Science.gov

Sample records for actin cytoskeleton mediates

  1. Purine receptor mediated actin cytoskeleton remodeling of human fibroblasts

    PubMed Central

    Goldman, Nanna; Chandler-Militello, Devin; Langevin, Helene; Nedergaard, Maiken; Takano, Takahiro

    2013-01-01

    Earlier studies have shown that activation of adenosine A1 receptors on peripheral pain fibers contributes to acupuncture-induced suppression of painful input. In addition to adenosine, acupuncture triggers the release of other purines, including ATP and ADP that may bind to purine receptors on nearby fibroblasts. We here show that purine agonists trigger increase in cytosolic Ca 2+ signaling in a cultured human fibroblasts cell line. The profile of agonist-induced Ca2+ increases indicates that the cells express functional P2yR2 and P2yR4 receptors, as well as P2yR1 and P2xR7 receptors. Unexpectedly, purine-induced Ca2+ signaling was associated with a remodeling of the actin cytoskeleton. ATP induced a transient loss in F-actin stress fiber. The changes of actin cytoskeleton occurred slowly and peaked at 10 min after agonist exposure. Inhibition of ATP-induced increases in Ca2+ by cyclopiazonic acid blocked receptor-mediated cytoskeleton remodeling. The Ca2+ ionophore failed to induce cytoskeletal remodeling despite triggering robust increases in cytosolic Ca2+. These observations indicate that purine signaling induces transient changes in fibroblast cytoarchitecture that could be related to the beneficial effects of acupuncture. PMID:23462235

  2. The actin cytoskeleton in store-mediated calcium entry

    PubMed Central

    Rosado, Juan A; Sage, Stewart O

    2000-01-01

    Store-mediated Ca2+ entry is the main pathway for Ca2+ influx in platelets and many other cells. Several hypotheses have considered both direct and indirect coupling mechanisms between the endoplasmic reticulum and the plasma membrane. Here we pay particular attention to new insights into the regulation of store-mediated Ca2+ entry: the role of the cytoskeleton in a secretion-like coupling model. In this model, Ca2+ entry may be mediated by a reversible trafficking and coupling of the endoplasmic reticulum with the plasma membrane, that shows close parallels to the events mediating secretion. As with secretion, the actin cytoskeleton plays an inhibitory role in the activation of Ca2+ entry by preventing the approach and coupling of the endoplasmic reticulum with the plasma membrane, making cytoskeletal remodelling a key event in the activation of Ca2+ entry. We also review recent advances investigating the regulation of store-mediated Ca2+ entry by small GTPases and phosphoinositides, which might be involved in the store-mediated Ca2+ entry pathway through roles in the remodelling of the cytoskeleton. PMID:10896713

  3. Structural organization of the actin cytoskeleton at sites of clathrin-mediated endocytosis.

    PubMed

    Collins, Agnieszka; Warrington, Anthony; Taylor, Kenneth A; Svitkina, Tatyana

    2011-07-26

    The dynamic actin cytoskeleton plays an important role in clathrin-mediated endocytosis (CME). However, its exact functions remain uncertain as a result of a lack of high-resolution structural information regarding actin architecture at endocytic sites. Using platinum replica electron microscopy in combination with electron tomography, we found that actin patches associated with clathrin-coated structures (CCSs) in cultured mouse cells consist of a densely branched actin network, in which actin filament barbed ends are oriented toward the CCS. The shape of the actin network varied from a small lateral patch at the periphery of shallow CCSs, to a collar-like arrangement around partly invaginated CCSs with actin filament barbed ends abutting the CCS neck, to a polarized comet tail in association with highly constricted or fully endocytosed CCSs. Our data suggest that the primary role of the actin cytoskeleton in CME is to constrict and elongate the bud neck and drive the endocytosed vesicles from the plasma membrane. Moreover, in these processes, barbed ends directly push onto the load, as in a conventional propulsion mechanism. Based on our findings, we propose a model for initiation, evolution, and function of the dendritic actin network at CCSs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. The yeast actin cytoskeleton.

    PubMed

    Mishra, Mithilesh; Huang, Junqi; Balasubramanian, Mohan K

    2014-03-01

    The actin cytoskeleton is a complex network of dynamic polymers, which plays an important role in various fundamental cellular processes, including maintenance of cell shape, polarity, cell division, cell migration, endocytosis, vesicular trafficking, and mechanosensation. Precise spatiotemporal assembly and disassembly of actin structures is regulated by the coordinated activity of about 100 highly conserved accessory proteins, which nucleate, elongate, cross-link, and sever actin filaments. Both in vivo studies in a wide range of organisms from yeast to metazoans and in vitro studies of purified proteins have helped shape the current understanding of actin dynamics and function. Molecular genetics, genome-wide functional analysis, sophisticated real-time imaging, and ultrastructural studies in concert with biochemical analysis have made yeast an attractive model to understand the actin cytoskeleton, its molecular dynamics, and physiological function. Studies of the yeast actin cytoskeleton have contributed substantially in defining the universal mechanism regulating actin assembly and disassembly in eukaryotes. Here, we review some of the important insights generated by the study of actin cytoskeleton in two important yeast models the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. Actin cytoskeleton mediates BMP2-Smad signaling via calponin 1 in preosteoblast under simulated microgravity.

    PubMed

    Xu, Hongjie; Wu, Feng; Zhang, Hongyu; Yang, Chao; Li, Kai; Wang, Hailong; Yang, Honghui; Liu, Yue; Ding, Bai; Tan, Yingjun; Yuan, Ming; Li, Yinghui; Dai, Zhongquan

    2017-07-01

    Microgravity influences the activity of osteoblast, induces actin microfilament disruption and leads to bone loss during spaceflight. Mechanical stress such as gravity, regulates cell function, response and differentiation through dynamic cytoskeleton changes, but the mechanotransduction mechanism remains to be fully elucidated. Previous, we demonstrated actin microfilament mediated osteoblast Cbfa1 responsiveness to BMP2 under simulated microgravity (SMG). Here, we explored a potential molecular and its detailed mechanism of actin cytoskeleton functioning on BMP2-Smad signaling in MC3T3-E1 under SMG. Results showed that the actin microfilament-disrupting agent, cytochalasin B (CB), reduced BMP2-induced activation, translocation of Smad1/5/8 and Runx2 expression. SMG also inhibited BMP2-Smad signaling, which was rescued by actin cytoskeleton stabilizing agent, Jasplakinolide (JAS). Furthermore, we found that siRNA mediated knockdown of calponin 1 (CNN1), an actin binding protein, markedly promoted BMP2-Smad signaling and abolished both inhibition of CB, SMG on BMP2-Smad signaling and the rescue action of JAS. Overexpression of CNN1 inhibited the p-Smad induced by BMP2. Bidirectional Co-IP experiments demonstrated CNN1 could interacted with Smad or p-Smad protein. Furthermore, CB or SMG decreased the phosphorylated CNN1 and increased its interaction with Smad or p-Smad. Combined with the phosphorylation of CNN1 inhibites its actin binding activity, these results indicate that actin cytoskeleton depolymerization inhibites BMP2 signaling via blocking of Smad by dephosphorylated CNN1 in osteoblast cells. Thus, we provide new important insights into the mechanism of mechanotransduction under SMG condition, which probably contribute to bone formation decrease induced by SMG. Copyright © 2017. Published by Elsevier B.V.

  6. TWISTED DWARF1 Mediates the Action of Auxin Transport Inhibitors on Actin Cytoskeleton Dynamics

    PubMed Central

    Bailly, Aurelien; Zwiewka, Marta; Sovero, Valpuri; Ge, Pei; Aryal, Bibek; Hao, Pengchao; Linnert, Miriam; Burgardt, Noelia Inés; Lücke, Christian; Weiwad, Matthias; Michel, Max; Weiergräber, Oliver H.; Pollmann, Stephan; Azzarello, Elisa; Fukao, Yoichiro; Hoffmann, Céline; Wedlich-Söldner, Roland

    2016-01-01

    Plant growth and architecture is regulated by the polar distribution of the hormone auxin. Polarity and flexibility of this process is provided by constant cycling of auxin transporter vesicles along actin filaments, coordinated by a positive auxin-actin feedback loop. Both polar auxin transport and vesicle cycling are inhibited by synthetic auxin transport inhibitors, such as 1-N-naphthylphthalamic acid (NPA), counteracting the effect of auxin; however, underlying targets and mechanisms are unclear. Using NMR, we map the NPA binding surface on the Arabidopsis thaliana ABCB chaperone TWISTED DWARF1 (TWD1). We identify ACTIN7 as a relevant, although likely indirect, TWD1 interactor, and show TWD1-dependent regulation of actin filament organization and dynamics and that TWD1 is required for NPA-mediated actin cytoskeleton remodeling. The TWD1-ACTIN7 axis controls plasma membrane presence of efflux transporters, and as a consequence act7 and twd1 share developmental and physiological phenotypes indicative of defects in auxin transport. These can be phenocopied by NPA treatment or by chemical actin (de)stabilization. We provide evidence that TWD1 determines downstream locations of auxin efflux transporters by adjusting actin filament debundling and dynamizing processes and mediating NPA action on the latter. This function appears to be evolutionary conserved since TWD1 expression in budding yeast alters actin polarization and cell polarity and provides NPA sensitivity. PMID:27053424

  7. Par-4-mediated recruitment of Amida to the actin cytoskeleton leads to the induction of apoptosis

    SciTech Connect

    Boosen, Meike; Vetterkind, Susanne; Koplin, Ansgar; Illenberger, Susanne; Preuss, Ute . E-mail: u.preuss@uni-bonn.de

    2005-12-10

    Par-4 (prostate apoptosis response-4) sensitizes cells to apoptotic stimuli, but the exact mechanisms are still poorly understood. Using Par-4 as bait in a yeast two-hybrid screen, we identified Amida as a novel interaction partner, a ubiquitously expressed protein which has been suggested to be involved in apoptotic processes. Complex formation of Par-4 and Amida occurs in vitro and in vivo and is mediated via the C-termini of both proteins, involving the leucine zipper of Par-4. Amida resides mainly in the nucleus but displays nucleo-cytoplasmic shuttling in heterokaryons. Upon coexpression with Par-4 in REF52.2 cells, Amida translocates to the cytoplasm and is recruited to actin filaments by Par-4, resulting in enhanced induction of apoptosis. The synergistic effect of Amida/Par-4 complexes on the induction of apoptosis is abrogated when either Amida/Par-4 complex formation or association of these complexes with the actin cytoskeleton is impaired, indicating that the Par-4-mediated relocation of Amida to the actin cytoskeleton is crucial for the pro-apoptotic function of Par-4/Amida complexes in REF52.2 cells. The latter results in enhanced phosphorylation of the regulatory light chain of myosin II (MLC) as has previously been shown for Par-4-mediated recruitment of DAP-like kinase (Dlk), suggesting that the recruitment of nuclear proteins involved in the regulation of apoptotic processes to the actin filament system by Par-4 represents a potent mechanism how Par-4 can trigger apoptosis.

  8. Regulation of Actin Cytoskeleton Dynamics in Cells

    PubMed Central

    Lee, Sung Haeng; Dominguez, Roberto

    2014-01-01

    The dynamic remolding of the actin cytoskeleton is a critical part of most cellular activities, and malfunction of cytoskeletal proteins results in various human diseases. The transition between two forms of actin, monomeric or G-actin and filamentous or F-actin, is tightly regulated in time and space by a large number of signaling, scaffolding and actin-binding proteins (ABPs). New ABPs are constantly being discovered in the post-genomic era. Most of these proteins are modular, integrating actin binding, protein-protein interaction, membrane-binding, and signaling domains. In response to extracellular signals, often mediated by Rho family GTPases, ABPs control different steps of actin cytoskeleton assembly, including filament nucleation, elongation, severing, capping, and depolymerization. This review summarizes structure-function relationships among ABPs in the regulation of actin cytoskeleton assembly. PMID:20446344

  9. Dynamics of the actin cytoskeleton mediates receptor cross talk: An emerging concept in tuning receptor signaling.

    PubMed

    Mattila, Pieta K; Batista, Facundo D; Treanor, Bebhinn

    2016-02-01

    Recent evidence implicates the actin cytoskeleton in the control of receptor signaling. This may be of particular importance in the context of immune receptors, such as the B cell receptor, where dysregulated signaling can result in autoimmunity and malignancy. Here, we discuss the role of the actin cytoskeleton in controlling receptor compartmentalization, dynamics, and clustering as a means to regulate receptor signaling through controlling the interactions with protein partners. We propose that the actin cytoskeleton is a point of integration for receptor cross talk through modulation of protein dynamics and clustering. We discuss the implication of this cross talk via the cytoskeleton for both ligand-induced and low-level constitutive (tonic) signaling necessary for immune cell survival.

  10. Dynamics of the actin cytoskeleton mediates receptor cross talk: An emerging concept in tuning receptor signaling

    PubMed Central

    Mattila, Pieta K.; Batista, Facundo D.

    2016-01-01

    Recent evidence implicates the actin cytoskeleton in the control of receptor signaling. This may be of particular importance in the context of immune receptors, such as the B cell receptor, where dysregulated signaling can result in autoimmunity and malignancy. Here, we discuss the role of the actin cytoskeleton in controlling receptor compartmentalization, dynamics, and clustering as a means to regulate receptor signaling through controlling the interactions with protein partners. We propose that the actin cytoskeleton is a point of integration for receptor cross talk through modulation of protein dynamics and clustering. We discuss the implication of this cross talk via the cytoskeleton for both ligand-induced and low-level constitutive (tonic) signaling necessary for immune cell survival. PMID:26833785

  11. Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton.

    PubMed

    Krendel, Mira; Zenke, Frank T; Bokoch, Gary M

    2002-04-01

    Regulation of the actin cytoskeleton by microtubules is mediated by the Rho family GTPases. However, the molecular mechanisms that link microtubule dynamics to Rho GTPases have not, as yet, been identified. Here we show that the Rho guanine nucleotide exchange factor (GEF)-H1 is regulated by an interaction with microtubules. GEF-H1 mutants that are deficient in microtubule binding have higher activity levels than microtubule-bound forms. These mutants also induce Rho-dependent changes in cell morphology and actin organization. Furthermore, drug-induced microtubule depolymerization induces changes in cell morphology and gene expression that are similar to the changes induced by the expression of active forms of GEF-H1. Furthermore, these effects are inhibited by dominant-negative versions of GEF-H1. Thus, GEF-H1 links changes in microtubule integrity to Rho-dependent regulation of the actin cytoskeleton.

  12. Integrin-linked kinase activity regulates Rac- and Cdc42-mediated actin cytoskeleton reorganization via alpha-PIX.

    PubMed

    Filipenko, Nolan R; Attwell, Sarah; Roskelley, Calvin; Dedhar, Shoukat

    2005-09-01

    Cell spreading and migration are regulated in a Rho family GTPase-dependent manner by growth factors and integrin-mediated cell-extracellular matrix (ECM) interactions. The molecular mechanisms involved in the ECM- and growth factor-mediated activation of these small GTPases remain unclear. In the present study, we demonstrate that integrin-linked kinase (ILK), which is a focal adhesion protein activated by both ECM and growth factors, is required for the activation of Rac and Cdc42 in epithelial cells. Ectopic expression of active ILK in mammary epithelial cells induces dramatic reorganization of the actin cytoskeleton and promotes rapid cell spreading on fibronectin. These effects are associated with constitutive activation of both Rac and Cdc42, but not Rho. The use of ILK siRNA or small molecule inhibitors to inhibit ILK expression and kinase activity, respectively, results in diminished cell spreading and actin cytoskeleton reorganization, concomitant with a reduction in Rac and Cdc42 activation. Studies into the mechanism of ILK-mediated Rac activation suggest an important role for the ILK-beta-parvin interaction and the activity of the Rac/Cdc42-specific guanine nucleotide exchange factor alpha-PIX downstream of ILK. Taken together, these data demonstrate an essential role of ILK kinase activity in Rac- and Cdc42-mediated actin cytoskeleton reorganization in epithelial cells, further solidifying a role for ILK in the regulation of cancer cell motility and invasiveness.

  13. Tyrosine kinases activate store-mediated Ca2+ entry in human platelets through the reorganization of the actin cytoskeleton.

    PubMed Central

    Rosado, J A; Graves, D; Sage, S O

    2000-01-01

    We have recently reported that store-mediated Ca(2+) entry in platelets is likely to be mediated by a reversible trafficking and coupling of the endoplasmic reticulum with the plasma membrane, a model termed 'secretion-like coupling'. In this model the actin cytoskeleton plays a key regulatory role. Since tyrosine kinases have been shown to be important for Ca(2+) entry in platelets and other cells, we have now investigated the possible involvement of tyrosine kinases in the secretion-like-coupling model. Treatment of platelets with thrombin or thapsigargin induced actin polymerization by a calcium-independent pathway. Methyl 2,5-dihydroxycinnamate, a tyrosine kinase inhibitor, prevented thrombin- or thapsigargin-induced actin polymerization. The effects of tyrosine kinases in store-mediated Ca(2+) entry were found to be entirely dependent on the actin cytoskeleton. PP1, an inhibitor of the Src family of proteins, partially inhibited store-mediated Ca(2+) entry. In addition, depletion of intracellular Ca(2+) stores stimulated cytoskeletal association of the cytoplasmic tyrosine kinase pp60(src), a process that was sensitive to treatment with cytochalasin D and PP1, but not to inhibition of Ras proteins using prenylcysteine analogues. Finally, combined inhibition of both Ras proteins and tyrosine kinases resulted in complete inhibition of Ca(2+) entry, suggesting that these two families of proteins have independent effects in the activation of store-mediated Ca(2+) entry in human platelets. PMID:11023829

  14. Dual role of the actin cytoskeleton in regulating cell adhesion mediated by the integrin lymphocyte function-associated molecule-1.

    PubMed Central

    Lub, M; van Kooyk, Y; van Vliet, S J; Figdor, C G

    1997-01-01

    Intracellular signals are required to activate the leukocyte-specific adhesion receptor lymphocyte function-associated molecule-1 (LFA-1; CD11a/CD18) to bind its ligand, intracellular adhesion molecule-1 (ICAM-1). In this study, we investigated the role of the cytoskeleton in LFA-1 activation and demonstrate that filamentous actin (F-actin) can both enhance and inhibit LFA-1-mediated adhesion, depending on the distribution of LFA-1 on the cell surface. We observed that LFA-1 is already clustered on the cell surface of interleukin-2/phytohemagglutinin-activated lymphocytes. These cells bind strongly ICAM-1 and disruption of the actin cytoskeleton inhibits adhesion. In contrast to interleukin-2/phytohemagglutinin-activated peripheral blood lymphocytes, resting lymphocytes, which display a homogenous cell surface distribution of LFA-1, respond poorly to intracellular signals to bind ICAM-1, unless the actin cytoskeleton is disrupted. On resting peripheral blood lymphocytes, uncoupling of LFA-1 from the actin cytoskeleton induces clustering of LFA-1 and this, along with induction of a high-affinity form of LFA-1, via "inside-out" signaling, results in enhanced binding to ICAM-1, which is dependent on intact intermediate filaments, microtubules, and metabolic energy. We hypothesize that linkage of LFA-1 to cytoskeletal elements prevents movement of LFA-1 over the cell surface, thus inhibiting clustering and strong ligand binding. Release from these cytoskeletal elements allows lateral movement and activation of LFA-1, resulting in ligand binding and "outside-in" signaling, that subsequently stimulates actin polymerization and stabilizes cell adhesion. Images PMID:9190212

  15. PKC-mediated cerebral vasoconstriction: Role of myosin light chain phosphorylation versus actin cytoskeleton reorganization.

    PubMed

    El-Yazbi, Ahmed F; Abd-Elrahman, Khaled S; Moreno-Dominguez, Alejandro

    2015-06-15

    Defective protein kinase C (PKC) signaling has been suggested to contribute to abnormal vascular contraction in disease conditions including hypertension and diabetes. Our previous work on agonist and pressure-induced cerebral vasoconstriction implicated PKC as a major contributor to force production in a myosin light chain (LC20) phosphorylation-independent manner. Here, we used phorbol dibutyrate to selectively induce a PKC-dependent constriction in rat middle cerebral arteries and delineate the relative contribution of different contractile mechanisms involved. Specifically, we employed an ultra-sensitive 3-step western blotting approach to detect changes in the content of phosphoproteins that regulate myosin light chain phosphatase (MLCP) activity, thin filament activation, and actin cytoskeleton reorganization. Data indicate that PKC activation evoked a greater constriction at a similar level of LC20 phosphorylation achieved by 5-HT. PDBu-evoked constriction persisted in the presence of Gö6976, a selective inhibitor of Ca(2+)-dependent PKC, and in the absence of extracellular Ca(2+). Biochemical evidence indicates that either + or - extracellular Ca(2+), PDBu (i) inhibits MLCP activity via the phosphorylation of myosin targeting subunit of myosin phosphatase (MYPT1) and C-kinase potentiated protein phosphatase-1 inhibitor (CPI-17), (ii) increases the phosphorylation of paxillin and heat shock protein 27 (HSP27), and reduces G-actin content, and (iii) does not change the phospho-content of the thin filament proteins, calponin and caldesmon. PDBu-induced constriction was more sensitive to disruption of actin cytoskeleton compared to inhibition of cross-bridge cycling. In conclusion, this study provided evidence for the pivotal contribution of cytoskeletal actin polymerization in force generation following PKC activation in cerebral resistance arteries. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Btk Regulates B Cell Receptor-Mediated Antigen Processing and Presentation by Controlling Actin Cytoskeleton Dynamics in B Cells

    PubMed Central

    Sharma, Shruti; Orlowski, Gregory; Song, Wenxia

    2010-01-01

    The high efficiency of Ag processing and presentation by B cells requires Ag-induced BCR signaling and actin cytoskeleton reorganization, although the underlying mechanism for such requirements remains elusive. In this study, we identify Bruton's tyrosine kinase (Btk) as a linker connecting BCR signaling to actin dynamics and the Ag transport pathway. Using xid mice and a Btk inhibitor, we show that BCR engagement increases actin polymerization and Wiskott-Aldrich syndrome protein activation in a Btk-dependent manner. Concurrently, we observe Btk-dependent increases in the levels of phosphatidylinositide-4,5-bisphosphate and phosphorylated Vav upon BCR engagement. The rate of BCR internalization, its movement to late endosomes, and efficiency of BCR-mediated Ag processing and presentation are significantly reduced in both xid and Btk inhibitor-treated B cells. Thus, Btk regulates actin dynamics and Ag transport by activating Wiskott-Aldrich syndrome protein via Vav and phosphatidylinositides. This represents a novel mechanism by which BCR-mediated signaling regulates BCR-mediated Ag processing and presentation. PMID:19109164

  17. [Nucleotide receptors and actin cytoskeleton dynamics].

    PubMed

    Kłopocka, Wanda; Korczyński, Jarosław

    2014-01-01

    Signaling cascades evoked by P2Y2 receptor plays an important role in the phenomena dependent on the actin cytoskeleton dynamics endocy-tosis, cell division, adhesion, intracellular transport and migration. P2Y2R coupled with G proteins, in response to ATP or UTP activates Rac1 and RhoA proteins important factors in actin cytoskeletal reorganization and regulates the level of phosphatidylinositol-4,5-bisphosphate (PIP2) that binds directly to a variety of actin regulatory proteins and modulates their function. The P2Y2 nucleotide receptor contains the integrin-binding domain enables it to interact selectively with α(v)β3 and α(v)β5 integrins and is required for G0-mediated Rac1 activation. Interaction with α(v)β5 is necessary for coupling the P2Y2 receptor to G12 and subsequent activation of RhoA.

  18. Disruption of actin cytoskeleton mediates loss of tensile stress induced early phenotypic modulation of vascular smooth muscle cells in organ culture.

    PubMed

    Zheng, Jian-Pu; Ju, Donghong; Shen, Jianbin; Yang, Maozhou; Li, Li

    2010-02-01

    Aorta organ culture has been widely used as an ex vivo model for studying vessel pathophysiology. Recent studies show that the vascular smooth muscle cells (VSMCs) in organ culture undergo drastic dedifferentiation within the first few hours (termed early phenotypic modulation). Loss of tensile stress to which aorta is subject in vivo is the cause of this early phenotypic modulation. However, no underlying molecular mechanism has been discovered thus far. The purpose of the present study is to identify intracellular signals involved in the early phenotypic modulation of VSMC in organ culture. We find that the drastic VSMC dedifferentiation is accompanied by accelerated actin cytoskeleton dynamics and downregulation of SRF and myocardin. Among the variety of signal pathways examined, increasing actin polymerization by jasplakinolide is the only one hindering VSMC dedifferentiation in organ culture. Moreover, jasplakinolide reverses actin dynamics during organ culture. Latrunculin B (disrupting actin cytoskeleton) and jasplakinolide respectively suppressed and enhanced the expression of VSMC markers, SRF, myocardin, and CArG-box-mediated SMC promoters in PAC1, a VSMC line. These results identify actin cytoskeleton degradation as a major intracellular signal for loss of tensile stress-induced early phenotypic modulation of VSMC in organ culture. This study suggests that disrupting actin cytoskeleton integrity may contribute to the pathogenesis of vascular diseases. Published by Elsevier Inc.

  19. Cell fusion mediates dramatic alterations in the actin cytoskeleton, focal adhesions, and E-cadherin in trophoblastic cells.

    PubMed

    Ishikawa, Atsuko; Omata, Waka; Ackerman, William E; Takeshita, Toshiyuki; Vandré, Dale D; Robinson, John M

    2014-04-01

    The syncytiotrophoblast of the human placenta is a unique epithelia structure with millions of nuclei sharing a common cytoplasm. The syncytiotrophoblast forms by cell-cell fusion of cytotrophoblasts (CTB), the mononuclear precursor cells. The trophoblastic BeWo cell line has been used as a surrogate for CTB since they can be induced to fuse, and subsequently display numerous syncytiotrophoblast differentiation markers following syncytial formation. In this study, we have focused on alterations in the cell-adhesion molecule E-cadherin, actin cytoskeleton, and focal adhesions following BeWo cell fusion, since these entities may be interrelated. There was a dramatic reorganization of the distribution of E-cadherin as well as a reduction in the amount of E-cadherin following cell fusion. Reorganization of the actin cytoskeleton was also observed, which was associated with a change in the globular actin (G-actin)/filamentous actin (F-actin) ratio. Concomitantly, the morphology of focal adhesions was altered, but this occurred without a corresponding change in the levels of focal adhesion marker proteins. Thus, extensive remodeling of the actin cytoskeleton and focal adhesions accompanies cell fusion and differentiation and appears related to alterations in E-cadherin in trophoblastic cells.

  20. Actin-Cytoskeleton- and Rock-Mediated INM Are Required for Photoreceptor Regeneration in the Adult Zebrafish Retina.

    PubMed

    Lahne, Manuela; Li, Jingling; Marton, Rebecca M; Hyde, David R

    2015-11-25

    Loss of retinal neurons in adult zebrafish (Danio rerio) induces a robust regenerative response mediated by the reentry of the resident Müller glia into the cell cycle. Upon initiating Müller glia proliferation, their nuclei migrate along the apicobasal axis of the retina in phase with the cell cycle in a process termed interkinetic nuclear migration (INM). We examined the mechanisms governing this cellular process and explored its function in regenerating the adult zebrafish retina. Live-cell imaging revealed that the majority of Müller glia nuclei migrated to the outer nuclear layer (ONL) to divide. These Müller glia formed prominent actin filaments at the rear of nuclei that had migrated to the ONL. Inhibiting actin filament formation or Rho-associated coiled-coil kinase (Rock) activity, which is necessary for phosphorylation of myosin light chain and actin myosin-mediated contraction, disrupted INM with increased numbers of mitotic nuclei remaining in the basal inner nuclear layer, the region where Müller glia typically reside. Double knockdown of Rho-associated coiled-coil kinase 2a (Rock2a) and Rho-associated coiled-coil kinase 2b (Rock2b) similarly disrupted INM and reduced Müller glial cell cycle reentry. In contrast, Rock inhibition immediately before the onset of INM did not affect Müller glia proliferation, but subsequently reduced neuronal progenitor cell proliferation due to early cell cycle exit. Long-term, Rock inhibition increased the generation of mislocalized ganglion/amacrine cells at the expense of rod and cone photoreceptors. In summary, INM is driven by an actin-myosin-mediated process controlled by Rock2a and Rock2b activity, which is required for sufficient proliferation and regeneration of photoreceptors after light damage. The human retina does not replace lost or damaged neurons, ultimately causing vision impairment. In contrast, zebrafish are capable of regenerating lost neurons. Understanding the mechanisms that regulate retinal

  1. Actin-Cytoskeleton- and Rock-Mediated INM Are Required for Photoreceptor Regeneration in the Adult Zebrafish Retina

    PubMed Central

    Lahne, Manuela; Li, Jingling; Marton, Rebecca M.

    2015-01-01

    Loss of retinal neurons in adult zebrafish (Danio rerio) induces a robust regenerative response mediated by the reentry of the resident Müller glia into the cell cycle. Upon initiating Müller glia proliferation, their nuclei migrate along the apicobasal axis of the retina in phase with the cell cycle in a process termed interkinetic nuclear migration (INM). We examined the mechanisms governing this cellular process and explored its function in regenerating the adult zebrafish retina. Live-cell imaging revealed that the majority of Müller glia nuclei migrated to the outer nuclear layer (ONL) to divide. These Müller glia formed prominent actin filaments at the rear of nuclei that had migrated to the ONL. Inhibiting actin filament formation or Rho-associated coiled-coil kinase (Rock) activity, which is necessary for phosphorylation of myosin light chain and actin myosin-mediated contraction, disrupted INM with increased numbers of mitotic nuclei remaining in the basal inner nuclear layer, the region where Müller glia typically reside. Double knockdown of Rho-associated coiled-coil kinase 2a (Rock2a) and Rho-associated coiled-coil kinase 2b (Rock2b) similarly disrupted INM and reduced Müller glial cell cycle reentry. In contrast, Rock inhibition immediately before the onset of INM did not affect Müller glia proliferation, but subsequently reduced neuronal progenitor cell proliferation due to early cell cycle exit. Long-term, Rock inhibition increased the generation of mislocalized ganglion/amacrine cells at the expense of rod and cone photoreceptors. In summary, INM is driven by an actin-myosin-mediated process controlled by Rock2a and Rock2b activity, which is required for sufficient proliferation and regeneration of photoreceptors after light damage. SIGNIFICANCE STATEMENT The human retina does not replace lost or damaged neurons, ultimately causing vision impairment. In contrast, zebrafish are capable of regenerating lost neurons. Understanding the mechanisms

  2. GPCRs and actin-cytoskeleton dynamics.

    PubMed

    Vázquez-Victorio, Genaro; González-Espinosa, Claudia; Espinosa-Riquer, Zyanya P; Macías-Silva, Marina

    2016-01-01

    A multitude of physiological processes regulated by G protein-coupled receptors (GPCRs) signaling are accomplished by the participation of active rearrangements of the cytoskeleton. In general, it is common that a cross talk occurs among networks of microfilaments, microtubules, and intermediate filaments in order to reach specific cell responses. In particular, actin-cytoskeleton dynamics regulate processes such as cell shape, cell division, cell motility, and cell polarization, among others. This chapter describes the current knowledge about the regulation of actin-cytoskeleton dynamic by diverse GPCR signaling pathways, and also includes some protocols combining immunofluorescence and confocal microscopy for the visualization of the different rearrangements of the actin-cytoskeleton. We report how both the S1P-GPCR/G12/13/Rho/ROCK and glucagon-GPCR/Gs/cAMP axes induce differential actin-cytoskeleton rearrangements in epithelial cells. We also show that specific actin-binding molecules, like phalloidin and LifeAct, are very useful to analyze F-actin reorganization by confocal microscopy, and also that both molecules show similar results in fixed cells, whereas the anti-actin antibody is useful to detect both the G- and F-actin, as well as their compartmentalization. Thus, it is highly recommended to utilize different approaches to investigate the regulation of actin dynamics by GPCR signaling, with the aim to get a better picture of the phenomenon under study.

  3. The Role of Actin Cytoskeleton in Memory Formation in Amygdala

    PubMed Central

    Lamprecht, Raphael

    2016-01-01

    The central, lateral and basolateral amygdala (BLA) nuclei are essential for the formation of long-term memories including emotional and drug-related memories. Studying cellular and molecular mechanisms of memory in amygdala may lead to better understanding of how memory is formed and of fear and addiction-related disorders. A challenge is to identify molecules activated by learning that subserve cellular changes needed for memory formation and maintenance in amygdala. Recent studies show that activation of synaptic receptors during fear and drug-related learning leads to alteration in actin cytoskeleton dynamics and structure in amygdala. Such changes in actin cytoskeleton in amygdala are essential for fear and drug-related memories formation. Moreover, the actin cytoskeleton subserves, after learning, changes in neuronal morphogenesis and glutamate receptors trafficking in amygdala. These cellular events are involved in fear and drug-related memories formation. Actin polymerization is also needed for the maintenance of drug-associated memories in amygdala. Thus, the actin cytoskeleton is a key mediator between receptor activation during learning and cellular changes subserving long-term memory (LTM) in amygdala. The actin cytoskeleton may serve as a target for pharmacological treatment of fear memory associated with fear and anxiety disorders and drug addiction to prevent the debilitating consequences of these diseases. PMID:27065800

  4. Simulated Microgravity Alters Actin Cytoskeleton and Integrin-Mediated Focal Adhesions of Cultured Human Mesenchymal Stromal Cells

    NASA Astrophysics Data System (ADS)

    Gershovich, P. M.; Gershovic, J. G.; Buravkova, L. B.

    2008-06-01

    Cytoskeletal alterations occur in several cell types including lymphocytes, glial cells, and osteoblasts, during spaceflight and under simulated microgravity (SMG) (3, 4). One potential mechanism for cytoskeletal gravisensitivity is disruption of extracellular matrix (ECM) and integrin interactions. Focal adhesions are specialized sites of cell-matrix interaction composed of integrins and the diversity of focal adhesion-associated cytoplasmic proteins including vinculin, talin, α-actinin, and actin filaments (4, 5). Integrins produce signals essential for proper cellular function, survival and differentiation. Therefore, we investigated the effects of SMG on F-actin cytoskeleton structure, vinculin focal adhesions, expression of some integrin subtypes and cellular adhesion molecules (CAMs) in mesenchymal stem cells derived from human bone marrow (hMSCs). Simulated microgravity was produced by 3D-clinostat (Dutch Space, Netherlands). Staining of actin fibers with TRITC-phalloidin showed reorganization even after 30 minutes of simulated microgravity. The increasing of cells number with abnormal F-actin was observed after subsequent terms of 3D-clinorotation (6, 24, 48, 120 hours). Randomization of gravity vector altered dimensional structure of stress fibers and resulted in remodeling of actin fibers inside the cells. In addition, we observed vinculin redistribution inside the cells after 6 hours and prolonged terms of clinorotation. Tubulin fibers in a contrast with F-actin and vinculin didn't show any reorganization even after long 3Dclinorotation (120 hours). The expression of integrin α2 increased 1,5-6-fold in clinorotated hMSCs. Also we observed decrease in number of VCAM-1-positive cells and changes in expression of ICAM-1. Taken together, our findings indicate that SMG leads to microfilament and adhesion alterations of hMSCs most probably associated with involvement of some integrin subtypes.

  5. Glucocorticoid receptor-mediated expression of caldesmon regulates cell migration via the reorganization of the actin cytoskeleton.

    PubMed

    Mayanagi, Taira; Morita, Tsuyoshi; Hayashi, Ken'ichiro; Fukumoto, Kentaro; Sobue, Kenji

    2008-11-07

    Glucocorticoids (GCs) play important roles in numerous cellular processes, including growth, development, homeostasis, inhibition of inflammation, and immunosuppression. Here we found that GC-treated human lung carcinoma A549 cells exhibited the enhanced formation of the thick stress fibers and focal adhesions, resulting in suppression of cell migration. In a screen for GC-responsive genes encoding actin-interacting proteins, we identified caldesmon (CaD), which is specifically up-regulated in response to GCs. CaD is a regulatory protein involved in actomyosin-based contraction and the stability of actin filaments. We further demonstrated that the up-regulation of CaD expression was controlled by glucocorticoid receptor (GR). An activated form of GR directly bound to the two glucocorticoid-response element-like sequences in the human CALD1 promoter and transactivated the CALD1 gene, thereby up-regulating the CaD protein. Forced expression of CaD, without GC treatment, also enhanced the formation of thick stress fibers and focal adhesions and suppressed cell migration. Conversely, depletion of CaD abrogated the GC-induced phenotypes. The results of this study suggest that the GR-dependent up-regulation of CaD plays a pivotal role in regulating cell migration via the reorganization of the actin cytoskeleton.

  6. The Platelet Actin Cytoskeleton Associates with SNAREs and Participates in α-Granule Secretion†

    PubMed Central

    Woronowicz, Kamil; Dilks, James R.; Rozenvayn, Nataliya; Dowal, Louisa; Blair, Price S.; Peters, Christian G.; Woronowicz, Lucyna; Flaumenhaft, Robert

    2010-01-01

    Following platelet activation, platelets undergo a dramatic shape change mediated by the actin cytoskeleton and accompanied by secretion of granule contents. While the actin cytoskeleton is thought to influence platelet granule secretion, the mechanism for this putative regulation is not known. We found that disruption of the actin cytoskeleton by latrunculin A inhibited α-granule secretion induced by several different platelet agonists without significantly affecting activation-induced platelet aggregation. In a cell-free secretory system, platelet cytosol was required for α-granule secretion. Inhibition of actin polymerization prevented α-granule secretion in this system and purified platelet actin could substitute for platelet cytosol to support α–granule secretion. To determine whether SNAREs physically associate with the actin cytoskeleton, we isolated the Triton X-100 insoluble actin cytoskeleton from platelets. VAMP-8 and syntaxin-2 associated only with actin cytoskeletons of activated platelets. Syntaxin-4 and SNAP-23 associated with cytoskeletons isolated from either resting or activated platelets. When syntaxin-4 and SNAP-23 were tested for actin binding in a purified protein system, only syntaxin-4 associated directly with polymerized platelet actin. These data show that the platelet cytoskeleton interacts with select SNAREs and that actin polymerization facilitates α-granule release. PMID:20429610

  7. The Role of the Actin Cytoskeleton in Regulating Drosophila Behavior

    PubMed Central

    Ojelade, Shamsideen A.; Acevedo, Summer F.; Rothenfluh, Adrian

    2014-01-01

    Over the past decade, the function of the cytoskeleton has been extensively studied in developing and in mature neurons. Actin, a major cytoskeletal protein, is indispensable for the structural integrity and plasticity of neurons and their synapses. Disruption of actin dynamics has significant consequence for neurons, neuronal circuits, and the functions they govern. In particular, cell adhesion molecules (CAMs), members of the Rho family of GTPases, and actin binding proteins (ABPs) are important modulators of actin dynamics and neuronal as well as behavioral plasticity. In this review, we discuss recent advances in Drosophila that highlight the importance of actin regulatory proteins in mediating fly behaviors such as circadian rhythm, courtship behavior, learning and memory, and the development of drug addiction. PMID:24077615

  8. Actin Out: Regulation of the Synaptic Cytoskeleton

    PubMed Central

    Spence, Erin F.; Soderling, Scott H.

    2015-01-01

    The small size of dendritic spines belies the elaborate role they play in excitatory synaptic transmission and ultimately complex behaviors. The cytoskeletal architecture of the spine is predominately composed of actin filaments. These filaments, which at first glance might appear simple, are also surprisingly complex. They dynamically assemble into different structures and serve as a platform for orchestrating the elaborate responses of the spine during spinogenesis and experience-dependent plasticity. Multiple mutations associated with human neurodevelopmental and psychiatric disorders involve genes that encode regulators of the synaptic cytoskeleton. A major, unresolved question is how the disruption of specific actin filament structures leads to the onset and progression of complex synaptic and behavioral phenotypes. This review will cover established and emerging mechanisms of actin cytoskeletal remodeling and how this influences specific aspects of spine biology that are implicated in disease. PMID:26453304

  9. Study of the Actin Cytoskeleton in Live Endothelial Cells Expressing GFP-Actin

    PubMed Central

    Doggett, Travis M.; Breslin, Jerome W.

    2011-01-01

    The microvascular endothelium plays an important role as a selectively permeable barrier to fluids and solutes. The adhesive junctions between endothelial cells regulate permeability of the endothelium, and many studies have indicated the important contribution of the actin cytoskeleton to determining junctional integrity1-5. A cortical actin belt is thought to be important for the maintenance of stable junctions1, 2, 4, 5. In contrast, actin stress fibers are thought to generate centripetal tension within endothelial cells that weakens junctions2-5. Much of this theory has been based on studies in which endothelial cells are treated with inflammatory mediators known to increase endothelial permeability, and then fixing the cells and labeling F-actin for microscopic observation. However, these studies provide a very limited understanding of the role of the actin cytoskeleton because images of fixed cells provide only snapshots in time with no information about the dynamics of actin structures5. Live-cell imaging allows incorporation of the dynamic nature of the actin cytoskeleton into the studies of the mechanisms determining endothelial barrier integrity. A major advantage of this method is that the impact of various inflammatory stimuli on actin structures in endothelial cells can be assessed in the same set of living cells before and after treatment, removing potential bias that may occur when observing fixed specimens. Human umbilical vein endothelial cells (HUVEC) are transfected with a GFP-β-actin plasmid and grown to confluence on glass coverslips. Time-lapse images of GFP-actin in confluent HUVEC are captured before and after the addition of inflammatory mediators that elicit time-dependent changes in endothelial barrier integrity. These studies enable visual observation of the fluid sequence of changes in the actin cytoskeleton that contribute to endothelial barrier disruption and restoration. Our results consistently show local, actin-rich lamellipodia

  10. Actin cytoskeleton: putting a CAP on actin polymerization.

    PubMed

    Stevenson, V A; Theurkauf, W E

    2000-10-05

    Two recent studies have identified a Drosophila homolog of cyclase-associated protein (CAP) as a developmentally important negative regulator of actin polymerization that may also directly mediate signal transduction.

  11. Yeast studies reveal moonlighting functions of the ancient actin cytoskeleton

    PubMed Central

    Sattlegger, Evelyn; Chernova, Tatiana A.; Gogoi, Neeku M.; Pillai, Indu V.; Chernoff, Yury O.; Munn, Alan L.

    2014-01-01

    Classic functions of the actin cytoskeleton include control of cell size and shape and the internal organisation of cells. These functions are manifest in cellular processes of fundamental importance throughout biology such as the generation of cell polarity, cell migration, cell adhesion and cell division. However, studies in the unicellular model eukaryote Saccharomyces cerevisiae (Baker's yeast) are giving insights into other functions in which the actin cytoskeleton plays a critical role. These include endocytosis, control of protein translation and determination of protein 3-dimensional shape (especially conversion of normal cellular proteins into prions). Here we present a concise overview of these new "moonlighting" roles for the actin cytoskeleton and how some of these roles might lie at the heart of important molecular switches. This is an exciting time for researchers interested in the actin cytoskeleton. We show here how studies of actin are leading us into many new and exciting realms at the interface of genetics, biochemistry and cell biology. While many of the pioneering studies have been conducted using yeast, the conservation of the actin cytoskeleton and its component proteins throughout eukaryotes suggests that these new roles for the actin cytoskeleton may not be restricted to yeast cells but rather may reflect new roles for the actin cytoskeleton of all eukaryotes. PMID:25138357

  12. Roles of actin cytoskeleton for regulation of chloroplast anchoring.

    PubMed

    Sakai, Yuuki; Takagi, Shingo

    2017-08-22

    Chloroplasts are known to maintain specific intracellular distribution patterns under specific environmental conditions, enabling the optimal performance of photosynthesis. To this end, chloroplasts are anchored in the cortical cytoplasm. In leaf epidermal cells of aquatic monocot Vallisneria, we recently demonstrated that the anchored chloroplasts are rapidly de-anchored upon irradiation with high-intensity blue light and that the process is probably mediated by the blue-light receptor phototropins. Chloroplast de-anchoring is a necessary step rendering the previously anchored chloroplasts mobile to allow their migration. In this article, based on the results obtained in Vallisneria together with those in other plant species, we briefly discussed possible modes of regulation of chloroplast anchoring and de-anchoring by actin cytoskeleton. The topics include roles of photoreceptor systems, actin-filament-dependent and -independent chloroplast anchoring, and independence of chloroplast de-anchoring from actomyosin and microtubule systems.

  13. Supervillin Reorganizes the Actin Cytoskeleton and Increases Invadopodial Efficiency

    PubMed Central

    Crowley, Jessica L.; Smith, Tara C.; Fang, Zhiyou; Takizawa, Norio

    2009-01-01

    Tumor cells use actin-rich protrusions called invadopodia to degrade extracellular matrix (ECM) and invade tissues; related structures, termed podosomes, are sites of dynamic ECM interaction. We show here that supervillin (SV), a peripheral membrane protein that binds F-actin and myosin II, reorganizes the actin cytoskeleton and potentiates invadopodial function. Overexpressed SV induces redistribution of lamellipodial cortactin and lamellipodin/RAPH1/PREL1 away from the cell periphery to internal sites and concomitantly increases the numbers of F-actin punctae. Most punctae are highly dynamic and colocalize with the podosome/invadopodial proteins, cortactin, Tks5, and cdc42. Cortactin binds SV sequences in vitro and contributes to the formation of enhanced green fluorescent protein (EGFP)-SV induced punctae. SV localizes to the cores of Src-generated podosomes in COS-7 cells and with invadopodia in MDA-MB-231 cells. EGFP-SV overexpression increases average numbers of ECM holes per cell; RNA interference-mediated knockdown of SV decreases these numbers. Although SV knockdown alone has no effect, simultaneous down-regulation of SV and the closely related protein gelsolin reduces invasion through ECM. Together, our results show that SV is a component of podosomes and invadopodia and that SV plays a role in invadopodial function, perhaps as a mediator of cortactin localization, activation state, and/or dynamics of metalloproteinases at the ventral cell surface. PMID:19109420

  14. GRP75 upregulates clathrin-independent endocytosis through actin cytoskeleton reorganization mediated by the concurrent activation of Cdc42 and RhoA.

    PubMed

    Chen, Hang; Gao, Zhihui; He, Changzheng; Xiang, Rong; van Kuppevelt, Toin H; Belting, Mattias; Zhang, Sihe

    2016-05-01

    Therapeutic macromolecules are internalized into the cell by either clathrin-mediated endocytosis (CME) or clathrin-independent endocytosis (CIE). Although some chaperone proteins play an essential role in CME (e.g. Hsc70 in clathrin uncoating), relatively few of these proteins are functionally involved in CIE. We previously revealed a role for the mitochondrial chaperone protein GRP75 in heparan sulfate proteoglycan (HSPG)-mediated, membrane raft-associated macromolecule endocytosis. However, the mechanism underlying this process remains unclear. In this study, using a mitochondrial signal peptide-directed protein trafficking expression strategy, we demonstrate that wild-type GRP75 expression enhanced the uptakes of HSPG and CIE marker cholera toxin B subunit but impaired the uptake of CME marker transferrin. The endocytosis regulation function of GRP75 is largely mediated by its subcellular location in mitochondria and is essentially determined by its ATPase domain. Interestingly, the mitochondrial expression of GRP75 or its ATPase domain significantly stimulates increases in both RhoA and Cdc42 activation, remarkably induces stress fibers and enhances filopodia formation, which collectively results in the promotion of CIE, but the inhibition of CME. Furthermore, silencing of Cdc42 or RhoA impaired the ability of GRP75 overexpression to increase CIE. Therefore, these results suggest that endocytosis vesicle enrichment of GRP75 by mitochondria trafficking upregulates CIE through an actin cytoskeleton reorganization mechanism mediated by the concurrent activation of Cdc42 and RhoA. This finding provides novel insight into organelle-derived chaperone signaling and the regulation of different endocytosis pathways in cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins

    PubMed Central

    Paredez, Alexander R.; Assaf, Zoe June; Sept, David; Timofejeva, Ljudmilla; Dawson, Scott C.; Wang, Chung-Ju Rachel; Cande, W. Z.

    2011-01-01

    Giardia intestinalis, a human intestinal parasite and member of what is perhaps the earliest-diverging eukaryotic lineage, contains the most divergent eukaryotic actin identified to date and is the first eukaryote known to lack all canonical actin-binding proteins (ABPs). We sought to investigate the properties and functions of the actin cytoskeleton in Giardia to determine whether Giardia actin (giActin) has reduced or conserved roles in core cellular processes. In vitro polymerization of giActin produced filaments, indicating that this divergent actin is a true filament-forming actin. We generated an anti-giActin antibody to localize giActin throughout the cell cycle. GiActin localized to the cortex, nuclei, internal axonemes, and formed C-shaped filaments along the anterior of the cell and a flagella-bundling helix. These structures were regulated with the cell cycle and in encysting cells giActin was recruited to the Golgi-like cyst wall processing vesicles. Knockdown of giActin demonstrated that giActin functions in cell morphogenesis, membrane trafficking, and cytokinesis. Additionally, Giardia contains a single G protein, giRac, which affects the Giardia actin cytoskeleton independently of known target ABPs. These results imply that there exist ancestral and perhaps conserved roles for actin in core cellular processes that are independent of canonical ABPs. Of medical significance, the divergent giActin cytoskeleton is essential and commonly used actin-disrupting drugs do not depolymerize giActin structures. Therefore, the giActin cytoskeleton is a promising drug target for treating giardiasis, as we predict drugs that interfere with the Giardia actin cytoskeleton will not affect the mammalian host. PMID:21444821

  16. An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins.

    PubMed

    Paredez, Alexander R; Assaf, Zoe June; Sept, David; Timofejeva, Ljudmilla; Dawson, Scott C; Wang, Chung-Ju Rachel; Cande, W Z

    2011-04-12

    Giardia intestinalis, a human intestinal parasite and member of what is perhaps the earliest-diverging eukaryotic lineage, contains the most divergent eukaryotic actin identified to date and is the first eukaryote known to lack all canonical actin-binding proteins (ABPs). We sought to investigate the properties and functions of the actin cytoskeleton in Giardia to determine whether Giardia actin (giActin) has reduced or conserved roles in core cellular processes. In vitro polymerization of giActin produced filaments, indicating that this divergent actin is a true filament-forming actin. We generated an anti-giActin antibody to localize giActin throughout the cell cycle. GiActin localized to the cortex, nuclei, internal axonemes, and formed C-shaped filaments along the anterior of the cell and a flagella-bundling helix. These structures were regulated with the cell cycle and in encysting cells giActin was recruited to the Golgi-like cyst wall processing vesicles. Knockdown of giActin demonstrated that giActin functions in cell morphogenesis, membrane trafficking, and cytokinesis. Additionally, Giardia contains a single G protein, giRac, which affects the Giardia actin cytoskeleton independently of known target ABPs. These results imply that there exist ancestral and perhaps conserved roles for actin in core cellular processes that are independent of canonical ABPs. Of medical significance, the divergent giActin cytoskeleton is essential and commonly used actin-disrupting drugs do not depolymerize giActin structures. Therefore, the giActin cytoskeleton is a promising drug target for treating giardiasis, as we predict drugs that interfere with the Giardia actin cytoskeleton will not affect the mammalian host.

  17. From Cytoskeleton to Gene Expression: Actin in the Nucleus.

    PubMed

    Viita, Tiina; Vartiainen, Maria K

    2017-01-01

    Although most people still associate actin mainly with the cytoskeleton, several lines of evidence, with the earliest studies dating back to decades ago, have emphasized the importance of actin also inside the cell nucleus. Actin has been linked to many gene expression processes from gene activation to chromatin remodeling, but also to maintenance of genomic integrity and intranuclear movement of chromosomes and chromosomal loci. Recent advances in visualizing different forms and dynamic properties of nuclear actin have clearly advanced our understanding of the basic concepts by which actin operates in the nucleus. In this chapter we address the different breakthroughs in nuclear actin studies, as well as discuss the regulation nuclear actin and the importance of nuclear actin dynamics in relation to its different nuclear functions. Our aim is to highlight the fact that actin should be considered as an essential component of the cell nucleus, and its nuclear actions should be taken into account also in experiments on cytoplasmic actin networks.

  18. Spatial control of the actin cytoskeleton in Drosophila epithelial cells.

    PubMed

    Baum, B; Perrimon, N

    2001-10-01

    The actin cytoskeleton orders cellular space and transduces many of the forces required for morphogenesis. Here we combine genetics and cell biology to identify genes that control the polarized distribution of actin filaments within the Drosophila follicular epithelium. We find that profilin and cofilin regulate actin-filament formation throughout the cell cortex. In contrast, CAP-a Drosophila homologue of Adenylyl Cyclase Associated Proteins-functions specifically to limit actin-filament formation catalysed by Ena at apical cell junctions. The Abl tyrosine kinase also collaborates in this process. We therefore propose that CAP, Ena and Abl act in concert to modulate the subcellular distribution of actin filaments in Drosophila.

  19. Diversification of caldesmon-linked actin cytoskeleton in cell motility

    PubMed Central

    Mayanagi, Taira

    2011-01-01

    The actin cytoskeleton plays a key role in regulating cell motility. Caldesmon (CaD) is an actin-linked regulatory protein found in smooth muscle and non-muscle cells that is conserved among a variety of vertebrates. It binds and stabilizes actin filaments, as well as regulating actin-myosin interaction in a calcium (Ca2+)/calmodulin (CaM)- and/or phosphorylation-dependent manner. CaD function is regulated qualitatively by Ca2+/CaM and by its phosphorylation state and quantitatively at the mRNA level, by three different transcriptional regulation of the CALD1 gene. CaD has numerous functions in cell motility, such as migration, invasion and proliferation, exerted via the reorganization of the actin cytoskeleton. Here we will outline recent findings regarding CaD's structural features and functions. PMID:21350330

  20. Dynamic reorganization of the actin cytoskeleton

    PubMed Central

    Gressin, Laurène; Théry, Manuel; Blanchoin, Laurent

    2015-01-01

    Cellular processes, including morphogenesis, polarization, and motility, rely on a variety of actin-based structures. Although the biochemical composition and filament organization of these structures are different, they often emerge from a common origin. This is possible because the actin structures are highly dynamic. Indeed, they assemble, grow, and disassemble in a time scale of a second to a minute. Therefore, the reorganization of a given actin structure can promote the formation of another. Here, we discuss such transitions and illustrate them with computer simulations. PMID:26989473

  1. Dynamic reorganization of the actin cytoskeleton.

    PubMed

    Letort, Gaëlle; Ennomani, Hajer; Gressin, Laurène; Théry, Manuel; Blanchoin, Laurent

    2015-01-01

    Cellular processes, including morphogenesis, polarization, and motility, rely on a variety of actin-based structures. Although the biochemical composition and filament organization of these structures are different, they often emerge from a common origin. This is possible because the actin structures are highly dynamic. Indeed, they assemble, grow, and disassemble in a time scale of a second to a minute. Therefore, the reorganization of a given actin structure can promote the formation of another. Here, we discuss such transitions and illustrate them with computer simulations.

  2. Unconventional myosin traffic in cells reveals a selective actin cytoskeleton

    PubMed Central

    Brawley, Crista M.; Rock, Ronald S.

    2009-01-01

    Eukaryotic cells have a self-organizing cytoskeleton where motors transport cargoes along cytoskeletal tracks. To understand the sorting process, we developed a system to observe single-molecule motility in a cellular context. We followed myosin classes V, VI, and X on triton-extracted actin cytoskeletons from Drosophila S2, mammalian COS-7, and mammalian U2OS cells. We find that these cells vary considerably in their global traffic patterns. The S2 and U2OS cells have regions of actin that either enhance or inhibit specific myosin classes. U2OS cells allow for 1 motor class, myosin VI, to move along stress fiber bundles, while motility of myosin V and X are suppressed. Myosin X motors are recruited to filopodia and the lamellar edge in S2 cells, whereas myosin VI motility is excluded from the same regions. Furthermore, we also see different velocities of myosin V motors in central regions of S2 cells, suggesting regional control of motor motility by the actin cytoskeleton. We also find unexpected features of the actin cytoskeletal network, including a population of reversed filaments with the barbed-end toward the cell center. This myosin motor regulation demonstrates that native actin cytoskeletons are more than just a collection of filaments. PMID:19478066

  3. Multiple roles for the actin cytoskeleton during regulated exocytosis

    PubMed Central

    Porat-Shliom, Natalie; Milberg, Oleg; Masedunskas, Andrius; Weigert, Roberto

    2014-01-01

    Regulated exocytosis is the main mechanism utilized by specialized secretory cells to deliver molecules to the cell surface by virtue of membranous containers (i.e. secretory vesicles). The process involves a series of highly coordinated and sequential steps, which include the biogenesis of the vesicles, their delivery to the cell periphery, their fusion with the plasma membrane and the release of their content into the extracellular space. Each of these steps is regulated by the actin cytoskeleton. In this review, we summarize the current knowledge regarding the involvement of actin and its associated molecules during each of the exocytic steps in vertebrates, and suggest that the overall role of the actin cytoskeleton during regulated exocytosis is linked to the architecture and the physiology of the secretory cells under examination. Specifically, in neurons, neuroendocrine, endocrine, and hematopoietic cells, which contain small secretory vesicles that undergo rapid exocytosis (on the order of milliseconds), the actin cytoskeleton plays a role in pre-fusion events, where it acts primarily as a functional barrier and facilitates docking. In exocrine and other secretory cells, which contain large secretory vesicles that undergo slow exocytosis (seconds to minutes), the actin cytoskeleton plays a role in post-fusion events, where it regulates the dynamics of the fusion pore, facilitates the integration of the vesicles into the plasma membrane, provides structural support, and promotes the expulsion of large cargo molecules. PMID:22986507

  4. Primary immunodeficiencies due to abnormalities of the actin cytoskeleton.

    PubMed

    Burns, Siobhan O; Zarafov, Anton; Thrasher, Adrian J

    2017-01-01

    Primary immunodeficiencies (PIDs) are inherited conditions where components of the immune system are missing or dysfunctional. Over 300 genes have been causally linked to monogenic forms of PID, including a number that regulate the actin cytoskeleton. The majority of cytoskeletal defects disrupt assembly and disassembly of filamentous actin in multiple immune cell lineages impacting functions such as cell migration and adhesion, pathogen uptake, intercellular communication, intracellular signalling, and cell division. In the past 24 months, new actin defects have been identified through next generation sequencing technologies. Substantial progress has also been made in understanding the pathogenic mechanisms that contribute to immunological dysfunction, and also how the cytoskeleton participates in normal physiological immune processes. This review summarises recent advances in the field, raising awareness of these conditions and our current understanding of their presentation. Description of further cases and new conditions will extend the clinical phenotype of actin-related disorders, and will promote the development of more effective and targeted therapies.

  5. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton.

    PubMed

    Hartsock, Andrea; Nelson, W James

    2008-03-01

    Adherens junctions and Tight junctions comprise two modes of cell-cell adhesion that provide different functions. Both junctional complexes are proposed to associate with the actin cytoskeleton, and formation and maturation of cell-cell contacts involves reorganization of the actin cytoskeleton. Adherens junctions initiate cell-cell contacts, and mediate the maturation and maintenance of the contact. Adherens junctions consist of the transmembrane protein E-cadherin, and intracellular components, p120-catenin, beta-catenin and alpha-catenin. Tight junctions regulate the paracellular pathway for the movement of ions and solutes in-between cells. Tight junctions consist of the transmembrane proteins occludin and claudin, and the cytoplasmic scaffolding proteins ZO-1, -2, and -3. This review discusses the binding interactions of the most studied proteins that occur within each of these two junctional complexes and possible modes of regulation of these interactions, and the different mechanisms that connect and regulate interactions with the actin cytoskeleton.

  6. ARHGAP22 Localizes at Endosomes and Regulates Actin Cytoskeleton

    PubMed Central

    Mori, Mamiko; Saito, Koji; Ohta, Yasutaka

    2014-01-01

    Rho small GTPases control cell morphology and motility through the rearrangement of actin cytoskeleton. We have previously shown that FilGAP, a Rac-specific GAP, binds to the actin-cross-linking protein Filamin A (FLNa) and suppresses Rac-dependent lamellae formation and cell spreading. ARHGAP22 is a member of FilGAP family, and implicated in the regulation of tumor cell motility. However, little is known concerning the cellular localization and mechanism of regulation at the molecular level. Whereas FilGAP binds to FLNa and localizes to lamellae, we found that ARHGAP22 did not bind to FLNa. Forced expression of ARHGAP22 induced enlarged vesicular structures containing the endocytic markers EEA1, Rab5, and Rab11. Moreover, endogenous ARHGAP22 is co-localized with EEA1- and Rab11-positive endosomes but not with trans-Golgi marker TNG46. When constitutively activated Rac Q61L mutant was expressed, ARHGAP22 is co-localized with Rac Q61L at membrane ruffles, suggesting that ARHGAP22 is translocated from endosomes to membrane ruffles to inactivate Rac. Forced expression of ARHGAP22 suppressed lamellae formation and cell spreading. Conversely, knockdown of endogenous ARHGAP22 stimulated cell spreading. Thus, our findings suggest that ARHGAP22 controls cell morphology by inactivating Rac but its localization is not mediated by its interaction with FLNa. PMID:24933155

  7. Phosphoinositide-specific phospholipase C in oat roots: association with the actin cytoskeleton.

    PubMed

    Huang, Chiung-Hua; Crain, Richard C

    2009-10-01

    Phosphoinositide-specific phospholipase C (PI-PLC) activities are involved in mediating plant cell responses to environmental stimuli. Two variants of PI-PLC have been partially purified from the roots of oat seedlings; one cytosolic and one particulate. Although the cytosolic enzyme was significantly purified, the activity still co-migrated with a number of other proteins on heparin HPLC and also on size-exclusion chromatography. The partially purified PI-PLC was tested by Western blotting, and we found that actin and actin-binding proteins, profilin and tropomyosin, co-purified with cytosolic phospholipase C. After a non-ionic detergent (Triton X-100) treatment, PI-PLC activities still remained with the actin cytoskeleton. The effects of phalloidin and F-buffer confirmed this association; these conditions, which favor actin polymerization, decreased the release of PI-PLC from the cytoskeleton. The treatments of latrunculin and G-buffer, the conditions that favor actin depolymerization, increased the release of PI-PLC from the cytoskeleton. These results suggest that oat PI-PLC associates with the actin cytoskeleton.

  8. Sinoporphyrin sodium mediated photodynamic therapy inhibits the migration associated with collapse of F-actin filaments cytoskeleton in MDA-MB-231 cells.

    PubMed

    Wu, Lijie; Wang, Xiaobing; Liu, Quanhong; Wingnang Leung, Albert; Wang, Pan; Xu, Chuanshan

    2016-03-01

    We previously demonstrated that the photosensitizer sinoporphyrin sodium (DVDMS) mediated photodynamic therapy (PDT) had potential advantages in inhibiting tumor growth and metastasis. However, details regarding the mechanism of cell migration inhibition remain unclear. Therefore, in this study, we aimed to investigate the effects of DVDMS-PDT on F-actin filaments, cell migration, apoptotic response and the possible interactions between them in human breast cancer MDA-MB-231 cells. The cell viability was evaluated by MTT and Guava ViaCount assays. The subcellular localization of DVDMS and reactive oxygen species (ROS) generation were analyzed by fluorescence microscope and flow cytometry. FITC-phalloidin was used to evaluate the changes of F-actin filaments. Cell migration was analyzed by scratch assay and Transwell assay. Cell apoptosis was determined by nuclear TUNEL staining and Annexin V-PE/7-AAD assay. Jasplakinolide, an F-actin stabilizer, was applied to dissect the influences of F-actin filaments disruption on cell migration and apoptosis. DVDMS-PDT significantly suppressed cell proliferation, promoted early apoptotic response, triggered collapse of F-actin filaments and inhibited cell migration in MDA-MB-231 cells. Cell migration significantly increased when cells were pretreated with F-actin stabilizer jasplakinolide after PDT, while cell apoptosis was not obviously affected. Moreover, ROS was a key factor in causing collapse of F-actin filaments. We demonstrated that DVDMS-PDT triggered cell apoptosis and collapse of F-actin filaments through the induction of ROS in MDA-MB-231 cells. F-actin filaments contributed to cell migration but produced no obvious effect on cell apoptosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Actin cytoskeleton in Arabidopsis thaliana under blue and red light.

    PubMed

    Krzeszowiec, Weronika; Rajwa, Bartek; Dobrucki, Jurek; Gabryś, Halina

    2007-05-01

    Actin cytoskeleton is the basis of chloroplast-orientation movements. These movements are activated by blue light in the leaves of terrestrial angiosperms. Red light has been shown to affect the spatial reorganization of F-actin in water plants, where chloroplast movements are closely connected with cytoplasmic streaming. The aim of the present study was to determine whether blue light, which triggers characteristic responses of chloroplasts, i.e. avoidance and accumulation, also influences F-actin organization in the mesophyll cells of Arabidopsis thaliana. Actin filaments in fixed mesophyll tissue were labelled with Alexa Fluor 488-conjugated phalloidin. The configuration of actin filaments, expressed as a form factor (4 pi x area/perimeter(2)), was determined for all actin formations which were measured in fluorescence confocal images. In the present study, we compare form-factor distributions and the median form factors for strong and weak, blue- and red-irradiated tissues. Spatial organization of the F-actin network did not undergo any changes which could be attributed specifically to blue light. Actin patterns were similar in blue-irradiated wild-type plants and phot2 (phototropin 2) mutants which lack the avoidance response of chloroplasts. However, significant differences in the shape and distribution of F-actin formations were observed between mesophyll cells of phot2 mutants irradiated with strong and weak red light. These differences were absent in wild-type leaves. Actin does not appear to be the main target for the blue-light chloroplast-orientation signal. The modes of actin involvement in chloroplast translocations are different in water and terrestrial angiosperms. The results suggest that co-operation occurs between blue- and red-light photoreceptors in the control of the actin cytoskeleton architecture in Arabidopsis.

  10. Plant actin cytoskeleton re-modeling by plant parasitic nematodes.

    PubMed

    Engler, Janice de Almeida; Rodiuc, Natalia; Smertenko, Andrei; Abad, Pierre

    2010-03-01

    The cytoskeleton is an important component of the plant's defense mechanism against the attack of pathogenic organisms. Plants however, are defenseless against parasitic root-knot and cyst nematodes and respond to the invasion by the development of a special feeding site that supplies the parasite with nutrients required for the completion of its life cycle. Recent studies of nematode invasion under treatment with cytoskeletal drugs and in mutant plants where normal functions of the cytoskeleton have been affected, demonstrate the importance of the cytoskeleton in the establishment of a feeding site and successful nematode reproduction. It appears that in the case of microfilaments, nematodes hijack the intracellular machinery that regulates actin dynamics and modulate the organization and properties of the actin filament network. Intervening with this process reduces the nematode infection efficiency and inhibits its life cycle. This discovery uncovers a new pathway that can be exploited for the protection of plants against nematodes.

  11. The yeast actin cytoskeleton: from cellular function to biochemical mechanism.

    PubMed

    Moseley, James B; Goode, Bruce L

    2006-09-01

    All cells undergo rapid remodeling of their actin networks to regulate such critical processes as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. These events are driven by the coordinated activities of a set of 20 to 30 highly conserved actin-associated proteins, in addition to many cell-specific actin-associated proteins and numerous upstream signaling molecules. The combined activities of these factors control with exquisite precision the spatial and temporal assembly of actin structures and ensure dynamic turnover of actin structures such that cells can rapidly alter their cytoskeletons in response to internal and external cues. One of the most exciting principles to emerge from the last decade of research on actin is that the assembly of architecturally diverse actin structures is governed by highly conserved machinery and mechanisms. With this realization, it has become apparent that pioneering efforts in budding yeast have contributed substantially to defining the universal mechanisms regulating actin dynamics in eukaryotes. In this review, we first describe the filamentous actin structures found in Saccharomyces cerevisiae (patches, cables, and rings) and their physiological functions, and then we discuss in detail the specific roles of actin-associated proteins and their biochemical mechanisms of action.

  12. ZNF185, an actin-cytoskeleton-associated growth inhibitory LIM protein in prostate cancer.

    PubMed

    Zhang, J-S; Gong, A; Young, C Y F

    2007-01-04

    We have recently identified ZNF185 as a gene that is downregulated in prostate cancer (PCa), in part via epigenetic alteration, and maybe associated with disease progression. In this study, we cloned the ZNF185 cDNA from normal human prostate tissues and investigated its biological function. We show that ZNF185 is a novel actin-cytoskeleton-associated Lin-l 1, Isl-1 and Mec-3 (LIM) domain-containing protein that localizes to F-actin structures, and is enriched at focal adhesions. We find that the NH(2)-terminal region, which we designate the actin-targeting domain, facilitates ZNF185 binding to actin in vitro and is both necessary and sufficient to mediate actin-cytoskeleton targeting of ZNF185, whereas the LIM domain, which is localized in the COOH-terminus is dispensable for this phenomenon. Interestingly, ectopic expression of full-length ZNF185, but not a mutant lacking the actin-targeting domain, could suppress proliferation and anchorage-independent growth of PCa cells. Together, our data suggest that ZNF185 may function as a tumor-suppressor protein by associating with the actin-cytoskeleton.

  13. Enhanced gravitropism of roots with a disrupted cap actin cytoskeleton

    NASA Technical Reports Server (NTRS)

    Hou, Guichuan; Mohamalawari, Deepti R.; Blancaflor, Elison B.

    2003-01-01

    The actin cytoskeleton has been proposed to be a major player in plant gravitropism. However, understanding the role of actin in this process is far from complete. To address this problem, we conducted an analysis of the effect of Latrunculin B (Lat B), a potent actin-disrupting drug, on root gravitropism using various parameters that included detailed curvature kinetics, estimation of gravitropic sensitivity, and monitoring of curvature development after extended clinorotation. Lat B treatment resulted in a promotion of root curvature after a 90 degrees reorientation in three plant species tested. More significantly, the sensitivity of maize (Zea mays) roots to gravity was enhanced after actin disruption, as determined from a comparison of presentation time of Lat B-treated versus untreated roots. A short 10-min gravistimulus followed by extended rotation on a 1-rpm clinostat resulted in extensive gravitropic responses, manifested as curvature that often exceeded 90 degrees. Application of Lat B to the cap or elongation zone of maize roots resulted in the disruption of the actin cytoskeleton, which was confined to the area of localized Lat B application. Only roots with Lat B applied to the cap displayed the strong curvature responses after extended clinorotation. Our study demonstrates that disrupting the actin cytoskeleton in the cap leads to the persistence of a signal established by a previous gravistimulus. Therefore, actin could function in root gravitropism by providing a mechanism to regulate the proliferation of a gravitropic signal originating from the cap to allow the root to attain its correct orientation or set point angle.

  14. Enhanced gravitropism of roots with a disrupted cap actin cytoskeleton

    NASA Technical Reports Server (NTRS)

    Hou, Guichuan; Mohamalawari, Deepti R.; Blancaflor, Elison B.

    2003-01-01

    The actin cytoskeleton has been proposed to be a major player in plant gravitropism. However, understanding the role of actin in this process is far from complete. To address this problem, we conducted an analysis of the effect of Latrunculin B (Lat B), a potent actin-disrupting drug, on root gravitropism using various parameters that included detailed curvature kinetics, estimation of gravitropic sensitivity, and monitoring of curvature development after extended clinorotation. Lat B treatment resulted in a promotion of root curvature after a 90 degrees reorientation in three plant species tested. More significantly, the sensitivity of maize (Zea mays) roots to gravity was enhanced after actin disruption, as determined from a comparison of presentation time of Lat B-treated versus untreated roots. A short 10-min gravistimulus followed by extended rotation on a 1-rpm clinostat resulted in extensive gravitropic responses, manifested as curvature that often exceeded 90 degrees. Application of Lat B to the cap or elongation zone of maize roots resulted in the disruption of the actin cytoskeleton, which was confined to the area of localized Lat B application. Only roots with Lat B applied to the cap displayed the strong curvature responses after extended clinorotation. Our study demonstrates that disrupting the actin cytoskeleton in the cap leads to the persistence of a signal established by a previous gravistimulus. Therefore, actin could function in root gravitropism by providing a mechanism to regulate the proliferation of a gravitropic signal originating from the cap to allow the root to attain its correct orientation or set point angle.

  15. IQGAP1 in microbial pathogenesis: targeting the actin cytoskeleton

    PubMed Central

    Kim, Hugh; White, Colin D.; Sacks, David B.

    2011-01-01

    Microbial pathogens continue to cause widespread morbidity and mortality. Central to the pathogens' virulence is manipulation of the host cell's cytoskeleton, which facilitates microbial invasion, multiplication, and avoidance of the innate immune response. IQGAP1 is a ubiquitously expressed scaffold protein that integrates diverse signaling cascades. Research has shown that IQGAP1 binds to and modulates the activity of multiple proteins that participate in bacterial invasion. Here, we review data that support a role for IQGAP1 in infectious disease via its ability to regulate the actin cytoskeleton. In addition, we explore other mechanisms by which IQGAP1 may be exploited by microbial pathogens. PMID:21295032

  16. Targeting the actin cytoskeleton: selective antitumor action via trapping PKCɛ

    PubMed Central

    Foerster, F; Braig, S; Moser, C; Kubisch, R; Busse, J; Wagner, E; Schmoeckel, E; Mayr, D; Schmitt, S; Huettel, S; Zischka, H; Mueller, R; Vollmar, A M

    2014-01-01

    Targeting the actin cytoskeleton (CSK) of cancer cells offers a valuable strategy in cancer therapy. There are a number of natural compounds that interfere with the actin CSK, but the mode of their cytotoxic action and, moreover, their tumor-specific mechanisms are quite elusive. We used the myxobacterial compound Chondramide as a tool to first elucidate the mechanisms of cytotoxicity of actin targeting in breast cancer cells (MCF7, MDA-MB-231). Chondramide inhibits cellular actin filament dynamics shown by a fluorescence-based analysis (fluorescence recovery after photobleaching (FRAP)) and leads to apoptosis characterized by phosphatidylserine exposure, release of cytochrome C from mitochondria and finally activation of caspases. Chondramide enhances the occurrence of mitochondrial permeability transition (MPT) by affecting known MPT modulators: Hexokinase II bound to the voltage-dependent anion channel (VDAC) translocated from the outer mitochondrial membrane to the cytosol and the proapoptotic protein Bad were recruited to the mitochondria. Importantly, protein kinase C-ɛ (PKCɛ), a prosurvival kinase possessing an actin-binding site and known to regulate the hexokinase/VDAC interaction as well as Bad phosphorylation was identified as the link between actin CSK and apoptosis induction. PKCɛ, which was found overexpressed in breast cancer cells, accumulated in actin bundles induced by Chondramide and lost its activity. Our second goal was to characterize the potential tumor-specific action of actin-binding agents. As the nontumor breast epithelial cell line MCF-10A in fact shows resistance to Chondramide-induced apoptosis and notably express low level of PKCɛ, we suggest that trapping PKCɛ via Chondramide-induced actin hyperpolymerization displays tumor cell specificity. Our work provides a link between targeting the ubiquitously occurring actin CSK and selective inhibition of pro-tumorigenic PKCɛ, thus setting the stage for actin-stabilizing agents as

  17. Basement Membrane Laminin α2 Regulation of BTB Dynamics via Its Effects on F-Actin and Microtubule Cytoskeletons Is Mediated Through mTORC1 Signaling.

    PubMed

    Gao, Ying; Chen, Haiqi; Lui, Wing-Yee; Lee, Will M; Cheng, C Yan

    2017-04-01

    A local axis connects the apical ectoplasmic specialization (ES) at the Sertoli-spermatid interface, the basal ES at the blood-testis barrier (BTB), and the basement membrane across the seminiferous epithelium functionally in rat testes. As such, cellular events that take place simultaneously across the epithelium such as spermiation and BTB remodeling that occur at the apical ES and the basal ES, respectively, at stage VIII of the cycle are coordinated. Herein, laminin α2, a structural component of the basement membrane, was found to regulate BTB dynamics. Sertoli cells were cultured in vitro to allow the establishment of a tight junction (TJ) barrier that mimicked the BTB in vivo. Knockdown of laminin α2 by transfecting Sertoli cells with laminin α2-specific short hairpin RNA vs the nontargeting negative control was shown to perturb the Sertoli cell TJ barrier, illustrating laminin α2 was involved in regulating BTB dynamics. This regulatory effect was mediated through mammalian target of rapamycin complex 1 (mTORC1) signaling because the two mTORC1 downstream signaling molecules ribosomal protein S6 and Akt1/2 were activated and inactivated, respectively, consistent with earlier findings that mTORC1 is involved in promoting BTB remodeling. Also, laminin α2 knockdown induced F-actin and microtubule (MT) disorganization through changes in the spatial expression of F-actin regulators actin-related protein 3 and epidermal growth factor receptor pathway substrate 8 vs end-binding protein 1 (a MT plus-end tracking protein, +TIP). These laminin α2 knockdown-mediated effects on F-actin and MT organization was blocked by exposing Sertoli cells to rapamycin, an inhibitor of mTORC1 signaling, and also SC79, an activator of Akt. In summary, laminin α2-mediated regulation on Sertoli cell BTB dynamics is through mTORC1 signaling. Copyright © 2017 Endocrine Society.

  18. Subversion of the actin cytoskeleton during viral infection

    PubMed Central

    Taylor, Matthew P.; Koyuncu, Orkide O.; Enquist, Lynn W.

    2011-01-01

    Viral infection converts the normal functions of a cell to optimize viral replication and virion production. One striking observation of this conversion is the reconfiguration and reorganization of cellular actin, affecting every stage of the viral life cycle, from entry through assembly to egress. The extent and degree of cytoskeletal reorganization varies among different viral infections, suggesting the evolution of myriad viral strategies. In this Review, we describe how the interaction of viral proteins with the cell modulates the structure and function of the actin cytoskeleton to initiate, sustain and spread infections. The molecular biology of such interactions continues to engage virologists in their quest to understand viral replication and informs cell biologists about the role of the cytoskeleton in the uninfected cell. PMID:21522191

  19. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton.

    PubMed

    Faul, Christian; Asanuma, Katsuhiko; Yanagida-Asanuma, Etsuko; Kim, Kwanghee; Mundel, Peter

    2007-09-01

    Podocytes of the renal glomerulus are unique cells with a complex cellular organization consisting of a cell body, major processes and foot processes. Podocyte foot processes form a characteristic interdigitating pattern with foot processes of neighboring podocytes, leaving in between the filtration slits that are bridged by the glomerular slit diaphragm. The highly dynamic foot processes contain an actin-based contractile apparatus comparable to that of smooth muscle cells or pericytes. Mutations affecting several podocyte proteins lead to rearrangement of the actin cytoskeleton, disruption of the filtration barrier and subsequent renal disease. The fact that the dynamic regulation of the podocyte cytoskeleton is vital to kidney function has led to podocytes emerging as an excellent model system for studying actin cytoskeleton dynamics in a physiological context.

  20. How cellular membrane properties are affected by the actin cytoskeleton.

    PubMed

    Lemière, J; Valentino, F; Campillo, C; Sykes, C

    2016-11-01

    Lipid membranes define the boundaries of living cells and intracellular compartments. The dynamic remodelling of these membranes by the cytoskeleton, a very dynamic structure made of active biopolymers, is crucial in many biological processes such as motility or division. In this review, we present some aspects of cellular membranes and how they are affected by the presence of the actin cytoskeleton. We show that, in parallel with the direct study of membranes and cytoskeleton in vivo, biomimetic in vitro systems allow reconstitution of biological processes in a controlled environment. In particular, we show that liposomes, or giant unilamellar vesicles, encapsulating a reconstituted actin network polymerizing at their membrane are suitable models of living cells and can be used to decipher the relative contributions of membrane and actin on the mechanical properties of the cellular interface. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  1. Actin cytoskeleton remodeling governs aquaporin-4 localization in astrocytes.

    PubMed

    Nicchia, Grazia Paola; Rossi, Andrea; Mola, Maria Grazia; Procino, Giuseppe; Frigeri, Antonio; Svelto, Maria

    2008-12-01

    Aquaporin-4 (AQP4) is constitutively concentrated in the plasma membrane of the perivascular glial processes, and its expression is altered in certain pathological conditions associated with brain edema or altered glial migration. When astrocytes are grown in culture, they lose their characteristic star-like shape and AQP4 continuous plasma membrane localization observed in vivo. In this study, we differentiated primary astrocyte cultures with cAMP and lovastatin, both able to induce glial stellation through a reorganization of F-actin cytoskeleton, and obtained AQP4 selectively localized on the cell plasma membrane associated with an increase in the plasma membrane water transport level, but only cAMP induced an increase in AQP4 total protein expression. Phosphorylation experiments indicated that AQP4 in astrocytes is neither phosphorylated nor a substrate of PKA. Depolymerization of F-actin cytoskeleton performed by cytochalasin-D suggested that F-actin cytoskeleton plays a primary role for AQP4 plasma membrane localization and during cell adhesion. Finally, AQP4 knockdown does not compromise the ability of astrocytes to stellate in the presence of cAMP, indicating that astrocyte stellation is independent of AQP4.

  2. Differential sensitivity to detergents of actin cytoskeleton from nerve endings.

    PubMed

    Cubí, Roger; Matas, Lluís A; Pou, Marta; Aguilera, José; Gil, Carles

    2013-11-01

    Detergent-resistant membranes (DRM), an experimental model used to study lipid rafts, are typically extracted from cells by means of detergent treatment and subsequent ultracentrifugation in density gradients, Triton X-100 being the detergent of choice in most of the works. Since lipid rafts are membrane microdomains rich in cholesterol, depletion of this component causes solubilization of DRM with detergent. In previous works from our group, the lack of effect of cholesterol depletion on DRM solubilization with Triton X-100 was detected in isolated rat brain synaptosomes. In consequence, the aim of the present work is to explore reasons for this observation, analyzing the possible role of the actin cytoskeleton, as well as the use of an alternative detergent, Brij 98, to overcome the insensitivity to Triton X-100 of cholesterol-depleted DRM. Brij 98 yields Brij-DRM that are highly dependent on cholesterol, since marker proteins (Flotillin-1 and Thy-1), as well as actin, appear solubilized after MCD treatment. Pretreatment with Latrunculin A results in a significant increase in Flotillin-1, Thy-1 and actin solubilization by Triton X-100 after cholesterol depletion. Studies with transmission electron microscopy show that combined treatment with MCD and Latrunculin A leads to a significant increase in solubilization of DRM with Triton X-100. Thus, Triton-DRM resistance to cholesterol depletion can be explained, at least partially, thanks to the scaffolding action of the actin cytoskeleton, without discarding differential effects of Brij 98 and Triton X-100 on specific membrane components. In conclusion, the detergent of choice is important when events that depend on the actin cytoskeleton are going to be studied. © 2013.

  3. The yeast gene, MDM20, is necessary for mitochondrial inheritance and organization of the actin cytoskeleton.

    PubMed

    Hermann, G J; King, E J; Shaw, J M

    1997-04-07

    In Saccharomyces cerevisiae, the growing bud inherits a portion of the mitochondrial network from the mother cell soon after it emerges. Although this polarized transport of mitochondria is thought to require functions of the cytoskeleton, there are conflicting reports concerning the nature of the cytoskeletal element involved. Here we report the isolation of a yeast mutant, mdm20, in which both mitochondrial inheritance and actin cables (bundles of actin filaments) are disrupted. The MDM20 gene encodes a 93-kD polypeptide with no homology to other characterized proteins. Extra copies of TPM1, a gene encoding the actin filament-binding protein tropomyosin, suppress mitochondrial inheritance defects and partially restore actin cables in mdm20 delta cells. Synthetic lethality is also observed between mdm20 and tpm1 mutant strains. Overexpression of a second yeast tropomyosin, Tpm2p, rescues mutant phenotypes in the mdm20 strain to a lesser extent. Together, these results provide compelling evidence that mitochondrial inheritance in yeast is an actin-mediated process. MDM20 and TPM1 also exhibit the same pattern of genetic interactions; mutations in MDM20 are synthetically lethal with mutations in BEM2 and MYO2 but not SAC6. Although MDM20 and TPM1 are both required for the formation and/or stabilization of actin cables, mutations in these genes disrupt mitochondrial inheritance and nuclear segregation to different extents. Thus, Mdm20p and Tpm1p may act in vivo to establish molecular and functional heterogeneity of the actin cytoskeleton.

  4. DeActs: genetically encoded tools for perturbing the actin cytoskeleton in single cells.

    PubMed

    Harterink, Martin; da Silva, Marta Esteves; Will, Lena; Turan, Julia; Ibrahim, Adiljan; Lang, Alexander E; van Battum, Eljo Y; Pasterkamp, R Jeroen; Kapitein, Lukas C; Kudryashov, Dmitri; Barres, Ben A; Hoogenraad, Casper C; Zuchero, J Bradley

    2017-05-01

    The actin cytoskeleton is essential for many fundamental biological processes, but tools for directly manipulating actin dynamics are limited to cell-permeable drugs that preclude single-cell perturbations. Here we describe DeActs, genetically encoded actin-modifying polypeptides, which effectively induce actin disassembly in eukaryotic cells. We demonstrate that DeActs are universal tools for studying the actin cytoskeleton in single cells in culture, tissues, and multicellular organisms including various neurodevelopmental model systems.

  5. Alkaline pH induces IRR-mediated phosphorylation of IRS-1 and actin cytoskeleton remodeling in a pancreatic beta cell line.

    PubMed

    Deyev, Igor E; Popova, Nadezhda V; Serova, Oxana V; Zhenilo, Svetlana V; Regoli, Marì; Bertelli, Eugenio; Petrenko, Alexander G

    2017-07-01

    Secretion of mildly alkaline (pH 8.0-8.5) juice to intestines is one of the key functions of the pancreas. Recent reports indicate that the pancreatic duct system containing the alkaline juice may adjoin the endocrine cells of pancreatic islets. We have previously identified the insulin receptor-related receptor (IRR) that is expressed in islets as a sensor of mildly alkaline extracellular media. In this study, we show that those islet cells that are in contact with the excretory ducts are also IRR-expressing cells. We further analyzed the effects of alkaline media on pancreatic beta cell line MIN6. Activation of endogenous IRR but not of the insulin receptor was detected that could be inhibited with linsitinib. The IRR autophosphorylation correlated with pH-dependent linsitinib-sensitive activation of insulin receptor substrate 1 (IRS-1), the primary adaptor in the insulin signaling pathway. However, in contrast with insulin stimulation, no protein kinase B (Akt/PKB) phosphorylation was detected as a result of alkali treatment. We observed overexpression of several early response genes (EGR2, IER2, FOSB, EGR1 and NPAS4) upon alkali treatment of MIN6 cells but those were IRR-independent. The alkaline medium but not insulin also triggered actin cytoskeleton remodeling that was blocked by pre-incubation with linsitinib. We propose that the activation of IRR by alkali might be part of a local loop of signaling between the exocrine and endocrine parts of the pancreas where alkalinization of the juice facilitate insulin release that increases the volume of secreted juice to control its pH and bicabonate content. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  6. The Saccharomyces cerevisiae actin-related protein Arp2 is involved in the actin cytoskeleton

    PubMed Central

    1996-01-01

    Arp2p is an essential yeast actin-related protein. Disruption of the corresponding ARP2 gene leads to a terminal phenotype characterized by the presence of a single large bud. Thus, Arp2p may be important for a late stage of the cell cycle (Schwob, E., and R.P. Martin, 1992. Nature (Lond.). 355:179-182). We have localized Arp2p by indirect immunofluorescence. Specific peptide antibodies revealed punctate staining under the plasma membrane, which partially colocalizes with actin. Temperature-sensitive arp2 mutations were created by PCR mutagenesis and selected by an ade2/SUP11 sectoring screen. One temperature-sensitive mutant that was characterized, arp2-H330L, was osmosensitive and had an altered actin cytoskeleton at a nonpermissive temperature, suggesting a role of Arp2p in the actin cytoskeleton. Random budding patterns were observed in both haploid and diploid arp2- H330L mutant cells. Endocytosis, as judged by Lucifer yellow uptake, was severely reduced in the mutant, at all temperatures. In addition, genetic interaction was observed between temperature-sensitive alleles arp2-H330L and cdc10-1. CDC10 is a gene encoding a neck filament- associated protein that is necessary for polarized growth and cytokinesis. Overall, the immunolocalization, mutant phenotypes, and genetic interaction suggest that the Arp2 protein is an essential component of the actin cytoskeleton that is involved in membrane growth and polarity, as well as in endocytosis. PMID:8698808

  7. Regulation of the actin cytoskeleton by Rho kinase controls antigen presentation by CD1d1

    PubMed Central

    Gallo, Richard M.; Khan, Masood A.; Shi, Jianjian; Kapur, Reuben; Wei, Lei; Bailey, Jennifer C.; Liu, Jianyun; Brutkiewicz, Randy R.

    2012-01-01

    CD1d molecules are major histocompatibility complex (MHC) class I-like molecules that present lipid antigens to Natural Killer T (NKT) cells. Although we have previously shown that several different cell signaling molecules can play a role in the control of antigen presentation by CD1d, a defined mechanism by which a cell signaling pathway regulates CD1d function has been unclear. In the current study, we have found that the Rho kinases, ROCK1 and ROCK2, negatively regulate both human and mouse CD1d-mediated antigen presentation. Inhibition of ROCK pharmacologically, through specific ROCK1 and ROCK2 shRNA, or by using dendritic cells generated from ROCK1-deficient mice all resulted in enhanced CD1d-mediated antigen presentation compared to controls. ROCK regulates the actin cytoskeleton by phosphorylating LIM kinase which, in turn, phosphorylates cofilin, prohibiting actin fiber depolymerization. Treatment of antigen presenting cells with the actin filament depolymerizing agent, cytochalasin D, as well as knockdown of LIM kinase by shRNA, resulted in enhanced antigen presentation to NKT cells by CD1d, consistent with our ROCK inhibition data. Therefore, our overall results reveal a model whereby CD1d-mediated antigen presentation is negatively regulated by ROCK via its effects on the actin cytoskeleton. PMID:22798677

  8. Functions of the Tumor Suppressors p53 and Rb in Actin Cytoskeleton Remodeling

    PubMed Central

    Ebata, Takahiro; Hirata, Hiroaki

    2016-01-01

    Mechanical microenvironments, such as extracellular matrix stiffness and strain, have crucial roles in cancer progression. Cells sense their microenvironments with mechanosensing biomolecules, which is accompanied by the modulation of actin cytoskeleton structures, and the signals are subsequently transduced downstream as biochemical signals. The tumor suppressors p53 and retinoblastoma protein (Rb) are known to prevent cancer progression. The p53 and Rb signaling pathways are disrupted in many types of cancers. Here, we review recent findings about the roles of these tumor suppressors in the regulation of mechanosensing biomolecules and the actin cytoskeleton. We further discuss how dysfunction in the p53- and/or Rb-mediated mechanosignaling pathways is potentially involved in cancer progression. These pathways might provide good targets for developing anticancer therapies. PMID:28078303

  9. Protein Disulfide Isomerase Directly Interacts with β-Actin Cys374 and Regulates Cytoskeleton Reorganization*

    PubMed Central

    Sobierajska, Katarzyna; Skurzynski, Szymon; Stasiak, Marta; Kryczka, Jakub; Cierniewski, Czeslaw S.; Swiatkowska, Maria

    2014-01-01

    Recent studies support the role of cysteine oxidation in actin cytoskeleton reorganization during cell adhesion. The aim of this study was to explain whether protein disulfide isomerase (PDI) is responsible for the thiol-disulfide rearrangement in the β-actin molecule of adhering cells. First, we showed that PDI forms a disulfide-bonded complex with β-actin with a molecular mass of 110 kDa. Specific interaction of both proteins was demonstrated by a solid phase binding assay, surface plasmon resonance analysis, and immunoprecipitation experiments. Second, using confocal microscopy, we found that both proteins colocalized when spreading MEG-01 cells on fibronectin. Colocalization of PDI and β-actin could be abolished by the membrane-permeable sulfhydryl blocker, N-ethylmaleimide, by the RGD peptide, and by anti-αIIbβ3 antibodies. Consequently, down-regulation of PDI expression by antisense oligonucleotides impaired the spreading of cells and initiated reorganization of the cytoskeleton. Third, because of transfection experiments followed by immunoprecipitation and confocal analysis, we provided evidence that PDI binds to the β-actin Cys374 thiol. Formation of the β-actin-PDI complex was mediated by integrin-dependent signaling in response to the adhesion of cells to the extracellular matrix. Our data suggest that PDI is released from subcellular compartments to the cytosol and translocated toward the periphery of the cell, where it forms a disulfide bond with β-actin when MEG-01 cells adhere via the αIIbβ3 integrin to fibronectin. Thus, PDI appears to regulate cytoskeletal reorganization by the thiol-disulfide exchange in β-actin via a redox-dependent mechanism. PMID:24415753

  10. Function of actin cytoskeleton in gravisensing during spaceflight

    NASA Astrophysics Data System (ADS)

    Hughes-Fulford, M.

    Since astronauts and cosmonauts have significant bone loss in microgravity, we hypothesized that there would be physiological changes in cellular bone growth in the absence of gravity. Our first experiments on STS-56 demonstrated that quiescent osteoblasts activated by sera under microgravity conditions had a significant 60% reduction in growth (p<0.001) and a paradoxical 2 fold increase in release of autocrine PGE2 when compared to ground controls. In addition, there was a significant collapse of the actin cytoskeleton and loss of focal adhesions after 4 days of growth in microgravity. Other investigators have made similar observations of cytoskeletal modifications in microgravity. Later studies in Biorack on STS-76, 81 and 84 confirmed the increased release of PGE2 and collapse of the cytoskeleton in cells grown in microgravity conditions, however flown cells under 1g conditions maintained normal actin cytoskeleton and fibronectin matrix. We do not think that the changes seen in the cytoskeleton are due to alterations in fibronectin message or protein synthesis since no differences were found between microgravity, 1g or ground conditions. The nuclear structure was noticeably different in the flown 0g cells with elongation of the nucleus after 24 hours of microgravity, this alteration in nuclear structure was not seen in the 1g flown or ground control cells. Further examination of total RNA in the cells showed no significant changes between the three gravity conditions suggesting specific not general physiological changes in microgravity. When osteoblast mRNA was analyzed, the immediate early genes, c-myc and cox-2 and the autocrine growth factor FGFb were down-regulated in microgravity. The inability of the 0g grown osteoblast to respond to sera activation suggests that there is a major alteration in anabolic signal transduction under microgravity conditions, most probably through the growth factor receptors and/or the associated kinase pathways. It is still

  11. Ornithine decarboxylase and extracellular polyamines regulate microvascular sprouting and actin cytoskeleton dynamics in endothelial cells

    SciTech Connect

    Kucharzewska, Paulina; Welch, Johanna E.; Svensson, Katrin J.; Belting, Mattias

    2010-10-01

    The polyamines are essential for cancer cell proliferation during tumorigenesis. Targeted inhibition of ornithine decarboxylase (ODC), i.e. a key enzyme of polyamine biosynthesis, by {alpha}-difluoromethylornithine (DFMO) has shown anti-neoplastic activity in various experimental models. This activity has mainly been attributed to the anti-proliferative effect of DFMO in cancer cells. Here, we provide evidence that unperturbed ODC activity is a requirement for proper microvessel sprouting ex vivo as well as the migration of primary human endothelial cells. DFMO-mediated ODC inhibition was reversed by extracellular polyamine supplementation, showing that anti-angiogenic effects of DFMO were specifically related to polyamine levels. ODC inhibition was associated with an abnormal morphology of the actin cytoskeleton during cell spreading and migration. Moreover, our data suggest that de-regulated actin cytoskeleton dynamics in DFMO treated endothelial cells may be related to constitutive activation of the small GTPase CDC42, i.e. a well-known regulator of cell motility and actin cytoskeleton remodeling. These insights into the potential role of polyamines in angiogenesis should stimulate further studies testing the combined anti-tumor effect of polyamine inhibition and established anti-angiogenic therapies in vivo.

  12. Change in the actin cytoskeleton during seismonastic movement of Mimosa pudica.

    PubMed

    Kanzawa, Nobuyuki; Hoshino, Yoshinori; Chiba, Makiko; Hoshino, Daisuke; Kobayashi, Hidetaka; Kamasawa, Naomi; Kishi, Yoshiro; Osumi, Masako; Sameshima, Masazumi; Tsuchiya, Takahide

    2006-04-01

    The seismonastic movement of Mimosa pudica is triggered by a sudden loss of turgor pressure. In the present study, we compared the cell cytoskeleton by immunofluorescence analysis before and after movement, and the effects of actin- and microtubule-targeted drugs were examined by injecting them into the cut pulvinus. We found that fragmentation of actin filaments and microtubules occurs during bending, although the actin cytoskeleton, but not the microtubules, was involved in regulation of the movement. Transmission electron microscopy revealed that actin cables became loose after the bending. We injected phosphatase inhibitors into the severed pulvinus to examine the effects of such inhibitors on the actin cytoskeleton. We found that changes in actin isoforms, fragmentation of actin filaments and the bending movement were all inhibited after injection of a tyrosine phosphatase inhibitor. We thus propose that the phosphorylation status of actin at tyrosine residues affects the dynamic reorganization of actin filaments and causes seismonastic movement.

  13. Human muscle LIM protein dimerizes along the actin cytoskeleton and cross-links actin filaments.

    PubMed

    Hoffmann, Céline; Moreau, Flora; Moes, Michèle; Luthold, Carole; Dieterle, Monika; Goretti, Emeline; Neumann, Katrin; Steinmetz, André; Thomas, Clément

    2014-08-01

    The muscle LIM protein (MLP) is a nucleocytoplasmic shuttling protein playing important roles in the regulation of myocyte remodeling and adaptation to hypertrophic stimuli. Missense mutations in human MLP or its ablation in transgenic mice promotes cardiomyopathy and heart failure. The exact function(s) of MLP in the cytoplasmic compartment and the underlying molecular mechanisms remain largely unknown. Here, we provide evidence that MLP autonomously binds to, stabilizes, and bundles actin filaments (AFs) independently of calcium and pH. Using total internal reflection fluorescence microscopy, we have shown how MLP cross-links actin filaments into both unipolar and mixed-polarity bundles. Quantitative analysis of the actin cytoskeleton configuration confirmed that MLP substantially promotes actin bundling in live myoblasts. In addition, bimolecular fluorescence complementation (BiFC) assays revealed MLP self-association. Remarkably, BiFC complexes mostly localize along actin filament-rich structures, such as stress fibers and sarcomeres, supporting a functional link between MLP self-association and actin cross-linking. Finally, we have demonstrated that MLP self-associates through its N-terminal LIM domain, whereas it binds to AFs through its C-terminal LIM domain. Together our data support that MLP contributes to the maintenance of cardiomyocyte cytoarchitecture by a mechanism involving its self-association and actin filament cross-linking. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Human Muscle LIM Protein Dimerizes along the Actin Cytoskeleton and Cross-Links Actin Filaments

    PubMed Central

    Hoffmann, Céline; Moreau, Flora; Moes, Michèle; Luthold, Carole; Dieterle, Monika; Goretti, Emeline; Neumann, Katrin; Steinmetz, André

    2014-01-01

    The muscle LIM protein (MLP) is a nucleocytoplasmic shuttling protein playing important roles in the regulation of myocyte remodeling and adaptation to hypertrophic stimuli. Missense mutations in human MLP or its ablation in transgenic mice promotes cardiomyopathy and heart failure. The exact function(s) of MLP in the cytoplasmic compartment and the underlying molecular mechanisms remain largely unknown. Here, we provide evidence that MLP autonomously binds to, stabilizes, and bundles actin filaments (AFs) independently of calcium and pH. Using total internal reflection fluorescence microscopy, we have shown how MLP cross-links actin filaments into both unipolar and mixed-polarity bundles. Quantitative analysis of the actin cytoskeleton configuration confirmed that MLP substantially promotes actin bundling in live myoblasts. In addition, bimolecular fluorescence complementation (BiFC) assays revealed MLP self-association. Remarkably, BiFC complexes mostly localize along actin filament-rich structures, such as stress fibers and sarcomeres, supporting a functional link between MLP self-association and actin cross-linking. Finally, we have demonstrated that MLP self-associates through its N-terminal LIM domain, whereas it binds to AFs through its C-terminal LIM domain. Together our data support that MLP contributes to the maintenance of cardiomyocyte cytoarchitecture by a mechanism involving its self-association and actin filament cross-linking. PMID:24934443

  15. Effects of latrunculin B on the actin cytoskeleton and hyphal growth in Phytophthora infestans.

    PubMed

    Ketelaar, Tijs; Meijer, Harold J G; Spiekerman, Marjolein; Weide, Rob; Govers, Francine

    2012-12-01

    The actin cytoskeleton is conserved in all eukaryotes, but its functions vary among different organisms. In oomycetes, the function of the actin cytoskeleton has received relatively little attention. We have performed a bioinformatics study and show that oomycete actin genes fall within a distinct clade that is divergent from plant, fungal and vertebrate actin genes. To obtain a better understanding of the functions of the actin cytoskeleton in hyphal growth of oomycetes, we studied the actin organization in Phytophthora infestans hyphae and the consequences of treatment with the actin depolymerising drug latrunculin B (latB). This revealed that latB treatment causes a concentration dependent inhibition of colony expansion and aberrant hyphal growth. The most obvious aberrations observed upon treatment with 0.1 μM latB were increased hyphal branching and irregular tube diameters whereas at higher concentrations latB (0.5 and 1 μM) tips of expanding hyphae changed into balloon-like shapes. This aberrant growth correlated with changes in the organization of the actin cytoskeleton. In untreated hyphae, staining with fluorescently tagged phalloidin revealed two populations of actin filaments: long, axially oriented actin filament cables and cortical actin filament plaques. Two hyphal subtypes were recognized, one containing only plaques and the other containing both cables and plaques. In the latter, some hyphae had an apical zone without actin filament plaques. Upon latB treatment, the proportion of hyphae without actin filament cables increased and there were more hyphae with a short apical zone without actin filament plaques. In general, actin filament plaques were more resilient against actin depolymerisation than actin filament cables. Besides disturbing hyphal growth and actin organization, actin depolymerisation also affected the positioning of nuclei. In the presence of latB, the distance between nuclei and the hyphal tip decreased, suggesting that the actin

  16. The Yeast Gene, MDM20, Is Necessary for Mitochondrial Inheritance and Organization of the Actin Cytoskeleton

    PubMed Central

    Hermann, Greg J.; King, Edward J.; Shaw, Janet M.

    1997-01-01

    In Saccharomyces cerevisiae, the growing bud inherits a portion of the mitochondrial network from the mother cell soon after it emerges. Although this polarized transport of mitochondria is thought to require functions of the cytoskeleton, there are conflicting reports concerning the nature of the cytoskeletal element involved. Here we report the isolation of a yeast mutant, mdm20, in which both mitochondrial inheritance and actin cables (bundles of actin filaments) are disrupted. The MDM20 gene encodes a 93-kD polypeptide with no homology to other characterized proteins. Extra copies of TPM1, a gene encoding the actin filament–binding protein tropomyosin, suppress mitochondrial inheritance defects and partially restore actin cables in mdm20Δ cells. Synthetic lethality is also observed between mdm20 and tpm1 mutant strains. Overexpression of a second yeast tropomyosin, Tpm2p, rescues mutant phenotypes in the mdm20 strain to a lesser extent. Together, these results provide compelling evidence that mitochondrial inheritance in yeast is an actin-mediated process. MDM20 and TPM1 also exhibit the same pattern of genetic interactions; mutations in MDM20 are synthetically lethal with mutations in BEM2 and MYO2 but not SAC6. Although MDM20 and TPM1 are both required for the formation and/or stabilization of actin cables, mutations in these genes disrupt mitochondrial inheritance and nuclear segregation to different extents. Thus, Mdm20p and Tpm1p may act in vivo to establish molecular and functional heterogeneity of the actin cytoskeleton. PMID:9105043

  17. The Nck family of adapter proteins: regulators of actin cytoskeleton.

    PubMed

    Buday, László; Wunderlich, Livius; Tamás, Peter

    2002-09-01

    SH2/SH3 domain-containing adapter proteins, such as the Nck family, play a major role in regulating tyrosine kinase signalling. They serve to recruit proline-rich effector molecules to tyrosine-phosphorylated kinases or their substrates. Initially, it was not clear why cells from nematodes to vertebrates contain redundant and closely related SH2/SH3 adapters, such as Grb2, Crk and Nck. Recent evidence suggests that their biological roles are clearly different, whereas, for example, Grb2 connects activated receptor tyrosine kinases to Sos and Ras, leading to cell proliferation. The proteins of Nck family are implicated in organisation of actin cytoskeleton, cell movement or axon guidance in flies. In this review, the author attempts to summarise signalling pathways in which Nck plays a critical role.

  18. Organization and function of an actin cytoskeleton in Plasmodium falciparum gametocytes.

    PubMed

    Hliscs, Marion; Millet, Coralie; Dixon, Matthew W; Siden-Kiamos, Inga; McMillan, Paul; Tilley, Leann

    2015-02-01

    In preparation for transmission to its mosquito vector, Plasmodium falciparum, the most virulent of the human malaria parasites, adopts an unusual elongated shape. Here we describe a previously unrecognized actin-based cytoskeleton that is assembled in maturing P. falciparum gametocytes. Differential extraction reveals the presence of a highly stabilized population of F-actin at all stages of development. Super-resolution microscopy reveals an F-actin cytoskeleton that is concentrated at the ends of the elongating gametocyte but extends inward along the microtubule cytoskeleton. Formin-1 is also concentrated at the gametocyte ends suggesting a role in actin stabilization. Immunoelectron microscopy confirms that the actin cytoskeleton is located under the inner membrane complex rather than in the sub-alveolar space. In stage V gametocytes, the actin and microtubule cytoskeletons are reorganized in a coordinated fashion. The actin-depolymerizing agent, cytochalasin D, depletes actin from the end of the gametocytes, whereas the actin-stabilizing compound, jasplakinolide, induces formation of large bundles and prevents late-stage disassembly of the actin cytoskeleton. Long-term treatment with these compounds is associated with disruption of the normal mitochondrial organization and decreased gametocyte viability. © 2014 John Wiley & Sons Ltd.

  19. Calcium dependence of integrity of the actin cytoskeleton of proximal tubule cell microvilli.

    PubMed

    Sogabe, K; Roeser, N F; Davis, J A; Nurko, S; Venkatachalam, M A; Weinberg, J M

    1996-08-01

    To better define the role of Ca2+ in pathophysiological alterations of the proximal tubule microvillus actin cytoskeleton, we studied freshly isolated tubules in which intracellular free Ca2+ was equilibrated with highly buffered, precisely defined medium Ca2+ levels using a combination of the metabolic inhibitor, antimycin, and the ionophore, ionomycin, in the presence of glycine, to prevent lethal membrane damage and resulting nonspecific changes. Increases of Ca2+ to > or = 10 microM were sufficient to initiate concurrent actin depolymerization, fragmentation of F-actin into forms requiring high-speed centrifugation for recovery, redistribution of villin to sedimentable fractions, and structural microvillar damage consisting of severe swelling and fragmentation of actin cores. These observations implicate Ca(2+)-dependent, villin-mediated actin cytoskeletal disruption in tubule cell microvillar damage under conditions conceivably present during pathophysiological states. However, despite prior evidence for cytosolic free Ca2+ increases of the same order of magnitude and similar structural microvillar alterations, Ca(2+)- and villin-mediated events did not appear to account for the initial microvillar damage that occurs during ATP depletion induced by antimycin alone or hypoxia.

  20. Calcium regulation of actin crosslinking is important for function of the actin cytoskeleton in Dictyostelium.

    PubMed

    Furukawa, Ruth; Maselli, Andrew; Thomson, Susanne A M; Lim, Rita W L; Stokes, John V; Fechheimer, Marcus

    2003-01-01

    The actin cytoskeleton is sensitive to changes in calcium, which affect contractility, actin-severing proteins, actin-crosslinking proteins and calmodulin-regulated enzymes. To dissect the role of calcium control on the activity of individual proteins from effects of calcium on other processes, calcium-insensitive forms of these proteins were prepared and introduced into living cells to replace a calcium-sensitive form of the same protein. Crosslinking and bundling of actin filaments by the Dictyostelium 34 kDa protein is inhibited in the presence of micromolar free calcium. A modified form of the 34 kDa protein with mutations in the calcium binding EF hand (34 kDa deltaEF2) was prepared using site-directed mutagenesis and expressed in E. coli. Equilibrium dialysis using [(45)Ca]CaCl(2) revealed that the wild-type protein is able to bind one calcium ion with a Kd of 2.4 microM. This calcium binding is absent in the 34 kDa deltaEF2 protein. The actin-binding activity of the 34 kDa deltaEF2 protein was equivalent to wildtype but calcium insensitive in vitro. The wild-type and 34 kDa deltaEF2 proteins were expressed in 34-kDa-null and 34 kDa/alpha-actinin double null mutant Dictyostelium strains to test the hypothesis that calcium regulation of actin crosslinking is important in vivo. The 34 kDa deltaEF2 failed to supply function of the 34 kDa protein important for control of cell size and for normal growth to either of these 34-kDa-null strains. Furthermore, the distribution of the 34 kDa protein and actin were abnormal in cells expressing 34 kDa deltaEF2. Thus, calcium regulation of the formation and/or dissolution of crosslinked actin structures is required for dynamic behavior of the actin cytoskeleton important for cell structure and growth.

  1. The actin cytoskeleton participates in the early events of autophagosome formation upon starvation induced autophagy.

    PubMed

    Aguilera, Milton Osmar; Berón, Walter; Colombo, María Isabel

    2012-11-01

    Autophagy is a process by which cytoplasmic material is sequestered in a double-membrane vesicle destined for degradation. Nutrient deprivation stimulates the pathway and the number of autophagosomes in the cell increases in response to such stimulus. In the current report we have demonstrated that actin is necessary for starvation-mediated autophagy. When the actin cytoskeleton is depolymerized, the increase in autophagic vacuoles in response to the starvation stimulus was abolished without affecting maturation of remaining autophagosomes. In addition, actin filaments colocalized with ATG14, BECN1/Beclin1 and PtdIns3P-rich structures, and some of them have a typical omegasome shape stained with the double FYVE domain or ZFYVE1/DFCP1. In contrast, no major colocalization between actin and ULK1, ULK2, ATG5 or MAP1LC3/LC3 was observed. Taken together, our data indicate that actin has a role at very early stages of autophagosome formation linked to the PtdIns3P generation step. In addition, we have found that two members of the Rho family of proteins, RHOA and RAC1 have a regulatory function on starvation-mediated autophagy, but with opposite roles. Indeed, RHOA has an activatory role whereas Rac has an inhibitory one. We have also found that inhibition of the RHOA effector ROCK impaired the starvation-mediated autophagic response. We propose that actin participates in the initial membrane remodeling stage when cells require an enhanced rate of autophagosome formation, and this actin function would be tightly regulated by different members of the Rho family.

  2. The actin cytoskeleton participates in the early events of autophagosome formation upon starvation induced autophagy

    PubMed Central

    Aguilera, Milton Osmar; Berón, Walter; Colombo, María Isabel

    2012-01-01

    Autophagy is a process by which cytoplasmic material is sequestered in a double-membrane vesicle destined for degradation. Nutrient deprivation stimulates the pathway and the number of autophagosomes in the cell increases in response to such stimulus. In the current report we have demonstrated that actin is necessary for starvation-mediated autophagy. When the actin cytoskeleton is depolymerized, the increase in autophagic vacuoles in response to the starvation stimulus was abolished without affecting maturation of remaining autophagosomes. In addition, actin filaments colocalized with ATG14, BECN1/Beclin1 and PtdIns3P-rich structures, and some of them have a typical omegasome shape stained with the double FYVE domain or ZFYVE1/DFCP1. In contrast, no major colocalization between actin and ULK1, ULK2, ATG5 or MAP1LC3/LC3 was observed. Taken together, our data indicate that actin has a role at very early stages of autophagosome formation linked to the PtdIns3P generation step. In addition, we have found that two members of the Rho family of proteins, RHOA and RAC1 have a regulatory function on starvation-mediated autophagy, but with opposite roles. Indeed, RHOA has an activatory role whereas Rac has an inhibitory one. We have also found that inhibition of the RHOA effector ROCK impaired the starvation-mediated autophagic response. We propose that actin participates in the initial membrane remodeling stage when cells require an enhanced rate of autophagosome formation, and this actin function would be tightly regulated by different members of the Rho family. PMID:22863730

  3. Mitochondrial Ca2+ uptake controls actin cytoskeleton dynamics during cell migration

    PubMed Central

    Prudent, Julien; Popgeorgiev, Nikolay; Gadet, Rudy; Deygas, Mathieu; Rimokh, Ruth; Gillet, Germain

    2016-01-01

    Intracellular Ca2+ signaling regulates cell migration by acting on cytoskeleton architecture, cell directionality and focal adhesions dynamics. In migrating cells, cytosolic Ca2+ pool and Ca2+ pulses are described as key components of these effects. Whereas the role of the mitochondrial calcium homeostasis and the Mitochondria Cacium Uniporter (MCU) in cell migration were recently highlighted in vivo using the zebrafish model, their implication in actin cystokeleton dynamics and cell migration in mammals is not totally characterized. Here, we show that mcu silencing in two human cell lines compromises their migration capacities. This phenotype is characterized by actin cytoskeleton stiffness, a cell polarization loss and an impairment of the focal adhesion proteins dynamics. At the molecular level, these effects appear to be mediated by the reduction of the ER and cytosolic Ca2+ pools, which leads to a decrease in Rho-GTPases, RhoA and Rac1, and Ca2+-dependent Calpain activites, but seem to be independent of intracellular ATP levels. Together, this study highlights the fundamental and evolutionary conserved role of the mitochondrial Ca2+ homeostasis in cytoskeleton dynamics and cell migration. PMID:27827394

  4. RhoA Regulates Peroxisome Association to Microtubules and the Actin Cytoskeleton

    PubMed Central

    Lay, Dorothee; Wiese, Sebastian; Meyer, Helmut E.; Warscheid, Bettina; Saffrich, Rainer; Peränen, Johan; Gorgas, Karin; Just, Wilhelm W.

    2010-01-01

    The current view of peroxisome inheritance provides for the formation of new peroxisomes by both budding from the endoplasmic reticulum and autonomous division. Here we investigate peroxisome-cytoskeleton interactions and show by proteomics, biochemical and immunofluorescence analyses that actin, non-muscle myosin IIA (NMM IIA), RhoA, Rho kinase II (ROCKII) and Rab8 associate with peroxisomes. Our data provide evidence that (i) RhoA in its inactive state, maintained for example by C. botulinum toxin exoenzyme C3, dissociates from peroxisomes enabling microtubule-based peroxisomal movements and (ii) dominant-active RhoA targets to peroxisomes, uncouples the organelles from microtubules and favors Rho kinase recruitment to peroxisomes. We suggest that ROCKII activates NMM IIA mediating local peroxisomal constrictions. Although our understanding of peroxisome-cytoskeleton interactions is still incomplete, a picture is emerging demonstrating alternate RhoA-dependent association of peroxisomes to the microtubular and actin cytoskeleton. Whereas association of peroxisomes to microtubules clearly serves bidirectional, long-range saltatory movements, peroxisome-acto-myosin interactions may support biogenetic functions balancing peroxisome size, shape, number, and clustering. PMID:21079737

  5. Organization and regulation of the actin cytoskeleton in the pollen tube

    PubMed Central

    Qu, Xiaolu; Jiang, Yuxiang; Chang, Ming; Liu, Xiaonan; Zhang, Ruihui; Huang, Shanjin

    2015-01-01

    Proper organization of the actin cytoskeleton is crucial for pollen tube growth. However, the precise mechanisms by which the actin cytoskeleton regulates pollen tube growth remain to be further elucidated. The functions of the actin cytoskeleton are dictated by its spatial organization and dynamics. However, early observations of the distribution of actin filaments at the pollen tube apex were quite perplexing, resulting in decades of controversial debate. Fortunately, due to improvements in fixation regimens for staining actin filaments in fixed pollen tubes, as well as the adoption of appropriate markers for visualizing actin filaments in living pollen tubes, this issue has been resolved and has given rise to the consensus view of the spatial distribution of actin filaments throughout the entire pollen tube. Importantly, recent descriptions of the dynamics of individual actin filaments in the apical region have expanded our understanding of the function of actin in regulation of pollen tube growth. Furthermore, careful documentation of the function and mode of action of several actin-binding proteins expressed in pollen have provided novel insights into the regulation of actin spatial distribution and dynamics. In the current review, we summarize our understanding of the organization, dynamics, and regulation of the actin cytoskeleton in the pollen tube. PMID:25620974

  6. The Plasma Membrane Potential and the Organization of the Actin Cytoskeleton of Epithelial Cells

    PubMed Central

    Chifflet, Silvia; Hernández, Julio A.

    2012-01-01

    The establishment and maintenance of the polarized epithelial phenotype require a characteristic organization of the cytoskeletal components. There are many cellular effectors involved in the regulation of the cytoskeleton of epithelial cells. Recently, modifications in the plasma membrane potential (PMP) have been suggested to participate in the modulation of the cytoskeletal organization of epithelia. Here, we review evidence showing that changes in the PMP of diverse epithelial cells promote characteristic modifications in the cytoskeletal organization, with a focus on the actin cytoskeleton. The molecular paths mediating these effects may include voltage-sensitive integral membrane proteins and/or peripheral proteins sensitive to surface potentials. The voltage dependence of the cytoskeletal organization seems to have implications in several physiological processes, including epithelial wound healing and apoptosis. PMID:22315611

  7. The actin cytoskeleton may control the polar distribution of an auxin transport protein.

    PubMed

    Muday, G K; Hu, S; Brady, S R

    2000-06-01

    The gravitropic bending of plants has long been linked to the changes in the transport of the plant hormone auxin. To understand the mechanism by which gravity alters auxin movement, it is critical to know how polar auxin transport is initially established. In shoots, polar auxin transport is basipetal (i.e., from the shoot apex toward the base). It is driven by the basal localization of the auxin efflux carrier complex. One mechanism for localizing this efflux carrier complex to the basal membrane may be through attachment to the actin cytoskeleton. The efflux carrier protein complex is believed to consist of several polypeptides, including a regulatory subunit that binds auxin transport inhibitors, such as naphthylphthalamic acid (NPA). Several lines of experimentation have been used to determine if the NPA binding protein interacts with actin filaments. The NPA binding protein has been shown to partition with the actin cytoskeleton during detergent extraction. Agents that specifically alter the polymerization state of the actin cytoskeleton change the amount of NPA binding protein and actin recovered in these cytoskeletal pellets. Actin-affinity columns were prepared with polymers of actin purified from zucchini hypocotyl tissue. NPA binding activity was eluted in a single peak from the actin filament column. Cytochalasin D, which fragments the actin cytoskeleton, was shown to reduce polar auxin transport in zucchini hypocotyls. The interaction of the NPA binding protein with the actin cytoskeleton may localize it in one plane of the plasma membrane, and thereby control the polarity of auxin transport.

  8. The actin cytoskeleton may control the polar distribution of an auxin transport protein

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Hu, S.; Brady, S. R.; Davies, E. (Principal Investigator)

    2000-01-01

    The gravitropic bending of plants has long been linked to the changes in the transport of the plant hormone auxin. To understand the mechanism by which gravity alters auxin movement, it is critical to know how polar auxin transport is initially established. In shoots, polar auxin transport is basipetal (i.e., from the shoot apex toward the base). It is driven by the basal localization of the auxin efflux carrier complex. One mechanism for localizing this efflux carrier complex to the basal membrane may be through attachment to the actin cytoskeleton. The efflux carrier protein complex is believed to consist of several polypeptides, including a regulatory subunit that binds auxin transport inhibitors, such as naphthylphthalamic acid (NPA). Several lines of experimentation have been used to determine if the NPA binding protein interacts with actin filaments. The NPA binding protein has been shown to partition with the actin cytoskeleton during detergent extraction. Agents that specifically alter the polymerization state of the actin cytoskeleton change the amount of NPA binding protein and actin recovered in these cytoskeletal pellets. Actin-affinity columns were prepared with polymers of actin purified from zucchini hypocotyl tissue. NPA binding activity was eluted in a single peak from the actin filament column. Cytochalasin D, which fragments the actin cytoskeleton, was shown to reduce polar auxin transport in zucchini hypocotyls. The interaction of the NPA binding protein with the actin cytoskeleton may localize it in one plane of the plasma membrane, and thereby control the polarity of auxin transport.

  9. The actin cytoskeleton may control the polar distribution of an auxin transport protein

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Hu, S.; Brady, S. R.; Davies, E. (Principal Investigator)

    2000-01-01

    The gravitropic bending of plants has long been linked to the changes in the transport of the plant hormone auxin. To understand the mechanism by which gravity alters auxin movement, it is critical to know how polar auxin transport is initially established. In shoots, polar auxin transport is basipetal (i.e., from the shoot apex toward the base). It is driven by the basal localization of the auxin efflux carrier complex. One mechanism for localizing this efflux carrier complex to the basal membrane may be through attachment to the actin cytoskeleton. The efflux carrier protein complex is believed to consist of several polypeptides, including a regulatory subunit that binds auxin transport inhibitors, such as naphthylphthalamic acid (NPA). Several lines of experimentation have been used to determine if the NPA binding protein interacts with actin filaments. The NPA binding protein has been shown to partition with the actin cytoskeleton during detergent extraction. Agents that specifically alter the polymerization state of the actin cytoskeleton change the amount of NPA binding protein and actin recovered in these cytoskeletal pellets. Actin-affinity columns were prepared with polymers of actin purified from zucchini hypocotyl tissue. NPA binding activity was eluted in a single peak from the actin filament column. Cytochalasin D, which fragments the actin cytoskeleton, was shown to reduce polar auxin transport in zucchini hypocotyls. The interaction of the NPA binding protein with the actin cytoskeleton may localize it in one plane of the plasma membrane, and thereby control the polarity of auxin transport.

  10. From filaments to function: The role of the plant actin cytoskeleton in pathogen perception, signaling and immunity.

    PubMed

    Porter, Katie; Day, Brad

    2016-04-01

    The eukaryotic actin cytoskeleton is required for numerous cellular processes, including cell shape, development and movement, gene expression and signal transduction, and response to biotic and abiotic stress. In recent years, research in both plants and animal systems have described a function for actin as the ideal surveillance platform, linking the function and activity of primary physiological processes to the immune system. In this review, we will highlight recent advances that have defined the regulation and breadth of function of the actin cytoskeleton as a network required for defense signaling following pathogen infection. Coupled with an overview of recent work demonstrating specific targeting of the plant actin cytoskeleton by a diversity of pathogens, including bacteria, fungi and viruses, we will highlight the importance of actin as a key signaling hub in plants, one that mediates surveillance of cellular homeostasis and the activation of specific signaling responses following pathogen perception. Based on the studies highlighted herein, we propose a working model that posits changes in actin filament organization is in and of itself a highly specific signal, which induces, regulates and physically directs stimulus-specific signaling processes, most importantly, those associated with response to pathogens. © 2015 Institute of Botany, Chinese Academy of Sciences.

  11. Effects of low-energy argon ion implantation on the dynamic organization of the actin cytoskeleton during maize pollen germination.

    PubMed

    Deng, F; Zhu, S W; Wu, L J; Cheng, B J

    2010-04-27

    The relationship between pollen germination and the dynamic organization of the actin cytoskeleton during pollen germination is a central theme in plant reproductive biology research. Maize (Zea mays) pollen grains were implanted with 30 keV argon ion (Ar(+)) beams at doses ranging from 0.78 x 10(15) to 13 x 10(15) ions/cm(2). The effects of low-energy ion implantation on pollen germination viability and the dynamic organization of the actin cytoskeleton during pollen germination were studied using confocal laser scanning microscopy. Maize pollen germination rate increased remarkably with Ar(+) dose, in the range from 3.9 x 10(15) to 6.5 x 10(15) ions/cm(2); the germination rate peaked at an Ar(+) dose of 5.2 x 10(15) ions/cm(2). When the implantation dose exceeded 7.8 x 10(15) ions/cm(2), the rate of pollen germination decreased sharply. The actin filaments assembled in pollen grains implanted with 5.2 x 10(15) ions/cm(2) Ar(+) much earlier than in controls. The actin filaments organized as longer parallel bundles and extended into the emerging pollen tube in treated pollen grains, while they formed random and loose fine bundles and were gathered at the pollen aperture in the control. The reorganization of actin cytoskeleton in the pollen implanted with 9.1 x 10(15) ions/cm(2) Ar(+) was slower than in controls. There was a positive correlation between pollen germination and the dynamic organization of the actin cytoskeleton during pollen germination. Ion implantation into pollen did not cause changes in the polarization of actin filaments and organelle dynamics in the pollen tubes. The effects of Ar(+) implantation on pollen germination could be mediated by changes in the polymerization and rearrangement of actin polymers.

  12. Assembly and Function of the Actin Cytoskeleton of Yeast: Relationships between Cables and Patches

    PubMed Central

    Karpova, Tatiana S.; McNally, James G.; Moltz, Samuel L.; Cooper, John A.

    1998-01-01

    Actin in eukaryotic cells is found in different pools, with filaments being organized into a variety of supramolecular assemblies. To investigate the assembly and functional relationships between different parts of the actin cytoskeleton in one cell, we studied the morphology and dynamics of cables and patches in yeast. The fine structure of actin cables and the manner in which cables disassemble support a model in which cables are composed of a number of overlapping actin filaments. No evidence for intrinsic polarity of cables was found. To investigate to what extent different parts of the actin cytoskeleton depend on each other, we looked for relationships between cables and patches. Patches and cables were often associated, and their polarized distributions were highly correlated. Therefore, patches and cables do appear to depend on each other for assembly and function. Many cell types show rearrangements of the actin cytoskeleton, which can occur via assembly or movement of actin filaments. In our studies, dramatic changes in actin polarization did not include changes in filamentous actin. In addition, the concentration of actin patches was relatively constant as cells grew. Therefore, cells do not have bursts of activity in which new parts of the actin cytoskeleton are created. PMID:9744880

  13. The anti-proliferative agent jasplakinolide rearranges the actin cytoskeleton of plant cells.

    PubMed

    Sawitzky, H; Liebe, S; Willingale-Theune, J; Menzel, D

    1999-06-01

    In the present study, we have characterized the action of the natural cyclodepsipeptide jasplakinolide (JAS) on the cytoplasmic architecture, actin-based cytoplasmic motility, and the organization of the actin cytoskeleton in selected examples of green algae (Acetabularia, Pseudobryopsis and Nitella) and higher plant cells (Allium bulb scale cells and Sinapis root hairs). JAS was capable of influencing the actin cytoskeleton and inhibiting cytoplasmic streaming in a differential, cell type-specific manner. With the exception of Nitella, two consecutive responses were observed upon incubation with 2.5 microM JAS: In the first phase cytoplasmic streaming increased transiently alongside with minor modifications of the actin cytoskeleton in the form of adventitious actin spots and spikes appearing throughout the cell cortex in addition to the normal actin bundle system typical for each cell type. In the second phase, cytoplasmic streaming stopped and the actin cytoskeleton became heavily reorganized into shorter, straight, more and more randomly oriented bundle segments. JAS exerted severe long-term effects on the actin cytoskeleton when treatments exceeded 30min at a concentration of 2.5 microM. An in situ competition assay using equimolar concentrations of JAS and FITC-phalloidin suggested that JAS has a phalloidin-like action. Effects of JAS were significantly different from those of cytochalasin D with respect to the resulting degree of perturbance of cytoplasmic organization, the distribution of actin filaments and the speed of reversibility.

  14. Profilin as a regulator of the membrane-actin cytoskeleton interface in plant cells.

    PubMed

    Sun, Tiantian; Li, Shanwei; Ren, Haiyun

    2013-12-19

    Membrane structures and cytoskeleton dynamics are intimately inter-connected in the eukaryotic cell. Recently, the molecular mechanisms operating at this interface have been progressively addressed. Many experiments have revealed that the actin cytoskeleton can interact with membranes through various discrete membrane domains. The actin-binding protein, profilin has been proven to inhibit actin polymerization and to promote F-actin elongation. This is dependent on many factors, such as the profilin/G-actin ratio and the ionic environment of the cell. Additionally, profilin has specific domains that interact with phosphoinositides and poly-L-proline rich proteins; theoretically, this gives profilin the opportunity to interact with membranes, and a large number of experiments have confirmed this possibility. In this article, we summarize recent findings in plant cells, and discuss the evidence of the connections among actin cytoskeleton, profilin and biomembranes through direct or indirect relationships.

  15. System-wide organization of actin cytoskeleton determines organelle transport in hypocotyl plant cells

    PubMed Central

    Nowak, Jacqueline; Ivakov, Alexander; Somssich, Marc; Persson, Staffan; Nikoloski, Zoran

    2017-01-01

    The actin cytoskeleton is an essential intracellular filamentous structure that underpins cellular transport and cytoplasmic streaming in plant cells. However, the system-level properties of actin-based cellular trafficking remain tenuous, largely due to the inability to quantify key features of the actin cytoskeleton. Here, we developed an automated image-based, network-driven framework to accurately segment and quantify actin cytoskeletal structures and Golgi transport. We show that the actin cytoskeleton in both growing and elongated hypocotyl cells has structural properties facilitating efficient transport. Our findings suggest that the erratic movement of Golgi is a stable cellular phenomenon that might optimize distribution efficiency of cell material. Moreover, we demonstrate that Golgi transport in hypocotyl cells can be accurately predicted from the actin network topology alone. Thus, our framework provides quantitative evidence for system-wide coordination of cellular transport in plant cells and can be readily applied to investigate cytoskeletal organization and transport in other organisms. PMID:28655850

  16. Actin Cytoskeleton Manipulation by Effector Proteins Secreted by Diarrheagenic Escherichia coli Pathotypes

    PubMed Central

    Navarro-Garcia, Fernando; Serapio-Palacios, Antonio; Ugalde-Silva, Paul; Tapia-Pastrana, Gabriela; Chavez-Dueñas, Lucia

    2013-01-01

    The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology. PMID:23509714

  17. TGFβ-induced actin cytoskeleton rearrangement in podocytes is associated with compensatory adaptation of mitochondrial energy metabolism

    PubMed Central

    Casalena, Gabriella; Böttinger, Erwin; Daehn, Ilse

    2015-01-01

    Background/Aims In podocytes, the overexpression of TGFβ ligands and receptors during glomerulosclerosis could be causal for injury induction and perpetuation in glomerular tufts. Mitochondrial dysfunction and oxidative stress are emerging as potential therapeutic targets in glomerular injury and TGFβ has been shown to modulate mitochondrial metabolism in different cell types. This study aims to investigate the role of TGFβ in podocyte energy metabolism and cytoskeleton dynamics. Methods Mitochondrial function and cytoskeleton dynamics were analyzed in TGFβ-treated WT and Smad2/3 double KO podocytes (DKO). Results TGFβ treatment in podocytes induced a significant Smad-dependent increase of mitochondrial oxygen consumption rate (OCR). ATP content was unchanged and increased respiration was not associated with increased mitochondrial mass. Increased cellular reactive oxygen species (ROS) induced by Smad-mediated TGFβ signaling were reverted by NADPH oxidase inhibitor apocynin. TGFβ treatment did not induce mitochondrial oxidative stress, and Smad2/3 dependent-TGFβ signaling and increased mitochondrial OCR were found to be associated with actin cytoskeleton dynamics. The role of motor proteins myosin II and dynamin in TGFβ-induced actin polymerization was demonstrated by specific inhibition resulting in actin stabilization and normalization of mitochondrial OCR. Conclusion TGFβ-induced rearrangements of actin cytoskeleton are controlled by Smad2/3 signaling pathways and coupled with activation of mitochondrial ATP synthesis as bioenergetic adaptation to ATP consumption by ATP- and GTP-dependent motor proteins myosin II and dynamin. PMID:26613578

  18. NHERF1 regulates actin cytoskeleton organization through modulation of α-actinin-4 stability.

    PubMed

    Sun, Licui; Zheng, Junfang; Wang, Qiqi; Song, Ran; Liu, Hua; Meng, Ran; Tao, Tao; Si, Yang; Jiang, Wenguo; He, Junqi

    2016-02-01

    The actin cytoskeleton is composed of a highly dynamic network of filamentous proteins, yet the molecular mechanism that regulates its organization and remodeling remains elusive. In this study, Na(+)/H(+) exchanger regulatory factor (NHERF)-1 loss-of-function and gain-of-function experiments reveal that polymerized actin cytoskeleton (F-actin) in HeLa cells is disorganized by NHERF1, whereas actin protein expression levels exhibit no detectable change. To elucidate the molecular mechanism underlying actin cytoskeleton disorganization by NHERF1, a combined 2-dimensional electrophoresis-matrix-assisted laser desorption/ionization-time of flight mass spectrometry approach was used to screen for proteins regulated by NHERF1 in HeLa cells. α-Actinin-4, an actin cross-linking protein, was identified. Glutathione S-transferase pull-down and coimmunoprecipitation studies showed the α-actinin-4 carboxyl-terminal region specifically interacted with the NHERF1 postsynaptic density 95/disc-large/zona occludens-1 domain. The NHERF1/α-actinin-4 interaction increased α-actinin-4 ubiquitination and decreased its expression levels, resulting in actin cytoskeleton disassembly. Our study identified α-actinin-4 as a novel NHERF1 interaction partner and provided new insights into the regulatory mechanism of the actin cytoskeleton by NHERF1. © FASEB.

  19. SYP73 Anchors the ER to the Actin Cytoskeleton for Maintenance of ER Integrity and Streaming in Arabidopsis.

    PubMed

    Cao, Pengfei; Renna, Luciana; Stefano, Giovanni; Brandizzi, Federica

    2016-12-05

    The endoplasmic reticulum (ER) is an essential organelle that spreads throughout the cytoplasm as one interconnected network of narrow tubules and dilated cisternae that enclose a single lumen. The ER network undergoes extensive remodeling, which critically depends on membrane-cytoskeleton interactions [1]. In plants, the ER is also highly mobile, and its streaming contributes significantly to the movement of other organelles [2, 3]. The remodeling and motility of the plant ER rely mainly on actin [4] and to a minor extent on microtubules [5]. Although a three-way interaction between the ER, cytosolic myosin-XI, and F-actin mediates the plant ER streaming [6], the mechanisms underlying stable interaction of the ER membrane with actin are unknown. Early electron microscopy studies suggested a direct attachment of the plant ER with actin filaments [7, 8], but it is plausible that yet-unknown proteins facilitate anchoring of the ER membrane with the cytoskeleton. We demonstrate here that SYP73, a member of the plant Syp7 subgroup of SNARE proteins [9] containing actin-binding domains, is a novel ER membrane-associated actin-binding protein. We show that overexpression of SYP73 causes a striking rearrangement of the ER over actin and that, similar to mutations of myosin-XI [4, 10, 11], loss of SYP73 reduces ER streaming and affects overall ER network morphology and plant growth. We propose a model for plant ER remodeling whereby the dynamic rearrangement and streaming of the ER network depend on the propelling action of myosin-XI over actin coupled with a SYP73-mediated bridging, which dynamically anchors the ER membrane with actin filaments.

  20. PKC-dependent stimulation of EAAT3 glutamate transporter does not require the integrity of actin cytoskeleton.

    PubMed

    Bianchi, Massimiliano G; Rotoli, Bianca Maria; Dall'Asta, Valeria; Gazzola, Gian C; Gatti, Rita; Bussolati, Ovidio

    2006-04-01

    The activity and the membrane expression of EAAT3 glutamate transporter are stimulated upon PKC activation by phorbol esters in C6 rat glioma cells. To investigate the role of cytoskeleton in these effects, we have employed actin-perturbing toxins and found that the perturbation of actin cytoskeleton inhibits basal but not phorbol-stimulated EAAT3 activity and membrane trafficking. In the absence of phorbols, latrunculin A, a toxin that disassembles actin cytoskeleton, produced a rapid inhibition of EAAT3 activity, due to a decrease in transport V(max). The inhibitory effect was fully reversible and was not detected for other sodium dependent transport systems for amino acids. However, latrunculin did not prevent the increase in transport caused by phorbol esters and, moreover, cells pre-treated with phorbols were resistant to the inhibitory effect of the toxin on EAAT3 activity. Biotinylation experiments indicated that the inhibitory effect of latrunculin was attributable to a decreased expression of the carrier on the membrane, while the toxin did not suppress the PKC-dependent increase in EAAT3 membrane abundance. Latrunculin A effects on EAAT3 were shared by cytochalasin D, a toxin that disorganizes actin filaments with a distinct mechanism of action. On the contrary, a small, but significant, increase of EAAT3 activity was observed upon incubation with jasplakinolide, a drug that stabilizes actin microfilaments. Also jasplakinolide, however, did not hinder phorbol-dependent stimulation of aspartate transport. Colchicine, a toxin that disrupts microtubules, also lowered EAAT3 activity without preventing transport stimulation by phorbols, while microtubule stabilization by paclitaxel led to an increase in aspartate transport. It is concluded that, in C6 cells, the PKC-mediated stimulatory effects on EAAT3 are cytoskeleton-independent, while in the absence of phorbols, the transporter is partially inhibited by the disorganization of either actin microfilaments or

  1. Disruption of the F-actin cytoskeleton limits statolith movement in Arabidopsis hypocotyls.

    PubMed

    Palmieri, Maria; Kiss, John Z

    2005-09-01

    The F-actin cytoskeleton is hypothesized to play a role in signal transduction mechanisms of gravitropism by interacting with sedimenting amyloplasts as they traverse statocytes of gravistimulated plants. Previous studies have determined that pharmacological disruption of the F-actin cytoskeleton with latrunculin B (Lat-B) causes increased gravitropism in stem-like organs and roots, and results in a more rapid settling of amyloplasts in the columella cells of Arabidopsis roots. These results suggest that the actin cytoskeleton modulates amyloplast movement and also gravitropic signal transduction. To determine the effect of F-actin disruption on amyloplast sedimentation in stem-like organs, Arabidopsis hypocotyls were treated with Lat-B and a detailed analysis of amyloplast sedimentation kinetics was performed by determining amyloplast positions in endodermal cells at various time intervals following reorientation. Confocal microscopy was used to confirm that Lat-B effectively disrupts the actin cytoskeleton in these cells. The results indicate that amyloplasts in hypocotyl endodermal cells settle more quickly compared with amyloplasts in root columella cells. F-actin disruption with Lat-B severely reduces amyloplast mobility within Arabidopsis endodermal statocytes, and these results suggest that amyloplast sedimentation within the hypocotyl endodermal cell is F-actin-dependent. Thus, a model for gravitropism in stem-like organs is proposed in which F-actin modulates the gravity response by actively participating in statolith repositioning within the endodermal statocytes.

  2. Cytoskeleton mediated spreading dynamics of immune cells

    NASA Astrophysics Data System (ADS)

    Hui, King-Lam; Wayt, Jessica; Grooman, Brian; Upadhyaya, Arpita

    2009-03-01

    We have studied the spreading of Jurkat T-cells on anti-CD3 antibody-coated substrates as a model of immune synapse formation. Cell adhesion area versus time was measured via interference reflection contrast microscopy. We found that the spread area exhibited a sigmoidal growth as a function of time in contrast to the previously proposed universal power-law growth for spreading cells. We used high-resolution total internal reflection fluorescence microscopy of these cells transfected with GFP-actin to study cytoskeletal dynamics during the spreading process. Actin filaments spontaneously organized into a variety of structures including traveling waves, target patterns, and mobile clusters emanating from an organizing center. We quantify these dynamic structures and relate them to the spreading rates. We propose that the spreading kinetics are determined by active rearrangements of the cytoskeleton initiated by signaling events upon antibody binding by T-cell receptors. Membrane deformations induced by such wavelike organization of the cytoskeleton may be a general phenomenon that underlies cell movement and cell-substrate interactions.

  3. Differential requirement of F-actin and microtubule cytoskeleton in cue-induced local protein synthesis in axonal growth cones.

    PubMed

    Piper, Michael; Lee, Aih Cheun; van Horck, Francisca P G; McNeilly, Heather; Lu, Trina Bo; Harris, William A; Holt, Christine E

    2015-02-25

    Local protein synthesis (LPS) via receptor-mediated signaling plays a role in the directional responses of axons to extrinsic cues. An intact cytoskeleton is critical to enact these responses, but it is not known whether the two major cytoskeletal elements, F-actin and microtubules, have any roles in regulating axonal protein synthesis. Here, we show that pharmacological disruption of either microtubules or actin filaments in growth cones blocks netrin-1-induced de novo synthesis of proteins, as measured by metabolic incorporation of labeled amino acids, implicating both elements in axonal synthesis. However, comparative analysis of the activated translation initiation regulator, eIF4E-BP1, revealed a striking difference in the point of action of the two elements: actin disruption completely inhibited netrin-1-induced eIF4E-BP1 phosphorylation while microtubule disruption had no effect. An intact F-actin, but not microtubule, cytoskeleton was also required for netrin-1-induced activation of the PI3K/Akt/mTOR pathway, upstream of translation initiation. Downstream of translation initiation, microtubules were required for netrin-1-induced activation of eukaryotic elongation factor 2 kinase (eEF2K) and eEF2. Taken together, our results show that while actin and microtubules are both crucial for cue-induced axonal protein synthesis, they serve distinct roles with F-actin being required for the initiation of translation and microtubules acting later at the elongation step.

  4. Latrunculin A-Induced Perturbation of the Actin Cytoskeleton Mediates Pap1p-Dependent Induction of the Caf5p Efflux Pump in Schizosaccharomyces pombe.

    PubMed

    Asadi, Farzad; Chakraborty, Bidhan; Karagiannis, Jim

    2017-02-09

    As part of an earlier study aimed at uncovering gene products with roles in defending against latrunculin A (LatA)-induced cytoskeletal perturbations, we identified three members of the oxidative stress response pathway: the Pap1p AP-1-like transcription factor, the Imp1p α-importin, and the Caf5p efflux pump. In this report, we characterize the pathway further and show that Pap1p translocates from the cytoplasm to the nucleus in an Imp1p-dependent manner upon LatA treatment. Moreover, preventing this translocation, through the addition of a nuclear export signal (NES), confers the same characteristic LatA-sensitive phenotype exhibited by pap1Δ cells. Lastly, we show that the caf5 gene is induced upon exposure to LatA and that Pap1p is required for this transcriptional upregulation. Importantly, the expression of trr1, a Pap1p target specifically induced in response to oxidative stress, is not significantly altered by LatA treatment. Taken together, these results suggest a model in which LatA-mediated cytoskeletal perturbations are sensed, triggering the Imp1p-dependent translocation of Pap1p to the nucleus and the induction of the caf5 gene (independently of oxidative stress).

  5. Latrunculin A-Induced Perturbation of the Actin Cytoskeleton Mediates Pap1p-Dependent Induction of the Caf5p Efflux Pump in Schizosaccharomyces pombe

    PubMed Central

    Asadi, Farzad; Chakraborty, Bidhan; Karagiannis, Jim

    2016-01-01

    As part of an earlier study aimed at uncovering gene products with roles in defending against latrunculin A (LatA)-induced cytoskeletal perturbations, we identified three members of the oxidative stress response pathway: the Pap1p AP-1-like transcription factor, the Imp1p α-importin, and the Caf5p efflux pump. In this report, we characterize the pathway further and show that Pap1p translocates from the cytoplasm to the nucleus in an Imp1p-dependent manner upon LatA treatment. Moreover, preventing this translocation, through the addition of a nuclear export signal (NES), confers the same characteristic LatA-sensitive phenotype exhibited by pap1Δ cells. Lastly, we show that the caf5 gene is induced upon exposure to LatA and that Pap1p is required for this transcriptional upregulation. Importantly, the expression of trr1, a Pap1p target specifically induced in response to oxidative stress, is not significantly altered by LatA treatment. Taken together, these results suggest a model in which LatA-mediated cytoskeletal perturbations are sensed, triggering the Imp1p-dependent translocation of Pap1p to the nucleus and the induction of the caf5 gene (independently of oxidative stress). PMID:28040778

  6. Actin cytoskeleton demonstration in Trichomonas vaginalis and in other trichomonads.

    PubMed

    Brugerolle, G; Bricheux, G; Coffe, G

    1996-01-01

    The flagellate form of Trichomonas vaginalis (T v) transforms to amoeboid cells upon adherence to converslips. They grow and their nuclei divide without undergoing cytokinesis, yielding giant cells and a monolayer of T v F-actin was demonstrated in Trichomonas vaginalis by fluorescence microscopy using phalloidin and an anti-actin mAb which labelled the cytoplasm of both the flagellate and amoeboid forms. Comparative electrophoresis and immunoblotting established that the actin band has the same 42 kDa as muscle actin, but 2-D electrophoresis resolved the actin band into four spots; the two major spots observed were superimposable with major muscle actin isoforms. Electron microscopy demonstrated an ectoplasmic microfibrillar layer along the adhesion zone of amoeboid T v adhering to coverslips. Immunogold staining, using anti-actin monoclonal antibodies demonstrated that this layer was mainly composed of actin microfilaments. A comparative immunoblotting study comprising seven trichomonad species showed that all trichomonads studied expressed actin. The mAb Sigma A-4700 specific for an epitope on the actin C-terminal sequence labelled only actin of Trichomonas vaginalis, Tetratrichomonas gallinarum. Trichomitus batrachorum and Hypotrichomonas acosta, but not the actin of Tritrichomonas foetus, Tritrichomonas augusta and Monocercomonas sp. This discrimination between a 'trichomonas branch' and a 'tritrichomonas branch' is congruent with inferred sequence phylogeny from SSu rRNA and with classical phylogeny of trichomonads.

  7. Integrity of the actin cytoskeleton of host macrophages is essential for Leishmania donovani infection.

    PubMed

    Roy, Saptarshi; Kumar, G Aditya; Jafurulla, Md; Mandal, Chitra; Chattopadhyay, Amitabha

    2014-08-01

    Visceral leishmaniasis is a vector-borne disease caused by an obligate intracellular protozoan parasite Leishmania donovani. The molecular mechanism involved in internalization of Leishmania is poorly understood. The entry of Leishmania involves interaction with the plasma membrane of host cells. We have previously demonstrated the requirement of host membrane cholesterol in the binding and internalization of L. donovani into macrophages. In the present work, we explored the role of the host actin cytoskeleton in leishmanial infection. We observed a dose-dependent reduction in the attachment of Leishmania promastigotes to host macrophages upon destabilization of the actin cytoskeleton by cytochalasin D. This is accompanied by a concomitant reduction in the intracellular amastigote load. We utilized a recently developed high resolution microscopy-based method to quantitate cellular F-actin content upon treatment with cytochalasin D. A striking feature of our results is that binding of Leishmania promastigotes and intracellular amastigote load show close correlation with cellular F-actin level. Importantly, the binding of Escherichia coli remained invariant upon actin destabilization of host cells, thereby implying specific involvement of the actin cytoskeleton in Leishmania infection. To the best of our knowledge, these novel results constitute the first comprehensive demonstration on the specific role of the host actin cytoskeleton in Leishmania infection. Our results could be significant in developing future therapeutic strategies to tackle leishmaniasis.

  8. Androgens Regulate T47D Cells Motility and Invasion through Actin Cytoskeleton Remodeling

    PubMed Central

    Montt-Guevara, Maria Magdalena; Shortrede, Jorge Eduardo; Giretti, Maria Silvia; Giannini, Andrea; Mannella, Paolo; Russo, Eleonora; Genazzani, Alessandro David; Simoncini, Tommaso

    2016-01-01

    The relationship between androgens and breast cancer is controversial. Androgens have complex effects on breast cancer progression and metastasis. Moreover, androgen receptor (AR) is expressed in approximately 70 to 90% of invasive breast carcinomas, which has prognostic relevance in basal-like cancers and in triple-negative breast cancers. Recent studies have associated the actin-binding proteins of the ezrin–radixin–moesin (ERM) family with metastasis in endocrine-sensitive cancers. We studied on T47D breast cancer cells whether androgens with different characteristics, such as testosterone (T), dihydrotestosterone (DHT), and dehydroepiandrosterone (DHEA) may regulate breast cancer cell motility and invasion through the control of actin remodeling. We demonstrate that androgens promote migration and invasion in T47D via Moesin activation. We show that T and DHEA exert their actions via the AR and estrogen receptor (ER), while the non-aromatizable androgen – DHT – only recruits AR. We further report that androgen induced significant changes in actin organization with pseudopodia along with membrane ruffles formation, and this process is mediated by Moesin. Our work identifies novel mechanisms of action of androgens on breast cancer cells. Through the modulation of Moesin, androgens alter the architecture of cytoskeleton in T47D breast cancer cell and promote cell migration and invasion. These results could help to understand the biological actions of androgens on breast cancer and, eventually, to develop new strategies for breast cancer treatment. PMID:27746764

  9. The formin DIAPH1 (mDia1) regulates megakaryocyte proplatelet formation by remodeling the actin and microtubule cytoskeletons.

    PubMed

    Pan, Jiajia; Lordier, Larissa; Meyran, Deborah; Rameau, Philippe; Lecluse, Yann; Kitchen-Goosen, Susan; Badirou, Idinath; Mokrani, Hayat; Narumiya, Shuh; Alberts, Arthur S; Vainchenker, William; Chang, Yunhua

    2014-12-18

    Megakaryocytes are highly specialized precursor cells that produce platelets via cytoplasmic extensions called proplatelets. Proplatelet formation (PPF) requires profound changes in microtubule and actin organization. In this work, we demonstrated that DIAPH1 (mDia1), a mammalian homolog of Drosophila diaphanous that works as an effector of the small GTPase Rho, negatively regulates PPF by controlling the dynamics of the actin and microtubule cytoskeletons. Moreover, we showed that inhibition of both DIAPH1 and the Rho-associated protein kinase (Rock)/myosin pathway increased PPF via coordination of both cytoskeletons. We provide evidence that 2 major effectors of the Rho GTPase pathway (DIAPH1 and Rock/myosin II) are involved not only in Rho-mediated stress fibers assembly, but also in the regulation of microtubule stability and dynamics during PPF.

  10. Tropomyosin - master regulator of actin filament function in the cytoskeleton.

    PubMed

    Gunning, Peter W; Hardeman, Edna C; Lappalainen, Pekka; Mulvihill, Daniel P

    2015-08-15

    Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition.

  11. Export of virulence proteins by malaria-infected erythrocytes involves remodeling of host actin cytoskeleton.

    PubMed

    Rug, Melanie; Cyrklaff, Marek; Mikkonen, Antti; Lemgruber, Leandro; Kuelzer, Simone; Sanchez, Cecilia P; Thompson, Jennifer; Hanssen, Eric; O'Neill, Matthew; Langer, Christine; Lanzer, Michael; Frischknecht, Friedrich; Maier, Alexander G; Cowman, Alan F

    2014-11-27

    Following invasion of human red blood cells (RBCs) by the malaria parasite, Plasmodium falciparum, a remarkable process of remodeling occurs in the host cell mediated by trafficking of several hundred effector proteins to the RBC compartment. The exported virulence protein, P falciparum erythrocyte membrane protein 1 (PfEMP1), is responsible for cytoadherence of infected cells to host endothelial receptors. Maurer clefts are organelles essential for protein trafficking, sorting, and assembly of protein complexes. Here we demonstrate that disruption of PfEMP1 trafficking protein 1 (PfPTP1) function leads to severe alterations in the architecture of Maurer's clefts. Furthermore, 2 major surface antigen families, PfEMP1 and STEVOR, are no longer displayed on the host cell surface leading to ablation of cytoadherence to host receptors. PfPTP1 functions in a large complex of proteins and is required for linking of Maurer's clefts to the host actin cytoskeleton.

  12. Retinoic acid-induced gene-1 (RIG-I) associates with the actin cytoskeleton via caspase activation and recruitment domain-dependent interactions.

    PubMed

    Mukherjee, Amitava; Morosky, Stefanie A; Shen, Le; Weber, Christopher R; Turner, Jerrold R; Kim, Kwang Sik; Wang, Tianyi; Coyne, Carolyn B

    2009-03-06

    The actin cytoskeleton serves as a barrier that protects mammalian cells from environmental pathogens such as bacteria, fungi, and viruses. Several components of antimicrobial signaling pathways have been shown to associate directly with the actin cytoskeleton, indicating that the cytoskeleton may also serve as a platform for immune-associated molecules. Here we report that retinoic acid-induced gene-I (RIG-I), an important viral RNA recognition molecule, is associated with the actin cytoskeleton and localizes predominantly to actin-enriched membrane ruffles in non-polarized epithelial cells. Subcellular localization and fractionation experiments revealed that the association between RIG-I and the actin cytoskeleton was mediated by its N-terminal caspase activation and recruitment domains (CARDs), which were necessary and sufficient to induce cytoskeletal association. We also show that RIG-I plays a role in cellular migration, as ectopic expression of RIG-I enhanced cellular migration in a wound healing assay and depletion of endogenous RIG-I significantly reduced wound healing. We further show that in both cultured intestinal epithelial cells (IEC) and human colon and small intestine biopsies, RIG-I is enriched at apico-lateral cell junctions and colocalizes with markers of the tight junction. Depolymerization of the actin cytoskeleton in polarized IEC led to the rapid relocalization of RIG-I and to the induction of type I interferon signaling. These data provide evidence that RIG-I is associated with the actin cytoskeleton in non-polarized epithelial cells and with the junctional complex in polarized IECs and human intestine and colon biopsies and may point to a physiological role for RIG-I in the regulation of cellular migration.

  13. Regulation of the actin cytoskeleton by PIP2 in cytokinesis.

    PubMed

    Logan, Michael R; Mandato, Craig A

    2006-06-01

    Cytokinesis is a sequential process that occurs in three phases: assembly of the cytokinetic apparatus, furrow progression and fission (abscission) of the newly formed daughter cells. The ingression of the cleavage furrow is dependent on the constriction of an equatorial actomyosin ring in many cell types. Recent studies have demonstrated that this structure is highly dynamic and undergoes active polymerization and depolymerization throughout the furrowing process. Despite much progress in the identification of contractile ring components, little is known regarding the mechanism of its assembly and structural rearrangements. PIP2 (phosphatidylinositol 4,5-bisphosphate) is a critical regulator of actin dynamics and plays an essential role in cell motility and adhesion. Recent studies have indicated that an elevation of PIP2 at the cleavage furrow is a critical event for furrow stability. In this review we discuss the role of PIP2-mediated signalling in the structural maintenance of the contractile ring and furrow progression. In addition, we address the role of other phosphoinositides, PI(4)P (phosphatidylinositol 4-phosphate) and PIP3 (phosphatidylinositol 3,4,5-triphosphate) in these processes.

  14. Evidence for physical and functional interactions among two Saccharomyces cerevisiae SH3 domain proteins, an adenylyl cyclase-associated protein and the actin cytoskeleton.

    PubMed

    Lila, T; Drubin, D G

    1997-02-01

    In a variety of organisms, a number of proteins associated with the cortical actin cytoskeleton contain SH3 domains, suggesting that these domains may provide the physical basis for functional interactions among structural and regulatory proteins in the actin cytoskeleton. We present evidence that SH3 domains mediate at least two independent functions of the Saccharomyces cerevisiae actin-binding protein Abp1p in vivo. Abp1p contains a single SH3 domain that has recently been shown to bind in vitro to the adenylyl cyclase-associated protein Srv2p. Immunofluorescence analysis of Srv2p subcellular localization in strains carrying mutations in either ABP1 or SRV2 reveals that the Abp1p SH3 domain mediates the normal association of Srv2p with the cortical actin cytoskeleton. We also show that a site in Abp1p itself is specifically bound by the SH3 domain of the actin-associated protein Rvs167p. Genetic analysis provides evidence that Abp1p and Rvs167p have functions that are closely interrelated. Abp1 null mutations, like rvs167 mutations, result in defects in sporulation and reduced viability under certain suboptimal growth conditions. In addition, mutations in ABP1 and RVS167 yield similar profiles of genetic "synthetic lethal" interactions when combined with mutations in genes encoding other cytoskeletal components. Mutations which specifically disrupt the SH3 domain-mediated interaction between Abp1p and Srv2p, however, show none of the shared phenotypes of abp1 and rvs167 mutations. We conclude that the Abp1p SH3 domain mediates the association of Srv2p with the cortical actin cytoskeleton, and that Abp1p performs a distinct function that is likely to involve binding by the Rvs167p SH3 domain. Overall, work presented here illustrates how SH3 domains can integrate the activities of multiple actin cytoskeleton proteins in response to varying environmental conditions.

  15. Evidence for physical and functional interactions among two Saccharomyces cerevisiae SH3 domain proteins, an adenylyl cyclase-associated protein and the actin cytoskeleton.

    PubMed Central

    Lila, T; Drubin, D G

    1997-01-01

    In a variety of organisms, a number of proteins associated with the cortical actin cytoskeleton contain SH3 domains, suggesting that these domains may provide the physical basis for functional interactions among structural and regulatory proteins in the actin cytoskeleton. We present evidence that SH3 domains mediate at least two independent functions of the Saccharomyces cerevisiae actin-binding protein Abp1p in vivo. Abp1p contains a single SH3 domain that has recently been shown to bind in vitro to the adenylyl cyclase-associated protein Srv2p. Immunofluorescence analysis of Srv2p subcellular localization in strains carrying mutations in either ABP1 or SRV2 reveals that the Abp1p SH3 domain mediates the normal association of Srv2p with the cortical actin cytoskeleton. We also show that a site in Abp1p itself is specifically bound by the SH3 domain of the actin-associated protein Rvs167p. Genetic analysis provides evidence that Abp1p and Rvs167p have functions that are closely interrelated. Abp1 null mutations, like rvs167 mutations, result in defects in sporulation and reduced viability under certain suboptimal growth conditions. In addition, mutations in ABP1 and RVS167 yield similar profiles of genetic "synthetic lethal" interactions when combined with mutations in genes encoding other cytoskeletal components. Mutations which specifically disrupt the SH3 domain-mediated interaction between Abp1p and Srv2p, however, show none of the shared phenotypes of abp1 and rvs167 mutations. We conclude that the Abp1p SH3 domain mediates the association of Srv2p with the cortical actin cytoskeleton, and that Abp1p performs a distinct function that is likely to involve binding by the Rvs167p SH3 domain. Overall, work presented here illustrates how SH3 domains can integrate the activities of multiple actin cytoskeleton proteins in response to varying environmental conditions. Images PMID:9190214

  16. p38α regulates actin cytoskeleton and cytokinesis in hepatocytes during development and aging

    PubMed Central

    Jorques, María; Rada, Patricia; Ramirez, Lorena; Valverde, Ángela M.; Nebreda, Ángel R.; Sastre, Juan

    2017-01-01

    Background Hepatocyte poliploidization is an age-dependent process, being cytokinesis failure the main mechanism of polyploid hepatocyte formation. Our aim was to study the role of p38α MAPK in the regulation of actin cytoskeleton and cytokinesis in hepatocytes during development and aging. Methods Wild type and p38α liver-specific knock out mice at different ages (after weaning, adults and old) were used. Results We show that p38α MAPK deficiency induces actin disassembly upon aging and also cytokinesis failure leading to enhanced binucleation. Although the steady state levels of cyclin D1 in wild type and p38α knock out old livers remained unaffected, cyclin B1- a marker for G2/M transition- was significantly overexpressed in p38α knock out mice. Our findings suggest that hepatocytes do enter into S phase but they do not complete cell division upon p38α deficiency leading to cytokinesis failure and binucleation. Moreover, old liver-specific p38α MAPK knock out mice exhibited reduced F-actin polymerization and a dramatic loss of actin cytoskeleton. This was associated with abnormal hyperactivation of RhoA and Cdc42 GTPases. Long-term p38α deficiency drives to inactivation of HSP27, which seems to account for the impairment in actin cytoskeleton as Hsp27-silencing decreased the number and length of actin filaments in isolated hepatocytes. Conclusions p38α MAPK is essential for actin dynamics with age in hepatocytes. PMID:28166285

  17. Sirtuin1 Maintains Actin Cytoskeleton by Deacetylation of Cortactin in Injured Podocytes

    PubMed Central

    Motonishi, Shuta; Wada, Takehiko; Ishimoto, Yu; Ohse, Takamoto; Matsusaka, Taiji; Kubota, Naoto; Shimizu, Akira; Kadowaki, Takashi; Tobe, Kazuyuki

    2015-01-01

    Recent studies have highlighted the renoprotective effect of sirtuin1 (SIRT1), a deacetylase that contributes to cellular regulation. However, the pathophysiologic role of SIRT1 in podocytes remains unclear. Here, we investigated the function of SIRT1 in podocytes. We first established podocyte-specific Sirt1 knockout (SIRT1pod−/−) mice. We then induced glomerular disease by nephrotoxic serum injection. The increase in urinary albumin excretion and BUN and the severity of glomerular injury were all significantly greater in SIRT1pod−/− mice than in wild-type mice. Western blot analysis and immunofluorescence showed a significant decrease in podocyte-specific proteins in SIRT1pod−/− mice, and electron microscopy showed marked exacerbation of podocyte injury, including actin cytoskeleton derangement in SIRT1pod−/− mice compared with wild-type mice. Protamine sulfate-induced podocyte injury was also exacerbated by podocyte-specific SIRT1 deficiency. In vitro, actin cytoskeleton derangement in H2O2-treated podocytes became prominent when the cells were pretreated with SIRT1 inhibitors. Conversely, this H2O2-induced derangement was ameliorated by SIRT1 activation. Furthermore, SIRT1 activation deacetylated the actin-binding and -polymerizing protein cortactin in the nucleus and facilitated deacetylated cortactin localization in the cytoplasm. Cortactin knockdown or inhibition of the nuclear export of cortactin induced actin cytoskeleton derangement and dissociation of cortactin from F-actin, suggesting the necessity of cytoplasmic cortactin for maintenance of the actin cytoskeleton. Taken together, these findings indicate that SIRT1 protects podocytes and prevents glomerular injury by deacetylating cortactin and thereby, maintaining actin cytoskeleton integrity. PMID:25424328

  18. Actin Cytoskeleton-Based Plant Synapse as Gravitransducer in the Transition Zone of the Root Apex

    NASA Astrophysics Data System (ADS)

    Baluska, Frantisek; Barlow, Peter; Volkmann, Dieter; Mancuso, Stefano

    The actin cytoskeleton was originally proposed to act as the signal transducer in the plant gravity sensory-motoric circuit. Surprisingly, however, several studies have documented that roots perfom gravisensing and gravitropism more effectively if exposed to diverse anti-F-actin drugs. Our study, using decapped maize root apices, has revealed that depolymerization of F-actin stimulates gravity perception in cells of the transition zone where root gravitropism is initiated (Mancuso et al. 2006). It has been proposed (Balǔka et al. 2005, 2009a) that s the non-growing adhesive end-poles, enriched with F-actin and myosin VIII, and active in endocytic recycling of both PIN transporters and cell wall pectins cross-linked with calcium and boron, act as the gravisensing domains, and that these impinge directly upon the root motoric responses via control of polar auxin transport. This model suggests that mechanical asymmetry at these plant synapses determines vectorial gravity-controlled auxin transport. Due to the gravity-imposed mechanical load upon the protoplast, a tensional stress is also imposed upon the plasma membrane of the physically lower synaptic cell pole. This stress is then relieved by shifting the endocytosis-exocytosis balance towards exocytosis (Balǔka et al. s 2005, 2009a,b). This `Synaptic Auxin Secretion' hypothesis does not conflict with the `Starch Statolith' hypothesis, which is based on amyloplast sedimentation. In fact, the `Synaptic Auxin Secretion' hypothesis has many elements which allow its unification with the Starch-Statolith model (Balǔka et al. 2005, 2009a,b). s References Balǔka F, Volkmann D, Menzel D (2005) Plant synapses: actin-based adhesion s domains for cell-to-cell communication. Trends Plant Sci 10: 106-111 Balǔka F, Schlicht M, s Wan Y-L, Burbach C, Volkmann D (2009a) Intracellular domains and polarity in root apices: from synaptic domains to plant neurobiology. Nova Acta Leopoldina 96: 103-122 Balǔka s F, Mancuso S

  19. PKCθ links proximal T cell and Notch signaling through localized regulation of the actin cytoskeleton

    PubMed Central

    Britton, Graham J; Ambler, Rachel; Clark, Danielle J; Hill, Elaine V; Tunbridge, Helen M; McNally, Kerrie E; Burton, Bronwen R; Butterweck, Philomena; Sabatos-Peyton, Catherine; Hampton-O’Neil, Lea A; Verkade, Paul; Wuelfing, Christoph; Wraith, David Cameron

    2017-01-01

    Notch is a critical regulator of T cell differentiation and is activated through proteolytic cleavage in response to ligand engagement. Using murine myelin-reactive CD4 T cells, we demonstrate that proximal T cell signaling modulates Notch activation by a spatiotemporally constrained mechanism. The protein kinase PKCθ is a critical mediator of signaling by the T cell antigen receptor and the principal costimulatory receptor CD28. PKCθ selectively inactivates the negative regulator of F-actin generation, Coronin 1A, at the center of the T cell interface with the antigen presenting cell (APC). This allows for effective generation of the large actin-based lamellum required for recruitment of the Notch-processing membrane metalloproteinase ADAM10. Such enhancement of Notch activation is critical for efficient T cell proliferation and Th17 differentiation. We reveal a novel mechanism that, through modulation of the cytoskeleton, controls Notch activation at the T cell:APC interface thereby linking T cell receptor and Notch signaling pathways. DOI: http://dx.doi.org/10.7554/eLife.20003.001 PMID:28112644

  20. Spectraplakin Induces Positive Feedback between Fusogens and the Actin Cytoskeleton to Promote Cell-Cell Fusion.

    PubMed

    Yang, Yihong; Zhang, Yan; Li, Wen-Jun; Jiang, Yuxiang; Zhu, Zhiwen; Hu, Huifang; Li, Wei; Wu, Jia-Wei; Wang, Zhi-Xin; Dong, Meng-Qiu; Huang, Shanjin; Ou, Guangshuo

    2017-04-10

    Cell-cell fusion generally requires cellular fusogenic proteins and actin-propelled membrane protrusions. However, the molecular connections between fusogens and the actin cytoskeleton remain unclear. Here, we show that the Caenorhabditis elegans fusogen EFF-1 and F-actin are enriched at the cortex of the post-embryonic fusing cells, and conditional mutations of WASP and Arp2/3 delay cell-cell fusion by impairing EFF-1 localization. Our affinity purification and mass spectrometry analyses determined that an actin-binding protein, spectraplakin/VAB-10A, binds to EFF-1. VAB-10A promotes cell-cell fusion by linking EFF-1 to the actin cytoskeleton. Conversely, EFF-1 enhanced the F-actin bundling activity of VAB-10A in vitro, and actin dynamics in the cortex were reduced in eff-1 or vab-10a mutants. Thus, cell-cell fusion is promoted by a positive feedback loop in which actin filaments that are crosslinked by spectraplakin to recruit fusogens to fusion sites are reinforced via fusogens, thereby increasing the probability of further fusogen accumulation to form fusion synapses. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Actin-cytoskeleton rearrangement modulates proton-induced uptake

    SciTech Connect

    Ben-Dov, Nadav; Korenstein, Rafi

    2013-04-15

    Recently it has been shown that elevating proton concentration at the cell surface stimulates the formation of membrane invaginations and vesicles accompanied by an enhanced uptake of macromolecules. While the initial induction of inward membrane curvature was rationalized in terms of proton-based increase of charge asymmetry across the membrane, the mechanisms underlying vesicle formation and its scission are still unknown. In light of the critical role of actin in vesicle formation during endocytosis, the present study addresses the involvement of cytoskeletal actin in proton-induced uptake (PIU). The uptake of dextran-FITC is used as a measure for the factual fraction of inward invaginations that undergo scission from the cell's plasma membrane. Our findings show that the rate of PIU in suspended cells is constant, whereas the rate of PIU in adherent cells is gradually increased in time, saturating at the level possessed by suspended cells. This is consistent with pH induced gradual degradation of stress-fibers in adherent cells. Wortmannin and calyculin-A are able to elevate PIU by 25% in adherent cells but not in suspended cells, while cytochalasin-D, rapamycin and latrunculin-A elevate PIU both in adherent and suspended cells. However, extensive actin depolymerization by high concentrations of latrunculin-A is able to inhibit PIU. We conclude that proton-induced membrane vesiculation is restricted by the actin structural resistance to the plasma membrane bending. Nevertheless, a certain degree of cortical actin restructuring is required for the completion of the scission process. - Highlights: ► Acidification of cells' exterior enhances uptake of macromolecules by the cells. ► Disruption of actin stress fibers leads to enhancement of proton induced uptake. ► Extensive depolymerization of cellular actin attenuates proton-induced uptake.

  2. Cell elasticity is regulated by the tropomyosin isoform composition of the actin cytoskeleton.

    PubMed

    Jalilian, Iman; Heu, Celine; Cheng, Hong; Freittag, Hannah; Desouza, Melissa; Stehn, Justine R; Bryce, Nicole S; Whan, Renee M; Hardeman, Edna C; Fath, Thomas; Schevzov, Galina; Gunning, Peter W

    2015-01-01

    The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments.

  3. Cell Elasticity Is Regulated by the Tropomyosin Isoform Composition of the Actin Cytoskeleton

    PubMed Central

    Jalilian, Iman; Heu, Celine; Cheng, Hong; Freittag, Hannah; Desouza, Melissa; Stehn, Justine R.; Bryce, Nicole S.; Whan, Renee M.; Hardeman, Edna C.

    2015-01-01

    The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments. PMID:25978408

  4. Yeast actin cytoskeleton mutants accumulate a new class of Golgi-derived secretary vesicle.

    PubMed Central

    Mulholland, J; Wesp, A; Riezman, H; Botstein, D

    1997-01-01

    Many yeast actin cytoskeleton mutants accumulate large secretory vesicles and exhibit phenotypes consistent with defects in polarized growth. This, together with actin's polarized organization, has suggested a role for the actin cytoskeleton in the vectorial transport of late secretory vesicles to the plasma membrane. By using ultrastructural and biochemical analysis, we have characterized defects manifested by mutations in the SLA2 gene (also known as the END4 gene), previously found to affect both the organization of the actin cytoskeleton and endocytosis in yeast. Defects in cell wall morphology, accumulated vesicles, and protein secretion kinetics were found in sla2 mutants similar to defects found in act1 mutants. Vesicles that accumulate in the sla2 and act1 mutants are immunoreactive with antibodies directed against the small GTPase Ypt1p but not with antibodies directed against the homologous Sec4p found on classical "late" secretory vesicles. In contrast, the late-acting secretory mutants sec1-1 and sec6-4 are shown to accumulate anti-Sec4p-positive secretory vesicles as well as vesicles that are immunoreactive with antibodies directed against Ypt1p. The late sec mutant sec4-8 is also shown to accumulate Ypt1p-containing vesicles and to exhibit defects in actin cytoskeleton organization. These results indicate the existence of at least two classes of morphologically similar, late secretory vesicles (associated with Ypt1p+ and Sec4p+, respectively), one of which appears to accumulate when the actin cytoskeleton is disorganized. Images PMID:9285820

  5. Yeast actin cytoskeleton mutants accumulate a new class of Golgi-derived secretary vesicle.

    PubMed

    Mulholland, J; Wesp, A; Riezman, H; Botstein, D

    1997-08-01

    Many yeast actin cytoskeleton mutants accumulate large secretory vesicles and exhibit phenotypes consistent with defects in polarized growth. This, together with actin's polarized organization, has suggested a role for the actin cytoskeleton in the vectorial transport of late secretory vesicles to the plasma membrane. By using ultrastructural and biochemical analysis, we have characterized defects manifested by mutations in the SLA2 gene (also known as the END4 gene), previously found to affect both the organization of the actin cytoskeleton and endocytosis in yeast. Defects in cell wall morphology, accumulated vesicles, and protein secretion kinetics were found in sla2 mutants similar to defects found in act1 mutants. Vesicles that accumulate in the sla2 and act1 mutants are immunoreactive with antibodies directed against the small GTPase Ypt1p but not with antibodies directed against the homologous Sec4p found on classical "late" secretory vesicles. In contrast, the late-acting secretory mutants sec1-1 and sec6-4 are shown to accumulate anti-Sec4p-positive secretory vesicles as well as vesicles that are immunoreactive with antibodies directed against Ypt1p. The late sec mutant sec4-8 is also shown to accumulate Ypt1p-containing vesicles and to exhibit defects in actin cytoskeleton organization. These results indicate the existence of at least two classes of morphologically similar, late secretory vesicles (associated with Ypt1p+ and Sec4p+, respectively), one of which appears to accumulate when the actin cytoskeleton is disorganized.

  6. Characterization of biomechanical properties of cells through dielectrophoresis-based cell stretching and actin cytoskeleton modeling.

    PubMed

    Bai, Guohua; Li, Ying; Chu, Henry K; Wang, Kaiqun; Tan, Qiulin; Xiong, Jijun; Sun, Dong

    2017-04-04

    Cytoskeleton is a highly dynamic network that helps to maintain the rigidity of a cell, and the mechanical properties of a cell are closely related to many cellular functions. This paper presents a new method to probe and characterize cell mechanical properties through dielectrophoresis (DEP)-based cell stretching manipulation and actin cytoskeleton modeling. Leukemia NB4 cells were used as cell line, and changes in their biological properties were examined after chemotherapy treatment with doxorubicin (DOX). DEP-integrated microfluidic chip was utilized as a low-cost and efficient tool to study the deformability of cells. DEP forces used in cell stretching were first evaluated through computer simulation, and the results were compared with modeling equations and with the results of optical stretching (OT) experiments. Structural parameters were then extracted by fitting the experimental data into the actin cytoskeleton model, and the underlying mechanical properties of the cells were subsequently characterized. The DEP forces generated under different voltage inputs were calculated and the results from different approaches demonstrate good approximations to the force estimation. Both DEP and OT stretching experiments confirmed that DOX-treated NB4 cells were stiffer than the untreated cells. The structural parameters extracted from the model and the confocal images indicated significant change in actin network after DOX treatment. The proposed DEP method combined with actin cytoskeleton modeling is a simple engineering tool to characterize the mechanical properties of cells.

  7. PFA fixation enables artifact-free super-resolution imaging of the actin cytoskeleton and associated proteins

    PubMed Central

    Leyton-Puig, Daniela; Kedziora, Katarzyna M.; Isogai, Tadamoto; van den Broek, Bram; Jalink, Kees

    2016-01-01

    ABSTRACT Super-resolution microscopy (SRM) allows precise localization of proteins in cellular organelles and structures, including the actin cytoskeleton. Yet sample preparation protocols for SRM are rather anecdotal and still being optimized. Thus, SRM-based imaging of the actin cytoskeleton and associated proteins often remains challenging and poorly reproducible. Here, we show that proper paraformaldehyde (PFA)-based sample preparation preserves the architecture of the actin cytoskeleton almost as faithfully as gold-standard glutaraldehyde fixation. We show that this fixation is essential for proper immuno-based localization of actin-binding and actin-regulatory proteins involved in the formation of lamellipodia and ruffles, such as mDia1, WAVE2 and clathrin heavy chain, and provide detailed guidelines for the execution of our method. In summary, proper PFA-based sample preparation increases the multi-color possibilities and the reproducibility of SRM of the actin cytoskeleton and its associated proteins. PMID:27378434

  8. Hijacking Host Cell Highways: Manipulation of the Host Actin Cytoskeleton by Obligate Intracellular Bacterial Pathogens.

    PubMed

    Colonne, Punsiri M; Winchell, Caylin G; Voth, Daniel E

    2016-01-01

    Intracellular bacterial pathogens replicate within eukaryotic cells and display unique adaptations that support key infection events including invasion, replication, immune evasion, and dissemination. From invasion to dissemination, all stages of the intracellular bacterial life cycle share the same three-dimensional cytosolic space containing the host cytoskeleton. For successful infection and replication, many pathogens hijack the cytoskeleton using effector proteins introduced into the host cytosol by specialized secretion systems. A subset of effectors contains eukaryotic-like motifs that mimic host proteins to exploit signaling and modify specific cytoskeletal components such as actin and microtubules. Cytoskeletal rearrangement promotes numerous events that are beneficial to the pathogen, including internalization of bacteria, structural support for bacteria-containing vacuoles, altered vesicular trafficking, actin-dependent bacterial movement, and pathogen dissemination. This review highlights a diverse group of obligate intracellular bacterial pathogens that manipulate the host cytoskeleton to thrive within eukaryotic cells and discusses underlying molecular mechanisms that promote these dynamic host-pathogen interactions.

  9. Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes

    PubMed Central

    Dhonukshe, Pankaj; Grigoriev, Ilya; Fischer, Rainer; Tominaga, Motoki; Robinson, David G.; Hašek, Jiří; Paciorek, Tomasz; Petrášek, Jan; Seifertová, Daniela; Tejos, Ricardo; Meisel, Lee A.; Zažímalová, Eva; Gadella, Theodorus W. J.; Stierhof, York-Dieter; Ueda, Takashi; Oiwa, Kazuhiro; Akhmanova, Anna; Brock, Roland; Spang, Anne; Friml, Jiří

    2008-01-01

    Many aspects of plant development, including patterning and tropisms, are largely dependent on the asymmetric distribution of the plant signaling molecule auxin. Auxin transport inhibitors (ATIs), which interfere with directional auxin transport, have been essential tools in formulating this concept. However, despite the use of ATIs in plant research for many decades, the mechanism of ATI action has remained largely elusive. Using real-time live-cell microscopy, we show here that prominent ATIs such as 2,3,5-triiodobenzoic acid (TIBA) and 2-(1-pyrenoyl) benzoic acid (PBA) inhibit vesicle trafficking in plant, yeast, and mammalian cells. Effects on micropinocytosis, rab5-labeled endosomal motility at the periphery of HeLa cells and on fibroblast mobility indicate that ATIs influence actin cytoskeleton. Visualization of actin cytoskeleton dynamics in plants, yeast, and mammalian cells show that ATIs stabilize actin. Conversely, stabilizing actin by chemical or genetic means interferes with endocytosis, vesicle motility, auxin transport, and plant development, including auxin transport-dependent processes. Our results show that a class of ATIs act as actin stabilizers and advocate that actin-dependent trafficking of auxin transport components participates in the mechanism of auxin transport. These studies also provide an example of how the common eukaryotic process of actin-based vesicle motility can fulfill a plant-specific physiological role. PMID:18337510

  10. A DOCK8-WIP-WASp complex links T cell receptors to the actin cytoskeleton

    PubMed Central

    Janssen, Erin; Tohme, Mira; Hedayat, Mona; Leick, Marion; Kumari, Sudha; Ramesh, Narayanaswamy; Massaad, Michel J.; Ullas, Sumana; Azcutia, Veronica; Goodnow, Christopher C.; Randall, Katrina L.; Qiao, Qi; Wu, Hao; Al-Herz, Waleed; Cox, Dianne; Hartwig, John; Irvine, Darrell J.; Luscinskas, Francis W.; Geha, Raif S.

    2016-01-01

    Wiskott-Aldrich syndrome (WAS) is associated with mutations in the WAS protein (WASp), which plays a critical role in the initiation of T cell receptor–driven (TCR-driven) actin polymerization. The clinical phenotype of WAS includes susceptibility to infection, allergy, autoimmunity, and malignancy and overlaps with the symptoms of dedicator of cytokinesis 8 (DOCK8) deficiency, suggesting that the 2 syndromes share common pathogenic mechanisms. Here, we demonstrated that the WASp-interacting protein (WIP) bridges DOCK8 to WASp and actin in T cells. We determined that the guanine nucleotide exchange factor activity of DOCK8 is essential for the integrity of the subcortical actin cytoskeleton as well as for TCR-driven WASp activation, F-actin assembly, immune synapse formation, actin foci formation, mechanotransduction, T cell transendothelial migration, and homing to lymph nodes, all of which also depend on WASp. These results indicate that DOCK8 and WASp are in the same signaling pathway that links TCRs to the actin cytoskeleton in TCR-driven actin assembly. Further, they provide an explanation for similarities in the clinical phenotypes of WAS and DOCK8 deficiency. PMID:27599296

  11. Dissecting the Mechanisms of Doxorubicin and Oxidative Stress-Induced Cytotoxicity: The Involvement of Actin Cytoskeleton and ROCK1

    PubMed Central

    Wei, Lei; Surma, Michelle; Gough, Gina; Shi, Stephanie; Lambert-Cheatham, Nathan; Chang, Jiang; Shi, Jianjian

    2015-01-01

    We have recently reported that ROCK1 deficiency in mouse embryonic fibroblasts (MEF) has superior anti-apoptotic and pro-survival effects than antioxidants against doxorubicin, a chemotherapeutic drug. Although oxidative stress is the most widely accepted mechanism, our studies suggest that ROCK1-dependent actin cytoskeleton remodeling plays a more important role in mediating doxorubicin cytotoxicity on MEFs. To further explore the contributions of ROCK1-dependent actin cytoskeleton remodeling in response to stress, this study investigates the mechanistic differences between the cytotoxic effects of doxorubicin versus hydrogen peroxide (H2O2), with a focus on cytoskeleton alterations, apoptosis and necrosis induction. We found that both types of stress induce caspase activation but with different temporal patterns and magnitudes in MEFs: H2O2 induces the maximal levels (2 to 4-fold) of activation of caspases 3, 8, and 9 within 4 h, while doxorubicin induces much higher maximal levels (15 to 25-fold) of caspases activation at later time points (16–24 h). In addition, necrosis induced by H2O2 reaches maximal levels within 4 h while doxorubicin-induced necrosis largely occurs at 16–24 h secondary to apoptosis. Moreover, both types of stress induce actin cytoskeleton remodeling but with different characteristics: H2O2 induces disruption of stress fibers associated with cytosolic translocation of phosphorylated myosin light chain (p-MLC) from stress fibers, while doxorubicin induces cortical F-actin formation associated with cortical translocation of p-MLC from central stress fibers. Furthermore, N-acetylcysteine (an antioxidant) is a potent suppressor for H2O2-induced cytotoxic effects including caspase activation, necrosis, and cell detachment, but shows a much reduced inhibition on doxorubicin-induced changes. On the other hand, ROCK1 deficiency is a more potent suppressor for the cytotoxic effects induced by doxorubicin than by H2O2. These results support the

  12. Actin Cytoskeleton Contributes to the Elastic Modulus of Embryonic Tendon During Early Development

    PubMed Central

    Schiele, Nathan R.; von Flotow, Friedrich; Tochka, Zachary L.; Hockaday, Laura A.; Marturano, Joseph E.; Thibodeau, Jeffrey J.; Kuo, Catherine K.

    2016-01-01

    Tendon injuries are common and heal poorly. Strategies to regenerate or replace injured tendons are challenged by an incomplete understanding of normal tendon development. Our previous study showed that embryonic tendon elastic modulus increases as a function of developmental stage. Inhibition of enzymatic collagen crosslink formation abrogated increases in tendon elastic modulus at late developmental stages, but did not affect increases in elastic modulus of early stage embryonic tendons. Here, we aimed to identify potential contributors to the mechanical properties of these early stage embryonic tendons. We characterized tendon progenitor cells in early stage embryonic tendons, and the influence of actin cytoskeleton disruption on tissue elastic modulus. Cells were closely packed in embryonic tendons, and did not change in density during early development. We observed an organized network of actin filaments that seemed contiguous between adjacent cells. The actin filaments exhibited a crimp pattern with a period and amplitude that matched the crimp of collagen fibers at each developmental stage. Chemical disruption of the actin cytoskeleton decreased tendon tissue elastic modulus, measured by atomic force microscopy. Our results demonstrate that early developmental stage embryonic tendons possess a well organized actin cytoskeleton network that contributes significantly to tendon tissue mechanical properties. PMID:25721681

  13. Actin cytoskeleton contributes to the elastic modulus of embryonic tendon during early development.

    PubMed

    Schiele, Nathan R; von Flotow, Friedrich; Tochka, Zachary L; Hockaday, Laura A; Marturano, Joseph E; Thibodeau, Jeffrey J; Kuo, Catherine K

    2015-06-01

    Tendon injuries are common and heal poorly. Strategies to regenerate or replace injured tendons are challenged by an incomplete understanding of normal tendon development. Our previous study showed that embryonic tendon elastic modulus increases as a function of developmental stage. Inhibition of enzymatic collagen crosslink formation abrogated increases in tendon elastic modulus at late developmental stages, but did not affect increases in elastic modulus of early stage embryonic tendons. Here, we aimed to identify potential contributors to the mechanical properties of these early stage embryonic tendons. We characterized tendon progenitor cells in early stage embryonic tendons, and the influence of actin cytoskeleton disruption on tissue elastic modulus. Cells were closely packed in embryonic tendons, and did not change in density during early development. We observed an organized network of actin filaments that seemed contiguous between adjacent cells. The actin filaments exhibited a crimp pattern with a period and amplitude that matched the crimp of collagen fibers at each developmental stage. Chemical disruption of the actin cytoskeleton decreased tendon tissue elastic modulus, measured by atomic force microscopy. Our results demonstrate that early developmental stage embryonic tendons possess a well organized actin cytoskeleton network that contributes significantly to tendon tissue mechanical properties.

  14. Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation

    PubMed Central

    Roa-Espitia, Ana L.; Hernández-Rendón, Eva R.; Baltiérrez-Hoyos, Rafael; Muñoz-Gotera, Rafaela J.; Cote-Vélez, Antonieta; Jiménez, Irma; González-Márquez, Humberto

    2016-01-01

    ABSTRACT Several focal adhesion proteins are known to cooperate with integrins to link the extracellular matrix to the actin cytoskeleton; as a result, many intracellular signaling pathways are activated and several focal adhesion complexes are formed. However, how these proteins function in mammalian spermatozoa remains unknown. We confirm the presence of focal adhesion proteins in guinea pig spermatozoa, and we explore their role during capacitation and the acrosome reaction, and their relationship with the actin cytoskeleton. Our results suggest the presence of a focal adhesion complex formed by β1-integrin, focal adhesion kinase (FAK), paxillin, vinculin, talin, and α-actinin in the acrosomal region. Inhibition of FAK during capacitation affected the protein tyrosine phosphorylation associated with capacitation that occurs within the first few minutes of capacitation, which caused the acrosome reaction to become increasingly Ca2+ dependent and inhibited the polymerization of actin. The integration of vinculin and talin into the complex, and the activation of FAK and paxillin during capacitation, suggests that the complex assembles at this time. We identify that vinculin and α-actinin increase their interaction with F-actin while it remodels during capacitation, and that during capacitation focal adhesion complexes are structured. FAK contributes to acrosome integrity, likely by regulating the polymerization and the remodeling of the actin cytoskeleton. PMID:27402964

  15. Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation.

    PubMed

    Roa-Espitia, Ana L; Hernández-Rendón, Eva R; Baltiérrez-Hoyos, Rafael; Muñoz-Gotera, Rafaela J; Cote-Vélez, Antonieta; Jiménez, Irma; González-Márquez, Humberto; Hernández-González, Enrique O

    2016-09-15

    Several focal adhesion proteins are known to cooperate with integrins to link the extracellular matrix to the actin cytoskeleton; as a result, many intracellular signaling pathways are activated and several focal adhesion complexes are formed. However, how these proteins function in mammalian spermatozoa remains unknown. We confirm the presence of focal adhesion proteins in guinea pig spermatozoa, and we explore their role during capacitation and the acrosome reaction, and their relationship with the actin cytoskeleton. Our results suggest the presence of a focal adhesion complex formed by β1-integrin, focal adhesion kinase (FAK), paxillin, vinculin, talin, and α-actinin in the acrosomal region. Inhibition of FAK during capacitation affected the protein tyrosine phosphorylation associated with capacitation that occurs within the first few minutes of capacitation, which caused the acrosome reaction to become increasingly Ca(2+) dependent and inhibited the polymerization of actin. The integration of vinculin and talin into the complex, and the activation of FAK and paxillin during capacitation, suggests that the complex assembles at this time. We identify that vinculin and α-actinin increase their interaction with F-actin while it remodels during capacitation, and that during capacitation focal adhesion complexes are structured. FAK contributes to acrosome integrity, likely by regulating the polymerization and the remodeling of the actin cytoskeleton.

  16. ARF6, PI3-kinase and host cell actin cytoskeleton in Toxoplasma gondii cell invasion

    SciTech Connect

    Vieira da Silva, Claudio; Alves da Silva, Erika; Costa Cruz, Mario; Chavrier, Philippe; Arruda Mortara, Renato

    2009-01-16

    Toxoplasma gondii infects a variety of different cell types in a range of different hosts. Host cell invasion by T. gondii occurs by active penetration of the host cell, a process previously described as independent of host actin polymerization. Also, the parasitophorous vacuole has been shown to resist fusion with endocytic and exocytic pathways of the host cell. ADP-ribosylation factor-6 (ARF6) belongs to the ARF family of small GTP-binding proteins. ARF6 regulates membrane trafficking and actin cytoskeleton rearrangements at the plasma membrane. Here, we have observed that ARF6 is recruited to the parasitophorous vacuole of tachyzoites of T. gondii RH strain and it also plays an important role in the parasite cell invasion with activation of PI3-kinase and recruitment of PIP{sub 2} and PIP{sub 3} to the parasitophorous vacuole of invading parasites. Moreover, it was verified that maintenance of host cell actin cytoskeleton integrity is important to parasite invasion.

  17. Modulation of Rho GTPases and the actin cytoskeleton by Yersinia outer proteins (Yops).

    PubMed

    Aepfelbacher, M; Heesemann, J

    2001-09-01

    Pathogenic species of the genus Yersinia employ a type III secretion apparatus to inject up to six effector proteins (Yersinia outer proteins; Yops) into host cells. Thereby yersiniae disarm the immune cell system of the host to proliferate extracellularly. At least four of the Yop effectors (YopE, YpkA/YopO, YopT and YopH) are involved in the rearrangement of the actin cytoskeleton: YopE, YopT and YpkA/YopO modulate the activity of actin-regulating Rho GTP-binding proteins, whereas YopH dephosphorylates phospho-tyrosine residues in focal adhesion proteins. In this review we will focus on recent evidence implicating Rho GTPases and the actin cytoskeleton as major targets of Yersinia Yops.

  18. Soluble Axoplasm Enriched from Injured CNS Axons Reveals the Early Modulation of the Actin Cytoskeleton

    PubMed Central

    Garland, Patrick; Broom, Lucy J.; Quraishe, Shmma; Dalton, Paul D.; Skipp, Paul; Newman, Tracey A.; Perry, V. Hugh

    2012-01-01

    Axon injury and degeneration is a common consequence of diverse neurological conditions including multiple sclerosis, traumatic brain injury and spinal cord injury. The molecular events underlying axon degeneration are poorly understood. We have developed a novel method to enrich for axoplasm from rodent optic nerve and characterised the early events in Wallerian degeneration using an unbiased proteomics screen. Our detergent-free method draws axoplasm into a dehydrated hydrogel of the polymer poly(2-hydroxyethyl methacrylate), which is then recovered using centrifugation. This technique is able to recover axonal proteins and significantly deplete glial contamination as confirmed by immunoblotting. We have used iTRAQ to compare axoplasm-enriched samples from naïve vs injured optic nerves, which has revealed a pronounced modulation of proteins associated with the actin cytoskeleton. To confirm the modulation of the actin cytoskeleton in injured axons we focused on the RhoA pathway. Western blotting revealed an augmentation of RhoA and phosphorylated cofilin in axoplasm-enriched samples from injured optic nerve. To investigate the localisation of these components of the RhoA pathway in injured axons we transected axons of primary hippocampal neurons in vitro. We observed an early modulation of filamentous actin with a concomitant redistribution of phosphorylated cofilin in injured axons. At later time-points, RhoA is found to accumulate in axonal swellings and also colocalises with filamentous actin. The actin cytoskeleton is a known sensor of cell viability across multiple eukaryotes, and our results suggest a similar role for the actin cytoskeleton following axon injury. In agreement with other reports, our data also highlights the role of the RhoA pathway in axon degeneration. These findings highlight a previously unexplored area of axon biology, which may open novel avenues to prevent axon degeneration. Our method for isolating CNS axoplasm also represents a new

  19. A green fluorescent protein fusion to actin-binding domain 2 of Arabidopsis fimbrin highlights new features of a dynamic actin cytoskeleton in live plant cells.

    PubMed

    Sheahan, Michael B; Staiger, Chris J; Rose, Ray J; McCurdy, David W

    2004-12-01

    The actin cytoskeleton coordinates numerous cellular processes required for plant development. The functions of this network are intricately linked to its dynamic arrangement, and thus progress in understanding how actin orchestrates cellular processes relies on critical evaluation of actin organization and turnover. To investigate the dynamic nature of the actin cytoskeleton, we used a fusion protein between green fluorescent protein (GFP) and the second actin-binding domain (fABD2) of Arabidopsis (Arabidopsis thaliana) fimbrin, AtFIM1. The GFP-fABD2 fusion protein labeled highly dynamic and dense actin networks in diverse species and cell types, revealing structural detail not seen with alternative labeling methods, such as the commonly used mouse talin GFP fusion (GFP-mTalin). Further, we show that expression of the GFP-fABD2 fusion protein in Arabidopsis, unlike GFP-mTalin, has no detectable adverse effects on plant morphology or development. Time-lapse confocal microscopy and fluorescence recovery after photobleaching analyses of the actin cytoskeleton labeled with GFP-fABD2 revealed that lateral-filament migration and sliding of individual actin filaments or bundles are processes that contribute to the dynamic and continually reorganizing nature of the actin scaffold. These new observations of the dynamic actin cytoskeleton in plant cells using GFP-fABD2 reveal the value of this probe for future investigations of how actin filaments coordinate cellular processes required for plant development.

  20. Enhanced Gravitropism of Roots with a Disrupted Cap Actin Cytoskeleton1

    PubMed Central

    Hou, Guichuan; Mohamalawari, Deepti R.; Blancaflor, Elison B.

    2003-01-01

    The actin cytoskeleton has been proposed to be a major player in plant gravitropism. However, understanding the role of actin in this process is far from complete. To address this problem, we conducted an analysis of the effect of Latrunculin B (Lat B), a potent actin-disrupting drug, on root gravitropism using various parameters that included detailed curvature kinetics, estimation of gravitropic sensitivity, and monitoring of curvature development after extended clinorotation. Lat B treatment resulted in a promotion of root curvature after a 90° reorientation in three plant species tested. More significantly, the sensitivity of maize (Zea mays) roots to gravity was enhanced after actin disruption, as determined from a comparison of presentation time of Lat B-treated versus untreated roots. A short 10-min gravistimulus followed by extended rotation on a 1-rpm clinostat resulted in extensive gravitropic responses, manifested as curvature that often exceeded 90°. Application of Lat B to the cap or elongation zone of maize roots resulted in the disruption of the actin cytoskeleton, which was confined to the area of localized Lat B application. Only roots with Lat B applied to the cap displayed the strong curvature responses after extended clinorotation. Our study demonstrates that disrupting the actin cytoskeleton in the cap leads to the persistence of a signal established by a previous gravistimulus. Therefore, actin could function in root gravitropism by providing a mechanism to regulate the proliferation of a gravitropic signal originating from the cap to allow the root to attain its correct orientation or set point angle. PMID:12644685

  1. Tubulin binding protein, CacyBP/SIP, induces actin polymerization and may link actin and tubulin cytoskeletons.

    PubMed

    Schneider, Gabriela; Nieznanski, Krzysztof; Jozwiak, Jolanta; Slomnicki, Lukasz P; Redowicz, Maria J; Filipek, Anna

    2010-11-01

    CacyBP/SIP, originally identified as a S100A6 target, was shown to interact with some other S100 proteins as well as with Siah-1, Skp1, tubulin and ERK1/2 kinases (reviewed in Schneider and Filipek, Amino Acids, 2010). Here, we show that CacyBP/SIP interacts and co-localizes with actin in NB2a cells. Using a zero-length cross-linker we found that both proteins bound directly to each other. Co-sedimentation assays revealed that CacyBP/SIP induced G-actin polymerization and formation of unique circular actin filament bundles. The N-terminal fragment of CacyBP/SIP (residues 1-179) had similar effect on actin polymerization as the entire CacyBP/SIP protein, while the C-terminal one (residues 178-229) had not. To check the influence of CacyBP/SIP on cell morphology as well as on cell adhesion and migration, a stable NIH 3T3 cell line with an increased level of CacyBP/SIP was generated. We found that the adhesion and migration rates of the modified cells were changed in comparison with the control ones. Interestingly, the co-sedimentation and proximity ligation assays indicated that CacyBP/SIP could simultaneously interact with tubulin and actin, suggesting that CacyBP/SIP might link actin and tubulin cytoskeletons.

  2. Yeast Rsp5 ubiquitin ligase affects the actin cytoskeleton in vivo and in vitro.

    PubMed

    Kaminska, Joanna; Spiess, Matthias; Stawiecka-Mirota, Marta; Monkaityte, Rasa; Haguenauer-Tsapis, Rosine; Urban-Grimal, Daniele; Winsor, Barbara; Zoladek, Teresa

    2011-12-01

    Yeast Rsp5 ubiquitin ligase is involved in several cellular processes, including endocytosis. Actin patches are sites of endocytosis, a process involving actin assembly and disassembly. Here we show Rsp5 localization in cortical patches and demonstrate its involvement in actin cytoskeleton organization and dynamics. We found that the Rsp5-F1-GFP2 N-terminal fragment and full length GFP-Rsp5 were recruited to peripheral patches that temporarily co-localized with Abp1-mCherry, a marker of actin patches. Actin cytoskeleton organization was defective in a strain lacking RSP5 or overexpressing RSP5, and this phenotype was accompanied by morphological abnormalities. Overexpression of RSP5 caused hypersensitivity of cells to Latrunculin A, an actin-depolymerizing drug and was toxic to cells lacking Las17, an activator of actin nucleation. Moreover, Rsp5 was required for efficient actin polymerization in a whole cell extract based in vitro system. Rsp5 interacted with Las17 and Las17-binding proteins, Lsb1 and Lsb2, in a GST-Rsp5-WW2/3 pull down assay. Rsp5 ubiquitinated Lsb1-HA and Lsb2-HA without directing them for degradation. Overexpression of RSP5 increased the cellular level of HA-Las17 in wild type and in lsb1Δ lsb2Δ strains in which the basal level of Las17 was already elevated. This increase was prevented in a strain devoid of Las17-binding protein Sla1 which is also a target of Rsp5 ubiquitination. Thus, Rsp5 together with Lsb1, Lsb2 and Sla1 regulate the level of Las17, an important activator of actin polymerization.

  3. Tankyrase-binding protein TNKS1BP1 regulates actin cytoskeleton rearrangement and cancer cell invasion.

    PubMed

    Ohishi, Tomokazu; Yoshida, Haruka; Katori, Masamichi; Migita, Toshiro; Muramatsu, Yukiko; Miyake, Mao; Ishikawa, Yuichi; Saiura, Akio; Iemura, Shun-Ichiro; Natsume, Tohru; Seimiya, Hiroyuki

    2017-02-15

    Tankyrase, a poly(ADP-ribose) polymerase (PARP) that promotes telomere elongation and Wnt/β-catenin signaling, has various binding partners, suggesting that it has as-yet unidentified functions. Here we report that the tankyrase-binding protein TNKS1BP1 regulates actin cytoskeleton and cancer cell invasion, which is closely associated with cancer progression. TNKS1BP1 colocalized with actin filaments and negatively regulated cell invasion. In TNKS1BP1-depleted cells, actin filament dynamics, focal adhesion, and lamellipodia ruffling were increased with activation of the ROCK-LIMK-cofilin pathway. TNKS1BP1 bound the actin capping protein CapZA2. TNKS1BP1 depletion dissociated CapZA2 from the cytoskeleton, leading to cofilin phosphorylation and enhanced cell invasion. Tankyrase overexpression increased cofilin phosphorylation, dissociated CapZA2 from cytoskeleton, and enhanced cell invasion in a PARP activity-dependent manner. In clinical samples of pancreatic cancer, TNKS1BP1 expression was reduced in invasive regions. We propose that the tankyrase-TNKS1BP1 axis constitutes a post-translational modulator of cell invasion whose aberration promotes cancer malignancy.

  4. Injury-induced actin cytoskeleton reorganization in podocytes revealed by super-resolution microscopy.

    PubMed

    Suleiman, Hani Y; Roth, Robyn; Jain, Sanjay; Heuser, John E; Shaw, Andrey S; Miner, Jeffrey H

    2017-08-17

    The architectural integrity of tissues requires complex interactions, both between cells and between cells and the extracellular matrix. Fundamental to cell and tissue homeostasis are the specific mechanical forces conveyed by the actomyosin cytoskeleton. Here we used super-resolution imaging methods to visualize the actin cytoskeleton in the kidney glomerulus, an organized collection of capillaries that filters the blood to make the primary urine. Our analysis of both mouse and human glomeruli reveals a network of myosin IIA-containing contractile actin cables within podocyte cell bodies and major processes at the outer aspects of the glomerular tuft. These likely exert force on an underlying network of myosin IIA-negative, noncontractile actin fibers present within podocyte foot processes that function to both anchor the cells to the glomerular basement membrane and stabilize the slit diaphragm against the pressure of fluid flow. After injuries that disrupt the kidney filtration barrier and cause foot process effacement, the podocyte's contractile actomyosin network relocates to the basolateral surface of the cell, manifesting as sarcomere-like structures juxtaposed to the basement membrane. Our findings suggest a new model of the podocyte actin cytoskeleton in health and disease and suggest the existence of novel mechanisms that regulate podocyte architecture.

  5. The actin cytoskeleton as a therapeutic target for the prevention of relapse to methamphetamine use

    PubMed Central

    Young, Erica J.; Briggs, Sherri B.; Miller, Courtney A.

    2015-01-01

    A high rate of relapse is a defining characteristic of substance use disorder for which few treatments are available. Exposure to environmental cues associated with previous drug use can elicit relapse by causing the involuntary retrieval of deeply engrained associative memories that trigger a strong motivation to seek out drugs. Our lab is focused on identifying and disrupting mechanisms that support these powerful consolidated memories, with the goal of developing therapeutics. A particularly promising mechanism is regulation of synaptic dynamics by actin polymerization within dendritic spines. Emerging evidence indicates that memory is supported by structural and functional plasticity dendritic spines, for which actin polymerization is critical, and that prior drug use increases both spine and actin dynamics. Indeed we have found that inhibiting amygdala (AMY) actin polymerization immediately or twenty-four hours prior to testing disrupted methamphetamine (METH)-associated memories, but not food reward or fear memories. Furthermore, METH training increased AMY spine density which was reversed by actin depolymerization treatment. Actin dynamics were also shifted to a more dynamic state by METH training. While promising, actin polymerization inhibitors are not a viable therapeutic, as a multitude of peripheral process (e.g. cardiac function) rely on dynamic actin. For this reason, we have shifted our focus upstream of actin polymerization to nonmuscle myosin II. We and others have demonstrated that myosin IIb imparts a mechanical force that triggers spine actin polymerization in response to synaptic stimulation. Similar to an actin depolymerizing compound, pre-test inhibition of myosin II ATPase activity in the AMY produced a rapid and lasting disruption of drug-seeking behavior. While many questions remain, these findings indicate that myosin II represents a potential therapeutic avenue to target the actin cytoskeleton and disrupt the powerful, extinction

  6. The Actin Cytoskeleton as a Therapeutic Target for the Prevention of Relapse to Methamphetamine Use.

    PubMed

    Young, Erica J; Briggs, Sherri B; Miller, Courtney A

    2015-01-01

    A high rate of relapse is a defining characteristic of substance use disorder for which few treatments are available. Exposure to environmental cues associated with previous drug use can elicit relapse by causing the involuntary retrieval of deeply engrained associative memories that trigger a strong motivation to seek out drugs. Our lab is focused on identifying and disrupting mechanisms that support these powerful consolidated memories, with the goal of developing therapeutics. A particularly promising mechanism is regulation of synaptic dynamics by actin polymerization within dendritic spines. Emerging evidence indicates that memory is supported by structural and functional plasticity dendritic spines, for which actin polymerization is critical, and that prior drug use increases both spine and actin dynamics. Indeed we have found that inhibiting amygdala (AMY) actin polymerization immediately or twenty-four hours prior to testing disrupted methamphetamine (METH)-associated memories, but not food reward or fear memories. Furthermore, METH training increased AMY spine density which was reversed by actin depolymerization treatment. Actin dynamics were also shifted to a more dynamic state by METH training. While promising, actin polymerization inhibitors are not a viable therapeutic, as a multitude of peripheral process (e.g. cardiac function) rely on dynamic actin. For this reason, we have shifted our focus upstream of actin polymerization to nonmuscle myosin II. We and others have demonstrated that myosin IIb imparts a mechanical force that triggers spine actin polymerization in response to synaptic stimulation. Similar to an actin depolymerizing compound, pre-test inhibition of myosin II ATPase activity in the AMY produced a rapid and lasting disruption of drug-seeking behavior. While many questions remain, these findings indicate that myosin II represents a potential therapeutic avenue to target the actin cytoskeleton and disrupt the powerful, extinction

  7. Association of thrombospondin-1 with the actin cytoskeleton of human thrombin-activated platelets through an alphaIIbbeta3- or CD36-independent mechanism.

    PubMed Central

    Saumet, Anne; Jesus, Nando de; Legrand, Chantal; Dubernard, Véronique

    2002-01-01

    Thrombospondin-1 (TSP-1) is an adhesive glycoprotein which, when secreted from alpha-granules of activated platelets, can bind to the cell surface and participate in platelet aggregate formation. In this study, we show that thrombin activation leads to the rapid and specific association of a large amount of secreted alpha-granular TSP-1 with the actin cytoskeleton. This cytoskeletal association of TSP-1 was correlated with platelet secretion, but not aggregation, and was inhibited by cytochalasin D, an inhibitor of actin polymerization. Association of TSP-1 with the actin cytoskeleton was mediated by membrane receptors, as shown by using MAII, a TSP-1-specific monoclonal antibody that inhibited both TSP-1 surface binding to activated platelets and cytoskeletal association. TSP-1 and its potential membrane receptors, e.g. alphaIIbbeta3 integrin, CD36 and CD47, concomitantly associated with the actin cytoskeleton. However, studies on platelets from a patient with type I Glanzmann's thrombasthenia lacking alphaIIbbeta3 and another with barely detectable CD36 showed normal TSP-1 surface expression and association with the actin cytoskeleton. Likewise, no involvement of CD47 in TSP-1 association with the actin cytoskeleton could be inferred from experiments with control platelets using the function-blocking anti-CD47 antibody B6H12. Finally, assembly of signalling complexes, as observed through translocation of tyrosine-phosphorylated proteins and kinases to the actin cytoskeleton, was found to occur in concert with cytoskeletal association of TSP-1, in control platelets as well as in thrombasthenic and CD36-deficient platelets. Our results imply a role for the actin cytoskeleton in the membrane-surface expression process of TSP-1 molecules and suggest a possible coupling of TSP-1 receptors to signalling events occurring independently of alphaIIbbeta3 or CD36. These results provide new insights into the link between surface-bound TSP-1 and the contractile actin

  8. Physical Model for Self-Organization of Actin Cytoskeleton and Adhesion Complexes at the Cell Front

    PubMed Central

    Shemesh, Tom; Bershadsky, Alexander D.; Kozlov, Michael M.

    2012-01-01

    Cell motion is driven by interplay between the actin cytoskeleton and the cell adhesions in the front part of the cell. The actin network segregates into lamellipodium and lamellum, whereas the adhesion complexes are characteristically distributed underneath the actin system. Here, we suggest a computational model for this characteristic organization of the actin-adhesion system. The model is based on the ability of the adhesion complexes to sense mechanical forces, the stick-slip character of the interaction between the adhesions and the moving actin network, and a hypothetical propensity of the actin network to disintegrate upon sufficiently strong stretching stresses. We identify numerically three possible types of system organization, all observed in living cells: two states in which the actin network exhibits segregation into lamellipodium and lamellum, whereas the cell edge either remains stationary or moves, and a state where the actin network does not undergo segregation. The model recovers the asynchronous fluctuations and outward bulging of the cell edge, and the dependence of the edge protrusion velocity on the rate of the nascent adhesion generation, the membrane tension, and the substrate rigidity. PMID:22768930

  9. The actin cytoskeleton inhibits pore expansion during PIV5 fusion protein-promoted cell-cell fusion

    PubMed Central

    Wurth, Mark A.; Schowalter, Rachel M.; Smith, Everett Clinton; Moncman, Carole L.; Dutch, Rebecca Ellis; McCann, Richard O.

    2010-01-01

    Paramyxovirus fusion (F) proteins promote both virus-cell fusion, required for viral entry, and cell-cell fusion, resulting in syncytia formation. We used the F-actin stabilizing drug, jasplakinolide, and the G-actin sequestrant, latrunculin A, to examine the role of actin dynamics in cell-cell fusion mediated by the parainfluenza virus 5 (PIV5) F protein. Jasplakinolide treatment caused a dose-dependent increase in cell-cell fusion as measured by both syncytia and reporter gene assays, and latrunculin A treatment also resulted in fusion stimulation. Treatment with jasplakinolide or latrunculin A partially rescued a fusion pore opening defect caused by deletion of the PIV5 F protein cytoplasmic tail, but these drugs had no effect on fusion inhibited at earlier stages by either temperature arrest or by a PIV5 heptad repeat peptide. These data suggest that the cortical actin cytoskeleton is an important regulator of fusion pore enlargement, an energetically costly stage of viral fusion protein-mediated membrane merger. PMID:20537366

  10. The actin cytoskeleton inhibits pore expansion during PIV5 fusion protein-promoted cell-cell fusion

    SciTech Connect

    Wurth, Mark A.; Schowalter, Rachel M.; Smith, Everett Clinton; Moncman, Carole L.; Ellis Dutch, Rebecca; McCann, Richard O.

    2010-08-15

    Paramyxovirus fusion (F) proteins promote both virus-cell fusion, required for viral entry, and cell-cell fusion, resulting in syncytia formation. We used the F-actin stabilizing drug, jasplakinolide, and the G-actin sequestrant, latrunculin A, to examine the role of actin dynamics in cell-cell fusion mediated by the parainfluenza virus 5 (PIV5) F protein. Jasplakinolide treatment caused a dose-dependent increase in cell-cell fusion as measured by both syncytia and reporter gene assays, and latrunculin A treatment also resulted in fusion stimulation. Treatment with jasplakinolide or latrunculin A partially rescued a fusion pore opening defect caused by deletion of the PIV5 F protein cytoplasmic tail, but these drugs had no effect on fusion inhibited at earlier stages by either temperature arrest or by a PIV5 heptad repeat peptide. These data suggest that the cortical actin cytoskeleton is an important regulator of fusion pore enlargement, an energetically costly stage of viral fusion protein-mediated membrane merger.

  11. Noisy Oscillations in the Actin Cytoskeleton of Chemotactic Amoeba

    NASA Astrophysics Data System (ADS)

    Negrete, Jose; Pumir, Alain; Hsu, Hsin-Fang; Westendorf, Christian; Tarantola, Marco; Beta, Carsten; Bodenschatz, Eberhard

    2016-09-01

    Biological systems with their complex biochemical networks are known to be intrinsically noisy. Here we investigate the dynamics of actin polymerization of amoeboid cells, which are close to the onset of oscillations. We show that the large phenotypic variability in the polymerization dynamics can be accurately captured by a generic nonlinear oscillator model in the presence of noise. We determine the relative role of the noise with a single dimensionless, experimentally accessible parameter, thus providing a quantitative description of the variability in a population of cells. Our approach, which rests on a generic description of a system close to a Hopf bifurcation and includes the effect of noise, can characterize the dynamics of a large class of noisy systems close to an oscillatory instability.

  12. Ras GTPase-Activating Protein Regulation of Actin Cytoskeleton and Hyphal Polarity in Aspergillus nidulans▿ †

    PubMed Central

    Harispe, Laura; Portela, Cecilia; Scazzocchio, Claudio; Peñalva, Miguel A.; Gorfinkiel, Lisette

    2008-01-01

    Aspergillus nidulans gapA1, a mutation leading to compact, fluffy colonies and delayed polarity establishment, maps to a gene encoding a Ras GTPase-activating protein. Domain organization and phylogenetic analyses strongly indicate that GapA regulates one or more “true” Ras proteins. A gapAΔ strain is viable. gapA colonies are more compact than gapA1 colonies and show reduced conidiation. gapAΔ strains have abnormal conidiophores, characterized by the absence of one of the two layers of sterigmata seen in the wild type. gapA transcript levels are very low in conidia but increase during germination and reach their maximum at a time coincident with germ tube emergence. Elevated levels persist in hyphae. In germinating conidiospores, gapAΔ disrupts the normal coupling of isotropic growth, polarity establishment, and mitosis, resulting in a highly heterogeneous cell population, including malformed germlings and a class of giant cells with no germ tubes and a multitude of nuclei. Unlike wild-type conidia, gapAΔ conidia germinate without a carbon source. Giant multinucleated spores and carbon source-independent germination have been reported in strains carrying a rasA dominant active allele, indicating that GapA downregulates RasA. gapAΔ cells show a polarity maintenance defect characterized by apical swelling and subapical branching. The strongly polarized wild-type F-actin distribution is lost in gapAΔ cells. As GapA-green fluorescent protein shows cortical localization with strong predominance at the hyphal tips, we propose that GapA-mediated downregulation of Ras signaling at the plasma membrane of these tips is involved in the polarization of the actin cytoskeleton that is required for hyphal growth and, possibly, for asexual morphogenesis. PMID:18039943

  13. Quantifying the plant actin cytoskeleton response to applied pressure using nanoindentation.

    PubMed

    Branco, Rémi; Pearsall, Eliza-Jane; Rundle, Chelsea A; White, Rosemary G; Bradby, Jodie E; Hardham, Adrienne R

    2017-03-01

    Detection of potentially pathogenic microbes through recognition by plants and animals of both physical and chemical signals associated with the pathogens is vital for host well-being. Signal perception leads to the induction of a variety of responses that augment pre-existing, constitutive defences. The plant cell wall is a highly effective preformed barrier which becomes locally reinforced at the infection site through delivery of new wall material by the actin cytoskeleton. Although mechanical stimulation can produce a reaction, there is little understanding of the nature of physical factors capable of triggering plant defence. Neither the magnitude of forces nor the contact time required has been quantified. In the study reported here, mechanical stimulation with a tungsten microneedle has been used to quantify the response of Arabidopsis plants expressing an actin-binding protein tagged with green fluorescent protein (GFP) to reveal the organisation of the actin cytoskeleton. Using confocal microscopy, the response time for actin reorganisation in epidermal cells of Arabidopsis hypocotyls was shown to be 116 ± 49 s. Using nanoindentation and a diamond spherical tip indenter, the magnitude of the forces capable of triggering an actin response has been quantified. We show that Arabidopsis hypocotyl cells can detect a force as small as 4 μN applied for as short a time as 21.6 s to trigger reorganisation of the actin cytoskeleton. This force is an order of magnitude less than the potential invasive force determined for a range of fungal and oomycete plant pathogens. To our knowledge, this is the first quantification of the magnitude and duration of mechanical forces capable of stimulating a structural defence response in a plant cell.

  14. Effect of cytochalasin A on apical growth, actin cytoskeleton organization and enzyme secretion in Aspergillus nidulans.

    PubMed

    Torralba, S; Raudaskoski, M; Pedregosa, A M; Laborda, F

    1998-01-01

    The role of actin in apical growth and enzyme secretion in the filamentous fungus Aspergillus nidulans was studied by treating the hyphae with cytochalasin A (CA), which inhibits actin polymerization. Indirect immunofluorescence microscopy revealed actin at the tips of main hyphae and branches, and at the site of developing septa. CA inhibited the growth of the fungus and changed the growth pattern of hyphal tips from cylindrical tubes to spherical beads. The regions with swellings showed no actin fluorescence, and neither was actin seen in association with septa. After 4 h exposure, hyphae were able to resume the normal tip growth pattern in the presence of CA for a short period of time and new cylindrical hyphae, with actin fluorescence at the apex, emerged from the swollen tips. Later, the tips of the hyphae swelled again, which led to a beaded appearance. We also studied the effect of CA on the secretion of alpha- and beta-galactosidase. alpha-Galactosidase is secreted into the culture medium, whereas beta-galactosidase remains in the mycelium, with part of its activity bound to the cell wall. When A. nidulans mycelium was incubated in the presence of CA, a reduction in the secretion of alpha-galactosidase into the culture medium and a decrease in the alpha- and beta-galactosidase activities bound to the cell wall was detected. However, the CA dose used for the hyphae did not modify the secretion of the enzymes from protoplasts. Results described here provide evidence that a polymerized actin cytoskeleton is required for normal apical growth, hyphal tip shape and polarized enzyme secretion in A. nidulans. Cytochalasin-induced disruptions of the actin cytoskeleton could result in the alterations of apical growth and inhibition of enzyme secretion observed by blocking secretory vesicle transport to the apex.

  15. Stress-Induced Sensitization To Cocaine: Actin Cytoskeleton Remodeling Within Mesocorticolimbic Nuclei

    PubMed Central

    Esparza, Maria A; Bollati, Flavia; Garcia-Keller, Constanza; Virgolini, Miriam B; Lopez, Lidia M; Brusco, Alicia; Shen, Hao-Wei; Kalivas, Peter W; Cancela, Liliana M

    2015-01-01

    This study investigated the consequence of repeated stress on actin cytoskeleton remodeling in the nucleus accumbens (NAc) and prefrontal cortex (Pfc), and the involvement of this remodeling in the expression of stress-induced motor cross-sensitization with cocaine. Wistar rats were restrained daily (2 hours) for 7 days and, three weeks later, their NAc and Pfc were dissected 45 min after acute saline or cocaine (30 mg/kg i.p.). F-actin, actin-binding proteins (ABP) and GluR1 were quantified by western blotting, and dendritic spines and PSD size measured by electron microscopy. In the NAc from the stress plus cocaine group we observed a decrease in the phosphorylation of two ABPs, cofilin and cortactin, and an increase in the PSD size and the surface expression of GluR1, consistent with a more highly branched actin cytoskeleton. The Pfc also showed evidence of increased actin polymerization after stress as an increase was observed in Arp2, and in the number of spines. Inhibiting actin cycling and polymerization with latrunculin A into the NAc, but not the Pfc, inhibited the expression of cross-sensitization to cocaine (15 mg/kg i.p.) and restored the expression of GluR1 to control levels. This study shows that a history of repeated stress alters the ability of a subsequent cocaine injection to modulate dendritic spine morphology, actin dynamics and GluR1 expression in the NAc. Furthermore, by regulating GluR1 expression in the NAc, elevated actin cycling contributes to the expression of cross-sensitization between stress and cocaine, while stress-induced changes in the Pfc were not associated with cross-sensitization. PMID:22882295

  16. Spatial regulation of exocytic site and vesicle mobilization by the actin cytoskeleton.

    PubMed

    Wang, Jie; Richards, David A

    2011-01-01

    Numerous studies indicate a role for the actin cytoskeleton in secretion. Here, we have used evanescent wave and widefield fluorescence microscopy to study the involvement of the actin cytoskeleton in secretion from PC12 cells. Secretion was assayed as loss of ANF-EmGFP in widefield mode. Under control conditions, depolarization induced secretion showed two phases: an initial rapid rate of loss of vesicular cargo (tau = 1.4 s), followed by a slower, sustained drop in fluorescence (tau = 34.1 s). Pretreatment with Latrunculin A changed the kinetics to a single exponential, slightly faster than the fast component of control cells (1.2 s). Evanescent wave microscopy allowed us to examine this at the level of individual events, and revealed equivalent changes in the rates of vesicular arrival at the plasma membrane immediately following and during the sustained phase of release. Co-transfection of mCherry labeled β-actin and ANF-EmGFP demonstrated that sites of exocytosis had an inverse relationship with sites of actin enrichment. Disruption of visualized actin at the membrane resulted in the loss of specificity of exocytic site.

  17. The Actin Cytoskeleton in SMA and ALS: How Does It Contribute to Motoneuron Degeneration?

    PubMed

    Hensel, Niko; Claus, Peter

    2017-04-01

    Amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) are neurodegenerative diseases with overlapping clinical phenotypes based on impaired motoneuron function. However, the pathomechanisms of both diseases are largely unknown, and it is still unclear whether they converge on the molecular level. SMA is a monogenic disease caused by low levels of functional Survival of Motoneuron (SMN) protein, whereas ALS involves multiple genes as well as environmental factors. Recent evidence argues for involvement of actin regulation as a causative and dysregulated process in both diseases. ALS-causing mutations in the actin-binding protein profilin-1 as well as the ability of the SMN protein to directly bind to profilins argue in favor of a common molecular mechanism involving the actin cytoskeleton. Profilins are major regulators of actin-dynamics being involved in multiple neuronal motility and transport processes as well as modulation of synaptic functions that are impaired in models of both motoneuron diseases. In this article, we review the current literature in SMA and ALS research with a focus on the actin cytoskeleton. We propose a common molecular mechanism that explains the degeneration of motoneurons for SMA and some cases of ALS.

  18. Spatial Regulation of Exocytic Site and Vesicle Mobilization by the Actin Cytoskeleton

    PubMed Central

    Wang, Jie; Richards, David A.

    2011-01-01

    Numerous studies indicate a role for the actin cytoskeleton in secretion. Here, we have used evanescent wave and widefield fluorescence microscopy to study the involvement of the actin cytoskeleton in secretion from PC12 cells. Secretion was assayed as loss of ANF-EmGFP in widefield mode. Under control conditions, depolarization induced secretion showed two phases: an initial rapid rate of loss of vesicular cargo (tau = 1.4 s), followed by a slower, sustained drop in fluorescence (tau = 34.1 s). Pretreatment with Latrunculin A changed the kinetics to a single exponential, slightly faster than the fast component of control cells (1.2 s). Evanescent wave microscopy allowed us to examine this at the level of individual events, and revealed equivalent changes in the rates of vesicular arrival at the plasma membrane immediately following and during the sustained phase of release. Co-transfection of mCherry labeled β-actin and ANF-EmGFP demonstrated that sites of exocytosis had an inverse relationship with sites of actin enrichment. Disruption of visualized actin at the membrane resulted in the loss of specificity of exocytic site. PMID:22195014

  19. Actin cytoskeleton rearrangements in Arabidopsis roots under stress and during gravitropic response

    NASA Astrophysics Data System (ADS)

    Pozhvanov, Gregory; Medvedev, Sergei; Suslov, Dmitry; Demidchik, Vadim

    Among environmental factors, gravity vector is the only one which is constant in direction and accompanies the whole plant ontogenesis. That said, gravity vector can be considered as an essential factor for correct development of plants. Gravitropism is a plant growth response against changing its position relative to the gravity vector. It is well estableshed that gravitropism is directed by auxin redistribution across the gravistimulated organ. In addition to auxin, actin cytoskeleton was shown to be involved in gravitropism at different stages: gravity perception, signal transduction and gravitropic bending formation. However, the relationship between IAA and actin is still under discussion. In this work we studied rearrangements of actin cytoskeleton during root gravitropic response. Actin microfilaments were visualized in vivo in GFP-fABD2 transgenic Arabidopsis plants, and their angle distribution was acquired from MicroFilament Analyzer software. The curvature of actin microfilaments in root elongation zone was shown to be increased within 30-60 min of gravistimulation, the fraction of axially oriented microfilaments decreased with a concomitant increase in the fraction of oblique and transversally oriented microfilaments. In particular, the fraction of transversally oriented microfilaments (i.e. parallel to the gravity vector) increased 3-5 times. Under 10 min of sub-lethal salt stress impact, actin microfilament orientations widened from an initial axial orientation to a set of peaks at 15(°) , 45(°) and 90(°) . We conclude that the actin cytoskeleton rearrangements observed are associated with the regulation of basic mechanisms of cell extension growth by which the gravitropic bending is formed. Having common stress-related features, gravity-induced actin cytoskeleton rearrangement is slower but results in higher number of g-vector-parallel microfilaments when compared to salt stress-induced rearrangement. Also, differences in gravistimulated root

  20. Imaging of the Actin Cytoskeleton and Mitochondria in Fixed Budding Yeast Cells.

    PubMed

    Higuchi-Sanabria, Ryo; Swayne, Theresa C; Boldogh, Istvan R; Pon, Liza A

    2016-01-01

    The budding yeast Saccharomyces cerevisiae is widely used as a model system to study the organization and function of the cytoskeleton. In the past, its small size, rounded shape, and rigid cell wall created obstacles to explore the cell biology of this model eukaryote. It is now possible to acquire and analyze high-resolution and super-resolution multidimensional images of the yeast cell. As a result, imaging of yeast has emerged as an important tool in eukaryotic cell biology. This chapter describes labeling methods and optical approaches for visualizing the cytoskeleton and interactions of the actin cytoskeleton with mitochondria in fixed yeast cells using wide-field and super-resolution fluorescence microscopy.

  1. Regulation of the actin cytoskeleton by the Ndel1-Tara complex is critical for cell migration

    PubMed Central

    Hong, Ji-Ho; Kwak, Yongdo; Woo, Youngsik; Park, Cana; Lee, Seol-Ae; Lee, Haeryun; Park, Sung Jin; Suh, Yeongjun; Suh, Bo Kyoung; Goo, Bon Seong; Mun, Dong Jin; Sanada, Kamon; Nguyen, Minh Dang; Park, Sang Ki

    2016-01-01

    Nuclear distribution element-like 1 (Ndel1) plays pivotal roles in diverse biological processes and is implicated in the pathogenesis of multiple neurodevelopmental disorders. Ndel1 function by regulating microtubules and intermediate filaments; however, its functional link with the actin cytoskeleton is largely unknown. Here, we show that Ndel1 interacts with TRIO-associated repeat on actin (Tara), an actin-bundling protein, to regulate cell movement. In vitro wound healing and Boyden chamber assays revealed that Ndel1- or Tara-deficient cells were defective in cell migration. Moreover, Tara overexpression induced the accumulation of Ndel1 at the cell periphery and resulted in prominent co-localization with F-actin. This redistribution of Ndel1 was abolished by deletion of the Ndel1-interacting domain of Tara, suggesting that the altered peripheral localization of Ndel1 requires a physical interaction with Tara. Furthermore, co-expression of Ndel1 and Tara in SH-SY5Y cells caused a synergistic increase in F-actin levels and filopodia formation, suggesting that Tara facilitates cell movement by sequestering Ndel1 at peripheral structures to regulate actin remodeling. Thus, we demonstrated that Ndel1 interacts with Tara to regulate cell movement. These findings reveal a novel role of the Ndel1-Tara complex in actin reorganization during cell movement. PMID:27546710

  2. Rac1 signalling coordinates epiboly movement by differential regulation of actin cytoskeleton in zebrafish.

    PubMed

    Li, Yu-Long; Shao, Ming; Shi, De-Li

    2017-08-26

    Dynamic cytoskeleton organization is essential for polarized cell behaviours in a wide variety of morphogenetic events. In zebrafish, epiboly involves coordinated cell shape changes and expansion of cell layers to close the blastopore, but many important regulatory aspects are still unclear. Especially, the spatio-temporal regulation and function of actin structures remain to be determined for a better understanding of the mechanisms that coordinate epiboly movement. Here we show that Rac1 signalling, likely functions downstream of phosphatiditylinositol-3 kinase, is required for F-actin organization during epiboly progression in zebtafish. Using a dominant negative mutant of Rac1 and specific inhibitors to block the activation of this pathway, we find that marginal contractile actin ring is sensitive to inhibition of Rac1 signalling. In particular, we identify a novel function for this actin structure in retaining the external yolk syncytial nuclei within the margin of enveloping layer for coordinated movement toward the vegetal pole. Furthermore, we find that F-actin bundles, progressively formed in the vegetal cortex of the yolk cell, act in concert with marginal actin ring and play an active role in pulling external yolk syncytial nuclei toward the vegetal pole direction. This study uncovers novel roles of different actin structures in orchestrating epiboly movement. It helps to provide insight into the mechanisms regulating cellular polarization during early development. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. F5-peptide induces aspermatogenesis by disrupting organization of actin- and microtubule-based cytoskeletons in the testis

    PubMed Central

    Gao, Ying; Mruk, Dolores D.; Lui, Wing-yee; Lee, Will M.; Cheng, C. Yan

    2016-01-01

    During the release of sperm at spermiation, a biologically active F5-peptide, which can disrupt the Sertoli cell tight junction (TJ) permeability barrier, is produced at the site of the degenerating apical ES (ectoplasmic specialization). This peptide coordinates the events of spermiation and blood-testis barrier (BTB) remodeling at stage VIII of the epithelial cycle, creating a local apical ES-BTB axis to coordinate cellular events across the epithelium. The mechanism(s) by which F5-peptide perturbs BTB restructuring, and its involvement in apical ES dynamics remain unknown. F5-peptide, besides perturbing BTB integrity, was shown to induce germ cell release from the epithelium following its efficient in vivo overexpression in the testis. Overexpression of F5-peptide caused disorganization of actin- and microtubule (MT)-based cytoskeletons, mediated by altering the spatiotemporal expression of actin binding/regulatory proteins in the seminiferous epithelium. F5-peptide perturbed the ability of actin microfilaments and/or MTs from converting between their bundled and unbundled/defragmented configuration, thereby perturbing adhesion between spermatids and Sertoli cells. Since apical ES and basal ES/BTB are interconnected through the underlying cytoskeletal networks, this thus provides an efficient and novel mechanism to coordinate different cellular events across the epithelium during spermatogenesis through changes in the organization of actin microfilaments and MTs. These findings also illustrate the potential of F5-peptide being a male contraceptive peptide for men. PMID:27611949

  4. Restraint stress and stress hormones significantly impact T lymphocyte migration and function through specific alterations of the actin cytoskeleton.

    PubMed

    Flint, Melanie S; Budiu, Raluca A; Teng, Pang-ning; Sun, Mai; Stolz, Donna B; Lang, Megan; Hood, Brian L; Vlad, Anda M; Conrads, Thomas P

    2011-08-01

    Stress triggers complex response mechanisms designed to recognize and adapt to perturbations in homeostasis. The immune system is highly responsive to stress, although the complete mechanisms linking stress and immune mediators including T lymphocytes, are not fully understood. Stress exerts its effects on immune effectors through two primary pathways: the sympathetic-adrenal-medullary pathway, and the hypothalamic-pituitary-adrenal pathway which modulate adaptive immunity and lymphocyte migration. In this report we show that stress via release of stress hormones induces early T cell activation and greatly impacts the cytoskeleton by modulating numerous actin-regulating proteins. In particular, proteomic profiling revealed significant decreases in numerous key actin-binding proteins including moesin. Although confocal microscopy showed that moesin and actin were uniformly distributed on the surface of resting T cells, a remarkable polarization and redistribution of moesin and actin was observed following treatment with stress hormones with moesin localizing at the distal pole complex. In addition, the alteration in moesin localization and eventual decrease in expression were accompanied by a loss of CD43; a receptor involved in negatively regulating T cell activation. In conclusion, we have defined a novel molecular mechanism whereby stress hormones negatively impact T cell activation and migration through regulation of key cytoskeletal and plasma membrane factors. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Interactions with the actin cytoskeleton are required for cell wall localization of barley stripe mosaic virus TGB proteins

    USDA-ARS?s Scientific Manuscript database

    The host cytoskeleton and membrane system are the main routes by which plant viruses move within or between cells. Barley stripe mosaic virus (BSMV) -induced actin filament thickening was visualized in the cytoskeleton of agroinfiltrated Nicotiana benthamiana epidermal cells expressing DsRed:Talin. ...

  6. Role of actin cytoskeleton in LPS-induced NF-kappaB activation and nitric oxide production in murine macrophages.

    PubMed

    Eswarappa, Sandeepa M; Pareek, Vidhi; Chakravortty, Dipshikha

    2008-10-01

    Lipopolysaccharide (LPS) is a major cell wall component of Gram-negative bacteria and is known to cause actin cytoskeleton reorganization in a variety of cells including macrophages. Actin cytoskeleton dynamics influence many cell signaling pathways including the NF-kappaB pathway. LPS is also known to induce the expression of many pro-inflammatory genes via the NF-kappaB pathway. Here, we have investigated the role of actin cytoskeleton in LPS-induced NF-kappaB activation and signaling leading to the expression of iNOS and nitric oxide production. Using murine macrophages, we show that disruption of actin cytoskeleton by either cytochalasin D (CytD) or latrunculin B (LanB) does not affect LPS-induced NF-kappaB activation and the expression of iNOS, a NF-kappaB target gene. However, disruption of actin cytoskeleton caused significant reduction in LPS-induced nitric oxide production indicating a role of actin cytoskeleton in the post-translational regulation of iNOS.

  7. Frabin and other related Cdc42-specific guanine nucleotide exchange factors couple the actin cytoskeleton with the plasma membrane

    PubMed Central

    Nakanishi, Hiroyuki; Takai, Yoshimi

    2008-01-01

    Frabin, together with, at least, FGD1, FGD2, FGD3 and FGD1-related Cdc42-GEF (FRG), is a member of a family of Cdc42-specific gua-nine nucleotide exchange factors (GEFs). These proteins have multiple phosphoinositide-binding domains, including two pleckstrin homology (PH) domains and an FYVE or FERM domain. It is likely that they couple the actin cytoskeleton with the plasma membrane. Frabin associates with a specific actin structure(s) and induces the direct activation of Cdc42 in the vicinity of this structure(s), resulting in actin reorganization. Furthermore, frabin associates with a specific membrane structure(s) and induces the indirect activation of Rac in the vicinity of this structure(s), resulting in the reorganization of the actin cytoskeleton. This reorganization of the actin cytoskeleton induces cell shape changes such as the formation of filopodia and lamellipodia. PMID:18410521

  8. Arabidopsis CAP regulates the actin cytoskeleton necessary for plant cell elongation and division.

    PubMed

    Barrero, Roberto A; Umeda, Masaaki; Yamamura, Saburo; Uchimiya, Hirofumi

    2002-01-01

    An Arabidopsis cDNA (AtCAP1) that encodes a predicted protein of 476 amino acids highly homologous with the yeast cyclase-associated protein (CAP) was isolated. Expression of AtCAP1 in the budding yeast CAP mutant was able to rescue defects such as abnormal cell morphology and random budding pattern. The C-terminal domain, 158 amino acids of AtCAP1 possessing in vitro actin binding activity, was needed for the regulation of cytoskeleton-related defects of yeast. Transgenic plants overexpressing AtCAP1 under the regulation of a glucocorticoid-inducible promoter showed different levels of AtCAP1 accumulation related to the extent of growth abnormalities, in particular size reduction of leaves as well as petioles. Morphological alterations in leaves were attributable to decreased cell size and cell number in both epidermal and mesophyll cells. Tobacco suspension-cultured cells (Bright Yellow 2) overexpressing AtCAP1 exhibited defects in actin filaments and were unable to undergo mitosis. Furthermore, an immunoprecipitation experiment suggested that AtCAP1 interacted with actin in vivo. Therefore, AtCAP1 may play a functional role in actin cytoskeleton networking that is essential for proper cell elongation and division.

  9. Live Cell Imaging Reveals Structural Associations between the Actin and Microtubule Cytoskeleton in Arabidopsis [W] [OA

    PubMed Central

    Sampathkumar, Arun; Lindeboom, Jelmer J.; Debolt, Seth; Gutierrez, Ryan; Ehrhardt, David W.; Ketelaar, Tijs; Persson, Staffan

    2011-01-01

    In eukaryotic cells, the actin and microtubule (MT) cytoskeletal networks are dynamic structures that organize intracellular processes and facilitate their rapid reorganization. In plant cells, actin filaments (AFs) and MTs are essential for cell growth and morphogenesis. However, dynamic interactions between these two essential components in live cells have not been explored. Here, we use spinning-disc confocal microscopy to dissect interaction and cooperation between cortical AFs and MTs in Arabidopsis thaliana, utilizing fluorescent reporter constructs for both components. Quantitative analyses revealed altered AF dynamics associated with the positions and orientations of cortical MTs. Reorganization and reassembly of the AF array was dependent on the MTs following drug-induced depolymerization, whereby short AFs initially appeared colocalized with MTs, and displayed motility along MTs. We also observed that light-induced reorganization of MTs occurred in concert with changes in AF behavior. Our results indicate dynamic interaction between the cortical actin and MT cytoskeletons in interphase plant cells. PMID:21693695

  10. Ultrastructure and behavior of actin cytoskeleton during cell wall formation in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Takagi, Tomoko; Ishijima, Sanae A; Ochi, Hisako; Osumi, Masako

    2003-01-01

    Fluorescence microscopy has shown that F-actin of the fission yeast Schizosaccharomyces pombe forms patch, cable and ring structures. To study the relationship between cell wall formation and the actin cytoskeleton, the process of cell wall regeneration from the protoplast was investigated by transmission electron microscopy (TEM), immunoelectron microscopy (IEM) and three-dimensional reconstruction analysis. During cell wall regeneration from the protoplast, localization of F-actin patches was similar to that of the newly synthesized cell wall materials, as shown by confocal laser scanning microscopy (CLSM). In serial sectioned TEM images, filasomes were spherical, 100-300 nm in diameter and consisted of a single microvesicle (35-70 nm diameter) surrounded by fine filaments. Filasomes were adjacent to the newly formed glucan fibrils in single, cluster or rosary forms. By IEM analysis, we found that colloidal gold particles indicating actin molecules were present in the filamentous area of filasomes. Three-dimensional reconstruction images of serial sections clarified that the distribution of filasomes corresponded to the distribution of F-actin patches revealed by CLSM. Thus, a filasome is one of the F-actin patch structures appearing in the cytoplasm at the site of the initial formation of the cell wall and it may play an important role in this action.

  11. Probing the Plant Actin Cytoskeleton during Cytokinesis and Interphase by Profilin Microinjection.

    PubMed Central

    Valster, A. H.; Pierson, E. S.; Valenta, R.; Hepler, P. K.; Emons, AMC.

    1997-01-01

    We have examined the cytological effects of microinjecting recombinant birch profilin in dividing and interphase stamen hair cells of Tradescantia virginiana. Microinjection of profilin at anaphase and telophase led to a marked effect on cytokinesis; cell plate formation was often delayed, blocked, or completely inhibited. In addition, the initial appearance of the cell plate was wrinkled, thin, and sometimes fragmented. Injection of profilin at interphase caused a thinning or the collapse of cytoplasmic strands and a retardation or inhibition of cytoplasmic streaming in a dose-dependent manner. Confocal laser scanning microscopy of rhodamine-phalloidin staining in vivo revealed that high levels of microinjected profilin induced a degradation of the actin cytoskeleton in the phragmoplast, the perinuclear zone, and the cytoplasmic strands. However, some cortical actin filaments remained intact. The data demonstrate that profilin has the ability to act as a regulator of actin-dependent events and that centrally located actin filaments are more sensitive to microinjected profilin than are cortical actin filaments. These results add new evidence supporting the hypothesis that actin filaments play a crucial role in the formation of the cell plate and provide mechanical support for the cytoplasmic strands in interphase cells. PMID:12237348

  12. Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis.

    PubMed

    Korobova, Farida; Svitkina, Tatyana

    2010-01-01

    Excitatory synapses in the brain play key roles in learning and memory. The formation and functions of postsynaptic mushroom-shaped structures, dendritic spines, and possibly of presynaptic terminals, rely on actin cytoskeleton remodeling. However, the cytoskeletal architecture of synapses remains unknown hindering the understanding of synapse morphogenesis. Using platinum replica electron microscopy, we characterized the cytoskeletal organization and molecular composition of dendritic spines, their precursors, dendritic filopodia, and presynaptic boutons. A branched actin filament network containing Arp2/3 complex and capping protein was a dominant feature of spine heads and presynaptic boutons. Surprisingly, the spine necks and bases, as well as dendritic filopodia, also contained a network, rather than a bundle, of branched and linear actin filaments that was immunopositive for Arp2/3 complex, capping protein, and myosin II, but not fascin. Thus, a tight actin filament bundle is not necessary for structural support of elongated filopodia-like protrusions. Dynamically, dendritic filopodia emerged from densities in the dendritic shaft, which by electron microscopy contained branched actin network associated with dendritic microtubules. We propose that dendritic spine morphogenesis begins from an actin patch elongating into a dendritic filopodium, which tip subsequently expands via Arp2/3 complex-dependent nucleation and which length is modulated by myosin II-dependent contractility.

  13. Fascin links Btl/FGFR signalling to the actin cytoskeleton during Drosophila tracheal morphogenesis.

    PubMed

    Okenve-Ramos, Pilar; Llimargas, Marta

    2014-02-01

    A key challenge in normal development and in disease is to elucidate the mechanisms of cell migration. Here we approach this question using the tracheal system of Drosophila as a model. Tracheal cell migration requires the Breathless/FGFR pathway; however, how the pathway induces migration remains poorly understood. We find that the Breathless pathway upregulates singed at the tip of tracheal branches, and that this regulation is functionally relevant. singed encodes Drosophila Fascin, which belongs to a conserved family of actin-bundling proteins involved in cancer progression and metastasis upon misregulation. We show that singed is required for filopodia stiffness and proper morphology of tracheal tip cells, defects that correlate with an abnormal actin organisation. We propose that singed-regulated filopodia and cell fronts are required for timely and guided branch migration and for terminal branching and branch fusion. We find that singed requirements rely on its actin-bundling activity controlled by phosphorylation, and that active Singed can promote tip cell features. Furthermore, we find that singed acts in concert with forked, another actin cross-linker. The absence of both cross-linkers further stresses the relevance of tip cell morphology and filopodia for tracheal development. In summary, our results on the one hand reveal a previously undescribed role for forked in the organisation of transient actin structures such as filopodia, and on the other hand identify singed as a new target of Breathless signal, establishing a link between guidance cues, the actin cytoskeleton and tracheal morphogenesis.

  14. Role of G protein signaling in the formation of the fibrin(ogen)-integrin αIIbβ3-actin cytoskeleton complex in platelets.

    PubMed

    Budnik, Ivan; Shenkman, Boris; Savion, Naphtali

    2016-09-01

    Effective platelet function requires formation of a physical link between fibrin(ogen), integrin αIIbβ3, and cytoplasmic actin filaments. We investigated the role of the Gαq, Gαi, and Gα12/13 families of heterotrimeric GTP-binding proteins (G proteins) in the assembly of a ligand-αIIbβ3-actin cytoskeleton complex. Selective and combined activation of the G proteins was achieved by using combinations of various platelet agonists and inhibitors. Formation and stability of fibrinogen-αIIbβ3 interaction were evaluated by the extent of platelet aggregation and the rate of eptifibatide-induced platelet disaggregation; association of αIIbβ3 with the cytoskeleton was analyzed by western blot. Formation of the fibrin-αIIbβ3-actin cytoskeleton complex was evaluated by rotational thromboelastometry assay in which clot formation was induced by the mixture of reptilase and factor XIIIa. We demonstrated that involvement of heterotrimeric G proteins in the formation of the ligand-αIIbβ3-cytoskeleton complex depends on whether fibrinogen or fibrin serves as the integrin ligand. Formation of the fibrinogen-αIIbβ3-cytoskeleton complex requires combined activation of at least two G protein pathways while the maximal αIIbβ3-cytoskeleton association and the strongest αIIbβ3-fibrinogen binding supporting irreversible platelet aggregation require combined activation of all three-Gαq, Gαi, and Gα12/13-G protein families. In contrast, formation of the fibrin-αIIbβ3-cytoskeleton complex mediating clot retraction is critically dependent on the activation of the Gαi family, especially on the activation of Gαz.

  15. Extracellular Inhibitors, Repellents, and Semaphorin/Plexin/MICAL-mediated Actin Filament Disassembly

    PubMed Central

    Hung, Ruei-Jiun; Terman, Jonathan R.

    2011-01-01

    Multiple extracellular signals have been identified that regulate actin dynamics within motile cells, but how these instructive cues present on the cell surface exert their precise effects on the internal actin cytoskeleton is still poorly understood. One particularly interesting class of these cues is a group of extracellular proteins that negatively alter the movement of cells and their processes. Over the years, these types of events have been described using a variety of terms and herein we provide an overview of inhibitory/repulsive cellular phenomena and highlight the largest known protein family of repulsive extracellular cues, the Semaphorins. Specifically, the Semaphorins (Semas) utilize Plexin cell-surface receptors to dramatically collapse the actin cytoskeleton and we summarize what is known of the direct molecular and biochemical mechanisms of Sema-triggered actin filament (F-actin) disassembly. We also discuss new observations from our lab that reveal that the multi-domain oxidoreductase (Redox) enzyme MICAL, an important mediator of Sema/Plexin repulsion, is a novel F-actin disassembly factor. Our results indicate that MICAL triggers Sema/Plexin-mediated reorganization of the F-actin cytoskeleton and suggest a role for specific Redox signaling events in regulating actin dynamics. PMID:21800438

  16. Interactions among a Fimbrin, a Capping Protein, and an Actin-depolymerizing Factor in Organization of the Fission Yeast Actin Cytoskeleton

    PubMed Central

    Nakano, Kentaro; Satoh, Kazuomi; Morimatsu, Akeshi; Ohnuma, Masaaki; Mabuchi, Issei

    2001-01-01

    We report studies of the fission yeast fimbrin-like protein Fim1, which contains two EF-hand domains and two actin-binding domains (ABD1 and ABD2). Fim1 is a component of both F-actin patches and the F-actin ring, but not of F-actin cables. Fim1 cross-links F-actin in vitro, but a Fim1 protein lacking either EF-hand domains (Fim1A12) or both the EF-hand domains and ABD1 (Fim1A2) has no actin cross-linking activity. Overexpression of Fim1 induced the formation of F-actin patches throughout the cell cortex, whereas the F-actin patches disappear in cells overexpressing Fim1A12 or Fim1A2. Thus, the actin cross-linking activity of Fim1 is probably important for the formation of F-actin patches. The overexpression of Fim1 also excluded the actin-depolymerizing factor Adf1 from the F-actin patches and inhibited the turnover of actin in these structures. Thus, Fim1 may function in stabilizing the F-actin patches. We also isolated the gene encoding Acp1, a subunit of the heterodimeric F-actin capping protein. fim1 acp1 double null cells showed more severe defects in the organization of the actin cytoskeleton than those seen in each single mutant. Thus, Fim1 and Acp1 may function in a similar manner in the organization of the actin cytoskeleton. Finally, genetic studies suggested that Fim1 may function in cytokinesis in cooperation with Cdc15 (PSTPIP) and Rng2 (IQGAP), respectively. PMID:11694585

  17. Hijacking Host Cell Highways: Manipulation of the Host Actin Cytoskeleton by Obligate Intracellular Bacterial Pathogens

    PubMed Central

    Colonne, Punsiri M.; Winchell, Caylin G.; Voth, Daniel E.

    2016-01-01

    Intracellular bacterial pathogens replicate within eukaryotic cells and display unique adaptations that support key infection events including invasion, replication, immune evasion, and dissemination. From invasion to dissemination, all stages of the intracellular bacterial life cycle share the same three-dimensional cytosolic space containing the host cytoskeleton. For successful infection and replication, many pathogens hijack the cytoskeleton using effector proteins introduced into the host cytosol by specialized secretion systems. A subset of effectors contains eukaryotic-like motifs that mimic host proteins to exploit signaling and modify specific cytoskeletal components such as actin and microtubules. Cytoskeletal rearrangement promotes numerous events that are beneficial to the pathogen, including internalization of bacteria, structural support for bacteria-containing vacuoles, altered vesicular trafficking, actin-dependent bacterial movement, and pathogen dissemination. This review highlights a diverse group of obligate intracellular bacterial pathogens that manipulate the host cytoskeleton to thrive within eukaryotic cells and discusses underlying molecular mechanisms that promote these dynamic host-pathogen interactions. PMID:27713866

  18. Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants.

    PubMed

    Lanza, Mónica; Garcia-Ponce, Berenice; Castrillo, Gabriel; Catarecha, Pablo; Sauer, Michael; Rodriguez-Serrano, María; Páez-García, Ana; Sánchez-Bermejo, Eduardo; T C, Mohan; Leo del Puerto, Yolanda; Sandalio, Luisa María; Paz-Ares, Javier; Leyva, Antonio

    2012-06-12

    In plants, developmental programs and tropisms are modulated by the phytohormone auxin. Auxin reconfigures the actin cytoskeleton, which controls polar localization of auxin transporters such as PIN2 and thus determines cell-type-specific responses. In conjunction with a second growth-promoting phytohormone, brassinosteroid (BR), auxin synergistically enhances growth and gene transcription. We show that BR alters actin configuration and PIN2 localization in a manner similar to that of auxin. We describe a BR constitutive-response mutant that bears an allele of the ACTIN2 gene and shows altered actin configuration, PIN2 delocalization, and a broad array of phenotypes that recapitulate BR-treated plants. Moreover, we show that actin filament reconfiguration is sufficient to activate BR signaling, which leads to an enhanced auxin response. Our results demonstrate that the actin cytoskeleton functions as an integration node for the BR signaling pathway and auxin responsiveness. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Exploring the possible role of lysine acetylation on Entamoeba histolytica virulence: a focus on the dynamics of the actin cytoskeleton.

    PubMed

    López-Contreras, L; Hernández-Ramírez, V I; Lagunes-Guillén, A E; Montaño, Sarita; Chávez-Munguía, B; Sánchez-Ramírez, B; Talamás-Rohana, P

    2013-01-01

    Cytoskeleton remodeling can be regulated, among other mechanisms, by lysine acetylation. The role of acetylation on cytoskeletal and other proteins of Entamoeba histolytica has been poorly studied. Dynamic rearrangements of the actin cytoskeleton are crucial for amebic motility and capping formation, processes that may be effective means of evading the host immune response. Here we report the possible effect of acetylation on the actin cytoskeleton dynamics and in vivo virulence of E. histolytica. Using western blot, immunoprecipitation, microscopy assays, and in silico analysis, we show results that strongly suggest that the increase in Aspirin-induced cytoplasm proteins acetylation reduced cell movement and capping formation, likely as a consequence of alterations in the structuration of the actin cytoskeleton. Additionally, intrahepatic inoculation of Aspirin-treated trophozoites in hamsters resulted in severe impairment of the amebic virulence. Taken together, these results suggest an important role for lysine acetylation in amebic invasiveness and virulence.

  20. Exploring the Possible Role of Lysine Acetylation on Entamoeba histolytica Virulence: A Focus on the Dynamics of the Actin Cytoskeleton

    PubMed Central

    López-Contreras, L.; Hernández-Ramírez, V. I.; Lagunes-Guillén, A. E.; Montaño, Sarita; Chávez-Munguía, B.; Sánchez-Ramírez, B.; Talamás-Rohana, P.

    2013-01-01

    Cytoskeleton remodeling can be regulated, among other mechanisms, by lysine acetylation. The role of acetylation on cytoskeletal and other proteins of Entamoeba histolytica has been poorly studied. Dynamic rearrangements of the actin cytoskeleton are crucial for amebic motility and capping formation, processes that may be effective means of evading the host immune response. Here we report the possible effect of acetylation on the actin cytoskeleton dynamics and in vivo virulence of E. histolytica. Using western blot, immunoprecipitation, microscopy assays, and in silico analysis, we show results that strongly suggest that the increase in Aspirin-induced cytoplasm proteins acetylation reduced cell movement and capping formation, likely as a consequence of alterations in the structuration of the actin cytoskeleton. Additionally, intrahepatic inoculation of Aspirin-treated trophozoites in hamsters resulted in severe impairment of the amebic virulence. Taken together, these results suggest an important role for lysine acetylation in amebic invasiveness and virulence. PMID:24078923

  1. Transcriptome sequencing and genome-wide association analyses reveal lysosomal function and actin cytoskeleton remodeling in schizophrenia and bipolar disorder.

    PubMed

    Zhao, Z; Xu, J; Chen, J; Kim, S; Reimers, M; Bacanu, S-A; Yu, H; Liu, C; Sun, J; Wang, Q; Jia, P; Xu, F; Zhang, Y; Kendler, K S; Peng, Z; Chen, X

    2015-05-01

    Schizophrenia (SCZ) and bipolar disorder (BPD) are severe mental disorders with high heritability. Clinicians have long noticed the similarities of clinic symptoms between these disorders. In recent years, accumulating evidence indicates some shared genetic liabilities. However, what is shared remains elusive. In this study, we conducted whole transcriptome analysis of post-mortem brain tissues (cingulate cortex) from SCZ, BPD and control subjects, and identified differentially expressed genes in these disorders. We found 105 and 153 genes differentially expressed in SCZ and BPD, respectively. By comparing the t-test scores, we found that many of the genes differentially expressed in SCZ and BPD are concordant in their expression level (q⩽0.01, 53 genes; q⩽0.05, 213 genes; q⩽0.1, 885 genes). Using genome-wide association data from the Psychiatric Genomics Consortium, we found that these differentially and concordantly expressed genes were enriched in association signals for both SCZ (P<10(-7)) and BPD (P=0.029). To our knowledge, this is the first time that a substantially large number of genes show concordant expression and association for both SCZ and BPD. Pathway analyses of these genes indicated that they are involved in the lysosome, Fc gamma receptor-mediated phagocytosis, regulation of actin cytoskeleton pathways, along with several cancer pathways. Functional analyses of these genes revealed an interconnected pathway network centered on lysosomal function and the regulation of actin cytoskeleton. These pathways and their interacting network were principally confirmed by an independent transcriptome sequencing data set of the hippocampus. Dysregulation of lysosomal function and cytoskeleton remodeling has direct impacts on endocytosis, phagocytosis, exocytosis, vesicle trafficking, neuronal maturation and migration, neurite outgrowth and synaptic density and plasticity, and different aspects of these processes have been implicated in SCZ and BPD.

  2. Role of actin cytoskeleton in prostaglandin-induced protection against ethanol in an intestinal epithelial cell line.

    PubMed

    Banan, A; Smith, G S; Kokoska, E R; Miller, T A

    2000-02-01

    Prostaglandins (PGs) protect a variety of gastrointestinal cells against injury induced by ethanol and other noxious agents. This investigation attempted to discern the mechanism of cytoprotection as it relates to the relationship between actin and PGs in IEC-6 cells (a rat intestinal epithelial cell line). IEC-6 cells were incubated in Dulbecco's modified Eagle's medium +/- 16,16-dimethyl prostaglandin E(2) (dmPG, 2.6 microM) for 15 min and subsequently incubated in medium containing 1, 2.5, 5, 7.5, and 10% ethanol (EtOH). Cells were then processed for immunocytochemistry using FITC-phalloidin in order to stain the actin cytoskeleton, and cell viability was determined by trypan blue exclusion. Quantitative Western immunoblotting of fractioned G-actin (nonpolymerized; S1) and F-actin (polymerized; S2) was also carried out. EtOH concentrations equal to and greater than 5% led to the collapse of the actin cytoskeleton as depicted by extensive disorganization and fragmentation. In addition, these same EtOH concentrations significantly decreased the S2 fraction and increased the S1 pool of actin. Preincubation with dmPG prevented collapse of the actin cytoskeleton, significantly increased the S2 polymerized fraction as determined by quantitative immunoblotting, and increased cell viability in EtOH-treated cultures. Prior incubation with cytochalasin D, an actin disruptive agent, not only reduced cell viability but also prevented the cytoprotective effects of dmPG. Phalloidin, an actin stabilizing agent, had effects similar to that of dmPG as demonstrated by stability of the actin cytoskeleton and increased cellular viability. Such findings indicate that PGs are important in the organization and stability of actin under in vitro conditions. These effects on actin may play an essential role in the mechanism of PG-induced cytoprotection.

  3. Importance of Interaction between Integrin and Actin Cytoskeleton in Suspension Adaptation of CHO cells.

    PubMed

    Walther, Christa G; Whitfield, Robert; James, David C

    2016-04-01

    The biopharmaceutical production process relies upon mammalian cell technology where single cells proliferate in suspension in a chemically defined synthetic environment. This environment lacks exogenous growth factors, usually contributing to proliferation of fibroblastic cell types such as Chinese hamster ovary (CHO) cells. Use of CHO cells for production hence requires a lengthy 'adaptation' process to select clones capable of proliferation as single cells in suspension. The underlying molecular changes permitting proliferation in suspension are not known. Comparison of the non-suspension-adapted clone CHO-AD and a suspension-adapted propriety cell line CHO-SA by flow cytometric analysis revealed a highly variable bi-modal expression pattern for cell-to-cell contact proteins in contrast to the expression pattern seen for integrins. Those have a uni-modal expression on suspension and adherent cells. Integrins showed a conformation distinguished by regularly distributed clusters forming a sphere on the cell membrane of suspension-adapted cells. Actin cytoskeleton analysis revealed reorganisation from the typical fibrillar morphology found in adherent cells to an enforced spherical subcortical actin sheath in suspension cells. The uni-modal expression and specific clustering of integrins could be confirmed for CHO-S, another suspension cell line. Cytochalasin D treatment resulted in breakdown of the actin sheath and the sphere-like integrin conformation demonstrating the link between integrins and actin in suspension-adapted CHO cells. The data demonstrates the importance of signalling changes, leading to an integrin rearrangement on the cell surface, and the necessity of the reinforcement of the actin cytoskeleton for proliferation in suspension conditions.

  4. Cellular chirality arising from the self-organization of the actin cytoskeleton.

    PubMed

    Tee, Yee Han; Shemesh, Tom; Thiagarajan, Visalatchi; Hariadi, Rizal Fajar; Anderson, Karen L; Page, Christopher; Volkmann, Niels; Hanein, Dorit; Sivaramakrishnan, Sivaraj; Kozlov, Michael M; Bershadsky, Alexander D

    2015-04-01

    Cellular mechanisms underlying the development of left-right asymmetry in tissues and embryos remain obscure. Here, the development of a chiral pattern of actomyosin was revealed by studying actin cytoskeleton self-organization in cells with isotropic circular shape. A radially symmetrical system of actin bundles consisting of α-actinin-enriched radial fibres (RFs) and myosin-IIA-enriched transverse fibres (TFs) evolved spontaneously into the chiral system as a result of the unidirectional tilting of all RFs, which was accompanied by a tangential shift in the retrograde movement of TFs. We showed that myosin-IIA-dependent contractile stresses within TFs drive their movement along RFs, which grow centripetally in a formin-dependent fashion. The handedness of the chiral pattern was shown to be regulated by α-actinin-1. Computational modelling demonstrated that the dynamics of the RF-TF system can explain the pattern transition from radial to chiral. Thus, actin cytoskeleton self-organization provides built-in machinery that potentially allows cells to develop left-right asymmetry.

  5. AMP-activated protein kinase induces actin cytoskeleton reorganization in epithelial cells

    SciTech Connect

    Miranda, Lisa; Carpentier, Sarah; Platek, Anna; Hussain, Nusrat; Gueuning, Marie-Agnes; Vertommen, Didier; Ozkan, Yurda; Sid, Brice; Hue, Louis; Courtoy, Pierre J.; Rider, Mark H.; Horman, Sandrine

    2010-06-04

    AMP-activated protein kinase (AMPK), a known regulator of cellular and systemic energy balance, is now recognized to control cell division, cell polarity and cell migration, all of which depend on the actin cytoskeleton. Here we report the effects of A769662, a pharmacological activator of AMPK, on cytoskeletal organization and signalling in epithelial Madin-Darby canine kidney (MDCK) cells. We show that AMPK activation induced shortening or radiation of stress fibers, uncoupling from paxillin and predominance of cortical F-actin. In parallel, Rho-kinase downstream targets, namely myosin regulatory light chain and cofilin, were phosphorylated. These effects resembled the morphological changes in MDCK cells exposed to hyperosmotic shock, which led to Ca{sup 2+}-dependent AMPK activation via calmodulin-dependent protein kinase kinase-{beta}(CaMKK{beta}), a known upstream kinase of AMPK. Indeed, hypertonicity-induced AMPK activation was markedly reduced by the STO-609 CaMKK{beta} inhibitor, as was the increase in MLC and cofilin phosphorylation. We suggest that AMPK links osmotic stress to the reorganization of the actin cytoskeleton.

  6. AMP-activated protein kinase induces actin cytoskeleton reorganization in epithelial cells.

    PubMed

    Miranda, Lisa; Carpentier, Sarah; Platek, Anna; Hussain, Nusrat; Gueuning, Marie-Agnès; Vertommen, Didier; Ozkan, Yurda; Sid, Brice; Hue, Louis; Courtoy, Pierre J; Rider, Mark H; Horman, Sandrine

    2010-06-04

    AMP-activated protein kinase (AMPK), a known regulator of cellular and systemic energy balance, is now recognized to control cell division, cell polarity and cell migration, all of which depend on the actin cytoskeleton. Here we report the effects of A769662, a pharmacological activator of AMPK, on cytoskeletal organization and signalling in epithelial Madin-Darby canine kidney (MDCK) cells. We show that AMPK activation induced shortening or radiation of stress fibers, uncoupling from paxillin and predominance of cortical F-actin. In parallel, Rho-kinase downstream targets, namely myosin regulatory light chain and cofilin, were phosphorylated. These effects resembled the morphological changes in MDCK cells exposed to hyperosmotic shock, which led to Ca(2+)-dependent AMPK activation via calmodulin-dependent protein kinase kinase-beta(CaMKKbeta), a known upstream kinase of AMPK. Indeed, hypertonicity-induced AMPK activation was markedly reduced by the STO-609 CaMKKbeta inhibitor, as was the increase in MLC and cofilin phosphorylation. We suggest that AMPK links osmotic stress to the reorganization of the actin cytoskeleton.

  7. RhoA Proteolysis Regulates the Actin Cytoskeleton in Response to Oxidative Stress

    PubMed Central

    Girouard, Marie-Pier; Pool, Madeline; Alchini, Ricardo; Rambaldi, Isabel

    2016-01-01

    The small GTPase RhoA regulates the actin cytoskeleton to affect multiple cellular processes including endocytosis, migration and adhesion. RhoA activity is tightly regulated through several mechanisms including GDP/GTP cycling, phosphorylation, glycosylation and prenylation. Previous reports have also reported that cleavage of the carboxy-terminus inactivates RhoA. Here, we describe a novel mechanism of RhoA proteolysis that generates a stable amino-terminal RhoA fragment (RhoA-NTF). RhoA-NTF is detectable in healthy cells and tissues and is upregulated following cell stress. Overexpression of either RhoA-NTF or the carboxy-terminal RhoA cleavage fragment (RhoA-CTF) induces the formation of disorganized actin stress fibres. RhoA-CTF also promotes the formation of disorganized actin stress fibres and nuclear actin rods. Both fragments disrupt the organization of actin stress fibres formed by endogenous RhoA. Together, our findings describe a novel RhoA regulatory mechanism. PMID:27992599

  8. Visualizing the dynamic coupling of claudin strands to the actin cytoskeleton through ZO-1

    PubMed Central

    Van Itallie, Christina M.; Tietgens, Amber Jean; Anderson, James M.

    2017-01-01

    The organization and integrity of epithelial tight junctions depend on interactions between claudins, ZO scaffolding proteins, and the cytoskeleton. However, although binding between claudins and ZO-1/2/3 and between ZO-1/2/3 and numerous cytoskeletal proteins has been demonstrated in vitro, fluorescence recovery after photobleaching analysis suggests interactions in vivo are likely highly dynamic. Here we use superresolution live-cell imaging in a model fibroblast system to examine relationships between claudins, ZO-1, occludin, and actin. We find that GFP claudins make easily visualized dynamic strand patches between two fibroblasts; strand dynamics is constrained by ZO-1 binding. Claudin association with actin is also dependent on ZO-1, but colocalization demonstrates intermittent rather than continuous association between claudin, ZO-1, and actin. Independent of interaction with ZO-1 or actin, claudin strands break and reanneal; pulse-chase-pulse analysis using SNAP-tagged claudins showed preferential incorporation of newly synthesized claudins into break sites. Although claudin strand behavior in fibroblasts may not fully recapitulate that of epithelial tight junction strands, this is the first direct demonstration of the ability of ZO-1 to stabilize claudin strands. We speculate that intermittent tethering of claudins to actin may allow for accommodation of the paracellular seal to physiological or pathological alterations in cell shape or movement. PMID:27974639

  9. Visualizing the dynamic coupling of claudin strands to the actin cytoskeleton through ZO-1.

    PubMed

    Van Itallie, Christina M; Tietgens, Amber Jean; Anderson, James M

    2017-02-15

    The organization and integrity of epithelial tight junctions depend on interactions between claudins, ZO scaffolding proteins, and the cytoskeleton. However, although binding between claudins and ZO-1/2/3 and between ZO-1/2/3 and numerous cytoskeletal proteins has been demonstrated in vitro, fluorescence recovery after photobleaching analysis suggests interactions in vivo are likely highly dynamic. Here we use superresolution live-cell imaging in a model fibroblast system to examine relationships between claudins, ZO-1, occludin, and actin. We find that GFP claudins make easily visualized dynamic strand patches between two fibroblasts; strand dynamics is constrained by ZO-1 binding. Claudin association with actin is also dependent on ZO-1, but colocalization demonstrates intermittent rather than continuous association between claudin, ZO-1, and actin. Independent of interaction with ZO-1 or actin, claudin strands break and reanneal; pulse-chase-pulse analysis using SNAP-tagged claudins showed preferential incorporation of newly synthesized claudins into break sites. Although claudin strand behavior in fibroblasts may not fully recapitulate that of epithelial tight junction strands, this is the first direct demonstration of the ability of ZO-1 to stabilize claudin strands. We speculate that intermittent tethering of claudins to actin may allow for accommodation of the paracellular seal to physiological or pathological alterations in cell shape or movement.

  10. Actin cytoskeleton in myofibroblast differentiation: ultrastructure defining form and driving function.

    PubMed

    Sandbo, Nathan; Dulin, Nickolai

    2011-10-01

    Myofibroblasts are modified fibroblasts characterized by the presence of a well-developed contractile apparatus and the formation of robust actin stress fibers. These mechanically active cells are thought to orchestrate extracellular matrix remodeling during normal wound healing in response to tissue injury; these cells are found also in aberrant tissue remodeling in fibrosing disorders. This review surveys the understanding of the role of actin stress fibers in myofibroblast biology. Actin stress fibers are discussed as a defining ultrastructural and morphologic feature and well-accepted observations demonstrating its participation in contraction, focal adhesion maturation, and extracellular matrix reorganization are presented. Finally, more recent observations are reviewed, demonstrating its role in transducing mechanical force into biochemical signals, transcriptional control of genes involved in locomotion, contraction, and matrix reorganization, as well as the localized regulation of messenger RNA (mRNA) translation. This breadth of functionality of the actin stress fiber serves to reinforce and amplify its mechanical function, via induced expression of proteins that themselves augment contraction, focal adhesion formation, and matrix remodeling. In composite, the functions of the actin cytoskeleton are most often aligned, allowing for the integration and amplification of signals promoting both myofibroblast differentiation and matrix remodeling during fibrogenesis. Copyright © 2011 Mosby, Inc. All rights reserved.

  11. CAPZA1 modulates EMT by regulating actin cytoskeleton remodelling in hepatocellular carcinoma.

    PubMed

    Huang, Deng; Cao, Li; Zheng, Shuguo

    2017-01-16

    Epithelial-mesenchymal transition (EMT) elicits dramatic changes, including cytoskeleton remodelling as well as changes in gene expression and cellular phenotypes. During this process, actin filament assembly plays an important role in maintaining the morphology and movement of tumour cells. Capping protein, a protein complex referred to as CapZ, is an actin-binding complex that can regulate actin cytoskeleton remodelling. CAPZA1 is the α1 subunit of this complex, and we hypothesized that CAPZA1 regulates EMT through the regulation of actin filaments assembly, thus reducing the metastatic ability of hepatocellular carcinoma (HCC) cells. Immunohistochemistry was used to detect CAPZA1 expression in 129 HCC tissues. Western blotting and qPCR were used to detect CAPZA1, EMT markers and EMT transcription factors in HCC cells. Transwell migration and invasion assays were performed to observe the migration and invasion of HCC cells. Cell Counting Kit-8 (CCK-8) was used to detect the proliferation of HCC cells. Immunoprecipitation was used to detect the interaction between CAPZA1 and actin filaments. Finally, a small animal magnetic resonance imager (MRI) was used to observe metastases in HCC cell xenografts in the liver. CAPZA1 expression levels were negatively correlated with the biological characteristics of primary HCC and patient prognosis. CAPZA1 expression was negatively correlated with the migration and invasion of HCC cells. CAPZA1 down regulation promoted the migration and invasion of HCC cells. Conversely, CAPZA1 overexpression significantly inhibited the migration and invasion of HCC cells. Moreover, CAPZA1 expression levels were correlated with the expression of the EMT markers E-cadherin, N-cadherin and Vimentin. Furthermore, the expression of Snail1 and ZEB1 were negatively correlated with CAPZA1 expression levels. Similarly, CAPZA1 significantly inhibited intrahepatic metastases of HCC cells in an orthotopic transplantation tumour model. CAPZA1 inhibits

  12. Effect of jasplakinolide on the growth, encystation, and actin cytoskeleton of Entamoeba histolytica and Entamoeba invadens.

    PubMed

    Makioka, A; Kumagai, M; Ohtomo, H; Kobayashi, S; Takeuchi, T

    2001-04-01

    The effect of jasplakinolide. an actin-polymerizing and filament-stabilizing drug, on the growth, encystation, and actin cytoskeleton of Entamoeba histolytica and Entamoeba invadens was examined. Jasplakinolide inhibited the growth of E. histolytica strain HM-1:IMSS and E. invadens strain IP-1 in a concentration-dependent manner, the latter being more resistant to the drug. The inhibitory effect of jasplakinolide on the growth of E. histolytica trophozoites was reversed by removal of the drug after exposure to 1 microM for 1 day. Encystation of E. invadens as induced in vitro was also inhibited by jasplakinolide. Trophozoites exposed to jasplakinolide in encystation medium for 1 day did not encyst after removal of the drug, whereas those exposed to the drug in growth medium for 7 days did encyst without the drug. The process of cyst maturation was unaffected by jasplakinolide. Large round structures were formed in trophozoites of both amoebae grown with jasplakinolide; these were identified as F-actin aggregates by staining with fluorescent phalloidin. Accumulation in trophozoites of both amoebae of actin aggregates was observed after culture in jasplakinolide. Also, E. invadens cysts formed from trophozoites treated with jasplakinolide contained the actin aggregate. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analysis revealed that the jasplakinolide treatment led to an increase in the proportion of F-actin associated with formation of the aggregate. The results suggest that aggregates are formed from the cortical flow of F-actin filaments, and that these filaments would normally be depolymerized but are artificially stabilized by jasplakinolide binding.

  13. h2-Calponin is regulated by mechanical tension and modifies the function of actin cytoskeleton.

    PubMed

    Hossain, M Moazzem; Crish, James F; Eckert, Richard L; Lin, Jim J-C; Jin, Jian-Ping

    2005-12-23

    Calponin is an extensively studied actin-binding protein, but its function is not well understood. Among three isoforms of calponin, h2-calponin is found in both smooth muscle and non-muscle cells. The present study demonstrates that epidermal keratinocytes and fibroblast cells express significant amounts of h2-calponin. The expression of h2-calponin is cell anchorage-dependent. The levels of h2-calponin decrease when cells are rounded up and remain low when cells are prevented from adherence to a culture dish. h2-calponin expression resumes after the floating cells are allowed to form a monolayer in plastic dish. Cell cultures on polyacrylamide gels of different stiffness demonstrated that h2-calponin expression is affected by the mechanical properties of the culture matrix. When cells are cultured on soft gel that applies less traction force to the cell and, therefore, lower mechanical tension in the cytoskeleton, the level of h2-calponin is significantly lower than that in cells cultured on hard gel or rigid plastic dish. Force-expression of h2-calponin enhanced the resistance of the actin filaments to cytochalasin B treatment. Keratinocyte differentiation is accompanied by a mechanical tension-related up-regulation of h2-calponin. Lowering the tension of actin cytoskeleton by inhibiting non-muscle myosin II ATPase decreased h2-calponin expression. In contrast to the mechanical tension regulation of endogenous h2-calponin, the expression of h2-calponin using a cytomegalovirus promotor was independent of the stiffness of culture matrix. The results suggest that h2-calponin represents a novel manifestation of mechanical tension responsive gene regulation that may modify cytoskeleton function.

  14. Disturbance of endomembrane trafficking by brefeldin A and calyculin A reorganizes the actin cytoskeleton of Lilium longiflorum pollen tubes.

    PubMed

    Hörmanseder, K; Obermeyer, G; Foissner, I

    2005-12-01

    We investigated the effect of brefeldin A on membrane trafficking and the actin cytoskeleton of pollen tubes of Lilium longiflorum with fluorescent dyes, inhibitor experiments, and confocal laser scanning microscopy. The formation of a subapical brefeldin A-induced membrane aggregation (BIA) was associated with the formation of an actin basket from which filaments extended towards the tip. The orientation of these actin filaments correlated with the trajectories of membrane material stained by FM dyes, suggesting that the BIA-associated actin filaments are used as tracks for retrograde transport. Analysis of time series indicated that these tracks (actin filaments) were either stationary or glided along the plasma membrane towards the BIA together with the attached membranes or organelles. Disturbance of the actin cytoskeleton by cytochalasin D or latrunculin B caused immediate arrest of membrane trafficking, dissipation of the BIA and the BIA-associated actin basket, and reorganization into randomly oriented actin rods. Our observations suggest that brefeldin A causes ectopic activation of actin-nucleating proteins at the BIA, resulting in retrograde movement of membranes not only along but also together with actin filaments. We show further that subapical membrane aggregations and actin baskets supporting retrograde membrane flow can also be induced by calyculin A, indicating that dephosphorylation by type 2 protein phosphatases is required for proper formation of membrane coats and polar membrane trafficking.

  15. Interaction of microtubules with the actin cytoskeleton via cross-talk of EB1-containing +TIPs and γ-actin in epithelial cells

    PubMed Central

    Dugina, Vera; Alieva, Irina; Khromova, Natalya; Kireev, Igor; Gunning, Peter W.; Kopnin, Pavel

    2016-01-01

    Actin microfilaments and microtubules are both highly dynamic cytoskeleton components implicated in a wide range of intracellular processes as well as cell-cell and cell-substrate interactions. The interactions of actin filaments with the microtubule system play an important role in the assembly and maintenance of 3D cell structure. Here we demonstrate that cytoplasmic actins are differentially distributed in relation to the microtubule system. LSM, 3D-SIM, proximity ligation assay (PLA) and co-immunoprecipitation methods applied in combination with selective depletion of β- or γ-cytoplasmic actins revealed a selective interaction between microtubules and γ-, but not β-cytoplasmic actin via the microtubule +TIPs protein EB1. EB1-positive comet distribution analysis and quantification have shown more effective microtubule growth in the absence of β-actin. Our data represent the first demonstration that microtubule +TIPs protein EB1 interacts mainly with γ-cytoplasmic actin in epithelial cells. PMID:27683037

  16. Interaction of microtubules with the actin cytoskeleton via cross-talk of EB1-containing +TIPs and γ-actin in epithelial cells.

    PubMed

    Dugina, Vera; Alieva, Irina; Khromova, Natalya; Kireev, Igor; Gunning, Peter W; Kopnin, Pavel

    2016-11-08

    Actin microfilaments and microtubules are both highly dynamic cytoskeleton components implicated in a wide range of intracellular processes as well as cell-cell and cell-substrate interactions. The interactions of actin filaments with the microtubule system play an important role in the assembly and maintenance of 3D cell structure. Here we demonstrate that cytoplasmic actins are differentially distributed in relation to the microtubule system. LSM, 3D-SIM, proximity ligation assay (PLA) and co-immunoprecipitation methods applied in combination with selective depletion of β- or γ-cytoplasmic actins revealed a selective interaction between microtubules and γ-, but not β-cytoplasmic actin via the microtubule +TIPs protein EB1. EB1-positive comet distribution analysis and quantification have shown more effective microtubule growth in the absence of β-actin. Our data represent the first demonstration that microtubule +TIPs protein EB1 interacts mainly with γ-cytoplasmic actin in epithelial cells.

  17. Modelling cell motility and pathways that signal to the actin cytoskeleton

    NASA Astrophysics Data System (ADS)

    Edelstein-Keshet, Leah

    2007-03-01

    Gradient sensing, polarization, and motility of rapidly moving cells such as neutrophils involves the actin cytoskeleton, and regulatory modules such as membrane bound phosphoinositides (PIs), kinases/phosphatases, and proteins of the Rho family (Rho GTPases). I describe recent work in my group in which we have modeled components of these modules, their interconversions, interactions, and action in the context of protrusive cell motility. By connecting three modules, we find that Rho GTPases work as a spatial switch, and that PIs filter noise, and define the front vs. back. Relatively fast PI diffusion also leads to selection of a unique pattern of Rho distribution from a collection of possible patterns. We use the model to explore the importance of specific hypothesized interactions, to explore mutant phenotypes, and to study the role of actin polymerization in the maintenance of the PI asymmetry. Collaborators on this work include A.T. Dawes, A. Jilkine, and A.F.M. Maree.

  18. The CPEB3 Protein Is a Functional Prion that Interacts with the Actin Cytoskeleton.

    PubMed

    Stephan, Joseph S; Fioriti, Luana; Lamba, Nayan; Colnaghi, Luca; Karl, Kevin; Derkatch, Irina L; Kandel, Eric R

    2015-06-23

    The mouse cytoplasmic polyadenylation element-binding protein 3 (CPEB3) is a translational regulator implicated in long-term memory maintenance. Invertebrate orthologs of CPEB3 in Aplysia and Drosophila are functional prions that are physiologically active in the aggregated state. To determine if this principle applies to the mammalian CPEB3, we expressed it in yeast and found that it forms heritable aggregates that are the hallmark of known prions. In addition, we confirm in the mouse the importance of CPEB3's prion formation for CPEB3 function. Interestingly, deletion analysis of the CPEB3 prion domain uncovered a tripartite organization: two aggregation-promoting domains surround a regulatory module that affects interaction with the actin cytoskeleton. In all, our data provide direct evidence that CPEB3 is a functional prion in the mammalian brain and underline the potential importance of an actin/CPEB3 feedback loop for the synaptic plasticity underlying the persistence of long-term memory.

  19. A Role for the Actin Cytoskeleton of Saccharomyces cerevisiae in Bipolar Bud-Site Selection

    PubMed Central

    Yang, Shirley; Ayscough, Kathryn R.; Drubin, David G.

    1997-01-01

    Saccharomyces cerevisiae cells select bud sites according to one of two predetermined patterns. MATa and MATα cells bud in an axial pattern, and MATa/α cells bud in a bipolar pattern. These budding patterns are thought to depend on the placement of spatial cues at specific sites in the cell cortex. Because cytoskeletal elements play a role in organizing the cytoplasm and establishing distinct plasma membrane domains, they are well suited for positioning bud-site selection cues. Indeed, the septin-containing neck filaments are crucial for establishing the axial budding pattern characteristic of MATa and MATα cells. In this study, we determined the budding patterns of cells carrying mutations in the actin gene or in genes encoding actin-associated proteins: MATa/α cells were defective in the bipolar budding pattern, but MATa and MATα cells still exhibit a normal axial budding pattern. We also observed that MATa/α actin cytoskeleton mutant daughter cells correctly position their first bud at the distal pole of the cell, but mother cells position their buds randomly. The actin cytoskeleton therefore functions in generation of the bipolar budding pattern and is required specifically for proper selection of bud sites in mother MATa/α cells. These observations and the results of double mutant studies support the conclusion that different rules govern bud-site selection in mother and daughter MATa/α cells. A defective bipolar budding pattern did not preclude an sla2-6 mutant from undergoing pseudohyphal growth, highlighting the central role of daughter cell bud-site selection cues in the formation of pseudohyphae. Finally, by examining the budding patterns of mad2-1 mitotic checkpoint mutants treated with benomyl to depolymerize their microtubules, we confirmed and extended previous evidence indicating that microtubules do not function in axial or bipolar bud-site selection. PMID:9008707

  20. Graphene Oxide Nanosheets Retard Cellular Migration via Disruption of Actin Cytoskeleton.

    PubMed

    Tian, Xin; Yang, Zaixing; Duan, Guangxin; Wu, Anqing; Gu, Zonglin; Zhang, Leili; Chen, Chunying; Chai, Zhifang; Ge, Cuicui; Zhou, Ruhong

    2017-01-01

    Graphene and graphene-based nanomaterials are broadly used for various biomedical applications due to their unique physiochemical properties. However, how graphene-based nanomaterials interact with biological systems has not been thoroughly studied. This study shows that graphene oxide (GO) nanosheets retard A549 lung carcinoma cell migration through nanosheet-mediated disruption of intracellular actin filaments. After GO nanosheets treatment, A549 cells display slower migration and the structure of the intracellular actin filaments is dramatically changed. It is found that GO nanosheets are capable of absorbing large amount of actin and changing the secondary structures of actin monomers. Large-scale all-atom molecular dynamics simulations further reveal the interactions between GO nanosheets and actin filaments at molecular details. GO nanosheets can insert into the interstrand gap of actin tetramer (helical repeating unit of actin filament) and cause the separation of the tetramer which eventually leads to the disruption of actin filaments. These findings offer a novel mechanism of GO nanosheet induced biophysical responses and provide more insights into their potential for biomedical applications.

  1. Effects of sodium fluoride on the actin cytoskeleton of murine ameloblasts.

    PubMed

    Li, Yong; Decker, Sylvia; Yuan, Zhi-An; Denbesten, Pamela K; Aragon, Melissa A; Jordan-Sciutto, Kelly; Abrams, William R; Huh, Jung; McDonald, Celeste; Chen, Enhong; MacDougall, Mary; Gibson, Carolyn W

    2005-08-01

    Fluoride is associated with a decrease in the incidence of dental caries, but excess fluoride can lead to enamel fluorosis, a defect that occurs during tooth enamel formation. In fibroblasts, the Arhgap gene encodes a RhoGAP, which regulates the small G protein designated RhoA. Fluoride treatment of fibroblasts inactivates RhoGAP, thereby activating RhoA, which leads to elevation of filamentous actin (F-actin). Since RhoA is a molecular switch, our hypothesis is that in ameloblasts, fluoride may alter the cytoskeleton through interference with the Rho signaling pathway. Our objective was to measure the effects of sodium fluoride on F-actin using tooth organ culture and confocal microscopy. The results indicated that cellular responses to fluoride include elevation of F-actin in ameloblasts. It was concluded from immunohistochemistry, RT-PCR and confocal approaches that the components of the Rho pathway are present in ameloblasts, and that the response to fluoride involves the Rho/ROCK pathway.

  2. Identification of functional connections between calmodulin and the yeast actin cytoskeleton.

    PubMed Central

    Sekiya-Kawasaki, M; Botstein, D; Ohya, Y

    1998-01-01

    One of four intragenic complementing groups of temperature-sensitive yeast calmodulin mutations, cmd1A, results in a characteristic functional defect in actin organization. We report here that among the complementing mutations, a representative cmd1A mutation (cmd1-226: F92A) is synthetically lethal with a mutation in MYO2 that encodes a class V unconventional myosin with calmodulin-binding domains. Gel overlay assay shows that a mutant calmodulin with the F92A alteration has severely reduced binding affinity to a GST-Myo2p fusion protein. Random replacement and site-directed mutagenesis at position 92 of calmodulin indicate that hydrophobic and aromatic residues are allowed at this position, suggesting an importance of hydrophobic interaction between calmodulin and Myo2p. To analyze other components involved in actin organization through calmodulin, we isolated and characterized mutations that show synthetic lethal interaction with cmd1-226; these "cax" mutants fell into five complementation groups. Interestingly, all the mutations themselves affect actin organization. Unlike cax2, cax3, cax4, and cax5 mutations, cax1 shows allele-specific synthetic lethality with the cmd1A allele. CAX1 is identical to ANP1/GEM3/MCD2, which is involved in protein glycosylation. CAX4 is identical to the ORF YGR036c, and CAX5 is identical to MNN10/SLC2/BED1. We discuss possible roles for Cax proteins in the regulation of the actin cytoskeleton. PMID:9725829

  3. The actin cytoskeleton in myofibroblast differentiation: Ultrastructure defining form and driving function

    PubMed Central

    Sandbo, Nathan; Dulin, Nickolai

    2011-01-01

    Myofibroblasts are modified fibroblasts, characterized by the presence of a well-developed contractile apparatus, and the formation of robust actin stress fibers. These mechanically active cells are thought to orchestrate extracellular matrix remodeling during normal wound healing in response to tissue injury, and in aberrant tissue remodeling found in fibrosing disorders. This review surveys the understanding of the role of actin stress fibers in myofibroblast biology. From its original description as a defining ultrastructural and morphologic feature, to well-accepted observations demonstrating its participation in contraction, focal adhesion maturation, and extracellular matrix reorganization, and finally to more recent observations demonstrating its role in transducing mechanical force into biochemical signals, transcriptional control of genes involved in locomotion, contraction, and matrix reorganization, and the localized regulation of mRNA translation. This breadth of functionality of the actin stress fiber serves to reinforce and amplify its mechanical function, via induced expression of proteins that themselves augment contraction, focal adhesion formation, and matrix remodeling. In composite, the functions of the actin cytoskeleton are most often aligned, allowing for the integration and amplification of signals promoting both myofibroblast differentiation and matrix remodeling during fibrogenesis. PMID:21925115

  4. Novel regulation of Ski protein stability and endosomal sorting by actin cytoskeleton dynamics in hepatocytes.

    PubMed

    Vázquez-Victorio, Genaro; Caligaris, Cassandre; Del Valle-Espinosa, Eugenio; Sosa-Garrocho, Marcela; González-Arenas, Nelly R; Reyes-Cruz, Guadalupe; Briones-Orta, Marco A; Macías-Silva, Marina

    2015-02-13

    TGF-β-induced antimitotic signals are highly regulated during cell proliferation under normal and pathological conditions, such as liver regeneration and cancer. Up-regulation of the transcriptional cofactors Ski and SnoN during liver regeneration may favor hepatocyte proliferation by inhibiting TGF-β signals. In this study, we found a novel mechanism that regulates Ski protein stability through TGF-β and G protein-coupled receptor (GPCR) signaling. Ski protein is distributed between the nucleus and cytoplasm of normal hepatocytes, and the molecular mechanisms controlling Ski protein stability involve the participation of actin cytoskeleton dynamics. Cytoplasmic Ski is partially associated with actin and localized in cholesterol-rich vesicles. Ski protein stability is decreased by TGF-β/Smads, GPCR/Rho signals, and actin polymerization, whereas GPCR/cAMP signals and actin depolymerization promote Ski protein stability. In conclusion, TGF-β and GPCR signals differentially regulate Ski protein stability and sorting in hepatocytes, and this cross-talk may occur during liver regeneration.

  5. Pak2 is required for actin cytoskeleton remodeling, TCR signaling, and normal thymocyte development and maturation

    PubMed Central

    Phee, Hyewon; Au-Yeung, Byron B; Pryshchep, Olga; O'Hagan, Kyle Leonard; Fairbairn, Stephanie Grace; Radu, Maria; Kosoff, Rachelle; Mollenauer, Marianne; Cheng, Debra; Chernoff, Jonathan; Weiss, Arthur

    2014-01-01

    The molecular mechanisms that govern thymocyte development and maturation are incompletely understood. The P21-activated kinase 2 (Pak2) is an effector for the Rho family GTPases Rac and Cdc42 that regulate actin cytoskeletal remodeling, but its role in the immune system remains poorly understood. In this study, we show that T-cell specific deletion of Pak2 gene in mice resulted in severe T cell lymphopenia accompanied by marked defects in development, maturation, and egress of thymocytes. Pak2 was required for pre-TCR β-selection and positive selection. Surprisingly, Pak2 deficiency in CD4 single positive thymocytes prevented functional maturation and reduced expression of S1P1 and KLF2. Mechanistically, Pak2 is required for actin cytoskeletal remodeling triggered by TCR. Failure to induce proper actin cytoskeletal remodeling impaired PLCγ1 and Erk1/2 signaling in the absence of Pak2, uncovering the critical function of Pak2 as an essential regulator that governs the actin cytoskeleton-dependent signaling to ensure normal thymocyte development and maturation. DOI: http://dx.doi.org/10.7554/eLife.02270.001 PMID:24843022

  6. Two classes of actin microfilaments are associated with the inner cytoskeleton of axons

    PubMed Central

    1988-01-01

    The distribution and length of actin microfilaments (MF) was determined in axoplasm extruded from the giant axons of the squid (Loligo pealeii). Extruded axoplasm that was separated from the axonal cortex contains approximately 92% of the total axonal actin, and 60% of this actin is polymerized (Morris, J., and R. Lasek. 1984. J. Cell Biol. 98:2064-2076). Localization of MF with rhodamine-phalloidin indicated that the MF were organized in fine columns oriented longitudinally within the axoplasm. In the electron microscope, MF were surrounded by a dense matrix and they were associated with the microtubule domains of the axoplasm. The surrounding matrix tended to obscure the MF which may explain why MF have rarely been recognized before in the inner regions of the axon. The axoplasmic MF are relatively short (number average length of 0.55 micron). Length measurements of MF prepared either in the presence or absence of the actin-filament stabilizing drug phalloidin indicate that axoplasm contains two populations of MF: stable MF (number average length of 0.79 micron) and metastable MF (number average length of 0.41 micron). Although individual axonal MF are much shorter than axonal microtubules, the combined length of the total MF is twice that of the total microtubules. Apparently, these numerous short MF have an important structural role in the architecture of the inner axonal cytoskeleton. PMID:3417765

  7. The structure and function of actin cytoskeleton in mature glutamatergic dendritic spines.

    PubMed

    Bellot, Alba; Guivernau, Biuse; Tajes, Marta; Bosch-Morató, Mònica; Valls-Comamala, Victòria; Muñoz, Francisco J

    2014-07-21

    Dendritic spines are actin-rich protrusions from the dendritic shaft, considered to be the locus where most synapses occur, as they receive the vast majority of excitatory connections in the central nervous system (CNS). Interestingly, hippocampal spines are plastic structures that contain a dense array of molecules involved in postsynaptic signaling and synaptic plasticity. Since changes in spine shape and size are correlated with the strength of excitatory synapses, spine morphology directly reflects spine function. Therefore several neuropathologies are associated with defects in proteins located at the spines. The present work is focused on the spine actin cytoskeleton attending to its structure and function mainly in glutamatergic neurons. It addresses the study of the structural plasticity of dendritic spines associated with long-term potentiation (LTP) and the mechanisms that underlie learning and memory formation. We have integrated the current knowledge on synaptic proteins to relate this plethora of molecules with actin and actin-binding proteins. We further included recent findings that outline key uncharacterized proteins that would be useful to unveil the real ultrastructure and function of dendritic spines. Furthermore, this review is directed to understand how such spine diversity and interplay contributes to the regulation of spine morphogenesis and dynamics. It highlights their physiological relevance in the brain function, as well as it provides insights for pathological processes affecting dramatically dendritic spines, such as Alzheimer's disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Structure-function studies of MICAL, the unusual multidomain flavoenzyme involved in actin cytoskeleton dynamics.

    PubMed

    Vanoni, Maria Antonietta

    2017-06-08

    MICAL (from the Molecule Interacting with CasL) indicates a family of multidomain proteins conserved from insects to humans, which are increasingly attracting attention for their participation in the control of actin cytoskeleton dynamics, and, therefore, in the several related key processes in health and disease. MICAL is unique among actin binding proteins because it catalyzes a NADPH-dependent F-actin depolymerizing reaction. This unprecedented reaction is associated with its N-terminal FAD-containing domain that is structurally related to p-hydroxybenzoate hydroxylase, the prototype of aromatic monooxygenases, but catalyzes a strong NADPH oxidase activity in the free state. This review will focus on the known structural and functional properties of MICAL forms in order to provide an overview of the arguments supporting the current hypotheses on the possible mechanism of action of MICAL in the free and F-actin bound state, on the modulating effect of the CH, LIM, and C-terminal domains that follow the catalytic flavoprotein domain on the MICAL activities, as well as that of small molecules and proteins interacting with MICAL. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Novel Regulation of Ski Protein Stability and Endosomal Sorting by Actin Cytoskeleton Dynamics in Hepatocytes*

    PubMed Central

    Vázquez-Victorio, Genaro; Caligaris, Cassandre; Del Valle-Espinosa, Eugenio; Sosa-Garrocho, Marcela; González-Arenas, Nelly R.; Reyes-Cruz, Guadalupe; Briones-Orta, Marco A.; Macías-Silva, Marina

    2015-01-01

    TGF-β-induced antimitotic signals are highly regulated during cell proliferation under normal and pathological conditions, such as liver regeneration and cancer. Up-regulation of the transcriptional cofactors Ski and SnoN during liver regeneration may favor hepatocyte proliferation by inhibiting TGF-β signals. In this study, we found a novel mechanism that regulates Ski protein stability through TGF-β and G protein-coupled receptor (GPCR) signaling. Ski protein is distributed between the nucleus and cytoplasm of normal hepatocytes, and the molecular mechanisms controlling Ski protein stability involve the participation of actin cytoskeleton dynamics. Cytoplasmic Ski is partially associated with actin and localized in cholesterol-rich vesicles. Ski protein stability is decreased by TGF-β/Smads, GPCR/Rho signals, and actin polymerization, whereas GPCR/cAMP signals and actin depolymerization promote Ski protein stability. In conclusion, TGF-β and GPCR signals differentially regulate Ski protein stability and sorting in hepatocytes, and this cross-talk may occur during liver regeneration. PMID:25561741

  10. Inhibition of FSS-induced actin cytoskeleton reorganization by silencing LIMK2 gene increases the mechanosensitivity of primary osteoblasts.

    PubMed

    Yang, Zhi; Tan, Shuyi; Shen, Yun; Chen, Rui; Wu, Changjing; Xu, Yajuan; Song, Zijun; Fu, Qiang

    2015-05-01

    Mechanical stimulation plays an important role in bone cell metabolic activity. However, bone cells lose their mechanosensitivity upon continuous mechanical stimulation (desensitization) and they can recover the sensitivity with insertion of appropriate rest period into the mechanical loading profiles. The concrete molecular mechanism behind the regulation of cell mechanosensitivity still remains unclear. As one kind of mechanosensitive cell to react to the mechanical stimulation, osteoblasts respond to fluid shear stress (FSS) with actin cytoskeleton reorganization, and the remodeling of actin cytoskeleton is closely associated with the alteration of cell mechanosensitivity. In order to find out whether inhibiting the actin cytoskeleton reorganization by silencing LIM-kinase 2 (LIMK2) gene would increase the mechanosensitivity of primary osteoblasts, we attenuated the formation of actin stress fiber under FSS in a more specific way: inhibiting the LIMK2 expression by RNA interference. We found that inhibition of LIMK2 expression by RNA interference attenuated the formation of FSS-induced actin stress fiber, and simultaneously maintained the integrity of actin cytoskeleton in primary osteoblasts. We confirmed that the decreased actin cytoskeleton reorganization in response to LIMK2 inhibition during FSS increased the mechanosensitivity of the osteoblasts, based on the increased c-Fos and COX-2 expression as well as the enhanced proliferative activity in response to FSS. These data suggest that osteoblasts can increase their mechanosensitivity under continuous mechanical stimulation by reducing the actin stress fiber formation through inhibiting the LIMK2 expression. This study provides us with a new and more specific method to regulate the osteoblast mechanosensitivity, and also a new therapeutic target to cure bone related diseases, which is of importance in maintaining bone mass and promoting osteogenesis.

  11. Engineering amount of cell-cell contact demonstrates biphasic proliferative regulation through RhoA and the actin cytoskeleton

    SciTech Connect

    Gray, Darren S.; Liu, Wendy F.; Shen, Colette J.; Bhadriraju, Kiran; Nelson, Celeste M.; Chen, Christopher S.

    2008-09-10

    Endothelial cell-cell contact via VE-cadherin plays an important role in regulating numerous cell functions, including proliferation. However, using different experimental approaches to manipulate cell-cell contact, investigators have observed both inhibition and stimulation of proliferation depending on the adhesive context. In this study, we used micropatterned wells combined with active positioning of cells by dielectrophoresis in order to investigate whether the number of contacting neighbors affected the proliferative response. Varying cell-cell contact resulted in a biphasic effect on proliferation; one contacting neighbor increased proliferation, while two or more neighboring cells partially inhibited this increase. We also observed that cell-cell contact increased the formation of actin stress fibers, and that expression of dominant negative RhoA (RhoN19) blocked the contact-mediated increase in stress fibers and proliferation. Furthermore, examination of heterotypic pairs of untreated cells in contact with RhoN19-expressing cells revealed that intracellular, but not intercellular, tension is required for the contact-mediated stimulation of proliferation. Moreover, engagement of VE-cadherin with cadherin-coated beads was sufficient to stimulate proliferation in the absence of actual cell-cell contact. In all, these results demonstrate that cell-cell contact signals through VE-cadherin, RhoA, and intracellular tension in the actin cytoskeleton to regulate proliferation.

  12. Netrin instructs synaptic vesicle clustering through Rac GTPase, MIG-10, and the actin cytoskeleton

    PubMed Central

    Stavoe, Andrea K.H.; Colón-Ramos, Daniel A.

    2012-01-01

    Netrin is a chemotrophic factor known to regulate a number of neurodevelopmental processes, including cell migration, axon guidance, and synaptogenesis. Although the role of Netrin in synaptogenesis is conserved throughout evolution, the mechanisms by which it instructs synapse assembly are not understood. Here we identify a mechanism by which the Netrin receptor UNC-40/DCC instructs synaptic vesicle clustering in vivo. UNC-40 localized to presynaptic regions in response to Netrin. We show that UNC-40 interacted with CED-5/DOCK180 and instructed CED-5 presynaptic localization. CED-5 in turn signaled through CED-10/Rac1 and MIG-10/Lamellipodin to organize the actin cytoskeleton in presynaptic regions. Localization of this signaling pathway to presynaptic regions was necessary for synaptic vesicle clustering during synapse assembly but not for the subcellular localization of active zone proteins. Thus, vesicle clustering and localization of active zone proteins are instructed by separate pathways downstream of Netrin. Our data indicate that signaling modules known to organize the actin cytoskeleton during guidance can be co-opted to instruct synaptic vesicle clustering. PMID:22451697

  13. A membrane cytoskeleton from Dictyostelium discoideum. I. Identification and partial characterization of an actin-binding activity

    PubMed Central

    1981-01-01

    Dictyostelium discoideum plasma membranes isolated by each of three procedures bind F-actin. The interactions between these membranes and actin are examined by a novel application of falling ball viscometry. Treating the membranes as multivalent actin-binding particles analogous to divalent actin-gelation factors, we observe large increases in viscosity (actin cross-linking) when membranes of depleted actin and myosin are incubated with rabbit skeletal muscle F-actin. Pre- extraction of peripheral membrane proteins with chaotropes or the inclusion of Triton X-100 during the assay does not appreciably diminish this actin cross-linking activity. Lipid vesicles, heat- denatured membranes, proteolyzed membranes, or membranes containing endogenous actin show minimal actin cross-linking activity. Heat- denatured, but not proteolyzed, membranes regain activity when assayed in the presence of Triton X-100. Thus, integral membrane proteins appear to be responsible for some or all of the actin cross-linking activity of D. discoideum membranes. In the absence of MgATP, Triton X- 100 extraction of isolated D. discoideum membranes results in a Triton- insoluble residue composed of actin, myosin, and associated membrane proteins. The inclusion of MgATP before and during Triton extraction greatly diminishes the amount of protein in the Triton-insoluble residue without appreciably altering its composition. Our results suggest the existence of a protein complex stabilized by actin and/or myosin (membrane cytoskeleton) associated with the D. discoideum plasma membrane. PMID:6894148

  14. An unmet actin requirement explains the mitotic inhibition of clathrin-mediated endocytosis.

    PubMed

    Kaur, Satdip; Fielding, Andrew B; Gassner, Gisela; Carter, Nicholas J; Royle, Stephen J

    2014-02-18

    Clathrin-mediated endocytosis (CME) is the major internalisation route for many different receptor types in mammalian cells. CME is shut down during early mitosis, but the mechanism of this inhibition is unclear. In this study, we show that the mitotic shutdown is due to an unmet requirement for actin in CME. In mitotic cells, membrane tension is increased and this invokes a requirement for the actin cytoskeleton to assist the CME machinery to overcome the increased load. However, the actin cytoskeleton is engaged in the formation of a rigid cortex in mitotic cells and is therefore unavailable for deployment. We demonstrate that CME can be 'restarted' in mitotic cells despite high membrane tension, by allowing actin to engage in endocytosis. Mitotic phosphorylation of endocytic proteins is maintained in mitotic cells with restored CME, indicating that direct phosphorylation of the CME machinery does not account for shutdown. DOI: http://dx.doi.org/10.7554/eLife.00829.001.

  15. Rab11 and Actin Cytoskeleton Participate in Giardia lamblia Encystation, Guiding the Specific Vesicles to the Cyst Wall

    PubMed Central

    Castillo-Romero, Araceli; Leon-Avila, Gloria; Wang, Ching C.; Perez Rangel, Armando; Camacho Nuez, Minerva; Garcia Tovar, Carlos; Ayala-Sumuano, Jorge Tonatiuh; Luna-Arias, Juan Pedro; Hernandez, Jose Manuel

    2010-01-01

    Background Giardia passes through two stages during its life cycle, the trophozoite and the cyst. Cyst formation involves the synthesis of cyst wall proteins (CWPs) and the transport of CWPs into encystation-specific vesicles (ESVs). Active vesicular trafficking is essential for encystation, but the molecular machinery driving vesicular trafficking remains unknown. The Rab proteins are involved in the targeting of vesicles to several intracellular compartments through their association with cytoskeletal motor proteins. Methodology and Principal Findings In this study, we found a relationship between Rab11 and the actin cytoskeleton in CWP1 transport. Confocal microscopy showed Rab11 was distributed throughout the entire trophozoite, while in cysts it was translocated to the periphery of the cell, where it colocalized with ESVs and microfilaments. Encystation was also accompanied by changes in rab11 mRNA expression. To evaluate the role of microfilaments in encystation, the cells were treated with latrunculin A. Scanning electron microscopy showed this treatment resulted in morphological damages to encysted parasites. The intensity of fluorescence-labeled Rab11 and CWP1 in ESVs and cyst walls was reduced, and rab11 and cwp1 mRNA levels were down-regulated. Furthermore, knocking down Rab11 with a hammerhead ribozyme resulted in an up to 80% down-regulation of rab11 mRNA. Although this knockdown did not appear lethal for trophozoites and did not affect cwp1 expression during the encystation, confocal images showed CWP1 was redistributed throughout the cytosol. Conclusions and Significance Our results indicate that Rab11 participates in the early and late encystation stages by regulating CWP1 localization and the actin-mediated transport of ESVs towards the periphery. In addition, alterations in the dynamics of actin affected rab11 and cwp1 expression. Our results provide new information about the molecules involved in Giardia encystation and suggest that Rab11 and

  16. Cell-cell interactions mediate cytoskeleton organization and collective endothelial cell chemotaxis.

    PubMed

    Shamloo, Amir

    2014-09-01

    This study investigates the role of cell-cell and cell-ligand interactions in cytoskeleton organization of endothelial cells (ECs) and their directional migration within a microfluidic device. The migration of ECs in response to a biochemical factor was studied. Mathematical analysis of the cell migration pathways and cellular cytoskeleton revealed that directional migration, migration persistence length, migration speed, and cytoskeletal stress fiber alignment can be mediated by the level of cell contacts as well as the presence or absence of a biochemical polarizing factor. It was shown that in the presence of a biochemical polarizing factor, higher cell density and more frequent cell contacts has a reinforcing effect on collective cell chemotaxis. In contrast, in the absence of a polarizing factor, high cell density can decrease or suppress the ability of the cells to migrate. Also, the correlation of actin stress fiber organization and alignment with directional migration of ECs was investigated. It was shown that in the presence of a biochemical polarizing factor, stress fibers within the cytoskeleton of ECs can be significantly aligned parallel to the gradient direction when the cells have higher level of contacts. The results also show that the organization and alignment of actin stress fibers is mediated by cell adhesion junctions during collective cell migration and introduce cell-cell interactions as a key factor during collective cell chemotaxis. © 2014 Wiley Periodicals, Inc.

  17. Effect of cooling (4°C) and cryopreservation on cytoskeleton actin and protein tyrosine phosphorylation in buffalo spermatozoa.

    PubMed

    Naresh, Sai

    2016-02-01

    Semen cryopreservation is broadly utilized as a part of the bovine reproducing industry, a large portion of the spermatozoa does not survive and the majority of those that do survive experience various molecular and physiological changes that influence their fertilizing capacity. The main aim of this study is to determine the effect of cooling (4 °C) and cryopreservation on cytoskeleton actin, tyrosine phosphorylation and quality of buffalo spermatozoa, and to determine the similarity between in vitro capacitation and cryopreservation induced capacitation like changes. To achieve this, Western blot was used to examine the changes in actin expression and protein tyrosine phosphorylation, whereas changes in actin polymerization, localization of actin and protein tyrosine phosphorylation during capacitation and cryopreservation were evaluated by indirect immunofluorescence technique. Localization studies revealed that the actin localized to flagella and acrosome membrane regions and following, capacitation it migrated towards the acrosome region of sperm. Time dependent increase in actin polymerization and protein tyrosine phosphorylation was observed during in vitro capacitation. The cooling phase (4 °C) and cryopreservation processes resulted in the loss/damage of cytoskeleton actin. In addition, we performed the actin polymerization and protein tyrosine phosphorylation in cooled and cryopreserved buffalo spermatozoa. Interestingly, cooling and cryopreservation induces actin polymerization and protein tyrosine phosphorylation, which were similar to in vitro capacitation (cryo-capacitation). These changes showed 1.3 folds reduction in the sperm quality parameters which includes motility, viability and plasma membrane integrity. Furthermore, our findings indicate that cooling and cryopreservation damages the cytoskeleton actin and also induces capacitation like changes such as protein tyrosine phosphorylation and actin polymerization. This could be one of the

  18. F-actin cytoskeleton and the fate of organelles in chromaffin cells.

    PubMed

    Villanueva, José; Gimenez-Molina, Yolanda; Viniegra, Salvador; Gutiérrez, Luis M

    2016-06-01

    In addition to playing a fundamental structural role, the F-actin cytoskeleton in neuroendocrine chromaffin cells has a prominent influence on governing the molecular mechanism and regulating the secretory process. Performing such roles, the F-actin network might be essential to first transport, and later locate the cellular organelles participating in the secretory cycle. Chromaffin granules are transported from the internal cytosolic regions to the cell periphery along microtubular and F-actin structures. Once in the cortical region, they are embedded in the F-actin network where these vesicles experience restrictions in motility. Similarly, mitochondria transport is affected by both microtubule and F-actin inhibitors and suffers increasing motion restrictions when they are located in the cortical region. Therefore, the F-actin cortex is a key factor in defining the existence of two populations of cortical and perinuclear granules and mitochondria which could be distinguished by their different location and mobility. Interestingly, other important organelles for controlling intracellular calcium levels, such as the endoplasmic reticulum network, present clear differences in distribution and much lower mobility than chromaffin vesicles and mitochondria. Nevertheless, both mitochondria and the endoplasmic reticulum appear to distribute in the proximity of secretory sites to fulfill a pivotal role, forming triads with calcium channels ensuring the fine tuning of the secretory response. This review presents the contributions that provide the basis for our current view regarding the influence that F-actin has on the distribution of organelles participating in the release of catecholamines in chromaffin cells, and summarizes this knowledge in simple models. In chromaffin cells, organelles such as granules and mitochondria distribute forming cortical and perinuclear populations whereas others like the ER present homogenous distributions. In the present review we discuss

  19. MRP-1/CD9 gene transduction regulates the actin cytoskeleton through the downregulation of WAVE2.

    PubMed

    Huang, C-L; Ueno, M; Liu, D; Masuya, D; Nakano, J; Yokomise, H; Nakagawa, T; Miyake, M

    2006-10-19

    Motility-related protein-1 (MRP-1/CD9) is involved in cell motility. We studied the change in the actin cytoskeleton, and the expression of actin-related protein (Arp) 2 and Arp3 and the Wiskott-Aldrich syndrome protein (WASP) family according to MRP-1/CD9 gene transduction into HT1080 cells. The frequency of cells with lamellipodia was significantly lower in MRP-1/CD9-transfected HT1080 cells than in control HT1080 cells (P<0.0001). MRP-1/CD9 gene transduction affected the subcellular localization of Arp2 and Arp3 proteins. Furthermore, MRP-1/CD9 gene transduction induced a downregulation of WAVE2 expression (P<0.0001). However, no difference was observed in the expression of Arp2, Arp3 or other WASPs. A neutralizing anti-MRP-1/CD9 monoclonal antibody inhibited downregulation of WAVE2 in MRP-1/CD9-transfected HT1080 cells (P<0.0001), and reversed the morphological effects of MRP-1/CD9 gene transduction. Furthermore, downregulation of WAVE2 by transfection of WAVE2-specific small interfering RNA (siRNA) mimicked the morphological effects of MRP-1/CD9 gene transduction and suppressed cell motility. However, transfection of each siRNA for Wnt1, Wnt2b1 or Wnt5a did not affect WAVE2 expression. Transfection of WAVE2-specific siRNA also did not affect expressions of these Wnts. These results indicate that MRP-1/CD9 regulates the actin cytoskeleton by downregulating of the WAVE2, through the Wnt-independent signal pathway.

  20. Learning, AMPA receptor mobility and synaptic plasticity depend on n-cofilin-mediated actin dynamics

    PubMed Central

    Rust, Marco B; Gurniak, Christine B; Renner, Marianne; Vara, Hugo; Morando, Laura; Görlich, Andreas; Sassoè-Pognetto, Marco; Banchaabouchi, Mumna Al; Giustetto, Maurizio; Triller, Antoine; Choquet, Daniel; Witke, Walter

    2010-01-01

    Neuronal plasticity is an important process for learning, memory and complex behaviour. Rapid remodelling of the actin cytoskeleton in the postsynaptic compartment is thought to have an important function for synaptic plasticity. However, the actin-binding proteins involved and the molecular mechanisms that in vivo link actin dynamics to postsynaptic physiology are not well understood. Here, we show that the actin filament depolymerizing protein n-cofilin is controlling dendritic spine morphology and postsynaptic parameters such as late long-term potentiation and long-term depression. Loss of n-cofilin-mediated synaptic actin dynamics in the forebrain specifically leads to impairment of all types of associative learning, whereas exploratory learning is not affected. We provide evidence for a novel function of n-cofilin function in synaptic plasticity and in the control of extrasynaptic excitatory AMPA receptors diffusion. These results suggest a critical function of actin dynamics in associative learning and postsynaptic receptor availability. PMID:20407421

  1. Serum- and glucocorticoid-inducible kinase SGK1 regulates reorganization of actin cytoskeleton in mast cells upon degranulation.

    PubMed

    Schmid, Evi; Gu, Shuchen; Yang, Wenting; Münzer, Patrick; Schaller, Martin; Lang, Florian; Stournaras, Christos; Shumilina, Ekaterina

    2013-01-01

    Aggregation of the high-affinity IgE receptor (FcεRI) on mast cells (MCs) causes MC degranulation, a process that involves cortical F-actin disassembly. Actin depolymerization may be triggered by increase of cytosolic Ca(2+). Entry of Ca(2+) through the Ca(2+) release-activated Ca(2+) (CRAC) channels is under powerful regulation by the serum- and glucocorticoid-inducible kinase SGK1. Moreover, FcεRI-dependent degranulation is decreased in SGK1-deficient (sgk1(-/-)) MCs. The present study addressed whether SGK1 is required for actin cytoskeleton rearrangement in MCs and whether modulation of actin architecture could underlie decreased degranulation of sgk1(-/-) MCs. Confirming previous results, release of β-hexosaminidase reflecting FcεRI-dependent degranulation was impaired in sgk1(-/-) MCs compared with sgk1(+/+) MCs. When CRAC channels were inhibited by 2-aminoethoxydiphenyl borate (2-APB; 50 μM), MC degranulation was strongly decreased in both sgk1(+/+) and sgk1(-/-) MCs and the difference between genotypes was abolished. Moreover, degranulation was impaired by actin-stabilizing (phallacidin) and enhanced by actin-disrupting (cytochalasin B) agents to a similar extent in sgk1(+/+) MCs and sgk1(-/-) MCs, implying a regulatory role of actin reorganization in this event. In line with this, measurements of monomeric (G) and filamentous (F) actin content by FACS analysis and Western blotting of detergent-soluble and -insoluble cell fractions indicated an increase of the G/F-actin ratio in sgk1(+/+) MCs but not in sgk1(-/-) MCs upon FcεRI ligation, an observation reflecting actin depolymerization. In sgk1(+/+) MCs, FcεRI-induced actin depolymerization was abolished by 2-APB. The observed actin reorganization was confirmed by confocal laser microscopic analysis. Our observations uncover SGK1-dependent Ca(2+) entry in mast cells as a novel mechanism regulating actin cytoskeleton.

  2. State of actin cytoskeleton and development of slow-frozen and vitrified rabbit pronuclear zygotes.

    PubMed

    Kulíková, Barbora; Jiménez-Trigos, Estrella; Makarevich, Alexander V; Chrenek, Peter; Vicente, José S; Marco-Jiménez, Francisco

    2016-02-01

    This study was focused on the effect of cryopreservation on the state of actin cytoskeleton and development of rabbit pronuclear zygotes. Zygotes were collected from superovulated females and immediately used for 1) slow-freezing in a solution containing 1.5 M 1,2-propanediol and 0.2 M sucrose, or 2) vitrification in a solution containing 42.0% (v/v) of ethylene glycol, 18.0% (w/v) of dextran and 0.3 M sucrose as cryoprotectants. After thawing or warming, respectively, zygotes were evaluated for 1) actin distribution, 2) in vitro or 3) in vivo development to blastocyst. Comparing actin filaments distribution, a significantly higher number of vitrified zygotes with actin distributed in cell border was observed (55 ± 7.7 vs. 74 ± 6.1% for slow-frozen vs. vitrified, respectively). After 24 and 72 h of in vitro development, significant differences in the cleavage and morula rate among the groups were observed (9 ± 2.4 and 3 ± 1.3 vs. 44 ± 3.0 and 28 ± 2.7% for slow-frozen vs. vitrified, respectively). None of the slow-frozen zygotes reached the blastocyst stage, in contrast to the vitrified counterparts (11 ± 1.9%). Under in vivo culture conditions, a significant difference in blastocyst rate was observed between vitrified and fresh embryos (6 ± 1.5 vs. 35 ± 4.4% respectively). Our results showed that alterations in actin cytoskeleton and deteriorated development are more evident in slow-frozen than vitrified pronuclear zygotes. Vitrification method seems to be a more effective option for rabbit zygotes cryopreservation, although pronuclear zygotes manipulation per se resulted in a notable decrease in embryo development. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Using a mathematical model of cadherin-based adhesion to understand the function of the actin cytoskeleton.

    PubMed

    Dallon, J C; Newren, Elijah; Hansen, Marc D H

    2009-03-01

    The actin cytoskeleton plays a role in cell-cell adhesion but its specific function is not clear. Actin might anchor cadherins or drive membrane protrusions in order to facilitate cell-cell adhesion. Using a mathematical model of the forces involved in cadherin-based adhesion, we investigate its possible functions. The immersed boundary method is used to model the cell membrane and cortex with cadherin binding forces added as linear springs. The simulations indicate that cells in suspension can develop normal cell-cell contacts without actin-based cadherin anchoring or membrane protrusions. The cadherins can be fixed in the membrane or free to move, and the end results are similar. For adherent cells, simulations suggest that the actin cytoskeleton must play an active role for the cells to establish cell-cell contact regions similar to those observed in vitro.

  4. Niche WNT5A regulates the actin cytoskeleton during regeneration of hematopoietic stem cells.

    PubMed

    Schreck, Christina; Istvánffy, Rouzanna; Ziegenhain, Christoph; Sippenauer, Theresa; Ruf, Franziska; Henkel, Lynette; Gärtner, Florian; Vieth, Beate; Florian, M Carolina; Mende, Nicole; Taubenberger, Anna; Prendergast, Áine; Wagner, Alina; Pagel, Charlotta; Grziwok, Sandra; Götze, Katharina S; Guck, Jochen; Dean, Douglas C; Massberg, Steffen; Essers, Marieke; Waskow, Claudia; Geiger, Hartmut; Schiemann, Mathias; Peschel, Christian; Enard, Wolfgang; Oostendorp, Robert A J

    2017-01-01

    Here, we show that the Wnt5a-haploinsufficient niche regenerates dysfunctional HSCs, which do not successfully engraft in secondary recipients. RNA sequencing of the regenerated donor Lin(-) SCA-1(+) KIT(+) (LSK) cells shows dysregulated expression of ZEB1-associated genes involved in the small GTPase-dependent actin polymerization pathway. Misexpression of DOCK2, WAVE2, and activation of CDC42 results in apolar F-actin localization, leading to defects in adhesion, migration and homing of HSCs regenerated in a Wnt5a-haploinsufficient microenvironment. Moreover, these cells show increased differentiation in vitro, with rapid loss of HSC-enriched LSK cells. Our study further shows that the Wnt5a-haploinsufficient environment similarly affects BCR-ABL(p185) leukemia-initiating cells, which fail to generate leukemia in 42% of the studied recipients, or to transfer leukemia to secondary hosts. Thus, we show that WNT5A in the bone marrow niche is required to regenerate HSCs and leukemic cells with functional ability to rearrange the actin cytoskeleton and engraft successfully. © 2017 Schreck et al.

  5. LRRK2 guides the actin cytoskeleton at growth cones together with ARHGEF7 and Tropomyosin 4.

    PubMed

    Häbig, Karina; Gellhaar, Sandra; Heim, Birgit; Djuric, Verena; Giesert, Florian; Wurst, Wolfgang; Walter, Carolin; Hentrich, Thomas; Riess, Olaf; Bonin, Michael

    2013-12-01

    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene represent the most common genetic cause of Parkinson's disease (PD). However, LRRK2 function and molecular mechanisms causing the parkinsonian phenotype remain widely unknown. Most of LRRK2 knockdown and overexpression models strengthen the relevance of LRRK2 in regulating neurite outgrowth. We have recently identified ARHGEF7 as the first guanine nucleotide exchange factor (GEF) of LRRK2. This GEF is influencing neurite outgrowth through regulation of actin polymerization. Here, we examined the expression profile of neuroblastoma cells with reduced LRRK2 and ARHGEF7 levels to identify additional partners of LRRK2 in this process. Tropomyosins (TPMs), and in particular TPM4, were the most interesting candidates next to other actin cytoskeleton regulating transcripts in this dataset. Subsequently, enhanced neurite branching was shown using primary hippocampal neurons of LRRK2 knockdown animals. Furthermore, we observed an enhanced number of growth cones per neuron and a mislocalization and dysregulation of ARHGEF7 and TPM4 in these neuronal compartments. Our results reveal a fascinating connection between the neurite outgrowth phenotype of LRRK2 models and the regulation of actin polymerization directing further investigations of LRRK2-related pathogenesis.

  6. WIP modulates dendritic spine actin cytoskeleton by transcriptional control of lipid metabolic enzymes.

    PubMed

    Franco-Villanueva, Ana; Fernández-López, Estefanía; Gabandé-Rodríguez, Enrique; Bañón-Rodríguez, Inmaculada; Esteban, Jose Antonio; Antón, Inés M; Ledesma, María Dolores

    2014-08-15

    We identify Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) as a novel component of neuronal synapses whose absence increases dendritic spine size and filamentous actin levels in an N-WASP/Arp2/3-independent, RhoA/ROCK/profilinIIa-dependent manner. These effects depend on the reduction of membrane sphingomyelin (SM) due to transcriptional upregulation of neutral sphingomyelinase (NSM) through active RhoA; this enhances RhoA binding to the membrane, raft partitioning and activation in steady state but prevents RhoA changes in response to stimulus. Inhibition of NSM or SM addition reverses RhoA, filamentous actin and functional anomalies in synapses lacking WIP. Our findings characterize WIP as a link between membrane lipid composition and actin cytoskeleton at dendritic spines. They also contribute to explain cognitive deficits shared by individuals bearing mutations in the region assigned to the gene encoding for WIP. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Niche WNT5A regulates the actin cytoskeleton during regeneration of hematopoietic stem cells

    PubMed Central

    Schreck, Christina; Sippenauer, Theresa; Ruf, Franziska; Henkel, Lynette; Vieth, Beate; Taubenberger, Anna; Prendergast, Áine; Wagner, Alina; Pagel, Charlotta; Grziwok, Sandra; Götze, Katharina S.; Dean, Douglas C.; Massberg, Steffen; Essers, Marieke; Waskow, Claudia; Geiger, Hartmut; Schiemann, Mathias

    2017-01-01

    Here, we show that the Wnt5a-haploinsufficient niche regenerates dysfunctional HSCs, which do not successfully engraft in secondary recipients. RNA sequencing of the regenerated donor Lin− SCA-1+ KIT+ (LSK) cells shows dysregulated expression of ZEB1-associated genes involved in the small GTPase-dependent actin polymerization pathway. Misexpression of DOCK2, WAVE2, and activation of CDC42 results in apolar F-actin localization, leading to defects in adhesion, migration and homing of HSCs regenerated in a Wnt5a-haploinsufficient microenvironment. Moreover, these cells show increased differentiation in vitro, with rapid loss of HSC-enriched LSK cells. Our study further shows that the Wnt5a-haploinsufficient environment similarly affects BCR-ABLp185 leukemia-initiating cells, which fail to generate leukemia in 42% of the studied recipients, or to transfer leukemia to secondary hosts. Thus, we show that WNT5A in the bone marrow niche is required to regenerate HSCs and leukemic cells with functional ability to rearrange the actin cytoskeleton and engraft successfully. PMID:27998927

  8. A protein phosphatase 2A catalytic subunit modulates blue light-induced chloroplast avoidance movements through regulating actin cytoskeleton in Arabidopsis.

    PubMed

    Wen, Feng; Wang, Jinqian; Xing, Da

    2012-08-01

    Chloroplast avoidance movements mediated by phototropin 2 (phot2) are one of most important physiological events in the response to high-fluence blue light (BL), which reduces damage to the photosynthetic machinery under excess light. Protein phosphatase 2A-2 (PP2A-2) is an isoform of the catalytic subunit of PP2A, which regulates a number of developmental processes. To investigate whether PP2A-2 was involved in high-fluence BL-induced chloroplast avoidance movements, we first analyzed chloroplast migration in the leaves of the pp2a-2 mutant in response to BL. The data showed that PP2A-2 might act as a positive regulator in phot2-mediated chloroplast avoidance movements, but not in phot1-mediated chloroplast accumulation movements. Then, the effect of okadaic acid (OA) and cantharidin (selective PP2A inhibitors) on high-fluence BL response was further investigated in Arabidopsis thaliana mesophyll cells. Within a certain concentration range, exogenously applied OA or cantharidin inhibited the high-fluence BL-induced chloroplast movements in a concentration-dependent manner. Actin depolymerizing factor (ADF)/cofilin phosphorylation assays demonstrated that PP2A-2 can activate/dephosphorylate ADF/cofilin, an actin-binding protein, in Arabidopsis mesophyll cells. Consistent with this observation, the experiments showed that OA could inhibit ADF1 binding to the actin and suppress the reorganization of the actin cytoskeleton after high-fluence BL irradiation. The adf1 and adf3 mutants also exhibited reduced high-fluence BL-induced chloroplast avoidance movements. In conclusion, we identified that PP2A-2 regulated the activation of ADF/cofilin, which, in turn, regulated actin cytoskeleton remodeling and was involved in phot2-mediated chloroplast avoidance movements.

  9. Regulation of the Actin Cytoskeleton by an Interaction of IQGAP Related Protein GAPA with Filamin and Cortexillin I

    PubMed Central

    Rieger, Daniela; Müller, Rolf; Rivero, Francisco; Faix, Jan; Schleicher, Michael; Noegel, Angelika A.

    2010-01-01

    Filamin and Cortexillin are F-actin crosslinking proteins in Dictyostelium discoideum allowing actin filaments to form three-dimensional networks. GAPA, an IQGAP related protein, is required for cytokinesis and localizes to the cleavage furrow during cytokinesis. Here we describe a novel interaction with Filamin which is required for cytokinesis and regulation of the F-actin content. The interaction occurs through the actin binding domain of Filamin and the GRD domain of GAPA. A similar interaction takes place with Cortexillin I. We further report that Filamin associates with Rac1a implying that filamin might act as a scaffold for small GTPases. Filamin and activated Rac associate with GAPA to regulate actin remodelling. Overexpression of filamin and GAPA in the various strains suggests that GAPA regulates the actin cytoskeleton through interaction with Filamin and that it controls cytokinesis through association with Filamin and Cortexillin. PMID:21085675

  10. The actin cytoskeleton and small G protein RhoA are not involved in flow-dependent activation of ENaC

    PubMed Central

    2010-01-01

    Background Epithelial cells are exposed to a variety of mechanical stimuli. Epithelial Na+ channels (ENaC) mediate sodium transport across apical membranes of epithelial cells that line the distal nephron, airway and alveoli, and distal colon. Early investigations into stretch sensitivity of ENaC were controversial. However, recent studies are supportive of ENaC's mechanosensitivity. This work studied whether flow-dependent activation of ENaC is modulated by changes in the state of the actin cytoskeleton and whether small GTPase RhoA is involved in flow-mediated increase of ENaC activity. Findings Pretreatment with Cytochalasin D and Latrunculin B for 20 min and 1-2 hrs to disassemble F-actin had no effect on flow-mediated increase of amiloride-sensitive current. Overexpression of ENaC with constitutively active (G14V) or dominant negative (T19N) RhoA similarly had no effect on flow-dependent activation of ENaC activity. In addition, we did not observe changes when we inhibited Rho-kinase with Y27632. Conclusions Our results suggest that the flow-dependent activation of ENaC is not influenced by small GTPase RhoA and modifications in the actin cytoskeleton. PMID:20663206

  11. Effects of altered gravity on the cell cycle, actin cytoskeleton and proteome in Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    He, Jie; Zhang, Xiaoxian; Gao, Yong; Li, Shuijie; Sun, Yeqing

    Some researchers suggest that the changes of cell cycle under the effect of microgravity may be associated with many serious adverse physiological changes. In the search for underlying mechanisms and possible new countermeasures, we used the slime mold Physarum polycephalum in which all the nuclei traverse the cell cycle in natural synchrony to study the effects of altered gravity on the cell cycle, actin cytoskeleton and proteome. In parallel, the cell cycle was analyzed in Physarum incubated (1) in altered gravity for 20 h, (2) in altered gravity for 40 h, (3) in altered gravity for 80 h, and (4) in ground controls. The cell cycle, the actin cytoskeleton, and proteome in the altered gravity and ground controls were examined. The results indicated that the duration of the G2 phase was lengthened 20 min in high aspect ratio vessel (HARV) for 20 h, and prolonged 2 h in altered gravity either for 40 h or for 80 h, whereas the duration of other phases in the cell cycle was unchanged with respect to the control. The microfilaments in G2 phase had a reduced number of fibers and a unique abnormal morphology in altered gravity for 40 h, whereas the microfilaments in other phases of cell cycle were unchanged when compared to controls. Employing classical two-dimensional electrophoresis (2-DE), we examined the effect of the altered gravity on P. polycephalum proteins. The increase in the duration of G2 phase in altered gravity for 40 h was accompanied by changes in the 2-DE protein profiles, over controls. Out of a total of 200 protein spots investigated in G2 phase, which were reproducible in repeated experiments, 72 protein spots were visually identified as specially expressed, and 11 proteins were up-regulated by 2-fold and 28 proteins were down-regulated by 2-fold over controls. Out of a total of three low-expressed proteins in G2 phase in altered gravity for 40 h, two proteins were unknown proteins, and one protein was spherulin 3b by MALDI-TOF mass spectrometry (MS

  12. Disruption of the actin cytoskeleton results in the promotion of gravitropism in inflorescence stems and hypocotyls of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Yamamoto, Kazuyoshi; Kiss, John Z.

    2002-01-01

    The actin cytoskeleton is hypothesized to play a major role in gravity perception and transduction mechanisms in roots of plants. To determine whether actin microfilaments (MFs) are involved in these processes in stem-like organs, we studied gravitropism in Arabidopsis inflorescence stems and hypocotyls. Localization studies using Alexa Fluor-phalloidin in conjugation with confocal microscopy demonstrated a longitudinally and transversely oriented actin MF network in endodermal cells of stems and hypocotyls. Latrunculin B (Lat-B) treatment of hypocotyls caused depolymerization of actin MFs in endodermal cells and a significant reduction of hypocotyl growth rates. Actin MFs in Lat-B-treated inflorescence stems also were disrupted, but growth rates were not affected. Despite disruption of the actin cytoskeleton in these two organs, Lat-B-treated stems and hypocotyls exhibited a promotion of gravitropic curvature in response to reorientation. In contrast, Lat-B reduced gravitropic curvature in roots but also reduced the growth rate. Thus, in contrast to prevailing hypotheses, our results suggest that actin MFs are not a necessary component of gravitropism in inflorescence stems and hypocotyls. Furthermore, this is the first study to demonstrate a prominent actin MF network in endodermal cells in the putative gravity-perceiving cells in stems.

  13. Disruption of the Actin Cytoskeleton Results in the Promotion of Gravitropism in Inflorescence Stems and Hypocotyls of Arabidopsis1

    PubMed Central

    Yamamoto, Kazuyoshi; Kiss, John Z.

    2002-01-01

    The actin cytoskeleton is hypothesized to play a major role in gravity perception and transduction mechanisms in roots of plants. To determine whether actin microfilaments (MFs) are involved in these processes in stem-like organs, we studied gravitropism in Arabidopsis inflorescence stems and hypocotyls. Localization studies using Alexa Fluor-phalloidin in conjugation with confocal microscopy demonstrated a longitudinally and transversely oriented actin MF network in endodermal cells of stems and hypocotyls. Latrunculin B (Lat-B) treatment of hypocotyls caused depolymerization of actin MFs in endodermal cells and a significant reduction of hypocotyl growth rates. Actin MFs in Lat-B-treated inflorescence stems also were disrupted, but growth rates were not affected. Despite disruption of the actin cytoskeleton in these two organs, Lat-B-treated stems and hypocotyls exhibited a promotion of gravitropic curvature in response to reorientation. In contrast, Lat-B reduced gravitropic curvature in roots but also reduced the growth rate. Thus, in contrast to prevailing hypotheses, our results suggest that actin MFs are not a necessary component of gravitropism in inflorescence stems and hypocotyls. Furthermore, this is the first study to demonstrate a prominent actin MF network in endodermal cells in the putative gravity-perceiving cells in stems. PMID:11842170

  14. Disruption of the actin cytoskeleton results in the promotion of gravitropism in inflorescence stems and hypocotyls of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Yamamoto, Kazuyoshi; Kiss, John Z.

    2002-01-01

    The actin cytoskeleton is hypothesized to play a major role in gravity perception and transduction mechanisms in roots of plants. To determine whether actin microfilaments (MFs) are involved in these processes in stem-like organs, we studied gravitropism in Arabidopsis inflorescence stems and hypocotyls. Localization studies using Alexa Fluor-phalloidin in conjugation with confocal microscopy demonstrated a longitudinally and transversely oriented actin MF network in endodermal cells of stems and hypocotyls. Latrunculin B (Lat-B) treatment of hypocotyls caused depolymerization of actin MFs in endodermal cells and a significant reduction of hypocotyl growth rates. Actin MFs in Lat-B-treated inflorescence stems also were disrupted, but growth rates were not affected. Despite disruption of the actin cytoskeleton in these two organs, Lat-B-treated stems and hypocotyls exhibited a promotion of gravitropic curvature in response to reorientation. In contrast, Lat-B reduced gravitropic curvature in roots but also reduced the growth rate. Thus, in contrast to prevailing hypotheses, our results suggest that actin MFs are not a necessary component of gravitropism in inflorescence stems and hypocotyls. Furthermore, this is the first study to demonstrate a prominent actin MF network in endodermal cells in the putative gravity-perceiving cells in stems.

  15. Disruption of the actin cytoskeleton results in the promotion of gravitropism in inflorescence stems and hypocotyls of Arabidopsis.

    PubMed

    Yamamoto, Kazuyoshi; Kiss, John Z

    2002-02-01

    The actin cytoskeleton is hypothesized to play a major role in gravity perception and transduction mechanisms in roots of plants. To determine whether actin microfilaments (MFs) are involved in these processes in stem-like organs, we studied gravitropism in Arabidopsis inflorescence stems and hypocotyls. Localization studies using Alexa Fluor-phalloidin in conjugation with confocal microscopy demonstrated a longitudinally and transversely oriented actin MF network in endodermal cells of stems and hypocotyls. Latrunculin B (Lat-B) treatment of hypocotyls caused depolymerization of actin MFs in endodermal cells and a significant reduction of hypocotyl growth rates. Actin MFs in Lat-B-treated inflorescence stems also were disrupted, but growth rates were not affected. Despite disruption of the actin cytoskeleton in these two organs, Lat-B-treated stems and hypocotyls exhibited a promotion of gravitropic curvature in response to reorientation. In contrast, Lat-B reduced gravitropic curvature in roots but also reduced the growth rate. Thus, in contrast to prevailing hypotheses, our results suggest that actin MFs are not a necessary component of gravitropism in inflorescence stems and hypocotyls. Furthermore, this is the first study to demonstrate a prominent actin MF network in endodermal cells in the putative gravity-perceiving cells in stems.

  16. Maintenance of asymmetric cellular localization of an auxin transport protein through interaction with the actin cytoskeleton

    NASA Technical Reports Server (NTRS)

    Muday, G. K.

    2000-01-01

    In shoots, polar auxin transport is basipetal (that is, from the shoot apex toward the base) and is driven by the basal localization of the auxin efflux carrier complex. The focus of this article is to summarize the experiments that have examined how the asymmetric distribution of this protein complex is controlled and the significance of this polar distribution. Experimental evidence suggests that asymmetries in the auxin efflux carrier may be established through localized secretion of Golgi vesicles, whereas an attachment of a subunit of the efflux carrier to the actin cytoskeleton may maintain this localization. In addition, the idea that this localization of the efflux carrier may control both the polarity of auxin movement and more globally regulate developmental polarity is explored. Finally, evidence indicating that the gravity vector controls auxin transport polarity is summarized and possible mechanisms for the environmentally induced changes in auxin transport polarity are discussed.

  17. The Wiskott-Aldrich Syndrome: The Actin Cytoskeleton and Immune Cell Function

    PubMed Central

    Blundell, Michael P.; Worth, Austen; Bouma, Gerben; Thrasher, Adrian J.

    2010-01-01

    Wiskott-Aldrich syndrome (WAS) is a rare X-linked recessive primary immunodeficiency characterised by immune dysregulation, microthrombocytopaenia, eczema and lymphoid malignancies. Mutations in the WAS gene can lead to distinct syndrome variations which largely, although not exclusively, depend upon the mutation. Premature termination and deletions abrogate Wiskott-Aldrich syndrome protein (WASp) expression and lead to severe disease (WAS). Missense mutations usually result in reduced protein expression and the phenotypically milder X-linked thrombocytopenia (XLT) or attenuated WAS [1-3]. More recently however novel activating mutations have been described that give rise to X-linked neutropenia (XLN), a third syndrome defined by neutropenia with variable myelodysplasia [4-6]. WASP is key in transducing signals from the cell surface to the actin cytoskeleton, and a lack of WASp results in cytoskeletal defects that compromise multiple aspects of normal cellular activity including proliferation, phagocytosis, immune synapse formation, adhesion and directed migration. PMID:21178275

  18. Effect of actin cytoskeleton disruption on electric pulse-induced apoptosis and electroporation in tumour cells.

    PubMed

    Xiao, Deyou; Tang, Liling; Zeng, Chao; Wang, Jianfei; Luo, Xiao; Yao, Chenguo; Sun, Caixin

    2011-02-01

    Electric pulses are known to affect the outer membrane and intracellular structures of tumour cells. By applying electrical pulses of 450 ns duration with electric field intensity of 8 kV/cm to HepG2 cells for 30 s, electric pulse-induced changes in the integrity of the plasma membrane, apoptosis, viability and mitochondrial transmembrane potential were investigated. Results demonstrated that electric pulses induced cell apoptosis and necrosis accompanied with the decrease of mitochondrial transmembrane potential and the formation of pores in the membrane. The role of cytoskeleton in cellular response to electric pulses was investigated. We found that the apoptotic and necrosis percentages of cells in response to electric pulses decreased after cytoskeletal disruption. The electroporation of cell was not affected by cytoskeletal disruption. The results suggest that the disruption of actin skeleton is positive in protecting cells from killing by electric pulses, and the skeleton is not involved in the electroporation directly.

  19. Maintenance of asymmetric cellular localization of an auxin transport protein through interaction with the actin cytoskeleton

    NASA Technical Reports Server (NTRS)

    Muday, G. K.

    2000-01-01

    In shoots, polar auxin transport is basipetal (that is, from the shoot apex toward the base) and is driven by the basal localization of the auxin efflux carrier complex. The focus of this article is to summarize the experiments that have examined how the asymmetric distribution of this protein complex is controlled and the significance of this polar distribution. Experimental evidence suggests that asymmetries in the auxin efflux carrier may be established through localized secretion of Golgi vesicles, whereas an attachment of a subunit of the efflux carrier to the actin cytoskeleton may maintain this localization. In addition, the idea that this localization of the efflux carrier may control both the polarity of auxin movement and more globally regulate developmental polarity is explored. Finally, evidence indicating that the gravity vector controls auxin transport polarity is summarized and possible mechanisms for the environmentally induced changes in auxin transport polarity are discussed.

  20. The yeast dynamin-related GTPase Vps1p functions in the organization of the actin cytoskeleton via interaction with Sla1p.

    PubMed

    Yu, Xianwen; Cai, Mingjie

    2004-08-01

    Recent studies have suggested that the function of the large GTPase dynamin in endocytosis in mammalian cells may comprise a modulation of actin cytoskeleton. The role of dynamin in actin cytoskeleton organization in the yeast Saccharomyces cerevisiae has remained undefined. In this report, we found that one of the yeast dynamin-related proteins, Vps1p, is required for normal actin cytoskeleton organization. At both permissive and non-permissive temperatures, the vps1 mutants exhibited various degrees of phenotypes commonly associated with actin cytoskeleton defects: depolarized and aggregated actin structures, hypersensitivity to the actin cytoskeleton toxin latrunculin-A, randomized bud site selection and chitin deposition, and impaired efficiency in the internalization of membrane receptors. Over-expression of the GTPase mutants of vps1 also led to actin abnormalities. Consistent with these actin-related defects, Vps1p was found to interact physically, and partially co-localize, with the actin-regulatory protein Sla1p. The normal cellular localization of Sla1p required Vps1p and could be altered by over-expression of a region of Vps1p that was involved in the interaction with Sla1p. The same region also promoted mis-sorting of the vacuolar protein carboxypeptidase Y upon over-expression. These findings suggest that the functions of the dynamin-related protein Vps1p in actin cytoskeleton dynamics and vacuolar protein sorting are probably related to each other.

  1. The transcriptional repressor Sum1p counteracts Sir2p in regulation of the actin cytoskeleton, mitochondrial quality control and replicative lifespan in Saccharomyces cerevisiae

    PubMed Central

    Higuchi-Sanabria, Ryo; Vevea, Jason D.; Charalel, Joseph K.; Sapar, Maria L.; Pon, Liza A.

    2016-01-01

    Increasing the stability or dynamics of the actin cytoskeleton can extend lifespan in C. elegans and S. cerevisiae. Actin cables of budding yeast, bundles of actin filaments that mediate cargo transport, affect lifespan control through effects on mitochondrial quality control. Sir2p, the founding member of the Sirtuin family of lifespan regulators, also affects actin cable dynamics, assembly, and function in mitochondrial quality control. Here, we obtained evidence for novel interactions between Sir2p and Sum1p, a transcriptional repressor that was originally identified through mutations that genetically suppress sir2∆ phenotypes unrelated to lifespan. We find that deletion of SUM1 in wild-type cells results in increased mitochondrial function and actin cable abundance. Furthermore, deletion of SUM1 suppresses defects in actin cables and mitochondria of sir2∆ yeast, and extends the replicative lifespan and cellular health span of sir2∆ cells. Thus, Sum1p suppresses Sir2p function in control of specific aging determinants and lifespan in budding yeast. PMID:28357337

  2. Nuanced but significant: how ethanol perturbs avian cranial neural crest cell actin cytoskeleton, migration and proliferation.

    PubMed

    Oyedele, Olusegun O; Kramer, Beverley

    2013-08-01

    Children with fetal alcohol syndrome (FAS) display striking craniofacial abnormalities. These features are proposed to result from perturbations in the morphology and function of cranial neural crest cells (cNCCs), which contribute significantly to the craniofacial complex. While certain pathways by which this may occur have been suggested, precise teratogenic mechanisms remain intensely investigated, as does the question of the teratogenic dose. The present study focused on examining how avian cNCC actin cytoskeleton, migratory distance, and proliferation are affected ex vivo by exposure to ethanol concentrations that simulate maternal intoxication. Chick cNCCs were cultured in 0.2% and 0.4% v/v ethanol. Distances migrated by both ethanol-treated and control cells at 24 and 48 h were recorded. Following phalloidin immunocytochemistry, treated and control cNCCs were compared morphologically and quantitatively. Apoptosis and proliferation in control versus treated cNCCs were also studied. Chick cNCCs cultured in ethanol lost their spindle-like shapes and their ordered cytoskeleton. There was a significant stage-dependent effect on cNCC migration at 24 h (p = 0.035), which was greatest at stage 10 (HH). Ethanol treatment for 48 h revealed a significant main effect for ethanol, chiefly at the 0.4% level. There was also an interaction effect between ethanol dose and stage of development (stage 9 HH). Actin microfilament disruption was quantitatively increased by ethanol at the doses studied while cNCC proliferation was increased but not significantly. Ethanol had no effect on cNCC apoptosis. At ethanol levels likely to induce human FAS, avian cNCCs exhibit various subtle, potentially significant changes in morphology, migration, and proliferation, with possible consequences for fated structures.

  3. [The reorganization of actin cytoskeleton and microtubule system of human endothelial vein in the intercellular contacts formation].

    PubMed

    Shahov, A S; Dugina, V B; Alieva, I B

    2015-01-01

    Endothelial cells are tightly fitted to each other and lining the interior surface of all vessels of living organism to provide vascular permeability regulation and interchange between the blood circulating in vessels and tissue fluids of those organs in which these vessels are located. In vitro endothelial monolayer conserve it's basic barrier function which is native for vessels endothelium. Based on this fact we used endothelial cells growing in vitro as a model system in experimental studies of cytoskeletal and adhesion cell components interaction. In current paper, cultured human vein endothelial cells monolayer was used to quantify cytoskeleton alterations in the of endothelial cells from spreading and formation of the first cell-cell contacts to confluent monolayer formation. The system of actin filaments formed two different cytoskeletal structures in the cells of venous endothelium: 1) cortical actin network; 2) actin stress fibers (bundles) arranged parallel to the substrate. Two actin isoforms, β- and γ-cytoplasmic (non-muscle) actins, are expressed in endothelial cells. The bundles of actin stress fibers were detected by immunofluorescent staining with antibody against β-actin, whereas antibodies against γ-actin identified cortical and lamellar networks. For assessment of the actin cytoskeleton organization it's fluorescence intensity on the area of 10 μM2 located (1) near the free edge, and (2) in the zone of cell-cell contacts were analyzed. Fluorescence intensity of β-actin structures was higher in the areas of cell-cell contact. The fluorescence of γ-actin structures was more intensive at the leading edges of the lamellae, and was the lowest on the stable edges of the cells with formed cell-cell contacts. The endothelial monolayer formation was accompanied by microtubule system alteration: the number of microtubules increased at the cell edge, and besides the microtubules quantity in the area of already formed cell-cell contact was always

  4. The Differential Formation of the LINC-Mediated Perinuclear Actin Cap in Pluripotent and Somatic Cells

    PubMed Central

    Khatau, Shyam B.; Kusuma, Sravanti; Hanjaya-Putra, Donny; Mali, Prashant; Cheng, Linzhao; Lee, Jerry S. H.; Gerecht, Sharon; Wirtz, Denis

    2012-01-01

    The actin filament cytoskeleton mediates cell motility and adhesion in somatic cells. However, whether the function and organization of the actin network are fundamentally different in pluripotent stem cells is unknown. Here we show that while conventional actin stress fibers at the basal surface of cells are present before and after onset of differentiation of mouse (mESCs) and human embryonic stem cells (hESCs), actin stress fibers of the actin cap, which wrap around the nucleus, are completely absent from undifferentiated mESCs and hESCs and their formation strongly correlates with differentiation. Similarly, the perinuclear actin cap is absent from human induced pluripotent stem cells (hiPSCs), while it is organized in the parental lung fibroblasts from which these hiPSCs are derived and in a wide range of human somatic cells, including lung, embryonic, and foreskin fibroblasts and endothelial cells. During differentiation, the formation of the actin cap follows the expression and proper localization of nuclear lamin A/C and associated linkers of nucleus and cytoskeleton (LINC) complexes at the nuclear envelope, which physically couple the actin cap to the apical surface of the nucleus. The differentiation of hESCs is accompanied by the progressive formation of a perinuclear actin cap while induced pluripotency is accompanied by the specific elimination of the actin cap, and that, through lamin A/C and LINC complexes, this actin cap is involved in progressively shaping the nucleus of hESCs undergoing differentiation. While, the localization of lamin A/C at the nuclear envelope is required for perinuclear actin cap formation, it is not sufficient to control nuclear shape. PMID:22574215

  5. Recruitment Kinetics of Tropomyosin Tpm3.1 to Actin Filament Bundles in the Cytoskeleton Is Independent of Actin Filament Kinetics.

    PubMed

    Appaduray, Mark A; Masedunskas, Andrius; Bryce, Nicole S; Lucas, Christine A; Warren, Sean C; Timpson, Paul; Stear, Jeffrey H; Gunning, Peter W; Hardeman, Edna C

    2016-01-01

    The actin cytoskeleton is a dynamic network of filaments that is involved in virtually every cellular process. Most actin filaments in metazoa exist as a co-polymer of actin and tropomyosin (Tpm) and the function of an actin filament is primarily defined by the specific Tpm isoform associated with it. However, there is little information on the interdependence of these co-polymers during filament assembly and disassembly. We addressed this by investigating the recovery kinetics of fluorescently tagged isoform Tpm3.1 into actin filament bundles using FRAP analysis in cell culture and in vivo in rats using intracellular intravital microscopy, in the presence or absence of the actin-targeting drug jasplakinolide. The mobile fraction of Tpm3.1 is between 50% and 70% depending on whether the tag is at the C- or N-terminus and whether the analysis is in vivo or in cultured cells. We find that the continuous dynamic exchange of Tpm3.1 is not significantly impacted by jasplakinolide, unlike tagged actin. We conclude that tagged Tpm3.1 may be able to undergo exchange in actin filament bundles largely independent of the assembly and turnover of actin.

  6. Recruitment Kinetics of Tropomyosin Tpm3.1 to Actin Filament Bundles in the Cytoskeleton Is Independent of Actin Filament Kinetics

    PubMed Central

    Appaduray, Mark A.; Masedunskas, Andrius; Lucas, Christine A.; Warren, Sean C.; Timpson, Paul; Stear, Jeffrey H.

    2016-01-01

    The actin cytoskeleton is a dynamic network of filaments that is involved in virtually every cellular process. Most actin filaments in metazoa exist as a co-polymer of actin and tropomyosin (Tpm) and the function of an actin filament is primarily defined by the specific Tpm isoform associated with it. However, there is little information on the interdependence of these co-polymers during filament assembly and disassembly. We addressed this by investigating the recovery kinetics of fluorescently tagged isoform Tpm3.1 into actin filament bundles using FRAP analysis in cell culture and in vivo in rats using intracellular intravital microscopy, in the presence or absence of the actin-targeting drug jasplakinolide. The mobile fraction of Tpm3.1 is between 50% and 70% depending on whether the tag is at the C- or N-terminus and whether the analysis is in vivo or in cultured cells. We find that the continuous dynamic exchange of Tpm3.1 is not significantly impacted by jasplakinolide, unlike tagged actin. We conclude that tagged Tpm3.1 may be able to undergo exchange in actin filament bundles largely independent of the assembly and turnover of actin. PMID:27977753

  7. Initial stem cell adhesion on porous silicon surface: molecular architecture of actin cytoskeleton and filopodial growth

    NASA Astrophysics Data System (ADS)

    Collart-Dutilleul, Pierre-Yves; Panayotov, Ivan; Secret, Emilie; Cunin, Frédérique; Gergely, Csilla; Cuisinier, Frédéric; Martin, Marta

    2014-10-01

    The way cells explore their surrounding extracellular matrix (ECM) during development and migration is mediated by lamellipodia at their leading edge, acting as an actual motor pulling the cell forward. Lamellipodia are the primary area within the cell of actin microfilaments (filopodia) formation. In this work, we report on the use of porous silicon (pSi) scaffolds to mimic the ECM of mesenchymal stem cells from the dental pulp (DPSC) and breast cancer (MCF-7) cells. Our atomic force microscopy (AFM), fluorescence microscopy, and scanning electron microscopy (SEM) results show that pSi promoted the appearance of lateral filopodia protruding from the DPSC cell body and not only in the lamellipodia area. The formation of elongated lateral actin filaments suggests that pores provided the necessary anchorage points for protrusion growth. Although MCF-7 cells displayed a lower presence of organized actin network on both pSi and nonporous silicon, pSi stimulated the formation of extended cell protrusions.

  8. S-nitrosylation of cofilin-1 mediates estradiol-17β-stimulated endothelial cytoskeleton remodeling.

    PubMed

    Zhang, Hong-hai; Lechuga, Thomas J; Tith, Tevy; Wang, Wen; Wing, Deborah A; Chen, Dong-bao

    2015-03-01

    Rapid nitric oxide (NO) production via endothelial NO synthase (eNOS) activation represents a major signaling pathway for the cardiovascular protective effects of estrogens; however, the pathways after NO biosynthesis that estrogens use to function remain largely unknown. Covalent adduction of a NO moiety to cysteines, termed S-nitrosylation (SNO), has emerged as a key route for NO to directly regulate protein function. Cofilin-1 (CFL1) is a small actin-binding protein essential for actin dynamics and cytoskeleton remodeling. Despite being identified as a major SNO protein in endothelial cells, whether SNO regulates CFL-1 function is unknown. We hypothesized that estradiol-17β (E2β) stimulates SNO of CFL1 via eNOS-derived NO and that E2β-induced SNO-CFL1 mediates cytoskeleton remodeling in endothelial cells. Point mutation studies determined Cys80 as the primary SNO site among the 4 cysteines (Cys39/80/139/147) in CFL1. Substitutions of Cys80 with Ala or Ser were used to prepare the SNO-mimetic/deficient (C80A/S) CFL1 mutants. Recombinant wild-type (wt) and mutant CFL1 proteins were prepared; their actin-severing activity was determined by real-time fluorescence imaging analysis. The activity of C80A CFL1 was enhanced to that of the constitutively active S3/A CFL1, whereas the other mutants had no effects. C80A/S mutations lowered Ser3 phosphorylation. Treatment with E2β increased filamentous (F)-actin and filopodium formation in endothelial cells, which were significantly reduced in cells overexpressing wt-CFL. Overexpression of C80A, but not C80S, CFL1 decreased basal F-actin and further suppressed E2β-induced F-actin and filopodium formation compared with wt-CFL1 overexpression. Thus, SNO(Cys80) of cofilin-1 via eNOS-derived NO provides a novel pathway for mediating estrogen-induced endothelial cell cytoskeleton remodeling.

  9. Mammalian adenylyl cyclase-associated protein 1 (CAP1) regulates cofilin function, the actin cytoskeleton, and cell adhesion.

    PubMed

    Zhang, Haitao; Ghai, Pooja; Wu, Huhehasi; Wang, Changhui; Field, Jeffrey; Zhou, Guo-Lei

    2013-07-19

    CAP (adenylyl cyclase-associated protein) was first identified in yeast as a protein that regulates both the actin cytoskeleton and the Ras/cAMP pathway. Although the role in Ras signaling does not extend beyond yeast, evidence supports that CAP regulates the actin cytoskeleton in all eukaryotes including mammals. In vitro actin polymerization assays show that both mammalian and yeast CAP homologues facilitate cofilin-driven actin filament turnover. We generated HeLa cells with stable CAP1 knockdown using RNA interference. Depletion of CAP1 led to larger cell size and remarkably developed lamellipodia as well as accumulation of filamentous actin (F-actin). Moreover, we found that CAP1 depletion also led to changes in cofilin phosphorylation and localization as well as activation of focal adhesion kinase (FAK) and enhanced cell spreading. CAP1 forms complexes with the adhesion molecules FAK and Talin, which likely underlie the cell adhesion phenotypes through inside-out activation of integrin signaling. CAP1-depleted HeLa cells also had substantially elevated cell motility as well as invasion through Matrigel. In summary, in addition to generating in vitro and in vivo evidence further establishing the role of mammalian CAP1 in actin dynamics, we identified a novel cellular function for CAP1 in regulating cell adhesion.

  10. Ethanol increases p190RhoGAP activity, leading to actin cytoskeleton rearrangements.

    PubMed

    Selva, Javier; Egea, Gustavo

    2011-12-01

    We previously reported that cells chronically exposed to ethanol show alterations in actin cytoskeleton organization and dynamics in primary cultures of newborn rat astrocytes, a well-established in vitro model for foetal alcohol spectrum disorders. These alterations were attributed to a decrease in the cellular levels of active RhoA (RhoA-GTP), which in turn was produced by an increase in the total RhoGAP activity. We here provide evidence that p190RhoGAPs are the main factors responsible for such increase. Thus, in astrocytes chronically exposed to ethanol we observe: (i) an increase in p190A- and p190B-associated RhoGAP activity; (ii) a higher binding of p190A and p190B to RhoA-GTP; (iii) a higher p120RasGAP-p190A RhoGAP complex formation; and (iv) the recruitment of both p190RhoGAPs to the plasma membrane. The simultaneous silencing of both p190 isoforms prevents the actin rearrangements and the total RhoGAP activity increase triggered both by ethanol. Therefore, our data directly points p190RhoGAPs as ethanol-exposure molecular targets on glial cells of the CNS.

  11. [Reorganization of actin cytoskeleton in the initial stage of transendothelial migration of bone marrow multipotent mesenchymal stromal cells].

    PubMed

    Aleksandrova, S A; Pinaev, G P

    2014-01-01

    The analysis of actin cytoskeleton reorganization in rat bone marrow multipotent mesenchymal stromal cells after one hour adhesion to a monolayer of endothelial cell line EA.hy 926 allowed us to identify three types of cells interacting with the endothelial cells. Approximately half of multipotent mesenchymal stromal cells retained a rounded shape, most of them contained large round actin aggregates, had irregular borders and contacted with the surface of the endothelial cells by microvilli or protrusions similar to small lamellae. Almost all other cells were surrounded by narrow lamellae along the entire perimeter. In addition, a small amount.of elongated flattened cells that contacting with endothelial cells by means of focal contacts was observed. Microenvironmental factors such as proinflammatory cytokine tumor necrosis factor α or plasma proteins affected the ratio of stromal cell types, with different types of organization of the actin cytoskeleton in multipotent mesenchymal stromal cells population.

  12. Unveiling Interactions among Mitochondria, Caspase-Like Proteases, and the Actin Cytoskeleton during Plant Programmed Cell Death (PCD)

    PubMed Central

    Lord, Christina E. N.; Dauphinee, Adrian N.; Watts, Rebecca L.; Gunawardena, Arunika H. L. A. N.

    2013-01-01

    Aponogeton madagascariensis produces perforations over its leaf surface via programmed cell death (PCD). PCD begins between longitudinal and transverse veins at the center of spaces regarded as areoles, and continues outward, stopping several cells from these veins. The gradient of PCD that exists within a single areole of leaves in an early stage of development was used as a model to investigate cellular dynamics during PCD. Mitochondria have interactions with a family of proteases known as caspases, and the actin cytoskeleton during metazoan PCD; less is known regarding these interactions during plant PCD. This study employed the actin stain Alexa Fluor 488 phalloidin, the actin depolymerizer Latrunculin B (Lat B), a synthetic caspase peptide substrate and corresponding specific inhibitors, as well as the mitochondrial pore inhibitor cyclosporine A (CsA) to analyze the role of these cellular constituents during PCD. Results depicted that YVADase (caspase-1) activity is higher during the very early stages of perforation formation, followed by the bundling and subsequent breakdown of actin. Actin depolymerization using Lat B caused no change in YVADase activity. In vivo inhibition of YVADase activity prevented PCD and actin breakdown, therefore substantiating actin as a likely substrate for caspase-like proteases (CLPs). The mitochondrial pore inhibitor CsA significantly decreased YVADase activity, and prevented both PCD and actin breakdown; therefore suggesting the mitochondria as a possible trigger for CLPs during PCD in the lace plant. To our knowledge, this is the first in vivo study using either caspase-1 inhibitor (Ac-YVAD-CMK) or CsA, following which the actin cytoskeleton was examined. Overall, our findings suggest the mitochondria as a possible upstream activator of YVADase activity and implicate these proteases as potential initiators of actin breakdown during perforation formation via PCD in the lace plant. PMID:23483897

  13. IQGAP1 regulates actin cytoskeleton organization in podocytes through interaction with nephrin.

    PubMed

    Liu, Yipeng; Liang, Wei; Yang, Yingjie; Pan, Yangbin; Yang, Qian; Chen, Xinghua; Singhal, Pravin C; Ding, Guohua

    2015-04-01

    Increasing data has shown that the cytoskeletal reorganization of podocytes is involved in the onset of proteinuria and the progression of glomerular disease. Nephrin behaves as a signal sensor of the slit diaphragm to transmit cytoskeletal signals to maintain the unique structure of podocytes. However, the nephrin signaling cascade deserves further study. IQGAP1 is a scaffolding protein with the ability to regulate cytoskeletal organization. It is hypothesized that IQGAP1 contributes to actin reorganization in podocytes through interaction with nephrin. IQGAP1 expression and IQGAP1-nephrin colocalization in glomeruli were progressively decreased and then gradually recovered in line with the development of foot process fusion and proteinuria in puromycin aminonucleoside-injected rats. In cultured human podocytes, puromycin aminonucleoside-induced disruption of F-actin and disorders of migration and spreading were aggravated by IQGAP1 siRNA, and these effects were partially restored by a wild-type IQGAP1 plasmid. Furthermore, the cytoskeletal disorganization stimulated by cytochalasin D in COS7 cells was recovered by cotransfection with wild-type IQGAP1 and nephrin plasmids but was not recovered either by single transfection of the wild-type IQGAP1 plasmid or by cotransfection of mutant IQGAP1 [△1443(S→A)] and wild-type nephrin plasmids. Co-immunoprecipitation analysis using lysates of COS7 cells overexpressing nephrin and each derivative-domain molecule of IQGAP1 demonstrated that the poly-proline binding domain and RasGAP domain in the carboxyl terminus of IQGAP1 are the target modules that interact with nephrin. Collectively, these findings showed that activated IQGAP1, as an intracellular partner of nephrin, is involved in actin cytoskeleton organization and functional regulation of podocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Intracellular Theileria annulata Promote Invasive Cell Motility through Kinase Regulation of the Host Actin Cytoskeleton

    PubMed Central

    Ma, Min; Baumgartner, Martin

    2014-01-01

    The intracellular, protozoan Theileria species parasites are the only eukaryotes known to transform another eukaryotic cell. One consequence of this parasite-dependent transformation is the acquisition of motile and invasive properties of parasitized cells in vitro and their metastatic dissemination in the animal, which causes East Coast Fever (T. parva) or Tropical Theileriosis (T. annulata). These motile and invasive properties of infected host cells are enabled by parasite-dependent, poorly understood F-actin dynamics that control host cell membrane protrusions. Herein, we dissected functional and structural alterations that cause acquired motility and invasiveness of T. annulata-infected cells, to understand the molecular basis driving cell dissemination in Tropical Theileriosis. We found that chronic induction of TNFα by the parasite contributes to motility and invasiveness of parasitized host cells. We show that TNFα does so by specifically targeting expression and function of the host proto-oncogenic ser/thr kinase MAP4K4. Blocking either TNFα secretion or MAP4K4 expression dampens the formation of polar, F-actin-rich invasion structures and impairs cell motility in 3D. We identified the F-actin binding ERM family proteins as MAP4K4 downstream effectors in this process because TNFα-induced ERM activation and cell invasiveness are sensitive to MAP4K4 depletion. MAP4K4 expression in infected cells is induced by TNFα-JNK signalling and maintained by the inhibition of translational repression, whereby both effects are parasite dependent. Thus, parasite-induced TNFα promotes invasive motility of infected cells through the activation of MAP4K4, an evolutionary conserved kinase that controls cytoskeleton dynamics and cell motility. Hence, MAP4K4 couples inflammatory signaling to morphodynamic processes and cell motility, a process exploited by the intracellular Theileria parasite to increase its host cell's dissemination capabilities. PMID:24626571

  15. Cofilin mediates ATP depletion-induced endothelial cell actin alterations.

    PubMed

    Suurna, Maria V; Ashworth, Sharon L; Hosford, Melanie; Sandoval, Ruben M; Wean, Sarah E; Shah, Bijal M; Bamburg, James R; Molitoris, Bruce A

    2006-06-01

    Ischemia and sepsis lead to endothelial cell damage, resulting in compromised microvascular flow in many organs. Much remains to be determined regarding the intracellular structural events that lead to endothelial cell dysfunction. To investigate potential actin cytoskeletal-related mechanisms, ATP depletion was induced in mouse pancreatic microvascular endothelial cells (MS1). Fluorescent imaging and biochemical studies demonstrated a rapid and progressive increase in F-actin along with a decrease in G-actin at 60 min. Confocal microscopic analysis showed ATP depletion resulted in destruction of actin stress fibers and accumulation of F-actin aggregates. We hypothesized these actin alterations were secondary to dephosphorylation/activation of actin-depolymerizing factor (ADF)/cofilin proteins. Cofilin, the predominant isoform expressed in MS1 cells, was rapidly dephosphorylated/activated during ATP depletion. To directly investigate the role of cofilin activation on the actin cytoskeleton during ischemia, MS1 cells were infected with adenoviruses containing the cDNAs for wild-type Xenopus laevis ADF/cofilin green fluorescent protein [XAC(wt)-GFP], GFP, and the constitutively active and inactive isoforms XAC(S3A)-GFP and XAC(S3E)-GFP. The rate and extent of cortical actin destruction and actin aggregate formation were increased in ATP-depleted XAC(wt)-GFP- and XAC(S3A)-GFP-expressing cells, whereas increased actin stress fibers were observed in XAC(S3E)-GFP-expressing cells. To investigate the upstream signaling pathway of ADF/cofilin, LIM kinase 1-GFP (LIMK1-GFP) was expressed in MS1 cells. Cells expressing LIMK1-GFP protein had higher levels of phosphorylated ADF/cofilin, increased stress fibers, and delayed F-actin cytoskeleton destruction during ATP depletion. These results strongly support the importance of cofilin regulation in ischemia-induced endothelial cell actin cytoskeleton alterations leading to cell damage and microvascular dysfunction.

  16. Fractal dimension as a measure of altered actin cytoskeleton in MC3T3-E1 cells under simulated microgravity using 3-D/2-D clinostats.

    PubMed

    Qian, A R; Li, D; Han, J; Gao, X; Di, S M; Zhang, W; Hu, L F; Shang, Peng

    2012-05-01

    Osteoblasts, the bone-forming cells, respond to various mechanical forces, such as stretch and fluid shear force in essentially similar ways. The cytoskeleton, as the load-bearing architecture of the cell, is sensitive to altered inertial forces. Disruption of the cytoskeleton will result in alteration of cellular structure and function. However, it is difficult to quantitatively illustrate cytoskeletal rearrangement because of the complexity of cytoskeletal structure. Usually, the morphological changes in actin organization caused by external stimulus are basically descriptive. In this study, fractal dimensions (D) analysis was used to quantify the morphological changes in the actin cytoskeleton of osteoblast-like cells (MC3T3-E1) under simulated microgravity using 3-D/2-D clinostats. The ImageJ software was used to count the fractal dimension of actin cytoskeleton by box-counting methods. Real-time PCR and immunofluroscent assays were used to further confirm the results obtained by fractal dimension analysis. The results showed significant decreases in D value of actin cytoskeleton, β-actin mRNA expression, and the mean fluorescence intensity of F-actin in osteoblast-like cells after 24 or 48 h of incubation under 3-D/2-D clinorotation condition compared with control. The findings indicate that 3-D/2-D clinorotation affects both actin cytoskeleton architecture and mRNA expression, and fractal may be a promising approach for quantitative analysis of the changes in cytoskeleton in different environments.

  17. Mammalian target of rapamycin and Rictor control neutrophil chemotaxis by regulating Rac/Cdc42 activity and the actin cytoskeleton

    PubMed Central

    He, Yuan; Li, Dong; Cook, Sara L.; Yoon, Mee-Sup; Kapoor, Ashish; Rao, Christopher V.; Kenis, Paul J. A.; Chen, Jie; Wang, Fei

    2013-01-01

    Chemotaxis allows neutrophils to seek out sites of infection and inflammation. The asymmetric accumulation of filamentous actin (F-actin) at the leading edge provides the driving force for protrusion and is essential for the development and maintenance of neutrophil polarity. The mechanism that governs actin cytoskeleton dynamics and assembly in neutrophils has been extensively explored and is still not fully understood. By using neutrophil-like HL-60 cells, we describe a pivotal role for Rictor, a component of mammalian target of rapamycin complex 2 (mTORC2), in regulating assembly of the actin cytoskeleton during neutrophil chemotaxis. Depletion of mTOR and Rictor, but not Raptor, impairs actin polymerization, leading-edge establishment, and directional migration in neutrophils stimulated with chemoattractants. Of interest, depletion of mSin1, an integral component of mTORC2, causes no detectable defects in neutrophil polarity and chemotaxis. In addition, experiments with chemical inhibition and kinase-dead mutants indicate that mTOR kinase activity and AKT phosphorylation are dispensable for chemotaxis. Instead, our results suggest that the small Rho GTPases Rac and Cdc42 serve as downstream effectors of Rictor to regulate actin assembly and organization in neutrophils. Together our findings reveal an mTORC2- and mTOR kinase–independent function and mechanism of Rictor in the regulation of neutrophil chemotaxis. PMID:24006489

  18. CLIC proteins, ezrin, radixin, moesin and the coupling of membranes to the actin cytoskeleton: a smoking gun?

    PubMed

    Jiang, Lele; Phang, Juanita M; Yu, Jiang; Harrop, Stephen J; Sokolova, Anna V; Duff, Anthony P; Wilk, Krystyna E; Alkhamici, Heba; Breit, Samuel N; Valenzuela, Stella M; Brown, Louise J; Curmi, Paul M G

    2014-02-01

    The CLIC proteins are a highly conserved family of metazoan proteins with the unusual ability to adopt both soluble and integral membrane forms. The physiological functions of CLIC proteins may include enzymatic activity in the soluble form and anion channel activity in the integral membrane form. CLIC proteins are associated with the ERM proteins: ezrin, radixin and moesin. ERM proteins act as cross-linkers between membranes and the cortical actin cytoskeleton. Both CLIC and ERM proteins are controlled by Rho family small GTPases. CLIC proteins, ERM and Rho GTPases act in a concerted manner to control active membrane processes including the maintenance of microvillar structures, phagocytosis and vesicle trafficking. All of these processes involve the interaction of membranes with the underlying cortical actin cytoskeleton. The relationships between Rho GTPases, CLIC proteins, ERM proteins and the membrane:actin cytoskeleton interface are reviewed. Speculative models are proposed involving the formation of localised multi-protein complexes on the membrane surface that assemble via multiple weak interactions. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.

  19. 2,4-Dichlorophenoxyacetic acid promotes S-nitrosylation and oxidation of actin affecting cytoskeleton and peroxisomal dynamics

    PubMed Central

    Rodríguez-Serrano, M.; Pazmiño, D. M.; Sparkes, I.; Rochetti, A.; Hawes, C.; Romero-Puertas, M. C.; Sandalio, L. M.

    2014-01-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) is a synthetic auxin used as a herbicide to control weeds in agriculture. A high concentration of 2,4-D promotes leaf epinasty and cell death. In this work, the molecular mechanisms involved in the toxicity of this herbicide are studied by analysing in Arabidopsis plants the accumulation of reactive oxygen species (ROS) and nitric oxide (NO), and their effect on cytoskeleton structure and peroxisome dynamics. 2,4-D (23mM) promotes leaf epinasty, whereas this process was prevented by EDTA, which can reduce ·OH accumulation. The analysis of ROS accumulation by confocal microscopy showed a 2,4-D-dependent increase in both H2O2 and O2·–, whereas total NO was not affected by the treatment. The herbicide promotes disturbances on the actin cytoskeleton structure as a result of post-translational modification of actin by oxidation and S-nitrosylation, which could disturb actin polymerization, as suggested by the reduction of the F-actin/G-actin ratio. These effects were reduced by EDTA, and the reduction of ROS production in Arabidopsis mutants deficient in xanthine dehydrogenase (Atxdh) gave rise to a reduction in actin oxidation. Also, 2,4-D alters the dynamics of the peroxisome, slowing the speed and shortening the distances by which these organelles are displaced. It is concluded that 2,4-D promotes oxidative and nitrosative stress, causing disturbances in the actin cytoskeleton, thereby affecting the dynamics of peroxisomes and some other organelles such as the mitochondria, with xanthine dehydrogenase being involved in ROS production under these conditions. These structural changes in turn appear to be responsible for the leaf epinasty. PMID:24913628

  20. 2,4-Dichlorophenoxyacetic acid promotes S-nitrosylation and oxidation of actin affecting cytoskeleton and peroxisomal dynamics.

    PubMed

    Rodríguez-Serrano, M; Pazmiño, D M; Sparkes, I; Rochetti, A; Hawes, C; Romero-Puertas, M C; Sandalio, L M

    2014-09-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) is a synthetic auxin used as a herbicide to control weeds in agriculture. A high concentration of 2,4-D promotes leaf epinasty and cell death. In this work, the molecular mechanisms involved in the toxicity of this herbicide are studied by analysing in Arabidopsis plants the accumulation of reactive oxygen species (ROS) and nitric oxide (NO), and their effect on cytoskeleton structure and peroxisome dynamics. 2,4-D (23 mM) promotes leaf epinasty, whereas this process was prevented by EDTA, which can reduce ·OH accumulation. The analysis of ROS accumulation by confocal microscopy showed a 2,4-D-dependent increase in both H2O2 and O2·(-), whereas total NO was not affected by the treatment. The herbicide promotes disturbances on the actin cytoskeleton structure as a result of post-translational modification of actin by oxidation and S-nitrosylation, which could disturb actin polymerization, as suggested by the reduction of the F-actin/G-actin ratio. These effects were reduced by EDTA, and the reduction of ROS production in Arabidopsis mutants deficient in xanthine dehydrogenase (Atxdh) gave rise to a reduction in actin oxidation. Also, 2,4-D alters the dynamics of the peroxisome, slowing the speed and shortening the distances by which these organelles are displaced. It is concluded that 2,4-D promotes oxidative and nitrosative stress, causing disturbances in the actin cytoskeleton, thereby affecting the dynamics of peroxisomes and some other organelles such as the mitochondria, with xanthine dehydrogenase being involved in ROS production under these conditions. These structural changes in turn appear to be responsible for the leaf epinasty. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. cAMP-induced actin cytoskeleton remodelling inhibits MKL1-dependent expression of the chemotactic and pro-proliferative factor, CCN1

    PubMed Central

    Duggirala, Aparna; Kimura, Tomomi E.; Sala-Newby, Graciela B.; Johnson, Jason L.; Wu, Yih-Jer; Newby, Andrew C.; Bond, Mark

    2015-01-01

    Elevation of intracellular cAMP concentration has numerous vascular protective effects that are in part mediated via actin cytoskeleton-remodelling and subsequent regulation of gene expression. However, the mechanisms are incompletely understood. Here we investigated whether cAMP-induced actin-cytoskeleton remodelling modulates VSMC behaviour by inhibiting expression of CCN1. In cultured rat VSMC, CCN1-silencing significantly inhibited BrdU incorporation and migration in a wound healing assay. Recombinant CCN1 enhanced chemotaxis in a Boyden chamber. Adding db-cAMP, or elevating cAMP using forskolin, significantly inhibited CCN1 mRNA and protein expression in vitro; transcriptional regulation was demonstrated by measuring pre-spliced CCN1 mRNA and CCN1-promoter activity. Forskolin also inhibited CCN1 expression in balloon injured rat carotid arteries in vivo. Inhibiting RhoA activity, which regulates actin-polymerisation, by cAMP-elevation or pharmacologically with C3-transferase, or inhibiting its downstream kinase, ROCK, with Y27632, significantly inhibited CCN1 expression. Conversely, expression of constitutively active RhoA reversed the inhibitory effects of forskolin on CCN1 mRNA. Furthermore, CCN1 mRNA levels were significantly decreased by inhibiting actin-polymerisation with latrunculin B or increased by stimulating actin-polymerisation with Jasplakinolide. We next tested the role of the actin-dependent SRF co-factor, MKL1, in CCN1 expression. Forskolin inhibited nuclear translocation of MKL1 and binding of MKL1 to the CCN1 promoter. Constitutively-active MKL1 enhanced basal promoter activity of wild-type but not SRE-mutated CCN1; and prevented forskolin inhibition. Furthermore, pharmacological MKL-inhibition with CCG-1423 significantly inhibited CCN1 promoter activity as well as mRNA and protein expression. Our data demonstrates that cAMP-induced actin-cytoskeleton remodelling regulates expression of CCN1 through MKL1: it highlights a novel c

  2. cAMP-induced actin cytoskeleton remodelling inhibits MKL1-dependent expression of the chemotactic and pro-proliferative factor, CCN1.

    PubMed

    Duggirala, Aparna; Kimura, Tomomi E; Sala-Newby, Graciela B; Johnson, Jason L; Wu, Yih-Jer; Newby, Andrew C; Bond, Mark

    2015-02-01

    Elevation of intracellular cAMP concentration has numerous vascular protective effects that are in part mediated via actin cytoskeleton-remodelling and subsequent regulation of gene expression. However, the mechanisms are incompletely understood. Here we investigated whether cAMP-induced actin-cytoskeleton remodelling modulates VSMC behaviour by inhibiting expression of CCN1. In cultured rat VSMC, CCN1-silencing significantly inhibited BrdU incorporation and migration in a wound healing assay. Recombinant CCN1 enhanced chemotaxis in a Boyden chamber. Adding db-cAMP, or elevating cAMP using forskolin, significantly inhibited CCN1 mRNA and protein expression in vitro; transcriptional regulation was demonstrated by measuring pre-spliced CCN1 mRNA and CCN1-promoter activity. Forskolin also inhibited CCN1 expression in balloon injured rat carotid arteries in vivo. Inhibiting RhoA activity, which regulates actin-polymerisation, by cAMP-elevation or pharmacologically with C3-transferase, or inhibiting its downstream kinase, ROCK, with Y27632, significantly inhibited CCN1 expression. Conversely, expression of constitutively active RhoA reversed the inhibitory effects of forskolin on CCN1 mRNA. Furthermore, CCN1 mRNA levels were significantly decreased by inhibiting actin-polymerisation with latrunculin B or increased by stimulating actin-polymerisation with Jasplakinolide. We next tested the role of the actin-dependent SRF co-factor, MKL1, in CCN1 expression. Forskolin inhibited nuclear translocation of MKL1 and binding of MKL1 to the CCN1 promoter. Constitutively-active MKL1 enhanced basal promoter activity of wild-type but not SRE-mutated CCN1; and prevented forskolin inhibition. Furthermore, pharmacological MKL-inhibition with CCG-1423 significantly inhibited CCN1 promoter activity as well as mRNA and protein expression. Our data demonstrates that cAMP-induced actin-cytoskeleton remodelling regulates expression of CCN1 through MKL1: it highlights a novel c

  3. PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia.

    PubMed Central

    Abo, A; Qu, J; Cammarano, M S; Dan, C; Fritsch, A; Baud, V; Belisle, B; Minden, A

    1998-01-01

    The GTPases Rac and Cdc42Hs control diverse cellular functions. In addition to being mediators of intracellular signaling cascades, they have important roles in cell morphogenesis and mitogenesis. We have identified a novel PAK-related kinase, PAK4, as a new effector molecule for Cdc42Hs. PAK4 interacts only with the activated form of Cdc42Hs through its GTPase-binding domain (GBD). Co-expression of PAK4 and the constitutively active Cdc42HsV12 causes the redistribution of PAK4 to the brefeldin A-sensitive compartment of the Golgi membrane and the subsequent induction of filopodia and actin polymerization. Importantly, the reorganization of the actin cytoskeleton is dependent on PAK4 kinase activity and on its interaction with Cdc42Hs. Thus, unlike other members of the PAK family, PAK4 provides a novel link between Cdc42Hs and the actin cytoskeleton. The cellular locations of PAK4 and Cdc42Hs suggest a role for the Golgi in cell morphogenesis. PMID:9822598

  4. Fucus as a Model System to Study the Role of Auxin Transport and the Actin Cytoskeleton in Gravity Response

    NASA Technical Reports Server (NTRS)

    Muday, Gloria K.

    2003-01-01

    The overarching goal of this proposal was to examine the mechanisms for the cellular asymmetry in auxin transport proteins. As auxin transport polarity changes in response to reorientation of algal and plant cells relative to the gravity vector, it was critical to ask how auxin transport polarity is established and how this transport polarity may change in response to gravity stimulation. The experiments conducted with this NASA grant fell into two categories. The first area of experimentation was to explore the biochemical interactions between an auxin transport protein and the actin cytoskeleton. These experiments used biochemical techniques, including actin affinity chromatography, to demonstrate that one auxin transport protein interacts with the actin cytoskeleton. The second line of experiments examined whether in the initially symmetrical single celled embryos of Fucus distichus, whether auxin regulates development and whether gravity is a cue to control the morphogenesis of these embryos and whether gravi-morphogenesis is auxin dependent. Results in these two areas are summarized separately below. As a result of this funding, in combination with results from other investigators, we have strong evidence for an important role for the actin cytoskeleton in both establishing and change auxin transport polarity. It is also clear that Fucus distichus embryos are auxin responsive and gravity controls their morphogenesis.

  5. A vital role for myosin-9 in puromycin aminonucleoside-induced podocyte injury by affecting actin cytoskeleton.

    PubMed

    Yuan, Yanggang; Zhao, Chuanyan; An, Xiaofei; Wu, Lin; Wang, Hui; Zhao, Min; Bai, Mi; Duan, Suyan; Zhang, Bo; Zhang, Aihua; Xing, Changying

    2016-06-01

    Podocyte injury is an early pathological change of many kidney diseases. In particular, the actin cytoskeleton plays an important role in maintaining the normal function of podocytes. Disruption of the actin cytoskeleton is a feature of podocyte injury in proteinuric nephropathies. Recent studies showed that myosin-9 was localized in the podocyte foot processes and was necessary in maintaining podocyte structural homeostasis. However, it is unclear whether myosin-9 maintains podocyte structure by affecting actin cytoskleton. Here, the role of myosin-9 in puromycin aminonucleoside (PAN)-induced podocyte injury was explored both in vitro and in vivo. In cultured mouse podocytes (MPC5), it was determined that PAN downregulated myosin-9 expression, disrupted the actin cytoskeleton and reduced the adhesion ability. Reduced myosin-9 expression by siRNA precipitated podocyte cytoskeletal damage and accelerated PAN-induced podocyte detachment. Overexpression of myosin-9 protected against PAN-induced podocyte detachment. Furthermore, administration of an antioxidant Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP) inhibited PAN-induced podocyte cytoskeletal damage and podocyte detachment by restoring the expression of myosin-9. In the rat PAN nephropathy model, MnTBAP could also attenuate PAN-induced reduction of myosin-9 and podocyte loss. Taken together, these findings pinpointed that oxidative stress contributed to PAN-induced podocyte injury through the repression of a cytoskeletal protein myosin-9, which provided novel insights into a potential target for the treatment of podocyte injury-associated glomerulopathies.

  6. Methotrexate induces apoptosis in CaSki and NRK cells and influences the organization of their actin cytoskeleton.

    PubMed

    Mazur, Antonina Joanna; Nowak, Dorota; Mannherz, Hans Georg; Malicka-Błaszkiewicz, Maria

    2009-06-24

    Methotrexate is a widely used drug in treatments of various types of malignancies and in the therapy of rheumatoid arthritis. The goal of our study was to look at the effect of this dihydrofolate reductase inhibitor on the actin cytoskeleton, since actin plays an important role in cancer transformation and metastasis. For this reason we compared results obtained from experiments on CaSki (human uterine cervix cancer) and NRK (normal fibroblastic rat kidney) cells treated with methotrexate. It has been shown previously that methotrexate can induce apoptosis. Therefore we first examined whether methotrexate induces apoptosis in our model cells. For this aim we applied several assays like Caspase Glo 3/7, DNA fragmentation and binding of phosphatidylserine by annexin V-fluorescein. The data obtained indicated that methotrexate induces programmed cell death in CaSki and NRK cells. However, differences between CaSki and NRK cells were observed in the morphological alterations and dynamics of apoptosis induced by methotrexate. It seemed that cancer cells were more sensitive towards the cell death inducing activity at lower concentrations of methotrexate. Analysis by confocal microscopy of methotrexate-treated cells demonstrated that treatment with this folate antagonist affected the actin cytoskeleton, although the dis-organization of the actin cytoskeleton after treatment with methotrexate differed between cancer and normal cells.

  7. Ultra-fast optical manipulation of single proteins binding to the actin cytoskeleton

    NASA Astrophysics Data System (ADS)

    Capitanio, Marco; Gardini, Lucia; Pavone, Francesco Saverio

    2014-02-01

    In the last decade, forces and mechanical stresses acting on biological systems are emerging as regulatory factors essential for cell life. Emerging evidences indicate that factors such as applied forces or the rigidity of the extracellular matrix (ECM) determine the shape and function of cells and organisms1. Classically, the regulation of biological systems is described through a series of biochemical signals and enzymatic reactions, which direct the processes and cell fate. However, mechanotransduction, i.e. the conversion of mechanical forces into biochemical and biomolecular signals, is at the basis of many biological processes fundamental for the development and differentiation of cells, for their correct function and for the development of pathologies. We recently developed an in vitro system that allows the investigation of force-dependence of the interaction of proteins binding the actin cytoskeleton, at the single molecule level. Our system displays a delay of only ~10 μs between formation of the molecular bond and application of the force and is capable of detecting interactions as short as 100 μs. Our assay allows direct measurements of load-dependence of lifetimes of single molecular bonds and conformational changes of single proteins and molecular motors. We demonstrate our technique on molecular motors, using myosin II from fast skeletal muscle and on protein-DNA interaction, specifically on Lactose repressor (LacI). The apparatus is stabilized to less than 1 nm with both passive and active stabilization, allowing resolving specific binding regions along the actin filament and DNA molecule. Our technique extends single-molecule force-clamp spectroscopy to molecular complexes that have been inaccessible up to now, opening new perspectives for the investigation of the effects of forces on biological processes.

  8. Heparin regulates B6FS cell motility through a FAK/actin cytoskeleton axis

    PubMed Central

    Voudouri, Kallirroi; Nikitovic, Dragana; Berdiaki, Aikaterini; Papachristou, Dionysios J.; Tsiaoussis, John; Spandidos, Demetrios A.; Tsatsakis, Aristides M.; Tzanakakis, George N.

    2016-01-01

    Soft tissue sarcomas are rare, heterogeneous tumors of mesenchymal origin with an aggressive behavior. Heparin is a mixture of heavily sulfated, linear glycosaminoglycan (GAG) chains, which participate in the regulation of various cell biological functions. Heparin is considered to have significant anticancer capabilities, although the mechanisms involved have not been fully defined. In the present study, the effects of unfractionated heparin (UFH) and low-molecular-weight heparin (LMWH) on B6FS fibrosarcoma cell motility were examined. Both preparations of heparin were shown to both enhance B6FS cell adhesion (p<0.01 and p<0.05), and migration (p<0.05), the maximal effect being evident at the concentration of 10 µg/ml. The utilization of FAK-deficient cells demonstrated that the participation of FAK was obligatory for heparin-dependent fibrosarcoma cell adhesion (p<0.05). The results of confocal microscopy indicated that heparin was taken up by the B6FS cells, and that UFH and LMWH induced F-actin polymerization. Heparitinase digestion demonstrated that the endogenous heparan sulfate (HS) chains did not affect the motility of the B6FS cells (p>0.05, not significant). In conclusion, both UFH and LMWH, through a FAK/actin cytoskeleton axis, promoted the adhesion and migration of B6FS fibrosarcoma cells. Thus, our findings indicate that the responsiveness of fibrosarcoma cells to the exogenous heparin/HS content of the cancer microenvironment may play a role in their ability to become mobile and metastasize. PMID:27572115

  9. Ionizing irradiation-induced radical stress stalls live meiotic chromosome movements by altering the actin cytoskeleton

    PubMed Central

    Illner, Doris; Scherthan, Harry

    2013-01-01

    Meiosis generates haploid cells or spores for sexual reproduction. As a prelude to haploidization, homologous chromosomes pair and recombine to undergo segregation during the first meiotic division. During the entire meiotic prophase of the yeast Saccharomyces cerevisiae, chromosomes perform rapid movements that are suspected to contribute to the regulation of recombination. Here, we investigated the impact of ionizing radiation (IR) on movements of GFP–tagged bivalents in live pachytene cells. We find that exposure of sporulating cultures with >40 Gy (4-krad) X-rays stalls pachytene chromosome movements. This identifies a previously undescribed acute radiation response in yeast meiosis, which contrasts with its reported radioresistance of up to 1,000 Gy in survival assays. A modified 3′-end labeling assay disclosed IR-induced dsDNA breaks (DSBs) in pachytene cells at a linear dose relationship of one IR-induced DSB per cell per 5 Gy. Dihydroethidium staining revealed formation of reactive oxygen species (ROS) in irradiated cells. Immobility of fuzzy-appearing irradiated bivalents was rescued by addition of radical scavengers. Hydrogen peroxide-induced ROS did reduce bivalent mobility similar to 40 Gy X IR, while they failed to induce DSBs. IR- and H2O2-induced ROS were found to decompose actin cables that are driving meiotic chromosome mobility, an effect that could be rescued by antioxidant treatment. Hence, it appears that the meiotic actin cytoskeleton is a radical-sensitive system that inhibits bivalent movements in response to IR- and oxidant-induced ROS. This may be important to prevent motility-driven unfavorable chromosome interactions when meiotic recombination has to proceed in genotoxic environments. PMID:24046368

  10. Histamine Regulates Actin Cytoskeleton in Human Toll-like Receptor 4-activated Monocyte-derived Dendritic Cells Tuning CD4+ T Lymphocyte Response.

    PubMed

    Aldinucci, Alessandra; Bonechi, Elena; Manuelli, Cinzia; Nosi, Daniele; Masini, Emanuela; Passani, Maria Beatrice; Ballerini, Clara

    2016-07-08

    Histamine, a major mediator in allergic diseases, differentially regulates the polarizing ability of dendritic cells after Toll-like receptor (TLR) stimulation, by not completely explained mechanisms. In this study we investigated the effects of histamine on innate immune reaction during the response of human monocyte-derived DCs (mDCs) to different TLR stimuli: LPS, specific for TLR4, and Pam3Cys, specific for heterodimer molecule TLR1/TLR2. We investigated actin remodeling induced by histamine together with mDCs phenotype, cytokine production, and the stimulatory and polarizing ability of Th0. By confocal microscopy and RT-PCR expression of Rac1/CdC42 Rho GTPases, responsible for actin remodeling, we show that histamine selectively modifies actin cytoskeleton organization induced by TLR4, but not TLR2 and this correlates with increased IL4 production and decreased IFNγ by primed T cells. We also demonstrate that histamine-induced cytoskeleton organization is at least in part mediated by down-regulation of small Rho GTPase CdC42 and the protein target PAK1, but not by down-regulation of Rac1. The presence and relative expression of histamine receptors HR1-4 and TLRs were determined as well. Independently of actin remodeling, histamine down-regulates IL12p70 and CXCL10 production in mDCs after TLR2 and TLR4 stimulation. We also observed a trend of IL10 up-regulation that, despite previous reports, did not reach statistical significance.

  11. Costars, a Dictyostelium protein similar to the C-terminal domain of STARS, regulates the actin cytoskeleton and motility.

    PubMed

    Pang, Te-Ling; Chen, Fung-Chi; Weng, Yi-Lan; Liao, Hsien-Ching; Yi, Yung-Hsiang; Ho, Chia-Lin; Lin, Chi-Hung; Chen, Mei-Yu

    2010-11-01

    Through analysis of a chemotaxis mutant obtained from a genetic screen in Dictyostelium discoideum, we have identified a new gene involved in regulating cell migration and have named it costars (cosA). The 82 amino acid Costars protein sequence appears highly conserved among diverse species, and significantly resembles the C-terminal region of the striated muscle activator of Rho signaling (STARS), a mammalian protein that regulates the serum response factor transcriptional activity through actin binding and Rho GTPase activation. The cosA-null (cosA(-)) cells formed smooth plaques on bacterial lawns, produced abnormally small fruiting bodies when developed on the non-nutrient agar and displayed reduced migration towards the cAMP source in chemotactic assays. Analysis of cell motion in cAMP gradients revealed decreased speed but wild-type-like directional persistence of cosA(-) cells, suggesting a defect in the cellular machinery for motility rather than for chemotactic orientation. Consistent with this notion, cosA(-) cells exhibited changes in the actin cytoskeleton, showing aberrant distribution of F-actin in fluorescence cell staining and an increased amount of cytoskeleton-associated actin. Excessive pseudopod formation was also noted in cosA(-) cells facing chemoattractant gradients. Expressing cosA or its human counterpart mCostars eliminated abnormalities of cosA(-) cells. Together, our results highlight a role for Costars in modulating actin dynamics and cell motility.

  12. WASp-dependent actin cytoskeleton stability at the dendritic cell immunological synapse is required for extensive, functional T cell contacts

    PubMed Central

    Malinova, Dessislava; Fritzsche, Marco; Nowosad, Carla R.; Armer, Hannah; Munro, Peter M. G.; Blundell, Michael P.; Charras, Guillaume; Tolar, Pavel; Bouma, Gerben; Thrasher, Adrian J.

    2016-01-01

    The immunological synapse is a highly structured and molecularly dynamic interface between communicating immune cells. Although the immunological synapse promotes T cell activation by dendritic cells, the specific organization of the immunological synapse on the dendritic cell side in response to T cell engagement is largely unknown. In this study, confocal and electron microscopy techniques were used to investigate the role of dendritic cell actin regulation in immunological synapse formation, stabilization, and function. In the dendritic cell-restricted absence of the Wiskott-Aldrich syndrome protein, an important regulator of the actin cytoskeleton in hematopoietic cells, the immunological synapse contact with T cells occupied a significantly reduced surface area. At a molecular level, the actin network localized to the immunological synapse exhibited reduced stability, in particular, of the actin-related protein-2/3-dependent, short-filament network. This was associated with decreased polarization of dendritic cell-associated ICAM-1 and MHC class II, which was partially dependent on Wiskott-Aldrich syndrome protein phosphorylation. With the use of supported planar lipid bilayers incorporating anti-ICAM-1 and anti-MHC class II antibodies, the dendritic cell actin cytoskeleton organized into recognizable synaptic structures but interestingly, formed Wiskott-Aldrich syndrome protein-dependent podosomes within this area. These findings demonstrate that intrinsic dendritic cell cytoskeletal remodeling is a key regulatory component of normal immunological synapse formation, likely through consolidation of adhesive interaction and modulation of immunological synapse stability. PMID:26590149

  13. WASp-dependent actin cytoskeleton stability at the dendritic cell immunological synapse is required for extensive, functional T cell contacts.

    PubMed

    Malinova, Dessislava; Fritzsche, Marco; Nowosad, Carla R; Armer, Hannah; Munro, Peter M G; Blundell, Michael P; Charras, Guillaume; Tolar, Pavel; Bouma, Gerben; Thrasher, Adrian J

    2016-05-01

    The immunological synapse is a highly structured and molecularly dynamic interface between communicating immune cells. Although the immunological synapse promotes T cell activation by dendritic cells, the specific organization of the immunological synapse on the dendritic cell side in response to T cell engagement is largely unknown. In this study, confocal and electron microscopy techniques were used to investigate the role of dendritic cell actin regulation in immunological synapse formation, stabilization, and function. In the dendritic cell-restricted absence of the Wiskott-Aldrich syndrome protein, an important regulator of the actin cytoskeleton in hematopoietic cells, the immunological synapse contact with T cells occupied a significantly reduced surface area. At a molecular level, the actin network localized to the immunological synapse exhibited reduced stability, in particular, of the actin-related protein-2/3-dependent, short-filament network. This was associated with decreased polarization of dendritic cell-associated ICAM-1 and MHC class II, which was partially dependent on Wiskott-Aldrich syndrome protein phosphorylation. With the use of supported planar lipid bilayers incorporating anti-ICAM-1 and anti-MHC class II antibodies, the dendritic cell actin cytoskeleton organized into recognizable synaptic structures but interestingly, formed Wiskott-Aldrich syndrome protein-dependent podosomes within this area. These findings demonstrate that intrinsic dendritic cell cytoskeletal remodeling is a key regulatory component of normal immunological synapse formation, likely through consolidation of adhesive interaction and modulation of immunological synapse stability. © The Author(s).

  14. Cytoskeleton alterations in melanoma: aberrant expression of cortactin, an actin-binding adapter protein, correlates with melanocytic tumor progression

    PubMed Central

    Xu, Xu-Zhi; Garcia, Marileila Varella; Li, Tian-yu; Khor, Li-Yan; Gajapathy, R Sujatha; Spittle, Cindy; Weed, Scott; Lessin, Stuart R; Wu, Hong

    2010-01-01

    Cortactin is a multidomain actin-binding protein important for the functions of cytoskeleton by regulating cortical actin dynamics. It is involved in a diverse array of basic cellular functions. Tumorigenesis and tumor progression involves alterations in actin cytoskeleton proteins. We sought to study the role of cortactin in melanocytic tumor progression using immunohistochemistry on human tissues. The results reveal quantitative differences between benign and malignant lesions. Significantly higher cortactin expression is found in melanomas than in nevi (P<0.0001), with levels greater in metastatic than in invasive melanomas (P<0.05). Qualitatively, tumor tissues often show aberrant cortactin localization at the cell periphery, corresponding to its colocalization with filamentous actin in cell cortex of cultured melanoma cells. This suggests an additional level of protein dysregulation. Furthermore, in patients with metastatic disease, high-level cortactin expression correlates with poor disease-specific survival. Our data, in conjunction with outcome data on several other types of human cancers and experimental data from melanoma cell lines, supports a potential role of aberrant cortactin expression in melanoma tumor progression and a rational for targeting key elements of actin-signaling pathway for developmental therapeutics in melanomas. PMID:19898426

  15. New Aspects of Progesterone Interactions with the Actin Cytoskeleton and Neurosteroidogenesis in the Cerebellum and the Neuronal Growth Cone

    PubMed Central

    Wessel, Lisa; Olbrich, Laura; Brand-Saberi, Beate

    2014-01-01

    The impact of progesterone on neuronal tissues in the central (CNS) and peripheral (PNS) nervous system is of significant scientific and therapeutic interest. Glial and neuronal cells of vertebrates express steroidogenic enzymes, and are able to synthesize progesterone de novo from cholesterol. Progesterone is described to have neuroprotective, neuroreparative, anti-degenerative, and anti-apoptotic effects in the CNS and the PNS. Thus, the first clinical studies promise new therapeutic options using progesterone in the treatment of patients with traumatic brain injury. Additionally, experimental data from different animal models suggest further positive effects of progesterone on neurological diseases such as cerebral ischemia, peripheral nerve injury and amyothropic lateral sclerosis. In regard to this future clinical use of progesterone, we discuss in this review the underlying physiological principles of progesterone effects in neuronal tissues. Mechanisms leading to morphological reorganizations of neurons in the CNS and PNS affected by progesterone are addressed, with special focus on the actin cytoskeleton. Furthermore, new aspects of a progesterone-dependent regulation of neurosteroidogenesis mediated by the recently described progesterone binding protein PGRMC1 in the nervous system are discussed. PMID:25141866

  16. Regulation of the Postsynaptic Compartment of Excitatory Synapses by the Actin Cytoskeleton in Health and Its Disruption in Disease

    PubMed Central

    Stefen, Holly; Chaichim, Chanchanok

    2016-01-01

    Disruption of synaptic function at excitatory synapses is one of the earliest pathological changes seen in wide range of neurological diseases. The proper control of the segregation of neurotransmitter receptors at these synapses is directly correlated with the intact regulation of the postsynaptic cytoskeleton. In this review, we are discussing key factors that regulate the structure and dynamics of the actin cytoskeleton, the major cytoskeletal building block that supports the postsynaptic compartment. Special attention is given to the complex interplay of actin-associated proteins that are found in the synaptic specialization. We then discuss our current understanding of how disruption of these cytoskeletal elements may contribute to the pathological events observed in the nervous system under disease conditions with a particular focus on Alzheimer's disease pathology. PMID:27127658

  17. N-cadherin negatively regulates collective Drosophila glial migration through actin cytoskeleton remodeling.

    PubMed

    Kumar, Arun; Gupta, Tripti; Berzsenyi, Sara; Giangrande, Angela

    2015-03-01

    Cell migration is an essential and highly regulated process. During development, glia cells and neurons migrate over long distances - in most cases collectively - to reach their final destination and build the sophisticated architecture of the nervous system, the most complex tissue of the body. Collective migration is highly stereotyped and efficient, defects in the process leading to severe human diseases that include mental retardation. This dynamic process entails extensive cell communication and coordination, hence, the real challenge is to analyze it in the entire organism and at cellular resolution. We here investigate the impact of the N-cadherin adhesion molecule on collective glial migration, by using the Drosophila developing wing and cell-type specific manipulation of gene expression. We show that N-cadherin timely accumulates in glial cells and that its levels affect migration efficiency. N-cadherin works as a molecular brake in a dosage-dependent manner, by negatively controlling actin nucleation and cytoskeleton remodeling through α/β catenins. This is the first in vivo evidence for N-cadherin negatively and cell autonomously controlling collective migration.

  18. IKAP localizes to membrane ruffles with filamin A and regulates actin cytoskeleton organization and cell migration.

    PubMed

    Johansen, Lars Dan; Naumanen, Tiina; Knudsen, Astrid; Westerlund, Nina; Gromova, Irina; Junttila, Melissa; Nielsen, Christina; Bøttzauw, Trine; Tolkovsky, Aviva; Westermarck, Jukka; Coffey, Eleanor T; Jäättelä, Marja; Kallunki, Tuula

    2008-03-15

    Loss-of-function mutations in the IKBKAP gene, which encodes IKAP (ELP1), cause familial dysautonomia (FD), with defective neuronal development and maintenance. Molecular mechanisms leading to FD are poorly understood. We demonstrate that various RNA-interference-based depletions of IKAP lead to defective adhesion and migration in several cell types, including rat primary neurons. The defects could be rescued by reintroduction of wild-type IKAP but not by FD-IKAP, a truncated form of IKAP constructed according to the mutation found in the majority of FD patients. Cytosolic IKAP co-purified with proteins involved in cell migration, including filamin A, which is also involved in neuronal migration. Immunostaining of IKAP and filamin A revealed a distinct co-localization of these two proteins in membrane ruffles. Depletion of IKAP resulted in a significant decrease in filamin A localization in membrane ruffles and defective actin cytoskeleton organization, which both could be rescued by the expression of wild-type IKAP but not by FD-IKAP. No downregulation in the protein levels of paxillin or beclin 1, which were recently described as specific transcriptional targets of IKAP, was detected. These results provide evidence for the role of the cytosolic interactions of IKAP in cell adhesion and migration, and support the notion that cell-motility deficiencies could contribute to FD.

  19. Radiographic contrast media alterate the localization of actin/band4.9 in the membrane cytoskeleton of human erythrocytes.

    PubMed

    Franke, R P; Scharnweber, T; Fuhrmann, R; Mrowietz, C; Wenzel, F; Krüger, A; Jung, F

    2014-01-01

    Different radiographic contrast media (RCM) were shown to induce morphological changes of blood cells (e.g. erythrocytes or thrombocytes) and endothelial cells. The echinocytic shape change of erythrocytes, particularly, affords alterations of the membrane cytoskeleton. The cytoskeleton plays a crucial role for the shape and deformability of the red blood cell. Disruption of the interaction between components of the red blood cell membrane cytoskeleton may cause a loss of structural and functional integrity of the membrane. In this study band4.9 and actin as components of the cytoskeletal junctional complex were examined in human erythrocytes after suspension in autologous plasma or in plasma RCM mixtures (30% v/v Iodixanol-320 or Iopromide-370) followed by a successive double staining with TRITC-/FITC-coupled monoclonal antibodies. After adding Iopromide-370 to the plasma in practically none of the cells the rounded conformation of the membrane cytoskeleton - as it appeared in cells suspended in autologous plasma - was found. In addition, Iopromide-370 induced thin lines and coarse knob-like structures of band4.9 at the cell periphery while most cell centers were devoid of band4.9, and a box-like arrangement of bands of band4.9. A dissociation between colours red (actin) and green (band4.9) occurred as well. In contrast, erythrocytes suspended in a plasma/Iodixanol-320 mixture showed a membrane cytoskeleton comparable to cells suspended in autologous plasma, Similar results were found with respect to the distribution of actin. This study revealed for the first time RCM-dependent differences in band4.9 activities as possible pathophysiological mechanism for the chemotoxicity of radiographic contrast media.

  20. Carbonylation and disassembly of the F-actin cytoskeleton in oxidant induced barrier dysfunction and its prevention by epidermal growth factor and transforming growth factor α in a human colonic cell line

    PubMed Central

    Banan, A; Zhang, Y; Losurdo, J; Keshavarzian, A

    2000-01-01

    BACKGROUND—Intestinal barrier dysfunction concomitant with high levels of reactive oxygen metabolites (ROM) in the inflamed mucosa have been observed in inflammatory bowel disease (IBD). The cytoskeletal network has been suggested to be involved in the regulation of barrier function. Growth factors (epidermal growth factor (EGF) and transforming growth factor α (TGF-α)) protect gastrointestinal barrier integrity against a variety of noxious agents. However, the underlying mechanisms of oxidant induced disruption and growth factor mediated protection remain elusive.
AIMS—To determine: (1) if oxidation and disassembly of actin (a key cytoskeletal component) plays a major role in ROM induced epithelial monolayer barrier dysfunction; and (2) if growth factor mediated protection involves prevention of theses alterations.
METHODS—Caco-2 monolayers were preincubated with EGF, TGF-α, or vehicle before incubation with ROM (H2O2 or HOCl). Effects on cell integrity, barrier function, and G- and F-actin (oxidation, disassembly, and assembly) were determined.
RESULTS—ROM dose dependently and significantly increased F- and G-actin oxidation (carbonylation), decreased the stable F-actin fraction (index of stability), and increased the monomeric G-actin fraction (index of disassembly). Concomitant with these changes were disruption of the actin cytoskeleton and loss of the monolayer barrier function. In contrast, growth factor pretreatment decreased actin oxidation and enhanced the stable F-actin, while in concert prevented actin disruption and restored normal barrier function of monolayers exposed to ROM. Cytochalasin-D, an inhibitor of actin assembly, not only caused actin disassembly and barrier dysfunction but also abolished the protective action of growth factors. Moreover, an actin stabilising agent, phalloidin, mimicked the protective actions of the growth factors.
CONCLUSIONS—Oxidation, disassembly, and instability of the actin cytoskeleton appears to

  1. Initial stem cell adhesion on porous silicon surface: molecular architecture of actin cytoskeleton and filopodial growth

    PubMed Central

    2014-01-01

    The way cells explore their surrounding extracellular matrix (ECM) during development and migration is mediated by lamellipodia at their leading edge, acting as an actual motor pulling the cell forward. Lamellipodia are the primary area within the cell of actin microfilaments (filopodia) formation. In this work, we report on the use of porous silicon (pSi) scaffolds to mimic the ECM of mesenchymal stem cells from the dental pulp (DPSC) and breast cancer (MCF-7) cells. Our atomic force microscopy (AFM), fluorescence microscopy, and scanning electron microscopy (SEM) results show that pSi promoted the appearance of lateral filopodia protruding from the DPSC cell body and not only in the lamellipodia area. The formation of elongated lateral actin filaments suggests that pores provided the necessary anchorage points for protrusion growth. Although MCF-7 cells displayed a lower presence of organized actin network on both pSi and nonporous silicon, pSi stimulated the formation of extended cell protrusions. PMID:25386101

  2. Anti-Tumor Activity of Yuanhuacine by Regulating AMPK/mTOR Signaling Pathway and Actin Cytoskeleton Organization in Non-Small Cell Lung Cancer Cells

    PubMed Central

    Lee, Hye-Jung; Bae, Song Yi; Jung, Cholomi; Park, Hyen Joo; Lee, Sang Kook

    2015-01-01

    Yuanhuacine (YC), a daphnane diterpenoid from the flowers of Daphne genkwa, exhibited a potential growth inhibitory activity against human non-small cell lung cancer (NSCLC) cells. YC also suppressed the invasion and migration of lung cancer cells. However, the precise molecular mechanisms remain to be elucidated. In the present study, we report that YC significantly activated AMP-activated protein kinase (AMPK) signaling pathway and suppressed mTORC2-mediated downstream signaling pathway in H1993 human NSCLC cells. AMPK plays an important role in energy metabolism and cancer biology. Therefore, activators of AMPK signaling pathways can be applicable to the treatment of cancer. YC enhanced the expression of p-AMPKα. The co-treatment of YC and compound C (an AMPK inhibitor) or metformin (an AMPK activator) also confirmed that YC increases p-AMPKα. YC also suppressed the activation of the mammalian target of rapamycin (mTOR) expression, a downstream target of AMPK. Further study revealed that YC modulates mTORC2-associated downstream signaling pathways with a decreased expressions of p-Akt, p-protein kinase C alpha (PKCα), p-ras-related C3 botulinum toxin substrate 1 (Rac1) and filamentous actin (F-actin) that are known to activate cell growth and organize actin cytoskeleton. In addition, YC inhibited the tumor growth in H1993 cell-implanted xenograft nude mouse model. These data suggest the YC could be a potential candidate for cancer chemotherapeutic agents derived from natural products by regulating AMPK/mTORC2 signaling pathway and actin cytoskeleton organization. PMID:26656173

  3. The pesticide malathion induces alterations in actin cytoskeleton and in cell adhesion of cultured breast carcinoma cells.

    PubMed

    Cabello, G; Galaz, S; Botella, L; Calaf, G; Pacheco, M; Stockert, J C; Villanueva, A; Cañete, M; Juarranz, A

    2003-09-01

    We have studied the effects of the organophosphorous pesticide malathion on cell viability, actin cytoskeleton, cell adhesion complex E-cadherin/beta-catenin, and Rho and Rac1 GTPases from the human mammary carcinoma cell line MCF-7. Malathion induced cell lethality, determined by the MTT assay, depending on the treatment conditions. Cells incubated with low concentrations of malathion, 16-32 microg/ml, showed high survival rates (>95%) at any evaluated time (1-5 days), whereas complete cell lethality was found using 512 microg/ml and 5 days of treatment. Deep morphological changes were induced with high doses of 64 and 128 microg/ml, and long incubation time (5 days); cells showed perinuclear vacuoles, rounding, shrinkage, and a gradual loss of adhesion. These changes were related to a decrease in the expression of the adhesion molecules, E-cadherin and beta-catenin, and to the distribution and reactivity of actin microfilaments to TRITC-phalloidin. Disruption of microfilaments, accompanied by the collapse of actin to perinuclear region, were characteristic of cells with loss of adhesion. At lower concentrations, some cells presented deformations on the plasma membrane as lamellipodia-like structures, which were particularly evident from 32 to 128 microg/ml. Conversely, we observed an increase in the expression of Rho and Rac1 GTPases, modulators of actin cytoskeleton and cell adhesion.

  4. Jak3 Enables Chemokine-Dependent Actin Cytoskeleton Reorganization by Regulating Cofilin and Rac/Rhoa GTPases Activation

    PubMed Central

    Ambriz-Peña, Xochitl; García-Zepeda, Eduardo Alberto; Meza, Isaura; Soldevila, Gloria

    2014-01-01

    We have previously shown that Jak3 is involved in the signaling pathways of CCR7, CCR9 and CXCR4 in murine T lymphocytes and that Jak3−/− lymphocytes display an intrinsic defect in homing to peripheral lymph nodes. However, the molecular mechanism underlying the defective migration observed in Jak3−/− lymphocytes remains elusive. Here, it is demonstrated for the first time, that Jak3 is required for the actin cytoskeleton reorganization in T lymphocytes responding to chemokines. It was found that Jak3 regulates actin polymerization by controlling cofilin inactivation in response to CCL21 and CXCL12. Interestingly, cofilin inactivation was not precluded in PTX- treated cells despite their impaired actin polymerization. Additionally, Jak3 was required for small GTPases Rac1 and RhoA activation, which are indispensable for acquisition of the migratory cell phenotype and the generation of a functional leading edge and uropod, respectively. This defect correlates with data obtained by time-lapse video-microscopy showing an incompetent uropod formation and impaired motility in Jak3-pharmacologically inhibited T lymphocytes. Our data support a new model in which Jak3 and heterotrimeric G proteins can use independent, but complementary, signaling pathways to regulate actin cytoskeleton dynamics during cell migration in response to chemokines. PMID:24498424

  5. Jak3 enables chemokine-dependent actin cytoskeleton reorganization by regulating cofilin and Rac/Rhoa GTPases activation.

    PubMed

    Ambriz-Peña, Xochitl; García-Zepeda, Eduardo Alberto; Meza, Isaura; Soldevila, Gloria

    2014-01-01

    We have previously shown that Jak3 is involved in the signaling pathways of CCR7, CCR9 and CXCR4 in murine T lymphocytes and that Jak3⁻/⁻ lymphocytes display an intrinsic defect in homing to peripheral lymph nodes. However, the molecular mechanism underlying the defective migration observed in Jak3⁻/⁻ lymphocytes remains elusive. Here, it is demonstrated for the first time, that Jak3 is required for the actin cytoskeleton reorganization in T lymphocytes responding to chemokines. It was found that Jak3 regulates actin polymerization by controlling cofilin inactivation in response to CCL21 and CXCL12. Interestingly, cofilin inactivation was not precluded in PTX- treated cells despite their impaired actin polymerization. Additionally, Jak3 was required for small GTPases Rac1 and RhoA activation, which are indispensable for acquisition of the migratory cell phenotype and the generation of a functional leading edge and uropod, respectively. This defect correlates with data obtained by time-lapse video-microscopy showing an incompetent uropod formation and impaired motility in Jak3-pharmacologically inhibited T lymphocytes. Our data support a new model in which Jak3 and heterotrimeric G proteins can use independent, but complementary, signaling pathways to regulate actin cytoskeleton dynamics during cell migration in response to chemokines.

  6. A Feedback Loop between Dynamin and Actin Recruitment during Clathrin-Mediated Endocytosis

    PubMed Central

    Taylor, Marcus J.; Lampe, Marko; Merrifield, Christien J.

    2012-01-01

    Clathrin-mediated endocytosis proceeds by a sequential series of reactions catalyzed by discrete sets of protein machinery. The final reaction in clathrin-mediated endocytosis is membrane scission, which is mediated by the large guanosine triophosphate hydrolase (GTPase) dynamin and which may involve the actin-dependent recruitment of N-terminal containing BIN/Amphiphysin/RVS domain containing (N-BAR) proteins. Optical microscopy has revealed a detailed picture of when and where particular protein types are recruited in the ∼20–30 s preceding scission. Nevertheless, the regulatory mechanisms and functions that underpin protein recruitment are not well understood. Here we used an optical assay to investigate the coordination and interdependencies between the recruitment of dynamin, the actin cytoskeleton, and N-BAR proteins to individual clathrin-mediated endocytic scission events. These measurements revealed that a feedback loop exists between dynamin and actin at sites of membrane scission. The kinetics of dynamin, actin, and N-BAR protein recruitment were modulated by dynamin GTPase activity. Conversely, acute ablation of actin dynamics using latrunculin-B led to a ∼50% decrease in the incidence of scission, an ∼50% decrease in the amplitude of dynamin recruitment, and abolished actin and N-BAR recruitment to scission events. Collectively these data suggest that dynamin, actin, and N-BAR proteins work cooperatively to efficiently catalyze membrane scission. Dynamin controls its own recruitment to scission events by modulating the kinetics of actin and N-BAR recruitment to sites of scission. Conversely actin serves as a dynamic scaffold that concentrates dynamin and N-BAR proteins at sites of scission. PMID:22505844

  7. The role of actin cytoskeleton in oscillatory fluid flow-induced signaling in MC3T3-E1 osteoblasts.

    PubMed

    Malone, Amanda M D; Batra, Nikhil N; Shivaram, Giri; Kwon, Ron Y; You, Lidan; Kim, Chi Hyun; Rodriguez, Joshua; Jair, Kai; Jacobs, Christopher R

    2007-05-01

    Fluid flow due to loading in bone is a potent mechanical signal that may play an important role in bone adaptation to its mechanical environment. Previous in vitro studies of osteoblastic cells revealed that the upregulation of cyclooxygenase-2 (COX-2) and c-fos induced by steady fluid flow depends on a change in actin polymerization dynamics and the formation of actin stress fibers. Exposing cells to dynamic oscillatory fluid flow, the temporal flow pattern that results from normal physical activity, is also known to result in increased COX-2 expression and PGE(2) release. The purpose of this study was to determine whether dynamic fluid flow results in changes in actin dynamics similar to steady flow and to determine whether alterations in actin dynamics are required for PGE(2) release. We found that exposure to oscillatory fluid flow did not result in the development of F-actin stress fibers in MC3T3-E1 osteoblastic cells and that inhibition of actin polymerization with cytochalasin D did not inhibit intracellular calcium mobilization or PGE(2) release. In fact, PGE(2) release was increased threefold in the polymerization inhibited cells and this PGE(2) release was dependent on calcium release from the endoplasmic reticulum. This was in contrast to the PGE(2) release that occurs in normal cells, which is independent of calcium flux from endoplasmic reticulum stores. We suggest that this increased PGE(2) release involves a different molecular mechanism perhaps involving increased deformation due to the compromised cytoskeleton.

  8. Environmental toxicants perturb human Sertoli cell adhesive function via changes in F-actin organization mediated by actin regulatory proteins.

    PubMed

    Xiao, Xiang; Mruk, Dolores D; Tang, Elizabeth I; Wong, Chris K C; Lee, Will M; John, Constance M; Turek, Paul J; Silvestrini, Bruno; Cheng, C Yan

    2014-06-01

    Can human Sertoli cells cultured in vitro and that have formed an epithelium be used as a model to monitor toxicant-induced junction disruption and to better understand the mechanism(s) by which toxicants disrupt cell adhesion at the Sertoli cell blood-testis barrier (BTB)? Our findings illustrate that human Sertoli cells cultured in vitro serve as a reliable system to monitor the impact of environmental toxicants on the BTB function. Suspicions of a declining trend in semen quality and a concomitant increase in exposures to environmental toxicants over the past decades reveal the need of an in vitro system that efficiently and reliably monitors the impact of toxicants on male reproductive function. Furthermore, studies in rodents have confirmed that environmental toxicants impede Sertoli cell BTB function in vitro and in vivo. We examined the effects of two environmental toxicants: cadmium chloride (0.5-20 µM) and bisphenol A (0.4-200 µM) on human Sertoli cell function. Cultured Sertoli cells from three men were used in this study, which spanned an 18-month period. Human Sertoli cells from three subjects were cultured in F12/DMEM containing 5% fetal bovine serum. Changes in protein expression were monitored by immunoblotting using specific antibodies. Immunofluorescence analyses were used to assess changes in the distribution of adhesion proteins, F-actin and actin regulatory proteins following exposure to two toxicants: cadmium chloride and bisphenol A (BPA). Human Sertoli cells were sensitive to cadmium and BPA toxicity. Changes in the localization of cell adhesion proteins were mediated by an alteration of the actin-based cytoskeleton. This alteration of F-actin network in Sertoli cells as manifested by truncation and depolymerization of actin microfilaments at the Sertoli cell BTB was caused by mislocalization of actin filament barbed end capping and bundling protein Eps8, and branched actin polymerization protein Arp3. Besides impeding actin dynamics

  9. Actin-mediated feedback loops in B-cell receptor signaling

    PubMed Central

    Song, Wenxia; Liu, Chaohong; Seeley-Fallen, Margaret K.; Miller, Heather; Ketchum, Christina; Upadhyaya, Arpita

    2013-01-01

    Summary Upon recognizing cognate antigen, B cells mobilize multiple cellular apparatuses to propagate an optimal response. Antigen binding is transduced into cytoplasmic signaling events through B-cell antigen receptor (BCR)-based signalosomes at the B-cell surface. BCR signalosomes are dynamic and transient and are subsequently endocytosed for antigen processing. The function of BCR signalosomes is one of the determining factors for the fate of B cells: clonal expansion, anergy, or apoptosis. Accumulating evidence underscores the importance of the actin cytoskeleton in B-cell activation. We have begun to appreciate the role of actin dynamics in regulating BCR-mediated tonic signaling and the formation of BCR signalosomes. Our recent studies reveal an additional function of the actin cytoskeleton in the downregulation of BCR signaling, consequently contributing to the generation and maintenance of B-cell self-tolerance. In this review, we discuss how actin remodels its organization and dynamics in close coordination with BCR signaling and how actin remodeling in turn amplifies the activation and subsequent downregulation process of BCR signaling, providing vital feedback for optimal BCR activation. PMID:24117821

  10. In vivo reorganization of the actin cytoskeleton in leaves of Nicotiana tabacum L. transformed with plastin-GFP. Correlation with light-activated chloroplast responses

    PubMed Central

    Anielska-Mazur, Anna; Bernaś, Tytus; Gabryś, Halina

    2009-01-01

    Background The actin cytoskeleton is involved in the responses of plants to environmental signals. Actin bundles play the role of tracks in chloroplast movements activated by light. Chloroplasts redistribute in response to blue light in the mesophyll cells of Nicotiana tabacum. The aim of this work was to study the relationship between chloroplast responses and the organization of actin cytoskeleton in living tobacco cells. Chloroplast movements were measured photometrically as changes in light transmission through the leaves. The actin cytoskeleton, labeled with plastin-GFP, was visualised by confocal microscopy. Results The actin cytoskeleton was affected by strong blue and red light. No blue light specific actin reorganization was detected. EGTA and trifluoperazine strongly inhibited chloroplast responses and disrupted the integrity of the cytoskeleton. This disruption was reversible by Ca2+ or Mg2+. Additionally, the effect of trifluoperazine was reversible by light. Wortmannin, an inhibitor of phosphoinositide kinases, potently inhibited chloroplast responses but did not influence the actin cytoskeleton at the same concentration. Also this inhibition was reversed by Ca2+ and Mg2+. Magnesium ions were equally or more effective than Ca2+ in restoring chloroplast motility after treatment with EGTA, trifluoperazine or wortmannin. Conclusion The architecture of the actin cytoskeleton in the mesophyll of tobacco is significantly modulated by strong light. This modulation does not affect the direction of chloroplast redistribution in the cell. Calcium ions have multiple functions in the mechanism of the movements. Our results suggest also that Mg2+ is a regulatory molecule cooperating with Ca2+ in the signaling pathway of blue light-induced tobacco chloroplast movements. PMID:19480655

  11. Interaction between MyRIP and the actin cytoskeleton regulates Weibel-Palade body trafficking and exocytosis.

    PubMed

    Conte, Ianina L; Hellen, Nicola; Bierings, Ruben; Mashanov, Gregory I; Manneville, Jean-Baptiste; Kiskin, Nikolai I; Hannah, Matthew J; Molloy, Justin E; Carter, Tom

    2016-02-01

    Weibel-Palade body (WPB)-actin interactions are essential for the trafficking and secretion of von Willebrand factor; however, the molecular basis for this interaction remains poorly defined. Myosin Va (MyoVa or MYO5A) is recruited to WPBs by a Rab27A-MyRIP complex and is thought to be the prime mediator of actin binding, but direct MyRIP-actin interactions can also occur. To evaluate the specific contribution of MyRIP-actin and MyRIP-MyoVa binding in WPB trafficking and Ca(2+)-driven exocytosis, we used EGFP-MyRIP point mutants with disrupted MyoVa and/or actin binding and high-speed live-cell fluorescence microscopy. We now show that the ability of MyRIP to restrict WPB movement depends upon its actin-binding rather than its MyoVa-binding properties. We also show that, although the role of MyRIP in Ca(2+)-driven exocytosis requires both MyoVa- and actin-binding potential, it is the latter that plays a dominant role. In view of these results and together with the analysis of actin disruption or stabilisation experiments, we propose that the role of MyRIP in regulating WPB trafficking and exocytosis is mediated largely through its interaction with actin rather than with MyoVa.

  12. Interaction between MyRIP and the actin cytoskeleton regulates Weibel–Palade body trafficking and exocytosis

    PubMed Central

    Conte, Ianina L.; Hellen, Nicola; Bierings, Ruben; Mashanov, Gregory I.; Manneville, Jean-Baptiste; Kiskin, Nikolai I.; Hannah, Matthew J.; Molloy, Justin E.; Carter, Tom

    2016-01-01

    ABSTRACT Weibel–Palade body (WPB)–actin interactions are essential for the trafficking and secretion of von Willebrand factor; however, the molecular basis for this interaction remains poorly defined. Myosin Va (MyoVa or MYO5A) is recruited to WPBs by a Rab27A–MyRIP complex and is thought to be the prime mediator of actin binding, but direct MyRIP–actin interactions can also occur. To evaluate the specific contribution of MyRIP–actin and MyRIP–MyoVa binding in WPB trafficking and Ca2+-driven exocytosis, we used EGFP–MyRIP point mutants with disrupted MyoVa and/or actin binding and high-speed live-cell fluorescence microscopy. We now show that the ability of MyRIP to restrict WPB movement depends upon its actin-binding rather than its MyoVa-binding properties. We also show that, although the role of MyRIP in Ca2+-driven exocytosis requires both MyoVa- and actin-binding potential, it is the latter that plays a dominant role. In view of these results and together with the analysis of actin disruption or stabilisation experiments, we propose that the role of MyRIP in regulating WPB trafficking and exocytosis is mediated largely through its interaction with actin rather than with MyoVa. PMID:26675235

  13. Myxoma virus oncolytic efficiency can be enhanced through chemical or genetic disruption of the actin cytoskeleton.

    PubMed

    Irwin, Chad R; Favis, Nicole A; Agopsowicz, Kate C; Hitt, Mary M; Evans, David H

    2013-01-01

    Myxoma virus (MYXV) is one of many animal viruses that exhibit oncolytic properties in transformed human cells. Compared to orthopoxviruses like vaccinia (VACV), MYXV spreads inefficiently, which could compromise its use in treating tumors and their associated metastases. The VACV F11 protein promotes virus exit and rapid spread by inhibiting Rho signalling, which results in a disruption of cortical actin. We have previously shown that although MYXV lacks an F11 homolog, the F11L gene can be introduced into MYXV promoting the spread of this Leporipoxvirus in natural host cells. Here we show that the F11-encoding (F11L(+)) MYXV strain replicates to higher levels in a number of human cancer cells. We also show that F11L(+) MYXV induces better tumor control and prolonged survival of mice bearing MDA-MB-231 cancer cells. Furthermore, we show that this virus also spreads more efficiently from the site of growth in one injected tumor, to a second untreated tumor. While we focused mostly on the use of a modified MYXV we were able to show that the effects of F11 on MYXV growth in cancer cells could be mimicked through the use of pharmacological inhibition or siRNA-mediated silencing of key regulators of cortical actin (RhoA, RhoC, mDia1, or LIMK2). These data suggest that it may be possible to increase the oncolytic efficacy of wild-type MYXV using chemical inhibitors of RhoA/C or their downstream targets. Furthermore, since all viruses must overcome barriers to exit posed by structures like cortical actin, these findings suggest that the oncolytic activity of other viruses may be enhanced through similar strategies.

  14. Myxoma Virus Oncolytic Efficiency Can Be Enhanced Through Chemical or Genetic Disruption of the Actin Cytoskeleton

    PubMed Central

    Irwin, Chad R.; Favis, Nicole A.; Agopsowicz, Kate C.; Hitt, Mary M.; Evans, David H.

    2013-01-01

    Myxoma virus (MYXV) is one of many animal viruses that exhibit oncolytic properties in transformed human cells. Compared to orthopoxviruses like vaccinia (VACV), MYXV spreads inefficiently, which could compromise its use in treating tumors and their associated metastases. The VACV F11 protein promotes virus exit and rapid spread by inhibiting Rho signalling, which results in a disruption of cortical actin. We have previously shown that although MYXV lacks an F11 homolog, the F11L gene can be introduced into MYXV promoting the spread of this Leporipoxvirus in natural host cells. Here we show that the F11-encoding (F11L+) MYXV strain replicates to higher levels in a number of human cancer cells. We also show that F11L+ MYXV induces better tumor control and prolonged survival of mice bearing MDA-MB-231 cancer cells. Furthermore, we show that this virus also spreads more efficiently from the site of growth in one injected tumor, to a second untreated tumor. While we focused mostly on the use of a modified MYXV we were able to show that the effects of F11 on MYXV growth in cancer cells could be mimicked through the use of pharmacological inhibition or siRNA-mediated silencing of key regulators of cortical actin (RhoA, RhoC, mDia1, or LIMK2). These data suggest that it may be possible to increase the oncolytic efficacy of wild-type MYXV using chemical inhibitors of RhoA/C or their downstream targets. Furthermore, since all viruses must overcome barriers to exit posed by structures like cortical actin, these findings suggest that the oncolytic activity of other viruses may be enhanced through similar strategies. PMID:24391902

  15. Rapid signaling of estrogen to WAVE1 and moesin controls neuronal spine formation via the actin cytoskeleton.

    PubMed

    Sanchez, Angel Matias; Flamini, Marina Ines; Fu, Xiao-Dong; Mannella, Paolo; Giretti, Maria Silvia; Goglia, Lorenzo; Genazzani, Andrea Riccardo; Simoncini, Tommaso

    2009-08-01

    Estrogens are important regulators of neuronal cell morphology, and this is thought to be critical for gender-specific differences in brain function and dysfunction. Dendritic spine formation is dependent on actin remodeling by the WASP-family verprolin homologous (WAVE1) protein, which controls actin polymerization through the actin-related protein (Arp)-2/3 complex. Emerging evidence indicates that estrogens are effective regulators of the actin cytoskeleton in various cell types via rapid, extranuclear signaling mechanisms. We here show that 17beta-estradiol (E2) administration to rat cortical neurons leads to phosphorylation of WAVE1 on the serine residues 310, 397, and 441 and to WAVE1 redistribution toward the cell membrane at sites of dendritic spine formation. WAVE1 phosphorylation is found to be triggered by a Galpha(i)/Gbeta protein-dependent, rapid extranuclear signaling of estrogen receptor alpha to c-Src and to the small GTPase Rac1. Rac1 recruits the cyclin-dependent kinase (Cdk5) that directly phosphorylates WAVE1 on the three serine residues. After WAVE1 phosphorylation by E2, the Arp-2/3 complex concentrates at sites of spine formation, where it triggers the local reorganization of actin fibers. In parallel, E2 recruits a Galpha(13)-dependent pathway to RhoA and ROCK-2, leading to activation of actin remodeling via the actin-binding protein, moesin. Silencing of WAVE1 or of moesin abrogates the increase in dendritic spines induced by E2 in cortical neurons. In conclusion, our findings indicate that the control of actin polymerization and branching via moesin or WAVE1 is a key function of estrogen receptor alpha in neurons, which may be particularly relevant for the regulation of dendritic spines.

  16. Enhancing trabecular outflow by disrupting the actin cytoskeleton, increasing uveoscleral outflow with prostaglandins, and understanding the pathophysiology of presbyopia

    PubMed Central

    Kaufman, Paul L.

    2008-01-01

    Several major areas of work by the author and his international collaborators are reviewed. 1) The ciliary muscle in the nonhuman primate eye was disinserted at the scleral spur. Pilocarpine was then ineffective in increasing outflow facility, indicating that ciliary muscle contraction mediated the IOP-lowering effect of muscarinic cholinergics. 2) Compounds such as cytochalasins, H-7 and latrunculin A/B, which alter the actin cytoskeleton, cellular contractility and cellular adhesions in cultured trabecular meshwork cells, relaxed trabecular pathway cells and consequently the meshwork itself so as to decrease IOP and enhance trabecular outflow facility in nonhuman primates. Gene transfer approaches utilizing C3 and caldesmon over-expression by viral vectors to target specific steps in the cellular contractility/cytoskeleton/cell adhesion cascades characteristically altered trabecular meshwork cell morphology and increased outflow facility in organ-cultured anterior segments. 3) Prostaglandin F2α analogues enhanced matrix metalloproteinase production by ciliary muscle cells and scleral fibroblasts, leading to remodeling of the extracellular matrix of the ciliary muscle and sclera and consequently to increased uveoslceral outflow and decreased IOP in primates. 4) The rhesus monkey was an excellent model for human presbyopia, losing the accommodative response to cholinergic stimulation in the same timeframe relative to lifespan. No changes were found in ciliary muscle enzymes involved in acetylcholine biosynthesis or degradation or in muscarinic receptor numbers or affinity. Contractility of isolated ciliary muscle did not diminish with age, but posterior ciliary muscle attachments stiffened, suggesting a possible role in restricting muscle and consequently lens movement during accommodation. A model to reproducibly stimulate accommodation through central stimulation of the Edinger-Westphal nucleus was developed. Goniovideography and ultrasound biomicroscopic

  17. Actin-binding protein G (AbpG) participates in modulating the actin cytoskeleton and cell migration in Dictyostelium discoideum

    PubMed Central

    Lin, Wei-Chi; Wang, Liang-Chen; Pang, Te-Ling; Chen, Mei-Yu

    2015-01-01

    Cell migration is involved in various physiological and pathogenic events, and the complex underlying molecular mechanisms have not been fully elucidated. The simple eukaryote Dictyostelium discoideum displays chemotactic locomotion in stages of its life cycle. By characterizing a Dictyostelium mutant defective in chemotactic responses, we identified a novel actin-binding protein serving to modulate cell migration and named it actin-binding protein G (AbpG); this 971–amino acid (aa) protein contains an N-terminal type 2 calponin homology (CH2) domain followed by two large coiled-coil regions. In chemoattractant gradients, abpG− cells display normal directional persistence but migrate significantly more slowly than wild-type cells; expressing Flag-AbpG in mutant cells eliminates the motility defect. AbpG is enriched in cortical/lamellipodial regions and colocalizes well with F-actin; aa 401–600 and aa 501–550 fragments of AbpG show the same distribution as full-length AbpG. The aa 501–550 region of AbpG, which is essential for AbpG to localize to lamellipodia and to rescue the phenotype of abpG− cells, is sufficient for binding to F-actin and represents a novel actin-binding protein domain. Compared with wild-type cells, abpG− cells have significantly higher F-actin levels. Collectively our results suggest that AbpG may participate in modulating actin dynamics to optimize cell locomotion. PMID:25609090

  18. Phosphorylation Regulates Interaction of 210-kDa Myosin Light Chain Kinase N-terminal Domain with Actin Cytoskeleton.

    PubMed

    Vilitkevich, E L; Khapchaev, A Y; Kudryashov, D S; Nikashin, A V; Schavocky, J P; Lukas, T J; Watterson, D M; Shirinsky, V P

    2015-10-01

    High molecular weight myosin light chain kinase (MLCK210) is a multifunctional protein involved in myosin II activation and integration of cytoskeletal components in cells. MLCK210 possesses actin-binding regions both in the central part of the molecule and in its N-terminal tail domain. In HeLa cells, mitotic protein kinase Aurora B was suggested to phosphorylate MLCK210 N-terminal tail at serine residues (Dulyaninova, N. G., and Bresnick, A. R. (2004) Exp. Cell Res., 299, 303-314), but the functional significance of the phosphorylation was not established. We report here that in vitro, the N-terminal actin-binding domain of MLCK210 is located within residues 27-157 (N27-157, avian MLCK210 sequence) and is phosphorylated by cAMP-dependent protein kinase (PKA) and Aurora B at serine residues 140/149 leading to a decrease in N27-157 binding to actin. The same residues are phosphorylated in a PKA-dependent manner in transfected HeLa cells. Further, in transfected cells, phosphomimetic mutants of N27-157 showed reduced association with the detergent-stable cytoskeleton, whereas in vitro, the single S149D mutation reduced N27-157 association with F-actin to a similar extent as that achieved by N27-157 phosphorylation. Altogether, our results indicate that phosphorylation of MLCK210 at distinct serine residues, mainly at S149, attenuates the interaction of MLCK210 N-terminus with the actin cytoskeleton and might serve to regulate MLCK210 microfilament cross-linking activity in cells.

  19. Guanine Nucleotides in the Meiotic Maturation of Starfish Oocytes: Regulation of the Actin Cytoskeleton and of Ca2+ Signaling

    PubMed Central

    Kyozuka, Keiichiro; Chun, Jong T.; Puppo, Agostina; Gragnaniello, Gianni; Garante, Ezio; Santella, Luigia

    2009-01-01

    Background Starfish oocytes are arrested at the first prophase of meiosis until they are stimulated by 1-methyladenine (1-MA). The two most immediate responses to the maturation-inducing hormone are the quick release of intracellular Ca2+ and the accelerated changes of the actin cytoskeleton in the cortex. Compared with the later events of oocyte maturation such as germinal vesicle breakdown, the molecular mechanisms underlying the early events involving Ca2+ signaling and actin changes are poorly understood. Herein, we have studied the roles of G-proteins in the early stage of meiotic maturation. Methodology/Principal Findings By microinjecting starfish oocytes with nonhydrolyzable nucleotides that stabilize either active (GTPγS) or inactive (GDPβS) forms of G-proteins, we have demonstrated that: i) GTPγS induces Ca2+ release that mimics the effect of 1-MA; ii) GDPβS completely blocks 1-MA-induced Ca2+; iii) GDPβS has little effect on the amplitude of the Ca2+ peak, but significantly expedites the initial Ca2+ waves induced by InsP3 photoactivation, iv) GDPβS induces unexpectedly striking modification of the cortical actin networks, suggesting a link between the cytoskeletal change and the modulation of the Ca2+ release kinetics; v) alteration of cortical actin networks with jasplakinolide, GDPβS, or actinase E, all led to significant changes of 1-MA-induced Ca2+ signaling. Conclusions/Significance Taken together, these results indicate that G-proteins are implicated in the early events of meiotic maturation and support our previous proposal that the dynamic change of the actin cytoskeleton may play a regulatory role in modulating intracellular Ca2+ release. PMID:19617909

  20. Microarray phenotyping places cyclase associated protein CAP at the crossroad of signaling pathways reorganizing the actin cytoskeleton in Dictyostelium.

    PubMed

    Sultana, Hameeda; Neelakanta, Girish; Eichinger, Ludwig; Rivero, Francisco; Noegel, Angelika A

    2009-01-15

    Large-scale gene expression analysis has been applied recently to uncover groups of genes that are co-regulated in particular processes. Here we undertake such an analysis on CAP, a protein that participates in the regulation of the actin cytoskeleton and in cAMP signaling in Dictyostelium. microarray analysis revealed that loss of CAP altered the expression of many cytoskeletal components. One of these, the Rho GDP-dissociation inhibitor RhoGDI1, was analyzed further. RhoGDI1 null cells expressed lower amounts of CAP, which failed to accumulate predominantly at the cell cortex. To further position CAP in the corresponding signal transduction pathways we studied CAP localization and cellular functioning in mutants that have defects in several signaling components. CAP showed correct localization and dynamics in all analyzed strains except in mutants with deficient cAMP dependent protein kinase A activity, where CAP preferentially accumulated in crown shaped structures. Ectopic expression of CAP improved the efficiency of phagocytosis in Gbeta-deficient cells and restored the pinocytosis, morphology and actin distribution defects in a PI3 kinase double mutant (pi3k1/2 null). Our results show that CAP acts at multiple crossroads and links signaling pathways to the actin cytoskeleton either by physical interaction with cytoskeletal components or through regulation of their gene expression.

  1. Dictyostelium ACAP-A is an ArfGAP involved in cytokinesis, cell migration and actin cytoskeleton dynamics.

    PubMed

    Dias, Marco; Blanc, Cédric; Thazar-Poulot, Nelcy; Ben Larbi, Sabrina; Cosson, Pierre; Letourneur, François

    2013-02-01

    ACAPs and ASAPs are Arf-GTPase-activating proteins with BAR, PH, GAP and ankyrin repeat domains and are known to regulate vesicular traffic and actin cytoskeleton dynamics in mammalian cells. The amoeba Dictyostelium has only two proteins with this domain organization, instead of the six in human, enabling a more precise functional analysis. Genetic invalidation of acapA resulted in multinucleated cells with cytokinesis defects. Mutant acapA(-) cells were hardly motile and their multicellular development was significantly delayed. In addition, formation of filopodial protrusions was deficient in these cells. Conversely, re-expression of ACAP-A-GFP resulted in numerous and long filopodia-like protrusions. Mutagenesis studies showed that the ACAP-A actin remodeling function was dependent on its ability to activate its substrate, the small GTPase ArfA. Likewise, the expression of a constitutively active ArfA•GTP mutant in wild-type cells led to a significant reduction in filopodia length. Together, our data support a role for ACAP-A in the control of the actin cytoskeleton organization and dynamics through an ArfA-dependent mechanism.

  2. Cadmium affects focal adhesion kinase (FAK) in mesangial cells: involvement of CaMK-II and the actin cytoskeleton.

    PubMed

    Choong, Grace; Liu, Ying; Templeton, Douglas M

    2013-08-01

    The toxic metal ion cadmium (Cd(2+)) induces pleiotropic effects on cell death and survival, in part through effects on cell signaling mechanisms and cytoskeletal dynamics. Linking these phenomena appears to be calmodulin-dependent activation of the Ca(2+)/calmodulin-dependent protein kinase II (CaMK-II). Here we show that interference with the dynamics of the filamentous actin cytoskeleton, either by stabilization or destabilization, results in disruption of focal adhesions at the ends of organized actin structures, and in particular the loss of vinculin and focal adhesion kinase (FAK) from the contacts is a result. Low-level exposure of renal mesangial cells to CdCl2 disrupts the actin cytoskeleton and recapitulates the effects of manipulation of cytoskeletal dynamics with biological agents. Specifically, Cd(2+) treatment causes loss of vinculin and FAK from focal contacts, concomitant with cytoskeletal disruption, and preservation of cytoskeletal integrity with either a calmodulin antagonist or a CaMK-II inhibitor abrogates these effects of Cd(2+). Notably, inhibition of CaMK-II decreases the migration of FAK-phosphoTyr925 to a membrane-associated compartment where it is otherwise sequestered from focal adhesions in a Cd(2+)-dependent manner. These results add further insight into the mechanism of the CaMK-II-dependent effects of Cd(2+) on cellular function. Copyright © 2013 Wiley Periodicals, Inc.

  3. Downregulation of tumorogenicity and changes in the actin cytoskeleton of murine hepatoma after irradiation with polychromatic visible and IR light.

    PubMed

    Knyazev, Nickolay A; Samoilova, Kira A; Abrahamse, Heidi; Filatova, Natalia A

    2015-04-01

    This study evaluated the function and structural consequences of direct exposure of murine hepatoma MH-22a cells to polychromatic polarized light, to determine potential risk of malignancy following irradiation. Visible (VIS) and infrared (IR) light have been actively used for prevention and treatment of complications developed after conventional tumor therapy. However, the safety associated with this irradiation has not been determined. Polychromatic light (480-3400 and 385-750 nm), were used at different doses (4.8-38.4 J/cm(2)) to determine the viability, proliferation, and actin cytoskeleton in vitro by flow cytometry and confocal microscopy. Tumorogenic properties of cells were studied in vivo after transplantation in C3HA mice. Polychromatic light of a wide range of doses did not change the viability and proliferation of cells. After transplantation of cells irradiated with VIS-IR light (4.8 and 9.6 J/cm(2)) and VIS light (38.4 J/cm(2)) the tumor volume was lower in the treated group than in the control group in vivo. Transplantability of the irradiated cells also decreased, whereas survival of tumor-bearing mice increased. Three cell populations with different cytoskeleton structure were identified. After irradiation, the reorganized part of the actin cytoskeleton changed its localization to the submembranous area. A decrease of tumorigenicity in cells irradiated with polychromatic light used in non-damaging doses correlated with an increase in the number of cells with reorganized actin in the submembranous area. The results of the present study argue in favor of the oncological safety of polychromatic VIS-IR light (480-3400 nm).

  4. Srv2/CAP is required for polarized actin cable assembly and patch internalization during clathrin-mediated endocytosis.

    PubMed

    Toshima, Junko Y; Horikomi, Chika; Okada, Asuka; Hatori, Makiko N; Nagano, Makoto; Masuda, Atsushi; Yamamoto, Wataru; Siekhaus, Daria Elisabeth; Toshima, Jiro

    2016-01-15

    The dynamic assembly and disassembly of actin filaments is essential for the formation and transport of vesicles during endocytosis. In yeast, two types of actin structures, namely cortical patches and cytoplasmic cables, play a direct role in endocytosis, but how their interaction is regulated remains unclear. Here, we show that Srv2/CAP, an evolutionarily conserved actin regulator, is required for efficient endocytosis owing to its role in the formation of the actin patches that aid initial vesicle invagination and of the actin cables that these move along. Deletion of the SRV2 gene resulted in the appearance of aberrant fragmented actin cables that frequently moved past actin patches, the sites of endocytosis. We find that the C-terminal CARP domain of Srv2p is vitally important for the proper assembly of actin patches and cables; we also demonstrate that the N-terminal helical folded domain of Srv2 is required for its localization to actin patches, specifically to the ADP-actin rich region through an interaction with cofilin. These results demonstrate the in vivo roles of Srv2p in the regulation of the actin cytoskeleton during clathrin-mediated endocytosis.

  5. MARCKS actin-binding capacity mediates actin filament assembly during mitosis in human hepatic stellate cells.

    PubMed

    Rombouts, Krista; Mello, Tommaso; Liotta, Francesco; Galli, Andrea; Caligiuri, Alessandra; Annunziato, Francesco; Pinzani, Massimo

    2012-08-15

    Cross-linking between the actin cytoskeleton and plasma membrane actin-binding proteins is a key interaction responsible for the mechanical properties of the mitotic cell. Little is known about the identity, the localization, and the function of actin filament-binding proteins during mitosis in human hepatic stellate cells (hHSC). The aim of the present study was to identify and analyze the cross talk between actin and myristoylated alanine-rich kinase C substrate (MARCKS), an important PKC substrate and actin filament-binding protein, during mitosis in primary hHSC. Confocal analysis and chromosomal fraction analysis of mitotic hHSC demonstrated that phosphorylated (P)-MARCKS displays distinct phase-dependent localizations, accumulates at the perichromosomal layer, and is a centrosomal protein belonging to the chromosomal cytosolic fraction. Aurora B kinase (AUBK), an important mitotic regulator, β-actin, and P-MARCKS concentrate at the cytokinetic midbody during cleavage furrow formation. This localization is critical since MARCKS-depletion in hHSC is characterized by a significant loss in cytosolic actin filaments and cortical β-actin that induces cell cycle inhibition and dislocation of AUBK. A depletion of AUBK in hHSC affects cell cycle, resulting in multinucleation. Quantitative live cell imaging demonstrates that the actin filament-binding capacity of MARCKS is key to regulate mitosis since the cell cycle inhibitory effect in MARCKS-depleted cells caused abnormal cell morphology and an aberrant cytokinesis, resulting in a significant increase in cell cycle time. These findings implicate that MARCKS, an important PKC substrate, is essential for proper cytokinesis and that MARCKS and its partner actin are key mitotic regulators during cell cycle in hHSC.

  6. Leukocyte adhesion to vascular endothelium induces E-selectin linkage to the actin cytoskeleton

    PubMed Central

    1996-01-01

    We have examined functions of the cytoplasmic domain of E-selectin, an inducible endothelial transmembrane protein, especially its ability to associate with the cytoskeleton during leukocyte adhesion. Confocal microscopy of interleukin-1 beta (IL-1 beta)-activated human umbilical vein endothelial cells (HUVEC) visualized clustering of E-selectin molecules in the vicinity of leukocyte-endothelial cell attachment sites. A detergent based extraction and Western blotting procedure demonstrated an association of E-selectin with the insoluble (cytoskeletal) fraction of endothelial monolayers that correlated with adhesion of leukocytes via an E-selectin-dependent mechanism. A mutant form of E-selectin lacking the cytoplasmic domain (tailless E-selectin) was expressed in COS-7 cell and supported leukocyte attachment (in a nonstatic adhesion assay) in a fashion similar to the native E-selectin molecule, but failed to become associated with the cytoskeletal fraction. To identify the cytoskeletal components that associate with the cytoplasmic domain of E-selectin, paramagnetic beads coated with the adhesion-blocking anti-E-selectin monoclonal antibody H18/7 were incubated with IL-1 beta-activated HUVEC, and then subjected to detergent extraction and magnetic separation. Certain actin-associated proteins, including alpha-actinin, vinculin, filamin, paxillin, as well as focal adhesion kinase (FAK), were copurified by this procedure, however talin was not. When a mechanical stress was applied to H18/7- coated ferromagnetic beads bound to the surface of IL-1 beta-activated HUVEC, using a magnetical twisting cytometer, the observed resistance to the applied stress was inhibited by cytochalasin D, thus demonstrating transmembrane cytoskeletal mechanical linkage. COS-7 cells transfected with the tailless E-selectin failed to show resistance to the twisting stress. Taken together, these data indicate that leukocyte adhesion to cytokine-activated HUVEC induces transmembrane

  7. Heregulin regulates the actin cytoskeleton and promotes invasiveproperties in breast cancer cell lines

    SciTech Connect

    Hijazi, Mai M.; Thompson, Erik W.; Tang, Careen; Coopman, Peter; Torri, Jeffrey A.; Yang, Dajun; Mueller, Susette C.; Lupu, Ruth

    1999-10-01

    The metastatic process requires changes in tumor celladhesion proerties, cell motility and remodeling of the extracellularmatrix. The erbB2 protooncogene is overexpressed in approximately 30percent of breast cancers and is a major prognostic parameter whenpresent in invasive disease. However, it is expressed more often innon-invasive tumors, where it has no prognostic significance, thus itsrole in promoting metastatic tumor progression is not clear. A ligand forthe erbB2 receptor has not yet been identified but it can be activated byheterodimerization with heregulin (HRG)-stimulated erbB3 and erbB4receptors. The HRGs are a family of polypeptide growth factors that havebeen shown to play a role in embryogenesis, tumor formation and growthand differentiation of breast cancer cells. The erbB3 and erbB4 receptorsare involved in transregulation of erbB2 signaling, however theirrespective contributions to the progression of breast cancer have not yetbeen determined. The work presented here suggests additional biologicalroles for HRG including regulation of the actin cytoskeleton andinduction of motility and invasion in breast cancer cells. HRG-expressingbreast cancer cell lines are characterized by low erbB receptor levelsand a high invasive and metastatic index, while those which overexpresserbB2 demonstrate minimal invasive potential in vitro and arenon-tumorigenic in vivo. Treatment of the highly tumorigenic andmetastatic HRG-expressing breast cancer cell line MDA-MB-231 with anHRG-neutralizing antibody significantly inhibited proliferation inculture and motility in the Boyden chamber assay. Addition of exogenousHRG ligand to non-invasive erbB2 overexpressing cells (SKBr-3) at lowconcentrations (0.2ng/ml) induced formation of pseudopodia, enhancedphagocytic activity and increased chemomigration and invasion in theBoyden chamber assay. The specificity of the chemomigration response toHRG is demonstrated by inhibition with the anti-HRG neutralizingantibody. These

  8. SWAP70 Organizes the Actin Cytoskeleton and Is Essential for Phagocytosis.

    PubMed

    Baranov, Maksim V; Revelo, Natalia H; Dingjan, Ilse; Maraspini, Riccardo; Ter Beest, Martin; Honigmann, Alf; van den Bogaart, Geert

    2016-11-01

    Actin plays a critical role during the early stages of pathogenic microbe internalization by immune cells. In this study, we identified a key mechanism of actin filament tethering and stabilization to the surface of phagosomes in human dendritic cells. We found that the actin-binding protein SWAP70 is specifically recruited to nascent phagosomes by binding to the lipid phosphatidylinositol (3,4)-bisphosphate. Multi-color super-resolution stimulated emission depletion (STED) microscopy revealed that the actin cage surrounding early phagosomes is formed by multiple concentric rings containing SWAP70. SWAP70 colocalized with and stimulated activation of RAC1, a known activator of actin polymerization, on phagosomes. Genetic ablation of SWAP70 impaired actin polymerization around phagosomes and resulted in a phagocytic defect. These data show a key role for SWAP70 as a scaffold for tethering the peripheral actin cage to phagosomes.

  9. Differential remodeling of actin cytoskeleton architecture by profilin isoforms leads to distinct effects on cell migration and invasion.

    PubMed

    Mouneimne, Ghassan; Hansen, Scott D; Selfors, Laura M; Petrak, Lara; Hickey, Michele M; Gallegos, Lisa L; Simpson, Kaylene J; Lim, James; Gertler, Frank B; Hartwig, John H; Mullins, R Dyche; Brugge, Joan S

    2012-11-13

    Dynamic actin cytoskeletal reorganization is integral to cell motility. Profilins are well-characterized regulators of actin polymerization; however, functional differences among coexpressed profilin isoforms are not well defined. Here, we demonstrate that profilin-1 and profilin-2 differentially regulate membrane protrusion, motility, and invasion; these processes are promoted by profilin-1 and suppressed by profilin-2. Compared to profilin-1, profilin-2 preferentially drives actin polymerization by the Ena/VASP protein, EVL. Profilin-2 and EVL suppress protrusive activity and cell motility by an actomyosin contractility-dependent mechanism. Importantly, EVL or profilin-2 downregulation enhances invasion in vitro and in vivo. In human breast cancer, lower EVL expression correlates with high invasiveness and poor patient outcome. We propose that profilin-2/EVL-mediated actin polymerization enhances actin bundling and suppresses breast cancer cell invasion.

  10. Rnd3 Regulation of the Actin Cytoskeleton Promotes Melanoma Migration and Invasive Outgrowth in 3-D

    PubMed Central

    Klein, R. Matthew; Aplin, Andrew E.

    2009-01-01

    Depth of cell invasion into the dermis is a clinical determinant for poor prognosis in cutaneous melanoma. The signaling events that promote the switch from a non-invasive to invasive tumor phenotype remain obscure. Activating mutations in the serine/threonine kinase B-RAF are prevalent in melanoma. Mutant B-RAF is required for melanoma cell invasion. The expression of Rnd3, a Rho family GTPase, is regulated by mutant B-RAF, although its role in melanoma progression is unknown. In this study, we determined the functional contribution of Rnd3 to invasive melanoma. Endogenous Rnd3 was targeted for knockdown using a doxycyclineinducible shRNA system in invasive human melanoma cells. Depletion of Rnd3 promoted prominent actin stress fibers and enlarged focal adhesions. Mechanistically, stress fiber formation induced by Rnd3 knockdown required the specific involvement of RhoA and ROCK1/2 activity but not RhoB or RhoC. Rnd3 expression in human melanoma cell lines was strongly associated with elevated ERK phosphorylation and invasive behavior in a 3-D dermal-like environment. A functional role for Rnd3 was demonstrated in the invasive outgrowth of melanoma tumor spheroids. Knockdown of Rnd3 reduced invasive outgrowth of spheroids embedded in collagen gels. Additionally, Rnd3 depletion inhibited collective and border cell movement out from spheroids in a ROCK1/2-dependent manner. Collectively, these findings implicate Rnd3 as a major suppressor of RhoA mediated actin cytoskeletal organization and in the acquisition of an invasive melanoma phenotype. PMID:19244113

  11. Rnd3 regulation of the actin cytoskeleton promotes melanoma migration and invasive outgrowth in three dimensions.

    PubMed

    Klein, R Matthew; Aplin, Andrew E

    2009-03-15

    The depth of cell invasion into the dermis is a clinical determinant for poor prognosis in cutaneous melanoma. The signaling events that promote the switch from a noninvasive to invasive tumor phenotype remain obscure. Activating mutations in the serine/threonine kinase B-RAF are prevalent in melanoma. Mutant B-RAF is required for melanoma cell invasion. The expression of Rnd3, a Rho family GTPase, is regulated by mutant B-RAF, although its role in melanoma progression is unknown. In this study, we determined the functional contribution of Rnd3 to invasive melanoma. Endogenous Rnd3 was targeted for knockdown using a doxycycline-inducible short hairpin RNA system in invasive human melanoma cells. Depletion of Rnd3 promoted prominent actin stress fibers and enlarged focal adhesions. Mechanistically, stress fiber formation induced by Rnd3 knockdown required the specific involvement of RhoA and ROCK1/2 activity but not RhoB or RhoC. Rnd3 expression in human melanoma cell lines was strongly associated with elevated extracellular signal-regulated kinase phosphorylation and invasive behavior in a three-dimensional dermal-like environment. A functional role for Rnd3 was shown in the invasive outgrowth of melanoma tumor spheroids. Knockdown of Rnd3 reduced the invasive outgrowth of spheroids embedded in collagen gels. Additionally, Rnd3 depletion inhibited collective and border cell movement out from spheroids in a ROCK1/2-dependent manner. Collectively, these findings implicate Rnd3 as a major suppressor of RhoA-mediated actin cytoskeletal organization and in the acquisition of an invasive melanoma phenotype.

  12. Identification and Characterization of a Candidate Wolbachia pipientis Type IV Effector That Interacts with the Actin Cytoskeleton.

    PubMed

    Sheehan, Kathy B; Martin, MaryAnn; Lesser, Cammie F; Isberg, Ralph R; Newton, Irene L G

    2016-07-05

    Many bacteria live as intracellular symbionts, causing persistent infections within insects. One extraordinarily common infection is that of Wolbachia pipientis, which infects 40% of insect species and induces reproductive effects. The bacteria are passed from generation to generation both vertically (through the oocyte) and horizontally (by environmental transmission). Maintenance of the infection within Drosophila melanogaster is sensitive to the regulation of actin, as Wolbachia inefficiently colonizes strains hemizygous for the profilin or villin genes. Therefore, we hypothesized that Wolbachia must depend on the host actin cytoskeleton. In this study, we identify and characterize a Wolbachia protein (WD0830) that is predicted to be secreted by the bacterial parasite. Expression of WD0830 in a model eukaryote (the yeast Saccharomyces cerevisiae) induces a growth defect associated with the appearance of aberrant, filamentous structures which colocalize with rhodamine-phalloidin-stained actin. Purified WD0830 bundles actin in vitro and cosediments with actin filaments, suggesting a direct interaction of the two proteins. We characterized the expression of WD0830 throughout Drosophila development and found it to be upregulated in third-instar larvae, peaking in early pupation, during the critical formation of adult tissues, including the reproductive system. In transgenic flies, heterologously expressed WD0830 localizes to the developing oocyte. Additionally, overexpression of WD0830 results in increased Wolbachia titers in whole flies, in stage 9 and 10 oocytes, and in embryos, compared to controls, suggesting that the protein may facilitate Wolbachia's replication or transmission. Therefore, this candidate secreted effector may play a role in Wolbachia's infection of and persistence within host niches. The obligate intracellular Wolbachia pipientis is a ubiquitous alphaproteobacterial symbiont of arthropods and nematodes and is related to the rickettsial

  13. Distribution of actin of the human erythrocyte membrane cytoskeleton after interaction with radiographic contrast media.

    PubMed

    Franke, R P; Scharnweber, T; Fuhrmann, R; Krüger, A; Wenzel, F; Mrowietz, C; Jung, F

    2013-01-01

    A type-dependent chemotoxic effect of radiographic contrast media on erythrocytes and endothelial cells was reported several times. While mechanisms of toxicity are still unclear the cellular reactions e.g. echinocyte formation in erythrocytes and the buckling of endothelial cells coincided with deterioration of capillary perfusion (in patients with coronary artery disease) and tissue oxygen tension (in the myocardium of pigs). Whether the shape changes in erythrocytes coincide with changes in the arrangement of actin, the core of the actin-spectrin cytoskeletal network and possible actor in membrane stresses and deformation is not known until now. To get specific informations actin was stained using two different staining methods (antibodies to β-actin staining oligomeric G-actin and polymeric F-actin and Phalloidin-Rhodamin staining polymeric F-actin only). In addition, an advanced version of confocal laser scanning microscopes was used enabling the display of the actin arrangement near substrate surfaces. Blood smears were produced after erythrocyte suspension in autologous plasma or in two different plasma/RCM mixtures. In this study an even homogenous distribution of fine grained globular actin in the normal human erythrocyte could be demonstrated. After suspension of erythrocytes in a plasma/Iodixanol mixture an increased number of membrane protrusions appeared densely filled with intensely stained actin similar to cells suspended in autologous plasma, however, there in less numbers. Suspension in Iopromide, in contrast, induced a complete reorganization of the cytoskeletal actin: the fine grained globular actin distribution disappeared and only few, long and thick actin filaments bundled and possibly polymerized appeared, instead, shown here for the first time.

  14. Apoptotic effect of imatinib on human colon adenocarcinoma cells: influence on actin cytoskeleton organization and cell migration.

    PubMed

    Popow-Woźniak, Agnieszka; Woźniakowska, Aleksandra; Kaczmarek, Lukasz; Malicka-Błaszkiewicz, Maria; Nowak, Dorota

    2011-09-30

    Imatinib mesylate (STI571) is the first member of a new class of agents that act by inhibiting specific tyrosine kinases, rather than killing all rapidly dividing cells. This drug is usually used in the treatment of chronic myelogenous leukemia and gastrointestinal stromal tumors. It was recognized to inhibit activity of kinases such as Bcr/Abl, platelet-derived growth factor receptor, and c-kit. These proteins play important roles in cell growth, motility, and survival. Therefore, studies on the biological effects of imatinib on different cellular models are very important. Human colon adenocarcinoma LS180 cell line was used in the studies presented. Cells were exposed to 0.1-100 μM imatinib for 24 and 48 h. Dose-dependent decreases in cell viability and morphological changes were observed. Moreover, the apoptotic effect of imatinib (10 μM, 50 μM) after 24 h of exposure was demonstrated as evaluated by translocation of phosphatidylserine to external membrane leaflet and by increased activity of caspase-3. Special attention was focused on imatinib influence on actin cytoskeleton organization and migration ability of LS180 cells. Distinct alterations in actin cytoskeleton architecture occurred in response to drug treatment, accompanied by appearance of filamentous actin aggregates and decrease in actin polymerization state. These changes were correlated with remarkable decrease in cell migration capacity. In summary, our data clearly demonstrate that imatinib induces apoptosis and inhibits human colon adenocarcinoma cell migration. Therefore, this drug may have potential in colon cancer therapy in the future.

  15. Actin depolymerization mediated loss of SNTA1 phosphorylation and Rac1 activity has implications on ROS production, cell migration and apoptosis.

    PubMed

    Bhat, Sehar Saleem; Parray, Arif Ali; Mushtaq, Umar; Fazili, Khalid Majid; Khanday, Firdous Ahmad

    2016-06-01

    Alpha-1-syntrophin (SNTA1) and Rac1 are part of a signaling pathway via the dystrophin glycoprotein complex (DGC). Both SNTA1 and Rac1 proteins are over-expressed in various carcinomas. It is through the DGC signaling pathway that SNTA1 has been shown to act as a link between the extra cellular matrix, the internal cell signaling apparatus and the actin cytoskeleton. SNTA1 is involved in the modulation of the actin cytoskeleton and actin reorganization. Rac1 also controls actin cytoskeletal organization in the cell. In this study, we present the interplay between f-actin, SNTA1 and Rac1. We analyzed the effect of actin depolymerization on SNTA1 tyrosine phosphorylation and Rac1 activity using actin depolymerizing drugs, cytochalasin D and latrunculin A. Our results indicate a marked decrease in the tyrosine phosphorylation of SNTA1 upon actin depolymerization. Results suggest that actin depolymerization mediated loss of SNTA1 phosphorylation leads to loss of interaction between SNTA1 and Rac1, with a concomitant loss of Rac1 activation. The loss of SNTA1tyrosine phosphorylation and Rac1 activity by actin depolymerization results in increased apoptosis, decreased cell migration and decreased reactive oxygen species (ROS) levels in breast carcinoma cells. Collectively, our results present a possible role of f-actin in the SNTA1-Rac1 signaling pathway and implications of actin depolymerization on cell migration, ROS production and apoptosis.

  16. Hypertension-associated point mutations in the adducin alpha and beta subunits affect actin cytoskeleton and ion transport.

    PubMed Central

    Tripodi, G; Valtorta, F; Torielli, L; Chieregatti, E; Salardi, S; Trusolino, L; Menegon, A; Ferrari, P; Marchisio, P C; Bianchi, G

    1996-01-01

    The adducin heterodimer is a protein affecting the assembly of the actin-based cytoskeleton. Point mutations in rat adducin alpha (F316Y) and beta (Q529R) subunits are involved in a form of rat primary hypertension (MHS) associated with faster kidney tubular ion transport. A role for adducin in human primary hypertension has also been suggested. By studying the interaction of actin with purified normal and mutated adducin in a cell-free system and the actin assembly in rat kidney epithelial cells (NRK-52E) transfected with mutated rat adducin cDNA, we show that the adducin isoforms differentially modulate: (a) actin assembly both in a cell-free system and within transfected cells; (b) topography of alpha V integrin together with focal contact proteins; and (c) Na-K pump activity at V(max) (faster with the mutated isoforms, 1281 +/- 90 vs 841 +/- 30 nmol K/h.mg pt., P < 0.0001). This co-modulation suggests a role for adducin in the constitutive capacity of the epithelia both to transport ions and to expose adhesion molecules. These findings may also lead to the understanding of the relation between adducin polymorphism and blood pressure and to the development of new approaches to the study of hypertension-associated organ damage. PMID:8675693

  17. There is More Than One Way to Model an Elephant. Experiment-Driven Modeling of the Actin Cytoskeleton

    PubMed Central

    Ditlev, Jonathon A.; Mayer, Bruce J.; Loew, Leslie M.

    2013-01-01

    Mathematical modeling has established its value for investigating the interplay of biochemical and mechanical mechanisms underlying actin-based motility. Because of the complex nature of actin dynamics and its regulation, many of these models are phenomenological or conceptual, providing a general understanding of the physics at play. But the wealth of carefully measured kinetic data on the interactions of many of the players in actin biochemistry cries out for the creation of more detailed and accurate models that could permit investigators to dissect interdependent roles of individual molecular components. Moreover, no human mind can assimilate all of the mechanisms underlying complex protein networks; so an additional benefit of a detailed kinetic model is that the numerous binding proteins, signaling mechanisms, and biochemical reactions can be computationally organized in a fully explicit, accessible, visualizable, and reusable structure. In this review, we will focus on how comprehensive and adaptable modeling allows investigators to explain experimental observations and develop testable hypotheses on the intracellular dynamics of the actin cytoskeleton. PMID:23442903

  18. Host-cell-dependent role of actin cytoskeleton during the replication of a human strain of influenza A virus.

    PubMed

    Arcangeletti, M C; De Conto, F; Ferraglia, F; Pinardi, F; Gatti, R; Orlandini, G; Covan, S; Motta, F; Rodighiero, I; Dettori, G; Chezzi, C

    2008-01-01

    This study was aimed at investigating the possible involvement of the actin cytoskeleton in the modulation of host permissiveness to A/NWS/33 human influenza virus infection in two mammalian (MDCK and LLC-MK2) cell lines in vitro. During the early stages of infection, no appreciable association between incoming NWS/33 virions and cortical actin was detectable in the permissive MDCK model by confocal microscopy, while extensive colocalization and a slower infection progression were observed in LLC-MK2 cells. In the latter model, we also demonstrated the inability of the virus to carry out multiple replication cycles, irrespective of the presence of cleaved HA subunits in the released virions. Treatment with the actin-depolymerizing agent cytochalasin D significantly increased the infection efficiency in LLC-MK2 cells, while a detrimental effect was observed in the MDCK cell line. Our data suggest a selective role of the actin network in inducing a restriction to influenza virus replication, mostly depending on its molecular organization, the host cell type and virus replication phase.

  19. Correlated light and electron microscopy observations of the uterine epithelial cell actin cytoskeleton using fluorescently labeled resin-embedded sections.

    PubMed

    Moore, Chad L; Cheng, Delfine; Shami, Gerald J; Murphy, Christopher R

    2016-05-01

    In order to perform correlative light and electron microscopy (CLEM) more precisely, we have modified existing specimen preparation protocols allowing fluorescence retention within embedded and sectioned tissue, facilitating direct observation across length scales. We detail a protocol which provides a precise correlation accuracy using accessible techniques in biological specimen preparation. By combining a pre-embedding uranyl acetate staining step with the progressive lowering of temperature (PLT) technique, a methacrylate embedded tissue specimen is ultrathin sectioned and mounted onto a TEM finder grid for immediate viewing in the confocal and electron microscope. In this study, the protocol is applied to rat uterine epithelial cells in vivo during early pregnancy. Correlative overlay data was used to track changes in filamentous actin that occurs in these cells from fertilization (Day 1) to implantation on Day 6 as part of the plasma membrane transformation, a process essential in the development of uterine receptivity in the rat. CLEM confirmed that the actin cytoskeleton is disrupted as apical microvilli are progressively lost toward implantation, and revealed the thick and continuous terminal web is replaced by a thinner and irregular actin band, with individually distinguishable filaments connecting actin meshworks which correspond with remaining plasma membrane protrusions.

  20. Connective tissue growth factor modulates podocyte actin cytoskeleton and extracellular matrix synthesis and is induced in podocytes upon injury.

    PubMed

    Fuchshofer, Rudolf; Ullmann, Sabrina; Zeilbeck, Ludwig F; Baumann, Matti; Junglas, Benjamin; Tamm, Ernst R

    2011-09-01

    Structural changes of podocytes and retraction of their foot processes are a critical factor in the pathogenesis of minimal change nephritis and glomerulosclerosis. Here we tested, if connective tissue growth factor (CTGF) is involved in podocyte injury during acute and chronic puromycin aminonucleoside nephrosis (PAN) as animal models of minimal change nephritis, and focal segmental glomerulosclerosis, respectively. Rats were treated once (acute PAN) or for 13 weeks (chronic PAN). In both experimental conditions, CTGF and its mRNA were found to be highly upregulated in podocytes. The upregulation correlated with onset and duration of proteinuria in acute PAN, and glomerulosclerosis and high expression of glomerular fibronectin, and collagens I, III, and IV in chronic PAN. In vitro, treatment of podocytes with recombinant CTGF increased amount and density of actin stress fibers, the expression of actin-associated molecules such as podocalyxin, synaptopodin, ezrin, and actinin-4, and activation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK). Moreover, we observed increased podocyte expression of mRNA for transforming growth factor (TGF)-β2, TGF-β receptor II, fibronectin, and collagens I, III, and IV. Treatment of cultured podocytes with puromycin aminonucleoside resulted in loss of actin stress fibers and cell death, effects that were partially prevented when CTGF was added to the culture medium. Depletion of CTGF mRNA in cultured podocytes by RNA interference reduced both the number of actin stress fibers and the expression of actin-associated molecules. We propose that the expression of CTGF is acutely upregulated in podocytes as part of a cellular attempt to repair structural changes of the actin cytoskeleton. When the damaging effects on podocyte structure and function persist chronically, continuous CTGF expression in podocytes is a critical factor that promotes progressive accumulation of glomerular extracellular matrix and

  1. Calponin Isoforms CNN1, CNN2 and CNN3: Regulators for Actin Cytoskeleton Functions in Smooth Muscle and Non-Muscle Cells

    PubMed Central

    Liu, Rong; Jin, J-P

    2016-01-01

    Calponin is an actin filament-associated regulatory protein expressed in smooth muscle and multiple types of non-muscle cells. Three homologous genes, CNN1, CNN2 and CNN3, encoding calponin isoforms 1, 2, and 3, respectively, are present in vertebrate species. All three calponin isoforms are actin-binding proteins with functions in inhibiting actin-activated myosin ATPase and stabilizing the actin cytoskeleton, while each isoform executes different physiological roles based on their cell type-specific expressions. Calponin 1 is specifically expressed in smooth muscle cells and plays a role in fine-tuning smooth muscle contractility. Calponin 2 is expressed in both smooth muscle and non-muscle cells and regulates multiple actin cytoskeleton-based functions. Calponin 3 participates in actin cytoskeleton-based activities in embryonic development and myogenesis. Phosphorylation has been extensively studied for the regulation of calponin functions. Cytoskeleton tension regulates the transcription of CNN2 gene and the degradation of calponin 2 protein. This review summarizes our knowledge learned from studies over the past three decades, focusing on the evolutionary lineage of calponin isoform genes, their tissue- and cell type-specific expressions, structure-function relationships, and mechanoregulation. PMID:26970176

  2. Actin filament reorganisation controlled by the SCAR/WAVE complex mediates stomatal response to darkness.

    PubMed

    Isner, Jean-Charles; Xu, Zaoxu; Costa, Joaquim Miguel; Monnet, Fabien; Batstone, Thomas; Ou, Xiaobin; Deeks, Michael J; Genty, Bernard; Jiang, Kun; Hetherington, Alistair M

    2017-08-01

    Stomata respond to darkness by closing to prevent excessive water loss during the night. Although the reorganisation of actin filaments during stomatal closure is documented, the underlying mechanisms responsible for dark-induced cytoskeletal arrangement remain largely unknown. We used genetic, physiological and cell biological approaches to show that reorganisation of the actin cytoskeleton is required for dark-induced stomatal closure. The opal5 mutant does not close in response to darkness but exhibits wild-type (WT) behaviour when exposed to abscisic acid (ABA) or CaCl2 . The mutation was mapped to At5g18410, encoding the PIR/SRA1/KLK subunit of the ArabidopsisSCAR/WAVE complex. Stomata of an independent allele of the PIR gene (Atpir-1) showed reduced sensitivity to darkness and F1 progenies of the cross between opal5 and Atpir-1 displayed distorted leaf trichomes, suggesting that the two mutants are allelic. Darkness induced changes in the extent of actin filament bundling in WT. These were abolished in opal5. Disruption of filamentous actin using latrunculin B or cytochalasin D restored wild-type stomatal sensitivity to darkness in opal5. Our findings suggest that the stomatal response to darkness is mediated by reorganisation of guard cell actin filaments, a process that is finely tuned by the conserved SCAR/WAVE-Arp2/3 actin regulatory module. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. Wdpcp, a PCP protein required for ciliogenesis, regulates directional cell migration and cell polarity by direct modulation of the actin cytoskeleton.

    PubMed

    Cui, Cheng; Chatterjee, Bishwanath; Lozito, Thomas P; Zhang, Zhen; Francis, Richard J; Yagi, Hisato; Swanhart, Lisa M; Sanker, Subramaniam; Francis, Deanne; Yu, Qing; San Agustin, Jovenal T; Puligilla, Chandrakala; Chatterjee, Tania; Tansey, Terry; Liu, Xiaoqin; Kelley, Matthew W; Spiliotis, Elias T; Kwiatkowski, Adam V; Tuan, Rocky; Pazour, Gregory J; Hukriede, Neil A; Lo, Cecilia W

    2013-11-01

    Planar cell polarity (PCP) regulates cell alignment required for collective cell movement during embryonic development. This requires PCP/PCP effector proteins, some of which also play essential roles in ciliogenesis, highlighting the long-standing question of the role of the cilium in PCP. Wdpcp, a PCP effector, was recently shown to regulate both ciliogenesis and collective cell movement, but the underlying mechanism is unknown. Here we show Wdpcp can regulate PCP by direct modulation of the actin cytoskeleton. These studies were made possible by recovery of a Wdpcp mutant mouse model. Wdpcp-deficient mice exhibit phenotypes reminiscent of Bardet-Biedl/Meckel-Gruber ciliopathy syndromes, including cardiac outflow tract and cochlea defects associated with PCP perturbation. We observed Wdpcp is localized to the transition zone, and in Wdpcp-deficient cells, Sept2, Nphp1, and Mks1 were lost from the transition zone, indicating Wdpcp is required for recruitment of proteins essential for ciliogenesis. Wdpcp is also found in the cytoplasm, where it is localized in the actin cytoskeleton and in focal adhesions. Wdpcp interacts with Sept2 and is colocalized with Sept2 in actin filaments, but in Wdpcp-deficient cells, Sept2 was lost from the actin cytoskeleton, suggesting Wdpcp is required for Sept2 recruitment to actin filaments. Significantly, organization of the actin filaments and focal contacts were markedly changed in Wdpcp-deficient cells. This was associated with decreased membrane ruffling, failure to establish cell polarity, and loss of directional cell migration. These results suggest the PCP defects in Wdpcp mutants are not caused by loss of cilia, but by direct disruption of the actin cytoskeleton. Consistent with this, Wdpcp mutant cochlea has normal kinocilia and yet exhibits PCP defects. Together, these findings provide the first evidence, to our knowledge, that a PCP component required for ciliogenesis can directly modulate the actin cytoskeleton to

  4. Wdpcp, a PCP Protein Required for Ciliogenesis, Regulates Directional Cell Migration and Cell Polarity by Direct Modulation of the Actin Cytoskeleton

    PubMed Central

    Cui, Cheng; Chatterjee, Bishwanath; Lozito, Thomas P.; Zhang, Zhen; Francis, Richard J.; Yagi, Hisato; Swanhart, Lisa M.; Sanker, Subramaniam; Francis, Deanne; Yu, Qing; San Agustin, Jovenal T.; Puligilla, Chandrakala; Chatterjee, Tania; Tansey, Terry; Liu, Xiaoqin; Kelley, Matthew W.; Spiliotis, Elias T.; Kwiatkowski, Adam V.; Tuan, Rocky; Pazour, Gregory J.; Hukriede, Neil A.; Lo, Cecilia W.

    2013-01-01

    Planar cell polarity (PCP) regulates cell alignment required for collective cell movement during embryonic development. This requires PCP/PCP effector proteins, some of which also play essential roles in ciliogenesis, highlighting the long-standing question of the role of the cilium in PCP. Wdpcp, a PCP effector, was recently shown to regulate both ciliogenesis and collective cell movement, but the underlying mechanism is unknown. Here we show Wdpcp can regulate PCP by direct modulation of the actin cytoskeleton. These studies were made possible by recovery of a Wdpcp mutant mouse model. Wdpcp-deficient mice exhibit phenotypes reminiscent of Bardet–Biedl/Meckel–Gruber ciliopathy syndromes, including cardiac outflow tract and cochlea defects associated with PCP perturbation. We observed Wdpcp is localized to the transition zone, and in Wdpcp-deficient cells, Sept2, Nphp1, and Mks1 were lost from the transition zone, indicating Wdpcp is required for recruitment of proteins essential for ciliogenesis. Wdpcp is also found in the cytoplasm, where it is localized in the actin cytoskeleton and in focal adhesions. Wdpcp interacts with Sept2 and is colocalized with Sept2 in actin filaments, but in Wdpcp-deficient cells, Sept2 was lost from the actin cytoskeleton, suggesting Wdpcp is required for Sept2 recruitment to actin filaments. Significantly, organization of the actin filaments and focal contacts were markedly changed in Wdpcp-deficient cells. This was associated with decreased membrane ruffling, failure to establish cell polarity, and loss of directional cell migration. These results suggest the PCP defects in Wdpcp mutants are not caused by loss of cilia, but by direct disruption of the actin cytoskeleton. Consistent with this, Wdpcp mutant cochlea has normal kinocilia and yet exhibits PCP defects. Together, these findings provide the first evidence, to our knowledge, that a PCP component required for ciliogenesis can directly modulate the actin cytoskeleton to

  5. TrkB-T1 regulates the RhoA signaling and actin cytoskeleton in glioma cells

    SciTech Connect

    Ohira, Koji; Homma, Koichi J.; Hirai, Hirohisa; Nakamura, Shun; Hayashi, Motoharu . E-mail: hayashi@pri.kyoto-u.ac.jp

    2006-04-14

    Recently, the truncated TrkB receptor, T1, has been reported to be involved in the control of cell morphology via the regulation of Rho proteins, through which T1 binds Rho guanine nucleotide dissociation inhibitor (Rho GDI) 1 and dissociates it in a brain-derived neurotrophic factor (BDNF)-dependent manner. However, it is unclear whether T1 signaling regulates the downstream of Rho signaling and the actin cytoskeleton. In this study, we investigated this question using C6 rat glioma cells, which express T1 endogenously. Rho GDI1 was dissociated from T1 in a BDNF-dependent manner, which also causes decreases in the activities of Rho-signaling molecules such as RhoA, Rho-associated kinase, p21-activated kinase, and extracellular-signal regulated kinase1/2. Moreover, BDNF treatment resulted in the disappearance of stress fibers in the cells treated with lysophosphatidic acid, an activator of RhoA, and in morphological changes in cells. Furthermore, a competitive assay with cyan fluorescent protein fusion proteins of T1-specific sequences reduced the effects of BDNF. These results suggest that T1 regulates the Rho-signaling pathways and the actin cytoskeleton.

  6. Deguelin inhibits the migration and invasion of lung cancer A549 and H460 cells via regulating actin cytoskeleton rearrangement.

    PubMed

    Zhao, Honggang; Jiao, Yan; Zhang, Zuncheng

    2015-01-01

    Deguelin, the main components from Mundulea sericea, was reported to suppress the growth of various cancer cells. However, the effect of Deguelin on tumor cell invasion and metastasis and its mechanism still unclear so far. In this study, we investigated the effects of Deguelin on the cell invasion in human lung cancer A549 and H460 cells. Our results demonstrate that Deguelin can significantly inhibited cell proliferation, cell migration and cell invasion. Moreover, Deguelin could also affected reorganization of the actin cytoskeleton and decreased filopodia and lamellipodia formation. Furthermore, deguelin-treated tumors showed decreased the tumor metastasis related genes such as CD44, MMP2 and MMP9 at protein and mRNA levels and the content of CEA, SCC, NSE, CYFAR21-1. In addition, Deguelin down-regulated protein expression of Rac1 and Rock1, which are impotent in actin cytoskeleton rearrangements and cell motility. Together, our results suggest that Deguelin inhibit tumor growth and metastasis of lung cancer cells and might be a candidate compound for curing lung cancer.

  7. Overcoming inherent resistance to histone deacetylase inhibitors in multiple myeloma cells by targeting pathways integral to the actin cytoskeleton.

    PubMed

    Mithraprabhu, S; Khong, T; Spencer, A

    2014-03-20

    Histone deacetylase inhibitors (HDACi) are novel chemotherapeutics undergoing evaluation in clinical trials for the potential treatment of patients with multiple myeloma (MM). Although HDACi have demonstrable synergy when combined with proteasome inhibitors (PIs), recent evidence indicates that combination of HDACi and PI is beneficial only in a subset of patients with advanced MM, clearly indicating that other rational combinations should be explored. In this context we hypothesized that understanding the molecular signature associated with inherent resistance to HDACi would provide a basis for the identification of therapeutic combinations with improved clinical efficacy. Using human myeloma cell lines (HMCL) categorized as sensitive, intermediate or resistant to HDACi, gene expression profiling (GEP) and gene ontology enrichment analyses were performed to determine if a genetic signature associated with inherent resistance to HDACi-resistance could be identified. Correlation of GEP to increasing or decreasing sensitivity to HDACi indicated a unique 35-gene signature that was significantly enriched for two pathways - regulation of actin cytoskeleton and protein processing in endoplasmic reticulum. When HMCL and primary MM samples were treated with a combination of HDACi and agents targeting the signaling pathways integral to the actin cytoskeleton, synergistic cell death was observed in all instances, thus providing a rationale for combining these agents with HDACi for the treatment of MM to overcome resistance. This report validates a molecular approach for the identification of HDACi partner drugs and provides an experimental framework for the identification of novel therapeutic combinations for anti-MM treatment.

  8. The actin cytoskeleton is a suppressor of the endogenous skewing behaviour of Arabidopsis primary roots in microgravity.

    PubMed

    Nakashima, J; Liao, F; Sparks, J A; Tang, Y; Blancaflor, E B

    2014-01-01

    Before plants can be effectively utilised as a component of enclosed life-support systems for space exploration, it is important to understand the molecular mechanisms by which they develop in microgravity. Using the Biological Research in Canisters (BRIC) hardware on board the second to the last flight of the Space Shuttle Discovery (STS-131 mission), we studied how microgravity impacts root growth in Arabidopsis thaliana. Ground-based studies showed that the actin cytoskeleton negatively regulates root gravity responses on Earth, leading us to hypothesise that actin might also be an important modulator of root growth behaviour in space. We investigated how microgravity impacted root growth of wild type (ecotype Columbia) and a mutant (act2-3) disrupted in a root-expressed vegetative actin isoform (ACTIN2). Roots of etiolated wild-type and act2-3 seedlings grown in space skewed vigorously toward the left, which was unexpected given the reduced directional cue provided by gravity. The left-handed directional root growth in space was more pronounced in act2-3 mutants than wild type. To quantify differences in root orientation of these two genotypes in space, we developed an algorithm where single root images were converted into binary images using computational edge detection methods. Binary images were processed with Fast Fourier Transformation (FFT), and histogram and entropy were used to determine spectral distribution, such that high entropy values corresponded to roots that deviated more strongly from linear orientation whereas low entropy values represented straight roots. We found that act2-3 roots had a statistically stronger skewing/coiling response than wild-type roots, but such differences were not apparent on Earth. Ultrastructural studies revealed that newly developed cell walls of space-grown act2-3 roots were more severely disrupted compared to space-grown wild type, and ground control wild-type and act2-3 roots. Collectively, our results provide

  9. The small G-protein MglA connects to the MreB actin cytoskeleton at bacterial focal adhesions

    PubMed Central

    Treuner-Lange, Anke; Macia, Eric; Guzzo, Mathilde; Hot, Edina; Faure, Laura M.; Jakobczak, Beata; Espinosa, Leon; Alcor, Damien; Ducret, Adrien; Keilberg, Daniela; Castaing, Jean Philippe; Lacas Gervais, Sandra; Franco, Michel

    2015-01-01

    In Myxococcus xanthus the gliding motility machinery is assembled at the leading cell pole to form focal adhesions, translocated rearward to propel the cell, and disassembled at the lagging pole. We show that MglA, a Ras-like small G-protein, is an integral part of this machinery. In this function, MglA stimulates the assembly of the motility complex by directly connecting it to the MreB actin cytoskeleton. Because the nucleotide state of MglA is regulated spatially and MglA only binds MreB in the guanosine triphosphate–bound form, the motility complexes are assembled at the leading pole and dispersed at the lagging pole where the guanosine triphosphatase activating protein MglB disrupts the MglA–MreB interaction. Thus, MglA acts as a nucleotide-dependent molecular switch to regulate the motility machinery spatially. The function of MreB in motility is independent of its function in peptidoglycan synthesis, representing a coopted function. Our findings highlight a new function for the MreB cytoskeleton and suggest that G-protein–cytoskeleton interactions are a universally conserved feature. PMID:26169353

  10. R-(+)-perillyl alcohol-induced cell cycle changes, altered actin cytoskeleton, and decreased ras and p34(cdc2) expression in colonic adenocarcinoma SW480 cells.

    PubMed

    Cerda, S R; Wilkinson, J; Thorgeirsdottir, S; Broitman, S A

    1999-01-01

    Monoterpenes as S-(-)-perillyl alcohol (PA) have been shown to inhibit the isoprenylation of such growth regulatory proteins as ras. In this study, we investigated the effects of the R-(+) enantiomer of PA on cell cycle, signaling, and cytoskeletal control in the colonic adenocarcinoma cell line SW480, which carries a K-ras mutation. Cell cycle analysis by flow cytometry of SW480 cells treated with 1 mM PA for 24 hours demonstrated an increase in the number of cells in G0/G1 with a decrease in S phase, compared with untreated control cells. These cell cycle changes correlated with an inhibition of protein isoprenylation from (14)C-mevalonate and decreased expression of the cell cycle regulatory kinase p34(cdc2). Additionally, PA-treated cells acquired a flattened morphology with a condensation of cytoskeletal actin spikes to the periphery. This was in contrast to treatment with 15 microM mevinolin (MVN), a direct mevalonate synthesis inhibitor, which imparted to SW480 cells a more rounded and spindly morphology, associated with the depolymerization of actin microfilaments. Together, these data suggest that fluctuations in mevalonate and isoprenoid pools may involve different morphologic phenomenon. Because ras mediated signaling is related to the organization of the actin cytoskeleton, we investigated the effects of PA on the isoprenylation of ras. Although MVN treatment inhibited ras farnesylation, PA treatment decreased the expression of total ras protein. In summary, R-(+)-PA-induced cell signaling events correlated with alterations in the organization of cytoskeletal actin and decreased protein expression of growth regulatory proteins, such as ras and cdc2 kinase. These effects may contribute to the growth inhibitory activity of R-(+)-PA.

  11. Actin turnover-mediated gravity response in maize root apices: gravitropism of decapped roots implicates gravisensing outside of the root cap.

    PubMed

    Mancuso, Stefano; Barlow, Peter W; Volkmann, Dieter; Baluska, Frantisek

    2006-03-01

    The dynamic actin cytoskeleton has been proposed to be linked to gravity sensing in plants but the mechanistic understanding of these processes remains unknown. We have performed detailed pharmacological analyses of the role of the dynamic actin cytoskeleton in gravibending of maize (Zea mays) root apices. Depolymerization of actin filaments with two drugs having different mode of their actions, cytochalasin D and latrunculin B, stimulated root gravibending. By contrast, drug-induced stimulation of actin polymerization and inhibition of actin turnover, using two different agents phalloidin and jasplakinolide, compromised the root gravibending. Importantly, all these actin drugs inhibited root growth to similar extents suggesting that high actin turnover is essential for the gravity-related growth responses rather than for the general growth process. Both latrunculin B and cytochalasin D treatments inhibited root growth but restored gravibending of the decapped root apices, indicating that there is a strong potential for effective actin-mediated gravity sensing outside the cap. This elusive gravity sensing outside the root cap is dependent not only on the high rate of actin turnover but also on weakening of myosin activities, as general inhibition of myosin ATPases induced stimulation of gravibending of the decapped root apices. Collectively, these data provide evidence for the actin turnover-mediated gravity sensing outside the root cap.

  12. Two Distinct Actin Networks Mediate Traction Oscillations to Confer Focal Adhesion Mechanosensing.

    PubMed

    Wu, Zhanghan; Plotnikov, Sergey V; Moalim, Abdiwahab Y; Waterman, Clare M; Liu, Jian

    2017-02-28

    Focal adhesions (FAs) are integrin-based transmembrane assemblies that connect a cell to its extracellular matrix (ECM). They are mechanosensors through which cells exert actin cytoskeleton-mediated traction forces to sense the ECM stiffness. Interestingly, FAs themselves are dynamic structures that adapt their growth in response to mechanical force. It is unclear how the cell manages the plasticity of the FA structure and the associated traction force to accurately sense ECM stiffness. Strikingly, FA traction forces oscillate in time and space, and govern the cell mechanosensing of ECM stiffness. However, precisely how and why the FA traction oscillates is unknown. We developed a model of FA growth that integrates the contributions of the branched actin network and stress fibers (SFs). Using the model in combination with experimental tests, we show that the retrograde flux of the branched actin network promotes the proximal growth of the FA and contributes to a traction peak near the FA's distal tip. The resulting traction gradient within the growing FA favors SF formation near the FA's proximal end. The SF-mediated actomyosin contractility further stabilizes the FA and generates a second traction peak near the center of the FA. Formin-mediated SF elongation negatively feeds back with actomyosin contractility, resulting in central traction peak oscillation. This underpins the observed FA traction oscillation and, importantly, broadens the ECM stiffness range over which FAs can accurately adapt to traction force generation. Actin cytoskeleton-mediated FA growth and maturation thus culminate with FA traction oscillation to drive efficient FA mechanosensing. Published by Elsevier Inc.

  13. Identification and Characterization of a Candidate Wolbachia pipientis Type IV Effector That Interacts with the Actin Cytoskeleton

    PubMed Central

    Sheehan, Kathy B.; Martin, MaryAnn; Lesser, Cammie F.; Isberg, Ralph R.

    2016-01-01

    ABSTRACT Many bacteria live as intracellular symbionts, causing persistent infections within insects. One extraordinarily common infection is that of Wolbachia pipientis, which infects 40% of insect species and induces reproductive effects. The bacteria are passed from generation to generation both vertically (through the oocyte) and horizontally (by environmental transmission). Maintenance of the infection within Drosophila melanogaster is sensitive to the regulation of actin, as Wolbachia inefficiently colonizes strains hemizygous for the profilin or villin genes. Therefore, we hypothesized that Wolbachia must depend on the host actin cytoskeleton. In this study, we identify and characterize a Wolbachia protein (WD0830) that is predicted to be secreted by the bacterial parasite. Expression of WD0830 in a model eukaryote (the yeast Saccharomyces cerevisiae) induces a growth defect associated with the appearance of aberrant, filamentous structures which colocalize with rhodamine-phalloidin-stained actin. Purified WD0830 bundles actin in vitro and cosediments with actin filaments, suggesting a direct interaction of the two proteins. We characterized the expression of WD0830 throughout Drosophila development and found it to be upregulated in third-instar larvae, peaking in early pupation, during the critical formation of adult tissues, including the reproductive system. In transgenic flies, heterologously expressed WD0830 localizes to the developing oocyte. Additionally, overexpression of WD0830 results in increased Wolbachia titers in whole flies, in stage 9 and 10 oocytes, and in embryos, compared to controls, suggesting that the protein may facilitate Wolbachia’s replication or transmission. Therefore, this candidate secreted effector may play a role in Wolbachia’s infection of and persistence within host niches. PMID:27381293

  14. Actin dynamics counteract membrane tension during clathrin-mediated endocytosis

    PubMed Central

    Boulant, Steeve; Kural, Comert; Zeeh, Jean-Christophe; Ubelmann, Florent; Kirchhausen, Tom

    2011-01-01

    Clathrin-mediated endocytosis is independent of actin dynamics in many circumstances but requires actin polymerization in others. We show that membrane tension determines the actin dependence of clathrin-coat assembly. As found previously, clathrin assembly supports formation of mature coated pits in the absence of actin polymerization on both dorsal and ventral surfaces of non-polarized mammalian cells, and also on basolateral surfaces of polarized cells. Actin engagement is necessary, however, to complete membrane deformation into a coated pit on apical surfaces of polarized cells and, more generally, on the surface of any cell in which the plasma membrane is under tension from osmotic swelling or mechanical stretching. We use these observations to alter actin dependence experimentally and show that resistance of the membrane to propagation of the clathrin lattice determines the distinction between "actin-dependent" and "actin-independent". We also find that light-chain bound Hip1R mediates actin engagement. These data thus provide a unifying explanation for the role of actin dynamics in coated-pit budding. PMID:21841790

  15. Rho GTPase controls Drosophila salivary gland lumen size through regulation of the actin cytoskeleton and Moesin

    PubMed Central

    Xu, Na; Bagumian, Gaiana; Galiano, Michael; Myat, Monn Monn

    2011-01-01

    Generation and maintenance of proper lumen size is important for tubular organ function. We report on a novel role for the Drosophila Rho1 GTPase in control of salivary gland lumen size through regulation of cell rearrangement, apical domain elongation and cell shape change. We show that Rho1 controls cell rearrangement and apical domain elongation by promoting actin polymerization and regulating F-actin distribution at the apical and basolateral membranes through Rho kinase. Loss of Rho1 resulted in reduction of F-actin at the basolateral membrane and enrichment of apical F-actin, the latter accompanied by enrichment of apical phosphorylated Moesin. Reducing cofilin levels in Rho1 mutant salivary gland cells restored proper distribution of F-actin and phosphorylated Moesin and rescued the cell rearrangement and apical domain elongation defects of Rho1 mutant glands. In support of a role for Rho1-dependent actin polymerization in regulation of gland lumen size, loss of profilin phenocopied the Rho1 lumen size defects to a large extent. We also show that Ribbon, a BTB domain-containing transcription factor functions with Rho1 in limiting apical phosphorylated Moesin for apical domain elongation. Our studies reveal a novel mechanism for controlling salivary gland lumen size, namely through Rho1-dependent actin polymerization and distribution and downregulation of apical phosphorylated Moesin. PMID:22071107

  16. Semi-retentive cytoskeletal fractionation (SERCYF): A novel method for the biochemical analysis of the organization of microtubule and actin cytoskeleton networks.

    PubMed

    Sato, Yuta; Murakami, Yota; Takahashi, Masayuki

    2017-07-08

    A variety of biochemical fractionation methods are available for the quantification of cytoskeletal components. However, each method is designed to target only one cytoskeletal network, either the microtubule (MT) or actin cytoskeleton, and non-targeted cytoskeletal networks are ignored. Considering the importance of MT-actin crosstalk, the organization of both the targeted and non-targeted cytoskeletal networks must be retained intact during fractionation for the accurate analysis of cytoskeletal organization. In this study, we reveal that existing fractionation methods, represented by the MT-sedimentation-method for MTs and the Triton X-100 solubility assay-method for actin cytoskeletons, disrupt the organizations of the non-targeted cytoskeletons. We demonstrate a novel fractionation method for the accurate analysis of the cytoskeletal organizations using a taxol-containing PEM-based permeabilization buffer, which we name "semi-retentive cytoskeletal fractionation (SERCYF)-method". The organizations of both MTs and actin cytoskeletons were retained intact even after permeabilization with this buffer. By using the SERCYF-method, we analyzed the effects of nocodazole on the cytoskeletal organizations biochemically and showed promotion of the actin cytoskeletal organization by MT depolymerization. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Reversible Disassembly of the Actin Cytoskeleton Improves the Survival Rate and Developmental Competence of Cryopreserved Mouse Oocytes

    PubMed Central

    Hosu, Basarab G.; Mullen, Steven F.; Critser, John K.; Forgacs, Gabor

    2008-01-01

    Effective cryopreservation of oocytes is critically needed in many areas of human reproductive medicine and basic science, such as stem cell research. Currently, oocyte cryopreservation has a low success rate. The goal of this study was to understand the mechanisms associated with oocyte cryopreservation through biophysical means using a mouse model. Specifically, we experimentally investigated the biomechanical properties of the ooplasm prior and after cryopreservation as well as the consequences of reversible dismantling of the F-actin network in mouse oocytes prior to freezing. The study was complemented with the evaluation of post-thaw developmental competence of oocytes after in vitro fertilization. Our results show that the freezing-thawing process markedly alters the physiological viscoelastic properties of the actin cytoskeleton. The reversible depolymerization of the F-actin network prior to freezing preserves normal ooplasm viscoelastic properties, results in high post-thaw survival and significantly improves developmental competence. These findings provide new information on the biophysical characteristics of mammalian oocytes, identify a pathophysiological mechanism underlying cryodamage and suggest a novel cryopreservation method. PMID:18665248

  18. Reversal of cell polarity and actin-myosin cytoskeleton reorganization under mechanical and chemical stimulation.

    PubMed

    Dalous, Jérémie; Burghardt, Emmanuel; Müller-Taubenberger, Annette; Bruckert, Franz; Gerisch, Günther; Bretschneider, Till

    2008-02-01

    To study reorganization of the actin system in cells that invert their polarity, we stimulated Dictyostelium cells by mechanical forces from alternating directions. The cells oriented in a fluid flow by establishing a protruding front directed against the flow and a retracting tail. Labels for polymerized actin and filamentous myosin-II marked front and tail. At 2.1 Pa, actin first disassembled at the previous front before it began to polymerize at the newly induced front. In contrast, myosin-II slowly disappeared from the previous tail and continuously redistributed to the new tail. Front specification was myosin-II independent and accumulation of polymerized actin was even more focused in mutants lacking myosin-II heavy chains. We conclude that under mechanical stimulation, the inversion of cell polarity is initiated by a global internal signal that turns down actin polymerization in the entire cell. It is thought to be elicited at the most strongly stimulated site of the cell, the incipient front region, and to be counterbalanced by a slowly generated, short-range signal that locally activates actin polymerization at the front. Similar pattern of front and tail interconversion were observed in cells reorienting in strong gradients of the chemoattractant cyclic AMP.

  19. Fluid Shear Stress Upregulates E-Tmod41 via miR-23b-3p and Contributes to F-Actin Cytoskeleton Remodeling during Erythropoiesis

    PubMed Central

    Mu, Weiyun; Wang, Xifu; Zhang, Xiaolan; Zhu, Sida; Sun, Dagong; Ka, Weibo; Sung, Lanping Amy; Yao, Weijuan

    2015-01-01

    The membrane skeleton of mature erythrocyte is formed during erythroid differentiation. Fluid shear stress is one of the main factors that promote embryonic hematopoiesis, however, its effects on erythroid differentiation and cytoskeleton remodeling are unclear. Erythrocyte tropomodulin of 41 kDa (E-Tmod41) caps the pointed end of actin filament (F-actin) and is critical for the formation of hexagonal topology of erythrocyte membrane skeleton. Our study focused on the regulation of E-Tmod41 and its role in F-actin cytoskeleton remodeling during erythroid differentiation induced by fluid shear stress. Mouse erythroleukemia (MEL) cells and embryonic erythroblasts were subjected to fluid shear stress (5 dyn/cm2) and erythroid differentiation was induced in both cells. F-actin content and E-Tmod41 expression were significantly increased in MEL cells after shearing. E-Tmod41 overexpression resulted in a significant increase in F-actin content, while the knockdown of E-Tmod41 generated the opposite result. An E-Tmod 3’UTR targeting miRNA, miR-23b-3p, was found suppressed by shear stress. When miR-23b-3p level was overexpressed / inhibited, both E-Tmod41 protein level and F-actin content were reduced / augmented. Furthermore, among the two alternative promoters of E-Tmod, PE0 (upstream of exon 0), which mainly drives the expression of E-Tmod41, was found activated by shear stress. In conclusion, our results suggest that fluid shear stress could induce erythroid differentiation and F-actin cytoskeleton remodeling. It upregulates E-Tmod41 expression through miR-23b-3p suppression and PE0 promoter activation, which, in turn, contributes to F-actin cytoskeleton remodeling. PMID:26308647

  20. Diversity of bone matrix adhesion proteins modulates osteoblast attachment and organization of actin cytoskeleton.

    PubMed

    Demais, V; Audrain, C; Mabilleau, G; Chappard, D; Baslé, M F

    2014-06-01

    Interaction of cells with extracellular matrix is an essential event for differentiation, proliferation and activity of osteoblasts. In bone, binding of osteoblasts to bone matrix is required to determine specific activities of the cells and to synthesize matrix bone proteins. Integrins are the major cell receptors involved in the cell linkage to matrix proteins such as fibronectin, type I collagen and vitronectin, via the RGD-sequences. In this study, cultures of osteoblast-like cells (Saos-2) were done on coated glass coverslips in various culture conditions: DMEM alone or DMEM supplemented with poly-L-lysine (PL), fetal calf serum (FCS), fibronectin (FN), vitronectin (VN) and type I collagen (Col-I). The aim of the study was to determine the specific effect of these bone matrix proteins on cell adherence and morphology and on the cytoskeleton status. Morphological characteristics of cultured cells were studied using scanning electron microscopy and image analysis. The heterogeneity of cytoskeleton was studied using fractal analysis (skyscrapers and blanket algorithms) after specific preparation of cells to expose the cytoskeleton. FAK and MAPK signaling pathways were studied by western blotting in these various culture conditions. Results demonstrated that cell adhesion was reduced with PL and VN after 240 min. After 60 min of adhesion, cytoskeleton organization was enhanced with FN, VN and Col-I. No difference in FAK phosphorylation was observed but MAPK phosphorylation was modulated by specific adhesion on extracellular proteins. These results indicate that culture conditions modulate cell adhesion, cytoskeleton organization and intracellular protein pathways according to extracellular proteins present for adhesion.

  1. Interactions Between Nuclei and the Cytoskeleton Are Mediated by SUN-KASH Nuclear-Envelope Bridges

    PubMed Central

    Starr, Daniel A.; Fridolfsson, Heidi N.

    2014-01-01

    The nuclear envelope links the cytoskeleton to structural components of the nucleus. It functions to coordinate nuclear migration and anchorage, organize chromatin, and aid meiotic chromosome pairing. Forces generated by the cytoskeleton are transferred across the nuclear envelope to the nuclear lamina through a nuclear-envelope bridge consisting of SUN (Sad1 and UNC-84) and KASH (Klarsicht, ANC-1 and Syne/Nesprin homology) proteins. Some KASH-SUN combinations connect microtubules, centrosomes, actin filaments, or intermediate filaments to the surface of the nucleus. Other combinations are used in cell cycle control, nuclear import, or apoptosis. Interactions between the cytoskeleton and the nucleus also affect global cytoskeleton organization. SUN and KASH proteins were identified through genetic screens for mispositioned nuclei in model organisms. Knockouts of SUN or KASH proteins disrupt neurological and muscular development in mice. Defects in SUN and KASH proteins have been linked to human diseases including muscular dystrophy, ataxia, progeria, lissencephaly, and cancer. PMID:20507227

  2. Trichosanthin-induced specific changes of cytoskeleton configuration were associated with the decreased expression level of actin and tubulin genes in apoptotic Hela cells.

    PubMed

    Wang, Ping; Li, Ji-Cheng

    2007-09-15

    Trichosanthin (TCS) possesses a broad spectrum of biological and pharmacological activities, including anti-cancer activities through apoptosis pathway. However, little is known about the effects of TCS on the cytoskeleton configuration and expression of actin and tubulin genes in Hela cell apoptosis. In the present study, apoptotic cytoskeleton structures were observed by confocal immunofluorescence microscopy, absolute amounts of actin and tubulin subunit mRNAs were determined by quantitative real-time PCR assays (QRT-PCR). Our results showed that the execution phase of cell apoptosis was a highly coordinated process of cellular reorganization, depolymerized microfilaments (MFs) accumulated in the coarsened cytoplasm and apoptotic bodies, followed by the formation of a ring microtubule (MT) structure beneath the plasma membrane. Importantly, apoptosis occurred by a suppression of actin and tubulin subunit gene expression. In particular, a rapid decrease in the amounts of gamma-actin mRNA preceded that of beta-actin; alpha- and beta-tubulin mRNAs were subsequently down-regulated in the later stage of Hela cell apoptosis. These results suggested that the execution of Hela cell apoptosis induced by TCS accompanied the specific changes of cytoskeleton configuration and, significantly, decreased the expression level of actin and tubulin subunit genes in different stages.

  3. Disorganization of F-actin cytoskeleton precedes vacuolar disruption in pollen tubes during the in vivo self-incompatibility response in Nicotiana alata

    PubMed Central

    Roldán, Juan A.; Rojas, Hernán J.; Goldraij, Ariel

    2012-01-01

    Background and Aims The integrity of actin filaments (F-actin) is essential for pollen-tube growth. In S-RNase-based self-incompatibility (SI), incompatible pollen tubes are inhibited in the style. Consequently, research efforts have focused on the alterations of pollen F-actin cytoskeleton during the SI response. However, so far, these studies were carried out in in vitro-grown pollen tubes. This study aimed to assess the timing of in vivo changes of pollen F-actin cytoskeleton taking place after compatible and incompatible pollinations in Nicotiana alata. To our knowledge, this is the first report of the in vivo F-actin alterations occurring during pollen rejection in the S-RNase-based SI system. Methods The F-actin cytoskeleton and the vacuolar endomembrane system were fluorescently labelled in compatibly and incompatibly pollinated pistils at different times after pollination. The alterations induced by the SI reaction in pollen tubes were visualized by confocal laser scanning microscopy. Key Results Early after pollination, about 70 % of both compatible and incompatible pollen tubes showed an organized pattern of F-actin cables along the main axis of the cell. While in compatible pollinations this percentage was unchanged until pollen tubes reached the ovary, pollen tubes of incompatible pollinations underwent gradual and progressive F-actin disorganization. Colocalization of the F-actin cytoskeleton and the vacuolar endomembrane system, where S-RNases are compartmentalized, revealed that by day 6 after incompatible pollination, when the pollen-tube growth was already arrested, about 80 % of pollen tubes showed disrupted F-actin but a similar percentage had intact vacuolar compartments. Conclusions The results indicate that during the SI response in Nicotiana, disruption of the F-actin cytoskeleton precedes vacuolar membrane breakdown. Thus, incompatible pollen tubes undergo a sequential disorganization process of major subcellular structures. Results also

  4. The actin cytoskeleton of chemotactic amoebae operates close to the onset of oscillations

    NASA Astrophysics Data System (ADS)

    Westendorf, Christian; Negrete, Jose, Jr.; Bae, Albert; Sandmann, Rabea; Bodenschatz, Eberhard; Beta, Carsten

    2013-03-01

    We report evidence that the actin machinery of chemotactic Dictyostelium cells operates close to an oscillatory instability. The averaged F-actin response of many cells to a short-time pulse of cAMP is reminiscent of a damped oscillation. At the single-cell level, however, the response dynamics ranged from short, strongly damped responses to slowly decaying, weakly damped oscillations. Furthermore, in a small subpopulation, we observed self-sustained oscillations in the cortical F-actin concentration. We systematically exposed a large number of cells to periodic pulse trains. The results indicate a resonance peak at periodic inputs of around 20 s. We propose a delayed feedback model that explains our experimental findings based on a time-delay in the actin regulatory network. To quantitatively test the model, we performed stimulation experiments with cells that express GFP-tagged fusion proteins of Coronin and Aip1. These served as markers of the F-actin disassembly process and thus allow us to estimate the delay time. Based on this independent estimate, our model predicts an intrinsic period of 20 s, which agrees with the resonance observed experimentally. Financial support by the Max-Planck Society and the DFG (SFB 937).

  5. Actin cytoskeleton as a putative target of the neem limonoid Azadirachtin A.

    PubMed

    Anuradha, Aritakula; Annadurai, Ramaswamy S; Shashidhara, L S

    2007-06-01

    Limonoids isolated from the Indian neem tree (Azadirachta indica) have been gaining global acceptance in agricultural applications and in contemporary medicine for their myriad but discrete properties. However, their mode of action is still not very well understood. We have studied the mode of action of Azadirachtin A, the major limonoid of neem seed extracts, using Drosophila melanogaster as the model system. Azadirachtin A induces moderate-to-severe phenotypes in different tissues in a dose-dependent manner. At the cellular level, Azadirachtin A induces depolymerization of Actin leading to arrest of cells and subsequently apoptosis in a caspase-independent manner. Azadirachtin A-induced phenotypes were rescued by the over-expression of Cyclin E in a tissue-dependent manner. Cyclin E, which caused global rescue of Azadirachtin A-induced phenotypes, also effected rearrangement of the actin filaments. These results suggest that probably actin is a target of Azadirachtin A activity.

  6. In vitro inhibition of incompatible pollen tubes in Nicotiana alata involves the uncoupling of the F-actin cytoskeleton and the endomembrane trafficking system.

    PubMed

    Roldán, Juan A; Rojas, Hernán J; Goldraij, Ariel

    2015-01-01

    In the S-RNase-based self-incompatibility system, subcellular events occurring in the apical region of incompatible pollen tubes during the pollen rejection process are poorly understood. F-actin dynamics and endomembrane trafficking are crucial for polar growth, which is temporally and spatially controlled in the tip region of pollen tubes. Thus, we developed a simple in vitro assay to study the changes in the F-actin cytoskeleton and the endomembrane system at the apical region of incompatible pollen tubes in Nicotiana alata. Growth but not germination of pollen tubes of S c₁₀-, S₇₀-, and S₇₅-haplotypes was selectively inhibited by style extracts carrying the same haplotypes. Pollen F-actin cytoskeleton and endomembrane system, visualized by fluorescent markers, were normal during the initial 60 min of pollen culture in the presence of compatible and incompatible style extracts. Additional culture resulted in complete growth arrest and critical alterations in the integrity of the F-actin cytoskeleton and the endomembrane system of incompatible pollen tubes. The F-actin ring and the V-shaped zone disappeared from the apical region, while distorted F-actin cables and progressive formation of membrane aggregates evolved in the subapical region and the shank. The vacuolar network of incompatible pollen tubes invaded the tip region, but vacuolar membrane integrity remained mostly unaffected. The polar growth machinery of incompatible pollen tubes was uncoupled, as evidenced by the severe disruption of colocalization between the F-actin cytoskeleton and the endomembrane compartments. A model of pollen rejection integrating the main subcellular events occurring in incompatible pollen is discussed.

  7. Actin cytoskeleton remodelling in the anterior pituitary folliculostellate cell line TtT/GF: participation of the actin-binding protein cortactin.

    PubMed

    Zheng, Guifu; Solinet, Sara; Pelletier, R-Marc; Vitale, María Leiza

    2005-10-01

    We have previously shown that the folliculostellate (FS) cells of the anterior pituitary change their shape from stellate (type I) to polygonal (type II) coincidently with variations in the secretory activity of the pituitary. To elucidate the mechanisms involved in this switch in phenotypes, here we studied the impact of serum factors on the morphology of the FS cell line TtT/GF. TtT/GF cells cultured in serum-containing medium displayed elongated shapes and membrane ruffles similarly to type I cells. Serum deprivation caused the loss of plasma membrane activity and the acquisition by the cells of a sedentary phenotype and of a polygonal shape typical of type II FS cells. Addition of serum to the starved cells induced the reappearance of membrane raffles and lamellipodia. The switch in phenotypes and the maintenance of a motile phenotype depended on tyrosine kinase but not on Erk activity. Because the transition between phenotypes involved the tyrosine kinase-dependent reorganization of cortical actin filaments, we studied the participation of the actin-binding protein, cortactin, a tyrosine kinase substrate. Cortactin and its tyrosine-phosphorylated form, pY421-cortactin, localized to membrane ruffles and lamellipodia in serum-cultured TtT/GF cells, while they were evenly distributed over the whole cell cortex in serum-starved cells. Serum treatment of starved cells induced a transient increase in pY421-cortactin levels and the clustering of pY421-cortactin in membrane regions where protrusions were developing. Both serum responses were blocked by a tyrosine kinase inhibitor. Together, the results indicate that the transition from a polygonal to an elongated shape entails the acquisition of a dynamic cortical actin cytoskeleton that involves the tyrosine kinase-dependent phosphorylation of cortactin and the translocation of cortical pY421-cortactin to sites of ruffle formation at the plasma membrane.

  8. Distinct Effects of Mitogens and the Actin Cytoskeleton on CREB and Pocket Protein Phosphorylation Control the Extent and Timing of Cyclin A Promoter Activity

    PubMed Central

    Bottazzi, Maria Elena; Buzzai, Monica; Zhu, Xiaoyun; Desdouets, Chantal; Bréchot, Christian; Assoian, Richard K.

    2001-01-01

    Soluble mitogens and adhesion-dependent organization of the actin cytoskeleton are required for cells to enter S phase in fibroblasts. The induction of cyclin A is also required for S-phase entry, and we now report that distinct effects of mitogens and the actin cytoskeleton on the phosphorylation of CREB and pocket proteins regulate the extent and timing of cyclin A promoter activity, respectively. First, we show that CREB phosphorylation and binding to the cyclic AMP response element (CRE) determines the extent, but not the timing, of cyclin A promoter activity. Second, we show that pocket protein inactivation regulates the timing, but not the extent, of cyclin A promoter activity. CREB phosphorylation and CRE occupancy are regulated by soluble mitogens alone, while the phosphorylation of pocket proteins requires both mitogens and the organized actin cytoskeleton. Mechanistically, cytoskeletal integrity controls pocket protein phosphorylation by allowing for sustained ERK signaling and, thereby, the expression of cyclin D1. Our results lead to a model of cyclin A gene regulation in which mitogens play a permissive role by stimulating early G1-phase phosphorylation of CREB and a distinct regulatory role by cooperating with the organized actin cytoskeleton to regulate the duration of ERK signaling, the expression of cyclin D1, and the timing of pocket protein phosphorylation. PMID:11604497

  9. Environmental toxicants perturb human Sertoli cell adhesive function via changes in F-actin organization mediated by actin regulatory proteins

    PubMed Central

    Xiao, Xiang; Mruk, Dolores D.; Tang, Elizabeth I.; Wong, Chris K.C.; Lee, Will M.; John, Constance M.; Turek, Paul J.; Silvestrini, Bruno; Cheng, C. Yan

    2014-01-01

    STUDY QUESTION Can human Sertoli cells cultured in vitro and that have formed an epithelium be used as a model to monitor toxicant-induced junction disruption and to better understand the mechanism(s) by which toxicants disrupt cell adhesion at the Sertoli cell blood–testis barrier (BTB)? SUMMARY ANSWER Our findings illustrate that human Sertoli cells cultured in vitro serve as a reliable system to monitor the impact of environmental toxicants on the BTB function. WHAT IS KNOWN ALREADY Suspicions of a declining trend in semen quality and a concomitant increase in exposures to environmental toxicants over the past decades reveal the need of an in vitro system that efficiently and reliably monitors the impact of toxicants on male reproductive function. Furthermore, studies in rodents have confirmed that environmental toxicants impede Sertoli cell BTB function in vitro and in vivo. STUDY DESIGN, SIZE AND DURATION We examined the effects of two environmental toxicants: cadmium chloride (0.5–20 µM) and bisphenol A (0.4–200 µM) on human Sertoli cell function. Cultured Sertoli cells from three men were used in this study, which spanned an 18-month period. PARTICIPANTS/MATERIALS, SETTING, METHODS Human Sertoli cells from three subjects were cultured in F12/DMEM containing 5% fetal bovine serum. Changes in protein expression were monitored by immunoblotting using specific antibodies. Immunofluorescence analyses were used to assess changes in the distribution of adhesion proteins, F-actin and actin regulatory proteins following exposure to two toxicants: cadmium chloride and bisphenol A (BPA). MAIN RESULTS AND THE ROLE OF CHANCE Human Sertoli cells were sensitive to cadmium and BPA toxicity. Changes in the localization of cell adhesion proteins were mediated by an alteration of the actin-based cytoskeleton. This alteration of F-actin network in Sertoli cells as manifested by truncation and depolymerization of actin microfilaments at the Sertoli cell BTB was caused by

  10. Continuous-Wave Stimulated Emission Depletion Microscope for Imaging Actin Cytoskeleton in Fixed and Live Cells

    PubMed Central

    Neupane, Bhanu; Jin, Tao; Mellor, Liliana F.; Loboa, Elizabeth G.; Ligler, Frances S.; Wang, Gufeng

    2015-01-01

    Stimulated emission depletion (STED) microscopy provides a new opportunity to study fine sub-cellular structures and highly dynamic cellular processes, which are challenging to observe using conventional optical microscopy. Using actin as an example, we explored the feasibility of using a continuous wave (CW)-STED microscope to study the fine structure and dynamics in fixed and live cells. Actin plays an important role in cellular processes, whose functioning involves dynamic formation and reorganization of fine structures of actin filaments. Frequently used confocal fluorescence and STED microscopy dyes were employed to image fixed PC-12 cells (dyed with phalloidin- fluorescein isothiocyante) and live rat chondrosarcoma cells (RCS) transfected with actin-green fluorescent protein (GFP). Compared to conventional confocal fluorescence microscopy, CW-STED microscopy shows improved spatial resolution in both fixed and live cells. We were able to monitor cell morphology changes continuously; however, the number of repetitive analyses were limited primarily by the dyes used in these experiments and could be improved with the use of dyes less susceptible to photobleaching. In conclusion, CW-STED may disclose new information for biological systems with a proper characteristic length scale. The challenges of using CW-STED microscopy to study cell structures are discussed. PMID:26393614

  11. The Disruption of the Cytoskeleton during Semaphorin 3A induced Growth Cone Collapse Correlates with Differences in Actin Organization and Associated Binding Proteins

    PubMed Central

    Brown, Jacquelyn A; Bridgman, Paul C

    2010-01-01

    Repulsive guidance cues induce growth cone collapse or collapse and retraction. Collapse results from disruption and loss of the actin cytoskeleton. Actin rich regions of growth cones contain binding proteins that influence filament organization, such as Arp2/3, cortactin, and fascin, but little is known about the role that these proteins play in collapse. Here we show that Semaphorin 3A (Sema 3A), which is repulsive to mouse dorsal root ganglion neurons, has unequal effects on actin binding proteins and their associated filaments. The immunofluorescence staining intensity of Arp-2 and cortactin decreases relative to total protein, while in unextracted growth cones fascin increases. Fascin and myosin IIB staining redistribute and show increased overlap. The degree of actin filament loss during collapse correlates with filament superstructures detected by rotary shadow electron microscopy. Collapse results in the loss of branched f-actin meshworks, while actin bundles are partially retained to varying degrees. Taken together with the known affects of Sema 3A on actin, this suggests a model for collapse that follows a sequence; depolymerization of actin meshworks followed by partial depolymerization of fascin associated actin bundles and their movement to the neurite to complete collapse. The relocated fascin associated actin bundles may provide the substrate for actomyosin contractions that produce retraction. PMID:19513995

  12. The actin cytoskeleton coordinates the signal transduction and antigen processing functions of the B cell antigen receptor

    PubMed Central

    LIU, Chaohong; FALLEN, Margaret K.; MILLER, Heather; UPADHYAYA, Arpita; SONG, Wenxia

    2014-01-01

    The B cell antigen receptor (BCR) is the sensor on the B cell surface that surveys foreign molecules (antigen) in our bodies and activates B cells to generate antibody responses upon encountering cognate antigen. The binding of antigen to the BCR induces signaling cascades in the cytoplasm, which provides the first signal for B cell activation. Subsequently, BCRs internalize and target bound antigen to endosomes, where antigen is processed into T cell recognizable forms. T helper cells generate the second activation signal upon binding to antigen presented by B cells. The optimal activation of B cells requires both signals, thereby depending on the coordination of BCR signaling and antigen transport functions. Antigen binding to the BCR also induces rapid remodeling of the cortical actin network of B cells. While being initiated and controlled by BCR signaling, recent studies reveal that this actin remodeling is critical for both the signaling and antigen processing functions of the BCR, indicating a role for actin in coordinating these two pathways. Here we will review previous and recent studies on actin reorganization during BCR activation and BCR-mediated antigen processing, and discuss how actin remodeling translates BCR signaling into rapid antigen uptake and processing while providing positive and negative feedback to BCR signaling. PMID:24999354

  13. The spreading process of Ehrlichia canis in macrophages is dependent on actin cytoskeleton, calcium and iron influx and lysosomal evasion.

    PubMed

    Alves, R N; Levenhagen, M A; Levenhagen, M M M D; Rieck, S E; Labruna, M B; Beletti, M E

    2014-01-31

    Ehrlichia canis is an obligate intracellular microorganism and the etiologic agent of canine monocytic ehrlichiosis. The invasion process has already been described for some bacteria in this genus, such as E. muris and E. chaffeensis, and consists of four stages: adhesion, internalisation, intracellular proliferation and intercellular spreading. However, little is known about the spreading process of E. canis. The aim of this study was to analyse the role of the actin cytoskeleton, calcium, iron and lysosomes from the host cell in the spreading of E. canis in dog macrophages in vitro. Different inhibitory drugs were used: cytochalasin D (actin polymerisation inhibitor), verapamil (calcium channel blocker) and deferoxamine (iron chelator). Our results showed a decrease in the number of bacteria in infected cells treated with all drugs when compared to controls. Lysosomes in infected cells were cytochemically labelled with acid phosphatase to allow the visualisation of phagosome-lysosome fusion and were further analysed by transmission electron microscopy. Phagosome-lysosome fusion was rarely observed in vacuoles containing viable E. canis. These data suggest that the spreading process of E. canis in vitro is dependent on cellular components analysed and lysosomal evasion.

  14. Actin-associated protein palladin promotes tumor cell invasion by linking extracellular matrix degradation to cell cytoskeleton.

    PubMed

    von Nandelstadh, Pernilla; Gucciardo, Erika; Lohi, Jouko; Li, Rui; Sugiyama, Nami; Carpen, Olli; Lehti, Kaisa

    2014-09-01

    Basal-like breast carcinomas, characterized by unfavorable prognosis and frequent metastases, are associated with epithelial-to-mesenchymal transition. During this process, cancer cells undergo cytoskeletal reorganization and up-regulate membrane-type 1 matrix metalloproteinase (MT1-MMP; MMP14), which functions in actin-based pseudopods to drive invasion by extracellular matrix degradation. However, the mechanisms that couple matrix proteolysis to the actin cytoskeleton in cell invasion have remained unclear. On the basis of a yeast two-hybrid screen for the MT1-MMP cytoplasmic tail-binding proteins, we identify here a novel Src-regulated protein interaction between the dynamic cytoskeletal scaffold protein palladin and MT1-MMP. These proteins were coexpressed in invasive human basal-like breast carcinomas and corresponding cell lines, where they were associated in the same matrix contacting and degrading membrane complexes. The silencing and overexpression of the 90-kDa palladin isoform revealed the functional importance of the interaction with MT1-MMP in pericellular matrix degradation and mesenchymal tumor cell invasion, whereas in MT1-MMP-negative cells, palladin overexpression was insufficient for invasion. Moreover, this invasion was inhibited in a dominant-negative manner by an immunoglobulin domain-containing palladin fragment lacking the dynamic scaffold and Src-binding domains. These results identify a novel protein interaction that links matrix degradation to cytoskeletal dynamics and migration signaling in mesenchymal cell invasion.

  15. A new interaction between Abi-1 and betaPIX involved in PDGF-activated actin cytoskeleton reorganisation.

    PubMed

    Campa, Fanny; Machuy, Nikolaus; Klein, Alexander; Rudel, Thomas

    2006-09-01

    Members of the Rho family of GTPases are key regulators of the actin cytoskeleton. In particular, activated Rac1 stimulates membrane dorsal ruffle formation in response to platelet-derived growth factor (PDGF). Abl-interactor (Abi)-1 and betaPIX, a guanine nucleotide exchange factor for Rac1, localise at these Rac1-induced actin structures and play important roles in the induction of membrane dorsal ruffling in response to PDGF in fibroblasts. Here, we demonstrate a novel interaction between Abi-1 and betaPIX using the yeast two-hybrid system, in vitro pull-down assays, and in vivo co-immunoprecipitation experiments. In vitro, the C-terminal fragment of betaPIX interacted with Abi-1, while in vivo the N-terminal fragment of betaPIX interacted with Abi-1. The biological function of this interaction was investigated in mouse fibroblasts in response to PDGF stimulation. Abi-1 and betaPIX co-localised in the cytoplasm and to membrane dorsal ruffles after PDGF treatment. We show that the co-expression of Abi-1 and truncated forms of betaPIX in mouse fibroblasts blocked PDGF-induced membrane dorsal ruffles. Together, these results show that the interaction between Abi-1 and betaPIX is involved in the formation of growth factor-induced membrane dorsal ruffles.

  16. Complex roles of filamin-A mediated cytoskeleton network in cancer progression

    PubMed Central

    2013-01-01

    Filamin-A (FLNA), also called actin-binding protein 280 (ABP-280), was originally identified as a non-muscle actin binding protein, which organizes filamentous actin into orthogonal networks and stress fibers. Filamin-A also anchors various transmembrane proteins to the actin cytoskeleton and provides a scaffold for a wide range of cytoplasmic and nuclear signaling proteins. Intriguingly, several studies have revealed that filamin-A associates with multiple non-cytoskeletal proteins of diverse function and is involved in several unrelated pathways. Mutations and aberrant expression of filamin-A have been reported in human genetic diseases and several types of cancer. In this review, we discuss the implications of filamin-A in cancer progression, including metastasis and DNA damage response. PMID:23388158

  17. Effect of sex sorting on CTC staining, actin cytoskeleton and tyrosine phosphorylation in bull and boar spermatozoa.

    PubMed

    Bucci, D; Galeati, G; Tamanini, C; Vallorani, C; Rodriguez-Gil, J E; Spinaci, M

    2012-04-01

    Sperm sorting is a useful technology that permits sex preselection. It presents some troubles because of low fertility after the process. The main aim of this work was to analyze the putative existence of capacitation-like changes in both boar and bull sperm subjected to sex sorting that could lead to a detriment of semen quality. The parameters used were CTC staining patterns, actin cytoskeleton organization and tyrosine phosphorylation patterns; the last two were determined by both western blotting and immunofluorescence. Sex sorted spermatozoa were compared with fresh, in vitro capacitated and in vitro acrosome reacted sperm. In both species, sex sorted sperm showed a CTC staining pattern similar to that observed after in vitro capacitation. The actin pattern distribution after sperm sorting also tended to be similar to that observed after in vitro capacitation, but this effect was more pronounced in bull than in boar spermatozoa. However, actin expression analysis through western blot did not show any change in either species. The tyrosine phosphorylation pattern in boar sperm was practically unaltered after the sex sorting process, but in bulls about 40% of spermatozoa had a staining pattern indicative of capacitation. Additionally, western blotting analysis evidenced some differences in the expression of protein tyrosine phosphorylation among fresh, capacitated, acrosome reacted and sex sorted sperm cells in both species. Our results indicate that not all the sex-sorted-related modifications of the studied parameters were similar to those occurring after "in vitro" capacitation, thus suggesting that sex sorting-induced alterations of sperm function and structure do not necessarily indicate the achievement of the capacitated status of sorted sperm.

  18. A Dual Role for Melatonin in Medaka Ovulation: Ensuring Prostaglandin Synthesis and Actin Cytoskeleton Rearrangement in Follicular Cells.

    PubMed

    Ogiwara, Katsueki; Takahashi, Takayuki

    2016-03-01

    Understanding the direct effects of melatonin on vertebrate ovulation remains a challenge. The present study provides the first characterization of the role of melatonin in ovulation using the teleost medaka. The melatonin receptor antagonist luzindole inhibited in vitro follicle ovulation. In the preovulatory follicles, arylalkylamine N-acetyltransferase 1a and hydroxyindole-O-methyltransferase 2, the enzymes responsible for melatonin synthesis, were expressed in the granulosa cells throughout the 24 h spawning cycle. The granulosa cells of the follicle also expressed the melatonin receptor 1a-a. An in vitro characterization study using medaka OLHNI-2 cells revealed that melatonin and luzindole act as an agonist and an antagonist, respectively, of the melatonin receptor. The intracellular cAMP levels in these cells were reduced after melatonin treatment. The expression of cytosolic phospholipase A2 group 4a (Pla2g4a), the enzyme producing arachidonic acid (cyclooxygenase-2 substrate), was inhibited in the granulosa cells in luzindole-treated follicles. Follicular prostaglandin E2 levels and in vitro follicle ovulation were suppressed in follicles isolated at 12 h prior to ovulation and incubated with the Pla2g4a inhibitor AACOCF3. The G-actin:F-actin ratios in follicular cells increased with approaching ovulation, but this increase was suppressed after luzindole treatment. The phosphorylation of moesin, an ezrin-radixin-moesin protein, was inhibited in the follicular cells in luzindole-treated follicles. These results indicate a dual role for melatonin in medaka ovulation: melatonin ensures prostaglandin E2 synthesis throughout the spawning cycle and induces actin cytoskeleton rearrangement in the follicular cells at ovulation. © 2016 by the Society for the Study of Reproduction, Inc.

  19. Toxic peptides in Frazer's fraction interact with the actin cytoskeleton and affect the targeting and function of intestinal proteins.

    PubMed

    Reinke, Yvonne; Zimmer, Klaus-Peter; Naim, Hassan Y

    2009-11-15

    Celiac disease (CD) is a multisystemic autoimmune inflammation of the intestinal tract induced by wheat gluten and related cereals in HLA-DQ2/8 positive individuals. An essential role in the pathogenesis of CD is played by a fraction of the peptic-tryptic digest of gluten, Frazer's Fraction (FF). Here, we investigate the effects of FF on the integrity of intestinal cells with particular emphasis on brush border membrane (BBM) components, their subsequent trafficking and endocytosis. Caco-2 cells were incubated with FF at different concentrations. Thereafter, several protein and lipid components of treated and untreated cells were analysed at the molecular, functional and cellular levels. The control employed tryptic-peptic digests of ovalbumin. Our results show that FF directly interacts with actin in an alternating manner eliciting substantial alterations in its integrity and extent in the BBM. These alterations lead to an impaired trafficking of SI to the apical membrane and reduction in its enzymatic function. ApN and DPPIV follow a transcytotic pathway and are only partly affected by FF. By contrast, the trafficking of LPH remains unaffected concomitant with its actin-independent trafficking pattern. Finally, the endocytic pathway is substantially blocked in FF-treated cells leading to an accumulation of cholesterol, and sphingolipids in the BBM. We conclude that FF deteriorates the actin cytoskeleton in Caco-2 leading to reduced protein sorting and hampered endocytic events with subsequent alterations in the protein and lipid composition of the BBM. The reduced levels of the disaccharidase SI in the BBM suggest a potential pathomechanism of carbohydrate malabsorption in CD.

  20. Intracellular motility and the evolution of the actin cytoskeleton during development of the male gametophyte of wheat (Triticum aestivum L.)

    PubMed Central

    Heslop-Harrison, J.; Heslop-Harrison, Y.

    1997-01-01

    The uniaperturate pollen of wheat is dispersed in a partially hydrated condition. Amyloplasts are concentrated in the apertural hemisphere where they surround the two sperms, while vigorously moving polysaccharide-containing wall precursor bodies (P-particles) together with the vegetative nucleus occupy the other. This disposition is the product of a post-meiotic developmental sequence apparently peculiar to the grasses. During vacuolation of the spore after release from the tetrad, the nucleus is displaced to the pole of the cell opposite the site of the germination aperture, already defined in the tetrad. Following pollen mitosis, the vegetative nucleus migrates along the wall of the vegetative cell towards the aperture, leaving the generative cell at the opposite pole isolated by a callose wall. As the vacuole is resorbed, the generative cell rounds up, loses its wall and follows the vegetative nucleus, passing along the wall of the vegetative cell towards the aperture where it eventually divides to produce the two sperms. Throughout this period of nucleus and cell manoeuvrings, minor inclusions of the vegetative cell cytoplasm, including mitochondria, lipid globuli and developing amyloplasts, move randomly. Coordinated vectorial movement begins after the main period of starch accumulation, when the amyloplasts migrate individually into the apertural hemisphere of the grain, a final redistribution betokening the attainment of germinability. In the present paper we correlate aspects of the evolution of the actin cytoskeleton with these events in the developing grain, and relate the observations to published evidence from another monocotyledonous species concerning the timing of the expression of actin genes during male gametophyte development, as revealed in the synthesis of actin mRNA.

  1. Role and organization of the actin cytoskeleton during cell-cell fusion.

    PubMed

    Martin, Sophie G

    2016-12-01

    Cell-cell fusion is a ubiquitous process that underlies fertilization and development of eukaryotes. This process requires fusogenic machineries to promote plasma membrane merging, and also relies on the organization of dedicated sub-cortical cytoskeletal assemblies. This review describes the role of actin structures, so called actin fusion foci, essential for the fusion of two distinct cell types: Drosophila myoblast cells, which fuse to form myotubes, and sexually differentiated cells of the fission yeast Schizosaccharomyces pombe, which fuse to form a zygote. I describe the respective composition and organization of the two structures, discuss their proposed role in promoting plasma membrane apposition, and consider the universality of similar structures for cell-cell fusion.

  2. DISC1 knockdown impairs the tangential migration of cortical interneurons by affecting the actin cytoskeleton

    PubMed Central

    Steinecke, André; Gampe, Christin; Nitzsche, Falk; Bolz, Jürgen

    2014-01-01

    Disrupted-in-Schizophrenia 1 (DISC1) is a risk gene for a spectrum of major mental disorders. It has been shown to regulate radial migration as well as dendritic arborization during neurodevelopment and corticogenesis. In a previous study we demonstrated through in vitro experiments that DISC1 also controls the tangential migration of cortical interneurons originating from the medial ganglionic eminence (MGE). Here we first show that DISC1 is necessary for the proper tangential migration of cortical interneurons in the intact brain. Expression of EGFP under the Lhx6 promotor allowed us to analyze exclusively interneurons transfected in the MGE after in utero electroporation. After 3 days in utero, DISC1 deficient interneurons displayed prolonged leading processes and, compared to control, fewer neurons reached the cortex. Time-lapse video microscopy of cortical feeder-layers revealed a decreased migration velocity due to a reduction of soma translocations. Immunostainings indicated that DISC1 is co-localized with F-actin in the growth cone-like structure of the leading process. DISC1 knockdown reduced F-actin levels whereas the overall actin level was not altered. Moreover, DISC1 knockdown also decreased levels of phosphorylated Girdin, which cross-links F-actin, as well as the Girdin-activator pAkt. In contrast, using time-lapse video microscopy of fluorescence-tagged tubulin and EB3 in fibroblasts, we found no effects on microtubule polymerization when DISC1 was reduced. However, DISC1 affected the acetylation of microtubules in the leading processes of MGE-derived cortical interneurons. Together, our results provide a mechanism how DISC1 might contribute to interneuron migration thereby explaining the reduced number of specific classes of cortical interneurons in some DISC1 mouse models. PMID:25071449

  3. Phospholipase D Is Involved in Myogenic Differentiation through Remodeling of Actin Cytoskeleton

    PubMed Central

    Komati, Hiba; Naro, Fabio; Mebarek, Saida; De Arcangelis, Vania; Adamo, Sergio; Lagarde, Michel; Prigent, Annie-France; Némoz, Georges

    2005-01-01

    We investigated the role of phospholipase D (PLD) and its product phosphatidic acid (PA) in myogenic differentiation of cultured L6 rat skeletal myoblasts. Arginine-vasopressin (AVP), a differentiation inducer, rapidly activated PLD in a Rho-dependent way, as shown by almost total suppression of activation by C3 exotoxin pretreatment. Addition of 1-butanol, which selectively inhibits PA production by PLD, markedly decreased AVP-induced myogenesis. Conversely, myogenesis was potentiated by PLD1b isoform overexpression but not by PLD2 overexpression, establishing that PLD1 is involved in this process. The expression of the PLD isoforms was differentially regulated during differentiation. AVP stimulation of myoblasts induced the rapid formation of stress fiber-like actin structures (SFLSs). 1-Butanol selectively inhibited this response, whereas PLD1b overexpression induced SFLS formation, showing that it was PLD dependent. Endogenous PLD1 was located at the level of SFLSs, and by means of an intracellularly expressed fluorescent probe, PA was shown to be accumulated along these structures in response to AVP. In addition, AVP induced a PLD-dependent neosynthesis of phosphatidylinositol 4,5-bisphosphate (PIP2), which also was accumulated along actin fibers. These data support the hypothesis that PLD participates in myogenesis through PA- and PIP2-dependent actin fiber formation. PMID:15616193

  4. Phospholipase D is involved in myogenic differentiation through remodeling of actin cytoskeleton.

    PubMed

    Komati, Hiba; Naro, Fabio; Mebarek, Saida; De Arcangelis, Vania; Adamo, Sergio; Lagarde, Michel; Prigent, Annie-France; Némoz, Georges

    2005-03-01

    We investigated the role of phospholipase D (PLD) and its product phosphatidic acid (PA) in myogenic differentiation of cultured L6 rat skeletal myoblasts. Arginine-vasopressin (AVP), a differentiation inducer, rapidly activated PLD in a Rho-dependent way, as shown by almost total suppression of activation by C3 exotoxin pretreatment. Addition of 1-butanol, which selectively inhibits PA production by PLD, markedly decreased AVP-induced myogenesis. Conversely, myogenesis was potentiated by PLD1b isoform overexpression but not by PLD2 overexpression, establishing that PLD1 is involved in this process. The expression of the PLD isoforms was differentially regulated during differentiation. AVP stimulation of myoblasts induced the rapid formation of stress fiber-like actin structures (SFLSs). 1-Butanol selectively inhibited this response, whereas PLD1b overexpression induced SFLS formation, showing that it was PLD dependent. Endogenous PLD1 was located at the level of SFLSs, and by means of an intracellularly expressed fluorescent probe, PA was shown to be accumulated along these structures in response to AVP. In addition, AVP induced a PLD-dependent neosynthesis of phosphatidylinositol 4,5-bisphosphate (PIP2), which also was accumulated along actin fibers. These data support the hypothesis that PLD participates in myogenesis through PA- and PIP2-dependent actin fiber formation.

  5. Organization of Actin Cytoskeleton in Normal and Regenerating Arterial Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Gabbiani, G.; Gabbiani, F.; Lombardi, D.; Schwartz, S. M.

    1983-04-01

    The distribution of actin stress fibers in normal and regenerating (after endothelial denudation by means of a balloon catheter) rabbit aortic endothelial cells has been studied by means of immunofluorescence with human actin autoantibodies on en face endothelial cell preparations. Our results show that: (i) under normal conditions actin is accumulated as a network at the periphery of endothelial cells. Stress fibers are present only in endothelial cells located immediately below intercostal artery branches; (ii) stress fibers develop in endothelial cells early during regeneration and persist after the end of endothelial mitotic and motile activities; and (iii) the orientation of stress fibers within the cytoplasm follows the direction of blood flow, with the exception of stress fibers situated in cells at the edge of the wound, when endothelial cell progression toward the denuded area as well as mitotic activity have ceased. We conclude that stress fibers are an organelle present in endothelial cells in vivo and that they reorganize during endothelial cell adaptation to unfavorable or pathological situations.

  6. Human metapneumovirus Induces Reorganization of the Actin Cytoskeleton for Direct Cell-to-Cell Spread

    PubMed Central

    El Najjar, Farah; Cifuentes-Muñoz, Nicolás; Zhu, Haining; Buchholz, Ursula J.; Moncman, Carole L.; Dutch, Rebecca Ellis

    2016-01-01

    Paramyxovirus spread generally involves assembly of individual viral particles which then infect target cells. We show that infection of human bronchial airway cells with human metapneumovirus (HMPV), a recently identified paramyxovirus which causes significant respiratory disease, results in formation of intercellular extensions and extensive networks of branched cell-associated filaments. Formation of these structures is dependent on actin, but not microtubule, polymerization. Interestingly, using a co-culture assay we show that conditions which block regular infection by HMPV particles, including addition of neutralizing antibodies or removal of cell surface heparan sulfate, did not prevent viral spread from infected to new target cells. In contrast, inhibition of actin polymerization or alterations to Rho GTPase signaling pathways significantly decreased cell-to-cell spread. Furthermore, viral proteins and viral RNA were detected in intercellular extensions, suggesting direct transfer of viral genetic material to new target cells. While roles for paramyxovirus matrix and fusion proteins in membrane deformation have been previously demonstrated, we show that the HMPV phosphoprotein extensively co-localized with actin and induced formation of cellular extensions when transiently expressed, supporting a new model in which a paramyxovirus phosphoprotein is a key player in assembly and spread. Our results reveal a novel mechanism for HMPV direct cell-to-cell spread and provide insights into dissemination of respiratory viruses. PMID:27683250

  7. Actin growth profile in clathrin-mediated endocytosis

    NASA Astrophysics Data System (ADS)

    Tweten, D. J.; Bayly, P. V.; Carlsson, A. E.

    2017-05-01

    Clathrin-mediated endocytosis in yeast is driven by a protein patch containing close to 100 different types of proteins. Among the proteins are 5000 -10 000 copies of polymerized actin, and successful endocytosis requires growth of the actin network. Since it is not known exactly how actin network growth drives endocytosis, we calculate the spatial distribution of actin growth required to generate the force that drives the process. First, we establish the force distribution that must be supplied by actin growth, by combining membrane-bending profiles obtained via electron microscopy with established theories of membrane mechanics. Next, we determine the profile of actin growth, using a continuum mechanics approach and an iterative procedure starting with an actin growth profile obtained from a linear analysis. The profile has fairly constant growth outside a central hole of radius 45-50 nm, but very little growth in this hole. This growth profile can reproduce the required forces if the actin shear modulus exceeds 80 kPa, and the growing filaments can exert very large polymerization forces. The growth profile prediction could be tested via electron-microscopy or super-resolution experiments in which the turgor pressure is suddenly turned off.

  8. [Alterations in actin cytoskeleton and rate of reparation of human endothelium (the wound-healing model) under the condition of clinostatting].

    PubMed

    Romanov, Iu A; Kabaeva, N V; Buravkova, L B

    2001-01-01

    Effects of long-term simulation of hypogravity on actin cytoskeleton and cell migration were investigated in cultured human endothelium cells (EC). In control, F-actin resided predominantly on the periphery of cell forming an array of parallel bundles with "dense bodies" along the edge. A small number of actin cable fibers was found in the center. Already after 1-2 hrs of clinostatting at 5 RPM the cell cytoskeleton showed actin filament thinning and displacement toward the cell edges. In subsequent 6-18 hrs, almost all actin fibers had left the center part of EC and had ranged themselves in a continuous F-actin line in the intercellular contact area. In most cases, these changes resulted in the so-called "ruff-edge". Since both the disappearance of cable fibers and formation of the "ruff-edge" add to the cell migration activity, this parameter was studied with the would-healing model. According to our data, 24-48 hrs of exposure to hypogravity stimulates cell migration and expedites 2-3 times reparation of mechanically damaged monolayer. The results suggest that effects of hypogravity on cultured human EC are likely to be consequent to alterations in the activity of protein kinase C and/or adenylate cyclase involving many members of the cellular metabolism.

  9. Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton

    PubMed Central

    1996-01-01

    By immunogold labeling, we demonstrate that "millipede-like" structures seen previously in mammalian cell cytoskeletons after removal of actin by treatment with gelsolin are composed of the cores of vimentin IFs with sidearms containing plectin. These plectin sidearms connect IFs to microtubules, the actin-based cytoskeleton and possibly membrane components. Plectin binding to microtubules was significantly increased in cells from transgenic mice lacking IFs and was reversed by microinjection of exogenous vimentin. These results suggest the existence of a pool of plectin which preferentially associates with IFs but may also be competed for by microtubules. The association of IFs with microtubules did not show a preference for Glu-tubulin. Nor did it depend upon the presence of MAP4 since plectin links were retained after specific immunodepletion of MAP4. The association of IFs with stress fibers survived actin depletion by gelsolin suggesting that myosin II minifilaments or components closely associated with them may play a role as plectin targets. Our results provide direct structural evidence for the hypothesis that plectin cross-links elements of the cytoskeleton thus leading to integration of the cytoplasm. PMID:8922382

  10. Weak Power Frequency Magnetic Field Acting Similarly to EGF Stimulation, Induces Acute Activations of the EGFR Sensitive Actin Cytoskeleton Motility in Human Amniotic Cells

    PubMed Central

    Wu, Xia; Cao, Mei-Ping; Shen, Yun-Yun; Chu, Ke-Ping; Tao, Wu-Bin; Song, Wei-Tao; Liu, Li-Ping; Wang, Xiang-Hui; Zheng, Yu-Fang; Chen, Shu-De; Zeng, Qun-Li; Xia, Ruo-Hong

    2014-01-01

    In this article, we have examined the motility-related effects of weak power frequency magnetic fields (MFs) on the epidermal growth factor receptor (EGFR)-sensitive motility mechanism, including the F-actin cytoskeleton, growth of invasive protrusions and the levels of signal molecules in human amniotic epithelial (FL) cells. Without extracellular EGF stimulation, the field stimulated a large growth of new protrusions, especially filopodia and lamellipodia, an increased population of vinculin-associated focal adhesions. And, an obvious reduction of stress fiber content in cell centers was found, corresponding to larger cell surface areas and decreased efficiency of actin assembly of FL cells in vitro, which was associated with a decrease in overall F-actin content and special distributions. These effects were also associated with changes in protein content or distribution patterns of the EGFR downstream motility-related signaling molecules. All of these effects are similar to those following epidermal growth factor (EGF) stimulation of the cells and are time dependent. These results suggest that power frequency MF exposure acutely affects the migration/motility-related actin cytoskeleton reorganization that is regulated by the EGFR-cytoskeleton signaling pathway. Therefore, upon the MF exposure, cells are likely altered to be ready to transfer into a state of migration in response to the stimuli. PMID:24505297

  11. Human somatic cells acquire the plasticity to generate embryoid-like metamorphosis via the actin cytoskeleton in injured tissues

    PubMed Central

    Diaz, Jairo A; Murillo, Mauricio F; Mendoza, Jhonan A; Barreto, Ana M; Poveda, Lina S; Sanchez, Lina K; Poveda, Laura C; Mora, Katherine T

    2016-01-01

    Emergent biological responses develop via unknown processes dependent on physical collision. In hypoxia, when the tissue architecture collapses but the geometric core is stable, actin cytoskeleton filament components emerge, revealing a hidden internal order that identifies how each molecule is reassembled into the original mold, using one common connection, i.e., a fractal self-similarity that guides the system from the beginning in reverse metamorphosis, with spontaneous self-assembly of past forms that mimics an embryoid phenotype. We captured this hidden collective filamentous assemblage in progress: Hypoxic deformed cells enter into intercellular collisions, generate migratory ejected filaments, and produce self-assembly of triangular chiral hexagon complexes; this dynamic geometry guides the microenvironment scaffold in which this biological process is incubated, recapitulating embryonic morphogenesis. In all injured tissues, especially in damaged skeletal (striated) muscle cells, visibly hypertrophic intercalated actin-myosin filaments are organized in zebra stripe pattern along the anterior-posterior axis in the interior of the cell, generating cephalic-caudal polarity segmentation, with a high selective level of immunopositivity for Actin, Alpha Skeletal Muscle antibody and for Neuron-Specific Enolase expression of ectodermal differentiation. The function of actin filaments in emergent responses to tissue injury is to reconstitute, reactivate and orchestrate cellular metamorphosis, involving the re-expression of fetal genes, providing evidence of the reverse flow of genetic information within a biological system. The resultant embryoid phenotype emerges as a microscopic fractal template copy of the organization of the whole body, likely allowing the modification and reprogramming of the phenotype of the tumor in which these structures develop, as well as establishing a reverse primordial microscopic mold to collectively re-form cellular building blocks to

  12. Human somatic cells acquire the plasticity to generate embryoid-like metamorphosis via the actin cytoskeleton in injured tissues.

    PubMed

    Diaz, Jairo A; Murillo, Mauricio F; Mendoza, Jhonan A; Barreto, Ana M; Poveda, Lina S; Sanchez, Lina K; Poveda, Laura C; Mora, Katherine T

    2016-01-01

    Emergent biological responses develop via unknown processes dependent on physical collision. In hypoxia, when the tissue architecture collapses but the geometric core is stable, actin cytoskeleton filament components emerge, revealing a hidden internal order that identifies how each molecule is reassembled into the original mold, using one common connection, i.e., a fractal self-similarity that guides the system from the beginning in reverse metamorphosis, with spontaneous self-assembly of past forms that mimics an embryoid phenotype. We captured this hidden collective filamentous assemblage in progress: Hypoxic deformed cells enter into intercellular collisions, generate migratory ejected filaments, and produce self-assembly of triangular chiral hexagon complexes; this dynamic geometry guides the microenvironment scaffold in which this biological process is incubated, recapitulating embryonic morphogenesis. In all injured tissues, especially in damaged skeletal (striated) muscle cells, visibly hypertrophic intercalated actin-myosin filaments are organized in zebra stripe pattern along the anterior-posterior axis in the interior of the cell, generating cephalic-caudal polarity segmentation, with a high selective level of immunopositivity for Actin, Alpha Skeletal Muscle antibody and for Neuron-Specific Enolase expression of ectodermal differentiation. The function of actin filaments in emergent responses to tissue injury is to reconstitute, reactivate and orchestrate cellular metamorphosis, involving the re-expression of fetal genes, providing evidence of the reverse flow of genetic information within a biological system. The resultant embryoid phenotype emerges as a microscopic fractal template copy of the organization of the whole body, likely allowing the modification and reprogramming of the phenotype of the tumor in which these structures develop, as well as establishing a reverse primordial microscopic mold to collectively re-form cellular building blocks to

  13. Oxidative stress and alterations in actin cytoskeleton trigger glutathione efflux in Saccharomyces cerevisiae.

    PubMed

    Bradamante, Silvia; Villa, Alessandro; Versari, Silvia; Barenghi, Livia; Orlandi, Ivan; Vai, Marina

    2010-12-01

    A marked deficiency in glutathione (GSH), the most abundant antioxidant in living systems, plays a major role in aging and the pathogenesis of diseases ranging from neurological disorders to early atherosclerosis and the impairment of various immunological functions. In an attempt to shed light on GSH homeostasis, we carried out the space experiment SCORE (Saccharomyces cerevisiae oxidative stress response evaluation) during the FOTON-M3 mission. Microgravity and hyperoxic conditions induced an enormous extracellular release of GSH from S. cerevisiae cells (≈40% w/dw), changed the distribution of the buds, and activated the high osmolarity glycerol (HOG) and cell integrity/PKC pathways, as well as protein carbonylation. The results from the single spaceflight experiment were validated by a complete set of experiments under conditions of simulated microgravity and indicate that cytoskeletal alterations are mainly responsible for the observed effects. The results of ground experiments in which we induced cytoskeletal modifications by means of treatment with dihydrocytochalasin B (DHCB), a potent inhibitor of actin polymerisation, or (R)-(+)-trans-4-(1-aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide dihydrochloride monohydrate (Y-27632), a selective ROCK (Rho-associated coiled-coil forming protein serine/threonine kinase) inhibitor, confirmed the role of actin in GSH efflux. We also found that the GSH release can be inhibited using the potent chloride channel blocker 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB).

  14. FMNL3 FH2-actin structure gives insight into formin-mediated actin nucleation and elongation

    SciTech Connect

    Thompson, Morgan E; Heimsath, Ernest G; Gauvin, Timothy J; Higgs, Henry N; Kull, F Jon

    2012-12-09

    Formins are actin-assembly factors that act in a variety of actin-based processes. The conserved formin homology 2 (FH2) domain promotes filament nucleation and influences elongation through interaction with the barbed end. FMNL3 is a formin that induces assembly of filopodia but whose FH2 domain is a poor nucleator. The 3.4-Å structure of a mouse FMNL3 FH2 dimer in complex with tetramethylrhodamine-actin uncovers details of formin-regulated actin elongation. We observe distinct FH2 actin-binding regions; interactions in the knob and coiled-coil subdomains are necessary for actin binding, whereas those in the lasso-post interface are important for the stepping mechanism. Biochemical and cellular experiments test the importance of individual residues for function. This structure provides details for FH2-mediated filament elongation by processive capping and supports a model in which C-terminal non-FH2 residues of FMNL3 are required to stabilize the filament nucleus.

  15. Actin-mediated motion of meiotic chromosomes

    PubMed Central

    Koszul, R.; Kim, K. P.; Prentiss, M.; Kleckner, N.; Kameoka, S.

    2008-01-01

    Summary Chromosome movement is prominent during meiosis. Here, using a combination of in vitro and in vivo approaches, we elucidate the basis for dynamic mid-prophase chromosome movement in budding yeast. Diverse finding reveal a process in which, at the pachytene stage, individual telomere/nuclear envelope (NE) ensembles attach passively to, and then move in concert with, nucleus-hugging actin cables that are continuous with the global cytoskeletal actin network. Other chromosomes move in concert with lead chromosome(s). The same process, in modulated form, explains the zygotene "bouquet" configuration in which, immediately preceding pachytene, chromosome ends colocalize dynamically in a restricted region of the NE. Mechanical properties of the system and biological roles of mid-prophase movement for meiosis, including recombination, are discussed. PMID:18585353

  16. Unique ζ-chain motifs mediate a direct TCR-actin linkage critical for immunological synapse formation and T-cell activation.

    PubMed

    Klieger, Yair; Almogi-Hazan, Osnat; Ish-Shalom, Eliran; Pato, Aviad; Pauker, Maor H; Barda-Saad, Mira; Wang, Lynn; Baniyash, Michal

    2014-01-01

    TCR-mediated activation induces receptor microclusters that evolve to a defined immune synapse (IS). Many studies showed that actin polymerization and remodeling, which create a scaffold critical to IS formation and stabilization, are TCR mediated. However, the mechanisms controlling simultaneous TCR and actin dynamic rearrangement in the IS are yet not fully understood. Herein, we identify two novel TCR ζ-chain motifs, mediating the TCR's direct interaction with actin and inducing actin bundling. While T cells expressing the ζ-chain mutated in these motifs lack cytoskeleton (actin) associated (cska)-TCRs, they express normal levels of non-cska and surface TCRs as cells expressing wild-type ζ-chain. However, such mutant cells are unable to display activation-dependent TCR clustering, IS formation, expression of CD25/CD69 activation markers, or produce/secrete cytokine, effects also seen in the corresponding APCs. We are the first to show a direct TCR-actin linkage, providing the missing gap linking between TCR-mediated Ag recognition, specific cytoskeleton orientation toward the T-cell-APC interacting pole and long-lived IS maintenance.

  17. Cell adhesion molecules and actin cytoskeleton at immune synapses and kinapses

    PubMed Central

    Dustin, Michael L.

    2007-01-01

    The immunological synapse is a stable adhesive junction between a polarized immune effector cell and an antigen-bearing cell. Immunological synapses are often observed to have a striking radial symmetry in the plane of contact with a prominent central cluster of antigen receptors surrounded by concentric rings of adhesion molecules and actin rich projections. There is a striking similarity between the radial zones of the immunological synapse and the dynamic actinomyosin modules employed by migrating cells. Breaking the symmetry of an immunological synapse generates a moving adhesive junction that can be defined as a kinapse, which facilitates signal integration by immune cells while moving over the surface of antigen presenting cells. PMID:17923403

  18. SHP-2 acts via ROCK to regulate the cardiac actin cytoskeleton.

    PubMed

    Langdon, Yvette; Tandon, Panna; Paden, Erika; Duddy, Jennifer; Taylor, Joan M; Conlon, Frank L

    2012-03-01

    Noonan syndrome is one of the most common causes of human congenital heart disease and is frequently associated with missense mutations in the protein phosphatase SHP-2. Interestingly, patients with acute myelogenous leukemia (AML), acute lymphoblastic leukemia (ALL), juvenile myelomonocytic leukemia (JMML) and LEOPARD syndrome frequently carry a second, somatically introduced subset of missense mutations in SHP-2. To determine the cellular and molecular mechanisms by which SHP-2 regulates heart development and, thus, understand how Noonan-associated mutations affect cardiogenesis, we introduced SHP-2 encoding the most prevalent Noonan syndrome and JMML mutations into Xenopus embryos. Resulting embryos show a direct relationship between a Noonan SHP-2 mutation and its ability to cause cardiac defects in Xenopus; embryos expressing Noonan SHP-2 mutations exhibit morphologically abnormal hearts, whereas those expressing an SHP-2 JMML-associated mutation do not. Our studies indicate that the cardiac defects associated with the introduction of the Noonan-associated SHP-2 mutations are coupled with a delay or arrest of the cardiac cell cycle in M-phase and a failure of cardiomyocyte progenitors to incorporate into the developing heart. We show that these defects are a result of an underlying malformation in the formation and polarity of cardiac actin fibers and F-actin deposition. We show that these defects can be rescued in culture and in embryos through the inhibition of the Rho-associated, coiled-coil-containing protein kinase 1 (ROCK), thus demonstrating a direct relationship between SHP-2(N308D) and ROCK activation in the developing heart.

  19. The role of Saccharomyces cerevisiae type 2A phosphatase in the actin cytoskeleton and in entry into mitosis.

    PubMed Central

    Lin, F C; Arndt, K T

    1995-01-01

    We have prepared a temperature-sensitive Saccharomyces cerevisiae type 2A phosphatase (PP2A) mutant, pph21-102. At the restrictive temperature, the pph21-102 cells arrested predominantly with small or aberrant buds, and their actin cytoskeleton and chitin deposition were abnormal. The involvement of PP2A in bud growth may be due to the role of PP2A in actin distribution during the cell cycle. Moreover, after a shift to the non-permissive temperature, the pph21-102 cells were blocked in G2 and had low activity of Clb2-Cdc28 kinase. Expression of Clb2 from the S.cerevisiae ADH promoter in pph21-102 cells was able to partially bypass the G2 arrest in the first cell cycle, but was not able to stimulate passage through a second mitosis. These cells had higher total amounts of Clb2-Cdc28 kinase activity, but the Clb2-normalized specific activity was lower in the pph21-102 cells compared with wild-type cells. Unlike wild-type strains, a PP2A-deficient strain was sensitive to the loss of MIH1, which is a homolog of the Schizosaccharomyces pombe mitotic inducer cdc25+. Furthermore, the cdc28F19 mutation cured the synthetic defects of a PP2A-deficient strain containing a deletion of MIH1. These results suggest that PP2A is required during G2 for the activation of Clb-Cdc28 kinase complexes for progression into mitosis. Images PMID:7796803

  20. Cooperativity and Frustration in Protein-Mediated Parallel Actin Bundles

    NASA Astrophysics Data System (ADS)

    Shin, Homin; Drew, Kirstin R. Purdy; Bartles, James R.; Wong, Gerard C. L.; Grason, Gregory M.

    2009-12-01

    We examine the mechanism of bundling of cytoskeletal actin filaments by two representative bundling proteins, fascin and espin. Small-angle x-ray studies show that increased binding from linkers drives a systematic overtwist of actin filaments from their native state, which occurs in a linker-dependent fashion. Fascin bundles actin into a continuous spectrum of intermediate twist states, while espin only allows for untwisted actin filaments and fully overtwisted bundles. Based on a coarse-grained, statistical model of protein binding, we show that the interplay between binding geometry and the intrinsic flexibility of linkers mediates cooperative binding in the bundle. We attribute the respective continuous (discontinuous) bundling mechanisms of fascin (espin) to difference in the stiffness of linker bonds themselves.

  1. Thioredoxin reductase linked to cytoskeleton by focal adhesion kinase reverses actin S-nitrosylation and restores neutrophil β(2) integrin function.

    PubMed

    Thom, Stephen R; Bhopale, Veena M; Milovanova, Tatyana N; Yang, Ming; Bogush, Marina

    2012-08-31

    The investigation goal was to identify mechanisms for reversal of actin S-nitrosylation in neutrophils after exposure to high oxygen partial pressures. Prior work has shown that hyperoxia causes S-nitrosylated actin (SNO-actin) formation, which mediates β(2) integrin dysfunction, and these changes can be reversed by formylmethionylleucylphenylalanine or 8-bromo-cyclic GMP. Herein we show that thioredoxin reductase (TrxR) is responsible for actin denitrosylation. Approximately 80% of cellular TrxR is localized to the cytosol, divided between the G-actin and short filamentous actin (sF-actin) fractions based on Triton solubility of cell lysates. TrxR linkage to sF-actin requires focal adhesion kinase (FAK) based on immunoprecipitation studies. S-Nitrosylation accelerates actin filament turnover (by mechanisms described previously (Thom, S. R., Bhopale, V. M., Yang, M., Bogush, M., Huang, S., and Milovanova, T. (2011) Neutrophil β(2) integrin inhibition by enhanced interactions of vasodilator stimulated phosphoprotein with S-nitrosylated actin. J. Biol. Chem. 286, 32854-32865), which causes FAK to disassociate from sF-actin. TrxR subsequently dissociates from FAK, and the physical separation from actin impedes denitrosylation. If SNO-actin is photochemically reduced with UV light or if actin filament turnover is impeded by incubations with cytochalasin D, latrunculin B, 8-bromo-cGMP, or formylmethionylleucylphenylalanine, FAK and TrxR reassociate with sF-actin and cause SNO-actin removal. FAK-TrxR association can also be demonstrated using isolated enzymes in ex vivo preparations. Uniquely, the FAK kinase domain is the site of TrxR linkage. We conclude that through its scaffold function, FAK influences TrxR activity and actin S-nitrosylation.

  2. CAP2 is a regulator of the actin cytoskeleton and its absence changes infiltration of inflammatory cells and contraction of wounds.

    PubMed

    Kosmas, Kosmas; Eskandarnaz, Ali; Khorsandi, Arya B; Kumar, Atul; Ranjan, Rajeev; Eming, Sabine A; Noegel, Angelika A; Peche, Vivek S

    2015-01-01

    Cyclase associated protein (CAP) is a highly conserved protein with roles in actin dynamics and many cellular processes. Two isoforms exist in higher eukaryotes, CAP1 and CAP2. CAP1 is ubiquitously expressed whereas CAP2 shows restricted tissue distribution. In mice, ablation of CAP2 leads to development of cardiomyopathy. CAP2 is expressed in skin. In human skin its expression is increased in wounds. To elucidate the role of CAP2 in skin upon injury, we studied the wound healing in CAP2 deficient mice and found altered wound healing response presumably resulting from reduced levels of α-SMA, decreased macrophage infiltration and slower neovascularization. In vitro cultured Cap2 deficient keratinocytes showed reduced velocity and a delay in scratch closure. The analysis of primary mutant fibroblasts also showed reduced velocity and less contractibility. They had extended protrusions and more focal adhesions. In addition the F-actin content was increased keeping the total actin content unaltered. Mutant fibroblasts furthermore exhibited an altered response during recovery from drug-induced disruption of the actin cytoskeleton. Interestingly, CAP1 was upregulated in knockout unwounded skin and in wounds which might partially compensate for the loss of CAP2. Taken together, our studies reveal a role for CAP2 in wound healing which may be based on its function as a regulator of the actin cytoskeleton.

  3. Bsp1p/Ypr171p is an adapter that directly links some synaptojanin family members to the cortical actin cytoskeleton in yeast.

    PubMed

    Wicky, Sidonie; Frischmuth, Sabine; Singer-Krüger, Birgit

    2003-02-27

    In this study we identified a novel protein, Bsp1p, that interacts directly with two yeast synaptojanins, Sjl2p and Sjl3p, but not with Sjl1p. The interaction takes place via the Sac1/polyphosphoinositide phosphatase domain, whose conserved C-terminal region is important for binding. Subcellular localization and genetic interactions revealed a function of Bsp1p in the cortical actin cytoskeleton. A fraction of Bsp1p was found to be membrane-associated. Studies with mutants of phosphatidylinositol 4-kinase, PIK1, suggested that the interaction with membranes is facilitated by phosphoinositides. We propose that Bsp1p is an adapter that links Sjl2p and Sjl3p to the cortical actin cytoskeleton.

  4. Rapid actin-cytoskeleton-dependent recruitment of plasma membrane-derived dysferlin at wounds is critical for muscle membrane repair.

    PubMed

    McDade, Joel R; Archambeau, Ashley; Michele, Daniel E

    2014-08-01

    Deficits in membrane repair may contribute to disease progression in dysferlin-deficient muscular dystrophy. Dysferlin, a type-II transmembrane phospholipid-binding protein, is hypothesized to regulate fusion of repair vesicles with the sarcolemma to facilitate membrane repair, but the dysferlin-containing compartments involved in membrane repair and the mechanism by which these compartments contribute to resealing are unclear. A dysferlin-pHluorin [dysf-pH-sensitive green fluorescent protein (pHGFP)] muscle-specific transgenic mouse was developed to examine the dynamic behavior and subcellular localization of dysferlin during membrane repair in adult skeletal muscle fibers. Live-cell confocal microscopy of uninjured adult dysf-pHGFP muscle fibers revealed that dysferlin is highly enriched in the sarcolemma and transverse tubules. Laser-wounding induced rapid recruitment of ∼30 μm of local dysferlin-containing sarcolemma, leading to formation of stable dysferlin accumulations surrounding lesions, endocytosis of dysferlin, and formation of large cytoplasmic vesicles from distal regions of the fiber. Disruption of the actin cytoskeleton decreased recruitment of sarcolemma-derived dysferlin to lesions in dysf-pHGFP fibers without affecting endocytosis and impaired membrane resealing in wild-type fibers, similar to findings in dysferlin deficiency (a 2-fold increase in FM1-43 uptake). Our data support a new mechanism whereby recruitment of sarcolemma-derived dysferlin creates an active zone of high lipid-binding activity at wounds to interact with repair vesicles and facilitate membrane resealing in skeletal muscle.

  5. The actin-cytoskeleton linker protein ezrin is regulated during osteosarcoma metastasis by PKC.

    PubMed

    Ren, L; Hong, S H; Cassavaugh, J; Osborne, T; Chou, A J; Kim, S Y; Gorlick, R; Hewitt, S M; Khanna, C

    2009-02-12

    Ezrin is a member of the ERM (ezrin, radixin, moesin) protein family and links F-actin to the cell membrane following phosphorylation. Ezrin has been associated with tumor progression and metastasis in several cancers including the pediatric solid tumors, osteosarcoma and rhabdomyosarcoma. In this study, we were surprised to find that ezrin was not constitutively phosphorylated but rather was dynamically regulated during metastatic progression in osteosarcoma. Metastatic osteosarcoma cells expressed phosphorylated ERM early after their arrival in the lung, and then late in progression, only at the invasive front of larger metastatic lesions. To pursue mechanisms for this regulation, we found that inhibitors of PKC (protein kinase C) blocked phosphorylation of ezrin, and that ezrin coimmunoprecipitated in cells with PKCalpha, PKCiota and PKCgamma. Furthermore, phosphorylated forms of ezrin and PKC had identical expression patterns at the invasive front of pulmonary metastatic lesions in murine and human patient samples. Finally, we showed that the promigratory effects of PKC were linked to ezrin phosphorylation. These data are the first to suggest a dynamic regulation of ezrin phosphorylation during metastasis and to connect the PKC family members with this regulation.

  6. The organization of the actin cytoskeleton in vertical and graviresponding primary roots of maize.

    PubMed Central

    Blancaflor, E B; Hasenstein, K H

    1997-01-01

    To determine whether actin microfilament (MF) organization is correlated with differential elongation, primary roots of Zea mays cv Merit maintained vertically or reoriented horizontally for 15 to 120 min were stained with rhodamine phalloidin and examined with a confocal microscope. Root curvature was measured with a computer-controlled video digitizer. In vertical roots bundles of MFs in the elongation and maturation zone were oriented parallel to the longitudinal axis of cells. MFs in the vascular parenchyma cells were more abundant than in the cortex and epidermis. Epidermal and proendodermal cells in the meristematic region contained transverse cortical MFs. The organization of MFs of graviresponding roots was similar to that of vertical roots. Application of cytochalasin B or cytochalasin D resulted in extensive disruption of MFs in the cortex and epidermis, but only partially affected MFs in the stele. Despite the cytochalasin B-induced depolymerization of MFs, gravicurvature exceeded that of controls. In contrast, the auxin transport inhibitor N-1 naphthylphthalamic acid suppressed root curvature but had no observable effect on the integrity of the MFs. The data indicate that MFs may not be involved in the graviresponse of maize roots. PMID:11536803

  7. The organization of the actin cytoskeleton in vertical and graviresponding primary roots of maize

    NASA Technical Reports Server (NTRS)

    Blancaflor, E. B.; Hasenstein, K. H.

    1997-01-01

    To determine whether actin microfilament (MF) organization is correlated with differential elongation, primary roots of Zea mays cv Merit maintained vertically or reoriented horizontally for 15 to 120 min were stained with rhodamine phalloidin and examined with a confocal microscope. Root curvature was measured with a computer-controlled video digitizer. In vertical roots bundles of MFs in the elongation and maturation zone were oriented parallel to the longitudinal axis of cells. MFs in the vascular parenchyma cells were more abundant than in the cortex and epidermis. Epidermal and proendodermal cells in the meristematic region contained transverse cortical MFs. The organization of MFs of graviresponding roots was similar to that of vertical roots. Application of cytochalasin B or cytochalasin D resulted in extensive disruption of MFs in the cortex and epidermis, but only partially affected MFs in the stele. Despite the cytochalasin B-induced depolymerization of MFs, gravicurvature exceeded that of controls. In contrast, the auxin transport inhibitor N-1 naphthylphthalamic acid suppressed root curvature but had no observable effect on the integrity of the MFs. The data indicate that MFs may not be involved in the graviresponse of maize roots.

  8. The organization of the actin cytoskeleton in vertical and graviresponding primary roots of maize

    NASA Technical Reports Server (NTRS)

    Blancaflor, E. B.; Hasenstein, K. H.

    1997-01-01

    To determine whether actin microfilament (MF) organization is correlated with differential elongation, primary roots of Zea mays cv Merit maintained vertically or reoriented horizontally for 15 to 120 min were stained with rhodamine phalloidin and examined with a confocal microscope. Root curvature was measured with a computer-controlled video digitizer. In vertical roots bundles of MFs in the elongation and maturation zone were oriented parallel to the longitudinal axis of cells. MFs in the vascular parenchyma cells were more abundant than in the cortex and epidermis. Epidermal and proendodermal cells in the meristematic region contained transverse cortical MFs. The organization of MFs of graviresponding roots was similar to that of vertical roots. Application of cytochalasin B or cytochalasin D resulted in extensive disruption of MFs in the cortex and epidermis, but only partially affected MFs in the stele. Despite the cytochalasin B-induced depolymerization of MFs, gravicurvature exceeded that of controls. In contrast, the auxin transport inhibitor N-1 naphthylphthalamic acid suppressed root curvature but had no observable effect on the integrity of the MFs. The data indicate that MFs may not be involved in the graviresponse of maize roots.

  9. Demonstration of correlative atomic force and transmission electron microscopy using actin cytoskeleton

    PubMed Central

    Yamada, Yutaro; Konno, Hiroki; Shimabukuro, Katsuya

    2017-01-01

    In this study, we present a new technique called correlative atomic force and transmission electron microscopy (correlative AFM/TEM) in which a targeted region of a sample can be observed under AFM and TEM. The ultimate goal of developing this new technique is to provide a technical platform to expand the fields of AFM application to complex biological systems such as cell extracts. Recent advances in the time resolution of AFM have enabled detailed observation of the dynamic nature of biomolecules. However, specifying molecular species, by AFM alone, remains a challenge. Here, we demonstrate correlative AFM/TEM, using actin filaments as a test sample, and further show that immuno-electron microscopy (immuno-EM), to specify molecules, can be integrated into this technique. Therefore, it is now possible to specify molecules, captured under AFM, by subsequent observation using immuno-EM. In conclusion, correlative AFM/TEM can be a versatile method to investigate complex biological systems at the molecular level. PMID:28828286

  10. Synthetic lethality screen identifies a novel yeast myosin I gene (MYO5): myosin I proteins are required for polarization of the actin cytoskeleton

    PubMed Central

    1996-01-01

    The organization of the actin cytoskeleton plays a critical role in cell physiology in motile and nonmotile organisms. Nonetheless, the function of the actin based motor molecules, members of the myosin superfamily, is not well understood. Deletion of MYO3, a yeast gene encoding a "classic" myosin I, has no detectable phenotype. We used a synthetic lethality screen to uncover genes whose functions might overlap with those of MYO3 and identified a second yeast myosin 1 gene, MYO5. MYO5 shows 86 and 62% identity to MYO3 across the motor and non- motor regions. Both genes contain an amino terminal motor domain, a neck region containing two IQ motifs, and a tail domain consisting of a positively charged region, a proline-rich region containing sequences implicated in ATP-insensitive actin binding, and an SH3 domain. Although myo5 deletion mutants have no detectable phenotype, yeast strains deleted for both MYO3 and MYO5 have severe defects in growth and actin cytoskeletal organization. Double deletion mutants also display phenotypes associated with actin disorganization including accumulation of intracellular membranes and vesicles, cell rounding, random bud site selection, sensitivity to high osmotic strength, and low pH as well as defects in chitin and cell wall deposition, invertase secretion, and fluid phase endocytosis. Indirect immunofluorescence studies using epitope-tagged Myo5p indicate that Myo5p is localized at actin patches. These results indicate that MYO3 and MYO5 encode classical myosin I proteins with overlapping functions and suggest a role for Myo3p and Myo5p in organization of the actin cytoskeleton of Saccharomyces cerevisiae. PMID:8682864

  11. Cytoskeleton mediating transport between the ER system and the Golgi apparatus in the green alga Scenedesmus acutus.

    PubMed

    Tanaka, Y; Noguchi, T

    2000-10-01

    In the green alga Scenedesmus acutus, Golgi bodies are located near the nucleus and supplied with transition vesicles that bud from the outer nuclear envelope membrane. Using this alga, we have shown previously that thiamine pyrophosphatase (TPPase), a marker enzyme of Golgi bodies, migrates in vesicles from the Golgi bodies to the ER via the nuclear envelope in the presence of BFA (Noguchi et al., Protoplasma 201, 202-212, 1998). In this study we demonstrate that both cytochalasin B and oryzalin (microtubule-disrupting agent) inhibit the BFA-induced migration of TPPase from Golgi bodies to the nuclear envelope. However, only actin filaments--not microtubules--can be detected between the nuclear envelope and the Golgi bodies in both BFA-treated and untreated cells. These observations suggest that actin filaments mediate the BFA-induced retrograde transport of vesicles. This mechanism differs from that found in mammalian cells, in which microtubules mediate BFA-induced retrograde transport by the elongation of membrane tubules from the Golgi cisternae. We also discuss the non-participation of the cytoskeleton in anterograde transport from the nuclear envelope to the Golgi bodies.

  12. Adhesive F-actin Waves: A Novel Integrin-Mediated Adhesion Complex Coupled to Ventral Actin Polymerization

    PubMed Central

    Case, Lindsay B.; Waterman, Clare M.

    2011-01-01

    At the leading lamellipodium of migrating cells, protrusion of an Arp2/3-nucleated actin network is coupled to formation of integrin-based adhesions, suggesting that Arp2/3-mediated actin polymerization and integrin-dependent adhesion may be mechanistically linked. Arp2/3 also mediates actin polymerization in structures distinct from the lamellipodium, in “ventral F-actin waves” that propagate as spots and wavefronts along the ventral plasma membrane. Here we show that integrins engage the extracellular matrix downstream of ventral F-actin waves in several mammalian cell lines as well as in primary mouse embryonic fibroblasts. These “adhesive F-actin waves” require a cycle of integrin engagement and disengagement to the extracellular matrix for their formation and propagation, and exhibit morphometry and a hierarchical assembly and disassembly mechanism distinct from other integrin-containing structures. After Arp2/3-mediated actin polymerization, zyxin and VASP are co-recruited to adhesive F-actin waves, followed by paxillin and vinculin, and finally talin and integrin. Adhesive F-actin waves thus represent a previously uncharacterized integrin-based adhesion complex associated with Arp2/3-mediated actin polymerization. PMID:22069459

  13. Optogenetics to target actin-mediated synaptic loss in Alzheimer's

    NASA Astrophysics Data System (ADS)

    Zahedi, Atena; DeFea, Kathryn; Ethell, Iryna

    2013-03-01

    Numerous studies in Alzheimer's Disease (AD) animal models show that overproduction of Aβ peptides and their oligomerization can distort dendrites, damage synapses, and decrease the number of dendritic spines and synapses. Aβ may trigger synapse loss by modulating activity of actin-regulating proteins, such as Rac1 and cofilin. Indeed, Aβ1-42 oligomers can activate actin severing protein cofilin through calcineurin-mediated activation of phosphatase slingshot and inhibit an opposing pathway that suppresses cofilin phosphorylation through Rac-mediated activation of LIMK1. Excessive activation of actin-severing protein cofilin triggers the formation of a non-dynamic actin bundles, called rods that are found in AD brains and cause loss of synapses. Hence, regulation of these actin-regulating proteins in dendritic spines could potentially provide useful tools for preventing the synapse/spine loss associated with earlier stages of AD neuropathology. However, lack of spatiotemporal control over their activity is a key limitation. Recently, optogenetic advancements have provided researchers with convenient light-activating proteins such as photoactivatable Rac (PARac). Here, we transfected cultured primary hippocampal neurons and human embryonic kidney (HEK) cells with a PARac/ mCherry-containing plasmid and the mCherry-positive cells were identified and imaged using an inverted fluorescence microscope. Rac1 activation was achieved by irradiation with blue light (480nm) and live changes in dendritic spine morphology were observed using mCherry (587nm). Rac activation was confirmed by immunostaining for phosphorylated form of effector proteinP21 protein-activated kinase 1 (PAK1) and reorganization of actin. Thus, our studies confirm the feasibility of using the PA-Rac construct to trigger actin re-organization in the dendritic spines.

  14. Transient receptor potential vanilloid 2 activation by focal mechanical stimulation requires interaction with the actin cytoskeleton and enhances growth cone motility.

    PubMed

    Sugio, Shouta; Nagasawa, Masami; Kojima, Itaru; Ishizaki, Yasuki; Shibasaki, Koji

    2017-04-01

    We have previously reported that transient receptor potential vanilloid 2 (TRPV2) can be activated by mechanical stimulation, which enhances axonal outgrowth in developing neurons; however, the molecular mechanisms that govern the contribution of TRPV2 activation to axonal outgrowth remain unclear. In the present study, we examined this mechanism by using PC12 cells as a neuronal model. Overexpression of TRPV2 enhanced axonal outgrowth in a mechanical stimulus-dependent manner. Accumulation of TRPV2 at the cell surface was 4-fold greater in the growth cone compared with the soma. In the growth cone, TRPV2 is not static, but dynamically accumulates (within ∼100 ms) to the site of mechanical stimulation. The dynamic and acute clustering of TRPV2 can enhance very weak mechanical stimuli via focal accumulation of TRPV2. Focal application of mechanical stimuli dramatically increased growth cone motility and caused actin reorganization via activation of TRPV2. We also found that TRPV2 physically interacts with actin and that changes in the actin cytoskeleton are required for its activation. Here, we demonstrated for the first time to our knowledge that TRPV2 clustering is induced by mechanical stimulation generated by axonal outgrowth and that TRPV2 activation is triggered by actin rearrangements that result from mechanical stimulation. Moreover, TRPV2 activation enhances growth cone motility and actin accumulation to promote axonal outgrowth. Sugio, S., Nagasawa, M., Kojima, I., Ishizaki, Y., Shibasaki, K. Transient receptor potential vanilloid 2 activation by focal mechanical stimulation requires interaction with the actin cytoskeleton and enhances growth cone motility. © FASEB.

  15. Expression of constitutively active Akt/protein kinase B signals GLUT4 translocation in the absence of an intact actin cytoskeleton.

    PubMed

    Eyster, Craig A; Duggins, Quwanza S; Olson, Ann Louise

    2005-05-06

    The actin cytoskeleton has been shown to be required for insulin-dependent GLUT4 translocation; however, the role that the actin network plays is unknown. Actin may play a role in formation of an active signaling complex, or actin may be required for movement of vesicles to the plasma membrane surface. To distinguish between these possibilities, we examined the ability of myr-Akt, a constitutively active form of Akt that signals GLUT4 translocation to the plasma membrane in the absence of insulin, to signal translocation of an HA-GLUT4-GFP reporter protein in the presence or absence of an intact cytoskeleton in 3T3-L1 adipocytes. Expression of myr-Akt signaled the redistribution of the GLUT4 reporter protein to the cell surface in the absence or presence of 10 microm latrunculin B, a concentration sufficient to completely inhibit insulin-dependent redistribution of the GLUT4 reporter to the cell surface. These data suggest that the actin network plays a primary role in organization of the insulin-signaling complex. To further support this conclusion, we measured the activation of known signaling proteins using a saturating concentration of insulin in cells pretreated without or with 10 microm latrunculin B. We found that latrunculin treatment did not affect insulin-dependent tyrosine phosphorylation of the insulin receptor beta-subunit and IRS-1 but completely inhibited activation of Akt/PKB enzymatic activity. Phosphorylation of Akt/PKB at Ser-473 and Thr-308 was inhibited by latrunculin B treatment, indicating that the defect in signaling lies prior to Akt/PKB activation. In summary, our data support the hypothesis that the actin network plays a role in organization of the insulin-signaling complex but is not required for vesicle trafficking and/or fusion.

  16. The actin cytoskeleton modulates the activation of iNKT cells by segregating CD1d nanoclusters on antigen-presenting cells

    PubMed Central

    Torreno-Pina, Juan A.; Manzo, Carlo; Salio, Mariolina; Aichinger, Michael C.; Oddone, Anna; Lakadamyali, Melike; Shepherd, Dawn; Besra, Gurdyal S.; Cerundolo, Vincenzo

    2016-01-01

    Invariant natural killer T (iNKT) cells recognize endogenous and exogenous lipid antigens presented in the context of CD1d molecules. The ability of iNKT cells to recognize endogenous antigens represents a distinct immune recognition strategy, which underscores the constitutive memory phenotype of iNKT cells and their activation during inflammatory conditions. However, the mechanisms regulating such “tonic” activation of iNKT cells remain unclear. Here, we show that the spatiotemporal distribution of CD1d molecules on the surface of antigen-presenting cells (APCs) modulates activation of iNKT cells. By using superresolution microscopy, we show that CD1d molecules form nanoclusters at the cell surface of APCs, and their size and density are constrained by the actin cytoskeleton. Dual-color single-particle tracking revealed that diffusing CD1d nanoclusters are actively arrested by the actin cytoskeleton, preventing their further coalescence. Formation of larger nanoclusters occurs in the absence of interactions between CD1d cytosolic tail and the actin cytoskeleton and correlates with enhanced iNKT cell activation. Importantly and consistently with iNKT cell activation during inflammatory conditions, exposure of APCs to the Toll-like receptor 7/8 agonist R848 increases nanocluster density and iNKT cell activation. Overall, these results define a previously unidentified mechanism that modulates iNKT cell autoreactivity based on the tight control by the APC cytoskeleton of the sizes and densities of endogenous antigen-loaded CD1d nanoclusters. PMID:26798067

  17. Actin cytoskeleton-dependent Rab GTPase-regulated angiotensin type I receptor lysosomal degradation studied by fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Li, Hewang; Yu, Peiying; Sun, Yuansheng; Felder, Robin A.; Periasamy, Ammasi; Jose, Pedro A.

    2010-09-01

    The dynamic regulation of the cellular trafficking of human angiotensin (Ang) type 1 receptor (AT1R) is not well understood. Therefore, we investigated the cellular trafficking of AT1R-enhanced green fluorescent protein (EGFP) (AT1R-EGFP) heterologously expressed in HEK293 cells by determining the change in donor lifetime (AT1R-EGFP) in the presence or absence of acceptor(s) using fluorescence lifetime imaging-fluorescence resonance energy transfer (FRET) microscopy. The average lifetime of AT1R-EGFP in our donor-alone samples was ~2.33 ns. The basal state lifetime was shortened slightly in the presence of Rab5 (2.01+/-0.10 ns) or Rab7 (2.11+/-0.11 ns) labeled with Alexa 555, as the acceptor fluorophore. A 5-min Ang II treatment markedly shortened the lifetime of AT1R-EGFP in the presence of Rab5-Alexa 555 (1.78+/-0.31 ns) but was affected minimally in the presence of Rab7-Alexa 555 (2.09+/-0.37 ns). A 30-min Ang II treatment further decreased the AT1R-EGFP lifetime in the presence of both Rab5- and Rab7-Alexa 555. Latrunculin A but not nocodazole pretreatment blocked the ability of Ang II to shorten the AT1R-EGFP lifetime. The occurrence of FRET between AT1R-EGFP (donor) and LAMP1-Alexa 555 (acceptor) with Ang II stimulation was impaired by photobleaching the acceptor. These studies demonstrate that Ang II-induced AT1R lysosomal degradation through its association with LAMP1 is regulated by Rab5/7 via mechanisms that are dependent on intact actin cytoskeletons.

  18. Antiamoebic Activity of Adenophyllum aurantium (L.) Strother and Its Effect on the Actin Cytoskeleton of Entamoeba histolytica.

    PubMed

    Herrera-Martínez, Mayra; Hernández-Ramírez, Verónica I; Hernández-Carlos, Beatriz; Chávez-Munguía, Bibiana; Calderón-Oropeza, Mónica A; Talamás-Rohana, Patricia

    2016-01-01

    In Mexico, the Adenophyllum aurantium (L.) Strother plant is consumed as an infusion to treat intestinal diseases such as amoebiasis, which is an endemic health problem in Mexico and other countries. However, the effect of A. aurantium on Entamoeba histolytica, the causative agent of amoebiasis, is unknown. An aerial part methanolic extract (AaMeA), a root methanolic extract (AaMeR) and a root ethyl acetate extract (AaEaR) were tested on E. histolytica trophozoites. AaMeA and AaMeR did not show antiproliferative activity; however, AaEaR exhibited an in vitro GI50 of 230 μg/ml, and it was able to inhibit the differentiation of Entamoeba invadens trophozoites into cysts. The intraperitoneal administration of AaEaR (2.5 or 5 mg) to hamsters that were infected with E. histolytica inhibited the development of amoebic liver abscesses in 48.5 or 89.0% of the animals, respectively. Adhesion to fibronectin and erythrophagocytosis were 28.7 and 37.5% inhibited by AaEaR, respectively. An ultrastructure analysis of AaEaR-treated trophozoites shows a decrease in the number of vacuoles but no apparent cell damage. Moreover, this extract affected the actin cytoskeleton structuration, and it prevented the formation of contractile rings by mechanism(s) that were independent of reactive oxygen species and RhoA activation pathways. (13)C NMR data showed that the major compounds in the AaEaR extract are thiophenes. Our results suggest that AaEaR may be effective in treatments against amoebiasis, nevertheless, detailed toxicity studies on thiophenes, contained in AaEaR, are required to avoid misuse of this vegetal species.

  19. Antiamoebic Activity of Adenophyllum aurantium (L.) Strother and Its Effect on the Actin Cytoskeleton of Entamoeba histolytica

    PubMed Central

    Herrera-Martínez, Mayra; Hernández-Ramírez, Verónica I.; Hernández-Carlos, Beatriz; Chávez-Munguía, Bibiana; Calderón-Oropeza, Mónica A.; Talamás-Rohana, Patricia

    2016-01-01

    In Mexico, the Adenophyllum aurantium (L.) Strother plant is consumed as an infusion to treat intestinal diseases such as amoebiasis, which is an endemic health problem in Mexico and other countries. However, the effect of A. aurantium on Entamoeba histolytica, the causative agent of amoebiasis, is unknown. An aerial part methanolic extract (AaMeA), a root methanolic extract (AaMeR) and a root ethyl acetate extract (AaEaR) were tested on E. histolytica trophozoites. AaMeA and AaMeR did not show antiproliferative activity; however, AaEaR exhibited an in vitro GI50 of 230 μg/ml, and it was able to inhibit the differentiation of Entamoeba invadens trophozoites into cysts. The intraperitoneal administration of AaEaR (2.5 or 5 mg) to hamsters that were infected with E. histolytica inhibited the development of amoebic liver abscesses in 48.5 or 89.0% of the animals, respectively. Adhesion to fibronectin and erythrophagocytosis were 28.7 and 37.5% inhibited by AaEaR, respectively. An ultrastructure analysis of AaEaR-treated trophozoites shows a decrease in the number of vacuoles but no apparent cell damage. Moreover, this extract affected the actin cytoskeleton structuration, and it prevented the formation of contractile rings by mechanism(s) that were independent of reactive oxygen species and RhoA activation pathways. 13C NMR data showed that the major compounds in the AaEaR extract are thiophenes. Our results suggest that AaEaR may be effective in treatments against amoebiasis, nevertheless, detailed toxicity studies on thiophenes, contained in AaEaR, are required to avoid misuse of this vegetal species. PMID:27445810

  20. Farnesylcysteine analogues inhibit store-regulated Ca2+ entry in human platelets: evidence for involvement of small GTP-binding proteins and actin cytoskeleton.

    PubMed Central

    Rosado, J A; Sage, S O

    2000-01-01

    We have investigated the mechanism of Ca(2+) entry into fura-2-loaded human platelets by preventing the prenylation of proteins such as small GTP-binding proteins. The farnesylcysteine analogues farnesylthioacetic acid (FTA) and N-acetyl-S-geranylgeranyl-L-cysteine (AGGC), which are inhibitors of the methylation of prenylated and geranylgeranylated proteins respectively, significantly decreased thrombin-evoked increases in intracellular free Ca(2+) concentration ([Ca(2+)](i)) in the presence, but not in the absence, of external Ca(2+), suggesting a relatively selective inhibition of Ca(2+) entry over internal release. Both these compounds and N-acetyl-S-farnesyl-L-cysteine, which had similar effects to those of FTA, also decreased Ca(2+) entry evoked by the depletion of intracellular Ca(2+) stores with thapsigargin. The inactive control N-acetyl-S-geranyl-L-cysteine was without effect. Patulin, an inhibitor of prenylation that is inert with respect to methyltransferases, also decreased store-regulated Ca(2+) entry. Cytochalasin D, an inhibitor of actin polymerization, significantly decreased store-regulated Ca(2+) entry in a time-dependent manner. Both cytochalasin D and the farnesylcysteine analogues FTA and AGGC inhibited actin polymerization; however, when evoking the same extent of decrease in actin filament formation, FTA and AGGC showed greater inhibitory effects on Ca(2+) entry, indicating a cytoskeleton-independent component in the regulation of Ca(2+) entry by small GTP-binding-protein. These findings suggest that prenylated proteins such as small GTP-binding proteins are involved in store-regulated Ca(2+) entry through actin cytoskeleton-dependent and cytoskeleton-independent mechanisms in human platelets. PMID:10727417

  1. Mechanisms of cytoskeleton-mediated mechanical signal transmission in cells

    PubMed Central

    Hwang, Yongyun; Gouget, Cecile L.M.; Barakat, Abdul I.

    2012-01-01

    Recent experiments have demonstrated very rapid long-distance transmission of mechanical forces within cells. Because the speed of this transmission greatly exceeds that of reaction-diffusion signaling, it has been conjectured that it occurs via the propagation of elastic waves through the actin stress fiber network. To explore the plausibility of this conjecture, we recently developed a model of small amplitude stress fiber deformations in prestressed viscoelastic stress fibers subjected to external forces. The model results demonstrated that rapid mechanical signal transmission is only possible when the external force is applied orthogonal to the stress fiber axis and that the dynamics of this transmission are governed by a balance between the prestress in the stress fiber and the stress fiber's material viscosity. The present study, which is a follow-up on our previous model, uses dimensional analysis to: (1) further evaluate the plausibility of the elastic wave conjecture and (2) obtain insight into mechanical signal transmission dynamics in simple stress fiber networks. We show that the elastic wave scenario is likely not the mechanism of rapid mechanical signal transmission in actin stress fibers due to the highly viscoelastic character of these fibers. Our analysis also demonstrates that the time constant characterizing mechanical stimulus transmission is strongly dependent on the topology of the stress fiber network, implying that network organization plays an important role in determining the dynamics of cellular responsiveness to mechanical stimulation. PMID:23336020

  2. Disruption of Cortical Actin in Skeletal Muscle Demonstrates an Essential Role of the Cytoskeleton in Glucose Transporter 4 Translocation in Insulin-sensitive Tissues*

    PubMed Central

    Brozinick, Joseph T.; Hawkins, Eric D.; Strawbridge, Andrew B.; Elmendorf, Jeffrey S.

    2008-01-01

    Cell culture work suggests that signaling to polymerize cortical filamentous actin (F-actin) represents a required pathway for the optimal redistribution of the insulin-responsive glucose transporter, GLUT4, to the plasma membrane. Recent in vitro study further suggests that the actin-regulatory neural Wiskott-Aldrich syndrome protein (N-WASP) mediates the effect of insulin on the actin filament network. Here we tested whether similar cytoskeletal mechanics are essential for insulin-regulated glucose transport in isolated rat epitrochlearis skeletal muscle. Microscopic analysis revealed that cortical F-actin is markedly diminished in muscle exposed to latrunculin B. Depolymerization of cortical F-actin with latrunculin B caused a time- and concentration-dependent decline in 2-deoxyglucose transport. The loss of cortical F-actin and glucose transport was paralleled by a decline in insulin-stimulated GLUT4 translocation, as assessed by photolabeling of cell surface GLUT4 with Bio-LC-ATB-BMPA. Although latrunculin B impaired insulin-stimulated GLUT4 translocation and glucose transport, activation of phosphatidylinositol 3-kinase and Akt by insulin was not rendered ineffective. In contrast, the ability of insulin to elicit the cortical F-actin localization of N-WASP was abrogated. These data provide the first evidence that actin cytoskeletal mechanics are an essential feature of the glucose transport process in intact skeletal muscle. Furthermore, these findings support a distal actin-based role for N-WASP in insulin action in vivo. PMID:15247264

  3. Dendritic Branching and Homogenization of Actin Networks Mediated by Arp2/3 Complex

    NASA Astrophysics Data System (ADS)

    Tseng, Yiider; Wirtz, Denis

    2004-12-01

    The cytoskeleton of motile cells exploits accessory proteins to locally modulate its organization and micromechanics. Here, we demonstrate that the Arp2/3 complex plays the role, unique among other cytoskeleton proteins, of an actin network “homogenizer,” promoting the extremely rapid formation of homogeneous and stiff networks. Nanotracking of microspheres imbedded in F-actin networks reveals that the Arp2/3 complex promotes the formation of networks that are remarkably more homogeneous than control networks, a distinctive feature that coordinates a dramatic burst of elasticity. These results suggest that the Arp2/3 complex possesses a unique function of stabilizing membrane protrusions through the formation of homogeneous and stiff actin cytoskeleton at the leading edge of crawling cells.

  4. Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status

    SciTech Connect

    Djuzenova, Cholpon S.; Fiedler, Vanessa; Memmel, Simon; Katzer, Astrid; Hartmann, Susanne; Krohne, Georg; Zimmermann, Heiko; Polat, Bülent; Flentje, Michael; and others

    2015-01-15

    Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut), U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion. - Highlights: • We examine 5 glioblastoma lines on the invasion capacity and actin cytoskeleton. • Glioblastoma cell lines mutated in both p53 and PTEN were the most invasive. • Less invasive cells showed much less lamellipodia, but more actin stress fibers. • A mechanism for the differences in tumor cell invasion is proposed.

  5. Functional nanoscale coupling of Lyn kinase with IgE-FcεRI is restricted by the actin cytoskeleton in early antigen-stimulated signaling

    PubMed Central

    Shelby, Sarah A.; Veatch, Sarah L.; Holowka, David A.; Baird, Barbara A.

    2016-01-01

    The allergic response is initiated on the plasma membrane of mast cells by phosphorylation of the receptor for immunoglobulin E (IgE), FcεRI, by Lyn kinase after IgE-FcεRI complexes are cross-linked by multivalent antigen. Signal transduction requires reorganization of receptors and membrane signaling proteins, but this spatial regulation is not well defined. We used fluorescence localization microscopy (FLM) and pair-correlation analysis to measure the codistribution of IgE-FcεRI and Lyn on the plasma membrane of fixed cells with 20- to 25-nm resolution. We directly visualized Lyn recruitment to IgE-FcεRI within 1 min of antigen stimulation. Parallel FLM experiments captured stimulation-induced FcεRI phosphorylation and colocalization of a saturated lipid-anchor probe derived from Lyn’s membrane anchorage. We used cytochalasin and latrunculin to investigate participation of the actin cytoskeleton in regulating functional interactions of FcεRI. Inhibition of actin polymerization by these agents enhanced colocalization of IgE-FcεRI with Lyn and its saturated lipid anchor at early stimulation times, accompanied by augmented phosphorylation within FcεRI clusters. Ising model simulations provide a simplified model consistent with our results. These findings extend previous evidence that IgE-FcεRI signaling is initiated by colocalization with Lyn in ordered lipid regions and that the actin cytoskeleton regulates this functional interaction by influencing the organization of membrane lipids. PMID:27682583

  6. Interaction with mycorrhiza helper bacterium Streptomyces sp. AcH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric).

    PubMed

    Schrey, Silvia D; Salo, Vanamo; Raudaskoski, Marjatta; Hampp, Rüdiger; Nehls, Uwe; Tarkka, Mika T

    2007-08-01

    The actin cytoskeleton (AC) of fungal hyphae is a major determinant of hyphal shape and morphogenesis, implicated in controlling tip structure and secretory vesicle delivery. Hyphal growth of the ectomycorrhizal fungus Amanita muscaria and symbiosis formation with spruce are promoted by the mycorrhiza helper bacterium Streptomyces sp. AcH 505 (AcH 505). To investigate structural requirements of growth promotion, the effect of AcH 505 on A. muscaria hyphal morphology, AC and actin gene expression were studied. Hyphal diameter and mycelial density decreased during dual culture (DC), and indirect immunofluorescence microscopy revealed that the dense and polarised actin cap in hyphal tips of axenic A. muscaria changes to a loosened and dispersed structure in DC. Supplementation of growth medium with cell-free bacterial supernatant confirmed that reduction in hyphal diameter and AC changes occurred at the same stage of growth. Transcript levels of both actin genes isolated from A. muscaria remained unaltered, indicating that AC changes are regulated by reorganisation of the existing actin pool. In conclusion, the AC reorganisation appears to result in altered hyphal morphology and faster apical extension. The thus improved spreading of hyphae and increased probability to encounter plant roots highlights a mechanism behind the mycorrhiza helper effect.

  7. Structural features and interfacial properties of WH2, β-thymosin domains and other intrinsically disordered domains in the regulation of actin cytoskeleton dynamics.

    PubMed

    Renault, Louis; Deville, Célia; van Heijenoort, Carine

    2013-11-01

    Many actin-binding proteins (ABPs) use complex multidomain architectures to integrate and coordinate multiple signals and interactions with the dynamic remodeling of actin cytoskeleton. In these proteins, small segments that are intrinsically disordered in their unbound native state can be functionally as important as identifiable folded units. These functional intrinsically disordered regions (IDRs) are however difficult to identify and characterize in vitro. Here, we try to summarize the state of the art in understanding the structural features and interfacial properties of IDRs involved in actin self-assembly dynamics. Recent structural and functional insights into the regulation of widespread, multifunctional WH2/β-thymosin domains, and of other IDRs such as those associated with WASP/WAVE, formin or capping proteins are examined. Understanding the functional versatility of IDRs in actin assembly requires apprehending by multiple structural and functional approaches their large conformational plasticity and dynamics in their interactions. In many modular ABPs, IDRs relay labile interactions with multiple partners and act as interaction hubs in interdomain and protein-protein interfaces. They thus control multiple conformational transitions between the inactive and active states or between various active states of multidomain ABPs, and play an important role to coordinate the high turnover of interactions in actin self-assembly dynamics.

  8. A CD317/tetherin–RICH2 complex plays a critical role in the organization of the subapical actin cytoskeleton in polarized epithelial cells

    PubMed Central

    Rollason, Ruth; Korolchuk, Viktor; Hamilton, Clare; Jepson, Mark

    2009-01-01

    CD317/tetherin is a lipid raft–associated integral membrane protein with a novel topology. It has a short N-terminal cytosolic domain, a conventional transmembrane domain, and a C-terminal glycosyl-phosphatidylinositol anchor. We now show that CD317 is expressed at the apical surface of polarized epithelial cells, where it interacts indirectly with the underlying actin cytoskeleton. CD317 is linked to the apical actin network via the proteins RICH2, EBP50, and ezrin. Knocking down expression of either CD317 or RICH2 gives rise to the same phenotype: a loss of the apical actin network with concomitant loss of apical microvilli, an increase in actin bundles at the basal surface, and a reduction in cell height without any loss of tight junctions, transepithelial resistance, or the polarized targeting of apical and basolateral membrane proteins. Thus, CD317 provides a physical link between lipid rafts and the apical actin network in polarized epithelial cells and is crucial for the maintenance of microvilli in such cells. PMID:19273615

  9. Noise-induced cochlear F-actin depolymerization is mediated via ROCK2/p-ERM signaling.

    PubMed

    Han, Yu; Wang, Xianren; Chen, Jun; Sha, Su-Hua

    2015-06-01

    Our previous work has suggested that traumatic noise activates Rho-GTPase pathways in cochlear outer hair cells (OHCs), resulting in cell death and noise-induced hearing loss (NIHL). In this study, we investigated Rho effectors, Rho-associated kinases (ROCKs), and the targets of ROCKs, the ezrin-radixin-moesin (ERM) proteins, in the regulation of the cochlear actin cytoskeleton using adult CBA/J mice under conditions of noise-induced temporary threshold shift (TTS) and permanent threshold shift (PTS) hearing loss, which result in changes to the F/G-actin ratio. The levels of cochlear ROCK2 and p-ERM decreased 1 h after either TTS- or PTS-noise exposure. In contrast, ROCK2 and p-ERM in OHCs decreased only after PTS-, not after TTS-noise exposure. Treatment with lysophosphatidic acid, an activator of the Rho pathway, resulted in significant reversal of the F/G-actin ratio changes caused by noise exposure and attenuated OHC death and NIHL. Conversely, the down-regulation of ROCK2 by pretreatment with ROCK2 siRNA reduced the expression of ROCK2 and p-ERM in OHCs, exacerbated TTS to PTS, and worsened OHC loss. Additionally, pretreatment with siRNA against radixin, an ERM protein, aggravated TTS to PTS. Our results indicate that a ROCK2-mediated ERM-phosphorylation signaling cascade modulates noise-induced hair cell loss and NIHL by targeting the cytoskeleton. We propose the following cascade following noise trauma leading to alteration of the F-actin arrangement in the outer hair cell cytoskeleton: Noise exposure reduces the levels of GTP-RhoA and subsequently diminishes levels of RhoA effector ROCK2 (Rho-associated kinase 2). Phosphorylation of ezrin-radixin-moesin (ERM) by ROCK2 normally allows ERM to cross-link actin filaments with the plasma membrane. Noise-decreased levels of ROCK results in reduction of phosphorylation of ERM that leads to depolymerization of actin filaments. Lysophosphatidic acid (LPA), an agonist of RhoA, binds to the G-protein-coupled receptor

  10. Noise-induced cochlear F-actin depolymerization is mediated via ROCK2/p-ERM signaling

    PubMed Central

    Han, Yu; Wang, Xianren; Chen, Jun; Sha, Su-Hua

    2015-01-01

    Our previous work has suggested that traumatic noise activates Rho-GTPase pathways in cochlear outer hair cells (OHCs), resulting in cell death and noise-induced hearing loss (NIHL). In this study, we investigated Rho effectors, Rho-associated kinases (ROCKs), and the targets of ROCKs, the ezrin-radixin-moesin (ERM) proteins, in the regulation of the cochlear actin cytoskeleton using adult CBA/J mice under conditions of noise-induced temporary threshold shift (TTS) and permanent threshold shift (PTS) hearing loss, which result in changes to the F/G-actin ratio. The levels of cochlear ROCK2 and p-ERM decreased 1 h after either TTS- or PTS-noise exposure. In contrast, ROCK2 and p-ERM in OHCs decreased only after PTS-, not after TTS-noise exposure. Treatment with lysophosphatidic acid, an activator of the Rho pathway, resulted in significant reversal of the F/G-actin ratio changes caused by noise exposure and attenuated OHC death and NIHL. Conversely, the down-regulation of ROCK2 by pretreatment with ROCK2 siRNA reduced the expression of ROCK2 and p-ERM in OHCs, exacerbated TTS to PTS, and worsened OHC loss. Additionally, pretreatment with siRNA against radixin, an ERM protein, aggravated TTS to PTS. Our results indicate that a ROCK2-mediated ERM-phosphorylation signaling cascade modulates noise-induced hair cell loss and NIHL by targeting the cytoskeleton. PMID:25683353

  11. Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression

    PubMed Central

    Rajakylä, Eeva Kaisa; Vartiainen, Maria K

    2014-01-01

    Actin cytoskeleton is one of the main targets of Rho GTPases, which act as molecular switches on many signaling pathways. During the past decade, actin has emerged as an important regulator of gene expression. Nuclear actin plays a key role in transcription, chromatin remodeling, and pre-mRNA processing. In addition, the “status” of the actin cytoskeleton is used as a signaling intermediate by at least the MKL1-SRF and Hippo-pathways, which culminate in the transcriptional regulation of cytoskeletal and growth-promoting genes, respectively. Rho GTPases may therefore regulate gene expression by controlling either cytoplasmic or nuclear actin dynamics. Although the regulation of nuclear actin polymerization is still poorly understood, many actin-binding proteins, which are downstream effectors of Rho, are found in the nuclear compartment. In this review, we discuss the possible mechanisms and key proteins that may mediate the transcriptional regulation by Rho GTPases through actin. PMID:24603113

  12. Cofilin-mediated actin dynamics promotes actin bundle formation during Drosophila bristle development

    PubMed Central

    Wu, Jing; Wang, Heng; Guo, Xuan; Chen, Jiong

    2016-01-01

    The actin bundle is an array of linear actin filaments cross-linked by actin-bundling proteins, but its assembly and dynamics are not as well understood as those of the branched actin network. Here we used the Drosophila bristle as a model system to study actin bundle formation. We found that cofilin, a major actin disassembly factor of the branched actin network, promotes the formation and positioning of actin bundles in the developing bristles. Loss of function of cofilin or AIP1, a cofactor of cofilin, each resulted in increased F-actin levels and severe defects in actin bundle organization, with the defects from cofilin deficiency being more severe. Further analyses revealed that cofilin likely regulates actin bundle formation and positioning by the following means. First, cofilin promotes a large G-actin pool both locally and globally, likely ensuring rapid actin polymerization for bundle initiation and growth. Second, cofilin limits the size of a nonbundled actin-myosin network to regulate the positioning of actin bundles. Third, cofilin prevents incorrect assembly of branched and myosin-associated actin filament into bundles. Together these results demonstrate that the interaction between the dynamic dendritic actin network and the assembling actin bundles is critical for actin bundle formation and needs to be closely regulated. PMID:27385345

  13. Involvement of β- and γ-actin isoforms in actin cytoskeleton organization and migration abilities of bleb-forming human colon cancer cells

    PubMed Central

    Simiczyjew, Aleksandra; Mazur, Antonina Joanna; Dratkiewicz, Ewelina; Nowak, Dorota

    2017-01-01

    Amoeboid movement is characteristic for rounded cells, which do not form strong adhesion contacts with the ECM and use blebs as migratory protrusions. It is well known that actin is the main component of mature forms of these structures, but the exact role fulfilled by non-muscle actin isoforms β- and γ- in bleb formation and migration of these cells is still not fully understood. The aim of this study was to establish the role of β- and γ-actin in migration of bleb-forming cancer cells using isoform-specific antibodies and expression of fluorescently tagged actin isoforms. We observed, after staining with monoclonal antibodies, that both actins are present in these cells in the form of a cortical ring as well as in the area of blebs. Additionally, using simultaneous expression of differentially tagged β- and γ-actin in cells, we observed that the actin isoforms are present together in a single bleb. They were involved during bleb expansion as well as retraction. Also present in the area of these protrusions formed by both isoforms were the bleb markers–ezrin and myosin II. The overexpression of β- or γ-actin led to actin cytoskeletal rearrangement followed by the growth of migration and invasion abilities of examined human colon cancer cells, LS174T line. In summary these data prove that both actin isoforms have an impact on motility of bleb-forming cancer cells. Moreover, we conclude that monoclonal antibodies directed against actin isoforms in combination with the tagged actins are good tools to study their role in important biological processes. PMID:28333953

  14. A functional interplay between the small GTPase Rab11a and mitochondria-shaping proteins regulates mitochondrial positioning and polarization of the actin cytoskeleton downstream of Src family kinases.

    PubMed

    Landry, Marie-Claude; Champagne, Claudia; Boulanger, Marie-Chloé; Jetté, Alexandra; Fuchs, Margit; Dziengelewski, Claire; Lavoie, Josée N

    2014-01-24

    It is believed that mitochondrial dynamics is coordinated with endosomal traffic rates during cytoskeletal remodeling, but the mechanisms involved are largely unknown. The adenovirus early region 4 ORF4 protein (E4orf4) subverts signaling by Src family kinases (SFK) to perturb cellular morphology, membrane traffic, and organellar dynamics and to trigger cell death. Using E4orf4 as a model, we uncovered a functional connection between mitochondria-shaping proteins and the small GTPase Rab11a, a key regulator of polarized transport via recycling endosomes. We found that E4orf4 induced dramatic changes in the morphology of mitochondria along with their mobilization at the vicinity of a polarized actin network typifying E4orf4 action, in a manner controlled by SFK and Rab11a. Mitochondrial remodeling was associated with increased proximity between Rab11a and mitochondrial membranes, changes in fusion-fission dynamics, and mitochondrial relocalization of the fission factor dynamin-related protein 1 (Drp1), which was regulated by the Rab11a effector protein FIP1/RCP. Knockdown of FIP1/RCP or inhibition of Drp1 markedly impaired mitochondrial remodeling and actin assembly, involving Rab11a-mediated mitochondrial dynamics in E4orf4-induced signaling. A similar mobilization of mitochondria near actin-rich structures was mediated by Rab11 and Drp1 in viral Src-transformed cells and contributed to the biogenesis of podosome rosettes. These findings suggest a role for Rab11a in the trafficking of Drp1 to mitochondria upon SFK activation and unravel a novel functional interplay between Rab11a and mitochondria during reshaping of the cell cytoskeleton, which would facilitate mitochondria redistribution near energy-requiring actin-rich structures.

  15. A Functional Interplay between the Small GTPase Rab11a and Mitochondria-shaping Proteins Regulates Mitochondrial Positioning and Polarization of the Actin Cytoskeleton Downstream of Src Family Kinases*

    PubMed Central

    Landry, Marie-Claude; Champagne, Claudia; Boulanger, Marie-Chloé; Jetté, Alexandra; Fuchs, Margit; Dziengelewski, Claire; Lavoie, Josée N.

    2014-01-01

    It is believed that mitochondrial dynamics is coordinated with endosomal traffic rates during cytoskeletal remodeling, but the mechanisms involved are largely unknown. The adenovirus early region 4 ORF4 protein (E4orf4) subverts signaling by Src family kinases (SFK) to perturb cellular morphology, membrane traffic, and organellar dynamics and to trigger cell death. Using E4orf4 as a model, we uncovered a functional connection between mitochondria-shaping proteins and the small GTPase Rab11a, a key regulator of polarized transport via recycling endosomes. We found that E4orf4 induced dramatic changes in the morphology of mitochondria along with their mobilization at the vicinity of a polarized actin network typifying E4orf4 action, in a manner controlled by SFK and Rab11a. Mitochondrial remodeling was associated with increased proximity between Rab11a and mitochondrial membranes, changes in fusion-fission dynamics, and mitochondrial relocalization of the fission factor dynamin-related protein 1 (Drp1), which was regulated by the Rab11a effector protein FIP1/RCP. Knockdown of FIP1/RCP or inhibition of Drp1 markedly impaired mitochondrial remodeling and actin assembly, involving Rab11a-mediated mitochondrial dynamics in E4orf4-induced signaling. A similar mobilization of mitochondria near actin-rich structures was mediated by Rab11 and Drp1 in viral Src-transformed cells and contributed to the biogenesis of podosome rosettes. These findings suggest a role for Rab11a in the trafficking of Drp1 to mitochondria upon SFK activation and unravel a novel functional interplay between Rab11a and mitochondria during reshaping of the cell cytoskeleton, which would facilitate mitochondria redistribution near energy-requiring actin-rich structures. PMID:24302731

  16. Tropomyosin and Profilin Cooperate to Promote Formin-Mediated Actin Nucleation and Drive Yeast Actin Cable Assembly.

    PubMed

    Alioto, Salvatore L; Garabedian, Mikael V; Bellavance, Danielle R; Goode, Bruce L

    2016-12-05

    Tropomyosins comprise a large family of actin-binding proteins with critical roles in diverse actin-based processes [1], but our understanding of how they mechanistically contribute to actin filament dynamics has been limited. We addressed this question in S. cerevisiae, where tropomyosins (Tpm1 and Tpm2), profilin (Pfy1), and formins (Bni1 and Bnr1) are required for the assembly of an array of actin cables that facilitate polarized vesicle delivery and daughter cell growth. Formins drive cable formation by promoting actin nucleation and by accelerating actin filament elongation together with profilin [2]. In contrast, how tropomyosins contribute mechanistically to cable formation has been unclear, but genetic studies demonstrate that Tpm1 plays a more important role than Tpm2 [3, 4]. Here, we found that loss of TPM1 in strains lacking BNR1, but not BNI1, leads to severe defects in cable formation, polarized secretion, and cell growth, suggesting that TPM1 function is required for proper Bni1-mediated cable assembly. Furthermore, in vitro total internal reflection fluorescence (TIRF) microscopy demonstrated that Tpm1 strongly enhances Bni1-mediated, but not Bnr1-mediated, actin nucleation without affecting filament elongation rate, whereas Tpm2 has no effects on Bni1 or Bnr1. Tpm1 stimulation of Bni1-mediated nucleation also requires profilin and its interactions with both G-actin and formins. Together, these results demonstrate that yeast Tpm1 works in concert with profilin to promote formin-dependent nucleation of actin cables, thus expanding our understanding of how specific tropomyosin isoforms influence actin dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Paxillin Contracts the Osteoclast Cytoskeleton

    PubMed Central

    Zou, Wei; DeSelm, Carl J.; Broekelmann, Thomas J.; Mecham, Robert P.; Pol, Scott Vande; Choi, Kyunghee; Teitelbaum, Steven L.

    2012-01-01

    Osteoclastic bone resorption depends upon the cell’s ability to organize its cytoskeleton via the αvβ3 integrin and osteoclastogenic cytokines. Since paxillin associates with αvβ3, we asked if it participates in skeletal degradation. Unlike deletion of other αvβ3-associated cytoskeleton-regulating molecules, which impairs the cell’s ability to spread, paxillin-deficient (Pax−/−) osteoclasts, generated from embryonic stem cells, “superspread” in response to RANK ligand (RANKL) and form large, albeit dynamically atypical, actin bands. Despite their increased size, Pax−/− osteoclasts resorb bone poorly, excavating pits approximately 1/3 normal depth. Ligand-occupied αvβ3 or RANKL promotes paxillin serine and tyrosine phosphorylation, the latter via c-Src. The abnormal Pax−/− phenotype is rescued by WT paxillin but not that lacking its LD4 domain. In keeping with the appearance of mutant osteoclasts, WT paxillin, overexpressed in WT cells, contracts the cytoskeleton. Most importantly, the abnormal phenotype of Pax−/− osteoclasts likely represents failed RANKL-mediated delivery of myosin IIA to the actin cytoskeleton via the paxillin LD4 domain but is independent of tyrosine phosphorylation. Thus, in response to RANKL, paxillin associates with myosin IIA to contract the osteoclast cytoskeleton thereby promoting its bone-degrading capacity. PMID:22807029

  18. The knock-out of ARP3a gene affects F-actin cytoskeleton organization altering cellular tip growth, morphology and development in moss Physcomitrella patens.

    PubMed

    Finka, Andrija; Saidi, Younousse; Goloubinoff, Pierre; Neuhaus, Jean-Marc; Zrÿd, Jean-Pierre; Schaefer, Didier G

    2008-10-01

    The seven subunit Arp2/3 complex is a highly conserved nucleation factor of actin microfilaments. We have isolated the genomic sequence encoding a putative Arp3a protein of the moss Physcomitrella patens. The disruption of this ARP3A gene by allele replacement has generated loss-of-function mutants displaying a complex developmental phenotype. The loss-of function of ARP3A gene results in shortened, almost cubic chloronemal cells displaying affected tip growth and lacking differentiation to caulonemal cells. In moss arp3a mutants, buds differentiate directly from chloronemata to form stunted leafy shoots having differentiated leaves similar to wild type. Yet, rhizoids never differentiate from stem epidermal cells. To characterize the F-actin organization in the arp3a-mutated cells, we disrupted ARP3A gene in the previously described HGT1 strain expressing conditionally the GFP-talin marker. In vivo observation of the F-actin cytoskeleton during P. patens development demonstrated that loss-of-function of Arp3a is associated with the disappearance of specific F-actin cortical structures associated with the establishment of localized cellular growth domains. Finally, we show that constitutive expression of the P. patens Arp3a and its Arabidopsis thaliana orthologs efficiently complement the mutated phenotype indicating a high degree of evolutionary conservation of the Arp3 function in land plants.

  19. GhCFE1A, a dynamic linker between the ER network and actin cytoskeleton, plays an important role in cotton fibre cell initiation and elongation.

    PubMed

    Lv, Fenni; Wang, Haihai; Wang, Xinyu; Han, Libo; Ma, Yinping; Wang, Sen; Feng, Zhidi; Niu, Xiaowei; Cai, Caiping; Kong, Zhaosheng; Zhang, Tianzhen; Guo, Wangzhen

    2015-04-01

    Fibre cell initiation and elongation is critical for cotton fibre development. However, little is known about the regulation of initiation and elongation during fibre cell development. Here, the regulatory role of a novel protein GhCFE1A was uncovered. GhCFE1A is preferentially expressed at initiation and rapid elongation stages during fibre development; in addition, much higher expression of GhCFE1A was detected at the fibre initiation stage in fibreless cotton mutants than in the fibre-bearing TM-1 wild-type. Importantly, overexpression of GhCFE1A in cotton not only delayed fibre cell elongation but also significantly reduced the density of lint and fuzz fibre initials and stem trichomes. Yeast two-hybrid assay showed that GhCFE1A interacted with several actin proteins, and the interaction was further confirmed by co-sedimentation assay. Interestingly, a subcellular localization assay showed that GhCFE1A resided on the cortical endoplasmic reticulum (ER) network and co-localized with actin cables. Moreover, the density of F-actin filaments was shown to be reduced in GhCFE1A-overexpressing fibres at the rapid elongation stage compared with the wild-type control. Taken together, the results demonstrate that GhCFE1A probably functions as a dynamic linker between the actin cytoskeleton and the ER network, and plays an important role in fibre cell initiation and elongation during cotton fibre development.

  20. Activation of the osmo-sensitive chloride conductance involves P21rho and is accompanied by a transient reorganization of the F-actin cytoskeleton.

    PubMed Central

    Tilly, B C; Edixhoven, M J; Tertoolen, L G; Morii, N; Saitoh, Y; Narumiya, S; de Jonge, H R

    1996-01-01

    Hypo-osmotic stimulation of human Intestine 407 cells rapidly activated compensatory CL- and K+ conductances that limited excessive cell swelling and, finally, restored the original cell volume. Osmotic cell swelling was accompanied by a rapid and transient reorganization of the F-actin cytoskeleton, affecting both stress fibers as well as apical ruffles. In addition, an increase in total cellular F-actin was observed. Pretreatment of the cells with recombinant Clostridium botulinum C3 exoenzyme, but not with mutant enzyme (C3-E173Q) devoid of ADP-ribosyltransferase activity, greatly reduced the activation of the osmo-sensitive anion eff