Science.gov

Sample records for actin cytoskeletal regulatory

  1. [Cytoskeletal actin and its associated proteins. Some examples in Protista].

    PubMed

    Guillén, N; Carlier, M F; Brugerolle, G; Tardieux, I; Ausseil, J

    1998-06-01

    Many processes, cell motility being an example, require cells to remodel the actin cytoskeleton in response to both intracellular and extracellular signals. Reorganization of the actin cytoskeleton involves the rapid disassembly and reassembly of actin filaments, a phenomenon regulated by the action of particular actin-binding proteins. In recent years, an interest in studying actin regulation in unicellular organisms has arisen. Parasitic protozoan are among these organisms and studies of the cytoskeleton functions of these protozoan are relevant related to either cell biology or pathogenicity. To discuss recent data in this field, a symposium concerning "Actin and actin-binding proteins in protists" was held on May 8-11 in Paris, France, during the XXXV meeting of the French Society of Protistology. As a brief summary of the symposium we report here findings concerning the in vitro actin dynamic assembly, as well as the characterization of several actin-binding proteins from the parasitic protozoan Entamoeba histolytica, Trichomonas vaginalis and Plasmodium knowlesi. In addition, localization of actin in non-pathogen protists such as Prorocentrum micans and Crypthecodinium cohnii is also presented. The data show that some actin-binding proteins facilitate organization of filaments into higher order structures as pseudopods, while others have regulatory functions, indicating very particular roles for actin-binding proteins. One of the proteins discussed during the symposium, the actin depolymerizing factor ADF, was shown to enhance the treadmilling rate of actin filaments. In vitro, ADF binds to the ADP-bound forms of G-actin and F-actin, thereby participating in and changing the rate of actin assembly. Biochemical approaches allowed the identification of a protein complex formed by HSP/C70-cap32-34 which might also be involved in depolymerization of F-actin in P. knowlesi. Molecular and cellular approaches were used to identify proteins such as ABP-120 and myosin

  2. Visualization of Actin Cytoskeletal Dynamics in Fixed and Live Drosophila Egg Chambers.

    PubMed

    Groen, Christopher M; Tootle, Tina L

    2015-01-01

    Visualization of actin cytoskeletal dynamics is critical for understanding the spatial and temporal regulation of actin remodeling. Drosophila oogenesis provides an excellent model system for visualizing the actin cytoskeleton. Here, we present methods for imaging the actin cytoskeleton in Drosophila egg chambers in both fixed samples by phalloidin staining and in live egg chambers using transgenic actin labeling tools.

  3. Defining a core set of actin cytoskeletal proteins critical for actin-based motility of Rickettsia.

    PubMed

    Serio, Alisa W; Jeng, Robert L; Haglund, Cat M; Reed, Shawna C; Welch, Matthew D

    2010-05-20

    Many Rickettsia species are intracellular bacterial pathogens that use actin-based motility for spread during infection. However, while other bacteria assemble actin tails consisting of branched networks, Rickettsia assemble long parallel actin bundles, suggesting the use of a distinct mechanism for exploiting actin. To identify the underlying mechanisms and host factors involved in Rickettsia parkeri actin-based motility, we performed an RNAi screen targeting 115 actin cytoskeletal genes in Drosophila cells. The screen delineated a set of four core proteins-profilin, fimbrin/T-plastin, capping protein, and cofilin--as crucial for determining actin tail length, organizing filament architecture, and enabling motility. In mammalian cells, these proteins were localized throughout R. parkeri tails, consistent with a role in motility. Profilin and fimbrin/T-plastin were critical for the motility of R. parkeri but not Listeria monocytogenes. Our results highlight key distinctions between the evolutionary strategies and molecular mechanisms employed by bacterial pathogens to assemble and organize actin. PMID:20478540

  4. Nuclear actin modulates cell motility via transcriptional regulation of adhesive and cytoskeletal genes

    PubMed Central

    Sharili, Amir S.; Kenny, Fiona N.; Vartiainen, Maria K.; Connelly, John T.

    2016-01-01

    The actin cytoskeleton is a classic biomechanical mediator of cell migration. While it is known that actin also shuttles in and out of the nucleus, its functions within this compartment remain poorly understood. In this study, we investigated how nuclear actin regulates keratinocyte gene expression and cell behavior. Gene expression profiling of normal HaCaT keratinocytes compared to HaCaTs over-expressing wild-type β-actin or β-actin tagged with a nuclear localization sequence (NLS-actin), identified multiple adhesive and cytoskeletal genes, such as MYL9, ITGB1, and VCL, which were significantly down-regulated in keratinocytes with high levels of nuclear actin. In addition, genes associated with transcriptional regulation and apoptosis were up-regulated in cells over expressing NLS-actin. Functionally, accumulation of actin in the nucleus altered cytoskeletal and focal adhesion organization and inhibited cell motility. Exclusion of endogenous actin from the nucleus by knocking down Importin 9 reversed this phenotype and enhanced cell migration. Based on these findings, we conclude that the level of actin in the nucleus is a transcriptional regulator for tuning keratinocyte migration. PMID:27650314

  5. Nuclear actin modulates cell motility via transcriptional regulation of adhesive and cytoskeletal genes.

    PubMed

    Sharili, Amir S; Kenny, Fiona N; Vartiainen, Maria K; Connelly, John T

    2016-01-01

    The actin cytoskeleton is a classic biomechanical mediator of cell migration. While it is known that actin also shuttles in and out of the nucleus, its functions within this compartment remain poorly understood. In this study, we investigated how nuclear actin regulates keratinocyte gene expression and cell behavior. Gene expression profiling of normal HaCaT keratinocytes compared to HaCaTs over-expressing wild-type β-actin or β-actin tagged with a nuclear localization sequence (NLS-actin), identified multiple adhesive and cytoskeletal genes, such as MYL9, ITGB1, and VCL, which were significantly down-regulated in keratinocytes with high levels of nuclear actin. In addition, genes associated with transcriptional regulation and apoptosis were up-regulated in cells over expressing NLS-actin. Functionally, accumulation of actin in the nucleus altered cytoskeletal and focal adhesion organization and inhibited cell motility. Exclusion of endogenous actin from the nucleus by knocking down Importin 9 reversed this phenotype and enhanced cell migration. Based on these findings, we conclude that the level of actin in the nucleus is a transcriptional regulator for tuning keratinocyte migration. PMID:27650314

  6. γ-Actin is required for cytoskeletal maintenance but not development

    PubMed Central

    Belyantseva, Inna A.; Perrin, Benjamin J.; Sonnemann, Kevin J.; Zhu, Mei; Stepanyan, Ruben; McGee, JoAnn; Frolenkov, Gregory I.; Walsh, Edward J.; Friderici, Karen H.; Friedman, Thomas B.; Ervasti, James M.

    2009-01-01

    βcyto-Actin and γcyto-actin are ubiquitous proteins thought to be essential building blocks of the cytoskeleton in all non-muscle cells. Despite this widely held supposition, we show that γcyto-actin null mice (Actg1−/−) are viable. However, they suffer increased mortality and show progressive hearing loss during adulthood despite compensatory up-regulation of βcyto-actin. The surprising viability and normal hearing of young Actg1−/− mice means that βcyto-actin can likely build all essential non-muscle actin-based cytoskeletal structures including mechanosensory stereocilia of hair cells that are necessary for hearing. Although γcyto-actin–deficient stereocilia form normally, we found that they cannot maintain the integrity of the stereocilia actin core. In the wild-type, γcyto-actin localizes along the length of stereocilia but re-distributes to sites of F-actin core disruptions resulting from animal exposure to damaging noise. In Actg1−/− stereocilia similar disruptions are observed even without noise exposure. We conclude that γcyto-actin is required for reinforcement and long-term stability of F-actin–based structures but is not an essential building block of the developing cytoskeleton. PMID:19497859

  7. Actin Grips: Circular Actin-Rich Cytoskeletal Structures that Mediate the Wrapping of Polymeric Microfibers by Endothelial Cells

    PubMed Central

    Jones, Desiree; Park, DoYoung; Anghelina, Mirela; Pecot, Thierry; Machiraju, Raghu; Xue, Ruipeng; Lannutti, John; Thomas, Jessica; Cole, Sara; Moldovan, Leni; Moldovan, Nicanor I.

    2015-01-01

    Interaction of endothelial-lineage cells with three-dimensional substrates was much less studied than that with flat culture surfaces. We investigated the in vitro attachment of both mature endothelial cells (ECs) and of less differentiated EC colony-forming cells to poly-e-capro-lactone (PCL) fibers with diameters in 5–20 μm range (‘scaffold microfibers’, SMFs). We found that notwithstanding the poor intrinsic adhesiveness to PCL, both cell types completely wrapped the SMFs after long-term cultivation, thus attaining a cylindrical morphology. In this system, both EC types grew vigorously for more than a week and became increasingly more differentiated, as shown by multiplexed gene expression. Three-dimensional reconstructions from multiphoton confocal microscopy images using custom software showed that the filamentous (F) actin bundles took a conspicuous ring-like organization around the SMFs. Unlike the classical F-actin-containing stress fibers, these rings were not associated with either focal adhesions or intermediate filaments. We also demonstrated that plasma membrane boundaries adjacent to these circular cytoskeletal structures were tightly yet dynamically apposed to the SMFs, for which reason we suggest to call them ‘actin grips’. In conclusion, we describe a particular form of F-actin assembly with relevance for cytoskeletal organization in response to biomaterials, for endothelial-specific cell behavior in vitro and in vivo, and for tissue engineering. PMID:25818446

  8. Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement.

    PubMed

    Yoshigi, Masaaki; Hoffman, Laura M; Jensen, Christopher C; Yost, H Joseph; Beckerle, Mary C

    2005-10-24

    Organs and tissues adapt to acute or chronic mechanical stress by remodeling their actin cytoskeletons. Cells that are stimulated by cyclic stretch or shear stress in vitro undergo bimodal cytoskeletal responses that include rapid reinforcement and gradual reorientation of actin stress fibers; however, the mechanism by which cells respond to mechanical cues has been obscure. We report that the application of either unidirectional cyclic stretch or shear stress to cells results in robust mobilization of zyxin from focal adhesions to actin filaments, whereas many other focal adhesion proteins and zyxin family members remain at focal adhesions. Mechanical stress also induces the rapid zyxin-dependent mobilization of vasodilator-stimulated phosphoprotein from focal adhesions to actin filaments. Thickening of actin stress fibers reflects a cellular adaptation to mechanical stress; this cytoskeletal reinforcement coincides with zyxin mobilization and is abrogated in zyxin-null cells. Our findings identify zyxin as a mechanosensitive protein and provide mechanistic insight into how cells respond to mechanical cues. PMID:16247023

  9. Cytoskeletal proteins in cortical development and disease: actin associated proteins in periventricular heterotopia

    PubMed Central

    Lian, Gewei; Sheen, Volney L.

    2015-01-01

    The actin cytoskeleton regulates many important cellular processes in the brain, including cell division and proliferation, migration, and cytokinesis and differentiation. These developmental processes can be regulated through actin dependent vesicle and organelle movement, cell signaling, and the establishment and maintenance of cell junctions and cell shape. Many of these processes are mediated by extensive and intimate interactions of actin with cellular membranes and proteins. Disruption in the actin cytoskeleton in the brain gives rise to periventricular heterotopia (PH), a malformation of cortical development, characterized by abnormal neurons clustered deep in the brain along the lateral ventricles. This disorder can give rise to seizures, dyslexia and psychiatric disturbances. Anatomically, PH is characterized by a smaller brain (impaired proliferation), heterotopia (impaired initial migration) and disruption along the neuroependymal lining (impaired cell-cell adhesion). Genes causal for PH have also been implicated in actin-dependent processes. The current review provides mechanistic insight into actin cytoskeletal regulation of cortical development in the context of this malformation of cortical development. PMID:25883548

  10. The WAVE Regulatory Complex Links Diverse Receptors to the Actin Cytoskeleton

    PubMed Central

    Chen, Baoyu; Chen, Zhucheng; Brinkmann, Klaus; Pak, Chi W.; Liao, Yuxing; Shi, Shuoyong; Henry, Lisa; Grishin, Nick V.; Bogdan, Sven; Rosen, Michael K.

    2014-01-01

    SUMMARY The WAVE regulatory complex (WRC) controls actin cytoskeletal dynamics throughout the cell by stimulating the actin nucleating activity of the Arp2/3 complex at distinct membrane sites. However, the factors that recruit the WRC to specific locations remain poorly understood. Here we have identified a large family of potential WRC ligands, consisting of ~120 diverse membrane proteins including protocadherins, ROBOs, netrin receptors, Neuroligins, GPCRs and channels. Structural, biochemical and cellular studies reveal that a novel sequence motif that defines these ligands binds to a highly conserved interaction surface of the WRC formed by the Sra and Abi subunits. Mutating this binding surface in flies resulted in defects in actin cytoskeletal organization and egg morphology during oogenesis, leading to female sterility. Our findings directly link diverse membrane proteins to the WRC and actin cytoskeleton, and have broad physiological and pathological ramifications in metazoans. PMID:24439376

  11. Neuroprotective effects of hypothermia on synaptic actin cytoskeletal changes induced by perinatal asphyxia.

    PubMed

    Muñiz, Javier; Romero, Juan; Holubiec, Mariana; Barreto, George; González, Janneth; Saint-Martin, Madeleine; Blanco, Eduardo; Carlos Cavicchia, Juan; Castilla, Rocío; Capani, Francisco

    2014-05-14

    Cerebral hypoxia-ischemia damages synaptic proteins, resulting in cytoskeletal alterations, protein aggregation and neuronal death. In the previous works, we have shown neuronal and synaptic changes in rat neostriatum subjected to hypoxia that leads to ubi-protein accumulation. Recently, we also showed that, changes in F-actin organization could be related to early alterations induced by hypoxia in the Central Nervous System. However, little is known about effective treatment to diminish the damage. The main aim of this work is to study the effects of birth hypothermia on the actin cytoskeleton of neostriatal post-synaptic densities (PSD) in 60 days olds rats by immunohistochemistry, photooxidation and western blot. We used 2 different protocols of hypothermia: (a) intrahypoxic hypothermia at 15°C and (b) post-hypoxia hypothermia at 32°C. Consistent with previous data at 30 days, staining with phalloidin-Alexa(488) followed by confocal microscopy analysis showed an increase of F-actin fluorescent staining in the neostriatum of hypoxic animals. Correlative photooxidation electron microscopy confirmed these observations showing an increment in the number of mushroom-shaped F-actin staining spines in neostriatal excitatory synapses in rats subjected to hypoxia. In addition, western blot revealed β-actin increase in PSDs in hypoxic animals. The optic relative density measurement showed a significant difference between controls and hypoxic animals. When hypoxia was induced under hypothermic conditions, the changes observed in actin cytoskeleton were blocked. Post-hypoxic hypothermia showed similar answer but actin cytoskeleton modifications were not totally reverted as we observed at 15°C. These data suggest that the decrease of the body temperature decreases the actin modifications in dendritic spines preventing the neuronal death.

  12. Neuroprotective effects of hypothermia on synaptic actin cytoskeletal changes induced by perinatal asphyxia.

    PubMed

    Muñiz, Javier; Romero, Juan; Holubiec, Mariana; Barreto, George; González, Janneth; Saint-Martin, Madeleine; Blanco, Eduardo; Carlos Cavicchia, Juan; Castilla, Rocío; Capani, Francisco

    2014-05-14

    Cerebral hypoxia-ischemia damages synaptic proteins, resulting in cytoskeletal alterations, protein aggregation and neuronal death. In the previous works, we have shown neuronal and synaptic changes in rat neostriatum subjected to hypoxia that leads to ubi-protein accumulation. Recently, we also showed that, changes in F-actin organization could be related to early alterations induced by hypoxia in the Central Nervous System. However, little is known about effective treatment to diminish the damage. The main aim of this work is to study the effects of birth hypothermia on the actin cytoskeleton of neostriatal post-synaptic densities (PSD) in 60 days olds rats by immunohistochemistry, photooxidation and western blot. We used 2 different protocols of hypothermia: (a) intrahypoxic hypothermia at 15°C and (b) post-hypoxia hypothermia at 32°C. Consistent with previous data at 30 days, staining with phalloidin-Alexa(488) followed by confocal microscopy analysis showed an increase of F-actin fluorescent staining in the neostriatum of hypoxic animals. Correlative photooxidation electron microscopy confirmed these observations showing an increment in the number of mushroom-shaped F-actin staining spines in neostriatal excitatory synapses in rats subjected to hypoxia. In addition, western blot revealed β-actin increase in PSDs in hypoxic animals. The optic relative density measurement showed a significant difference between controls and hypoxic animals. When hypoxia was induced under hypothermic conditions, the changes observed in actin cytoskeleton were blocked. Post-hypoxic hypothermia showed similar answer but actin cytoskeleton modifications were not totally reverted as we observed at 15°C. These data suggest that the decrease of the body temperature decreases the actin modifications in dendritic spines preventing the neuronal death. PMID:24685534

  13. Phosphatidic acid regulation of PIPKI is critical for actin cytoskeletal reorganization.

    PubMed

    Roach, Akua N; Wang, Ziqing; Wu, Ping; Zhang, Feng; Chan, Robin B; Yonekubo, Yoshiya; Di Paolo, Gilbert; Gorfe, Alemayehu A; Du, Guangwei

    2012-12-01

    Type I phosphatidylinositol-4-phosphate 5-kinase (PIPKI) is the main enzyme generating the lipid second messenger phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2], which has critical functions in many cellular processes, such as cytoskeletal reorganization, membrane trafficking, and signal transduction. All three members of the PIPKI family are activated by phosphatidic acid (PA). However, how PA regulates the activity and functions of PIPKI have not been fully elucidated. In this study, we identify a PA-binding site on PIPKIγ. Mutation of this site inhibited the PA-stimulated activity and membrane localization of PIPKIγ as well as the formation of actin comets and foci induced by PIPKIγ. We also demonstrate that phospholipase D (PLD) generates a pool of PA involved in PIPKIγ regulation by showing that PLD inhibitors blocked the membrane localization of PIPKIγ and its ability to induce actin cytoskeletal reorganization. Targeting the PIPKIγ PA-binding-deficient mutant to membranes by a membrane localization sequence failed to restore the actin reorganization activity of PIPKIγ, suggesting that PA binding is not only involved in recruiting PIPKIγ to membranes but also may induce a conformational change. Taken together, these results reveal a new molecular mechanism through which PA regulates PIPKI and provides direct evidence that PA is important for the localization and functions of PIPKI in intact cells. PMID:22991193

  14. A Legionella effector modulates host cytoskeletal structure by inhibiting actin polymerization

    PubMed Central

    Guo, Zhenhua; Stephenson, Robert; Qiu, Jiazhang; Zheng, Shijun; Luo, Zhao-Qing

    2014-01-01

    Successful infection by the opportunistic pathogen Legionella pneumophila requires the collective activity of hundreds of virulence proteins delivered into the host cell by the Dot/Icm type IV secretion system. These virulence proteins, also called effectors modulate distinct host cellular processes to create a membrane-bound niche called the Legionella containing vacuole (LCV) supportive of bacterial growth. We found that Ceg14(Lpg0437), a Dot/Icm substrate is toxic to yeast and such toxicity can be alleviated by overexpression of profilin, a protein involved in cytoskeletal structure in eukaryotes. We further showed that mutations in profilin affect actin binding but not other functions such as interactions with poly-L-proline or phosphatidylinositol, abolish its suppressor activity. Consistent with the fact the profilin suppresses its toxicity, expression of Ceg14 but not its non-toxic mutants in yeast affects actin distribution and budding of daughter cells. Although Ceg14 does not detectably interact with profilin, it co-sediments with filamentous actin and inhibits actin polymerization, causing the accumulation of short actin filaments. These results reveal that multiple L. pneumophila effectors target components of the host cytoskeleton. PMID:24286927

  15. Nano-ZnO leads to tubulin macrotube assembly and actin bundling, triggering cytoskeletal catastrophe and cell necrosis

    NASA Astrophysics Data System (ADS)

    García-Hevia, Lorena; Valiente, Rafael; Martín-Rodríguez, Rosa; Renero-Lecuna, Carlos; González, Jesús; Rodríguez-Fernández, Lidia; Aguado, Fernando; Villegas, Juan C.; Fanarraga, Mónica L.

    2016-05-01

    Zinc is a crucial element in biology that plays chief catalytic, structural and protein regulatory roles. Excess cytoplasmic zinc is toxic to cells so there are cell-entry and intracellular buffering mechanisms that control intracellular zinc availability. Tubulin and actin are two zinc-scavenging proteins that are essential components of the cellular cytoskeleton implicated in cell division, migration and cellular architecture maintenance. Here we demonstrate how exposure to different ZnO nanostructures, namely ZnO commercial nanoparticles and custom-made ZnO nanowires, produce acute cytotoxic effects in human keratinocytes (HaCat) and epithelial cells (HeLa) triggering a dose-dependent cell retraction and collapse. We show how engulfed ZnO nanoparticles dissolve intracellularly, triggering actin filament bundling and structural changes in microtubules, transforming these highly dynamic 25 nm diameter polymers into rigid macrotubes of tubulin, severely affecting cell proliferation and survival. Our results demonstrate that nano-ZnO causes acute cytoskeletal collapse that triggers necrosis, followed by a late reactive oxygen species (ROS)-dependent apoptotic process.Zinc is a crucial element in biology that plays chief catalytic, structural and protein regulatory roles. Excess cytoplasmic zinc is toxic to cells so there are cell-entry and intracellular buffering mechanisms that control intracellular zinc availability. Tubulin and actin are two zinc-scavenging proteins that are essential components of the cellular cytoskeleton implicated in cell division, migration and cellular architecture maintenance. Here we demonstrate how exposure to different ZnO nanostructures, namely ZnO commercial nanoparticles and custom-made ZnO nanowires, produce acute cytotoxic effects in human keratinocytes (HaCat) and epithelial cells (HeLa) triggering a dose-dependent cell retraction and collapse. We show how engulfed ZnO nanoparticles dissolve intracellularly, triggering actin

  16. Cadmium-induced glutathionylation of actin occurs through a ROS-independent mechanism: Implications for cytoskeletal integrity

    SciTech Connect

    Choong, Grace; Liu, Ying; Xiao, Weiqun; Templeton, Douglas M.

    2013-10-15

    Cadmium disrupts the actin cytoskeleton in rat mesangial cells, and we have previously shown that this involves a complex interplay involving activation of kinase signaling, protein translocation, and disruption of focal adhesions. Here we investigate the role that glutathionylation of actin plays in Cd{sup 2+}-associated cytoskeletal reorganization. Low concentrations of Cd{sup 2+} (0.5–2 μM) caused an increase in actin glutathionylation by 6 h, whereas at higher concentrations glutathionylation remained at basal levels. Although oxidation with diamide increased glutathionylation, reactive oxygen species (ROS) were not involved in the Cd{sup 2+}-dependent effect, as only Cd{sup 2+} concentrations above 2 μM were sufficient to increase ROS. However, low [Cd{sup 2+}] increased total glutathione levels without affecting the ratio of reduced/oxidized glutathione, and inhibition of glutathione synthesis suppressed actin glutathionylation. Cadmium increased the activity of the enzyme glutaredoxin, which influences the equilibrium between glutathionylated and deglutathionylated proteins and thus may influence levels of glutathionylated actin. Together these observations show that cadmium-dependent effects on actin glutathionylation are affected by glutathione metabolism and not by direct effects of ROS on thiol chemistry. In vitro polymerization assays with glutathionylated actin show a decreased rate of polymerization. In contrast, immunofluorescence of cytoskeletal structure in intact cells suggests that increases in actin glutathionylation accompanying increased glutathione levels occurring under low Cd{sup 2+} exposure are protective in vivo, with cytoskeletal disruption ensuing only when higher Cd{sup 2+} concentrations increase ROS levels and prevent an increase in actin–glutathione conjugates. - Highlights: • Cadmium disrupts the actin cytoskeleton in mesangial cells. • Cadmium induces glutathionylation of actin at low concentrations.

  17. ZEB1 drives prometastatic actin cytoskeletal remodeling by downregulating miR-34a expression

    PubMed Central

    Ahn, Young-Ho; Gibbons, Don L.; Chakravarti, Deepavali; Creighton, Chad J.; Rizvi, Zain H.; Adams, Henry P.; Pertsemlidis, Alexander; Gregory, Philip A.; Wright, Josephine A.; Goodall, Gregory J.; Flores, Elsa R.; Kurie, Jonathan M.

    2012-01-01

    Metastatic cancer is extremely difficult to treat, and the presence of metastases greatly reduces a cancer patient’s likelihood of long-term survival. The ZEB1 transcriptional repressor promotes metastasis through downregulation of microRNAs (miRs) that are strong inducers of epithelial differentiation and inhibitors of stem cell factors. Given that each miR can target multiple genes with diverse functions, we posited that the prometastatic network controlled by ZEB1 extends beyond these processes. We tested this hypothesis using a mouse model of human lung adenocarcinoma metastasis driven by ZEB1, human lung carcinoma cells, and human breast carcinoma cells. Transcriptional profiling studies revealed that ZEB1 controls the expression of numerous oncogenic and tumor-suppressive miRs, including miR-34a. Ectopic expression of miR-34a decreased tumor cell invasion and metastasis, inhibited the formation of promigratory cytoskeletal structures, suppressed activation of the RHO GTPase family, and regulated a gene expression signature enriched in cytoskeletal functions and predictive of outcome in human lung adenocarcinomas. We identified several miR-34a target genes, including Arhgap1, which encodes a RHO GTPase activating protein that was required for tumor cell invasion. These findings demonstrate that ZEB1 drives prometastatic actin cytoskeletal remodeling by downregulating miR-34a expression and provide a compelling rationale to develop miR-34a as a therapeutic agent in lung cancer patients. PMID:22850877

  18. Nano-ZnO leads to tubulin macrotube assembly and actin bundling, triggering cytoskeletal catastrophe and cell necrosis.

    PubMed

    García-Hevia, Lorena; Valiente, Rafael; Martín-Rodríguez, Rosa; Renero-Lecuna, Carlos; González, Jesús; Rodríguez-Fernández, Lidia; Aguado, Fernando; Villegas, Juan C; Fanarraga, Mónica L

    2016-06-01

    Zinc is a crucial element in biology that plays chief catalytic, structural and protein regulatory roles. Excess cytoplasmic zinc is toxic to cells so there are cell-entry and intracellular buffering mechanisms that control intracellular zinc availability. Tubulin and actin are two zinc-scavenging proteins that are essential components of the cellular cytoskeleton implicated in cell division, migration and cellular architecture maintenance. Here we demonstrate how exposure to different ZnO nanostructures, namely ZnO commercial nanoparticles and custom-made ZnO nanowires, produce acute cytotoxic effects in human keratinocytes (HaCat) and epithelial cells (HeLa) triggering a dose-dependent cell retraction and collapse. We show how engulfed ZnO nanoparticles dissolve intracellularly, triggering actin filament bundling and structural changes in microtubules, transforming these highly dynamic 25 nm diameter polymers into rigid macrotubes of tubulin, severely affecting cell proliferation and survival. Our results demonstrate that nano-ZnO causes acute cytoskeletal collapse that triggers necrosis, followed by a late reactive oxygen species (ROS)-dependent apoptotic process.

  19. The skeleton in the closet: actin cytoskeletal remodeling in β-cell function.

    PubMed

    Arous, Caroline; Halban, Philippe A

    2015-10-01

    Over the last few decades, biomedical research has considered not only the function of single cells but also the importance of the physical environment within a whole tissue, including cell-cell and cell-extracellular matrix interactions. Cytoskeleton organization and focal adhesions are crucial sensors for cells that enable them to rapidly communicate with the physical extracellular environment in response to extracellular stimuli, ensuring proper function and adaptation. The involvement of the microtubular-microfilamentous cytoskeleton in secretion mechanisms was proposed almost 50 years ago, since when the evolution of ever more sensitive and sophisticated methods in microscopy and in cell and molecular biology have led us to become aware of the importance of cytoskeleton remodeling for cell shape regulation and its crucial link with signaling pathways leading to β-cell function. Emerging evidence suggests that dysfunction of cytoskeletal components or extracellular matrix modification influences a number of disorders through potential actin cytoskeleton disruption that could be involved in the initiation of multiple cellular functions. Perturbation of β-cell actin cytoskeleton remodeling could arise secondarily to islet inflammation and fibrosis, possibly accounting in part for impaired β-cell function in type 2 diabetes. This review focuses on the role of actin remodeling in insulin secretion mechanisms and its close relationship with focal adhesions and myosin II.

  20. Hes6 is required for actin cytoskeletal organization in differentiating C2C12 myoblasts

    SciTech Connect

    Malone, Caroline M.P.; Domaschenz, Renae; Amagase, Yoko; Dunham, Ian; Murai, Kasumi; Jones, Philip H.

    2011-07-01

    Hes6 is a member of the hairy-enhancer-of-split family of transcription factors that regulate proliferating cell fate in development and is known to be expressed in developing muscle. Here we investigate its function in myogenesis in vitro. We show that Hes6 is a direct transcriptional target of the myogenic transcription factors MyoD and Myf5, indicating that it is integral to the myogenic transcriptional program. The localization of Hes6 protein changes during differentiation, becoming predominantly nuclear. Knockdown of Hes6 mRNA levels by siRNA has no effect on cell cycle exit or induction of myosin heavy chain expression in differentiating C2C12 myoblasts, but F-actin filament formation is disrupted and both cell motility and myoblast fusion are reduced. The knockdown phenotype is rescued by expression of Hes6 cDNA resistant to siRNA. These results define a novel role for Hes6 in actin cytoskeletal dynamics in post mitotic myoblasts.

  1. Hic-5 Regulates Actin Cytoskeletal Reorganization and Expression of Fibrogenic Markers and Myocilin in Trabecular Meshwork Cells

    PubMed Central

    Pattabiraman, Padmanabhan Paranji; Rao, Ponugoti Vasantha

    2015-01-01

    Purpose To explore the role of inducible focal adhesion (FA) protein Hic-5 in actin cytoskeletal reorganization, FA formation, fibrogenic activity, and expression of myocilin in trabecular meshwork (TM) cells. Methods Using primary cultures of human TM (HTM) cells, the effects of various external factors on Hic-5 protein levels, as well as the effects of recombinant Hic-5 and Hic-5 small interfering RNA (siRNA) on actin cytoskeleton, FAs, myocilin, α-smooth muscle actin (αSMA), and collagen-1 were determined by immunofluorescence and immunoblot analyses. Results Hic-5 distributes discretely to the FAs in HTM cells and throughout the TM and Schlemm's canal of the human aqueous humor (AH) outflow pathway. Transforming growth factor-β2 (TGF-β2), endothelin-1, lysophosphatidic acid, hydrogen peroxide, and RhoA significantly increased Hic-5 protein levels in HTM cells in association with reorganization of actin cytoskeleton and FAs. While recombinant Hic-5 induced actin stress fibers, FAs, αv integrin redistribution to the FAs, increased levels of αSMA, collagen-1, and myocilin, Hic-5 siRNA suppressed most of these responses in HTM cells. Hic-5 siRNA also suppressed TGF-β2-induced fibrogenic activity and dexamethasone-induced myocilin expression in HTM cells. Conclusions Taken together, these results reveal that Hic-5, whose levels were increased by various external factors implicated in elevated intraocular pressure, induces actin cytoskeletal reorganization, FAs, expression of fibrogenic markers, and myocilin in HTM cells. These characteristics of Hic-5 in TM cells indicate its importance in regulation of AH outflow through the TM in both normal and glaucomatous eyes. PMID:26313302

  2. Topography design concept of a tissue engineering scaffold for controlling cell function and fate through actin cytoskeletal modulation.

    PubMed

    Miyoshi, Hiromi; Adachi, Taiji

    2014-12-01

    The physiological role of the actin cytoskeleton is well known: it provides mechanical support and endogenous force generation for formation of a cell shape and for migration. Furthermore, a growing number of studies have demonstrated another significant role of the actin cytoskeleton: it offers dynamic epigenetic memory for guiding cell fate, in particular, proliferation and differentiation. Because instantaneous imbalance in the mechanical homeostasis is adjusted through actin remodeling, a synthetic extracellular matrix (ECM) niche as a source of topographical and mechanical cues is expected to be effective at modulation of the actin cytoskeleton. In this context, the synthetic ECM niche determines cell migration, proliferation, and differentiation, all of which have to be controlled in functional tissue engineering scaffolds to ensure proper regulation of tissue/organ formation, maintenance of tissue integrity and repair, and regeneration. Here, with an emphasis on the epigenetic role of the actin cytoskeletal system, we propose a design concept of micro/nanotopography of a tissue engineering scaffold for control of cell migration, proliferation, and differentiation in a stable and well-defined manner, both in vitro and in vivo. PMID:24720435

  3. Simultaneous Visualization of Peroxisomes and Cytoskeletal Elements Reveals Actin and Not Microtubule-Based Peroxisome Motility in Plants1[w

    PubMed Central

    Mathur, Jaideep; Mathur, Neeta; Hülskamp, Martin

    2002-01-01

    Peroxisomes were visualized in living plant cells using a yellow fluorescent protein tagged with a peroxisomal targeting signal consisting of the SKL motif. Simultaneous visualization of peroxisomes and microfilaments/microtubules was accomplished in onion (Allium cepa) epidermal cells transiently expressing the yellow fluorescent protein-peroxi construct, a green fluorescent protein-mTalin construct that labels filamentous-actin filaments, and a green fluorescent protein-microtubule-binding domain construct that labels microtubules. The covisualization of peroxisomes and cytoskeletal elements revealed that, contrary to the reports from animal cells, peroxisomes in plants appear to associate with actin filaments and not microtubules. That peroxisome movement is actin based was shown by pharmacological studies. For this analysis we used onion epidermal cells and various cell types of Arabidopsis including trichomes, root hairs, and root cortex cells exhibiting different modes of growth. In transient onion epidermis assay and in transgenic Arabidopsis plants, an interference with the actin cytoskeleton resulted in progressive loss of saltatory movement followed by the aggregation and a complete cessation of peroxisome motility within 30 min of drug application. Microtubule depolymerization or stabilization had no effect. PMID:11891258

  4. A Secreted Ankyrin-Repeat Protein from Clinical Stenotrophomonas maltophilia Isolates Disrupts Actin Cytoskeletal Structure.

    PubMed

    MacDonald, Logan C; O'Keefe, Sean; Parnes, Mei-Fan; MacDonald, Hanlon; Stretz, Lindsey; Templer, Suzanne J; Wong, Emily L; Berger, Bryan W

    2016-01-01

    Stenotrophomonas maltophilia is an emerging, multidrug-resistant pathogen of increasing importance for the immunocompromised, including cystic fibrosis patients. Despite its significance as an emerging pathogen, relatively little is known regarding the specific factors and mechanisms that contribute to its pathogenicity. We identify and characterize a putative ankyrin-repeat protein (Smlt3054) unique to clinical S. maltophilia isolates that binds F-actin in vitro and co-localizes with actin in transfected HEK293a cells. Smlt3054 is endogenously expressed and secreted from clinical S. maltophilia isolates, but not an environmental isolate (R551-3). The in vitro binding of Smlt3054 to F-actin resulted in a thickening of the filaments as observed by TEM. Ectopic expression of Smlt3054-GFP exhibits strong co-localization with F-actin, with distinct, retrograde F-actin waves specifically associated with Smlt3054 in individual cells as well as formation of dense, internal inclusions at the expense of retrograde F-actin waves. Collectively, our results point to an interaction between Smlt3054 and F-actin. Furthermore, as a potentially secreted protein unique to clinical S. maltophilia isolates, Smlt3054 may serve as a starting point for understanding the mechanisms by which S. maltophilia has become an emergent pathogen. PMID:27622948

  5. Actin Cytoskeletal Organization in Drosophila Germline Ring Canals Depends on Kelch Function in a Cullin-RING E3 Ligase.

    PubMed

    Hudson, Andrew M; Mannix, Katelynn M; Cooley, Lynn

    2015-11-01

    The Drosophila Kelch protein is required to organize the ovarian ring canal cytoskeleton. Kelch binds and cross-links F-actin in vitro, and it also functions with Cullin 3 (Cul3) as a component of a ubiquitin E3 ligase. How these two activities contribute to cytoskeletal remodeling in vivo is not known. We used targeted mutagenesis to investigate the mechanism of Kelch function. We tested a model in which Cul3-dependent degradation of Kelch is required for its function, but we found no evidence to support this hypothesis. However, we found that mutant Kelch deficient in its ability to interact with Cul3 failed to rescue the kelch cytoskeletal defects, suggesting that ubiquitin ligase activity is the principal activity required in vivo. We also determined that the proteasome is required with Kelch to promote the ordered growth of the ring canal cytoskeleton. These results indicate that Kelch organizes the cytoskeleton in vivo by targeting a protein substrate for degradation by the proteasome.

  6. Shaping up to divide: coordinating actin and microtubule cytoskeletal remodelling during mitosis.

    PubMed

    Lancaster, Oscar M; Baum, Buzz

    2014-10-01

    Cell division requires the wholesale reorganization of cell architecture. At the same time as the microtubule network is remodelled to generate a bipolar spindle, animal cells entering mitosis replace their interphase actin cytoskeleton with a contractile mitotic actomyosin cortex that is tightly coupled to the plasma membrane--driving mitotic cell rounding. Here, we consider how these two processes are coordinated to couple chromosome segregation and cell division. In doing so we explore the relative roles of cell shape and the actin cortex in spindle morphogenesis, orientation and positioning.

  7. Cytoskeletal social networking in the growth cone: How +TIPs mediate microtubule-actin cross-linking to drive axon outgrowth and guidance.

    PubMed

    Cammarata, Garrett M; Bearce, Elizabeth A; Lowery, Laura Anne

    2016-09-01

    The growth cone is a unique structure capable of guiding axons to their proper destinations. Within the growth cone, extracellular guidance cues are interpreted and then transduced into physical changes in the actin filament (F-actin) and microtubule cytoskeletons, providing direction and movement. While both cytoskeletal networks individually possess important growth cone-specific functions, recent data over the past several years point towards a more cooperative role between the two systems. Facilitating this interaction between F-actin and microtubules, microtubule plus-end tracking proteins (+TIPs) have been shown to link the two cytoskeletons together. Evidence suggests that many +TIPs can couple microtubules to F-actin dynamics, supporting both microtubule advance and retraction in the growth cone periphery. In addition, growing in vitro and in vivo data support a secondary role for +TIPs in which they may participate as F-actin nucleators, thus directly influencing F-actin dynamics and organization. This review focuses on how +TIPs may link F-actin and microtubules together in the growth cone, and how these interactions may influence axon guidance. © 2016 Wiley Periodicals, Inc.

  8. Myotonic dystrophy protein kinase (DMPK) induces actin cytoskeletal reorganization and apoptotic-like blebbing in lens cells

    NASA Technical Reports Server (NTRS)

    Jin, S.; Shimizu, M.; Balasubramanyam, A.; Epstein, H. F.

    2000-01-01

    DMPK, the product of the DM locus, is a member of the same family of serine-threonine protein kinases as the Rho-associated enzymes. In DM, membrane inclusions accumulate in lens fiber cells producing cataracts. Overexpression of DMPK in cultured lens epithelial cells led to apoptotic-like blebbing of the plasma membrane and reorganization of the actin cytoskeleton. Enzymatically active DMPK was necessary for both effects; inactive mutant DMPK protein did not produce either effect. Active RhoA but not constitutive GDP-state mutant protein produced similar effects as DMPK. The similar actions of DMPK and RhoA suggest that they may function in the same regulatory network. The observed effects of DMPK may be relevant to the removal of membrane organelles during normal lens differentiation and the retention of intracellular membranes in DM lenses. Copyright 2000 Wiley-Liss, Inc.

  9. Reorganization of the actin cytoskeleton via transcriptional regulation of cytoskeletal/focal adhesion genes by myocardin-related transcription factors (MRTFs/MAL/MKLs)

    SciTech Connect

    Morita, Tsuyoshi; Mayanagi, Taira; Sobue, Kenji

    2007-10-01

    RhoA is a crucial regulator of stress fiber and focal adhesion formation through the activation of actin nucleation and polymerization. It also regulates the nuclear translocation of myocardin-related transcription factor-A and -B (MRTF-A/B, MAL or MKL 1/2), which are co-activators of serum response factor (SRF). In dominant-negative MRTF-A (DN-MRTF-A)-expressing NIH 3T3 cell lines, the expressions of several cytoskeletal/focal adhesion genes were down-regulated, and the formation of stress fiber and focal adhesion was severely diminished. MRTF-A/B-knockdown cells also exhibited such cytoskeletal defects. In reporter assays, both RhoA and MRTF-A enhanced promoter activities of these genes in a CArG-box-dependent manner, and DN-MRTF-A inhibited the RhoA-mediated activation of these promoters. In dominant-negative RhoA (RhoA-N19)-expressing NIH 3T3 cell lines, the nuclear translocation of MRTF-A/B was predominantly prevented, resulting in the reduced expression of cytoskeletal/focal adhesion proteins. Further, constitutive-active MRTF-A/B increased the expression of endogenous cytoskeletal/focal adhesion proteins, and thereby rescued the defective phenotype of stress fibers and focal adhesions in RhoA-N19 expressing cells. These results indicate that MRTF-A/B act as pivotal mediators of stress fiber and focal adhesion formation via the transcriptional regulation of a subset of cytoskeletal/focal adhesion genes.

  10. CP beta3, a novel isoform of an actin-binding protein, is a component of the cytoskeletal calyx of the mammalian sperm head.

    PubMed

    von Bülow, M; Rackwitz, H R; Zimbelmann, R; Franke, W W

    1997-05-25

    In the mammalian sperm head, the nucleus is tightly associated with the calyx, a cell type-specific cytoskeletal structure. Previously, we have identified and characterized some basic proteins such as calicin and cylicins I and II as major calyx components of bovine and human spermatids and spermatozoa. Surprisingly we have now discovered another calyx constituent which by amino acid sequencing and cDNA cloning was recognized as a novel isoform of the widespread beta subunit of the heterodimeric actin-binding "capping protein" (CP). This polypeptide, CP beta3, of sperm calices, is identical with the beta2 subunit present in diverse somatic cell types, except that it shows an amino-terminal extension of 29 amino acids and its mRNA is detected only in testis and, albeit in trace amounts, brain. This CP beta3 mRNA contains the additional sequence, encoded by exon 1 of the gene, which is missing in beta2 mRNAs. Antibodies specific for the beta3 amino-terminal addition have been used to identify the protein by immunoblotting and to localize it to the calyx structure by immunofluorescence microscopy. We conclude that in spermiogenesis the transcription of the gene encoding the beta1, beta2, and beta3 CP subunits is regulated specifically to include exon 1 and to give rise to the testis isoform CP beta3, which is integrated into the calyx structure of the forming sperm head. This surprising finding of an actin-binding protein isoform in an insoluble cytoskeletal structure is discussed in relation to the demonstrated roles of actin and certain actin-binding proteins, such as Limulus alpha-scruin, in spermiogenesis and spermatozoa.

  11. Cytoskeletal Mechanics

    NASA Astrophysics Data System (ADS)

    Mofrad, Mohammad R. K.; Kamm, Roger D.

    2006-10-01

    1. Introduction and the biological basis for cell mechanics Mohammad R. K. Mofrad and Roger Kamm; 2. Experimental measurements of intracellular mechanics Paul Janmey and Christoph Schmidt; 3. The cytoskeleton as a soft glassy material Jeffrey Fredberg and Ben Fabry; 4. Continuum elastic or viscoelastic models for the cell Mohammad R. K. Mofrad, Helene Karcher and Roger Kamm; 5. Multiphasic models of cell mechanics Farshid Guuilak, Mansoor A. Haider, Lori A. Setton, Tod A. Laursen and Frank P. T. Baaijens; 6. Models of cytoskeletal mechanics based on tensegrity Dimitrije Stamenovic; 7. Cells, gels and mechanics Gerald H. Pollack; 8. Polymer-based models of cytoskeletal networks F. C. MacKintosh; 9. Cell dynamics and the actin cytoskeleton James L. McGrath and C. Forbes Dewey, Jr; 10. Active cellular motion: continuum theories and models Marc Herant and Micah Dembo; 11. Summary Mohammad R. K. Mofrad and Roger Kamm.

  12. Cytoskeletal Mechanics

    NASA Astrophysics Data System (ADS)

    Mofrad, Mohammad R. K.; Kamm, Roger D.

    2011-08-01

    1. Introduction and the biological basis for cell mechanics Mohammad R. K. Mofrad and Roger Kamm; 2. Experimental measurements of intracellular mechanics Paul Janmey and Christoph Schmidt; 3. The cytoskeleton as a soft glassy material Jeffrey Fredberg and Ben Fabry; 4. Continuum elastic or viscoelastic models for the cell Mohammad R. K. Mofrad, Helene Karcher and Roger Kamm; 5. Multiphasic models of cell mechanics Farshid Guuilak, Mansoor A. Haider, Lori A. Setton, Tod A. Laursen and Frank P. T. Baaijens; 6. Models of cytoskeletal mechanics based on tensegrity Dimitrije Stamenovic; 7. Cells, gels and mechanics Gerald H. Pollack; 8. Polymer-based models of cytoskeletal networks F. C. MacKintosh; 9. Cell dynamics and the actin cytoskeleton James L. McGrath and C. Forbes Dewey, Jr; 10. Active cellular motion: continuum theories and models Marc Herant and Micah Dembo; 11. Summary Mohammad R. K. Mofrad and Roger Kamm.

  13. Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance in Arabidopsis against wheat powdery mildew.

    PubMed

    Yun, Byung-Wook; Atkinson, Helen A; Gaborit, Charlotte; Greenland, Andy; Read, Nick D; Pallas, Jacqueline A; Loake, Gary J

    2003-06-01

    Plant immunity against the majority of the microbial pathogens is conveyed by a phenomenon known as non-host resistance (NHR). This defence mechanism affords durable protection to plant species against given species of phytopathogens. We investigated the genetic basis of NHR in Arabidopsis against the wheat powdery mildew fungus Blumeria graminis f. sp. tritici (Bgt). Both primary and appressorial germ tubes were produced from individual Bgt conidia on the surface of the Arabidopsis leaves. Attempted infection occasionally resulted in successful penetration, which led to the development of an abnormal unilateral haustorium. Inoculation of a series of Arabidopsis defence-related mutants with Bgt resulted in the attenuation of reactive oxygen intermediate (ROI) production and salicylic acid (SA)-dependent defence gene expression in eds1, pad4 and nahG plants, which are known to be defective in some aspects of host resistance. Furthermore, Bgt often developed bilateral haustoria in the mutant Arabidopsis lines that closely resembled those formed in wheat. A similar decrease in NHR was observed following treatment of the wild-type Arabidopsis plants with cytochalasin E, an inhibitor of actin microfilament polymerisation. In eds1 mutants, inhibition of actin polymerisation severely compromised NHR in Arabidopsis against Bgt. This permitted completion of the Bgt infection cycle on these plants. Therefore, actin cytoskeletal function and EDS1 activity, in combination, are major contributors to NHR in Arabidopsis against wheat powdery mildew.

  14. Cytoskeletal F-actin patterns in whole-mounted larval and adult salivary glands of the fleshfly, Sarcophaga bullata.

    PubMed

    Meulemans, W; De Loof, A

    1991-01-01

    The patterns of filamentous actin were analysed in different larval, pupal and adult stages in the salivary glands of the fleshfly Sarcophaga bullata. Using the rhodamine labelled phalloidin staining method in combination with detergent extraction specific actin filament distribution was detected. The salivary glands which are histolysed during the process of metamorphosis show distinct cellular morphology and actin filament patterns in larvae and adults. The large third instar larval salivary gland cells contain a well developed apicolateral microvillar zone. In third instar larvae this microvillar zone invaginates and expands in the basal part of the lateral membranes. Larval salivary gland cells also contain numerous parallel basal actin bundles. The larval glands are histolysed during metamorphosis and adult glands are formed out of the imaginal cell group. At the onset of metamorphosis these basal actin bundles form a network of crossing bundles. The filamentous actin patterns of the proximal part of adult gland cells is confined to the apicolateral microvillar membranes. The cells in the distal, tubular part of the adult salivary glands show intense staining of their folded lateral membranes.

  15. The alternatively-included 11a sequence modifies the effects of Mena on actin cytoskeletal organization and cell behavior

    PubMed Central

    Balsamo, Michele; Mondal, Chandrani; Carmona, Guillaume; McClain, Leslie M.; Riquelme, Daisy N.; Tadros, Jenny; Ma, Duan; Vasile, Eliza; Condeelis, John S.; Lauffenburger, Douglas A.; Gertler, Frank B.

    2016-01-01

    During tumor progression, alternative splicing gives rise to different Mena protein isoforms. We analyzed how Mena11a, an isoform enriched in epithelia and epithelial-like cells, affects Mena-dependent regulation of actin dynamics and cell behavior. While other Mena isoforms promote actin polymerization and drive membrane protrusion, we find that Mena11a decreases actin polymerization and growth factor-stimulated membrane protrusion at lamellipodia. Ectopic Mena11a expression slows mesenchymal-like cell motility, while isoform-specific depletion of endogenous Mena11a in epithelial-like tumor cells perturbs cell:cell junctions and increases membrane protrusion and overall cell motility. Mena11a can dampen membrane protrusion and reduce actin polymerization in the absence of other Mena isoforms, indicating that it is not simply an inactive Mena isoform. We identify a phosphorylation site within 11a that is required for some Mena11a-specific functions. RNA-seq data analysis from patient cohorts demonstrates that the difference between mRNAs encoding constitutive Mena sequences and those containing the 11a exon correlates with metastasis in colorectal cancer, suggesting that 11a exon exclusion contributes to invasive phenotypes and leads to poor clinical outcomes. PMID:27748415

  16. Identification of a Putative Network of Actin-Associated Cytoskeletal Proteins in Glomerular Podocytes Defined by Co-Purified mRNAs

    PubMed Central

    Nabet, Behnam; Tsai, Arthur; Tobias, John W.; Carstens, Russ P.

    2009-01-01

    The glomerular podocyte is a highly specialized and polarized kidney cell type that contains major processes and foot processes that extend from the cell body. Foot processes from adjacent podocytes form interdigitations with those of adjacent cells, thereby creating an essential intercellular junctional domain of the renal filtration barrier known as the slit diaphragm. Interesting parallels have been drawn between the slit diaphragm and other sites of cell-cell contact by polarized cells. Notably mutations in several genes encoding proteins localized to the foot processes can lead to proteinuria and kidney failure. Mutations in the Wilm's tumor gene (WT1) can also lead to kidney disease and one isoform of WT1, WT1(+KTS), has been proposed to regulate gene expression post-transcriptionally. We originally sought to identify mRNAs associated with WT1(+KTS) through an RNA immunoprecipitation and microarray approach, hypothesizing that the proteins encoded by these mRNAs might be important for podocyte morphology and function. We identified a subset of mRNAs that were remarkably enriched for transcripts encoding actin-binding proteins and other cytoskeletal proteins including several that are localized at or near the slit diaphragm. Interestingly, these mRNAs included those of α-actinin-4 and non-muscle myosin IIA that are mutated in genetic forms of kidney disease. However, isolation of the mRNAs occurred independently of the expression of WT1, suggesting that the identified mRNAs were serendipitously co-purified on the basis of co-association in a common subcellular fraction. Mass spectroscopy revealed that other components of the actin cytoskeleton co-purified with these mRNAs, namely actin, tubulin, and elongation factor 1α. We propose that these mRNAs encode a number of proteins that comprise a highly specialized protein interactome underlying the slit diaphragm. Collectively, these gene products and their interactions may prove to be important for the

  17. Environmental toxicants perturb human Sertoli cell adhesive function via changes in F-actin organization mediated by actin regulatory proteins

    PubMed Central

    Xiao, Xiang; Mruk, Dolores D.; Tang, Elizabeth I.; Wong, Chris K.C.; Lee, Will M.; John, Constance M.; Turek, Paul J.; Silvestrini, Bruno; Cheng, C. Yan

    2014-01-01

    STUDY QUESTION Can human Sertoli cells cultured in vitro and that have formed an epithelium be used as a model to monitor toxicant-induced junction disruption and to better understand the mechanism(s) by which toxicants disrupt cell adhesion at the Sertoli cell blood–testis barrier (BTB)? SUMMARY ANSWER Our findings illustrate that human Sertoli cells cultured in vitro serve as a reliable system to monitor the impact of environmental toxicants on the BTB function. WHAT IS KNOWN ALREADY Suspicions of a declining trend in semen quality and a concomitant increase in exposures to environmental toxicants over the past decades reveal the need of an in vitro system that efficiently and reliably monitors the impact of toxicants on male reproductive function. Furthermore, studies in rodents have confirmed that environmental toxicants impede Sertoli cell BTB function in vitro and in vivo. STUDY DESIGN, SIZE AND DURATION We examined the effects of two environmental toxicants: cadmium chloride (0.5–20 µM) and bisphenol A (0.4–200 µM) on human Sertoli cell function. Cultured Sertoli cells from three men were used in this study, which spanned an 18-month period. PARTICIPANTS/MATERIALS, SETTING, METHODS Human Sertoli cells from three subjects were cultured in F12/DMEM containing 5% fetal bovine serum. Changes in protein expression were monitored by immunoblotting using specific antibodies. Immunofluorescence analyses were used to assess changes in the distribution of adhesion proteins, F-actin and actin regulatory proteins following exposure to two toxicants: cadmium chloride and bisphenol A (BPA). MAIN RESULTS AND THE ROLE OF CHANCE Human Sertoli cells were sensitive to cadmium and BPA toxicity. Changes in the localization of cell adhesion proteins were mediated by an alteration of the actin-based cytoskeleton. This alteration of F-actin network in Sertoli cells as manifested by truncation and depolymerization of actin microfilaments at the Sertoli cell BTB was caused by

  18. Alternative cytoskeletal landscapes: cytoskeletal novelty and evolution in basal excavate protists.

    PubMed

    Dawson, Scott C; Paredez, Alexander R

    2013-02-01

    Microbial eukaryotes encompass the majority of eukaryotic evolutionary and cytoskeletal diversity. The cytoskeletal complexity observed in multicellular organisms appears to be an expansion of components present in genomes of diverse microbial eukaryotes such as the basal lineage of flagellates, the Excavata. Excavate protists have complex and diverse cytoskeletal architectures and life cycles-essentially alternative cytoskeletal 'landscapes'-yet still possess conserved microtubule-associated and actin-associated proteins. Comparative genomic analyses have revealed that a subset of excavates, however, lack many canonical actin-binding proteins central to actin cytoskeleton function in other eukaryotes. Overall, excavates possess numerous uncharacterized and 'hypothetical' genes, and may represent an undiscovered reservoir of novel cytoskeletal genes and cytoskeletal mechanisms. The continued development of molecular genetic tools in these complex microbial eukaryotes will undoubtedly contribute to our overall understanding of cytoskeletal diversity and evolution.

  19. Identification of actin as a 15-deoxy-Delta12,14-prostaglandin J2 target in neuroblastoma cells: mass spectrometric, computational, and functional approaches to investigate the effect on cytoskeletal derangement.

    PubMed

    Aldini, Giancarlo; Carini, Marina; Vistoli, Giulio; Shibata, Takahiro; Kusano, Yuri; Gamberoni, Luca; Dalle-Donne, Isabella; Milzani, Aldo; Uchida, Koji

    2007-03-13

    A proteomic approach was used to identify 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) protein targets in human neuroblastoma SH-SY5Y cells. By using biotinylated 15d-PGJ2, beta-actin was found as the major adducted protein; at least 12 proteins were also identified as minor biotin-positive spots, falling in different functional classes, including glycolytic enzymes (enolase and lactate dehydrogenase), redox enzymes (biliverdin reductase), and a eukaryotic regulatory protein (14-3-3gamma). 15d-PGJ2 induced marked morphological changes in the actin filament network and in particular promoted F-actin depolymerization as confirmed by Western blot analysis. By using a mass spectrometric approach, we found that 15d-PGJ2 reacts with isolated G-actin in a 1:1 stoichiometric ratio and selectively binds the Cys374 site through a Michael adduction mechanism. Computational studies showed that the covalent binding of 15d-PGJ2 induces a significant unfolding of actin structure and in particular that 15d-PGJ2 distorts the actin subdomains 2 and 4, which define the nucleotide binding sites impeding the nucleotide exchange. The functional effect of 15d-PGJ2 on G-actin was studied by polymerization measurement: in the presence of 15d-PGJ2, a lower amount of F-actin forms, as followed by the increase in pyrenyl-actin fluorescence intensity, as the major effect of increasing 15d-PGJ2 concentrations occurs on the maximum extent of actin polymerization, whereas it is negligible on the initial rate of reaction. In summary, the results here reported give an insight into the role of 15d-PGJ2 as a cytotoxic compound in neuronal cell dysfunction. Actin is the main protein cellular target of 15d-PGJ2, which specifically binds through a Michael adduction to Cys374, leading to a protein conformational change that can explain the disruption of the actin cytoskeleton, F-actin depolymerization, and impairment of G-actin polymerization. PMID:17297918

  20. Cleavage of human and mouse cytoskeletal and sarcomeric proteins by human immunodeficiency virus type 1 protease. Actin, desmin, myosin, and tropomyosin.

    PubMed Central

    Shoeman, R. L.; Sachse, C.; Höner, B.; Mothes, E.; Kaufmann, M.; Traub, P.

    1993-01-01

    HeLa cell actin was cleaved by human immunodeficiency virus type 1 protease when in its soluble, globular form (G-actin). No cleavage of the polymerized, filamentous form of actin (F-actin) was observed when examined by denaturing gel electrophoresis; however, electron microscopy revealed a low level of cleavage of F-actin. Immunoblotting of mouse skeletal and human pectoral muscle myofibrils treated in vitro with human immunodeficiency virus type 1 protease showed that myosin heavy chain, desmin, tropomyosin, and a fraction of the actin were all cleaved. Electron microscopy of these myofibrils demonstrated changes consistent with cleavage of these proteins: Z-lines were rapidly lost, the length of the A bands was shortened, and the thick filaments (myosin filaments) were often laterally frayed such that the structures disintegrated. Nonmuscle myosin heavy chains were also cleaved by this enzyme in vitro. These data demonstrate that this protease can cause alterations in muscle cell ultrastructure in vitro that may be of clinical relevance in infected individuals. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:8424456

  1. F-actin-myosin II inhibitors affect chromaffin granule plasma membrane distance and fusion kinetics by retraction of the cytoskeletal cortex.

    PubMed

    Villanueva, José; Torres, Vanesa; Torregrosa-Hetland, Cristina J; Garcia-Martinez, Virginia; López-Font, Inmaculada; Viniegra, Salvador; Gutiérrez, Luis M

    2012-10-01

    Chromaffin cell catecholamines are released when specialized secretory vesicles undergo exocytotic membrane fusion. Evidence indicates that vesicle supply and fusion are controlled by the activity of the cortical F-actin-myosin II network. To study in detail cell cortex and vesicle interactions, we use fluorescent labeling with GFP-lifeact and acidotropic dyes in confocal and evanescent wave microscopy. These techniques provide structural details and dynamic images of chromaffin granules caged in a complex cortical structure. Both the movement of cortical structures and granule motion appear to be linked, and this motion can be restricted by the myosin II-specific inhibitor, blebbistatin, and the F-actin stabilizer, jasplakinolide. These treatments also affect the position of the vesicles in relation to the plasma membrane, increasing the distance between them and the fusion sites. Consequently, we observed slower single vesicle fusion kinetics in treated cells after neutralization of acridine orange-loaded granules during exocytosis. Increasing the distance between the granules and the fusion sites appears to be linked to the retraction of the F-actin cytoskeleton when treated with jasplakinolide. Thus, F-actin-myosin II inhibitors appear to slow granule fusion kinetics by altering the position of vesicles after relaxation of the cortical network.

  2. Oxidant-induced apoptosis is mediated by oxidation of the actin-regulatory protein cofilin

    PubMed Central

    Klamt, Fábio; Zdanov, Stéphanie; Levine, Rodney L.; Pariser, Ashley; Zhang, Yaqin; Zhang, Baolin; Yu, Li-Rong; Veenstra, Timothy D.; Shacter, Emily

    2012-01-01

    Physiological oxidants that are generated by activated phagocytes comprise the main source of oxidative stress during inflammation1,2. Oxidants such as taurine chloramine (TnCl) and hydrogen peroxide (H2O2) can damage proteins and induce apoptosis, but the role of specific protein oxidation in this process has not been defined. We found that the actin-binding protein cofilin is a key target of oxidation. When oxidation of this single regulatory protein is prevented, oxidant-induced apoptosis is inhibited. Oxidation of cofilin causes it to lose its affinity for actin and to translocate to the mitochondria, where it induces swelling and cytochrome c release by mediating opening of the permeability transition pore (PTP). This occurs independently of Bax activation and requires both oxidation of cofilin Cys residues and dephosphorylation at Ser 3. Knockdown of endogenous cofilin using targeted siRNA inhibits oxidant-induced apoptosis, which is restored by re-expression of wild-type cofilin but not by cofilin containing Cys to Ala mutations. Exposure of cofilin to TnCl results in intramolecular disulphide bonding and oxidation of Met residues to Met sulphoxide, but only Cys oxidation causes cofilin to induce mitochondrial damage. PMID:19734890

  3. Tuba stimulates intracellular N-WASP-dependent actin assembly.

    PubMed

    Kovacs, Eva M; Makar, Robert S; Gertler, Frank B

    2006-07-01

    Tuba is a multidomain scaffolding protein that links cytoskeletal dynamics and membrane trafficking pathways. The N-terminus of Tuba binds dynamin1, and the C-terminus contains domains that can interact with signaling pathways and cytoskeletal regulatory elements. We investigated Tuba localization, distribution and function in B16 melanoma cells. Tuba overexpression stimulated dorsal ruffles that occurred independently of dynamin function. Tuba expression induced actin-driven motility of small puncta that required the C-terminal SH3, GEF and BAR domains. Additionally, Tuba was recruited to lipid vesicles generated by overexpression of phosphatidylinositol-4-phosphate 5-kinase type Ialpha (PIP5Kalpha), localizing prominently to the head of the comets and at lower levels along the actin tail. We propose that Tuba facilitates dorsal ruffling of melanoma cells through direct interaction with actin-regulatory proteins and the recruitment of signaling molecules to lipid microdomains for the coordinated assembly of a cytoskeletal network. Knockdown of Tuba by RNA interference (RNAi) attenuated PIP5Kalpha-generated comet formation and the invasive behavior of B16 cells, implying that Tuba function is required for certain aspects of these processes. These results suggest first that Tuba-stimulated dorsal ruffling might represent a novel mechanism for the coordination of N-WASP-dependent cytoskeletal rearrangements and second that Tuba function is implicated in motility processes. PMID:16757518

  4. Elevated Glucose Levels Promote Contractile and Cytoskeletal Gene Expression in Vascular Smooth Muscle via Rho/Protein Kinase C and Actin Polymerization.

    PubMed

    Hien, Tran Thi; Turczyńska, Karolina M; Dahan, Diana; Ekman, Mari; Grossi, Mario; Sjögren, Johan; Nilsson, Johan; Braun, Thomas; Boettger, Thomas; Garcia-Vaz, Eliana; Stenkula, Karin; Swärd, Karl; Gomez, Maria F; Albinsson, Sebastian

    2016-02-12

    Both type 1 and type 2 diabetes are associated with increased risk of cardiovascular disease. This is in part attributed to the effects of hyperglycemia on vascular endothelial and smooth muscle cells, but the underlying mechanisms are not fully understood. In diabetic animal models, hyperglycemia results in hypercontractility of vascular smooth muscle possibly due to increased activation of Rho-kinase. The aim of the present study was to investigate the regulation of contractile smooth muscle markers by glucose and to determine the signaling pathways that are activated by hyperglycemia in smooth muscle cells. Microarray, quantitative PCR, and Western blot analyses revealed that both mRNA and protein expression of contractile smooth muscle markers were increased in isolated smooth muscle cells cultured under high compared with low glucose conditions. This effect was also observed in hyperglycemic Akita mice and in diabetic patients. Elevated glucose activated the protein kinase C and Rho/Rho-kinase signaling pathways and stimulated actin polymerization. Glucose-induced expression of contractile smooth muscle markers in cultured cells could be partially or completely repressed by inhibitors of advanced glycation end products, L-type calcium channels, protein kinase C, Rho-kinase, actin polymerization, and myocardin-related transcription factors. Furthermore, genetic ablation of the miR-143/145 cluster prevented the effects of glucose on smooth muscle marker expression. In conclusion, these data demonstrate a possible link between hyperglycemia and vascular disease states associated with smooth muscle contractility.

  5. Some distinctive features of zebrafish myogenesis based on unexpected distributions of the muscle cytoskeletal proteins actin, myosin, desmin, alpha-actinin, troponin and titin.

    PubMed

    Costa, Manoel L; Escaleira, Roberta C; Rodrigues, Viviane B; Manasfi, Muhamed; Mermelstein, Claudia S

    2002-08-01

    The current myofibrillogenesis model is based mostly on in vitro cell cultures and on avian and mammalian embryos in situ. We followed the expression of actin, myosin, desmin, alpha-actinin, titin, and troponin using immunofluorescence microscopy of zebrafish (Danio rerio) embryos. We could see young mononucleated myoblasts with sharp striations. The striations were positive for all the sarcomeric proteins. Desmin distribution during muscle maturation changes from dispersed aggregates to a perinuclear concentration to striated afterwards. We could not observe desmin-positive, myofibrillar-proteins-negative cells, and we could not find any non-striated distribution of sarcomeric proteins, such as stress fiber-like structures. Some steps, like fusion before striation, seem to be different in the zebrafish when compared with the previously described myogenesis sequences.

  6. Cytoskeletal regulation of calcium-permeable cation channels in the human syncytiotrophoblast: role of gelsolin

    PubMed Central

    Montalbetti, Nicolás; Li, Qiang; Timpanaro, Gustavo A; González-Perrett, Silvia; Dai, Xiao-Qing; Chen, Xing-Zhen; Cantiello, Horacio F

    2005-01-01

    The human syncytiotrophoblast (hST) is the most apical epithelial barrier that covers the villous tree of the human placenta. An intricate and highly organized network of cytoskeletal structures supports the hST. Recently, polycystin-2 (PC2), a TRP-type nonselective cation channel, was functionally observed in hST, where it may be an important player to Ca2+ transport. Little is known, however, about channel regulation in hST. In this report, the regulatory role of actin dynamics on PC2 channels reconstituted from hST apical membranes was explored. Acute addition of cytochalasin D (CD, 5 μg ml−1) to reconstituted hST apical membranes transiently increased K+-permeable channel activity. The actin-binding proteins α-actinin and gelsolin, as well as PC2, were observed by Western blot and immunofluorescence analyses in hST vesicles. CD treatment of hST vesicles resulted in a re-distribution of actin filaments, in agreement with the effect of CD on K+ channel activity. In contrast, addition of exogenous monomeric actin, but not prepolymerized actin, induced a rapid inhibition of channel function in hST. This inhibition was obliterated by the presence of CD in the medium. The acute (<15 min) CD stimulation of K+ channel activity was mimicked by addition of the actin-severing protein gelsolin in the presence, but not in the absence, of micromolar Ca2+. Ca2+ transport through PC2 triggers a regulatory feedback mechanism, which is based on the severing and re-formation of filamentous actin near the channels. Cytoskeletal structures may thus be relevant to ion transport regulation in the human placenta. PMID:15845576

  7. Mechanical Response of Cytoskeletal Networks

    PubMed Central

    Gardel, Margaret L.; Kasza, Karen E.; Brangwynne, Clifford P.; Liu, Jiayu; Weitz, David A.

    2015-01-01

    The cellular cytoskeleton is a dynamic network of filamentous proteins, consisting of filamentous actin (F-actin), microtubules, and intermediate filaments. However, these networks are not simple linear, elastic solids; they can exhibit highly nonlinear elasticity and athermal dynamics driven by ATP-dependent processes. To build quantitative mechanical models describing complex cellular behaviors, it is necessary to understand the underlying physical principles that regulate force transmission and dynamics within these networks. In this chapter, we review our current understanding of the physics of networks of cytoskeletal proteins formed in vitro. We introduce rheology, the technique used to measure mechanical response. We discuss our current understanding of the mechanical response of F-actin networks, and how the biophysical properties of F-actin and actin cross-linking proteins can dramatically impact the network mechanical response. We discuss how incorporating dynamic and rigid microtubules into F-actin networks can affect the contours of growing microtubules and composite network rigidity. Finally, we discuss the mechanical behaviors of intermediate filaments. PMID:19118688

  8. Importance of internal regions and the overall length of tropomyosin for actin binding and regulatory function.

    PubMed

    Hitchcock-DeGregori, S E; Song, Y; Moraczewska, J

    2001-02-20

    Tropomyosin (Tm) binds along actin filaments, one molecule spanning four to seven actin monomers, depending on the isoform. Periodic repeats in the sequence have been proposed to correspond to actin binding sites. To learn the functional importance of length and the internal periods we made a series of progressively shorter Tms, deleting from two up to six of the internal periods from rat striated alpha-TM (dAc2--3, dAc2--4, dAc3--5, dAc2--5, dAc2--6, dAc1.5--6.5). Recombinant Tms (unacetylated) were expressed in Escherichia coli. Tropomyosins that are four or more periods long (dAc2--3, dAc2--4, and dAc3--5) bound well to F-actin with troponin (Tn). dAc2--5 bound weakly (with EGTA) and binding of shorter mutants was undetectable in any condition. Myosin S1-induced binding of Tm to actin in the tight Tm-binding "open" state did not correlate with actin binding. dAc3--5 and dAc2--5 did not bind to actin even when the filament was saturated with S1. In contrast, dAc2--3 and dAc2--4 did, like wild-type-Tm, requiring about 3 mol of S1/mol of Tm for half-maximal binding. The results show the critical importance of period 5 (residues 166--207) for myosin S1-induced binding. The Tms that bound to actin (dAc2--3, dAc2--4, and dAc3--5) all fully inhibited the actomyosin ATPase (+Tn) in EGTA. In the presence of Ca(2+), relief of inhibition by these Tms was incomplete. We conclude (1) four or more actin periods are required for Tm to bind to actin with reasonable affinity and (2) that the structural requirements of Tm for the transition of the regulated filament from the blocked-to-closed/open (relief of inhibition by Ca(2+)) and the closed-to-open states (strong Tm binding to actin-S1) are different. PMID:11329279

  9. Fluorescence single-molecule imaging of actin turnover and regulatory mechanisms.

    PubMed

    Watanabe, Naoki

    2012-01-01

    Cells must rapidly remodel the actin filament network to achieve various cellular functions. Actin filament turnover is a dynamic process that plays crucial roles in cell adhesion, locomotion, cytokinesis, endocytosis, phagocytosis, tissue remodeling, etc., and is regulated by cell signaling cascades. Success in elucidating dynamic biological processes such as actin-based motility relies on the means enabling real time monitoring of the process. The invention of live-cell fluorescence single-molecule imaging has opened a window for direct viewing of various actin remodeling processes. In general, assembly and dissociation of actin and its regulators turned out to occur at the faster rates than previously estimated by biochemical and structural analyses. Cells undergo such fast continuous exchange of the components perhaps not only to drive actin remodeling but also to facilitate rapid response in many other cell mechanics and signaling cascades. This chapter describes how epifluorescence single-molecule imaging which visualizes deeper area than the TIRF microscopy is achieved in XTC cells, the currently best platform for this approach.

  10. Actin dynamics in living mammalian cells.

    PubMed

    Ballestrem, C; Wehrle-Haller, B; Imhof, B A

    1998-06-01

    The actin cytoskeleton maintains the cellular architecture and mediates cell movements. To explore actin cytoskeletal dynamics, the enhanced green fluorescent protein (EGFP) was fused to human &bgr ;-actin. The fusion protein was incorporated into actin fibers which became depolymerized upon cytochalasin B treatment. This functional EGFP-actin construct enabled observation of the actin cytoskeleton in living cells by time lapse fluorescence microscopy. Stable expression of the construct was obtained in mammalian cell lines of different tissue origins. In stationary cells, actin rich, ring-like structured 'actin clouds' were observed in addition to stress fibers. These ruffle-like structures were found to be involved in the reorganization of the actin cytoskeleton. In migratory cells, EGFP-actin was found in the advancing lamellipodium. Immobile actin spots developed in the lamellipodium and thin actin fibers formed parallel to the leading edge. Thus EGFP-actin expressed in living cells unveiled structures involved in the dynamics of the actin cytoskeleton.

  11. Remodeling of cytoskeletal architecture of nonneuronal cells induced by synapsin.

    PubMed Central

    Han, H Q; Greengard, P

    1994-01-01

    The synapsins, a family of neuron-specific phosphoproteins, have been implicated in the functional and structural maturation of synapses. The cell biological basis for these effects is unknown. In vitro, the synapsins interact with cytoskeletal elements including actin. To examine, in vivo, the possible effect of the synapsins on cytoskeletal organization and cell morphology, we have transfected each of the four known members of the synapsin family into nonneuronal cells. We report here that synapsin expression in fibroblast cells gives rise to an alteration in cell morphology that is associated with formation of highly elongated processes. This morphological change is accompanied by a reorganization of filamentous actin (F-actin) characterized by disruption of existing stress fibers and formation of bundles of actin cables in the elongated processes. These results suggest that interactions of the synapsins with actin, and possibly with other cytoskeletal elements, may play a role in the morphological differentiation of neurons. Images PMID:8078922

  12. The actin cytoskeleton may control the polar distribution of an auxin transport protein

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Hu, S.; Brady, S. R.; Davies, E. (Principal Investigator)

    2000-01-01

    The gravitropic bending of plants has long been linked to the changes in the transport of the plant hormone auxin. To understand the mechanism by which gravity alters auxin movement, it is critical to know how polar auxin transport is initially established. In shoots, polar auxin transport is basipetal (i.e., from the shoot apex toward the base). It is driven by the basal localization of the auxin efflux carrier complex. One mechanism for localizing this efflux carrier complex to the basal membrane may be through attachment to the actin cytoskeleton. The efflux carrier protein complex is believed to consist of several polypeptides, including a regulatory subunit that binds auxin transport inhibitors, such as naphthylphthalamic acid (NPA). Several lines of experimentation have been used to determine if the NPA binding protein interacts with actin filaments. The NPA binding protein has been shown to partition with the actin cytoskeleton during detergent extraction. Agents that specifically alter the polymerization state of the actin cytoskeleton change the amount of NPA binding protein and actin recovered in these cytoskeletal pellets. Actin-affinity columns were prepared with polymers of actin purified from zucchini hypocotyl tissue. NPA binding activity was eluted in a single peak from the actin filament column. Cytochalasin D, which fragments the actin cytoskeleton, was shown to reduce polar auxin transport in zucchini hypocotyls. The interaction of the NPA binding protein with the actin cytoskeleton may localize it in one plane of the plasma membrane, and thereby control the polarity of auxin transport.

  13. Rapid non-equilibrium turnover fluidizes entangled F-actin solutions

    NASA Astrophysics Data System (ADS)

    McCall, Patrick M.; Kovar, David R.; Gardel, Margaret L.

    The actin cytoskeleton of living cells is a semiflexible polymer network which regulates cell division, motility, and morphogenesis by controlling cell shape. These complex shape-changing processes require both mechanical deformation and remodeling of the actin cytoskeleton. Molecular motors generate internal forces to drive deformation, while cytoskeletal remodeling is regulated by non-equilibrium polymer turnover. Although the mechanical properties of equilibrium actin filament (F-actin) networks are well-described by theories of semiflexible polymers, these theories do not incorporate the effects of non-equilibrium turnover. To address this experimentally, we developed a model system in which both the turnover rate and the length distribution of purified F-actin can be tuned independently at steady-state through the combined action of actin regulatory proteins. Specifically we tune the concentrations of cofilin, profilin, and formin to regulate F-actin severing, recycling, and nucleation, respectively. We find that the actin turnover rate can be tuned by cofilin up to 25-fold (31 +/- 2 subunits/sec/filament). Surprisingly, changes in turnover rate have no effect on the steady-state F-actin length distribution, which is instead set by formin concentration. Passive microrheology measurements show that increased turnover leads to striking fluidization in both entangled and crosslinked networks. Non-equilibrium turnover thus enables modulation of network mechanics, which impacts force transmission and material deformation.

  14. Chemotaxis and Actin Oscillations

    NASA Astrophysics Data System (ADS)

    Bodenschatz, Eberhard; Hsu, Hsin-Fang; Negrete, Jose; Beta, Carsten; Pumir, Alain; Gholami, Azam; Tarantola, Marco; Westendorf, Christian; Zykov, Vladimir

    Recently, self-oscillations of the cytoskeletal actin have been observed in Dictyostelium, a model system for studying chemotaxis. Here we report experimental results on the self-oscillation mechanism and the role of regulatory proteins and myosin II. We stimulate cells rapidly and periodically by using photo un-caging of the chemoattractant in a micro-fluidic device and measured the cellular responses. We found that the response amplitude grows with stimulation strength only in a very narrow region of stimulation, after which the response amplitude reaches a plateau. Moreover, the frequency-response is not constant but rather varies with the strength of external stimuli. To understand the underlying mechanism, we analyzed the polymerization and de-polymerization time in the single cell level. Despite of the large cell-to-cell variability, we found that the polymerization time is independent of external stimuli and the de-polymerization time is prolonged as the stimulation strength increases. Our conclusions will be summarized and the role of noise in the signaling network will be discussed. German Science Foundation CRC 937.

  15. Papaverine Prevents Vasospasm by Regulation of Myosin Light Chain Phosphorylation and Actin Polymerization in Human Saphenous Vein

    PubMed Central

    Hocking, Kyle M.; Putumbaka, Gowthami; Wise, Eric S.; Cheung-Flynn, Joyce; Brophy, Colleen M.; Komalavilas, Padmini

    2016-01-01

    Objective Papaverine is used to prevent vasospasm in human saphenous veins (HSV) during vein graft preparation prior to implantation as a bypass conduit. Papaverine is a nonspecific inhibitor of phosphodiesterases, leading to increases in both intracellular cGMP and cAMP. We hypothesized that papaverine reduces force by decreasing intracellular calcium concentrations ([Ca2+]i) and myosin light chain phosphorylation, and increasing actin depolymerization via regulation of actin regulatory protein phosphorylation. Approach and Results HSV was equilibrated in a muscle bath, pre-treated with 1 mM papaverine followed by 5 μM norepinephrine, and force along with [Ca2+]i levels were concurrently measured. Filamentous actin (F-actin) level was measured by an in vitro actin assay. Tissue was snap frozen to measure myosin light chain and actin regulatory protein phosphorylation. Pre-treatment with papaverine completely inhibited norepinephrine-induced force generation, blocked increases in [Ca2+]i and led to a decrease in the phosphorylation of myosin light chain. Papaverine pre-treatment also led to increased phosphorylation of the heat shock-related protein 20 (HSPB6) and the vasodilator stimulated phosphoprotein (VASP), as well as decreased filamentous actin (F-actin) levels suggesting depolymerization of actin. Conclusions These results suggest that papaverine-induced force inhibition of HSV involves [Ca2+]i-mediated inhibition of myosin light chain phosphorylation and actin regulatory protein phosphorylation-mediated actin depolymerization. Thus, papaverine induces sustained inhibition of contraction of HSV by the modulation of both myosin cross-bridge formation and actin cytoskeletal dynamics and is a pharmacological alternative to high pressure distention to prevent vasospasm. PMID:27136356

  16. Cortactin promotes exosome secretion by controlling branched actin dynamics.

    PubMed

    Sinha, Seema; Hoshino, Daisuke; Hong, Nan Hyung; Kirkbride, Kellye C; Grega-Larson, Nathan E; Seiki, Motoharu; Tyska, Matthew J; Weaver, Alissa M

    2016-07-18

    Exosomes are extracellular vesicles that influence cellular behavior and enhance cancer aggressiveness by carrying bioactive molecules. The mechanisms that regulate exosome secretion are poorly understood. Here, we show that the actin cytoskeletal regulatory protein cortactin promotes exosome secretion. Knockdown or overexpression of cortactin in cancer cells leads to a respective decrease or increase in exosome secretion, without altering exosome cargo content. Live-cell imaging revealed that cortactin controls both trafficking and plasma membrane docking of multivesicular late endosomes (MVEs). Regulation of exosome secretion by cortactin requires binding to the branched actin nucleating Arp2/3 complex and to actin filaments. Furthermore, cortactin, Rab27a, and coronin 1b coordinately control stability of cortical actin MVE docking sites and exosome secretion. Functionally, the addition of purified exosomes to cortactin-knockdown cells rescued defects of those cells in serum-independent growth and invasion. These data suggest a model in which cortactin promotes exosome secretion by stabilizing cortical actin-rich MVE docking sites. PMID:27402952

  17. Biotechnological aspects of cytoskeletal regulation in plants.

    PubMed

    Komis, George; Luptovciak, Ivan; Doskocilova, Anna; Samaj, Jozef

    2015-11-01

    The cytoskeleton is a protein-based intracellular superstructure that evolved early after the appearance of bacterial prokaryotes. Eventually cytoskeletal proteins and their macromolecular assemblies were established in eukaryotes and assumed critical roles in cell movements, intracellular organization, cell division and cell differentiation. In biomedicine the small-molecules targeting cytoskeletal elements are in the frontline of anticancer research with plant-derived cytoskeletal drugs such as Vinca alkaloids and toxoids, being routinely used in the clinical practice. Moreover, plants are also major material, food and energy resources for human activities ranging from agriculture, textile industry, carpentry, energy production and new material development to name some few. Most of these inheritable traits are associated with cell wall synthesis and chemical modification during primary and secondary plant growth and inevitably are associated with the dynamics, organization and interactions of the plant cytoskeleton. Taking into account the vast intracellular spread of microtubules and actin microfilaments the cytoskeleton collectively assumed central roles in plant growth and development, in determining the physical stance of plants against the forces of nature and becoming a battleground between pathogenic invaders and the defense mechanisms of plant cells. This review aims to address the role of the plant cytoskeleton in manageable features of plants including cellulose biosynthesis with implications in wood and fiber properties, in biofuel production and the contribution of plant cytoskeletal elements in plant defense responses against pathogens or detrimental environmental conditions. Ultimately the present work surveys the potential of cytoskeletal proteins as platforms of plant genetic engineering, nominating certain cytoskeletal proteins as vectors of favorable traits in crops and other economically important plants.

  18. Biotechnological aspects of cytoskeletal regulation in plants.

    PubMed

    Komis, George; Luptovciak, Ivan; Doskocilova, Anna; Samaj, Jozef

    2015-11-01

    The cytoskeleton is a protein-based intracellular superstructure that evolved early after the appearance of bacterial prokaryotes. Eventually cytoskeletal proteins and their macromolecular assemblies were established in eukaryotes and assumed critical roles in cell movements, intracellular organization, cell division and cell differentiation. In biomedicine the small-molecules targeting cytoskeletal elements are in the frontline of anticancer research with plant-derived cytoskeletal drugs such as Vinca alkaloids and toxoids, being routinely used in the clinical practice. Moreover, plants are also major material, food and energy resources for human activities ranging from agriculture, textile industry, carpentry, energy production and new material development to name some few. Most of these inheritable traits are associated with cell wall synthesis and chemical modification during primary and secondary plant growth and inevitably are associated with the dynamics, organization and interactions of the plant cytoskeleton. Taking into account the vast intracellular spread of microtubules and actin microfilaments the cytoskeleton collectively assumed central roles in plant growth and development, in determining the physical stance of plants against the forces of nature and becoming a battleground between pathogenic invaders and the defense mechanisms of plant cells. This review aims to address the role of the plant cytoskeleton in manageable features of plants including cellulose biosynthesis with implications in wood and fiber properties, in biofuel production and the contribution of plant cytoskeletal elements in plant defense responses against pathogens or detrimental environmental conditions. Ultimately the present work surveys the potential of cytoskeletal proteins as platforms of plant genetic engineering, nominating certain cytoskeletal proteins as vectors of favorable traits in crops and other economically important plants. PMID:25784147

  19. Transport of cytoskeletal elements in the squid giant axon.

    PubMed Central

    Terasaki, M; Schmidek, A; Galbraith, J A; Gallant, P E; Reese, T S

    1995-01-01

    In order to explore how cytoskeletal proteins are moved by axonal transport, we injected fluorescent microtubules and actin filaments as well as exogenous particulates into squid giant axons and observed their movements by confocal microscopy. The squid giant axon is large enough to allow even cytoskeletal assemblies to be injected without damaging the axon or its transport mechanisms. Negatively charged, 10- to 500-nm beads and large dextrans moved down the axon, whereas small (70 kDa) dextrans diffused in all directions and 1000-nm beads did not move. Only particles with negative charge were transported. Microtubules and actin filaments, which have net negative charges, made saltatory movements down the axon, resulting in a net rate approximating that previously shown for slow transport of cytoskeletal elements. The present observations suggest that particle size and charge determine which materials are transported down the axon. Images Fig. 1 Fig. 2 Fig. 3 PMID:8524791

  20. Transport of cytoskeletal elements in the squid giant axon.

    PubMed

    Terasaki, M; Schmidek, A; Galbraith, J A; Gallant, P E; Reese, T S

    1995-12-01

    In order to explore how cytoskeletal proteins are moved by axonal transport, we injected fluorescent microtubules and actin filaments as well as exogenous particulates into squid giant axons and observed their movements by confocal microscopy. The squid giant axon is large enough to allow even cytoskeletal assemblies to be injected without damaging the axon or its transport mechanisms. Negatively charged, 10- to 500-nm beads and large dextrans moved down the axon, whereas small (70 kDa) dextrans diffused in all directions and 1000-nm beads did not move. Only particles with negative charge were transported. Microtubules and actin filaments, which have net negative charges, made saltatory movements down the axon, resulting in a net rate approximating that previously shown for slow transport of cytoskeletal elements. The present observations suggest that particle size and charge determine which materials are transported down the axon.

  1. Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins.

    PubMed

    Alonso, Annabel; Greenlee, Matt; Matts, Jessica; Kline, Jake; Davis, Kayla J; Miller, Rita K

    2015-07-01

    Sumoylation is a powerful regulatory system that controls many of the critical processes in the cell, including DNA repair, transcriptional regulation, nuclear transport, and DNA replication. Recently, new functions for SUMO have begun to emerge. SUMO is covalently attached to components of each of the four major cytoskeletal networks, including microtubule-associated proteins, septins, and intermediate filaments, in addition to nuclear actin and actin-regulatory proteins. However, knowledge of the mechanisms by which this signal transduction system controls the cytoskeleton is still in its infancy. One story that is beginning to unfold is that SUMO may regulate the microtubule motor protein dynein by modification of its adaptor Lis1. In other instances, cytoskeletal elements can both bind to SUMO non-covalently and also be conjugated by it. The molecular mechanisms for many of these new functions are not yet clear, but are under active investigation. One emerging model links the function of MAP sumoylation to protein degradation through SUMO-targeted ubiquitin ligases, also known as STUbL enzymes. Other possible functions for cytoskeletal sumoylation are also discussed.

  2. Distinct cytoskeletal domains revealed in sperm cells

    PubMed Central

    1984-01-01

    Antibodies against different cytoskeletal proteins were used to study the cytoskeletal organization of human spermatozoa. A positive staining with actin antibodies was seen in both the acrosomal cap region and the principal piece region of the tail. However, no staining was obtained with nitrobenzoxadiazol-phallacidin, suggesting that most of the actin was in the nonpolymerized form. Most of the myosin immunoreactivity was confirmed to a narrow band in the neck region of spermatozoa. Tubulin was located to the entire tail, whereas vimentin was only seen in a discrete band-like structure encircling the sperm head, apparently coinciding with the equatorial segment region. Surface staining of the spermatozoa with fluorochrome-coupled Helix pomatia agglutinin revealed a similar band-like structure that co-distributed with the vimentin- specific staining. Instead, other lectin conjugates used labeled either the acrosomal cap region (peanut and soybean agglutinins), both the acrosomal cap and the postacrosomal region of the head (concanavalin A), or the whole sperm cell surface membrane (wheat germ and lens culinaris agglutinins and ricinus communis agglutinin l). In lectin blotting experiments, the Helix pomatia agglutinin-binding was assigned to a 80,000-mol-wt polypeptide which, together with vimentin, also resisted treatment with Triton X-100. Only the acrosomal cap and the principal piece of the tail were decorated with rabbit and hydridoma antibodies against an immunoanalogue of erythrocyte alpha-spectrin (p230). p230 appeared to be the major calmodulin-binding polypeptide in spermatozoa, as shown by a direct overlay assay of electrophoretic blots of spermatozoa with 125I-calmodulin. The results indicate that spermatozoa have a highly specialized cytoskeletal organization and that the distribution of actin, spectrin, and vimentin can be correlated with distinct surface specializations of the sperm cells. This suggest that cytoskeleton may regulate the maintenance

  3. Actinic Keratosis

    MedlinePlus

    ... rashes clinical tools newsletter | contact Share | Actinic Keratosis (Solar Keratosis) Information for adults A A A Actinic ... the touch. Overview Actinic keratoses, also known as solar keratoses, are small rough or scaly areas of ...

  4. Rictor Regulates Spermatogenesis by Controlling Sertoli Cell Cytoskeletal Organization and Cell Polarity in the Mouse Testis.

    PubMed

    Dong, Heling; Chen, Zhenguo; Wang, Caixia; Xiong, Zhi; Zhao, Wanlu; Jia, Chunhong; Lin, Jun; Lin, Yan; Yuan, Weiping; Zhao, Allan Z; Bai, Xiaochun

    2015-11-01

    Maintenance of cell polarity is essential for Sertoli cell and blood-testis barrier (BTB) function and spermatogenesis; however, the signaling mechanisms that regulate the integrity of the cytoskeleton and polarity of Sertoli cells are not fully understood. Here, we demonstrate that rapamycin-insensitive component of target of rapamycin (TOR) (Rictor), a core component of mechanistic TOR complex 2 (mTORC2), was expressed in the seminiferous epithelium during testicular development, and was down-regulated in a cadmium chloride-induced BTB damage model. We then conditionally deleted the Rictor gene in Sertoli cells and mutant mice exhibited azoospermia and were sterile as early as 3 months old. Further study revealed that Rictor may regulate actin organization via both mTORC2-dependent and mTORC2-independent mechanisms, in which the small GTPase, ras-related C3 botulinum toxin substrate 1, and phosphorylation of the actin filament regulatory protein, Paxillin, are involved, respectively. Loss of Rictor in Sertoli cells perturbed actin dynamics and caused microtubule disarrangement, both of which accumulatively disrupted Sertoli cell polarity and BTB integrity, accompanied by testicular developmental defects, spermiogenic arrest and excessive germ cell loss in mutant mice. Together, these findings establish the importance of Rictor/mTORC2 signaling in Sertoli cell function and spermatogenesis through the maintenance of Sertoli cell cytoskeletal dynamics, BTB integrity, and cell polarity. PMID:26360620

  5. Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis

    NASA Technical Reports Server (NTRS)

    Ingber, D. E.; Prusty, D.; Sun, Z.; Betensky, H.; Wang, N.

    1995-01-01

    Capillary endothelial cells can be switched between growth and differentiation by altering cell-extracellular matrix interactions and thereby, modulating cell shape. Studies were carried out to determine when cell shape exerts its growth-regulatory influence during cell cycle progression and to explore the role of cytoskeletal structure and mechanics in this control mechanism. When G0-synchronized cells were cultured in basic fibroblast growth factor (FGF)-containing defined medium on dishes coated with increasing densities of fibronectin or a synthetic integrin ligand (RGD-containing peptide), cell spreading, nuclear extension, and DNA synthesis all increased in parallel. To determine the minimum time cells must be adherent and spread on extracellular matrix (ECM) to gain entry into S phase, cells were removed with trypsin or induced to retract using cytochalasin D at different times after plating. Both approaches revealed that cells must remain extended for approximately 12-15 h and hence, most of G1, in order to enter S phase. After this restriction point was passed, normally 'anchorage-dependent' endothelial cells turned on DNA synthesis even when round and in suspension. The importance of actin-containing microfilaments in shape-dependent growth control was confirmed by culturing cells in the presence of cytochalasin D (25-1000 ng ml-1): dose-dependent inhibition of cell spreading, nuclear extension, and DNA synthesis resulted. In contrast, induction of microtubule disassembly using nocodazole had little effect on cell or nuclear spreading and only partially inhibited DNA synthesis. Interestingly, combination of nocodazole with a suboptimal dose of cytochalasin D (100 ng ml-1) resulted in potent inhibition of both spreading and growth, suggesting that microtubules are redundant structural elements which can provide critical load-bearing functions when microfilaments are partially compromised. Similar synergism between nocodazole and cytochalasin D was observed

  6. Vault-poly-ADP-ribose polymerase in the Octopus vulgaris brain: a regulatory factor of actin polymerization dynamic.

    PubMed

    De Maio, Anna; Natale, Emiliana; Rotondo, Sergio; Di Cosmo, Anna; Faraone-Mennella, Maria Rosaria

    2013-09-01

    Our previous behavioural, biochemical and immunohistochemical analyses conducted in selected regions (supra/sub oesophageal masses) of the Octopus vulgaris brain detected a cytoplasmic poly-ADP-ribose polymerase (more than 90% of total enzyme activity). The protein was identified as the vault-free form of vault-poly-ADP-ribose polymerase. The present research extends and integrates the biochemical characterization of poly-ADP-ribosylation system, namely, reaction product, i.e., poly-ADP-ribose, and acceptor proteins, in the O. vulgaris brain. Immunochemical analyses evidenced that the sole poly-ADP-ribose acceptor was the octopus cytoskeleton 50-kDa actin. It was present in both free, endogenously poly-ADP-ribosylated form (70kDa) and in complex with V-poly-ADP-ribose polymerase and poly-ADP-ribose (260kDa). The components of this complex, alkali and high salt sensitive, were purified and characterized. The kind and the length of poly-ADP-ribose corresponded to linear chains of 30-35 ADP-ribose units, in accordance with the features of the polymer synthesized by the known vault-poly-ADP-ribose polymerase. In vitro experiments showed that V-poly-ADP-ribose polymerase activity of brain cytoplasmic fraction containing endogenous actin increased upon the addition of commercial actin and was highly reduced by ATP. Anti-actin immunoblot of the mixture in the presence and absence of ATP showed that the poly-ADP-ribosylation of octopus actin is a dynamic process balanced by the ATP-dependent polymerization of the cytoskeleton protein, a fundamental mechanism for synaptic plasticity.

  7. Measurements and models of cytoskeletal rheology

    NASA Astrophysics Data System (ADS)

    Kamm, Roger

    2006-11-01

    Much attention has recently focused on understanding the rheology of living cells and reconstituted actin gels using a variety of experimental methods (e.g., single- and multi-particle tracking, magnetic twisting cytometry, AFM indentation) and several different models or descriptors (e.g., biopolymer models, tensegrity, cellular solids, power-law rheology), but the debate continues regarding the fundamental basis for the experimental observations. Our recent studies examine the time-dependent behavior of neutrophils as they deform to enter a narrow channel with capillary-scale dimensions. A sudden drop in the shear modulus is observed, followed by recovery to pre-deformation values in < 1 minute. These rheological changes coincide with a reduction in f-actin content and a transient increase in calcium ion concentration [Ca^++], and the change in storage modulus can be prevented by calcium chelation, suggesting that these observations are causally linked. Cells lacking the ability to increase [Ca^++] also become activated more rapidly following deformation, and the time to activation is independent of intracellular strain rates, contrary to experiments lacking the chelating agent. To better understand these processes and the nature of cytoskeletal rheology in general, we have developed a Brownian dynamics model for cytoskeletal self-assembly and subsequent rheological measurement by single particle tracking. Cross-linking proteins are included possessing a range of properties that lead to a variety of cytoskeletal structures from a fine, homogeneous mesh to a structure containing large stress fibers of varying thickness. These results are described in a multi-dimensional phase space that takes into account the geometry, dimensions and stiffness of the cross-linkers.

  8. Cytoskeletal Mechanics Regulating Amoeboid Cell Locomotion

    PubMed Central

    Álvarez-González, Begoña; Meili, Ruedi; Firtel, Richard; Bastounis, Effie; del Álamo, Juan C.; Lasheras, Juan C.

    2014-01-01

    Migrating cells exert traction forces when moving. Amoeboid cell migration is a common type of cell migration that appears in many physiological and pathological processes and is performed by a wide variety of cell types. Understanding the coupling of the biochemistry and mechanics underlying the process of migration has the potential to guide the development of pharmacological treatment or genetic manipulations to treat a wide range of diseases. The measurement of the spatiotemporal evolution of the traction forces that produce the movement is an important aspect for the characterization of the locomotion mechanics. There are several methods to calculate the traction forces exerted by the cells. Currently the most commonly used ones are traction force microscopy methods based on the measurement of the deformation induced by the cells on elastic substrate on which they are moving. Amoeboid cells migrate by implementing a motility cycle based on the sequential repetition of four phases. In this paper we review the role that specific cytoskeletal components play in the regulation of the cell migration mechanics. We investigate the role of specific cytoskeletal components regarding the ability of the cells to perform the motility cycle effectively and the generation of traction forces. The actin nucleation in the leading edge of the cell, carried by the ARP2/3 complex activated through the SCAR/WAVE complex, has shown to be fundamental to the execution of the cyclic movement and to the generation of the traction forces. The protein PIR121, a member of the SCAR/WAVE complex, is essential to the proper regulation of the periodic movement and the protein SCAR, also included in the SCAR/WAVE complex, is necessary for the generation of the traction forces during migration. The protein Myosin II, an important F-actin cross-linker and motor protein, is essential to cytoskeletal contractility and to the generation and proper organization of the traction forces during

  9. Interplay of active processes modulates tension and drives phase transition in self-renewing, motor-driven cytoskeletal networks

    PubMed Central

    Mak, Michael; Zaman, Muhammad H.; Kamm, Roger D.; Kim, Taeyoon

    2016-01-01

    The actin cytoskeleton—a complex, nonequilibrium network consisting of filaments, actin-crosslinking proteins (ACPs) and motors—confers cell structure and functionality, from migration to morphogenesis. While the core components are recognized, much less is understood about the behaviour of the integrated, disordered and internally active system with interdependent mechano-chemical component properties. Here we use a Brownian dynamics model that incorporates key and realistic features—specifically actin turnover, ACP (un)binding and motor walking—to reveal the nature and underlying regulatory mechanisms of overarching cytoskeletal states. We generate multi-dimensional maps that show the ratio in activity of these microscopic elements determines diverse global stress profiles and the induction of nonequilibrium morphological phase transition from homogeneous to aggregated networks. In particular, actin turnover dynamics plays a prominent role in tuning stress levels and stabilizing homogeneous morphologies in crosslinked, motor-driven networks. The consequence is versatile functionality, from dynamic steady-state prestress to large, pulsed constrictions. PMID:26744226

  10. A close relationship between Cercozoa and Foraminifera supported by phylogenetic analyses based on combined amino acid sequences of three cytoskeletal proteins (actin, alpha-tubulin, and beta-tubulin).

    PubMed

    Takishita, Kiyotaka; Inagaki, Yuji; Tsuchiya, Masashi; Sakaguchi, Miako; Maruyama, Tadashi

    2005-12-01

    Recently, there has been increasing molecular evidence of phylogenetic affinity between Cercozoa and Foraminifera in the eukaryotic lineage. We performed phylogenetic analyses based on the combined (concatenated) amino acid sequence data of actin, alpha-tubulin, and beta-tubulin from a wide variety of eukaryotes, including the foraminifers Planoglabratella opercularis and Reticulomyxa filosa, as well as cercomonad and chlorarachniophyte members of Cercozoa. A monophyletic lineage composed of two foraminiferan species branched with the centroheliozoan species Raphidiophrys contractilis was reconstructed in both Bayesian and maximum-likelihood (ML) analyses under 'linked' models, enforcing a single set of the parameters (the parameter for among-site rate variation and branch lengths) on the entire combined alignment. Considering the extremely divergent nature of Foraminifera and Raphidiophyrs tubulins, the union of these lineages recovered is most probably a long-branch attraction artifact due to ignoring gene-specific evolutionary processes. On the other hand, the foraminiferan lineage was within the radiation of Cercozoa in Bayesian analyses under 'unlinked' model conditions, accommodating differences in evolutionary processes across the three genes in the combined alignment. The Foraminifera+Cercozoa affinity recovered in the latter multi-gene analyses is most likely genuine, and thus our data presented here provide further support for the close relationship between these two protist lineages.

  11. Capping protein regulatory cycle driven by CARMIL and V-1 may promote actin network assembly at protruding edges

    PubMed Central

    Fujiwara, Ikuko; Remmert, Kirsten; Piszczek, Grzegorz; Hammer, John A.

    2014-01-01

    Although capping protein (CP) terminates actin filament elongation, it promotes Arp2/3-dependent actin network assembly and accelerates actin-based motility both in vitro and in vivo. In vitro, capping protein Arp2/3 myosin I linker (CARMIL) antagonizes CP by reducing its affinity for the barbed end and by uncapping CP-capped filaments, whereas the protein V-1/myotrophin sequesters CP in an inactive complex. Previous work showed that CARMIL can readily retrieve CP from the CP:V-1 complex, thereby converting inactive CP into a version with moderate affinity for the barbed end. Here we further clarify the mechanism of this exchange reaction, and we demonstrate that the CP:CARMIL complex created by complex exchange slows the rate of barbed-end elongation by rapidly associating with, and dissociating from, the barbed end. Importantly, the cellular concentrations of V-1 and CP determined here argue that most CP is sequestered by V-1 at steady state in vivo. Finally, we show that CARMIL is recruited to the plasma membrane and only at cell edges undergoing active protrusion. Assuming that CARMIL is active only at this location, our data argue that a large pool of freely diffusing, inactive CP (CP:V-1) feeds, via CARMIL-driven complex exchange, the formation of weak-capping complexes (CP:CARMIL) at the plasma membrane of protruding edges. In vivo, therefore, CARMIL should promote Arp2/3-dependent actin network assembly at the leading edge by promoting barbed-end capping there. PMID:24778263

  12. Cytoskeletal Expression and Remodeling in Pluripotent Stem Cells

    PubMed Central

    Boraas, Liana C.; Guidry, Julia B.; Pineda, Emma T.; Ahsan, Tabassum

    2016-01-01

    Many emerging cell-based therapies are based on pluripotent stem cells, though complete understanding of the properties of these cells is lacking. In these cells, much is still unknown about the cytoskeletal network, which governs the mechanoresponse. The objective of this study was to determine the cytoskeletal state in undifferentiated pluripotent stem cells and remodeling with differentiation. Mouse embryonic stem cells (ESCs) and reprogrammed induced pluripotent stem cells (iPSCs), as well as the original un-reprogrammed embryonic fibroblasts (MEFs), were evaluated for expression of cytoskeletal markers. We found that pluripotent stem cells overall have a less developed cytoskeleton compared to fibroblasts. Gene and protein expression of smooth muscle cell actin, vimentin, lamin A, and nestin were markedly lower for ESCs than MEFs. Whereas, iPSC samples were heterogeneous with most cells expressing patterns of cytoskeletal proteins similar to ESCs with a small subpopulation similar to MEFs. This indicates that dedifferentiation during reprogramming is associated with cytoskeletal remodeling to a less developed state. In differentiation studies, it was found that shear stress-mediated differentiation resulted in an increase in expression of cytoskeletal intermediate filaments in ESCs, but not in iPSC samples. In the embryoid body model of spontaneous differentiation of pluripotent stem cells, however, both ESCs and iPSCs had similar gene expression for cytoskeletal proteins during early differentiation. With further differentiation, however, gene levels were significantly higher for iPSCs compared to ESCs. These results indicate that reprogrammed iPSCs more readily reacquire cytoskeletal proteins compared to the ESCs that need to form the network de novo. The strategic selection of the parental phenotype is thus critical not only in the context of reprogramming but also the ultimate functionality of the iPSC-differentiated cell population. Overall, this

  13. Differential Incorporation of β-actin as A Component of RNA Polymerase II into Regulatory Regions of Stemness/Differentiation Genes in Retinoic Acid-Induced Differentiated Human Embryonic Carcinoma Cells

    PubMed Central

    Falahzadeh, Khadijeh; Shahhoseini, Maryam; Afsharian, Parvaneh

    2016-01-01

    Objective Nuclear actin is involved in transcription regulation by recruitment of histone modifiers and chromatin remodelers to the regulatory regions of active genes. In recent years, further attention has been focused on the role of actin as a nuclear protein in transcriptional processes. In the current study, the epigenetic role of nuclear actin on transcription regulation of two stemness (OCT4 and NANOG) and two differentiation) NESTIN and PAX6) marker genes was evaluated in a human embryonal carcinoma cell line (NT2) before and after differentiation induction. Materials and Methods In this experimental study, differentiation of embryonal cells was induced by retinoic acid (RA), and quantitative real-time polymerase chain reaction (PCR) was used to evaluate differential expression of marker genes before and 3 days after RA- induced differentiation. Chromatin immunoprecipitation (ChIP) coupled with real-time PCR was then undertaken to monitor the incorporation of β-actin, as a functional component of RNA polymerase II, in the regulatory regions of marker genes. Results Data showed significant change in nuclear actin incorporation into the promoter regions of NESTIN and PAX6 after RA-induction. Conclusion We emphasize the dynamic functional role of nuclear actin in differentiation of embryonal cells and its role as a subunit of RNA polymerase II. PMID:27540526

  14. Bacterial actin and tubulin homologs in cell growth and division.

    PubMed

    Busiek, Kimberly K; Margolin, William

    2015-03-16

    In contrast to the elaborate cytoskeletal machines harbored by eukaryotic cells, such as mitotic spindles, cytoskeletal structures detectable by typical negative stain electron microscopy are generally absent from bacterial cells. As a result, for decades it was thought that bacteria lacked cytoskeletal machines. Revolutions in genomics and fluorescence microscopy have confirmed the existence not only of smaller-scale cytoskeletal structures in bacteria, but also of widespread functional homologs of eukaryotic cytoskeletal proteins. The presence of actin, tubulin, and intermediate filament homologs in these relatively simple cells suggests that primitive cytoskeletons first arose in bacteria. In bacteria such as Escherichia coli, homologs of tubulin and actin directly interact with each other and are crucial for coordinating cell growth and division. The function and direct interactions between these proteins will be the focus of this review.

  15. [Cytoskeletal control of cell length regulation].

    PubMed

    Kharitonova, M A; Levina, C M; Rovenskii, I A

    2002-01-01

    It was shown that mouse embryo fibroblasts and human foreskin diploid fibroblasts of AGO 1523 line cultivated on specially prepared substrates with narrow (15 +/- 3 microns) linear adhesive strips were elongated and oriented along the strips, but the mean lengths of the fibroblasts of each type on the strips differed from those on the standard culture substrates. In contrast to the normal fibroblasts, the length of mouse embryonic fibroblasts with inactivated gene-suppresser Rb responsible for negative control of cell proliferation (MEF Rb-/-), ras-transformed mouse embryonic fibroblasts (MEF Rb-/-ras), or normal rat epitheliocytes of IAR2 line significantly exceeded those of the same cells on the standard culture substrates. The results of experiments with the drugs specifically affecting the cytoskeleton (colcemid and cytochalasin D) suggest that the constant mean length of normal fibroblasts is controlled by a dynamic equilibrium between two forces: centripetal tension of contractile actin-myosin microfilaments and centrifugal force generated by growing microtubules. This cytoskeletal mechanism is disturbed in MEF Rb-/- or MEF Rb-/-ras, probably, because of an impaired actin cytoskeleton and also in IAR2 epitheliocytes due to the different organization of the actin-myosin system in these cells, as compared to that in the fibroblasts. PMID:11862697

  16. AKAP-Independent Localization of Type-II Protein Kinase A to Dynamic Actin Microspikes

    PubMed Central

    Rivard, Robert L.; Birger, Monique; Gaston, Kara J.; Howe, Alan K.

    2010-01-01

    Regulation of the cyclic AMP-dependent protein kinase (PKA) in subcellular space is required for cytoskeletal dynamics and chemotaxis. Currently, spatial regulation of PKA is thought to require the association of PKA regulatory (R) subunits with A-kinase anchoring proteins (AKAPs). Here, we show that the regulatory RIIα subunit of PKA associates with dynamic actin microspikes in an AKAP-independent manner. Both endogenous RIIα and a GFP-RIIα fusion protein co-localize with F-actin in microspikes within hippocampal neuron growth cones and the leading edge lamellae of NG108-15 cells. Live-cell imaging demonstrates that RIIα-associated microspikes are highly dynamic and that the coupling of RIIα to actin is tight, as the movement of both actin and RIIα are immediately and coincidently stopped by low-dose cytochalasin D. Importantly, co-localization of RIIα and actin in these structures is resistant to displacement by a cell-permeable disrupter of PKA-AKAP interactions. Biochemical fractionation confirms that a substantial pool of PKA RIIα is associated with the detergent-insoluble cytoskeleton and is resistant to extraction by a peptide inhibitor of AKAP interactions. Finally, mutation of the AKAP-binding domain of RIIα fails to disrupt its association with actin microspikes. These data provide the first demonstration of the physical association of a kinase with such dynamic actin structures, as well as the first demonstration of the ability of type-II PKA to localize to discrete subcellular structures independently of canonical AKAP function. This association is likely to be important for microfilament dynamics and cell migration and may prime the investigation of novel mechanisms for localizing PKA activity. PMID:19536823

  17. Cytoskeletal proteins inside human immunodeficiency virus type 1 virions.

    PubMed Central

    Ott, D E; Coren, L V; Kane, B P; Busch, L K; Johnson, D G; Sowder, R C; Chertova, E N; Arthur, L O; Henderson, L E

    1996-01-01

    We have identified three types of cytoskeletal proteins inside human immunodeficiency virus type 1 (HIV-1) virions by analyzing subtilisin-digested particles. HIV-1 virions were digested with protease, and the treated particles were isolated by sucrose density centrifugation. This method removes both exterior viral proteins and proteins associated with microvesicles that contaminate virion preparations. Since the proteins inside the virion are protected from digestion by the viral lipid envelope, they can be isolated and analyzed after treatment. Experiments presented here demonstrated that this procedure removed more than 95% of the protein associated with microvesicles. Proteins in digested HIV-1(MN) particles from infected H9 and CEM(ss) cell lines were analyzed by high-pressure liquid chromatography, protein sequencing, and immunoblotting. The data revealed that three types of cytoskeletal proteins are present in virions at different concentrations relative to the molar level of Gag: actin (approximately 10 to 15%), ezrin and moesin (approximately 2%), and cofilin (approximately 2 to 10%). Our analysis of proteins within virus particles detected proteolytic fragments of alpha-smooth muscle actin and moesin that were cleaved at sites which might be recognized by HIV-1 protease. These cleavage products are not present in microvesicles from uninfected cells. Therefore, these processed proteins are most probably produced by HIV-1 protease digestion. The presence of these fragments, as well as the incorporation of a few specific cytoskeletal proteins into virions, suggests an active interaction between cytoskeletal and viral proteins. PMID:8892894

  18. CArG boxes in the human cardiac. cap alpha. -actin gene are core binding sites for positive trans-acting regulatory factors

    SciTech Connect

    Miwa, T.; Boxer, L.M.; Kedes, L.

    1987-10-01

    Positively acting, rate-limiting regulatory factors that influence tissue-specific expression of the human cardiac ..cap alpha..-actin gene in a mouse muscle cell line are shown by in vivo competition and gel mobility-shift assays to bind to upstream regions of its promoter but to neither vector DNA not a ..beta..-globin promoter. Although the two binding regions are distinctly separated, each corresponds to a cis region required for muscle-specific transcriptional stimulation, and each contains a core CC(A+T-rich)/sub 6/GC sequence (designated CArG box), which is found in the promoter regions of several muscle-associated genes. Each site has an apparently different binding affinity for trans-acting factors, which may explain the different transcriptional stimulation activities of the two cis regions. Therefore, the authors conclude that the two CArG box regions are responsible for muscle-specific transcriptional activity of the cardiac ..cap alpha..-actin gene through a mechanism that involves their binding of a positive trans-acting factor in muscle cells.

  19. Rab1 recruits WHAMM during membrane remodeling but limits actin nucleation

    PubMed Central

    Russo, Ashley J.; Mathiowetz, Alyssa J.; Hong, Steven; Welch, Matthew D.; Campellone, Kenneth G.

    2016-01-01

    Small G-proteins are key regulatory molecules that activate the actin nucleation machinery to drive cytoskeletal rearrangements during plasma membrane remodeling. However, the ability of small G-proteins to interact with nucleation factors on internal membranes to control trafficking processes has not been well characterized. Here we investigated roles for members of the Rho, Arf, and Rab G-protein families in regulating WASP homologue associated with actin, membranes, and microtubules (WHAMM), an activator of Arp2/3 complex–mediated actin nucleation. We found that Rab1 stimulated the formation and elongation of WHAMM-associated membrane tubules in cells. Active Rab1 recruited WHAMM to dynamic tubulovesicular structures in fibroblasts, and an active prenylated version of Rab1 bound directly to an N-terminal domain of WHAMM in vitro. In contrast to other G-protein–nucleation factor interactions, Rab1 binding inhibited WHAMM-mediated actin assembly. This ability of Rab1 to regulate WHAMM and the Arp2/3 complex represents a distinct strategy for membrane remodeling in which a Rab G-protein recruits the actin nucleation machinery but dampens its activity. PMID:26823012

  20. Biophysical models of length control of cytoskeletal structures

    NASA Astrophysics Data System (ADS)

    Mohapatra, Lishibanya

    Cells contain elaborate and interconnected networks of protein polymers which make up the cytoskeleton. The cytoskeleton governs the internal positioning and movement of vesicles and organelles, and controls dynamic changes in cell polarity, shape and movement. Many of these processes require tight control of the size and shape of these cytoskeletal structures. A key question in cell biology is how these structures maintain a particular size and shape despite the rapid turnover of their components. In this thesis I show that the emerging mechanisms by which cells control and regulate the size of filamentous cytoskeletal structures can be classified using key parameters related to their assembly and disassembly kinetics. First, I examine quantitative models based on these specific molecular mechanisms of length control and make experimentally testable predictions that can be used to distinguish different mechanisms of length-control. Second, I study the length control of actin cables in budding yeast cells. Inspired by recent experimental observations in cells, I propose a novel antenna mechanism for cable length control which involves three key proteins: formins, which polymerize actin, Smy1 proteins, which bind formins and inhibit actin polymerization, and myosin motors, which deliver Smy1 to formins, leading to a length-dependent actin polymerization rate. My results provide testable predictions of the antenna mechanism of actin-cable length control. Next I consider the question of how different sized structures can co-exist in the same cytoplasm while making use of the same building blocks. Using theory, I discover limitations imposed by physics on the finite monomer pool as a mechanism of size control and conclude that additional length control mechanisms are required if a cell is to maintain multiple structures. While the primary focus of this thesis is on cytoskeletal structures, the broader principles and mechanisms discussed herein will apply to a range of

  1. Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins

    PubMed Central

    Alonso, Annabel; Greenlee, Matt; Matts, Jessica; Kline, Jake; Davis, Kayla J.

    2015-01-01

    Sumoylation is a powerful regulatory system that controls many of the critical processes in the cell, including DNA repair, transcriptional regulation, nuclear transport, and DNA replication. Recently, new functions for SUMO have begun to emerge. SUMO is covalently attached to components of each of the four major cytoskeletal networks, including microtubule‐associated proteins, septins, and intermediate filaments, in addition to nuclear actin and actin‐regulatory proteins. However, knowledge of the mechanisms by which this signal transduction system controls the cytoskeleton is still in its infancy. One story that is beginning to unfold is that SUMO may regulate the microtubule motor protein dynein by modification of its adaptor Lis1. In other instances, cytoskeletal elements can both bind to SUMO non‐covalently and also be conjugated by it. The molecular mechanisms for many of these new functions are not yet clear, but are under active investigation. One emerging model links the function of MAP sumoylation to protein degradation through SUMO‐targeted ubiquitin ligases, also known as STUbL enzymes. Other possible functions for cytoskeletal sumoylation are also discussed. © 2015 The Authors. Cytoskeleton Published by Wiley Periodicals, Inc. PMID:26033929

  2. Rac1-Rab11-FIP3 regulatory hub coordinates vesicle traffic with actin remodeling and T-cell activation.

    PubMed

    Bouchet, Jérôme; Del Río-Iñiguez, Iratxe; Lasserre, Rémi; Agüera-Gonzalez, Sonia; Cuche, Céline; Danckaert, Anne; McCaffrey, Mary W; Di Bartolo, Vincenzo; Alcover, Andrés

    2016-06-01

    The immunological synapse generation and function is the result of a T-cell polarization process that depends on the orchestrated action of the actin and microtubule cytoskeleton and of intracellular vesicle traffic. However, how these events are coordinated is ill defined. Since Rab and Rho families of GTPases control intracellular vesicle traffic and cytoskeleton reorganization, respectively, we investigated their possible interplay. We show here that a significant fraction of Rac1 is associated with Rab11-positive recycling endosomes. Moreover, the Rab11 effector FIP3 controls Rac1 intracellular localization and Rac1 targeting to the immunological synapse. FIP3 regulates, in a Rac1-dependent manner, key morphological events, like T-cell spreading and synapse symmetry. Finally, Rab11-/FIP3-mediated regulation is necessary for T-cell activation leading to cytokine production. Therefore, Rac1 endosomal traffic is key to regulate T-cell activation.

  3. Bidirectional interactions between NOX2-type NADPH oxidase and the F-actin cytoskeleton in neuronal growth cones.

    PubMed

    Munnamalai, Vidhya; Weaver, Cory J; Weisheit, Corinne E; Venkatraman, Prahatha; Agim, Zeynep Sena; Quinn, Mark T; Suter, Daniel M

    2014-08-01

    NADPH oxidases are important for neuronal function but detailed subcellular localization studies have not been performed. Here, we provide the first evidence for the presence of functional NADPH oxidase 2 (NOX2)-type complex in neuronal growth cones and its bidirectional relationship with the actin cytoskeleton. NADPH oxidase inhibition resulted in reduced F-actin content, retrograde F-actin flow, and neurite outgrowth. Stimulation of NADPH oxidase via protein kinase C activation increased levels of hydrogen peroxide in the growth cone periphery. The main enzymatic NADPH oxidase subunit NOX2/gp91(phox) localized to the growth cone plasma membrane and showed little overlap with the regulatory subunit p40(phox) . p40(phox) itself exhibited colocalization with filopodial actin bundles. Differential subcellular fractionation revealed preferential association of NOX2/gp91(phox) and p40(phox) with the membrane and the cytoskeletal fraction, respectively. When neurite growth was evoked with beads coated with the cell adhesion molecule apCAM, we observed a significant increase in colocalization of p40(phox) with NOX2/gp91(phox) at apCAM adhesion sites. Together, these findings suggest a bidirectional functional relationship between NADPH oxidase activity and the actin cytoskeleton in neuronal growth cones, which contributes to the control of neurite outgrowth. We have previously shown that reactive oxygen species (ROS) are critical for actin organization and dynamics in neuronal growth cones as well as neurite outgrowth. Here, we report that the cytosolic subunit p40(phox) of the NOX2-type NADPH oxidase complex is partially associated with F-actin in neuronal growth cones, while ROS produced by this complex regulates F-actin dynamics and neurite growth. These findings provide evidence for a bidirectional relationship between NADPH oxidase activity and the actin cytoskeleton in neuronal growth cones. PMID:24702317

  4. Cytoskeletal remodeling during growth cone-target interactions

    PubMed Central

    1993-01-01

    Reorganization of the cytoskeleton of neuronal growth cones in response to environmental cues underlies the process of axonal guidance. Most previous studies addressing cytoskeletal changes during growth cone pathfinding have focused on the dynamics of a single cytoskeletal component. We report here an investigation of homophilic growth cone- target interactions between Aplysia bag cell neurons using digitally enhanced video microscopy, which addresses dynamic interactions between actin filaments and microtubules. After physical contact of a growth cone with a physiological target, mechanical coupling occurred after a delay; and then the growth cone exerted forces on and displaced the target object. Subsequent to coupling, F-actin accumulation was observed at the target contact zone, followed by preferential microtubule extension to the same site. After successful target interactions, growth cones typically moved off highly adhesive poly-L- lysine substrates into native target cell surfaces. These events were associated with modulation of both the direction and rate of neurite outgrowth: growth cone migration was typically reoriented to a trajectory along the target interaction axis and rates of advance increased by about one order of magnitude. Directed microtubule movements toward the contact site appeared to be F-actin dependent as target site-specific microtubule extension and bundling could be reversibly randomized by micromolar levels of cytochalasin B in a characteristic manner. Our results suggest that target contacts can induce focal F-actin assembly and reorganization which, in turn, guides target site-directed microtubule redistribution. PMID:8509456

  5. Nuclear actin and lamins in viral infections.

    PubMed

    Cibulka, Jakub; Fraiberk, Martin; Forstova, Jitka

    2012-03-01

    Lamins are the best characterized cytoskeletal components of the cell nucleus that help to maintain the nuclear shape and participate in diverse nuclear processes including replication or transcription. Nuclear actin is now widely accepted to be another cytoskeletal protein present in the nucleus that fulfills important functions in the gene expression. Some viruses replicating in the nucleus evolved the ability to interact with and probably utilize nuclear actin for their replication, e.g., for the assembly and transport of capsids or mRNA export. On the other hand, lamins play a role in the propagation of other viruses since nuclear lamina may represent a barrier for virions entering or escaping the nucleus. This review will summarize the current knowledge about the roles of nuclear actin and lamins in viral infections.

  6. Computational model of polarized actin cables and cytokinetic actin ring formation in budding yeast

    PubMed Central

    Tang, Haosu; Bidone, Tamara C.

    2015-01-01

    The budding yeast actin cables and contractile ring are important for polarized growth and division, revealing basic aspects of cytoskeletal function. To study these formin-nucleated structures, we built a 3D computational model with actin filaments represented as beads connected by springs. Polymerization by formins at the bud tip and bud neck, crosslinking, severing, and myosin pulling, are included. Parameter values were estimated from prior experiments. The model generates actin cable structures and dynamics similar to those of wild type and formin deletion mutant cells. Simulations with increased polymerization rate result in long, wavy cables. Simulated pulling by type V myosin stretches actin cables. Increasing the affinity of actin filaments for the bud neck together with reduced myosin V pulling promotes the formation of a bundle of antiparallel filaments at the bud neck, which we suggest as a model for the assembly of actin filaments to the contractile ring. PMID:26538307

  7. Segmentation and Tracking of Cytoskeletal Filaments Using Open Active Contours

    PubMed Central

    Smith, Matthew B.; Li, Hongsheng; Shen, Tian; Huang, Xiaolei; Yusuf, Eddy; Vavylonis, Dimitrios

    2010-01-01

    We use open active contours to quantify cytoskeletal structures imaged by fluorescence microscopy in two and three dimensions. We developed an interactive software tool for segmentation, tracking, and visualization of individual fibers. Open active contours are parametric curves that deform to minimize the sum of an external energy derived from the image and an internal bending and stretching energy. The external energy generates (i) forces that attract the contour toward the central bright line of a filament in the image, and (ii) forces that stretch the active contour toward the ends of bright ridges. Images of simulated semiflexible polymers with known bending and torsional rigidity are analyzed to validate the method. We apply our methods to quantify the conformations and dynamics of actin in two examples: actin filaments imaged by TIRF microscopy in vitro, and actin cables in fission yeast imaged by spinning disk confocal microscopy. PMID:20814909

  8. Actinic keratosis

    MedlinePlus

    Solar keratosis; Sun-induced skin changes - keratosis; Keratosis - actinic (solar) ... Actinic keratosis is caused by exposure to sunlight. You are more likely to develop it if you: Have fair skin, blue or green eyes, or blond or red hair Had a ...

  9. Actin3 promoter reveals undulating F-actin bundles at shanks and dynamic F-actin meshworks at tips of tip-growing pollen tubes.

    PubMed

    Jásik, Ján; Mičieta, Karol; Siao, Wei; Voigt, Boris; Stuchlík, Stanislav; Schmelzer, Elmon; Turňa, Ján; Baluška, František

    2016-01-01

    The dynamic actin cytoskeleton of pollen tubes is both the driver of the tip growth and the organizer of cell polarity. In order to understand this fast re-arranging cytoskeletal system, we need reliable constructs expressed under relevant promoters. Here we are reporting that the Lifeact reporter, expressed under the pollen-specific Actin3 promoter, visualizes very dynamic F-actin elements both in germinating pollen grains and tip-growing pollen tubes. Importantly, we have documented very active actin polymerization at the cell periphery, especially in the bulging area during pollen germination and in the apical clear zone. Expression of the Lifeact reporter under control of the pollen-specific Actin3 promoter revealed 2 new aspects: (i) long F-actin bundles in pollen tube shanks are dynamic, showing undulating movements, (ii) subapical 'actin collars' or 'fringes' are absent.

  10. Actin3 promoter reveals undulating F-actin bundles at shanks and dynamic F-actin meshworks at tips of tip-growing pollen tubes

    PubMed Central

    Jásik, Ján; Mičieta, Karol; Siao, Wei; Voigt, Boris; Stuchlík, Stanislav; Schmelzer, Elmon; Turňa, Ján; Baluška, František

    2016-01-01

    ABSTRACT The dynamic actin cytoskeleton of pollen tubes is both the driver of the tip growth and the organizer of cell polarity. In order to understand this fast re-arranging cytoskeletal system, we need reliable constructs expressed under relevant promoters. Here we are reporting that the Lifeact reporter, expressed under the pollen-specific Actin3 promoter, visualizes very dynamic F-actin elements both in germinating pollen grains and tip-growing pollen tubes. Importantly, we have documented very active actin polymerization at the cell periphery, especially in the bulging area during pollen germination and in the apical clear zone. Expression of the Lifeact reporter under control of the pollen-specific Actin3 promoter revealed 2 new aspects: (i) long F-actin bundles in pollen tube shanks are dynamic, showing undulating movements, (ii) subapical ‘actin collars’ or ‘fringes’ are absent. PMID:26980067

  11. Bidirectional interactions between NOX2-type NADPH oxidase and the F-actin cytoskeleton in neuronal growth cones

    PubMed Central

    Munnamalai, Vidhya; Weaver, Cory J.; Weisheit, Corinne E.; Venkatraman, Prahatha; Agim, Zeynep Sena; Quinn, Mark T.; Suter, Daniel M.

    2014-01-01

    NADPH oxidases are important for neuronal function but detailed subcellular localization studies have not been performed. Here, we provide the first evidence for the presence of functional NOX2-type NADPH oxidase complex in neuronal growth cones and its bidirectional relationship with the actin cytoskeleton. NADPH oxidase inhibition resulted in reduced F-actin content, retrograde F-actin flow, and neurite outgrowth. Stimulation of NADPH oxidase via protein kinase C activation increased levels of hydrogen peroxide in the growth cone periphery. The main enzymatic NADPH oxidase subunit NOX2/gp91phox localized to the growth cone plasma membrane and showed little overlap with the regulatory subunit p40phox. p40phox itself exhibited co-localization with filopodial actin bundles. Differential subcellular fractionation revealed preferential association of NOX2/gp91phox and p40phox with the membrane and the cytoskeletal fraction, respectively. When neurite growth was evoked with beads coated with the cell adhesion molecule apCAM, we observed a significant increase in co-localization of p40phox with NOX2/gp91phox at apCAM adhesion sites. Together, these findings suggest a bidirectional functional relationship between NADPH oxidase activity and the actin cytoskeleton in neuronal growth cones, which contributes to the control of neurite outgrowth. PMID:24702317

  12. Intranuclear Actin Regulates Osteogenesis

    PubMed Central

    Sen, Buer; Xie, Zhihui; Uzer, Gunes; Thompson, William R.; Styner, Maya; Wu, Xin; Rubin, Janet

    2016-01-01

    Depolymerization of the actin cytoskeleton induces nuclear trafficking of regulatory proteins and global effects on gene transcription. We here show that in mesenchymal stem cells (MSCs), cytochalasin D treatment causes rapid cofilin-/importin-9-dependent transfer of G-actin into the nucleus. The continued presence of intranuclear actin, which forms rod-like structures that stain with phalloidin, is associated with induction of robust expression of the osteogenic genes osterix and osteocalcin in a Runx2-dependent manner, and leads to acquisition of osteogenic phenotype. Adipogenic differentiation also occurs, but to a lesser degree. Intranuclear actin leads to nuclear export of Yes-associated protein (YAP); maintenance of nuclear YAP inhibits Runx2 initiation of osteogenesis. Injection of cytochalasin into the tibial marrow space of live mice results in abundant bone formation within the space of 1 week. In sum, increased intranuclear actin forces MSC into osteogenic lineage through controlling Runx2 activity; this process may be useful for clinical objectives of forming bone. PMID:26140478

  13. The role of Nox-mediated oxidation in the regulation of cytoskeletal dynamics.

    PubMed

    Valdivia, Alejandra; Duran, Charity; San Martin, Alejandra

    2015-01-01

    Nox generated ROS, particularly those derived from Nox1, Nox2 and Nox4, have emerged as important regulators of the actin cytoskeleton and cytoskeleton-supported cell functions, such as migration and adhesion. The effects of Nox-derived ROS on cytoskeletal remodeling may be largely attributed to the ability of ROS to directly modify proteins that constitute or are associated with the cytoskeleton. Additionally, Nox-derived ROS may participate in signaling pathways governing cytoskeletal remodeling. In addition to these more extensively studied signaling pathways involving Nox-derived ROS, there also exist redox sensitive pathways for which the source of ROS is unclear. ROS from as of yet undetermined sources play a role in modifying, and thus regulating, the activity of several proteins critical for remodeling of the actin cytoskeleton. In this review we discuss ROS sensitive targets that are likely to affect cytoskeletal dynamics, as well as the potential involvement of Nox proteins.

  14. Accumulation of Glucosylceramide in the Absence of the Beta-Glucosidase GBA2 Alters Cytoskeletal Dynamics

    PubMed Central

    Raju, Diana; Schonauer, Sophie; Hamzeh, Hussein; Flynn, Kevin C.; Bradke, Frank; vom Dorp, Katharina; Dörmann, Peter; Yildiz, Yildiz; Trötschel, Christian; Poetsch, Ansgar; Breiden, Bernadette; Sandhoff, Konrad; Körschen, Heinz G.; Wachten, Dagmar

    2015-01-01

    Glycosphingolipids are key elements of cellular membranes, thereby, controlling a variety of cellular functions. Accumulation of the simple glycosphingolipid glucosylceramide results in life-threatening lipid storage-diseases or in male infertility. How glucosylceramide regulates cellular processes is ill defined. Here, we reveal that glucosylceramide accumulation in GBA2 knockout-mice alters cytoskeletal dynamics due to a more ordered lipid organization in the plasma membrane. In dermal fibroblasts, accumulation of glucosylceramide augments actin polymerization and promotes microtubules persistence, resulting in a higher number of filopodia and lamellipodia and longer microtubules. Similar cytoskeletal defects were observed in male germ and Sertoli cells from GBA2 knockout-mice. In particular, the organization of F-actin structures in the ectoplasmic specialization and microtubules in the sperm manchette is affected. Thus, glucosylceramide regulates cytoskeletal dynamics, providing mechanistic insights into how glucosylceramide controls signaling pathways not only during sperm development, but also in other cell types. PMID:25803043

  15. Accumulation of glucosylceramide in the absence of the beta-glucosidase GBA2 alters cytoskeletal dynamics.

    PubMed

    Raju, Diana; Schonauer, Sophie; Hamzeh, Hussein; Flynn, Kevin C; Bradke, Frank; Vom Dorp, Katharina; Dörmann, Peter; Yildiz, Yildiz; Trötschel, Christian; Poetsch, Ansgar; Breiden, Bernadette; Sandhoff, Konrad; Körschen, Heinz G; Wachten, Dagmar

    2015-03-01

    Glycosphingolipids are key elements of cellular membranes, thereby, controlling a variety of cellular functions. Accumulation of the simple glycosphingolipid glucosylceramide results in life-threatening lipid storage-diseases or in male infertility. How glucosylceramide regulates cellular processes is ill defined. Here, we reveal that glucosylceramide accumulation in GBA2 knockout-mice alters cytoskeletal dynamics due to a more ordered lipid organization in the plasma membrane. In dermal fibroblasts, accumulation of glucosylceramide augments actin polymerization and promotes microtubules persistence, resulting in a higher number of filopodia and lamellipodia and longer microtubules. Similar cytoskeletal defects were observed in male germ and Sertoli cells from GBA2 knockout-mice. In particular, the organization of F-actin structures in the ectoplasmic specialization and microtubules in the sperm manchette is affected. Thus, glucosylceramide regulates cytoskeletal dynamics, providing mechanistic insights into how glucosylceramide controls signaling pathways not only during sperm development, but also in other cell types.

  16. Cell elasticity with altered cytoskeletal architectures across multiple cell types.

    PubMed

    Grady, Martha E; Composto, Russell J; Eckmann, David M

    2016-08-01

    The cytoskeleton is primarily responsible for providing structural support, localization and transport of organelles, and intracellular trafficking. The structural support is supplied by actin filaments, microtubules, and intermediate filaments, which contribute to overall cell elasticity to varying degrees. We evaluate cell elasticity in five different cell types with drug-induced cytoskeletal derangements to probe how actin filaments and microtubules contribute to cell elasticity and whether it is conserved across cell type. Specifically, we measure elastic stiffness in primary chondrocytes, fibroblasts, endothelial cells (HUVEC), hepatocellular carcinoma cells (HUH-7), and fibrosarcoma cells (HT 1080) subjected to two cytoskeletal destabilizers: cytochalasin D and nocodazole, which disrupt actin and microtubule polymerization, respectively. Elastic stiffness is measured by atomic force microscopy (AFM) and the disruption of the cytoskeleton is confirmed using fluorescence microscopy. The two cancer cell lines showed significantly reduced elastic moduli values (~0.5kPa) when compared to the three healthy cell lines (~2kPa). Non-cancer cells whose actin filaments were disrupted using cytochalasin D showed a decrease of 60-80% in moduli values compared to untreated cells of the same origin, whereas the nocodazole-treated cells showed no change in elasticity. Overall, we demonstrate actin filaments contribute more to elastic stiffness than microtubules but this result is cell type dependent. Cancer cells behaved differently, exhibiting increased stiffness as well as stiffness variability when subjected to nocodazole. We show that disruption of microtubule dynamics affects cancer cell elasticity, suggesting therapeutic drugs targeting microtubules be monitored for significant elastic changes. PMID:26874250

  17. Implementing cell contractility in filament-based cytoskeletal models.

    PubMed

    Fallqvist, B

    2016-02-01

    Cells are known to respond over time to mechanical stimuli, even actively generating force at longer times. In this paper, a microstructural filament-based cytoskeletal network model is extended to incorporate this active response, and a computational study to assess the influence on relaxation behaviour was performed. The incorporation of an active response was achieved by including a strain energy function of contractile activity from the cross-linked actin filaments. A four-state chemical model and strain energy function was adopted, and generalisation to three dimensions and the macroscopic deformation field was performed by integration over the unit sphere. Computational results in MATLAB and ABAQUS/Explicit indicated an active cellular response over various time-scales, dependent on contractile parameters. Important features such as force generation and increasing cell stiffness due to prestress are qualitatively predicted. The work in this paper can easily be extended to encompass other filament-based cytoskeletal models as well. PMID:26899417

  18. Actinic Cheilitis

    MedlinePlus

    ... is a precancerous condition related to cumulative lifetime sun exposure. The lower lip is most often affected. Individuals ... Wearing barrier clothing (eg, wide-brimmed hats) and sunscreen-containing lip balms can aid in preventing actinic ...

  19. Regulation of cellular actin architecture by S100A10.

    PubMed

    Jung, M Juliane; Murzik, Ulrike; Wehder, Liane; Hemmerich, Peter; Melle, Christian

    2010-04-15

    Actin structures are involved in several biological processes and the disruption of actin polymerisation induces impaired motility of eukaryotic cells. Different factors are involved in regulation and maintenance of the cytoskeletal actin architecture. Here we show that S100A10 participates in the particular organisation of actin filaments. Down-regulation of S100A10 by specific siRNA triggered a disorganisation of filamentous actin structures without a reduction of the total cellular actin concentration. In contrast, the formation of cytoskeleton structures containing tubulin was unhindered in S100A10 depleted cells. Interestingly, the cellular distribution of annexin A2, an interaction partner of S100A10, was unaffected in S100A10 depleted cells. Cells lacking S100A10 showed an impaired migration activity and were unable to close a scratched wound. Our data provide first insights of S100A10 function as a regulator of the filamentous actin network. PMID:20100475

  20. Actin nucleators in the nucleus: an emerging theme.

    PubMed

    Weston, Louise; Coutts, Amanda S; La Thangue, Nicholas B

    2012-08-01

    Actin is an integral component of the cytoskeleton, forming a plethora of macromolecular structures that mediate various cellular functions. The formation of such structures relies on the ability of actin monomers to associate into polymers, and this process is regulated by actin nucleation factors. These factors use monomeric actin pools at specific cellular locations, thereby permitting rapid actin filament formation when required. It has now been established that actin is also present in the nucleus, where it is implicated in chromatin remodelling and the regulation of eukaryotic gene transcription. Notably, the presence of typical actin filaments in the nucleus has not been demonstrated directly. However, studies in recent years have provided evidence for the nuclear localisation of actin nucleation factors that promote cytoplasmic actin polymerisation. Their localisation to the nucleus suggests that these proteins mediate collaboration between the cytoskeleton and the nucleus, which might be dependent on their ability to promote actin polymerisation. The nature of this cooperation remains enigmatic and it will be important to elucidate the physiological relevance of the link between cytoskeletal actin networks and nuclear events. This Commentary explores the current evidence for the nuclear roles of actin nucleation factors. Furthermore, the implication of actin-associated proteins in relaying exogenous signals to the nucleus, particularly in response to cellular stress, will be considered.

  1. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis

    PubMed Central

    Spracklen, Andrew J.; Fagan, Tiffany N.; Lovander, Kaylee E.; Tootle, Tina L.

    2015-01-01

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools – Utrophin, Lifeact, and F-tractin – for characterizing the actin remodeling events occurring within the germline-derived nurse cells during Drosophila mid-oogenesis or follicle development. Specifically, we used the UAS/GAL4 system to express these tools at different levels and in different cells, and analyzed these tools for effects on fertility, alterations in the actin cytoskeleton, and ability to label filamentous actin (F-actin) structures by both fixed and live imaging. While both Utrophin and Lifeact robustly label F-actin structures within the Drosophila germline, when strongly expressed they cause sterility and severe actin defects including cortical actin breakdown resulting in multi-nucleate nurse cells, early F-actin filament and aggregate formation during stage 9 (S9), and disorganized parallel actin filament bundles during stage 10B (S10B). However, by using a weaker germline GAL4 driver in combination with a higher temperature, Utrophin can label F-actin with minimal defects. Additionally, strong Utrophin expression within the germline causes F-actin formation in the nurse cell nuclei and germinal vesicle during mid-oogenesis. Similarly, Lifeact expression results in nuclear F-actin only within the germinal vesicle. F-tractin expresses at a lower level than the other two labeling tools, but labels cytoplasmic F-actin structures well without causing sterility or striking actin defects. Together these studies reveal how critical it is to evaluate the utility of each actin labeling

  2. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis.

    PubMed

    Spracklen, Andrew J; Fagan, Tiffany N; Lovander, Kaylee E; Tootle, Tina L

    2014-09-15

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools--Utrophin, Lifeact, and F-tractin--for characterizing the actin remodeling events occurring within the germline-derived nurse cells during Drosophila mid-oogenesis or follicle development. Specifically, we used the UAS/GAL4 system to express these tools at different levels and in different cells, and analyzed these tools for effects on fertility, alterations in the actin cytoskeleton, and ability to label filamentous actin (F-actin) structures by both fixed and live imaging. While both Utrophin and Lifeact robustly label F-actin structures within the Drosophila germline, when strongly expressed they cause sterility and severe actin defects including cortical actin breakdown resulting in multi-nucleate nurse cells, early F-actin filament and aggregate formation during stage 9 (S9), and disorganized parallel actin filament bundles during stage 10B (S10B). However, by using a weaker germline GAL4 driver in combination with a higher temperature, Utrophin can label F-actin with minimal defects. Additionally, strong Utrophin expression within the germline causes F-actin formation in the nurse cell nuclei and germinal vesicle during mid-oogenesis. Similarly, Lifeact expression results in nuclear F-actin only within the germinal vesicle. F-tractin expresses at a lower level than the other two labeling tools, but labels cytoplasmic F-actin structures well without causing sterility or striking actin defects. Together these studies reveal how critical it is to evaluate the utility of each actin labeling tool

  3. Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking

    PubMed Central

    Wilson, Carlos; González-Billault, Christian

    2015-01-01

    A proper balance between chemical reduction and oxidation (known as redox balance) is essential for normal cellular physiology. Deregulation in the production of oxidative species leads to DNA damage, lipid peroxidation and aberrant post-translational modification of proteins, which in most cases induces injury, cell death and disease. However, physiological concentrations of oxidative species are necessary to support important cell functions, such as chemotaxis, hormone synthesis, immune response, cytoskeletal remodeling, Ca2+ homeostasis and others. Recent evidence suggests that redox balance regulates actin and microtubule dynamics in both physiological and pathological contexts. Microtubules and actin microfilaments contain certain amino acid residues that are susceptible to oxidation, which reduces the ability of microtubules to polymerize and causes severing of actin microfilaments in neuronal and non-neuronal cells. In contrast, inhibited production of reactive oxygen species (ROS; e.g., due to NOXs) leads to aberrant actin polymerization, decreases neurite outgrowth and affects the normal development and polarization of neurons. In this review, we summarize emerging evidence suggesting that both general and specific enzymatic sources of redox species exert diverse effects on cytoskeletal dynamics. Considering the intimate relationship between cytoskeletal dynamics and trafficking, we also discuss the potential effects of redox balance on intracellular transport via regulation of the components of the microtubule and actin cytoskeleton as well as cytoskeleton-associated proteins, which may directly impact localization of proteins and vesicles across the soma, dendrites and axon of neurons. PMID:26483635

  4. Formin' actin in the nucleus.

    PubMed

    Baarlink, Christian; Grosse, Robert

    2014-01-01

    Many if not most proteins can, under certain conditions, change cellular compartments, such as, for example, shuttling from the cytoplasm to the nucleus. Thus, many proteins may exert functions in various and very different subcellular locations, depending on the signaling context. A large amount of actin regulatory proteins has been detected in the mammalian cell nucleus, although their potential roles are much debated and are just beginning to emerge. Recently, members of the formin family of actin nucleators were also reported to dynamically localize to the nuclear environment. Here we discuss our findings that specific diaphanous-related formins can promote nuclear actin assembly in a signal-dependent manner.

  5. Simulated Microgravity Induced Cytoskeletal Rearrangements are Modulated by Protooncogenes

    NASA Technical Reports Server (NTRS)

    Melhado, C. D.; Sanford, G. L.; Bosah, F.; Harris-Hooker, S.

    1998-01-01

    Microgravity is the environment living systems encounter during space flight and gravitational unloading is the effect of this environment on living systems. The cell, being a multiphasic chemical system, is a useful starting point to study the potential impact of gravity unloading on physiological function. In the absence of gravity, sedimentation of organelles including chromosomes, mitochondria, nuclei, the Golgi apparatus, vacuoles, and the endoplasmic reticulum may be affected. Most of these organelles, however, are somewhat held in place by cytoskeleton. Hansen and Igber suggest that intermediate filaments act to stabilize the nuleus against rotational movement, and integrate cell and nuclear structure. The tensegrity theory supports the idea that mechanical or physical forces alters the cytoskeletal structures of a cell resulting in the changes in cell: matrix interactions and receptor-signaling coupling. This type of stress to the cytoskeleton may be largely responsible regulating cell shape, growth, movement and metabolism. Mouse MC3T3 El cells under microgravity exhibited significant cytoskeletal changes and alterations in cell growth. The alterations in cytoskeleton architecture may be due to changes in the expression of actin related proteins or integrins. Philopott and coworkers reported on changes in the distribution of microtubule and cytoskeleton elements in the cells of heart tissue from space flight rats and those centrifuged at 1.7g. Other researchers have showed that microgravity reduced EGF-induced c-fos and c-jun expression compared to 1 g controls. Since c-fos and c-jun are known regulators of cell growth, it is likely that altered signal transduction involving protooncogenes may play a crucial role in the reduced growth and alterations in cytoskeletal arrangements found during space flight. It is clear that a microgravity environment induces a number of changes in cell shape, cell surface molecules, gene expression, and cytoskeletal

  6. F-actin waves, actin cortex disassembly and focal exocytosis driven by actin-phosphoinositide positive feedback.

    PubMed

    Masters, Thomas A; Sheetz, Michael P; Gauthier, Nils C

    2016-04-01

    Actin polymerization is controlled by the phosphoinositide composition of the plasma membrane. However, the molecular mechanisms underlying the spatiotemporal regulation of actin network organization over extended length scales are still unclear. To observe phosphoinositide-dependent cytoskeletal dynamics we combined the model system of frustrated phagocytosis, total internal reflection microscopy and manipulation of the buffer tonicity. We found that macrophages interacting with IgG-coated glass substrates formed circular F-actin waves on their ventral surface enclosing a region of plasma membrane devoid of cortical actin. Plasma membrane free of actin cortex was strongly depleted of PI(4,5)P2 , but enriched in PI(3,4)P2 and displayed a fivefold increase in exocytosis. Wave formation could be promoted by application of a hypotonic shock. The actin waves were characteristic of a bistable wavefront at the boundary between the regions of membrane containing and lacking cortical actin. Phosphoinositide modifiers and RhoGTPase activities dramatically redistributed with respect to the wavefronts, which often exhibited spatial oscillations. Perturbation of either lipid or actin cytoskeleton-related pathways led to rapid loss of both the polarized lipid distribution and the wavefront. As waves travelled over the plasma membrane, wavefront actin was seen to rapidly polymerize and depolymerize at pre-existing clusters of FcγRIIA, coincident with rapid changes in lipid composition. Thus the potential of receptors to support rapid F-actin polymerization appears to depend acutely on the local concentrations of multiple lipid species. We propose that interdependence through positive feedback from the cytoskeleton to lipid modifiers leads to coordinated local cortex remodeling, focal exocytosis, and organizes extended actin networks. PMID:26915738

  7. F-actin waves, actin cortex disassembly and focal exocytosis driven by actin-phosphoinositide positive feedback.

    PubMed

    Masters, Thomas A; Sheetz, Michael P; Gauthier, Nils C

    2016-04-01

    Actin polymerization is controlled by the phosphoinositide composition of the plasma membrane. However, the molecular mechanisms underlying the spatiotemporal regulation of actin network organization over extended length scales are still unclear. To observe phosphoinositide-dependent cytoskeletal dynamics we combined the model system of frustrated phagocytosis, total internal reflection microscopy and manipulation of the buffer tonicity. We found that macrophages interacting with IgG-coated glass substrates formed circular F-actin waves on their ventral surface enclosing a region of plasma membrane devoid of cortical actin. Plasma membrane free of actin cortex was strongly depleted of PI(4,5)P2 , but enriched in PI(3,4)P2 and displayed a fivefold increase in exocytosis. Wave formation could be promoted by application of a hypotonic shock. The actin waves were characteristic of a bistable wavefront at the boundary between the regions of membrane containing and lacking cortical actin. Phosphoinositide modifiers and RhoGTPase activities dramatically redistributed with respect to the wavefronts, which often exhibited spatial oscillations. Perturbation of either lipid or actin cytoskeleton-related pathways led to rapid loss of both the polarized lipid distribution and the wavefront. As waves travelled over the plasma membrane, wavefront actin was seen to rapidly polymerize and depolymerize at pre-existing clusters of FcγRIIA, coincident with rapid changes in lipid composition. Thus the potential of receptors to support rapid F-actin polymerization appears to depend acutely on the local concentrations of multiple lipid species. We propose that interdependence through positive feedback from the cytoskeleton to lipid modifiers leads to coordinated local cortex remodeling, focal exocytosis, and organizes extended actin networks.

  8. A dynamic formin-dependent deep F-actin network in axons

    PubMed Central

    Ganguly, Archan; Tang, Yong; Wang, Lina; Ladt, Kelsey; Loi, Jonathan; Dargent, Bénédicte; Leterrier, Christophe

    2015-01-01

    Although actin at neuronal growth cones is well-studied, much less is known about actin organization and dynamics along axon shafts and presynaptic boutons. Using probes that selectively label filamentous-actin (F-actin), we found focal “actin hotspots” along axons—spaced ∼3–4 µm apart—where actin undergoes continuous assembly/disassembly. These foci are a nidus for vigorous actin polymerization, generating long filaments spurting bidirectionally along axons—a phenomenon we call “actin trails.” Super-resolution microscopy reveals intra-axonal deep actin filaments in addition to the subplasmalemmal “actin rings” described recently. F-actin hotspots colocalize with stationary axonal endosomes, and blocking vesicle transport diminishes the actin trails, suggesting mechanistic links between vesicles and F-actin kinetics. Actin trails are formin—but not Arp2/3—dependent and help enrich actin at presynaptic boutons. Finally, formin inhibition dramatically disrupts synaptic recycling. Collectively, available data suggest a two-tier F-actin organization in axons, with stable “actin rings” providing mechanical support to the plasma membrane and dynamic "actin trails" generating a flexible cytoskeletal network with putative physiological roles. PMID:26216902

  9. Analysis of Cytoskeletal and Motility Proteins in the Sea Urchin Genome Assembly

    PubMed Central

    RL, Morris; MP, Hoffman; RA, Obar; SS, McCafferty; IR, Gibbons; AD, Leone; J, Cool; EL, Allgood; AM, Musante; KM, Judkins; BJ, Rossetti; AP, Rawson; DR, Burgess

    2007-01-01

    The sea urchin embryo is a classical model system for studying the role of the cytoskeleton in such events as fertilization, mitosis, cleavage, cell migration and gastrulation. We have conducted an analysis of gene models derived from the Strongylocentrotus purpuratus genome assembly and have gathered strong evidence for the existence of multiple gene families encoding cytoskeletal proteins and their regulators in sea urchin. While many cytoskeletal genes have been cloned from sea urchin with sequences already existing in public databases, genome analysis reveals a significantly higher degree of diversity within certain gene families. Furthermore, genes are described corresponding to homologs of cytoskeletal proteins not previously documented in sea urchins. To illustrate the varying degree of sequence diversity that exists within cytoskeletal gene families, we conducted an analysis of genes encoding actins, specific actin-binding proteins, myosins, tubulins, kinesins, dyneins, specific microtubule-associated proteins, and intermediate filaments. We conducted ontological analysis of select genes to better understand the relatedness of urchin cytoskeletal genes to those of other deuterostomes. We analyzed developmental expression (EST) data to confirm the existence of select gene models and to understand their differential expression during various stages of early development. PMID:17027957

  10. Conformational phases of membrane bound cytoskeletal filaments

    NASA Astrophysics Data System (ADS)

    Quint, David A.; Grason, Gregory; Gopinathan, Ajay

    2013-03-01

    Membrane bound cytoskeletal filaments found in living cells are employed to carry out many types of activities including cellular division, rigidity and transport. When these biopolymers are bound to a membrane surface they may take on highly non-trivial conformations as compared to when they are not bound. This leads to the natural question; What are the important interactions which drive these polymers to particular conformations when they are bound to a surface? Assuming that there are binding domains along the polymer which follow a periodic helical structure set by the natural monomeric handedness, these bound conformations must arise from the interplay of the intrinsic monomeric helicity and membrane binding. To probe this question, we study a continuous model of an elastic filament with intrinsic helicity and map out the conformational phases of this filament for various mechanical and structural parameters in our model, such as elastic stiffness and intrinsic twist of the filament. Our model allows us to gain insight into the possible mechanisms which drive real biopolymers such as actin and tubulin in eukaryotes and their prokaryotic cousins MreB and FtsZ to take on their functional conformations within living cells.

  11. Arp2/3 complex and actin dynamics are required for actin-based mitochondrial motility in yeast.

    PubMed

    Boldogh, I R; Yang, H C; Nowakowski, W D; Karmon, S L; Hays, L G; Yates, J R; Pon, L A

    2001-03-13

    The Arp2/3 complex is implicated in actin polymerization-driven movement of Listeria monocytogenes. Here, we find that Arp2p and Arc15p, two subunits of this complex, show tight, actin-independent association with isolated yeast mitochondria. Arp2p colocalizes with mitochondria. Consistent with this result, we detect Arp2p-dependent formation of actin clouds around mitochondria in intact yeast. Cells bearing mutations in ARP2 or ARC15 genes show decreased velocities of mitochondrial movement, loss of all directed movement and defects in mitochondrial morphology. Finally, we observe a decrease in the velocity and extent of mitochondrial movement in yeast in which actin dynamics are reduced but actin cytoskeletal structure is intact. These results support the idea that the movement of mitochondria in yeast is actin polymerization driven and that this movement requires Arp2/3 complex.

  12. Shape remodeling and blebbing of active cytoskeletal vesicles.

    PubMed

    Loiseau, Etienne; Schneider, Jochen A M; Keber, Felix C; Pelzl, Carina; Massiera, Gladys; Salbreux, Guillaume; Bausch, Andreas R

    2016-04-01

    Morphological transformations of living cells, such as shape adaptation to external stimuli, blebbing, invagination, or tethering, result from an intricate interplay between the plasma membrane and its underlying cytoskeleton, where molecular motors generate forces. Cellular complexity defies a clear identification of the competing processes that lead to such a rich phenomenology. In a synthetic biology approach, designing a cell-like model assembled from a minimal set of purified building blocks would allow the control of all relevant parameters. We reconstruct actomyosin vesicles in which the coupling of the cytoskeleton to the membrane, the topology of the cytoskeletal network, and the contractile activity can all be precisely controlled and tuned. We demonstrate that tension generation of an encapsulated active actomyosin network suffices for global shape transformation of cell-sized lipid vesicles, which are reminiscent of morphological adaptations in living cells. The observed polymorphism of our cell-like model, such as blebbing, tether extrusion, or faceted shapes, can be qualitatively explained by the protein concentration dependencies and a force balance, taking into account the membrane tension, the density of anchoring points between the membrane and the actin network, and the forces exerted by molecular motors in the actin network. The identification of the physical mechanisms for shape transformations of active cytoskeletal vesicles sets a conceptual and quantitative benchmark for the further exploration of the adaptation mechanisms of cells. PMID:27152328

  13. Shape remodeling and blebbing of active cytoskeletal vesicles

    PubMed Central

    Loiseau, Etienne; Schneider, Jochen A. M.; Keber, Felix C.; Pelzl, Carina; Massiera, Gladys; Salbreux, Guillaume; Bausch, Andreas R.

    2016-01-01

    Morphological transformations of living cells, such as shape adaptation to external stimuli, blebbing, invagination, or tethering, result from an intricate interplay between the plasma membrane and its underlying cytoskeleton, where molecular motors generate forces. Cellular complexity defies a clear identification of the competing processes that lead to such a rich phenomenology. In a synthetic biology approach, designing a cell-like model assembled from a minimal set of purified building blocks would allow the control of all relevant parameters. We reconstruct actomyosin vesicles in which the coupling of the cytoskeleton to the membrane, the topology of the cytoskeletal network, and the contractile activity can all be precisely controlled and tuned. We demonstrate that tension generation of an encapsulated active actomyosin network suffices for global shape transformation of cell-sized lipid vesicles, which are reminiscent of morphological adaptations in living cells. The observed polymorphism of our cell-like model, such as blebbing, tether extrusion, or faceted shapes, can be qualitatively explained by the protein concentration dependencies and a force balance, taking into account the membrane tension, the density of anchoring points between the membrane and the actin network, and the forces exerted by molecular motors in the actin network. The identification of the physical mechanisms for shape transformations of active cytoskeletal vesicles sets a conceptual and quantitative benchmark for the further exploration of the adaptation mechanisms of cells. PMID:27152328

  14. Rac-mediated actin remodeling and myosin II are involved in KATP channel trafficking in pancreatic β-cells

    PubMed Central

    Han, Young-Eun; Lim, Ajin; Park, Sun-Hyun; Chang, Sunghoe; Lee, Suk-Ho; Ho, Won-Kyung

    2015-01-01

    AMP-activated protein kinase (AMPK) is a metabolic sensor activated during metabolic stress and it regulates various enzymes and cellular processes to maintain metabolic homeostasis. We previously reported that activation of AMPK by glucose deprivation (GD) and leptin increases KATP currents by increasing the surface levels of KATP channel proteins in pancreatic β-cells. Here, we show that the signaling mechanisms that mediate actin cytoskeleton remodeling are closely associated with AMPK-induced KATP channel trafficking. Using F-actin staining with Alexa 633-conjugated phalloidin, we observed that dense cortical actin filaments present in INS-1 cells cultured in 11 mM glucose were disrupted by GD or leptin treatment. These changes were blocked by inhibiting AMPK using compound C or siAMPK and mimicked by activating AMPK using AICAR, indicating that cytoskeletal remodeling induced by GD or leptin was mediated by AMPK signaling. AMPK activation led to the activation of Rac GTPase and the phosphorylation of myosin regulatory light chain (MRLC). AMPK-dependent actin remodeling induced by GD or leptin was abolished by the inhibition of Rac with a Rac inhibitor (NSC23766), siRac1 or siRac2, and by inhibition of myosin II with a myosin ATPase inhibitor (blebbistatin). Immunocytochemistry, surface biotinylation and electrophysiological analyses of KATP channel activity and membrane potentials revealed that AMPK-dependent KATP channel trafficking to the plasma membrane was also inhibited by NSC23766 or blebbistatin. Taken together, these results indicate that AMPK/Rac-dependent cytoskeletal remodeling associated with myosin II motor function promotes the translocation of KATP channels to the plasma membrane in pancreatic β-cells. PMID:26471000

  15. AMP-activated protein kinase induces actin cytoskeleton reorganization in epithelial cells

    SciTech Connect

    Miranda, Lisa; Carpentier, Sarah; Platek, Anna; Hussain, Nusrat; Gueuning, Marie-Agnes; Vertommen, Didier; Ozkan, Yurda; Sid, Brice; Hue, Louis; Courtoy, Pierre J.; Rider, Mark H.; Horman, Sandrine

    2010-06-04

    AMP-activated protein kinase (AMPK), a known regulator of cellular and systemic energy balance, is now recognized to control cell division, cell polarity and cell migration, all of which depend on the actin cytoskeleton. Here we report the effects of A769662, a pharmacological activator of AMPK, on cytoskeletal organization and signalling in epithelial Madin-Darby canine kidney (MDCK) cells. We show that AMPK activation induced shortening or radiation of stress fibers, uncoupling from paxillin and predominance of cortical F-actin. In parallel, Rho-kinase downstream targets, namely myosin regulatory light chain and cofilin, were phosphorylated. These effects resembled the morphological changes in MDCK cells exposed to hyperosmotic shock, which led to Ca{sup 2+}-dependent AMPK activation via calmodulin-dependent protein kinase kinase-{beta}(CaMKK{beta}), a known upstream kinase of AMPK. Indeed, hypertonicity-induced AMPK activation was markedly reduced by the STO-609 CaMKK{beta} inhibitor, as was the increase in MLC and cofilin phosphorylation. We suggest that AMPK links osmotic stress to the reorganization of the actin cytoskeleton.

  16. Actinic Keratoses

    PubMed Central

    Brown, Marc D.

    2009-01-01

    Actinic keratoses are common intra-epidermal neoplasms that lie on a continuum with squamous cell carcinoma. Tightly linked to ultraviolet irradiation, they occur in areas of chronic sun exposure, and early treatment of these lesions may prevent their progression to invasive disease. A large variety of effective treatment modalities exist, and the optimal therapeutic choice is dependent on a variety of patient- and physician-associated variables. Many established and more recent approaches are discussed in this review with a focus on efficacy and administration techniques. Several previously experimental options, such as imiquimod and photodynamic therapy, have become incorporated as first-line options for the treatment of actinic keratoses, while combination treatment strategies have been gaining in popularity. The goal of all therapies is to ultimately limit the morbidity and mortality of squamous cell carcinoma. (J Clin Aesthetic Dermatol. 2009;2(7):43–48.) PMID:20729970

  17. PLCβ3 mediates cortactin interaction with WAVE2 in MCP1-induced actin polymerization and cell migration

    PubMed Central

    Janjanam, Jagadeesh; Chandaka, Giri Kumar; Kotla, Sivareddy; Rao, Gadiparthi N.

    2015-01-01

    Monocyte chemotactic protein 1 (MCP1) stimulates vascular smooth muscle cell (VSMC) migration in vascular wall remodeling. However, the mechanisms underlying MCP1-induced VSMC migration have not been understood. Here we identify the signaling pathway associated with MCP1-induced human aortic smooth muscle cell (HASMC) migration. MCP1, a G protein–coupled receptor agonist, activates phosphorylation of cortactin on S405 and S418 residues in a time-dependent manner, and inhibition of its phosphorylation attenuates MCP1-induced HASMC G-actin polymerization, F-actin stress fiber formation, and migration. Cortactin phosphorylation on S405/S418 is found to be critical for its interaction with WAVE2, a member of the WASP family of cytoskeletal regulatory proteins required for cell migration. In addition, the MCP1-induced cortactin phosphorylation is dependent on PLCβ3-mediated PKCδ activation, and siRNA-mediated down-regulation of either of these molecules prevents cortactin interaction with WAVE2, affecting G-actin polymerization, F-actin stress fiber formation, and HASMC migration. Upstream, MCP1 activates CCR2 and Gαq/11 in a time-dependent manner, and down-regulation of their levels attenuates MCP1-induced PLCβ3 and PKCδ activation, cortactin phosphorylation, cortactin–WAVE2 interaction, G-actin polymerization, F-actin stress fiber formation, and HASMC migration. Together these findings demonstrate that phosphorylation of cortactin on S405 and S418 residues is required for its interaction with WAVE2 in MCP1-induced cytoskeleton remodeling, facilitating HASMC migration. PMID:26490115

  18. Phosphorylation of platelet actin-binding protein during platelet activation

    SciTech Connect

    Carroll, R.C.; Gerrard, J.M.

    1982-03-01

    In this study we have followed the 32P-labeling of actin-binding protein as a function of platelet activation. Utilizing polyacrylamide-sodium dodecyl sulfate gel electrophoresis to resolve total platelet protein samples, we found 2 to 3-fold labeling increases in actin-binding protein 30 to 60 sec after thrombin stimulation. Somewhat larger increases were observed for 40,000 and 20,000 apparent molecular weight peptides. The actin-binding protein was identified on the gels by coelectrophoresis with purified actin-binding protein, its presence in cytoskeletal cores prepared by detergent extraction of activated 32P-labeled platelets, and by direct immunoprecipitation with antibodies against guinea pig vas deferens filamin (actin-binding protein). In addition, these cytoskeletal cores indicated that the 32P-labeled actin-binding protein was closely associated with the activated platelet's cytoskeleton. Following the 32P-labeling of actin-binding protein over an 8-min time course revealed that in aggregating platelet samples rapid dephosphorylation to almost initial levels occurred between 3 and 5 min. A similar curve was obtained for the 20,000 apparent molecular weight peptide. However, rapid dephosphorylation was not observed if platelet aggregation was prevented by chelating external calcium or by using thrombasthenic platelets lacking the aggregation response. Thus, cell-cell contact would seem to be crucial in initiating the rapid dephosphorylation response.

  19. Formation of actin networks in microfluidic concentration gradients

    NASA Astrophysics Data System (ADS)

    Strelnikova, Natalja; Herren, Florian; Schoenenberger, Cora-Ann; Pfohl, Thomas

    2016-05-01

    The physical properties of cytoskeletal networks are contributors in a number of mechanical responses of cells including cellular deformation and locomotion, and are crucial for the proper action of living cells. Local chemical gradients modulate cytoskeletal functionality including the interactions of the cytoskeleton with other cellular components. Actin is a major constituent of the cytoskeleton. Introducing a microfluidic-based platform, we explored the impact of concentration gradients on the formation and structural properties of actin networks. Microfluidics-controlled flow-free steady state experimental conditions allow for the generation of chemical gradients of different profiles, such as linear or step-like. We discovered specific features of actin networks emerging in defined gradients. In particular, we analyzed the effects of spatial conditions on network properties, bending rigidities of network links, and the network elasticity.

  20. Cytoskeletal reorganization of human platelets after stimulation revealed by the quick-freeze deep-etch technique

    PubMed Central

    1987-01-01

    We studied the cytoskeletal reorganization of saponized human platelets after stimulation by using the quick-freeze deep-etch technique, and examined the localization of myosin in thrombin-treated platelets by immunocytochemistry at the electron microscopic level. In unstimulated saponized platelets we observed cross-bridges between: adjoining microtubules, adjoining actin filaments, microtubules and actin filaments, and actin filaments and plasma membranes. After activation with 1 U/ml thrombin for 3 min, massive arrays of actin filaments with mixed polarity were found in the cytoplasm. Two types of cross-bridges between actin filaments were observed: short cross-bridges (11 +/- 2 nm), just like those observed in the resting platelets, and longer ones (22 +/- 3 nm). Actin filaments were linked with the plasma membrane via fine short filaments and sometimes ended on the membrane. Actin filaments and microtubules frequently ran close to the membrane organelles. We also found that actin filaments were associated by end- on attachments with some organelles. Decoration with subfragment 1 of myosin revealed that all the actin filaments associated end-on with the membrane pointed away in their polarity. Immunocytochemical study revealed that myosin was present in the saponin-extracted cytoskeleton after activation and that myosin was localized on the filamentous network. The results suggest that myosin forms a gel with actin filaments in activated platelets. Close associations between actin filaments and organelles in activated platelets suggests that contraction of this actomyosin gel could bring about the observed centralization of organelles. PMID:3667697

  1. Tropomyosin - master regulator of actin filament function in the cytoskeleton.

    PubMed

    Gunning, Peter W; Hardeman, Edna C; Lappalainen, Pekka; Mulvihill, Daniel P

    2015-08-15

    Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition.

  2. Tropomyosin - master regulator of actin filament function in the cytoskeleton.

    PubMed

    Gunning, Peter W; Hardeman, Edna C; Lappalainen, Pekka; Mulvihill, Daniel P

    2015-08-15

    Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition. PMID:26240174

  3. Effects of ionizing radiation on expression of genes encoding cytoskeletal elements: Kinetics and dose effects

    SciTech Connect

    Woloschak, G.E.; Shearin-Jones, P.; Chang-Liu, C.M. )

    1990-01-01

    We examined the modulation in expression of genes encoding three cytoskeletal elements (beta-actin, gamma-actin, and alpha-tubulin) in Syrian hamster embryo (SHE) cells following exposure to ionizing radiations. Early-passage SHE cells were irradiated in plateau phase with various low doses (12-200 cGy) of neutrons, gamma-rays, or x-rays. RNA samples were prepared from cells at different times postexposure and were analyzed for levels of specific transcripts by northern blots. The results revealed that alpha-tubulin was induced by both high-linear energy of transfer (LET) (neutrons) and low-LET (gamma-rays and x-rays) radiations with similar kinetics. The peak in alpha-tubulin mRNA accumulation occurred between 1 and 3 h postexposure; for gamma-actin mRNA, accumulation was similarly induced. For both gamma-actin and alpha-tubulin, the higher the dose during the first hour postexposure (up to 200 cGy gamma-rays), the greater the level of mRNA induction. In contrast, mRNA specific for beta-actin showed decreased accumulation during the first hour following radiation exposure, and remained low up to 3 h postexposure. These results document the differential modulation of genes specific for cytoskeletal elements following radiation exposure. In addition, they demonstrate a decrease in the ratio of beta-actin:gamma-actin mRNA within the first 3 h following gamma-ray exposure. These changes in mRNA accumulation are similar to those reported in some transformed cell lines and in cells treated with tumor promoters, which suggests a role for changes in actin- and tubulin-mRNA expression in radiation-mediated transformation.

  4. Interior decoration: tropomyosin in actin dynamics and cell migration.

    PubMed

    Lees, Justin G; Bach, Cuc T T; O'Neill, Geraldine M

    2011-01-01

    Cell migration and invasion requires the precise temporal and spatial orchestration of a variety of biological processes. Filaments of polymerized actin are critical players in these diverse processes, including the regulation of cell anchorage points (both cell-cell and cell-extracellular matrix), the uptake and delivery of molecules via endocytic pathways and the generation of force for both membrane protrusion and retraction. How the actin filaments are specialized for each of these discrete functions is yet to be comprehensively elucidated. The cytoskeletal tropomyosins are a family of actin associating proteins that form head-to-tail polymers which lay in the major groove of polymerized actin filaments. In the present review we summarize the emerging isoform-specific functions of tropomyosins in cell migration and invasion and discuss their potential roles in the specialization of actin filaments for the diverse cellular processes that together regulate cell migration and invasion.

  5. Actin-associated Proteins in the Pathogenesis of Podocyte Injury

    PubMed Central

    He, Fang-Fang; Chen, Shan; Su, Hua; Meng, Xian-Fang; Zhang, Chun

    2013-01-01

    Podocytes have a complex cellular architecture with interdigitating processes maintained by a precise organization of actin filaments. The actin-based foot processes of podocytes and the interposed slit diaphragm form the final barrier to proteinuria. The function of podocytes is largely based on the maintenance of the normal foot process structure with actin cytoskeleton. Cytoskeletal dynamics play important roles during normal podocyte development, in maintenance of the healthy glomerular filtration barrier, and in the pathogenesis of glomerular diseases. In this review, we focused on recent findings on the mechanisms of organization and reorganization of these actin-related molecules in the pathogenesis of podocyte injury and potential therapeutics targeting the regulation of actin cytoskeleton in podocytopathies. PMID:24396279

  6. Hierarchical self-organization of cytoskeletal active networks

    NASA Astrophysics Data System (ADS)

    Gordon, Daniel; Bernheim-Groswasser, Anne; Keasar, Chen; Farago, Oded

    2012-04-01

    The structural reorganization of the actin cytoskeleton is facilitated through the action of motor proteins that crosslink the actin filaments and transport them relative to each other. Here, we present a combined experimental-computational study that probes the dynamic evolution of mixtures of actin filaments and clusters of myosin motors. While on small spatial and temporal scales the system behaves in a very noisy manner, on larger scales it evolves into several well distinct patterns such as bundles, asters and networks. These patterns are characterized by junctions with high connectivity, whose formation is possible due to the organization of the motors in ‘oligoclusters’ (intermediate-size aggregates). The simulations reveal that the self-organization process proceeds through a series of hierarchical steps, starting from local microscopic moves and ranging up to the macroscopic large scales where the steady-state structures are formed. Our results shed light on the mechanisms involved in processes such as cytokinesis and cellular contractility, where myosin motors organized in clusters operate cooperatively to induce the structural organization of cytoskeletal networks.

  7. Distinct Functional Interactions between Actin Isoforms and Nonsarcomeric Myosins

    PubMed Central

    Müller, Mirco; Diensthuber, Ralph P.; Chizhov, Igor; Claus, Peter; Heissler, Sarah M.; Preller, Matthias; Taft, Manuel H.; Manstein, Dietmar J.

    2013-01-01

    Despite their near sequence identity, actin isoforms cannot completely replace each other in vivo and show marked differences in their tissue-specific and subcellular localization. Little is known about isoform-specific differences in their interactions with myosin motors and other actin-binding proteins. Mammalian cytoplasmic β- and γ-actin interact with nonsarcomeric conventional myosins such as the members of the nonmuscle myosin-2 family and myosin-7A. These interactions support a wide range of cellular processes including cytokinesis, maintenance of cell polarity, cell adhesion, migration, and mechano-electrical transduction. To elucidate differences in the ability of isoactins to bind and stimulate the enzymatic activity of individual myosin isoforms, we characterized the interactions of human skeletal muscle α-actin, cytoplasmic β-actin, and cytoplasmic γ-actin with human myosin-7A and nonmuscle myosins-2A, -2B and -2C1. In the case of nonmuscle myosins-2A and -2B, the interaction with either cytoplasmic actin isoform results in 4-fold greater stimulation of myosin ATPase activity than was observed in the presence of α-skeletal muscle actin. Nonmuscle myosin-2C1 is most potently activated by β-actin and myosin-7A by γ-actin. Our results indicate that β- and γ-actin isoforms contribute to the modulation of nonmuscle myosin-2 and myosin-7A activity and thereby to the spatial and temporal regulation of cytoskeletal dynamics. FRET-based analyses show efficient copolymerization abilities for the actin isoforms in vitro. Experiments with hybrid actin filaments show that the extent of actomyosin coupling efficiency can be regulated by the isoform composition of actin filaments. PMID:23923011

  8. On the Significance of Microtubule Flexural Behavior in Cytoskeletal Mechanics

    PubMed Central

    Mehrbod, Mehrdad; Mofrad, Mohammad R. K.

    2011-01-01

    Quantitative description of cell mechanics has challenged biological scientists for the past two decades. Various structural models have been attempted to analyze the structure of the cytoskeleton. One important aspect that has been largely ignored in all these modeling approaches is related to the flexural and buckling behavior of microtubular filaments. The objective of this paper is to explore the influence of this flexural and buckling behavior in cytoskeletal mechanics. In vitro the microtubules are observed to buckle in the first mode, reminiscent of a free, simply-supported beam. In vivo images of microtubules, however, indicate that the buckling mostly occurs in higher modes. This buckling mode switch takes place mostly because of the lateral support of microtubules via their connections to actin and intermediate filaments. These lateral loads are exerted throughout the microtubule length and yield a considerable bending behavior that, unless properly accounted for, would produce erroneous results in the modeling and analysis of the cytoskeletal mechanics. One of the promising attempts towards mechanical modeling of the cytoskeleton is the tensegrity model, which simplifies the complex network of cytoskeletal filaments into a combination merely of tension-bearing actin filaments and compression-bearing microtubules. Interestingly, this discrete model can qualitatively explain many experimental observations in cell mechanics. However, evidence suggests that the simplicity of this model may undermine the accuracy of its predictions, given the model's underlying assumption that “every single member bears solely either tensile or compressive behavior,” i.e. neglecting the flexural behavior of the microtubule filaments. We invoke an anisotropic continuum model for microtubules and compare the bending energy stored in a single microtubule with its axial strain energy at the verge of buckling. Our results suggest that the bending energy can exceed the axial

  9. On the significance of microtubule flexural behavior in cytoskeletal mechanics.

    PubMed

    Mehrbod, Mehrdad; Mofrad, Mohammad R K

    2011-01-01

    Quantitative description of cell mechanics has challenged biological scientists for the past two decades. Various structural models have been attempted to analyze the structure of the cytoskeleton. One important aspect that has been largely ignored in all these modeling approaches is related to the flexural and buckling behavior of microtubular filaments. The objective of this paper is to explore the influence of this flexural and buckling behavior in cytoskeletal mechanics.In vitro the microtubules are observed to buckle in the first mode, reminiscent of a free, simply-supported beam. In vivo images of microtubules, however, indicate that the buckling mostly occurs in higher modes. This buckling mode switch takes place mostly because of the lateral support of microtubules via their connections to actin and intermediate filaments. These lateral loads are exerted throughout the microtubule length and yield a considerable bending behavior that, unless properly accounted for, would produce erroneous results in the modeling and analysis of the cytoskeletal mechanics.One of the promising attempts towards mechanical modeling of the cytoskeleton is the tensegrity model, which simplifies the complex network of cytoskeletal filaments into a combination merely of tension-bearing actin filaments and compression-bearing microtubules. Interestingly, this discrete model can qualitatively explain many experimental observations in cell mechanics. However, evidence suggests that the simplicity of this model may undermine the accuracy of its predictions, given the model's underlying assumption that "every single member bears solely either tensile or compressive behavior," i.e. neglecting the flexural behavior of the microtubule filaments. We invoke an anisotropic continuum model for microtubules and compare the bending energy stored in a single microtubule with its axial strain energy at the verge of buckling. Our results suggest that the bending energy can exceed the axial energy

  10. PTP-PEST controls EphA3 activation and ephrin-induced cytoskeletal remodelling.

    PubMed

    Mansour, Mariam; Nievergall, Eva; Gegenbauer, Kristina; Llerena, Carmen; Atapattu, Lakmali; Hallé, Maxime; Tremblay, Michel L; Janes, Peter W; Lackmann, Martin

    2016-01-15

    Eph receptors and their corresponding membrane-bound ephrin ligands regulate cell positioning and establish tissue patterns during embryonic and oncogenic development. Emerging evidence suggests that assembly of polymeric Eph signalling clusters relies on cytoskeletal reorganisation and underlies regulation by protein tyrosine phosphatases (PTPs). PTP-PEST (also known as PTPN12) is a central regulator of actin cytoskeletal dynamics. Here, we demonstrate that an N-terminal fragment of PTP-PEST, generated through an ephrinA5-triggered and spatially confined cleavage mediated by caspase-3, attenuates EphA3 receptor activation and its internalisation. Isolation of EphA3 receptor signalling clusters within intact plasma membrane fragments obtained by detergent-free cell fractionation reveals that stimulation of cells with ephrin triggers effective recruitment of this catalytically active truncated form of PTP-PEST together with key cytoskeletal and focal adhesion proteins. Importantly, modulation of actin polymerisation using pharmacological and dominant-negative approaches affects EphA3 phosphorylation in a similar manner to overexpression of PTP-PEST. We conclude that PTP-PEST regulates EphA3 activation both by affecting cytoskeletal remodelling and through its direct action as a PTP controlling EphA3 phosphorylation, indicating its multifaceted regulation of Eph signalling. PMID:26644181

  11. Evidence for physical and functional interactions among two Saccharomyces cerevisiae SH3 domain proteins, an adenylyl cyclase-associated protein and the actin cytoskeleton.

    PubMed Central

    Lila, T; Drubin, D G

    1997-01-01

    In a variety of organisms, a number of proteins associated with the cortical actin cytoskeleton contain SH3 domains, suggesting that these domains may provide the physical basis for functional interactions among structural and regulatory proteins in the actin cytoskeleton. We present evidence that SH3 domains mediate at least two independent functions of the Saccharomyces cerevisiae actin-binding protein Abp1p in vivo. Abp1p contains a single SH3 domain that has recently been shown to bind in vitro to the adenylyl cyclase-associated protein Srv2p. Immunofluorescence analysis of Srv2p subcellular localization in strains carrying mutations in either ABP1 or SRV2 reveals that the Abp1p SH3 domain mediates the normal association of Srv2p with the cortical actin cytoskeleton. We also show that a site in Abp1p itself is specifically bound by the SH3 domain of the actin-associated protein Rvs167p. Genetic analysis provides evidence that Abp1p and Rvs167p have functions that are closely interrelated. Abp1 null mutations, like rvs167 mutations, result in defects in sporulation and reduced viability under certain suboptimal growth conditions. In addition, mutations in ABP1 and RVS167 yield similar profiles of genetic "synthetic lethal" interactions when combined with mutations in genes encoding other cytoskeletal components. Mutations which specifically disrupt the SH3 domain-mediated interaction between Abp1p and Srv2p, however, show none of the shared phenotypes of abp1 and rvs167 mutations. We conclude that the Abp1p SH3 domain mediates the association of Srv2p with the cortical actin cytoskeleton, and that Abp1p performs a distinct function that is likely to involve binding by the Rvs167p SH3 domain. Overall, work presented here illustrates how SH3 domains can integrate the activities of multiple actin cytoskeleton proteins in response to varying environmental conditions. Images PMID:9190214

  12. Sensing actin dynamics: Structural basis for G-actin-sensitive nuclear import of MAL

    SciTech Connect

    Hirano, Hidemi; Matsuura, Yoshiyuki

    2011-10-22

    Highlights: {yields} MAL has a bipartite NLS that binds to Imp{alpha} in an extended conformation. {yields} Mutational analyses verified the functional significance of MAL-Imp{alpha} interactions. {yields} Induced folding and NLS-masking by G-actins inhibit nuclear import of MAL. -- Abstract: The coordination of cytoskeletal actin dynamics with gene expression reprogramming is emerging as a crucial mechanism to control diverse cellular processes, including cell migration, differentiation and neuronal circuit assembly. The actin-binding transcriptional coactivator MAL (also known as MRTF-A/MKL1/BSAC) senses G-actin concentration and transduces Rho GTPase signals to serum response factor (SRF). MAL rapidly shuttles between the cytoplasm and the nucleus in unstimulated cells but Rho-induced depletion of G-actin leads to MAL nuclear accumulation and activation of transcription of SRF:MAL-target genes. Although the molecular and structural basis of actin-regulated nucleocytoplasmic shuttling of MAL is not understood fully, it is proposed that nuclear import of MAL is mediated by importin {alpha}/{beta} heterodimer, and that G-actin competes with importin {alpha}/{beta} for the binding to MAL. Here we present structural, biochemical and cell biological evidence that MAL has a classical bipartite nuclear localization signal (NLS) in the N-terminal 'RPEL' domain containing Arg-Pro-X-X-X-Glu-Leu (RPEL) motifs. The NLS residues of MAL adopt an extended conformation and bind along the surface groove of importin-{alpha}, interacting with the major- and minor-NLS binding sites. We also present a crystal structure of wild-type MAL RPEL domain in complex with five G-actins. Comparison of the importin-{alpha}- and actin-complexes revealed that the binding of G-actins to MAL is associated with folding of NLS residues into a helical conformation that is inappropriate for importin-{alpha} recognition.

  13. Biallelic truncating mutations in FMN2, encoding the actin-regulatory protein Formin 2, cause nonsyndromic autosomal-recessive intellectual disability.

    PubMed

    Law, Rosalind; Dixon-Salazar, Tracy; Jerber, Julie; Cai, Na; Abbasi, Ansar A; Zaki, Maha S; Mittal, Kirti; Gabriel, Stacey B; Rafiq, Muhammad Arshad; Khan, Valeed; Nguyen, Maria; Ali, Ghazanfar; Copeland, Brett; Scott, Eric; Vasli, Nasim; Mikhailov, Anna; Khan, Muhammad Nasim; Andrade, Danielle M; Ayaz, Muhammad; Ansar, Muhammad; Ayub, Muhammad; Vincent, John B; Gleeson, Joseph G

    2014-12-01

    Dendritic spines represent the major site of neuronal activity in the brain; they serve as the receiving point for neurotransmitters and undergo rapid activity-dependent morphological changes that correlate with learning and memory. Using a combination of homozygosity mapping and next-generation sequencing in two consanguineous families affected by nonsyndromic autosomal-recessive intellectual disability, we identified truncating mutations in formin 2 (FMN2), encoding a protein that belongs to the formin family of actin cytoskeleton nucleation factors and is highly expressed in the maturing brain. We found that FMN2 localizes to punctae along dendrites and that germline inactivation of mouse Fmn2 resulted in animals with decreased spine density; such mice were previously demonstrated to have a conditioned fear-learning defect. Furthermore, patient neural cells derived from induced pluripotent stem cells showed correlated decreased synaptic density. Thus, FMN2 mutations link intellectual disability either directly or indirectly to the regulation of actin-mediated synaptic spine density.

  14. In vitro and in vivo evidence for actin association of the naphthylphthalamic acid-binding protein from zucchini hypocotyls

    NASA Technical Reports Server (NTRS)

    Butler, J. H.; Hu, S.; Brady, S. R.; Dixon, M. W.; Muday, G. K.

    1998-01-01

    The N-1-naphthylphthalamic acid (NPA)-binding protein is part of the auxin efflux carrier, the protein complex that controls polar auxin transport in plant tissues. This study tested the hypothesis that the NPA-binding protein (NBP) is associated with the actin cytoskeleton in vitro and that an intact actin cytoskeleton is required for polar auxin transport in vivo. Cytoskeletal polymerization was altered in extracts of zucchini hypocotyls with reagents that stabilized either the polymeric or monomeric forms of actin or tubulin. Phalloidin treatment altered actin polymerization, as demonstrated by immunoblot analyses following native and denaturing electrophoresis. Phalloidin increased both filamentous actin (F-actin) and NPA-binding activity, while cytochalasin D and Tris decreased both F-actin and NPA-binding activity in cytoskeletal pellets. The microtubule stabilizing drug taxol increased pelletable tubulin, but did not alter either the amount of pelletable actin or NPA-binding activity. Treatment of etiolated zucchini hypocotyls with cytochalasin D decreased the amount of auxin transport and its regulation by NPA. These experimental results are consistent with an in vitro actin cytoskeletal association of the NPA-binding protein and with the requirement of an intact actin cytoskeleton for maximal polar auxin transport in vivo.

  15. [Actinic Keratosis].

    PubMed

    Dejaco, D; Hauser, U; Zelger, B; Riechelmann, H

    2015-07-01

    Actinic keratosis is a cutaneous lesion characterized by proliferation of atypical epidermal keratinocytes due to prolonged exposure to exogenous factors such as ultraviolet radiation. AKs are in-situ-squamous cell carcinomas (PEC) of the skin. AK typically presents as erythematous, scaly patch or papule (classic AK), occasionally as thick, adherent scale on an erythematous base. Mostly fair-skinned adults are affected. AKs typically occur in areas of frequent sun exposure (balding scalp, face, "H-region", lateral neck, décolleté, dorsum of the hand and lower extremities). Actinic Cheilitis is the term used for AKs appearing on the lips. The diagnosis of AK is based on clinical examination including inspection and palpation. The typical palpable rough surface of AK often precedes a visible lesion. Dermoscopy may provide additional information. If diagnosis is uncertain and invasion suspected, biopsy and histopathologic evaluation should be performed. The potential for progression to invasive PECs mandates therapeutic intervention. Treatment options include topical and systemic therapies. Topical therapies are classified into physical, medical and combined physical-chemical approaches and a sequential combination of treatment modalities is possible. Topical-physical cryotherapy is the treatment of choice for isolated, non-hypertrophic AK. Topical-medical treatment, e. g. 5-fluoruracil (5FU) cream or Imiquomod or Ingenolmebutat application is used for multiple, non-hypertrophic AKs. For hypertrophic AKs, a dehorning pretreatment with salicinated vaseline is recommended. Isolated hypertrophic AKs often need cryotherapy with prolonged freezing time or several consecutive applications. Sequentially combined approaches are recommended for multiple, hypertrophic AKs. Photodynamic therapy (PDT) as example for a combined physical-chemical approach is an established treatment for multiple, non-hypertrophic and hypertrophic AKs. Prevention includes avoidance of sun and

  16. Actin-binding proteins: the long road to understanding the dynamic landscape of cellular actin networks.

    PubMed

    Lappalainen, Pekka

    2016-08-15

    The actin cytoskeleton supports a vast number of cellular processes in nonmuscle cells. It is well established that the organization and dynamics of the actin cytoskeleton are controlled by a large array of actin-binding proteins. However, it was only 40 years ago that the first nonmuscle actin-binding protein, filamin, was identified and characterized. Filamin was shown to bind and cross-link actin filaments into higher-order structures and contribute to phagocytosis in macrophages. Subsequently many other nonmuscle actin-binding proteins were identified and characterized. These proteins regulate almost all steps of the actin filament assembly and disassembly cycles, as well as the arrangement of actin filaments into diverse three-dimensional structures. Although the individual biochemical activities of most actin-regulatory proteins are relatively well understood, knowledge of how these proteins function together in a common cytoplasm to control actin dynamics and architecture is only beginning to emerge. Furthermore, understanding how signaling pathways and mechanical cues control the activities of various actin-binding proteins in different cellular, developmental, and pathological processes will keep researchers busy for decades. PMID:27528696

  17. Structural Rearrangements in CHO Cells After Disruption of Individual Cytoskeletal Elements and Plasma Membrane.

    PubMed

    Jokhadar, Špela Zemljič; Derganc, Jure

    2015-04-01

    Cellular structural integrity is provided primarily by the cytoskeleton, which comprises microtubules, actin filaments, and intermediate filaments. The plasma membrane has been also recognized as a mediator of physical forces, yet its contribution to the structural integrity of the cell as a whole is less clear. In order to investigate the relationship between the plasma membrane and the cytoskeleton, we selectively disrupted the plasma membrane and each of the cytoskeletal elements in Chinese hamster ovary cells and assessed subsequent changes in cellular structural integrity. Confocal microscopy was used to visualize cytoskeletal rearrangements, and optical tweezers were utilized to quantify membrane tether extraction. We found that cholesterol depletion from the plasma membrane resulted in rearrangements of all cytoskeletal elements. Conversely, the state of the plasma membrane, as assessed by tether extraction, was affected by disruption of any of the cytoskeletal elements, including microtubules and intermediate filaments, which are located mainly in the cell interior. The results demonstrate that, besides the cytoskeleton, the plasma membrane is an important contributor to cellular integrity, possibly by acting as an essential framework for cytoskeletal anchoring. In agreement with the tensegrity model of cell mechanics, our results support the notion of the cell as a prestressed structure. PMID:25395197

  18. Proline-rich region of non-muscle myosin light chain kinase modulates kinase activity and endothelial cytoskeletal dynamics.

    PubMed

    Belvitch, Patrick; Adyshev, Djanybek; Elangovan, Venkateswaran R; Brown, Mary E; Naureckas, Caitlin; Rizzo, Alicia N; Siegler, Jessica H; Garcia, Joe G N; Dudek, Steven M

    2014-09-01

    Disruption of the pulmonary endothelial barrier and subsequent vascular leak is a hallmark of acute lung injury. Dynamic rearrangements in the endothelial cell (EC) peripheral membrane and underlying cytoskeleton are critical determinants of barrier function. The cytoskeletal effector protein non-muscle myosin light chain kinase (nmMLCK) and the actin-binding regulatory protein cortactin are important regulators of the endothelial barrier. In the present study we functionally characterize a proline-rich region of nmMLCK previously identified as the possible site of interaction between nmMLCK and cortactin. A mutant nmMLCK construct deficient in proline residues at the putative sites of cortactin binding (amino acids 973, 976, 1019, 1022) was generated. Co-immunoprecipitation studies in human lung EC transfected with wild-type or mutant nmMLCK demonstrated similar levels of cortactin interaction at baseline and after stimulation with the barrier-enhancing agonist, sphingosine 1-phosphate (S1P). In contrast, binding studies utilizing recombinant nmMLCK fragments containing the wild-type or proline-deficient sequence demonstrated a two-fold increase in cortactin binding (p<0.01) to the mutant construct. Immunofluorescent microscopy revealed an increased stress fiber density in ECs expressing GFP-labeled mutant nmMLCK at baseline (p=0.02) and after thrombin (p=0.01) or S1P (p=0.02) when compared to wild-type. Mutant nmMLCK demonstrated an increase in kinase activity in response to thrombin (p<0.01). Kymographic analysis demonstrated an increased EC membrane retraction distance and velocity (p<0.01) in response to the barrier disrupting agent thrombin in cells expressing the mutant vs. the wild-type nmMLCK construct. These results provide evidence that critical prolines within nmMLCK (amino acids 973, 976, 1019, 1022) regulate cytoskeletal and membrane events associated with pulmonary endothelial barrier function. PMID:25072537

  19. CASEIN KINASE1-LIKE PROTEIN2 Regulates Actin Filament Stability and Stomatal Closure via Phosphorylation of Actin Depolymerizing Factor.

    PubMed

    Zhao, Shuangshuang; Jiang, Yuxiang; Zhao, Yang; Huang, Shanjin; Yuan, Ming; Zhao, Yanxiu; Guo, Yan

    2016-06-01

    The opening and closing of stomata are crucial for plant photosynthesis and transpiration. Actin filaments undergo dynamic reorganization during stomatal closure, but the underlying mechanism for this cytoskeletal reorganization remains largely unclear. In this study, we identified and characterized Arabidopsis thaliana casein kinase 1-like protein 2 (CKL2), which responds to abscisic acid (ABA) treatment and participates in ABA- and drought-induced stomatal closure. Although CKL2 does not bind to actin filaments directly and has no effect on actin assembly in vitro, it colocalizes with and stabilizes actin filaments in guard cells. Further investigation revealed that CKL2 physically interacts with and phosphorylates actin depolymerizing factor 4 (ADF4) and inhibits its activity in actin filament disassembly. During ABA-induced stomatal closure, deletion of CKL2 in Arabidopsis alters actin reorganization in stomata and renders stomatal closure less sensitive to ABA, whereas deletion of ADF4 impairs the disassembly of actin filaments and causes stomatal closure to be more sensitive to ABA Deletion of ADF4 in the ckl2 mutant partially recues its ABA-insensitive stomatal closure phenotype. Moreover, Arabidopsis ADFs from subclass I are targets of CKL2 in vitro. Thus, our results suggest that CKL2 regulates actin filament reorganization and stomatal closure mainly through phosphorylation of ADF. PMID:27268429

  20. Polycystin-2 (TRPP2) Regulation by Ca2+ Is Effected and Diversified by Actin-Binding Proteins

    PubMed Central

    Cantero, María del Rocío; Cantiello, Horacio F.

    2015-01-01

    Calcium regulation of Ca2+-permeable ion channels is an important mechanism in the control of cell function. Polycystin-2 (PC2, TRPP2), a member of the transient receptor potential superfamily, is a nonselective cation channel with Ca2+ permeability. The molecular mechanisms associated with PC2 regulation by Ca2+ remain ill-defined. We recently demonstrated that PC2 from human syncytiotrophoblast (PC2hst) but not the in vitro translated protein (PC2iv), functionally responds to changes in intracellular (cis) Ca2+. In this study we determined the regulatory effect(s) of Ca2+-sensitive and -insensitive actin-binding proteins (ABPs) on PC2iv channel function in a lipid bilayer system. The actin-bundling protein α-actinin increased PC2iv channel function in the presence of cis Ca2+, although instead was inhibitory in its absence. Conversely, filamin that shares actin-binding domains with α-actinin had a strong inhibitory effect on PC2iv channel function in the presence, but no effect in the absence of cis Ca2+. Gelsolin stimulated PC2iv channel function in the presence, but not the absence of cis Ca2+. In contrast, profilin that shares actin-binding domains with gelsolin, significantly increased PC2iv channel function both in the presence and absence of Ca2+. The distinct effect(s) of the ABPs on PC2iv channel function demonstrate that Ca2+ regulation of PC2 is actually mediated by direct interaction(s) with structural elements of the actin cytoskeleton. These data indicate that specific ABP-PC2 complexes would confer distinct Ca2+-sensitive properties to the channel providing functional diversity to the cytoskeletal control of transient receptor potential channel regulation. PMID:25954877

  1. Balancing spatially regulated β-actin translation and dynamin-mediated endocytosis is required to assemble functional epithelial monolayers.

    PubMed

    Cruz, Lissette A; Vedula, Pavan; Gutierrez, Natasha; Shah, Neel; Rodriguez, Steven; Ayee, Brian; Davis, Justin; Rodriguez, Alexis J

    2015-12-01

    Regulating adherens junction complex assembly/disassembly is critical to maintaining epithelial homeostasis in healthy epithelial tissues. Consequently, adherens junction structure and function is often perturbed in clinically advanced tumors of epithelial origin. Some of the most studied factors driving adherens junction complex perturbation in epithelial cancers are transcriptional and epigenetic down-regulation of E-cadherin expression. However, numerous reports demonstrate that post-translational regulatory mechanisms such as endocytosis also regulate early phases of epithelial-mesenchymal transition and metastatic progression. In already assembled healthy epithelia, E-cadherin endocytosis recycles cadherin-catenin complexes to regulate the number of mature adherens junctions found at cell-cell contact sites. However, following de novo epithelial cell-cell contact, endocytosis negatively regulates adherens junction assembly by removing E-cadherin from the cell surface. By contrast, following de novo epithelial cell-cell contact, spatially localized β-actin translation drives cytoskeletal remodeling and consequently E-cadherin clustering at cell-cell contact sites and therefore positively regulates adherens junction assembly. In this report we demonstrate that dynamin-mediated endocytosis and β-actin translation-dependent cadherin-catenin complex anchoring oppose each other following epithelial cell-cell contact. Consequently, the final extent of adherens junction assembly depends on which of these processes is dominant following epithelial cell-cell contact. We expressed β-actin transcripts impaired in their ability to properly localize monomer synthesis (Δ3'UTR) in MDCK cells to perturb actin filament remodeling and anchoring, and demonstrate the resulting defect in adherens junction structure and function is rescued by inhibiting dynamin mediated endocytosis. Therefore, we demonstrate balancing spatially regulated β-actin translation and dynamin

  2. Sex Hormones Regulate Cytoskeletal Proteins Involved in Brain Plasticity

    PubMed Central

    Hansberg-Pastor, Valeria; González-Arenas, Aliesha; Piña-Medina, Ana Gabriela; Camacho-Arroyo, Ignacio

    2015-01-01

    In the brain of female mammals, including humans, a number of physiological and behavioral changes occur as a result of sex hormone exposure. Estradiol and progesterone regulate several brain functions, including learning and memory. Sex hormones contribute to shape the central nervous system by modulating the formation and turnover of the interconnections between neurons as well as controlling the function of glial cells. The dynamics of neuron and glial cells morphology depends on the cytoskeleton and its associated proteins. Cytoskeletal proteins are necessary to form neuronal dendrites and dendritic spines, as well as to regulate the diverse functions in astrocytes. The expression pattern of proteins, such as actin, microtubule-associated protein 2, Tau, and glial fibrillary acidic protein, changes in a tissue-specific manner in the brain, particularly when variations in sex hormone levels occur during the estrous or menstrual cycles or pregnancy. Here, we review the changes in structure and organization of neurons and glial cells that require the participation of cytoskeletal proteins whose expression and activity are regulated by estradiol and progesterone. PMID:26635640

  3. Cytoskeletal protein kinases: titin and its relations in mechanosensing.

    PubMed

    Gautel, Mathias

    2011-07-01

    Titin, the giant elastic ruler protein of striated muscle sarcomeres, contains a catalytic kinase domain related to a family of intrasterically regulated protein kinases. The most extensively studied member of this branch of the human kinome is the Ca(2+)-calmodulin (CaM)-regulated myosin light-chain kinases (MLCK). However, not all kinases of the MLCK branch are functional MLCKs, and about half lack a CaM binding site in their C-terminal autoinhibitory tail (AI). A unifying feature is their association with the cytoskeleton, mostly via actin and myosin filaments. Titin kinase, similar to its invertebrate analogue twitchin kinase and likely other "MLCKs", is not Ca(2+)-calmodulin-activated. Recently, local protein unfolding of the C-terminal AI has emerged as a common mechanism in the activation of CaM kinases. Single-molecule data suggested that opening of the TK active site could also be achieved by mechanical unfolding of the AI. Mechanical modulation of catalytic activity might thus allow cytoskeletal signalling proteins to act as mechanosensors, creating feedback mechanisms between cytoskeletal tension and tension generation or cellular remodelling. Similar to other MLCK-like kinases like DRAK2 and DAPK1, TK is linked to protein turnover regulation via the autophagy/lysosomal system, suggesting the MLCK-like kinases have common functions beyond contraction regulation. PMID:21416260

  4. Sex Hormones Regulate Cytoskeletal Proteins Involved in Brain Plasticity.

    PubMed

    Hansberg-Pastor, Valeria; González-Arenas, Aliesha; Piña-Medina, Ana Gabriela; Camacho-Arroyo, Ignacio

    2015-01-01

    In the brain of female mammals, including humans, a number of physiological and behavioral changes occur as a result of sex hormone exposure. Estradiol and progesterone regulate several brain functions, including learning and memory. Sex hormones contribute to shape the central nervous system by modulating the formation and turnover of the interconnections between neurons as well as controlling the function of glial cells. The dynamics of neuron and glial cells morphology depends on the cytoskeleton and its associated proteins. Cytoskeletal proteins are necessary to form neuronal dendrites and dendritic spines, as well as to regulate the diverse functions in astrocytes. The expression pattern of proteins, such as actin, microtubule-associated protein 2, Tau, and glial fibrillary acidic protein, changes in a tissue-specific manner in the brain, particularly when variations in sex hormone levels occur during the estrous or menstrual cycles or pregnancy. Here, we review the changes in structure and organization of neurons and glial cells that require the participation of cytoskeletal proteins whose expression and activity are regulated by estradiol and progesterone. PMID:26635640

  5. Continuum modeling of forces in growing viscoelastic cytoskeletal networks.

    PubMed

    Kim, Jin Seob; Sun, Sean X

    2009-02-21

    Mechanical properties of the living cell are important in cell movement, cell division, cancer development and cell signaling. There is considerable interest in measuring local mechanical properties of living materials and the living cytoskeleton using micromechanical techniques. However, living materials are constantly undergoing internal dynamics such as growth and remodeling. A modeling framework that combines mechanical deformations with cytoskeletal growth dynamics is necessary to describe cellular shape changes. The present paper develops a general finite deformation modeling approach that can treat the viscoelastic cytoskeleton. Given the growth dynamics in the cytoskeletal network and the relationship between deformation and stress, the shape of the network is computed in an incremental fashion. The growth dynamics of the cytoskeleton can be modeled as stress dependent. The result is a consistent treatment of overall cell deformation. The framework is applied to a growing 1-d bundle of actin filaments against an elastic cantilever, and a 2-d cell undergoing wave-like protrusion dynamics. In the latter example, mechanical forces on the cell adhesion are examined as a function of the protrusion dynamics. PMID:19041329

  6. The Effect of Ultrasound Stimulation on the Cytoskeletal Organization of Chondrocytes Seeded In 3D Matrices

    PubMed Central

    Noriega, Sandra; Hasanova, Gulnara; Subramanian, Anuradha

    2013-01-01

    The impact of low intensity diffuse ultrasound (LIDUS) stimulation on the cytoskeletal organization of chondrocytes seeded in 3D scaffolds was evaluated. Chondrocytes seeded on 3D chitosan matrices were exposed to LIDUS at 5.0 MHz (~15kPa, 51-secs, 4-applications/day) in order to study the organization of actin, tubulin and vimentin. The results showed that actin presented a cytosolic punctuated distribution, tubulin presented a quasi parallel organization of microtubules whereas vimentin distribution was unaffected. Chondrocytes seeded on 3D scaffolds responded to US stimulation by the disruption of actin stress fibers and were sensitive to the presence of ROCK inhibitor (Y27632). The gene expression of ROCK-I, a key element in the formation of stress fibers and mDia1, was significantly up-regulated under the application of US. We conclude that the results of both the cytoskeletal analyses and gene expression support the argument that the presence of punctuated actin upon US stimulation was accompanied by the up-regulation of the RhoA/ROCK pathway. PMID:22987069

  7. Structural Polymorphism of the Actin-Espin System: A Prototypical System of Filaments and Linkers in Stereocilia

    SciTech Connect

    Purdy, Kirstin R.; Wong, Gerard C. L.; Bartles, James R.

    2007-02-02

    We examine the interaction between cytoskeletal F-actin and espin 3A, a prototypical actin bundling protein found in sensory cell microvilli, including ear cell stereocilia. Espin induces twist distortions in F-actin as well as facilitates bundle formation. Mutations in one of the two F-actin binding sites of espin, which have been implicated in deafness, can tune espin-actin interactions and radically transform the system's phase behavior. These results are compared to recent theoretical work on the general phase behavior linker-rod systems.

  8. Structural Polymorphism of the Actin-Espin System: A Prototypical System of Filaments and Linkers in Stereocilia

    NASA Astrophysics Data System (ADS)

    Purdy, Kirstin R.; Bartles, James R.; Wong, Gerard C. L.

    2007-02-01

    We examine the interaction between cytoskeletal F-actin and espin 3A, a prototypical actin bundling protein found in sensory cell microvilli, including ear cell stereocilia. Espin induces twist distortions in F-actin as well as facilitates bundle formation. Mutations in one of the two F-actin binding sites of espin, which have been implicated in deafness, can tune espin-actin interactions and radically transform the system’s phase behavior. These results are compared to recent theoretical work on the general phase behavior linker-rod systems.

  9. Cytoskeletal Regulation of Inflammation and Its Impact on Skin Blistering Disease Epidermolysis Bullosa Acquisita.

    PubMed

    Kopecki, Zlatko; Ludwig, Ralf J; Cowin, Allison J

    2016-01-01

    Actin remodelling proteins regulate cytoskeletal cell responses and are important in both innate and adaptive immunity. These responses play a major role in providing a fine balance in a cascade of biological events that results in either protective acute inflammation or chronic inflammation that leads to a host of diseases including autoimmune inflammation mediated epidermolysis bullosa acquisita (EBA). This review describes the role of the actin cytoskeleton and in particular the actin remodelling protein called Flightless I (Flii) in regulating cellular inflammatory responses and its subsequent effect on the autoimmune skin blistering disease EBA. It also outlines the potential of an antibody based therapy for decreasing Flii expression in vivo to ameliorate the symptoms associated with EBA. PMID:27420054

  10. Cytoskeletal Regulation of Inflammation and Its Impact on Skin Blistering Disease Epidermolysis Bullosa Acquisita

    PubMed Central

    Kopecki, Zlatko; Ludwig, Ralf J.; Cowin, Allison J.

    2016-01-01

    Actin remodelling proteins regulate cytoskeletal cell responses and are important in both innate and adaptive immunity. These responses play a major role in providing a fine balance in a cascade of biological events that results in either protective acute inflammation or chronic inflammation that leads to a host of diseases including autoimmune inflammation mediated epidermolysis bullosa acquisita (EBA). This review describes the role of the actin cytoskeleton and in particular the actin remodelling protein called Flightless I (Flii) in regulating cellular inflammatory responses and its subsequent effect on the autoimmune skin blistering disease EBA. It also outlines the potential of an antibody based therapy for decreasing Flii expression in vivo to ameliorate the symptoms associated with EBA. PMID:27420054

  11. Cortactin Branches Out: Roles in Regulating Protrusive Actin Dynamics

    PubMed Central

    Ammer, Amanda Gatesman; Weed, Scott A.

    2008-01-01

    Since its discovery in the early 1990’s, cortactin has emerged as a key signaling protein in many cellular processes, including cell adhesion, migration, endocytosis, and tumor invasion. While the list of cellular functions influenced by cortactin grows, the ability of cortactin to interact with and alter the cortical actin network is central to its role in regulating these processes. Recently, several advances have been made in our understanding of the interaction between actin and cortactin, providing insight into how these two proteins work together to provide a framework for normal and altered cellular function. This review examines how regulation of cortactin through post-translational modifications and interactions with multiple binding partners elicits changes in cortical actin cytoskeletal organization, impacting the regulation and formation of actin-rich motility structures. PMID:18615630

  12. Actin Interacts with Dengue Virus 2 and 4 Envelope Proteins.

    PubMed

    Jitoboam, Kunlakanya; Phaonakrop, Narumon; Libsittikul, Sirikwan; Thepparit, Chutima; Roytrakul, Sittiruk; Smith, Duncan R

    2016-01-01

    Dengue virus (DENV) remains a significant public health problem in many tropical and sub-tropical countries worldwide. The DENV envelope (E) protein is the major antigenic determinant and the protein that mediates receptor binding and endosomal fusion. In contrast to some other DENV proteins, relatively few cellular interacting proteins have been identified. To address this issue a co-immuoprecipitation strategy was employed. The predominant co-immunoprecipitating proteins identified were actin and actin related proteins, however the results suggested that actin was the only bona fide interacting partner. Actin was shown to interact with the E protein of DENV 2 and 4, and the interaction between actin and DENV E protein was shown to occur in a truncated DENV consisting of only domains I and II. Actin was shown to decrease during infection, but this was not associated with a decrease in gene transcription. Actin-related proteins also showed a decrease in expression during infection that was not transcriptionally regulated. Cytoskeletal reorganization was not observed during infection, suggesting that the interaction between actin and E protein has a cell type specific component. PMID:27010925

  13. Actin Interacts with Dengue Virus 2 and 4 Envelope Proteins

    PubMed Central

    Jitoboam, Kunlakanya; Phaonakrop, Narumon; Libsittikul, Sirikwan; Thepparit, Chutima; Roytrakul, Sittiruk; Smith, Duncan R.

    2016-01-01

    Dengue virus (DENV) remains a significant public health problem in many tropical and sub-tropical countries worldwide. The DENV envelope (E) protein is the major antigenic determinant and the protein that mediates receptor binding and endosomal fusion. In contrast to some other DENV proteins, relatively few cellular interacting proteins have been identified. To address this issue a co-immuoprecipitation strategy was employed. The predominant co-immunoprecipitating proteins identified were actin and actin related proteins, however the results suggested that actin was the only bona fide interacting partner. Actin was shown to interact with the E protein of DENV 2 and 4, and the interaction between actin and DENV E protein was shown to occur in a truncated DENV consisting of only domains I and II. Actin was shown to decrease during infection, but this was not associated with a decrease in gene transcription. Actin-related proteins also showed a decrease in expression during infection that was not transcriptionally regulated. Cytoskeletal reorganization was not observed during infection, suggesting that the interaction between actin and E protein has a cell type specific component. PMID:27010925

  14. TREK-1 Regulates Cytokine Secretion from Cultured Human Alveolar Epithelial Cells Independently of Cytoskeletal Rearrangements

    PubMed Central

    Schwingshackl, Andreas; Roan, Esra; Teng, Bin; Waters, Christopher M.

    2015-01-01

    Background TREK-1 deficient alveolar epithelial cells (AECs) secrete less IL-6, more MCP-1, and contain less F-actin. Whether these alterations in cytokine secretion and F-actin content are related remains unknown. We now hypothesized that cytokine secretion from TREK-1-deficient AECs was regulated by cytoskeletal rearrangements. Methods We determined F-actin and α-tubulin contents of control, TREK-1-deficient and TREK-1-overexpressing human A549 cells by confocal microscopy and western blotting, and measured IL-6 and MCP-1 levels using real-time PCR and ELISA. Results Cytochalasin D decreased the F-actin content of control cells. Jasplakinolide increased the F-actin content of TREK-1 deficient cells, similar to the effect of TREK-1 overexpression in control cells. Treatment of control and TREK-1 deficient cells with TNF-α, a strong stimulus for IL-6 and MCP-1 secretion, had no effect on F-actin structures. The combination of TNF-α+cytochalasin D or TNF-α+jasplakinolide had no additional effect on the F-actin content or architecture when compared to cytochalasin D or jasplakinolide alone. Although TREK-1 deficient AECs contained less F-actin at baseline, quantified biochemically, they contained more α-tubulin. Exposure to nocodazole disrupted α-tubulin filaments in control and TREK-1 deficient cells, but left the overall amount of α-tubulin unchanged. Although TNF-α had no effect on the F-actin or α-tubulin contents, it increased IL-6 and MCP-1 production and secretion from control and TREK-1 deficient cells. IL-6 and MCP-1 secretions from control and TREK-1 deficient cells after TNF-α+jasplakinolide or TNF-α+nocodazole treatment was similar to the effect of TNF-α alone. Interestingly, cytochalasin D decreased TNF-α-induced IL-6 but not MCP-1 secretion from control but not TREK-1 deficient cells. Conclusion Although cytochalasin D, jasplakinolide and nocodazole altered the F-actin and α-tubulin structures of control and TREK-1 deficient AEC, the

  15. Dynamic Regulation of Sarcomeric Actin Filaments in Striated Muscle

    PubMed Central

    Ono, Shoichiro

    2010-01-01

    In striated muscle, the actin cytoskeleton is differentiated into myofibrils. Actin and myosin filaments are organized in sarcomeres and specialized for producing contractile forces. Regular arrangement of actin filaments with uniform length and polarity is critical for the contractile function. However, the mechanisms of assembly and maintenance of sarcomeric actin filaments in striated muscle are not completely understood. Live imaging of actin in striated muscle has revealed that actin subunits within sarcomeric actin filaments are dynamically exchanged without altering overall sarcomeric structures. A number of regulators for actin dynamics have been identified, and malfunction of these regulators often result in disorganization of myofibril structures or muscle diseases. Therefore, proper regulation of actin dynamics in striated muscle is critical for assembly and maintenance of functional myofibrils. Recent studies have suggested that both enhancers of actin dynamics and stabilizers of actin filaments are important for sarcomeric actin organization. Further investigation of the regulatory mechanism of actin dynamics in striated muscle should be a key to understanding how myofibrils develop and operate. © 2010 Wiley-Liss, Inc. PMID:20737540

  16. Widespread mRNA Association with Cytoskeletal Motor Proteins and Identification and Dynamics of Myosin-Associated mRNAs in S. cerevisiae

    PubMed Central

    Casolari, Jason M.; Thompson, Michael A.; Salzman, Julia; Champion, Lowry M.; Moerner, W. E.; Brown, Patrick O.

    2012-01-01

    Programmed mRNA localization to specific subcellular compartments for localized translation is a fundamental mechanism of post-transcriptional regulation that affects many, and possibly all, mRNAs in eukaryotes. We describe her e a systematic approach to identify the RNA cargoes associated with the cytoskeletal motor proteins of Saccharomyces cerevisiae in combination with live-cell 3D super-localization microscopy of endogenously tagged mRNAs. Our analysis identified widespread association of mRNAs with cytoskeletal motor proteins, including association of Myo3 with mRNAs encoding key regulators of actin branching and endocytosis such as WASP and WIP. Using conventional fluorescence microscopy and expression of MS2-tagged mRNAs from endogenous loci, we observed a strong bias for actin patch nucleator mRNAs to localize to the cell cortex and the actin patch in a Myo3- and F-actin dependent manner. Use of a double-helix point spread function (DH-PSF) microscope allowed super-localization measurements of single mRNPs at a spatial precision of 25 nm in x and y and 50 nm in z in live cells with 50 ms exposure times, allowing quantitative profiling of mRNP dynamics. The actin patch mRNA exhibited distinct and characteristic diffusion coefficients when compared to a control mRNA. In addition, disruption of F-actin significantly expanded the 3D confinement radius of an actin patch nucleator mRNA, providing a quantitative assessment of the contribution of the actin cytoskeleton to mRNP dynamic localization. Our results provide evidence for specific association of mRNAs with cytoskeletal motor proteins in yeast, suggest that different mRNPs have distinct and characteristic dynamics, and lend insight into the mechanism of actin patch nucleator mRNA localization to actin patches. PMID:22359641

  17. 3D Actin Network Centerline Extraction with Multiple Active Contours

    PubMed Central

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2013-01-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and actin cables. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we propose a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D Total Internal Reflection Fluorescence Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy. Quantitative evaluation of the method using synthetic images shows that for images with SNR above 5.0, the average vertex error measured by the distance between our result and ground truth is 1 voxel, and the average Hausdorff distance is below 10 voxels. PMID:24316442

  18. Probing the actin-auxin oscillator

    PubMed Central

    2010-01-01

    The directional transport of the plant hormone auxin depends on transcellular gradients of auxin-efflux carriers that continuously cycle between plasma membrane and intracellular compartments. This cycling has been proposed to depend on actin filaments. However, the role of actin for the polarity of auxin transport has been disputed. To get insight into this question, actin bundling was induced by overexpression of the actin-binding domain of talin in tobacco BY-2 cells and in rice plants. This bundling can be reverted by addition of auxins, which allows to address the role of actin organization on the flux of auxin. In both systems, the reversion of a normal actin configuration can be restored by addition of exogenous auxins and this fully restores the respective auxin-dependent functions. These findings lead to a model of a self-referring regulatory circuit between polar auxin transport and actin organization. To further dissect the actin-auxin oscillator, we used photoactivated release of caged auxin in tobacco cells to demonstrate that auxin gradients can be manipulated at a subcellular level. PMID:20023411

  19. Stable Force Balance between Epithelial Cells Arises from F-Actin Turnover.

    PubMed

    Jodoin, Jeanne N; Coravos, Jonathan S; Chanet, Soline; Vasquez, Claudia G; Tworoger, Michael; Kingston, Elena R; Perkins, Lizabeth A; Perrimon, Norbert; Martin, Adam C

    2015-12-21

    The propagation of force in epithelial tissues requires that the contractile cytoskeletal machinery be stably connected between cells through E-cadherin-containing adherens junctions. In many epithelial tissues, the cells' contractile network is positioned at a distance from the junction. However, the mechanism or mechanisms that connect the contractile networks to the adherens junctions, and thus mechanically connect neighboring cells, are poorly understood. Here, we identified the role for F-actin turnover in regulating the contractile cytoskeletal network's attachment to adherens junctions. Perturbing F-actin turnover via gene depletion or acute drug treatments that slow F-actin turnover destabilized the attachment between the contractile actomyosin network and adherens junctions. Our work identifies a critical role for F-actin turnover in connecting actomyosin to intercellular junctions, defining a dynamic process required for the stability of force balance across intercellular contacts in tissues.

  20. The Switch-associated Protein 70 (SWAP-70) Bundles Actin Filaments and Contributes to the Regulation of F-actin Dynamics*

    PubMed Central

    Chacón-Martínez, Carlos Andrés; Kiessling, Nadine; Winterhoff, Moritz; Faix, Jan; Müller-Reichert, Thomas; Jessberger, Rolf

    2013-01-01

    Coordinated assembly and disassembly of actin into filaments and higher order structures such as stress fibers and lamellipodia are fundamental for cell migration and adhesion. However, the precise spatiotemporal regulation of F-actin structures is not completely understood. SWAP-70, a phosphatidylinositol 3,4,5-trisphosphate-interacting, F-actin-binding protein, participates in actin rearrangements through yet unknown mechanisms. Here, we show that SWAP-70 is an F-actin-bundling protein that oligomerizes through a Gln/Glu-rich stretch within a coiled-coil region. SWAP-70 bundles filaments in parallel and anti-parallel fashion through its C-terminal F-actin binding domain and delays dilution-induced F-actin depolymerization. We further demonstrate that SWAP-70 co-localizes and directly interacts with cofilin, an F-actin severing and depolymerization factor, and contributes to the regulation of cofilin activity in vivo. In line with these activities, upon stem cell factor stimulation, murine bone marrow-derived mast cells lacking SWAP-70 display aberrant regulation of F-actin and actin free barbed ends dynamics. Moreover, proper stem cell factor-dependent cofilin activation via dephosphorylation and subcellular redistribution into a detergent-resistant cytoskeletal compartment also require SWAP-70. Together, these findings reveal an important role of SWAP-70 in the dynamic spatiotemporal regulation of F-actin networks. PMID:23921380

  1. SelR reverses Mical-mediated oxidation of actin to regulate F-actin dynamics.

    PubMed

    Hung, Ruei-Jiun; Spaeth, Christopher S; Yesilyurt, Hunkar Gizem; Terman, Jonathan R

    2013-12-01

    Actin's polymerization properties are markedly altered by oxidation of its conserved Met 44 residue. Mediating this effect is a specific oxidation-reduction (redox) enzyme, Mical, that works with Semaphorin repulsive guidance cues and selectively oxidizes Met 44. We now find that this actin-regulatory process is reversible. Employing a genetic approach, we identified a specific methionine sulfoxide reductase (MsrB) enzyme SelR that opposes Mical redox activity and Semaphorin-Plexin repulsion to direct multiple actin-dependent cellular behaviours in vivo. SelR specifically catalyses the reduction of the R isomer of methionine sulfoxide (methionine-R-sulfoxide) to methionine, and we found that SelR directly reduced Mical-oxidized actin, restoring its normal polymerization properties. These results indicate that Mical oxidizes actin stereospecifically to generate actin Met-44-R-sulfoxide (actin(Met(R)O-44)), and also implicate the interconversion of specific Met/Met(R)O residues as a precise means to modulate protein function. Our results therefore uncover a specific reversible redox actin regulatory system that controls cell and developmental biology.

  2. Viscoelastic properties of actin-coated membranes

    NASA Astrophysics Data System (ADS)

    Helfer, E.; Harlepp, S.; Bourdieu, L.; Robert, J.; Mackintosh, F. C.; Chatenay, D.

    2001-02-01

    In living cells, cytoskeletal filaments interact with the plasma membrane to form structures that play a key role in cell shape and mechanical properties. To study the interaction between these basic components, we designed an in vitro self-assembled network of actin filaments attached to the outer surface of giant unilamellar vesicles. Optical tweezers and single-particle tracking experiments are used to study the rich dynamics of these actin-coated membranes (ACM). We show that microrheology studies can be carried out on such an individual microscopic object. The principle of the experiment consists in measuring the thermally excited position fluctuations of a probe bead attached biochemically to the membrane. We propose a model that relates the power spectrum of these thermal fluctuations to the viscoelastic properties of the membrane. The presence of the actin network modifies strongly the membrane dynamics with respect to a fluid, lipid bilayer one. It induces first a finite (ω=0) two-dimensional (2D) shear modulus G02D~0.5 to 5 μN/m in the membrane plane. Moreover, the frequency dependence at high frequency of the shear modulus [G'2D(f )~f0.85+/-0.07] and of the bending modulus (κACM(f)~f0.55+/-0.21) demonstrate the viscoelastic behavior of the composite membrane. These results are consistent with a common exponent of 0.75 for both moduli as expected from our model and from prior measurements on actin solutions.

  3. Distribution of actin of the human erythrocyte membrane cytoskeleton after interaction with radiographic contrast media.

    PubMed

    Franke, R P; Scharnweber, T; Fuhrmann, R; Krüger, A; Wenzel, F; Mrowietz, C; Jung, F

    2013-01-01

    A type-dependent chemotoxic effect of radiographic contrast media on erythrocytes and endothelial cells was reported several times. While mechanisms of toxicity are still unclear the cellular reactions e.g. echinocyte formation in erythrocytes and the buckling of endothelial cells coincided with deterioration of capillary perfusion (in patients with coronary artery disease) and tissue oxygen tension (in the myocardium of pigs). Whether the shape changes in erythrocytes coincide with changes in the arrangement of actin, the core of the actin-spectrin cytoskeletal network and possible actor in membrane stresses and deformation is not known until now. To get specific informations actin was stained using two different staining methods (antibodies to β-actin staining oligomeric G-actin and polymeric F-actin and Phalloidin-Rhodamin staining polymeric F-actin only). In addition, an advanced version of confocal laser scanning microscopes was used enabling the display of the actin arrangement near substrate surfaces. Blood smears were produced after erythrocyte suspension in autologous plasma or in two different plasma/RCM mixtures. In this study an even homogenous distribution of fine grained globular actin in the normal human erythrocyte could be demonstrated. After suspension of erythrocytes in a plasma/Iodixanol mixture an increased number of membrane protrusions appeared densely filled with intensely stained actin similar to cells suspended in autologous plasma, however, there in less numbers. Suspension in Iopromide, in contrast, induced a complete reorganization of the cytoskeletal actin: the fine grained globular actin distribution disappeared and only few, long and thick actin filaments bundled and possibly polymerized appeared, instead, shown here for the first time.

  4. Quantitative Evaluation of Stomatal Cytoskeletal Patterns during the Activation of Immune Signaling in Arabidopsis thaliana

    PubMed Central

    Shimono, Masaki; Higaki, Takumi; Kaku, Hanae; Shibuya, Naoto; Hasezawa, Seiichiro

    2016-01-01

    Historically viewed as primarily functioning in the regulation of gas and water vapor exchange, it is now evident that stomata serve an important role in plant immunity. Indeed, in addition to classically defined functions related to cell architecture and movement, the actin cytoskeleton has emerged as a central component of the plant immune system, underpinning not only processes related to cell shape and movement, but also receptor activation and signaling. Using high resolution quantitative imaging techniques, the temporal and spatial changes in the actin microfilament array during diurnal cycling of stomatal guard cells has revealed a highly orchestrated transition from random arrays to ordered bundled filaments. While recent studies have demonstrated that plant stomata close in response to pathogen infection, an evaluation of stimulus-induced changes in actin cytoskeletal dynamics during immune activation in the guard cell, as well as the relationship of these changes to the function of the actin cytoskeleton and stomatal aperture, remains undefined. In the current study, we employed quantitative cell imaging and hierarchical clustering analyses to define the response of the guard cell actin cytoskeleton to pathogen infection and the elicitation of immune signaling. Using this approach, we demonstrate that stomatal-localized actin filaments respond rapidly, and specifically, to both bacterial phytopathogens and purified pathogen elicitors. Notably, we demonstrate that higher order temporal and spatial changes in the filament array show distinct patterns of organization during immune activation, and that changes in the naïve diurnal oscillations of guard cell actin filaments are perturbed by pathogens, and that these changes parallel pathogen-induced stomatal gating. The data presented herein demonstrate the application of a highly tractable and quantifiable method to assign transitions in actin filament organization to the activation of immune signaling in

  5. Quantitative Evaluation of Stomatal Cytoskeletal Patterns during the Activation of Immune Signaling in Arabidopsis thaliana.

    PubMed

    Shimono, Masaki; Higaki, Takumi; Kaku, Hanae; Shibuya, Naoto; Hasezawa, Seiichiro; Day, Brad

    2016-01-01

    Historically viewed as primarily functioning in the regulation of gas and water vapor exchange, it is now evident that stomata serve an important role in plant immunity. Indeed, in addition to classically defined functions related to cell architecture and movement, the actin cytoskeleton has emerged as a central component of the plant immune system, underpinning not only processes related to cell shape and movement, but also receptor activation and signaling. Using high resolution quantitative imaging techniques, the temporal and spatial changes in the actin microfilament array during diurnal cycling of stomatal guard cells has revealed a highly orchestrated transition from random arrays to ordered bundled filaments. While recent studies have demonstrated that plant stomata close in response to pathogen infection, an evaluation of stimulus-induced changes in actin cytoskeletal dynamics during immune activation in the guard cell, as well as the relationship of these changes to the function of the actin cytoskeleton and stomatal aperture, remains undefined. In the current study, we employed quantitative cell imaging and hierarchical clustering analyses to define the response of the guard cell actin cytoskeleton to pathogen infection and the elicitation of immune signaling. Using this approach, we demonstrate that stomatal-localized actin filaments respond rapidly, and specifically, to both bacterial phytopathogens and purified pathogen elicitors. Notably, we demonstrate that higher order temporal and spatial changes in the filament array show distinct patterns of organization during immune activation, and that changes in the naïve diurnal oscillations of guard cell actin filaments are perturbed by pathogens, and that these changes parallel pathogen-induced stomatal gating. The data presented herein demonstrate the application of a highly tractable and quantifiable method to assign transitions in actin filament organization to the activation of immune signaling in

  6. The cytoskeletal protein α-catenin unfurls upon binding to vinculin.

    PubMed

    Rangarajan, Erumbi S; Izard, Tina

    2012-05-25

    Adherens junctions (AJs) are essential for cell-cell contacts, morphogenesis, and the development of all higher eukaryotes. AJs are formed by calcium-dependent homotypic interactions of the ectodomains of single membrane-pass cadherin family receptors. These homotypic interactions in turn promote binding of the intracellular cytoplasmic tail domains of cadherin receptors with β-catenin, a multifunctional protein that plays roles in both transcription and AJs. The cadherin receptor-β-catenin complex binds to the cytoskeletal protein α-catenin, which is essential for both the formation and the stabilization of these junctions. Precisely how α-catenin contributes to the formation and stabilization of AJs is hotly debated, although the latter is thought to involve its interactions with the cytoskeletal protein vinculin. Here we report the crystal structure of the vinculin binding domain (VBD) of α-catenin in complex with the vinculin head domain (Vh1). This structure reveals that α-catenin is in a unique unfurled mode allowing dimer formation when bound to vinculin. Finally, binding studies suggest that vinculin must be in an activated state to bind to α-catenin and that this interaction is stabilized by the formation of a ternary α-catenin-vinculin-F-actin complex, which can be formed via the F-actin binding domain of either protein. We propose a feed-forward model whereby α-catenin-vinculin interactions promote their binding to the actin cytoskeleton to stabilize AJs. PMID:22493458

  7. Organized F-actin is essential for normal trichome morphogenesis in Arabidopsis.

    PubMed Central

    Szymanski, D B; Marks, M D; Wick, S M

    1999-01-01

    Actin microfilaments form a three-dimensional cytoskeletal network throughout the cell and constitute an essential throughway for organelle and vesicle transport. Development of Arabidopsis trichomes, unicellular structures derived from the epidermis, is being used as a genetic system in which to study actin-dependent growth in plant cells. The present study indicates that filamentous actin (F-actin) plays an important role during Arabidopsis trichome morphogenesis. For example, immunolocalization of actin filaments during trichome morphogenesis identified rearrangements of the cytoskeletal structure during the development of the mature cell. Moreover, pharmacological experiments indicate that there are distinct requirements for actin- and microtubule-dependent function during trichome morphogenesis. The F-actin-disrupting drug cytochalasin D does not affect the establishment of polarity during trichome development; however, maintenance and coordination of the normal pattern of cell growth are very sensitive to this drug. In contrast, oryzalin, an agent that depolymerizes microtubules, severely inhibits cell polarization. Furthermore, cytochalasin D treatment phenocopies a known class of mutations that cause distorted trichome morphology. Results of an analysis of cell shape and microfilament structure in wild-type, mutant, and drug-treated trichomes are consistent with a role for actin in the maintenance and coordination of an established growth pattern. PMID:10590162

  8. Cytoskeletal architecture and cell motility remain unperturbed in mouse embryonic fibroblasts from Plk3 knockout mice

    PubMed Central

    Michel, Daniel R; Mun, Kyu-Shik; Ho, Chia-Chi

    2016-01-01

    Polo-like kinase 3 (Plk3) is best known for its involvement in cell cycle checkpoint regulation following exposure to cytotoxicants or induction of DNA damage. Yet, Plk3 has also been implicated in roles beyond those of cellular responses to DNA damage. Here, we have investigated the proposition, suggested by the Plk literature, that Plk3 regulates cytoskeletal architecture and cell functions mediated by the cytoskeleton. To this end, we have assayed mouse embryonic fibroblasts (MEFs) generated from both Plk3 knockout and wild-type mice. In particular, we asked whether Plk3 is involved in actin fiber and microtubule integrity, cell migration, cell attachment, and/or cell invasion. Our results demonstrate that functional Plk3 is not critical for the regulation of cytoskeletal integrity, cell morphology, cell adhesion, or motility in MEFs. PMID:26843517

  9. Prostate Specific Membrane Antigen-Targeted Photodynamic Therapy Induces Rapid Cytoskeletal Disruption

    PubMed Central

    Liu, Tiancheng; Wu, Lisa Y.; Berkman, Clifford E.

    2010-01-01

    Prostate-specific membrane antigen (PSMA), an established enzyme-biomarker for prostate cancer, has attracted considerable attention as a target for imaging and therapeutic applications. We aimed to determine the effects of PSMA-targeted photodynamic therapy (PDT) on cytoskeletal networks in prostate cancer cells. PSMA-targeted PDT resulted in rapid disruption of microtubules (α-/β-tubulin), microfilaments (actin), and intermediate filaments (cytokeratin 8/18) in the cytoplasm of LNCaP cells. The collapse of cytoplasmic microtubules and the later nuclear translocation of α-/β-tubulin were the most dramatic alternation. It is likely that these early changes of cytoskeletal networks are partly involved in the initiation of cell death. PMID:20452720

  10. Heterotypic and homotypic associations between ezrin and moesin, two putative membrane-cytoskeletal linking proteins.

    PubMed Central

    Gary, R; Bretscher, A

    1993-01-01

    Ezrin and moesin are components of actin-rich cell surface structures that are thought to function as membrane-cytoskeletal linking proteins. Here we show that a stable complex of ezrin and moesin can be isolated from cultured cells by immunoprecipitation with specific antibodies. The capacity of these two proteins to interact directly was confirmed with a blot-overlay procedure in which biotin-tagged proteins in solution were incubated with immobilized binding partners. In addition to the heterotypic association of ezrin and moesin, homotypic binding of ezrin to ezrin and of moesin to moesin was also demonstrated in vitro. These results suggest mechanisms by which ezrin and moesin might participate in dynamic aspects of cortical cytoskeletal structure. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8248180

  11. Arabidopsis Actin Depolymerizing Factor4 Modulates the Stochastic Dynamic Behavior of Actin Filaments in the Cortical Array of Epidermal Cells[C][W

    PubMed Central

    Henty, Jessica L.; Bledsoe, Samuel W.; Khurana, Parul; Meagher, Richard B.; Day, Brad; Blanchoin, Laurent; Staiger, Christopher J.

    2011-01-01

    Actin filament arrays are constantly remodeled as the needs of cells change as well as during responses to biotic and abiotic stimuli. Previous studies demonstrate that many single actin filaments in the cortical array of living Arabidopsis thaliana epidermal cells undergo stochastic dynamics, a combination of rapid growth balanced by disassembly from prolific severing activity. Filament turnover and dynamics are well understood from in vitro biochemical analyses and simple reconstituted systems. However, the identification in living cells of the molecular players involved in controlling actin dynamics awaits the use of model systems, especially ones where the power of genetics can be combined with imaging of individual actin filaments at high spatial and temporal resolution. Here, we test the hypothesis that actin depolymerizing factor (ADF)/cofilin contributes to stochastic filament severing and facilitates actin turnover. A knockout mutant for Arabidopsis ADF4 has longer hypocotyls and epidermal cells when compared with wild-type seedlings. This correlates with a change in actin filament architecture; cytoskeletal arrays in adf4 cells are significantly more bundled and less dense than in wild-type cells. Several parameters of single actin filament turnover are also altered. Notably, adf4 mutant cells have a 2.5-fold reduced severing frequency as well as significantly increased actin filament lengths and lifetimes. Thus, we provide evidence that ADF4 contributes to the stochastic dynamic turnover of actin filaments in plant cells. PMID:22010035

  12. Palladin interacts with SH3 domains of SPIN90 and Src and is required for Src-induced cytoskeletal remodeling

    PubMed Central

    Rönty, Mikko; Taivainen, Anu; Heiska, Leena; Otey, Carol; Ehler, Elisabeth; Song, Woo Keun; Carpen, Olli

    2007-01-01

    Palladin and SPIN90 are widely expressed proteins, which participate in modulation of actin cytoskeleton by binding to a variety of scaffold and signaling molecules. Cytoskeletal reorganization can induced by activation of signaling pathways, including the PDGF receptor and Src tyrosine kinase pathways. In this study we have analyzed the interplay between palladin, SPIN90 and Src, and characterized the role of palladin and SPIN90 in PDGF and Src-induced cytoskeletal remodeling. We show that the SH3 domains of SPIN90 and Src directly bind palladin’s poly-proline sequence and the interaction controls intracellular targeting of SPIN90. In PDGF-treated cells, palladin and SPIN90 co-localize in actin rich membrane ruffles and lamellipodia. The effect of PDGF on the cytoskeleton is at least partly mediated by the Src kinase, since PP2, a selective Src kinase family inhibitor, blocked PDGF-induced changes. Furthermore, expression of active Src kinase resulted in coordinated translocation of both palladin and SPIN90 to membrane protrusions. Knock-down of endogenous SPIN90 did not inhibit Src-induced cytoskeletal rearrangement, whereas knock-down of palladin resulted in cytoskeletal disorganization and inhibition of remodeling. Further studies showed that palladin is tyrosine phosphorylated in cells expressing active Src indicating bidirectional interplay between palladin and Src. These results may have implications in understanding the invasive and metastatic phenotype of neoplastic cells induced by Src. PMID:17537434

  13. Unconventional actins and actin-binding proteins in human protozoan parasites.

    PubMed

    Gupta, C M; Thiyagarajan, S; Sahasrabuddhe, A A

    2015-06-01

    Actin and its regulatory proteins play a key role in several essential cellular processes such as cell movement, intracellular trafficking and cytokinesis in most eukaryotes. While these proteins are highly conserved in higher eukaryotes, a number of unicellular eukaryotic organisms contain divergent forms of these proteins which have highly unusual biochemical and structural properties. Here, we review the biochemical and structural properties of these unconventional actins and their core binding proteins which are present in commonly occurring human protozoan parasites.

  14. Bidirectional Interplay between Vimentin Intermediate Filaments and Contractile Actin Stress Fibers.

    PubMed

    Jiu, Yaming; Lehtimäki, Jaakko; Tojkander, Sari; Cheng, Fang; Jäälinoja, Harri; Liu, Xiaonan; Varjosalo, Markku; Eriksson, John E; Lappalainen, Pekka

    2015-06-16

    The actin cytoskeleton and cytoplasmic intermediate filaments contribute to cell migration and morphogenesis, but the interplay between these two central cytoskeletal elements has remained elusive. Here, we find that specific actin stress fiber structures, transverse arcs, interact with vimentin intermediate filaments and promote their retrograde flow. Consequently, myosin-II-containing arcs are important for perinuclear localization of the vimentin network in cells. The vimentin network reciprocally restricts retrograde movement of arcs and hence controls the width of flat lamellum at the leading edge of the cell. Depletion of plectin recapitulates the vimentin organization phenotype of arc-deficient cells without affecting the integrity of vimentin filaments or stress fibers, demonstrating that this cytoskeletal cross-linker is required for productive interactions between vimentin and arcs. Collectively, our results reveal that plectin-mediated interplay between contractile actomyosin arcs and vimentin intermediate filaments controls the localization and dynamics of these two cytoskeletal systems and is consequently important for cell morphogenesis.

  15. Cytoskeletal remodeling of rat aortic smooth muscle cells in vitro: relationships to culture conditions and analogies to in vivo situations.

    PubMed

    Skalli, O; Bloom, W S; Ropraz, P; Azzarone, B; Gabbiani, G

    1986-07-01

    Cytoskeletal features of arterial smooth muscle cells (SMC) vary characteristically during development and during atheromatous plaque formation (Gabbiani et al., 1984; Kocher et al., 1985). We have analyzed the cytoskeletal features of rat aortic SMC placed in culture in the presence of 10% foetal calf serum (thus containing growth factors probably playing a role in SMC development and atheroma formation), as compared to SMC freshly isolated from the rat aortic media. Under these conditions, SMC show a typical cytoskeletal remodeling characterized by: 1) increased content of vimentin per cell, increased number of cells containing only vimentin, and decreased number of vimentin plus desmin containing cells; 2) decreased contents of actin, tropomyosin and myosin; 3) a switch in the pattern of actin isoforms with the appearance of a beta-type predominance. Some of these changes (e.g. increase of vimentin and decrease of alpha-type actin) are seen already in cells entering for the first time in S-phase after plating. Pulse-chase experiments with 3H-thymidine (3H-TdR) indicate that vimentin containing SMC possess a higher replicative activity than vimentin plus desmin containing SMC, thus explaining the selection of vimentin containing cells during culture. Our results indicate that during culture SMC develop features similar to those observed in normal foetal SMC or in SMC present in atheromatous plaques; this model may be useful for the understanding of mechanisms leading to SMC differentiation and to atheroma formation. PMID:3528513

  16. Labial Salivary Glands in Infants: Histochemical Analysis of Cytoskeletal and Antimicrobial Proteins.

    PubMed

    Stoeckelhuber, Mechthild; Loeffelbein, Denys J; Olzowy, Bernhard; Schmitz, Christoph; Koerdt, Steffen; Kesting, Marco R

    2016-08-01

    Human labial glands secrete mucous and serous substances for maintaining oral health. The normal microbial flora of the oral cavity is regulated by the acquired and innate immune systems. The localization and distribution of proteins of the innate immune system were investigated in serous acinar cells and the ductal system by the method of immunohistochemistry. Numerous antimicrobial proteins could be detected in the labial glands: β-defensin-1, -2, -3; lysozyme; lactoferrin; and cathelicidin. Cytoskeletal components such as actin, myosin II, cytokeratins 7 and 19, α- and β-tubulin were predominantly observed in apical cell regions and may be involved in secretory activities. PMID:27439958

  17. Modeling of the motion of the actin filament on the myosin motility assays

    NASA Astrophysics Data System (ADS)

    Young, Yuan; Shelley, Mike

    2007-11-01

    In motility assays, cytoskeletal actin filaments (actin filaments) glide over a surface coated with motor proteins, and the different modes of motion provide a simple measure of the force exerted by the motor proteins (Bourdieu, 1995). Motivated by these experiments, we consider the actin filament as a slender, elastic filament immersed in Stokesian flow, driven by a tangential forcing that mimics the force by the motor proteins. We find qualitative agreement on several points between our analysis and simulations and experimental observations. Furthermore, we study the correlation between filament transport and the characteristics of motion with the spatial pattern of motor protein density.

  18. Cooperation of the BTB-Zinc finger protein, Abrupt, with cytoskeletal regulators in Drosophila epithelial tumorigenesis.

    PubMed

    Turkel, Nezaket; Portela, Marta; Poon, Carole; Li, Jason; Brumby, Anthony M; Richardson, Helena E

    2015-01-01

    The deregulation of cell polarity or cytoskeletal regulators is a common occurrence in human epithelial cancers. Moreover, there is accumulating evidence in human epithelial cancer that BTB-ZF genes, such as Bcl6 and ZBTB7A, are oncogenic. From our previous studies in the vinegar fly, Drosophila melanogaster, we have identified a cooperative interaction between a mutation in the apico-basal cell polarity regulator Scribble (Scrib) and overexpression of the BTB-ZF protein Abrupt (Ab). Herein, we show that co-expression of ab with actin cytoskeletal regulators, RhoGEF2 or Src64B, in the developing eye-antennal epithelial tissue results in the formation of overgrown amorphous tumours, whereas ab and DRac1 co-expression leads to non-cell autonomous overgrowth. Together with ab, these genes affect the expression of differentiation genes, resulting in tumours locked in a progenitor cell fate. Finally, we show that the expression of two mammalian genes related to ab, Bcl6 and ZBTB7A, which are oncogenes in mammalian epithelial cancers, significantly correlate with the upregulation of cytoskeletal genes or downregulation of apico-basal cell polarity neoplastic tumour suppressor genes in colorectal, lung and other human epithelial cancers. Altogether, this analysis has revealed that upregulation of cytoskeletal regulators cooperate with Abrupt in Drosophila epithelial tumorigenesis, and that high expression of human BTB-ZF genes, Bcl6 and ZBTB7A, shows significant correlations with cytoskeletal and cell polarity gene expression in specific epithelial tumour types. This highlights the need for further investigation of the cooperation between these genes in mammalian systems.

  19. Cooperation of the BTB-Zinc finger protein, Abrupt, with cytoskeletal regulators in Drosophila epithelial tumorigenesis

    PubMed Central

    Turkel, Nezaket; Portela, Marta; Poon, Carole; Li, Jason; Brumby, Anthony M.; Richardson, Helena E.

    2015-01-01

    ABSTRACT The deregulation of cell polarity or cytoskeletal regulators is a common occurrence in human epithelial cancers. Moreover, there is accumulating evidence in human epithelial cancer that BTB-ZF genes, such as Bcl6 and ZBTB7A, are oncogenic. From our previous studies in the vinegar fly, Drosophila melanogaster, we have identified a cooperative interaction between a mutation in the apico-basal cell polarity regulator Scribble (Scrib) and overexpression of the BTB-ZF protein Abrupt (Ab). Herein, we show that co-expression of ab with actin cytoskeletal regulators, RhoGEF2 or Src64B, in the developing eye-antennal epithelial tissue results in the formation of overgrown amorphous tumours, whereas ab and DRac1 co-expression leads to non-cell autonomous overgrowth. Together with ab, these genes affect the expression of differentiation genes, resulting in tumours locked in a progenitor cell fate. Finally, we show that the expression of two mammalian genes related to ab, Bcl6 and ZBTB7A, which are oncogenes in mammalian epithelial cancers, significantly correlate with the upregulation of cytoskeletal genes or downregulation of apico-basal cell polarity neoplastic tumour suppressor genes in colorectal, lung and other human epithelial cancers. Altogether, this analysis has revealed that upregulation of cytoskeletal regulators cooperate with Abrupt in Drosophila epithelial tumorigenesis, and that high expression of human BTB-ZF genes, Bcl6 and ZBTB7A, shows significant correlations with cytoskeletal and cell polarity gene expression in specific epithelial tumour types. This highlights the need for further investigation of the cooperation between these genes in mammalian systems. PMID:26187947

  20. Cytoskeletal rearrangements and the functional role of T-plastin during entry of Shigella flexneri into HeLa cells

    PubMed Central

    1995-01-01

    Shigella flexneri is an enteroinvasive bacterium which causes bacillary dysentery in humans. A major feature of its pathogenic potential is the capacity to invade epithelial cells. Shigella entry into epithelial cells is considered a parasite-induced internalization process requiring polymerization of actin. Here we describe the cytoskeletal rearrangements during S. flexneri invasion of HeLa cells. After an initial contact of the bacterium with the cell surface, distinct nucleation zones of heavy chain actin polymerization appear in close proximity to the contact site underneath the parasite with long filaments being polymerized. These structures then push cellular protrusions that rise beside the entering bacterium, being sustained by tightly bundled long actin filaments organized in parallel orientation with their positive ends pointing to the cytoplasmic membrane. Finally, the cellular projections coalesce above the bacterial body, leading to its internalization. In addition, we found the actin-bundling protein plastin to be concentrated in these protrusions. Since plastin is known to bundle actin filaments in parallel orientation, colocalization of parallel actin filaments and plastin in the cellular protrusions strongly suggested a functional role of this protein in the architecture of parasite-induced cellular projections. Using transfection experiments, we show the differential recruitment of the two plastin isoforms (T- and L-) into Shigella entry zones. By transient expression of a truncated T-plastin which is deprived of one of its actin-binding sites, we also demonstrate the functional role of T-plastin in Shigella entry into HeLa cells. PMID:7721941

  1. The Plasma Membrane Potential and the Organization of the Actin Cytoskeleton of Epithelial Cells

    PubMed Central

    Chifflet, Silvia; Hernández, Julio A.

    2012-01-01

    The establishment and maintenance of the polarized epithelial phenotype require a characteristic organization of the cytoskeletal components. There are many cellular effectors involved in the regulation of the cytoskeleton of epithelial cells. Recently, modifications in the plasma membrane potential (PMP) have been suggested to participate in the modulation of the cytoskeletal organization of epithelia. Here, we review evidence showing that changes in the PMP of diverse epithelial cells promote characteristic modifications in the cytoskeletal organization, with a focus on the actin cytoskeleton. The molecular paths mediating these effects may include voltage-sensitive integral membrane proteins and/or peripheral proteins sensitive to surface potentials. The voltage dependence of the cytoskeletal organization seems to have implications in several physiological processes, including epithelial wound healing and apoptosis. PMID:22315611

  2. Molecular Mechanisms of Host Cytoskeletal Rearrangements by Shigella Invasins

    PubMed Central

    Lee, Jun Hyuck; Park, HaJeung; Park, Yong Ho

    2014-01-01

    Pathogen-induced reorganization of the host cell cytoskeleton is a common strategy utilized in host cell invasion by many facultative intracellular bacteria, such as Shigella, Listeria, enteroinvasive E. coli and Salmonella. Shigella is an enteroinvasive intracellular pathogen that preferentially infects human epithelial cells and causes bacillary dysentery. Invasion of Shigella into intestinal epithelial cells requires extensive remodeling of the actin cytoskeleton with the aid of pathogenic effector proteins injected into the host cell by the activity of the type III secretion system. These so-called Shigella invasins, including IpaA, IpaC, IpgB1, IpgB2 and IpgD, modulate the actin-regulatory system in a concerted manner to guarantee efficient entry of the bacteria into host cells. PMID:25310650

  3. Membrane-associated actin in the rhabdomeral microvilli of crayfish photoreceptors

    PubMed Central

    1984-01-01

    Infiltration of compound eyes of crayfish, Cherax destructor, with the thiol protease inhibitor Ep-475 or with trifluoperazine prior to fixation for electron microscopy was found to stabilize an axial filament of 6-12 nm diam within each rhabdomeral microvillus of the photoreceptors. Rhabdoms isolated from retinal homogenates by sucrose gradient centrifugation under conditions that stabilize cytoskeletal material contained large amounts of a 42-kd polypeptide that co- migrated with insect flight muscle actin in one- and two-dimensional PAGE, inhibited pancreatic DNase l, and bound to vertebrate myosin. Vertebrate skeletal muscle actin added to retinal homogenates did not co-purify with rhabdoms, implying that actin was not a contaminant from nonmembranous structures. DNase l inhibition assays of detergent-lysed rhabdoms indicated the presence of large amounts of filamentous actin provided ATP was present. Monomeric actin in such preparations was completely polymerizable only after 90 min incubation with equimolar phalloidin. More than half of the actin present could be liberated from the membrane by sonication, indicating a loose association with the membrane. However, a large proportion of the actin was tightly bound to the rhabdomeral membrane, and washing sonicated membrane fractions with solutions of a range of ionic strengths and nonionic detergents failed to remove it. Antibodies to scallop actin only bound to frozen sections of rhabdoms after gentle permeabilization and very long incubation periods, probably because of steric hindrance and the hydrophobicity of the structure. The F-actin probe nitrobenzoxadiazol phallacidin bound to rhabdoms and labeled F-actin aggregates in other retinal components, but rhabdom fluorescence was not abolished by preincubation with phalloidin. The biochemical data indicate the existence of two distinct actin-based cytoskeletal systems, one being closely membrane associated. The other may possibly constitute the axial filament

  4. The degree of resistance of erythrocyte membrane cytoskeletal proteins to supra-physiologic concentrations of calcium: an in vitro study.

    PubMed

    Mostafavi, Ebrahim; Nargesi, Arash Aghajani; Ghazizadeh, Zaniar; Larry, Mehrdad; Farahani, Roya Horabad; Morteza, Afsaneh; Esteghamati, Alireza; Vigneron, Claude; Nakhjavani, Manouchehr

    2014-08-01

    Calcium is a key regulator of cell dynamics. Dysregulation of its cytosolic concentration is implicated in the pathophysiology of several diseases. This study aimed to assess the effects of calcium on the network of membrane cytoskeletal proteins. Erythrocyte membranes were obtained from eight healthy donors and incubated with 250 µM and 1.25 mM calcium solutions. Membrane cytoskeletal proteins were quantified using SDS-PAGE at baseline and after 3 and 5 days of incubation. Supra-physiologic concentrations of calcium (1.25 mM) induced a significant proteolysis in membrane cytoskeletal proteins, compared with magnesium (p < 0.001). Actin exhibited the highest sensitivity to calcium-induced proteolysis (6.8 ± 0.3 vs. 5.3 ± 0.6, p < 0.001), while spectrin (39.9 ± 1.0 vs. 40.3 ± 2.0, p = 0.393) and band-6 (6.3 ± 0.3 vs. 6.8 ± 0.8, p = 0.191) were more resistant to proteolysis after incubation with calcium in the range of endoplasmic reticulum concentrations (250 µM). Aggregation of membrane cytoskeletal proteins was determined after centrifugation and was significantly higher after incubation with calcium ions compared with control, EDTA and magnesium solutions (p < 0.001). In a supra-physiologic range of 1.25-10 mM of calcium ions, there was a nearly perfect linear relationship between calcium concentration and aggregation of erythrocyte membrane cytoskeletal proteins (R(2) = 0.971, p < 0.001). Our observation suggests a strong interaction between calcium ions and membrane cytoskeletal network. Cumulative effects of disrupted calcium homeostasis on cytoskeletal proteins need to be further investigated at extended periods of time in disease states.

  5. The degree of resistance of erythrocyte membrane cytoskeletal proteins to supra-physiologic concentrations of calcium: an in vitro study.

    PubMed

    Mostafavi, Ebrahim; Nargesi, Arash Aghajani; Ghazizadeh, Zaniar; Larry, Mehrdad; Farahani, Roya Horabad; Morteza, Afsaneh; Esteghamati, Alireza; Vigneron, Claude; Nakhjavani, Manouchehr

    2014-08-01

    Calcium is a key regulator of cell dynamics. Dysregulation of its cytosolic concentration is implicated in the pathophysiology of several diseases. This study aimed to assess the effects of calcium on the network of membrane cytoskeletal proteins. Erythrocyte membranes were obtained from eight healthy donors and incubated with 250 µM and 1.25 mM calcium solutions. Membrane cytoskeletal proteins were quantified using SDS-PAGE at baseline and after 3 and 5 days of incubation. Supra-physiologic concentrations of calcium (1.25 mM) induced a significant proteolysis in membrane cytoskeletal proteins, compared with magnesium (p < 0.001). Actin exhibited the highest sensitivity to calcium-induced proteolysis (6.8 ± 0.3 vs. 5.3 ± 0.6, p < 0.001), while spectrin (39.9 ± 1.0 vs. 40.3 ± 2.0, p = 0.393) and band-6 (6.3 ± 0.3 vs. 6.8 ± 0.8, p = 0.191) were more resistant to proteolysis after incubation with calcium in the range of endoplasmic reticulum concentrations (250 µM). Aggregation of membrane cytoskeletal proteins was determined after centrifugation and was significantly higher after incubation with calcium ions compared with control, EDTA and magnesium solutions (p < 0.001). In a supra-physiologic range of 1.25-10 mM of calcium ions, there was a nearly perfect linear relationship between calcium concentration and aggregation of erythrocyte membrane cytoskeletal proteins (R(2) = 0.971, p < 0.001). Our observation suggests a strong interaction between calcium ions and membrane cytoskeletal network. Cumulative effects of disrupted calcium homeostasis on cytoskeletal proteins need to be further investigated at extended periods of time in disease states. PMID:24930024

  6. VEGF-A, cytoskeletal dynamics, and the pathological vascular phenotype

    SciTech Connect

    Nagy, Janice A. . E-mail: jnagy@bidmc.harvard.edu; Senger, Donald R. . E-mail: dsenger@bidmc.harvard.edu

    2006-03-10

    Normal angiogenesis is a complex process involving the organization of proliferating and migrating endothelial cells (ECs) into a well-ordered and highly functional vascular network. In contrast, pathological angiogenesis, which is a conspicuous feature of tumor growth, ischemic diseases, and chronic inflammation, is characterized by vessels with aberrant angioarchitecture and compromised barrier function. Herein we review the subject of pathological angiogenesis, particularly that driven by vascular endothelial growth factor (VEGF-A), from a new perspective. We propose that the serious structural and functional anomalies associated with VEGF-A-elicited neovessels, reflect, at least in part, imbalances in the internal molecular cues that govern the ordered assembly of ECs into three dimensional vascular networks and preserve vessel barrier function. Adopting such a viewpoint widens the focus from solely on specific pro-angiogenic stimuli such as VEGF-A to include a key set of cytoskeletal regulatory molecules, the Rho GTPases, which are known to direct multiple aspects of vascular morphogenesis including EC motility, alignment, multi-cellular organization, as well as intercellular junction integrity. We offer this perspective to draw attention to the importance of endothelial cytoskeletal dynamics for proper neovascularization and to suggest new therapeutic strategies with the potential to improve the pathological vascular phenotype.

  7. Shear-induced reorganization of renal proximal tubule cell actin cytoskeleton and apical junctional complexes.

    PubMed

    Duan, Yi; Gotoh, Nanami; Yan, Qingshang; Du, Zhaopeng; Weinstein, Alan M; Wang, Tong; Weinbaum, Sheldon

    2008-08-12

    In this study, we demonstrate that fluid shear stress (FSS)-induced actin cytoskeletal reorganization and junctional formation in renal epithelial cells are nearly completely opposite the corresponding changes in vascular endothelial cells (ECs) [Thi MM et al. (2004) Proc Natl Acad Sci USA 101:16483-16488]. Mouse proximal tubule cells (PTCs) were subjected to 5 h of FSS (1 dyn/cm(2)) to investigate the dynamic responses of the cytoskeletal distribution of filamentous actin (F-actin), ZO-1, E-cadherin, vinculin, and paxillin to FSS. Immunofluorescence analysis revealed that FSS caused basal stress fiber disruption, more densely distributed peripheral actin bands (DPABs), and the formation of both tight junctions (TJs) and adherens junctions (AJs). A dramatic reinforcement of vinculin staining was found at the cell borders as well as the cell interior. These responses were abrogated by the actin-disrupting drug, cytochalasin D. To interpret these results, we propose a "junctional buttressing" model for PTCs in which FSS enables the DPABs, TJs, and AJs to become more tightly connected. In contrast, in the "bumper-car" model for ECs, all junctional connections were severely disrupted by FSS. This "junctional buttressing" model explains why a FSS of only 1/10 of that used in the EC study can cause a similarly dramatic, cytoskeletal response in these tall, cuboidal epithelial cells; and why junctional buttressing between adjacent cells may benefit renal epithelium in maximizing flow-activated, brush border-dependent, transcellular salt and water reabsorption. PMID:18685100

  8. Actin restructuring during Salmonella typhimurium infection investigated by confocal and super-resolution microscopy

    NASA Astrophysics Data System (ADS)

    Han, Jason J.; Kunde, Yuliya A.; Hong-Geller, Elizabeth; Werner, James H.

    2014-01-01

    We have used super-resolution optical microscopy and confocal microscopy to visualize the cytoskeletal restructuring of HeLa cells that accompanies and enables Salmonella typhimurium internalization. Herein, we report the use of confocal microscopy to verify and explore infection conditions that would be compatible with super-resolution optical microscopy, using Alexa-488 labeled phalloidin to stain the actin cytoskeletal network. While it is well known that actin restructuring and cytoskeletal rearrangements often accompany and assist in bacterial infection, most studies have employed conventional diffraction-limited fluorescence microscopy to explore these changes. Here we show that the superior spatial resolution provided by single-molecule localization methods (such as direct stochastic optical reconstruction microscopy) enables more precise visualization of the nanoscale changes in the actin cytoskeleton that accompany bacterial infection. In particular, we found that a thin (100-nm) ring of actin often surrounds an invading bacteria 10 to 20 min postinfection, with this ring being transitory in nature. We estimate that a few hundred monofilaments of actin surround the S. typhimurium in this heretofore unreported bacterial internalization intermediate.

  9. Actomyosin-dependent dynamic spatial patterns of cytoskeletal components drive mesoscale podosome organization

    PubMed Central

    Meddens, Marjolein B. M.; Pandzic, Elvis; Slotman, Johan A.; Guillet, Dominique; Joosten, Ben; Mennens, Svenja; Paardekooper, Laurent M.; Houtsmuller, Adriaan B.; van den Dries, Koen; Wiseman, Paul W.; Cambi, Alessandra

    2016-01-01

    Podosomes are cytoskeletal structures crucial for cell protrusion and matrix remodelling in osteoclasts, activated endothelial cells, macrophages and dendritic cells. In these cells, hundreds of podosomes are spatially organized in diversely shaped clusters. Although we and others established individual podosomes as micron-sized mechanosensing protrusive units, the exact scope and spatiotemporal organization of podosome clustering remain elusive. By integrating a newly developed extension of Spatiotemporal Image Correlation Spectroscopy with novel image analysis, we demonstrate that F-actin, vinculin and talin exhibit directional and correlated flow patterns throughout podosome clusters. Pattern formation and magnitude depend on the cluster actomyosin machinery. Indeed, nanoscopy reveals myosin IIA-decorated actin filaments interconnecting multiple proximal podosomes. Extending well-beyond podosome nearest neighbours, the actomyosin-dependent dynamic spatial patterns reveal a previously unappreciated mesoscale connectivity throughout the podosome clusters. This directional transport and continuous redistribution of podosome components provides a mechanistic explanation of how podosome clusters function as coordinated mechanosensory area. PMID:27721497

  10. Regulators of Actin Dynamics in Gastrointestinal Tract Tumors.

    PubMed

    Steinestel, Konrad; Wardelmann, Eva; Hartmann, Wolfgang; Grünewald, Inga

    2015-01-01

    Reorganization of the actin cytoskeleton underlies cell migration in a wide variety of physiological and pathological processes, such as embryonic development, wound healing, and tumor cell invasion. It has been shown that actin assembly and disassembly are precisely regulated by intracellular signaling cascades that respond to changes in the cell microenvironment, ligand binding to surface receptors, or oncogenic transformation of the cell. Actin-nucleating and actin-depolymerizing (ANFs/ADFs) and nucleation-promoting factors (NPFs) regulate cytoskeletal dynamics at the leading edge of migrating cells, thereby modulating cell shape; these proteins facilitate cellular movement and mediate degradation of the surrounding extracellular matrix by secretion of lytic proteases, thus eliminating barriers for tumor cell invasion. Accordingly, expression and activity of these actin-binding proteins have been linked to enhanced metastasis and poor prognosis in a variety of malignancies. In this review, we will summarize what is known about expression patterns and the functional role of actin regulators in gastrointestinal tumors and evaluate first pharmacological approaches to prevent invasion and metastatic dissemination of malignant cells. PMID:26345720

  11. Regulators of Actin Dynamics in Gastrointestinal Tract Tumors

    PubMed Central

    Steinestel, Konrad; Wardelmann, Eva; Hartmann, Wolfgang; Grünewald, Inga

    2015-01-01

    Reorganization of the actin cytoskeleton underlies cell migration in a wide variety of physiological and pathological processes, such as embryonic development, wound healing, and tumor cell invasion. It has been shown that actin assembly and disassembly are precisely regulated by intracellular signaling cascades that respond to changes in the cell microenvironment, ligand binding to surface receptors, or oncogenic transformation of the cell. Actin-nucleating and actin-depolymerizing (ANFs/ADFs) and nucleation-promoting factors (NPFs) regulate cytoskeletal dynamics at the leading edge of migrating cells, thereby modulating cell shape; these proteins facilitate cellular movement and mediate degradation of the surrounding extracellular matrix by secretion of lytic proteases, thus eliminating barriers for tumor cell invasion. Accordingly, expression and activity of these actin-binding proteins have been linked to enhanced metastasis and poor prognosis in a variety of malignancies. In this review, we will summarize what is known about expression patterns and the functional role of actin regulators in gastrointestinal tumors and evaluate first pharmacological approaches to prevent invasion and metastatic dissemination of malignant cells. PMID:26345720

  12. The kinesin-like proteins, KAC1/2, regulate actin dynamics underlying chloroplast light-avoidance in Physcomitrella patens.

    PubMed

    Shen, Zhiyuan; Liu, Yen-Chen; Bibeau, Jeffrey P; Lemoi, Kyle P; Tüzel, Erkan; Vidali, Luis

    2015-01-01

    In plants, light determines chloroplast position; these organelles show avoidance and accumulation responses in high and low fluence-rate light, respectively. Chloroplast motility in response to light is driven by cytoskeletal elements. The actin cytoskeleton mediates chloroplast photorelocation responses in Arabidopsis thaliana. In contrast, in the moss Physcomitrella patens, both, actin filaments and microtubules can transport chloroplasts. Because of the surprising evidence that two kinesin-like proteins (called KACs) are important for actin-dependent chloroplast photorelocation in vascular plants, we wanted to determine the cytoskeletal system responsible for the function of these proteins in moss. We performed gene-specific silencing using RNA interference in P. patens. We confirmed existing reports using gene knockouts, that PpKAC1 and PpKAC2 are required for chloroplast dispersion under uniform white light conditions, and that the two proteins are functionally equivalent. To address the specific cytoskeletal elements responsible for motility, this loss-of-function approach was combined with cytoskeleton-targeted drug studies. We found that, in P. patens, these KACs mediate the chloroplast light-avoidance response in an actin filament-dependent, rather than a microtubule-dependent manner. Using correlation-decay analysis of cytoskeletal dynamics, we found that PpKAC stabilizes cortical actin filaments, but has no effect on microtubule dynamics.

  13. The cytoskeletal system of nucleated erythrocytes. I. Composition and function of major elements

    PubMed Central

    1982-01-01

    We have studied the dogfish erythrocyte cytoskeletal system, which consists of a marginal band of microtubules (MB) and trans-marginal band material (TBM). The TBM appeared in whole mounts as a rough irregular network and in thin sections as a surface-delimiting layer completely enclosing nucleus and MB. In cells incubated at 0 degrees C for 30 min or more, the MB disappeared but the TBM remained. MB reassembly occurred with rewarming, and was inhibited by colchicine. Flattened elliptical erythrocyte morphology was retained even when MBs were absent. Total solubilization of MB and TBM at low pH, or dissolution of whole anucleate cytoskeletons, yielded components comigrating with actin, spectrin, and tubulin standards during gel electrophoresis. Mass-isolated MBs, exhibiting ribbonlike construction apparently maintained by cross-bridges, contained four polypeptides in the tubulin region of the gel. Only these four bands were noticeably increased in the soluble phase obtained from cells with 0 degrees C- disassembled MBs. The best isolated MB preparations contained tubulin but no components comigrating with high molecular weight microtubule- associated proteins, spectrin, or actin. Actin and spectrin therefore appear to be major TBM constituents, with tubulin localized in the MB. The results are interpreted in terms of an actin- and spectrin- containing subsurface cytoskeletal layer (TBM), related to that of mammalian erythrocytes, which maintains cell shape in the absence of MBs. Observations on abnormal pointed erythrocytes containing similarly pointed MBs indicate further that the MB can deform the TBM from within so as to alter cell shape. MBs may function in this manner during normal cellular morphogenesis and during blood flow in vivo. PMID:6889600

  14. Actin in Herpesvirus Infection

    PubMed Central

    Roberts, Kari L.; Baines, Joel D.

    2011-01-01

    Actin is important for a variety of cellular processes, including uptake of extracellular material and intracellular transport. Several emerging lines of evidence indicate that herpesviruses exploit actin and actin-associated myosin motors for viral entry, intranuclear transport of capsids, and virion egress. The goal of this review is to explore these processes and to highlight potential future directions for this area of research. PMID:21994736

  15. Effects of basic calponin on the flexural mechanics and stability of F-actin

    PubMed Central

    Jensen, Mikkel Herholdt; Watt, James; Hodgkinson, Julie; Gallant, Cynthia; Appel, Sarah; El-Mezgueldi, Mohammed; Angelini, Thomas E.; Morgan, Kathleen G.; Lehman, William; Moore, Jeffrey R.

    2012-01-01

    The cellular actin cytoskeleton plays a central role in the ability of cells to properly sense, propagate, and respond to external stresses and other mechanical stimuli. Calponin, an actin-binding protein found both in muscle and non-muscle cells, has been implicated in actin cytoskeletal organization and regulation. In this work, we studied the mechanical and structural interaction of actin with basic calponin, a differentiation marker in smooth muscle cells, on a single filament level. We imaged fluorescently labeled thermally fluctuating actin filaments and found that at moderate calponin binding densities, actin filaments were more flexible, evident as a reduction in persistence length from 8.0 μm to 5.8 μm. When calponin-decorated actin filaments were subjected to shear, we observed a marked reduction of filament lengths after decoration with calponin, which we argue was due to shear-induced filament rupture rather than depolymerization. This increased shear susceptibility was exacerbated with calponin concentration. Cryo-electron microscopy results confirmed previously published negative stain electron microscopy results and suggest alterations in actin involving actin subdomain 2. A weakening of F-actin intermolecular association is discussed as the underlying cause of the observed mechanical perturbations. PMID:22135101

  16. Analysis of the interaction of reserpine with actin by the photoaffinity labelling method.

    PubMed

    Ohmi, K; Nakamura, S

    1991-08-14

    The interaction of reserpine with one of the cytoskeletal proteins, actin, was analyzed by the photoaffinity labelling method using [3H]reserpine. Reserpine bound sufficiently to G- or oligomeric actin, but hardly to F-actin under the same experimental conditions. This result could be explained if reserpine binds to a specific region of the G-actin molecule that is responsible for actin-actin interactions. It is concordant with this idea that [3H]reserpine bound only to specific proteolytic fragments of actin. When reserpine was mixed with crude extracts of two kinds of tissues, chicken gizzard smooth muscle and bovine adrenal medulla, it bound to the 42 kDa protein of sodium dodecyl sulfate-polyacrylamide gel electrophoresis in both cases. Its molecular size and abundance suggest strongly that this 42 kDa protein is actin. The binding of reserpine to actin was inhibited by dopamine in a dose-dependent manner. These results suggest that actin could be one of the target molecules of reserpine.

  17. Nucleotide Regulation of the Structure and Dynamics of G-Actin

    PubMed Central

    Saunders, Marissa G.; Tempkin, Jeremy; Weare, Jonathan; Dinner, Aaron R.; Roux, Benoît; Voth, Gregory A.

    2014-01-01

    Actin, a highly conserved cytoskeletal protein found in all eukaryotic cells, facilitates cell motility and membrane remodeling via a directional polymerization cycle referred to as treadmilling. The nucleotide bound at the core of each actin subunit regulates this process. Although the biochemical kinetics of treadmilling has been well characterized, the atomistic details of how the nucleotide affects polymerization remain to be definitively determined. There is increasing evidence that the nucleotide regulation (and other characteristics) of actin cannot be fully described from the minimum energy structure, but rather depends on a dynamic equilibrium between conformations. In this work we explore the conformational mobility of the actin monomer (G-actin) in a coarse-grained subspace using umbrella sampling to bias all-atom molecular-dynamics simulations along the variables of interest. The results reveal that ADP-bound actin subunits are more conformationally mobile than ATP-bound subunits. We used a multiscale analysis method involving coarse-grained and atomistic representations of these simulations to characterize how the nucleotide affects the low-energy states of these systems. The interface between subdomains SD2–SD4, which is important for polymerization, is stabilized in an actin filament-like (F-actin) conformation in ATP-bound G-actin. Additionally, the nucleotide modulates the conformation of the SD1-SD3 interface, a region involved in the binding of several actin-binding proteins. PMID:24739170

  18. Cooperation between β- and γ-cytoplasmic actins in the mechanical regulation of endothelial microparticle formation.

    PubMed

    Latham, Sharissa L; Chaponnier, Christine; Dugina, Vera; Couraud, Pierre-Olivier; Grau, Georges E R; Combes, Valery

    2013-02-01

    Elevated endothelial microparticle (MP) levels are observed in numerous diseases, increasingly supporting roles as effectors and valuable markers of vascular dysfunction. While a contractile role for the actin cytoskeleton has been implicated in vesiculation, i.e., MP production, the precise interactions and mechanisms of its constituents, β- and γ-cytoplasmic actins, is unknown. Human cerebral microvascular endothelial cells were stimulated with known agonists, and vesiculation development was monitored by scanning electron microscopy (SEM) and flow cytometry. These data in combination provide new insight into the kinetics, patterns of vesiculating cell recruitment, and degrees of response specific to stimuli. Reorganization of β- and γ-actins, F-actin, vinculin, and talin accompanied significant MP release. β-Actin redistribution into basal stress fibers following stimulation was associated with increased apically situated actin-rich particulate structures, which in turn directly correlated with electron-lucent membrane protrusions observed by SEM. Y-27632 Rho-kinase inhibition abolished basal β-actin fiber formation, minimizing apically associated actin-rich structures, significantly reducing membrane protrusions and MP release to near basal levels. Cytoskeletal protein expression and distribution varied between MPs and mother cells, as determined by Western blot. These data strongly suggest that β-actin plays an active facilitative role in agonist-induced protuberance formation, through mechanical interactions with newly described actin-rich structures. PMID:23159932

  19. Actin Rings of Power.

    PubMed

    Schwayer, Cornelia; Sikora, Mateusz; Slováková, Jana; Kardos, Roland; Heisenberg, Carl-Philipp

    2016-06-20

    Circular or ring-like actin structures play important roles in various developmental and physiological processes. Commonly, these rings are composed of actin filaments and myosin motors (actomyosin) that, upon activation, trigger ring constriction. Actomyosin ring constriction, in turn, has been implicated in key cellular processes ranging from cytokinesis to wound closure. Non-constricting actin ring-like structures also form at cell-cell contacts, where they exert a stabilizing function. Here, we review recent studies on the formation and function of actin ring-like structures in various morphogenetic processes, shedding light on how those different rings have been adapted to fulfill their specific roles. PMID:27326928

  20. "Novel cytoskeletal proteins in protists": introductory remarks.

    PubMed

    Fleury-Aubusson, Anne

    2003-01-01

    Protists provide the opportunity to integrate analyses from a low (molecular) to a high (organism) level of complexity within a broad evolutionary framework. The perpectives they offer in the cytoskeletal field are discussed with respect to emerging concepts of cellular biology.

  1. Actin Depolymerization Drives Actomyosin Ring Contraction during Budding Yeast Cytokinesis

    PubMed Central

    Pinto, Inês Mendes; Rubinstein, Boris; Kucharavy, Andrei; Unruh, Jay R.; Li, Rong

    2012-01-01

    SUMMARY Actin filaments and myosin-II are evolutionarily conserved force generating components of the contractile ring during cytokinesis. Here we show that in budding yeast actin filament depolymerization plays a major role in actomyosin ring constriction. Cofilin mutation or chemically stabilizing actin filaments attenuates actomyosin ring constriction. Deletion of myosin-II motor domain or the myosin regulatory light chain reduced the contraction rate and also the rate of actin depolymerization in the ring. We constructed a quantitative microscopic model of actomyosin ring constriction via filament sliding driven by both actin depolymerization and myosin-II motor activity. Model simulations based on experimental measurements supports the notion that actin depolymerization is the predominant mechanism for ring constriction. The model predicts invariability of total contraction time irrespective of the initial ring size as originally reported for C elegans embryonic cells. This prediction was validated in yeast cells of different sizes due to having different ploidies. PMID:22698284

  2. A Steric Antagonism of Actin Polymerization by a Salmonella Virulence Protein

    SciTech Connect

    Margarit,S.; Davidson, W.; Frego, L.; Stebbins, F.

    2006-01-01

    Salmonella spp. require the ADP-ribosyltransferase activity of the SpvB protein for intracellular growth and systemic virulence. SpvB covalently modifies actin, causing cytoskeletal disruption and apoptosis. We report here the crystal structure of the catalytic domain of SpvB, and we show by mass spectrometric analysis that SpvB modifies actin at Arg177, inhibiting its ATPase activity. We also describe two crystal structures of SpvB-modified, polymerization-deficient actin. These structures reveal that ADP-ribosylation does not lead to dramatic conformational changes in actin, suggesting a model in which this large family of toxins inhibits actin polymerization primarily through steric disruption of intrafilament contacts.

  3. Cholera toxin can catalyze ADP-ribosylation of cytoskeletal proteins

    SciTech Connect

    Kaslow, H.R.; Groppi, V.E.; Abood, M.E.; Bourne, H.R.

    1981-11-01

    Cholera toxin catalyzes transfer of radiolabel from (/sup 32/P)NAD/sup +/ to several peptides in particulate preparations of human foreskin fibroblasts. Resolution of these peptides by two-dimensional gel electrophoresis allowed identification of two peptides of M/sub r/ = 42,000 and 52,000 as peptide subunits of a regulatory component of adenylate cyclase. The radiolabeling of another group of peptides (M/sub r/ = 50,000 to 65,000) suggested that cholera toxin could catalyze ADP-ribosylation of cytoskeletal proteins. This suggestion was confirmed by showing that incubation with cholera toxin and (/sup 32/P)NAD/sup +/ caused radiolabeling of purified microtubule and intermediate filament proteins.

  4. Oestradiol and progesterone differentially alter cytoskeletal protein expression and flame cell morphology in Taenia crassiceps.

    PubMed

    Ambrosio, Javier R; Ostoa-Saloma, Pedro; Palacios-Arreola, M Isabel; Ruíz-Rosado, Azucena; Sánchez-Orellana, Pedro L; Reynoso-Ducoing, Olivia; Nava-Castro, Karen E; Martínez-Velázquez, Nancy; Escobedo, Galileo; Ibarra-Coronado, Elizabeth G; Valverde-Islas, Laura; Morales-Montor, Jorge

    2014-09-01

    We examined the effects of oestradiol (E2) and progesterone (P4) on cytoskeletal protein expression in the helminth Taenia crassiceps - specifically actin, tubulin and myosin. These proteins assemble into flame cells, which constitute the parasite excretory system. Total protein extracts were obtained from E2- and P4-treated T. crassiceps cysticerci and untreated controls, and analysed by one- and two-dimensional protein electrophoresis, flow cytometry, immunofluorescence and videomicroscopy. Exposure of T. crassiceps cysticerci to E2 and P4 induced differential protein expression patterns compared with untreated controls. Changes in actin, tubulin and myosin expression were confirmed by flow cytometry of parasite cells and immunofluorescence. In addition, parasite morphology was altered in response to E2 and P4 versus controls. Flame cells were primarily affected at the level of the ciliary tuft, in association with the changes in actin, tubulin and myosin. We conclude that oestradiol and progesterone act directly on T. crassiceps cysticerci, altering actin, tubulin and myosin expression and thus affecting the assembly and function of flame cells. Our results increase our understanding of several aspects of the molecular crosstalk between host and parasite, which might be useful in designing anthelmintic drugs that exclusively impair parasitic proteins which mediate cell signaling and pathogenic reproduction and establishment.

  5. Cytoskeletal and functional changes in bioreactor assembled thyroid tissue organoids exposed to gamma radiation

    NASA Technical Reports Server (NTRS)

    Green, Lora M.; Patel, Zarana; Murray, Deborah K.; Rightnar, Steven; Burell, Cheryl G.; Gridley, Daila S.; Nelson, Gregory A.

    2002-01-01

    Fischer rat thyroid cells were grown under low-shear stress in a bioreactor to a stage of organization composed of integrated follicles resembling small thyroid glands prior to exposure to 3 Gray-gamma radiation. Bioreactor tissues and controls (both irradiated and non-irradiated) were harvested at 24, 48, 96 and 144 hours post-exposure. Tissue samples were fixed and fluorescently labeled for actin and microtubules. Tissues were assessed for changes in cytoskeletal components induced by radiation and quantified by laser scanning cytometry. ELISA's were used to quantify transforming growth factor-beta and thyroxin released from cells to the culture supernatant. Tissue architecture was disrupted by exposure to radiation with the structural organization of actin and loss of follicular content the most obviously affected. With time post-irradiation the actin appeared disordered and the levels of fluorescence associated with filamentous-actin and microtubules cycled in the tissue analogs, but not in the flask-grown cultures. Active transforming growth factor-beta was higher in supernatants from the irradiated bioreactor tissue. Thyroxin release paralleled cell survival in the bioreactors and control cultures. Thus, the engineered tissue responses to radiation differed from those of conventional tissue culture making it a potentially better mimic of the in vivo situation.

  6. Viscoelastic properties of actin-coated membranes.

    PubMed

    Helfer, E; Harlepp, S; Bourdieu, L; Robert, J; MacKintosh, F C; Chatenay, D

    2001-02-01

    In living cells, cytoskeletal filaments interact with the plasma membrane to form structures that play a key role in cell shape and mechanical properties. To study the interaction between these basic components, we designed an in vitro self-assembled network of actin filaments attached to the outer surface of giant unilamellar vesicles. Optical tweezers and single-particle tracking experiments are used to study the rich dynamics of these actin-coated membranes (ACM). We show that microrheology studies can be carried out on such an individual microscopic object. The principle of the experiment consists in measuring the thermally excited position fluctuations of a probe bead attached biochemically to the membrane. We propose a model that relates the power spectrum of these thermal fluctuations to the viscoelastic properties of the membrane. The presence of the actin network modifies strongly the membrane dynamics with respect to a fluid, lipid bilayer one. It induces first a finite (omega=0) two-dimensional (2D) shear modulus G(0)(2D) approximately 0.5 to 5 microN/m in the membrane plane. Moreover, the frequency dependence at high frequency of the shear modulus [G(')(2D)(f ) approximately f(0.85+/-0.07)] and of the bending modulus (kappa(ACM)(f) approximately f(0.55+/-0.21)) demonstrate the viscoelastic behavior of the composite membrane. These results are consistent with a common exponent of 0.75 for both moduli as expected from our model and from prior measurements on actin solutions.

  7. Epigenetic repression of ribosomal RNA transcription by ROCK-dependent aberrant cytoskeletal organization

    PubMed Central

    Wu, Tse-Hsiang; Kuo, Yuan-Yeh; Lee, Hsiao-Hui; Kuo, Jean-Cheng; Ou, Meng-Hsin; Chang, Zee-Fen

    2016-01-01

    It is known that ribosomal RNA (rRNA) synthesis is regulated by cellular energy and proliferation status. In this study, we investigated rRNA gene transcription in response to cytoskeletal stress. Our data revealed that the cell shape constrained by isotropic but not elongated micropatterns in HeLa cells led to a significant reduction in rRNA transcription dependent on ROCK. Expression of a dominant-active form of ROCK also repressed rRNA transcription. Isotropic constraint and ROCK over-activation led to different types of aberrant F-actin organization, but their suppression effects on rRNA transcription were similarly reversed by inhibition of histone deacetylase (HDAC) or overexpression of a dominant negative form of Nesprin, which shields the signal transmitted from actin filament to the nuclear interior. We further showed that the binding of HDAC1 to the active fraction of rDNA genes is increased by ROCK over-activation, thus reducing H3K9/14 acetylation and suppressing transcription. Our results demonstrate an epigenetic control of active rDNA genes that represses rRNA transcription in response to the cytoskeletal stress. PMID:27350000

  8. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure

    NASA Technical Reports Server (NTRS)

    Maniotis, A. J.; Chen, C. S.; Ingber, D. E.

    1997-01-01

    We report here that living cells and nuclei are hard-wired such that a mechanical tug on cell surface receptors can immediately change the organization of molecular assemblies in the cytoplasm and nucleus. When integrins were pulled by micromanipulating bound microbeads or micropipettes, cytoskeletal filaments reoriented, nuclei distorted, and nucleoli redistributed along the axis of the applied tension field. These effects were specific for integrins, independent of cortical membrane distortion, and were mediated by direct linkages between the cytoskeleton and nucleus. Actin microfilaments mediated force transfer to the nucleus at low strain; however, tearing of the actin gel resulted with greater distortion. In contrast, intermediate filaments effectively mediated force transfer to the nucleus under both conditions. These filament systems also acted as molecular guy wires to mechanically stiffen the nucleus and anchor it in place, whereas microtubules acted to hold open the intermediate filament lattice and to stabilize the nucleus against lateral compression. Molecular connections between integrins, cytoskeletal filaments, and nuclear scaffolds may therefore provide a discrete path for mechanical signal transfer through cells as well as a mechanism for producing integrated changes in cell and nuclear structure in response to changes in extracellular matrix adhesivity or mechanics.

  9. The phosphorylation status and cytoskeletal remodeling of striatal astrocytes treated with quinolinic acid

    SciTech Connect

    Pierozan, Paula; Ferreira, Fernanda; Ortiz de Lima, Bárbara; Gonçalves Fernandes, Carolina; Totarelli Monteforte, Priscila; Castro Medaglia, Natalia de; Bincoletto, Claudia; Soubhi Smaili, Soraya; Pessoa-Pureur, Regina

    2014-04-01

    Quinolinic acid (QUIN) is a glutamate agonist which markedly enhances the vulnerability of neural cells to excitotoxicity. QUIN is produced from the amino acid tryptophan through the kynurenine pathway (KP). Dysregulation of this pathway is associated with neurodegenerative conditions. In this study we treated striatal astrocytes in culture with QUIN and assayed the endogenous phosphorylating system associated with glial fibrillary acidic protein (GFAP) and vimentin as well as cytoskeletal remodeling. After 24 h incubation with 100 µM QUIN, cells were exposed to {sup 32}P-orthophosphate and/or protein kinase A (PKA), protein kinase dependent of Ca{sup 2+}/calmodulin II (PKCaMII) or protein kinase C (PKC) inhibitors, H89 (20 μM), KN93 (10 μM) and staurosporin (10 nM), respectively. Results showed that hyperphosphorylation was abrogated by PKA and PKC inhibitors but not by the PKCaMII inhibitor. The specific antagonists to ionotropic NMDA and non-NMDA (50 µM DL-AP5 and CNQX, respectively) glutamate receptors as well as to metabotropic glutamate receptor (mGLUR; 50 µM MCPG), mGLUR1 (100 µM MPEP) and mGLUR5 (10 µM 4C3HPG) prevented the hyperphosphorylation provoked by QUIN. Also, intra and extracellular Ca{sup 2+} quelators (1 mM EGTA; 10 µM BAPTA-AM, respectively) prevented QUIN-mediated effect, while Ca{sup 2+} influx through voltage-dependent Ca{sup 2+} channel type L (L-VDCC) (blocker: 10 µM verapamil) is not implicated in this effect. Morphological analysis showed dramatically altered actin cytoskeleton with concomitant change of morphology to fusiform and/or flattened cells with retracted cytoplasm and disruption of the GFAP meshwork, supporting misregulation of actin cytoskeleton. Both hyperphosphorylation and cytoskeletal remodeling were reversed 24 h after QUIN removal. Astrocytes are highly plastic cells and the vulnerability of astrocyte cytoskeleton may have important implications for understanding the neurotoxicity of QUIN in neurodegenerative

  10. Mitogen-activated protein kinase/extracellular signal-regulated kinase 2 regulates cytoskeletal organization and chemotaxis via catalytic and microtubule-specific interactions.

    PubMed Central

    Reszka, A A; Bulinski, J C; Krebs, E G; Fischer, E H

    1997-01-01

    The extracellular signal-regulated kinases (ERKs) 1 and 2 are mitogen-activated protein kinases that act as key components in a signaling cascade linking growth factor receptors to the cytoskeleton and the nucleus. ERK2 mutants have been used to alter cytoskeletal regulation in Chinese hamster ovary cells without affecting cell growth or feedback signaling. Mutation of the unique loop L6 (residues 91-95), which is in a portion of the molecule that is cryptic upon the binding of ERK2 to the microtubules (MTs), generated significant morphological alterations. Most notable phenotypes were observed after expression of a combined mutant incorporating changes to both L6 and the TEY phosphorylation lip, including a 70% increase in cell spreading. Actin stress fibers in these cells, which normally formed a single broad parallel array, were arranged in three or more orientations or in fan-like arrays. MTs, which ordinarily extend longitudinally from the centrosome, spread radially, covering a larger surface area. Single, but not the double, mutations of the Thr and Tyr residues of the TEY phosphorylation lip caused a ca. 25% increase in cell spreading, accompanied by a threefold increase in chemotactic cell migration. Mutation of Lys-52 triggered a 48% increase in cell spreading but no alteration to chemotaxis. These findings suggest that wild-type ERK2 inhibits the organization of the cytoskeleton, the spreading of the cell, and chemotactic migration. This involves control of the orientation of actin and MTs and the positioning of focal adhesions via regulatory interactions that may occur on the MTs. Images PMID:9243503

  11. Direct dynamin–actin interactions regulate the actin cytoskeleton

    PubMed Central

    Gu, Changkyu; Yaddanapudi, Suma; Weins, Astrid; Osborn, Teresia; Reiser, Jochen; Pollak, Martin; Hartwig, John; Sever, Sanja

    2010-01-01

    The large GTPase dynamin assembles into higher order structures that are thought to promote endocytosis. Dynamin also regulates the actin cytoskeleton through an unknown, GTPase-dependent mechanism. Here, we identify a highly conserved site in dynamin that binds directly to actin filaments and aligns them into bundles. Point mutations in the actin-binding domain cause aberrant membrane ruffling and defective actin stress fibre formation in cells. Short actin filaments promote dynamin assembly into higher order structures, which in turn efficiently release the actin-capping protein (CP) gelsolin from barbed actin ends in vitro, allowing for elongation of actin filaments. Together, our results support a model in which assembled dynamin, generated through interactions with short actin filaments, promotes actin polymerization via displacement of actin-CPs. PMID:20935625

  12. Dynamic actin controls polarity induction de novo in protoplasts.

    PubMed

    Zaban, Beatrix; Maisch, Jan; Nick, Peter

    2013-02-01

    Cell polarity and axes are central for plant morphogenesis. To study how polarity and axes are induced de novo, we investigated protoplasts of tobacco Nicotiana tabacum cv. BY-2 expressing fluorescently-tagged cytoskeletal markers. We standardized the system to such a degree that we were able to generate quantitative data on the temporal patterns of regeneration stages. The synthesis of a new cell wall marks the transition to the first stage of regeneration, and proceeds after a long preparatory phase within a few minutes. During this preparatory phase, the nucleus migrates actively, and cytoplasmic strands remodel vigorously. We probed this system for the effect of anti-cytoskeletal compounds, inducible bundling of actin, RGD-peptides, and temperature. Suppression of actin dynamics at an early stage leads to aberrant tripolar cells, whereas suppression of microtubule dynamics produces aberrant sausage-like cells with asymmetric cell walls. We integrated these data into a model, where the microtubular cytoskeleton conveys positional information between the nucleus and the membrane controlling the release or activation of components required for cell wall synthesis. Cell wall formation is followed by the induction of a new cell pole requiring dynamic actin filaments, and the new cell axis is manifested as elongation growth perpendicular to the orientation of the aligned cortical microtubules.

  13. Cooperative signaling by TGF-β1 and WNT-11 drives sm-α-actin expression in smooth muscle via Rho kinase-actin-MRTF-A signaling.

    PubMed

    Kumawat, Kuldeep; Koopmans, Tim; Menzen, Mark H; Prins, Alita; Smit, Marieke; Halayko, Andrew J; Gosens, Reinoud

    2016-09-01

    Airway smooth muscle (ASM) remodeling is a key feature in asthma and includes changes in smooth muscle-specific gene and protein expression. Despite this being a major contributor to asthma pathobiology, our understanding of the mechanisms governing ASM remodeling remains poor. Here, we studied the functional interaction between WNT-11 and TGF-β1 in ASM cells. We demonstrate that WNT-11 is preferentially expressed in contractile myocytes and is strongly upregulated following TGF-β1-induced myocyte maturation. Knock-down of WNT-11 attenuated TGF-β1-induced smooth muscle (sm)-α-actin expression in ASM cells. We demonstrate that TGF-β1-induced sm-α-actin expression is mediated by WNT-11 via RhoA activation and subsequent actin cytoskeletal remodeling, as pharmacological inhibition of either Rho kinase by Y27632 or actin remodeling by latrunculin A attenuated sm-α-actin induction. Moreover, we show that TGF-β1 regulates the nuclear expression of myocardin-related transcription factor-A (MRTF-A) in a Rho kinase-dependent fashion, which in turn mediates sm-α-actin expression. Finally, we demonstrate that TGF-β1-induced MRTF-A nuclear translocation is dependent on endogenous WNT-11. The present study thus demonstrates a WNT-11-dependent Rho kinase-actin-MRTF-A signaling axis that regulates the expression of sm-α-actin in ASM cells.

  14. Vitreous-induced cytoskeletal rearrangements via the Rac1 GTPase-dependent signaling pathway in human retinal pigment epithelial cells

    SciTech Connect

    Huang, Xionggao; Wei, Yantao; Ma, Haizhi; Zhang, Shaochong

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Vitreous induces morphological changes and cytoskeletal rearrangements in RPE cells. Black-Right-Pointing-Pointer Rac1 is activated in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition prevents morphological changes in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition suppresses cytoskeletal rearrangements in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer The vitreous-induced effects are mediated by a Rac1 GTPase/LIMK1/cofilin pathway. -- Abstract: Proliferative vitreoretinopathy (PVR) is mainly caused by retinal pigment epithelial (RPE) cell migration, invasion, proliferation and transformation into fibroblast-like cells that produce the extracellular matrix (ECM). The vitreous humor is known to play an important role in PVR. An epithelial-to-mesenchymal transdifferentiation (EMT) of human RPE cells induced by 25% vitreous treatment has been linked to stimulation of the mesenchymal phenotype, migration and invasion. Here, we characterized the effects of the vitreous on the cell morphology and cytoskeleton in human RPE cells. The signaling pathway that mediates these effects was investigated. Serum-starved RPE cells were incubated with 25% vitreous, and the morphological changes were examined by phase-contrast microscopy. Filamentous actin (F-actin) was examined by immunofluorescence and confocal microscopy. Protein phosphorylation of AKT, ERK1/2, Smad2/3, LIM kinase (LIMK) 1 and cofilin was analyzed by Western blot analysis. Vitreous treatment induced cytoskeletal rearrangements, activated Rac1 and enhanced the phosphorylation of AKT, ERK1/2 and Smad2/3. When the cells were treated with a Rac activation-specific inhibitor, the cytoskeletal rearrangements were prevented, and the phosphorylation of Smad2/3 was blocked. Vitreous treatment also enhanced the phosphorylation of LIMK1 and cofilin and the Rac inhibitor blocked this effect. We propose that vitreous

  15. Cytoskeletal elements in the bacterium Mycoplasma pneumoniae

    NASA Astrophysics Data System (ADS)

    Hegermann, Jan; Herrmann, Richard; Mayer, Frank

    2002-09-01

    Mycoplasma pneumoniae is a pathogenic eubacterium lacking a cell wall. Three decades ago, a "rod", an intracellular cytoskeletal structure, was discovered that was assumed to define and stabilize the elongated cell shape. Later, by treatment with detergent, a "Triton shell" (i.e. a fraction of detergent-insoluble cell material) could be obtained, believed to contain additional cytoskeletal elements. Now, by application of a modified Triton X-100 treatment, we are able to demonstrate that M. pneumoniae possesses a cytoskeleton consisting of a blade-like rod and a peripheral lining located close to the inner face of the cytoplasmic membrane, exhibiting features of a highly regular network. Attached "stalks" may support the cytoplasmic membrane. The rod was connected to the cell periphery by "spokes" and showed a defined ultrastructure. Its proximal end was found to be attached to a wheel-like complex. Fibrils extended from the proximal end of the rod into the cytoplasm.

  16. The cytoskeletal arrangements necessary to neurogenesis

    PubMed Central

    Compagnucci, Claudia; Piemonte, Fiorella; Sferra, Antonella; Piermarini, Emanuela; Bertini, Enrico

    2016-01-01

    During the process of neurogenesis, the stem cell committed to the neuronal cell fate starts a series of molecular and morphological changes. The understanding of the physio-pathology of mechanisms controlling the molecular and morphological changes occurring during neuronal differentiation is fundamental to the development of effective therapies for many neurologic diseases. Unfortunately, our knowledge of the biological events occurring in the cell during neuronal differentiation is still poor. In this study, we focus preliminarily on the relevance of the cytoskeletal rearrangements, which earlier drive the morphology of the neuronal precursors, and later the migrating/mature neurons. In fact, neuritogenesis, neurite branching, outgrowth and retraction are seminal to the development of a fully functional nervous system. With this in mind, we highlight the importance of iPSC technology to study the processes of cytoskeletal-driven morphological changes during neuronal differentiation. PMID:26760504

  17. Cytoskeletal disruption activates the DLK/JNK pathway, which promotes axonal regeneration and mimics a preconditioning injury

    PubMed Central

    Valakh, Vera; Frey, Erin; Babetto, Elisabetta; Walker, Lauren J; DiAntonio, Aaron

    2015-01-01

    Nerve injury can lead to axonal regeneration, axonal degeneration, and/or neuronal cell death. Remarkably, the MAP3K dual leucine zipper kinase, DLK, promotes each of these responses, suggesting that DLK is a sensor of axon injury. In Drosophila, mutations in proteins that stabilize the actin and microtubule cytoskeletons activate the DLK pathway, suggesting that DLK may be activated by cytoskeletal disruption. Here we test this model in mammalian sensory neurons. We find that pharmacological agents designed to disrupt either the actin or microtubule cytoskeleton activate the DLK pathway, and that activation is independent of calcium influx or induction of the axon degeneration program. Moreover, activation of the DLK pathway by targeting the cytoskeleton induces a pro-regenerative state, enhancing axon regeneration in response to a subsequent injury in a process akin to preconditioning. This highlights the potential utility of activating the DLK pathway as a method to improve axon regeneration. Moreover, DLK is required for these responses to cytoskeletal perturbations, suggesting that DLK functions as a key neuronal sensor of cytoskeletal damage. PMID:25726747

  18. Direct interaction of microtubule- and actin-based transport motors

    NASA Technical Reports Server (NTRS)

    Huang, J. D.; Brady, S. T.; Richards, B. W.; Stenolen, D.; Resau, J. H.; Copeland, N. G.; Jenkins, N. A.

    1999-01-01

    The microtubule network is thought to be used for long-range transport of cellular components in animal cells whereas the actin network is proposed to be used for short-range transport, although the mechanism(s) by which this transport is coordinated is poorly understood. For example, in sea urchins long-range Ca2+-regulated transport of exocytotic vesicles requires a microtubule-based motor, whereas an actin-based motor is used for short-range transport. In neurons, microtubule-based kinesin motor proteins are used for long-range vesicular transport but microtubules do not extend into the neuronal termini, where actin filaments form the cytoskeletal framework, and kinesins are rapidly degraded upon their arrival in neuronal termini, indicating that vesicles may have to be transferred from microtubules to actin tracks to reach their final destination. Here we show that an actin-based vesicle-transport motor, MyoVA, can interact directly with a microtubule-based transport motor, KhcU. As would be expected if these complexes were functional, they also contain kinesin light chains and the localization of MyoVA and KhcU overlaps in the cell. These results indicate that cellular transport is, in part, coordinated through the direct interaction of different motor molecules.

  19. Triggering signaling pathways using F-actin self-organization

    PubMed Central

    Colin, A.; Bonnemay, L.; Gayrard, C.; Gautier, J.; Gueroui, Z.

    2016-01-01

    The spatiotemporal organization of proteins within cells is essential for cell fate behavior. Although it is known that the cytoskeleton is vital for numerous cellular functions, it remains unclear how cytoskeletal activity can shape and control signaling pathways in space and time throughout the cell cytoplasm. Here we show that F-actin self-organization can trigger signaling pathways by engineering two novel properties of the microfilament self-organization: (1) the confinement of signaling proteins and (2) their scaffolding along actin polymers. Using in vitro reconstitutions of cellular functions, we found that both the confinement of nanoparticle-based signaling platforms powered by F-actin contractility and the scaffolding of engineered signaling proteins along actin microfilaments can drive a signaling switch. Using Ran-dependent microtubule nucleation, we found that F-actin dynamics promotes the robust assembly of microtubules. Our in vitro assay is a first step towards the development of novel bottom-up strategies to decipher the interplay between cytoskeleton spatial organization and signaling pathway activity. PMID:27698406

  20. Dynamin at actin tails.

    PubMed

    Lee, Eunkyung; De Camilli, Pietro

    2002-01-01

    Dynamin, the product of the shibire gene of Drosophila, is a GTPase critically required for endocytosis. Some studies have suggested a functional link between dynamin and the actin cytoskeleton. This link is of special interest, because there is evidence implicating actin dynamics in endocytosis. Here we show that endogenous dynamin 2, as well as green fluorescence protein fusion proteins of both dynamin 1 and 2, is present in actin comets generated by Listeria or by type I PIP kinase (PIPK) overexpression. In PIPK-induced tails, dynamin is further enriched at the interface between the tails and the moving organelles. Dynamin mutants harboring mutations in the GTPase domain inhibited nucleation of actin tails induced by PIPK and moderately reduced their speed. Although dynamin localization to the tails required its proline-rich domain, expression of a dynamin mutant lacking this domain also diminished tail formation. In addition, this mutant disrupted a membrane-associated actin scaffold (podosome rosette) previously shown to include dynamin. These findings suggest that dynamin is part of a protein network that controls nucleation of actin from membranes. At endocytic sites, dynamin may couple the fission reaction to the polymerization of an actin pool that functions in the separation of the endocytic vesicles from the plasma membrane. PMID:11782545

  1. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics.

    PubMed

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-10-20

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design.

  2. SelR/MsrB Reverses Mical-mediated Oxidation of Actin to Regulate F-actin Dynamics

    PubMed Central

    Hung, Ruei-Jiun; Spaeth, Christopher S.; Yesilyurt, Hunkar Gizem; Terman, Jonathan R.

    2014-01-01

    Actin's polymerization properties are dramatically altered by oxidation of its conserved methionine (Met)-44 residue. Mediating this effect is a specific oxidation-reduction (Redox) enzyme, Mical, that works with Semaphorin repulsive guidance cues and selectively oxidizes Met-44. We now find that this actin regulatory process is reversible. Employing a genetic approach, we identified a specific methionine sulfoxide reductase enzyme SelR that opposes Mical Redox activity and Semaphorin/Plexin repulsion to direct multiple actin-dependent cellular behaviors in vivo. SelR specifically catalyzes the reduction of the R-isomer of methionine sulfoxide (methionine-R-sulfoxide) to methionine, and we found that SelR directly reduced Mical-oxidized actin, restoring its normal polymerization properties. These results indicate that Mical oxidizes actin stereo-specifically to generate actin Met-44-R-sulfoxide (actinMet(R)O-44) – and they also implicate the interconversion of specific Met/Met(R)O residues as a precise means to modulate protein function. Our results therefore uncover a specific reversible Redox actin regulatory system that controls cell and developmental biology. PMID:24212093

  3. Intracellular transport driven by cytoskeletal motors: General mechanisms and defects

    NASA Astrophysics Data System (ADS)

    Appert-Rolland, C.; Ebbinghaus, M.; Santen, L.

    2015-09-01

    Cells are the elementary units of living organisms, which are able to carry out many vital functions. These functions rely on active processes on a microscopic scale. Therefore, they are strongly out-of-equilibrium systems, which are driven by continuous energy supply. The tasks that have to be performed in order to maintain the cell alive require transportation of various ingredients, some being small, others being large. Intracellular transport processes are able to induce concentration gradients and to carry objects to specific targets. These processes cannot be carried out only by diffusion, as cells may be crowded, and quite elongated on molecular scales. Therefore active transport has to be organized. The cytoskeleton, which is composed of three types of filaments (microtubules, actin and intermediate filaments), determines the shape of the cell, and plays a role in cell motion. It also serves as a road network for a special kind of vehicles, namely the cytoskeletal motors. These molecules can attach to a cytoskeletal filament, perform directed motion, possibly carrying along some cargo, and then detach. It is a central issue to understand how intracellular transport driven by molecular motors is regulated. The interest for this type of question was enhanced when it was discovered that intracellular transport breakdown is one of the signatures of some neuronal diseases like the Alzheimer. We give a survey of the current knowledge on microtubule based intracellular transport. Our review includes on the one hand an overview of biological facts, obtained from experiments, and on the other hand a presentation of some modeling attempts based on cellular automata. We present some background knowledge on the original and variants of the TASEP (Totally Asymmetric Simple Exclusion Process), before turning to more application oriented models. After addressing microtubule based transport in general, with a focus on in vitro experiments, and on cooperative effects in the

  4. Actin Mechanics and Fragmentation*

    PubMed Central

    De La Cruz, Enrique M.; Gardel, Margaret L.

    2015-01-01

    Cell physiological processes require the regulation and coordination of both mechanical and dynamical properties of the actin cytoskeleton. Here we review recent advances in understanding the mechanical properties and stability of actin filaments and how these properties are manifested at larger (network) length scales. We discuss how forces can influence local biochemical interactions, resulting in the formation of mechanically sensitive dynamic steady states. Understanding the regulation of such force-activated chemistries and dynamic steady states reflects an important challenge for future work that will provide valuable insights as to how the actin cytoskeleton engenders mechanoresponsiveness of living cells. PMID:25957404

  5. Identification of a new actin binding surface on vinculin that mediates mechanical cell and focal adhesion properties

    PubMed Central

    Thompson, Peter M.; Tolbert, Caitlin E.; Shen, Kai; Kota, Pradeep; Palmer, Sean M.; Plevock, Karen M.; Orlova, Albina; Galkin, Vitold E.; Burridge, Keith; Egelman, Edward H.; Dokholyan, Nikolay V.; Superfine, Richard; Campbell, Sharon L.

    2014-01-01

    SUMMARY Vinculin, a cytoskeletal scaffold protein essential for embryogenesis and cardiovascular function, localizes to focal adhesions and adherens junctions, connecting cell surface receptors to the actin cytoskeleton. While vinculin interacts with many adhesion proteins, its interaction with filamentous actin regulates cell morphology, motility, and mechanotransduction. Disruption of this interaction lowers cell traction forces and enhances actin flow rates. Although a model for the vinculin:actin complex exists, we recently identified actin-binding deficient mutants of vinculin outside sites predicted to bind actin, and developed an alternative model to better define this novel actin-binding surface, using negative-stain EM, discrete molecular dynamics, and mutagenesis. Actin-binding deficient vinculin variants expressed in vinculin knockout fibroblasts fail to rescue cell-spreading defects and reduce cellular response to external force. These findings highlight the importance of this new actin-binding surface and provide the molecular basis for elucidating additional roles of this interaction, including actin-induced conformational changes which promote actin bundling. PMID:24685146

  6. Pdlim7 Regulates Arf6-Dependent Actin Dynamics and Is Required for Platelet-Mediated Thrombosis in Mice

    PubMed Central

    Miller, Kaylie P.; Krcmery, Jennifer; Simon, Hans-Georg

    2016-01-01

    Upon vessel injury, platelets become activated and rapidly reorganize their actin cytoskeleton to adhere to the site of endothelial damage, triggering the formation of a fibrin-rich plug to prevent further blood loss. Inactivation of Pdlim7 provides the new perspective that regulation of actin cytoskeletal changes in platelets is dependent on the encoded PDZ-LIM protein. Loss-of-function of Pdlim7 triggers hypercoagulopathy and causes significant perinatal lethality in mice. Our in vivo and in vitro studies reveal that Pdlim7 is dynamically distributed along actin fibers, and lack of Pdlim7 leads to a marked inability to rearrange the actin cytoskeleton. Specifically, the absence of Pdlim7 prevents platelets from bundling actin fibers into a concentric ring that defines the round spread shape of activated platelets. Similarly, in mouse embryonic fibroblasts, loss of Pdlim7 abolishes the formation of stress fibers needed to adopt the typical elongated fibroblast shape. In addition to revealing a fundamental cell biological role in actin cytoskeletal organization, we also demonstrate a function of Pdlim7 in regulating the cycling between the GTP/GDP-bound states of Arf6. The small GTPase Arf6 is an essential factor required for actin dynamics, cytoskeletal rearrangements, and platelet activation. Consistent with our findings of significantly elevated initial F-actin ratios and subsequent morphological aberrations, loss of Pdlim7 causes a shift in balance towards an increased Arf6-GTP level in resting platelets. These findings identify a new Pdlim7-Arf6 axis controlling actin dynamics and implicate Pdlim7 as a primary endogenous regulator of platelet-dependent hemostasis. PMID:27792740

  7. Drosophila comes of age as a model system for understanding the function of cytoskeletal proteins in cells, tissues, and organisms.

    PubMed

    Rodal, Avital A; Del Signore, Steven J; Martin, Adam C

    2015-05-01

    For the last 100 years, Drosophila melanogaster has been a powerhouse genetic system for understanding mechanisms of inheritance, development, and behavior in animals. In recent years, advances in imaging and genetic tools have led to Drosophila becoming one of the most effective systems for unlocking the subcellular functions of proteins (and particularly cytoskeletal proteins) in complex developmental settings. In this review, written for non-Drosophila experts, we will discuss critical technical advances that have enabled these cell biological insights, highlighting three examples of cytoskeletal discoveries that have arisen as a result: (1) regulation of Arp2/3 complex in myoblast fusion, (2) cooperation of the actin filament nucleators Spire and Cappuccino in establishment of oocyte polarity, and (3) coordination of supracellular myosin cables. These specific examples illustrate the unique power of Drosophila both to uncover new cytoskeletal structures and functions, and to place these discoveries in a broader in vivo context, providing insights that would have been impossible in a cell culture model or in vitro. Many of the cellular structures identified in Drosophila have clear counterparts in mammalian cells and tissues, and therefore elucidating cytoskeletal functions in Drosophila will be broadly applicable to other organisms.

  8. The role of actin networks in cellular mechanosensing

    NASA Astrophysics Data System (ADS)

    Azatov, Mikheil

    behavior as in cancer metastasis. In addition to stiffness, the local geometry or topography of the surface has been shown to modulate the movement, morphology, and cytoskeletal organization of cells. However, the effect of topography on fluctuations of intracellular structures, which arise from motor driven activity on a viscoelastic actin network are not known. I have used nanofabricated substrates with parallel ridges to show that the cell shape, the actin cytoskeleton and focal adhesions all align along the direction of the ridges, exhibiting a biphasic dependence on the spacing between ridges. I further demonstrated that palladin bands along actin stress fibers undergo a complex diffusive motion with velocities aligned along the direction of ridges. These results provide insight into the mechanisms of cellular mechanosensing of the environment, suggesting a complex interplay between the actin cytoskeleton and cellular adhesions in coordinating cellular response to surface topography. Overall, this work has advanced our understanding of mechanisms that govern cellular responses to their physical environment.

  9. Cytoskeletal dynamics and lung fluid balance.

    PubMed

    Vogel, Stephen M; Malik, Asrar B

    2012-01-01

    This article examines the role of the endothelial cytoskeleton in the lung's ability to restrict fluid and protein to vascular space at normal vascular pressures and thereby to protect lung alveoli from lethal flooding. The barrier properties of microvascular endothelium are dependent on endothelial cell contact with other vessel-wall lining cells and with the underlying extracellular matrix (ECM). Focal adhesion complexes are essential for attachment of endothelium to ECM. In quiescent endothelial cells, the thick cortical actin rim helps determine cell shape and stabilize endothelial adherens junctions and focal adhesions through protein bridges to actin cytoskeleton. Permeability-increasing agonists signal activation of "small GTPases" of the Rho family to reorganize the actin cytoskeleton, leading to endothelial cell shape change, disassembly of cortical actin rim, and redistribution of actin into cytoplasmic stress fibers. In association with calcium- and Src-regulated myosin light chain kinase (MLCK), stress fibers become actinomyosin-mediated contractile units. Permeability-increasing agonists stimulate calcium entry and induce tyrosine phosphorylation of VE-cadherin (vascular endothelial cadherin) and β-catenins to weaken or pull apart endothelial adherens junctions. Some permeability agonists cause latent activation of the small GTPases, Cdc42 and Rac1, which facilitate endothelial barrier recovery and eliminate interendothelial gaps. Under the influence of Cdc42 and Rac1, filopodia and lamellipodia are generated by rearrangements of actin cytoskeleton. These motile evaginations extend endothelial cell borders across interendothelial gaps, and may initiate reannealing of endothelial junctions. Endogenous barrier protective substances, such as sphingosine-1-phosphate, play an important role in maintaining a restrictive endothelial barrier and counteracting the effects of permeability-increasing agonists.

  10. Cytoskeletal toxicity of pectenotoxins in hepatic cells

    PubMed Central

    Espiña, B; Louzao, M C; Ares, I R; Cagide, E; Vieytes, M R; Vega, F V; Rubiolo, J A; Miles, C O; Suzuki, T; Yasumoto, T; Botana, L M

    2008-01-01

    Background and purpose. Pectenotoxins are macrocyclic lactones found in dinoflagellates of the genus Dinophysis, which induce severe liver damage in mice after i.p. injection. Here, we have looked for the mechanism(s) underlying this hepatotoxicity. Experimental approach. Effects of pectenotoxin (PTX)-1, PTX-2, PTX-2 seco acid (PTX-2SA) and PTX-11 were measured in a hepatocyte cell line with cancer cell characteristics (Clone 9) and in primary cultures of rat hepatocytes. Cell morphology was assessed by confocal microscopy; F- and G-actin were selectively stained and cell viability measured by Alamar Blue fluorescence. Key results. Clone 9 cells and primary hepatocytes showed a marked depolymerization of F-actin with PTX-1, PTX-2 and PTX-11 (1–1000 nM) associated with an increase in G-actin level. However, morphology was only clearly altered in Clone 9 cells. PTX-2SA had no effect on the actin cytoskeleton. Despite the potent F-actin depolymerizing effect, PTX-1, PTX-2 or PTX-11 did not decrease the viability of Clone 9 cells after 24-h treatment. Only prolonged incubation (>48 h) with PTXs induced a fall in viability, and under these conditions, morphology of both Clone 9 and primary hepatocytes was drastically changed. Conclusions and implications. Although the actin cytoskeleton was clearly altered by PTX-1, PTX-2 and PTX-11 in the hepatocyte cell line and primary hepatocytes, morphological assessments indicated a higher sensitivity of the cancer-like cell line to these toxins. However, viability of both cell types was not altered. PMID:18776914

  11. Actin-cytoskeleton rearrangement modulates proton-induced uptake

    SciTech Connect

    Ben-Dov, Nadav; Korenstein, Rafi

    2013-04-15

    Recently it has been shown that elevating proton concentration at the cell surface stimulates the formation of membrane invaginations and vesicles accompanied by an enhanced uptake of macromolecules. While the initial induction of inward membrane curvature was rationalized in terms of proton-based increase of charge asymmetry across the membrane, the mechanisms underlying vesicle formation and its scission are still unknown. In light of the critical role of actin in vesicle formation during endocytosis, the present study addresses the involvement of cytoskeletal actin in proton-induced uptake (PIU). The uptake of dextran-FITC is used as a measure for the factual fraction of inward invaginations that undergo scission from the cell's plasma membrane. Our findings show that the rate of PIU in suspended cells is constant, whereas the rate of PIU in adherent cells is gradually increased in time, saturating at the level possessed by suspended cells. This is consistent with pH induced gradual degradation of stress-fibers in adherent cells. Wortmannin and calyculin-A are able to elevate PIU by 25% in adherent cells but not in suspended cells, while cytochalasin-D, rapamycin and latrunculin-A elevate PIU both in adherent and suspended cells. However, extensive actin depolymerization by high concentrations of latrunculin-A is able to inhibit PIU. We conclude that proton-induced membrane vesiculation is restricted by the actin structural resistance to the plasma membrane bending. Nevertheless, a certain degree of cortical actin restructuring is required for the completion of the scission process. - Highlights: ► Acidification of cells' exterior enhances uptake of macromolecules by the cells. ► Disruption of actin stress fibers leads to enhancement of proton induced uptake. ► Extensive depolymerization of cellular actin attenuates proton-induced uptake.

  12. Actin Automata with Memory

    NASA Astrophysics Data System (ADS)

    Alonso-Sanz, Ramón; Adamatzky, Andy

    Actin is a globular protein which forms long polar filaments in eukaryotic. The actin filaments play the roles of cytoskeleton, motility units, information processing and learning. We model actin filament as a double chain of finite state machines, nodes, which take states “0” and “1”. The states are abstractions of absence and presence of a subthreshold charge on actin units corresponding to the nodes. All nodes update their state in parallel to discrete time. A node updates its current state depending on states of two closest neighbors in the node chain and two closest neighbors in the complementary chain. Previous models of actin automata consider momentary state transitions of nodes. We enrich the actin automata model by assuming that states of nodes depend not only on the current states of neighboring node but also on their past states. Thus, we assess the effect of memory of past states on the dynamics of acting automata. We demonstrate in computational experiments that memory slows down propagation of perturbations, decrease entropy of space-time patterns generated, transforms traveling localizations to stationary oscillators, and stationary oscillations to still patterns.

  13. Changes in myocardial cytoskeletal intermediate filaments and myocyte contractile dysfunction in dilated cardiomyopathy: an in vivo study in humans

    PubMed Central

    Di, S; Marotta, M; Salvatore, G; Cudemo, G; Cuda, G; De Vivo, F; Di, B; Ciaramella, F; Caputo, G; de Divitiis, O

    2000-01-01

    AIM—To investigate in vivo the intermediate cytoskeletal filaments desmin and vimentin in myocardial tissues from patients with dilated cardiomyopathy, and to determine whether alterations in these proteins are associated with impaired contractility.
METHODS—Endomyocardial biopsies were performed in 12 patients with dilated cardiomyopathy and in 12 controls (six women with breast cancer before anthracycline chemotherapy and six male donors for heart transplantation). Biopsy specimens were analysed by light microscopy and immunochemistry (desmin, vimentin). Myocyte contractile protein function was evaluated by the actin-myosin in vitro motility assay. Left ventricular ejection fraction was assessed by echocardiography and radionuclide ventriculography.
RESULTS—Patients with dilated cardiomyopathy had a greater cardiomyocyte diameter than controls (p < 0.01). The increase in cell size was associated with a reduction in contractile function, as assessed by actin-myosin motility (r = −0.643; p < 0.01). Quantitative immunochemistry showed increased desmin and vimentin contents (p < 0.01), and the desmin distribution was disturbed in cardiomyopathy. There was a linear relation between desmin distribution and actin-myosin sliding in vitro (r = 0.853; p < 0.01) and an inverse correlation between desmin content and ejection fraction (r = −0.773; p < 0.02). Negative correlations were also found between myocardial vimentin content and the actin-myosin sliding rate (r = −0.74; p < 0.02) and left ventricular ejection fraction (r = −0.68; p < 0.01).
CONCLUSIONS—Compared with normal individuals, the myocardial tissue of patients with dilated cardiomyopathy shows alterations of cytoskeletal intermediate filament distribution and content associated with reduced myocyte contraction.


Keywords: dilated cardiomyopathy; desmin; vimentin; cardiac biopsy; actin-myosin PMID:11083750

  14. Primary granule exocytosis in human neutrophils is regulated by Rac-dependent actin remodeling.

    PubMed

    Mitchell, Troy; Lo, Andrea; Logan, Michael R; Lacy, Paige; Eitzen, Gary

    2008-11-01

    The actin cytoskeleton regulates exocytosis in all secretory cells. In neutrophils, Rac2 GTPase has been shown to control primary (azurophilic) granule exocytosis. In this report, we propose that Rac2 is required for actin cytoskeletal remodeling to promote primary granule exocytosis. Treatment of neutrophils with low doses (< or = 10 microM) of the actin-depolymerizing drugs latrunculin B (Lat B) or cytochalasin B (CB) enhanced both formyl peptide receptor- and Ca(2+) ionophore-stimulated exocytosis. Higher concentrations of CB or Lat B, or stabilization of F-actin with jasplakinolide (JP), inhibited primary granule exocytosis measured as myeloperoxidase release but did not affect secondary granule exocytosis determined by lactoferrin release. These results suggest an obligatory role for F-actin disassembly before primary granule exocytosis. However, lysates from secretagogue-stimulated neutrophils showed enhanced actin polymerization activity in vitro. Microscopic analysis showed that resting neutrophils contain significant cortical F-actin, which was redistributed to sites of primary granule translocation when stimulated. Exocytosis and actin remodeling was highly polarized when cells were primed with CB; however, polarization was reduced by Lat B preincubation, and both polarization and exocytosis were blocked when F-actin was stabilized with JP. Treatment of cells with the small molecule Rac inhibitor NSC23766 also inhibited actin remodeling and primary granule exocytosis induced by Lat B/fMLF or CB/fMLF, but not by Ca(2+) ionophore. Therefore, we propose a role for F-actin depolymerization at the cell cortex coupled with Rac-dependent F-actin polymerization in the cell cytoplasm to promote primary granule exocytosis.

  15. The Molecular Evolution of Actin

    PubMed Central

    Hightower, Robin C.; Meagher, Richard B.

    1986-01-01

    We have investigated the molecular evolution of plant and nonplant actin genes comparing nucleotide and amino acid sequences of 20 actin genes. Nucleotide changes resulting in amino acid substitutions (replacement substitutions) ranged from 3–7% for all pairwise comparisons of animal actin genes with the following exceptions. Comparisons between higher animal muscle actin gene sequences and comparisons between higher animal cytoplasmic actin gene sequences indicated <3% divergence. Comparisons between plant and nonplant actin genes revealed, with two exceptions, 11–15% replacement substitution. In the analysis of plant actins, replacement substitution between soybean actin genes SAc1, SAc3, SAc4 and maize actin gene MAc1 ranged from 8–10%, whereas these members within the soybean actin gene family ranged from 6–9% replacement substitution. The rate of sequence divergence of plant actin sequences appears to be similar to that observed for animal actins. Furthermore, these and other data suggest that the plant actin gene family is ancient and that the families of soybean and maize actin genes have diverged from a single common ancestral plant actin gene that originated long before the divergence of monocots and dicots. The soybean actin multigene family encodes at least three classes of actin. These classes each contain a pair of actin genes that have been designated kappa (SAc1, SAc6), lambda (SAc2, SAc4) and mu (SAc3, SAc7). The three classes of soybean actin are more divergent in nucleotide sequence from one another than higher animal cytoplasmic actin is divergent from muscle actin. The location and distribution of amino acid changes were compared between actin proteins from all sources. A comparison of the hydropathy of all actin sequences, except from Oxytricha, indicated a strong similarity in hydropathic character between all plant and nonplant actins despite the greater number of replacement substitutions in plant actins. These protein sequence

  16. Structure of a pentavalent G-actin*MRTF-A complex reveals how G-actin controls nucleocytoplasmic shuttling of a transcriptional coactivator.

    PubMed

    Mouilleron, Stéphane; Langer, Carola A; Guettler, Sebastian; McDonald, Neil Q; Treisman, Richard

    2011-06-14

    Subcellular localization of the actin-binding transcriptional coactivator MRTF-A is controlled by its interaction with monomeric actin (G-actin). Signal-induced decreases in G-actin concentration reduce MRTF-A nuclear export, leading to its nuclear accumulation, whereas artificial increases in G-actin concentration in resting cells block MRTF-A nuclear import, retaining it in the cytoplasm. This regulation is dependent on three actin-binding RPEL motifs in the regulatory domain of MRTF-A. We describe the structures of pentavalent and trivalent G-actin•RPEL domain complexes. In the pentavalent complex, each RPEL motif and the two intervening spacer sequences bound an actin monomer, forming a compact assembly. In contrast, the trivalent complex lacked the C-terminal spacer- and RPEL-actins, both of which bound only weakly in the pentavalent complex. Cytoplasmic localization of MRTF-A in unstimulated fibroblasts also required binding of G-actin to the spacer sequences. The bipartite MRTF-A nuclear localization sequence was buried in the pentameric assembly, explaining how increases in G-actin concentration prevent nuclear import of MRTF-A. Analyses of the pentavalent and trivalent complexes show how actin loads onto the RPEL domain and reveal a molecular mechanism by which actin can control the activity of one of its binding partners.

  17. Multiscale modeling of cell shape from the actin cytoskeleton.

    PubMed

    Rangamani, Padmini; Xiong, Granville Yuguang; Iyengar, Ravi

    2014-01-01

    The actin cytoskeleton is a dynamic structure that constantly undergoes complex reorganization events during many cellular processes. Mathematical models and simulations are powerful tools that can provide insight into the physical mechanisms underlying these processes and make predictions that can be experimentally tested. Representation of the interactions of the actin filaments with the plasma membrane and the movement of the plasma membrane for computation remains a challenge. Here, we provide an overview of the different modeling approaches used to study cytoskeletal dynamics and highlight the differential geometry approach that we have used to implement the interactions between the plasma membrane and the cytoskeleton. Using cell spreading as an example, we demonstrate how this approach is able to successfully capture in simulations, experimentally observed behavior. We provide a perspective on how the differential geometry approach can be used for other biological processes. PMID:24560144

  18. Mechanical and spatial determinants of cytoskeletal geodesic dome formation in cardiac fibroblasts.

    PubMed

    Entcheva, Emilia; Bien, Harold

    2009-02-01

    This study tests the hypothesis that the cell cytoskeletal (CSK) network can rearrange from geodesic dome type structures to stress fibers in response to microenvironmental cues. The CSK geodesic domes are highly organized actin microarchitectures within the cell, consisting of ordered polygonal elements. We studied primary neonatal rat cardiac fibroblasts. The cues used to trigger the interconversion between the two CSK architectures (geodesic domes and stress fibers) included factors affecting spatial order and the degree of CSK tension in the cells. Microfabricated three-dimensional substrates with micrometre sized grooves and peaks were used to alter the spatial order of cell growth in culture. CSK tension was modified by 2,3-butanedione 2-monoxime (BDM), cytochalasin D and the hyphae of Candida albicans. CSK geodesic domes occurred spontaneously in about 20% of the neonatal rat cardiac fibroblasts used in this study. Microfabricated structured surfaces produced anisotropy in the cell CSK and effectively converted geodesic domes into stress fibers in a dose-dependent manner (dependence on the period of the features). Affectors of actin structure, inhibitors of CSK tension and cell motility, e.g. BDM, cytochalasin D and the hyphae of C. albicans, suppressed or eliminated the geodesic domes. Our data suggest that the geodesic domes, similar to actin stress fibers, require maintenance of CSK integrity and tension. However, microenvironments that promote structural anisotropy in tensed cells cause the transformation of the geodesic domes into stress fibers, consistent with topographic cell guidance and some previous CSK model predictions. PMID:20023805

  19. Mechanical and spatial determinants of cytoskeletal geodesic dome formation in cardiac fibroblasts

    PubMed Central

    Bien, Harold

    2015-01-01

    This study tests the hypothesis that the cell cytoskeletal (CSK) network can rearrange from geodesic dome type structures to stress fibers in response to microenvironmental cues. The CSK geodesic domes are highly organized actin microarchitectures within the cell, consisting of ordered polygonal elements. We studied primary neonatal rat cardiac fibroblasts. The cues used to trigger the interconversion between the two CSK architectures (geodesic domes and stress fibers) included factors affecting spatial order and the degree of CSK tension in the cells. Microfabricated three-dimensional substrates with micrometre sized grooves and peaks were used to alter the spatial order of cell growth in culture. CSK tension was modified by 2,3-butanedione 2-monoxime (BDM), cytochalasin D and the hyphae of Candida albicans. CSK geodesic domes occurred spontaneously in about 20% of the neonatal rat cardiac fibroblasts used in this study. Microfabricated structured surfaces produced anisotropy in the cell CSK and effectively converted geodesic domes into stress fibers in a dose-dependent manner (dependence on the period of the features). Affectors of actin structure, inhibitors of CSK tension and cell motility, e.g. BDM, cytochalasin D and the hyphae of C. albicans, suppressed or eliminated the geodesic domes. Our data suggest that the geodesic domes, similar to actin stress fibers, require maintenance of CSK integrity and tension. However, microenvironments that promote structural anisotropy in tensed cells cause the transformation of the geodesic domes into stress fibers, consistent with topographic cell guidance and some previous CSK model predictions. PMID:20023805

  20. Distinct Roles of Cytoskeletal Components in Immunological Synapse Formation and Directed Secretion

    PubMed Central

    Ueda, Hironori; Zhou, Jie; Xie, Jianming

    2015-01-01

    A hallmark of CD4+ T cell activation and immunological synapse (IS) formation is the migration of the microtubule organization center and associated organelles toward the APCs. In this study, we found that when murine CD4+ T cells were treated with a microtubule-destabilizing agent (vinblastine) after the formation of IS, the microtubule organization center dispersed and all of the major cellular organelles moved away from the IS. Cytokines were no longer directed toward the synapse but were randomly secreted in quantities similar to those seen in synaptic secretion. However, if the actin cytoskeleton was disrupted at the same time with cytochalasin D, the organelles did not shift away from the IS. These findings suggest that there is a complex interplay between the microtubules and actin cytoskeleton, where microtubules are important for directing particular cytokines into the synapse, but they are not involved in the amount of cytokines that are produced for at least 1 h after IS formation. In addition, we found that they play a critical role in mobilizing organelles to reorient toward the synapse during T cell activation and in stabilizing organelles against the force that is generated through actin polymerization so that they move toward the APCs. These findings show that there is a complex interplay between these major cytoskeletal components during synapse formation and maintenance. PMID:26392461

  1. A multi-structural single cell model of force-induced interactions of cytoskeletal components.

    PubMed

    Barreto, Sara; Clausen, Casper H; Perrault, Cecile M; Fletcher, Daniel A; Lacroix, Damien

    2013-08-01

    Several computational models based on experimental techniques and theories have been proposed to describe cytoskeleton (CSK) mechanics. Tensegrity is a prominent model for force generation, but it cannot predict mechanics of individual CSK components, nor explain the discrepancies from the different single cell stimulating techniques studies combined with cytoskeleton-disruptors. A new numerical concept that defines a multi-structural 3D finite element (FE) model of a single-adherent cell is proposed to investigate the biophysical and biochemical differences of the mechanical role of each cytoskeleton component under loading. The model includes prestressed actin bundles and microtubule within cytoplasm and nucleus surrounded by the actin cortex. We performed numerical simulations of atomic force microscopy (AFM) experiments by subjecting the cell model to compressive loads. The numerical role of the CSK components was corroborated with AFM force measurements on U2OS-osteosarcoma cells and NIH-3T3 fibroblasts exposed to different cytoskeleton-disrupting drugs. Computational simulation showed that actin cortex and microtubules are the major components targeted in resisting compression. This is a new numerical tool that explains the specific role of the cortex and overcomes the difficulty of isolating this component from other networks in vitro. This illustrates that a combination of cytoskeletal structures with their own properties is necessary for a complete description of cellular mechanics. PMID:23702149

  2. Cytoskeletal and cellular adhesion proteins in zebrafish (Danio rerio) myogenesis.

    PubMed

    Costa, M L; Escaleira, R; Manasfi, M; de Souza, L F; Mermelstein, C S

    2003-08-01

    The current myogenesis and myofibrillogenesis model has been based mostly on in vitro cell culture studies, and, to a lesser extent, on in situ studies in avian and mammalian embryos. While the more isolated artificial conditions of cells in culture permitted careful structural analysis, the actual in situ cellular structures have not been described in detail because the embryos are more difficult to section and manipulate. To overcome these difficulties, we used the optically clear and easy to handle embryos of the zebrafish Danio rerio. We monitored the expression of cytoskeletal and cell-adhesion proteins (actin, myosin, desmin, alpha-actinin, troponin, titin, vimentin and vinculin) using immunofluorescence microscopy and video-enhanced, background-subtracted, differential interference contrast of 24- to 48-h zebrafish embryos. In the mature myotome, the mononucleated myoblasts displayed periodic striations for all sarcomeric proteins tested. The changes in desmin distribution from aggregates to perinuclear and striated forms, although following the same sequence, occurred much faster than in other models. All desmin-positive cells were also positive for myofibrillar proteins and striated, in contrast to that which occurs in cell cultures. Vimentin appeared to be striated in mature cells, while it is developmentally down-regulated in vitro. The whole connective tissue septum between the somites was positive for adhesion proteins such as vinculin, instead of the isolated adhesion plaques observed in cell cultures. The differences in the myogenesis of zebrafish in situ and in cell culture in vitro suggest that some of the previously observed structures and protein distributions in cultures could be methodological artifacts.

  3. Integrin β1 regulates leiomyoma cytoskeletal integrity and growth

    PubMed Central

    Malik, Minnie; Segars, James; Catherino, William H.

    2014-01-01

    Uterine leiomyomas are characterized by an excessive extracellular matrix, increased mechanical stress, and increased active RhoA. Previously, we observed that mechanical signaling was attenuated in leiomyoma, but the mechanisms responsible remain unclear. Integrins, especially integrin β1, are transmembrane adhesion receptors that couple extracellular matrix stresses to the intracellular cytoskeleton to influence cell proliferation and differentiation. Here we characterized integrin and laminin to signaling in leiomyoma cells. We observed a 2.25 ± 0.32 fold increased expression of integrin β1 in leiomyoma cells, compared to myometrial cells. Antibody-mediated inhibition of integrin β1 led to significant growth inhibition in leiomyoma cells and a loss of cytoskeletal integrity. Specifically, polymerization of actin filaments and formation of focal adhesions were reduced by inhibition of integrin p1. Inhibition of integrin β1 in leiomyoma cells led to 0.81 ± 0.02 fold decrease in active RhoA, and resembled levels found in serum-starved cells. Likewise, inhibition of integrin β1 was accompanied by a decrease in phospho-ERK. Compared to myometrial cells, leiomyoma cells demonstrated increased expression of integrin α6 subunit to laminin receptor (1.91 ± 0.11 fold), and increased expression of laminin 5α (1.52±0.02), laminin 5β (3.06±0.92), and laminin 5γ (1.66 ± 0.06). Of note, leiomyoma cells grown on laminin matrix appear to realign themselves. Taken together, the findings reveal that the attenuated mechanical signaling in leiomyoma cells is accompanied by an increased expression and a dependence on integrin β1 signaling in leiomyoma cells, compared to myometrial cells. PMID:23023061

  4. Orchestration of microtubules and the actin cytoskeleton in trichome cell shape determination by a plant-unique kinesin

    PubMed Central

    Tian, Juan; Han, Libo; Feng, Zhidi; Wang, Guangda; Liu, Weiwei; Ma, Yinping; Yu, Yanjun; Kong, Zhaosheng

    2015-01-01

    Microtubules (MTs) and actin filaments (F-actin) function cooperatively to regulate plant cell morphogenesis. However, the mechanisms underlying the crosstalk between these two cytoskeletal systems, particularly in cell shape control, remain largely unknown. In this study, we show that introduction of the MyTH4-FERM tandem into KCBP (kinesin-like calmodulin-binding protein) during evolution conferred novel functions. The MyTH4 domain and the FERM domain in the N-terminal tail of KCBP physically bind to MTs and F-actin, respectively. During trichome morphogenesis, KCBP distributes in a specific cortical gradient and concentrates at the branching sites and the apexes of elongating branches, which lack MTs but have cortical F-actin. Further, live-cell imaging and genetic analyses revealed that KCBP acts as a hub integrating MTs and actin filaments to assemble the required cytoskeletal configuration for the unique, polarized diffuse growth pattern during trichome cell morphogenesis. Our findings provide significant insights into the mechanisms underlying cytoskeletal regulation of cell shape determination. DOI: http://dx.doi.org/10.7554/eLife.09351.001 PMID:26287478

  5. Drosophila Fascin is a novel downstream target of prostaglandin signaling during actin remodeling.

    PubMed

    Groen, Christopher M; Spracklen, Andrew J; Fagan, Tiffany N; Tootle, Tina L

    2012-12-01

    Although prostaglandins (PGs)-lipid signals produced downstream of cyclooxygenase (COX) enzymes-regulate actin cytoskeletal dynamics, their mechanisms of action are unknown. We previously established Drosophila oogenesis, in particular nurse cell dumping, as a new model to determine how PGs regulate actin remodeling. PGs, and thus the Drosophila COX-like enzyme Pxt, are required for both the parallel actin filament bundle formation and the cortical actin strengthening required for dumping. Here we provide the first link between Fascin (Drosophila Singed, Sn), an actin-bundling protein, and PGs. Loss of either pxt or fascin results in similar actin defects. Fascin interacts, both pharmacologically and genetically, with PGs, as reduced Fascin levels enhance the effects of COX inhibition and synergize with reduced Pxt levels to cause both parallel bundle and cortical actin defects. Conversely, overexpression of Fascin in the germline suppresses the effects of COX inhibition and genetic loss of Pxt. These data lead to the conclusion that PGs regulate Fascin to control actin remodeling. This novel interaction has implications beyond Drosophila, as both PGs and Fascin-1, in mammalian systems, contribute to cancer cell migration and invasion.

  6. Shwachman-Diamond syndrome neutrophils have altered chemoattractant-induced F-actin polymerization and polarization characteristics.

    PubMed

    Orelio, Claudia; Kuijpers, Taco W

    2009-03-01

    Shwachman-Diamond syndrome is a hereditary disorder characterized by pancreatic insufficiency and bone marrow failure. Most Shwachman-Diamond syndrome patients have mutations in the SBDS gene located at chromosome 7 and suffer from recurrent infections, due to neutropenia in combination with impaired neutrophil chemotaxis. Currently, the role of the actin cytoskeleton in Shwachman-Diamond syndrome neutrophils has not been investigated. Therefore, we performed immunofluorescence for SBDS and F-actin on human neutrophilic cells. Additionally, we examined in control neutrophils and cells from genetically defined Shwachman-Diamond syndrome patients F-actin polymerization and cytoskeletal polarization characteristics upon chemoattractant stimulation. These studies showed that SBDS and F-actin co-localize in neutrophilic cells and that F-actin polymerization and depolymerization characteristics are altered in Shwachman-Diamond syndrome neutrophils as compared to control neutrophils in response to both fMLP and C5a. Moreover, F-actin cytoskeletal polarization is delayed in Shwachman-Diamond syndrome neutrophils. Thus, Shwachman-Diamond syndrome neutrophils have aberrant chemoattractant-induced F-actin properties which might contribute to the impaired neutrophil chemotaxis.

  7. Purification of recombinant human and Drosophila septin hexamers for TIRF assays of actin-septin filament assembly.

    PubMed

    Mavrakis, M; Tsai, F-C; Koenderink, G H

    2016-01-01

    Septins are guanine nucleotide-binding proteins that are conserved from fungi to humans. Septins assemble into heterooligomeric complexes and higher-order structures with key roles in various cellular functions including cell migration and division. The mechanisms by which septins assemble and interact with other cytoskeletal elements like actin remain elusive. A powerful approach to address this question is by cell-free reconstitution of purified cytoskeletal proteins combined with fluorescence microscopy. Here, we describe procedures for the purification of recombinant Drosophila and human septin hexamers from Escherichia coli and reconstitution of actin-septin coassembly. These procedures can be used to compare assembly of Drosophila and human septins and their coassembly with the actin cytoskeleton by total internal reflection fluorescence microscopy. PMID:27473911

  8. Purification of recombinant human and Drosophila septin hexamers for TIRF assays of actin-septin filament assembly.

    PubMed

    Mavrakis, M; Tsai, F-C; Koenderink, G H

    2016-01-01

    Septins are guanine nucleotide-binding proteins that are conserved from fungi to humans. Septins assemble into heterooligomeric complexes and higher-order structures with key roles in various cellular functions including cell migration and division. The mechanisms by which septins assemble and interact with other cytoskeletal elements like actin remain elusive. A powerful approach to address this question is by cell-free reconstitution of purified cytoskeletal proteins combined with fluorescence microscopy. Here, we describe procedures for the purification of recombinant Drosophila and human septin hexamers from Escherichia coli and reconstitution of actin-septin coassembly. These procedures can be used to compare assembly of Drosophila and human septins and their coassembly with the actin cytoskeleton by total internal reflection fluorescence microscopy.

  9. Single Filaments to Reveal the Multiple Flavors of Actin.

    PubMed

    Jégou, Antoine; Romet-Lemonne, Guillaume

    2016-05-24

    A number of key cell processes rely on specific assemblies of actin filaments, which are all constructed from nearly identical building blocks: the abundant and extremely conserved actin protein. A central question in the field is to understand how different filament networks can coexist and be regulated. Discoveries in science are often related to technical advances. Here, we focus on the ongoing single filament revolution and discuss how these techniques have greatly contributed to our understanding of actin assembly. In particular, we highlight how they have refined our understanding of the many protein-based regulatory mechanisms that modulate actin assembly. It is now becoming apparent that other factors give filaments a specific identity that determines which proteins will bind to them. We argue that single filament techniques will play an essential role in the coming years as we try to understand the many ways actin filaments can take different flavors and unveil how these flavors modulate the action of regulatory proteins. We discuss different factors known to make actin filaments distinguishable by regulatory proteins and speculate on their possible consequences.

  10. Actin and myosin function in directed vacuole movement during cell division in Saccharomyces cerevisiae

    PubMed Central

    1996-01-01

    During cell division, cytoplasmic organelles are not synthesized de novo, rather they are replicated and partitioned between daughter cells. Partitioning of the vacuole in the budding yeast Saccharomyces cerevisiae is coordinated with the cell cycle and involves a dramatic translocation of a portion of the parental organelle from the mother cell into the bud. While the molecular mechanisms that mediate this event are unknown, the vacuole's rapid and directed movements suggest cytoskeleton involvement. To identify cytoskeletal components that function in this process, vacuole inheritance was examined in a collection of actin mutants. Six strains were identified as being defective in vacuole inheritance. Tetrad analysis verified that the defect cosegregates with the mutant actin gene. One strain with a deletion in a myosin-binding region was analyzed further. The vacuole inheritance defect in this strain appears to result from the loss of a specific actin function; the actin cytoskeleton is intact and protein targeting to the vacuole is normal. Consistent with these findings, a mutation in the actin-binding domain of Myo2p, a class V unconventional myosin, abolishes vacuole inheritance. This suggests that Myo2p serves as a molecular motor for vacuole transport along actin filaments. The location of actin and Myo2p relative to the vacuole membrane is consistent with this model. Additional studies suggest that the actin filaments used for vacuole transport are dynamic, and that profilin plays a critical role in regulating their assembly. These results present the first demonstration that specific cytoskeletal proteins function in vacuole inheritance. PMID:8978821

  11. Reversibility and Viscoelastic Properties of Micropillar Supported and Oriented Magnesium Bundled F-Actin.

    PubMed

    Maier, Timo; Haraszti, Tamás

    2015-01-01

    Filamentous actin is one of the most important cytoskeletal elements. Not only is it responsible for the elastic properties of many cell types, but it also plays a vital role in cellular adhesion and motility. Understanding the bundling kinetics of actin filaments is important in the formation of various cytoskeletal structures, such as filopodia and stress fibers. Utilizing a unique pillar-structured microfluidic device, we investigated the time dependence of bundling kinetics of pillar supported free-standing actin filaments. Microparticles attached to the filaments allowed the measurement of thermal motion, and we found that bundling takes place at lower concentrations than previously found in 3-dimensional actin gels, i.e. actin filaments formed bundles in the presence of 5-12 mM of magnesium chloride in a time-dependent manner. The filaments also displayed long term stability for up to hours after removing the magnesium ions from the buffer, which suggests that there is an extensive hysteresis between cation induced crosslinking and decrosslinking.

  12. Drosophila cyfip regulates synaptic development and endocytosis by suppressing filamentous actin assembly.

    PubMed

    Zhao, Lu; Wang, Dan; Wang, Qifu; Rodal, Avital A; Zhang, Yong Q

    2013-04-01

    The formation of synapses and the proper construction of neural circuits depend on signaling pathways that regulate cytoskeletal structure and dynamics. After the mutual recognition of a growing axon and its target, multiple signaling pathways are activated that regulate cytoskeletal dynamics to determine the morphology and strength of the connection. By analyzing Drosophila mutations in the cytoplasmic FMRP interacting protein Cyfip, we demonstrate that this component of the WAVE complex inhibits the assembly of filamentous actin (F-actin) and thereby regulates key aspects of synaptogenesis. Cyfip regulates the distribution of F-actin filaments in presynaptic neuromuscular junction (NMJ) terminals. At cyfip mutant NMJs, F-actin assembly was accelerated, resulting in shorter NMJs, more numerous satellite boutons, and reduced quantal content. Increased synaptic vesicle size and failure to maintain excitatory junctional potential amplitudes under high-frequency stimulation in cyfip mutants indicated an endocytic defect. cyfip mutants exhibited upregulated bone morphogenetic protein (BMP) signaling, a major growth-promoting pathway known to be attenuated by endocytosis at the Drosophila NMJ. We propose that Cyfip regulates synapse development and endocytosis by inhibiting actin assembly.

  13. Reversibility and Viscoelastic Properties of Micropillar Supported and Oriented Magnesium Bundled F-Actin

    PubMed Central

    Maier, Timo; Haraszti, Tamás

    2015-01-01

    Filamentous actin is one of the most important cytoskeletal elements. Not only is it responsible for the elastic properties of many cell types, but it also plays a vital role in cellular adhesion and motility. Understanding the bundling kinetics of actin filaments is important in the formation of various cytoskeletal structures, such as filopodia and stress fibers. Utilizing a unique pillar-structured microfluidic device, we investigated the time dependence of bundling kinetics of pillar supported free-standing actin filaments. Microparticles attached to the filaments allowed the measurement of thermal motion, and we found that bundling takes place at lower concentrations than previously found in 3-dimensional actin gels, i.e. actin filaments formed bundles in the presence of 5–12 mM of magnesium chloride in a time-dependent manner. The filaments also displayed long term stability for up to hours after removing the magnesium ions from the buffer, which suggests that there is an extensive hysteresis between cation induced crosslinking and decrosslinking. PMID:26322783

  14. Filament Assembly by Spire: Key Residues and Concerted Actin Binding

    PubMed Central

    Rasson, Amy S.; Bois, Justin S.; Pham, Duy Stephen L.; Yoo, Haneul; Quinlan, Margot E.

    2014-01-01

    The most recently identified class of actin nucleators, WASp Homology domain 2 (WH2) – nucleators, use tandem repeats of monomeric actin-binding WH2 domains to facilitate actin nucleation. WH2 domains are involved in a wide variety of actin regulatory activities. Structurally, they are expected to clash with interprotomer contacts within the actin filament. Thus, the discovery of their role in nucleation was surprising. Here we use Drosophila Spire (Spir) as a model system to investigate both how tandem WH2 domains can nucleate actin and what differentiates nucleating WH2-containing proteins from their non-nucleating counterparts. We found that the third WH2 domain in Spir (Spir-C or Sc), plays a unique role. In the context of a short nucleation construct (containing only two WH2 domains), placement of Sc in the N-terminal position was required for the most potent nucleation. We found that the native organization of the WH2 domains with respect to each other is necessary for binding to actin with positive cooperativity. We identified two residues within Sc that are critical for its activity. Using this information we were able to convert a weak synthetic nucleator into one with activity equal to a native Spir construct. Lastly, we found evidence that Sc binds actin filaments, in addition to monomers. PMID:25234086

  15. Auxin Stimulates Its Own Transport by Shaping Actin Filaments1

    PubMed Central

    Nick, Peter; Han, Min-Jung; An, Gyeunhung

    2009-01-01

    The directional transport of the plant hormone auxin has been identified as central element of axis formation and patterning in plants. This directionality of transport depends on gradients, across the cell, of auxin-efflux carriers that continuously cycle between plasma membrane and intracellular compartments. This cycling has been proposed to depend on actin filaments. However, the role of actin for the polarity of auxin transport has been disputed. The organization of actin, in turn, has been shown to be under control of auxin. By overexpression of the actin-binding protein talin, we have generated transgenic rice (Oryza sativa) lines, where actin filaments are bundled to variable extent and, in consequence, display a reduced dynamics. We show that this bundling of actin filaments correlates with impaired gravitropism and reduced longitudinal transport of auxin. We can restore a normal actin configuration by addition of exogenous auxins and restore gravitropism as well as polar auxin transport. This rescue is mediated by indole-3-acetic acid and 1-naphthyl acetic acid but not by 2,4-dichlorophenoxyacetic acid. We interpret these findings in the context of a self-referring regulatory circuit between polar auxin transport and actin organization. This circuit might contribute to the self-amplification of auxin transport that is a central element in current models of auxin-dependent patterning. PMID:19633235

  16. Filament assembly by Spire: key residues and concerted actin binding.

    PubMed

    Rasson, Amy S; Bois, Justin S; Pham, Duy Stephen L; Yoo, Haneul; Quinlan, Margot E

    2015-02-27

    The most recently identified class of actin nucleators, WASp homology domain 2 (WH2) nucleators, use tandem repeats of monomeric actin-binding WH2 domains to facilitate actin nucleation. WH2 domains are involved in a wide variety of actin regulatory activities. Structurally, they are expected to clash with interprotomer contacts within the actin filament. Thus, the discovery of their role in nucleation was surprising. Here we use Drosophila Spire (Spir) as a model system to investigate both how tandem WH2 domains can nucleate actin and what differentiates nucleating WH2-containing proteins from their non-nucleating counterparts. We found that the third WH2 domain in Spir (Spir-C or SC) plays a unique role. In the context of a short nucleation construct (containing only two WH2 domains), placement of SC in the N-terminal position was required for the most potent nucleation. We found that the native organization of the WH2 domains with respect to each other is necessary for binding to actin with positive cooperativity. We identified two residues within SC that are critical for its activity. Using this information, we were able to convert a weak synthetic nucleator into one with activity equal to a native Spir construct. Lastly, we found evidence that SC binds actin filaments, in addition to monomers.

  17. Widespread cytoskeletal pathology characterizes corticobasal degeneration.

    PubMed Central

    Feany, M. B.; Dickson, D. W.

    1995-01-01

    Corticobasal degeneration (CBD) is a rare, progressive neurological disorder characterized by widespread neuronal and glial pathology. Using immunohistochemistry and laser confocal microscopy, we demonstrate that the nonamyloid cortical plaques of CBD are actually collections of abnormal tau in the distal processes of astrocytes. These glial cells express both vimentin and CD44, markers of astrocyte activation. Glial pathology also includes tau-positive cytoplasmic inclusions, here localized to Leu 7-expressing oligodendrocytes. In addition, a wide array of neuronal pathology is defined with tau-positive inclusions in multiple domains of a variety of cortical neurons. CBD thus exhibits widespread glial and neuronal cytoskeletal pathology, including a novel structure, the astrocytic plaque. CBD is a disease of generalized cytoskeletal disruption affecting several cell types and multiple domains of these cells. The further definition of CBD pathology refines the diagnosis and pathophysiological understanding of this unique disease and has important implications for other neurodegenerative diseases, like Alzheimer's disease, characterized by abnormal tau deposition. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7778678

  18. Entropic forces drive contraction of cytoskeletal networks.

    PubMed

    Braun, Marcus; Lansky, Zdenek; Hilitski, Feodor; Dogic, Zvonimir; Diez, Stefan

    2016-05-01

    The cytoskeleton is a network of interconnected protein filaments, which provide a three-dimensional scaffold for cells. Remodeling of the cytoskeleton is important for key cellular processes, such as cell motility, division, or morphogenesis. This remodeling is traditionally considered to be driven exclusively by processes consuming chemical energy, such as the dynamics of the filaments or the action of molecular motors. Here, we review two mechanisms of cytoskeletal network remodeling that are independent of the consumption of chemical energy. In both cases directed motion of overlapping filaments is driven by entropic forces, which arise from harnessing thermal energy present in solution. Entropic forces are induced either by macromolecular crowding agents or by diffusible crosslinkers confined to the regions where filaments overlap. Both mechanisms increase filament overlap length and lead to the contraction of filament networks. These force-generating mechanisms, together with the chemical energy-dependent mechanisms, need to be considered for the comprehensive quantitative picture of the remodeling of cytoskeletal networks in cells. PMID:26996935

  19. Magnetic phagosome motion in J774A.1 macrophages: influence of cytoskeletal drugs.

    PubMed Central

    Möller, W; Nemoto, I; Matsuzaki, T; Hofer, T; Heyder, J

    2000-01-01

    The role of the different cytoskeletal structures like microfilaments (MF), microtubuli (MT), and intermediate filaments (IF) in phagosome motion is unclear. These cytoskeletal units play an important role in macrophage function (migration, phagocytosis, phagosome transport). We investigated ferromagnetic phagosome motions by cell magnetometry. J774A.1 macrophages were incubated with 1.3-microm spherical magnetite particles for 24 h, after which more than 90% of the particles had been phagocytized. Phagosome motions can be caused either by the cell itself (relaxation) or by applying magnetic twisting forces, yielding cell stiffness and viscoelastic properties of the cytoskeleton. Apparent viscosity of the cytoplasm was non-Newtonian and showed a shear-rate-dependent power law behavior. Elastically stored energy does not force the magnetic phagosomes back to their initial orientation: 57% of the twisting shear was not recoverable. Cytoskeletal drugs, like Cytochalasin D (CyD, 2 - 4 microM), Colchicine (CoL, 10 microM), or Acrylamide (AcL, 40 mM) were added in order to disturb the different cytoskeletal structures. AcL disintegrates IF, but affected neither stochastic (relaxation) nor directed phagosome motions. CyD disrupts MF, resulting in a retarded stochastic phagosome motion (relative decay 0.53 +/- 0.01 after 5 min versus 0.34 +/- 0.01 in control), whereas phagosome twisting shows only a small response with a 9% increase of stiffness and a small reduction of recoverable strain. CoL depolymerizes the MT, inducing a moderately accelerated relaxation (relative decay 0.28 +/- 0.01 after 5 min) and a 10% increase of cell stiffness, where the pure viscous shear is increased and the viscoelastic recoil is inhibited by 40%. Combining the two drugs conserves both effects. After disintegrating either MF or MT, phagosome motion and cytoskeletal stiffness reflect the behavior of either MT or MF, respectively. The results verify that the dominant phagosome transport

  20. Magnetic phagosome motion in J774A.1 macrophages: influence of cytoskeletal drugs.

    PubMed

    Möller, W; Nemoto, I; Matsuzaki, T; Hofer, T; Heyder, J

    2000-08-01

    The role of the different cytoskeletal structures like microfilaments (MF), microtubuli (MT), and intermediate filaments (IF) in phagosome motion is unclear. These cytoskeletal units play an important role in macrophage function (migration, phagocytosis, phagosome transport). We investigated ferromagnetic phagosome motions by cell magnetometry. J774A.1 macrophages were incubated with 1.3-microm spherical magnetite particles for 24 h, after which more than 90% of the particles had been phagocytized. Phagosome motions can be caused either by the cell itself (relaxation) or by applying magnetic twisting forces, yielding cell stiffness and viscoelastic properties of the cytoskeleton. Apparent viscosity of the cytoplasm was non-Newtonian and showed a shear-rate-dependent power law behavior. Elastically stored energy does not force the magnetic phagosomes back to their initial orientation: 57% of the twisting shear was not recoverable. Cytoskeletal drugs, like Cytochalasin D (CyD, 2 - 4 microM), Colchicine (CoL, 10 microM), or Acrylamide (AcL, 40 mM) were added in order to disturb the different cytoskeletal structures. AcL disintegrates IF, but affected neither stochastic (relaxation) nor directed phagosome motions. CyD disrupts MF, resulting in a retarded stochastic phagosome motion (relative decay 0.53 +/- 0.01 after 5 min versus 0.34 +/- 0.01 in control), whereas phagosome twisting shows only a small response with a 9% increase of stiffness and a small reduction of recoverable strain. CoL depolymerizes the MT, inducing a moderately accelerated relaxation (relative decay 0.28 +/- 0.01 after 5 min) and a 10% increase of cell stiffness, where the pure viscous shear is increased and the viscoelastic recoil is inhibited by 40%. Combining the two drugs conserves both effects. After disintegrating either MF or MT, phagosome motion and cytoskeletal stiffness reflect the behavior of either MT or MF, respectively. The results verify that the dominant phagosome transport

  1. Rapid actin-dependent viral motility in live cells.

    PubMed

    Vaughan, Joshua C; Brandenburg, Boerries; Hogle, James M; Zhuang, Xiaowei

    2009-09-16

    During the course of an infection, viruses take advantage of a variety of mechanisms to travel in cells, ranging from diffusion within the cytosol to active transport along cytoskeletal filaments. To study viral motility within the intrinsically heterogeneous environment of the cell, we have developed a motility assay that allows for the global and unbiased analysis of tens of thousands of virus trajectories in live cells. Using this assay, we discovered that poliovirus exhibits anomalously rapid intracellular movement that was independent of microtubules, a common track for fast and directed cargo transport. Such rapid motion, with speeds of up to 5 microm/s, allows the virus particles to quickly explore all regions of the cell with the exception of the nucleus. The rapid, microtubule-independent movement of poliovirus was observed in multiple human-derived cell lines, but appeared to be cargo-specific. Other cargo, including a closely related picornavirus, did not exhibit similar motility. Furthermore, the motility is energy-dependent and requires an intact actin cytoskeleton, suggesting an active transport mechanism. The speed of this microtubule-independent but actin-dependent movement is nearly an order of magnitude faster than the fastest speeds reported for actin-dependent transport in animal cells, either by actin polymerization or by myosin motor proteins.

  2. mTORC2 regulates mechanically induced cytoskeletal reorganization and lineage selection in marrow derived mesenchymal stem cells

    PubMed Central

    Sen, Buer; Xie, Zhihui; Case, Natasha; Thompson, William R.; Uzer, Gunes; Styner, Maya; Rubin, Janet

    2013-01-01

    The cell cytoskeleton interprets and responds to physical cues from the microenvironment. Applying mechanical force to mesenchymal stem cells induces formation of a stiffer cytoskeleton, which biases against adipogenic differentiation and toward osteoblastogenesis. mTORC2, the mTOR complex defined by its binding partner rictor, is implicated in resting cytoskeletal architecture and is activated by mechanical force. We asked if mTORC2 played a role in mechanical adaptation of the cytoskeleton. We found that during bi-axial strain induced cytoskeletal restructuring, mTORC2 and Akt co-localize with newly assembled focal adhesions (FA). Disrupting the function of mTORC2, or that of its downstream substrate Akt, prevented mechanically-induced F-actin stress fiber development. mTORC2 becomes associated with vinculin during strain, and knock-down of vinculin prevents mTORC2 activation. In contrast, mTORC2 is not recruited to the FA complex during its activation by insulin, nor does insulin alter cytoskeletal structure. Further, when rictor was knocked down, the ability of MSC to enter the osteoblastic lineage was reduced, and when cultured in adipogenic medium, rictor-deficient MSC showed accelerated adipogenesis. This indicated that cytoskeletal remodeling promotes osteogenesis over adipogenesis. In sum, our data show that mTORC2 is involved in stem cell responses to biophysical stimuli, regulating both signaling and cytoskeletal reorganization. As such, mechanical activation of mTORC2 signaling participates in mesenchymal stem cell lineage selection, preventing adipogenesis by preserving β-catenin and stimulating osteogenesis by generating a stiffer cytoskeleton. PMID:23821483

  3. Structure of the 34 kDa F-actin-bundling protein ABP34 from Dictyostelium discoideum.

    PubMed

    Kim, Min-Kyu; Kim, Ji-Hye; Kim, Ji-Sun; Kang, Sa-Ouk

    2015-09-01

    The crystal structure of the 34 kDa F-actin-bundling protein ABP34 from Dictyostelium discoideum was solved by Ca(2+)/S-SAD phasing and refined at 1.89 Å resolution. ABP34 is a calcium-regulated actin-binding protein that cross-links actin filaments into bundles. Its in vitro F-actin-binding and F-actin-bundling activities were confirmed by a co-sedimentation assay and transmission electron microscopy. The co-localization of ABP34 with actin in cells was also verified. ABP34 adopts a two-domain structure with an EF-hand-containing N-domain and an actin-binding C-domain, but has no reported overall structural homologues. The EF-hand is occupied by a calcium ion with a pentagonal bipyramidal coordination as in the canonical EF-hand. The C-domain structure resembles a three-helical bundle and superposes well onto the rod-shaped helical structures of some cytoskeletal proteins. Residues 216-244 in the C-domain form part of the strongest actin-binding sites (193-254) and exhibit a conserved sequence with the actin-binding region of α-actinin and ABP120. Furthermore, the second helical region of the C-domain is kinked by a proline break, offering a convex surface towards the solvent area which is implicated in actin binding. The F-actin-binding model suggests that ABP34 binds to the side of the actin filament and residues 216-244 fit into a pocket between actin subdomains -1 and -2 through hydrophobic interactions. These studies provide insights into the calcium coordination in the EF-hand and F-actin-binding site in the C-domain of ABP34, which are associated through interdomain interactions. PMID:26327373

  4. Computational Tension Mapping of Adherent Cells Based on Actin Imaging

    PubMed Central

    Manifacier, Ian; Milan, Jean-Louis; Jeanneau, Charlotte; Chmilewsky, Fanny; Chabrand, Patrick; About, Imad

    2016-01-01

    Forces transiting through the cytoskeleton are known to play a role in adherent cell activity. Up to now few approaches haves been able to determine theses intracellular forces. We thus developed a computational mechanical model based on a reconstruction of the cytoskeleton of an adherent cell from fluorescence staining of the actin network and focal adhesions (FA). Our custom made algorithm converted the 2D image of an actin network into a map of contractile interactions inside a 2D node grid, each node representing a group of pixels. We assumed that actin filaments observed under fluorescence microscopy, appear brighter when thicker, we thus presumed that nodes corresponding to pixels with higher actin density were linked by stiffer interactions. This enabled us to create a system of heterogeneous interactions which represent the spatial organization of the contractile actin network. The contractility of this interaction system was then adapted to match the level of force the cell truly exerted on focal adhesions; forces on focal adhesions were estimated from their vinculin expressed size. This enabled the model to compute consistent mechanical forces transiting throughout the cell. After computation, we applied a graphical approach on the original actin image, which enabled us to calculate tension forces throughout the cell, or in a particular region or even in single stress fibers. It also enabled us to study different scenarios which may indicate the mechanical role of other cytoskeletal components such as microtubules. For instance, our results stated that the ratio between intra and extra cellular compression is inversely proportional to intracellular tension. PMID:26812601

  5. Molecular Mechanotransduction: how forces trigger cytoskeletal dynamics

    NASA Astrophysics Data System (ADS)

    Ehrlicher, Allen

    2012-02-01

    Mechanical stresses elicit cellular reactions mediated by chemical signals. Defective responses to forces underlie human medical disorders, such as cardiac failure and pulmonary injury. Despite detailed knowledge of the cytoskeleton's structure, the specific molecular switches that convert mechanical stimuli into chemical signals have remained elusive. Here we identify the actin-binding protein, filamin A (FLNa) as a central mechanotransduction element of the cytoskeleton by using Fluorescence Loss After photoConversion (FLAC), a novel high-speed alternative to FRAP. We reconstituted a minimal system consisting of actin filaments, FLNa and two FLNa-binding partners: the cytoplasmic tail of ß-integrin, and FilGAP. Integrins form an essential mechanical linkage between extracellular and intracellular environments, with ß integrin tails connecting to the actin cytoskeleton by binding directly to filamin. FilGAP is a FLNa-binding GTPase-activating protein specific for Rac, which in vivo regulates cell spreading and bleb formation. We demonstrate that both externally-imposed bulk shear and myosin II driven forces differentially regulate the binding of integrin and FilGAP to FLNa. Consistent with structural predictions, strain increases ß-integrin binding to FLNa, whereas it causes FilGAP to dissociate from FLNa, providing a direct and specific molecular basis for cellular mechanotransduction. These results identify the first molecular mechanotransduction element within the actin cytoskeleton, revealing that mechanical strain of key proteins regulates the binding of signaling molecules. Moreover, GAP activity has been shown to switch cell movement from mesenchymal to amoeboid motility, suggesting that mechanical forces directly impact the invasiveness of cancer.

  6. Synaptic Cytoskeletal Plasticity in the Prefrontal Cortex Following Psychostimulant Exposure.

    PubMed

    DePoy, Lauren M; Gourley, Shannon L

    2015-09-01

    Addiction is characterized by maladaptive decision-making, a loss of control over drug consumption and habit-like drug seeking despite adverse consequences. These cognitive changes may reflect the effects of drugs of abuse on prefrontal cortical neurobiology. Here, we review evidence that amphetamine and cocaine fundamentally remodel the structure of excitatory neurons in the prefrontal cortex. We summarize evidence in particular that these psychostimulants have opposing effects in the medial and orbital prefrontal cortices ('mPFC' and 'oPFC', respectively). For example, amphetamine and cocaine increase dendrite length and spine density in the mPFC, while dendrites are impoverished and dendritic spines are eliminated in the oPFC. We will discuss evidence that certain cytoskeletal regulatory proteins expressed in the oPFC and implicated in postnatal (adolescent) neural development also regulate behavioral sensitivity to cocaine. These findings potentially open a window of opportunity for the identification of novel pharmacotherapeutic targets in the treatment of drug abuse disorders in adults, as well as in drug-vulnerable adolescent populations. Finally, we will discuss the behavioral implications of drug-related dendritic spine elimination in the oPFC, with regard to reversal learning tasks and tasks that assess the development of reward-seeking habits, both used to model aspects of addiction in rodents.

  7. Synaptic cytoskeletal plasticity in the prefrontal cortex following psychostimulant exposure

    PubMed Central

    DePoy, Lauren M.; Gourley, Shannon L.

    2016-01-01

    Addiction is characterized by maladaptive decision-making, a loss of control over drug consumption, and habit-like drug seeking despite adverse consequences. These cognitive changes likely reflect the effects of drugs of abuse on prefrontal cortical neurobiology. Here we review evidence that amphetamine and cocaine fundamentally remodel the structure of excitatory neurons in the prefrontal cortex. We summarize evidence in particular that these psychostimulants have opposing effects in the medial and orbital prefrontal cortices (“mPFC” and “oPFC,” respectively). For example, amphetamine and cocaine increase dendrite length and spine density in the mPFC, while dendrites are impoverished and dendritic spines are eliminated in the oPFC. We will discuss evidence that certain cytoskeletal regulatory proteins expressed in the oPFC and implicated in postnatal (adolescent) neural development also regulate behavioral sensitivity to cocaine. These findings potentially open a window of opportunity for the identification of novel pharmacotherapeutic targets in the treatment of drug abuse disorders in adults, as well as in drug-vulnerable adolescent populations. Finally, we will discuss the behavioral implications of drug-related dendritic spine elimination in the oPFC, with regards to reversal learning tasks and tasks that assess the development of reward-seeking habits, both used to model aspects of addiction in rodents. PMID:25951902

  8. Synaptic Cytoskeletal Plasticity in the Prefrontal Cortex Following Psychostimulant Exposure.

    PubMed

    DePoy, Lauren M; Gourley, Shannon L

    2015-09-01

    Addiction is characterized by maladaptive decision-making, a loss of control over drug consumption and habit-like drug seeking despite adverse consequences. These cognitive changes may reflect the effects of drugs of abuse on prefrontal cortical neurobiology. Here, we review evidence that amphetamine and cocaine fundamentally remodel the structure of excitatory neurons in the prefrontal cortex. We summarize evidence in particular that these psychostimulants have opposing effects in the medial and orbital prefrontal cortices ('mPFC' and 'oPFC', respectively). For example, amphetamine and cocaine increase dendrite length and spine density in the mPFC, while dendrites are impoverished and dendritic spines are eliminated in the oPFC. We will discuss evidence that certain cytoskeletal regulatory proteins expressed in the oPFC and implicated in postnatal (adolescent) neural development also regulate behavioral sensitivity to cocaine. These findings potentially open a window of opportunity for the identification of novel pharmacotherapeutic targets in the treatment of drug abuse disorders in adults, as well as in drug-vulnerable adolescent populations. Finally, we will discuss the behavioral implications of drug-related dendritic spine elimination in the oPFC, with regard to reversal learning tasks and tasks that assess the development of reward-seeking habits, both used to model aspects of addiction in rodents. PMID:25951902

  9. Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination.

    PubMed

    Kornfeld, Samantha F; Lynch-Godrei, Anisha; Bonin, Sawyer R; Gibeault, Sabrina; De Repentigny, Yves; Kothary, Rashmi

    2016-01-01

    Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as was myelin basic

  10. Evidence That an Unconventional Actin Can Provide Essential F-Actin Function and That a Surveillance System Monitors F-Actin Integrity in Chlamydomonas.

    PubMed

    Onishi, Masayuki; Pringle, John R; Cross, Frederick R

    2016-03-01

    Actin is one of the most conserved eukaryotic proteins. It is thought to have multiple essential cellular roles and to function primarily or exclusively as filaments ("F-actin"). Chlamydomonas has been an enigma, because a null mutation (ida5-1) in its single gene for conventional actin does not affect growth. A highly divergent actin gene, NAP1, is upregulated in ida5-1 cells, but it has been unclear whether NAP1 can form filaments or provide actin function. Here, we used the actin-depolymerizing drug latrunculin B (LatB), the F-actin-specific probe Lifeact-Venus, and genetic and molecular methods to resolve these issues. LatB-treated wild-type cells continue to proliferate; they initially lose Lifeact-stained structures but recover them concomitant with upregulation of NAP1. Thirty-nine LatB-sensitive mutants fell into four genes (NAP1 and LAT1-LAT3) in which we identified the causative mutations using a novel combinatorial pool-sequencing strategy. LAT1-LAT3 are required for NAP1 upregulation upon LatB treatment, and ectopic expression of NAP1 largely rescues the LatB sensitivity of the lat1-lat3 mutants, suggesting that the LAT gene products comprise a regulatory hierarchy with NAP1 expression as the major functional output. Selection of LatB-resistant revertants of a nap1 mutant yielded dominant IDA5 mutations that presumably render F-IDA5 resistant to LatB, and nap1 and lat mutations are synthetically lethal with ida5-1 in the absence of LatB. We conclude that both IDA5 and the divergent NAP1 can form filaments and redundantly provide essential F-actin functions and that a novel surveillance system, probably responding to a loss of F-actin, triggers NAP1 expression and perhaps other compensatory responses. PMID:26715672

  11. Intermediate filament-like proteins in bacteria and a cytoskeletal function in Streptomyces

    PubMed Central

    Bagchi, Sonchita; Tomenius, Henrik; Belova, Lyubov M; Ausmees, Nora

    2008-01-01

    Actin and tubulin cytoskeletons are conserved and widespread in bacteria. A strikingly intermediate filament (IF)-like cytoskeleton, composed of crescentin, is also present in Caulobacter crescentus and determines its specific cell shape. However, the broader significance of this finding remained obscure, because crescentin appeared to be unique to Caulobacter. Here we demonstrate that IF-like function is probably a more widespread phenomenon in bacteria. First, we show that 21 genomes of 26 phylogenetically diverse species encoded uncharacterized proteins with a central segmented coiled coil rod domain, which we regarded as a key structural feature of IF proteins and crescentin. Experimental studies of three in silico predicted candidates from Mycobacterium and other actinomycetes revealed a common IF-like property to spontaneously assemble into filaments in vitro. Furthermore, the IF-like protein FilP formed cytoskeletal structures in the model actinomycete Streptomyces coelicolor and was needed for normal growth and morphogenesis. Atomic force microscopy of living cells revealed that the FilP cytoskeleton contributed to mechanical fitness of the hyphae, thus closely resembling the function of metazoan IF. Together, the bioinformatic and experimental data suggest that an IF-like protein architecture is a versatile design that is generally present in bacteria and utilized to perform diverse cytoskeletal tasks. PMID:18976278

  12. Thermally Driven and Cytoskeletal-Assisted Dynamics of the Mitochondrial Reticulum

    NASA Astrophysics Data System (ADS)

    Knowles, Michelle K.; Marcus, Andrew H.

    2003-05-01

    We report Fourier imaging correlation spectroscopy (FICS) and digital video fluorescence microscopy (DVFM) measurements of the dynamics of the mitochondrial reticulum in living osteosarcoma cells. Mitochondrial dynamics are strongly influenced by interactions with cytoskeletal filaments and their associated motor proteins, which lead to complex multi-exponential relaxations that occur over a wide range of spatial and temporal scales. The cytoskeleton consists of an interconnected polymer network whose primary components are microfilaments (actin) and microtubules (tubulin). These filaments work with motor proteins to translate organelles through the cell. We studied the dynamics of osteosarcoma cells labeled with red fluorescent protein in the mitochondrial matrix space using DVFM and FICS. Cells were then treated with cytoskeletal destabilizing drugs. Analysis of microscopy data allows for us to determine whether dynamic processes are diffusive or driven (by the cytoskeleton or collective dynamics). In FICS experiments, the control cells exhibit a unique pattern of dynamics that are then simplified when the cytoskeleton is depolymerized. Upon depolymerization, the dynamics of the organelle appear primarily diffusive.

  13. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria.

    PubMed

    Donovan, Catriona; Heyer, Antonia; Pfeifer, Eugen; Polen, Tino; Wittmann, Anja; Krämer, Reinhard; Frunzke, Julia; Bramkamp, Marc

    2015-05-26

    In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin.

  14. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria.

    PubMed

    Donovan, Catriona; Heyer, Antonia; Pfeifer, Eugen; Polen, Tino; Wittmann, Anja; Krämer, Reinhard; Frunzke, Julia; Bramkamp, Marc

    2015-05-26

    In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin. PMID:25916847

  15. Analysis of the human cofilin 1 structure reveals conformational changes required for actin binding

    PubMed Central

    Klejnot, Marta; Gabrielsen, Mads; Cameron, Jenifer; Mleczak, Andrzej; Talapatra, Sandeep K.; Kozielski, Frank; Pannifer, Andrew; Olson, Michael F.

    2013-01-01

    The actin cytoskeleton is the chassis that gives a cell its shape and structure, and supplies the power for numerous dynamic processes including motility, endocytosis, intracellular transport and division. To perform these activities, the cytoskeleton undergoes constant remodelling and reorganization. One of the major actin-remodelling families are the cofilin proteins, made up of cofilin 1, cofilin 2 and actin-depolymerizing factor (ADF), which sever aged ADP-associated actin filaments to reduce filament length and provide new potential nucleation sites. Despite the significant interest in cofilin as a central node in actin-cytoskeleton dynamics, to date the only forms of cofilin for which crystal structures have been solved are from the yeast, Chromalveolata and plant kingdoms; none have previously been reported for an animal cofilin protein. Two distinct regions in animal cofilin are significantly larger than in the forms previously crystallized, suggesting that they would be uniquely organized. Therefore, it was sought to determine the structure of human cofilin 1 by X-ray crystallography to elucidate how it could interact with and regulate dynamic actin-cytoskeletal structures. Although wild-type human cofilin 1 proved to be recalcitrant, a C147A point mutant yielded crystals that diffracted to 2.8 Å resolution. These studies revealed how the actin-binding helix undergoes a conformational change that increases the number of potential hydrogen bonds available for substrate binding. PMID:23999301

  16. Cortical instability drives periodic supracellular actin pattern formation in epithelial tubes.

    PubMed

    Hannezo, Edouard; Dong, Bo; Recho, Pierre; Joanny, Jean-François; Hayashi, Shigeo

    2015-07-14

    An essential question of morphogenesis is how patterns arise without preexisting positional information, as inspired by Turing. In the past few years, cytoskeletal flows in the cell cortex have been identified as a key mechanism of molecular patterning at the subcellular level. Theoretical and in vitro studies have suggested that biological polymers such as actomyosin gels have the property to self-organize, but the applicability of this concept in an in vivo setting remains unclear. Here, we report that the regular spacing pattern of supracellular actin rings in the Drosophila tracheal tubule is governed by a self-organizing principle. We propose a simple biophysical model where pattern formation arises from the interplay of myosin contractility and actin turnover. We validate the hypotheses of the model using photobleaching experiments and report that the formation of actin rings is contractility dependent. Moreover, genetic and pharmacological perturbations of the physical properties of the actomyosin gel modify the spacing of the pattern, as the model predicted. In addition, our model posited a role of cortical friction in stabilizing the spacing pattern of actin rings. Consistently, genetic depletion of apical extracellular matrix caused strikingly dynamic movements of actin rings, mirroring our model prediction of a transition from steady to chaotic actin patterns at low cortical friction. Our results therefore demonstrate quantitatively that a hydrodynamical instability of the actin cortex can trigger regular pattern formation and drive morphogenesis in an in vivo setting.

  17. Assembly Kinetics Determine the Architecture of α-actinin Crosslinked F-actin Networks

    PubMed Central

    Falzone, Tobias T.; Lenz, Martin; Kovar, David R.; Gardel, Margaret L.

    2013-01-01

    The actin cytoskeleton is organized into diverse meshworks and bundles that support many aspects of cell physiology. Understanding the self-assembly of these actin-based structures is essential for developing predictive models of cytoskeletal organization. Here we show that the competing kinetics of bundle formation with the onset of dynamic arrest arising from filament entanglements and cross-linking determine the architecture of reconstituted actin networks formed with α-actinin cross-links. Cross-link mediated bundle formation only occurs in dilute solutions of highly mobile actin filaments. As actin polymerization proceeds, filament mobility and bundle formation are arrested concomitantly. By controlling the onset of dynamic arrest, perturbations to actin assembly kinetics dramatically alter the architecture of biochemically identical samples. Thus, the morphology of reconstituted F-actin networks is a kinetically determined structure similar to those formed by physical gels and glasses. These results establish mechanisms controlling the structure and mechanics in diverse semi-flexible biopolymer networks. PMID:22643888

  18. Cortical instability drives periodic supracellular actin pattern formation in epithelial tubes

    PubMed Central

    Hannezo, Edouard; Dong, Bo; Recho, Pierre; Joanny, Jean-François; Hayashi, Shigeo

    2015-01-01

    An essential question of morphogenesis is how patterns arise without preexisting positional information, as inspired by Turing. In the past few years, cytoskeletal flows in the cell cortex have been identified as a key mechanism of molecular patterning at the subcellular level. Theoretical and in vitro studies have suggested that biological polymers such as actomyosin gels have the property to self-organize, but the applicability of this concept in an in vivo setting remains unclear. Here, we report that the regular spacing pattern of supracellular actin rings in the Drosophila tracheal tubule is governed by a self-organizing principle. We propose a simple biophysical model where pattern formation arises from the interplay of myosin contractility and actin turnover. We validate the hypotheses of the model using photobleaching experiments and report that the formation of actin rings is contractility dependent. Moreover, genetic and pharmacological perturbations of the physical properties of the actomyosin gel modify the spacing of the pattern, as the model predicted. In addition, our model posited a role of cortical friction in stabilizing the spacing pattern of actin rings. Consistently, genetic depletion of apical extracellular matrix caused strikingly dynamic movements of actin rings, mirroring our model prediction of a transition from steady to chaotic actin patterns at low cortical friction. Our results therefore demonstrate quantitatively that a hydrodynamical instability of the actin cortex can trigger regular pattern formation and drive morphogenesis in an in vivo setting. PMID:26077909

  19. Amplification of actin polymerization forces

    PubMed Central

    Dmitrieff, Serge; Nédélec, François

    2016-01-01

    The actin cytoskeleton drives many essential processes in vivo, using molecular motors and actin assembly as force generators. We discuss here the propagation of forces caused by actin polymerization, highlighting simple configurations where the force developed by the network can exceed the sum of the polymerization forces from all filaments. PMID:27002174

  20. Barley MLO Modulates Actin-Dependent and Actin-Independent Antifungal Defense Pathways at the Cell Periphery1[W][OA

    PubMed Central

    Miklis, Marco; Consonni, Chiara; Bhat, Riyaz A.; Lipka, Volker; Schulze-Lefert, Paul; Panstruga, Ralph

    2007-01-01

    Cell polarization is a crucial process during plant development, as well as in plant-microbe interactions, and is frequently associated with extensive cytoskeletal rearrangements. In interactions of plants with inappropriate fungal pathogens (so-called non-host interactions), the actin cytoskeleton is thought to contribute to the establishment of effective barriers at the cell periphery against fungal ingress. Here, we impeded actin cytoskeleton function in various types of disease resistance using pharmacological inhibitors and genetic interference via ectopic expression of an actin-depolymerizing factor-encoding gene, ADF. We demonstrate that barley (Hordeum vulgare) epidermal cells require actin cytoskeleton function for basal defense to the appropriate powdery mildew pathogen Blumeria graminis f. sp. hordei and for mlo-mediated resistance at the cell wall, but not for several tested race-specific immune responses. Analysis of non-host resistance to two tested inappropriate powdery mildews, Erysiphe pisi and B. graminis f. sp. tritici, revealed the existence of actin-dependent and actin-independent resistance pathways acting at the cell periphery. These pathways act synergistically and appear to be under negative control by the plasma membrane-resident MLO protein. PMID:17449647

  1. Actin-Based Feedback Circuits in Cell Migration and Endocytosis

    NASA Astrophysics Data System (ADS)

    Wang, Xinxin

    In this thesis, we study the switch and pulse functions of actin during two important cellular processes, cell migration and endocytosis. Actin is an abundant protein that can polymerize to form a dendritic network. The actin network can exert force to push or bend the cell membrane. During cell migration, the actin network behaves like a switch, assembling mostly at one end or at the other end. The end with the majority of the actin network is the leading edge, following which the cell can persistently move in the same direction. The other end, with the minority of the actin network, is the trailing edge, which is dragged by the cell as it moves forward. When subjected to large fluctuations or external stimuli, the leading edge and the trailing edge can interchange and change the direction of motion, like a motion switch. Our model of the actin network in a cell reveals that mechanical force is crucial for forming the motion switch. We find a transition from single state symmetric behavior to switch behavior, when tuning parameters such as the force. The model is studied by both stochastic simulations, and a set of rate equations that are consistent with the simulations. Endocytosis is a process by which cells engulf extracellular substances and recycle the cell membrane. In yeast cells, the actin network is transiently needed to overcome the pressure difference across the cell membrane caused by turgor pressure. The actin network behaves like a pulse, which assembles and then disassembles within about 30 seconds. Using a stochastic model, we reproduce the pulse behaviors of the actin network and one of its regulatory proteins, Las17. The model matches green fluorescence protein (GFP) experiments for wild-type cells. The model also predicts some phenotypes that modify or diminish the pulse behavior. The phenotypes are verified with both experiments performed at Washington University and with other groups' experiments. We find that several feedback mechanisms are

  2. Regulation of Actin by Ion-Linked Equilibria

    PubMed Central

    Kang, Hyeran; Bradley, Michael J.; Elam, W. Austin; De La Cruz, Enrique M.

    2013-01-01

    Actin assembly, filament mechanical properties, and interactions with regulatory proteins depend on the types and concentrations of salts in solution. Salts modulate actin through both nonspecific electrostatic effects and specific binding to discrete sites. Multiple cation-binding site classes spanning a broad range of affinities (nanomolar to millimolar) have been identified on actin monomers and filaments. This review focuses on discrete, low-affinity cation-binding interactions that drive polymerization, regulate filament-bending mechanics, and modulate interactions with regulatory proteins. Cation binding may be perturbed by actin post-translational modifications and linked equilibria. Partial cation occupancy under physiological and commonly used in vitro solution conditions likely contribute to filament mechanical heterogeneity and structural polymorphism. Site-specific cation-binding residues are conserved in Arp2 and Arp3, and may play a role in Arp2/3 complex activation and actin-filament branching activity. Actin-salt interactions demonstrate the relevance of ion-linked equilibria in the operation and regulation of complex biological systems. PMID:24359734

  3. Single-Molecule Studies of Actin Assembly and Disassembly Factors

    PubMed Central

    Smith, Benjamin A.; Gelles, Jeff; Goode, Bruce L.

    2014-01-01

    The actin cytoskeleton is very dynamic and highly regulated by multiple associated proteins in vivo. Understanding how this system of proteins functions in the processes of actin network assembly and disassembly requires methods to dissect the mechanisms of activity of individual factors and of multiple factors acting in concert. The advent of single-filament and single-molecule fluorescence imaging methods has provided a powerful new approach to discovering actin-regulatory activities and obtaining direct, quantitative insights into the pathways of molecular interactions that regulate actin network architecture and dynamics. Here we describe techniques for acquisition and analysis of single-molecule data, applied to the novel challenges of studying the filament assembly and disassembly activities of actin-associated proteins in vitro. We discuss the advantages of single-molecule analysis in directly visualizing the order of molecular events, measuring the kinetic rates of filament binding and dissociation, and studying the coordination among multiple factors. The methods described here complement traditional biochemical approaches in elucidating actin-regulatory mechanisms in reconstituted filamentous networks. PMID:24630103

  4. Control of actin-based motility through localized actin binding.

    PubMed

    Banigan, Edward J; Lee, Kun-Chun; Liu, Andrea J

    2013-12-01

    A wide variety of cell biological and biomimetic systems use actin polymerization to drive motility. It has been suggested that an object such as a bacterium can propel itself by self-assembling a high concentration of actin behind it, if it is repelled by actin. However, it is also known that it is essential for the moving object to bind actin. Therefore, a key question is how the actin tail can propel an object when it both binds and repels the object. We present a physically consistent Brownian dynamics model for actin-based motility that includes the minimal components of the dendritic nucleation model and allows for both attractive and repulsive interactions between actin and a moveable disc. We find that the concentration gradient of filamentous actin generated by polymerization is sufficient to propel the object, even with moderately strong binding interactions. Additionally, actin binding can act as a biophysical cap, and may directly control motility through modulation of network growth. Overall, this mechanism is robust in that it can drive motility against a load up to a stall pressure that depends on the Young's modulus of the actin network and can explain several aspects of actin-based motility.

  5. G-actin sequestering protein thymosin-β4 regulates the activity of myocardin-related transcription factor

    SciTech Connect

    Morita, Tsuyoshi Hayashi, Ken’ichiro

    2013-08-02

    Highlights: •Tβ4 competed with MRTF-A for G-actin binding. •Tβ4 activated the MRTF–SRF signaling pathway. •Tβ4 increased the endogenous expression of SRF-dependent genes. -- Abstract: Myocardin-related transcription factors (MRTFs) are robust coactivators of serum response factor (SRF). MRTFs contain three copies of the RPEL motif at their N-terminus, and they bind to monomeric globular actin (G-actin). Previous studies illustrate that G-actin binding inhibits MRTF activity by preventing the MRTFs nuclear accumulation. In the living cells, the majority of G-actin is sequestered by G-actin binding proteins that prevent spontaneous actin polymerization. Here, we demonstrate that the most abundant G-actin sequestering protein thymosin-β4 (Tβ4) was involved in the regulation of subcellular localization and activity of MRTF-A. Tβ4 competed with MRTF-A for G-actin binding; thus, interfering with G-actin–MRTF-A complex formation. Tβ4 overexpression induced the MRTF-A nuclear accumulation and activation of MRTF–SRF signaling. The activation rate of MRTF-A by the Tβ4 mutant L17A, whose affinity for G-actin is very low, was lower than that by wild-type Tβ4. In contrast, the β-actin mutant 3DA, which has a lower affinity for Tβ4, more effectively suppressed MRTF-A activity than wild-type β-actin. Furthermore, ectopic Tβ4 increased the endogenous expression of SRF-dependent actin cytoskeletal genes. Thus, Tβ4 is an important MRTF regulator that controls the G-actin–MRTFs interaction.

  6. Actin dynamics in papilla cells of Brassica rapa during self- and cross-pollination.

    PubMed

    Iwano, Megumi; Shiba, Hiroshi; Matoba, Kyoko; Miwa, Teruhiko; Funato, Miyuki; Entani, Tetsuyuki; Nakayama, Pulla; Shimosato, Hiroko; Takaoka, Akio; Isogai, Akira; Takayama, Seiji

    2007-05-01

    The self-incompatibility system of the plant species Brassica is controlled by the S-locus, which contains S-RECEPTOR KINASE (SRK) and S-LOCUS PROTEIN11 (SP11). SP11 binding to SRK induces SRK autophosphorylation and initiates a signaling cascade leading to the rejection of self pollen. However, the mechanism controlling hydration and germination arrest during self-pollination is unclear. In this study, we examined the role of actin, a key cytoskeletal component regulating the transport system for hydration and germination in the papilla cell during pollination. Using rhodamine-phalloidin staining, we showed that cross-pollination induced actin polymerization, whereas self-pollination induced actin reorganization and likely depolymerization. By monitoring transiently expressed green fluorescent protein fused to the actin-binding domain of mouse talin, we observed the concentration of actin bundles at the cross-pollen attachment site and actin reorganization and likely depolymerization at the self-pollen attachment site; the results correspond to those obtained by rhodamine-phalloidin staining. We further showed that the coat of self pollen is sufficient to mediate this response. The actin-depolymerizing drug cytochalasin D significantly inhibited pollen hydration and germination during cross-pollination, further emphasizing a role for actin in these processes. Additionally, three-dimensional electron microscopic tomography revealed the close association of the actin cytoskeleton with an apical vacuole network. Self-pollination disrupted the vacuole network, whereas cross-pollination led to vacuolar rearrangements toward the site of pollen attachment. Taken together, our data suggest that self- and cross-pollination differentially affect the dynamics of the actin cytoskeleton, leading to changes in vacuolar structure associated with hydration and germination.

  7. Actin-cytoskeleton dynamics in non-monotonic cell spreading

    PubMed Central

    Heinrich, Doris; Youssef, Simon; Schroth-Diez, Britta; Engel, Ulrike; Aydin, Daniel; Blümmel, Jacques; Spatz, Joachim P

    2008-01-01

    The spreading of motile cells on a substrate surface is accompanied by reorganization of their actin network. We show that spreading in the highly motile cells of Dictyostelium is non-monotonic, and thus differs from the passage of spreading cells through a regular series of stages. Quantification of the gain and loss of contact area revealed fluctuating forces of protrusion and retraction that dominate the interaction of Dictyostelium cells with a substrate. The molecular basis of these fluctuations is elucidated by dual-fluorescence labeling of filamentous actin together with proteins that highlight specific activities in the actin system. Front-to-tail polarity is established by the sorting out of myosin-II from regions where dense actin assemblies are accumulating. Myosin-IB identifies protruding front regions, and the Arp2/3 complex localizes to lamellipodia protruded from the fronts. Coronin is used as a sensitive indicator of actin disassembly to visualize the delicate balance of polymerization and depolymerization in spreading cells. Short-lived actin patches that co-localize with clathrin suggest that membrane internalization occurs even when the substrate-attached cell surface expands. We conclude that non-monotonic cell spreading is characterized by spatiotemporal patterns formed by motor proteins together with regulatory proteins that either promote or terminate actin polymerization on the scale of seconds. PMID:19262103

  8. Signal-dependent Slow Leukocyte Rolling Does Not Require Cytoskeletal Anchorage of P-selectin Glycoprotein Ligand-1 (PSGL-1) or Integrin αLβ2*

    PubMed Central

    Shao, Bojing; Yago, Tadayuki; Coghill, Phillip A.; Klopocki, Arkadiusz G.; Mehta-D'souza, Padmaja; Schmidtke, David W.; Rodgers, William; McEver, Rodger P.

    2012-01-01

    In inflamed venules, neutrophils roll on P- or E-selectin, engage P-selectin glycoprotein ligand-1 (PSGL-1), and signal extension of integrin αLβ2 in a low affinity state to slow rolling on intercellular adhesion molecule-1 (ICAM-1). Cytoskeleton-dependent receptor clustering often triggers signaling, and it has been hypothesized that the cytoplasmic domain links PSGL-1 to the cytoskeleton. Chemokines cause rolling neutrophils to fully activate αLβ2, leading to arrest on ICAM-1. Cytoskeletal anchorage of αLβ2 has been linked to chemokine-triggered extension and force-regulated conversion to the high affinity state. We asked whether PSGL-1 must interact with the cytoskeleton to initiate signaling and whether αLβ2 must interact with the cytoskeleton to extend. Fluorescence recovery after photobleaching of transfected cells documented cytoskeletal restraint of PSGL-1. The lateral mobility of PSGL-1 similarly increased by depolymerizing actin filaments with latrunculin B or by mutating the cytoplasmic tail to impair binding to the cytoskeleton. Converting dimeric PSGL-1 to a monomer by replacing its transmembrane domain did not alter its mobility. By transducing retroviruses expressing WT or mutant PSGL-1 into bone marrow-derived macrophages from PSGL-1-deficient mice, we show that PSGL-1 required neither dimerization nor cytoskeletal anchorage to signal β2 integrin-dependent slow rolling on P-selectin and ICAM-1. Depolymerizing actin filaments or decreasing actomyosin tension in neutrophils did not impair PSGL-1- or chemokine-mediated integrin extension. Unlike chemokines, PSGL-1 did not signal cytoskeleton-dependent swing out of the β2-hybrid domain associated with the high affinity state. The cytoskeletal independence of PSGL-1-initiated, αLβ2-mediated slow rolling differs markedly from the cytoskeletal dependence of chemokine-initiated, αLβ2-mediated arrest. PMID:22511754

  9. Characterization of bacterial artificial chromosome transgenic mice expressing mCherry fluorescent protein substituted for the murine smooth muscle-alpha-actin gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Smooth muscle a actin (SMA) is a cytoskeletal protein expressed by mesenchymal and smooth muscle cell types, including mural cells(vascular smooth muscle cells and pericytes). Using Bacterial Artificial Chromosome (BAC) recombineering technology, we generated transgenic reporter mice that express a ...

  10. Guardians of the actin monomer.

    PubMed

    Xue, Bo; Robinson, Robert C

    2013-01-01

    Actin is a universal force provider in eukaryotic cells. Biological processes harness the pressure generated from actin polymerization through dictating the time, place and direction of filament growth. As such, polymerization is initiated and maintained via tightly controlled filament nucleation and elongation machineries. Biological systems integrate force into their activities through recruiting and activating these machineries. In order that actin function as a common force generating polymerization motor, cells must maintain a pool of active, polymerization-ready monomeric actin, and minimize extemporaneous polymerization. Maintenance of the active monomeric actin pool requires the recycling of actin filaments, through depolymerization, nucleotide exchange and reloading of the polymerization machineries, while the levels of monomers are constantly monitored and supplemented, when needed, via the access of a reserve pool of monomers and through gene expression. Throughout its monomeric life, actin needs to be protected against gratuitous nucleation events. Here, we review the proteins that act as custodians of monomeric actin. We estimate their levels on a tissue scale, and calculate the implied concentrations of each actin complex based on reported binding affinities. These estimations predict that monomeric actin is rarely, if ever, alone. Thus, the guardians keep the volatility of actin in check, so that its explosive power is only released in the controlled environments of the nucleation and polymerization machineries. PMID:24268205

  11. Attenuation of LDHA expression in cancer cells leads to redox-dependent alterations in cytoskeletal structure and cell migration.

    PubMed

    Arseneault, Robert; Chien, Andrew; Newington, Jordan T; Rappon, Tim; Harris, Richard; Cumming, Robert C

    2013-09-28

    Aerobic glycolysis, the preferential use of glycolysis even in the presence of oxygen to meet cellular metabolic demands, is a near universal feature of cancer. This unique type of metabolism is thought to protect cancer cells from damaging reactive oxygen species (ROS) produced in the mitochondria. Using the cancer cell line MDA-MB-435 it is shown that shRNA mediated knockdown of lactate dehydrogenase A (LDHA), a key mediator of aerobic glycolysis, results in elevated mitochondrial ROS production and a concomitant decrease in cell proliferation and motility. Redox-sensitive proteins affected by oxidative stress associated with LDHA knockdown were identified by Redox 2D-PAGE and mass spectrometry. In particular, tropomyosin (Tm) isoforms Tm4, Tm5NM1 and Tm5NM5, proteins involved in cell migration and cytoskeletal dynamics, exhibited changes in disulfide bonding and co-localized with peri-nuclear actin aggregates in LDHA knockdown cells. In contrast, treatment with the thiol-based antioxidant N-acetylcysteine promoted the relocalization of Tms to cortical actin microfilaments and partially rescued the migration defects associated with attenuated LDHA expression. These results suggest that aerobic glycolysis and reduced mitochondrial ROS production create an environment conducive to cytoskeletal remodeling; key events linked to the high cell motility associated with cancer.

  12. A theoretical model of cytokinesis implicates feedback between membrane curvature and cytoskeletal organization in asymmetric cytokinetic furrowing

    PubMed Central

    Dorn, Jonas F.; Zhang, Li; Phi, Tan-Trao; Lacroix, Benjamin; Maddox, Paul S.; Liu, Jian; Maddox, Amy Shaub

    2016-01-01

    During cytokinesis, the cell undergoes a dramatic shape change as it divides into two daughter cells. Cell shape changes in cytokinesis are driven by a cortical ring rich in actin filaments and nonmuscle myosin II. The ring closes via actomyosin contraction coupled with actin depolymerization. Of interest, ring closure and hence the furrow ingression are nonconcentric (asymmetric) within the division plane across Metazoa. This nonconcentricity can occur and persist even without preexisting asymmetric cues, such as spindle placement or cellular adhesions. Cell-autonomous asymmetry is not explained by current models. We combined quantitative high-resolution live-cell microscopy with theoretical modeling to explore the mechanistic basis for asymmetric cytokinesis in the Caenorhabditis elegans zygote, with the goal of uncovering basic principles of ring closure. Our theoretical model suggests that feedback among membrane curvature, cytoskeletal alignment, and contractility is responsible for asymmetric cytokinetic furrowing. It also accurately predicts experimental perturbations of conserved ring proteins. The model further suggests that curvature-mediated filament alignment speeds up furrow closure while promoting energy efficiency. Collectively our work underscores the importance of membrane–cytoskeletal anchoring and suggests conserved molecular mechanisms for this activity. PMID:26912796

  13. A theoretical model of cytokinesis implicates feedback between membrane curvature and cytoskeletal organization in asymmetric cytokinetic furrowing.

    PubMed

    Dorn, Jonas F; Zhang, Li; Phi, Tan-Trao; Lacroix, Benjamin; Maddox, Paul S; Liu, Jian; Maddox, Amy Shaub

    2016-04-15

    During cytokinesis, the cell undergoes a dramatic shape change as it divides into two daughter cells. Cell shape changes in cytokinesis are driven by a cortical ring rich in actin filaments and nonmuscle myosin II. The ring closes via actomyosin contraction coupled with actin depolymerization. Of interest, ring closure and hence the furrow ingression are nonconcentric (asymmetric) within the division plane across Metazoa. This nonconcentricity can occur and persist even without preexisting asymmetric cues, such as spindle placement or cellular adhesions. Cell-autonomous asymmetry is not explained by current models. We combined quantitative high-resolution live-cell microscopy with theoretical modeling to explore the mechanistic basis for asymmetric cytokinesis in theCaenorhabditis eleganszygote, with the goal of uncovering basic principles of ring closure. Our theoretical model suggests that feedback among membrane curvature, cytoskeletal alignment, and contractility is responsible for asymmetric cytokinetic furrowing. It also accurately predicts experimental perturbations of conserved ring proteins. The model further suggests that curvature-mediated filament alignment speeds up furrow closure while promoting energy efficiency. Collectively our work underscores the importance of membrane-cytoskeletal anchoring and suggests conserved molecular mechanisms for this activity. PMID:26912796

  14. Intermediate (skeletin) filaments in heart Purkinje fibers. A correlative morphological and biochemical identification with evidence of a cytoskeletal function

    PubMed Central

    1979-01-01

    Cow Purkinje fibers contain a population of free cytoplasmic filaments which consistently differ in ultrastructural appearance from actin and myosin filaments, irrespective of preparation technique. The fixation and staining techniques, however, influenced the filament diameter, which was found to be 7.4--9.5 nm for filaments in plastic-embedded material, and 7.0 nm in cryo-sectioned material, thus intermediate as compared to actin and myosin filaments. Cross-sectional profiles suggested that the intermediate-sized filaments are composed of four subfilaments. To provide a basis for further biochemical investigations on the filaments, extraction procedures were carried out to remove other cell organelles. Electron microscopy showed that undulating bundles of intermediate filaments converging towards desmosomes still remained, after the extractions, together with Z-disk material. In spite of the extensive extraction, the shape of the individual cells and the assemblies of cell bundles remained intact. This confirms that the intermediate filaments of cow Purkinje fibers together with desmosomes do in fact have a cytoskeletal function. On account of (a) the cytoskeletal function of the filaments, (b) the similarities to the smooth muscle "100-A filament" protein subunit skeletin, and (c) the inadequate and confusing existing terminology, we suggest that the filaments be named "skeletin filaments." PMID:572365

  15. Dense granule trafficking in Toxoplasma gondii requires a unique class 27 myosin and actin filaments

    PubMed Central

    Heaslip, Aoife T.; Nelson, Shane R.; Warshaw, David M.

    2016-01-01

    The survival of Toxoplasma gondii within its host cell requires protein release from secretory vesicles, called dense granules, to maintain the parasite’s intracellular replicative niche. Despite the importance of DGs, nothing is known about the mechanisms underlying their transport. In higher eukaryotes, secretory vesicles are transported to the plasma membrane by molecular motors moving on their respective cytoskeletal tracks (i.e., microtubules and actin). Because the organization of these cytoskeletal structures differs substantially in T. gondii, the molecular motor dependence of DG trafficking is far from certain. By imaging the motions of green fluorescent protein–tagged DGs in intracellular parasites with high temporal and spatial resolution, we show through a combination of molecular genetics and chemical perturbations that directed DG transport is independent of microtubules and presumably their kinesin/dynein motors. However, directed DG transport is dependent on filamentous actin and a unique class 27 myosin, TgMyoF, which has structural similarity to myosin V, the prototypical cargo transporter. Actomyosin DG transport was unexpected, since filamentous parasite actin has yet to be visualized in vivo due in part to the prevailing model that parasite actin forms short, unstable filaments. Thus our data uncover new critical roles for these essential proteins in the lytic cycle of this devastating pathogen. PMID:27146112

  16. Dense granule trafficking in Toxoplasma gondii requires a unique class 27 myosin and actin filaments.

    PubMed

    Heaslip, Aoife T; Nelson, Shane R; Warshaw, David M

    2016-07-01

    The survival of Toxoplasma gondii within its host cell requires protein release from secretory vesicles, called dense granules, to maintain the parasite's intracellular replicative niche. Despite the importance of DGs, nothing is known about the mechanisms underlying their transport. In higher eukaryotes, secretory vesicles are transported to the plasma membrane by molecular motors moving on their respective cytoskeletal tracks (i.e., microtubules and actin). Because the organization of these cytoskeletal structures differs substantially in T. gondii, the molecular motor dependence of DG trafficking is far from certain. By imaging the motions of green fluorescent protein-tagged DGs in intracellular parasites with high temporal and spatial resolution, we show through a combination of molecular genetics and chemical perturbations that directed DG transport is independent of microtubules and presumably their kinesin/dynein motors. However, directed DG transport is dependent on filamentous actin and a unique class 27 myosin, TgMyoF, which has structural similarity to myosin V, the prototypical cargo transporter. Actomyosin DG transport was unexpected, since filamentous parasite actin has yet to be visualized in vivo due in part to the prevailing model that parasite actin forms short, unstable filaments. Thus our data uncover new critical roles for these essential proteins in the lytic cycle of this devastating pathogen. PMID:27146112

  17. beta-Dystroglycan modulates the interplay between actin and microtubules in human-adhered platelets.

    PubMed

    Cerecedo, Doris; Cisneros, Bulmaro; Suárez-Sánchez, Rocío; Hernández-González, Enrique; Galván, Iván

    2008-05-01

    To maintain the continuity of an injured blood vessel, platelets change shape, secrete granule contents, adhere, aggregate, and retract in a haemostatic plug. Ordered arrays of microtubules, microfilaments, and associated proteins are responsible for these platelet responses. In full-spread platelets, microfilament bundles in association with other cytoskeleton proteins are anchored in focal contacts. Recent studies in migrating cells suggest that co-ordination and direct physical interaction of microtubules and actin network modulate adhesion development. In platelets, we have proposed a feasible association between these two cytoskeletal systems, as well as the participation of the dystrophin-associated protein complex, as part of the focal adhesion complex. The present study analysed the participation of microtubules and actin during the platelet adhesion process. Confocal microscopy, fluorescence resonance transfer energy and immunoprecipitation assays were used to provide evidence of a cross-talk between these two cytoskeletal systems. Interestingly, beta-dystroglycan was found to act as an interplay protein between actin and microtubules and an additional communication between these two cytoskeleton networks was maintained through proteins of focal adhesion complex. Altogether our data are indicative of a dynamic co-participation of actin filaments and microtubules in modulating focal contacts to achieve platelet function.

  18. Occluding junctions and cytoskeletal components in a cultured transporting epithelium

    PubMed Central

    Meza, I; Ibarra, G; Sabanero, M; Martinez-Palomo, A; Cereijido, M

    1980-01-01

    MDCK cells form uninterrupted monolayers and make occluding junctions similar to those of natural epithelia. This aricle explores the relationship between these junctions and the cytoskeleton by combining studies on the distribution of microfilaments and microtubules with the effect of drugs, such as colchicines and cytochalasin B, on the degree of tightness of the occluding junctions. To study the degree of tightness, monolayers were prepared by plating MDCK cells on mylon disks coated with collagen. Disks were mounted as flat sheets between two Lucite chambers, and the sealing capacity of the junctions was evaluated by measuring the electrical resistance across the monolayers. Equivalent monolayers on coverslips were used to study the distribution of microtubules and microfilaments by indirect immunofluorescence staining with antibodies against tubulin and actin. This was done both on complete cells and on cytoskeleton preparations in which the cell membranes had been solubilized before fixation. Staining with antiactin shows a reticular pattern of very fine filaments that spread radially toward the periphery where they form a continuous cortical ring underlying the plasma membrane. Staining with antitubulin depicts fibers that extend radially to form a network that occupies the cytoplasm up to the edges of the cell. Colchicine causes a profound disruption of microtubules but only a 27 percent decrease in the electrical resistance of the resting monolayers. Cytochalasin B, when present for prolonged periods, disrupts the cytoplasmic microfilaments and abolishes the electrical resistance. The cortical ring of filaments remains in place but appears fragmented with time. We find that removal of extracellular Ca(++), which causes the tight junctions to open, also causes the microfilaments and microtubules to retract toward the center of the cells. The process of junction opening and fiber retraction is reversed by the restoration of Ca(++). Colchicine has no effect

  19. CONSERVED ROLES FOR CYTOSKELETAL COMPONENTS IN DETERMINING LATERALITY

    PubMed Central

    McDowell, Gary S.; Lemire, Joan M.; Paré, Jean-Francois; Cammarata, Garrett; Lowery, Laura Anne; Levin, Michael

    2016-01-01

    SUMMARY Consistently-biased left-right (LR) patterning is required for the proper placement of organs including the heart and viscera. The LR axis is especially fascinating as an example of multi-scale pattern formation, since here chiral events at the subcellular level are integrated and amplified into asymmetric transcriptional cascades and ultimately into the anatomical patterning of the entire body. In contrast to the other two body axes, there is considerable controversy about the earliest mechanisms of embryonic laterality. Many molecular components of asymmetry have not been widely tested among phyla with diverse bodyplans, and it is unknown whether parallel (redundant) pathways may exist that could reverse abnormal asymmetry states at specific checkpoints in development. To address conservation of the early steps of LR patterning, we used the Xenopus laevis (frog) embryo to functionally test a number of protein targets known to direct asymmetry in plants, fruit fly, and rodent. Using the same reagents that randomize asymmetry in Arabidopsis, Drosophila, and mouse embryos, we show that manipulation of the microtubule and actin cytoskeleton immediately post-fertilization, but not later, results in laterality defects in Xenopus embryos. Moreover, we observed organ-specific randomization effects and a striking dissociation of organ situs from effects on the expression of left side control genes, which parallel data from Drosophila and mouse. Remarkably, some early manipulations that disrupt laterality of transcriptional asymmetry determinants can be subsequently “rescued” by the embryo, resulting in normal organ situs. These data reveal the existence of novel corrective mechanisms, demonstrate that asymmetric expression of Nodal is not a definitive marker of laterality, and suggest the existence of amplification pathways that connect early cytoskeletal processes to control of organ situs bypassing Nodal. Counter to alternative models of symmetry breaking

  20. Actin stress in cell reprogramming

    PubMed Central

    Guo, Jun; Wang, Yuexiu; Sachs, Frederick; Meng, Fanjie

    2014-01-01

    Cell mechanics plays a role in stem cell reprogramming and differentiation. To understand this process better, we created a genetically encoded optical probe, named actin–cpstFRET–actin (AcpA), to report forces in actin in living cells in real time. We showed that stemness was associated with increased force in actin. We reprogrammed HEK-293 cells into stem-like cells using no transcription factors but simply by softening the substrate. However, Madin-Darby canine kidney (MDCK) cell reprogramming required, in addition to a soft substrate, Harvey rat sarcoma viral oncogene homolog expression. Replating the stem-like cells on glass led to redifferentiation and reduced force in actin. The actin force probe was a FRET sensor, called cpstFRET (circularly permuted stretch sensitive FRET), flanked by g-actin subunits. The labeled actin expressed efficiently in HEK, MDCK, 3T3, and bovine aortic endothelial cells and in multiple stable cell lines created from those cells. The viability of the cell lines demonstrated that labeled actin did not significantly affect cell physiology. The labeled actin distribution was similar to that observed with GFP-tagged actin. We also examined the stress in the actin cross-linker actinin. Actinin force was not always correlated with actin force, emphasizing the need for addressing protein specificity when discussing forces. Because actin is a primary structural protein in animal cells, understanding its force distribution is central to understanding animal cell physiology and the many linked reactions such as stress-induced gene expression. This new probe permits measuring actin forces in a wide range of experiments on preparations ranging from isolated proteins to transgenic animals. PMID:25422450

  1. Cytoskeletal alterations in interphase cells of the green alga Spirogyra decimina in response to heavy metals exposure: I. The effect of cadmium.

    PubMed

    Pribyl, P; Cepák, V; Zachleder, V

    2005-12-01

    The aim of the study was to elucidate the effect of cadmium ions on the arrangement of the actin and tubulin cytoskeleton, as well as the relationships between cytoskeletal changes and growth processes in the green filamentous alga Spirogyra decimina. Batch cultures of algae were carried out under defined conditions in the presence of various cadmium concentrations. In control cells, the cytoskeleton appeared to be a transversely oriented pattern of both microtubules and actin filaments of various thickness in the cell cortex; colocalization of cortical microtubules and actin filaments was apparent. Microtubules were very sensitive to the presence of cadmium ions. Depending on the cadmium concentration and the time of exposure, microtubules disintegrated into short rod-shaped fragments or they completely disappeared. A steep increase in cell width and a decrease in growth rate accompanied (and probably ensued) a very rapid disintegration of microtubules. Actin filaments were more stable because they were disturbed several hours later than microtubules at any cadmium concentration used. When cadmium ions were washed out, the actin cytoskeleton was rebuilt even in cells in which actin filaments were completely disintegrated at higher cadmium concentrations (40 or 100 microM). The much more sensitive microtubules were regenerated after treatment with lower cadmium concentrations (10 or 15 microM) only.

  2. Keratinocyte cytoskeletal roles in cell sheet engineering

    PubMed Central

    2013-01-01

    Background There is an increasing need to understand cell-cell interactions for cell and tissue engineering purposes, such as optimizing cell sheet constructs, as well as for examining adhesion defect diseases. For cell-sheet engineering, one major obstacle to sheet function is that cell sheets in suspension are fragile and, over time, will contract. While the role of the cytoskeleton in maintaining the structure and adhesion of cells cultured on a rigid substrate is well-characterized, a systematic examination of the role played by different components of the cytoskeleton in regulating cell sheet contraction and cohesion in the absence of a substrate has been lacking. Results In this study, keratinocytes were cultured until confluent and cell sheets were generated using dispase to remove the influence of the substrate. The effects of disrupting actin, microtubules or intermediate filaments on cell-cell interactions were assessed by measuring cell sheet cohesion and contraction. Keratin intermediate filament disruption caused comparable effects on cell sheet cohesion and contraction, when compared to actin or microtubule disruption. Interfering with actomyosin contraction demonstrated that interfering with cell contraction can also diminish cell cohesion. Conclusions All components of the cytoskeleton are involved in maintaining cell sheet cohesion and contraction, although not to the same extent. These findings demonstrate that substrate-free cell sheet biomechanical properties are dependent on the integrity of the cytoskeleton network. PMID:23442760

  3. Cytoskeletal architecture and its evolutionary significance in amoeboid eukaryotes and their mode of locomotion

    PubMed Central

    Williams, Jessica R.

    2016-01-01

    The cytoskeleton is the hallmark of eukaryotic evolution. The molecular and architectural aspects of the cytoskeleton have been playing a prominent role in our understanding of the origin and evolution of eukaryotes. In this study, we seek to investigate the cytoskeleton architecture and its evolutionary significance in understudied amoeboid lineages belonging to Amoebozoa. These amoebae primarily use cytoplasmic extensions supported by the cytoskeleton to perform important cellular processes such as movement and feeding. Amoeboid structure has important taxonomic significance, but, owing to techniques used, its potential significance in understanding diversity of the group has been seriously compromised, leading to an under-appreciation of its value. Here, we used immunocytochemistry and confocal microscopy to study the architecture of microtubules (MTs) and F-actin in diverse groups of amoebae. Our results demonstrate that all Amoebozoa examined are characterized by a complex cytoskeletal array, unlike what has been previously thought to exist. Our results not only conclusively demonstrate that all amoebozoans possess complex cytoplasmic MTs, but also provide, for the first time, a potential synapomorphy for the molecularly defined Amoebozoa clade. Based on this evidence, the last common ancestor of amoebozoans is hypothesized to have had a complex interwoven MT architecture limited within the granular cell body. We also generate several cytoskeleton characters related to MT and F-actin, which are found to be robust for defining groups in deep and shallow nodes of Amoebozoa. PMID:27703691

  4. p21-activated kinase regulates mast cell degranulation via effects on calcium mobilization and cytoskeletal dynamics

    PubMed Central

    Allen, Jayme D.; Jaffer, Zahara M.; Park, Su-Jung; Burgin, Sarah; Hofmann, Clemens; Sells, Mary Ann; Chen, Shi; Derr-Yellin, Ethel; Michels, Elizabeth G.; McDaniel, Andrew; Bessler, Waylan K.; Ingram, David A.; Atkinson, Simon J.; Travers, Jeffrey B.

    2009-01-01

    Mast cells are key participants in allergic diseases via activation of high-affinity IgE receptors (FcϵRI) resulting in release of proinflammatory mediators. The biochemical pathways linking IgE activation to calcium influx and cytoskeletal changes required for intracellular granule release are incompletely understood. We demonstrate, genetically, that Pak1 is required for this process. In a passive cutaneous anaphylaxis experiment, Wsh/Wsh mast cell–deficient mice locally reconstituted with Pak1−/− bone marrow–derived mast cells (BMMCs) experienced strikingly decreased allergen-induced vascular permeability compared with controls. Consistent with the in vivo phenotype, Pak1−/− BMMCs exhibited a reduction in FcϵRI-induced degranulation. Further, Pak1−/− BMMCs demonstrated diminished calcium mobilization and altered depolymerization of cortical filamentous actin (F-actin) in response to FcϵRI stimulation. These data implicate Pak1 as an essential molecular target for modulating acute mast cell responses that contribute to allergic diseases. PMID:19124833

  5. Effects of fixation protocol and gravistimulation on cytoskeletal organization in Brassica rapa roots

    NASA Astrophysics Data System (ADS)

    Edge, Andrea; Hasenstein, Karl H.

    2012-07-01

    In preparation for a flight experiment we have studied the optimization of the staining protocols for microtubules and actin filaments in Brassica rapa seedlings. Microtubules (MT) were stained with monoclonal antibody (mAb) YOL 1/34. F-actin (FA) staining was achieved with C4 mAb antibody. Fixative prepared more than three weeks before use produces specimens that stained poorly. Storage in fixative for more than four weeks resulted in noticeably poorer staining. Staining was best in cortical cells but more difficult and less consistent in cap cells, especially for FA. In addition, the quality of staining of root cap cells was dependent on the age of the formaldehyde. The organization of the MTs corresponded with previously published descriptions; FA was prominent in the stele with thick and numerous parallel bundles; cortical cells showed less dense and less directional organization of mostly thinner filaments. FA organization was determined by tissue rather than by differential elongation. The organization of MTs in cortical cells of curving roots was uniformly circular and perpendicular to the long cell axis despite different cell length. The effect of clinorotation around the horizontal axis and centrifugation on the cytoskeletal organization was inconsistent. (Supported by NASA grant NNX10AP91G)

  6. Dynamics of Cytoskeletal Proteins during Fcγ Receptor-mediated Phagocytosis in MacrophagesV⃞

    PubMed Central

    Diakonova, Maria; Bokoch, Gary; Swanson, Joel A.

    2002-01-01

    Particle ingestion by phagocytosis results from sequential rearrangements of the actin cytoskeleton and overlying membrane. To assemble a chronology of molecular events during phagosome formation and to examine the contributions of phosphoinositide 3-kinase (PI 3-kinase) to these dynamics, a method was developed for synchronizing Fcγ receptor-mediated phagocytosis by murine macrophages. Erythrocytes opsonized with complement component C3bi were bound to macrophages at 37°C, a condition that does not favor particle phagocytosis. Addition of soluble anti-erythrocyte IgG resulted in rapid opsonization of the bound erythrocytes, followed by their immediate internalization via phagocytosis. Cellular content of F-actin, as measured by binding of rhodamine-phalloidin, increased transiently during phagocytosis, and this increase was not diminished by inhibitors of PI 3-kinase. Immunofluorescence localization of myosins in macrophages fixed at various times during phagocytosis indicated that myosins II and IXb were concentrated in early phagosomes, myosin IC increased later, and myosin V appeared after phagosome closure. Other cytoskeletal proteins showed similar variations in the timing of their appearance in phagosomes. The PI 3-kinase inhibitor wortmannin did not change the dynamics of PI 3-kinase or ezrin localization but prevented the loss of PAK1 from phagosomes. These results suggest that PI 3-kinase deactivates PAK1, and that this may be needed for phagosome closure. PMID:11854399

  7. Effects of transforming growth factor type beta on expression of cytoskeletal proteins in endosteal mouse osteoblastic cells

    SciTech Connect

    Lomri, A.; Marie, P.J. )

    1990-01-01

    Transforming growth factor beta (TGF beta) has been shown to influence the growth and differentiation of many cell types in vitro. We have examined the effects of TGF beta on cell morphology and cytoskeletal organization in relation to parameters of cell proliferation and differentiation in endosteal osteoblastic cells isolated from mouse caudal vertebrae. Treatment of mouse osteoblastic cells cultured in serum free medium for 24 hours with TGF beta (1.5-30 ng/mL) slightly (-23%) inhibited alkaline phosphatase activity. In parallel, TGF beta (0.5-30 ng/mL, 24 hours) greatly increased cell replication as evaluated by (3H)-thymidine incorporation into DNA (157% to 325% of controls). At a median dose (1.5 ng/mL) that affected both alkaline phosphatase and DNA synthesis (235% of controls) TGF beta induced rapid (six hours) cell respreading of quiescent mouse osteoblastic cells. This effect was associated with increased polymerization of actin, alpha actinin, and tubulins, as evaluated by both biochemical and immunofluorescence methods. In addition, TGF beta (1.5 ng/mL) increased the de novo biosynthesis of actin, alpha actinin, vimentin, and tubulins, as determined by {sup 35}S methionine labeling and fractionation of cytoskeletal proteins using two-dimensional gel electrophoresis. These effects were rapid and transient, as they occurred at six hours and were reversed after 24 hours of TGF beta exposure. The results indicate that the stimulatory effect of TGF beta on DNA synthesis in endosteal mouse osteoblastic cells is associated with a transient increase in cell spreading associated with enhanced polymerization and synthesis of cytoskeletal proteins.

  8. Localization by indirect immunofluorescence of tetrin, actin, and centrin to the oral apparatus and buccal cavity of the macrostomal form of Tetrahymena vorax.

    PubMed

    McLaughlin, Neil B; Buhse, Howard E

    2004-01-01

    We have taken advantage of the size of the macrostomal oral apparatus of Tetrahymena vorax to investigate the immunofluorescent localization of three cytoskeletal proteins--tetrin, actin, and centrin. Tetrin and actin antibodies co-localize to cross-connectives that anchor the membranelles. These antibodies also recognize the coarse filamentous reticulum, a filament associated with the undulating membrane. Actin-specific localization extends beyond the coarse filamentous reticulum-undulating membrane complex into a region called the specialized cytoplasm. A centrin antibody localizes to the fine filamentous reticulum which, along with microtubules of the oral ribs, circumscribes the cytostomal opening. Models of phagocytic contraction based on these data are presented.

  9. Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis.

    PubMed

    Sampathkumar, Arun; Lindeboom, Jelmer J; Debolt, Seth; Gutierrez, Ryan; Ehrhardt, David W; Ketelaar, Tijs; Persson, Staffan

    2011-06-01

    In eukaryotic cells, the actin and microtubule (MT) cytoskeletal networks are dynamic structures that organize intracellular processes and facilitate their rapid reorganization. In plant cells, actin filaments (AFs) and MTs are essential for cell growth and morphogenesis. However, dynamic interactions between these two essential components in live cells have not been explored. Here, we use spinning-disc confocal microscopy to dissect interaction and cooperation between cortical AFs and MTs in Arabidopsis thaliana, utilizing fluorescent reporter constructs for both components. Quantitative analyses revealed altered AF dynamics associated with the positions and orientations of cortical MTs. Reorganization and reassembly of the AF array was dependent on the MTs following drug-induced depolymerization, whereby short AFs initially appeared colocalized with MTs, and displayed motility along MTs. We also observed that light-induced reorganization of MTs occurred in concert with changes in AF behavior. Our results indicate dynamic interaction between the cortical actin and MT cytoskeletons in interphase plant cells. PMID:21693695

  10. Live Cell Imaging Reveals Structural Associations between the Actin and Microtubule Cytoskeleton in Arabidopsis [W] [OA

    PubMed Central

    Sampathkumar, Arun; Lindeboom, Jelmer J.; Debolt, Seth; Gutierrez, Ryan; Ehrhardt, David W.; Ketelaar, Tijs; Persson, Staffan

    2011-01-01

    In eukaryotic cells, the actin and microtubule (MT) cytoskeletal networks are dynamic structures that organize intracellular processes and facilitate their rapid reorganization. In plant cells, actin filaments (AFs) and MTs are essential for cell growth and morphogenesis. However, dynamic interactions between these two essential components in live cells have not been explored. Here, we use spinning-disc confocal microscopy to dissect interaction and cooperation between cortical AFs and MTs in Arabidopsis thaliana, utilizing fluorescent reporter constructs for both components. Quantitative analyses revealed altered AF dynamics associated with the positions and orientations of cortical MTs. Reorganization and reassembly of the AF array was dependent on the MTs following drug-induced depolymerization, whereby short AFs initially appeared colocalized with MTs, and displayed motility along MTs. We also observed that light-induced reorganization of MTs occurred in concert with changes in AF behavior. Our results indicate dynamic interaction between the cortical actin and MT cytoskeletons in interphase plant cells. PMID:21693695

  11. Identification and Characterization of a Small Molecule Inhibitor of Formin-Mediated Actin Assembly

    PubMed Central

    Rizvi, Syed A.; Neidt, Erin M.; Cui, Jiayue; Feiger, Zach; Skau, Colleen T.; Gardel, Margaret L.; Kozmin, Sergey A.; Kovar, David R.

    2009-01-01

    SUMMARY Formins stimulate actin filament assembly for fundamental cellular processes including division, adhesion, establishing polarity and motility. A formin inhibitor would be useful because most cells express multiple formins whose functions are not known, and because metastatic tumor formation depends upon the deregulation of formin-dependent processes. We identified a general small molecule inhibitor of formin homology 2 domains (SMIFH2) by screening compounds for the ability to prevent formin-mediated actin assembly in vitro. SMIFH2 targets formins from evolutionarily diverse organisms including yeast, nematode worm and mice, with a half-maximal inhibitor concentration of ~5 to 15 μM. SMIFH2 prevents both formin nucleation and processive barbed-end elongation, and decreases formin’s affinity for the barbed end. Furthermore, low micromolar concentrations of SMIFH2 disrupt formin-dependent, but not Arp2/3 complex-dependent, actin cytoskeletal structures in fission yeast and mammalian NIH 3T3 fibroblasts. PMID:19942139

  12. Methods for modeling cytoskeletal and DNA filaments

    NASA Astrophysics Data System (ADS)

    Andrews, Steven S.

    2014-02-01

    This review summarizes the models that researchers use to represent the conformations and dynamics of cytoskeletal and DNA filaments. It focuses on models that address individual filaments in continuous space. Conformation models include the freely jointed, Gaussian, angle-biased chain (ABC), and wormlike chain (WLC) models, of which the first three bend at discrete joints and the last bends continuously. Predictions from the WLC model generally agree well with experiment. Dynamics models include the Rouse, Zimm, stiff rod, dynamic WLC, and reptation models, of which the first four apply to isolated filaments and the last to entangled filaments. Experiments show that the dynamic WLC and reptation models are most accurate. They also show that biological filaments typically experience strong hydrodynamic coupling and/or constrained motion. Computer simulation methods that address filament dynamics typically compute filament segment velocities from local forces using the Langevin equation and then integrate these velocities with explicit or implicit methods; the former are more versatile and the latter are more efficient. Much remains to be discovered in biological filament modeling. In particular, filament dynamics in living cells are not well understood, and current computational methods are too slow and not sufficiently versatile. Although primarily a review, this paper also presents new statistical calculations for the ABC and WLC models. Additionally, it corrects several discrepancies in the literature about bending and torsional persistence length definitions, and their relations to flexural and torsional rigidities.

  13. Use of Nanobodies to Localize Endogenous Cytoskeletal Proteins and to Determine Their Contribution to Cancer Cell Invasion by Using an ECM Degradation Assay.

    PubMed

    Van Audenhove, Isabel; Gettemans, Jan

    2016-01-01

    There are numerous ways to study actin cytoskeletal structures, and thereby identify the underlying mechanisms of organization and their regulating proteins. Traditional approaches make use of protein overexpression or siRNA. However to study or modulate resident endogenous proteins, complementary methods are required. Since the discovery of nanobodies in 1993, they have proven to represent interesting tools in a variety of applications due to their high affinity, solubility, and stability. Especially their intracellular functionality makes them ideally suited for the study of actin cytoskeletal regulation. Here we provide a protocol to clone nanobody cDNAs in frame with an EGFP or mCherry fluorescent tag. We explain how to transfect this fusion protein in eukaryotic (cancer) cells and how to perform immunofluorescence. This allows microscopic analysis of endogenous (cytoskeletal) proteins and gives insight into their endogenous localization. Moreover, we outline an extracellular matrix (ECM) degradation assay as an application of the general protocol. By seeding cells onto a fluorescently labeled gelatin matrix, degradation can be quantified by means of a matrix degradation index. This assay demonstrates the contribution of a protein during cancer cell invasiveness in vitro and the potential of a nanobody to inhibit this degradation through modulation of its target.

  14. Berberine induces dedifferentiation by actin cytoskeleton reorganization via phosphoinositide 3-kinase/Akt and p38 kinase pathways in rabbit articular chondrocytes

    PubMed Central

    Yu, Seon-Mi; Cho, Hongsik; Kim, Gwang-Hoon; Chung, Ki-Wha; Seo, Sung-Yum

    2016-01-01

    Osteoarthritis is a nonrheumatologic joint disease characterized by progressive degeneration of the cartilage extracellular matrix. Berberine (BBR) is an isoquinoline alkaloid used in traditional Chinese medicine, the majority of which is extracted from Huang Lian (Coptis chinensis). Although numerous studies have revealed the anticancer activity of BBR, its effects on normal cells, such as chondrocytes, and the molecular mechanisms underlying its actions remain elusive. Therefore, we examined the effects of BBR on rabbit articular chondrocytes, and the underlying molecular mechanisms, focusing on actin cytoskeletal reorganization. BBR induced dedifferentiation by inhibiting activation of phosphoinositide-3(PI3)-kinase/Akt and p38 kinase. Furthermore, inhibition of p38 kinase and PI3-kinase/Akt with SB203580 and LY294002, respectively, accelerated the BBR-induced dedifferentiation. BBR also caused actin cytoskeletal architecture reorganization and, therefore, we investigated if these effects were involved in the dedifferentiation. Disruption of the actin cytoskeleton by cytochalasin D reversed the BBR-induced dedifferentiation by activating PI3-kinase/Akt and p38 kinase. In contrast, the induction of actin filament aggregation by jasplakinolide accelerated the BBR-induced dedifferentiation via PI3-kinase/Akt inhibition and p38 kinase activation. Taken together, these data suggest that BBR strongly induces dedifferentiation, and actin cytoskeletal reorganization is a crucial requirement for this effect. Furthermore, the dedifferentiation activity of BBR appears to be mediated via PI3-kinase/Akt and p38 kinase pathways in rabbit articular chondrocytes. PMID:26851252

  15. Drosophila actin-Capping Protein limits JNK activation by the Src proto-oncogene.

    PubMed

    Fernández, B G; Jezowska, B; Janody, F

    2014-04-17

    The Src family kinases c-Src, and its downstream effectors, the Rho family of small GTPases RhoA and Jun N-terminal kinase (JNK) have a significant role in tumorigenesis. In this report, using the Drosophila wing disc epithelium as a model system, we demonstrate that the actin-Capping Protein (CP) αβ heterodimer, which regulates actin filament (F-actin) polymerization, limits Src-induced apoptosis or tissue overgrowth by restricting JNK activation. We show that overexpressing Src64B drives JNK-independent loss of epithelial integrity and JNK-dependent apoptosis via Btk29A, p120ctn and Rho1. However, when cells are kept alive with the Caspase inhibitor P35, JNK acts as a potent inducer of proliferation via activation of the Yorkie oncogene. Reducing CP levels direct apoptosis of overgrowing Src64B-overexpressing tissues. Conversely, overexpressing capping protein inhibits Src64B and Rho1, but not Rac1-induced JNK signaling. CP requires the actin-binding domain of the α-subunit to limit Src64B-induced apoptosis, arguing that the control of F-actin mediates this effect. In turn, JNK directs F-actin accumulation. Moreover, overexpressing capping protein also prevents apoptosis induced by ectopic JNK expression. Our data are consistent with a model in which the control of F-actin by CP limits Src-induced apoptosis or tissue overgrowth by acting downstream of Btk29A, p120ctn and Rho1, but upstream of JNK. In turn, JNK may counteract the effect of CP on F-actin, providing a positive feedback, which amplifies JNK activation. We propose that cytoskeletal changes triggered by misregulation of F-actin modulators may have a significant role in Src-mediated malignant phenotypes during the early stages of cellular transformation.

  16. Patterning and lifetime of plasma membrane-localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells.

    PubMed

    Sampathkumar, Arun; Gutierrez, Ryan; McFarlane, Heather E; Bringmann, Martin; Lindeboom, Jelmer; Emons, Anne-Mie; Samuels, Lacey; Ketelaar, Tijs; Ehrhardt, David W; Persson, Staffan

    2013-06-01

    The actin and microtubule cytoskeletons regulate cell shape across phyla, from bacteria to metazoans. In organisms with cell walls, the wall acts as a primary constraint of shape, and generation of specific cell shape depends on cytoskeletal organization for wall deposition and/or cell expansion. In higher plants, cortical microtubules help to organize cell wall construction by positioning the delivery of cellulose synthase (CesA) complexes and guiding their trajectories to orient newly synthesized cellulose microfibrils. The actin cytoskeleton is required for normal distribution of CesAs to the plasma membrane, but more specific roles for actin in cell wall assembly and organization remain largely elusive. We show that the actin cytoskeleton functions to regulate the CesA delivery rate to, and lifetime of CesAs at, the plasma membrane, which affects cellulose production. Furthermore, quantitative image analyses revealed that actin organization affects CesA tracking behavior at the plasma membrane and that small CesA compartments were associated with the actin cytoskeleton. By contrast, localized insertion of CesAs adjacent to cortical microtubules was not affected by the actin organization. Hence, both actin and microtubule cytoskeletons play important roles in regulating CesA trafficking, cellulose deposition, and organization of cell wall biogenesis. PMID:23606596

  17. Corticosterone treatment results in enhanced release of peptidergic vesicles in astrocytes via cytoskeletal rearrangements.

    PubMed

    Chatterjee, Sreejata; Sikdar, Sujit K

    2013-12-01

    While the effect of stress on neuronal physiology is widely studied, its effect on the functionality of astrocytes is not well understood. We studied the effect of high doses of stress hormone corticosterone, on two physiological properties of astrocytes, i.e., gliotransmission and interastrocytic calcium waves. To study the release of peptidergic vesicles from astrocytes, hippocampal astrocyte cultures were transfected with a plasmid to express pro-atrial natriuretic peptide (ANP) fused with the emerald green fluorescent protein (ANP.emd). The rate of decrease in fluorescence of ANP.emd on application of ionomycin, a calcium ionophore was monitored. Significant increase in the rate of calcium-dependent exocytosis of ANP.emd was observed with the 100 nM and 1 μM corticosterone treatments for 3 h, which depended on the activation of the glucocorticoid receptor. ANP.emd tagged vesicles exhibited increased mobility in astrocyte culture upon corticosterone treatment. Increasing corticosterone concentrations also resulted in concomitant increase in the calcium wave propagation velocity, initiated by focal ATP application. Corticosterone treatment also resulted in increased GFAP expression and F-actin rearrangements. FITC-Phalloidin immunostaining revealed increased formation of cross linked F-actin networks with the 100 nM and 1 μM corticosterone treatment. Alternatively, blockade of actin polymerization and disruption of microtubules prevented the corticosterone-mediated increase in ANP.emd release kinetics. This study reports for the first time the effect of corticosterone on gliotransmission via modulation of cytoskeletal elements. As ANP acts on both neurons and blood vessels, modulation of its release could have functional implications in neurovascular coupling under pathophysiological conditions of stress. PMID:24123181

  18. Initiation of Chondrocyte Self-Assembly Requires an Intact Cytoskeletal Network.

    PubMed

    Lee, Jennifer K; Hu, Jerry C Y; Yamada, Soichiro; Athanasiou, Kyriacos A

    2016-02-01

    Self-assembly and self-organization have recently emerged as robust scaffold-free tissue engineering methodologies that can be used to generate various tissues, including cartilage, vessel, and liver. Self-assembly, in particular, is a scaffold-free platform for tissue engineering that does not require the input of exogenous energy to the system. Although self-assembly can generate functional tissues, most notably neocartilage, the mechanisms of self-assembly remain unclear. To study the self-assembling process, we used articular chondrocytes as a model to identify parameters that can affect this process. Specifically, the roles of cell-cell and cell-matrix adhesion molecules, surface-bound collagen, and the actin cytoskeletal network were investigated. Using time-lapse imaging, we analyzed the early stages of chondrocyte self-assembly. Within hours, chondrocytes rapidly coalesced into cell clusters before compacting to form tight cellular structures. Chondrocyte self-assembly was found to depend primarily on integrin function and secondarily on cadherin function. In addition, actin or myosin II inhibitors prevented chondrocyte self-assembly, suggesting that cell adhesion alone is not sufficient, but rather the active contractile actin cytoskeleton is essential for proper chondrocyte self-assembly and the formation of neocartilage. Better understanding of the self-assembly mechanisms allows for the rational modulation of this process toward generating neocartilages with improved properties. These findings are germane to understanding self-assembly, an emerging platform for tissue engineering of a plethora of tissues, especially as these neotissues are poised for translation.

  19. Auxin and cytoskeletal organization in algae.

    PubMed

    Jin, Qiaojun; Scherp, Peter; Heimann, Kirsten; Hasenstein, Karl H

    2008-05-01

    Hormones affect growth and alter the cytoskeleton suggesting that hormones and the cytoskeleton interact with each other. The cytoskeleton of ancestral algae such as Chara showed similar sensitivity to auxin as higher plants, even in generative structures but the sensitivity differed between IAA and alpha-NAA and presumably other auxins. The ability of cells to elongate depends on microtubule organization during the transition from disorganized to perpendicular to longitudinal organization of the cytoskeleton. Because of the many functions of the cytoskeleton it is possible that its composition is influenced by selective gene expression and adaptation to growth regulators. Co-localization of microtubules and F-actin change at a high temporal and spatial scale. High resolution measurements of mRNA expression indicate rapid turnover that may affect the composition of the cytoskeleton.

  20. Novel roles for actin in mitochondrial fission

    PubMed Central

    Hatch, Anna L.; Gurel, Pinar S.; Higgs, Henry N.

    2014-01-01

    ABSTRACT Mitochondrial dynamics, including fusion, fission and translocation, are crucial to cellular homeostasis, with roles in cellular polarity, stress response and apoptosis. Mitochondrial fission has received particular attention, owing to links with several neurodegenerative diseases. A central player in fission is the cytoplasmic dynamin-related GTPase Drp1, which oligomerizes at the fission site and hydrolyzes GTP to drive membrane ingression. Drp1 recruitment to the outer mitochondrial membrane (OMM) is a key regulatory event, which appears to require a pre-constriction step in which the endoplasmic reticulum (ER) and mitochondrion interact extensively, a process termed ERMD (ER-associated mitochondrial division). It is unclear how ER–mitochondrial contact generates the force required for pre-constriction or why pre-constriction leads to Drp1 recruitment. Recent results, however, show that ERMD might be an actin-based process in mammals that requires the ER-associated formin INF2 upstream of Drp1, and that myosin II and other actin-binding proteins might be involved. In this Commentary, we present a mechanistic model for mitochondrial fission in which actin and myosin contribute in two ways; firstly, by supplying the force for pre-constriction and secondly, by serving as a coincidence detector for Drp1 binding. In addition, we discuss the possibility that multiple fission mechanisms exist in mammals. PMID:25217628

  1. A pathogenic bacterium triggers epithelial signals to form a functional bacterial receptor that mediates actin pseudopod formation.

    PubMed Central

    Rosenshine, I; Ruschkowski, S; Stein, M; Reinscheid, D J; Mills, S D; Finlay, B B

    1996-01-01

    Enteropathogenic E. coli (EPEC) belongs to a group of bacterial pathogens that induce actin accumulation beneath adherent bacteria. We found that EPEC adherence to epithelial cells mediates the formation of fingerlike pseudopods (up to 10 microm) beneath bacteria. These actin-rich structures also contain tyrosine phosphorylated host proteins concentrated at the pseudopod tip beneath adherent EPEC. Intimate bacterial adherence (and pseudopod formation) occurred only after prior bacterial induction of tyrosine phosphorylation of an epithelial membrane protein, Hp90, which then associates directly with an EPEC adhesin, intimin. These interactions lead to cytoskeletal nucleation and pseudopod formation. This is the first example of a bacterial pathogen that triggers signals in epithelial cells which activates receptor binding activity to a specific bacterial ligand and subsequent cytoskeletal rearrangement. Images PMID:8654358

  2. Regulation of the Postsynaptic Compartment of Excitatory Synapses by the Actin Cytoskeleton in Health and Its Disruption in Disease

    PubMed Central

    Stefen, Holly; Chaichim, Chanchanok

    2016-01-01

    Disruption of synaptic function at excitatory synapses is one of the earliest pathological changes seen in wide range of neurological diseases. The proper control of the segregation of neurotransmitter receptors at these synapses is directly correlated with the intact regulation of the postsynaptic cytoskeleton. In this review, we are discussing key factors that regulate the structure and dynamics of the actin cytoskeleton, the major cytoskeletal building block that supports the postsynaptic compartment. Special attention is given to the complex interplay of actin-associated proteins that are found in the synaptic specialization. We then discuss our current understanding of how disruption of these cytoskeletal elements may contribute to the pathological events observed in the nervous system under disease conditions with a particular focus on Alzheimer's disease pathology. PMID:27127658

  3. Changes in Ultrastructure and Cytoskeletal Aspects of Human Normal and Osteoarthritic Chondrocytes Exposed to Interleukin-1β and Cyclical Hydrostatic Pressure

    PubMed Central

    Pascarelli, Nicola Antonio; Collodel, Giulia; Moretti, Elena; Cheleschi, Sara; Fioravanti, Antonella

    2015-01-01

    The aim of this study was to examine the ultrastructure and cytoskeletal organization in human normal and Osteoarhritic (OA) chondrocytes, exposed to interleukin-1β (IL-1β) and cyclic hydrostatic pressure (HP). Morphological examination by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed differences between normal and OA chondrocytes at the nuclear and cytoplasmic level. IL-1β (5 ng/mL) induced a decrease of the number of mitochondria and Golgi bodies and a significant increase on the percentage of cells rich in vacuolization and in marginated chromatin. Cyclical HP (1–5 MPa, 0.25 Hz, for 3 h) did not change the morphology of normal chondrocytes, but had a beneficial effect on OA chondrocytes increasing the number of organelles. Normal and OA cells subjected to IL-1β and HP recovered cytoplasmic ultrastructure. Immunofluorescence (IF) examination of normal chondrocytes showed an actin signal polarized on the apical sides of the cytoplasm, tubulin and vimentin uniformly distributed throughout cytoplasm and vinculin revealed a punctuated pattern under the plasma membrane. In OA chondrocytes, these proteins partially lost their organization. Stimulation with IL-1β caused, in both type of cells, modification in the cytoskeletal organization; HP counteracted the negative effects of IL-1β. Our results showed structural differences at nuclear, cytoplasmic and cytoskeletal level between normal and OA chondrocytes. IL-1β induced ultrastructural and cytoskeletal modifications, counteracted by a cyclical low HP. PMID:26528971

  4. Changes in Ultrastructure and Cytoskeletal Aspects of Human Normal and Osteoarthritic Chondrocytes Exposed to Interleukin-1β and Cyclical Hydrostatic Pressure.

    PubMed

    Pascarelli, Nicola Antonio; Collodel, Giulia; Moretti, Elena; Cheleschi, Sara; Fioravanti, Antonella

    2015-01-01

    The aim of this study was to examine the ultrastructure and cytoskeletal organization in human normal and Osteoarhritic (OA) chondrocytes, exposed to interleukin-1β (IL-1β) and cyclic hydrostatic pressure (HP). Morphological examination by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed differences between normal and OA chondrocytes at the nuclear and cytoplasmic level. IL-1β (5 ng/mL) induced a decrease of the number of mitochondria and Golgi bodies and a significant increase on the percentage of cells rich in vacuolization and in marginated chromatin. Cyclical HP (1-5 MPa, 0.25 Hz, for 3 h) did not change the morphology of normal chondrocytes, but had a beneficial effect on OA chondrocytes increasing the number of organelles. Normal and OA cells subjected to IL-1β and HP recovered cytoplasmic ultrastructure. Immunofluorescence (IF) examination of normal chondrocytes showed an actin signal polarized on the apical sides of the cytoplasm, tubulin and vimentin uniformly distributed throughout cytoplasm and vinculin revealed a punctuated pattern under the plasma membrane. In OA chondrocytes, these proteins partially lost their organization. Stimulation with IL-1β caused, in both type of cells, modification in the cytoskeletal organization; HP counteracted the negative effects of IL-1β. Our results showed structural differences at nuclear, cytoplasmic and cytoskeletal level between normal and OA chondrocytes. IL-1β induced ultrastructural and cytoskeletal modifications, counteracted by a cyclical low HP. PMID:26528971

  5. State transitions of actin cortices in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Tan, Tzer Han; Keren, Kinneret; Mackintosh, Fred; Schmidt, Christoph; Fakhri, Nikta

    Most animal cells are enveloped by a thin layer of actin cortex which governs the cell mechanics. A functional cortex must be rigid to provide mechanical support while being flexible to allow for rapid restructuring events such as cell division. To satisfy these requirements, the actin cortex is highly dynamic with fast actin turnover and myosin-driven contractility. The regulatory mechanism responsible for the transition between a mechanically stable state and a restructuring state is not well understood. Here, we develop a technique to map the dynamics of reconstituted actin cortices in emulsion droplets using IR fluorescent single-walled carbon nanotubes (SWNTs). By increasing crosslinker concentration, we find that a homogeneous cortex transitions to an intermediate state with broken rotational symmetry and a globally contractile state which further breaks translational symmetry. We apply this new dynamic mapping technique to cortices of live starfish oocytes in various developmental stages. To identify the regulatory mechanism for steady state transitions, we subject the oocytes to actin and myosin disrupting drugs.

  6. A biosensor for the protease TACE reveals actin damage induced TACE activation

    PubMed Central

    Chapnick, Douglas A.; Bunker, Eric; Liu, Xuedong

    2016-01-01

    Ligand shedding has gained increased attention as a major posttranslational modification mechanism used by cells to respond to diverse environmental conditions. The TACEadam17 protease is a critical mediator of such ligand shedding, regulating the maturation and release of an impressive range of extracellular substrates that drive diverse cellular responses. Exactly how this protease is itself activated remains unclear, in part due to the lack of available tools to measure TACE activity with temporal and spatial resolution in live cells. We have developed a FRET based biosensor for TACE activity (TSen), which is capable of reporting TACE activation kinetics in live cells with a high degree of specificity. TSen was used in combination with chemical biology to probe the dependence of various means of TACE activation on p38 and Erk kinase activities, as well as to identify a novel connection between actin cytoskeletal disruption and TACE activation. Such cytoskeletal disruption leads to rapid and robust TACE activation in some cell types and accumulation of TACE at the plasma membrane, allowing for increased cleavage of endogenous substrates. Our study highlights both the versatility of TSen as a tool to understand the mechanisms of TACE activation in live cells and the importance of actin cytoskeletal integrity as a modulator of TACE activity. PMID:25714465

  7. Nucleotide dependent differences between the {alpha}-skeletal and {alpha}-cardiac actin isoforms

    SciTech Connect

    Orban, Jozsef; Lorinczy, Denes; Nyitrai, Miklos; Hild, Gabor

    2008-04-11

    The thermodynamic properties of the actin filaments prepared from cardiomyocytes were investigated with differential scanning calorimetry. This method could distinguish between the {alpha}-cardiac and {alpha}-skeletal components of the actin filaments polymerised from ADP-actin monomers by their different melting temperatures (T{sub m}). Similar separation was not possible with filaments polymerised from ATP-actin monomers. Further analyses revealed that the activation energy (E{sub act}) was greater for filaments of {alpha}-skeletal actin than for {alpha}-cardiac actin monomers when the filaments were polymerised from ADP-actin monomers. These results showed that the {alpha}-cardiac actin filaments were thermodynamically less stable than the filaments of {alpha}-skeletal actin and their difference was nucleotide dependent. Based on these results and considering previous observations it was concluded that the existence of two actin isoforms and their nucleotide dependent conformational differences are part of the tuning regulatory mechanism by which the cardiac muscle cells can maintain their biological function under pathological conditions.

  8. Phosphoproteome Profiling of SH-SY5y Neuroblastoma Cells Treated with Anesthetics: Sevoflurane and Isoflurane Affect the Phosphorylation of Proteins Involved in Cytoskeletal Regulation

    PubMed Central

    Lee, Joomin; Ahn, Eunsook; Park, Wyun Kon; Park, Seyeon

    2016-01-01

    Inhalation anesthetics are used to decrease the spinal cord transmission of painful stimuli. However, the molecular or biochemical processes within cells that regulate anesthetic-induced responses at the cellular level are largely unknown. Here, we report the phosphoproteome profile of SH-SY5y human neuroblastoma cells treated with sevoflurane, a clinically used anesthetic. Phosphoproteins were isolated from cell lysates and analyzed using two-dimensional gel electrophoresis. The phosphorylation of putative anesthetic-responsive marker proteins was validated using western blot analysis in cells treated with both sevoflurane and isoflurane. A total of 25 phosphoproteins were identified as differentially phosphorylated proteins. These included key regulators that signal cytoskeletal remodeling steps in pathways related to vesicle trafficking, axonal growth, and cell migration. These proteins included the Rho GTPase, Ras-GAP SH3 binding protein, Rho GTPase activating protein, actin-related protein, and actin. Sevoflurane and isoflurane also resulted in the dissolution of F-actin fibers in SH-SY5y cells. Our results show that anesthetics affect the phosphorylation of proteins involved in cytoskeletal remodeling pathways. PMID:27611435

  9. X-ray radiation promotes the metastatic potential of tongue squamous cell carcinoma cells via modulation of biomechanical and cytoskeletal properties.

    PubMed

    Zheng, Q; Liu, Y; Zhou, H J; Du, Y T; Zhang, B P; Zhang, J; Miao, G Y; Liu, B; Zhang, H

    2015-09-01

    This study investigated the metastatic potential of tongue squamous cell carcinoma (TSCC) cells after X-ray irradiation as well as radiation-induced changes in the biomechanical properties and cytoskeletal structure that are relevant to metastasis. Tca-8113 TSCC cells were X-ray-irradiated at increasing doses (0, 1, 2, or 4 Gy), and 24 h later, migration was evaluated with the wound healing and transwell migration assays, while invasion was assessed with the Matrigel invasion assay. Confocal and atomic force microscopy were used to examine changes in the structure of the actin cytoskeleton and Young's modulus (cell stiffness), respectively. X-ray radiation induced dose-dependent increases in invasive and migratory potentials of cells relative to unirradiated control cells (p < 0.05). The Young's modulus of irradiated cells was decreased by radiation exposure (p < 0.05), which was accompanied by alterations in the integrity and organization of the cytoskeletal network, as evidenced by a decrease in the signal intensity of actin fibers (p < 0.05). X-ray irradiation enhanced migration and invasiveness in Tca-8113 TSCC cells by altering their biomechanical properties and the organization of the actin cytoskeleton. A biomechanics-based analysis can provide an additional platform for assessing tumor response to radiation and optimization of cancer therapies.

  10. Phosphoproteome Profiling of SH-SY5y Neuroblastoma Cells Treated with Anesthetics: Sevoflurane and Isoflurane Affect the Phosphorylation of Proteins Involved in Cytoskeletal Regulation.

    PubMed

    Lee, Joomin; Ahn, Eunsook; Park, Wyun Kon; Park, Seyeon

    2016-01-01

    Inhalation anesthetics are used to decrease the spinal cord transmission of painful stimuli. However, the molecular or biochemical processes within cells that regulate anesthetic-induced responses at the cellular level are largely unknown. Here, we report the phosphoproteome profile of SH-SY5y human neuroblastoma cells treated with sevoflurane, a clinically used anesthetic. Phosphoproteins were isolated from cell lysates and analyzed using two-dimensional gel electrophoresis. The phosphorylation of putative anesthetic-responsive marker proteins was validated using western blot analysis in cells treated with both sevoflurane and isoflurane. A total of 25 phosphoproteins were identified as differentially phosphorylated proteins. These included key regulators that signal cytoskeletal remodeling steps in pathways related to vesicle trafficking, axonal growth, and cell migration. These proteins included the Rho GTPase, Ras-GAP SH3 binding protein, Rho GTPase activating protein, actin-related protein, and actin. Sevoflurane and isoflurane also resulted in the dissolution of F-actin fibers in SH-SY5y cells. Our results show that anesthetics affect the phosphorylation of proteins involved in cytoskeletal remodeling pathways.

  11. Phosphoproteome Profiling of SH-SY5y Neuroblastoma Cells Treated with Anesthetics: Sevoflurane and Isoflurane Affect the Phosphorylation of Proteins Involved in Cytoskeletal Regulation.

    PubMed

    Lee, Joomin; Ahn, Eunsook; Park, Wyun Kon; Park, Seyeon

    2016-01-01

    Inhalation anesthetics are used to decrease the spinal cord transmission of painful stimuli. However, the molecular or biochemical processes within cells that regulate anesthetic-induced responses at the cellular level are largely unknown. Here, we report the phosphoproteome profile of SH-SY5y human neuroblastoma cells treated with sevoflurane, a clinically used anesthetic. Phosphoproteins were isolated from cell lysates and analyzed using two-dimensional gel electrophoresis. The phosphorylation of putative anesthetic-responsive marker proteins was validated using western blot analysis in cells treated with both sevoflurane and isoflurane. A total of 25 phosphoproteins were identified as differentially phosphorylated proteins. These included key regulators that signal cytoskeletal remodeling steps in pathways related to vesicle trafficking, axonal growth, and cell migration. These proteins included the Rho GTPase, Ras-GAP SH3 binding protein, Rho GTPase activating protein, actin-related protein, and actin. Sevoflurane and isoflurane also resulted in the dissolution of F-actin fibers in SH-SY5y cells. Our results show that anesthetics affect the phosphorylation of proteins involved in cytoskeletal remodeling pathways. PMID:27611435

  12. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements

    SciTech Connect

    Woloschak, G.E. |; Felcher, P.; Chang-Liu, Chin-Mei

    1993-12-31

    Experiments were designed to examine the effects of radiation dose-rate and of the protein synthesis inhibitor cycloheximide on expression of cytoskeletal elements ({gamma}- and {beta}-actin and {alpha}-tubulin) and matrix elements (fibronectin) in Syrian hamster embryo cells. Results demonstrated little effect of dose-rate for JANUS fission-spectrum neutrons when comparing expression of either a-tubulin or fibronectin genes. Past work had already documented similar results for expression of actin transcripts. Cycloheximide, however, repressed accumulation of {alpha}-tubulin following exposure to high dose-rate neutrons or {gamma} rays; this did not occur following similar low dose-rate exposures. Cycloheximide did not affect accumulation of mRNA for actin genes. Cycloheximide abrogated the moderate induction of fibronectin-mRNA which occurred following exposure to {gamma} rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of {alpha}-tubulin and fibronectin mRNA accumulation following exposure to ionizing radiation and that the cellular/molecular response to low dose-rate neutrons may be different from the response to high dose-rate neutrons.

  13. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements

    SciTech Connect

    Woloschak, G.E. |; Felcher, P.; Chang-Liu, Chin-Mei

    1992-12-31

    Experiments were designed to examine the effects of radiation dose-rate and of the protein synthesis inhibitor cycloheximide on expression of cytoskeletal elements ({gamma}- and {beta}-actin and {alpha}-tubulin) and matrix elements (fibronectin) in Syrian hamster embryo cells. Past work from our laboratory had already demonstrated optimum time points and doses for examination of radiation effects on accumulation of specific transcripts. Our results here demonstrated little effect of dose-rate for JANUS fission spectrum neutrons when comparing expression of either {alpha}-tubulin or fibronectin genes. Past work had already documented similar results for expression of actin transcripts. Effects of cycloheximide, however, revealed several interesting and novel findings: (1) Cycloheximide repressed accumulation of {alpha}-tubulin following exposure to high dose-rate neutrons or {gamma} rays; this did not occur following similar low dose-rate exposure (2) Cycloheximide did not affect accumulation of mRNA for actin genes. Cycloheximide abrogated the moderate induction of fibronectin-mRNA which occurred following exposure to {gamma} rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of {alpha}-tubulin and fibronectin mRNA accumulation following exposure to ionizing radiation. In addition, they suggest that the cellular/molecular response to low dose-rate neutrons may be different from the response to high dose-rate neutrons.

  14. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements

    SciTech Connect

    Woloschak, G.E. |; Felcher, P.; Chang-Liu, Chin-Mei

    1994-05-01

    Experiments were designed to examine the effects Of radiation dose-rate and of the protein synthesis inhibitor cycloheximide on expression of cytoskeletal elements ({gamma}- and {beta}-actin and {alpha}-tubulin) and matrix elements (fibronectin) in Syrian hamster embryo cells. Past work from our laboratory had already demonstrated optimum time points and doses for examination of radiation effects on accumulation of specific transcripts. Our results here demonstrated little effect of dose-rate for JANUS fission spectrum neutrons when comparing expression of either {alpha}-tubulin or fibronectin genes. Past work had already documented similar results for expression of actin transcripts. Effects of cycloheximide revealed that cycloheximide repressed accumulation of {alpha}-tubulin following exposure to high dose-rate neutrons or {gamma} rays; this did not occur following similar low dose-rate exposure. (2) Cycloheximide did not affect accumulation of MRNA for actin genes; and that cycloheximide abrogated the moderate induction of fibronectin-mRNA which occurred following exposure to {gamma} rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of {alpha}-tubulin and fibronectin MRNA accumulation following exposure to ionizing radiation. in addition, they suggest that the cellular/molecular response to low dose-rate neutrons may be different from the response to high dose-rate neutrons.

  15. The effects of cyclic tensile strain on the organisation and expression of cytoskeletal elements in bovine intervertebral disc cells: an in vitro study.

    PubMed

    Li, S; Jia, X; Duance, V C; Blain, E J

    2011-01-01

    It is still relatively unclear how intervertebral disc (IVD) cells sense a mechanical stimulus and convert this signal into a biochemical response. Previous studies demonstrated that the cytoskeletal elements are mechano-responsive in many cell types and may contribute to mechano-signalling pathways. The objective of this study was to determine the response of cells from the outer annulus fibrosus (OAF) to physiological levels of cyclic tensile strain; further, cells from the nucleus pulposus (NP) were also subjected to an identical loading regime to compare biological responses across the IVD populations. We determined whether the organisation and expression of the major cytoskeletal elements and their associated accessory proteins are responsive to mechanical stimulation in these cells, and whether these changes correlated with either a catabolic or anabolic phenotype. OAF and NP cells from immature bovine IVD were seeded onto Flexcell® type I collagen coated plates. Cells were subjected to cyclic tensile strain (10 %, 1 Hz) for 60 minutes. Post-loading, cells were processed for immunofluorescence microscopy, RNA extracted for quantitative PCR and protein extracted for Western blotting analysis. F-actin reorganisation was evident in OAF and NP cells subjected to tensile strain; strain induced β-actin at the transcriptional and translational level in OAF cells. β-tubulin mRNA and protein synthesis increased in strained OAF cells, but vimentin expression was significantly inhibited. Cytoskeletal element organisation and expression were less responsive to strain in NP cells. Tensile strain increased type I collagen and differentially regulated extracellular matrix (ECM)-degrading enzymes' mRNA levels in OAF cells. Strain induced type II collagen transcription in NP cells, but had no effect on the transcription of any other genes analysed. Tensile strain induces different mechano-responses in the organisation and/or expression of cytoskeletal elements and on

  16. The impact of tropomyosins on actin filament assembly is isoform specific.

    PubMed

    Janco, Miro; Bonello, Teresa T; Byun, Alex; Coster, Adelle C F; Lebhar, Helene; Dedova, Irina; Gunning, Peter W; Böcking, Till

    2016-07-01

    Tropomyosin (Tpm) is an α helical coiled-coil dimer that forms a co-polymer along the actin filament. Tpm is involved in the regulation of actin's interaction with binding proteins as well as stabilization of the actin filament and its assembly kinetics. Recent studies show that multiple Tpm isoforms also define the functional properties of distinct actin filament populations within a cell. Subtle structural variations within well conserved Tpm isoforms are the key to their functional specificity. Therefore, we purified and characterized a comprehensive set of 8 Tpm isoforms (Tpm1.1, Tpm1.12, Tpm1.6, Tpm1.7, Tpm1.8, Tpm2.1, Tpm3.1, and Tpm4.2), using well-established actin co-sedimentation and pyrene fluorescence polymerization assays. We observed that the apparent affinity (Kd(app)) to filamentous actin varied in all Tpm isoforms between ∼0.1-5 μM with similar values for both, skeletal and cytoskeletal actin filaments. The data did not indicate any correlation between affinity and size of Tpm molecules, however high molecular weight (HMW) isoforms Tpm1.1, Tpm1.6, Tpm1.7 and Tpm2.1, showed ∼3-fold higher cooperativity compared to low molecular weight (LMW) isoforms Tpm1.12, Tpm1.8, Tpm3.1, and Tpm4.2. The rate of actin filament elongation in the presence of Tpm2.1 increased, while all other isoforms decreased the elongation rate by 27-85 %. Our study shows that the biochemical properties of Tpm isoforms are finely tuned and depend on sequence variations in alternatively spliced regions of Tpm molecules.

  17. Increased actin polymerization and stabilization interferes with neuronal function and survival in the AMPKγ mutant Loechrig.

    PubMed

    Cook, Mandy; Bolkan, Bonnie J; Kretzschmar, Doris

    2014-01-01

    loechrig (loe) mutant flies are characterized by progressive neuronal degeneration, behavioral deficits, and early death. The mutation is due to a P-element insertion in the gene for the γ-subunit of the trimeric AMP-activated protein kinase (AMPK) complex, whereby the insertion affects only one of several alternative transcripts encoding a unique neuronal isoform. AMPK is a cellular energy sensor that regulates a plethora of signaling pathways, including cholesterol and isoprenoid synthesis via its downstream target hydroxy-methylglutaryl (HMG)-CoA reductase. We recently showed that loe interferes with isoprenoid synthesis and increases the prenylation and thereby activation of RhoA. During development, RhoA plays an important role in neuronal outgrowth by activating a signaling cascade that regulates actin dynamics. Here we show that the effect of loe/AMPKγ on RhoA prenylation leads to a hyperactivation of this signaling pathway, causing increased phosphorylation of the actin depolymerizating factor cofilin and accumulation of filamentous actin. Furthermore, our results show that the resulting cytoskeletal changes in loe interfere with neuronal growth and disrupt axonal integrity. Surprisingly, these phenotypes were enhanced by expressing the Slingshot (SSH) phosphatase, which during development promotes actin depolymerization by dephosphorylating cofilin. However, our studies suggest that in the adult SSH promotes actin polymerization, supporting in vitro studies using human SSH1 that suggested that SSH can also stabilize and bundle filamentous actin. Together with the observed increase in SSH levels in the loe mutant, our experiments suggest that in mature neurons SSH may function as a stabilization factor for filamentous actin instead of promoting actin depolymerization.

  18. The impact of tropomyosins on actin filament assembly is isoform specific.

    PubMed

    Janco, Miro; Bonello, Teresa T; Byun, Alex; Coster, Adelle C F; Lebhar, Helene; Dedova, Irina; Gunning, Peter W; Böcking, Till

    2016-07-01

    Tropomyosin (Tpm) is an α helical coiled-coil dimer that forms a co-polymer along the actin filament. Tpm is involved in the regulation of actin's interaction with binding proteins as well as stabilization of the actin filament and its assembly kinetics. Recent studies show that multiple Tpm isoforms also define the functional properties of distinct actin filament populations within a cell. Subtle structural variations within well conserved Tpm isoforms are the key to their functional specificity. Therefore, we purified and characterized a comprehensive set of 8 Tpm isoforms (Tpm1.1, Tpm1.12, Tpm1.6, Tpm1.7, Tpm1.8, Tpm2.1, Tpm3.1, and Tpm4.2), using well-established actin co-sedimentation and pyrene fluorescence polymerization assays. We observed that the apparent affinity (Kd(app)) to filamentous actin varied in all Tpm isoforms between ∼0.1-5 μM with similar values for both, skeletal and cytoskeletal actin filaments. The data did not indicate any correlation between affinity and size of Tpm molecules, however high molecular weight (HMW) isoforms Tpm1.1, Tpm1.6, Tpm1.7 and Tpm2.1, showed ∼3-fold higher cooperativity compared to low molecular weight (LMW) isoforms Tpm1.12, Tpm1.8, Tpm3.1, and Tpm4.2. The rate of actin filament elongation in the presence of Tpm2.1 increased, while all other isoforms decreased the elongation rate by 27-85 %. Our study shows that the biochemical properties of Tpm isoforms are finely tuned and depend on sequence variations in alternatively spliced regions of Tpm molecules. PMID:27420374

  19. Inhibition of neurite outgrowth and alteration of cytoskeletal gene expression by sodium arsenite.

    PubMed

    Aung, Kyaw Htet; Kurihara, Ryohei; Nakashima, Shizuka; Maekawa, Fumihiko; Nohara, Keiko; Kobayashi, Tetsuya; Tsukahara, Shinji

    2013-01-01

    Arsenic compounds that are often found in drinking water increase the risk of developmental brain disorders. In this study, we performed live imaging analyses of Neuro-2a cells expressing SCAT3, a caspase-3 cleavage peptide sequence linking two fluorescent proteins; enhanced cyan fluorescence protein (ECFP) and Venus, to determine whether sodium arsenite (NaAsO(2); 0, 1, 5, or 10 μM) affects both neurite outgrowth and/or induces apoptosis with the same doses and in the same cell cultures. We observed that the area ratio of neurite to cell body in SCAT3-expressing cells was significantly reduced by 5 and 10 μM NaAsO(2), but not by 1 μM, although the emission ratio of ECFP to Venus, an endpoint of caspase-3 activity, was not changed. However, cytological assay using apoptotic and necrotic markers resulted in that apoptosis, but not necrosis, was significantly induced in Neuro-2a cells when NaAsO(2) exposure continued after the significant effects of NaAsO(2) on neurite outgrowth were found by live imaging. These results suggested that neurite outgrowth was suppressed by NaAsO(2) prior to NaAsO(2)-induced apoptosis. Next, we examined the effects of NaAsO(2) on cytoskeletal gene expression in Neuro-2a cells. NaAsO(2) increased the mRNA levels of the light and medium subunits of neurofilament and decreased the mRNA levels of tau and tubulin in a dose-dependent manner; no significant effect was found in the mRNA levels of the heavy subunit of neurofilament, microtubule-associated protein 2, or actin. The changes in cytoskeletal gene expression are likely responsible for the inhibitory effects of NaAsO(2) on neurite outgrowth.

  20. Conditioning nerve crush accelerates cytoskeletal protein transport in sprouts that form after a subsequent crush.

    PubMed

    McQuarrie, I G; Jacob, J M

    1991-03-01

    To examine the relationship between axonal outgrowth and the delivery of cytoskeletal proteins to the growing axon tip, outgrowth was accelerated by using a conditioning nerve crush. Because slow component b (SCb) of axonal transport is the most rapid vehicle for carrying cytoskeletal proteins to the axon tip, the rate of SCb was measured in conditioned vs. sham-conditioned sprouts. In young Sprague-Dawley rats, the conditioning crush was made to sciatic nerve branches at the knee; 14 days later, the test crush was made where the L4 and L5 spinal nerves join to form the sciatic nerve in the flank. Newly synthesized proteins were labeled in motor neurons by injecting 35S-methionine into the lumbar spinal cord 7 days before the test crush. The wave of pulse-labeled SCb proteins reached the crush by the time it was made and subsequently entered sprouts. The nerve was removed and sectioned for SDS-PAGE and fluorography 4-12 days after the crush. Tubulins, neurofilament proteins, and representative "cytomatrix" proteins (actin, calmodulin, and putative microtubule-associated proteins) were removed from gels for liquid scintillation counting. Labeled SCb proteins entered sprouts without first accumulating in parent axon stumps, presumably because sprouts begin to grow within hours after axotomy. The peak of SCb moved 11% faster in conditioned than in sham-conditioned sprouts: 3.0 vs. 2.7 mm/d (p less than 0.05). To confirm that sprouts elongate more rapidly when a test crush is preceded by a conditioning crush, outgrowth distances were measured in a separate group of rats by labeling fast axonal transport with 3H-proline 24 hours before nerve retrieval.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. VAMP-7 links granule exocytosis to actin reorganization during platelet activation.

    PubMed

    Koseoglu, Secil; Peters, Christian G; Fitch-Tewfik, Jennifer L; Aisiku, Omozuanvbo; Danglot, Lydia; Galli, Thierry; Flaumenhaft, Robert

    2015-07-30

    Platelet activation results in profound morphologic changes accompanied by release of granule contents. Recent evidence indicates that fusion of granules with the plasma membrane during activation provides auxiliary membrane to cover growing actin structures. Yet little is known about how membrane fusion is coupled with actin reorganization. Vesicle-associated membrane protein (VAMP)-7 is found on platelet vesicles and possesses an N-terminal longin domain capable of linking exocytosis to cytoskeletal remodeling. We have evaluated platelets from VAMP-7(-/-) mice to determine whether this VAMP isoform contributes to granule release and platelet spreading. VAMP-7(-/-) platelets demonstrated a partial defect in dense granule exocytosis and impaired aggregation. α Granule exocytosis from VAMP-7(-/-) platelets was diminished both in vitro and in vivo during thrombus formation. Consistent with a role of VAMP-7 in cytoskeletal remodeling, spreading on matrices was decreased in VAMP-7(-/-) platelets compared to wild-type controls. Immunoprecipitation of VAMP-7 revealed an association with VPS9-domain ankyrin repeat protein (VARP), an adaptor protein that interacts with both membrane-bound and cytoskeleton proteins and with Arp2/3. VAMP-7, VARP, and Arp2/3 localized to the platelet periphery during spreading. These studies demonstrate that VAMP-7 participates in both platelet granule secretion and spreading and suggest a mechanism whereby VAMP-7 links granule exocytosis with actin reorganization. PMID:25999457

  2. VAMP-7 links granule exocytosis to actin reorganization during platelet activation.

    PubMed

    Koseoglu, Secil; Peters, Christian G; Fitch-Tewfik, Jennifer L; Aisiku, Omozuanvbo; Danglot, Lydia; Galli, Thierry; Flaumenhaft, Robert

    2015-07-30

    Platelet activation results in profound morphologic changes accompanied by release of granule contents. Recent evidence indicates that fusion of granules with the plasma membrane during activation provides auxiliary membrane to cover growing actin structures. Yet little is known about how membrane fusion is coupled with actin reorganization. Vesicle-associated membrane protein (VAMP)-7 is found on platelet vesicles and possesses an N-terminal longin domain capable of linking exocytosis to cytoskeletal remodeling. We have evaluated platelets from VAMP-7(-/-) mice to determine whether this VAMP isoform contributes to granule release and platelet spreading. VAMP-7(-/-) platelets demonstrated a partial defect in dense granule exocytosis and impaired aggregation. α Granule exocytosis from VAMP-7(-/-) platelets was diminished both in vitro and in vivo during thrombus formation. Consistent with a role of VAMP-7 in cytoskeletal remodeling, spreading on matrices was decreased in VAMP-7(-/-) platelets compared to wild-type controls. Immunoprecipitation of VAMP-7 revealed an association with VPS9-domain ankyrin repeat protein (VARP), an adaptor protein that interacts with both membrane-bound and cytoskeleton proteins and with Arp2/3. VAMP-7, VARP, and Arp2/3 localized to the platelet periphery during spreading. These studies demonstrate that VAMP-7 participates in both platelet granule secretion and spreading and suggest a mechanism whereby VAMP-7 links granule exocytosis with actin reorganization.

  3. VAMP-7 links granule exocytosis to actin reorganization during platelet activation

    PubMed Central

    Koseoglu, Secil; Peters, Christian G.; Fitch-Tewfik, Jennifer L.; Aisiku, Omozuanvbo; Danglot, Lydia; Galli, Thierry

    2015-01-01

    Platelet activation results in profound morphologic changes accompanied by release of granule contents. Recent evidence indicates that fusion of granules with the plasma membrane during activation provides auxiliary membrane to cover growing actin structures. Yet little is known about how membrane fusion is coupled with actin reorganization. Vesicle-associated membrane protein (VAMP)-7 is found on platelet vesicles and possesses an N-terminal longin domain capable of linking exocytosis to cytoskeletal remodeling. We have evaluated platelets from VAMP-7−/− mice to determine whether this VAMP isoform contributes to granule release and platelet spreading. VAMP-7−/− platelets demonstrated a partial defect in dense granule exocytosis and impaired aggregation. α Granule exocytosis from VAMP-7−/− platelets was diminished both in vitro and in vivo during thrombus formation. Consistent with a role of VAMP-7 in cytoskeletal remodeling, spreading on matrices was decreased in VAMP-7−/− platelets compared to wild-type controls. Immunoprecipitation of VAMP-7 revealed an association with VPS9-domain ankyrin repeat protein (VARP), an adaptor protein that interacts with both membrane-bound and cytoskeleton proteins and with Arp2/3. VAMP-7, VARP, and Arp2/3 localized to the platelet periphery during spreading. These studies demonstrate that VAMP-7 participates in both platelet granule secretion and spreading and suggest a mechanism whereby VAMP-7 links granule exocytosis with actin reorganization. PMID:25999457

  4. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation.

    PubMed

    Chen, Zhe; Luo, Qing; Lin, Chuanchuan; Kuang, Dongdong; Song, Guanbin

    2016-01-01

    Microgravity induces observed bone loss in space flight, and reduced osteogenesis of bone mesenchymal stem cells (BMSCs) partly contributes to this phenomenon. Abnormal regulation or functioning of the actin cytoskeleton induced by microgravity may cause the inhibited osteogenesis of BMSCs, but the underlying mechanism remains obscure. In this study, we demonstrated that actin cytoskeletal changes regulate nuclear aggregation of the transcriptional coactivator with PDZ-binding motif (TAZ), which is indispensable for osteogenesis of bone mesenchymal stem cells (BMSCs). Moreover, we utilized a clinostat to model simulated microgravity (SMG) and demonstrated that SMG obviously depolymerized F-actin and hindered TAZ nuclear translocation. Interestingly, stabilizing the actin cytoskeleton induced by Jasplakinolide (Jasp) significantly rescued TAZ nuclear translocation and recovered the osteogenic differentiation of BMSCs in SMG, independently of large tumor suppressor 1(LATS1, an upstream kinase of TAZ). Furthermore, lysophosphatidic acid (LPA) also significantly recovered the osteogenic differentiation of BMSCs in SMG through the F-actin-TAZ pathway. Taken together, we propose that the depolymerized actin cytoskeleton inhibits osteogenic differentiation of BMSCs through impeding nuclear aggregation of TAZ, which provides a novel connection between F-actin cytoskeleton and osteogenesis of BMSCs and has important implications in bone loss caused by microgravity. PMID:27444891

  5. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation

    PubMed Central

    Chen, Zhe; Luo, Qing; Lin, Chuanchuan; Kuang, Dongdong; Song, Guanbin

    2016-01-01

    Microgravity induces observed bone loss in space flight, and reduced osteogenesis of bone mesenchymal stem cells (BMSCs) partly contributes to this phenomenon. Abnormal regulation or functioning of the actin cytoskeleton induced by microgravity may cause the inhibited osteogenesis of BMSCs, but the underlying mechanism remains obscure. In this study, we demonstrated that actin cytoskeletal changes regulate nuclear aggregation of the transcriptional coactivator with PDZ-binding motif (TAZ), which is indispensable for osteogenesis of bone mesenchymal stem cells (BMSCs). Moreover, we utilized a clinostat to model simulated microgravity (SMG) and demonstrated that SMG obviously depolymerized F-actin and hindered TAZ nuclear translocation. Interestingly, stabilizing the actin cytoskeleton induced by Jasplakinolide (Jasp) significantly rescued TAZ nuclear translocation and recovered the osteogenic differentiation of BMSCs in SMG, independently of large tumor suppressor 1(LATS1, an upstream kinase of TAZ). Furthermore, lysophosphatidic acid (LPA) also significantly recovered the osteogenic differentiation of BMSCs in SMG through the F-actin-TAZ pathway. Taken together, we propose that the depolymerized actin cytoskeleton inhibits osteogenic differentiation of BMSCs through impeding nuclear aggregation of TAZ, which provides a novel connection between F-actin cytoskeleton and osteogenesis of BMSCs and has important implications in bone loss caused by microgravity. PMID:27444891

  6. CRP2, a new invadopodia actin bundling factor critically promotes breast cancer cell invasion and metastasis

    PubMed Central

    Dieterle, Monika; Moreau, Flora; Al Absi, Antoun; Steinmetz, André; Oudin, Anaïs; Berchem, Guy; Janji, Bassam; Thomas, Clément

    2016-01-01

    A critical process underlying cancer metastasis is the acquisition by tumor cells of an invasive phenotype. At the subcellular level, invasion is facilitated by actin-rich protrusions termed invadopodia, which direct extracellular matrix (ECM) degradation. Here, we report the identification of a new cytoskeletal component of breast cancer cell invadopodia, namely cysteine-rich protein 2 (CRP2). We found that CRP2 was not or only weakly expressed in epithelial breast cancer cells whereas it was up-regulated in mesenchymal/invasive breast cancer cells. In addition, high expression of the CRP2 encoding gene CSRP2 was associated with significantly increased risk of metastasis in basal-like breast cancer patients. CRP2 knockdown significantly reduced the invasive potential of aggressive breast cancer cells, whereas it did not impair 2D cell migration. In keeping with this, CRP2-depleted breast cancer cells exhibited a reduced capacity to promote ECM degradation, and to secrete and express MMP-9, a matrix metalloproteinase repeatedly associated with cancer progression and metastasis. In turn, ectopic expression of CRP2 in weakly invasive cells was sufficient to stimulate cell invasion. Both GFP-fused and endogenous CRP2 localized to the extended actin core of invadopodia, a structure primarily made of actin bundles. Purified recombinant CRP2 autonomously crosslinked actin filaments into thick bundles, suggesting that CRP2 contributes to the formation/maintenance of the actin core. Finally, CRP2 depletion significantly reduced the incidence of lung metastatic lesions in two xenograft mouse models of breast cancer. Collectively, our data identify CRP2 as a new cytoskeletal component of invadopodia that critically promotes breast cancer cell invasion and metastasis. PMID:26883198

  7. Regulation of myosin IIA and filamentous actin during insulin-stimulated glucose uptake in 3T3-L1 adipocytes

    SciTech Connect

    Stall, Richard; Ramos, Joseph; Kent Fulcher, F.; Patel, Yashomati M.

    2014-03-10

    Insulin stimulated glucose uptake requires the colocalization of myosin IIA (MyoIIA) and the insulin-responsive glucose transporter 4 (GLUT4) at the plasma membrane for proper GLUT4 fusion. MyoIIA facilitates filamentous actin (F-actin) reorganization in various cell types. In adipocytes F-actin reorganization is required for insulin-stimulated glucose uptake. What is not known is whether MyoIIA interacts with F-actin to regulate insulin-induced GLUT4 fusion at the plasma membrane. To elucidate the relationship between MyoIIA and F-actin, we examined the colocalization of MyoIIA and F-actin at the plasma membrane upon insulin stimulation as well as the regulation of this interaction. Our findings demonstrated that MyoIIA and F-actin colocalized at the site of GLUT4 fusion with the plasma membrane upon insulin stimulation. Furthermore, inhibition of MyoII with blebbistatin impaired F-actin localization at the plasma membrane. Next we examined the regulatory role of calcium in MyoIIA-F-actin colocalization. Reduced calcium or calmodulin levels decreased colocalization of MyoIIA and F-actin at the plasma membrane. While calcium alone can translocate MyoIIA it did not stimulate F-actin accumulation at the plasma membrane. Taken together, we established that while MyoIIA activity is required for F-actin localization at the plasma membrane, it alone is insufficient to localize F-actin to the plasma membrane. - Highlights: • Insulin induces colocalization of MyoIIA and F-actin at the cortex in adipocytes. • MyoIIA is necessary but not sufficient to localize F-actin at the cell cortex. • MyoIIA-F-actin colocalization is regulated by calcium and calmodulin.

  8. Comparative genome analysis of cortactin and HS1: the significance of the F-actin binding repeat domain

    PubMed Central

    van Rossum, Agnes GSH; Schuuring-Scholtes, Ellen; Seggelen, Vera van Buuren-van; Kluin, Philip M; Schuuring, Ed

    2005-01-01

    Background In human carcinomas, overexpression of cortactin correlates with poor prognosis. Cortactin is an F-actin-binding protein involved in cytoskeletal rearrangements and cell migration by promoting actin-related protein (Arp)2/3 mediated actin polymerization. It shares a high amino acid sequence and structural similarity to hematopoietic lineage cell-specific protein 1 (HS1) although their functions differ considerable. In this manuscript we describe the genomic organization of these two genes in a variety of species by a combination of cloning and database searches. Based on our analysis, we predict the genesis of the actin-binding repeat domain during evolution. Results Cortactin homologues exist in sponges, worms, shrimps, insects, urochordates, fishes, amphibians, birds and mammalians, whereas HS1 exists in vertebrates only, suggesting that both genes have been derived from an ancestor cortactin gene by duplication. In agreement with this, comparative genome analysis revealed very similar exon-intron structures and sequence homologies, especially over the regions that encode the characteristic highly conserved F-actin-binding repeat domain. Cortactin splice variants affecting this F-actin-binding domain were identified not only in mammalians, but also in amphibians, fishes and birds. In mammalians, cortactin is ubiquitously expressed except in hematopoietic cells, whereas HS1 is mainly expressed in hematopoietic cells. In accordance with their distinct tissue specificity, the putative promoter region of cortactin is different from HS1. Conclusions Comparative analysis of the genomic organization and amino acid sequences of cortactin and HS1 provides inside into their origin and evolution. Our analysis shows that both genes originated from a gene duplication event and subsequently HS1 lost two repeats, whereas cortactin gained one repeat. Our analysis genetically underscores the significance of the F-actin binding domain in cytoskeletal remodeling, which

  9. Transient assembly of F-actin on the outer mitochondrial membrane contributes to mitochondrial fission

    PubMed Central

    Li, Sunan; Xu, Shan; Roelofs, Brian A.; Boyman, Liron; Lederer, W. Jonathan; Sesaki, Hiromi

    2015-01-01

    In addition to established membrane remodeling roles in various cellular locations, actin has recently emerged as a participant in mitochondrial fission. However, the underlying mechanisms of its participation remain largely unknown. We report that transient de novo F-actin assembly on the mitochondria occurs upon induction of mitochondrial fission and F-actin accumulates on the mitochondria without forming detectable submitochondrial foci. Impairing mitochondrial division through Drp1 knockout or inhibition prolonged the time of mitochondrial accumulation of F-actin and also led to abnormal mitochondrial accumulation of the actin regulatory factors cortactin, cofilin, and Arp2/3 complexes, suggesting that disassembly of mitochondrial F-actin depends on Drp1 activity. Furthermore, down-regulation of actin regulatory proteins led to elongation of mitochondria, associated with mitochondrial accumulation of Drp1. In addition, depletion of cortactin inhibited Mfn2 down-regulation– or FCCP-induced mitochondrial fragmentation. These data indicate that the dynamic assembly and disassembly of F-actin on the mitochondria participates in Drp1-mediated mitochondrial fission. PMID:25547155

  10. Site-specific cation release drives actin filament severing by vertebrate cofilin

    PubMed Central

    Kang, Hyeran; Bradley, Michael J.; Cao, Wenxiang; Zhou, Kaifeng; Grintsevich, Elena E.; Michelot, Alphée; Sindelar, Charles V.; Hochstrasser, Mark; De La Cruz, Enrique M.

    2014-01-01

    Actin polymerization powers the directed motility of eukaryotic cells. Sustained motility requires rapid filament turnover and subunit recycling. The essential regulatory protein cofilin accelerates network remodeling by severing actin filaments and increasing the concentration of ends available for elongation and subunit exchange. Although cofilin effects on actin filament assembly dynamics have been extensively studied, the molecular mechanism of cofilin-induced filament severing is not understood. Here we demonstrate that actin filament severing by vertebrate cofilin is driven by the linked dissociation of a single cation that controls filament structure and mechanical properties. Vertebrate cofilin only weakly severs Saccharomyces cerevisiae actin filaments lacking this “stiffness cation” unless a stiffness cation-binding site is engineered into the actin molecule. Moreover, vertebrate cofilin rescues the viability of a S. cerevisiae cofilin deletion mutant only when the stiffness cation site is simultaneously introduced into actin, demonstrating that filament severing is the essential function of cofilin in cells. This work reveals that site-specific interactions with cations serve a key regulatory function in actin filament fragmentation and dynamics. PMID:25468977

  11. Structure of the complex of F-actin and DNGR-1, a C-type lectin receptor involved in dendritic cell crosspresentation of dead cell-associated antigens

    PubMed Central

    Iborra, Salvador; Yamada, Yurika; Huotari, Jatta; Schulz, Oliver; Ahrens, Susan; Kjær, Svend; Way, Michael; Sancho, David; Namba, Keiichi; Reis e Sousa, Caetano

    2016-01-01

    Summary DNGR-1 is a C-type lectin receptor that binds F-actin exposed by dying cells and facilitates cross-presentation of dead cell-associated antigens by dendritic cells. Here we present the structure of DNGR-1 bound to F-actin at 7.7 Å resolution. Unusually for F-actin binding proteins, the DNGR-1 ligand binding domain contacts three actin subunits helically arranged in the actin filament, bridging over two protofilaments, as well as two neighboring actin subunits along one protofilament. Mutation of residues predicted to mediate ligand binding led to loss of DNGR-1-dependent cross-presentation of dead cell-associated antigens, formally demonstrating that the latter depends on F-actin recognition. Notably, DNGR-1 has relatively modest affinity for F-actin but multivalent interactions allow a marked increase in binding strength. Our findings shed light on modes of actin binding by cellular proteins and reveal how extracellular detection of cytoskeletal components by dedicated receptors allows immune monitoring of loss of cellular integrity. PMID:25979418

  12. Formin-mediated actin polymerization promotes Salmonella invasion.

    PubMed

    Truong, Dorothy; Brabant, Danielle; Bashkurov, Mikhail; Wan, Leo C K; Braun, Virginie; Heo, Won Do; Meyer, Tobias; Pelletier, Laurence; Copeland, John; Brumell, John H

    2013-12-01

    Salmonella invade host cells using Type 3 secreted effectors, which modulate host cellular targets to promote actin rearrangements at the cell surface that drive bacterial uptake. The Arp2/3 complex contributes to Salmonella invasion but is not essential, indicating other actin regulatory factors are involved. Here, we show a novel role for FHOD1, a formin family member, in Salmonella invasion. FHOD1 and Arp2/3 occupy distinct microdomains at the invasion site and control distinct aspects of membrane protrusion formation. FHOD1 is phosphorylated during infection and this modification is required for promoting bacterial uptake by host cells. ROCK II, but not ROCK I, is recruited to the invasion site and is required for FHOD1 phosphorylation and for Salmonella invasion. Together, our studies revealan important phospho-dependent FHOD1 actin polymerization pathway in Salmonella invasion.

  13. Estradiol influences the mechanical properties of human fetal osteoblasts through cytoskeletal changes

    SciTech Connect

    Muthukumaran, Padmalosini; Lim, Chwee Teck; Lee, Taeyong

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Estradiol induced stiffness changes of osteoblasts were quantified using AFM. Black-Right-Pointing-Pointer Estradiol causes significant decrease in the stiffness of osteoblasts. Black-Right-Pointing-Pointer Decreased stiffness was caused by decreased density of f-actin network. Black-Right-Pointing-Pointer Stiffness changes were not associated with mineralized matrix of osteoblasts. Black-Right-Pointing-Pointer Estradiol increases inherent alkaline phosphatase activity of osteoblasts. -- Abstract: Estrogen is known to have a direct effect on bone forming osteoblasts and bone resorbing osteoclasts. The cellular and molecular effects of estrogen on osteoblasts and osteoblasts-like cells have been extensively studied. However, the effect of estrogen on the mechanical property of osteoblasts has not been studied yet. It is important since mechanical property of the mechanosensory osteoblasts could be pivotal to its functionality in bone remodeling. This is the first study aimed to assess the direct effect of estradiol on the apparent elastic modulus (E{sup Asterisk-Operator }) and corresponding cytoskeletal changes of human fetal osteoblasts (hFOB 1.19). The cells were cultured in either medium alone or medium supplemented with {beta}-estradiol and then subjected to Atomic Force Microscopy indentation (AFM) to determine E{sup Asterisk-Operator }. The underlying changes in cytoskeleton were studied by staining the cells with TRITC-Phalloidin. Following estradiol treatment, the cells were also tested for proliferation, alkaline phosphatase activity and mineralization. With estradiol treatment, E{sup Asterisk-Operator} of osteoblasts significantly decreased by 43-46%. The confocal images showed that the changes in f-actin network observed in estradiol treated cells can give rise to the changes in the stiffness of the cells. Estradiol also increases the inherent alkaline phosphatase activity of the cells. Estradiol induced stiffness

  14. The role of actin in the temperature-dependent gelation and contraction of extracts of Acanthamoeba

    PubMed Central

    1976-01-01

    The temperature-dependent assembly and the interaction of Acanthamoeba contractile proteins have been studied in a crude extract. A cold extract of soluble proteins from Acanthamoeba castellanii is prepared by homogenizing the cells in a sucrose-ATP-ethyleneglycol-bis-(beta- aminoethyl ether) N,N'-tetraacetic acid buffer and centrifuging at 136,000 g for 1 h. When this supernate of soluble proteins is warmed to room temperature, it forms a solid gel. Upon standing at room temperature, the gel slowly contracts and squeezes out soluble components. The rates of gelation and contraction are both highly temperature dependent, with activation energies of about 20 kcal per mol. Gel formation is dependent upon the presence of ATP and Mg++. Low concentrations of Ca++ accelerate the contractile phase of this phenomenon. The major protein component of the gel is actin. It is associated with myosin, cofactor, a high molecular weight protein tentatively identfied as actin-binding protein, and several other unidentified proteins. Actin has been purified from these gels and was found to be capable of forming a solid gel when polymerized in the presence of ATP, MgCl3, and KCL. The rate of purified actin polymerication is very temperature dependent and is accelerated by the addition of fragments of muscle actin filaments. These data suggest that Acanthamoeba contractile proteins have a dual role in the cell; they may generate the forces for cellular movements and also act as cytoskeletal elements by controlling the consistency of the cytoplasm. PMID:1030705

  15. Coordinated integrin activation by actin-dependent force during T-cell migration

    PubMed Central

    Nordenfelt, Pontus; Elliott, Hunter L.; Springer, Timothy A.

    2016-01-01

    For a cell to move forward it must convert chemical energy into mechanical propulsion. Force produced by actin polymerization can generate traction across the plasma membrane by transmission through integrins to their ligands. However, the role this force plays in integrin activation is unknown. Here we show that integrin activity and cytoskeletal dynamics are reciprocally linked, where actin-dependent force itself appears to regulate integrin activity. We generated fluorescent tension-sensing constructs of integrin αLβ2 (LFA-1) to visualize intramolecular tension during cell migration. Using quantitative imaging of migrating T cells, we correlate tension in the αL or β2 subunit with cell and actin dynamics. We find that actin engagement produces tension within the β2 subunit to induce and stabilize an active integrin conformational state and that this requires intact talin and kindlin motifs. This supports a general mechanism where localized actin polymerization can coordinate activation of the complex machinery required for cell migration. PMID:27721490

  16. Syndapin promotes pseudocleavage furrow formation by actin organization in the syncytial Drosophila embryo

    PubMed Central

    Sherlekar, Aparna; Rikhy, Richa

    2016-01-01

    Coordinated membrane and cytoskeletal remodeling activities are required for membrane extension in processes such as cytokinesis and syncytial nuclear division cycles in Drosophila. Pseudocleavage furrow membranes in the syncytial Drosophila blastoderm embryo show rapid extension and retraction regulated by actin-remodeling proteins. The F-BAR domain protein Syndapin (Synd) is involved in membrane tubulation, endocytosis, and, uniquely, in F-actin stability. Here we report a role for Synd in actin-regulated pseudocleavage furrow formation. Synd localized to these furrows, and its loss resulted in short, disorganized furrows. Synd presence was important for the recruitment of the septin Peanut and distribution of Diaphanous and F-actin at furrows. Synd and Peanut were both absent in furrow-initiation mutants of RhoGEF2 and Diaphanous and in furrow-progression mutants of Anillin. Synd overexpression in rhogef2 mutants reversed its furrow-extension phenotypes, Peanut and Diaphanous recruitment, and F-actin organization. We conclude that Synd plays an important role in pseudocleavage furrow extension, and this role is also likely to be crucial in cleavage furrow formation during cell division. PMID:27146115

  17. Simvastatin enhances Rho/actin/cell rigidity pathway contributing to mesenchymal stem cells' osteogenic differentiation.

    PubMed

    Tai, I-Chun; Wang, Yao-Hsien; Chen, Chung-Hwan; Chuang, Shu-Chun; Chang, Je-Ken; Ho, Mei-Ling

    2015-01-01

    Recent studies have indicated that statins induce osteogenic differentiation both in vitro and in vivo. The molecular mechanism of statin-stimulated osteogenesis is unknown. Activation of RhoA signaling increases cytoskeletal tension, which plays a crucial role in the osteogenic differentiation of mesenchymal stem cells. We thus hypothesized that RhoA signaling is involved in simvastatin-induced osteogenesis in bone marrow mesenchymal stem cells. We found that although treatment with simvastatin shifts localization of RhoA protein from the membrane to the cytosol, the treatment still activates RhoA dose-dependently because it reduces the association with RhoGDIα. Simvastatin also increased the expression of osteogenic proteins, density of actin filament, the number of focal adhesions, and cellular tension. Furthermore, disrupting actin cytoskeleton or decreasing cell rigidity by using chemical agents reduced simvastatin-induced osteogenic differentiation. In vivo study also confirms that density of actin filament is increased in simvastatin-induced ectopic bone formation. Our study is the first to demonstrate that maintaining intact actin cytoskeletons and enhancing cell rigidity are crucial in simvastatin-induced osteogenesis. The results suggested that simvastatin, which is an osteoinductive factor and acts by increasing actin filament organization and cell rigidity combined with osteoconductive biomaterials, may benefit stem-cell-based bone regeneration. PMID:26451103

  18. Simvastatin enhances Rho/actin/cell rigidity pathway contributing to mesenchymal stem cells’ osteogenic differentiation

    PubMed Central

    Tai, I-Chun; Wang, Yao-Hsien; Chen, Chung-Hwan; Chuang, Shu-Chun; Chang, Je-Ken; Ho, Mei-Ling

    2015-01-01

    Recent studies have indicated that statins induce osteogenic differentiation both in vitro and in vivo. The molecular mechanism of statin-stimulated osteogenesis is unknown. Activation of RhoA signaling increases cytoskeletal tension, which plays a crucial role in the osteogenic differentiation of mesenchymal stem cells. We thus hypothesized that RhoA signaling is involved in simvastatin-induced osteogenesis in bone marrow mesenchymal stem cells. We found that although treatment with simvastatin shifts localization of RhoA protein from the membrane to the cytosol, the treatment still activates RhoA dose-dependently because it reduces the association with RhoGDIα. Simvastatin also increased the expression of osteogenic proteins, density of actin filament, the number of focal adhesions, and cellular tension. Furthermore, disrupting actin cytoskeleton or decreasing cell rigidity by using chemical agents reduced simvastatin-induced osteogenic differentiation. In vivo study also confirms that density of actin filament is increased in simvastatin-induced ectopic bone formation. Our study is the first to demonstrate that maintaining intact actin cytoskeletons and enhancing cell rigidity are crucial in simvastatin-induced osteogenesis. The results suggested that simvastatin, which is an osteoinductive factor and acts by increasing actin filament organization and cell rigidity combined with osteoconductive biomaterials, may benefit stem-cell-based bone regeneration. PMID:26451103

  19. FMRP regulates actin filament organization via the armadillo protein p0071

    PubMed Central

    Nolze, Alexander; Schneider, Jacqueline; Keil, René; Lederer, Marcell; Hüttelmaier, Stefan; Kessels, Michael M.; Qualmann, Britta; Hatzfeld, Mechthild

    2013-01-01

    Loss of fragile X mental retardation protein (FMRP) causes synaptic dysfunction and intellectual disability. FMRP is an RNA-binding protein that controls the translation or turnover of a subset of mRNAs. Identifying these target transcripts is an important step toward understanding the pathology of the disease. Here, we show that FMRP regulates actin organization and neurite outgrowth via the armadillo protein p0071. In mouse embryonic fibroblasts (MEFs) lacking FMRP (Fmr1−), the actin cytoskeleton was markedly reorganized with reduced stress fibers and F-actin/G-actin ratios compared to fibroblasts re-expressing the protein. FMRP interfered with the translation of the p0071 mRNA in a 3′-UTR-dependent manner. Accordingly, FMRP-depleted cells revealed elevated levels of p0071 protein. The knockdown of p0071 in Fmr1− fibroblasts restored stress fibers and an elongated cell shape, thus rescuing the Fmr1− phenotype, whereas overexpression of p0071 in Fmr1+ cells mimicked the Fmr1− phenotype. Moreover, p0071 and FMRP regulated neurite outgrowth and branching in a diametrically opposed way in agreement with the negative regulation of p0071 by FMRP. These results identify p0071 as an important and novel FMRP target and strongly suggest that impaired actin cytoskeletal functions mediated by an excess of p0071 are key aspects underlying the fragile X syndrome. PMID:24062571

  20. Actin marker lines in grapevine reveal a gatekeeper function of guard cells.

    PubMed

    Guan, Xin; Buchholz, Günther; Nick, Peter

    2014-08-15

    Resistance to abiotic and biotic stress is a central topic for sustainable agriculture, especially in grapevine, one of the field crops with the highest economic output per acreage. As early cellular factors for plant defense, actin microfilaments (AF) are of high relevance. We therefore generated a transgenic actin marker line for grapevine by expressing a fusion protein between green fluorescent protein and the second actin-binding domain of Arabidopsis (Arabidopsis thaliana) fimbrin, AtFIM1. Based on this first cytoskeletal-marker line in grapevine, the response of AFs to phytopathogenic microorganisms could be followed in vivo. Upon inoculation with fluorescently labeled strains of phytopathogenic bacteria, actin responses were confined to the guard cells. In contrast, upon contact with zoospores of Plasmopara viticola, not only the guard cells, but also epidermal pavement cells, where no zoospores had attached responded with the formation of a perinuclear actin basket. Our data support the hypothesis that guard cells act as pacemakers of defense, dominating the responses of the remaining epidermal cells. PMID:24973589

  1. Simvastatin enhances Rho/actin/cell rigidity pathway contributing to mesenchymal stem cells' osteogenic differentiation.

    PubMed

    Tai, I-Chun; Wang, Yao-Hsien; Chen, Chung-Hwan; Chuang, Shu-Chun; Chang, Je-Ken; Ho, Mei-Ling

    2015-01-01

    Recent studies have indicated that statins induce osteogenic differentiation both in vitro and in vivo. The molecular mechanism of statin-stimulated osteogenesis is unknown. Activation of RhoA signaling increases cytoskeletal tension, which plays a crucial role in the osteogenic differentiation of mesenchymal stem cells. We thus hypothesized that RhoA signaling is involved in simvastatin-induced osteogenesis in bone marrow mesenchymal stem cells. We found that although treatment with simvastatin shifts localization of RhoA protein from the membrane to the cytosol, the treatment still activates RhoA dose-dependently because it reduces the association with RhoGDIα. Simvastatin also increased the expression of osteogenic proteins, density of actin filament, the number of focal adhesions, and cellular tension. Furthermore, disrupting actin cytoskeleton or decreasing cell rigidity by using chemical agents reduced simvastatin-induced osteogenic differentiation. In vivo study also confirms that density of actin filament is increased in simvastatin-induced ectopic bone formation. Our study is the first to demonstrate that maintaining intact actin cytoskeletons and enhancing cell rigidity are crucial in simvastatin-induced osteogenesis. The results suggested that simvastatin, which is an osteoinductive factor and acts by increasing actin filament organization and cell rigidity combined with osteoconductive biomaterials, may benefit stem-cell-based bone regeneration.

  2. Syndapin promotes pseudocleavage furrow formation by actin organization in the syncytial Drosophila embryo.

    PubMed

    Sherlekar, Aparna; Rikhy, Richa

    2016-07-01

    Coordinated membrane and cytoskeletal remodeling activities are required for membrane extension in processes such as cytokinesis and syncytial nuclear division cycles in Drosophila Pseudocleavage furrow membranes in the syncytial Drosophila blastoderm embryo show rapid extension and retraction regulated by actin-remodeling proteins. The F-BAR domain protein Syndapin (Synd) is involved in membrane tubulation, endocytosis, and, uniquely, in F-actin stability. Here we report a role for Synd in actin-regulated pseudocleavage furrow formation. Synd localized to these furrows, and its loss resulted in short, disorganized furrows. Synd presence was important for the recruitment of the septin Peanut and distribution of Diaphanous and F-actin at furrows. Synd and Peanut were both absent in furrow-initiation mutants of RhoGEF2 and Diaphanous and in furrow-progression mutants of Anillin. Synd overexpression in rhogef2 mutants reversed its furrow-extension phenotypes, Peanut and Diaphanous recruitment, and F-actin organization. We conclude that Synd plays an important role in pseudocleavage furrow extension, and this role is also likely to be crucial in cleavage furrow formation during cell division.

  3. Actin marker lines in grapevine reveal a gatekeeper function of guard cells.

    PubMed

    Guan, Xin; Buchholz, Günther; Nick, Peter

    2014-08-15

    Resistance to abiotic and biotic stress is a central topic for sustainable agriculture, especially in grapevine, one of the field crops with the highest economic output per acreage. As early cellular factors for plant defense, actin microfilaments (AF) are of high relevance. We therefore generated a transgenic actin marker line for grapevine by expressing a fusion protein between green fluorescent protein and the second actin-binding domain of Arabidopsis (Arabidopsis thaliana) fimbrin, AtFIM1. Based on this first cytoskeletal-marker line in grapevine, the response of AFs to phytopathogenic microorganisms could be followed in vivo. Upon inoculation with fluorescently labeled strains of phytopathogenic bacteria, actin responses were confined to the guard cells. In contrast, upon contact with zoospores of Plasmopara viticola, not only the guard cells, but also epidermal pavement cells, where no zoospores had attached responded with the formation of a perinuclear actin basket. Our data support the hypothesis that guard cells act as pacemakers of defense, dominating the responses of the remaining epidermal cells.

  4. Cryptococcus neoformans is internalized by receptor-mediated or 'triggered' phagocytosis, dependent on actin recruitment.

    PubMed

    Guerra, Caroline Rezende; Seabra, Sergio Henrique; de Souza, Wanderley; Rozental, Sonia

    2014-01-01

    Cryptococcosis by the encapsulated yeast Cryptococcus neoformans affects mostly immunocompromised individuals and is a frequent neurological complication in AIDS patients. Recent studies support the idea that intracellular survival of Cryptococcus yeast cells is important for the pathogenesis of cryptococcosis. However, the initial steps of Cryptococcus internalization by host cells remain poorly understood. Here, we investigate the mechanism of Cryptococcus neoformans phagocytosis by peritoneal macrophages using confocal and electron microscopy techniques, as well as flow cytometry quantification, evaluating the importance of fungal capsule production and of host cell cytoskeletal elements for fungal phagocytosis. Electron microscopy analyses revealed that capsular and acapsular strains of C. neoformans are internalized by macrophages via both 'zipper' (receptor-mediated) and 'trigger' (membrane ruffle-dependent) phagocytosis mechanisms. Actin filaments surrounded phagosomes of capsular and acapsular yeasts, and the actin depolymerizing drugs cytochalasin D and latrunculin B inhibited yeast internalization and actin recruitment to the phagosome area. In contrast, nocodazole and paclitaxel, inhibitors of microtubule dynamics decreased internalization but did not prevent actin recruitment to the site of phagocytosis. Our results show that different uptake mechanisms, dependent on both actin and tubulin dynamics occur during yeast internalization by macrophages, and that capsule production does not affect the mode of Cryptococcus uptake by host cells. PMID:24586631

  5. Actin induction during PMA and cAMP-dependent signal pathway activation in Entamoeba histolytica trophozoites.

    PubMed

    Ortiz, D; del Carmen Dominguez-Robles, M; Villegas-Sepúlveda, N; Meza, I

    2000-10-01

    Activation of PKC or cAMP-dependent signalling pathways in Entamoeba histolytica triggers the phosphorylation of proteins involved in actin rearrangements necessary for adhesion and locomotion. Analogous motifs to SRE and CRE sequences--known to respond to PMA and cAMP--were identified within the 5' regulatory region (5'RR) of one of the parasite actin genes. These sequences could be involved in the actin transcriptional upregulation reported during signalling. To test this hypothesis, a plasmid containing the 5'RR of the actin gene fused to the bacterial neomycin gene (neo) was used for stable transfection. Expression of neo and endogenous actin was measured after stimulation of transfected amoebae by PMA and dcAMP. It was found that both compounds induced neo and actin expression and showed a co-operative effect in the induction of neo. Induction by PMA or dcAMP failed if the directing amoebic 5'RR lacked SRE and CRE motifs. Transfection of amoebae with plasmid constructs, containing either progressive deletions of the actin 5'RR or site-directed mutations of the SRE and CRE-like motifs, corroborated that these sequences and a co-ordinated participation of PKC- and PKA-activated transcription factors are responsible for the increments in neo and actin mRNAs. In vivo, these PMA and cAMP-response elements could play an important role in regulating actin expression and organization in signalling processes activated during tissue invasion.

  6. Cell-cycle regulation of formin-mediated actin cable assembly.

    PubMed

    Miao, Yansong; Wong, Catherine C L; Mennella, Vito; Michelot, Alphée; Agard, David A; Holt, Liam J; Yates, John R; Drubin, David G

    2013-11-19

    Assembly of appropriately oriented actin cables nucleated by formin proteins is necessary for many biological processes in diverse eukaryotes. However, compared with knowledge of how nucleation of dendritic actin filament arrays by the actin-related protein-2/3 complex is regulated, the in vivo regulatory mechanisms for actin cable formation are less clear. To gain insights into mechanisms for regulating actin cable assembly, we reconstituted the assembly process in vitro by introducing microspheres functionalized with the C terminus of the budding yeast formin Bni1 into extracts prepared from yeast cells at different cell-cycle stages. EM studies showed that unbranched actin filament bundles were reconstituted successfully in the yeast extracts. Only extracts enriched in the mitotic cyclin Clb2 were competent for actin cable assembly, and cyclin-dependent kinase 1 activity was indispensible. Cyclin-dependent kinase 1 activity also was found to regulate cable assembly in vivo. Here we present evidence that formin cell-cycle regulation is conserved in vertebrates. The use of the cable-reconstitution system to test roles for the key actin-binding proteins tropomyosin, capping protein, and cofilin provided important insights into assembly regulation. Furthermore, using mass spectrometry, we identified components of the actin cables formed in yeast extracts, providing the basis for comprehensive understanding of cable assembly and regulation.

  7. Actin - a biosensor that determines cell fate in yeasts.

    PubMed

    Smethurst, Daniel G J; Dawes, Ian W; Gourlay, Campbell W

    2014-02-01

    The decision to proliferate, to activate stress response mechanisms or to initiate cell death lies at the heart of the maintenance of a healthy cell population. Within multicellular and colony-forming single-celled organisms, such as yeasts, the functionality of cellular compartments that connect signalling to cell fate must be maintained to maximise adaptability and survival. The actin cytoskeleton is involved in processes such as the regulation of membrane microcompartments, receptor internalisation and the control of master regulatory GTPases, which govern cell decision-making. This affords the actin cytoskeleton a central position within cell response networks. In this sense, a functional actin cytoskeleton is essential to efficiently connect information input to response at the level of the cell. Recent research from fungal, plant and mammalian cells systems has highlighted that actin can trigger apoptotic death in cells that become incompetent to respond to environmental cues. It may also be the case that this property has been appropriated by microorganisms competing for niche environments within a human host. Here, we discuss the research that has been carried out in yeast that links actin to signalling processes and cell fate that supports its role as a biosensor.

  8. Cortactin Adopts a Globular Conformation and Bundles Actin into Sheets

    SciTech Connect

    Cowieson, Nathan P.; King, Gordon; Cookson, David; Ross, Ian; Huber, Thomas; Hume, David A.; Kobe, Bostjan; Martin, Jennifer L.

    2008-08-21

    Cortactin is a filamentous actin-binding protein that plays a pivotal role in translating environmental signals into coordinated rearrangement of the cytoskeleton. The dynamic reorganization of actin in the cytoskeleton drives processes including changes in cell morphology, cell migration, and phagocytosis. In general, structural proteins of the cytoskeleton bind in the N-terminal region of cortactin and regulatory proteins in the C-terminal region. Previous structural studies have reported an extended conformation for cortactin. It is therefore unclear how cortactin facilitates cross-talk between structural proteins and their regulators. In the study presented here, circular dichroism, chemical cross-linking, and small angle x-ray scattering are used to demonstrate that cortactin adopts a globular conformation, thereby bringing distant parts of the molecule into close proximity. In addition, the actin bundling activity of cortactin is characterized, showing that fully polymerized actin filaments are bundled into sheet-like structures. We present a low resolution structure that suggests how the various domains of cortactin interact to coordinate its array of binding partners at sites of actin branching.

  9. Cytoskeletal rearrangement and Src and PI-3K-dependent Akt activation control GABA(B)R-mediated chemotaxis.

    PubMed

    Barati, Michelle T; Lukenbill, Janice; Wu, Rui; Rane, Madhavi J; Klein, Jon B

    2015-06-01

    The γ-amino butyric acid (GABA) type B receptors (GABA(B)R) function as chemoattractant receptors in response to GABA(B)R agonists in human neutrophils. The goal of this study was to define signaling mechanisms regulating GABA(B)R-mediated chemotaxis and cytoskeletal rearrangement. In a proteomic study we identified serine/threonine kinase Akt, tyrosine kinases Src and Pyk2, microtubule regulator kinesin and microtubule affinity-regulating kinase (MARK) co-immunoprecipitating with GABA(B)R. To define the contributions of these candidate signaling events in GABA(B)R-mediated chemotaxis, we used rat basophilic leukemic cells (RBL-2H3 cells) stably transfected with human GABA(B1b) and GABA(B2) receptors. The GABA(B)R agonist baclofen induced Akt phosphorylation and chemotaxis by binding to its specific GABA(B)R since pretreatment of cells with CGP52432, a GABA(B)R antagonist, blocked such effects. Moreover, baclofen induced Akt phosphorylation was shown to be dependent upon PI-3K and Src kinases. Baclofen failed to stimulate actin polymerization in suspended RBL cells unless exposed to a baclofen gradient. However, baclofen stimulated both actin and tubulin polymerization in adherent RBL-GABA(B)R cells. Blockade of actin and tubulin polymerization by treatment of cells with cytochalasin D or nocodazole respectively, abolished baclofen-mediated chemotaxis. Furthermore, baclofen stimulated Pyk2 and STAT3 phosphorylation, both known regulators of cell migration. In conclusion, GABA(B)R stimulation promotes chemotaxis in RBL cells which is dependent on signaling via PI3-K/Akt, Src kinases and on rearrangement of both microtubules and actin cytoskeleton. These data define mechanisms of GABA(B)R-mediated chemotaxis which may potentially be used to therapeutically regulate cellular response to injury and disease.

  10. Freezing tolerance of sea urchin embryonic cells: Differentiation commitment and cytoskeletal disturbances in culture.

    PubMed

    Odintsova, Nelly A; Ageenko, Natalya V; Kipryushina, Yulia O; Maiorova, Mariia A; Boroda, Andrey V

    2015-08-01

    This study focuses on the freezing tolerance of sea urchin embryonic cells. To significantly reduce the loss of physiological activity of these cells that occurs after cryopreservation and to study the effects of ultra-low temperatures on sea urchin embryonic cells, we tested the ability of the cells to differentiate into spiculogenic or pigment directions in culture, including an evaluation of the expression of some genes involved in pigment differentiation. A morphological analysis of cytoskeletal disturbances after freezing in a combination of penetrating (dimethyl sulfoxide and ethylene glycol) and non-penetrating (trehalose and polyvinylpyrrolidone) cryoprotectants revealed that the distribution pattern of filamentous actin and tubulin was similar to that in the control cultures. In contrast, very rare spreading cells and a small number of cells with filamentous actin and tubulin were detected after freezing in the presence of only non-penetrating cryoprotectants. The largest number of pigment cells was found in cultures frozen with trehalose or trehalose and dimethyl sulfoxide. The ability to induce the spicule formation was lost in the cells frozen only with non-penetrating cryoprotectants, while it was maximal in cultures frozen in a cryoprotective mixture containing both non-penetrating and penetrating cryoprotectants (particularly, when ethylene glycol was present). Using different markers for cell state assessment, an effective cryopreservation protocol for sea urchin cells was developed: three-step freezing with a low cooling rate (1-2°C/min) and a combination of non-penetrating and penetrating cryoprotectants made it possible to obtain a high level of cell viability (up to 65-80%).

  11. Fisetin antagonizes cell fusion, cytoskeletal organization and bone resorption in RANKL-differentiated murine macrophages.

    PubMed

    Kim, Yun-Ho; Kim, Jung-Lye; Lee, Eun-Jung; Park, Sin-Hye; Han, Seon-Young; Kang, Soon Ah; Kang, Young-Hee

    2014-03-01

    Osteoclastogenesis is comprised of several stage s including progenitor survival, differentiation to mononuclear preosteoclasts, cell fusion to multinuclear mature osteoclasts, and activation to osteoclasts with bone resorbing activity. Botanical antioxidants are now being increasingly investigated for their health-promoting effects on bone. This study investigated that fisetin, a flavonol found naturally in many fruits and vegetables, suppressed osteoclastogenesis by disturbing receptor activator of nuclear factor (NF)-κB ligand (RANKL)-mediated signaling pathway and demoting osteoclastogenic protein induction. Nontoxic fisetin at ≤10 μM inhibited the induction of RANK, tumor necrosis factor receptor associated factor 6 (TRAF6) and the activation of NF-κB in RANKL-stimulated RAW 264.7 macrophages. In RANKL-differentiated osteoclasts cell fusion protein of E-cadherin was induced, which was dampened by fisetin. The formation of tartrate-resistance acid phosphatase-positive multinucleated osteoclasts was suppressed by adding fisetin to RANKL-exposed macrophages. It was also found that fisetin reduced actin ring formation and gelsolin induction of osteclasts enhanced by RANKL through disturbing c-Src-proline-rich tyrosine kinase 2 signaling. Fisetin deterred preosteoclasts from the cell-cell fusion and the organization of the cytoskeleton to seal the resorbing area and to secret protons for bone resorption. Consistently, the 5 day-treatment of fisetin diminished RANKL-induced cellular expression of carbonic anhydrase II and integrin β3 concurrently with a reduction of osteoclast bone-resorbing activity. Therefore, fisetin was a natural therapeutic agent retarding osteoclast fusion and cytoskeletal organization such as actin rings and ruffled boarder, which is a property of mature osteoclasts and is required for osteoclasts to resorb bone.

  12. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements

    SciTech Connect

    Woloschak, G.E. |; Felcher, P.; Chin-Mei Chang-Liu

    1995-06-01

    Experiments examined the effects of radiation dose-rate and protein synthesis inhibition expression of cytoskeletal and matrix elements in Syrian hamster embryo cells. Results demonstrated little effect of dose-rate for neutrons when comparing expression of {alpha}-tubulin and fibronectin genes. Cycloheximide repressed accumulation of {alpha}-tubulin-mRNA following exposure to high dose-rate neutrons or {gamma} rays. Cycloheximide did not affect accumulation of actin mRNA. Cycloheximide abrogated induction of fibronectin-mRNA which occurred following exposure to {gamma} rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of {alpha}-tubulin and fibronectin mRNA accumulation following exposure to radiation. 24 refs., 3 tabs.

  13. The actin-microtubule cross-linking activity of Drosophila Short stop is regulated by intramolecular inhibition.

    PubMed

    Applewhite, Derek A; Grode, Kyle D; Duncan, Mara C; Rogers, Stephen L

    2013-09-01

    Actin and microtubule dynamics must be precisely coordinated during cell migration, mitosis, and morphogenesis--much of this coordination is mediated by proteins that physically bridge the two cytoskeletal networks. We have investigated the regulation of the Drosophila actin-microtubule cross-linker Short stop (Shot), a member of the spectraplakin family. Our data suggest that Shot's cytoskeletal cross-linking activity is regulated by an intramolecular inhibitory mechanism. In its inactive conformation, Shot adopts a "closed" conformation through interactions between its NH(2)-terminal actin-binding domain and COOH-terminal EF-hand-GAS2 domain. This inactive conformation is targeted to the growing microtubule plus end by EB1. On activation, Shot binds along the microtubule through its COOH-terminal GAS2 domain and binds to actin with its NH(2)-terminal tandem CH domains. We propose that this mechanism allows Shot to rapidly cross-link dynamic microtubules in response to localized activating signals at the cell cortex.

  14. Effect of collagen I and fibronectin on the adhesion, elasticity and cytoskeletal organization of prostate cancer cells

    SciTech Connect

    Docheva, Denitsa; Padula, Daniela; Schieker, Matthias; Clausen-Schaumann, Hauke

    2010-11-12

    Research highlights: {yields} Depending on the metastatic origin, prostate cancer cells differ in their affinity to COL1. {yields} COL1 affects specifically the F-actin and cell elasticity of bone-derived prostate cancer cells. {yields} Cell elasticity can be used as a biomarker for cancer cells from different metastases. -- Abstract: Despite of intensive research efforts, the precise mechanism of prostate cancer metastasis in bone is still not fully understood. Several studies have suggested that specific matrix production by the bone cells, such as collagen I, supports cancer cell invasion. The aim of this study was to investigate the effect of collagen I (COL1) and fibronectin (FN) on cell adhesion, cell elasticity and cytoskeletal organization of prostate cancer cells. Two cell lines, bone marrow- (PC3) and lymph node-derived (LNCaP) were cultivated on COL1 and FN (control protein). By using a quantitative adhesion assay and time-lapse analysis, it was found that PC3, but not LNCaP, adhered strongly and were more spread on COL1. Next, PC3 and LNCaP were evaluated by atomic force microscopy (AFM) and flatness shape factor and cellular Young's modulus were calculated. The shape analysis revealed that PC3 were significantly flatter when grown on COL1 in comparison to LNCaP. In general, PC3 were also significantly stiffer than LNCaP and furthermore, their stiffness increased upon interaction with COL1. Since cell stiffness is strongly dependent on actin organization, phalloidin-based actin staining was performed and revealed that, of the two cell types as well as the two different matrix proteins, only PC3 grown on COL1 formed robust actin cytoskeleton. In conclusion, our study showed that PC3 cells have a strong affinity towards COL1. On this matrix protein, the cells adhered strongly and underwent a specific cell flattening. Moreover, with the establishment of PC3 contact to COL1 a significant increase of PC3 stiffness was observed due to a profound cytoskeletal

  15. Piccolo Directs Activity Dependent F-Actin Assembly from Presynaptic Active Zones via Daam1

    PubMed Central

    Wagh, Dhananjay; Terry-Lorenzo, Ryan; Waites, Clarissa L.; Leal-Ortiz, Sergio A.; Maas, Christoph; Reimer, Richard J.; Garner, Craig C.

    2015-01-01

    The dynamic assembly of filamentous (F) actin plays essential roles in the assembly of presynaptic boutons, the fusion, mobilization and recycling of synaptic vesicles (SVs), and presynaptic forms of plasticity. However, the molecular mechanisms that regulate the temporal and spatial assembly of presynaptic F-actin remain largely unknown. Similar to other F-actin rich membrane specializations, presynaptic boutons contain a set of molecules that respond to cellular cues and trans-synaptic signals to facilitate activity-dependent assembly of F-actin. The presynaptic active zone (AZ) protein Piccolo has recently been identified as a key regulator of neurotransmitter release during SV cycling. It does so by coordinating the activity-dependent assembly of F-Actin and the dynamics of key plasticity molecules including Synapsin1, Profilin and CaMKII. The multidomain structure of Piccolo, its exquisite association with the AZ, and its ability to interact with a number of actin-associated proteins suggest that Piccolo may function as a platform to coordinate the spatial assembly of F-actin. Here we have identified Daam1, a Formin that functions with Profilin to drive F-actin assembly, as a novel Piccolo binding partner. We also found that within cells Daam1 activation promotes Piccolo binding, an interaction that can spatially direct the polymerization of F-Actin. Moreover, similar to Piccolo and Profilin, Daam1 loss of function impairs presynaptic-F-actin assembly in neurons. These data suggest a model in which Piccolo directs the assembly of presynaptic F-Actin from the AZ by scaffolding key actin regulatory proteins including Daam1. PMID:25897839

  16. Functional Analysis of Actin-Binding Proteins in the Central Nervous System of Drosophila.

    PubMed

    He, Qi; Roblodowski, Christopher

    2016-01-01

    Using Drosophila actin-binding protein Dunc-115 as model system, this chapter describes a MARCM (mosaic analysis with a repressible cell marker)-based method for analyzing cytoskeletal components for their functions in the nervous system. Following a concise description about the principle, a step-by-step protocol is provided for generating the needed stocks and for histological analysis. Additional details and explanations have been given in the accompanying notes. Together, this should form a practical and sufficient recipe for performing at the single-cell-level loss-of-function and gain-of-function analyses of proteins associated with the cytoskeleton.

  17. Motor-induced sliding of microtubule and actin bundles

    PubMed Central

    Zemel, Assaf; Mogilner, Alex

    2009-01-01

    Interactions of multiple molecular motors with bundles of actin and microtubule filaments form the basis for many cytoskeletal processes including axonal growth, muscle contraction, cell division and platelet formation. Continuum models based on generalized diffusion equations have been suggested to quantify the dynamics of such active bundles. In highly cross-linked and densely packed filament bundles, however, a major complication arises due to the multiple interactions that each filament forms with its neighbors. To explore the effects of these interactions, we used detailed computer simulations and studied the bundles with different types of motors at different densities and boundary conditions. We found that highly cross-linked bundles exhibit effects of long-ranged interactions that are sensitive to the boundary conditions. In open bundles, these give rise to ‘telescopic’ patterns resulting in significant acceleration of the filaments at the edges. In contrast, in ringed bundles, the long-ranged interactions ‘lock’ filaments and slow down their movements. The filaments in loosely connected bundles, on the other hand, undergo local diffusion-drift dynamics consistent with previous continuum models. Our simulations also demonstrate the sorting phenomena in the mixed-polarity bundles and reveal characteristic scales and conditions for spontaneous pattern formation in the bundle. We discuss the relevance of our results for cytoskeleton systems such as microtubules in axons, platelet formation, kinetochore fibers and actin bundles in motile cells. PMID:19506757

  18. Protein phosphatase 2A, a potential regulator of actin dynamics and actin-based organelle motility in the green alga Acetabularia.

    PubMed

    Menzel, D; Vugrek, O; Frank, S; Elsner-Menzel, C

    1995-06-01

    The giant, unicellular alga Acetabularia is a well known experimental model for the study of actin-dependent intracellular organelle motility. In the cyst stage, however, which is equivalent to the gametophytic stage, organelles are immobile, even though an actin cytoskeleton is present. The reason for the lack of organelle motility at this stage has not been known. To test the hypothesis that organelle motility could be under the control of posttranslational modification by protein phosphorylation, we have treated cysts with submicromolar concentrations of okadaic acid or calyculin A, both potent inhibitors of serine/threonine protein phosphatases (ser/thr-PPases). The effects were dramatic: Instead of linear actin bundles typical for control cysts, circular arrays of actin bundles formed in the cortical cyst cytoplasm. Concomitant with the formation of these action rings, the cytoplasmic layers beneath the rings began to slowly rotate in a continuous and uniform counter-clockwise fashion. This effect suggests that protein phosphorylation acts on the actin cytoskeleton at two levels: (1) It changes the assembly properties of the actin filament system to the extent that novel cytoskeletal configurations are formed and (2) it raises the activity of putative motor proteins involved in the rotational movements to levels sufficiently high to support motility at a stage when organelle motility does not normally occur. Northern blot analysis of cyst stage-mRNA using probes specific to protein phosphatase type 1 (PP1) and type 2A (PP2A) reveals that PP2A is strongly expressed at this developmental stage whereas PP1 is not detectable, suggesting that PP2A is the likely target to the protein phosphatase inhibitors.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Regulation of an Actin Spring

    NASA Astrophysics Data System (ADS)

    Tam, Barney; Shin, Jennifer; Brau, Ricardo; Lang, Matthew; Mahadevan, L.; Matsudaira, Paul

    2006-03-01

    To produce motion, cells rely on the conversion of potential energy into mechanical work. One such example is the dramatic process involving the acrosome reaction of Limulus sperm, whereby a 60 μm-long bundle of actin filaments straightens from a coiled conformation to extend out of the cell in five seconds. This cellular engine and the motion it produces represent a third type of actin-based motility fundamentally different from polymerization or myosin-driven processes. The motive force for this extension originates from stored elastic energy in the overtwisted, pre-formed coil---much like a compressed mechanical spring. When the actin bundle untwists, this energy is converted to mechanical work powering the extension. We report on experiments probing the regulation of this actin spring by extracellular calcium. We find that extracellular calcium needs to be present for the spring to activate, and that calcium regulates the velocity of the extension.

  20. Coordination of the Filament Stabilizing Versus Destabilizing Activities of Cofilin Through its Secondary Binding Site on Actin

    PubMed Central

    Aggeli, Dimitra; Kish-Trier, Erik; Lin, Meng Chi; Haarer, Brian; Cingolani, Gino; Cooper, John A.; Wilkens, Stephan; Amberg, David C.

    2014-01-01

    Cofilin is a ubiquitous modulator of actin cytoskeleton dynamics that can both stabilize and destabilize actin filaments depending on its concentration and/or the presence of regulatory co-factors. Three charge-reversal mutants of yeast cofilin, located in cofilin’s filament-specific secondary binding site, were characterized in order to understand why disruption of this site leads to enhanced filament disassembly. Crystal structures of the mutants showed that the mutations specifically affect the secondary actin-binding interface, leaving the primary binding site unaltered. The mutant cofilins show enhanced activity compared to wild-type cofilin in severing and disassembling actin filaments. Electron microscopy and image analysis revealed long actin filaments in the presence of wild-type cofilin, while the mutants induced many short filaments, consistent with enhanced severing. Real-time fluorescence microscopy of labeled actin filaments confirmed that the mutants, unlike wild-type cofilin, were functioning as constitutively active severing proteins. In cells, the mutant cofilins delayed endocytosis, which depends on rapid actin turnover. We conclude that mutating cofilin’s secondary actin-binding site increases cofilin’s ability to sever and depolymerize actin filaments. We hypothesize that activators of cofilin severing, like Aip1p, may act by disrupting the interface between cofilin’s secondary actin-binding site and the actin filament. PMID:24943913

  1. The Yeast Gene, MDM20, Is Necessary for Mitochondrial Inheritance and Organization of the Actin Cytoskeleton

    PubMed Central

    Hermann, Greg J.; King, Edward J.; Shaw, Janet M.

    1997-01-01

    In Saccharomyces cerevisiae, the growing bud inherits a portion of the mitochondrial network from the mother cell soon after it emerges. Although this polarized transport of mitochondria is thought to require functions of the cytoskeleton, there are conflicting reports concerning the nature of the cytoskeletal element involved. Here we report the isolation of a yeast mutant, mdm20, in which both mitochondrial inheritance and actin cables (bundles of actin filaments) are disrupted. The MDM20 gene encodes a 93-kD polypeptide with no homology to other characterized proteins. Extra copies of TPM1, a gene encoding the actin filament–binding protein tropomyosin, suppress mitochondrial inheritance defects and partially restore actin cables in mdm20Δ cells. Synthetic lethality is also observed between mdm20 and tpm1 mutant strains. Overexpression of a second yeast tropomyosin, Tpm2p, rescues mutant phenotypes in the mdm20 strain to a lesser extent. Together, these results provide compelling evidence that mitochondrial inheritance in yeast is an actin-mediated process. MDM20 and TPM1 also exhibit the same pattern of genetic interactions; mutations in MDM20 are synthetically lethal with mutations in BEM2 and MYO2 but not SAC6. Although MDM20 and TPM1 are both required for the formation and/or stabilization of actin cables, mutations in these genes disrupt mitochondrial inheritance and nuclear segregation to different extents. Thus, Mdm20p and Tpm1p may act in vivo to establish molecular and functional heterogeneity of the actin cytoskeleton. PMID:9105043

  2. Three's company: the fission yeast actin cytoskeleton.

    PubMed

    Kovar, David R; Sirotkin, Vladimir; Lord, Matthew

    2011-03-01

    How the actin cytoskeleton assembles into different structures to drive diverse cellular processes is a fundamental cell biological question. In addition to orchestrating the appropriate combination of regulators and actin-binding proteins, different actin-based structures must insulate themselves from one another to maintain specificity within a crowded cytoplasm. Actin specification is particularly challenging in complex eukaryotes where a multitude of protein isoforms and actin structures operate within the same cell. Fission yeast Schizosaccharomyces pombe possesses a single actin isoform that functions in three distinct structures throughout the cell cycle. In this review we explore recent studies in fission yeast that help unravel how different actin structures operate in cells.

  3. Structural insights into de novo actin polymerization

    PubMed Central

    Dominguez, Roberto

    2010-01-01

    Summary Many cellular functions depend on rapid and localized actin polymerization/depolymerization. Yet, the de novo polymerization of actin in cells is kinetically unfavorable because of the instability of polymerization intermediates (small actin oligomers) and the actions of actin monomer binding proteins. Cells use filament nucleation and elongation factors to initiate and sustain polymerization. Structural biology is beginning to shed light on the diverse mechanisms by which these unrelated proteins initiate polymerization, undergo regulation, and mediate the transition of monomeric actin onto actin filaments. A prominent role is played by the W domain, which in some of these proteins occurs in tandem repeats that recruit multiple actin subunits. Pro-rich regions are also abundant and mediate the binding of profilin-actin complexes, which are the main source of polymerization competent actin in cells. Filament nucleation and elongation factors frequently interact with Rho family GTPases, which relay signals from membrane receptors to regulate actin cytoskeleton remodeling. PMID:20096561

  4. Fibroblast cytoskeletal remodeling contributes to connective tissue tension.

    PubMed

    Langevin, Helene M; Bouffard, Nicole A; Fox, James R; Palmer, Bradley M; Wu, Junru; Iatridis, James C; Barnes, William D; Badger, Gary J; Howe, Alan K

    2011-05-01

    The visco-elastic behavior of connective tissue is generally attributed to the material properties of the extracellular matrix rather than cellular activity. We have previously shown that fibroblasts within areolar connective tissue exhibit dynamic cytoskeletal remodeling within minutes in response to tissue stretch ex vivo and in vivo. Here, we tested the hypothesis that fibroblasts, through this cytoskeletal remodeling, actively contribute to the visco-elastic behavior of the whole tissue. We measured significantly increased tissue tension when cellular function was broadly inhibited by sodium azide and when cytoskeletal dynamics were compromised by disrupting microtubules (with colchicine) or actomyosin contractility (via Rho kinase inhibition). These treatments led to a decrease in cell body cross-sectional area and cell field perimeter (obtained by joining the end of all of a fibroblast's processes). Suppressing lamellipodia formation by inhibiting Rac-1 decreased cell body cross-sectional area but did not affect cell field perimeter or tissue tension. Thus, by changing shape, fibroblasts can dynamically modulate the visco-elastic behavior of areolar connective tissue through Rho-dependent cytoskeletal mechanisms. These results have broad implications for our understanding of the dynamic interplay of forces between fibroblasts and their surrounding matrix, as well as for the neural, vascular, and immune cell populations residing within connective tissue.

  5. Morphology of the Trypanosome Bilobe, a Novel Cytoskeletal Structure

    PubMed Central

    Esson, Heather J.; Yavuz, Sevil; Vidilaseris, Keni; Dong, Gang; Warren, Graham

    2012-01-01

    The trypanosome bilobe is a cytoskeletal structure of unclear function. To date, four proteins have been shown to localize stably to it: TbMORN1, TbLRRP1, TbCentrin2, and TbCentrin4. In this study, a combination of immunofluorescence microscopy and electron microscopy was used to explore the morphology of the bilobe and its relationship to other nearby cytoskeletal structures in the African trypanosome procyclic trypomastigote. The use of detergent/salt-extracted flagellum preparations was found to be an effective way of discerning features of the cytoskeletal ultrastructure that are normally obscured. TbMORN1 and TbCentrin4 together define a hairpin structure comprising an arm of TbCentrin4 and a fishhook of TbMORN1. The two arms flank a specialized microtubule quartet and the flagellum attachment zone filament, with TbMORN1 running alongside the former and TbCentrin4 alongside the latter. The hooked part of TbMORN1 sits atop the flagellar pocket collar marked by TbBILBO1. The TbMORN1 bilobe occasionally exhibits tendrillar extensions that seem to be connected to the basal and probasal bodies. The TbMORN1 molecules present on these tendrils undergo higher rates of turnover than those for molecules on the main bilobe structure. These observations have been integrated with previous detailed descriptions of the cytoskeletal elements in trypanosome cells. PMID:22327007

  6. FIBROBLAST CYTOSKELETAL REMODELING CONTRIBUTES TO CONNECTIVE TISSUE TENSION

    PubMed Central

    Langevin, Helene M.; Bouffard, Nicole A.; Fox, James R.; Palmer, Bradley M.; Wu, Junru; Iatridis, James C.; Barnes, William D.; Badger, Gary J.; Howe, Alan K.

    2011-01-01

    The viscoelastic behavior of connective tissue is generally attributed to the material properties of the extracellular matrix rather than cellular activity. We have previously shown that fibroblasts within areolar connective tissue exhibit dynamic cytoskeletal remodeling within minutes in response to tissue stretch ex vivo and in vivo. Here, we tested the hypothesis that fibroblasts, through this cytoskeletal remodeling, actively contribute to the viscoelastic behavior of the whole tissue. We measured significantly increased tissue tension when cellular function was broadly inhibited by sodium azide and when cytoskeletal dynamics were compromised by disrupting microtubules (with colchicine) or actomyosin contractility (via Rho kinase inhibition). These treatments led to a decrease in cell body cross-sectional area and cell field perimeter (obtained by joining the end of all of a fibroblast’s processes). Suppressing lamellipodia formation by inhibiting Rac-1 decreased cell body cross-sectional area but did not affect cell field perimeter or tissue tension. Thus, by changing shape, fibroblasts can dynamically modulate the viscoelastic behavior of areolar connective tissue through Rho-dependent cytoskeletal mechanisms. These results have broad implications for our understanding of the dynamic interplay of forces between fibroblasts and their surrounding matrix, as well as for the neural, vascular and immune cell populations residing within connective tissue. PMID:20945345

  7. Exploring the possible role of lysine acetylation on Entamoeba histolytica virulence: a focus on the dynamics of the actin cytoskeleton.

    PubMed

    López-Contreras, L; Hernández-Ramírez, V I; Lagunes-Guillén, A E; Montaño, Sarita; Chávez-Munguía, B; Sánchez-Ramírez, B; Talamás-Rohana, P

    2013-01-01

    Cytoskeleton remodeling can be regulated, among other mechanisms, by lysine acetylation. The role of acetylation on cytoskeletal and other proteins of Entamoeba histolytica has been poorly studied. Dynamic rearrangements of the actin cytoskeleton are crucial for amebic motility and capping formation, processes that may be effective means of evading the host immune response. Here we report the possible effect of acetylation on the actin cytoskeleton dynamics and in vivo virulence of E. histolytica. Using western blot, immunoprecipitation, microscopy assays, and in silico analysis, we show results that strongly suggest that the increase in Aspirin-induced cytoplasm proteins acetylation reduced cell movement and capping formation, likely as a consequence of alterations in the structuration of the actin cytoskeleton. Additionally, intrahepatic inoculation of Aspirin-treated trophozoites in hamsters resulted in severe impairment of the amebic virulence. Taken together, these results suggest an important role for lysine acetylation in amebic invasiveness and virulence.

  8. The Strip-Hippo Pathway Regulates Synaptic Terminal Formation by Modulating Actin Organization at the Drosophila Neuromuscular Synapses.

    PubMed

    Sakuma, Chisako; Saito, Yoshie; Umehara, Tomoki; Kamimura, Keisuke; Maeda, Nobuaki; Mosca, Timothy J; Miura, Masayuki; Chihara, Takahiro

    2016-08-30

    Synapse formation requires the precise coordination of axon elongation, cytoskeletal stability, and diverse modes of cell signaling. The underlying mechanisms of this interplay, however, remain unclear. Here, we demonstrate that Strip, a component of the striatin-interacting phosphatase and kinase (STRIPAK) complex that regulates these processes, is required to ensure the proper development of synaptic boutons at the Drosophila neuromuscular junction. In doing so, Strip negatively regulates the activity of the Hippo (Hpo) pathway, an evolutionarily conserved regulator of organ size whose role in synapse formation is currently unappreciated. Strip functions genetically with Enabled, an actin assembly/elongation factor and the presumptive downstream target of Hpo signaling, to modulate local actin organization at synaptic termini. This regulation occurs independently of the transcriptional co-activator Yorkie, the canonical downstream target of the Hpo pathway. Our study identifies a previously unanticipated role of the Strip-Hippo pathway in synaptic development, linking cell signaling to actin organization. PMID:27545887

  9. Mimicking the mechanical properties of the cell cortex by the self-assembly of an actin cortex in vesicles

    NASA Astrophysics Data System (ADS)

    Luo, Tianzhi; Srivastava, Vasudha; Ren, Yixin; Robinson, Douglas N.

    2014-04-01

    The composite of the actin cytoskeleton and plasma membrane plays important roles in many biological events. Here, we employed the emulsion method to synthesize artificial cells with biomimetic actin cortex in vesicles and characterized their mechanical properties. We demonstrated that the emulsion method provides the flexibility to adjust the lipid composition and protein concentrations in artificial cells to achieve the desired size distribution, internal microstructure, and mechanical properties. Moreover, comparison of the cortical elasticity measured for reconstituted artificial cells to that of real cells, including those manipulated using genetic depletion and pharmacological inhibition, strongly supports that actin cytoskeletal proteins are dominant over lipid molecules in cortical mechanics. Our study indicates that the assembly of biological systems in artificial cells with purified cellular components provides a powerful way to answer biological questions.

  10. TRPV4 regulates calcium homeostasis, cytoskeletal remodeling, conventional outflow and intraocular pressure in the mammalian eye

    PubMed Central

    Ryskamp, Daniel A.; Frye, Amber M.; Phuong, Tam T. T.; Yarishkin, Oleg; Jo, Andrew O.; Xu, Yong; Lakk, Monika; Iuso, Anthony; Redmon, Sarah N.; Ambati, Balamurali; Hageman, Gregory; Prestwich, Glenn D.; Torrejon, Karen Y.; Križaj, David

    2016-01-01

    An intractable challenge in glaucoma treatment has been to identify druggable targets within the conventional aqueous humor outflow pathway, which is thought to be regulated/dysregulated by elusive mechanosensitive protein(s). Here, biochemical and functional analyses localized the putative mechanosensitive cation channel TRPV4 to the plasma membrane of primary and immortalized human TM (hTM) cells, and to human and mouse TM tissue. Selective TRPV4 agonists and substrate stretch evoked TRPV4-dependent cation/Ca2+ influx, thickening of F-actin stress fibers and reinforcement of focal adhesion contacts. TRPV4 inhibition enhanced the outflow facility and lowered perfusate pressure in biomimetic TM scaffolds populated with primary hTM cells. Systemic delivery, intraocular injection or topical application of putative TRPV4 antagonist prodrug analogs lowered IOP in glaucomatous mouse eyes and protected retinal neurons from IOP-induced death. Together, these findings indicate that TRPV4 channels function as a critical component of mechanosensitive, Ca2+-signaling machinery within the TM, and that TRPV4-dependent cytoskeletal remodeling regulates TM stiffness and outflow. Thus, TRPV4 is a potential IOP sensor within the conventional outflow pathway and a novel target for treating ocular hypertension. PMID:27510430

  11. Force-Induced Dynamical Properties of Multiple Cytoskeletal Filaments Are Distinct from that of Single Filaments

    PubMed Central

    Das, Dipjyoti; Das, Dibyendu; Padinhateeri, Ranjith

    2014-01-01

    How cytoskeletal filaments collectively undergo growth and shrinkage is an intriguing question. Collective properties of multiple bio-filaments (actin or microtubules) undergoing hydrolysis have not been studied extensively earlier within simple theoretical frameworks. In this paper, we study the collective dynamical properties of multiple filaments under force, and demonstrate the distinct properties of a multi-filament system in comparison to a single filament. Comparing stochastic simulation results with recent experimental data, we show that multi-filament collective catastrophes are slower than catastrophes of single filaments. Our study also shows further distinctions as follows: (i) force-dependence of the cap-size distribution of multiple filaments are quantitatively different from that of single filaments, (ii) the diffusion constant associated with the system length fluctuations is distinct for multiple filaments, and (iii) switching dynamics of multiple filaments between capped and uncapped states and the fluctuations therein are also distinct. We build a unified picture by establishing interconnections among all these collective phenomena. Additionally, we show that the collapse times during catastrophes can be sharp indicators of collective stall forces exceeding the additive contributions of single filaments. PMID:25531397

  12. Endoplasmic Reticulum Dynamics, Inheritance, and Cytoskeletal Interactions in Budding YeastV⃞

    PubMed Central

    Fehrenbacher, K. L.; Davis, D.; Wu, M.; Boldogh, I.; Pon, Liza A.

    2002-01-01

    The endoplasmic reticulum (ER) in Saccharomyces cerevisiae consists of a reticulum underlying the plasma membrane (cortical ER) and ER associated with the nuclear envelope (nuclear ER). We used a Sec63p-green fluorescent protein fusion protein to study motility events associated with inheritance of cortical ER and nuclear ER in living yeast cells. During M phase before nuclear migration, we observed thick, apparently rigid tubular extensions emanating from the nuclear ER that elongate, undergo sweeping motions along the cell cortex, and shorten. Two findings support a role for microtubules in this process. First, extension of tubular structures from the nuclear ER is inhibited by destabilization of microtubules. Second, astral microtubules, structures that undergo similar patterns of extension, cortical surveillance and retraction, colocalize with nuclear ER extensions. During S and G2 phases of the cell cycle, we observed anchorage of the cortical ER at the site of bud emergence and apical bud growth. Thin tubules of the ER that extend from the anchored cortical ER display undulating, apparently random movement and move into the bud as it grows. Finally, we found that cortical ER morphology is sensitive to a filamentous actin–destabilizing drug, latrunculin-A, and to mutations in the actin-encoding ACT1 gene. Our observations support 1) different mechanisms and cytoskeletal mediators for the inheritance of nuclear and cortical ER elements and 2) a mechanism for cortical ER inheritance that is cytoskeleton dependent but relies on anchorage, not directed movement. PMID:11907267

  13. Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization

    PubMed Central

    Ursell, Tristan S.; Nguyen, Jeffrey; Monds, Russell D.; Colavin, Alexandre; Billings, Gabriel; Ouzounov, Nikolay; Gitai, Zemer; Shaevitz, Joshua W.; Huang, Kerwyn Casey

    2014-01-01

    Cells typically maintain characteristic shapes, but the mechanisms of self-organization for robust morphological maintenance remain unclear in most systems. Precise regulation of rod-like shape in Escherichia coli cells requires the MreB actin-like cytoskeleton, but the mechanism by which MreB maintains rod-like shape is unknown. Here, we use time-lapse and 3D imaging coupled with computational analysis to map the growth, geometry, and cytoskeletal organization of single bacterial cells at subcellular resolution. Our results demonstrate that feedback between cell geometry and MreB localization maintains rod-like cell shape by targeting cell wall growth to regions of negative cell wall curvature. Pulse-chase labeling indicates that growth is heterogeneous and correlates spatially and temporally with MreB localization, whereas MreB inhibition results in more homogeneous growth, including growth in polar regions previously thought to be inert. Biophysical simulations establish that curvature feedback on the localization of cell wall growth is an effective mechanism for cell straightening and suggest that surface deformations caused by cell wall insertion could direct circumferential motion of MreB. Our work shows that MreB orchestrates persistent, heterogeneous growth at the subcellular scale, enabling robust, uniform growth at the cellular scale without requiring global organization. PMID:24550515

  14. Polymerization of Actin from Maize Pollen.

    PubMed Central

    Yen, L. F.; Liu, X.; Cai, S.

    1995-01-01

    Here we describe the in vitro polymerization of actin from maize (Zea mays) pollen. The purified actin from maize pollen reported in our previous paper (X. Liu, L.F. Yen [1992] Plant Physiol 99: 1151-1155) is biologically active. In the presence of ATP, KCl, and MgCl2 the purified pollen actin polymerized into filaments. During polymerization the spectra of absorbance at 232 nm increased gradually. Polymerization of pollen actin was evidently accompanied by an increase in viscosity of the pollen actin solution. Also, the specific viscosity of pollen F-actin increased in a concentration-dependent manner. The ultraviolet difference spectrum of pollen actin is very similar to that of rabbit muscle actin. The activity of myosin ATPase from rabbit muscle was activated 7-fold by the polymerized pollen actin (F-actin). The actin filaments were visualized under the electron microscope as doubly wound strands of 7 nm diameter. If cytochalasin B was added before staining, no actin filaments were observed. When actin filaments were treated with rabbit heavy meromyosin, the actin filaments were decorated with an arrowhead structure. These results imply that there is much similarity between pollen and muscle actin. PMID:12228343

  15. The effect of actin disrupting agents on contact guidance of human embryonic stem cells

    PubMed Central

    Gerecht, Sharon; Bettinger, Christopher J.; Zhang, Zhitong; Borenstein, Jeffrey; Vunjak-Novakovic, Gordana; Langer, Robert

    2007-01-01

    Mammalian cells respond to their substrates by complex changes in gene expression profiles, morphology, proliferation and migration. We report that substrate nanotopography alters morpohology and proliferation of human embryonic stem cells (hESCs). Fibronectin-coated poly(di-methyl siloxane) substrates with line-grating (600 nm ridges with 600 nm spacing and 600 +/− 150 nm feature height) induced hESC alignment and elongation, mediated the organization of cytoskeletal components including actin, vimentin, and α-tubulin, and reduced proliferation. Spatial polarization of gamma tubulin complexes was also observed in response to nanotopography. Furthermore, the addition of actin disrupting agents attenuated the alignment and proliferative effects of nanotopography. These findings further demonstrate the importance of interplay between cytoskeleton and substrate interactions as a key modulator of morphological and proliferative cellular response in hESCs on nanotopography. PMID:17576011

  16. The pathogen-actin connection: A platform for defense signaling in plants

    SciTech Connect

    Day, B; Henty, Jessica L; Porter, K J; Staiger, Chris J

    2011-09-08

    The cytoskeleton, a dynamic network of cytoplasmic polymers, plays a central role in numerous fundamental processes, such as development, reproduction, and cellular responses to biotic and abiotic stimuli. As a platform for innate immune responses in mammalian cells, the actin cytoskeleton is a central component in the organization and activation of host defenses, including signaling and cellular repair. In plants, our understanding of the genetic and biochemical responses in both pathogen and host that are required for virulence and resistance has grown enormously. Additional advances in live-cell imaging of cytoskeletal dynamics have markedly altered our view of actin turnover in plants. In this review, we outline current knowledge of host resistance following pathogen perception, both in terms of the genetic interactions that mediate defense signaling, as well as the biochemical and cellular processes that are required for defense signaling.

  17. Microrheology and micromechanics of actin-coated membranes

    NASA Astrophysics Data System (ADS)

    Bourdieu, Laurent

    2002-03-01

    To study the interaction between cytoskeletal filaments and the plasma membrane, we designed composite membranes obtained by self-assembly of actin filaments on the outer leaflet of giant unilamellar fluid vesicles. Their rich dynamics is studied by micromanipulation with optical tweezers and by single particle tracking experiments. We first show that microrheology study can be carried out on such an individual microscopic object by measuring the thermally excited position fluctuations of a probed bead bound biochemically to the membrane. We propose a model that relates the power spectrum of these thermal fluctuations to the viscoelastic properties of the membrane. The presence of the actin filaments network first induces a finite 2D shear modulus of the order of 1 microN/m. Moreover, these membranes exhibit a clear viscoelastic behavior at high frequency: above a few tens of Hz, both the shear and the bending moduli exhibit the same frequency dependence, a power law of exponent 0.75. These results are consistent in the framework of our model with previous measurements on actin solutions. We show moreover that these complexes exhibit typical mechanical features of a solid shell. For example, a buckling instability is observed when a localized force of the order of 0.5 picoNewton is applied perpendicular to the membrane plane. Although predicted for polymerized vesicles, this is the first evidence of such an instability. This instability is a striking example of the coupling between in-plane stretch and shear and out-of-plane bending, which takes place for curves shells when it becomes more favorable energetically to concentrate the in-plane stress due to the bending within a narrow ring, centered on the force application point.

  18. Cofilin-mediated actin dynamics promotes actin bundle formation during Drosophila bristle development

    PubMed Central

    Wu, Jing; Wang, Heng; Guo, Xuan; Chen, Jiong

    2016-01-01

    The actin bundle is an array of linear actin filaments cross-linked by actin-bundling proteins, but its assembly and dynamics are not as well understood as those of the branched actin network. Here we used the Drosophila bristle as a model system to study actin bundle formation. We found that cofilin, a major actin disassembly factor of the branched actin network, promotes the formation and positioning of actin bundles in the developing bristles. Loss of function of cofilin or AIP1, a cofactor of cofilin, each resulted in increased F-actin levels and severe defects in actin bundle organization, with the defects from cofilin deficiency being more severe. Further analyses revealed that cofilin likely regulates actin bundle formation and positioning by the following means. First, cofilin promotes a large G-actin pool both locally and globally, likely ensuring rapid actin polymerization for bundle initiation and growth. Second, cofilin limits the size of a nonbundled actin-myosin network to regulate the positioning of actin bundles. Third, cofilin prevents incorrect assembly of branched and myosin-associated actin filament into bundles. Together these results demonstrate that the interaction between the dynamic dendritic actin network and the assembling actin bundles is critical for actin bundle formation and needs to be closely regulated. PMID:27385345

  19. Cofilin-mediated actin dynamics promotes actin bundle formation during Drosophila bristle development.

    PubMed

    Wu, Jing; Wang, Heng; Guo, Xuan; Chen, Jiong

    2016-08-15

    The actin bundle is an array of linear actin filaments cross-linked by actin-bundling proteins, but its assembly and dynamics are not as well understood as those of the branched actin network. Here we used the Drosophila bristle as a model system to study actin bundle formation. We found that cofilin, a major actin disassembly factor of the branched actin network, promotes the formation and positioning of actin bundles in the developing bristles. Loss of function of cofilin or AIP1, a cofactor of cofilin, each resulted in increased F-actin levels and severe defects in actin bundle organization, with the defects from cofilin deficiency being more severe. Further analyses revealed that cofilin likely regulates actin bundle formation and positioning by the following means. First, cofilin promotes a large G-actin pool both locally and globally, likely ensuring rapid actin polymerization for bundle initiation and growth. Second, cofilin limits the size of a nonbundled actin-myosin network to regulate the positioning of actin bundles. Third, cofilin prevents incorrect assembly of branched and myosin-associated actin filament into bundles. Together these results demonstrate that the interaction between the dynamic dendritic actin network and the assembling actin bundles is critical for actin bundle formation and needs to be closely regulated.

  20. Simulated Microgravity Alters Actin Cytoskeleton and Integrin-Mediated Focal Adhesions of Cultured Human Mesenchymal Stromal Cells

    NASA Astrophysics Data System (ADS)

    Gershovich, P. M.; Gershovic, J. G.; Buravkova, L. B.

    2008-06-01

    Cytoskeletal alterations occur in several cell types including lymphocytes, glial cells, and osteoblasts, during spaceflight and under simulated microgravity (SMG) (3, 4). One potential mechanism for cytoskeletal gravisensitivity is disruption of extracellular matrix (ECM) and integrin interactions. Focal adhesions are specialized sites of cell-matrix interaction composed of integrins and the diversity of focal adhesion-associated cytoplasmic proteins including vinculin, talin, α-actinin, and actin filaments (4, 5). Integrins produce signals essential for proper cellular function, survival and differentiation. Therefore, we investigated the effects of SMG on F-actin cytoskeleton structure, vinculin focal adhesions, expression of some integrin subtypes and cellular adhesion molecules (CAMs) in mesenchymal stem cells derived from human bone marrow (hMSCs). Simulated microgravity was produced by 3D-clinostat (Dutch Space, Netherlands). Staining of actin fibers with TRITC-phalloidin showed reorganization even after 30 minutes of simulated microgravity. The increasing of cells number with abnormal F-actin was observed after subsequent terms of 3D-clinorotation (6, 24, 48, 120 hours). Randomization of gravity vector altered dimensional structure of stress fibers and resulted in remodeling of actin fibers inside the cells. In addition, we observed vinculin redistribution inside the cells after 6 hours and prolonged terms of clinorotation. Tubulin fibers in a contrast with F-actin and vinculin didn't show any reorganization even after long 3Dclinorotation (120 hours). The expression of integrin α2 increased 1,5-6-fold in clinorotated hMSCs. Also we observed decrease in number of VCAM-1-positive cells and changes in expression of ICAM-1. Taken together, our findings indicate that SMG leads to microfilament and adhesion alterations of hMSCs most probably associated with involvement of some integrin subtypes.

  1. Patterning and Lifetime of Plasma Membrane-Localized Cellulose Synthase Is Dependent on Actin Organization in Arabidopsis Interphase Cells1[W

    PubMed Central

    Sampathkumar, Arun; Gutierrez, Ryan; McFarlane, Heather E.; Bringmann, Martin; Lindeboom, Jelmer; Emons, Anne-Mie; Samuels, Lacey; Ketelaar, Tijs; Ehrhardt, David W.; Persson, Staffan

    2013-01-01

    The actin and microtubule cytoskeletons regulate cell shape across phyla, from bacteria to metazoans. In organisms with cell walls, the wall acts as a primary constraint of shape, and generation of specific cell shape depends on cytoskeletal organization for wall deposition and/or cell expansion. In higher plants, cortical microtubules help to organize cell wall construction by positioning the delivery of cellulose synthase (CesA) complexes and guiding their trajectories to orient newly synthesized cellulose microfibrils. The actin cytoskeleton is required for normal distribution of CesAs to the plasma membrane, but more specific roles for actin in cell wall assembly and organization remain largely elusive. We show that the actin cytoskeleton functions to regulate the CesA delivery rate to, and lifetime of CesAs at, the plasma membrane, which affects cellulose production. Furthermore, quantitative image analyses revealed that actin organization affects CesA tracking behavior at the plasma membrane and that small CesA compartments were associated with the actin cytoskeleton. By contrast, localized insertion of CesAs adjacent to cortical microtubules was not affected by the actin organization. Hence, both actin and microtubule cytoskeletons play important roles in regulating CesA trafficking, cellulose deposition, and organization of cell wall biogenesis. PMID:23606596

  2. Cdc42 and Actin Control Polarized Expression of TI-VAMP Vesicles to Neuronal Growth Cones and Their Fusion with the Plasma MembraneV⃞

    PubMed Central

    Alberts, Philipp; Rudge, Rachel; Irinopoulou, Theano; Danglot, Lydia; Gauthier-Rouvière, Cécile; Galli, Thierry

    2006-01-01

    Tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP)-mediated fusion of intracellular vesicles with the plasma membrane is crucial for neurite outgrowth, a pathway not requiring synaptobrevin-dependent exocytosis. Yet, it is not known how the TI-VAMP membrane trafficking pathway is regulated or how it is coordinated with cytoskeletal dynamics within the growth cone that guide neurite outgrowth. Here, we demonstrate that TI-VAMP, but not synaptobrevin 2, concentrates in the peripheral, F-actin-rich region of the growth cones of hippocampal neurons in primary culture. Its accumulation correlates with and depends upon the presence of F-actin. Moreover, acute stimulation of actin remodeling by homophilic activation of the adhesion molecule L1 induces a site-directed, actin-dependent recruitment of the TI-VAMP compartment. Expression of a dominant-positive mutant of Cdc42, a key regulator of cell polarity, stimulates formation of F-actin- and TI-VAMP-rich filopodia outside the growth cone. Furthermore, we report that Cdc42 activates exocytosis of pHLuorin tagged TI-VAMP in an actin-dependent manner. Collectively, our data suggest that Cdc42 and regulated assembly of the F-actin network control the accumulation and exocytosis of TI-VAMP-containing membrane vesicles in growth cones to coordinate membrane trafficking and actin remodeling during neurite outgrowth. PMID:16381811

  3. Cdc42 and actin control polarized expression of TI-VAMP vesicles to neuronal growth cones and their fusion with the plasma membrane.

    PubMed

    Alberts, Philipp; Rudge, Rachel; Irinopoulou, Theano; Danglot, Lydia; Gauthier-Rouvière, Cécile; Galli, Thierry

    2006-03-01

    Tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP)-mediated fusion of intracellular vesicles with the plasma membrane is crucial for neurite outgrowth, a pathway not requiring synaptobrevin-dependent exocytosis. Yet, it is not known how the TI-VAMP membrane trafficking pathway is regulated or how it is coordinated with cytoskeletal dynamics within the growth cone that guide neurite outgrowth. Here, we demonstrate that TI-VAMP, but not synaptobrevin 2, concentrates in the peripheral, F-actin-rich region of the growth cones of hippocampal neurons in primary culture. Its accumulation correlates with and depends upon the presence of F-actin. Moreover, acute stimulation of actin remodeling by homophilic activation of the adhesion molecule L1 induces a site-directed, actin-dependent recruitment of the TI-VAMP compartment. Expression of a dominant-positive mutant of Cdc42, a key regulator of cell polarity, stimulates formation of F-actin- and TI-VAMP-rich filopodia outside the growth cone. Furthermore, we report that Cdc42 activates exocytosis of pHLuorin tagged TI-VAMP in an actin-dependent manner. Collectively, our data suggest that Cdc42 and regulated assembly of the F-actin network control the accumulation and exocytosis of TI-VAMP-containing membrane vesicles in growth cones to coordinate membrane trafficking and actin remodeling during neurite outgrowth.

  4. Symbiont-Induced Changes in Host Actin during the Onset of a Beneficial Animal-Bacterial Association

    PubMed Central

    Kimbell, Jennifer R.; McFall-Ngai, Margaret J.

    2004-01-01

    The influence of bacteria on the cytoskeleton of animal cells has been studied extensively only in pathogenic associations. We characterized changes in host cytoskeletal actin induced by the bacterial partner during the onset of a cooperative animal-bacteria association using the squid-vibrio model. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis revealed that Vibrio fischeri induced a dramatic increase in actin protein abundance in the bacteria-associated host tissues during the onset of the symbiosis. Immunocytochemistry revealed that this change in actin abundance correlated with a two- to threefold increase in actin in the apical cell surface of the epithelium-lined ducts, the route of entry of symbionts into host tissues. Real-time reverse transcriptase PCR and in situ hybridization did not detect corresponding changes in actin mRNA. Temporally correlated with the bacteria-induced changes in actin levels was a two- to threefold decrease in duct circumference, a 20% loss in the average number of cells interfacing with the duct lumina, and dramatic changes in duct cell shape. When considered with previous studies of the biomechanical and biochemical characteristics of the duct, these findings suggest that the bacterial symbionts, upon colonizing the host organ, induce modifications that physically and chemically limit the opportunity for subsequent colonizers to pass through the ducts. Continued study of the squid-vibrio system will allow further comparisons of the mechanisms by which pathogenic and cooperative bacteria influence cytoskeleton dynamics in host cells. PMID:15006763

  5. Cytoskeletal proteins from human skin fibroblasts, peripheral blood leukocytes, and a lymphoblastoid cell line compared by two-dimensional gel electrophoresis

    SciTech Connect

    Giometti, C.S.; Willard, K.E.; Anderson, N.L.

    1982-04-01

    Differences in proteins between cells grown as suspension cultures and those grown as attached cultures were studied by comparing the proteins of detergent-resistant cytoskeletons prepared from peripheral blood leukocytes and a lymphoblastoid cell line (GM607) (both grown as suspension cultures) and those of human skin fibroblasts (grown as attached cultures) by two-dimensional gel electrophoresis. The major cytoskeletal proteins of the leukocytes were also present in the protein pattern of GM607 cytoskeletons. In contrast, the fibroblast cytoskeletal protein pattern contained four groups of proteins that differed from the patterns of the leukocytes and GM607. In addition, surface labeling of GM607 and human fibroblasts with /sup 125/I demonstrated that substantial amounts of vimentin and actin are exposed at the surface of the attached fibroblasts, but there is little evidence of similar exposure at the surface of the suspension-grown GM607. These results demonstrate some differences in cytoskeletal protein composition between different types of cells could be related to their ability or lack of ability to grow as attached cells in tissue culture.

  6. Cytoskeletal alterations in interphase cells of the green alga Spirogyra decimina in response to heavy metals exposure: II. The effect of aluminium, nickel and copper.

    PubMed

    Pribyl, Pavel; Cepák, Vladislav; Zachleder, Vilém

    2008-08-01

    The effect of the toxic metal ions, aluminium (Al3+), nickel (Ni2+), and copper (Cu2+), on both the actin and tubulin cytoskeleton of the green alga Spirogyra decimina was studied. Batch cultured cells were grown for different time intervals at concentrations of 10, 15, 40 and 100 microM of aluminium as AlCl3, nickel as NiCl2 and copper as CuSO(4).5H2O. The impact of copper on the morphology of both MTs and AFs was much more prominent than the other two metals. A rapid irreversible depolymerization of cytoskeletal structures occurred, whereas in the presence of aluminium or nickel, changes in the cytoskeleton were slight and reversible to some extent. Nickel changed the orientation of cortical MTs, which turned from a transverse to a skewed or longitudinal direction. Aluminium caused slight depolymerization of the cytoskeleton, which reverted spontaneously to the normal cytoskeletal state (in AlCl3 free nutrient solution). Copper exerted a strong effect on both the MT and AF cytoskeleton, which fragmented and disorganized rapidly. The extent of cytoskeletal damage by copper was dosage and time dependent and AFs were slightly more sensitive than MTs. PMID:18440197

  7. Cytoskeletal alterations in interphase cells of the green alga Spirogyra decimina in response to heavy metals exposure: II. The effect of aluminium, nickel and copper.

    PubMed

    Pribyl, Pavel; Cepák, Vladislav; Zachleder, Vilém

    2008-08-01

    The effect of the toxic metal ions, aluminium (Al3+), nickel (Ni2+), and copper (Cu2+), on both the actin and tubulin cytoskeleton of the green alga Spirogyra decimina was studied. Batch cultured cells were grown for different time intervals at concentrations of 10, 15, 40 and 100 microM of aluminium as AlCl3, nickel as NiCl2 and copper as CuSO(4).5H2O. The impact of copper on the morphology of both MTs and AFs was much more prominent than the other two metals. A rapid irreversible depolymerization of cytoskeletal structures occurred, whereas in the presence of aluminium or nickel, changes in the cytoskeleton were slight and reversible to some extent. Nickel changed the orientation of cortical MTs, which turned from a transverse to a skewed or longitudinal direction. Aluminium caused slight depolymerization of the cytoskeleton, which reverted spontaneously to the normal cytoskeletal state (in AlCl3 free nutrient solution). Copper exerted a strong effect on both the MT and AF cytoskeleton, which fragmented and disorganized rapidly. The extent of cytoskeletal damage by copper was dosage and time dependent and AFs were slightly more sensitive than MTs.

  8. Alpha 7 nicotinic receptor coupling to heterotrimeric G proteins modulates RhoA activation, cytoskeletal motility, and structural growth.

    PubMed

    King, Justin R; Kabbani, Nadine

    2016-08-01

    Nicotinic acetylcholine receptors (nAChRs) modulate the growth and structure of neurons throughout the nervous system. Ligand stimulation of the α7 nAChR has been shown to regulate the large heterotrimeric GTP-binding protein (G protein) signaling in various types of cells. Here, we demonstrate a role for α7 nAChR/G protein interaction in the activation of the small (monomeric) RhoA GTPase leading to cytoskeletal changes during neurite growth. Treatment of PC12 cells with the α7 nAChR agonist choline or PNU-282987 was associated with an increase in RhoA activity and an inhibition in neurite growth. Specifically, choline treatment was found to attenuate the velocity of microtubule growth at the growth cone and decrease the rate of actin polymerization throughout the cell. The effects of α7 nAChR activation were abolished by expression of a dominant negative α7 nAChR (α7345-348A ) deficient in G protein coupling. Proteomic analysis of immunoprecipitated α7 nAChR complexes from differentiating PC12 cells and synaptic fractions of the developing mouse hippocampus revealed the existence of Rho GTPase-regulating guanine nucleotide exchange factors within α7 nAChR interactomes. These findings underscore the role of α7 nAChR/G protein in cytoskeletal regulation during neurite growth. This image depicts the hypothesized interaction of the traditionally ionotropic α7 nicotinic acetylcholine receptor (α7 nAChR) and its ability to interact and signal through both large and small G proteins, leading to the regulation of cytoskeletal growth. Using differentiated PC12 cells, and the specific agonist choline, it was shown that α7 nAChR/G protein interactions mediate both short- and long-term neurite growth dynamics through increased RhoA activation. Activation of RhoA was shown to decrease actin polymerization, and lead to an overall decrease in neurite growth via regulation of the microtubule network. Cover Image for this issue: doi: 10.1111/jnc.13330.

  9. Cytoskeletal Regulation of Epithelial Barrier Function During Inflammation

    PubMed Central

    Ivanov, Andrei I.; Parkos, Charles A.; Nusrat, Asma

    2010-01-01

    Increased epithelial permeability is a common and important consequence of mucosal inflammation that results in perturbed body homeostasis and enhanced exposure to external pathogens. The integrity and barrier properties of epithelial layers are regulated by specialized adhesive plasma membrane structures known as intercellular junctions. It is generally believed that inflammatory stimuli increase transepithelial permeability by inducing junctional disassembly. This review highlights molecular events that lead to disruption of epithelial junctions during inflammation. We specifically focus on key mechanisms of junctional regulation that are dependent on reorganization of the perijunctional F-actin cytoskeleton. We discuss critical roles of myosin-II–dependent contractility and actin filament turnover in remodeling of the F-actin cytoskeleton that drive disruption of epithelial barriers under different inflammatory conditions. Finally, we highlight signaling pathways induced by inflammatory mediators that regulate reorganization of actin filaments and junctional disassembly in mucosal epithelia. PMID:20581053

  10. Cytoskeletal integration in a highly ordered sensory epithelium in the organ of Corti: reponse to loss of cell partners in the Bronx waltzer mouse.

    PubMed

    Tucker, J B; Mackie, J B; Bussoli, T J; Steel, K P

    1999-12-01

    This report is concerned with control of cell shaping, positioning, and cytoskeletal integration in a highly ordered cochlear neuroepithelium. It is largely based on investigations of events that occur during abnormal morphogenesis of the organ of Corti in the Bronx waltzer (bv/bv) mutant mouse. The organ's sensory hair cells and adjacent supporting cells ordinarily construct a spatially elaborate and supracellularly integrated cytoskeletal framework. Large microtubule bundles are connected to cytoskeletal components in neighbouring cells by actin-containing meshworks that link them to substantial arrays of adherens junctions. In bv/bv mice, degeneration and loss of most inner hair cells and outer pillar cells occurs during organ development. These cells flank each side of a row of inner pillar cells that respond by upregulating assembly of their actin-containing meshworks. This only occurs in surface regions where they no longer contact cell types involved in construction of the cytoskeletal framework. The meshworks are larger and exhibit a more extensive sub-surface deployment than is normally the case. Hence, assembly of intercellular cytoskeletal connecting components can proceed without contact with appropriate cell neighbours but termination of assembly is apparently subject to a negative feedback control triggered by successful completion of intercellular connection with the correct cell neighbours. In addition, inner pillar cells compensate for loss of cell neighbours by interdigitating and overlapping each other more extensively than is usually the case to increase opportunities for generating adherens junctions. Certain adherens junctions in the organs of +/+ and bv/bv mice exhibit features that distinguish them from all previously described cell junctions. The dense plaques on their cytoplasmic faces are composed of aligned ridges. We suggest that they are called ribbed adherens junctions. Perturbations of cell shaping and positioning indicate that loss

  11. Actin dynamics tune the integrated stress response by regulating eukaryotic initiation factor 2α dephosphorylation

    PubMed Central

    Chambers, Joseph E; Dalton, Lucy E; Clarke, Hanna J; Malzer, Elke; Dominicus, Caia S; Patel, Vruti; Moorhead, Greg; Ron, David; Marciniak, Stefan J

    2015-01-01

    Four stress-sensing kinases phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α) to activate the integrated stress response (ISR). In animals, the ISR is antagonised by selective eIF2α phosphatases comprising a catalytic protein phosphatase 1 (PP1) subunit in complex with a PPP1R15-type regulatory subunit. An unbiased search for additional conserved components of the PPP1R15-PP1 phosphatase identified monomeric G-actin. Like PP1, G-actin associated with the functional core of PPP1R15 family members and G-actin depletion, by the marine toxin jasplakinolide, destabilised the endogenous PPP1R15A-PP1 complex. The abundance of the ternary PPP1R15-PP1-G-actin complex was responsive to global changes in the polymeric status of actin, as was its eIF2α-directed phosphatase activity, while localised G-actin depletion at sites enriched for PPP1R15 enhanced eIF2α phosphorylation and the downstream ISR. G-actin's role as a stabilizer of the PPP1R15-containing holophosphatase provides a mechanism for integrating signals regulating actin dynamics with stresses that trigger the ISR. DOI: http://dx.doi.org/10.7554/eLife.04872.001 PMID:25774599

  12. Keeping it all together: auxin-actin crosstalk in plant development.

    PubMed

    Zhu, Jinsheng; Geisler, Markus

    2015-08-01

    Polar auxin transport and the action of the actin cytoskeleton are tightly interconnected, which is documented by the finding that auxin transporters reach their final destination by active movement of secretory vesicles along F-actin tracks. Moreover, auxin transporter polarity and flexibility is thought to depend on transporter cycling that requires endocytosis and exocytosis of vesicles. In this context, we have reviewed the current literature on an involvement of the actin cytoskeleton in polar auxin transport and identify known similarities and differences in its structure, function and dynamics in comparison to non-plant organisms. By describing how auxin modulates actin expression and actin organization and how actin and its stability affects auxin-transporter endocytosis and recycling, we discuss the current knowledge on regulatory auxin-actin feedback loops. We focus on known effects of auxin and of auxin transport inhibitors on the stability and organization of actin and examine the functionality of auxin and/or auxin transport inhibitor-binding proteins with respect to their suitability to integrate auxin/auxin transport inhibitor action. Finally, we indicate current difficulties in the interpretation of organ, time and concentration-dependent auxin/auxin transport inhibitor treatments and formulate simple future experimental guidelines.

  13. Actin dynamics tune the integrated stress response by regulating eukaryotic initiation factor 2α dephosphorylation.

    PubMed

    Chambers, Joseph E; Dalton, Lucy E; Clarke, Hanna J; Malzer, Elke; Dominicus, Caia S; Patel, Vruti; Moorhead, Greg; Ron, David; Marciniak, Stefan J

    2015-01-01

    Four stress-sensing kinases phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α) to activate the integrated stress response (ISR). In animals, the ISR is antagonised by selective eIF2α phosphatases comprising a catalytic protein phosphatase 1 (PP1) subunit in complex with a PPP1R15-type regulatory subunit. An unbiased search for additional conserved components of the PPP1R15-PP1 phosphatase identified monomeric G-actin. Like PP1, G-actin associated with the functional core of PPP1R15 family members and G-actin depletion, by the marine toxin jasplakinolide, destabilised the endogenous PPP1R15A-PP1 complex. The abundance of the ternary PPP1R15-PP1-G-actin complex was responsive to global changes in the polymeric status of actin, as was its eIF2α-directed phosphatase activity, while localised G-actin depletion at sites enriched for PPP1R15 enhanced eIF2α phosphorylation and the downstream ISR. G-actin's role as a stabilizer of the PPP1R15-containing holophosphatase provides a mechanism for integrating signals regulating actin dynamics with stresses that trigger the ISR.

  14. PFA fixation enables artifact-free super-resolution imaging of the actin cytoskeleton and associated proteins

    PubMed Central

    Leyton-Puig, Daniela; Kedziora, Katarzyna M.; Isogai, Tadamoto; van den Broek, Bram; Jalink, Kees

    2016-01-01

    ABSTRACT Super-resolution microscopy (SRM) allows precise localization of proteins in cellular organelles and structures, including the actin cytoskeleton. Yet sample preparation protocols for SRM are rather anecdotal and still being optimized. Thus, SRM-based imaging of the actin cytoskeleton and associated proteins often remains challenging and poorly reproducible. Here, we show that proper paraformaldehyde (PFA)-based sample preparation preserves the architecture of the actin cytoskeleton almost as faithfully as gold-standard glutaraldehyde fixation. We show that this fixation is essential for proper immuno-based localization of actin-binding and actin-regulatory proteins involved in the formation of lamellipodia and ruffles, such as mDia1, WAVE2 and clathrin heavy chain, and provide detailed guidelines for the execution of our method. In summary, proper PFA-based sample preparation increases the multi-color possibilities and the reproducibility of SRM of the actin cytoskeleton and its associated proteins. PMID:27378434

  15. Boolean gates on actin filaments

    NASA Astrophysics Data System (ADS)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  16. Classic 18.5- and 21.5-kDa myelin basic protein isoforms associate with cytoskeletal and SH3-domain proteins in the immortalized N19-oligodendroglial cell line stimulated by phorbol ester and IGF-1.

    PubMed

    Smith, Graham S T; Homchaudhuri, Lopamudra; Boggs, Joan M; Harauz, George

    2012-06-01

    The 18.5-kDa classic myelin basic protein (MBP) is an intrinsically disordered protein arising from the Golli (Genes of Oligodendrocyte Lineage) gene complex and is responsible for compaction of the myelin sheath in the central nervous system. This MBP splice isoform also has a plethora of post-translational modifications including phosphorylation, deimination, methylation, and deamidation, that reduce its overall net charge and alter its protein and lipid associations within oligodendrocytes (OLGs). It was originally thought that MBP was simply a structural component of myelin; however, additional investigations have demonstrated that MBP is multi-functional, having numerous protein-protein interactions with Ca²⁺-calmodulin, actin, tubulin, and proteins with SH3-domains, and it can tether these proteins to a lipid membrane in vitro. Here, we have examined cytoskeletal interactions of classic 18.5-kDa MBP, in vivo, using early developmental N19-OLGs transfected with fluorescently-tagged MBP, actin, tubulin, and zonula occludens 1 (ZO-1). We show that MBP redistributes to distinct 'membrane-ruffled' regions of the plasma membrane where it co-localizes with actin and tubulin, and with the SH3-domain-containing proteins cortactin and ZO-1, when stimulated with PMA, a potent activator of the protein kinase C pathway. Moreover, using phospho-specific antibody staining, we show an increase in phosphorylated Thr98 MBP (human sequence numbering) in membrane-ruffled OLGs. Previously, Thr98 phosphorylation of MBP has been shown to affect its conformation, interactions with other proteins, and tethering of other proteins to the membrane in vitro. Here, MBP and actin were also co-localized in new focal adhesion contacts induced by IGF-1 stimulation in cells grown on laminin-2. This study supports a role for classic MBP isoforms in cytoskeletal and other protein-protein interactions during membrane and cytoskeletal remodeling in OLGs.

  17. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    NASA Technical Reports Server (NTRS)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  18. The endoplasmic reticulum is a reservoir for WAVE/SCAR regulatory complex signaling in the Arabidopsis leaf.

    PubMed

    Zhang, Chunhua; Mallery, Eileen; Reagan, Sara; Boyko, Vitaly P; Kotchoni, Simeon O; Szymanski, Daniel B

    2013-06-01

    During plant cell morphogenesis, signal transduction and cytoskeletal dynamics interact to locally organize the cytoplasm and define the geometry of cell expansion. The WAVE/SCAR (for WASP family verprolin homologous/suppressor of cyclic AMP receptor) regulatory complex (W/SRC) is an evolutionarily conserved heteromeric protein complex. Within the plant kingdom W/SRC is a broadly used effector that converts Rho-of-Plants (ROP)/Rac small GTPase signals into Actin-Related Protein2/3 and actin-dependent growth responses. Although the components and biochemistry of the W/SRC pathway are well understood, a basic understanding of how cells partition W/SRC into active and inactive pools is lacking. In this paper, we report that the endoplasmic reticulum (ER) is an important organelle for W/SRC regulation. We determined that a large intracellular pool of the core W/SRC subunit NAP1, like the known positive regulator of W/SRC, the DOCK family guanine nucleotide-exchange factor SPIKE1 (SPK1), localizes to the surface of the ER. The ER-associated NAP1 is inactive because it displays little colocalization with the actin network, and ER localization requires neither activating signals from SPK1 nor a physical association with its W/SRC-binding partner, SRA1. Our results indicate that in Arabidopsis (Arabidopsis thaliana) leaf pavement cells and trichomes, the ER is a reservoir for W/SRC signaling and may have a key role in the early steps of W/SRC assembly and/or activation. PMID:23613272

  19. Complex relationship between TCTP, microtubules and actin microfilaments regulates cell shape in normal and cancer cells

    PubMed Central

    Bazile, Franck; Pascal, Aude; Arnal, Isabelle; Le Clainche, Christophe; Chesnel, Franck; Kubiak, Jacek Z.

    2009-01-01

    Translationally Controlled Tumor-associated Protein (TCTP) is a ubiquitous and highly conserved protein implicated in cancers. Here we demonstrate that interactions of TCTP with microtubules (MTs) are functionally important but indirect, and we reveal novel interaction of TCTP with the actin cytoskeleton. Firstly, immunofluorescence in Xenopus XL2 cells revealed cytoplasmic fibers stained with TCTP but not with tubulin antibodies, as well as MT-free of TCTP. Furthermore, TCTP localized to a subset of actin-rich fibers in migrating cells. Secondly XlTCTP did not affect in vitro assembly/disassembly of MTs, and lacked MT binding affinity both in pull-down assays and in cell-free extracts. Although TCTP also failed to bind to purified F-actin, it associated with microfilaments in cell-free extracts. Thirdly, TCTP concentrated in mitotic spindle did not colocalize with MTs, and was easily dissociated from these structures except at the poles. Finally, RNAi knockdown of TCTP in XL2 and HeLa cells provoked drastic, MT-dependent, shape change. These data show that although TCTP interacts with MTs it does not behave as classic MT Associated Protein (MAP). Our evidence for an association of TCTP with F-actin structures, and for an involvement in cell shape regulation, implicates this protein in integrating cytoskeletal interations both in interphase and mitosis providing a new avenue to fully understand the role of TCTP. PMID:19168579

  20. The role of formin tails in actin nucleation, processive elongation, and filament bundling.

    PubMed

    Vizcarra, Christina L; Bor, Batbileg; Quinlan, Margot E

    2014-10-31

    Formins are multidomain proteins that assemble actin in a wide variety of biological processes. They both nucleate and remain processively associated with growing filaments, in some cases accelerating filament growth. The well conserved formin homology 1 and 2 domains were originally thought to be solely responsible for these activities. Recently a role in nucleation was identified for the Diaphanous autoinhibitory domain (DAD), which is C-terminal to the formin homology 2 domain. The C-terminal tail of the Drosophila formin Cappuccino (Capu) is conserved among FMN formins but distinct from other formins. It does not have a DAD domain. Nevertheless, we find that Capu-tail plays a role in filament nucleation similar to that described for mDia1 and other formins. Building on this, replacement of Capu-tail with DADs from other formins tunes nucleation activity. Capu-tail has low-affinity interactions with both actin monomers and filaments. Removal of the tail reduces actin filament binding and bundling. Furthermore, when the tail is removed, we find that processivity is compromised. Despite decreased processivity, the elongation rate of filaments is unchanged. Again, replacement of Capu-tail with DADs from other formins tunes the processive association with the barbed end, indicating that this is a general role for formin tails. Our data show a role for the Capu-tail domain in assembling the actin cytoskeleton, largely mediated by electrostatic interactions. Because of its multifunctionality, the formin tail is a candidate for regulation by other proteins during cytoskeletal rearrangements.

  1. Detection of deleterious genotypes in multigenerational studies. I. Disruptions in individual Arabidopsis actin genes.

    PubMed Central

    Gilliland, L U; McKinney, E C; Asmussen, M A; Meagher, R B

    1998-01-01

    Plant actins are involved in numerous cytoskeletal processes effecting plant development, including cell division plane determination, cell elongation, and cell wall deposition. Arabidopsis thaliana has five ancient subclasses of actin with distinct patterns of spatial and temporal expression. To test their functional roles, we identified insertion mutants in three Arabidopsis actin genes, ACT2, ACT4, and ACT7, representing three subclasses. Adult plants homozygous for the act2-1, act4-1, and act7-1 mutant alleles appear to be robust, morphologically normal, and fully fertile. However, when grown as populations descended from a single heterozygous parent, all three mutant alleles were found at extremely low frequencies relative to the wild-type in the F2 generation. Thus, all three mutant alleles appear to be deleterious. The act2-1 mutant allele was found at normal frequencies in the F1, but at significantly lower frequencies than expected in the F2 and F3 generations. These data suggest that the homozygous act2-1/act2-1 mutant adult plants have a reduced fitness in the 2N sporophytic portion of the life cycle, consistent with the vegetative expression of ACT2. These data are interpreted in light of the extreme conservation of plant actin subclasses and genetic redundancy. PMID:9611186

  2. Surface adsorption and hopping cause probe-size-dependent microrheology of actin networks

    NASA Astrophysics Data System (ADS)

    He, Jun; Tang, Jay X.

    2011-04-01

    A network of filaments formed primarily by the abundant cytoskeletal protein actin gives animal cells their shape and elasticity. The rheological properties of reconstituted actin networks have been studied by tracking micron-sized probe beads embedded within the networks. We investigate how microrheology depends on surface properties of probe particles by varying the stickiness of their surface. For this purpose, we chose carboxylate polystyrene (PS) beads, silica beads, bovine serum albumin (BSA) -coated PS beads, and polyethylene glycol (PEG) -grafted PS beads, which show descending stickiness to actin filaments, characterized by confocal imaging and microrheology. Probe size dependence of microrheology is observed for all four types of beads. For the slippery PEG beads, particle-tracking microrheology detects weaker networks using smaller beads, which tend to diffuse through the network by hopping from one confinement “cage” to another. This trend is reversed for the other three types of beads, for which microrheology measures stiffer networks for smaller beads due to physisorption of nearby filaments to the bead surface. We explain the probe size dependence with two simple models. We also evaluate depletion effect near nonadsorption bead surface using quantitative image analysis and discuss the possible impact of depletion on microrheology. Analysis of these effects is necessary in order to accurately define the actin network rheology both in vitro and in vivo.

  3. Bacterial Actins? An Evolutionary Perspective

    NASA Technical Reports Server (NTRS)

    Doolittle, Russell F.; York, Amanda L.

    2003-01-01

    According to the conventional wisdom, the existence of a cytoskeleton in eukaryotes and its absence in prokaryotes constitute a fundamental divide between the two domains of life. An integral part of the dogma is that a cytoskeleton enabled an early eukaryote to feed upon prokaryotes, a consequence of which was the occasional endosymbiosis and the eventual evolution of organelles. Two recent papers present compelling evidence that actin, one of the principal components of a cytoskeleton, has a homolog in Bacteria that behaves in many ways like eukaryotic actin. Sequence comparisons reveml that eukaryotic actin and the bacterial homolog (mreB protein), unlike many other proteins common to eukaryotes and Bacteria, have very different and more highly extended evolutionary histories.

  4. The interplay of nonlinearity and architecture in equilibrium cytoskeletal mechanics.

    PubMed

    Wang, Shenshen; Shen, Tongye; Wolynes, Peter G

    2011-01-01

    The interplay between cytoskeletal architecture and the nonlinearity of the interactions due to bucklable filaments plays a key role in modulating the cell's mechanical stability and affecting its structural rearrangements. We study a model of cytoskeletal structure treating it as an amorphous network of hard centers rigidly cross-linked by nonlinear elastic strings, neglecting the effects of motorization. Using simulations along with a self-consistent phonon method, we show that this minimal model exhibits diverse thermodynamically stable mechanical phases that depend on excluded volume, cross-link concentration, filament length, and stiffness. Within the framework set by the free energy functional formulation and making use of the random first order transition theory of structural glasses, we further estimate the characteristic densities for a kinetic glass transition to occur in this model system. Network connectivity strongly modulates the transition boundaries between various equilibrium phases, as well as the kinetic glass transition density. PMID:21219010

  5. Fascin regulates nuclear actin during Drosophila oogenesis.

    PubMed

    Kelpsch, Daniel J; Groen, Christopher M; Fagan, Tiffany N; Sudhir, Sweta; Tootle, Tina L

    2016-10-01

    Drosophila oogenesis provides a developmental system with which to study nuclear actin. During Stages 5-9, nuclear actin levels are high in the oocyte and exhibit variation within the nurse cells. Cofilin and Profilin, which regulate the nuclear import and export of actin, also localize to the nuclei. Expression of GFP-tagged Actin results in nuclear actin rod formation. These findings indicate that nuclear actin must be tightly regulated during oogenesis. One factor mediating this regulation is Fascin. Overexpression of Fascin enhances nuclear GFP-Actin rod formation, and Fascin colocalizes with the rods. Loss of Fascin reduces, whereas overexpression of Fascin increases, the frequency of nurse cells with high levels of nuclear actin, but neither alters the overall nuclear level of actin within the ovary. These data suggest that Fascin regulates the ability of specific cells to accumulate nuclear actin. Evidence indicates that Fascin positively regulates nuclear actin through Cofilin. Loss of Fascin results in decreased nuclear Cofilin. In addition, Fascin and Cofilin genetically interact, as double heterozygotes exhibit a reduction in the number of nurse cells with high nuclear actin levels. These findings are likely applicable beyond Drosophila follicle development, as the localization and functions of Fascin and the mechanisms regulating nuclear actin are widely conserved.

  6. Fascin regulates nuclear actin during Drosophila oogenesis.

    PubMed

    Kelpsch, Daniel J; Groen, Christopher M; Fagan, Tiffany N; Sudhir, Sweta; Tootle, Tina L

    2016-10-01

    Drosophila oogenesis provides a developmental system with which to study nuclear actin. During Stages 5-9, nuclear actin levels are high in the oocyte and exhibit variation within the nurse cells. Cofilin and Profilin, which regulate the nuclear import and export of actin, also localize to the nuclei. Expression of GFP-tagged Actin results in nuclear actin rod formation. These findings indicate that nuclear actin must be tightly regulated during oogenesis. One factor mediating this regulation is Fascin. Overexpression of Fascin enhances nuclear GFP-Actin rod formation, and Fascin colocalizes with the rods. Loss of Fascin reduces, whereas overexpression of Fascin increases, the frequency of nurse cells with high levels of nuclear actin, but neither alters the overall nuclear level of actin within the ovary. These data suggest that Fascin regulates the ability of specific cells to accumulate nuclear actin. Evidence indicates that Fascin positively regulates nuclear actin through Cofilin. Loss of Fascin results in decreased nuclear Cofilin. In addition, Fascin and Cofilin genetically interact, as double heterozygotes exhibit a reduction in the number of nurse cells with high nuclear actin levels. These findings are likely applicable beyond Drosophila follicle development, as the localization and functions of Fascin and the mechanisms regulating nuclear actin are widely conserved. PMID:27535426

  7. Hijacking Host Cell Highways: Manipulation of the Host Actin Cytoskeleton by Obligate Intracellular Bacterial Pathogens

    PubMed Central

    Colonne, Punsiri M.; Winchell, Caylin G.; Voth, Daniel E.

    2016-01-01

    Intracellular bacterial pathogens replicate within eukaryotic cells and display unique adaptations that support key infection events including invasion, replication, immune evasion, and dissemination. From invasion to dissemination, all stages of the intracellular bacterial life cycle share the same three-dimensional cytosolic space containing the host cytoskeleton. For successful infection and replication, many pathogens hijack the cytoskeleton using effector proteins introduced into the host cytosol by specialized secretion systems. A subset of effectors contains eukaryotic-like motifs that mimic host proteins to exploit signaling and modify specific cytoskeletal components such as actin and microtubules. Cytoskeletal rearrangement promotes numerous events that are beneficial to the pathogen, including internalization of bacteria, structural support for bacteria-containing vacuoles, altered vesicular trafficking, actin-dependent bacterial movement, and pathogen dissemination. This review highlights a diverse group of obligate intracellular bacterial pathogens that manipulate the host cytoskeleton to thrive within eukaryotic cells and discusses underlying molecular mechanisms that promote these dynamic host-pathogen interactions. PMID:27713866

  8. Actin-Dependent Alterations of Dendritic Spine Morphology in Shankopathies

    PubMed Central

    Sarowar, Tasnuva

    2016-01-01

    Shank proteins (Shank1, Shank2, and Shank3) act as scaffolding molecules in the postsynaptic density of many excitatory neurons. Mutations in SHANK genes, in particular SHANK2 and SHANK3, lead to autism spectrum disorders (ASD) in both human and mouse models. Shank3 proteins are made of several domains—the Shank/ProSAP N-terminal (SPN) domain, ankyrin repeats, SH3 domain, PDZ domain, a proline-rich region, and the sterile alpha motif (SAM) domain. Via various binding partners of these domains, Shank3 is able to bind and interact with a wide range of proteins including modulators of small GTPases such as RICH2, a RhoGAP protein, and βPIX, a RhoGEF protein for Rac1 and Cdc42, actin binding proteins and actin modulators. Dysregulation of all isoforms of Shank proteins, but especially Shank3, leads to alterations in spine morphogenesis, shape, and activity of the synapse via altering actin dynamics. Therefore, here, we highlight the role of Shank proteins as modulators of small GTPases and, ultimately, actin dynamics, as found in multiple in vitro and in vivo models. The failure to mediate this regulatory role might present a shared mechanism in the pathophysiology of autism-associated mutations, which leads to dysregulation of spine morphogenesis and synaptic signaling. PMID:27795858

  9. Calcium Regulation Of Actin Filament Speed In Vitro

    NASA Astrophysics Data System (ADS)

    Lamadrid, M. A.; Gordon, A. M.; Chase, P. B.; Chen, Y.; Luo, Z.

    1998-03-01

    Using an in-vitro motility assay, we have studied the Ca regulation of the gliding speed of actin filaments with regulatory proteins troponin and tropomyosin. In skeletal muscle, Ca binding to the troponin/tropomyosin system serves as the switch which enables a myosin head to bind to actin and create a power stroke. Fluorescently labeled filaments were observed using video fluorescence microscopy and speeds measured for different calcium concentrations and ionic strengths. In contrast to F-actin (for which speed was unaffected by [Ca]), the speed increased with increasing [Ca] in a non-linear manner. By comparing the behavior of short and long filaments, we also found that there was no length dependence to the observed non-zero speeds, but filaments shorter than 3 um had a higher tendency to undergo stop-go motion. Analysis of the data in the context of protein friction suggests that Ca affects not only the number of binding motors but also the lifetime of the strong binding state between actin and myosin.

  10. Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac myocytes

    PubMed Central

    Lee, Hyungsuk; Adams, William J; Alford, Patrick W; McCain, Megan L; Feinberg, Adam W; Sheeny, Sean P; Goss, Josue A

    2015-01-01

    Mechanical stresses on the myocyte nucleus have been associated with several diseases and potentially transduce mechanical stimuli into cellular responses. Although a number of physical links between the nuclear envelope and cytoplasmic filaments have been identified, previous studies have focused on the mechanical properties of individual components of the nucleus, such as the nuclear envelope and lamin network. The mechanical interaction between the cytoskeleton and chromatin on nuclear deformability remains elusive. Here, we investigated how cytoskeletal and chromatin structures influence nuclear mechanics in cardiac myocytes. Rapid decondensation of chromatin and rupture of the nuclear membrane caused a sudden expansion of DNA, a consequence of prestress exerted on the nucleus. To characterize the prestress exerted on the nucleus, we measured the shape and the stiffness of isolated nuclei and nuclei in living myocytes during disruption of cytoskeletal, myofibrillar, and chromatin structure. We found that the nucleus in myocytes is subject to both tensional and compressional prestress and its deformability is determined by a balance of those opposing forces. By developing a computational model of the prestressed nucleus, we showed that cytoskeletal and chromatin prestresses create vulnerability in the nuclear envelope. Our studies suggest the cytoskeletal–nuclear–chromatin interconnectivity may play an important role in mechanics of myocyte contraction and in the development of laminopathies by lamin mutations. PMID:25908635

  11. Cytoskeletal disease: a role in the etiology of adult periodontitis.

    PubMed

    Binderman, I; Gadban, N; Yaffe, A

    2014-01-01

    All cells and organisms across the evolutionary spectrum, from the most primitive to the most complex, are mechanosensitive. As the cytoskeleton is a key in controlling the normal basal prestress of cells and therefore is involved in virtually all physiological cellular processes, abnormalities in this essential cellular characteristic may result in diseases. Indeed, many diseases have now been associated with abnormalities in cytoskeletal and nucleoskeletal proteins. We propose that adult periodontitis is, at least in part, such a cytoskeletal disease. It is well established that adult periodontitis starts by bacterial invasion at the interface between the tooth surface and marginal gingiva that induces a local inflammatory response. The inflammatory cells release metalloproteinases which degrade gingival collagenous fibrous tissue and loss of local tissue integrity that reduces the normal prestressed cell-extracellular matrix network. This is a major signaling trigger that induces a local and rapid release of ATP, which then activates P2X receptors and stimulates a calcium influx, further activating osteoclastic resorption of the alveolar bone. As periodontitis is a chronic disease, it seems reasonable to suggest that agents that maintain cytoskeletal tensegrity, for example, inhibitors of ATP receptors, may diminish the bone loss and may have a role in future periodontal therapy. PMID:23679579

  12. Specific release of membrane-bound annexin II and cortical cytoskeletal elements by sequestration of membrane cholesterol.

    PubMed Central

    Harder, T; Kellner, R; Parton, R G; Gruenberg, J

    1997-01-01

    Annexin II is an abundant protein which is present in the cytosol and on the cytoplasmic face of plasma membrane and early endosomes. It is generally believed that this association occurs via Ca(2+)-dependent binding to lipids, a mechanism typical for the annexin protein family. Although previous studies have shown that annexin II is involved in early endosome dynamics and organization, the precise biological role of the protein is unknown. In this study, we found that approximately 50% of the total cellular annexin was associated with membranes in a Ca(2+)-independent manner. This binding was extremely tight, since it resisted high salt and, to some extent, high pH treatments. We found, however, that membrane-associated annexin II could be quantitatively released by low concentrations of the cholesterol-sequestering agents filipin and digitonin. Both treatments released an identical and limited set of proteins but had no effects on other membrane-associated proteins. Among the released proteins, we identified, in addition to annexin II itself, the cortical cytoskeletal proteins alpha-actinin, ezrin and moesin, and membrane-associated actin. Our biochemical and immunological observations indicate that these proteins are part of a complex containing annexin II and that stability of the complex is sensitive to cholesterol sequestering agents. Since annexin II is tightly membrane-associated in a cholesterol-dependent manner, and since it seems to interact physically with elements of the cortical actin cytoskeleton, we propose that the protein serves as interface between membranes containing high amounts of cholesterol and the actin cytoskeleton. Images PMID:9188103

  13. Cytoskeletal Regulation Dominates Temperature-Sensitive Proteomic Changes of Hibernation in Forebrain of 13-Lined Ground Squirrels

    PubMed Central

    Hindle, Allyson G.; Martin, Sandra L.

    2013-01-01

    13-lined ground squirrels, Ictidomys tridecemlineatus, are obligate hibernators that transition annually between summer homeothermy and winter heterothermy – wherein they exploit episodic torpor bouts. Despite cerebral ischemia during torpor and rapid reperfusion during arousal, hibernator brains resist damage and the animals emerge neurologically intact each spring. We hypothesized that protein changes in the brain underlie winter neuroprotection. To identify candidate proteins, we applied a sensitive 2D gel electrophoresis method to quantify protein differences among forebrain extracts prepared from ground squirrels in two summer, four winter and fall transition states. Proteins that differed among groups were identified using LC-MS/MS. Only 84 protein spots varied significantly among the defined states of hibernation. Protein changes in the forebrain proteome fell largely into two reciprocal patterns with a strong body temperature dependence. The importance of body temperature was tested in animals from the fall; these fall animals use torpor sporadically with body temperatures mirroring ambient temperatures between 4 and 21°C as they navigate the transition between summer homeothermy and winter heterothermy. Unlike cold-torpid fall ground squirrels, warm-torpid individuals strongly resembled the homeotherms, indicating that the changes observed in torpid hibernators are defined by body temperature, not torpor per se. Metabolic enzymes were largely unchanged despite varied metabolic activity across annual and torpor-arousal cycles. Instead, the majority of the observed changes were cytoskeletal proteins and their regulators. While cytoskeletal structural proteins tended to differ seasonally, i.e., between summer homeothermy and winter heterothermy, their regulatory proteins were more strongly affected by body temperature. Changes in the abundance of various isoforms of the microtubule assembly and disassembly regulatory proteins dihydropyrimidinase

  14. Cytoskeletal regulation dominates temperature-sensitive proteomic changes of hibernation in forebrain of 13-lined ground squirrels.

    PubMed

    Hindle, Allyson G; Martin, Sandra L

    2013-01-01

    13-lined ground squirrels, Ictidomys tridecemlineatus, are obligate hibernators that transition annually between summer homeothermy and winter heterothermy - wherein they exploit episodic torpor bouts. Despite cerebral ischemia during torpor and rapid reperfusion during arousal, hibernator brains resist damage and the animals emerge neurologically intact each spring. We hypothesized that protein changes in the brain underlie winter neuroprotection. To identify candidate proteins, we applied a sensitive 2D gel electrophoresis method to quantify protein differences among forebrain extracts prepared from ground squirrels in two summer, four winter and fall transition states. Proteins that differed among groups were identified using LC-MS/MS. Only 84 protein spots varied significantly among the defined states of hibernation. Protein changes in the forebrain proteome fell largely into two reciprocal patterns with a strong body temperature dependence. The importance of body temperature was tested in animals from the fall; these fall animals use torpor sporadically with body temperatures mirroring ambient temperatures between 4 and 21°C as they navigate the transition between summer homeothermy and winter heterothermy. Unlike cold-torpid fall ground squirrels, warm-torpid individuals strongly resembled the homeotherms, indicating that the changes observed in torpid hibernators are defined by body temperature, not torpor per se. Metabolic enzymes were largely unchanged despite varied metabolic activity across annual and torpor-arousal cycles. Instead, the majority of the observed changes were cytoskeletal proteins and their regulators. While cytoskeletal structural proteins tended to differ seasonally, i.e., between summer homeothermy and winter heterothermy, their regulatory proteins were more strongly affected by body temperature. Changes in the abundance of various isoforms of the microtubule assembly and disassembly regulatory proteins dihydropyrimidinase

  15. Effects of cryopreservation on the developmental competence, ultrastructure and cytoskeletal structure of porcine oocytes.

    PubMed

    Wu, Caihong; Rui, Rong; Dai, Jianjun; Zhang, Chunyan; Ju, Shiqiang; Xie, Bing; Lu, Xiao; Zheng, Xiaofeng

    2006-11-01

    The purpose of this study was to determine ultrastructural and cytoskeletal changes that result from vitrification of porcine germinal vesicle- (GV-) and meiosis II- (MII-) stage oocytes. To investigate the effects of vitrification on developmental competence, oocytes were divided into three groups: fresh GV-oocytes (control), vitrified GV-oocytes, and vitrified MII-oocytes. In both GV- and MII-oocytes, vitrification resulted in a high proportion with normal morphology (92.4 vs. 94.2%, P > 0.05), while vitrified GV-oocytes yielded a higher survival rate than did vitrified MII-oocytes (56.8 vs. 41.9%, P < 0.05). In vitrified GV-oocytes, 12 of 154 oocytes underwent cleavage after fertilization in vitro, and 6 of these developed to the 8-cell stage, 3 developed to the 16-cell stage, and 3 developed into morulae. No cleavage was obtained from vitrified MII-oocytes. For ultrastructural analysis of oocytes, fresh and vitrified-warmed GV- and MII-oocytes were randomly selected for transmission electron microscopy (TEM). Results showed that vitrification caused various degrees of cryodamage in GV-oocytes. Cumulus cells of some oocytes were separated from the cumulus-oocyte complex (COC), and the zona pellucida adjacent to cumulus cells was fractured. The gap junctions between cumulus cells were ruptured, and many microvilli were disrupted or disappeared. Only homogeneous lipid droplets were observed. After vitrification, cortical granules still lined the oolemma of MII-oocytes. Only morphologically irregular, nonhomogeneous lipid droplets surrounding large vacuoles were found. To examine cytoskeletal structures, fresh and vitrified-warmed MII-oocytes were analyzed by laser-scanning confocal microscopy (LSCM); vitrified-warmed GV-oocytes were cultured for 42-44 hr before LSCM. Of 58 control oocytes, 79.5% displayed normal spindles with chromosomes aligned along the equatorial plate. In vitrified oocytes the percentage with normal spindle organization was decreased

  16. The reconstitution of actin polymerization on liposomes.

    PubMed

    Stamnes, Mark; Xu, Weidong

    2010-01-01

    Membrane-associated actin polymerization is of considerable interest due to its role in cell migration and the motility of intracellular organelles. Intensive research efforts are underway to investigate the physiological role of membrane-associated actin as well as the regulation and mechanics of actin assembly. Branched actin polymerization on membranes is catalyzed by the Arp2/3 complex. Signaling events leading to the activation of the guanosine triphosphate (GTP)-binding protein Cdc42 stimulate Arp2/3-dependent actin polymerization. We have studied the role of Cdc42 at the Golgi apparatus in part by reconstituting actin polymerization on isolated Golgi membranes and on liposomes. In this manner, we showed that cytosolic proteins are sufficient for actin assembly on a phospholipid bilayer. Here we describe methods for the cell-free reconstitution of membrane-associated actin polymerization using liposomes and brain cytosol.

  17. Dynamic actin structures stabilized by profilin.

    PubMed Central

    Finkel, T; Theriot, J A; Dise, K R; Tomaselli, G F; Goldschmidt-Clermont, P J

    1994-01-01

    We describe the production and analysis of clonal cell lines in which we have overexpressed human profilin, a small ubiquitous actin monomer binding protein, to assess the role of profilin on actin function in vivo. The concentration of filamentous actin is increased in cells with higher profilin levels, and actin filament half-life measured in these cells is directly proportional to the steady-state profilin concentration. The distribution of actin filaments is altered by profilin overexpression. While parallel actin bundles crossing the cells are virtually absent in cells overexpressing profilin, the submembranous actin network of these cells is denser than in control cells. These results suggest that in vivo profilin regulates the stability, and thereby distribution, of specific dynamic actin structures. Images PMID:8108438

  18. Association of actin with alpha crystallins

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, S.; Boyle, D.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The alpha crystallins are cytosolic proteins that co-localize and co-purify with actin-containing microfilaments. Affinity column chromatography employing both covalently-coupled actin or alpha crystallin was used to demonstrate specific and saturable binding of actin with alpha crystallin. This conclusion was confirmed by direct visualization of alpha aggregates bound to actin polymerized in vitro. The significance of this interaction in relation to the functional properties of these two polypeptides will be discussed.

  19. Systematic mutational analysis of the amino-terminal domain of the Listeria monocytogenes ActA protein reveals novel functions in actin-based motility.

    PubMed

    Lauer, P; Theriot, J A; Skoble, J; Welch, M D; Portnoy, D A

    2001-12-01

    The Listeria monocytogenes ActA protein acts as a scaffold to assemble and activate host cell actin cytoskeletal factors at the bacterial surface, resulting in directional actin polymerization and propulsion of the bacterium through the cytoplasm. We have constructed 20 clustered charged-to-alanine mutations in the NH2-terminal domain of ActA and replaced the endogenous actA gene with these molecular variants. These 20 clones were evaluated in several biological assays for phenotypes associated with particular amino acid changes. Additionally, each protein variant was purified and tested for stimulation of the Arp2/3 complex, and a subset was tested for actin monomer binding. These specific mutations refined the two regions involved in Arp2/3 activation and suggest that the actin-binding sequence of ActA spans 40 amino acids. We also identified a 'motility rate and cloud-to-tail transition' region in which nine contiguous mutations spanning amino acids 165-260 caused motility rate defects and changed the ratio of intracellular bacteria associated with actin clouds and comet tails without affecting Arp2/3 activation. Several unusual motility phenotypes were associated with amino acid changes in this region, including altered paths through the cytoplasm, discontinuous actin tails in host cells and the tendency to 'skid' or dramatically change direction while moving. These unusual phenotypes illustrate the complexity of ActA functions that control the actin-based motility of L. monocytogenes.

  20. Systematic mutational analysis of the amino-terminal domain of the Listeria monocytogenes ActA protein reveals novel functions in actin-based motility.

    PubMed

    Lauer, P; Theriot, J A; Skoble, J; Welch, M D; Portnoy, D A

    2001-12-01

    The Listeria monocytogenes ActA protein acts as a scaffold to assemble and activate host cell actin cytoskeletal factors at the bacterial surface, resulting in directional actin polymerization and propulsion of the bacterium through the cytoplasm. We have constructed 20 clustered charged-to-alanine mutations in the NH2-terminal domain of ActA and replaced the endogenous actA gene with these molecular variants. These 20 clones were evaluated in several biological assays for phenotypes associated with particular amino acid changes. Additionally, each protein variant was purified and tested for stimulation of the Arp2/3 complex, and a subset was tested for actin monomer binding. These specific mutations refined the two regions involved in Arp2/3 activation and suggest that the actin-binding sequence of ActA spans 40 amino acids. We also identified a 'motility rate and cloud-to-tail transition' region in which nine contiguous mutations spanning amino acids 165-260 caused motility rate defects and changed the ratio of intracellular bacteria associated with actin clouds and comet tails without affecting Arp2/3 activation. Several unusual motility phenotypes were associated with amino acid changes in this region, including altered paths through the cytoplasm, discontinuous actin tails in host cells and the tendency to 'skid' or dramatically change direction while moving. These unusual phenotypes illustrate the complexity of ActA functions that control the actin-based motility of L. monocytogenes. PMID:11886549

  1. Actin in hair cells and hearing loss.

    PubMed

    Drummond, Meghan C; Belyantseva, Inna A; Friderici, Karen H; Friedman, Thomas B

    2012-06-01

    Hereditary deafness is genetically heterogeneous such that mutations of many different genes can cause hearing loss. This review focuses on the evidence and implications that several of these deafness genes encode actin-interacting proteins or actin itself. There is a growing appreciation of the contribution of the actin interactome in stereocilia development, maintenance, mechanotransduction and malfunction of the auditory system.

  2. Computational spatiotemporal analysis identifies WAVE2 and Cofilin as joint regulators of costimulation-mediated T cell actin dynamics

    PubMed Central

    Roybal, Kole T.; Buck, Taráz E.; Ruan, Xiongtao; Cho, Baek Hwan; Clark, Danielle J.; Ambler, Rachel; Tunbridge, Helen M.; Zhang, Jianwei; Verkade, Paul; Wülfing, Christoph; Murphy, Robert F.

    2016-01-01

    Fluorescence microscopy is one of the most important tools in cell biology research and it provides spatial and temporal information to investigate regulatory systems inside cells. This technique can generate data in the form of signal intensities at thousands of positions resolved inside individual live cells; however, given extensive cell-to-cell variation, methods do not currently exist to assemble these data into three- or four-dimensional maps of protein concentration that can be compared across different cells and conditions. Here, we have developed one such method and applied it to investigate actin dynamics in T cell activation. Antigen recognition in T cells by the T cell receptor (TCR) is amplified by engagement of the costimulatory receptor CD28 and we have determined how CD28 modulates actin dynamics. We imaged actin and eight core actin regulators under conditions where CD28 in the context of a strong TCR signal was engaged or blocked to yield over a thousand movies. Our computational analysis identified diminished recruitment of the activator of actin nucleation WAVE2 and the actin severing protein cofilin to F-actin as the dominant difference upon costimulation blockade. Reconstitution of WAVE2 and cofilin activity restored the defect in actin signaling dynamics upon costimulation blockade. Thus we have developed and validated an approach to quantify protein distributions in time and space for analysis of complex regulatory systems. PMID:27095595

  3. Yersinia effector YopO uses actin as bait to phosphorylate proteins that regulate actin polymerization

    PubMed Central

    Lee, Wei Lin; Grimes, Jonathan M; Robinson, Robert C

    2016-01-01

    Pathogenic Yersinia species evade host immune systems through the injection of Yersinia outer proteins (Yops) into phagocytic cells. One Yop, YopO, also known as YpkA, induces actin-filament disruption, impairing phagocytosis. Here we describe the X-ray structure of Yersinia enterocolitica YopO in complex with actin, which reveals that YopO binds to an actin monomer in a manner that blocks polymerization yet allows the bound actin to interact with host actin-regulating proteins. SILAC-MS and biochemical analyses confirm that actin-polymerization regulators such as VASP, EVL, WASP, gelsolin and the formin diaphanous 1 are directly sequestered and phosphorylated by YopO through formation of ternary complexes with actin. This leads to a model in which YopO at the membrane sequesters actin from polymerization while using the bound actin as bait to recruit, phosphorylate and misregulate host actin-regulating proteins to disrupt phagocytosis. PMID:25664724

  4. Yersinia effector YopO uses actin as bait to phosphorylate proteins that regulate actin polymerization.

    PubMed

    Lee, Wei Lin; Grimes, Jonathan M; Robinson, Robert C

    2015-03-01

    Pathogenic Yersinia species evade host immune systems through the injection of Yersinia outer proteins (Yops) into phagocytic cells. One Yop, YopO, also known as YpkA, induces actin-filament disruption, impairing phagocytosis. Here we describe the X-ray structure of Yersinia enterocolitica YopO in complex with actin, which reveals that YopO binds to an actin monomer in a manner that blocks polymerization yet allows the bound actin to interact with host actin-regulating proteins. SILAC-MS and biochemical analyses confirm that actin-polymerization regulators such as VASP, EVL, WASP, gelsolin and the formin diaphanous 1 are directly sequestered and phosphorylated by YopO through formation of ternary complexes with actin. This leads to a model in which YopO at the membrane sequesters actin from polymerization while using the bound actin as bait to recruit, phosphorylate and misregulate host actin-regulating proteins to disrupt phagocytosis.

  5. Coordination of Actin- and Microtubule-Based Cytoskeletons Supports Transport of Spermatids and Residual Bodies/Phagosomes During Spermatogenesis in the Rat Testis.

    PubMed

    Tang, Elizabeth I; Lee, Will M; Cheng, C Yan

    2016-04-01

    Germ cell transport across the seminiferous epithelium during spermatogenesis requires the intricate coordination of cell junctions, signaling proteins, and both actin- and microtubule (MT)-based cytoskeletons. Although the involvement of cytoskeletons in germ cell transport has been suggested, the precise mechanism(s) remains elusive. Based on growing evidence that actin and MT interactions underlie fundamental cellular processes, such as cell motility, it is unlikely that actin- and MT-based cytoskeletons work independently to regulate germ cell transport in the testis. Using rats treated with adjudin, a potential male contraceptive that disrupts spermatid adhesion and transport in the testis, as a study model, we show herein that actin- and MT-based cytoskeletons are both necessary for transport of spermatids and residual bodies/phagosomes across the seminiferous epithelium in adult rat testes. Analysis of intratubular expression of F-actin and tubulin revealed disruption of both actin and MT networks, concomitant with misdirected spermatids and phagosomes in rats treated with adjudin. Actin regulatory proteins, epidermal growth factor receptor pathway substrate 8 and actin-related protein 3, were mislocalized and down-regulated at the actin-rich anchoring junction between germ and Sertoli cells (apical ectoplasmic specialization) after adjudin treatment. Nonreceptor tyrosine kinase p-FAK-Tyr(407), known to regulate F-actin nucleation via actin-related protein 3, was also mislocalized and down-regulated at the apical ectoplasmic specialization, corroborating the observation of actin cytoskeleton disruption. Additionally, spatiotemporal expression of MT regulatory protein end-binding protein 1, shown to be involved in MT-actin cross talk herein, was also disrupted after adjudin treatment. In summary, spermatid/phagosome transport across the epithelium during spermatogenesis requires the coordination between actin- and MT-based cytoskeletons.

  6. Semaphorin3a Enhances Endocytosis at Sites of Receptor–F-Actin Colocalization during Growth Cone Collapse

    PubMed Central

    Fournier, Alyson E.; Nakamura, Fumio; Kawamoto, Susumu; Goshima, Yoshio; Kalb, Robert G.; Strittmatter, Stephen M.

    2000-01-01

    Axonal growth cone collapse is accompanied by a reduction in filopodial F-actin. We demonstrate here that semaphorin 3A (Sema3A) induces a coordinated rearrangement of Sema3A receptors and F-actin during growth cone collapse. Differential interference contrast microscopy reveals that some sites of Sema3A-induced F-actin reorganization correlate with discrete vacuoles, structures involved in endocytosis. Endocytosis of FITC-dextran by the growth cone is enhanced during Sema3A treatment, and sites of dextran accumulation colocalize with actin-rich vacuoles and ridges of membrane. Furthermore, the Sema3A receptor proteins, neuropilin-1 and plexin, and the Sema3A signaling molecule, rac1, also reorganize to vacuoles and membrane ridges after Sema3A treatment. These data support a model whereby Sema3A stimulates endocytosis by focal and coordinated rearrangement of receptor and cytoskeletal elements. Dextran accumulation is also increased in retinal ganglion cell (RGC) growth cones, in response to ephrin A5, and in RGC and DRG growth cones, in response to myelin and phorbol-ester. Therefore, enhanced endocytosis may be a general principle of physiologic growth cone collapse. We suggest that growth cone collapse is mediated by both actin filament rearrangements and alterations in membrane dynamics. PMID:10769032

  7. Cryptococcus neoformans Is Internalized by Receptor-Mediated or ‘Triggered’ Phagocytosis, Dependent on Actin Recruitment

    PubMed Central

    Guerra, Caroline Rezende; Seabra, Sergio Henrique; de Souza, Wanderley; Rozental, Sonia

    2014-01-01

    Cryptococcosis by the encapsulated yeast Cryptococcus neoformans affects mostly immunocompromised individuals and is a frequent neurological complication in AIDS patients. Recent studies support the idea that intracellular survival of Cryptococcus yeast cells is important for the pathogenesis of cryptococcosis. However, the initial steps of Cryptococcus internalization by host cells remain poorly understood. Here, we investigate the mechanism of Cryptococcus neoformans phagocytosis by peritoneal macrophages using confocal and electron microscopy techniques, as well as flow cytometry quantification, evaluating the importance of fungal capsule production and of host cell cytoskeletal elements for fungal phagocytosis. Electron microscopy analyses revealed that capsular and acapsular strains of C. neoformans are internalized by macrophages via both ‘zipper’ (receptor-mediated) and ‘trigger’ (membrane ruffle-dependent) phagocytosis mechanisms. Actin filaments surrounded phagosomes of capsular and acapsular yeasts, and the actin depolymerizing drugs cytochalasin D and latrunculin B inhibited yeast internalization and actin recruitment to the phagosome area. In contrast, nocodazole and paclitaxel, inhibitors of microtubule dynamics decreased internalization but did not prevent actin recruitment to the site of phagocytosis. Our results show that different uptake mechanisms, dependent on both actin and tubulin dynamics occur during yeast internalization by macrophages, and that capsule production does not affect the mode of Cryptococcus uptake by host cells. PMID:24586631

  8. Actin foci facilitate activation of the phospholipase C-γ in primary T lymphocytes via the WASP pathway

    PubMed Central

    Kumari, Sudha; Depoil, David; Martinelli, Roberta; Judokusumo, Edward; Carmona, Guillaume; Gertler, Frank B; Kam, Lance C; Carman, Christopher V; Burkhardt, Janis K; Irvine, Darrell J; Dustin, Michael L

    2015-01-01

    Wiscott Aldrich Syndrome protein (WASP) deficiency results in defects in calcium ion signaling, cytoskeletal regulation, gene transcription and overall T cell activation. The activation of WASP constitutes a key pathway for actin filament nucleation. Yet, when WASP function is eliminated there is negligible effect on actin polymerization at the immunological synapse, leading to gaps in our understanding of the events connecting WASP and calcium ion signaling. Here, we identify a fraction of total synaptic F-actin selectively generated by WASP in the form of distinct F-actin ‘foci’. These foci are polymerized de novo as a result of the T cell receptor (TCR) proximal tyrosine kinase cascade, and facilitate distal signaling events including PLCγ1 activation and subsequent cytoplasmic calcium ion elevation. We conclude that WASP generates a dynamic F-actin architecture in the context of the immunological synapse, which then amplifies the downstream signals required for an optimal immune response. DOI: http://dx.doi.org/10.7554/eLife.04953.001 PMID:25758716

  9. Texture sensing of cytoskeletal dynamics in cell migration

    NASA Astrophysics Data System (ADS)

    Das, Satarupa; Lee, Rachel; Hourwitz, Matthew J.; Sun, Xiaoyu; Parent, Carole; Fourkas, John T.; Losert, Wolfgang

    Migrating cells can be directed towards a target by gradients in properties such as chemical concentration or mechanical properties of the surrounding microenvironment. In previous studies we have shown that micro/nanotopographical features on scales comparable to those of natural collagen fibers can guide fast migrating amoeboid cells by aligning actin polymerization waves to such nanostructures. We find that actin microfilaments and microtubules are aligned along the nanoridge topographies, modulating overall cell polarity and directional migration in epithelial cells. This work shows that topographic features on a biologically relevant length scale can modulate migration outcomes by affecting the texture sensing property of the cytoskeleton.

  10. Cell adhesion: integrating cytoskeletal dynamics and cellular tension

    PubMed Central

    Parsons, J. Thomas; Horwitz, Alan Rick; Schwartz, Martin A.

    2010-01-01

    Cell migration affects all morphogenetic processes and contributes to numerous diseases, including cancer and cardiovascular disease. For most cells in most environments, movement begins with protrusion of the cell membrane followed by the formation of new adhesions at the cell front that link the actin cytoskeleton to the substratum, generation of traction forces that move the cell forwards and disassembly of adhesions at the cell rear. Adhesion formation and disassembly drive the migration cycle by activating Rho GTPases, which in turn regulate actin polymerization and myosin II activity, and therefore adhesion dynamics. PMID:20729930

  11. Actin Filaments at the Leading Edge of Cancer Cells Are Characterized by a High Mobile Fraction and Turnover Regulation by Profilin I

    PubMed Central

    Lorente, Gisela; Syriani, Emilio; Morales, Miguel

    2014-01-01

    Cellular motility is the basis for cancer cell invasion and metastasis. In the case of breast cancer, the most common type of cancer among women, metastasis represents the most devastating stage of the disease. The central role of cellular motility in cancer development emphasizes the importance of understanding the specific mechanisms involved in this process. In this context, tumor development and metastasis would be the consequence of a loss or defect of the mechanisms that control cytoskeletal remodeling. Profilin I belongs to a family of small actin binding proteins that are thought to assist in actin filament elongation at the leading edge of migrating cells. Traditionally, Profilin I has been considered to be an essential control element for actin polymerization and cell migration. Expression of Profilin I is down-regulated in breast and various other cancer cells. In MDA-MB-231 cells, a breast cancer cell line, further inhibition of Profilin I expression promotes hypermotility and metastatic spread, a finding that contrasts with the proposed role of Profilin in enhancing polymerization. In this report, we have taken advantage of the fluorescence recovery after photobleaching (FRAP) of GFP-actin to quantify and compare actin dynamics at the leading edge level in both cancer and non-cancer cell models. Our results suggest that (i) a high level of actin dynamics (i.e., a large mobile fraction of actin filaments and a fast turnover) is a common characteristic of some cancer cells; (ii) actin polymerization shows a high degree of independence from the presence of extracellular growth factors; and (iii) our results also corroborate the role of Profilin I in regulating actin polymerization, as raising the intracellular levels of Profilin I decreased the mobile fraction ratio of actin filaments and slowed their polymerization rate; furthermore, increased Profilin levels also led to reduced individual cell velocity and directionality. PMID:24465723

  12. Myosin 1E coordinates actin assembly and cargo trafficking during clathrin-mediated endocytosis

    PubMed Central

    Cheng, Jackie; Grassart, Alexandre; Drubin, David G.

    2012-01-01

    Myosin 1E (Myo1E) is recruited to sites of clathrin-mediated endocytosis coincident with a burst of actin assembly. The recruitment dynamics and lifetime of Myo1E are similar to those of tagged actin polymerization regulatory proteins. Like inhibition of actin assembly, depletion of Myo1E causes reduced transferrin endocytosis and a significant delay in transferrin trafficking to perinuclear compartments, demonstrating an integral role for Myo1E in these actin-mediated steps. Mistargeting of GFP-Myo1E or its src-homology 3 domain to mitochondria results in appearance of WIP, WIRE, N-WASP, and actin filaments at the mitochondria, providing evidence for Myo1E's role in actin assembly regulation. These results suggest for mammalian cells, similar to budding yeast, interdependence in the recruitment of type I myosins, WIP/WIRE, and N-WASP to endocytic sites for Arp2/3 complex activation to assemble F-actin as endocytic vesicles are being formed. PMID:22675027

  13. Mechanism of Actin-Based Motility

    NASA Astrophysics Data System (ADS)

    Pantaloni, Dominique; Le Clainche, Christophe; Carlier, Marie-France

    2001-05-01

    Spatially controlled polymerization of actin is at the origin of cell motility and is responsible for the formation of cellular protrusions like lamellipodia. The pathogens Listeria monocytogenes and Shigella flexneri, which undergo actin-based propulsion, are acknowledged models of the leading edge of lamellipodia. Actin-based motility of the bacteria or of functionalized microspheres can be reconstituted in vitro from only five pure proteins. Movement results from the regulated site-directed treadmilling of actin filaments, consistent with observations of actin dynamics in living motile cells and with the biochemical properties of the components of the synthetic motility medium.

  14. Subcellular localization of multiple PREP2 isoforms is regulated by actin, tubulin, and nuclear export.

    PubMed

    Haller, Klaus; Rambaldi, Isabel; Daniels, Eugene; Featherstone, Mark

    2004-11-19

    The PREP, MEIS, and PBX families are mammalian members of the TALE (three amino acid loop extension) class of homeodomain-containing transcription factors. These factors have been implicated in cooperative DNA binding with the HOX class of homeoproteins, but PREP and MEIS interact with PBX in apparently non-HOX-dependent cooperative DNA binding as well. PREP, MEIS, and PBX have all been reported to reside in the cytoplasm in one or more tissues of the developing vertebrate embryo. In the case of PBX, cytoplasmic localization is due to the modulation of nuclear localization signals, nuclear export sequences, and interaction with a cytoplasmic anchoring factor, non-muscle myosin heavy chain II B. Here we report that murine PREP2 exists in multiple isoforms distinguished by interaction with affinity-purified antibodies raised to N- and C-terminal epitopes and by nuclear versus cytoplasmic localization. Alternative splicing gives rise to some of these PREP2 isoforms, including a 25-kDa variant lacking the C-terminal half of the protein and homeodomain and having the potential to act as dominant-negative. We further show that cytoplasmic localization is due to the concerted action of nuclear export, as evidenced by sensitivity to leptomycin B, and cytoplasmic retention by the actin and microtubule cytoskeletons. Cytoplasmic PREP2 colocalizes with both the actin and microtubule cytoskeletons and coimmunoprecipitates with actin and tubulin. Importantly, disruption of either cytoskeletal system redirects cytoplasmic PREP2 to the nucleus. We suggest that transcriptional regulation by PREP2 is modulated through the subcellular distribution of multiple isoforms and by interaction with two distinct cytoskeletal systems.

  15. Remodeling of the fibroblast cytoskeletal architecture during the replication cycle of Ectromelia virus: A morphological in vitro study in a murine cell line.

    PubMed

    Szulc-Dabrowska, Lidia; Gregorczyk, Karolina P; Struzik, Justyna; Boratynska-Jasinska, Anna; Szczepanowska, Joanna; Wyzewski, Zbigniew; Toka, Felix N; Gierynska, Malgorzata; Ostrowska, Agnieszka; Niemialtowski, Marek G

    2016-08-01

    Ectromelia virus (ECTV, the causative agent of mousepox), which represents the same genus as variola virus (VARV, the agent responsible for smallpox in humans), has served for years as a model virus for studying mechanisms of poxvirus-induced disease. Despite increasing knowledge on the interaction between ECTV and its natural host-the mouse-surprisingly, still little is known about the cell biology of ECTV infection. Because pathogen interaction with the cytoskeleton is still a growing area of research in the virus-host cell interplay, the aim of the present study was to evaluate the consequences of ECTV infection on the cytoskeleton in a murine fibroblast cell line. The viral effect on the cytoskeleton was reflected by changes in migration of the cells and rearrangement of the architecture of tubulin, vimentin, and actin filaments. The virus-induced cytoskeletal rearrangements observed in these studies contributed to the efficient cell-to-cell spread of infection, which is an important feature of ECTV virulence. Additionally, during later stages of infection L929 cells produced two main types of actin-based cellular protrusions: short (actin tails and "dendrites") and long (cytoplasmic corridors). Due to diversity of filopodial extensions induced by the virus, we suggest that ECTV represents a valuable new model for studying processes and pathways that regulate the formation of cytoskeleton-based cellular structures. © 2016 Wiley Periodicals, Inc. PMID:27169394

  16. The actin of muscle and fibroblasts.

    PubMed Central

    Anderson, P J

    1976-01-01

    The isolation and quantification of an 18-residue peptide from the N-terminal region of chicken actin was used to quantify the amount of actin in acetone-dried powders of chicken breast muscle and chicken-embryo fibroblasts. Either isotope dilution or double labelling can be used for peptide quantification. About 17% of the protein of chicken breast muscle was estimated to be actin. However, only 0.25% of the protein of chicken-embryo fibroblasts was determined to be actin by quantification of this peptide. The actin content of fibroblasts may be low or the amino acid sequences of muscle and fibroblast actin may differ in the N-terminal region. The methodology used can be extended to examine whether other regions of muscle actin sequence are present in fibroblasts or other cell types. PMID:938480

  17. Quantifying actin wave modulation on periodic topography

    NASA Astrophysics Data System (ADS)

    Guven, Can; Driscoll, Meghan; Sun, Xiaoyu; Parker, Joshua; Fourkas, John; Carlsson, Anders; Losert, Wolfgang

    2014-03-01

    Actin is the essential builder of the cell cytoskeleton, whose dynamics are responsible for generating the necessary forces for the formation of protrusions. By exposing amoeboid cells to periodic topographical cues, we show that actin can be directionally guided via inducing preferential polymerization waves. To quantify the dynamics of these actin waves and their interaction with the substrate, we modify a technique from computer vision called ``optical flow.'' We obtain vectors that represent the apparent actin flow and cluster these vectors to obtain patches of newly polymerized actin, which represent actin waves. Using this technique, we compare experimental results, including speed distribution of waves and distance from the wave centroid to the closest ridge, with actin polymerization simulations. We hypothesize the modulation of the activity of nucleation promotion factors on ridges (elevated regions of the surface) as a potential mechanism for the wave-substrate coupling. Funded by NIH grant R01GM085574.

  18. Extending the molecular clutch beyond actin-based cell motility

    NASA Astrophysics Data System (ADS)

    Havrylenko, Svitlana; Mezanges, Xavier; Batchelder, Ellen; Plastino, Julie

    2014-10-01

    Many cell movements occur via polymerization of the actin cytoskeleton beneath the plasma membrane at the front of the cell, forming a protrusion called a lamellipodium, while myosin contraction squeezes forward the back of the cell. In what is known as the ‘molecular clutch’ description of cell motility, forward movement results from the engagement of the acto-myosin motor with cell-matrix adhesions, thus transmitting force to the substrate and producing movement. However during cell translocation, clutch engagement is not perfect, and as a result, the cytoskeleton slips with respect to the substrate, undergoing backward (retrograde) flow in the direction of the cell body. Retrograde flow is therefore inversely proportional to cell speed and depends on adhesion and acto-myosin dynamics. Here we asked whether the molecular clutch was a general mechanism by measuring motility and retrograde flow for the Caenorhabditis elegans sperm cell in different adhesive conditions. These cells move by adhering to the substrate and emitting a dynamic lamellipodium, but the sperm cell does not contain an acto-myosin cytoskeleton. Instead the lamellipodium is formed by the assembly of major sperm protein, which has no biochemical or structural similarity to actin. We find that these cells display the same molecular clutch characteristics as acto-myosin containing cells. We further show that retrograde flow is produced both by cytoskeletal assembly and contractility in these cells. Overall this study shows that the molecular clutch hypothesis of how polymerization is transduced into motility via adhesions is a general description of cell movement regardless of the composition of the cytoskeleton.

  19. Extending the molecular clutch beyond actin-based cell motility

    PubMed Central

    Havrylenko, Svitlana; Mezanges, Xavier; Batchelder, Ellen; Plastino, Julie

    2014-01-01

    Many cell movements occur via polymerization of the actin cytoskeleton beneath the plasma membrane at the front of the cell, forming a protrusion called a lamellipodium, while myosin contraction squeezes forward the back of the cell. In what is known as the “molecular clutch” description of cell motility, forward movement results from the engagement of the acto-myosin motor with cell-matrix adhesions, thus transmitting force to the substrate and producing movement. However during cell translocation, clutch engagement is not perfect, and as a result, the cytoskeleton slips with respect to the substrate, undergoing backward (retrograde) flow in the direction of the cell body. Retrograde flow is therefore inversely proportional to cell speed and depends on adhesion and acto-myosin dynamics. Here we asked whether the molecular clutch was a general mechanism by measuring motility and retrograde flow for the Caenorhabditis elegans sperm cell in different adhesive conditions. These cells move by adhering to the substrate and emitting a dynamic lamellipodium, but the sperm cell does not contain an acto-myosin cytoskeleton. Instead the lamellipodium is formed by the assembly of Major Sperm Protein (MSP), which has no biochemical or structural similarity to actin. We find that these cells display the same molecular clutch characteristics as acto-myosin containing cells. We further show that retrograde flow is produced both by cytoskeletal assembly and contractility in these cells. Overall this study shows that the molecular clutch hypothesis of how polymerization is transduced into motility via adhesions is a general description of cell movement regardless of the composition of the cytoskeleton. PMID:25383039

  20. Cytoskeletal changes in podocytes associated with foot process effacement in Masugi nephritis.

    PubMed Central

    Shirato, I.; Sakai, T.; Kimura, K.; Tomino, Y.; Kriz, W.

    1996-01-01

    Foot process effacement represents the most characteristic change in podocyte phenotype under a great variety of experimental as well as human glomerulopathies. It consists in simplification up to a total disappearance of an interdigitating foot process pattern. Finally, podocytes affix to the glomerular basement membrane by outspread epithelial sheets. Structural and immunocytochemical techniques were applied to analyze the cytoskeletal changes associated with foot process effacement in Masugi nephritis. Three days after injection of the anti-glomerular-basement-membrane serum an interdigitating foot process pattern was almost fully lost; more than 90 percent of the outer glomerular capillary surface were covered by expanded sheets of podocyte epithelium that contain a highly organized cytoskeleton adhering to the basal cell membrane. Structurally, this cytoskeleton consists of an interwoven network of microfilaments with regularly distributed dense bodies, which obviously serve as cross-linkers within this network. Immunocytochemically, the expression of actin, alpha-actinin, and pp44 (a specific podocyte protein normally associated with the cytoskeleton of foot processes) were increased in this structure; alpha-actinin was especially prominent in the dense