensory hair cells are extruded, and the apices of surrounding supporting cells converge to re-seal the epithelial barrier between the electrochemically-distinct endolymph and perilymph. These cellular mechanisms remain poorly understood. Dynamic microtubular mechanisms have been proposed for hair cell extrusion; while contractile actomyosin-based mechanisms are required for cellular extrusion and closure in epithelial monolayers. The hypothesis that cytoskeletal mechanisms are required for hair cell extrusion and supporting cell scar formation was tested using bullfrog saccules incubated with gentamicin (6 hours), and allowed to recover (18 hours). Explants were then fixed, labeled for actin and cytokeratins, and viewed with confocal microscopy. To block dynamic cytoskeletal processes, disruption agents for microtubules (colchicine, paclitaxel) myosin (Y-27632, ML-9) or actin (cytochalasin D, latrunculin A) were added during treatment and recovery. Microtubule disruption agents had no effect on hair cell extrusion or supporting cell scar formation. Myosin disruption agents appeared to slow down scar formation but not hair cell extrusion. Actin disruption agents blocked scar formation, and largely prevented hair cell extrusion. These data suggest that actin-based cytoskeletal processes are required for hair cell extrusion and supporting cell scar formation in bullfrog saccules. PMID:17716843

  8. Modeling actin waves in dictyostelium cells

    NASA Astrophysics Data System (ADS)

    Wasnik, Vaibhav; Mukhopadhyay, Ranjan

    2011-03-01

    Actin networks in living cells demonstrate a high capacity for self-organization and are responsible for the formation of a variety of structures such as lamellopodia, phagocytic cups, and cleavage furrows. Recent experiments have studied actin waves formed on the surface of dictyostelium cells that have been treated with a depolymerizing agent. These waves are believed to be physiologically important, for example, for the formation of phagocytic cups. We propose and study a minimal model, based on the dendritic nucleation of actin polymers, to explain the formation of these waves. This model can be extended to study the dynamics of the coupled actin-membrane system.

  9. Sex Hormones Regulate Cytoskeletal Proteins Involved in Brain Plasticity

    PubMed Central

    Hansberg-Pastor, Valeria; González-Arenas, Aliesha; Piña-Medina, Ana Gabriela; Camacho-Arroyo, Ignacio

    2015-01-01

    In the brain of female mammals, including humans, a number of physiological and behavioral changes occur as a result of sex hormone exposure. Estradiol and progesterone regulate several brain functions, including learning and memory. Sex hormones contribute to shape the central nervous system by modulating the formation and turnover of the interconnections between neurons as well as controlling the function of glial cells. The dynamics of neuron and glial cells morphology depends on the cytoskeleton and its associated proteins. Cytoskeletal proteins are necessary to form neuronal dendrites and dendritic spines, as well as to regulate the diverse functions in astrocytes. The expression pattern of proteins, such as actin, microtubule-associated protein 2, Tau, and glial fibrillary acidic protein, changes in a tissue-specific manner in the brain, particularly when variations in sex hormone levels occur during the estrous or menstrual cycles or pregnancy. Here, we review the changes in structure and organization of neurons and glial cells that require the participation of cytoskeletal proteins whose expression and activity are regulated by estradiol and progesterone. PMID:26635640

  10. Decavanadate interactions with actin: inhibition of G-actin polymerization and stabilization of decameric vanadate.

    PubMed

    Ramos, Susana; Manuel, Miguel; Tiago, Teresa; Duarte, Rui; Martins, Jorge; Gutiérrez-Merino, Carlos; Moura, José J G; Aureliano, Manuel

    2006-11-01

    Decameric vanadate species (V10) inhibit the rate and the extent of G-actin polymerization with an IC50 of 68+/-22 microM and 17+/-2 microM, respectively, whilst they induce F-actin depolymerization at a lower extent. On contrary, no effect on actin polymerization and depolymerization was detected for 2mM concentration of "metavanadate" solution that contains ortho and metavanadate species, as observed by combining kinetic with (51)V NMR spectroscopy studies. Although at 25 degrees C, decameric vanadate (10 microM) is unstable in the assay medium, and decomposes following a first-order kinetic, in the presence of G-actin (up to 8 microM), the half-life increases 5-fold (from 5 to 27 h). However, the addition of ATP (0.2mM) in the medium not only prevents the inhibition of G-actin polymerization by V10 but it also decreases the half-life of decomposition of decameric vanadate species from 27 to 10h. Decameric vanadate is also stabilized by the sarcoplasmic reticulum vesicles, which raise the half-life time from 5 to 18h whereas no effects were observed in the presence of phosphatidylcholine liposomes, myosin or G-actin alone. It is proposed that the "decavanadate" interaction with G-actin, favored by the G-actin polymerization, stabilizes decameric vanadate species and induces inhibition of G-actin polymerization. Decameric vanadate stabilization by cytoskeletal and transmembrane proteins can account, at least in part, for decavanadate toxicity reported in the evaluation of vanadium (V) effects in biological systems.

  11. The Effect of Ultrasound Stimulation on the Cytoskeletal Organization of Chondrocytes Seeded In 3D Matrices

    PubMed Central

    Noriega, Sandra; Hasanova, Gulnara; Subramanian, Anuradha

    2013-01-01

    The impact of low intensity diffuse ultrasound (LIDUS) stimulation on the cytoskeletal organization of chondrocytes seeded in 3D scaffolds was evaluated. Chondrocytes seeded on 3D chitosan matrices were exposed to LIDUS at 5.0 MHz (~15kPa, 51-secs, 4-applications/day) in order to study the organization of actin, tubulin and vimentin. The results showed that actin presented a cytosolic punctuated distribution, tubulin presented a quasi parallel organization of microtubules whereas vimentin distribution was unaffected. Chondrocytes seeded on 3D scaffolds responded to US stimulation by the disruption of actin stress fibers and were sensitive to the presence of ROCK inhibitor (Y27632). The gene expression of ROCK-I, a key element in the formation of stress fibers and mDia1, was significantly up-regulated under the application of US. We conclude that the results of both the cytoskeletal analyses and gene expression support the argument that the presence of punctuated actin upon US stimulation was accompanied by the up-regulation of the RhoA/ROCK pathway. PMID:22987069

  12. Structural Evidence for Actin-like Filaments in Toxoplasma gondii Using High-Resolution Low-Voltage Field Emission Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Schatten, Heide; Sibley, L. David; Ris, Hans

    2003-08-01

    The protozoan parasite Toxoplasma gondii is representative of a large group of parasites within the phylum Apicomplexa, which share a highly unusual motility system that is crucial for locomotion and active host cell invasion. Despite the importance of motility in the pathology of these unicellular organisms, the motor mechanisms for locomotion remain uncertain, largely because only limited data exist about composition and organization of the cytoskeleton. By using cytoskeleton stabilizing protocols on membrane-extracted parasites and novel imaging with high-resolution low-voltage field emission scanning electron microscopy (LVFESEM), we were able to visualize for the first time a network of actin-sized filaments just below the cell membrane. A complex cytoskeletal network remained after removing the actin-sized fibers with cytochalasin D, revealing longitudinally arranged, subpellicular microtubules and intermediate-sized fibers of 10 nm, which, in stereo images, are seen both above and below the microtubules. These approaches open new possibilities to characterize more fully the largely unexplored and unconventional cytoskeletal motility complex in apicomplexan parasites.

  13. Viral infectivity and intracellular distribution of matrix (M) protein of canine distemper virus are affected by actin filaments.

    PubMed

    Klauschies, F; Gützkow, T; Hinkelmann, S; von Messling, V; Vaske, B; Herrler, G; Haas, L

    2010-09-01

    To investigate the role of cytoskeletal components in canine distemper virus (CDV) replication, various agents were used that interfere with turnover of actin filaments and microtubules. Only inhibition of actin filaments significantly reduced viral infectivity. Analysis of the intracellular localization of the viral matrix (M) protein revealed that it aligned along actin filaments. Treatment with actin filament-disrupting drugs led to a marked intracellular redistribution of M protein during infection as well as transfection. In contrast, the localization of the CDV fusion (F) protein was not significantly changed during transfection. Thus, a M protein-actin filament interaction appears to be important for generation of infectious CDV.

  14. Structural polymorphism of the actin-espin system: a prototypical system of filaments and linkers in stereocilia.

    PubMed

    Purdy, Kirstin R; Bartles, James R; Wong, Gerard C L

    2007-02-02

    We examine the interaction between cytoskeletal F-actin and espin 3A, a prototypical actin bundling protein found in sensory cell microvilli, including ear cell stereocilia. Espin induces twist distortions in F-actin as well as facilitates bundle formation. Mutations in one of the two F-actin binding sites of espin, which have been implicated in deafness, can tune espin-actin interactions and radically transform the system's phase behavior. These results are compared to recent theoretical work on the general phase behavior linker-rod systems.

  15. Structural Polymorphism of the Actin-Espin System: A Prototypical System of Filaments and Linkers in Stereocilia

    NASA Astrophysics Data System (ADS)

    Purdy, Kirstin R.; Bartles, James R.; Wong, Gerard C. L.

    2007-02-01

    We examine the interaction between cytoskeletal F-actin and espin 3A, a prototypical actin bundling protein found in sensory cell microvilli, including ear cell stereocilia. Espin induces twist distortions in F-actin as well as facilitates bundle formation. Mutations in one of the two F-actin binding sites of espin, which have been implicated in deafness, can tune espin-actin interactions and radically transform the system’s phase behavior. These results are compared to recent theoretical work on the general phase behavior linker-rod systems.

  16. Structural Polymorphism of the Actin-Espin System: A Prototypical System of Filaments and Linkers in Stereocilia

    SciTech Connect

    Purdy, Kirstin R.; Wong, Gerard C. L.; Bartles, James R.

    2007-02-02

    We examine the interaction between cytoskeletal F-actin and espin 3A, a prototypical actin bundling protein found in sensory cell microvilli, including ear cell stereocilia. Espin induces twist distortions in F-actin as well as facilitates bundle formation. Mutations in one of the two F-actin binding sites of espin, which have been implicated in deafness, can tune espin-actin interactions and radically transform the system's phase behavior. These results are compared to recent theoretical work on the general phase behavior linker-rod systems.

  17. Cytoskeletal Regulation of Inflammation and Its Impact on Skin Blistering Disease Epidermolysis Bullosa Acquisita

    PubMed Central

    Kopecki, Zlatko; Ludwig, Ralf J.; Cowin, Allison J.

    2016-01-01

    Actin remodelling proteins regulate cytoskeletal cell responses and are important in both innate and adaptive immunity. These responses play a major role in providing a fine balance in a cascade of biological events that results in either protective acute inflammation or chronic inflammation that leads to a host of diseases including autoimmune inflammation mediated epidermolysis bullosa acquisita (EBA). This review describes the role of the actin cytoskeleton and in particular the actin remodelling protein called Flightless I (Flii) in regulating cellular inflammatory responses and its subsequent effect on the autoimmune skin blistering disease EBA. It also outlines the potential of an antibody based therapy for decreasing Flii expression in vivo to ameliorate the symptoms associated with EBA. PMID:27420054

  18. TREK-1 Regulates Cytokine Secretion from Cultured Human Alveolar Epithelial Cells Independently of Cytoskeletal Rearrangements

    PubMed Central

    Schwingshackl, Andreas; Roan, Esra; Teng, Bin; Waters, Christopher M.

    2015-01-01

    Background TREK-1 deficient alveolar epithelial cells (AECs) secrete less IL-6, more MCP-1, and contain less F-actin. Whether these alterations in cytokine secretion and F-actin content are related remains unknown. We now hypothesized that cytokine secretion from TREK-1-deficient AECs was regulated by cytoskeletal rearrangements. Methods We determined F-actin and α-tubulin contents of control, TREK-1-deficient and TREK-1-overexpressing human A549 cells by confocal microscopy and western blotting, and measured IL-6 and MCP-1 levels using real-time PCR and ELISA. Results Cytochalasin D decreased the F-actin content of control cells. Jasplakinolide increased the F-actin content of TREK-1 deficient cells, similar to the effect of TREK-1 overexpression in control cells. Treatment of control and TREK-1 deficient cells with TNF-α, a strong stimulus for IL-6 and MCP-1 secretion, had no effect on F-actin structures. The combination of TNF-α+cytochalasin D or TNF-α+jasplakinolide had no additional effect on the F-actin content or architecture when compared to cytochalasin D or jasplakinolide alone. Although TREK-1 deficient AECs contained less F-actin at baseline, quantified biochemically, they contained more α-tubulin. Exposure to nocodazole disrupted α-tubulin filaments in control and TREK-1 deficient cells, but left the overall amount of α-tubulin unchanged. Although TNF-α had no effect on the F-actin or α-tubulin contents, it increased IL-6 and MCP-1 production and secretion from control and TREK-1 deficient cells. IL-6 and MCP-1 secretions from control and TREK-1 deficient cells after TNF-α+jasplakinolide or TNF-α+nocodazole treatment was similar to the effect of TNF-α alone. Interestingly, cytochalasin D decreased TNF-α-induced IL-6 but not MCP-1 secretion from control but not TREK-1 deficient cells. Conclusion Although cytochalasin D, jasplakinolide and nocodazole altered the F-actin and α-tubulin structures of control and TREK-1 deficient AEC, the

  19. Actin Age Orchestrates Myosin-5 and Myosin-6 Runlengths

    PubMed Central

    Zimmermann, Dennis; Santos, Alicja; Kovar, David R.; Rock, Ronald S.

    2015-01-01

    Summary Unlike a static and immobile skeleton, the actin cytoskeleton is a highly dynamic network of filamentous actin (F-actin) polymers that continuously turn over. In addition to generating mechanical forces and sensing mechanical deformation, dynamic F-actin networks serve as cellular tracks for myosin motor traffic. However, much of our mechanistic understanding of processive myosins comes from in vitro studies where motility was studied on pre-assembled and artificially stabilized, static F-actin tracks. In this work, we examine the role of actin dynamics in single-molecule myosin motility using assembling F-actin and the two highly processive motors, myosin-5 and myosin-6. These two myosins have distinct functions in the cell and travel in opposite directions along actin filaments [1–3]. Myosin-5 walks towards the barbed ends of F-actin, traveling to sites of actin polymerization at the cell periphery [4]. Myosin-6 walks towards the pointed end of F-actin [5], traveling towards the cell center along older segments of the actin filament. We find that myosin-5 takes 1.3 to 1.5-fold longer runs on ADP•Pi (young) F-actin, while myosin-6 takes 1.7 to 3.6-fold longer runs along ADP (old) F-actin. These results suggest that conformational differences between ADP•Pi and ADP F-actin tailor these myosins to walk farther toward their preferred actin filament end. Taken together, these experiments define a new mechanism by which myosin traffic may sort to different F-actin networks depending on filament age. PMID:26190073

  20. Mapping cytoskeletal protein function in cells by means of nanobodies.

    PubMed

    Van Audenhove, Isabel; Van Impe, Katrien; Ruano-Gallego, David; De Clercq, Sarah; De Muynck, Kevin; Vanloo, Berlinda; Verstraete, Hanne; Fernández, Luis Á; Gettemans, Jan

    2013-10-01

    Nanobodies or VHHs are single domain antigen binding fragments derived from heavy-chain antibodies naturally occurring in species of the Camelidae. Due to their ease of cloning, high solubility and intrinsic stability, they can be produced at low cost. Their small size, combined with high affinity and antigen specificity, enables recognition of a broad range of structural (undruggable) proteins and enzymes alike. Focusing on two actin binding proteins, gelsolin and CapG, we summarize a general protocol for the generation, cloning and production of nanobodies. Furthermore, we describe multiple ways to characterize antigen-nanobody binding in more detail and we shed light on some applications with recombinant nanobodies. The use of nanobodies as intrabodies is clarified through several case studies revealing new cytoskeletal protein properties and testifying to the utility of nanobodies as intracellular bona fide protein inhibitors. Moreover, as nanobodies can traverse the plasma membrane of eukaryotic cells by means of the enteropathogenic E. coli type III protein secretion system, we show that in this promising way of nanobody delivery, actin pedestal formation can be affected following nanobody injection.

  1. Cytoskeletal Modulation of Lipid Interactions Regulates Lck Kinase Activity*

    PubMed Central

    Chichili, Gurunadh R.; Cail, Robert C.; Rodgers, William

    2012-01-01

    The actin cytoskeleton promotes clustering of proteins associated with cholesterol-dependent rafts, but its effect on lipid interactions that form and maintain rafts is not understood. We addressed this question by determining the effect of disrupting the cytoskeleton on co-clustering of dihexadecyl-(C16)-anchored DiO and DiI, which co-enrich in ordered lipid environments such as rafts. Co-clustering was assayed by fluorescence resonance energy transfer (FRET) in labeled T cells, where rafts function in the phosphoregulation of the Src family kinase Lck. Our results show that probe co-clustering was sensitive to depolymerization of actin filaments with latrunculin B (Lat B), inhibition of myosin II with blebbistatin, and treatment with neomycin to sequester phosphatidylinositol 4,5-bisphosphate. Cytoskeletal effects on lipid interactions were not restricted to order-preferring label because co-clustering of C16-anchored DiO with didodecyl (C12)-anchored DiI, which favors disordered lipids, was also reduced by Lat B and blebbistatin. Furthermore, conditions that disrupted probe co-clustering resulted in activation of Lck. These data show that the cytoskeleton globally modulates lipid interactions in the plasma membrane, and this property maintains rafts that function in Lck regulation. PMID:22613726

  2. Cooperativity and Frustration in Protein-Mediated Parallel Actin Bundles

    NASA Astrophysics Data System (ADS)

    Shin, Homin; Drew, Kirstin R. Purdy; Bartles, James R.; Wong, Gerard C. L.; Grason, Gregory M.

    2009-12-01

    We examine the mechanism of bundling of cytoskeletal actin filaments by two representative bundling proteins, fascin and espin. Small-angle x-ray studies show that increased binding from linkers drives a systematic overtwist of actin filaments from their native state, which occurs in a linker-dependent fashion. Fascin bundles actin into a continuous spectrum of intermediate twist states, while espin only allows for untwisted actin filaments and fully overtwisted bundles. Based on a coarse-grained, statistical model of protein binding, we show that the interplay between binding geometry and the intrinsic flexibility of linkers mediates cooperative binding in the bundle. We attribute the respective continuous (discontinuous) bundling mechanisms of fascin (espin) to difference in the stiffness of linker bonds themselves.

  3. Intracellular calcium rise is not a necessary step for the stimulated actin polymerization

    SciTech Connect

    Yassin, R.

    1986-03-01

    Stimulation of rabbit peritoneal neutrophils by many chemotactic (formyl Methionyl-Leucyl-Phenylalanine (fMLP), Leukotriene B/sub 4/ (LTB/sub 4/)) and non-chemotactic (phorbol 12-myristate, 13-acetate (PMA), platelet activating factor (PAF), and the calcium ionophore A23187) factors produces rapid and dose dependent increases in the amount of actin associated with the cytoskeleton. The stimulated increase in cytoskeletal actin does not appear to require a rise in the intracellular concentration of free calcium. The increase in cytoskeletal actin produced by A23187 is transient and does not depend on the presence of calcium in the suspending medium. In the presence of extracellular calcium, the effect of the ionophore is biphasic with respect to concentration. The increases in actin association with cytoskeletal produced by fMLP, LTB/sub 4/, and A23187 but not by PMA, are inhibited by hyperosmolarity and pertussis toxin pretreatment. On the other hand, the addition of hyperosmolarity or pertussis toxin has small effect on the rise in the intracellular calcium produced by A23187. The results presented here suggest that an increase in the intracellular concentration of free calcium is not necessary for the stimulated increases in cytoskeletal actin.

  4. Myosin 1b promotes the formation of post-Golgi carriers by regulating actin assembly and membrane remodelling at the trans-Golgi network.

    PubMed

    Almeida, Claudia G; Yamada, Ayako; Tenza, Danièle; Louvard, Daniel; Raposo, Graça; Coudrier, Evelyne

    2011-06-12

    The function of organelles is intimately associated with rapid changes in membrane shape. By exerting force on membranes, the cytoskeleton and its associated motors have an important role in membrane remodelling. Actin and myosin 1 have been implicated in the invagination of the plasma membrane during endocytosis. However, whether myosin 1 and actin contribute to the membrane deformation that gives rise to the formation of post-Golgi carriers is unknown. Here we report that myosin 1b regulates the actin-dependent post-Golgi traffic of cargo, generates force that controls the assembly of F-actin foci and, together with the actin cytoskeleton, promotes the formation of tubules at the TGN. Our results provide evidence that actin and myosin 1 regulate organelle shape and uncover an important function for myosin 1b in the initiation of post-Golgi carrier formation by regulating actin assembly and remodelling TGN membranes.

  5. The interaction network of the chaperonin CCT.

    PubMed

    Dekker, Carien; Stirling, Peter C; McCormack, Elizabeth A; Filmore, Heather; Paul, Angela; Brost, Renee L; Costanzo, Michael; Boone, Charles; Leroux, Michel R; Willison, Keith R

    2008-07-09

    The eukaryotic cytosolic chaperonin containing TCP-1 (CCT) has an important function in maintaining cellular homoeostasis by assisting the folding of many proteins, including the cytoskeletal components actin and tubulin. Yet the nature of the proteins and cellular pathways dependent on CCT function has not been established globally. Here, we use proteomic and genomic approaches to define CCT interaction networks involving 136 proteins/genes that include links to the nuclear pore complex, chromatin remodelling, and protein degradation. Our study also identifies a third eukaryotic cytoskeletal system connected with CCT: the septin ring complex, which is essential for cytokinesis. CCT interactions with septins are ATP dependent, and disrupting the function of the chaperonin in yeast leads to loss of CCT-septin interaction and aberrant septin ring assembly. Our results therefore provide a rich framework for understanding the function of CCT in several essential cellular processes, including epigenetics and cell division.

  6. Local cytoskeletal and organelle interactions impact molecular motor-driven early endosomal trafficking

    PubMed Central

    Zajac, Allison L.; Goldman, Yale E.; Holzbaur, Erika L.F.; Ostap, E. Michael

    2013-01-01

    SUMMARY Background In the intracellular environment, motor-driven cargo must navigate a dense cytoskeletal network among abundant organelles. Results We investigated the effects of the crowded intracellular environment on early endosomal trafficking. Live-cell imaging of an endosomal cargo (endocytosed epidermal growth factor-conjugated quantum dots) combined with high-resolution tracking was used to analyze the heterogeneous motion of individual endosomes. The motile population of endosomes moved towards the perinuclear region in directed bursts of microtubule-based, dynein-dependent transport interrupted by longer periods of diffusive motion. Actin network density did not affect motile endosomes during directed runs or diffusive interruptions. Simultaneous two-color imaging was used to correlate changes in endosomal movement with potential obstacles to directed runs. Termination of directed runs spatially correlated with microtubule-dense regions, encounters with other endosomes, and interactions with the endoplasmic reticulum. During a subset of run terminations, we also observed merging and splitting of endosomes, deformation of the endoplasmic reticulum, and directional reversals at speeds up to ten-fold greater than characteristic in vitro motor velocities. These observations suggest endosomal membrane tension is high during directed run termination. Conclusions Our results indicate that the crowded cellular environment significantly impacts the motor-driven motility of organelles. Rather than simply acting as impediments to movement, interactions of trafficking cargos with intracellular obstacles may facilitate communication between membrane-bound compartments or contribute to the generation of membrane tension necessary for fusion and fission of endosomal membranes or remodeling of the endoplasmic reticulum. PMID:23770188

  7. Widespread mRNA Association with Cytoskeletal Motor Proteins and Identification and Dynamics of Myosin-Associated mRNAs in S. cerevisiae

    PubMed Central

    Casolari, Jason M.; Thompson, Michael A.; Salzman, Julia; Champion, Lowry M.; Moerner, W. E.; Brown, Patrick O.

    2012-01-01

    Programmed mRNA localization to specific subcellular compartments for localized translation is a fundamental mechanism of post-transcriptional regulation that affects many, and possibly all, mRNAs in eukaryotes. We describe her e a systematic approach to identify the RNA cargoes associated with the cytoskeletal motor proteins of Saccharomyces cerevisiae in combination with live-cell 3D super-localization microscopy of endogenously tagged mRNAs. Our analysis identified widespread association of mRNAs with cytoskeletal motor proteins, including association of Myo3 with mRNAs encoding key regulators of actin branching and endocytosis such as WASP and WIP. Using conventional fluorescence microscopy and expression of MS2-tagged mRNAs from endogenous loci, we observed a strong bias for actin patch nucleator mRNAs to localize to the cell cortex and the actin patch in a Myo3- and F-actin dependent manner. Use of a double-helix point spread function (DH-PSF) microscope allowed super-localization measurements of single mRNPs at a spatial precision of 25 nm in x and y and 50 nm in z in live cells with 50 ms exposure times, allowing quantitative profiling of mRNP dynamics. The actin patch mRNA exhibited distinct and characteristic diffusion coefficients when compared to a control mRNA. In addition, disruption of F-actin significantly expanded the 3D confinement radius of an actin patch nucleator mRNA, providing a quantitative assessment of the contribution of the actin cytoskeleton to mRNP dynamic localization. Our results provide evidence for specific association of mRNAs with cytoskeletal motor proteins in yeast, suggest that different mRNPs have distinct and characteristic dynamics, and lend insight into the mechanism of actin patch nucleator mRNA localization to actin patches. PMID:22359641

  8. The Maternal-to-Zygotic Transition Targets Actin to Promote Robustness during Morphogenesis

    PubMed Central

    Zheng, Liuliu; Sepúlveda, Leonardo A.; Lua, Rhonald C.; Lichtarge, Olivier; Golding, Ido; Sokac, Anna Marie

    2013-01-01

    Robustness is a property built into biological systems to ensure stereotypical outcomes despite fluctuating inputs from gene dosage, biochemical noise, and the environment. During development, robustness safeguards embryos against structural and functional defects. Yet, our understanding of how robustness is achieved in embryos is limited. While much attention has been paid to the role of gene and signaling networks in promoting robust cell fate determination, little has been done to rigorously assay how mechanical processes like morphogenesis are designed to buffer against variable conditions. Here we show that the cell shape changes that drive morphogenesis can be made robust by mechanisms targeting the actin cytoskeleton. We identified two novel members of the Vinculin/α-Catenin Superfamily that work together to promote robustness during Drosophila cellularization, the dramatic tissue-building event that generates the primary epithelium of the embryo. We find that zygotically-expressed Serendipity-α (Sry-α) and maternally-loaded Spitting Image (Spt) share a redundant, actin-regulating activity during cellularization. Spt alone is sufficient for cellularization at an optimal temperature, but both Spt plus Sry-α are required at high temperature and when actin assembly is compromised by genetic perturbation. Our results offer a clear example of how the maternal and zygotic genomes interact to promote the robustness of early developmental events. Specifically, the Spt and Sry-α collaboration is informative when it comes to genes that show both a maternal and zygotic requirement during a given morphogenetic process. For the cellularization of Drosophilids, Sry-α and its expression profile may represent a genetic adaptive trait with the sole purpose of making this extreme event more reliable. Since all morphogenesis depends on cytoskeletal remodeling, both in embryos and adults, we suggest that robustness-promoting mechanisms aimed at actin could be effective at

  9. GPCRs and actin-cytoskeleton dynamics.

    PubMed

    Vázquez-Victorio, Genaro; González-Espinosa, Claudia; Espinosa-Riquer, Zyanya P; Macías-Silva, Marina

    2016-01-01

    A multitude of physiological processes regulated by G protein-coupled receptors (GPCRs) signaling are accomplished by the participation of active rearrangements of the cytoskeleton. In general, it is common that a cross talk occurs among networks of microfilaments, microtubules, and intermediate filaments in order to reach specific cell responses. In particular, actin-cytoskeleton dynamics regulate processes such as cell shape, cell division, cell motility, and cell polarization, among others. This chapter describes the current knowledge about the regulation of actin-cytoskeleton dynamic by diverse GPCR signaling pathways, and also includes some protocols combining immunofluorescence and confocal microscopy for the visualization of the different rearrangements of the actin-cytoskeleton. We report how both the S1P-GPCR/G12/13/Rho/ROCK and glucagon-GPCR/Gs/cAMP axes induce differential actin-cytoskeleton rearrangements in epithelial cells. We also show that specific actin-binding molecules, like phalloidin and LifeAct, are very useful to analyze F-actin reorganization by confocal microscopy, and also that both molecules show similar results in fixed cells, whereas the anti-actin antibody is useful to detect both the G- and F-actin, as well as their compartmentalization. Thus, it is highly recommended to utilize different approaches to investigate the regulation of actin dynamics by GPCR signaling, with the aim to get a better picture of the phenomenon under study.

  10. Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac myocytes

    PubMed Central

    Lee, Hyungsuk; Adams, William J; Alford, Patrick W; McCain, Megan L; Feinberg, Adam W; Sheehy, Sean P; Goss, Josue A

    2015-01-01

    Mechanical stresses on the myocyte nucleus have been associated with several diseases and potentially transduce mechanical stimuli into cellular responses. Although a number of physical links between the nuclear envelope and cytoplasmic filaments have been identified, previous studies have focused on the mechanical properties of individual components of the nucleus, such as the nuclear envelope and lamin network. The mechanical interaction between the cytoskeleton and chromatin on nuclear deformability remains elusive. Here, we investigated how cytoskeletal and chromatin structures influence nuclear mechanics in cardiac myocytes. Rapid decondensation of chromatin and rupture of the nuclear membrane caused a sudden expansion of DNA, a consequence of prestress exerted on the nucleus. To characterize the prestress exerted on the nucleus, we measured the shape and the stiffness of isolated nuclei and nuclei in living myocytes during disruption of cytoskeletal, myofibrillar, and chromatin structure. We found that the nucleus in myocytes is subject to both tensional and compressional prestress and its deformability is determined by a balance of those opposing forces. By developing a computational model of the prestressed nucleus, we showed that cytoskeletal and chromatin prestresses create vulnerability in the nuclear envelope. Our studies suggest the cytoskeletal–nuclear–chromatin interconnectivity may play an important role in mechanics of myocyte contraction and in the development of laminopathies by lamin mutations. PMID:25908635

  11. Boolean gates on actin filaments

    NASA Astrophysics Data System (ADS)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  12. Interplay between cytoskeletal polymerization and the chondrogenic phenotype in chondrocytes passaged in monolayer culture.

    PubMed

    Parreno, Justin; Nabavi Niaki, Mortah; Andrejevic, Katarina; Jiang, Amy; Wu, Po-Han; Kandel, Rita A

    2017-02-01

    Tubulin and actin exist as monomeric units that polymerize to form either microtubules or filamentous actin. As the polymerization status (monomeric/polymeric ratio) of tubulin and/or actin have been shown to be important in regulating gene expression and phenotype in non-chondrocyte cells, the objective of this study was to examine the role of cytoskeletal polymerization on the chondrocyte phenotype. We hypothesized that actin and/or tubulin polymerization status modulates the chondrocyte phenotype during monolayer culture as well as in 3D culture during redifferentiation. To test this hypothesis, articular chondrocytes were grown and passaged in 2D monolayer culture. Cell phenotype was investigated by assessing cell morphology (area and circularity), actin/tubulin content, organization and polymerization status, as well as by determination of proliferation, fibroblast and cartilage matrix gene expression with passage number. Bovine chondrocytes became larger, more elongated, and had significantly (P < 0.05) increased gene expression of proliferation-associated molecules (cyclin D1 and ki67), as well as significantly (P < 0.05) decreased cartilage matrix (type II collagen and aggrecan) and increased fibroblast-like matrix, type I collagen (COL1), gene expression by passage 2 (P2). Although tubulin polymerization status was not significantly (P > 0.05) modulated, actin polymerization was increased in bovine P2 cells. Actin depolymerization, but not tubulin depolymerization, promoted the chondrocyte phenotype by inducing cell rounding, increasing aggrecan and reducing COL1 expression. Knockdown of actin depolymerization factor, cofilin, in these cells induced further P2 cell actin polymerization and increased COL1 gene expression. To confirm that actin status regulated COL1 gene expression in human P2 chondrocytes, human P2 chondrocytes were exposed to cytochalasin D. Cytochalasin D decreased COL1 gene expression in human passaged chondrocytes. Furthermore

  13. Connective Tissue Growth Factor in Regulation of RhoA Mediated Cytoskeletal Tension Associated Osteogenesis of Mouse Adipose-Derived Stromal Cells

    PubMed Central

    Xu, Yue; Wagner, Diane R.; Bekerman, Elena; Chiou, Michael; James, Aaron W.; Carter, Dennis; Longaker, Michael T.

    2010-01-01

    Background Cytoskeletal tension is an intracellular mechanism through which cells convert a mechanical signal into a biochemical response, including production of cytokines and activation of various signaling pathways. Methods/Principal Findings Adipose-derived stromal cells (ASCs) were allowed to spread into large cells by seeding them at a low-density (1,250 cells/cm2), which was observed to induce osteogenesis. Conversely, ASCs seeded at a high-density (25,000 cells/cm2) featured small cells that promoted adipogenesis. RhoA and actin filaments were altered by changes in cell size. Blocking actin polymerization by Cytochalasin D influenced cytoskeletal tension and differentiation of ASCs. To understand the potential regulatory mechanisms leading to actin cytoskeletal tension, cDNA microarray was performed on large and small ASCs. Connective tissue growth factor (CTGF) was identified as a major regulator of osteogenesis associated with RhoA mediated cytoskeletal tension. Subsequently, knock-down of CTGF by siRNA in ASCs inhibited this osteogenesis. Conclusions/Significance We conclude that CTGF is important in the regulation of cytoskeletal tension mediated ASC osteogenic differentiation. PMID:20585662

  14. Capture of microtubule plus-ends at the actin cortex promotes axophilic neuronal migration by enhancing microtubule tension in the leading process

    PubMed Central

    Hutchins, B. Ian; Wray, Susan

    2014-01-01

    Microtubules are a critical part of neuronal polarity and leading process extension, thus microtubule movement plays an important role in neuronal migration. However, the dynamics of microtubules during the forward movement of the nucleus into the leading process (nucleokinesis) is unclear and may be dependent on the cell type and mode of migration used. In particular, little is known about cytoskeletal changes during axophilic migration, commonly used in anteroposterior neuronal migration. We recently showed that leading process actin flow in migrating GnRH neurons is controlled by a signaling cascade involving IP3 receptors, CaMKK, AMPK, and RhoA. In the present study, microtubule dynamics were examined in GnRH neurons. Failure of the migration of these cells leads to the neuroendocrine disorder Kallmann Syndrome. Microtubules translocated forward along the leading process shaft during migration, but reversed direction and moved toward the nucleus when migration stalled. Blocking calcium release through IP3 receptors halted migration and induced the same reversal of microtubule translocation, while blocking cortical actin flow prevented microtubules from translocating toward the distal leading process. Super-resolution imaging revealed that microtubule plus-end tips are captured at the actin cortex through calcium-dependent mechanisms. This work shows that cortical actin flow draws the microtubule network forward through calcium-dependent capture in order to promote nucleokinesis, revealing a novel mechanism engaged by migrating neurons to facilitate movement. PMID:25505874

  15. Contribution of rearranged actin structures to the spread of Ectromelia virus infection in vitro.

    PubMed

    Boratynska, A; Martyniszyn, L; Szulc, L; Krzyzowska, M; Szczepanowska, J; Niemialtowski, M G

    2010-01-01

    We describe here a contribution of virus-induced actin tails and filopodia in transmission of Ectromelia virus (ECTV) infection in permissive cells detected by the immunofluorescence and confocal microscopy. Immunoblot analysis revealed profoundly decreased beta-actin levels during ECTV replicative cycle in the infected cells 24 hrs post infection (p.i.). These results provided a basis for the further analysis of ECTV motion in the infected cells as well as for impact of ECTV infection on the cytoskeletal proteins.

  16. Cytoskeletal dynamics of the teleostean fin ray during fin epimorphic regeneration.

    PubMed

    Santos-Ruiz, Leonor; Santamaría, Jesús Alberto; Becerra, José

    2005-04-01

    Teleost fishes can regenerate their fins by epimorphic regeneration, a process that involves the transition of the formerly quiescent tissues of the stump to an active, growing state. This involves dynamic modifications of cell phenotype and behavior that must rely on alterations of the cytoskeleton. We have studied the spatial and temporal distribution of three main components of the cytoskeleton (actin, keratin and vimentin) in the regenerating fin, in order to establish putative relationships between cell cytoskeleton and cell behavior. According to our results, the massive rearrangement undergone by the epidermis right after injury, which takes place by cell migration, correlates with a transient down-regulation of keratin and a strong up-regulation of actin in the epidermal cells. During the subsequent epidermal growth, based on cell proliferation, keratin normal pattern is recovered while actin is down-regulated, although not to normal (quiescent) levels. The epidermal basal layer in contact with the blastema displays a particular cytoskeletal profile, different to that of the rest of the epidermal cells, which reflects its special features. In the connective tissue compartment, somatic cells do not contain vimentin, but keratin, as intermediate filament. Proliferative and migrative activation of these cells after injury correlates with actin up-regulation. Although this initial activation does not involve keratin down-regulation, blastemal cells were later observed to lack keratin, suggesting that such cytoskeletal modification might be needed for connective tissue cells to dedifferentiate and form the blastema. Cell differentiation in the newly formed, regenerated ray is accompanied by actin down-regulation and keratin up-regulation.

  17. A role for actin polymerization in persistent pulmonary hypertension of the newborn.

    PubMed

    Fediuk, Jena; Dakshinamurti, Shyamala

    2015-03-01

    Persistent pulmonary hypertension of the newborn (PPHN) is defined as the failure of normal pulmonary vascular relaxation at birth. Hypoxia is known to impede postnatal disassembly of the actin cytoskeleton in pulmonary arterial myocytes, resulting in elevation of smooth muscle α-actin and γ-actin content in elastic and resistance pulmonary arteries in PPHN compared with age-matched controls. This review examines the original histological characterization of PPHN with attention to cytoskeletal structural remodeling and actin isoform abundance, reviews the existing evidence for understanding the biophysical and biochemical forces at play during neonatal circulatory transition, and specifically addresses the role of the cortical actin architecture, primarily identified as γ-actin, in the transduction of mechanical force in the hypoxic PPHN pulmonary circuit.

  18. Actin-Regulator Feedback Interactions during Endocytosis

    PubMed Central

    Wang, Xinxin; Galletta, Brian J.; Cooper, John A.; Carlsson, Anders E.

    2016-01-01

    Endocytosis mediated by clathrin, a cellular process by which cells internalize membrane receptors and their extracellular ligands, is an important component of cell signaling regulation. Actin polymerization is involved in endocytosis in varying degrees depending on the cellular context. In yeast, clathrin-mediated endocytosis requires a pulse of polymerized actin and its regulators, which recruit and activate the Arp2/3 complex. In this article, we seek to identify the main protein-protein interactions that 1) cause actin and its regulators to appear in pulses, and 2) determine the effects of key mutations and drug treatments on actin and regulator assembly. We perform a joint modeling/experimental study of actin and regulator dynamics during endocytosis in the budding yeast Saccharomyces cerevisiae. We treat both a stochastic model that grows an explicit three-dimensional actin network, and a simpler two-variable Fitzhugh-Nagumo type model. The models include a negative-feedback interaction of F-actin onto the Arp2/3 regulators. Both models explain the pulse time courses and the effects of interventions on actin polymerization: the surprising increase in the peak F-actin count caused by reduced regulator branching activity, the increase in F-actin resulting from slowing of actin disassembly, and the increased Arp2/3 regulator lifetime resulting from latrunculin treatment. In addition, they predict that decreases in the regulator branching activity lead to increases in accumulation of regulators, and we confirmed this prediction with experiments on yeast harboring mutations in the Arp2/3 regulators, using quantitative fluorescence microscopy. Our experimental measurements suggest that the regulators act quasi-independently, in the sense that accumulation of a particular regulator is most strongly affected by mutations of that regulator, as opposed to the others. PMID:27028652

  19. Dendritic Actin Nucleation Causes Traveling Waves and Patches

    NASA Astrophysics Data System (ADS)

    Carlsson, Anders

    2010-03-01

    Reversible polymerization of the intracellular protein actin into semiflexible filaments is crucial for cell motion and environmental sensing. Recent studies have shown that polymerized actin can spontaneously form traveling waves and/or moving patches. I investigate possible mechanisms for such phenomena by numerically simulating the ``dendritic nucleation'' model of actin network growth. The simulations treat the growth of an actin network on a flat portion of a cell membrane, using a stochastic-growth method which calculates an explicit three-dimensional network structure. The calculations treat processes including filament growth, capping, branching, severing, and Brownian motion. The dynamics of membrane proteins stimulating actin polymerization are also included: they diffuse in the membrane, and detach/deactivate in the presence of polymerized actin. The simulations show three types of polymerized-actin behavior: 1) traveling waves, 2) coherently moving patches, and 3) random fluctuations with occasional moving patches. Wave formation is favored at low free-actin concentrations by a long reattachment time for the membrane proteins, and by weakness of the attractive interaction between filaments and the membrane. Raising the free-actin concentration results in a randomly varying distribution of polymerized actin. Lowering the free-actin concentration below the optimal value for waves causes the waves to break up into patches which, however, move coherently. Effects of similar magnitude are predicted when other intracellular protein concentrations are varied. Diffusion of the membrane proteins slows the waves, and, if fast enough, stops them completely, resulting in the formation of a static spot.

  20. G-actin sequestering protein thymosin-β4 regulates the activity of myocardin-related transcription factor.

    PubMed

    Morita, Tsuyoshi; Hayashi, Ken'ichiro

    2013-08-02

    Myocardin-related transcription factors (MRTFs) are robust coactivators of serum response factor (SRF). MRTFs contain three copies of the RPEL motif at their N-terminus, and they bind to monomeric globular actin (G-actin). Previous studies illustrate that G-actin binding inhibits MRTF activity by preventing the MRTFs nuclear accumulation. In the living cells, the majority of G-actin is sequestered by G-actin binding proteins that prevent spontaneous actin polymerization. Here, we demonstrate that the most abundant G-actin sequestering protein thymosin-β4 (Tβ4) was involved in the regulation of subcellular localization and activity of MRTF-A. Tβ4 competed with MRTF-A for G-actin binding; thus, interfering with G-actin-MRTF-A complex formation. Tβ4 overexpression induced the MRTF-A nuclear accumulation and activation of MRTF-SRF signaling. The activation rate of MRTF-A by the Tβ4 mutant L17A, whose affinity for G-actin is very low, was lower than that by wild-type Tβ4. In contrast, the β-actin mutant 3DA, which has a lower affinity for Tβ4, more effectively suppressed MRTF-A activity than wild-type β-actin. Furthermore, ectopic Tβ4 increased the endogenous expression of SRF-dependent actin cytoskeletal genes. Thus, Tβ4 is an important MRTF regulator that controls the G-actin-MRTFs interaction.

  1. CAS-1, a C. elegans cyclase-associated protein, is required for sarcomeric actin assembly in striated muscle.

    PubMed

    Nomura, Kazumi; Ono, Kanako; Ono, Shoichiro

    2012-09-01

    Assembly of contractile apparatuses in striated muscle requires precisely regulated reorganization of the actin cytoskeletal proteins into sarcomeric organization. Regulation of actin filament dynamics is one of the essential processes of myofibril assembly, but the mechanism of actin regulation in striated muscle is not clearly understood. Actin depolymerizing factor (ADF)/cofilin is a key enhancer of actin filament dynamics in striated muscle in both vertebrates and nematodes. Here, we report that CAS-1, a cyclase-associated protein in Caenorhabditis elegans, promotes ADF/cofilin-dependent actin filament turnover in vitro and is required for sarcomeric actin organization in striated muscle. CAS-1 is predominantly expressed in striated muscle from embryos to adults. In vitro, CAS-1 binds to actin monomers and enhances exchange of actin-bound ATP/ADP even in the presence of UNC-60B, a muscle-specific ADF/cofilin that inhibits the nucleotide exchange. As a result, CAS-1 and UNC-60B cooperatively enhance actin filament turnover. The two proteins also cooperate to shorten actin filaments. A cas-1 mutation is homozygous lethal with defects in sarcomeric actin organization. cas-1-mutant embryos and worms have aggregates of actin in muscle cells, and UNC-60B is mislocalized to the aggregates. These results provide genetic and biochemical evidence that cyclase-associated protein is a critical regulator of sarcomeric actin organization in striated muscle.

  2. The Drosophila javelin Gene Encodes a Novel Actin-Associated Protein Required for Actin Assembly in the Bristle ▿

    PubMed Central

    Shapira, Shira; Bakhrat, Anna; Bitan, Amir; Abdu, Uri

    2011-01-01

    The Drosophila melanogaster bristle is a highly polarized cell that builds specialized cytoskeletal structures. Whereas actin is required for increasing bristle length, microtubules are essential for bristle axial growth. To identify new proteins involved in cytoskeleton organization during bristle development, we focused on identifying and characterizing the javelin (jv) locus. We found that in a jv mutant, the bristle tip is swollen and abnormal organization of bristle grooves is seen over the entire bristle. Using confocal and electron microscopy, we found that in jv mutant bristles, actin bundles do not form properly due to a loss of actin filaments within the bundle. We show that jv is an allele of the predicted CG32397 gene that encodes a protein with no homologs outside insects. Expression of the Jv protein fused to a green fluorescent protein (GFP) shows that the protein is colocalized with actin bundles in the bristle. Moreover, expression of Jv-GFP within the germ line led to the formation of ectopic actin bundles that surround the nucleus of nurse cells. Thus, we report that Jv is a novel actin-associated protein required for actin assembly during Drosophila bristle development. PMID:21930794

  3. The role of cyclase-associated protein in regulating actin filament dynamics - more than a monomer-sequestration factor.

    PubMed

    Ono, Shoichiro

    2013-08-01

    Dynamic reorganization of the actin cytoskeleton is fundamental to a number of cell biological events. A variety of actin-regulatory proteins modulate polymerization and depolymerization of actin and contribute to actin cytoskeletal reorganization. Cyclase-associated protein (CAP) is a conserved actin-monomer-binding protein that has been studied for over 20 years. Early studies have shown that CAP sequesters actin monomers; recent studies, however, have revealed more active roles of CAP in actin filament dynamics. CAP enhances the recharging of actin monomers with ATP antagonistically to ADF/cofilin, and also promotes the severing of actin filaments in cooperation with ADF/cofilin. Self-oligomerization and binding to other proteins regulate activities and localization of CAP. CAP has crucial roles in cell signaling, development, vesicle trafficking, cell migration and muscle sarcomere assembly. This Commentary discusses the recent advances in our understanding of the functions of CAP and its implications as an important regulator of actin cytoskeletal dynamics, which are involved in various cellular activities.

  4. Identification of obscure yet conserved actin-associated proteins in Giardia lamblia.

    PubMed

    Paredez, Alexander R; Nayeri, Arash; Xu, Jennifer W; Krtková, Jana; Cande, W Zacheus

    2014-06-01

    Consistent with its proposed status as an early branching eukaryote, Giardia has the most divergent actin of any eukaryote and lacks core actin regulators. Although conserved actin-binding proteins are missing from Giardia, its actin is utilized similarly to that of other eukaryotes and functions in core cellular processes such as cellular organization, endocytosis, and cytokinesis. We set out to identify actin-binding proteins in Giardia using affinity purification coupled with mass spectroscopy (multidimensional protein identification technology [MudPIT]) and have identified >80 putative actin-binding proteins. Several of these have homology to conserved proteins known to complex with actin for functions in the nucleus and flagella. We validated localization and interaction for seven of these proteins, including 14-3-3, a known cytoskeletal regulator with a controversial relationship to actin. Our results indicate that although Giardia lacks canonical actin-binding proteins, there is a conserved set of actin-interacting proteins that are evolutionarily indispensable and perhaps represent some of the earliest functions of the actin cytoskeleton.

  5. Identification of Obscure yet Conserved Actin-Associated Proteins in Giardia lamblia

    PubMed Central

    Nayeri, Arash; Xu, Jennifer W.; Krtková, Jana; Cande, W. Zacheus

    2014-01-01

    Consistent with its proposed status as an early branching eukaryote, Giardia has the most divergent actin of any eukaryote and lacks core actin regulators. Although conserved actin-binding proteins are missing from Giardia, its actin is utilized similarly to that of other eukaryotes and functions in core cellular processes such as cellular organization, endocytosis, and cytokinesis. We set out to identify actin-binding proteins in Giardia using affinity purification coupled with mass spectroscopy (multidimensional protein identification technology [MudPIT]) and have identified >80 putative actin-binding proteins. Several of these have homology to conserved proteins known to complex with actin for functions in the nucleus and flagella. We validated localization and interaction for seven of these proteins, including 14-3-3, a known cytoskeletal regulator with a controversial relationship to actin. Our results indicate that although Giardia lacks canonical actin-binding proteins, there is a conserved set of actin-interacting proteins that are evolutionarily indispensable and perhaps represent some of the earliest functions of the actin cytoskeleton. PMID:24728194

  6. Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis

    NASA Technical Reports Server (NTRS)

    Ingber, D. E.; Prusty, D.; Sun, Z.; Betensky, H.; Wang, N.

    1995-01-01

    Capillary endothelial cells can be switched between growth and differentiation by altering cell-extracellular matrix interactions and thereby, modulating cell shape. Studies were carried out to determine when cell shape exerts its growth-regulatory influence during cell cycle progression and to explore the role of cytoskeletal structure and mechanics in this control mechanism. When G0-synchronized cells were cultured in basic fibroblast growth factor (FGF)-containing defined medium on dishes coated with increasing densities of fibronectin or a synthetic integrin ligand (RGD-containing peptide), cell spreading, nuclear extension, and DNA synthesis all increased in parallel. To determine the minimum time cells must be adherent and spread on extracellular matrix (ECM) to gain entry into S phase, cells were removed with trypsin or induced to retract using cytochalasin D at different times after plating. Both approaches revealed that cells must remain extended for approximately 12-15 h and hence, most of G1, in order to enter S phase. After this restriction point was passed, normally 'anchorage-dependent' endothelial cells turned on DNA synthesis even when round and in suspension. The importance of actin-containing microfilaments in shape-dependent growth control was confirmed by culturing cells in the presence of cytochalasin D (25-1000 ng ml-1): dose-dependent inhibition of cell spreading, nuclear extension, and DNA synthesis resulted. In contrast, induction of microtubule disassembly using nocodazole had little effect on cell or nuclear spreading and only partially inhibited DNA synthesis. Interestingly, combination of nocodazole with a suboptimal dose of cytochalasin D (100 ng ml-1) resulted in potent inhibition of both spreading and growth, suggesting that microtubules are redundant structural elements which can provide critical load-bearing functions when microfilaments are partially compromised. Similar synergism between nocodazole and cytochalasin D was observed

  7. Distributed actin turnover in the lamellipodium and FRAP kinetics.

    PubMed

    Smith, Matthew B; Kiuchi, Tai; Watanabe, Naoki; Vavylonis, Dimitrios

    2013-01-08

    Studies of actin dynamics at the leading edge of motile cells with single-molecule speckle (SiMS) microscopy have shown a broad distribution of EGFP-actin speckle lifetimes and indicated actin polymerization and depolymerization over an extended region. Other experiments using FRAP with the same EGFP-actin as a probe have suggested, by contrast, that polymerization occurs exclusively at the leading edge. We performed FRAP experiments on XTC cells to compare SiMS to FRAP on the same cell type. We used speckle statistics obtained by SiMS to model the steady-state distribution and kinetics of actin in the lamellipodium. We demonstrate that a model with a single diffuse actin species is in good agreement with FRAP experiments. A model including two species of diffuse actin provides an even better agreement. The second species consists of slowly diffusing oligomers that associate to the F-actin network throughout the lamellipodium or break up into monomers after a characteristic time. Our work motivates studies to test the presence and composition of slowly diffusing actin species that may contribute to local remodeling of the actin network and increase the amount of soluble actin.

  8. The Plasma Membrane Potential and the Organization of the Actin Cytoskeleton of Epithelial Cells

    PubMed Central

    Chifflet, Silvia; Hernández, Julio A.

    2012-01-01

    The establishment and maintenance of the polarized epithelial phenotype require a characteristic organization of the cytoskeletal components. There are many cellular effectors involved in the regulation of the cytoskeleton of epithelial cells. Recently, modifications in the plasma membrane potential (PMP) have been suggested to participate in the modulation of the cytoskeletal organization of epithelia. Here, we review evidence showing that changes in the PMP of diverse epithelial cells promote characteristic modifications in the cytoskeletal organization, with a focus on the actin cytoskeleton. The molecular paths mediating these effects may include voltage-sensitive integral membrane proteins and/or peripheral proteins sensitive to surface potentials. The voltage dependence of the cytoskeletal organization seems to have implications in several physiological processes, including epithelial wound healing and apoptosis. PMID:22315611

  9. Run-and-pause dynamics of cytoskeletal motor proteins

    PubMed Central

    Hafner, Anne E.; Santen, Ludger; Rieger, Heiko; Shaebani, M. Reza

    2016-01-01

    Cytoskeletal motor proteins are involved in major intracellular transport processes which are vital for maintaining appropriate cellular function. When attached to cytoskeletal filaments, the motor exhibits distinct states of motility: active motion along the filaments, and pause phase in which it remains stationary for a finite time interval. The transition probabilities between motion and pause phases are asymmetric in general, and considerably affected by changes in environmental conditions which influences the efficiency of cargo delivery to specific targets. By considering the motion of individual non-interacting molecular motors on a single filament as well as a dynamic filamentous network, we present an analytical model for the dynamics of self-propelled particles which undergo frequent pause phases. The interplay between motor processivity, structural properties of filamentous network, and transition probabilities between the two states of motility drastically changes the dynamics: multiple transitions between different types of anomalous diffusive dynamics occur and the crossover time to the asymptotic diffusive or ballistic motion varies by several orders of magnitude. We map out the phase diagrams in the space of transition probabilities, and address the role of initial conditions of motion on the resulting dynamics. PMID:27849013

  10. Run-and-pause dynamics of cytoskeletal motor proteins

    NASA Astrophysics Data System (ADS)

    Hafner, Anne E.; Santen, Ludger; Rieger, Heiko; Shaebani, M. Reza

    2016-11-01

    Cytoskeletal motor proteins are involved in major intracellular transport processes which are vital for maintaining appropriate cellular function. When attached to cytoskeletal filaments, the motor exhibits distinct states of motility: active motion along the filaments, and pause phase in which it remains stationary for a finite time interval. The transition probabilities between motion and pause phases are asymmetric in general, and considerably affected by changes in environmental conditions which influences the efficiency of cargo delivery to specific targets. By considering the motion of individual non-interacting molecular motors on a single filament as well as a dynamic filamentous network, we present an analytical model for the dynamics of self-propelled particles which undergo frequent pause phases. The interplay between motor processivity, structural properties of filamentous network, and transition probabilities between the two states of motility drastically changes the dynamics: multiple transitions between different types of anomalous diffusive dynamics occur and the crossover time to the asymptotic diffusive or ballistic motion varies by several orders of magnitude. We map out the phase diagrams in the space of transition probabilities, and address the role of initial conditions of motion on the resulting dynamics.

  11. Pharmacological characterization of actin-binding (-)-doliculide.

    PubMed

    Foerster, Florian; Braig, Simone; Chen, Tao; Altmann, Karl-Heinz; Vollmar, Angelika M

    2014-09-15

    Natural compounds offer a broad spectrum of potential drug candidates against human malignancies. Several cytostatic drugs, which are in clinical use for decades, derive directly from natural sources or are synthetically optimized derivatives of natural lead structures. An eukaryote target molecule to which many natural derived anti-cancer drugs bind to is the microtubule network. Of similar importance for the cell is the actin cytoskeleton, responsible for cell movements, migration of cells and cytokinesis. Nature provides also a broad range of compounds directed against actin as intracellular target, but none of these actin-targeting compounds has ever been brought to clinical trials. One reason why actin-binding compounds have not yet been considered for further clinical investigations is that little is known about their pharmacological properties in cancer cells. Herein, we focused on the closer characterization of doliculide, an actin binding natural compound of marine origin in the breast cancer cell lines MCF7 and MDA-MB-231. We used fluorescence-recovery-after-photobleaching (FRAP) analysis to determine doliculide's early effects on the actin cytoskeleton and rhodamin-phalloidin staining for long-term effects on the actin CSK. After validating the disruption of the actin network, we further investigated the functional effects of doliculide. Doliculide treatment leads to inhibition of proliferation and impairs the migratory potential. Finally, we could also show that doliculide leads to the induction of apoptosis in both cell lines. Our data for the first time provide a closer characterization of doliculide in breast cancer cells and propagate doliculide for further investigations as lead structure and potential therapeutic option as actin-targeting compound.

  12. Actomyosin-dependent dynamic spatial patterns of cytoskeletal components drive mesoscale podosome organization

    PubMed Central

    Meddens, Marjolein B. M.; Pandzic, Elvis; Slotman, Johan A.; Guillet, Dominique; Joosten, Ben; Mennens, Svenja; Paardekooper, Laurent M.; Houtsmuller, Adriaan B.; van den Dries, Koen; Wiseman, Paul W.; Cambi, Alessandra

    2016-01-01

    Podosomes are cytoskeletal structures crucial for cell protrusion and matrix remodelling in osteoclasts, activated endothelial cells, macrophages and dendritic cells. In these cells, hundreds of podosomes are spatially organized in diversely shaped clusters. Although we and others established individual podosomes as micron-sized mechanosensing protrusive units, the exact scope and spatiotemporal organization of podosome clustering remain elusive. By integrating a newly developed extension of Spatiotemporal Image Correlation Spectroscopy with novel image analysis, we demonstrate that F-actin, vinculin and talin exhibit directional and correlated flow patterns throughout podosome clusters. Pattern formation and magnitude depend on the cluster actomyosin machinery. Indeed, nanoscopy reveals myosin IIA-decorated actin filaments interconnecting multiple proximal podosomes. Extending well-beyond podosome nearest neighbours, the actomyosin-dependent dynamic spatial patterns reveal a previously unappreciated mesoscale connectivity throughout the podosome clusters. This directional transport and continuous redistribution of podosome components provides a mechanistic explanation of how podosome clusters function as coordinated mechanosensory area. PMID:27721497

  13. A statistically inferred microRNA network identifies breast cancer target miR-940 as an actin cytoskeleton regulator

    NASA Astrophysics Data System (ADS)

    Bhajun, Ricky; Guyon, Laurent; Pitaval, Amandine; Sulpice, Eric; Combe, Stéphanie; Obeid, Patricia; Haguet, Vincent; Ghorbel, Itebeddine; Lajaunie, Christian; Gidrol, Xavier

    2015-02-01

    MiRNAs are key regulators of gene expression. By binding to many genes, they create a complex network of gene co-regulation. Here, using a network-based approach, we identified miRNA hub groups by their close connections and common targets. In one cluster containing three miRNAs, miR-612, miR-661 and miR-940, the annotated functions of the co-regulated genes suggested a role in small GTPase signalling. Although the three members of this cluster targeted the same subset of predicted genes, we showed that their overexpression impacted cell fates differently. miR-661 demonstrated enhanced phosphorylation of myosin II and an increase in cell invasion, indicating a possible oncogenic miRNA. On the contrary, miR-612 and miR-940 inhibit phosphorylation of myosin II and cell invasion. Finally, expression profiling in human breast tissues showed that miR-940 was consistently downregulated in breast cancer tissues

  14. The kinesin-like proteins, KAC1/2, regulate actin dynamics underlying chloroplast light-avoidance in Physcomitrella patens.

    PubMed

    Shen, Zhiyuan; Liu, Yen-Chen; Bibeau, Jeffrey P; Lemoi, Kyle P; Tüzel, Erkan; Vidali, Luis

    2015-01-01

    In plants, light determines chloroplast position; these organelles show avoidance and accumulation responses in high and low fluence-rate light, respectively. Chloroplast motility in response to light is driven by cytoskeletal elements. The actin cytoskeleton mediates chloroplast photorelocation responses in Arabidopsis thaliana. In contrast, in the moss Physcomitrella patens, both, actin filaments and microtubules can transport chloroplasts. Because of the surprising evidence that two kinesin-like proteins (called KACs) are important for actin-dependent chloroplast photorelocation in vascular plants, we wanted to determine the cytoskeletal system responsible for the function of these proteins in moss. We performed gene-specific silencing using RNA interference in P. patens. We confirmed existing reports using gene knockouts, that PpKAC1 and PpKAC2 are required for chloroplast dispersion under uniform white light conditions, and that the two proteins are functionally equivalent. To address the specific cytoskeletal elements responsible for motility, this loss-of-function approach was combined with cytoskeleton-targeted drug studies. We found that, in P. patens, these KACs mediate the chloroplast light-avoidance response in an actin filament-dependent, rather than a microtubule-dependent manner. Using correlation-decay analysis of cytoskeletal dynamics, we found that PpKAC stabilizes cortical actin filaments, but has no effect on microtubule dynamics.

  15. Regulators of Actin Dynamics in Gastrointestinal Tract Tumors

    PubMed Central

    Steinestel, Konrad; Wardelmann, Eva; Hartmann, Wolfgang; Grünewald, Inga

    2015-01-01

    Reorganization of the actin cytoskeleton underlies cell migration in a wide variety of physiological and pathological processes, such as embryonic development, wound healing, and tumor cell invasion. It has been shown that actin assembly and disassembly are precisely regulated by intracellular signaling cascades that respond to changes in the cell microenvironment, ligand binding to surface receptors, or oncogenic transformation of the cell. Actin-nucleating and actin-depolymerizing (ANFs/ADFs) and nucleation-promoting factors (NPFs) regulate cytoskeletal dynamics at the leading edge of migrating cells, thereby modulating cell shape; these proteins facilitate cellular movement and mediate degradation of the surrounding extracellular matrix by secretion of lytic proteases, thus eliminating barriers for tumor cell invasion. Accordingly, expression and activity of these actin-binding proteins have been linked to enhanced metastasis and poor prognosis in a variety of malignancies. In this review, we will summarize what is known about expression patterns and the functional role of actin regulators in gastrointestinal tumors and evaluate first pharmacological approaches to prevent invasion and metastatic dissemination of malignant cells. PMID:26345720

  16. Creating biomolecular motors based on dynein and actin-binding proteins

    NASA Astrophysics Data System (ADS)

    Furuta, Akane; Amino, Misako; Yoshio, Maki; Oiwa, Kazuhiro; Kojima, Hiroaki; Furuta, Ken'ya

    2016-11-01

    Biomolecular motors such as myosin, kinesin and dynein are protein machines that can drive directional movement along cytoskeletal tracks and have the potential to be used as molecule-sized actuators. Although control of the velocity and directionality of biomolecular motors has been achieved, the design and construction of novel biomolecular motors remains a challenge. Here we show that naturally occurring protein building blocks from different cytoskeletal systems can be combined to create a new series of biomolecular motors. We show that the hybrid motors—combinations of a motor core derived from the microtubule-based dynein motor and non-motor actin-binding proteins—robustly drive the sliding movement of an actin filament. Furthermore, the direction of actin movement can be reversed by simply changing the geometric arrangement of these building blocks. Our synthetic strategy provides an approach to fabricating biomolecular machines that work along artificial tracks at nanoscale dimensions.

  17. Confinement induces actin flow in a meiotic cytoplasm

    PubMed Central

    Pinot, Mathieu; Steiner, Villier; Dehapiot, Benoit; Yoo, Byung-Kuk; Chesnel, Franck; Blanchoin, Laurent; Kervrann, Charles; Gueroui, Zoher

    2012-01-01

    In vivo, F-actin flows are observed at different cell life stages and participate in various developmental processes during asymmetric divisions in vertebrate oocytes, cell migration, or wound healing. Here, we show that confinement has a dramatic effect on F-actin spatiotemporal organization. We reconstitute in vitro the spontaneous generation of F-actin flow using Xenopus meiotic extracts artificially confined within a geometry mimicking the cell boundary. Perturbations of actin polymerization kinetics or F-actin nucleation sites strongly modify the network flow dynamics. A combination of quantitative image analysis and biochemical perturbations shows that both spatial localization of F-actin nucleators and actin turnover play a decisive role in generating flow. Interestingly, our in vitro assay recapitulates several symmetry-breaking processes observed in oocytes and early embryonic cells. PMID:22753521

  18. The effect of ultrasound stimulation on the cytoskeletal organization of chondrocytes seeded in three-dimensional matrices.

    PubMed

    Noriega, Sandra; Hasanova, Gulnara; Subramanian, Anuradha

    2013-01-01

    The impact of low-intensity diffuse ultrasound (LIDUS) stimulation on the cytoskeletal organization of chondrocytes seeded in three-dimensional (3D) scaffolds was evaluated. Chondrocytes seeded on 3D chitosan matrices were exposed to LIDUS at 5.0 MHz (approx. 15 kPa, 51 s, 4 applications/day) in order to study the organization of actin, tubulin and vimentin. The results showed that actin presented a punctate cytosolic distribution and tubulin presented a quasiparallel organization of microtubules, whereas vimentin distribution was unaffected. Chondrocytes seeded on 3D scaffolds responded to US stimulation by the disruption of actin stress fibers and were sensitive to the presence of Rho-activated kinase (ROCK) inhibitor (Y27632). The gene expression of ROCK-I, a key element in the formation of stress fibers and mDia1, was significantly upregulated under the application of US. We conclude that the results of both the cytoskeletal analyses and gene expression support the argument that the presence of punctate actin upon US stimulation was accompanied by the upregulation of the RhoA/ROCK pathway.

  19. RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal dynamics.

    PubMed

    Salzer, Elisabeth; Cagdas, Deniz; Hons, Miroslav; Mace, Emily M; Garncarz, Wojciech; Petronczki, Özlem Yüce; Platzer, René; Pfajfer, Laurène; Bilic, Ivan; Ban, Sol A; Willmann, Katharina L; Mukherjee, Malini; Supper, Verena; Hsu, Hsiang Ting; Banerjee, Pinaki P; Sinha, Papiya; McClanahan, Fabienne; Zlabinger, Gerhard J; Pickl, Winfried F; Gribben, John G; Stockinger, Hannes; Bennett, Keiryn L; Huppa, Johannes B; Dupré, Loïc; Sanal, Özden; Jäger, Ulrich; Sixt, Michael; Tezcan, Ilhan; Orange, Jordan S; Boztug, Kaan

    2016-12-01

    RASGRP1 is an important guanine nucleotide exchange factor and activator of the RAS-MAPK pathway following T cell antigen receptor (TCR) signaling. The consequences of RASGRP1 mutations in humans are unknown. In a patient with recurrent bacterial and viral infections, born to healthy consanguineous parents, we used homozygosity mapping and exome sequencing to identify a biallelic stop-gain variant in RASGRP1. This variant segregated perfectly with the disease and has not been reported in genetic databases. RASGRP1 deficiency was associated in T cells and B cells with decreased phosphorylation of the extracellular-signal-regulated serine kinase ERK, which was restored following expression of wild-type RASGRP1. RASGRP1 deficiency also resulted in defective proliferation, activation and motility of T cells and B cells. RASGRP1-deficient natural killer (NK) cells exhibited impaired cytotoxicity with defective granule convergence and actin accumulation. Interaction proteomics identified the dynein light chain DYNLL1 as interacting with RASGRP1, which links RASGRP1 to cytoskeletal dynamics. RASGRP1-deficient cells showed decreased activation of the GTPase RhoA. Treatment with lenalidomide increased RhoA activity and reversed the migration and activation defects of RASGRP1-deficient lymphocytes.

  20. Time-resolved studies of actin organization by multivalent ions and actin-binding proteins

    NASA Astrophysics Data System (ADS)

    Hwee Lai, Ghee; Purdy, Kirstin; Bartles, James R.; Chee Lai Wong, Gerard

    2007-03-01

    Actin is one of the principal components in the eukaryotic cytoskeleton, the architecture of which is highly regulated for a wide range of biological functions. In the presence of multivalent salts or actin-binding proteins, it is known that F-actin can organize into bundles or networks. In this work, we use time-resolved confocal microscopy to study the dynamics of actin bundle growth induced by multivalent ions and by espin, a prototypical actin binding protein that is known to induce bundles. For divalent ion induced bundles, we observe a rapid lateral saturation followed by longitudinal growth of bundles, in sharp contrast to the bundling mechanism of espin, which favors finite length bundles.

  1. The actin cytoskeleton may control the polar distribution of an auxin transport protein

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Hu, S.; Brady, S. R.; Davies, E. (Principal Investigator)

    2000-01-01

    The gravitropic bending of plants has long been linked to the changes in the transport of the plant hormone auxin. To understand the mechanism by which gravity alters auxin movement, it is critical to know how polar auxin transport is initially established. In shoots, polar auxin transport is basipetal (i.e., from the shoot apex toward the base). It is driven by the basal localization of the auxin efflux carrier complex. One mechanism for localizing this efflux carrier complex to the basal membrane may be through attachment to the actin cytoskeleton. The efflux carrier protein complex is believed to consist of several polypeptides, including a regulatory subunit that binds auxin transport inhibitors, such as naphthylphthalamic acid (NPA). Several lines of experimentation have been used to determine if the NPA binding protein interacts with actin filaments. The NPA binding protein has been shown to partition with the actin cytoskeleton during detergent extraction. Agents that specifically alter the polymerization state of the actin cytoskeleton change the amount of NPA binding protein and actin recovered in these cytoskeletal pellets. Actin-affinity columns were prepared with polymers of actin purified from zucchini hypocotyl tissue. NPA binding activity was eluted in a single peak from the actin filament column. Cytochalasin D, which fragments the actin cytoskeleton, was shown to reduce polar auxin transport in zucchini hypocotyls. The interaction of the NPA binding protein with the actin cytoskeleton may localize it in one plane of the plasma membrane, and thereby control the polarity of auxin transport.

  2. Modeling Cytoskeletal Active Matter Systems

    NASA Astrophysics Data System (ADS)

    Blackwell, Robert

    Active networks of filamentous proteins and crosslinking motor proteins play a critical role in many important cellular processes. One of the most important microtubule-motor protein assemblies is the mitotic spindle, a self-organized active liquid-crystalline structure that forms during cell division and that ultimately separates chromosomes into two daughter cells. Although the spindle has been intensively studied for decades, the physical principles that govern its self-organization and function remain mysterious. To evolve a better understanding of spindle formation, structure, and dynamics, I investigate course-grained models of active liquid-crystalline networks composed of microtubules, modeled as hard spherocylinders, in diffusive equilibrium with a reservoir of active crosslinks, modeled as hookean springs that can adsorb to microtubules and and translocate at finite velocity along the microtubule axis. This model is investigated using a combination of brownian dynamics and kinetic monte carlo simulation. I have further refined this model to simulate spindle formation and kinetochore capture in the fission yeast S. pombe. I then make predictions for experimentally realizable perturbations in motor protein presence and function in S. pombe.

  3. Actin-Based Feedback Circuits in Cell Migration and Endocytosis

    NASA Astrophysics Data System (ADS)

    Wang, Xinxin

    In this thesis, we study the switch and pulse functions of actin during two important cellular processes, cell migration and endocytosis. Actin is an abundant protein that can polymerize to form a dendritic network. The actin network can exert force to push or bend the cell membrane. During cell migration, the actin network behaves like a switch, assembling mostly at one end or at the other end. The end with the majority of the actin network is the leading edge, following which the cell can persistently move in the same direction. The other end, with the minority of the actin network, is the trailing edge, which is dragged by the cell as it moves forward. When subjected to large fluctuations or external stimuli, the leading edge and the trailing edge can interchange and change the direction of motion, like a motion switch. Our model of the actin network in a cell reveals that mechanical force is crucial for forming the motion switch. We find a transition from single state symmetric behavior to switch behavior, when tuning parameters such as the force. The model is studied by both stochastic simulations, and a set of rate equations that are consistent with the simulations. Endocytosis is a process by which cells engulf extracellular substances and recycle the cell membrane. In yeast cells, the actin network is transiently needed to overcome the pressure difference across the cell membrane caused by turgor pressure. The actin network behaves like a pulse, which assembles and then disassembles within about 30 seconds. Using a stochastic model, we reproduce the pulse behaviors of the actin network and one of its regulatory proteins, Las17. The model matches green fluorescence protein (GFP) experiments for wild-type cells. The model also predicts some phenotypes that modify or diminish the pulse behavior. The phenotypes are verified with both experiments performed at Washington University and with other groups' experiments. We find that several feedback mechanisms are

  4. Cytoskeletal and functional changes in bioreactor assembled thyroid tissue organoids exposed to gamma radiation

    NASA Technical Reports Server (NTRS)

    Green, Lora M.; Patel, Zarana; Murray, Deborah K.; Rightnar, Steven; Burell, Cheryl G.; Gridley, Daila S.; Nelson, Gregory A.

    2002-01-01

    Fischer rat thyroid cells were grown under low-shear stress in a bioreactor to a stage of organization composed of integrated follicles resembling small thyroid glands prior to exposure to 3 Gray-gamma radiation. Bioreactor tissues and controls (both irradiated and non-irradiated) were harvested at 24, 48, 96 and 144 hours post-exposure. Tissue samples were fixed and fluorescently labeled for actin and microtubules. Tissues were assessed for changes in cytoskeletal components induced by radiation and quantified by laser scanning cytometry. ELISA's were used to quantify transforming growth factor-beta and thyroxin released from cells to the culture supernatant. Tissue architecture was disrupted by exposure to radiation with the structural organization of actin and loss of follicular content the most obviously affected. With time post-irradiation the actin appeared disordered and the levels of fluorescence associated with filamentous-actin and microtubules cycled in the tissue analogs, but not in the flask-grown cultures. Active transforming growth factor-beta was higher in supernatants from the irradiated bioreactor tissue. Thyroxin release paralleled cell survival in the bioreactors and control cultures. Thus, the engineered tissue responses to radiation differed from those of conventional tissue culture making it a potentially better mimic of the in vivo situation.

  5. Oestradiol and progesterone differentially alter cytoskeletal protein expression and flame cell morphology in Taenia crassiceps.

    PubMed

    Ambrosio, Javier R; Ostoa-Saloma, Pedro; Palacios-Arreola, M Isabel; Ruíz-Rosado, Azucena; Sánchez-Orellana, Pedro L; Reynoso-Ducoing, Olivia; Nava-Castro, Karen E; Martínez-Velázquez, Nancy; Escobedo, Galileo; Ibarra-Coronado, Elizabeth G; Valverde-Islas, Laura; Morales-Montor, Jorge

    2014-09-01

    We examined the effects of oestradiol (E2) and progesterone (P4) on cytoskeletal protein expression in the helminth Taenia crassiceps - specifically actin, tubulin and myosin. These proteins assemble into flame cells, which constitute the parasite excretory system. Total protein extracts were obtained from E2- and P4-treated T. crassiceps cysticerci and untreated controls, and analysed by one- and two-dimensional protein electrophoresis, flow cytometry, immunofluorescence and videomicroscopy. Exposure of T. crassiceps cysticerci to E2 and P4 induced differential protein expression patterns compared with untreated controls. Changes in actin, tubulin and myosin expression were confirmed by flow cytometry of parasite cells and immunofluorescence. In addition, parasite morphology was altered in response to E2 and P4 versus controls. Flame cells were primarily affected at the level of the ciliary tuft, in association with the changes in actin, tubulin and myosin. We conclude that oestradiol and progesterone act directly on T. crassiceps cysticerci, altering actin, tubulin and myosin expression and thus affecting the assembly and function of flame cells. Our results increase our understanding of several aspects of the molecular crosstalk between host and parasite, which might be useful in designing anthelmintic drugs that exclusively impair parasitic proteins which mediate cell signaling and pathogenic reproduction and establishment.

  6. A Steric Antagonism of Actin Polymerization by a Salmonella Virulence Protein

    SciTech Connect

    Margarit,S.; Davidson, W.; Frego, L.; Stebbins, F.

    2006-01-01

    Salmonella spp. require the ADP-ribosyltransferase activity of the SpvB protein for intracellular growth and systemic virulence. SpvB covalently modifies actin, causing cytoskeletal disruption and apoptosis. We report here the crystal structure of the catalytic domain of SpvB, and we show by mass spectrometric analysis that SpvB modifies actin at Arg177, inhibiting its ATPase activity. We also describe two crystal structures of SpvB-modified, polymerization-deficient actin. These structures reveal that ADP-ribosylation does not lead to dramatic conformational changes in actin, suggesting a model in which this large family of toxins inhibits actin polymerization primarily through steric disruption of intrafilament contacts.

  7. Coordinated integrin activation by actin-dependent force during T-cell migration.

    PubMed

    Nordenfelt, Pontus; Elliott, Hunter L; Springer, Timothy A

    2016-10-10

    For a cell to move forward it must convert chemical energy into mechanical propulsion. Force produced by actin polymerization can generate traction across the plasma membrane by transmission through integrins to their ligands. However, the role this force plays in integrin activation is unknown. Here we show that integrin activity and cytoskeletal dynamics are reciprocally linked, where actin-dependent force itself appears to regulate integrin activity. We generated fluorescent tension-sensing constructs of integrin αLβ2 (LFA-1) to visualize intramolecular tension during cell migration. Using quantitative imaging of migrating T cells, we correlate tension in the αL or β2 subunit with cell and actin dynamics. We find that actin engagement produces tension within the β2 subunit to induce and stabilize an active integrin conformational state and that this requires intact talin and kindlin motifs. This supports a general mechanism where localized actin polymerization can coordinate activation of the complex machinery required for cell migration.

  8. Demonstration of prominent actin filaments in the root columella

    NASA Technical Reports Server (NTRS)

    Collings, D. A.; Zsuppan, G.; Allen, N. S.; Blancaflor, E. B.; Brown, C. S. (Principal Investigator)

    2001-01-01

    The distribution of actin filaments within the gravity-sensing columella cells of plant roots remains poorly understood, with studies over numerous years providing inconsistent descriptions of actin organization in these cells. This uncertainty in actin organization, and thus in actin's role in graviperception and gravisignaling, has led us to investigate actin arrangements in the columella cells of Zea mays L., Medicago truncatula Gaertn., Linum usitatissiilium L. and Nicotianla benthamiana Domin. Actin organization was examined using a combination of optimized immunofluorescence techniques, and an improved fluorochrome-conjugated phalloidin labeling method reliant on 3-maleimidobenzoyl-N-hydroxy-succinimide ester (MBS) cross-linking combined with glycerol permeabilization. Confocal microscopy of root sections labeled with anti-actin antibodies revealed patterns suggestive of actin throughout the columella region. These patterns included short and fragmented actin bundles, fluorescent rings around amyloplasts and intense fluorescence originating from the nucleus. Additionally, confocal microscopy of MBS-stabilized and Alexa Fluor-phalloidin-labeled root sections revealed a previously undetected state of actin organization in the columella. Discrete actin structures surrounded the amyloplasts and prominent actin cables radiated from the nuclear surface toward the cell periphery. Furthermore, the cortex of the columella cells contained fine actin bundles (or single filaments) that had a predominant transverse orientation. We also used confocal microscopy of plant roots expressing endoplasmic reticulum (ER)-targeted green fluorescent protein to demonstrate rapid ER movements within the columella cells, suggesting that the imaged actin network is functional. The successful identification of discrete actin structures in the root columella cells forms the perception and signaling.

  9. Cytoskeletal to Nuclear Strain Transfer Regulates YAP Signaling in Mesenchymal Stem Cells

    PubMed Central

    Driscoll, Tristan P.; Cosgrove, Brian D.; Heo, Su-Jin; Shurden, Zach E.; Mauck, Robert L.

    2015-01-01

    Mechanical forces transduced to cells through the extracellular matrix are critical regulators of tissue development, growth, and homeostasis, and can play important roles in directing stem cell differentiation. In addition to force-sensing mechanisms that reside at the cell surface, there is growing evidence that forces transmitted through the cytoskeleton and to the nuclear envelope are important for mechanosensing, including activation of the Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) pathway. Moreover, nuclear shape, mechanics, and deformability change with differentiation state and have been likewise implicated in force sensing and differentiation. However, the significance of force transfer to the nucleus through the mechanosensing cytoskeletal machinery in the regulation of mesenchymal stem cell mechanobiologic response remains unclear. Here we report that actomyosin-generated cytoskeletal tension regulates nuclear shape and force transmission through the cytoskeleton and demonstrate the differential short- and long-term response of mesenchymal stem cells to dynamic tensile loading based on the contractility state, the patency of the actin cytoskeleton, and the connections it makes with the nucleus. Specifically, we show that while some mechanoactive signaling pathways (e.g., ERK signaling) can be activated in the absence of nuclear strain transfer, cytoskeletal strain transfer to the nucleus is essential for activation of the YAP/TAZ pathway with stretch. PMID:26083918

  10. Actinobacillus actinomycetemcomitans adheres to human gingival fibroblasts and modifies cytoskeletal organization.

    PubMed

    Gutiérrez-Venegas, Gloria; Kawasaki-Cárdenas, Perla; Garcés, Carla Portillo; Román-Alvárez, Patricia; Barajas-Torres, Carolina; Contreras-Marmolejo, Luis Arturo

    2007-09-01

    Adherence of Actinobacillus actinomycetemcomitans to human gingival fibroblast cells induces cytoskeletal reorganization. A. actinomycetemcomitans is considered a pathogenic bacteria involved in localized aggressive periodontitis. Studies with epithelial cells have shown an adherent capacity of bacteria that is increased under anaerobic conditions. For adherence to take place, there is a need for interaction between extracellular vesicles and bacterial fimbriae. However, molecular events associated with the adherence process are still unknown. The aim of this study was to investigate whether A. actinomycetemcomitans adherence to human gingival fibroblasts promotes cytoskeletal reorganization. Adherence was determined with light microscopy and scanning electron microscopy. For F-actin visualization, cells were treated with fluorescein-isothiocyanate-phalloidin and samples were examined with epifluorescence optics. Fluorescent was recorded on Kodak T-Max 400 film. We showed that A. actinomycetemcomitans adheres to human gingival fibroblast primary cultures, this property stimulating an increase in the intracellular calcium levels. In human gingival fibroblast primary cultures, we observed that maximal A. actinomycetemcomitans adherence took place 1.5h after culture infection occurred and remained for 6h. The adherence was associated with morphologic alterations and an increased in the intracellular calcium levels. These experiments suggest that A. actinomycetemcomitans adherence cause morphological alterations, induce actin stress fibers and recruitment of intracellular calcium levels.

  11. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure

    NASA Technical Reports Server (NTRS)

    Maniotis, A. J.; Chen, C. S.; Ingber, D. E.

    1997-01-01

    We report here that living cells and nuclei are hard-wired such that a mechanical tug on cell surface receptors can immediately change the organization of molecular assemblies in the cytoplasm and nucleus. When integrins were pulled by micromanipulating bound microbeads or micropipettes, cytoskeletal filaments reoriented, nuclei distorted, and nucleoli redistributed along the axis of the applied tension field. These effects were specific for integrins, independent of cortical membrane distortion, and were mediated by direct linkages between the cytoskeleton and nucleus. Actin microfilaments mediated force transfer to the nucleus at low strain; however, tearing of the actin gel resulted with greater distortion. In contrast, intermediate filaments effectively mediated force transfer to the nucleus under both conditions. These filament systems also acted as molecular guy wires to mechanically stiffen the nucleus and anchor it in place, whereas microtubules acted to hold open the intermediate filament lattice and to stabilize the nucleus against lateral compression. Molecular connections between integrins, cytoskeletal filaments, and nuclear scaffolds may therefore provide a discrete path for mechanical signal transfer through cells as well as a mechanism for producing integrated changes in cell and nuclear structure in response to changes in extracellular matrix adhesivity or mechanics.

  12. Analysis of the expression of cytoskeletal proteins of Taenia crassiceps ORF strain cysticerci (Cestoda).

    PubMed

    Reynoso-Ducoing, Olivia; Valverde-Islas, Laura; Paredes-Salomon, Cristina; Pérez-Reyes, América; Landa, Abraham; Robert, Lilia; Mendoza, Guillermo; Ambrosio, Javier R

    2014-05-01

    The Taenia crassiceps ORF strain is used to generate a murine model of cysticercosis, which is used for diagnosis, evaluation of drugs, and vaccination. This particular strain only exists as cysticerci, is easily maintained under in vivo and in vitro conditions, and offers an excellent model for studying the cytoskeletons of cestodes. In this study, several experimental approaches were used to determine the tissue expression of its cytoskeletal proteins. The techniques used were microscopy (video, confocal, and transmission electron), one-dimensional (1D) and two-dimensional (2D) electrophoresis, immunochemistry, and mass spectrometry. The tissue expression of actin, tubulin, and paramyosin was assessed using microscopy, and their protein isoforms were determined with 1D and 2D electrophoresis and immunochemistry. Nineteen spots were excised from a proteomic gel and identified by liquid chromatography-tandem mass spectrometry and immunochemistry. The proteins identified were classic cytoskeletal proteins, metabolic enzymes, and proteins with diverse biological functions, but mainly involved in detoxification activities. Research suggests that most noncytoskeletal proteins interact with actin or tubulin, and the results of the present study suggest that the proteins identified may be involved in supporting the dynamics and plasticity of the cytoskeleton of T. crassiceps cysticerci. These results contribute to our knowledge of the cellular biology and physiology of cestodes.

  13. Epigenetic repression of ribosomal RNA transcription by ROCK-dependent aberrant cytoskeletal organization

    PubMed Central

    Wu, Tse-Hsiang; Kuo, Yuan-Yeh; Lee, Hsiao-Hui; Kuo, Jean-Cheng; Ou, Meng-Hsin; Chang, Zee-Fen

    2016-01-01

    It is known that ribosomal RNA (rRNA) synthesis is regulated by cellular energy and proliferation status. In this study, we investigated rRNA gene transcription in response to cytoskeletal stress. Our data revealed that the cell shape constrained by isotropic but not elongated micropatterns in HeLa cells led to a significant reduction in rRNA transcription dependent on ROCK. Expression of a dominant-active form of ROCK also repressed rRNA transcription. Isotropic constraint and ROCK over-activation led to different types of aberrant F-actin organization, but their suppression effects on rRNA transcription were similarly reversed by inhibition of histone deacetylase (HDAC) or overexpression of a dominant negative form of Nesprin, which shields the signal transmitted from actin filament to the nuclear interior. We further showed that the binding of HDAC1 to the active fraction of rDNA genes is increased by ROCK over-activation, thus reducing H3K9/14 acetylation and suppressing transcription. Our results demonstrate an epigenetic control of active rDNA genes that represses rRNA transcription in response to the cytoskeletal stress. PMID:27350000

  14. The phosphorylation status and cytoskeletal remodeling of striatal astrocytes treated with quinolinic acid

    SciTech Connect

    Pierozan, Paula; Ferreira, Fernanda; Ortiz de Lima, Bárbara; Gonçalves Fernandes, Carolina; Totarelli Monteforte, Priscila; Castro Medaglia, Natalia de; Bincoletto, Claudia; Soubhi Smaili, Soraya; Pessoa-Pureur, Regina

    2014-04-01

    Quinolinic acid (QUIN) is a glutamate agonist which markedly enhances the vulnerability of neural cells to excitotoxicity. QUIN is produced from the amino acid tryptophan through the kynurenine pathway (KP). Dysregulation of this pathway is associated with neurodegenerative conditions. In this study we treated striatal astrocytes in culture with QUIN and assayed the endogenous phosphorylating system associated with glial fibrillary acidic protein (GFAP) and vimentin as well as cytoskeletal remodeling. After 24 h incubation with 100 µM QUIN, cells were exposed to {sup 32}P-orthophosphate and/or protein kinase A (PKA), protein kinase dependent of Ca{sup 2+}/calmodulin II (PKCaMII) or protein kinase C (PKC) inhibitors, H89 (20 μM), KN93 (10 μM) and staurosporin (10 nM), respectively. Results showed that hyperphosphorylation was abrogated by PKA and PKC inhibitors but not by the PKCaMII inhibitor. The specific antagonists to ionotropic NMDA and non-NMDA (50 µM DL-AP5 and CNQX, respectively) glutamate receptors as well as to metabotropic glutamate receptor (mGLUR; 50 µM MCPG), mGLUR1 (100 µM MPEP) and mGLUR5 (10 µM 4C3HPG) prevented the hyperphosphorylation provoked by QUIN. Also, intra and extracellular Ca{sup 2+} quelators (1 mM EGTA; 10 µM BAPTA-AM, respectively) prevented QUIN-mediated effect, while Ca{sup 2+} influx through voltage-dependent Ca{sup 2+} channel type L (L-VDCC) (blocker: 10 µM verapamil) is not implicated in this effect. Morphological analysis showed dramatically altered actin cytoskeleton with concomitant change of morphology to fusiform and/or flattened cells with retracted cytoplasm and disruption of the GFAP meshwork, supporting misregulation of actin cytoskeleton. Both hyperphosphorylation and cytoskeletal remodeling were reversed 24 h after QUIN removal. Astrocytes are highly plastic cells and the vulnerability of astrocyte cytoskeleton may have important implications for understanding the neurotoxicity of QUIN in neurodegenerative

  15. Geometrical and Mechanical Properties Control Actin Filament Organization

    PubMed Central

    Ennomani, Hajer; Théry, Manuel; Nedelec, Francois; Blanchoin, Laurent

    2015-01-01

    The different actin structures governing eukaryotic cell shape and movement are not only determined by the properties of the actin filaments and associated proteins, but also by geometrical constraints. We recently demonstrated that limiting nucleation to specific regions was sufficient to obtain actin networks with different organization. To further investigate how spatially constrained actin nucleation determines the emergent actin organization, we performed detailed simulations of the actin filament system using Cytosim. We first calibrated the steric interaction between filaments, by matching, in simulations and experiments, the bundled actin organization observed with a rectangular bar of nucleating factor. We then studied the overall organization of actin filaments generated by more complex pattern geometries used experimentally. We found that the fraction of parallel versus antiparallel bundles is determined by the mechanical properties of actin filament or bundles and the efficiency of nucleation. Thus nucleation geometry, actin filaments local interactions, bundle rigidity, and nucleation efficiency are the key parameters controlling the emergent actin architecture. We finally simulated more complex nucleation patterns and performed the corresponding experiments to confirm the predictive capabilities of the model. PMID:26016478

  16. Geometrical and mechanical properties control actin filament organization.

    PubMed

    Letort, Gaëlle; Politi, Antonio Z; Ennomani, Hajer; Théry, Manuel; Nedelec, Francois; Blanchoin, Laurent

    2015-05-01

    The different actin structures governing eukaryotic cell shape and movement are not only determined by the properties of the actin filaments and associated proteins, but also by geometrical constraints. We recently demonstrated that limiting nucleation to specific regions was sufficient to obtain actin networks with different organization. To further investigate how spatially constrained actin nucleation determines the emergent actin organization, we performed detailed simulations of the actin filament system using Cytosim. We first calibrated the steric interaction between filaments, by matching, in simulations and experiments, the bundled actin organization observed with a rectangular bar of nucleating factor. We then studied the overall organization of actin filaments generated by more complex pattern geometries used experimentally. We found that the fraction of parallel versus antiparallel bundles is determined by the mechanical properties of actin filament or bundles and the efficiency of nucleation. Thus nucleation geometry, actin filaments local interactions, bundle rigidity, and nucleation efficiency are the key parameters controlling the emergent actin architecture. We finally simulated more complex nucleation patterns and performed the corresponding experiments to confirm the predictive capabilities of the model.

  17. Transfer of a Redox-Signal through the Cytosol by Redox-Dependent Microcompartmentation of Glycolytic Enzymes at Mitochondria and Actin Cytoskeleton

    PubMed Central

    Wojtera-Kwiczor, Joanna; Groß, Felicitas; Leffers, Hans-Martin; Kang, Minhee; Schneider, Markus; Scheibe, Renate

    2013-01-01

    The cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12, GapC) plays an important role in glycolysis by providing the cell with ATP and NADH. Interestingly, despite its glycolytic function in the cytosol, GAPDH was reported to possess additional non-glycolytic activities, correlating with its nuclear, or cytoskeletal localization in animal cells. In transiently transformed mesophyll protoplasts from Arabidopsis thaliana colocalization and interaction of the glycolytic enzymes with the mitochondria and with the actin cytoskeleton was visualized by confocal laser scanning microscopy (cLSM) using fluorescent protein fusions and by bimolecular fluorescence complementation, respectively. Yeast two-hybrid screens, dot-blot overlay assays, and co-sedimentation assays were used to identify potential protein–protein interactions between two cytosolic GAPDH isoforms (GapC1, At3g04120; GapC2, At1g13440) from A. thaliana with the neighboring glycolytic enzyme, fructose 1,6-bisphosphate aldolase (FBA6, At2g36460), the mitochondrial porin (VDAC3; At5g15090), and actin in vitro. From these experiments, a mitochondrial association is suggested for both glycolytic enzymes, GAPDH and aldolase, which appear to bind to the outer mitochondrial membrane, in a redox-dependent manner. In addition, both glycolytic enzymes were found to bind to F-actin in co-sedimentation assays, and lead to bundling of purified rabbit actin, as visualized by cLSM. Actin-binding and bundling occurred reversibly under oxidizing conditions. We speculate that such dynamic formation of microcompartments is part of a redox-dependent retrograde signal transduction network for adaptation upon oxidative stress. PMID:23316205

  18. Cyclase-associated protein (CAP) acts directly on F-actin to accelerate cofilin-mediated actin severing across the range of physiological pH.

    PubMed

    Normoyle, Kieran P M; Brieher, William M

    2012-10-12

    Fast actin depolymerization is necessary for cells to rapidly reorganize actin filament networks. Utilizing a Listeria fluorescent actin comet tail assay to monitor actin disassembly rates, we observed that although a mixture of actin disassembly factors (cofilin, coronin, and actin-interacting protein 1 is sufficient to disassemble actin comet tails in the presence of physiological G-actin concentrations this mixture was insufficient to disassemble actin comet tails in the presence of physiological F-actin concentrations. Using biochemical complementation, we purified cyclase-associated protein (CAP) from thymus extracts as a factor that protects against the inhibition of excess F-actin. CAP has been shown to participate in actin dynamics but has been thought to act by liberating cofilin from ADP·G-actin monomers to restore cofilin activity. However, we found that CAP augments cofilin-mediated disassembly by accelerating the rate of cofilin-mediated severing. We also demonstrated that CAP acts directly on F-actin and severs actin filaments at acidic, but not neutral, pH. At the neutral pH characteristic of cytosol in most mammalian cells, we demonstrated that neither CAP nor cofilin are capable of severing actin filaments. However, the combination of CAP and cofilin rapidly severed actin at all pH values across the physiological range. Therefore, our results reveal a new function for CAP in accelerating cofilin-mediated actin filament severing and provide a mechanism through which cells can maintain high actin turnover rates without having to alkalinize cytosol, which would affect many biochemical reactions beyond actin depolymerization.

  19. Disruption of cytoskeletal structures mediates shear stress-induced endothelin-1 gene expression in cultured porcine aortic endothelial cells.

    PubMed Central

    Morita, T; Kurihara, H; Maemura, K; Yoshizumi, M; Yazaki, Y

    1993-01-01

    Hemodynamic shear stress alters the architecture and functions of vascular endothelial cells. We have previously shown that the synthesis of endothelin-1 (ET-1) in endothelial cells is increased by exposure to shear stress. Here we examined whether shear stress-induced alterations in cytoskeletal structures are responsible for increases in ET-1 synthesis in cultured porcine aortic endothelial cells. Exposure of endothelial cells to 5 dyn/cm2 of low shear stress rapidly increased monomeric G-actin contents within 5 min without changing total actin contents. The ratio of G- to total actin, 54 +/- 0.8% in quiescent endothelial cells, increased to 87 +/- 4.2% at 6 h and then decreased. Following the disruption of filamentous (F)-actin into G-actin, ET-1 mRNA levels in endothelial cells also increased within 30 min and reached a peak at 6 h. The F-actin stabilizer, phalloidin, abolished shear stress-induced increases in ET-1 mRNA; however, it failed to inhibit increases in ET-1 mRNA secondary to other stimulants. This indicates that shear stress-induced increases in ET-1 mRNA levels may be mediated by the disruption of actin fibers. Furthermore, increases in ET-1 gene expression can be induced by actin-disrupting agents, cytochalasin B and D. Another cytoskeleton-disrupting agent, colchicine, which inhibits dimerization of tubulin, did not affect the basal level of ET-1 mRNA. However, colchicine completely inhibited shear stress- and cytochalasin B-induced increases in ET-1 mRNA levels. These results suggest that shear stress-induced ET-1 gene expression in endothelial cells is mediated by the disruption of actin cytoskeleton and this induction is dependent on the integrity of microtubules. Images PMID:8408624

  20. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study.

    PubMed Central

    Rotsch, C; Radmacher, M

    2000-01-01

    The effect of various drugs affecting the integrity of different components of the cytoskeleton on the elasticity of two fibroblast cell lines was investigated by elasticity measurements with an atomic force microscope (AFM). Disaggregation of actin filaments always resulted in a distinct decrease in the cell's average elastic modulus indicating the crucial importance of the actin network for the mechanical stability of living cells. Disruption or chemical stabilization of microtubules did not affect cell elasticity. For the f-actin-disrupting drugs different mechanisms of drug action were observed. Cytochalasins B and D and Latrunculin A disassembled stress fibers. For Cytochalasin D this was accompanied by an aggregation of actin within the cytosol. Jasplakinolide disaggregated actin filaments but did not disassemble stress fibers. Fibrous structures found in AFM images and elasticity maps of fibroblasts could be identified as stress fibers by correlation of AFM data and fluorescence images. PMID:10620315

  1. PI(3,5)P2 controls endosomal branched actin dynamics by regulating cortactin–actin interactions

    PubMed Central

    Hong, Nan Hyung; Qi, Aidong

    2015-01-01

    Branched actin critically contributes to membrane trafficking by regulating membrane curvature, dynamics, fission, and transport. However, how actin dynamics are controlled at membranes is poorly understood. Here, we identify the branched actin regulator cortactin as a direct binding partner of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) and demonstrate that their interaction promotes turnover of late endosomal actin. In vitro biochemical studies indicated that cortactin binds PI(3,5)P2 via its actin filament-binding region. Furthermore, PI(3,5)P2 competed with actin filaments for binding to cortactin, thereby antagonizing cortactin activity. These findings suggest that PI(3,5)P2 formation on endosomes may remove cortactin from endosome-associated branched actin. Indeed, inhibition of PI(3,5)P2 production led to cortactin accumulation and actin stabilization on Rab7+ endosomes. Conversely, inhibition of Arp2/3 complex activity greatly reduced cortactin localization to late endosomes. Knockdown of cortactin reversed PI(3,5)P2-inhibitor–induced actin accumulation and stabilization on endosomes. These data suggest a model in which PI(3,5)P2 binding removes cortactin from late endosomal branched actin networks and thereby promotes net actin turnover. PMID:26323691

  2. Dynamic association of L-selectin with the lymphocyte cytoskeletal matrix.

    PubMed

    Evans, S S; Schleider, D M; Bowman, L A; Francis, M L; Kansas, G S; Black, J D

    1999-03-15

    L-selectin mediates lymphocyte extravasation into lymphoid tissues through binding to sialomucin-like receptors on the surface of high endothelial venules (HEV). This study examines the biochemical basis and regulation of interactions between L-selectin, an integral transmembrane protein, and the lymphocyte cytoskeleton. Using a detergent-based extraction procedure, constitutive associations between L-selectin and the insoluble cytoskeletal matrix could not be detected. However, engagement of the L-selectin lectin domain by Abs or by glycosylation-dependent cell adhesion molecule-1, an HEV-derived ligand for L-selectin, rapidly triggered redistribution of L-selectin to the detergent-insoluble cytoskeleton. L-selectin attachment to the cytoskeleton was not prevented by inhibitors of actin/microtubule polymerization (cytochalasin B, colchicine, or nocodozole) or serine/threonine and tyrosine kinase activity (staurosporine, calphostin C, or genistein), although L-selectin-mediated adhesion of human PBL was markedly suppressed by these agents. Exposure of human PBL or murine pre-B transfectants expressing full-length human L-selectin to fever-range hyperthermia also markedly increased L-selectin association with the cytoskeleton, directly correlating with enhanced L-selectin-mediated adhesion. In contrast, a deletion mutant of L-selectin lacking the COOH-terminal 11 amino acids failed to associate with the cytoskeletal matrix in response to Ab cross-linking or hyperthermia stimulation and did not support adhesion to HEV. These studies, when taken together with the previously demonstrated interaction between the L-selectin cytoplasmic domain and the cytoskeletal linker protein alpha-actinin, strongly implicate the actin-based cytoskeleton in dynamically controlling L-selectin adhesion.

  3. Involvement of β- and γ-actin isoforms in actin cytoskeleton organization and migration abilities of bleb-forming human colon cancer cells

    PubMed Central

    Simiczyjew, Aleksandra; Mazur, Antonina Joanna; Dratkiewicz, Ewelina; Nowak, Dorota

    2017-01-01

    Amoeboid movement is characteristic for rounded cells, which do not form strong adhesion contacts with the ECM and use blebs as migratory protrusions. It is well known that actin is the main component of mature forms of these structures, but the exact role fulfilled by non-muscle actin isoforms β- and γ- in bleb formation and migration of these cells is still not fully understood. The aim of this study was to establish the role of β- and γ-actin in migration of bleb-forming cancer cells using isoform-specific antibodies and expression of fluorescently tagged actin isoforms. We observed, after staining with monoclonal antibodies, that both actins are present in these cells in the form of a cortical ring as well as in the area of blebs. Additionally, using simultaneous expression of differentially tagged β- and γ-actin in cells, we observed that the actin isoforms are present together in a single bleb. They were involved during bleb expansion as well as retraction. Also present in the area of these protrusions formed by both isoforms were the bleb markers–ezrin and myosin II. The overexpression of β- or γ-actin led to actin cytoskeletal rearrangement followed by the growth of migration and invasion abilities of examined human colon cancer cells, LS174T line. In summary these data prove that both actin isoforms have an impact on motility of bleb-forming cancer cells. Moreover, we conclude that monoclonal antibodies directed against actin isoforms in combination with the tagged actins are good tools to study their role in important biological processes. PMID:28333953

  4. The integrin adhesome network at a glance

    PubMed Central

    James, Jenny; Jones, Matthew C.; Askari, Janet A.

    2016-01-01

    ABSTRACT The adhesion nexus is the site at which integrin receptors bridge intracellular cytoskeletal and extracellular matrix networks. The connection between integrins and the cytoskeleton is mediated by a dynamic integrin adhesion complex (IAC), the components of which transduce chemical and mechanical signals to control a multitude of cellular functions. In this Cell Science at a Glance article and the accompanying poster, we integrate the consensus adhesome, a set of 60 proteins that have been most commonly identified in isolated IAC proteomes, with the literature-curated adhesome, a theoretical network that has been assembled through scholarly analysis of proteins that localise to IACs. The resulting IAC network, which comprises four broad signalling and actin-bridging axes, provides a platform for future studies of the regulation and function of the adhesion nexus in health and disease. PMID:27799358

  5. Vitreous-induced cytoskeletal rearrangements via the Rac1 GTPase-dependent signaling pathway in human retinal pigment epithelial cells

    SciTech Connect

    Huang, Xionggao; Wei, Yantao; Ma, Haizhi; Zhang, Shaochong

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Vitreous induces morphological changes and cytoskeletal rearrangements in RPE cells. Black-Right-Pointing-Pointer Rac1 is activated in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition prevents morphological changes in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition suppresses cytoskeletal rearrangements in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer The vitreous-induced effects are mediated by a Rac1 GTPase/LIMK1/cofilin pathway. -- Abstract: Proliferative vitreoretinopathy (PVR) is mainly caused by retinal pigment epithelial (RPE) cell migration, invasion, proliferation and transformation into fibroblast-like cells that produce the extracellular matrix (ECM). The vitreous humor is known to play an important role in PVR. An epithelial-to-mesenchymal transdifferentiation (EMT) of human RPE cells induced by 25% vitreous treatment has been linked to stimulation of the mesenchymal phenotype, migration and invasion. Here, we characterized the effects of the vitreous on the cell morphology and cytoskeleton in human RPE cells. The signaling pathway that mediates these effects was investigated. Serum-starved RPE cells were incubated with 25% vitreous, and the morphological changes were examined by phase-contrast microscopy. Filamentous actin (F-actin) was examined by immunofluorescence and confocal microscopy. Protein phosphorylation of AKT, ERK1/2, Smad2/3, LIM kinase (LIMK) 1 and cofilin was analyzed by Western blot analysis. Vitreous treatment induced cytoskeletal rearrangements, activated Rac1 and enhanced the phosphorylation of AKT, ERK1/2 and Smad2/3. When the cells were treated with a Rac activation-specific inhibitor, the cytoskeletal rearrangements were prevented, and the phosphorylation of Smad2/3 was blocked. Vitreous treatment also enhanced the phosphorylation of LIMK1 and cofilin and the Rac inhibitor blocked this effect. We propose that vitreous

  6. The cytoskeletal arrangements necessary to neurogenesis.

    PubMed

    Compagnucci, Claudia; Piemonte, Fiorella; Sferra, Antonella; Piermarini, Emanuela; Bertini, Enrico

    2016-04-12

    During the process of neurogenesis, the stem cell committed to the neuronal cell fate starts a series of molecular and morphological changes. The understanding of the physio-pathology of mechanisms controlling the molecular and morphological changes occurring during neuronal differentiation is fundamental to the development of effective therapies for many neurologic diseases. Unfortunately, our knowledge of the biological events occurring in the cell during neuronal differentiation is still poor. In this study, we focus preliminarily on the relevance of the cytoskeletal rearrangements, which earlier drive the morphology of the neuronal precursors, and later the migrating/mature neurons. In fact, neuritogenesis, neurite branching, outgrowth and retraction are seminal to the development of a fully functional nervous system. With this in mind, we highlight the importance of iPSC technology to study the processes of cytoskeletal-driven morphological changes during neuronal differentiation.

  7. The cytoskeletal arrangements necessary to neurogenesis

    PubMed Central

    Compagnucci, Claudia; Piemonte, Fiorella; Sferra, Antonella; Piermarini, Emanuela; Bertini, Enrico

    2016-01-01

    During the process of neurogenesis, the stem cell committed to the neuronal cell fate starts a series of molecular and morphological changes. The understanding of the physio-pathology of mechanisms controlling the molecular and morphological changes occurring during neuronal differentiation is fundamental to the development of effective therapies for many neurologic diseases. Unfortunately, our knowledge of the biological events occurring in the cell during neuronal differentiation is still poor. In this study, we focus preliminarily on the relevance of the cytoskeletal rearrangements, which earlier drive the morphology of the neuronal precursors, and later the migrating/mature neurons. In fact, neuritogenesis, neurite branching, outgrowth and retraction are seminal to the development of a fully functional nervous system. With this in mind, we highlight the importance of iPSC technology to study the processes of cytoskeletal-driven morphological changes during neuronal differentiation. PMID:26760504

  8. Cytoskeletal disruption activates the DLK/JNK pathway, which promotes axonal regeneration and mimics a preconditioning injury

    PubMed Central

    Valakh, Vera; Frey, Erin; Babetto, Elisabetta; Walker, Lauren J; DiAntonio, Aaron

    2015-01-01

    Nerve injury can lead to axonal regeneration, axonal degeneration, and/or neuronal cell death. Remarkably, the MAP3K dual leucine zipper kinase, DLK, promotes each of these responses, suggesting that DLK is a sensor of axon injury. In Drosophila, mutations in proteins that stabilize the actin and microtubule cytoskeletons activate the DLK pathway, suggesting that DLK may be activated by cytoskeletal disruption. Here we test this model in mammalian sensory neurons. We find that pharmacological agents designed to disrupt either the actin or microtubule cytoskeleton activate the DLK pathway, and that activation is independent of calcium influx or induction of the axon degeneration program. Moreover, activation of the DLK pathway by targeting the cytoskeleton induces a pro-regenerative state, enhancing axon regeneration in response to a subsequent injury in a process akin to preconditioning. This highlights the potential utility of activating the DLK pathway as a method to improve axon regeneration. Moreover, DLK is required for these responses to cytoskeletal perturbations, suggesting that DLK functions as a key neuronal sensor of cytoskeletal damage. PMID:25726747

  9. Cytoskeletal dynamics during in vitro neurogenesis of induced pluripotent stem cells (iPSCs).

    PubMed

    Compagnucci, Claudia; Piermarini, Emanuela; Sferra, Antonella; Borghi, Rossella; Niceforo, Alessia; Petrini, Stefania; Piemonte, Fiorella; Bertini, Enrico

    2016-12-01

    Patient-derived induced pluripotent stem cells (iPSCs) provide a novel tool to investigate the pathophysiology of poorly known diseases, in particular those affecting the nervous system, which has been difficult to study for its lack of accessibility. In this emerging and promising field, recent iPSCs studies are mostly used as "proof-of-principle" experiments that are confirmatory of previous findings obtained from animal models and postmortem human studies; its promise as a discovery tool is just beginning to be realized. A recent number of studies point to the functional similarities between in vitro neurogenesis and in vivo neuronal development, suggesting that similar morphogenetic and patterning events direct neuronal differentiation. In this context, neuronal adhesion, cytoskeletal organization and cell metabolism emerge as an integrated and unexplored processes of human neurogenesis, mediated by the lack of data due to the difficult accessibility of the human neural tissue. These observations raise the necessity to understand which are the players controlling cytoskeletal reorganization and remodeling. In particular, we investigated human in vitro neurogenesis using iPSCs of healthy subjects to unveil the underpinnings of the cytoskeletal dynamics with the aim to shed light on the physiologic events controlling the development and the functionality of neuronal cells. We validate the iPSCs system to better understand the development of the human nervous system in order to set the bases for the future understanding of pathologies including developmental disorders (i.e. intellectual disability), epilepsy but also neurodegenerative disorders (i.e. Friedreich's Ataxia). We investigate the changes of the cytoskeletal components during the 30days of neuronal differentiation and we demonstrate that human neuronal differentiation requires a (time-dependent) reorganization of actin filaments, intermediate filaments and microtubules; and that immature neurons present

  10. The long journey: actin on the road to pro- and eukaryotic cells.

    PubMed

    Jockusch, Brigitte M; Graumann, Peter L

    2011-01-01

    Actin-like proteins comprise a large group of polymorphic proteins that readily form filaments engaged in cytoskeletal functions. Various members have been identified in prokaryotic and eukaryotic cells, e.g. MreB, ParM and Ta0583, and actin and the actin-related proteins, ARPs, respectively. Therefore, it is assumed that an ancestor of actin/MreB/ParM already existed in the last common progenitor of all cells. In eubacteria and archaea, actin-like proteins are either membrane-associated or freely soluble, and their activities are related to motility, cell shape maintenance, subcellular organization and cell cycle progression. In eukaryotes, all these functions are executed by actin in various isoforms. Additional functions have been described for actin and ARPs in the nucleus of the eukaryotic cell, and some of those were also discovered in prokaryotes. In the current essay, we compare structures and selected functions of prokaryotic and eukaryotic actins and discuss various aspects on how actins may have found their way into bacteria, into the eukaryotic cytoplasm and into the nuclear compartment.

  11. Spontaneous actin dynamics in contractile rings

    NASA Astrophysics Data System (ADS)

    Kruse, Karsten; Wollrab, Viktoria; Thiagarajan, Raghavan; Wald, Anne; Riveline, Daniel

    Networks of polymerizing actin filaments are known to be capable to self-organize into a variety of structures. For example, spontaneous actin polymerization waves have been observed in living cells in a number of circumstances, notably, in crawling neutrophils and slime molds. During later stages of cell division, they can also spontaneously form a contractile ring that will eventually cleave the cell into two daughter cells. We present a framework for describing networks of polymerizing actin filaments, where assembly is regulated by various proteins. It can also include the effects of molecular motors. We show that the molecular processes driven by these proteins can generate various structures that have been observed in contractile rings of fission yeast and mammalian cells. We discuss a possible functional role of each of these patterns. The work was supported by Agence Nationale de la Recherche, France, (ANR-10-LABX-0030-INRT) and by Deutsche Forschungsgemeinschaft through SFB1027.

  12. Cortactin promotes exosome secretion by controlling branched actin dynamics

    PubMed Central

    Sinha, Seema; Hoshino, Daisuke; Hong, Nan Hyung; Seiki, Motoharu; Tyska, Matthew J.

    2016-01-01

    Exosomes are extracellular vesicles that influence cellular behavior and enhance cancer aggressiveness by carrying bioactive molecules. The mechanisms that regulate exosome secretion are poorly understood. Here, we show that the actin cytoskeletal regulatory protein cortactin promotes exosome secretion. Knockdown or overexpression of cortactin in cancer cells leads to a respective decrease or increase in exosome secretion, without altering exosome cargo content. Live-cell imaging revealed that cortactin controls both trafficking and plasma membrane docking of multivesicular late endosomes (MVEs). Regulation of exosome secretion by cortactin requires binding to the branched actin nucleating Arp2/3 complex and to actin filaments. Furthermore, cortactin, Rab27a, and coronin 1b coordinately control stability of cortical actin MVE docking sites and exosome secretion. Functionally, the addition of purified exosomes to cortactin-knockdown cells rescued defects of those cells in serum-independent growth and invasion. These data suggest a model in which cortactin promotes exosome secretion by stabilizing cortical actin-rich MVE docking sites. PMID:27402952

  13. Triggering signaling pathways using F-actin self-organization

    PubMed Central

    Colin, A.; Bonnemay, L.; Gayrard, C.; Gautier, J.; Gueroui, Z.

    2016-01-01

    The spatiotemporal organization of proteins within cells is essential for cell fate behavior. Although it is known that the cytoskeleton is vital for numerous cellular functions, it remains unclear how cytoskeletal activity can shape and control signaling pathways in space and time throughout the cell cytoplasm. Here we show that F-actin self-organization can trigger signaling pathways by engineering two novel properties of the microfilament self-organization: (1) the confinement of signaling proteins and (2) their scaffolding along actin polymers. Using in vitro reconstitutions of cellular functions, we found that both the confinement of nanoparticle-based signaling platforms powered by F-actin contractility and the scaffolding of engineered signaling proteins along actin microfilaments can drive a signaling switch. Using Ran-dependent microtubule nucleation, we found that F-actin dynamics promotes the robust assembly of microtubules. Our in vitro assay is a first step towards the development of novel bottom-up strategies to decipher the interplay between cytoskeleton spatial organization and signaling pathway activity. PMID:27698406

  14. Measuring the flexural rigidity of actin filaments and microtubules from their thermal fluctuating shapes: A new perspective

    NASA Astrophysics Data System (ADS)

    Jia, Kangyu; Liu, Xiaohu

    Actin filaments and microtubules are important components of cytoskeletal networks and show both active and passive dynamic mechanical behaviors. Measuring the mechanical properties of individual filament can not only help us understand the mechanisms behind the complex dynamic behaviors, but also provide parameters that are needed to calibrate biological piconewton forcemeters. Although many methods have been proposed, the values of flexural rigidity reported in literature are still quite different for both actin filaments and microtubules. In this paper, a new formulation based on mode analysis of the thermal fluctuating shapes and principle of virtual work has been proposed, where both the linear and nonlinear assumptions are considered. What's more, following previous inspiring works, both the effects of sampling time interval and hydrodynamics are taken into account in our model. When applied to the experiment data in literature and the simulation data generated by finite element method software, our method gives good results and show an advantage over the previous methods. Besides, we suggest that the inconformity of the flexural rigidity in literature might be caused by the different sampling time intervals and hydrodynamic wall effects in experiments.

  15. Supramolecular Assembly in Cytoskeletal Filaments and their Associated Biomolecules

    NASA Astrophysics Data System (ADS)

    Safinya, Cyrus R.

    2002-03-01

    With the completion of the Human Genome Project and the emerging proteomics era, the biosciences community is beginning the daunting task of understanding the functions of a large number of interacting proteins. Cellular activity, which is usually tightly regulated, results from protein-protein and protein-nucleic acid interactions, which often lead to the formation of very large assemblies of biomolecules for distinct functions. Examples include DNA condensation states during the cell cycle, and bundle and network formation of filamentous proteins in cell attachment, motility, and cytokinesis. We present recent synchrotron x-ray diffraction and optical imaging data, in cell-free systems of cytoskeletal filaments and their associated biomolecules, which reveal novel supramolecular assemblies, spanning lengths from the nanometer to the micrometer scale. Supported by NSF DMR-9972246 and NIH GM59288.

  16. Actin is required for IFT regulation in Chlamydomonas reinhardtii.

    PubMed

    Avasthi, Prachee; Onishi, Masayuki; Karpiak, Joel; Yamamoto, Ryosuke; Mackinder, Luke; Jonikas, Martin C; Sale, Winfield S; Shoichet, Brian; Pringle, John R; Marshall, Wallace F

    2014-09-08

    Assembly of cilia and flagella requires intraflagellar transport (IFT), a highly regulated kinesin-based transport system that moves cargo from the basal body to the tip of flagella [1]. The recruitment of IFT components to basal bodies is a function of flagellar length, with increased recruitment in rapidly growing short flagella [2]. The molecular pathways regulating IFT are largely a mystery. Because actin network disruption leads to changes in ciliary length and number, actin has been proposed to have a role in ciliary assembly. However, the mechanisms involved are unknown. In Chlamydomonas reinhardtii, conventional actin is found in both the cell body and the inner dynein arm complexes within flagella [3, 4]. Previous work showed that treating Chlamydomonas cells with the actin-depolymerizing compound cytochalasin D resulted in reversible flagellar shortening [5], but how actin is related to flagellar length or assembly remains unknown. Here we utilize small-molecule inhibitors and genetic mutants to analyze the role of actin dynamics in flagellar assembly in Chlamydomonas reinhardtii. We demonstrate that actin plays a role in IFT recruitment to basal bodies during flagellar elongation and that when actin is perturbed, the normal dependence of IFT recruitment on flagellar length is lost. We also find that actin is required for sufficient entry of IFT material into flagella during assembly. These same effects are recapitulated with a myosin inhibitor, suggesting that actin may act via myosin in a pathway by which flagellar assembly is regulated by flagellar length.

  17. Pdlim7 Regulates Arf6-Dependent Actin Dynamics and Is Required for Platelet-Mediated Thrombosis in Mice

    PubMed Central

    Miller, Kaylie P.; Krcmery, Jennifer; Simon, Hans-Georg

    2016-01-01

    Upon vessel injury, platelets become activated and rapidly reorganize their actin cytoskeleton to adhere to the site of endothelial damage, triggering the formation of a fibrin-rich plug to prevent further blood loss. Inactivation of Pdlim7 provides the new perspective that regulation of actin cytoskeletal changes in platelets is dependent on the encoded PDZ-LIM protein. Loss-of-function of Pdlim7 triggers hypercoagulopathy and causes significant perinatal lethality in mice. Our in vivo and in vitro studies reveal that Pdlim7 is dynamically distributed along actin fibers, and lack of Pdlim7 leads to a marked inability to rearrange the actin cytoskeleton. Specifically, the absence of Pdlim7 prevents platelets from bundling actin fibers into a concentric ring that defines the round spread shape of activated platelets. Similarly, in mouse embryonic fibroblasts, loss of Pdlim7 abolishes the formation of stress fibers needed to adopt the typical elongated fibroblast shape. In addition to revealing a fundamental cell biological role in actin cytoskeletal organization, we also demonstrate a function of Pdlim7 in regulating the cycling between the GTP/GDP-bound states of Arf6. The small GTPase Arf6 is an essential factor required for actin dynamics, cytoskeletal rearrangements, and platelet activation. Consistent with our findings of significantly elevated initial F-actin ratios and subsequent morphological aberrations, loss of Pdlim7 causes a shift in balance towards an increased Arf6-GTP level in resting platelets. These findings identify a new Pdlim7-Arf6 axis controlling actin dynamics and implicate Pdlim7 as a primary endogenous regulator of platelet-dependent hemostasis. PMID:27792740

  18. Actin Polymerization is Stimulated by Actin Crosslinking Protein Palladin

    PubMed Central

    Gurung, Ritu; Yadav, Rahul; Brungardt, Joseph G.; Orlova, Albina; Egelman, Edward H.; Beck, Moriah R.

    2016-01-01

    The actin scaffold protein palladin regulates both normal cell migration and invasive cell motility, processes that require the coordinated regulation of actin dynamics. However, the potential effect of palladin on actin dynamics has remained elusive. Here we show that the actin binding immunoglobulin-like domain of palladin, which is directly responsible for both actin binding and bundling, also stimulates actin polymerization in vitro. Palladin eliminated the lag phase that is characteristic of the slow nucleation step of actin polymerization. Furthermore, palladin dramatically reduced depolymerization, slightly enhanced the elongation rate, and did not alter the critical concentration. Microscopy and in vitro crosslinking assays reveal differences in actin bundle architecture when palladin is incubated with actin before or after polymerization. These results suggest a model whereby palladin stimulates a polymerization-competent form of G-actin, akin to metal ions, either through charge neutralization or conformational changes. PMID:26607837

  19. Actin protofilament orientation in deformation of the erythrocyte membrane skeleton.

    PubMed Central

    Picart, C; Dalhaimer, P; Discher, D E

    2000-01-01

    The red cell's spectrin-actin network is known to sustain local states of shear, dilation, and condensation, and yet the short actin filaments are found to maintain membrane-tangent and near-random azimuthal orientations. When calibrated with polarization results for single actin filaments, imaging of micropipette-deformed red cell ghosts has allowed an assessment of actin orientations and possible reorientations in the network. At the hemispherical cap of the aspirated projection, where the network can be dilated severalfold, filaments have the same membrane-tangent orientation as on a relatively unstrained portion of membrane. Likewise, over the length of the network projection pulled into the micropipette, where the network is strongly sheared in axial extension and circumferential contraction, actin maintains its tangent orientation and is only very weakly aligned with network extension. Similar results are found for the integral membrane protein Band 3. Allowing for thermal fluctuations, we deduce a bound for the effective coupling constant, alpha, between network shear and azimuthal orientation of the protofilament. The finding that alpha must be about an order of magnitude or more below its tight-coupling value illustrates how nanostructural kinematics can decouple from more macroscopic responses. Monte Carlo simulations of spectrin-actin networks at approximately 10-nm resolution further support this conclusion and substantiate an image of protofilaments as elements of a high-temperature spin glass. PMID:11106606

  20. External stimulation strength controls actin response dynamics in Dictyostelium cells

    NASA Astrophysics Data System (ADS)

    Hsu, Hsin-Fang; Westendorf, Christian; Tarantola, Marco; Zykov, Vladimir; Bodenschatz, Eberhard; Beta, Carsten

    2015-03-01

    Self-sustained oscillation and the resonance frequency of the cytoskeletal actin polymerization/depolymerization have recently been observed in Dictyostelium, a model system for studying chemotaxis. Here we report that the resonance frequency is not constant but rather varies with the strength of external stimuli. To understand the underlying mechanism, we analyzed the polymerization and depolymerization time at different levels of external stimulation. We found that polymerization time is independent of external stimuli but the depolymerization time is prolonged as the stimulation increases. These observations can be successfully reproduced in the frame work of our time delayed differential equation model.

  1. The Ovary of Tubifex tubifex (Clitellata, Naididae, Tubificinae) Is Composed of One, Huge Germ-Line Cyst that Is Enriched with Cytoskeletal Components.

    PubMed

    Urbisz, Anna Z; Chajec, Łukasz; Świątek, Piotr

    2015-01-01

    Recent studies on the ovary organization and oogenesis in Tubificinae have revealed that their ovaries are small polarized structures that are composed of germ cells in subsequent stages of oogenesis that are associated with somatic cells. In syncytial cysts, as a rule, each germ cell is connected to the central cytoplasmic mass, the cytophore, via only one stable intercellular bridge (ring canal). In this paper we present detailed data about the composition of germ-line cysts in Tubifex tubifex with special emphasis on the occurrence and distribution of the cytoskeletal elements. Using fixed material and live cell imaging techniques, we found that the entire ovary of T. tubifex is composed of only one, huge multicellular germ-line cyst, which may contain up to 2,600 cells. Its architecture is broadly similar to the cysts that are found in other clitellate annelids, i.e. a common, anuclear cytoplasmic mass in the center of the cyst and germ cells that are connected to it via intercellular bridges. The cytophore in the T. tubifex cyst extends along the long axis of the ovary in the form of elongated and branched cytoplasmic strands. Rhodamine-coupled phalloidin staining revealed that the prominent strands of actin filaments occur inside the cytophore. Similar to the cytophore, F-actin strands are branched and they are especially well developed in the middle and outermost parts of the ovary. Microfilaments are also present in the ring canals that connect the germ cells with the cytophore in the narrow end of the ovary. Using TubulinTracker, we found that the microtubules form a prominent network of loosely and evenly distributed tubules inside the cytophore as well as in every germ cell. The well-developed cytoskeletal elements in T. tubifex ovary seem to ensure the integrity of such a huge germ-line cyst of complex (germ cells-ring canals-cytophore) organization. A comparison between the cysts that are described here and other well-known female germ-line cysts is

  2. Actin-cytoskeleton rearrangement modulates proton-induced uptake

    SciTech Connect

    Ben-Dov, Nadav; Korenstein, Rafi

    2013-04-15

    Recently it has been shown that elevating proton concentration at the cell surface stimulates the formation of membrane invaginations and vesicles accompanied by an enhanced uptake of macromolecules. While the initial induction of inward membrane curvature was rationalized in terms of proton-based increase of charge asymmetry across the membrane, the mechanisms underlying vesicle formation and its scission are still unknown. In light of the critical role of actin in vesicle formation during endocytosis, the present study addresses the involvement of cytoskeletal actin in proton-induced uptake (PIU). The uptake of dextran-FITC is used as a measure for the factual fraction of inward invaginations that undergo scission from the cell's plasma membrane. Our findings show that the rate of PIU in suspended cells is constant, whereas the rate of PIU in adherent cells is gradually increased in time, saturating at the level possessed by suspended cells. This is consistent with pH induced gradual degradation of stress-fibers in adherent cells. Wortmannin and calyculin-A are able to elevate PIU by 25% in adherent cells but not in suspended cells, while cytochalasin-D, rapamycin and latrunculin-A elevate PIU both in adherent and suspended cells. However, extensive actin depolymerization by high concentrations of latrunculin-A is able to inhibit PIU. We conclude that proton-induced membrane vesiculation is restricted by the actin structural resistance to the plasma membrane bending. Nevertheless, a certain degree of cortical actin restructuring is required for the completion of the scission process. - Highlights: ► Acidification of cells' exterior enhances uptake of macromolecules by the cells. ► Disruption of actin stress fibers leads to enhancement of proton induced uptake. ► Extensive depolymerization of cellular actin attenuates proton-induced uptake.

  3. Regulation of myosin II activity by actin architecture

    NASA Astrophysics Data System (ADS)

    Weirich, Kimberly; Stam, Samantha; McCall, Patrick; Munro, Edwin; Gardel, Margaret

    2015-03-01

    Networks of actin filaments containing myosin II motors generate forces and motions that promote biological processes such as cell division, motility, and cargo transport. In cells, actin filaments are arranged in various structures from disordered meshworks to tight bundles. Clusters of myosin II motors, known as myosin filaments, crosslink and generate force on neighboring actin filaments. We hypothesized that the local actin architecture controls the magnitude and duration of force generated by myosin II motors. We used fluorescence imaging to directly measure the mobility of myosin II filaments on actin networks and bundles with varying actin filament polarity, orientation, spacing, and length. On unipolar bundles, myosin exhibits fast, unidirectional motion consistent with their unloaded gliding speed. On mixed polarity bundles, myosin speed is reduced by one order of magnitude and marked by direction switching and trapping. Increasing filament spacing and bundle flexibility reduces the duration of trapping and enhances the mobility of motors. Simulations indicate that stable trapping is a signature of large generated forces while increased mobility indicates force release. Our data underscore that the efficiency of force generation by myosin motors in an actin network depends sensitively on its architecture and suggests actin crosslinking proteins are tuned to optimize actomyosin contractility.

  4. Actin-filament disassembly: it takes two to shrink them fast.

    PubMed

    Winterhoff, Moritz; Faix, Jan

    2015-06-01

    Actin-filament disassembly is indispensable for replenishing the pool of polymerizable actin and allows continuous dynamic remodelling of the actin cytoskeleton. A new study now reveals that ADF/cofilin preferentially dismantles branched networks and provides new insights into the collaborative work of ADF/cofilin and Aip1 on filament disassembly at the molecular level.

  5. Integrin β1 regulates leiomyoma cytoskeletal integrity and growth

    PubMed Central

    Malik, Minnie; Segars, James; Catherino, William H.

    2014-01-01

    Uterine leiomyomas are characterized by an excessive extracellular matrix, increased mechanical stress, and increased active RhoA. Previously, we observed that mechanical signaling was attenuated in leiomyoma, but the mechanisms responsible remain unclear. Integrins, especially integrin β1, are transmembrane adhesion receptors that couple extracellular matrix stresses to the intracellular cytoskeleton to influence cell proliferation and differentiation. Here we characterized integrin and laminin to signaling in leiomyoma cells. We observed a 2.25 ± 0.32 fold increased expression of integrin β1 in leiomyoma cells, compared to myometrial cells. Antibody-mediated inhibition of integrin β1 led to significant growth inhibition in leiomyoma cells and a loss of cytoskeletal integrity. Specifically, polymerization of actin filaments and formation of focal adhesions were reduced by inhibition of integrin p1. Inhibition of integrin β1 in leiomyoma cells led to 0.81 ± 0.02 fold decrease in active RhoA, and resembled levels found in serum-starved cells. Likewise, inhibition of integrin β1 was accompanied by a decrease in phospho-ERK. Compared to myometrial cells, leiomyoma cells demonstrated increased expression of integrin α6 subunit to laminin receptor (1.91 ± 0.11 fold), and increased expression of laminin 5α (1.52±0.02), laminin 5β (3.06±0.92), and laminin 5γ (1.66 ± 0.06). Of note, leiomyoma cells grown on laminin matrix appear to realign themselves. Taken together, the findings reveal that the attenuated mechanical signaling in leiomyoma cells is accompanied by an increased expression and a dependence on integrin β1 signaling in leiomyoma cells, compared to myometrial cells. PMID:23023061

  6. Cytoskeletal polarization of T cells is regulated by an immunoreceptor tyrosine-based activation motif-dependent mechanism.

    PubMed

    Lowin-Kropf, B; Shapiro, V S; Weiss, A

    1998-02-23

    Binding of a T cell to an appropriate antigen-presenting cell (APC) induces the rapid reorientation of the T cell cytoskeleton and secretory apparatus towards the cell-cell contact site in a T cell antigen receptor (TCR) and peptide/major histocompatibility complex-dependent process. Such T cell polarization directs the delivery of cytokines and cytotoxic mediators towards the APC and contributes to the highly selective and specific action of effector T cells. To study the signaling pathways that regulate cytoskeletal rearrangements in T lymphocytes, we set up a conjugate formation assay using Jurkat T cells as effectors and cell-sized latex beads coated with various antibodies as artificial APCs. Here, we report that beads coated with antibodies specific for the TCR-CD3 complex were sufficient to induce T cell polarization towards the bead attachment site, as judged by reorientation of the microtubule-organizing center (MTOC) and localized actin polymerization. Thus, these cytoskeletal changes did not depend on activation of additional coreceptors. Moreover, single subunits of the TCR complex, namely TCR-zeta and CD3epsilon, were equally effective in inducing cytoskeletal polarization. However, mutagenesis of the immunoreceptor tyrosine-based activation motifs (ITAMs), present three times in TCR-zeta and once in CD3epsilon, revealed that the induction of cytoskeletal rearrangements required the presence of at least one intact ITAM. In agreement with this result, lack of functional Lck, the protein tyrosine kinase responsible for ITAM phosphorylation, abolished both MTOC reorientation and polarized actin polymerization. Both inhibitor and transient overexpression studies demonstrated that MTOC reorientation could occur in the absence of Ras activation. Our results suggest that APC-induced T cell polarization is a TCR-mediated event that is coupled to the TCR by the same signaling motif as TCR-induced gene activation, but diverges in its distal signaling

  7. Subversion of the actin cytoskeleton during viral infection

    PubMed Central

    Taylor, Matthew P.; Koyuncu, Orkide O.; Enquist, Lynn W.

    2011-01-01

    Viral infection converts the normal functions of a cell to optimize viral replication and virion production. One striking observation of this conversion is the reconfiguration and reorganization of cellular actin, affecting every stage of the viral life cycle, from entry through assembly to egress. The extent and degree of cytoskeletal reorganization varies among different viral infections, suggesting the evolution of myriad viral strategies. In this Review, we describe how the interaction of viral proteins with the cell modulates the structure and function of the actin cytoskeleton to initiate, sustain and spread infections. The molecular biology of such interactions continues to engage virologists in their quest to understand viral replication and informs cell biologists about the role of the cytoskeleton in the uninfected cell. PMID:21522191

  8. Confocal microscopic observation of cytoskeletal reorganizations in cultured shark rectal gland cells following treatment with hypotonic shock and high external K+.

    PubMed

    Henson, J H; Roesener, C D; Gaetano, C J; Mendola, R J; Forrest, J N; Holy, J; Kleinzeller, A

    1997-12-01

    The dogfish shark (Squalus acanthias) rectal gland (SRG) cell has served as a model experimental system for investigating the relationship between the actin cytoskeleton and cell volume regulation. Previous reports employing conventional fluorescence microscopy of tissue slices have shown that cells exposed to high external K+ and hypotonically-induced cell swelling displayed a fading of F-actin staining intensity, particularly at the basolateral cell borders. However, spectroscopic measurement of the F-actin present in similarly treated rectal gland slices failed to demonstrate a net change in F-actin amount. In an effort to resolve the structural reorganizations of F-actin which may be occurring during high K+ and hypotonic shock treatments, we have used cultured SRG cells in conjunction with confocal microscopic immunocytochemical localization techniques to examine actin filament, microtubule, and cytokeratin filament dynamics under these two experimental conditions. The results reveal that F-actin in control cells exists in an array of parallel linear bundles (which do not appear to be stress fiber-like given their lack of staining for myosin II or alpha-actinin) that is reorganized to a punctate pattern in hypotonic shock and a dense meshwork in high K+. The linear bundle pattern of F-actin returns in cells undergoing regulatory volume decrease. Quantitative western blotting of F-actin in SRG cell detergent extracted cytoskeletons indicates no significant difference in the relative amounts of F-actin present in control, hypotonic shocked, or high K+ cells. Anti-tubulin and anti-cytokeratin labeling of the treated SRG cells suggest that these other major cytoskeletal elements are not significantly altered by the treatments. Taken together, our results reinforce the concept that there is an association between the structural organization of the actin cytoskeleton and cell volume regulation in the SRG epithelial cells.

  9. Actin-binding proteins implicated in the formation of the punctate actin foci stimulated by the self-incompatibility response in Papaver.

    PubMed

    Poulter, Natalie S; Staiger, Christopher J; Rappoport, Joshua Z; Franklin-Tong, Vernonica E

    2010-03-01

    The actin cytoskeleton is a key target for signaling networks and plays a central role in translating signals into cellular responses in eukaryotic cells. Self-incompatibility (SI) is an important mechanism responsible for preventing self-fertilization. The SI system of Papaver rhoeas pollen involves a Ca(2+)-dependent signaling network, including massive actin depolymerization as one of the earliest cellular responses, followed by the formation of large actin foci. However, no analysis of these structures, which appear to be aggregates of filamentous (F-)actin based on phalloidin staining, has been carried out to date. Here, we characterize and quantify the formation of F-actin foci in incompatible Papaver pollen tubes over time. The F-actin foci increase in size over time, and we provide evidence that their formation requires actin polymerization. Once formed, these SI-induced structures are unusually stable, being resistant to treatments with latrunculin B. Furthermore, their formation is associated with changes in the intracellular localization of two actin-binding proteins, cyclase-associated protein and actin-depolymerizing factor. Two other regulators of actin dynamics, profilin and fimbrin, do not associate with the F-actin foci. This study provides, to our knowledge, the first insights into the actin-binding proteins and mechanisms involved in the formation of these intriguing structures, which appear to be actively formed during the SI response.

  10. Shwachman-Diamond syndrome neutrophils have altered chemoattractant-induced F-actin polymerization and polarization characteristics.

    PubMed

    Orelio, Claudia; Kuijpers, Taco W

    2009-03-01

    Shwachman-Diamond syndrome is a hereditary disorder characterized by pancreatic insufficiency and bone marrow failure. Most Shwachman-Diamond syndrome patients have mutations in the SBDS gene located at chromosome 7 and suffer from recurrent infections, due to neutropenia in combination with impaired neutrophil chemotaxis. Currently, the role of the actin cytoskeleton in Shwachman-Diamond syndrome neutrophils has not been investigated. Therefore, we performed immunofluorescence for SBDS and F-actin on human neutrophilic cells. Additionally, we examined in control neutrophils and cells from genetically defined Shwachman-Diamond syndrome patients F-actin polymerization and cytoskeletal polarization characteristics upon chemoattractant stimulation. These studies showed that SBDS and F-actin co-localize in neutrophilic cells and that F-actin polymerization and depolymerization characteristics are altered in Shwachman-Diamond syndrome neutrophils as compared to control neutrophils in response to both fMLP and C5a. Moreover, F-actin cytoskeletal polarization is delayed in Shwachman-Diamond syndrome neutrophils. Thus, Shwachman-Diamond syndrome neutrophils have aberrant chemoattractant-induced F-actin properties which might contribute to the impaired neutrophil chemotaxis.

  11. The Ig Superfamily Cell Adhesion Molecule, apCAM, Mediates Growth Cone Steering by Substrate–Cytoskeletal Coupling

    PubMed Central

    Suter, Daniel M.; Errante, Laura D.; Belotserkovsky, Victoria; Forscher, Paul

    1998-01-01

    Dynamic cytoskeletal rearrangements are involved in neuronal growth cone motility and guidance. To investigate how cell surface receptors translate guidance cue recognition into these cytoskeletal changes, we developed a novel in vitro assay where beads, coated with antibodies to the immunoglobulin superfamily cell adhesion molecule apCAM or with purified native apCAM, replaced cellular substrates. These beads associated with retrograde F-actin flow, but in contrast to previous studies, were then physically restrained with a microneedle to simulate interactions with noncompliant cellular substrates. After a latency period of ∼10 min, we observed an abrupt increase in bead-restraining tension accompanied by direct extension of the microtubule-rich central domain toward sites of apCAM bead binding. Most importantly, we found that retrograde F-actin flow was attenuated only after restraining tension had increased and only in the bead interaction axis where preferential microtubule extension occurred. These cytoskeletal and structural changes are very similar to those reported for growth cone interactions with physiological targets. Immunolocalization using an antibody against the cytoplasmic domain of apCAM revealed accumulation of the transmembrane isoform of apCAM around bead-binding sites. Our results provide direct evidence for a mechanical continuum from apCAM bead substrates through the peripheral domain to the central cytoplasmic domain. By modulating functional linkage to the underlying actin cytoskeleton, cell surface receptors such as apCAM appear to enable the application of tensioning forces to extracellular substrates, providing a mechanism for transducing retrograde flow into guided growth cone movement. PMID:9531561

  12. Polycation induced actin bundles.

    PubMed

    Muhlrad, Andras; Grintsevich, Elena E; Reisler, Emil

    2011-04-01

    Three polycations, polylysine, the polyamine spermine and the polycationic protein lysozyme were used to study the formation, structure, ionic strength sensitivity and dissociation of polycation-induced actin bundles. Bundles form fast, simultaneously with the polymerization of MgATP-G-actins, upon the addition of polycations to solutions of actins at low ionic strength conditions. This indicates that nuclei and/or nascent filaments bundle due to attractive, electrostatic effect of polycations and the neutralization of repulsive interactions of negative charges on actin. The attractive forces between the filaments are strong, as shown by the low (in nanomolar range) critical concentration of their bundling at low ionic strength. These bundles are sensitive to ionic strength and disassemble partially in 100 mM NaCl, but both the dissociation and ionic strength sensitivity can be countered by higher polycation concentrations. Cys374 residues of actin monomers residing on neighboring filaments in the bundles can be cross-linked by the short span (5.4Å) MTS-1 (1,1-methanedyl bismethanethiosulfonate) cross-linker, which indicates a tight packing of filaments in the bundles. The interfilament cross-links, which connect monomers located on oppositely oriented filaments, prevent disassembly of bundles at high ionic strength. Cofilin and the polysaccharide polyanion heparin disassemble lysozyme induced actin bundles more effectively than the polylysine-induced bundles. The actin-lysozyme bundles are pathologically significant as both proteins are found in the pulmonary airways of cystic fibrosis patients. Their bundles contribute to the formation of viscous mucus, which is the main cause of breathing difficulties and eventual death in this disorder.

  13. Magnetic phagosome motion in J774A.1 macrophages: influence of cytoskeletal drugs.

    PubMed Central

    Möller, W; Nemoto, I; Matsuzaki, T; Hofer, T; Heyder, J

    2000-01-01

    The role of the different cytoskeletal structures like microfilaments (MF), microtubuli (MT), and intermediate filaments (IF) in phagosome motion is unclear. These cytoskeletal units play an important role in macrophage function (migration, phagocytosis, phagosome transport). We investigated ferromagnetic phagosome motions by cell magnetometry. J774A.1 macrophages were incubated with 1.3-microm spherical magnetite particles for 24 h, after which more than 90% of the particles had been phagocytized. Phagosome motions can be caused either by the cell itself (relaxation) or by applying magnetic twisting forces, yielding cell stiffness and viscoelastic properties of the cytoskeleton. Apparent viscosity of the cytoplasm was non-Newtonian and showed a shear-rate-dependent power law behavior. Elastically stored energy does not force the magnetic phagosomes back to their initial orientation: 57% of the twisting shear was not recoverable. Cytoskeletal drugs, like Cytochalasin D (CyD, 2 - 4 microM), Colchicine (CoL, 10 microM), or Acrylamide (AcL, 40 mM) were added in order to disturb the different cytoskeletal structures. AcL disintegrates IF, but affected neither stochastic (relaxation) nor directed phagosome motions. CyD disrupts MF, resulting in a retarded stochastic phagosome motion (relative decay 0.53 +/- 0.01 after 5 min versus 0.34 +/- 0.01 in control), whereas phagosome twisting shows only a small response with a 9% increase of stiffness and a small reduction of recoverable strain. CoL depolymerizes the MT, inducing a moderately accelerated relaxation (relative decay 0.28 +/- 0.01 after 5 min) and a 10% increase of cell stiffness, where the pure viscous shear is increased and the viscoelastic recoil is inhibited by 40%. Combining the two drugs conserves both effects. After disintegrating either MF or MT, phagosome motion and cytoskeletal stiffness reflect the behavior of either MT or MF, respectively. The results verify that the dominant phagosome transport

  14. Biomimetic systems for studying actin-based motility.

    PubMed

    Upadhyaya, Arpita; van Oudenaarden, Alexander

    2003-09-16

    Actin polymerization provides a major driving force for eukaryotic cell motility. Successive intercalation of monomeric actin subunits between the plasma membrane and the filamentous actin network results in protrusions of the membrane enabling the cell to move or to change shape. One of the challenges in understanding eukaryotic cell motility is to dissect the elementary biochemical and biophysical steps that link actin polymerization to mechanical force generation. Recently, significant progress was made using biomimetic, in vitro systems that are inspired by the actin-based motility of bacterial pathogens such as Listeria monocytogenes. Polystyrene microspheres and synthetic phospholipid vesicles coated with proteins that initiate actin polymerization display motile behavior similar to Listeria, mimicking the leading edge of lamellipodia and filopodia. A major advantage of these biomimetic systems is that both biochemical and physical parameters can be controlled precisely. These systems provide a test bed for validating theoretical models on force generation and polarity establishment resulting from actin polymerization. In this review, we discuss recent experimental progress using biomimetic systems propelled by actin polymerization and discuss these results in the light of recent theoretical models on actin-based motility.

  15. NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus

    PubMed Central

    Ryder, Lauren S.; Dagdas, Yasin F.; Mentlak, Thomas A.; Kershaw, Michael J.; Thornton, Christopher R.; Schuster, Martin; Chen, Jisheng; Wang, Zonghua; Talbot, Nicholas J.

    2013-01-01

    The rice blast fungus Magnaporthe oryzae infects plants with a specialized cell called an appressorium, which uses turgor to drive a rigid penetration peg through the rice leaf cuticle. Here, we show that NADPH oxidases (Nox) are necessary for septin-mediated reorientation of the F-actin cytoskeleton to facilitate cuticle rupture and plant cell invasion. We report that the Nox2–NoxR complex spatially organizes a heteroligomeric septin ring at the appressorium pore, required for assembly of a toroidal F-actin network at the point of penetration peg emergence. Maintenance of the cortical F-actin network during plant infection independently requires Nox1, a second NADPH oxidase, which is necessary for penetration hypha elongation. Organization of F-actin in appressoria is disrupted by application of antioxidants, whereas latrunculin-mediated depolymerization of appressorial F-actin is competitively inhibited by reactive oxygen species, providing evidence that regulated synthesis of reactive oxygen species by fungal NADPH oxidases directly controls septin and F-actin dynamics. PMID:23382235

  16. Differential remodeling of actin cytoskeleton architecture by profilin isoforms leads to distinct effects on cell migration and invasion.

    PubMed

    Mouneimne, Ghassan; Hansen, Scott D; Selfors, Laura M; Petrak, Lara; Hickey, Michele M; Gallegos, Lisa L; Simpson, Kaylene J; Lim, James; Gertler, Frank B; Hartwig, John H; Mullins, R Dyche; Brugge, Joan S

    2012-11-13

    Dynamic actin cytoskeletal reorganization is integral to cell motility. Profilins are well-characterized regulators of actin polymerization; however, functional differences among coexpressed profilin isoforms are not well defined. Here, we demonstrate that profilin-1 and profilin-2 differentially regulate membrane protrusion, motility, and invasion; these processes are promoted by profilin-1 and suppressed by profilin-2. Compared to profilin-1, profilin-2 preferentially drives actin polymerization by the Ena/VASP protein, EVL. Profilin-2 and EVL suppress protrusive activity and cell motility by an actomyosin contractility-dependent mechanism. Importantly, EVL or profilin-2 downregulation enhances invasion in vitro and in vivo. In human breast cancer, lower EVL expression correlates with high invasiveness and poor patient outcome. We propose that profilin-2/EVL-mediated actin polymerization enhances actin bundling and suppresses breast cancer cell invasion.

  17. Increased beta-actin and tubulin polymerization in regrowing axons: relationship to the conditioning lesion effect.

    PubMed

    Lund, Linda M; Machado, Victor M; McQuarrie, Irvine G

    2002-12-01

    Spinal motor neurons of Sprague-Dawley rats were examined to determine which of the neuronal isoforms of actin (beta or gamma) upregulate following axon injury. In situ hybridization studies showed greater beta-actin mRNA levels but no change in gamma-actin mRNA levels-suggesting that axon regrowth utilizes beta-actin. We radiolabeled the newly synthesized actin and tubulin that are subsequently transported in the axon to the site of an axotomizing injury. This allowed us to evaluate changes in polymerization as new cytoskeletal elements approach the injury site. Previous studies had shown that the rate of the most rapid subcomponent of actin and tubulin transport (called SCb) accelerates following axotomy (J. Jacob and I. McQuarrie, J. Neurobiol. 22: 570-583, 1991). This rate increase is associated with an increased proportion of SCb tubulin and actin in polymer (vs monomer) form (J. Jacob and I. McQuarrie, J. Neurosci, Res. 43: 412-419, 1996). However, in that study newly synthesized proteins were radiolabeled at 7 days after axotomy-which is at the peak of increased protein synthesis. This time-course did not examine actin and tubulin that were already in transit in axons when the injury occurred. This actin and tubulin would enter the regrowing axons first. Here, we have radiolabeled newly synthesized proteins 3 days prior to axotomy. For beta-tubulin, the ratio of monomer to polymer was unaffected. For actin, the equilibrium shifted strongly toward polymerization. We conclude that the acceleration of axonal outgrowth seen after the second of two serial axotomies (the "conditioning lesion effect") is related to the ability of actin that is already in transit to polymerize in response to the first axotomy.

  18. Structure of the 34 kDa F-actin-bundling protein ABP34 from Dictyostelium discoideum.

    PubMed

    Kim, Min-Kyu; Kim, Ji-Hye; Kim, Ji-Sun; Kang, Sa-Ouk

    2015-09-01

    The crystal structure of the 34 kDa F-actin-bundling protein ABP34 from Dictyostelium discoideum was solved by Ca(2+)/S-SAD phasing and refined at 1.89 Å resolution. ABP34 is a calcium-regulated actin-binding protein that cross-links actin filaments into bundles. Its in vitro F-actin-binding and F-actin-bundling activities were confirmed by a co-sedimentation assay and transmission electron microscopy. The co-localization of ABP34 with actin in cells was also verified. ABP34 adopts a two-domain structure with an EF-hand-containing N-domain and an actin-binding C-domain, but has no reported overall structural homologues. The EF-hand is occupied by a calcium ion with a pentagonal bipyramidal coordination as in the canonical EF-hand. The C-domain structure resembles a three-helical bundle and superposes well onto the rod-shaped helical structures of some cytoskeletal proteins. Residues 216-244 in the C-domain form part of the strongest actin-binding sites (193-254) and exhibit a conserved sequence with the actin-binding region of α-actinin and ABP120. Furthermore, the second helical region of the C-domain is kinked by a proline break, offering a convex surface towards the solvent area which is implicated in actin binding. The F-actin-binding model suggests that ABP34 binds to the side of the actin filament and residues 216-244 fit into a pocket between actin subdomains -1 and -2 through hydrophobic interactions. These studies provide insights into the calcium coordination in the EF-hand and F-actin-binding site in the C-domain of ABP34, which are associated through interdomain interactions.

  19. Molecular Mechanotransduction: how forces trigger cytoskeletal dynamics

    NASA Astrophysics Data System (ADS)

    Ehrlicher, Allen

    2012-02-01

    Mechanical stresses elicit cellular reactions mediated by chemical signals. Defective responses to forces underlie human medical disorders, such as cardiac failure and pulmonary injury. Despite detailed knowledge of the cytoskeleton's structure, the specific molecular switches that convert mechanical stimuli into chemical signals have remained elusive. Here we identify the actin-binding protein, filamin A (FLNa) as a central mechanotransduction element of the cytoskeleton by using Fluorescence Loss After photoConversion (FLAC), a novel high-speed alternative to FRAP. We reconstituted a minimal system consisting of actin filaments, FLNa and two FLNa-binding partners: the cytoplasmic tail of ß-integrin, and FilGAP. Integrins form an essential mechanical linkage between extracellular and intracellular environments, with ß integrin tails connecting to the actin cytoskeleton by binding directly to filamin. FilGAP is a FLNa-binding GTPase-activating protein specific for Rac, which in vivo regulates cell spreading and bleb formation. We demonstrate that both externally-imposed bulk shear and myosin II driven forces differentially regulate the binding of integrin and FilGAP to FLNa. Consistent with structural predictions, strain increases ß-integrin binding to FLNa, whereas it causes FilGAP to dissociate from FLNa, providing a direct and specific molecular basis for cellular mechanotransduction. These results identify the first molecular mechanotransduction element within the actin cytoskeleton, revealing that mechanical strain of key proteins regulates the binding of signaling molecules. Moreover, GAP activity has been shown to switch cell movement from mesenchymal to amoeboid motility, suggesting that mechanical forces directly impact the invasiveness of cancer.

  20. Actin depolymerization mediated loss of SNTA1 phosphorylation and Rac1 activity has implications on ROS production, cell migration and apoptosis.

    PubMed

    Bhat, Sehar Saleem; Parray, Arif Ali; Mushtaq, Umar; Fazili, Khalid Majid; Khanday, Firdous Ahmad

    2016-06-01

    Alpha-1-syntrophin (SNTA1) and Rac1 are part of a signaling pathway via the dystrophin glycoprotein complex (DGC). Both SNTA1 and Rac1 proteins are over-expressed in various carcinomas. It is through the DGC signaling pathway that SNTA1 has been shown to act as a link between the extra cellular matrix, the internal cell signaling apparatus and the actin cytoskeleton. SNTA1 is involved in the modulation of the actin cytoskeleton and actin reorganization. Rac1 also controls actin cytoskeletal organization in the cell. In this study, we present the interplay between f-actin, SNTA1 and Rac1. We analyzed the effect of actin depolymerization on SNTA1 tyrosine phosphorylation and Rac1 activity using actin depolymerizing drugs, cytochalasin D and latrunculin A. Our results indicate a marked decrease in the tyrosine phosphorylation of SNTA1 upon actin depolymerization. Results suggest that actin depolymerization mediated loss of SNTA1 phosphorylation leads to loss of interaction between SNTA1 and Rac1, with a concomitant loss of Rac1 activation. The loss of SNTA1tyrosine phosphorylation and Rac1 activity by actin depolymerization results in increased apoptosis, decreased cell migration and decreased reactive oxygen species (ROS) levels in breast carcinoma cells. Collectively, our results present a possible role of f-actin in the SNTA1-Rac1 signaling pathway and implications of actin depolymerization on cell migration, ROS production and apoptosis.

  1. Quantitative Fluorescent Speckle Microscopy (QFSM) to Measure Actin Dynamics

    PubMed Central

    Mendoza, Michelle C.; Besson, Sebastien; Danuser, Gaudenz

    2012-01-01

    Quantitative Fluorescent Speckle Microscopy (QFSM) is a live cell imaging method to analyze the dynamics of macromolecular assemblies with high spatial and temporal resolution. Its greatest successes were in the analysis of actin filament and adhesion dynamics in the context of cell migration and microtubule dynamics in interphase and the meotic/mitotic spindle. Here, we focus on the former application to illustrate the procedures of FSM imaging and the computational image processing that extracts quantitative information from these experiments. QFSM is advantageous over other methods because it measures the movement and turnover kinetics of the actin filament (F-actin) network in living cells across the entire field of view. Experiments begin with microinjection of fluorophore-labeled actin into cells, which generate a low ratio of fluorescently-labeled:endogenous unlabeled actin monomers. Spinning disk confocal or wide-field imaging then visualizes fluorophore clusters (2–8 actin monomers) within the assembled F-actin network as speckles. QFSM software identifies and computationally tracks and utilizes the location, appearance, and disappearance of speckles to derive network flows and maps of the rate of filament assembly and disassembly. PMID:23042526

  2. Quantitative apical membrane proteomics reveals vasopressin-induced actin dynamics in collecting duct cells

    PubMed Central

    Loo, Chin-San; Chen, Cheng-Wei; Wang, Po-Jen; Chen, Pei-Yu; Lin, Shu-Yu; Khoo, Kay-Hooi; Fenton, Robert A.; Knepper, Mark A.; Yu, Ming-Jiun

    2013-01-01

    In kidney collecting duct cells, filamentous actin (F-actin) depolymerization is a critical step in vasopressin-induced trafficking of aquaporin-2 to the apical plasma membrane. However, the molecular components of this response are largely unknown. Using stable isotope-based quantitative protein mass spectrometry and surface biotinylation, we identified 100 proteins that showed significant abundance changes in the apical plasma membrane of mouse cortical collecting duct cells in response to vasopressin. Fourteen of these proteins are involved in actin cytoskeleton regulation, including actin itself, 10 actin-associated proteins, and 3 regulatory proteins. Identified were two integral membrane proteins (Clmn, Nckap1) and one actin-binding protein (Mpp5) that link F-actin to the plasma membrane, five F-actin end-binding proteins (Arpc2, Arpc4, Gsn, Scin, and Capzb) involved in F-actin reorganization, and two actin adaptor proteins (Dbn1, Lasp1) that regulate actin cytoskeleton organization. There were also protease (Capn1), protein kinase (Cdc42bpb), and Rho guanine nucleotide exchange factor 2 (Arhgef2) that mediate signal-induced F-actin changes. Based on these findings, we devised a live-cell imaging method to observe vasopressin-induced F-actin dynamics in polarized mouse cortical collecting duct cells. In response to vasopressin, F-actin gradually disappeared near the center of the apical plasma membrane while consolidating laterally near the tight junction. This F-actin peripheralization was blocked by calcium ion chelation. Vasopressin-induced apical aquaporin-2 trafficking and forskolin-induced water permeability increase were blocked by F-actin disruption. In conclusion, we identified a vasopressin-regulated actin network potentially responsible for vasopressin-induced apical F-actin dynamics that could explain regulation of apical aquaporin-2 trafficking and water permeability increase. PMID:24085853

  3. Involvement of oxidative stress and cytoskeletal disruption in microcystin-induced apoptosis in CIK cells.

    PubMed

    Huang, Xiao; Chen, Liang; Liu, Wanjing; Qiao, Qin; Wu, Kang; Wen, Jing; Huang, Cuihong; Tang, Rong; Zhang, Xuezhen

    2015-08-01

    The outbreak of cyanobacterial blooms induces the production and release of microcystins (MCs) into water, representing a health hazard to aquatic organisms and even humans. Some recent studies have suggested that kidney is another important target organ of MCs except liver, however, the potential toxicity mechanisms are still unclear. In this study, we first investigated the collaborative effect of oxidative stress and cytoskeletal disruption in microcystin-induced apoptosis in CIK (Ctenopharyngodon idellus kidney) cells in vitro. CIK cells were treated with 0, 1, 10, and 100μg/L microcystin-LR (MC-LR) for 24 and 48h. Cell viability was increased by MC-LR in 1μg/L group, while decreased in 100μg/L group at 48h. Cell cycle assay showed that 1 and 10μg/L MC-LR induced cell cycle through G1 into S and G2/M phases, while 100μg/L MC-LR reduced G2/M phase population. MC-LR markedly induced apoptosis in 10 and 100μg/L groups. Elevated reactive oxygen species (ROS) production, increased malondialdehyde (MDA) contents, decreased glutathione (GSH) levels, and modulated antioxidant enzymes including catalase (CAT) and superoxide dismutase (SOD) were observed in CIK cells exposed to MC-LR. These alterations were more pronounced at higher doses (10 and 100μg/L), indicating that oxidative stress was induced by MC-LR. Laser scanning confocal microscope observation showed aggregation and collapse of microfilaments (MFs) and microtubules (MTs) in CIK cells, and even loss of some cytoskeleton structure. Moreover, transcriptional changes of cytoskeletal genes (β-actin, lc3a, and keratin) were also determined, which have a high probability with cytoskeleton structure damage. Our data suggest that oxidative stress and cytoskeletal disruption may interact with each other and jointly lead to apoptosis and renal toxicity induced by MCs.

  4. The TRPM7 interactome defines a cytoskeletal complex linked to neuroblastoma progression.

    PubMed

    Middelbeek, Jeroen; Vrenken, Kirsten; Visser, Daan; Lasonder, Edwin; Koster, Jan; Jalink, Kees; Clark, Kristopher; van Leeuwen, Frank N

    2016-11-01

    Neuroblastoma is the second-most common solid tumor in children and originates from poorly differentiated neural crest-derived progenitors. Although most advanced stage metastatic neuroblastoma patients initially respond to treatment, a therapy resistant pool of poorly differentiated cells frequently arises, leading to refractory disease. A lack of insight into the molecular mechanisms that underlie neuroblastoma progression hampers the development of effective new therapies for these patients. Normal neural crest development and maturation is guided by physical interactions between the cell and its surroundings, in addition to soluble factors such as growth factors. This mechanical crosstalk is mediated by actin-based adhesion structures and cell protrusions that probe the cellular environment to modulate migration, proliferation, survival and differentiation. Whereas such signals preserve cellular quiescence in non-malignant cells, perturbed adhesion signaling promotes de-differentiation, uncontrolled cell proliferation, tissue invasion and therapy resistance. We previously reported that high expression levels of the channel-kinase TRPM7, a protein that maintains the progenitor state of embryonic neural crest cells, are closely associated with progenitor-like features of tumor cells, accompanied by extensive cytoskeletal reorganization and adhesion remodeling. To define mechanisms by which TRPM7 may contribute to neuroblastoma progression, we applied a proteomics approach to identify TRPM7 interacting proteins. We show that TRPM7 is part of a large complex of proteins, many of which function in cytoskeletal organization, cell protrusion formation and adhesion dynamics. Expression of a subset of these TRPM7 interacting proteins strongly correlates with neuroblastoma progression in independent neuroblastoma patient datasets. Thus, TRPM7 is part of a large cytoskeletal complex that may affect the malignant potential of tumor cells by regulating actomyosin dynamics

  5. A green fluorescent protein fusion to actin-binding domain 2 of Arabidopsis fimbrin highlights new features of a dynamic actin cytoskeleton in live plant cells.

    PubMed

    Sheahan, Michael B; Staiger, Chris J; Rose, Ray J; McCurdy, David W

    2004-12-01

    The actin cytoskeleton coordinates numerous cellular processes required for plant development. The functions of this network are intricately linked to its dynamic arrangement, and thus progress in understanding how actin orchestrates cellular processes relies on critical evaluation of actin organization and turnover. To investigate the dynamic nature of the actin cytoskeleton, we used a fusion protein between green fluorescent protein (GFP) and the second actin-binding domain (fABD2) of Arabidopsis (Arabidopsis thaliana) fimbrin, AtFIM1. The GFP-fABD2 fusion protein labeled highly dynamic and dense actin networks in diverse species and cell types, revealing structural detail not seen with alternative labeling methods, such as the commonly used mouse talin GFP fusion (GFP-mTalin). Further, we show that expression of the GFP-fABD2 fusion protein in Arabidopsis, unlike GFP-mTalin, has no detectable adverse effects on plant morphology or development. Time-lapse confocal microscopy and fluorescence recovery after photobleaching analyses of the actin cytoskeleton labeled with GFP-fABD2 revealed that lateral-filament migration and sliding of individual actin filaments or bundles are processes that contribute to the dynamic and continually reorganizing nature of the actin scaffold. These new observations of the dynamic actin cytoskeleton in plant cells using GFP-fABD2 reveal the value of this probe for future investigations of how actin filaments coordinate cellular processes required for plant development.

  6. The secretory mechanisms in equine platelets are independent of cytoskeletal polymerization and occur through membrane fusion.

    PubMed

    Brunso, L; Segura, D; Monreal, L; Escolar, G; White, J G; Diaz-Ricart, M

    2010-01-01

    Studies in animal models are useful to understand the basic mechanisms involved in hemostasis and the functional differences among species. Ultrastructural observations led us to predict differences in the activation and secretion mechanisms between equine and human platelets. The potential mechanisms involved have been comparatively explored in the present study. Equine and human platelets were activated with thrombin (0.5 U/ml) and collagen (20 µg/ml), for 90 seconds, and samples processed to evaluate: i) ultrastructural changes, by electron microscopy, ii) actin polymerization and cytoskeletal assembly, by polyacrylamide gel electrophoresis, and iii) specific molecules involved in activation and secretion, by western blot. In activated human platelets, centralization of granules, cytoskeletal assembly and fusion of granules with the open canalicular system were observed. In activated equine platelets, granules fused together forming an organelle chain that fused with the surface membrane and released its content directly outside the platelets. Human platelets responded to activation with actin polymerization and the assembly of other contractile proteins to the cytoskeleton. These events were almost undetectable in equine platelets. When exploring the involvement of the synaptosomal-associated protein-23 (SNAP-23), a known regulator of secretory granule/plasma membrane fusion events, it was present in both human and equine platelets. SNAP-23 was shown to be more activated in equine platelets than human platelets in response to activation, especially with collagen. Thus, there are significant differences in the secretion mechanisms between human and equine platelets. While in human platelets, activation and secretion of granules depend on mechanisms of internal contraction and membrane fusion, in equine platelets the fusion mechanisms seem to be predominant.

  7. Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination

    PubMed Central

    Bonin, Sawyer R.; Gibeault, Sabrina; De Repentigny, Yves; Kothary, Rashmi

    2016-01-01

    Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as was myelin basic

  8. Intermediate filament-like proteins in bacteria and a cytoskeletal function in Streptomyces

    PubMed Central

    Bagchi, Sonchita; Tomenius, Henrik; Belova, Lyubov M; Ausmees, Nora

    2008-01-01

    Actin and tubulin cytoskeletons are conserved and widespread in bacteria. A strikingly intermediate filament (IF)-like cytoskeleton, composed of crescentin, is also present in Caulobacter crescentus and determines its specific cell shape. However, the broader significance of this finding remained obscure, because crescentin appeared to be unique to Caulobacter. Here we demonstrate that IF-like function is probably a more widespread phenomenon in bacteria. First, we show that 21 genomes of 26 phylogenetically diverse species encoded uncharacterized proteins with a central segmented coiled coil rod domain, which we regarded as a key structural feature of IF proteins and crescentin. Experimental studies of three in silico predicted candidates from Mycobacterium and other actinomycetes revealed a common IF-like property to spontaneously assemble into filaments in vitro. Furthermore, the IF-like protein FilP formed cytoskeletal structures in the model actinomycete Streptomyces coelicolor and was needed for normal growth and morphogenesis. Atomic force microscopy of living cells revealed that the FilP cytoskeleton contributed to mechanical fitness of the hyphae, thus closely resembling the function of metazoan IF. Together, the bioinformatic and experimental data suggest that an IF-like protein architecture is a versatile design that is generally present in bacteria and utilized to perform diverse cytoskeletal tasks. PMID:18976278

  9. Nesprin-3 regulates endothelial cell morphology, perinuclear cytoskeletal architecture, and flow-induced polarization

    PubMed Central

    Morgan, Joshua T.; Pfeiffer, Emily R.; Thirkill, Twanda L.; Kumar, Priyadarsini; Peng, Gordon; Fridolfsson, Heidi N.; Douglas, Gordon C.; Starr, Daniel A.; Barakat, Abdul I.

    2011-01-01

    Changes in blood flow regulate gene expression and protein synthesis in vascular endothelial cells, and this regulation is involved in the development of atherosclerosis. How mechanical stimuli are transmitted from the endothelial luminal surface to the nucleus is incompletely understood. The linker of nucleus and cytoskeleton (LINC) complexes have been proposed as part of a continuous physical link between the plasma membrane and subnuclear structures. LINC proteins nesprin-1, -2, and -4 have been shown to mediate nuclear positioning via microtubule motors and actin. Although nesprin-3 connects intermediate filaments to the nucleus, no functional consequences of nesprin-3 mutations on cellular processes have been described. Here we show that nesprin-3 is robustly expressed in human aortic endothelial cells (HAECs) and localizes to the nuclear envelope. Nesprin-3 regulates HAEC morpho­logy, with nesprin-3 knockdown inducing prominent cellular elongation. Nesprin-3 also organizes perinuclear cytoskeletal organization and is required to attach the centrosome to the nuclear envelope. Finally, nesprin-3 is required for flow-induced polarization of the centrosome and flow-induced migration in HAECs. These results represent the most complete description to date of nesprin-3 function and suggest that nesprin-3 regulates vascular endothelial cell shape, perinuclear cytoskeletal architecture, and important aspects of flow-mediated mechanotransduction. PMID:21937718

  10. Modulation of cytoskeletal dynamics by mammalian nucleoside diphosphate kinase (NDPK) proteins.

    PubMed

    Snider, Natasha T; Altshuler, Peter J; Omary, M Bishr

    2015-02-01

    Nucleoside diphosphate kinase (NDPK) proteins comprise a family of ten human isoforms that participate in the regulation of multiple cellular processes via enzymatic and nonenzymatic functions. The major enzymatic function of NDPKs is the generation of nucleoside triphosphates, such as guanosine triphosphate (GTP). Mechanisms behind the nonenzymatic NDPK functions are not clear but likely involve context-dependent signaling roles of NDPK within multi-protein complexes. This is most evident for NDPK-A, which is encoded by the human NME1 gene, the first tumor metastasis suppressor gene to be identified. Understanding which protein interactions are most relevant for the biological and metastasis-related functions of NDPK will be important in the potential utilization of NDPK as a disease target. Accumulating evidence suggests that NDPK interacts with and affects various components and regulators of the cytoskeleton, including actin-binding proteins, intermediate filaments, and cytoskeletal attachment structures (adherens junctions, desmosomes, and focal adhesions). We review the existing literature on this topic and highlight outstanding questions and potential future directions that should clarify the impact of NDPK on the different cytoskeletal systems.

  11. Aluminum modifies the viscosity of filamentous actin solutions as measured by optical displacement microviscometry.

    PubMed

    Arnoys, E J; Schindler, M

    2000-01-01

    A microtechnique has been developed that is capable of measuring the viscosity of filamentous actin (F-actin) solutions. This method, called optical displacement microviscometry (ODM), was utilized to determine the changes in viscosity of solutions of rabbit muscle, human platelet, and maize pollen actin when measured in the absence and presence of aluminum. Measurements demonstrated that the viscosity of the different actin solutions decreased with aluminum concentration. In contrast, increases in viscosity were observed when aluminum was added to F-actin solutions containing filamin (chicken gizzard), a protein that bundles actin filaments. Confocal fluorescence imaging of pure actin solutions in the presence of aluminum showed a disrupted actin network composed of fragmented actin filaments in the form of small aggregates. In contrast, in the presence of filamin, aluminum promoted the formation of thicker actin filaments. These measurements demonstrate that aluminum can affect actin filaments differentially depending on the presence of an actin-binding protein. In addition, a strong correlation is observed between the changes in viscosity as measured by ODM and the thickness and assembled state of bundles of actin filaments.

  12. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria

    PubMed Central

    Donovan, Catriona; Heyer, Antonia; Pfeifer, Eugen; Polen, Tino; Wittmann, Anja; Krämer, Reinhard; Frunzke, Julia; Bramkamp, Marc

    2015-01-01

    In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin. PMID:25916847

  13. TOR complex 2-Ypk1 signaling regulates actin polarization via reactive oxygen species.

    PubMed

    Niles, Brad J; Powers, Ted

    2014-12-01

    The evolutionarily conserved mTOR complex 2 (mTORC2) signaling pathway is an important regulator of actin cytoskeletal architecture and, as such, is a candidate target for preventing cancer cell motility and invasion. Remarkably, the precise mechanism(s) by which mTORC2 regulates the actin cytoskeleton have remained elusive. Here we show that in budding yeast, TORC2 and its downstream kinase Ypk1 regulate actin polarization by controlling reactive oxygen species (ROS) accumulation. Specifically, we find that TORC2-Ypk1 regulates actin polarization both by vacuole-related ROS, controlled by the phospholipid flippase kinase Fpk1 and sphingolipids, and by mitochondria-mediated ROS, controlled by the PKA subunit Tpk3. In addition, we find that the protein kinase C (Pkc1)/MAPK cascade, a well-established regulator of actin, acts downstream of Ypk1 to regulate ROS, in part by promoting degradation of the oxidative stress responsive repressor, cyclin C. Furthermore, we show that Ypk1 regulates Pkc1 activity through proper localization of Rom2 at the plasma membrane, which is also dependent on Fpk1 and sphingolipids. Together these findings demonstrate important links between TORC2/Ypk1 signaling, Fpk1, sphingolipids, Pkc1, and ROS as regulators of actin and suggest that ROS may play an important role in mTORC2-dependent dysregulation of the actin cytoskeleton in cancer cells.

  14. Generation of an isogenic collection of yeast actin mutants and identification of three interrelated phenotypes.

    PubMed Central

    Whitacre, J; Davis, D; Toenjes, K; Brower, S; Adams, A

    2001-01-01

    A large collection of yeast actin mutations has been previously isolated and used in numerous studies of actin cytoskeletal function. However, the various mutations have been in congenic, rather than isogenic, backgrounds, making it difficult to compare the subtle phenotypes that are characteristic of these mutants. We have therefore placed 27 mutations in an isogenic background. We used a subset of these mutants to compare the degree to which different actin alleles are defective in sporulation, endocytosis, and growth on NaCl-containing media. We found that the three phenotypes are highly correlated. The correlations are specific and not merely a reflection of general growth defects, because the phenotypes are not correlated with growth rates under normal conditions. Significantly, those actin mutants exhibiting the most severe phenotypes in all three processes have altered residues that cluster to a small region of the actin crystal structure previously defined as the fimbrin (Sac6p)-binding site. We examined the relationship between endocytosis and growth on salt and found that shifting wild-type or actin mutant cells to high salt reduces the rate of alpha-factor internalization. These results suggest that actin mutants may be unable to grow on salt because of additive endocytic defects (due to mutation and salt). PMID:11156976

  15. Structural implications of Ca2+-dependent actin-bundling function of human EFhd2/Swiprosin-1

    PubMed Central

    Park, Kyoung Ryoung; Kwon, Min-Sung; An, Jun Yop; Lee, Jung-Gyu; Youn, Hyung-Seop; Lee, Youngjin; Kang, Jung Youn; Kim, Tae Gyun; Lim, Jia Jia; Park, Jeong Soon; Lee, Sung Haeng; Song, Woo Keun; Cheong, Hae-Kap; Jun, Chang-Duk; Eom, Soo Hyun

    2016-01-01

    EFhd2/Swiprosin-1 is a cytoskeletal Ca2+-binding protein implicated in Ca2+-dependent cell spreading and migration in epithelial cells. EFhd2 domain architecture includes an N-terminal disordered region, a PxxP motif, two EF-hands, a ligand mimic helix and a C-terminal coiled-coil domain. We reported previously that EFhd2 displays F-actin bundling activity in the presence of Ca2+ and this activity depends on the coiled-coil domain and direct interaction of the EFhd2 core region. However, the molecular mechanism for the regulation of F-actin binding and bundling by EFhd2 is unknown. Here, the Ca2+-bound crystal structure of the EFhd2 core region is presented and structures of mutants defective for Ca2+-binding are also described. These structures and biochemical analyses reveal that the F-actin bundling activity of EFhd2 depends on the structural rigidity of F-actin binding sites conferred by binding of the EF-hands to Ca2+. In the absence of Ca2+, the EFhd2 core region exhibits local conformational flexibility around the EF-hand domain and C-terminal linker, which retains F-actin binding activity but loses the ability to bundle F-actin. In addition, we establish that dimerisation of EFhd2 via the C-terminal coiled-coil domain, which is necessary for F-actin bundling, occurs through the parallel coiled-coil interaction. PMID:27974828

  16. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria.

    PubMed

    Donovan, Catriona; Heyer, Antonia; Pfeifer, Eugen; Polen, Tino; Wittmann, Anja; Krämer, Reinhard; Frunzke, Julia; Bramkamp, Marc

    2015-05-26

    In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin.

  17. Mammalian homolog of the yeast cyclase associated protein, CAP/Srv2p, regulates actin filament assembly.

    PubMed

    Freeman, N L; Field, J

    2000-02-01

    Control of cell shape and motility requires rearrangements of the actin cytoskeleton. One cytoskeletal protein that may regulate actin dynamics is CAP (cyclase associated protein; CAP/Srv2p; ASP-56). CAP was first isolated from yeast as an adenylyl cyclase associated protein required for RAS regulation of cAMP signaling. In addition, CAP also regulates the actin cytoskeleton primarily through an actin monomer binding activity. CAP homologs are found in many eukaryotes, including mammals where they also bind actin, but little is known about their biological function. We, therefore, designed experiments to address CAP1 regulation of the actin cytoskeleton. CAP1 localized to membrane ruffles and actin stress fibers in fixed cells of various types. To address localization in living cells, we constructed GFP-CAP1 fusion proteins and found that fusion proteins lacking the actin-binding region localized like the wild type protein. We also performed microinjection studies with affinity-purified anti-CAP1 antibodies in Swiss 3T3 fibroblasts and found that the antibodies attenuated serum stimulation of stress fibers. Finally, CAP1 purified from platelets through a monoclonal antibody affinity purification step stimulated the formation of stress fiber-like filaments when it was microinjected into serum-starved Swiss 3T3 cells. Taken together, these data suggest that CAP1 promotes assembly of the actin cytoskeleton.

  18. An actin monomer binding activity localizes to the carboxyl-terminal half of the Saccharomyces cerevisiae cyclase-associated protein.

    PubMed

    Freeman, N L; Chen, Z; Horenstein, J; Weber, A; Field, J

    1995-03-10

    The Saccharomyces cerevisiae adenylyl cyclase complex contains at least two subunits, a 200-kDa catalytic subunit and a 70-kDa cyclase-associated protein, CAP (also called Srv2p). Genetic studies suggested two roles for CAP, one as a positive regulator of cAMP levels in yeast and a second role as a cytoskeletal regulator. We present evidence showing that CAP sequesters monomeric actin (Kd in the range of 0.5-5 microM), decreasing actin incorporation into actin filaments. Anti-CAP monoclonal antibodies co-immunoprecipitate a protein with a molecular size of about 46 kDa. When CAP was purified from yeast using an anti-CAP monoclonal antibody column, the 46-kDa protein co-purified with a stoichiometry of about 1:1 with CAP. Western blots identified the 46-kDa protein as yeast actin. CAP also bound to muscle actin in vitro in immunoprecipitation assays and falling ball viscometry assays. Experiments with pyrene-labeled actin demonstrated that CAP sequesters actin monomers. The actin monomer binding activity is localized to the carboxyl-terminal half of CAP. Together, these data suggest that yeast CAP regulates the yeast cytoskeleton by sequestering actin monomers.

  19. Actinic keratosis. Current treatment options.

    PubMed

    Jeffes, E W; Tang, E H

    2000-01-01

    Actinic keratoses are hyperkeratotic skin lesions that represent focal abnormal proliferation of epidermal keratinocytes. Some actinic keratoses evolve into squamous cell carcinoma of the skin, while others resolve spontaneously. The conversion rate of actinic keratosis to squamous cell carcinoma is not accurately known, but appears to be in the range of 0.25 to 1% per year. Although there is a low rate of conversion of actinic keratoses to squamous cell carcinoma, 60% of squamous cell carcinomas of the skin probably arise from actinic keratoses. The main cause of actinic keratoses in otherwise healthy Caucasians appears to be the sun. Therapy for actinic keratoses begins with prevention which starts with sun avoidance and physical protection. Sunprotection with sunscreens actually slows the return of actinic keratoses in patients already getting actinic keratoses. Interestingly, a few studies are available that demonstrate that a high fat diet is associated with the production of more actinic keratoses than is a low fat diet. One of the mainstays of therapy has been local destruction of the actinic keratoses with cryotherapy, and curettage and electrodesiccation. A new addition to this group of therapies to treat individual actinic keratoses is photodynamic therapy with topical aminolevulinic acid and light. In patients who have numerous actinic keratoses in an area of severely sun damaged skin, therapies which are applied to the whole actinic keratosis area are used. The goal of treating such an area of skin is to treat all of the early as well as the numerous clinically evident actinic keratoses at the same time. The classical approaches for treating areas of photodamaged skin without treating actinic keratoses individually include: the use of topically applied fluorouracil cream, dermabrasion, and cutaneous peels with various agents like trichloroacetic acid. Both topically as well as orally administered retinoids have been used to treat actinic keratoses but

  20. Requirements for contractility in disordered cytoskeletal bundles

    NASA Astrophysics Data System (ADS)

    Lenz, Martin; Gardel, Margaret L.; Dinner, Aaron R.

    2012-03-01

    Actomyosin contractility is essential for biological force generation, and is well understood in highly organized structures such as striated muscle. Additionally, actomyosin bundles devoid of this organization are known to contract both in vivo and in vitro, which cannot be described by standard muscle models. To narrow down the search for possible contraction mechanisms in these systems, we investigate their microscopic symmetries. We show that contractile behavior requires non-identical motors that generate large-enough forces to probe the nonlinear elastic behavior of F-actin. This suggests a role for filament buckling in the contraction of these bundles, consistent with recent experimental results on reconstituted actomyosin bundles.

  1. PDZD8 is a novel moesin-interacting cytoskeletal regulatory protein that suppresses infection by herpes simplex virus type 1.

    PubMed

    Henning, Matthew S; Stiedl, Patricia; Barry, Denis S; McMahon, Robert; Morham, Scott G; Walsh, Derek; Naghavi, Mojgan H

    2011-07-05

    The host cytoskeleton plays a central role in the life cycle of many viruses yet our knowledge of cytoskeletal regulators and their role in viral infection remains limited. Recently, moesin and ezrin, two members of the ERM (Ezrin/Radixin/Moesin) family of proteins that regulate actin and plasma membrane cross-linking and microtubule (MT) stability, have been shown to inhibit retroviral infection. To further understand how ERM proteins function and whether they also influence infection by other viruses, we identified PDZD8 as a novel moesin-interacting protein. PDZD8 is a poorly understood protein whose function is unknown. Exogenous expression of either moesin or PDZD8 reduced the levels of stable MTs, suggesting that these proteins functioned as part of a cytoskeletal regulatory complex. Additionally, exogenous expression or siRNA-mediated knockdown of either factor affected Herpes Simplex Virus type 1 (HSV-1) infection, identifying a cellular function for PDZD8 and novel antiviral properties for these two cytoskeletal regulatory proteins.

  2. Deep nuclear invaginations are linked to cytoskeletal filaments - integrated bioimaging of epithelial cells in 3D culture.

    PubMed

    Jorgens, Danielle M; Inman, Jamie L; Wojcik, Michal; Robertson, Claire; Palsdottir, Hildur; Tsai, Wen-Ting; Huang, Haina; Bruni-Cardoso, Alexandre; López, Claudia S; Bissell, Mina J; Xu, Ke; Auer, Manfred

    2017-01-01

    The importance of context in regulation of gene expression is now an accepted principle; yet the mechanism by which the microenvironment communicates with the nucleus and chromatin in healthy tissues is poorly understood. A functional role for nuclear and cytoskeletal architecture is suggested by the phenotypic differences observed between epithelial and mesenchymal cells. Capitalizing on recent advances in cryogenic techniques, volume electron microscopy and super-resolution light microscopy, we studied human mammary epithelial cells in three-dimensional (3D) cultures forming growth-arrested acini. Intriguingly, we found deep nuclear invaginations and tunnels traversing the nucleus, encasing cytoskeletal actin and/or intermediate filaments, which connect to the outer nuclear envelope. The cytoskeleton is also connected both to other cells through desmosome adhesion complexes and to the extracellular matrix through hemidesmosomes. This finding supports a physical and/or mechanical link from the desmosomes and hemidesmosomes to the nucleus, which had previously been hypothesized but now is visualized for the first time. These unique structures, including the nuclear invaginations and the cytoskeletal connectivity to the cell nucleus, are consistent with a dynamic reciprocity between the nucleus and the outside of epithelial cells and tissues.

  3. Activated ADF/cofilin sequesters phosphorylated microtubule-associated-protein during the assembly of Alzheimer-like neuritic cytoskeletal striations

    PubMed Central

    Whiteman, Ineka T.; Gervasio, Othon L.; Cullen, Karen M.; Guillemin, Gilles J.; Jeong, Erica V.; Witting, Paul K.; Antao, Shane T.; Minamide, Laurie S.; Bamburg, James R.; Goldsbury, Claire

    2009-01-01

    In Alzheimer disease (AD), rod-like cofilin aggregates (cofilin-actin rods) and thread-like inclusions containing phosphorylated microtubule-associated protein (pMAP) tau form in the brain (neuropil threads) and the extent of their presence correlates with cognitive decline and disease progression. The assembly mechanism of these respective pathological lesions and the relationship between them is poorly understood, yet vital to understanding the causes of sporadic AD. We demonstrate that during mitochondrial inhibition, activated actin-depolymerizing factor (ADF)/cofilin assemble into rods along processes of cultured primary neurons that recruit pMAP/tau and mimic neuropil threads. Fluorescence Resonance Energy Transfer (FRET) analysis revealed co-localization of cofilin-GFP and pMAP in rods, suggesting their close proximity within a cytoskeletal inclusion complex. The relationship between pMAP and cofilin-actin rods was further investigated using actin-modifying drugs and siRNA knockdown of ADF/cofilin in primary neurons. The results suggest that activation of ADF/cofilin and generation of cofilin-actin rods is required for the subsequent recruitment of pMAP into the inclusions. Additionally we were able to induce the formation of pMAP-positive ADF/cofilin rods by exposing cells to exogenous Aβ peptides. These results reveal a common pathway for pMAP and cofilin accumulation in neuronal processes. The requirement of activated ADF/cofilin for the sequestration of pMAP suggests that neuropil thread structures in the AD brain may be initiated by elevated cofilin activation and F-actin bundling that can be caused by oxidative stress, mitochondrial dysfunction or Aβ peptides, all suspected initiators of synaptic loss and neurodegeneration in AD. PMID:19828813

  4. Characterization of bacterial artificial chromosome transgenic mice expressing mCherry fluorescent protein substituted for the murine smooth muscle-alpha-actin gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Smooth muscle a actin (SMA) is a cytoskeletal protein expressed by mesenchymal and smooth muscle cell types, including mural cells(vascular smooth muscle cells and pericytes). Using Bacterial Artificial Chromosome (BAC) recombineering technology, we generated transgenic reporter mice that express a ...

  5. A theoretical model of cytokinesis implicates feedback between membrane curvature and cytoskeletal organization in asymmetric cytokinetic furrowing

    PubMed Central

    Dorn, Jonas F.; Zhang, Li; Phi, Tan-Trao; Lacroix, Benjamin; Maddox, Paul S.; Liu, Jian; Maddox, Amy Shaub

    2016-01-01

    During cytokinesis, the cell undergoes a dramatic shape change as it divides into two daughter cells. Cell shape changes in cytokinesis are driven by a cortical ring rich in actin filaments and nonmuscle myosin II. The ring closes via actomyosin contraction coupled with actin depolymerization. Of interest, ring closure and hence the furrow ingression are nonconcentric (asymmetric) within the division plane across Metazoa. This nonconcentricity can occur and persist even without preexisting asymmetric cues, such as spindle placement or cellular adhesions. Cell-autonomous asymmetry is not explained by current models. We combined quantitative high-resolution live-cell microscopy with theoretical modeling to explore the mechanistic basis for asymmetric cytokinesis in the Caenorhabditis elegans zygote, with the goal of uncovering basic principles of ring closure. Our theoretical model suggests that feedback among membrane curvature, cytoskeletal alignment, and contractility is responsible for asymmetric cytokinetic furrowing. It also accurately predicts experimental perturbations of conserved ring proteins. The model further suggests that curvature-mediated filament alignment speeds up furrow closure while promoting energy efficiency. Collectively our work underscores the importance of membrane–cytoskeletal anchoring and suggests conserved molecular mechanisms for this activity. PMID:26912796

  6. The centrosome is an actin-organizing center

    PubMed Central

    Farina, Francesca; Gaillard, Jérémie; Guérin, Christophe; Couté, Yohann; Sillibourne, James; Blanchoin, Laurent; Théry, Manuel

    2016-01-01

    Microtubules and actin filaments are the two main cytoskeleton networks supporting intracellular architecture and cell polarity. The centrosome nucleates and anchors microtubules and is therefore considered to be the main microtubule-organizing center. However, recurring, yet unexplained, observations have pointed towards a connection between the centrosome and actin filaments. Here we have used isolated centrosomes to demonstrate that the centrosome can directly promote actin filament assembly. A cloud of centrosome-associated actin filaments could be identified in living cells as well. Actin-filament nucleation at the centrosome was mediated by the nucleation promoting factor WASH in combination with the Arp2/3 complex. Pericentriolar material 1 (PCM1) appeared to modulate the centrosomal actin network by regulating Arp2/3 complex and WASH recruitment to the centrosome. Hence our results reveal an additional facet of the centrosome as an intracellular organizer and provide mechanistic insights into how the centrosome can function as an actin filament-organizing center. PMID:26655833

  7. CONSERVED ROLES FOR CYTOSKELETAL COMPONENTS IN DETERMINING LATERALITY

    PubMed Central

    McDowell, Gary S.; Lemire, Joan M.; Paré, Jean-Francois; Cammarata, Garrett; Lowery, Laura Anne; Levin, Michael

    2016-01-01

    SUMMARY Consistently-biased left-right (LR) patterning is required for the proper placement of organs including the heart and viscera. The LR axis is especially fascinating as an example of multi-scale pattern formation, since here chiral events at the subcellular level are integrated and amplified into asymmetric transcriptional cascades and ultimately into the anatomical patterning of the entire body. In contrast to the other two body axes, there is considerable controversy about the earliest mechanisms of embryonic laterality. Many molecular components of asymmetry have not been widely tested among phyla with diverse bodyplans, and it is unknown whether parallel (redundant) pathways may exist that could reverse abnormal asymmetry states at specific checkpoints in development. To address conservation of the early steps of LR patterning, we used the Xenopus laevis (frog) embryo to functionally test a number of protein targets known to direct asymmetry in plants, fruit fly, and rodent. Using the same reagents that randomize asymmetry in Arabidopsis, Drosophila, and mouse embryos, we show that manipulation of the microtubule and actin cytoskeleton immediately post-fertilization, but not later, results in laterality defects in Xenopus embryos. Moreover, we observed organ-specific randomization effects and a striking dissociation of organ situs from effects on the expression of left side control genes, which parallel data from Drosophila and mouse. Remarkably, some early manipulations that disrupt laterality of transcriptional asymmetry determinants can be subsequently “rescued” by the embryo, resulting in normal organ situs. These data reveal the existence of novel corrective mechanisms, demonstrate that asymmetric expression of Nodal is not a definitive marker of laterality, and suggest the existence of amplification pathways that connect early cytoskeletal processes to control of organ situs bypassing Nodal. Counter to alternative models of symmetry breaking

  8. Lamellipodial actin mechanically links myosin activity with adhesion site formation

    PubMed Central

    Giannone, Gregory; Dubin-Thaler, Benjamin; Rossier, Olivier; Cai, Yunfei; Chaga, Oleg; Jiang, Guoying; Beaver, William; Döbereiner, Hans-Günther; Freund, Yoav; Borisy, Gary; Sheetz, Michael P.

    2013-01-01

    Summary Cell motility proceeds by cycles of edge protrusion, adhesion and retraction. Whether these functions are coordinated by biochemical or biomechanical processes is unknown. We find that myosin II pulls the rear of the lamellipodial actin network, causing upward bending, edge retraction and initiation of new adhesion sites. The network then separates from the edge and condenses over the myosin. Protrusion resumes as lamellipodial actin regenerates from the front and extends rearward until it reaches newly assembled myosin, initiating the next cycle. Upward bending, observed by evanescence and electron microscopy, results in ruffle formation when adhesion strength is low. Correlative fluorescence and electron microscopy shows that the regenerating lamellipodium forms a cohesive, separable layer of actin above the lamellum. Thus, actin polymerization periodically builds a mechanical link, the lamellipodium, connecting myosin motors with the initiation of adhesion sites, suggesting that the major functions driving motility are coordinated by a biomechanical process. PMID:17289574

  9. Dense granule trafficking in Toxoplasma gondii requires a unique class 27 myosin and actin filaments

    PubMed Central

    Heaslip, Aoife T.; Nelson, Shane R.; Warshaw, David M.

    2016-01-01

    The survival of Toxoplasma gondii within its host cell requires protein release from secretory vesicles, called dense granules, to maintain the parasite’s intracellular replicative niche. Despite the importance of DGs, nothing is known about the mechanisms underlying their transport. In higher eukaryotes, secretory vesicles are transported to the plasma membrane by molecular motors moving on their respective cytoskeletal tracks (i.e., microtubules and actin). Because the organization of these cytoskeletal structures differs substantially in T. gondii, the molecular motor dependence of DG trafficking is far from certain. By imaging the motions of green fluorescent protein–tagged DGs in intracellular parasites with high temporal and spatial resolution, we show through a combination of molecular genetics and chemical perturbations that directed DG transport is independent of microtubules and presumably their kinesin/dynein motors. However, directed DG transport is dependent on filamentous actin and a unique class 27 myosin, TgMyoF, which has structural similarity to myosin V, the prototypical cargo transporter. Actomyosin DG transport was unexpected, since filamentous parasite actin has yet to be visualized in vivo due in part to the prevailing model that parasite actin forms short, unstable filaments. Thus our data uncover new critical roles for these essential proteins in the lytic cycle of this devastating pathogen. PMID:27146112

  10. Effects of fixation protocol and gravistimulation on cytoskeletal organization in Brassica rapa roots

    NASA Astrophysics Data System (ADS)

    Edge, Andrea; Hasenstein, Karl H.

    2012-07-01

    In preparation for a flight experiment we have studied the optimization of the staining protocols for microtubules and actin filaments in Brassica rapa seedlings. Microtubules (MT) were stained with monoclonal antibody (mAb) YOL 1/34. F-actin (FA) staining was achieved with C4 mAb antibody. Fixative prepared more than three weeks before use produces specimens that stained poorly. Storage in fixative for more than four weeks resulted in noticeably poorer staining. Staining was best in cortical cells but more difficult and less consistent in cap cells, especially for FA. In addition, the quality of staining of root cap cells was dependent on the age of the formaldehyde. The organization of the MTs corresponded with previously published descriptions; FA was prominent in the stele with thick and numerous parallel bundles; cortical cells showed less dense and less directional organization of mostly thinner filaments. FA organization was determined by tissue rather than by differential elongation. The organization of MTs in cortical cells of curving roots was uniformly circular and perpendicular to the long cell axis despite different cell length. The effect of clinorotation around the horizontal axis and centrifugation on the cytoskeletal organization was inconsistent. (Supported by NASA grant NNX10AP91G)

  11. p21-activated kinase regulates mast cell degranulation via effects on calcium mobilization and cytoskeletal dynamics

    PubMed Central

    Allen, Jayme D.; Jaffer, Zahara M.; Park, Su-Jung; Burgin, Sarah; Hofmann, Clemens; Sells, Mary Ann; Chen, Shi; Derr-Yellin, Ethel; Michels, Elizabeth G.; McDaniel, Andrew; Bessler, Waylan K.; Ingram, David A.; Atkinson, Simon J.; Travers, Jeffrey B.

    2009-01-01

    Mast cells are key participants in allergic diseases via activation of high-affinity IgE receptors (FcϵRI) resulting in release of proinflammatory mediators. The biochemical pathways linking IgE activation to calcium influx and cytoskeletal changes required for intracellular granule release are incompletely understood. We demonstrate, genetically, that Pak1 is required for this process. In a passive cutaneous anaphylaxis experiment, Wsh/Wsh mast cell–deficient mice locally reconstituted with Pak1−/− bone marrow–derived mast cells (BMMCs) experienced strikingly decreased allergen-induced vascular permeability compared with controls. Consistent with the in vivo phenotype, Pak1−/− BMMCs exhibited a reduction in FcϵRI-induced degranulation. Further, Pak1−/− BMMCs demonstrated diminished calcium mobilization and altered depolymerization of cortical filamentous actin (F-actin) in response to FcϵRI stimulation. These data implicate Pak1 as an essential molecular target for modulating acute mast cell responses that contribute to allergic diseases. PMID:19124833

  12. Oxytocin Increases Neurite Length and Expression of Cytoskeletal Proteins Associated with Neuronal Growth.

    PubMed

    Lestanova, Z; Bacova, Z; Kiss, A; Havranek, T; Strbak, V; Bakos, J

    2016-06-01

    Neuropeptide oxytocin acts as a growth and differentiation factor; however, its effects on neurite growth are poorly understood. The aims of the present study were (1) to evaluate time effects of oxytocin on expression of nestin and MAP2; (2) to measure the effect of oxytocin on gene expression of β-actin, vimentin, cofilin, and drebrin; and (3) to measure changes in neurite length and number in response to oxytocin/oxytocin receptor antagonist L-371,257. Exposure of SH-SY5Y cells to 1 μM oxytocin resulted in a significant increase in gene expression and protein levels of nestin after 12, 24, and 48 h. Oxytocin treatment induced no changes in gene expression of MAP2; however, a decrease of protein levels was observed in all time intervals. Gene expression of β-actin, vimentin, and drebrin increased in response to oxytocin. Oxytocin induced significant elongation of neurites after 12, 24, and 48 h. No change in neurite length was observed in the presence of the combination of retinoic acid and oxytocin receptor antagonist L-371,257. Oxytocin treatment for 12 h increased the number of neurites. Overall, the present data suggest that oxytocin contributes to the regulation of expression of cytoskeletal proteins associated with growth of neuronal cones and induces neurite elongation mediated by oxytocin receptors at least in certain types of neuronal cells.

  13. Cytoskeletal architecture and its evolutionary significance in amoeboid eukaryotes and their mode of locomotion

    PubMed Central

    Williams, Jessica R.

    2016-01-01

    The cytoskeleton is the hallmark of eukaryotic evolution. The molecular and architectural aspects of the cytoskeleton have been playing a prominent role in our understanding of the origin and evolution of eukaryotes. In this study, we seek to investigate the cytoskeleton architecture and its evolutionary significance in understudied amoeboid lineages belonging to Amoebozoa. These amoebae primarily use cytoplasmic extensions supported by the cytoskeleton to perform important cellular processes such as movement and feeding. Amoeboid structure has important taxonomic significance, but, owing to techniques used, its potential significance in understanding diversity of the group has been seriously compromised, leading to an under-appreciation of its value. Here, we used immunocytochemistry and confocal microscopy to study the architecture of microtubules (MTs) and F-actin in diverse groups of amoebae. Our results demonstrate that all Amoebozoa examined are characterized by a complex cytoskeletal array, unlike what has been previously thought to exist. Our results not only conclusively demonstrate that all amoebozoans possess complex cytoplasmic MTs, but also provide, for the first time, a potential synapomorphy for the molecularly defined Amoebozoa clade. Based on this evidence, the last common ancestor of amoebozoans is hypothesized to have had a complex interwoven MT architecture limited within the granular cell body. We also generate several cytoskeleton characters related to MT and F-actin, which are found to be robust for defining groups in deep and shallow nodes of Amoebozoa. PMID:27703691

  14. Organization of cytoskeletal elements and organelles preceding growth cone emergence from an identified neuron in situ

    PubMed Central

    1989-01-01

    The purpose of this study was to investigate the arrangement of cytoskeletal elements and organelles in an identified neuron in situ at the site of emergence of its growth cone just before and concurrent with the onset of axonogenesis. The Ti1 pioneer neurons are the first pair of afferent neurons to differentiate in embryonic grasshopper limbs. They arise at the distal tip of the limb bud epithelium, the daughter cells of a single precursor cell, the Pioneer Mother Cell (PMC). Using immunohistochemical markers, we characterized the organization of microtubules, centrosomes, Golgi apparatus, midbody, actin filaments, and chromatin from mitosis in the PMC through axonogenesis in the Tils. Just before and concurrent with the onset of axonogenesis, a characteristic arrangement of tubulin, actin filaments, and Golgi apparatus is localized at the proximal pole of the proximal pioneer neuron. The growth cone of the proximal cell stereotypically arises from this site. Although the distal cell's axon generally grows proximally, occasionally it arises from its distal pole; in such limbs, the axons from the sister cells extend from mirror symmetric locations on their somata. In the presence of cytochalasin D, the PMC undergoes nuclear division but not cytokinesis and although other neuronal phenotypes are expressed, axongenesis is inhibited. Our data suggest that intrinsic information determines the site of growth cone emergence of an identified neuron in situ. PMID:2654140

  15. Effects of transforming growth factor type beta on expression of cytoskeletal proteins in endosteal mouse osteoblastic cells

    SciTech Connect

    Lomri, A.; Marie, P.J. )

    1990-01-01

    Transforming growth factor beta (TGF beta) has been shown to influence the growth and differentiation of many cell types in vitro. We have examined the effects of TGF beta on cell morphology and cytoskeletal organization in relation to parameters of cell proliferation and differentiation in endosteal osteoblastic cells isolated from mouse caudal vertebrae. Treatment of mouse osteoblastic cells cultured in serum free medium for 24 hours with TGF beta (1.5-30 ng/mL) slightly (-23%) inhibited alkaline phosphatase activity. In parallel, TGF beta (0.5-30 ng/mL, 24 hours) greatly increased cell replication as evaluated by (3H)-thymidine incorporation into DNA (157% to 325% of controls). At a median dose (1.5 ng/mL) that affected both alkaline phosphatase and DNA synthesis (235% of controls) TGF beta induced rapid (six hours) cell respreading of quiescent mouse osteoblastic cells. This effect was associated with increased polymerization of actin, alpha actinin, and tubulins, as evaluated by both biochemical and immunofluorescence methods. In addition, TGF beta (1.5 ng/mL) increased the de novo biosynthesis of actin, alpha actinin, vimentin, and tubulins, as determined by {sup 35}S methionine labeling and fractionation of cytoskeletal proteins using two-dimensional gel electrophoresis. These effects were rapid and transient, as they occurred at six hours and were reversed after 24 hours of TGF beta exposure. The results indicate that the stimulatory effect of TGF beta on DNA synthesis in endosteal mouse osteoblastic cells is associated with a transient increase in cell spreading associated with enhanced polymerization and synthesis of cytoskeletal proteins.

  16. Actin stress in cell reprogramming

    PubMed Central

    Guo, Jun; Wang, Yuexiu; Sachs, Frederick; Meng, Fanjie

    2014-01-01

    Cell mechanics plays a role in stem cell reprogramming and differentiation. To understand this process better, we created a genetically encoded optical probe, named actin–cpstFRET–actin (AcpA), to report forces in actin in living cells in real time. We showed that stemness was associated with increased force in actin. We reprogrammed HEK-293 cells into stem-like cells using no transcription factors but simply by softening the substrate. However, Madin-Darby canine kidney (MDCK) cell reprogramming required, in addition to a soft substrate, Harvey rat sarcoma viral oncogene homolog expression. Replating the stem-like cells on glass led to redifferentiation and reduced force in actin. The actin force probe was a FRET sensor, called cpstFRET (circularly permuted stretch sensitive FRET), flanked by g-actin subunits. The labeled actin expressed efficiently in HEK, MDCK, 3T3, and bovine aortic endothelial cells and in multiple stable cell lines created from those cells. The viability of the cell lines demonstrated that labeled actin did not significantly affect cell physiology. The labeled actin distribution was similar to that observed with GFP-tagged actin. We also examined the stress in the actin cross-linker actinin. Actinin force was not always correlated with actin force, emphasizing the need for addressing protein specificity when discussing forces. Because actin is a primary structural protein in animal cells, understanding its force distribution is central to understanding animal cell physiology and the many linked reactions such as stress-induced gene expression. This new probe permits measuring actin forces in a wide range of experiments on preparations ranging from isolated proteins to transgenic animals. PMID:25422450

  17. Broken Detailed Balance of Filament Dynamics in Active Networks

    NASA Astrophysics Data System (ADS)

    Gladrow, J.; Fakhri, N.; MacKintosh, F. C.; Schmidt, C. F.; Broedersz, C. P.

    2016-06-01

    Myosin motor proteins drive vigorous steady-state fluctuations in the actin cytoskeleton of cells. Endogenous embedded semiflexible filaments such as microtubules, or added filaments such as single-walled carbon nanotubes are used as novel tools to noninvasively track equilibrium and nonequilibrium fluctuations in such biopolymer networks. Here, we analytically calculate shape fluctuations of semiflexible probe filaments in a viscoelastic environment, driven out of equilibrium by motor activity. Transverse bending fluctuations of the probe filaments can be decomposed into dynamic normal modes. We find that these modes no longer evolve independently under nonequilibrium driving. This effective mode coupling results in nonzero circulatory currents in a conformational phase space, reflecting a violation of detailed balance. We present predictions for the characteristic frequencies associated with these currents and investigate how the temporal signatures of motor activity determine mode correlations, which we find to be consistent with recent experiments on microtubules embedded in cytoskeletal networks.

  18. Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness.

    PubMed

    Krishnan, Ramaswamy; Park, Chan Young; Lin, Yu-Chun; Mead, Jere; Jaspers, Richard T; Trepat, Xavier; Lenormand, Guillaume; Tambe, Dhananjay; Smolensky, Alexander V; Knoll, Andrew H; Butler, James P; Fredberg, Jeffrey J

    2009-01-01

    Every adherent eukaryotic cell exerts appreciable traction forces upon its substrate. Moreover, every resident cell within the heart, great vessels, bladder, gut or lung routinely experiences large periodic stretches. As an acute response to such stretches the cytoskeleton can stiffen, increase traction forces and reinforce, as reported by some, or can soften and fluidize, as reported more recently by our laboratory, but in any given circumstance it remains unknown which response might prevail or why. Using a novel nanotechnology, we show here that in loading conditions expected in most physiological circumstances the localized reinforcement response fails to scale up to the level of homogeneous cell stretch; fluidization trumps reinforcement. Whereas the reinforcement response is known to be mediated by upstream mechanosensing and downstream signaling, results presented here show the fluidization response to be altogether novel: it is a direct physical effect of mechanical force acting upon a structural lattice that is soft and fragile. Cytoskeletal softness and fragility, we argue, is consistent with early evolutionary adaptations of the eukaryotic cell to material properties of a soft inert microenvironment.

  19. Localization by indirect immunofluorescence of tetrin, actin, and centrin to the oral apparatus and buccal cavity of the macrostomal form of Tetrahymena vorax.

    PubMed

    McLaughlin, Neil B; Buhse, Howard E

    2004-01-01

    We have taken advantage of the size of the macrostomal oral apparatus of Tetrahymena vorax to investigate the immunofluorescent localization of three cytoskeletal proteins--tetrin, actin, and centrin. Tetrin and actin antibodies co-localize to cross-connectives that anchor the membranelles. These antibodies also recognize the coarse filamentous reticulum, a filament associated with the undulating membrane. Actin-specific localization extends beyond the coarse filamentous reticulum-undulating membrane complex into a region called the specialized cytoplasm. A centrin antibody localizes to the fine filamentous reticulum which, along with microtubules of the oral ribs, circumscribes the cytostomal opening. Models of phagocytic contraction based on these data are presented.

  20. Espin cytoskeletal proteins in the sensory cells of rodent taste buds.

    PubMed

    Sekerková, Gabriella; Freeman, David; Mugnaini, Enrico; Bartles, James R

    2005-09-01

    Espins are multifunctional actin-bundling proteins that are highly enriched in the microvilli of certain chemosensory and mechanosensory cells, where they are believed to regulate the integrity and/or dimensions of the parallel-actin-bundle cytoskeletal scaffold. We have determined that, in rats and mice, affinity purified espin antibody intensely labels the lingual and palatal taste buds of the oral cavity and taste buds in the pharyngo-laryngeal region. Intense immunolabeling was observed in the apical, microvillar region of taste buds, while the level of cytoplasmic labeling in taste bud cells was considerably lower. Taste buds contain tightly packed collections of sensory cells (light, or type II plus type III) and supporting cells (dark, or type I), which can be distinguished by microscopic features and cell type-specific markers. On the basis of results obtained using an antigen-retrieval method in conjunction with double immunofluorescence for espin and sensory taste cell-specific markers, we propose that espins are expressed predominantly in the sensory cells of taste buds. In confocal images of rat circumvallate taste buds, we counted 21.5 +/- 0.3 espin-positive cells/taste bud, in agreement with a previous report showing 20.7 +/- 1.3 light cells/taste bud when counted at the ultrastructural level. The espin antibody labeled spindle-shaped cells with round nuclei and showed 100% colocalization with cell-specific markers recognizing all type II [inositol 1,4,5-trisphosphate receptor type III (IP(3)R(3))(,) alpha-gustducin, protein-specific gene product 9.5 (PGP9.5)] and a subpopulation of type III (IP(3)R(3), PGP9.5) taste cells. On average, 72%, 50%, and 32% of the espin-positive taste cells were labeled with antibodies to IP(3)R(3), alpha-gustducin, and PGP9.5, respectively. Upon sectional analysis, the taste buds of rat circumvallate papillae commonly revealed a multi-tiered, espin-positive apical cytoskeletal apparatus. One espin-positive zone, a

  1. Lamellipodin promotes actin assembly by clustering Ena/VASP proteins and tethering them to actin filaments

    PubMed Central

    Hansen, Scott D; Mullins, R Dyche

    2015-01-01

    Enabled/Vasodilator (Ena/VASP) proteins promote actin filament assembly at multiple locations, including: leading edge membranes, focal adhesions, and the surface of intracellular pathogens. One important Ena/VASP regulator is the mig-10/Lamellipodin/RIAM family of adaptors that promote lamellipod formation in fibroblasts and drive neurite outgrowth and axon guidance in neurons. To better understand how MRL proteins promote actin network formation we studied the interactions between Lamellipodin (Lpd), actin, and VASP, both in vivo and in vitro. We find that Lpd binds directly to actin filaments and that this interaction regulates its subcellular localization and enhances its effect on VASP polymerase activity. We propose that Lpd delivers Ena/VASP proteins to growing barbed ends and increases their polymerase activity by tethering them to filaments. This interaction represents one more pathway by which growing actin filaments produce positive feedback to control localization and activity of proteins that regulate their assembly. DOI: http://dx.doi.org/10.7554/eLife.06585.001 PMID:26295568

  2. Single-molecule studies of actin assembly and disassembly factors.

    PubMed

    Smith, Benjamin A; Gelles, Jeff; Goode, Bruce L

    2014-01-01

    The actin cytoskeleton is very dynamic and highly regulated by multiple associated proteins i